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Preface

Complex Systems in Finance and Econometrics is an authoritative reference to the basic tools and concepts of complexity
and systems theory as applied to an understanding of complex, financial-based business and social systems. Fractals,
nonlinear time series modeling, cellular automata, game theory, network theory and statistical physics are among the
tools and techniques that are used for predicting, monitoring, evaluating, managing, and decision-making in a wide
range of fields from health care, poverty alleviation, and energy and the environment, to manufacturing and quality
assurance, model building, organizational learning. and macro and microeconomics. In the last of these areas, market
bubbles and crashes, foreign exchange, and bond markets are addressed.

Sixty-nine of the world’s leading experts present 49 articles for an audience of advanced undergraduate and graduate
students, professors, and professionals in all of these fields. Each article was selected and peer reviewed by one of the
Section Editors of the Encyclopedia of Complexity and Systems Science with advice and consultation provided by our
Board Members and Editor-in-Chief. This level of coordination assures that the reader can have a level of confidence in
the relevance and accuracy of the information far exceeding that generally found on the World Wide Web or any print
publication. Accessiblilty is also a priority and for this reason each article includes a glossary of important terms and a
concise definition of the subject. The primary Section Editors for this project were BruceMizrach and Brian Dangerfield,
while Andrej Nowak, Cristina Marchetti, Marilda Sotomayor, Daniel ben-avraham and Schlomo Havlin recruited and
reviewed several of the articles. An alphabetical list of the 49 articles and the authors is presented on pages XV through
XVII, and the articles are also organized by section on pages VII to VIII. A summary, perspective and roadmap for the
articles on Finance and Econometrics can be found on pages 290 to 292, and for System Dynamics on pages 853 to 855.

Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of col-
lective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures.
They are therefore adaptive as they evolve andmay contain self-driving feedback loops. Thus, complex systems aremuch
more than a sum of their parts. Complex systems are often characterized as having extreme sensitivity to initial condi-
tions as well as emergent behavior that are not readily predictable or even completely deterministic. One conclusion is
that a reductionist (bottom-up) approach is often an incomplete description of a phenomenon. This recognition, that
the collective behavior of the whole system cannot be simply inferred from the understanding of the behavior of the in-
dividual components, has led to many new concepts and sophisticated mathematical and modeling tools for application
to financial-based business and social systems.
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Glossary

Agent-based simulation A simulation of a system of
multiple interacting agents (sometimes also known as
“microscopic simulation”). The “micro” rules govern-
ing the actions of the agents are known, and so are
their rules of interaction. Starting with some initial
conditions, the dynamics of the system are investigated
by simulating the state of the system through discrete
time steps. This approach can be employed to study
general properties of the system, which are not sensi-
tive to the initial conditions, or the dynamics of a spe-
cific system with fairly well-known initial conditions,
e. g. the impact of the baby boomers’ retirement on the
US stock market.

Bounded-rationality Most economic models describe
agents as being fully rational – given the information at
their disposal they act in the optimal way which max-
imizes their objective (or utility) function. This opti-
mization may be technically very complicated, requir-
ing economic, mathematical and statistical sophistica-
tion. In contrast, bounded rational agents are limited
in their ability to optimize. This limitation may be due
to limited computational power, errors, or various psy-
chological biases which have been experimentally doc-
umented.

Market anomalies Empirically documented phenomena
that are difficult to explain within the standard ratio-
nal representative agent economic framework. Some
of these phenomena are the over-reaction and under-
reaction of prices to news, the auto-correlation of stock
returns, various calendar and day-of-the-week effects,
and the excess volatility of stock returns.

Representative agent A standard modeling technique in
economics, by which an entire class of agents (e. g. in-

vestors) aremodeled by a single “representative” agent.
If agents are completely homogeneous, it is obvious
that the representative agent method is perfectly legit-
imate. However, when agents are heterogeneous, the
representative agent approach can lead to a multitude
of problems (see [16]).

Definition of the Subject

Mainstream economic models typically make the assump-
tion that an entire group of agents, e. g. “investors”, can
be modeled with a single “rational representative agent”.
While this assumption has proven extremely useful in ad-
vancing the science of economics by yielding analytically
tractable models, it is clear that the assumption is not re-
alistic: people are different one from the other in their
tastes, beliefs, and sophistication, and as many psychologi-
cal studies have shown, they often deviate from rationality
in systematic ways.

Agent Based Computational Economics is a frame-
work allowing economics to expand beyond the realm
of the “rational representative agent”. By modeling and
simulating the behavior of each agent and the interac-
tion among agents, agent based simulation allows us to
investigate the dynamics of complex economic systems
with many heterogeneous and not necessarily fully ratio-
nal agents.

The agent based simulation approach allows econ-
omists to investigate systems that can not be studied with
the conventional methods. Thus, the following key ques-
tions can be addressed: How do heterogeneity and system-
atic deviations from rationality affect markets? Can these
elements explain empirically observed phenomena which
are considered “anomalies” in the standard economics lit-
erature? How robust are the results obtained with the an-
alytical models? By addressing these questions the agent
based simulation approach complements the traditional
analytical analysis, and is gradually becoming a standard
tool in economic analysis.

Introduction

For solving the dynamics of two bodies (e. g. stars) with
some initial locations and velocities and some law of at-
traction (e. g. gravitation) there is a well-known analytical
solution. However, for a similar system with three bodies
there is no known analytical solution. Of course, this does
not mean that physicists can’t investigate and predict the
behavior of such systems. Knowing the state of the system
(i. e. the location, velocity, and acceleration of each body)
at time t, allows us to calculate the state of the system an
instant later, at time t C �t. Thus, starting with the ini-
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tial conditions we can predict the dynamics of the system
by simply simulating the “behavior” of each element in the
system over time.

This powerful and fruitful approach, sometimes called
“Microscopic Simulation”, has been adopted by many
other branches of science. Its application in economics is
best known as “Agent Based Simulation” or “Agent Based
Computation”. The advantages of this approach are clear –
they allow the researcher to go where no analytical mod-
els can go. Yet, despite of the advantages, perhaps sur-
prisingly, the agent based approach was not adopted very
quickly by economists. Perhaps the main reason for this
is that a particular simulation only describes the dynamics
of a system with a particular set of parameters and initial
conditions. With other parameters and initial conditions
the dynamics may be different. So economists may ask:
what is the value of conducting simulations if we get very
different results with different parameter values? While
in physics the parameters (like the gravitational constant)
may be known with great accuracy, in economics the
parameters (like the risk-aversion coefficient, or for that
matter the entire decision-making rule) are typically esti-
mated with substantial error. This is a strong point. In-
deed, we would argue that the “art” of agent based sim-
ulations is the ability to understand the general dynam-
ics of the system and to draw general conclusions from
a finite number of simulations. Of course, one simula-
tion is sufficient as a counter-example to show that a cer-
tain result does not hold, but many more simulations are
required in order to convince of an alternative general
regularity.

This manuscript is intended as an introduction to
agent-based computational economics. An introduction
to this field has two goals: (i) to explain and to demon-
strate the agent-based methodology in economics, stress-
ing the advantages and disadvantages of this approach rel-
ative to the alternative purely analytical methodology, and
(ii) to review studies published in this area. The emphasis
in this paper will be on the first goal. While Sect. “Some
of the Pioneering Studies” does provide a brief review of
some of the cornerstone studies in this area, more com-
prehensive reviews can be found in [19,24,32,39,40], on
which part of Sect. “Some of the Pioneering Studies” is
based. A comprehensive review of the many papers em-
ploying agent based computational models in economics
will go far beyond the scope of this article. To achieve
goal (i) above, in Sect. “Illustration with the LLS Model”
we will focus on one particular model of the stock market
in some detail. Section “Summary and Future Directions”
concludes with some thoughts about the future of the
field.

Some of the Pioneering Studies

Schelling’s Segregation Model

Schelling’s [36] classical segregation model is one of the
earliest models of population dynamics. Schelling’s model
is not intended as a realistic tool for studying the actual
dynamics of specific communities as it ignores economic,
real-estate and cultural factors. Rather, the aim of this very
simplified model is to explain the emergence of macro-
scopic single-race neighborhoods even when individuals
are not racists. More precisely, Schelling found that the
collective effect of neighborhood racial segregation results
even from individual behavior that presents only a very
mild preference for same-color neighbors. For instance,
even the minimal requirement by each individual of hav-
ing (at least) one neighbor belonging to ones’ own race
leads to the segregation effect.

The agent based simulation starts with a square mesh,
or lattice, (representing a town) which is composed of cells
(representing houses). On these cells reside agents which
are either “blue” or “green” (the different races). The cru-
cial parameter is the minimal percentage of same-color
neighbors that each agent requires. Each agent, in his turn,
examines the color of all his neighbors. If the percentage of
neighbors belonging to his own group is above the “mini-
mal percentage”, the agent does nothing. If the percentage
of neighbors of his own color is less then the minimal per-
centage, the agent moves to the closest unoccupied cell.
The agent then examines the color of the neighbors of the
new location and acts accordingly (moves if the number of
neighbors of his own color is below the minimal percent-
age and stays there otherwise). This goes on until the agent
is finally located at a cite in which the minimal percentage
condition holds. After a while, however, it might happen
that following the moves of the other agents, the mini-
mal percentage condition ceases to be fulfilled and then
the agent starts moving again until he finds an appropri-
ate cell. As mentioned above, the main result is that even
for very mild individual preferences for same-color neigh-
bors, after some time the entire system displays a very high
level of segregation.

A more modern, developed and sophisticated rein-
carnation of these ideas is the Sugarscape environment
described by Epstein and Axtell [6]. The model consid-
ers a population of moving, feeding, pairing, procreat-
ing, trading, warring agents and displays various qual-
itative collective events which their populations incur.
By employing agent based simulation one can study the
macroscopic results induced by the agents’ individual
behavior.
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The Kim andMarkowitz Portfolio Insurers Model

Harry Markowitz is very well known for being one of the
founders of modern portfolio theory, a contribution for
which he has received the Nobel Prize in economics. It is
less well known, however, that Markowitz is also one of
the pioneers in employing agent based simulations in eco-
nomics.

During the October 1987 crash markets all over the
globe plummeted by more than 20% within a few days.
The surprising fact about this crash is that it appeared to be
spontaneous – it was not triggered by any obvious event.
Following the 1987 crash researchers started to look for
endogenous market features, rather than external forces,
as sources of price variation. The Kim-Markowitz [15]
model explains the 1987 crash as resulting from investors’
“Constant Proportion Portfolio Insurance” (CPPI) pol-
icy. Kim andMarkowitz proposed that market instabilities
arise as a consequence of the individual insurers’ efforts to
cut their losses by selling once the stock prices are going
down.

The Kim Markowitz agent based model involves two
groups of individual investors: rebalancers and insurers
(CPPI investors). The rebalancers are aiming to keep
a constant composition of their portfolio, while the insur-
ers make the appropriate operations to insure that their
eventual losses will not exceed a certain fraction of the in-
vestment per time period.

The rebalancers act to keep a portfolio structure with
(for instance) half of their wealth in cash and half in stocks.
If the stock price rises, then the stocks weight in the port-
folio will increase and the rebalancers will sell shares until
the shares again constitute 50% of the portfolio. If the stock
price decreases, then the value of the shares in the port-
folio decreases, and the rebalancers will buy shares until
the stock again constitutes 50% of the portfolio. Thus, the
rebalancers have a stabilizing influence on the market by
selling when the market rises and buying when the market
falls.

A typical CPPI investor has as his/her main objective
not to lose more than (for instance) 25% of his initial
wealth during a quarter, which consists of 65 trading days.
Thus, he aims to insure that at each cycle 75% of the initial
wealth is out of reasonable risk. To this effect, he assumes
that the current value of the stock will not fall in one day by
more than a factor of 2. The result is that he always keeps
in stock twice the difference between the present wealth
and 75% of the initial wealth (which he had at the begin-
ning of the 65 days investing period). This determines the
amount the CPPI agent is bidding or offering at each stage.
Obviously, after a price fall, the amount he wants to keep

in stocks will fall and the CPPI investor will sell and fur-
ther destabilize the market. After an increase in the prices
(and personal wealth) the amount the CPPI agent wants to
keep in shares will increase: he will buy, and may support
a price bubble.

The simulations reveal that even a relatively small frac-
tion of CPPI investors (i. e. less than 50%) is enough to
destabilize the market, and crashes and booms are ob-
served. Hence, the claim of Kim and Markowitz that the
CPPI policy may be responsible for the 1987 crash is sup-
ported by the agent based simulations. Various variants of
this model were studied intensively by Egenter, Lux and
Stauffer [5] who find that the price time evolution becomes
unrealistically periodic for a large number of investors (the
periodicity seems related with the fixed 65 days quarter
and is significantly diminished if the 65 day period begins
on a different date for each investor).

The Arthur, Holland, Lebaron, Palmer
and Tayler Stock Market Model

Palmer, Arthur, Holland, Lebaron and Tayler [30]
and Arthur, Holland, Lebaron, Palmer and Tayler [3]
(AHLPT) construct an agent based simulation model that
is focused on the concept of co-evolution. Each investor
adapts his/her investment strategy such as to maximally
exploit the market dynamics generated by the invest-
ment strategies of all others investors. This leads to an
ever-evolving market, driven endogenously by the ever-
changing strategies of the investors.

The main objective of AHLPT is to prove that mar-
ket fluctuations may be induced by this endogenous co-
evolution, rather than by exogenous events. Moreover,
AHLPT study the various regimes of the system: the
regime in which rational fundamentalist strategies are
dominating vs. the regime in which investors start devel-
oping strategies based on technical trading. In the techni-
cal trading regime, if some of the investors follow funda-
mentalist strategies, they may be punished rather than re-
warded by the market. AHLPT also study the relation be-
tween the various strategies (fundamentals vs. technical)
and the volatility properties of the market (clustering, ex-
cess volatility, volume-volatility correlations, etc.).

In the first paper quoted above, the authors simulated
a single stock and further limited the bid/offer decision to
a ternary choice of: i) bid to buy one share, ii) offer to sell
one share, or: iii) do nothing. Each agent had a collection
of rules which described how he should behave (i, ii or iii)
in various market conditions. If the current market condi-
tions were not covered by any of the rules, the default was
to do nothing. If more than one rule applied in a certain
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market condition, the rule to act upon was chosen prob-
abilistically according to the “strengths” of the applicable
rules. The “strength” of each rule was determined accord-
ing to the rule’s past performance: rules that “worked” be-
came “stronger”. Thus, if a certain rule performed well, it
became more likely to be used again.

The price is updated proportionally to the relative ex-
cess of offers over demands. In [3], the rules were used to
predict future prices. The price prediction was then trans-
formed into a buy/sell order through the use of a Constant
Absolute Risk Aversion (CARA) utility function. The use
of CARA utility leads to demands which do not depend on
the investor’s wealth.

The heart of the AHLPT dynamics are the trading
rules. In particular, the authors differentiate between “fun-
damental” rules and “technical” rules, and study their rel-
ative strength in various market regimes. For instance,
a “fundamental” rule may require a market conditions of
the type:

dividend/current price > 0:04

in order to be applied. A “technical” rule may be triggered
if the market fulfills a condition of the type:

current price > 10-period moving-average of past prices:

The rules undergo genetic dynamics: the weakest rules are
substituted periodically by copies of the strongest rules
and all the rules undergo random mutations (or even ver-
sions of “sexual” crossovers: new rules are formed by com-
bining parts from 2 different rules). The genetic dynamics
of the trading rules represent investors’ learning: new rules
represent new trading strategies. Investors examine new
strategies, and adopt those which tend to work best. The
main results of this model are:

For a Few Agents, a Small Number of Rules,
and Small Dividend Changes

� The price converges towards an equilibrium price
which is close to the fundamental value.

� Trading volume is low.
� There are no bubbles, crashes or anomalies.
� Agents follow homogeneous simple fundamentalist

rules.

For a Large Number of Agents
and a Large Number of Rules

� There is no convergence to an equilibrium price, and
the dynamics are complex.

� The price displays occasional large deviations from the
fundamental value (bubbles and crashes).

� Some of these deviations are triggered by the emer-
gence of collectively self-fulfilling agent price-predic-
tion rules.

� The agents become heterogeneous (adopt very different
rules).

� Trading volumes fluctuate (large volumes correspond
to bubbles and crashes).

� The rules evolve over time to more and more complex
patterns, organized in hierarchies (rules, exceptions to
rules, exceptions to exceptions, and so on ...).

� The successful rules are time dependent: a rule which is
successful at a given time may perform poorly if rein-
troduced after many cycles of market co-evolution.

The Lux and Lux andMarchesi Model

Lux [27] and Lux and Marchesi [28] propose a model to
endogenously explain the heavy tail distribution of returns
and the clustering of volatility. Both of these phenomena
emerge in the Lux model as soon as one assumes that
in addition to the fundamentalists there are also chartists
in the model. Lux and Marchesi [28] further divide the
chartists into optimists (buyers) and pessimists (sellers).
The market fluctuations are driven and amplified by the
fluctuations in the various populations: chartists convert-
ing into fundamentalists, pessimists into optimists, etc.

In the Lux and Marchesi model the stock’s fundamen-
tal value is exogenously determined. The fluctuations of
the fundamental value are inputted exogenously as a white
noise process in the logarithm of the value. The market
price is determined by investors’ demands and by the mar-
ket clearance condition.

Lux and Marchesi consider three types of traders:

� Fundamentalists observe the fundamental value of the
stock. They anticipate that the price will eventually con-
verge to the fundamental value, and their demand for
shares is proportional to the difference between the
market price and the fundamental value.

� Chartists look more at the present trends in the market
price rather than at fundamental economic values; the
chartists are divided into

� Optimists (they buy a fixed amount of shares per unit
time)

� Pessimists (they sell shares).

Transitions between these three groups (optimists, pes-
simists, fundamentalists) happen with probabilities de-
pending on the market dynamics and on the present num-
bers of traders in each of the three classes:

� The transition probabilities of chartists depend on
themajority opinion (through an “opinion index”mea-
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suring the relative number of optimists minus the rel-
ative number of pessimists) and on the actual price
trend (the current time derivative of the current mar-
ket price), which determines the relative profit of the
various strategies.

� The fundamentalists decide to turn into chartists if
the profits of the later become significantly larger than
their own, and vice versa (the detailed formulae used
by Lux andMarchesi are inspired from the exponential
transition probabilities governing statistical mechanics
physical systems).
The main results of the model are:
� No long-term deviations between the current mar-

ket price and the fundamental price are observed.
� The deviations from the fundamental price, which

do occur, are unsystematic.
� In spite of the fact that the variations of the funda-

mental price are normally distributed, the variations
of the market price (the market returns) are not. In
particular the returns exhibit a frequency of extreme
events which is higher than expected for a normal
distribution. The authors emphasize the amplifica-
tion role of the market that transforms the input
normal distribution of the fundamental value varia-
tions into a leptokurtotic (heavy tailed) distribution
of price variation, which is encountered in the actual
financial data.

� clustering of volatility.

The authors explain the volatility clustering (and as a con-
sequence, the leptokurticity) by the following mechanism.
In periods of high volatility, the fundamental information
is not very useful to insure profits, and a large fraction of
the agents become chartists. The opposite is true in quiet
periods when the actual price is very close to the funda-
mental value. The two regimes are separated by a thresh-
old in the number of chartist agents. Once this threshold
is approached (from below) large fluctuations take place
which further increase the number of chartists. This desta-
bilization is eventually dampened by the energetic inter-
vention of the fundamentalists when the price deviates too
much from the fundamental value. The authors compare
this temporal instability with the on-off intermittence en-
countered in certain physical systems. According to Egen-
ter et al. [5], the fraction of chartists in the Lux Marchesi
model goes to zero as the total number of traders goes to
infinity, when the rest of the parameters are kept constant.

Illustrationwith the LLS Model

The purpose of this section is to give a more detailed
“hands on” example of the agent based approach, and

to discuss some of the practical dilemmas arising when
implementing this approach, by focusing on one specific
model. We will focus on the so called LLS Model of the
stock market (for more detail, and various versions of the
model, see [11,17,22,23,24,25]. This section is based on the
presentation of the LLS Model in Chap. 7 of [24]).

Background

Real life investors differ in their investment behavior from
the investment behavior of the idealized representative
rational investor assumed in most economic and finan-
cial models. Investors differ one from the other in their
preferences, their investment horizon, the information at
their disposal, and their interpretation of this information.
No financial economist seriously doubts these observa-
tions. However, modeling the empirically and experimen-
tally documented investor behavior and the heterogeneity
of investors is very difficult and in most cases practically
impossible to do within an analytic framework. For in-
stance, the empirical and experimental evidence suggests
that most investors are characterized by Constant Relative
Risk Aversion (CRRA), which implies a power (myopic)
utility function (see Eq. (2) below). However, for a gen-
eral distribution of returns it is impossible to obtain an
analytic solution for the portfolio optimization problem
of investors with these preferences. Extrapolation of fu-
ture returns from past returns, biased probability weight-
ing, and partial deviations from rationality are also all ex-
perimentally documented but difficult to incorporate in an
analytical setting. One is then usually forced to make the
assumptions of rationality and homogeneity (at least in
some dimension) and to make unrealistic assumptions re-
garding investors’ preferences, in order to obtain a model
with a tractable solution. The hope in these circumstances
is that the model will capture the essence of the system
under investigation, and will serve as a useful benchmark,
even though some of the underlying assumptions are ad-
mittedly false.

Most homogeneous rational agent models lead to the
following predictions: no trading volume, zero autocorre-
lation of returns, and price volatility which is equal to or
lower than the volatility of the “fundamental value” of the
stock (defined as the present value of all future dividends,
see [37]). However, the empirical evidence is very differ-
ent:

� Trading volume can be extremely heavy [1,14].
� Stock returns exhibit short-run momentum (positive

autocorrelation) and long-run mean reversion (nega-
tive autocorrelation) [7,13,21,31].
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� Stock returns are excessively volatile relative to the div-
idends [37].

As most standard rational-representative-agent models
cannot explain these empirical findings, these phenomena
are known as“anomalies” or “puzzles”. Can these “anoma-
lies” be due to elements of investors’ behavior which are
unmodeled in the standard rational-representative-agent
models, such as the experimentally documented devia-
tions of investors’ behavior from rationality and/or the
heterogeneity of investors? The agent based simulation ap-
proach offers us a tool to investigate this question. The
strength of the agent based simulation approach is that
since it is not restricted to the scope of analytical methods,
one is able to investigate virtually any imaginable investor
behavior and market structure. Thus, one can study mod-
els which incorporate the experimental findings regarding
the behavior of investors, and evaluate the effects of var-
ious behavioral elements on market dynamics and asset
pricing.

The LLS model incorporates some of the main empir-
ical findings regarding investor behavior, and we employ
this model in order to study the effect of each element of
investor behavior on asset pricing and market dynamics.
We start out with a benchmark model in which all of the
investors are rational, informed and identical, and then,
one by one, we add elements of heterogeneity and devia-
tions from rationality to the model in order to study their
effects on the market dynamics.

In the benchmark model all investors are Rational,
Informed and Identical (RII investors). This is, in effect,
a “representative agent” model. The RII investors are in-
formed about the dividend process, and they rationally act
to maximize their expected utility. The RII investors make
investment decisions based on the present value of future
cash flows. They are essentially fundamentalists who eval-
uate the stock’s fundamental value and try to find bar-
gains in the market. The benchmark model in which all
investors are RII yields results which are typical of most
rational-representative-agent models: in this model prices
follow a random walk, there is no excess volatility of the
prices relative to the volatility of the dividend process, and
since all agents are identical, there is no trading volume.

After describing the properties of the benchmark
model, we investigate the effects of introducing various el-
ements of investor behavior which are found in laboratory
experiments but are absent in most standard models. We
do so by adding to the model a minority of investors who
do not operate like the RII investors. These investors are
Efficient Market Believers (EMB from now on). The EMBs
are investors who believe that the price of the stock re-

flects all of the currently available information about the
stock. As a consequence, they do not try to time the mar-
ket or to buy bargain stocks. Rather, their investment deci-
sion is reduced to the optimal diversification problem. For
this portfolio optimization, the ex-ante return distribution
is required. However, since the ex-ante distribution is un-
known, the EMB investors use the ex-post distribution in
order to estimate the ex-ante distribution. It has been doc-
umented that in fact, many investors form their expecta-
tions regarding the future return distribution based on the
distribution of past returns.

There are various ways to incorporate the investment
decisions of the EMBs. This stems from the fact that there
are different ways to estimate the ex-ante distribution from
the ex-post distribution. How far back should one look at
the historical returns? Should more emphasis be given to
more recent returns? Should some “outlier” observations
be filtered out? etc. Of course, there are no clear answers
to these questions, and different investors may have differ-
ent ways of forming their estimation of the ex-ante return
distribution (even though they are looking at the same se-
ries of historical returns). Moreover, some investors may
use the objective ex-post probabilities when constructing
their estimation of the ex-ante distribution, whereas oth-
ers may use biased subjective probability weights. In order
to build the analysis step-by-step we start by analyzing the
case in which the EMB population is homogeneous, and
then introduce various forms of heterogeneity into this
population.

An important issue in market modeling is that of the
degree of investors’ rationality. Most models in economics
and finance assume that people are fully rational. This as-
sumption usually manifests itself as the maximization of
an expected utility function by the individual. However,
numerous experimental studies have shown that people
deviate from rational decision-making [41,42,43,44,45].
Some studies model deviations from the behavior of the
rational agent by introducing a sub-group of liquidity,
or “noise”, traders. These are traders that buy and sell
stocks for reasons that are not directly related to the future
payoffs of the financial asset - their motivation to trade
arises from outside of the market (for example, a “noise
trader’s” daughter unexpectedly announces her plans to
marry, and the trader sells stocks because of this unex-
pected need for cash). The exogenous reasons for trading
are assumed random, and thus lead to random or “noise”
trading (see [10]). The LLS model takes a different ap-
proach to the modeling of noise trading. Rather than di-
viding investors into the extreme categories of “fully ratio-
nal” and “noise traders”, the LLS model assumes that most
investors try to act as rationally as they can, but are influ-
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enced by a multitude of factors causing them to deviate to
some extent from the behavior that would have been op-
timal from their point of view. Namely, all investors are
characterized by a utility function and act to maximize
their expected utility; however, some investors may devi-
ate to some extent from the optimal choice which maxi-
mizes their expected utility. These deviations from the op-
timal choice may be due to irrationality, inefficiency, liq-
uidity constraints, or a combination of all of the above.

In the framework of the LLS model we examine the
effects of the EMBs’ deviations from rationality and their
heterogeneity, relative to the benchmark model in which
investors are informed, rational and homogeneous. We
find that the behavioral elements which are empirically
documented, namely, extrapolation from past returns, de-
viation from rationality, and heterogeneity among in-
vestors, lead to all of the following empirically docu-
mented “puzzles”:

� Excess volatility
� Short-term momentum
� Longer-term return mean-reversion
� Heavy trading volume
� Positive correlation between volume and contempora-

neous absolute returns
� Positive correlation between volume and lagged abso-

lute returns

The fact that all these anomalies or “puzzles”, which
are hard to explain with standard rational-representative-
agent models, are generated naturally by a simple model
which incorporates the experimental findings regarding
investor behavior and the heterogeneity of investors, leads
one to suspect that these behavioral elements and the di-
versity of investors are a crucial part of the workings of the
market, and as such they cannot be “assumed away”. As
the experimentally documented bounded-rational behav-
ior and heterogeneity are in many cases impossible to an-
alyze analytically, agent based simulation presents a very
promising tool for investigating market models incorpo-
rating these elements.

The LLS Model

The stock market consists of two investment alternatives:
a stock (or index of stocks) and a bond. The bond is as-
sumed to be a riskless asset, and the stock is a risky asset.
The stock serves as a proxy for the market portfolio (e. g.,
the Standard & Poors 500 index). The extension from one
risky asset to many risky assets is possible; however, one
stock (the index) is sufficient for our present analysis be-
cause we restrict ourselves to global market phenomena
and do not wish to deal with asset allocation across several

risky assets. Investors are allowed to revise their portfolio
at given time points, i. e. we discuss a discrete time model.

The bond is assumed to be a riskless investment yield-
ing a constant return at the end of each time period. The
bond is in infinite supply and investors can buy from it as
much as they wish at a given rate of r f . The stock is in fi-
nite supply. There are N outstanding shares of the stock.
The return on the stock is composed of two elements:
a) Capital Gain: If an investor holds a stock, any rise (fall)

in the price of the stock contributes to an increase (de-
crease) in the investor’s wealth.

b) Dividends: The company earns income and distributes
dividends at the end of each time period. We denote
the dividend per share paid at time t by Dt . We assume
that the dividend is a stochastic variable following
a multiplicative random walk, i. e., D̃t D Dt�1(1 C z̃),
where z̃ is a random variable with some probability
density function f (z) in the range [z1; z2]. (In order to
allow for a dividend cut as well as a dividend increase
we typically choose: z1 < 0; z2 > 0).

The total return on the stock in period t, which we denote
by Rt is given by:

R̃t D P̃t C D̃t

Pt�1
; (1)

where P̃t is the stock price at time t.
All investors in the model are characterized by a von

Neuman-Morgenstern utility function. We assume that all
investors have a power utility function of the form:

U(W) D W1�˛

1 � ˛ ; (2)

where ˛ is the risk aversion parameter. This form of utility
function implies Constant Relative Risk Aversion (CRRA).
We employ the power utility function (Eq. (2)) because
the empirical evidence suggests that relative risk aversion
is approximately constant (see, for example [8,9,18,20]),
and the power utility function is the unique utility func-
tion which satisfies the CRRA condition. Another impli-
cation of CRRA is that the optimal investment choice is
independent of the investment horizon [33,34]. In other
words, regardless of investors’ actual investment horizon,
they choose their optimal portfolio as though they are in-
vesting for a single period. The myopia property of the
power utility function simplifies our analysis, as it allows
us to assume that investors maximize their one-period-
ahead expected utility.

We model two different types of investors: Rational,
Informed, Identical (RII) investors, and Efficient Market
Believers (EMB). These two investor types are described
below.
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Rational Informed Identical (RII) Investors RII in-
vestors evaluate the “fundamental value” of the stock as
the discounted stream of all future dividends, and thus can
also be thought of as “fundamentalists”. They believe that
the stock price may deviate from the fundamental value
in the short run, but if it does, it will eventually converge
to the fundamental value. The RII investors act according
to the assumption of asymptotic convergence: if the stock
price is low relative to the fundamental value they buy in
anticipation that the underpricing will be corrected, and
vice versa. We make the simplifying assumption that the
RII investors believe that the convergence of the price to
the fundamental value will occur in the next period, how-
ever, our results hold for the more general case where the
convergence is assumed to occur some T periods ahead,
with T > 1.

In order to estimate next period’s return distribution,
the RII investors need to estimate the distribution of next
period’s price, P̃tC1, and of next period’s dividend, D̃tC1.
Since they know the dividend process, the RII investors
know that D̃tC1 D Dt(1 C z̃) where z̃ is distributed ac-
cording to f (z) in the range [z1; z2]. The RII investors em-
ploy Gordon’s dividend streammodel in order to calculate
the fundamental value of the stock:

P f
tC1 D EtC1[D̃tC2]

k � g
; (3)

where the superscript f stands for the fundamental value,
EtC1[D̃tC2] is the dividend corresponding to time t C 2
as expected at time t C 1, k is the discount factor or the
expected rate of return demanded by the market for the
stock, and g is the expected growth rate of the dividend,
i. e., g D E(z̃) D R z2

z1 f (z)zdz.
The RII investors believe that the stock price may tem-

porarily deviate from the fundamental value; however,
they also believe that the price will eventually converge to
the fundamental value. For simplification we assume that
the RII investors believe that the convergence to the fun-
damental value will take place next period. Thus, the RII
investors estimate PtC1 as:

PtC1 D P f
tC1 :

The expectation at time t C 1 of D̃tC2 depends on the re-
alized dividend observed at t C 1:

EtC1[D̃tC2] D DtC1(1 C g) :

Thus, the RII investors believe that the price at t C 1 will
be given by:

PtC1 D P f
tC1 D DtC1(1 C g)

k � g
:

At time t, Dt is known, but DtC1 is not; therefore P
f
tC1 is

also not known with certainty at time t. However, given
Dt , the RII investors know the distribution of D̃tC1:

D̃tC1 D Dt(1 C z̃);

where z̃ is distributed according to the known f (z). The
realization of D̃tC1 determines P f

tC1. Thus, at time t, RII
investors believe that PtC1 is a random variable given by:

P̃tC1 D P̃ f
tC1 D Dt(1 C z̃)(1 C g)

k � g
:

Notice that the RII investors face uncertainty regarding
next period’s price. In our model we assume that the RII
investors are certain about the dividend growth rate g,
the discount factor k, and the fact that the price will con-
verge to the fundamental value next period. In this frame-
work the only source of uncertainty regarding next pe-
riod’s price stems from the uncertainty regarding next
period’s dividend realization. More generally, the RII in-
vestors’ uncertainty can result from uncertainty regarding
any one of the above factors, or a combination of several of
these factors. Any mix of these uncertainties is possible to
investigate in the agent based simulation framework, but
very hard, if not impossible, to incorporate in an analytic
framework. As a consequence of the uncertainty regarding
next period’s price and of their risk aversion, the RII in-
vestors do not buy an infinite number of shares even if they
perceive the stock as underpriced. Rather, they estimate
the stock’s next period’s return distribution, and find the
optimal mix of the stock and the bond which maximizes
their expected utility. The RII investors estimate next pe-
riod’s return on the stock as:

R̃tC1 D P̃tC1 C D̃tC1

Pt
D

Dt(1Cz̃)(1Cg)
k�g C Dt(1 C z̃)

Pt
; (4)

where z̃, the next year growth in the dividend, is the source
of uncertainty. The demands of the RII investors for the
stock depend on the price of the stock. For any hypothet-
ical price Ph investors calculate the proportion of their
wealth x they should invest in the stock in order to maxi-
mize their expected utility. The RII investor i believes that
if she invests a proportion x of her wealth in the stock at
time t, then at time t C 1 her wealth will be:

W̃ i
tC1 D Wi

h[(1 � x)(1 C r f ) C xR̃tC1]; (5)

where R̃tC1 is the return on the stock, as given by Eq. (1),
and Wi

h is the wealth of investor i at time t given that the
stock price at time t is Ph .
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If the price in period t is the hypothetical price Ph , the
tC1 expected utility of investor i is the following function
of her investment proportion in the stock, x:

EU(W̃ i
tC1) D EU

�
Wi

h
�
(1 � x)(1 C r f ) C xR̃tC1

��
: (6)

Substituting R̃tC1 from Eq. (4), using the power utility
function (Eq. (2)), and substituting the hypothetical price
Ph for Pt , the expected utility becomes the following func-
tion of x:

EU(W̃ i
tC1) D (Wi

h )
1�˛

1 � ˛

z2Z

z1

2

4(1 � x)(1 C r f )

Cx

0

@
Dt(1Cz)(1Cg)

k�g C Dt(1 C z)

Ph

1

A

3

5

1�˛

f (z)dz ;

(7)

where the integration is over all possible values of z. In
the agent based simulation framework, this expression for
the expected utility, and the optimal investment propor-
tion x, can be solved numerically for any general choice
of distribution f (z): For the sake of simplicity we restrict
the present analysis to the case where z̃ is distributed uni-
formly in the range [z1; z2]. This simplification leads to the
following expression for the expected utility:

EU(W̃ i
tC1)

D (Wi
h )

1�˛

(1 � ˛)(2 � ˛)
1

(z2 � z1)

�
k � g
k C 1

�
Ph
xDt( �

(1 � x)(1 C r f ) C x
Ph

�
k C 1
k � g

�

Dt(1 C z2)
	(2�˛)

�
�

(1 � x)(1 C r f ) C x
Ph

�
k C 1
k � g

�

Dt(1 C z1)
	(2�˛)

)

(8)

For any hypothetical price Ph , each investor (numerically)
finds the optimal proportion xh which maximizes his/her
expected utility given by Eq. (8). Notice that the optimal
proportion, xh , is independent of the wealth, Wi

h . Thus,
if all RII investors have the same degree of risk aversion,
˛, they will have the same optimal investment propor-
tion in the stock, regardless of their wealth. The number
of shares demanded by investor i at the hypothetical price
Ph is given by:

Ni
h(Ph) D xih(Ph )W

i
h(Ph )

Ph
: (9)

Efficient Market Believers (EMB) The second type of
investors in the LLS model are EMBs. The EMBs believe in
market efficiency - they believe that the stock price accu-
rately reflects the stock’s fundamental value. Thus, they do
not try to time the market or to look for “bargain” stocks.
Rather, their investment decision is reduced to the opti-
mal diversification between the stock and the bond. This
diversification decision requires the ex-ante return distri-
bution for the stock, but as the ex-ante distribution is not
available, the EMBs assume that the process generating the
returns is fairly stable, and they employ the ex-post distri-
bution of stock returns in order to estimate the ex-ante re-
turn distribution.

Different EMB investors may disagree on the optimal
number of ex-post return observations that should be em-
ployed in order to estimate the ex-ante return distribu-
tion. There is a trade-off between using more observations
for better statistical inference, and using a smaller num-
ber of only more recent observations, which are probably
more representative of the ex-ante distribution. As in real-
ity, there is no “recipe” for the optimal number of obser-
vations to use. EMB investor i believes that the mi most
recent returns on the stock are the best estimate of the ex-
ante distribution. Investors create an estimation of the ex-
ante return distribution by assigning an equal probability
to each of the mi most recent return observations:

Probi(R̃tC1 D Rt� j) D 1
mi for j D 1; : : :;mi (10)

The expected utility of EMB investor i is given by:

EU(Wi
tC1)

D (Wi
h )

1�˛

(1 � ˛)
1
mi

mi
X

jD1

�
(1 � x)(1 C r f ) C xRt� j

�1�˛
;

(11)

where the summation is over the set of mi most recent ex-
post returns, x is the proportion of wealth invested in the
stock, and as beforeWi

h is the wealth of investor i at time t
given that the stock price at time t is Ph . Notice that Wi

h
does not change the optimal diversification policy, i. e., x.
Given a set ofmi past returns, the optimal portfolio for the
EMB investor i is an investment of a proportion x�i in the
stock and (1- x�i) in the bond, where x�i is the propor-
tion which maximizes the above expected utility (Eq. (11))
for investor i. Notice that x�i generally cannot be solved
for analytically. However, in the agent based simulation
framework this does not constitute a problem, as one can
find x�i numerically.
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Deviations from Rationality Investors who are efficient
market believers, and are rational, choose the investment
proportion x� which maximizes their expected utility.
However, many empirical studies have shown that the be-
havior of investors is driven not only by rational expected
utility maximization but by a multitude of other factors
(see, for example, [34,41,42,43,44]). Deviations from the
optimal rational investment proportion can be due to
the cost of resources which are required for the portfolio
optimization: time, access to information, computational
power, etc., or due to exogenous events (for example, an
investor plans to revise his portfolio, but gets distracted
because his car breaks down). We assume that the differ-
ent factors causing the investor to deviate from the opti-
mal investment proportion x� are random and uncorre-
lated with each other. By the central limit theorem, the ag-
gregate effect of a large number of random uncorrelated
influences is a normally distributed random influence, or
“noise”. Hence, we model the effect of all the factors caus-
ing the investor to deviate from his optimal portfolio by
adding a normally distributed random variable to the op-
timal investment proportion. To be more specific, we as-
sume:

xi D x�i C "̃i ; (12)

where "̃i is a random variable drawn from a truncated nor-
mal distribution withmean zero and standard deviation � .
Notice that noise is investor-specific, thus, "̃i is drawn sep-
arately and independently for each investor.

The noise can be added to the decision-making of
the RII investors, the EMB investors, or to both. The re-
sults are not much different with these various approaches.
Since the RII investors are taken as the benchmark of
rationality, in this chapter we add the noise only to the
decision-making of the EMB investors.

Market Clearance The number of shares demanded by
each investor is a monotonically decreasing function of the
hypothetical price Ph (see [24]). As the total number of
outstanding shares is N, the price of the stock at time t is
given by the market clearance condition: Pt is the unique
price at which the total demand for shares is equal to the
total supply, N :

X

i

N i
h(Pt) D

X

i

xh(Pt)Wi
h (Pt)

Pt
D N ; (13)

where the summation is over all the investors in the mar-
ket, RII investors as well as EMB investors.

Agent Based Simulation The market dynamics begin
with a set of initial conditions which consist of an initial

stock price P0, an initial dividend D0, the wealth and num-
ber of shares held by each investor at time t D 0, and an
initial “history” of stock returns. As will become evident,
the general results do not depend on the initial conditions.
At the first period (t D 1), interest is paid on the bond, and
the time 1 dividend D̃1 D D0(1 C z̃) is realized and paid
out. Then investors submit their demand orders, Ni

h(Ph),
and the market clearing price P1 is determined. After the
clearing price is set, the new wealth and number of shares
held by each investor are calculated. This completes one
time period. This process is repeated over and over, as the
market dynamics develop.

We would like to stress that even the simplified bench-
mark model, with only RII investors, is impossible to solve
analytically. The reason for this is that the optimal in-
vestment proportion, xh(Ph), cannot be calculated analyt-
ically. This problem is very general and it is encountered
with almost any choice of utility function and distribu-
tion of returns. One important exception is the case of
a negative exponential utility function and normally dis-
tributed returns. Indeed, many models make these two as-
sumptions for the sake of tractability. The problem with
the assumption of negative exponential utility is that it im-
plies Constant Absolute Risk Aversion (CARA), which is
very unrealistic, as it implies that investors choose to invest
the same dollar amount in a risky prospect independent of
their wealth. This is not only in sharp contradiction to the
empirical evidence, but also excludes the investigation of
the two-way interaction between wealth and price dynam-
ics, which is crucial to the understanding of the market.

Thus, one contribution of the agent based simulation
approach is that it allows investigation of models with re-
alistic assumptions regarding investors’ preferences. How-
ever, the main contribution of this method is that it per-
mits us to investigate models which are much more com-
plex (and realistic) than the benchmark model, in which
all investors are RII. With the agent based simulation ap-
proach one can study models incorporating the empiri-
cally and experimentally documented investors’ behavior,
and the heterogeneity of investors.

Results of the LLS Model

We begin by describing the benchmark case where all in-
vestors are rational and identical. Thenwe introduce to the
market EMB investors and investigate their affects on the
market dynamics.

Benchmark Case: Fully Rational and Identical Agents
In this benchmark model all investors are RII: rational,
informed and identical. Thus, it is not surprising that the
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benchmark model generates market dynamics which are
typical of homogeneous rational agent models:

No Volume All investors in the model are identical; they
therefore always agree on the optimal proportion to in-
vest in the stock. As a consequence, all the investors always
achieve the same return on their portfolio. Thismeans that
at any time period the ratio between the wealth of any two
investors is equal to the ratio of their initial wealths, i. e.:

Wi
t

W j
t

D Wi
0

Wj
0

: (14)

As the wealth of investors is always in the same propor-
tion, and as they always invest the same fraction of their
wealth in the stock, the number of shares held by different
investors is also always in the same proportion:

Ni
t

N j
t

D
xtW i

t
Pt

xtW
j
t

Pt

D Wi
t

W j
t

D Wi
0

Wj
0

: (15)

Since the total supply of shares is constant, this implies that
each investor always holds the same number of shares, and
there is no trading volume (the number of shares held may
vary from one investor to the other as a consequence of
different initial endowments).

Log-Prices Follow a Random Walk In the benchmark
model all investors believe that next period’s price will
converge to the fundamental value given by the discounted
dividend model (Eq. (3)). Therefore, the actual stock price
is always close to the fundamental value. The fluctuations
in the stock price are driven by fluctuations in the fun-
damental value, which in turn are driven by the fluctuat-
ing dividend realizations. As the dividend fluctuations are
(by assumption) uncorrelated over time, one would ex-
pect that the price fluctuations will also be uncorrelated.
To verify this intuitive result, we examine the return auto-
correlations in simulations of the benchmark model.

Let us turn to the simulation of the model. We first
describe the parameters and initial conditions used in the
simulation, and then report the results. We simulate the
benchmark model with the following parameters:

� Number of investors = 1000
� Risk aversion parameter ˛= 1.5. This value roughly

conforms with the estimate of the risk aversion param-
eter found empirically and experimentally.

� Number of shares = 10,000.
� We take the time period to be a quarter, and accord-

ingly we choose:

� Riskless interest rate r f D 0:01.
� Required rate of return on stock k = 0.04.
� Maximal one-period dividend decrease z1 = -0.07.
� Maximal one-period dividend growth z2 = 0.10.
� z̃ is uniformly distributed between these values. Thus,

the average dividend growth rate is g D (z1 C z2)/2 D
0:015.

Initial Conditions: Each investor is endowed at time t D
0 with a total wealth of $1000, which is composed of 10
shares worth an initial price of $50 per share, and $500 in
cash. The initial quarterly dividend is set at $0.5 (for an
annual dividend yield of about 4%). As will soon become
evident, the dynamics are not sensitive to the particular
choice of initial conditions.

Figure 1 shows the price dynamics in a typical simu-
lation with these parameters (simulations with the same
parameters differ one from the other because of the dif-
ferent random dividend realizations). Notice that the ver-
tical axis in this figure is logarithmic. Thus, the roughly
constant slope implies an approximately exponential price
growth, or an approximately constant average return.

The prices in this simulation seem to fluctuate ran-
domly around the trend. However, Fig. 1 shows only one
simulation. In order to have a more rigorous analysis we
perform many independent simulations, and employ sta-
tistical tools. Namely, for each simulation we calculate the
autocorrelation of returns. We perform a univariate re-
gression of the return in time t on the return on time t� j:

Rt D ˛ j C ˇ jRt� j C " ;

where Rt is the return in period t, and j is the lag. The
autocorrelation of returns for lag j is defined as:

� j D cov(Rt ; Rt� j)
�̂2(R)

;

and it is estimated by ˆ̌. We calculate the autocorrelation
for different lags, j D 1; : : :40. Figure 2 shows the average
autocorrelation as a function of the lag, calculated over 100
independent simulations. It is evident both from the figure
that the returns are uncorrelated in the benchmark model,
conforming with the random-walk hypothesis.

No Excess Volatility Since the RII investors believe that
the stock price will converge to the fundamental value next
period, in the benchmark model prices are always close
to the fundamental value given by the discounted divi-
dend stream. Thus, we do not expect prices to be more
volatile than the value of the discounted dividend stream.
For a formal test of excess volatility we follow the tech-
nique in [37]. For each time period we calculate the actual
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Agent Based Computational Economics, Figure 1
Price Dynamics in the Benchmark Model

Agent Based Computational Economics, Figure 2
Return Autocorrelation in Benchmark Model

price Pt , and the fundamental value of discounted divi-
dend stream, P f

t , as in Eq. (3). Since prices follow an up-
ward trend, in order to have a meaningful measure of the
volatility, we must detrend these price series. Following
Shiller, we run the regression:

ln Pt D bt C c C "t ; (16)

in order to find the average exponential price growth rate
(where b and c are constants). Then, we define the de-
trended price as: pt D Pt/eb̂ t . Similarly, we define the de-
trended value of the discounted dividend stream p f

t , and
compare �(pt) with �(p

f
t ). For 100 1000-period simula-

tions we find an average �(pt) of 22.4, and an average

�(p f
t ) of 22.9. As expected, the actual price and the fun-

damental value have almost the same volatility.
To summarize the results obtained for the benchmark

model, we find that when all investors are assumed to be
rational, informed and identical, we obtain results which
are typical of rational-representative-agentmodels: no vol-
ume, no return autocorrelations, and no excess volatility.
We next turn to examine the effect of introducing into the
market EMB investors, which model empirically and ex-
perimentally documented elements of investors’ behavior.

The Introduction of a Small Minority of EMB Investors
In this section we will show that the introduction of a small
minority of heterogeneous EMB investors generates many
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of the empirically observed market “anomalies” which
are absent in the benchmark model, and indeed, in most
other rational-representative-agent models. We take this
as strong evidence that the “non-rational” elements of in-
vestor behavior which are documented in experimental
studies, and the heterogeneity of investors, both of which
are incorporated in the LLS model, are crucial to under-
standing the dynamics of the market.

In presenting the results of the LLS model with EMB
investors we take an incremental approach. We begin
by describing the results of a model with a small sub-
population of homogeneous EMB believers. This model
produces the above mentioned market “anomalies”; how-
ever, it produces unrealistic cyclic market dynamics. Thus,
this model is presented both for analyzing the source of
the “anomalies” in a simplified setting, and as a reference
point with which to compare the dynamics of the model
with a heterogeneous EMB believer population.

We investigate the effects of investors’ heterogeneity
by first analyzing the case in which there are two types
of EMBs. The two types differ in the method they use
to estimate the ex-ante return distribution. Namely, the
first type looks at the set of the last m1 ex-post returns,
whereas the second type looks at the set of the last m2 ex-
post returns. It turns out that the dynamics in this case
are much more complicated than a simple “average” be-
tween the case where all EMB investors have m1 and the
case where all EMB investors have m2. Rather, there is
a complex non-linear interaction between the two EMB
sub-populations. This implies that the heterogeneity of in-

Agent Based Computational Economics, Figure 3
5% of Investors are Efficient Market Believers, 95% Rational Informed Investors

vestors is a very important element determining the mar-
ket dynamics, an element which is completely absent in
representative-agent models.

Finally, we present the case where there is an entire
spectrum of EMB investors differing in the number of ex-
post observations they take into account when estimating
the ex-ante distribution. This general case generates very
realistic-looking market dynamics with all of the above
mentioned market anomalies.

Homogeneous Sub-Population of EMBs When a very
small sub-population of EMB investors is introduced to
the benchmark LLS model, the market dynamics change
dramatically. Figure 3 depicts a typical price path in a sim-
ulation of a market with 95% RII investors and 5% EMB
investors. The EMB investors have m D 10 (i. e., they es-
timate the ex-ante return distribution by observing the set
of the last 10 ex-post returns). � , the standard deviation
of the random noise affecting the EMBs’ decision making
is taken as 0.2. All investors, RII and EMB alike, have the
same risk aversion parameter ˛ D 1:5 (as before). In the
first 150 trading periods the price dynamics look very simi-
lar to the typical dynamics of the benchmark model. How-
ever, after the first 150 or so periods the price dynamics
change. From this point onwards the market is character-
ized by periodic booms and crashes. Of course, Fig. 3 de-
scribes only one simulation. However, as will become evi-
dent shortly, different simulations with the same parame-
ters may differ in detail, but the pattern is general: at some
stage (not necessarily after 150 periods) the EMB investors
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induce cyclic price behavior. It is quite astonishing that
such a small minority of only 5% of the investors can have
such a dramatic impact on the market.

In order to understand the periodic booms and crashes
let us focus on the behavior of the EMB investors. After
every trade, the EMB investors revise their estimation of
the ex-ante return distribution, because the set of ex-post
returns they employ to estimate the ex-ante distribution
changes. Namely, investors add the latest return generated
by the stock to this set and delete the oldest return from
this set. As a result of this update in the estimation of the
ex-ante distribution, the optimal investment proportion
x� changes, and EMB investors revise their portfolios at
next period’s trade. During the first 150 or so periods, the
informed investors control the dynamics and the returns
fluctuate randomly (as in the benchmarkmodel). As a con-
sequence, the investment proportion of the EMB investors
also fluctuates irregularly. Thus, during the first 150 pe-
riods the EMB investors do not effect the dynamics much.
However, at point a the dynamics change qualitatively (see
Fig. 3). At this point, a relatively high dividend is realized,
and as a consequence, a relatively high return is generated.
This high return leads the EMB investors to increase their
investment proportion in the stock at the next trading pe-
riod. This increased demand of the EMB investors is large
enough to effect next period’s price, and thus a second high
return is generated. Now the EMB investors look at a set
of ex-post returns with two high returns, and they increase
their investment proportion even further. Thus, a positive
feedback loop is created.

Notice that as the price goes up, the informed investors
realize that the stock is overvalued relative to the funda-
mental value P f and they decrease their holdings in the
stock. However, this effect does not stop the price increase
and break the feedback loop because the EMB investors
continue to buy shares aggressively. The positive feedback
loop pushes the stock price further and further up to point
b, at which the EMBs are invested 100% in the stock. At
point b the positive feedback loop “runs out of gas”. How-
ever, the stock price remains at the high level because the
EMB investors remain fully invested in the stock (the set
of past m=10 returns includes at this stage the very high
returns generated during the “boom” – segment a–b in
Fig. 3).

When the price is at the high level (segment b–c), the
dividend yield is low, and as a consequence, the returns
are generally low. As time goes by and we move from
point b towards point c, the set of m D 10 last returns
gets filled with low returns. Despite this fact, the extremely
high returns generated in the boom are also still in this set,
and they are high enough to keep the EMB investors fully

invested. However, 10 periods after the boom, these ex-
tremely high returns are pushed out of the set of relevant
ex-post returns. When this occurs, at point c, the EMB in-
vestors face a set of low returns, and they cut their invest-
ment proportion in the stock sharply. This causes a dra-
matic crash (segment c–d). Once the stock price goes back
down to the “fundamental” value, the informed investors
come back into the picture. They buy back the stock and
stop the crash.

The EMB investors stay away from the stock as long
as the ex-post return set includes the terrible return of
the crash. At this stage the informed investors regain con-
trol of the dynamics and the stock price remains close to
its fundamental value. 10 periods after the crash the ex-
tremely negative return of the crash is excluded from the
ex-post return set, and the EMB investors start increasing
their investment proportion in the stock (point e). This
drives the stock price up, and a new boom-crash cycle is
initiated. This cycle repeats itself over and over almost pe-
riodically.

Figure 3 depicts the price dynamics of a single simu-
lation. One may therefore wonder how general the results
discussed above are. Figure 4 shows two more simulations
with the same parameters but different dividend realiza-
tions. It is evident from this figure that although the sim-
ulations vary in detail (because of the different dividend
realizations), the overall price pattern with periodic boom-
crash cycles is robust.

Although these dynamics are very unrealistic in terms
of the periodicity, and therefore the predictability of the
price, they do shed light on the mechanism generating
many of the empirically observed market phenomena. In
the next section, when we relax the assumption that the
EMB population is homogeneous with respect to m, the
price is no longer cyclic or predictable, yet themechanisms
generating the market phenomena are the same as in this
homogeneous EMB population case. The homogeneous
EMB population case generates the following market phe-
nomena:

Heavy Trading Volume As explained above, shares
change hands continuously between the RII investors and
the EMB investors.When a “boom” starts the RII investors
observe higher ex-post returns and become more opti-
mistic, while the RII investor view the stock as becom-
ing overpriced and become more pessimistic. Thus, at this
stage the EMBs buy most of the shares from the RIIs.
When the stock crashes, the opposite is true: the EMBs are
very pessimistic, but the RII investors buy the stock once
it falls back to the fundamental value. Thus, there is sub-
stantial trading volume in this market. The average trading
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Agent Based Computational Economics, Figure 4
TwoMore Simulations – same Parameters as Fig. 3, Different Divident Realizations

Agent Based Computational Economics, Figure 5
Return Autocorrelation 5%, Efficient Market Believers,m D 10

volume in a typical simulation is about 1000 shares per pe-
riod, which are 10% of the total outstanding shares.

Autocorrelation of Returns The cyclic behavior of the
price yields a very definite return autocorrelation pat-
tern. The autocorrelation pattern is depicted graphically
in Fig. 5. The autocorrelation pattern is directly linked to
the length of the price cycle, which in turn are determined
bym. Since the moving window of ex-post returns used to
estimate the ex-ante distribution is m D 10 periods long,
the price cycles are typically a little longer than 20 periods
long: a cycle consists of the positive feedback loop (seg-
ment a–b in Fig. 3) which is about 2–3 periods long, the
upper plateau (segment b–c in Fig. 3) which is about 10
periods long, the crash that occurs during one or two peri-

ods, and the lower plateau (segment d–e in Fig. 3) which is
again about 10 periods long, for a total of about 23–25 pe-
riods. Thus, we expect positive autocorrelation for lags of
about 23–25 periods, because this is the lag between one
point and the corresponding point in the next (or previ-
ous) cycle.We also expect negative autocorrelation for lags
of about 10–12 periods, because this is the lag between
a boom and the following (or previous) crash, and vice
versa. This is precisely the pattern we observe in Fig. 5.

Excess Volatility The EMB investors induce large devia-
tions of the price from the fundamental value. Thus, price
fluctuations are caused not only by dividend fluctuations
(as the standard theory suggests) but also by the endoge-
nous market dynamics driven by the EMB investors. This
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“extra” source of fluctuations causes the price to be more
volatile than the fundamental value P f .

Indeed, for 100 1000-period independent simulations
with 5% EMB investors we find an average �(pt) of 46.4,
and an average �(p f

t ) of 30.6; i. e., we have excess volatility
of about 50%.

As a first step in analyzing the effects of heterogene-
ity of the EMB population, in the next section we examine
the case of two types of EMB investors. We later analyze
amodel in which there is a full spectrum of EMB investors.

Two Types of EMBs One justification for using a repre-
sentative agent in economic modeling is that although in-
vestors are heterogeneous in reality, one can model their
collective behavior with one representative or “average”
investor. In this section we show that this is generally not
true. Many aspects of the dynamics result from the non-
linear interaction between different investor types. To il-
lustrate this point, in this section we analyze a very simple
case in which there are only two types of EMB investors:
one with m D 5 and the other with m D 15. Each of these
two types consists of 2% of the investor population, and
the remaining 96% are informed investors. The represen-
tative agent logic may tempt us to think that the resulting
market dynamics would be similar to that of one “average”
investor, i. e. an investor with m D 10. Figure 6 shows that
this is clearly not the case. Rather than seeing periodic cy-
cles of about 23–25 periods (which correspond to the av-
eragem of 10, as in Fig. 3), we see an irregular pattern. As
before, the dynamics are first dictated by the informed in-
vestors. Then, at point a, the EMB investors with m D 15

Agent Based Computational Economics, Figure 6
2% EMBm D 5, 2% EMBm D 15;96% RII

induce cycles which are about 30 periods long. At point b
there is a transition to shorter cycles induced by them D 5
population, and at point c there is another transition back
to longer cycles. What is going on?

These complex dynamics result from the non-linear
interaction between the different sub-populations. The
transitions from one price pattern to another can be
partly understood by looking at the wealth of each sub-
population. Figure 7 shows the proportion of the total
wealth held by each of the two EMB populations (the re-
maining proportion is held by the informed investors). As
seen in Fig. 7, the cycles which start at point a are dictated
by the m D 15 rather than the m D 5 population, be-
cause at this stage the m D 15 population controls more
of the wealth than the m D 5 population. However, af-
ter 3 cycles (at point b) the picture is reversed. At this
point the m D 5 population is more powerful than the
m D 15 population, and there is a transition to shorter
boom-crash cycles. At point c the wealth of the two sub-
populations is again almost equal, and there is another
transition to longer cycles. Thus, the complex price dy-
namics can be partly understood from the wealth dynam-
ics. But how are the wealth dynamics determined? Why
does the m D 5 population become wealthier at point b,
and why does it lose most of this advantage at point c? It
is obvious that the wealth dynamics are influenced by the
price dynamics, thus there is a complicated two-way inter-
action between the two. Although this interaction is gen-
erally very complex, some principle ideas about the mu-
tual influence between the wealth and price patterns can
be formulated. For example, a population that becomes
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Agent Based Computational Economics, Figure 7
Proportion of the total wealth held by the two EMB populations

dominant and dictates the price dynamics, typically starts
under-performing, because it affects the price with its ac-
tions. This means pushing the price up when buying, and
therefore buying high, and pushing the price down when
selling. However, a more detailed analysis must consider
the specific investment strategy employed by each popula-
tion. For a more comprehensive analysis of the interaction
between heterogeneous EMB populations see [25].

The two EMB population model generates the same
market phenomena as did the homogeneous population
case: heavy trading volume, return autocorrelations, and
excess volatility. Although the price pattern is much less
regular in the two-EMB-population case, there still seems
to be a great deal of predictability about the prices. More-
over, the booms and crashes generated by this model are
unrealistically dramatic and frequent. In the next section
we analyze a model with a continuous spectrum of EMB
investors. We show that this fuller heterogeneity of in-
vestors leads to very realistic price and volume patterns.

Full Spectrum of EMB Investors Up to this point we
have analyzed markets with at most three different sub-
populations (one RII population and two EMB popula-
tions). The market dynamics we found displayed the em-
pirically observedmarket anomalies, but they were unreal-
istic in the magnitude, frequency, and semi-predictability
of booms and crashes. In reality, we would expect not only
two or three investor types, but rather an entire spectrum
of investors. In this section we consider a model with a full
spectrum of different EMB investors. It turns out thatmore
is different. When there is an entire range of investors, the
price dynamics become realistic: booms and crashes are

not periodic or predictable, and they are also less frequent
and dramatic. At the same time, we still obtain all of the
market anomalies described before.

In this model each investor has a different number of
ex-post observations which he utilizes to estimate the ex-
ante distribution. Namely, investor i looks at the set of the
mi most recent returns on the stock, and we assume that
mi is distributed in the population according to a trun-
cated normal distribution with average m̄ and standard
deviation �m (as m � 0 is meaningless, the distribution
is truncated at m D 0).

Figure 8 shows the price pattern of a typical simula-
tion of this model. In this simulation 90% of the investors
are RII, and the remaining 10% are heterogeneous EMB
investors with m̄ D 40, and �m D 10. The price pattern
seems very realistic with “smoother” and more irregular
cycles. Crashes are dramatic, but infrequent and unpre-
dictable.

The heterogeneous EMB population model generates
the following empirically observed market phenomena:

Return Autocorrelation: Momentum and Mean-Reversion
In the heterogeneous EMB population model trends are
generated by the same positive feedback mechanism that
generated cycles in the homogeneous case: high (low) re-
turns tend to make the EMB investors more (less) aggres-
sive, this generates more high (low) returns, etc. The dif-
ference between the two cases is that in the heterogeneous
case there is a very complicated interaction between all
the different investor sub-populations and as a result there
are no distinct regular cycles, but rather, smoother and
more irregular trends. There is no single cycle length –
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Agent Based Computational Economics, Figure 8
Spectrum of Heterogeneous EMB Investors (10% EMB Investors, 90%RII Investors)

Agent Based Computational Economics, Figure 9
Return Autocorrelation – Heterogeneous EMB Population

the dynamics are a combination of many different cycles.
This makes the autocorrelation pattern also smoother and
more continuous. The return autocorrelations in the het-
erogeneous model are shown in Fig. 9. This autocorrela-
tion pattern conforms with the empirical findings. In the
short-run (lags 1–4) the autocorrelation is positive – this
is the empirically documented phenomena known as mo-
mentum: in the short-run, high returns tend to be fol-
lowed bymore high returns, and low returns tend to be fol-
lowed by more low returns. In the longer-run (lags 5–13)
the autocorrelation is negative, which is known as mean-
reversion. For even longer lags the autocorrelation even-
tually tends to zero. The short-run momentum, longer-
run mean-reversion, and eventual diminishing autocorre-

lation creates the general “U-shape” which is found in em-
pirical studies [7,13,31] and which is seen in Fig. 9.

Excess Volatility The price level is generally determined
by the fundamental value of the stock. However, as in the
homogeneous EMB population case, the EMB investors
occasionally induce temporary departures of the price
away from the fundamental value. These temporary de-
partures from the fundamental value make the price more
volatile than the fundamental value. Following Shiller’s
methodology we define the detrended price, p, and fun-
damental value, p f . Averaging over 100 independent sim-
ulations we find �(p) D 27:1 and �(p f ) D 19:2, which is
an excess volatility of 41% .
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Heavy Volume As investors in our model have different
information (the informed investors know the dividend
process, while the EMB investors do not), and different
ways of interpreting the information (EMB investors with
different memory spans have different estimations regard-
ing the ex-ante return distribution), there is a high level of
trading volume in this model. The average trading volume
in this model is about 1700 shares per period (17% of the
total outstanding shares). As explained below, the volume
is positively correlated with contemporaneous and lagged
absolute returns.

Volume is Positively Correlated with Contemporaneous
and Lagged Absolute Returns Investors revise their port-
folios as a result of changes in their beliefs regarding the
future return distribution. The changes in the beliefs can
be due to a change in the current price, to a new divi-
dend realization (in the case of the informed investors),
or to a new observation of an ex-post return (in the case
of the EMB investors). If all investors change their be-
liefs in the same direction (for example, if everybody be-
comes more optimistic), the stock price can change sub-
stantially with almost no volume – everybody would like
to increase the proportion of the stock in his portfolio, this
will push the price up, but a very small number of shares
will change hands. This scenario would lead to zero or per-
haps even negative correlation between the magnitude of
the price change (or return) and the volume. However, the
typical scenario in the LLS model is different. Typically,
when a positive feedback trend is induced by the EMB
investors, the opinions of the informed investors and the
EMB investors change in opposite directions. The EMB in-
vestors see a trend of rising prices as a positive indication
about the ex-ante return distribution, while the informed
investors believe that the higher the price level is above the
fundamental value, the more overpriced the stock is, and
the harder it will eventually fall. The exact opposite holds
for a trend of falling prices. Thus, price trends are typi-
cally interpreted differently by the two investor types, and
therefore induce heavy trading volume. The more pro-
nounced the trend, the more likely it is to lead to heavy
volume, and at the same time, to large price changes which
are due to the positive feedback trading on behalf of the
EMB investors.

This explains not only the positive correlation between
volume and contemporaneous absolute rates of return, but
also the positive correlation between volume and lagged
absolute rates of return. The reason is that the behavior of
the EMB investors induces short-term positive return au-
tocorrelation, or momentum (see above). That is, a large
absolute return this period is associated not only with high

volume this period, but also with a large absolute return
next period, and therefore with high volume next period.
In other words, when there is a substantial price increase
(decrease), EMB investors become more (less) aggressive
and the opposite happens to the informed traders. As we
have seen before, when a positive feedback loop is started,
the EMB investors are more dominant in determining the
price, and therefore another large price increase (decrease)
is expected next period. This large price change is likely to
be associated with heavy trading volume as the opinions
of the two populations diverge. Furthermore, this large in-
crease (decrease) is expected to make the EMB investors
evenmore optimistic (pessimistic) leading to another large
price increase (decrease) and heavy volume next period.

In order to verify this relationship quantitatively, we
regress volume on contemporaneous and lagged absolute
rates of return for 100 independent simulations. We run
the regressions:

Vt D ˛ C ˇC jRt � 1j C "t ; and
Vt D ˛ C ˇL jRt�1 � 1j C "t ;

(17)

where Vt is the volume at time t and Rt is the total return
on the stock at time t, and the subscripts C and L stand for
contemporaneous and lagged.We find an average value of
870 for ˆ̌C with an average t-value of 5.0 and an average
value of 886 for ˆ̌L with an average t-value of 5.1.

Discussion of the LLS Results The LLS model is an
Agent Based Simulation model of the stock market which
incorporates some of the fundamental experimental find-
ings regarding the behavior of investors. The main non-
standard assumption of the model is that there is a small
minority of investors in the market who are uninformed
about the dividend process and who believe in market ef-
ficiency. The investment decision of these investors is re-
duced to the optimal diversification between the stock and
the bond.

The LLS model generatesmany of the empirically doc-
umented market phenomena which are hard to explain
in the analytical rational-representative-agent framework.
These phenomena are:

� Short term momentum;
� Longer term mean reversion;
� Excess volatility;
� Heavy trading volume;
� Positive correlation between volume and contempora-

neous absolute returns;
� Positive correlation between volume and lagged abso-

lute returns;
� Endogenous market crashes.
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The fact that so many “puzzles” are explained with a sim-
ple model built on a small number of empirically docu-
mented behavioral elements leads us to suspect that these
behavioral elements are very important in understanding
the workings of the market. This is especially true in light
of the observations that a very small minority of the non-
standard bounded-rational investors can have a dramatic
influence on the market, and that these investors are not
wiped out by the majority of rational investors.

Summary and Future Directions

Standard economic models typically describe a world of
homogeneous rational agents. This approach is the foun-
dation of most of our present day knowledge in economic
theory. With the Agent Based Simulation approach we can
investigate a much more complex and “messy” world with
different agent types, who employ different strategies to try
to survive and prosper in a market with structural uncer-
tainty. Agents can learn over time, from their own expe-
rience and from their observation about the performance
of other agents. They co-evolve over time and as they
do so, the market dynamics change continuously. This is
a world view closer to biology, than it is to the “clean”
realm of physical laws which classical economics has
aspired to.

The Agent Based approach should not and can not re-
place the standard analytical economic approach. Rather,
these two methodologies support and complement each
other: When an analytical model is developed, it should
become standard practice to examine the robustness of
the model’s results with agent based simulations. Simi-
larly, when results emerge from agent based simulation,
one should try to understand their origin and their gener-
ality, not only by running many simulations, but also by
trying to capture the essence of the results in a simplified
analytical setting (if possible).

Although the first steps in economic agent based sim-
ulations were made decades ago, economics has been slow
and cautious to adopt this new methodology. Only in re-
cent years has this field begun to bloom. It is my belief and
hope that the agent based approach will prove as fruitful
in economics as it has been in so many other branches of
science.
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Introduction

Agent Based Modeling and Neoclassical Economics based
modeling naturally generates complexity whereas neoclas-
sical economics is incompatible in principle with complex-
ity. The reasons that preclude complexity in neoclassical
economic models also ensure that neoclassical economics
cannot describe any society ever observed or that could
ever be observed.

The meaning of complexity has been developed,
mainly by physicists, to cover unpredictable, episodic
volatility and also particular network topologies. In both
cases there are nodes representing the components of
a system and there are links among the components that
can represent interactions amongst those components.
Unpredictable, episodic volatility can result from particu-
lar forms of behavior by components and the interactions
amongst those components. I am not aware of any investi-
gations into relationships between that type of complexity
and network topology.

The point to be made here is that the core assumptions
and the methodology of conventional neoclassical eco-
nomics preclude the emergence of episodic volatility and
render social network topology inconsequential. When
elaborated with heterogeneous agents, network topologies
might have some effects on the outputs from computa-
tional neoclassical economic models – but, again, I am not
aware of any systematic investigations into this possibi-
lity.

�The remarks about neoclassical economics are drawn from my
inaugural lecture [28]

Agent Based Modeling and Neoclassical Economics: A Critical
Perspective, Figure 1
Constraints on model designs

EconomicModeling Approaches

All definitions of complexity take for granted that there
will be some specifications of individual components, that
in general each component will interact with some other
components and there will be some macro level phenom-
ena that could not be described or understood except on
the basis of the components and their interactions. The
purpose of this section is to categorize the ways in which
economists, agent based modelers and complexity scien-
tists approach this micro-macro issue.

There are several strands in the economics and social
sciences literatures for building macro analyzes explicitly
on micro foundations. The main strands are computable
general equilibrium (CGE), agent based computational
economics (ACE), agent based social simulation (ABSS)
and complexity science (CS) including econophysics and
sociophysics. These strands are not all mutually exclusive
although there are some conflicting elements among sev-
eral of them.

Computable General Equilibrium

CGE is the most theoretically constrained of the four
strands under consideration. As with general equilibrium
theory, it is predicated on the assumptions that house-
holds maximize utility and firmsmaximize profits and that
markets clear. The computational load associated with ex-
plicit representation of every household and firm leads to
the adoption of representative agents intended to capture
the behavior of a group such as all households or firms
in a particular industrial sector. Some CGE models rep-
resent technology with input-output tables; others with
marginalist production functions.

Agent Based Computational Economics

An objection to the representative agent device is raised
in the ACE literature where the effects of agent hetero-
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geneity are explored. In these models, households can dif-
fer in their utility functions (or at least the parameters of
those functions) or agents can adopt different game theo-
retic strategies and firms can employ different production
functions. The theoretical core of ACE is not essentially
different from that of CGE, both relying on conventional
economic theory.

Agent Based Social Simulation

Models reported in the ABSS literature are by and large
not driven by traditional theoretical concerns. There is
a very wide range in the degree of empirical content: many
models being developed to explore “stylized facts”, others
driven by qualitative case studies. The latter are often vali-
dated against both qualitative micro level data provided by
stakeholders and against macro level statistical data.

Complexity Science

Because neoclassical economic theory excludes social em-
beddedness, the social complexity research that could be
relevant to a consideration of neoclassical economics must
be concerned with unpredictable, episodic turbulence. The
CS literature on financial markets was seminal and re-
mains well known. The interest in financial markets goes
back to Mandelbrot [25] who used financial market data
both because it exhibits “outliers” in the relative change
series and because of the fineness of the time grain of
the price and volume data. A seminal article by Palmer
et al. [35] reported a simulation model in which individ-
uals were represented by an early form of software agent
and which produced time series marked by the occasional
episodes of volatility of the sort observed in real financial
market data. However, similar unpredictable episodes of
turbulence and volatility have emerged in models of the
early post-Soviet Russian economy [31], domestic water
consumption [8,15] and models of transactions in inter-
mediatedmarkets [29]. Fine grain data exhibiting the same
patterns of volatility were found subsequent to the original
publication of each model.

Relationships Among the Four Approaches

The common thread between CGE and ACE is their com-
mon reliance on longstanding economic concepts of util-
ity, continuous production functions, profit maximiza-
tion, the use of game theory et sic hoc omnes. The com-
mon thread between ABSS and complexity science is the
importance of social interaction and specifications of in-
dividual behavior that are either more ad hoc or based on
detailed qualitative evidence for specific cases.

Complex, as distinct from rational, agents’ behavior is
“sticky”: it takes non-trivial events or social pressures to
make them change. This is the social meaning of metasta-
bility. They are also socially embedded in the sense that
they interact densely with other agents and are influenced
by some of those other agents, generally speaking others
who are most like themselves and who they have reason
to like and respect [10]. The social difference between in-
fluence and imitation is the social equivalent of the physi-
cal difference between dissipative and non-dissipative pro-
cesses. Of course, such influence is meaningless unless the
agents differ in some way – they must be heterogeneous.

Methodological Issues

Neoclassical economic theory has no empirically based
micro foundation. It has agents of two types: households
that maximize utility and firms that maximize profits.
Time and expectations are allowed to influence thesemax-
imization processes by substituting “expected utility” or
“expected profits” for the realized magnitudes. In such
models, agents (households or firms) act as if they know
with certainty a population distribution of possible out-
comes from their actions. In the terminology introduced
by Knight [23], risk pertains when the agent knows the fre-
quency distribution of past outcomes that, as in actuarial
contexts, are expected with confidence to pertain in the fu-
ture. When no such frequency distribution is known, then
uncertainty prevails. In the sense of Knight (though the
terminology gets muddled in the economics literature),
the assumption that agents maximize expected utility or
expected profits is tenable in conditions of risk but not
in conditions of uncertainty. Moreover, it has long been
known (with Nobel prizes awarded to Allais [4] and to
Daniel Kahneman of Kahneman and Tversky [21] for the
demonstrations) that individuals do not act as if they were
maximizers of utility or expected utility. Nor is there any
evidence that enterprises actually maximize profits. Many
economists acknowledge that rationality is bounded and
that we lack the cognitive capacity to absorb the required
amount of information and then to process that infor-
mation in order to identify some optimal decision or ac-
tion. This has given rise to a variety of schools of eco-
nomic thought such as evolutionary economics (Nelson
and Winter [32] is the seminal work here) and Keynesian
economics [22] being amongst the best known.

There is evidently a recognizable (and often recog-
nized) divide between the behavioral assumptions of neo-
classical economics on the one hand and, on the other
hand, common observation, experimental observation
(cf. [5]) and a host of business histories (the work of Chan-
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dler [12,13] and Penrose [37] being surely the most influ-
ential). The evidence shows that the assumptions of neo-
classical economics are inaccurate descriptions of the be-
havior the theories and models are purported to represent.
There are two classes of defense for these descriptively in-
accurate assumptions. On is the as-if defense and the other
is the for-simplicity defense. These are considered in turn.

The as-if defense was enunciated in several forms by
Samuelson [39], Friedman [17] and Alchian [3] in the
years around 1950. The details of the differences between
Samuelson and Friedman are not germane here. Both ar-
gued that their purpose was to model aggregate economic
entities such as markets or national economies and de-
scriptively inaccurate assumptions at micro level are per-
missible provided that the models are descriptively accu-
rate at macro level. Alchian’s contribution was to propose
a mechanism. He asserted that, at least in the case of firms,
those that were more profitably would be more likely to
survive than firms that were less profitable. Consequently,
over time, more and more firms would approach more
closely to themaximumof profits available to them so that,
even if they did not actually seek to maximize profits, the
surviving population of firms would be those that implic-
itly did actually maximize profits.

The as-if defense is in practice an equilibrium argu-
ment. Neoclassical economic models are solved for the
simultaneous maximization of utility and profits by all
agents – or, at least it is proved that such a solution ex-
ists. In such a configuration, no agent has any incentive
to change its behavior so the equilibrium presumed to be
stable in the small (that is, once reached it is maintained).
There is no proof that any general equilibrium model with
an arbitrary number of agents is stable in the large (that
is, that any feasible solution is an attractor of the system
as a whole). The Alchian form of the as-if defense does
not take into account any effects of agent interaction or
influence of any agent by any other agent. In empirical –
that is to say, econometric – testing of neoclassical models,
extreme events and observations are dismissed as outliers
and removed from the data set being used for the testing
or else their effect is encapsulated by specially constructed
dummy variables.

The for-simplicity defense rests on the presumption
that simpler models are always to be preferred to more
complicatedmodels and the achievement of simplicity jus-
tifies making assumptions about behavior and environ-
ment that are not justified by evidence. The author has for
many years now justified this claim by choosing any ar-
bitrary leading economics journal and searching the most
recent issue for an assumption made “for simplicity”. On
every occasion, the assumption made “for simplicity” has

turned out to be an assumption that changed the nature
of an empirical problem being addressed so that it con-
formed to the requirements (such as convexity or absence
of externalities) of the mathematical technique being ap-
plied to the analysis. Seven of the eleven papers in, at the
time of writing, the most recent (November 2007) issue of
the Quarterly Journal of Economics appealed to the value
of simplicity or, in one case, tractability to justify assump-
tions or specifications that were not justified empirically.
The direct quotations are:

Tractability obviously dictated the use of a simple
summary statistic of the distribution of legislator
ideologies (see p. 1418 in [14]).

The fact, established below, that deriving the prop-
erties of the seats-votes relationship requires consid-
eration only of the properties of the univariate dis-
tribution of � as opposed to those of the bivariate
distribution of � and � considerably simplifies the
analysis (see p. 1480 in [9]).

We make three key assumptions to simplify the
analysis. First, we assume that all jobs last indef-
initely once found (i. e., there is no subsequent
job destruction). Second, anticipating our empiri-
cal findings, we assume that wages are exogenously
fixed, eliminating reservation-wage choices. Third,
we assume that utility is separable in consumption
and search effort (see p. 1516 in [11]).

A more conventional timing assumption in search
models without savings is that search in period t
leads to a job that begins in period t C 1. Assuming
that search in period t leads to a job in period t itself
simplifies the analytic expressions : : : (see p. 1517
in [11]).

For simplicity, we’ll assume that ˇSAT


Xi;s

�
; ˇTEST


Xi;s
�
and ˇOTH



Xi;s

�
are linear in Xi;s and can

thus be written . . . . We will further assume that
the random utility component is independent and
identically distributed (i. i. d.) from a type 1 extreme
value distribution (see p. 1616 in [19]).

For simplicity, all households represent two-earner
married couples of the same age (see p. 1683
in [33]).

For simplicity, the model assumes that the high-
est 35 years of earnings correspond to the ages be-
tween 25 and 59 (see p. 1685 in [33]).

We follow Auerbach and Kotlikoff (1987) by mea-
suring efficiency gains from social security privati-
zation using an LSRA that compensates households
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that would otherwise lose from reform. To be clear,
the LSRA is not being proposed as an actual govern-
ment institution. Instead, it is simply a hypothetical
mechanism that allows us to measure the standard
Hicksian efficiency gains in general equilibrium as-
sociated with privatization (see p. 1687 in [33]).

Assume for simplicity that these batch sizes are
fixed for each product class . . . . Given these fixed
batch sizes for the two classes of product, the firm
maximizes profits by deciding how many produc-
tion runs : : : [to] undertake : : : (see pp. 1731–1732
in [7]).

We adopt a number of simplifying assumptions to
focus on the main implications of this framework.
First, we assume that the relationship between the
firm and each manager is short-term. Second, when
xi;k D zi;k , the manager obtains a private bene-
fit.We assume that managers are credit-constrained
and cannot compensate principals for these private
benefits and that these private benefits are suffi-
ciently large so that it is not profitable for the princi-
pal to utilize incentive contracts to induce managers
to take the right action. These assumptions imply
that delegation will lead to the implementation of
the action that is preferred by the manager : : : (see
p. 1769 in [1]).

All but the first of these quotations are from theoreti-
cal papers and the “simplifications” enable the authors
to produce equilibrium solutions to their models. No
one has ever knowingly observed an equilibrium and in
a world where not everything is convex due to (for exam-
ple) economies of large scale production and where com-
putational capacities limit cognitive abilities, in principle
no equilibrium ever will be observed. Indeed, Radner [38]
showed that a necessary condition for general equilibrium
to exist is that all agents have unlimited computational ca-
pacities if trading takes place at a sequence of dates. In the
core general equilibriummodel, all transactions are agreed
at a single moment for all time. The “simplifications” re-
quired to produce equilibrium models cannot therefore
be justified on the basis of relevance to empirical obser-
vation. They also ensure that the models cannot capture
complexity.

Conditions for Complexity

The social and behavioral conditions for complexity man-
ifest as unpredictable, episodic volatility appears to be the
following:

� Individuals behave in routine ways unless some non-
trivial event or events or social pressure from other in-
dividuals induce them to change their behavior.

� Individuals interact with other individuals.
� Individuals influence but do not generally imitate one

another.
� Interactions amongst individuals and individual be-

havior are not dominated by events that do not arise
from that interaction and behavior.

These conditions were first noticed as a general pheno-
menon in physical models and articulated by Jensen [20]
as metastability, dense interaction, dissipation, and cold-
ness of the system, respectively. The phenomenon of un-
predictable, clustered volatility in social models had pre-
viously been noticed as had its similarity to self organized
criticality as described by statistical physicists starting with
Bak et al. [6].

Complexity and Social Volatility

Volatility in social statistical time series and power law dis-
tributed cross sectional data have long been observed by
statisticians and social scientists. Vilfredo Pareto [36] dis-
covered that the personal distribution of income is power
law distributed, a finding which has been replicated widely
across countries and time. The same phenomenon is now
well known to characterize word use [43] city sizes [44],
firm sizes (including market shares) [41], distributions
of links between internet sites [2] and a host of other
cross sectional distributions. Where firm sizes and mar-
ket shares are concerned, there have been strands in the
industrial economics literature reporting models yielding
that result. However, the observed results have not been
explained by models in which households maximize util-
ity and firms maximize profits. As Simon and Bonini [41]
point out, some variant to Gibrat’s Law (or the law of pro-
portional effect), which states that the growth rate of indi-
viduals (say firms) is not correlated with individual size,
will generate one highly skewed distribution or another
and the particular distribution can be refined by an appro-
priate choice of the representation of the law.

These desired results also emerged from a series of
models based on plausible or empirically based specifica-
tions of individual behavior and social interaction in agent
based social simulation models. In capturing stakehold-
ers’ perceptions of the behavior and social interactions of
relevant classes of individuals and also in relying on well
validated propositions from social psychology and cogni-
tive science, models were implemented that produced the
sort of skewed distributions that we observe in practice.
Episodic volatility followed from the metastability and so-
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cial embeddedness of agents. In the nature of this process,
most changes are relatively small in magnitude but a few
changes are very large. This results in fat-tailed distribu-
tions of relative changes in variable values at macro level
and also in cross sectional data as described by Gibrat’s
Law. In practice, the large relative changes tend to be
bunched together in unpredictable episodes of volatility.

While these results arise naturally in evidence-driven
ABSS models, they are not easily reconciled with neoclas-
sical economic theory. As Krugman [24] (quoted by Eeck-
hout [16]) had it, “We have to say that the rank-size rule
is a major embarrassment for economic theory: one of
the strongest statistical relationships we know, lacking any
clear basis in theory”.

Complexity and Social Network Topology

Social network topologies can obviously have no meaning
in a model comprised by representative agents. In ACE,
ABSS and CS models, there will always be a network of
social interaction. However, the nature of the interaction
can be very different across the different approaches.

In ACE models, it is common to find social inter-
action taking the form of games – typically the Prison-
ers’ Dilemma. A nice example of such a model is Tesfat-
sion’s labor market model using McFadzean and Tesfat-
sions’s [26,42] Trading Network Game. In Tesfatsions’s
labour market model, there is a fixed number of work-
ers and a fixed number of employers identical in their
total offers of labour and of employment, respectively.
Each worker (resp. employer) ascribes a value of utility
to an employment arrangement with any employer (resp.
worker). The utility starts out at a some exogenous value
and is then increased or reduced depending on the expe-
rience at each trading date. The experience is the combi-
nation of cooperation and defection by each party to the
employment relation at each time step. The social network
in this model

. . . is represented in the form of a directed graph
in which the vertices V(E) of the graph represent
the work suppliers and employers, the edges of the
graph (directed arrows) represent work offers di-
rected from work suppliers to employers, and the
edge weight on any edge denotes the number of
accepted work offers (contracts) between the work
supplier and employer connected by the edge (see
p. 431 in [42]).

The topology of this network depends on the outcomes of
sequences of prisoners’ dilemma games determining the
utilities of workers and employers to one another. Every

worker can see every employer and conversely so that the
directed links between agents are limited by the number
of work contracts into which each agent can engage. After
some arbitrary number of time steps, the strategies of the
agents are represented as genes and a genetic algorithm
is applied so that, over a whole simulation, the elements
of the most successful defect/cooperate strategies become
more dominant. Since these strategies determine the out-
comes of the prisoners’ dilemma games, the social network
continues to evolve with utility enhancing strategies be-
coming more dominant.

In a recent (at the time of writing) issue of The Journal
of Economic Dynamics and Control, Page and Tassier [34]
modeled the development of chain stores across markets.
A firm was defined by its product. Each product was as-
signed an “intrinsic quality” represented by an integer
drawn at random from a distribution �



q
�
, and a set of

I “hedonic attributes” represented by I positive integers
in a range from 0 to some arbitrary, user selected num-
ber A. Consumers are represented by utility functions that
are positively related to “quality” and negatively related
to the difference between some desired set of hedonic at-
tributes and the hedonic attributes of the product. There
are a number (set by the model user) of discrete markets.
Page and Tassier then run a variety of simulations that
allow for firms to replicate themselves across markets or,
through lack of demand, to leave markets.

These two models seem to be representative of a wide
class of ACE models. In the first place, agents are defined
by utility functions or game theoretic strategies so that the
behavior of any individual agent is either fixed or responds
smoothly to infinitesimal changes in prices, incomes or
whatever other arguments might populate its utility func-
tion. In either event, agents cannot be metastable and fol-
low behavioral routines until (but only until) some signif-
icant stimulus causes them to change their behavioral re-
sponses. In the second place, agents’ preferences and re-
sponses are not influenced by the preferences or actions
of any other agents like themselves. That is, their behavior
as determined by their utility functions or game theoretic
strategies will respond to market signals or the actions of
the other agent in their game but not to communications
with or observations of any other agents. These agents are
not, in the words of Granovetter [18], socially embedded
especially since it is rare in a neoclassical model for there
to be more than two players in a game and unheard-of for
there to be more than three (cf. [27]).

Whilst we cannot state with authority that the con-
ditions of metastability, social influence and the consis-
tency principle are necessary for complexity to emerge at
macro level from micro level behavior, these conditions
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have characterized the social simulation models that have
produced the episodic and unpredictable volatility associ-
ated with complexity. The absence of social embeddedness
in the neoclassical ACEmodelsmust also explain their lack
of any representation of social (as distinct from merely
economic) networks.

Complexity and the Role of Evidence

An interesting and fairly typical feature of papers report-
ing neoclassical models – both theoretical and computa-
tional with agents – is that they motivate the modeling ex-
ercise by appeal to some empirical, macro level economic
phenomenon and then ignore evidence about the micro
level behavior that might bring about such phenomena.
This practice can be seen in both of the ACE examples de-
scribed in Sect. “Conditions for Complexity”.

Tesfatsion [42] motivates her model on more theoret-
ical grounds than do Page and Tassier [34]. She wrote:

Understanding the relationship between market
structure, market behavior, and market power in
markets with multiple agents engaged in repeated
strategic interactions has been a major focus of an-
alytical, empirical, and human-subject experimental
researchers in industrial organization since the early
1970s. To date, however, definitive conclusions have
been difficult to obtain.

She goes on to cite “a unified theoretical treatment of
oligopoly decision-making”, an article on empirical find-
ings with respect to market power that looks only at indus-
try level statistical measures, and some work with experi-
mental subjects. No references are made, either by Tesfat-
sion or those she cites, to any case studies of the “repeated
strategic interactions” in which the “multiple agents” en-
gage.

Page and Tassier give more historical detail. Their mo-
tivation turns on:

Chain stores and franchises dominate the Ameri-
can economic landscape. A drive through any mod-
erately sized city reveals remarkable conformity in
restaurants, stores, and service centers. Anyone who
so desires can eat at Applebee’s, shop at Wal-Mart,
and grab a Starbuck’s latte grande while getting her
car brakes done at Midas (see p. 3428 in [34]).

For example, in many markets, Lowe’s and Home
Depot capture a significant portion of the home
improvement market. These big box stores drove
many small independent hardware stores and lum-
ber yards out of business. The residual demand

resides in niches that can be filled by hardware
chains specializing in upscale home furnishings like
Restoration Hardware. . . . Often, when Lowe’s en-
ters a market, it creates a niche for Restoration
Hardware as well. And, as both Lowe’s and Restora-
tion Hardware enter more and more markets, they
in turn create additional common niches that can
be filled by even more chains. Thus, chains beget
chains (see p. 3429 in [34]).

So this article claims a clear and direct historical basis. And
yet

. . . To capture the increasing correlation in niches
formally, we introduce two new concepts, the niche
landscape and the differential niche landscape. The
former plots the quality required to enter a mar-
ket at a given set of hedonic attributes. The latter
plots the differences in two niche landscapes. In the
presence of chains, differential niche landscapes be-
come flat, i. e. the niche landscapes become corre-
lated across markets (see p. 3429 in [34]).

The representation of the actors in this framework has
been discussed above. At no stage is the agent design dis-
cussed in relation to any empirical accounts of the behav-
ior and motivations of the managers of Wal-Mart, Star-
bucks, Lowes, Restoration Hardware or any other enter-
prise or any consumer.

This is, of course, the way of neoclassical economics
and it has extended to ACE research as well. What is per-
haps more unsettling is that it has also extended to the bas-
tions of complexity science – the econophysicists.

There is a long literature now on complexity and fi-
nancial markets and also on complexity an the formation
of opinions – opinion dynamics. There are at least two
reasons for the popularity amongst physicists of financial
market modeling. First, there are long series of very fine
grain data. Second, the data exhibits the unpredictable,
episodic volatility associated with complexity. The popu-
larity of opinion dynamics cannot be based on the quality
of the data – even at macro level – because that quality is
much more coarse grain and inconsistent over time than
financial market data. Nonetheless, the two literatures are
marked by the heavy presence and influence of physicists
and by the lack of connection between their agent designs
and any available evidence about the behavior of traders in
financial markets or voters or others acting on or express-
ing their opinions.

A good example from the opinion dynamics litera-
ture – chosen at random from The European Physical Jour-
nal B – is by Schweitzer and Hoyst [40], “Modeling collec-
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tive opinion formation by means of active Brownian par-
ticles”. The motivation for their article is

The formation of public opinion is among the chal-
lenging problems in social science, because it reveals
a complex dynamics, which may depend on differ-
ent internal and external influences. We mention
the influence of political leaders, the biasing effect
of mass media, as well as individual features, such as
persuasion or support for other opinions.

We immediately have complexity and social relevance to
motivate an article on social dynamics in a physics jour-
nal. However, there is no empirical justification for mod-
eling individuals who form opinions as active Brownian
particles. The apparent complexity in the outcomes of so-
cial processes of opinion formation can be produced by the
non-linear feedbacks of fields of active Brownian particles.
Whether individuals actually behave in this way is not ad-
dressed by Schweitzer and Hoyst or, as far as I know, by
any contributor to the opinion dynamics literature.

Much the same can be said of the econophysics liter-
ature on financial markets. The clustered volatility associ-
ated with complexity is readily produced by physical mod-
els with characteristics of metastability, dissipation and
dense patterns of interaction. What the econophysicists
fail to address is the question of whether their particular
formulations – and active Brownian particle is just one of
many examples – are descriptively accurate representations
of the individual actors whose behavior they are seeking to
analyze.

In this regard, the econophysicists are not better sci-
entists than neoclassical economists. It can be said in fa-
vor of neoclassical (including ACE) economists that they
are at least following in a long tradition when they ig-
nore the relationship between what people actually do and
how agents are modeled. In the long history of the phys-
ical sciences, however, observation and evidence at micro
and macro level and all levels in between has dominated
theory (cf. [30]). There are some at least in the ABSS re-
search community who would prefer our colleagues with
backgrounds in the physical scientists to follow their own
methodological tradition in this regard and not that of the
neoclassical economists.

Future Directions

Complexity science is not a niche research interest in the
social sciences. Societies are complex and all social science
should be complexity science. However, any social science
that excludes social interaction and inertia or routine nec-
essarily suppresses complexity. As noted here, the adop-

tion of utility theory and representative agents by neo-
classical economists (and other social scientists influenced
by them) amounts to the exclusion of behavioral inertia
and social interaction, respectively. To drop both utility
and representative agents and to build analyzes bottom up
from a sound basis in evidence would produce a better –
very likely, a good – body of economic analysis. But the
transition from present convention would be enormous –
a transition that experience shows to be beyond the ca-
pacity of current and previous generations of mainstream
economists. Not only would they have to abandon theo-
ries that drive and constrain their research but also their
whole epistemological and wider methodological stance.
They would have to accept that prediction and forecasting
cannot be core methodological objectives and that theo-
ries are built by abstracting from detailed evidence based
social simulation models the designs and outputs from
which have been validated by stakeholders in a range of
contexts. This would be a future direction guided by good
science.
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Glossary

Abduction also called inference to the best explanation,
abduction is a method of reasoning in which one looks
for the hypothesis that would best explain the relevant
evidence.

Agents entities of a model that (i) are perceived as a unit
from the outside, (ii) have the ability to act, and pos-
sibly to react to external stimuli and interact with the
environment and other agents.

Agent-based computational economics (ACE) is the
computational study of economic processes modeled
as dynamic systems of interacting agent.

Agent-based models (ABM) are models where (i) there
is a multitude of objects that interact with each other
and with the environment; (ii) the objects are au-
tonomous, i. e. there is no central, or top-down con-
trol over their behavior; and (iii) the outcome of their
interaction is numerically computed.

Complexity there are more than 45 existing definitions
of complexity (Seth Lloyd, as reported on p. 303
in [97]). However, they can be grouped in just two
broad classes: a computational view and a descriptive
view. Computational (or algorithmic) complexity is

a measure of the amount of information necessary to
compute a system; descriptive complexity refers to the
amount of information necessary to describe a system.
We refer to this second view, and define complex sys-
tems as systems characterized by emergent properties
(see emergence).

Deduction the logical derivation of conclusions from
given premises.

Economics is the science about the intended and unin-
tended consequences of individual actions, in an en-
vironment characterized by scarce resources that both
requires and forces to interaction.

Emergence the spontaneous formation of self-organized
structures at different layers of a hierarchical system
configuration.

Evolution in biology, is a change in the inherited traits of
a population from one generation to the next. In social
sciences it is intended as an endogenous change over
time in the behavior of the population, originated by
competitive pressure and/or learning.

Heterogeneity non-degenerate distribution of character-
istics in a population of agents.

Induction the intuition of general patterns from the ob-
servation of statistical regularities.

Interaction a situation when the actions or the supposed
actions of one agent may affect those of other agents
within a reference group.

Out-of-equilibrium a situation when the behavior of
a system, in terms of individual strategies or aggregate
outcomes, is not stable.

Definition of the Subject

A crucial aspect of the complexity approach is how inter-
acting elements produce aggregate patterns that those ele-
ments in turn react to. This leads to the emergence of ag-
gregate properties and structures that cannot be guessed
by looking only at individual behavior.

It has been argued [144] that complexity is ubiquitous
in economic problems (although this is rarely acknowl-
edged in economic modeling), since (i) the economy is
inherently characterized by the interaction of individuals,
and (ii) these individuals have cognitive abilities, e. g. they
form expectations on aggregate outcomes and base their
behavior upon them: “Imagine how hard physics would
be if electrons could think”, is how the Nobel prize winner
Murray Gell–Mann, a physicist, has put it (as reported by
Page [131]).

Explicitly considering how heterogeneous elements
dynamically develop their behavior through interaction is
a hard task analytically, the equilibrium analysis of main-
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stream (neoclassical) economics being a shortcut that in
many cases is at risk of throwing the baby out with the bath
water, so to speak. On the other hand, numerical computa-
tion of the dynamics of the process started to be a feasible
alternative only when computer power became widely ac-
cessible. The computational study of heterogeneous inter-
action agents is called agent-based modeling (ABM). In-
terestingly, among its first applications a prominent role
was given to economic models [4], although it was quickly
found of value in other disciplines too (from sociology
to ecology, from biology to medicine). The goal of this
chapter is to motivate the use of the complexity approach
and agent-based modeling in economics, by discussing
the weaknesses of the traditional paradigm of mainstream
economics, and then explain what ABM is and which re-
search and policy questions it can help to analyze.

Introduction

Economics is in troubled waters. Although there exists
a mainstream approach, its internal coherence and abil-
ity to explain the empirical evidence are increasingly ques-
tioned. The causes of the present state of affairs go back
to the middle of the eighteenth century, when some of the
Western economies were transformed by the technolog-
ical progress which lead to the industrial revolution. This
was one century after the Newtonian revolution in physics:
from the small apple to the enormous planets, all objects
seemed to obey the simple natural law of gravitation. It
was therefore natural for a new figure of social scientist,
the economist, to borrow the method (mathematics) of
the most successful hard science, physics, allowing for the
mutation of political economy into economics. It was (and
still is) the mechanical physics of the seventeenth century,
which ruled economics. In the final chapter of his Gen-
eral Theory, Keynes wrote of politicians as slaves of late
economists: in their turn, they are slaves of late physicists
of the seventeenth century (see also [125]).

From then on, economics lived its own evolution based
on the classical physics assumptions (reductionism, de-
terminism and mechanicism). Quite remarkably, the ap-
proach of statistical physics, which deeply affected physical
science at the turn of the nineteenth century by emphasiz-
ing the difference between micro and macro, was adopted
by Keynes around the mid 1930s. However, after decades
of extraordinary success it was rejected by the neoclassical
school around the mid 1970s, which framed the discipline
into the old approach and ignored, by definition, any in-
terdependencies among agents and difference between in-
dividual and aggregate behavior (being agents, electrons,
nations or planets).

The ideas of natural laws and equilibrium have been
transplanted into economics sic et simpliciter. As a con-
sequence of the adoption of the classical mechanics
paradigm, the difference between micro and macro was
analyzed under a reductionist approach. In such a set-
ting, aggregation is simply the process of summing up
market outcomes of individual entities to obtain econ-
omy-wide totals. This means that there is no difference
between micro and macro: the dynamics of the whole is
nothing but a summation of the dynamics of its compo-
nents (in term of physics, the motion of a planet can be
described by the dynamics of the atoms composing it).
This approach does not take into consideration that there
might be two-way interdependencies between the agents
and the aggregate properties of the system: interacting el-
ements produce aggregate patterns that those elements in
turn react to. What macroeconomists typically fail to re-
alize is that the correct procedure of aggregation is not
a sum: this is when emergence enters the drama. With the
term emergence wemean the arising of complex structures
from simple individual rules [147,153,171]. Empirical ev-
idence, as well as experimental tests, shows that aggre-
gation generates regularities, i. e. simple individual rules,
when aggregated, produce statistical regularities or well-
shaped aggregate functions: regularities emerge from in-
dividual chaos [106]. The concept of equilibrium is quite
a dramatic example. In many economic models equilib-
rium is described as a state in which (individual and ag-
gregate) demand equals supply. The notion of statistical
equilibrium, in which the aggregate equilibrium is com-
patible with individual disequilibrium, is outside the box
of tools of the mainstream economist. The same is true
for the notion of evolutionary equilibrium (at an aggregate
level) developed in biology. The equilibrium of a system
no longer requires that every single element be in equilib-
rium by itself, but rather that the statistical distributions
describing aggregate phenomena be stable, i. e. in “[. . . ]
a state of macroscopic equilibrium maintained by a large
number of transitions in opposite directions” (p. 356
in [64]).

According to this view, an individual organism is in
equilibrium only when it is dead. A consequence of the
idea that macroscopic phenomena can emerge is that re-
ductionism is wrong.

Ironically, since it can be argued, as we will do in
the section below, that economics strongly needs this
methodological twist [144], ABM has received lees at-
tention in economics than in other sciences ([110]; but
[82] is a counter-example). The aim of this chapter is
not to provide a review of applications of the complex-
ity theory to economics (the interested reader is referred
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to [15,26,60,124,140,142]), but rather to describe the de-
velopment of the Agent-Based Modeling (ABM) approach
to complexity.

The chapter is structured as follows: after reviewing
some limits of mainstream economics (Sect. “Additional
Features of Agent-Based Models”), Sects. “The Economics
of Complexity” and “Additional Features of Agent-Based
Models” describe how the complexity perspective differs
from the traditional one, and how many problems of the
mainstream approach can be overcome by ABM. As an ex-
ample, we present a prototypical example of ABM, based
on the work of Thomas Schelling on the dynamics of seg-
regation. After dedicating some sections to, respectively,
a skeleton history of ABM, a recursive system represen-
tation of these models, a discussion on how ABM can be
interpreted, estimated and validated, we finally discus how
the complexity approach can be used to guide policy inter-
vention and analysis. A final section discusses the achieve-
ments of the ABM agenda.

Some Limits of the MainstreamApproach

The research program launched by the neoclassical school
states that macroeconomics should be explicitly grounded
on microfoundations. This is how Robert Lucas put it:
“The most interesting recent developments in macroeco-
nomic theory seem to me describable as the reincorpo-
ration of aggregative problems [. . . ] within the general
framework of ‘microeconomic’ theory. If these develop-
ments succeed, the term ‘macroeconomic’ will be simply
disappear from use and the modifier ‘micro’ will become
superfluous. We will simply speak, as did Smith, Marshall
and Walras, of economic theory” (pp. 107–108 in [115]).
According to the mainstream, this implies that economic
phenomena at a macroscopic level should be explained
as a summation of the activities undertaken by individ-
ual decision makers. This procedure of microfoundation
is very different from that now used in physics. The latter
starts from the micro-dynamics of the single particle, as
expressed by the Liouville equation and, through the mas-
ter equation, ends up with the macroscopic equations. In
the aggregation process, the dynamics of the agents lose
their degree of freedom and behave coherently in the ag-
gregate. In mainstream economics, while the procedure is
formally the same (from micro to macro), it is assumed
that the dynamics of the agents are those of the aggregate.
The reduction of the degree of freedom, which is char-
acteristic of the aggregation problem in physics, is there-
fore ruled out: a rational agent with complete information
chooses to implement the individually optimal behavior,
without additional constraints. There are three main pil-

lars of this approach: (i) the precepts of the rational choice-
theoretic tradition; (ii) the equilibrium concept of theWal-
rasian analysis; and (iii) the reductionist approach of clas-
sical physics. In the following, we will show that assump-
tions (i)–(ii), which constitute the necessary conditions for
reducing macro to micro, are logically flawed (and empir-
ically unfounded), while rejection of (iii) opens the road to
complexity.

Mainstream economics is axiomatic and based on un-
realistic (or unverifiable) assumptions. According to the
supporters of this view, such an abstraction is necessary
since the real world is complicated: rather than compro-
mising the epistemic worth of economics, such assump-
tions are essential for economic knowledge. However, this
argument does not invalidate the criticism of unrealis-
tic assumptions [136]. While it requires internal coher-
ence, so that theorems can be logically deduced from a set
of assumptions, it abstracts from external coherence be-
tween theoretical statements and empirical evidence. Of
course, this implies an important epistemological detach-
ment from falsifiable sciences like physics. In setting the
methodological stage for the dynamic stochastic general
equilibrium (DSGE) macroeconomic theory, Lucas and
Sargent declared:

“An economy following a multivariate stochastic
process is now routinely described as being in equi-
librium, by which is meant nothing more that at
each point in time (a) markets clears and (b) agents
act in their own self-interest. This development,
which stemmed mainly from the work of Arrow
[. . . ] and Debreu [. . . ], implies that simply to look
at any economic time series and conclude that it
is a disequilibrium phenomenon is a meaningless
observation. [. . . ] The key elements of these mod-
els are that agents are rational, reacting to policy
changes in a way which is in their best interests pri-
vately, and that the impulses which trigger business
fluctuations are mainly unanticipated shocks.” (p. 7
in [116]).

The self-regulating order of Adam Smith [153] is trans-
formed into a competitive general equilibrium (GE) in the
form elaborated in the 1870s byWalras, that is a configura-
tion of (fully flexible) prices and plans of action such that,
at those prices, all agents can carry out their chosen plans
and, consequently, markets clear. In a continuous effort of
generalization and analytical sophistication, modern (neo-
classical) economists interested in building microfounda-
tions for macroeconomics soon recurred to the refinement
proposed in the 1950s by Arrow and Debreu [14], who
showed that also individual intertemporal (on an infinite



Agent Based Models in Economics and Complexity 33

horizon) optimization yields a GE, as soon as the econ-
omy is equipped with perfect price foresight for each fu-
ture state of nature and a complete set of Arrow-securities
markets [11], all open at time zero and closed simultane-
ously. Whenever these conditions hold true, the GE is an
allocation that maximizes a properly defined social welfare
function, or the equilibrium is Pareto-efficient (First Wel-
fare Theorem).

The literature has pointed out several logical incon-
sistencies of the mainstream approach. Davis [44] identi-
fies three impossibility results, which determine the break-
down of the mainstream, i. e. neoclassical, economics:
(i) Arrow’s 1951 theorem showing that neoclassical theory
is unable to explain social choice [10]; (ii) the Cambridge
capital debate pointing out that mainstream is contradic-
tory with respect to the concept of aggregate capital [40];
and (iii) the Sonnenschein–Mantel–Debreu results show-
ing that the standard comparative static reasoning is inap-
plicable in general equilibriummodels. In particular, a few
points are worth remembering here.

1. The GE is neither unique nor locally stable under gen-
eral conditions. This negative result, which refers to the
work of Sonnenschein [155], Debreu [46] and Man-
tel [119], can be summarized along the following lines.
Let the aggregate excess demand function F(p) – ob-
tained from aggregating among individual excess de-
mands f (p) – be a mapping from the price simplex ˘
to the commodity space PN . A GE is defined as a price
vector p such that F(p�) D 0. It turns out that the only
conditions that F(�) inherits from f (�) are continuity,
homogeneity of degree zero and the Walras’ law (i. e.,
the total value of excess demand is zero). These assure
the existence, but neither the uniqueness nor the local
stability of p�, unless preferences generating individ-
ual demand functions are restricted to very implausible
cases.

2. The existence of a GE is proved via the Brower’s fix
point theorem, i. e. by finding a continuous function
g(�) : ˘ ! ˘ so that any fixed point for g(�) is also
an equilibrium price vector F(p�) D 0. Suppose that
we are interested in finding an algorithm which, start-
ing from an arbitrary price vector p, chooses price se-
quences to check for p� and halts when it finds it. In
other terms, to find the GE price vector F(p�) D 0
means that halting configurations are decidable. As this
violates the undecidability of the halting problem for
Turing machines, from a recursion theoretic viewpoint
the GE solution is incomputable [138,167]. Notice that
the same problem applies, in spite of its name, to the
class of computable GE models [169].

3. By construction, in aGE all transactions are undertaken
at the same equilibrium price vector. Economic theory
has worked out two mechanisms capable of reaching
this outcome. First, one can assume that buyers and
sellers adjust, costless, their optimal supplies and de-
mands to prices called out by a (explicit or implicit) fic-
titious auctioneer, who continues to do his job until he
finds a price vector which clears all markets. Only then
transactions take place (Walras’ assumption). Alterna-
tively, buyers and sellers sign provisional contracts and
are allowed to freely (i. e., without any cost) recontract
until a price vector is found which makes individual
plans fully compatible. Once again, transactions occur
only after the equilibrium price vector has been es-
tablished (Edgeworth’s assumption). Regardless of the
mechanism one adopts, the GE model is one in which
the formation of prices precedes the process of ex-
change, instead of being the result of it, through a taton-
nement process occurring in a meta-time. Real markets
work the other way round and operates in real time, so
that the GE model cannot be considered a scientific ex-
planation of real economic phenomena [9].

4. It has been widely recognized since Debreu [45], that
integrating money in the theory of value represented
by the GE model is at best problematic. No economic
agent can individually decide to monetize alone; mon-
etary trade should be the equilibrium outcome of mar-
ket interactions among optimizing agents. The use of
money – that is, a common medium of exchange and
a store of value – implies that one party to a trans-
action gives up something valuable (for instance, his
endowment or production) for something inherently
useless (a fiduciary token for which he has no imme-
diate use) in the hope of advantageously re-trading it
in the future. Given that in a GE model actual trans-
actions take place only after a price vector coordinat-
ing all trading plans has been freely found, money can
be consistently introduced into the picture only if the
logical keystone of the absence of transaction costs is
abandoned. By the same token, since credit makes sense
only if agents can sign contracts in which one side
promises future delivery of goods or services to the
other side, in equilibrium markets for debt are mean-
ingless, and bankruptcy can be safely ignored. Finally,
as the very notion of a GE implies that all transactions
occur only when individual plans are mutually com-
patible, and this has to be true also in the labor mar-
ket, the empirically observed phenomenon of involun-
tary unemployment and the microfoundation program
put forth by Lucas and Sargent are logically inconsis-
tent.
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5. The very absence of money and credit is a consequence
of the fact that in GE there is no time. The only role as-
signed to time in a GE model is, in fact, that of dating
commodities. Products, technologies and preferences
are exogenously given and fixed from the outset. The
convenient implication of banning out-of-equilibrium
transactions is simply that of getting rid of any disturb-
ing influence of intermediary modifications of endow-
ments – and therefore of individual excess demands –
on the final equilibrium outcome. The introduction of
non-Walrasian elements into the GEmicrofoundations
program – such as fixed or sticky prices, imperfect com-
petition and incomplete markets leading to temporary
equilibrium models – yields interesting Keynesian fea-
tures such as the breaking of the Say’s law and scope
for a monetary theory of production, a rationale for fi-
nancial institutions and a more persuasive treatment
of informational frictions. As argued in Vriend [165],
however, all these approaches preserve a Walrasian
perspective in that models are invariably closed by
a GE solution concept which, implicitly or (more of-
ten) not, implies the existence of a fictitious auction-
eer who processes information, calculates equilibrium
prices and quantities, and regulates transactions. As
a result, if the Walrasian auctioneer is removed the de-
centralized economy becomes dynamically incomplete,
as we are not left with any mechanism determining
how quantities and prices are set and how exchanges
occur.

The flaws of the solution adopted by mainstream macroe-
conomists to overcome the problems of uniqueness and
stability of equilibrium on the one hand, and of analytical-
tractability on the other one – i. e. the usage of a represen-
tative agent (RA) whose choices summarize those of the
whole population of agents – are so pervasive that we dis-
cuss them hereafter.

6. Although the RA framework has a long history, it is
standard to build the microfoundation procedure on
it only after Lucas’ critique paper [114]. Mainstream
models are characterized by an explicitly stated op-
timization problem of the RA, while the derived in-
dividual demand or supply curves are used to obtain
the aggregate demand or supply curves. Even when
the models allow for heterogeneity, interaction is gen-
erally absent (the so-called weak interaction hypoth-
esis [139]). The use of RA models should allow one
to avoid the Lucas critique, to provide microfounda-
tions to macroeconomics, and, ça va sans dire, to build
Walrasian general equilibrium models. Since models
with many heterogeneous interacting agents are com-

plicated and no closed form solution is often available
(aggregation of heterogenous interacting agents is ana-
lyzed in [5,6,7,53,78]), economists assume the existence
of an RA: a simplification that makes it easier to solve
for the competitive equilibrium allocation, since direct
interaction is ruled out by definitions. Unfortunately, as
Hildenbrand and Kirman [95] noted:

“There are no assumptions on isolated individu-
als, which will give us the properties of aggregate
behavior. We are reduced to making assump-
tions at the aggregate level, which cannot be jus-
tified, by the usual individualistic assumptions.
This problem is usually avoided in themacroeco-
nomic literature by assuming that the economy
behaves like an individual. Such an assumption
cannot be justified in the context of the standard
model”.

The equilibria of general equilibrium models with a RA
are characterized by a complete absence of trade and ex-
change, which is a counterfactual idea. Kirman [99], Gal-
legati [76] and Caballero [36] show that RA models ig-
nore valid aggregation concerns, by neglecting interaction
and emergence, hence committing fallacy of composition
(what in philosophy is called fallacy of division, i. e. to at-
tribute properties to a different level than where the prop-
erty is observed: game theory offers a good case in point
with the concept of Nash equilibrium, by assuming that
social regularities come from the agent level equilibrium).
Those authors provide examples in which the RA does not
represent the individuals in the economy so that the re-
duction of a group of heterogeneous agents to an RA is
not just an analytical convenience, but it is both unjusti-
fied and leads to conclusions which are usually mislead-
ing and often wrong ([99]; see also [98]). A further result,
which is a proof of the logical fallacy in bridging the mi-
cro to the macro is the impossibility theorem of Arrow: it
shows that an ensemble of people, which has to collectively
take a decision, cannot show the same rationality of an in-
dividual [123]. Moreover, the standard econometric tools
are based upon the assumption of an RA. If the economic
system is populated by heterogeneous (not necessarily in-
teracting) agents, then the problem of the microfounda-
tion of macroeconometrics becomes a central topic, since
some issues (e. g., co-integration, Granger-causality, im-
pulse-response function of structural VAR) lose their sig-
nificance [69].

All in all, wemight say that the failure of the RA frame-
work, points out the vacuum of the mainstream micro-
foundation literature, which ignores interactions: no box
of tools is available to connect the micro and the macro
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levels, beside the RA whose existence is at odds with the
empirical evidence [30,158] and the equilibrium theory as
well [99].

The Economics of Complexity

According to the mainstream approach there is no direct
interaction among economic units (for a pioneeristic and
neglected contribution see [68]; see also [101]). In themost
extreme case, any individual strategy is excluded (princi-
ple of excluded strategy, according to Schumpeter [149])
and agents are homogeneous. Small departures from the
perfect information hypothesis are incoherent with the
Arrow–Debreu general equilibrium model, as shown by
Grossman and Stiglitz [88], since they open the chance
of having direct links among agents [156]. In particular, if
prices convey information about the quality there cannot
be an equilibriumprice as determined by the demand-sup-
ply schedule, since demand curves depend on the proba-
bility distribution of the supply (p. 98 in [87]).

What characterizes a complex system is the notion
of emergence, that is the spontaneous formation of self-
organized structures at different layers of a hierarchical
system configuration [43]. Rather, mainstream economics
conceptualizes economic systems as consisting of several
identical and isolated components, each one being a copy
of a RA. The aggregate solution can thus be obtained by
means of a simple summation of the choices made by each
optimizing agent. The RA device, of course, is a way of
avoiding the problem of aggregation by eliminating het-
erogeneity. But heterogeneity is still there. If the macroe-
conomist takes it seriously, he/she has to derive aggregate
quantities and their relationships from the analysis of the
micro-behavior of different agents. This is exactly the key
point of the aggregation problem: starting from the micro-
equations describing/representing the (optimal) choices of
the economic units, what can we say about the macro-
equations? Do they have the same functional form of the
micro-equations (the analogy principle)? If not, how is the
macro-theory derived?

The complexity approach to economics discards the
GE approach to the microfoundation program, as well as
its RA shorthand version. Instead of asking to deductively
prove the existence of an equilibrium price vector p� such
that F(p�) D 0, it aims at explicitly constructing it by
means of an algorithm or a rule. From an epistemologi-
cal perspective, this implies a shift from the realm of clas-
sical to that of constructive theorizing [168]. Clearly, the
act of computationally constructing a coordinated state –
instead of imposing it via the Walrasian auctioneer – for
a decentralized economic system requires complete de-

scription of goal-directed economic agents and their in-
teraction structure.

Agent-based modeling represents an effective imple-
mentation of this research agenda ([60,124], see also [24,
67,81,175]). ABM is a methodology that allows one to
construct, based on simple rules of behavior and interac-
tion, models with heterogeneous agents, where the result-
ing aggregate dynamics and empirical regularities are not
known a priori and are not deducible from individual be-
havior. It is characterized by three main tenets: (i) there
is a multitude of objects that interact with each other and
with the environment; (ii) the objects are autonomous, i. e.
there is no central, or top-down control over their behav-
ior; and (iii) the outcome of their interaction is numeri-
cally computed. Since the objects are autonomous, they are
called agents ([3,4]; see also the repository of ACE-related
material maintained by Leigh Tesfatsion at http://www.
econ.iastate.edu/tesfatsi/ace.htm): “Agent-based Compu-
tational Economics is the computational study of eco-
nomic processes modeled as dynamic systems of interact-
ing agent” [161].

Agents can be anything from cells to biological entities,
from individuals to social groups like families or firms.
Agents can be composed by other agents: the only require-
ment being that they are perceived as a unit from the out-
side, and that they do something, i. e. they have the ability
to act, and possibly to react to external stimuli and interact
with the environment and other agents. The environment,
which may include physical entities (infrastructures, ge-
ographical locations, etc.) and institutions (markets, reg-
ulatory systems, etc.), can also be modeled in terms of
agents (e. g. a central bank, the order book of a stock ex-
change, etc.), whenever the conditions outlined above are
met. When not, it should be thought of simply as a set of
variables (say, temperature or business confidence).

The methodological issues are the real litmus paper
of the competing approaches. According to one of the
most quoted economic papers, Friedman [71], the ulti-
mate goal of a positive science is to develop hypotheses
that yield valid and meaningful predictions about actual
phenomena. Not a word on predictions at the meso-level
or on the realism of the hypotheses. Even the Occam rule
is systematically ignored: e. g. to get a downward slop-
ing aggregate demand curve, mainstream economics has
to assume indifference curves which are: (i) defined only
in the positive quadrant of commodity-bundle quantities;
(ii) negatively sloped; (iii) complete; (iv) transitive, and
(v) strictly convex, while ABM has to assume only the ex-
istence of reservation prices. Moreover, to properly aggre-
gate from microbehavior, i. e. to get a well shaped aggre-
gate demand from the individual ones, it has to be as-

http://www.econ.iastate.edu/tesfatsi/ace.htm
http://www.econ.iastate.edu/tesfatsi/ace.htm
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sumed that the propensity to consume out of income has
to be homogeneous for all the agents (homothetic Engel
curves) and that distribution is independent from relative
prices. This methodology resembles the scientific proce-
dure of the aruspexes, who predicted the future by reading
the animals’ bowels. The ABM methodology is bottom-up
and focuses on the interaction between many heteroge-
nous interacting agents, which might produce a statistical
equilibrium, rather than a natural one as the mainstream
approach assumes. The bottom-up approach models in-
dividual behavior according to simple behavioral rules;
agents are allowed to have local interaction and to change
the individual rule (through adaptation) as well as the in-
teraction nodes. By aggregating, some statistical regularity
emerges, which cannot be inferred from individual behav-
ior (self emerging regularities): this emergent behavior feeds
back to the individual level (downward causation) thus es-
tablishing a macrofoundation of micro. As a consequence,
each and every proposition may be falsified atmicro,meso
and macro levels. This approach opposes the axiomatic
theory of economics, where the optimization procedure
is the standard for a scientific, i. e. not ad-hoc, modeling
procedure.

The agent-based methodology can also be viewed as
a way to reconcile the two opposing philosophical perspec-
tives of methodological individualism and holism. Hav-
ing agents as the unit of analysis, ABM is deeply rooted
in methodological individualism, a philosophical method
aimed at explaining and understanding broad society-
wide developments as the aggregation of decisions by indi-
viduals [13,172]. Methodological individualism suggests –
in its most extreme (and erroneous) version – that a sys-
tem can be understood by analyzing separately its con-
stituents, the reductionist approach that the whole is noth-
ing but the sum of its parts [51,127]. However, the ability
to reduce everything to simple fundamental objects and
laws does not imply the ability to start from those objects
and laws and reconstruct the universe. In other terms, re-
ductionism does not imply constructionism [2].

The Austrian school of economics championed the
use of methodological individualism in economics in the
twentieth century, of which Friederich von Hayek has
been one of the main exponents. The legacy of Hayek to
ABM and the complex system approach has been recog-
nized [166]. Methodological individualism is also consid-
ered an essential part of modern neoclassical economics,
with its analysis of collective action in terms of rational,
utility-maximizing individuals: should the microfounda-
tions in terms of individual rational behavior be aban-
doned, the Lucas Critique [114] would kick in. However,
it is hard to recognize the imprinting of methodological

individualism in the RA paradigm, which claims that the
whole society can be analyzed in terms of the behavior
of a single, representative, individual and forgets to ap-
ply to it the Lucas critique. On the other hand, focusing
on aggregate phenomena arising from the bottom up [61]
from the interaction of many different agents, ABM also
adopts a holistic approach when it claims that these phe-
nomena cannot be studied without looking at the entire
context in which they are embedded. Indeed, holism is
the idea that all the properties of a given system cannot
be determined or explained by the sum of its component
parts alone. Instead, the system as a whole determines in
an important way that the parts behave. The general prin-
ciple of holism was concisely summarized by Aristotle in
his Metaphysics: “The whole is more than the sum of its
parts”, a manifesto of the complexity approach. However,
ABM (and more in general complexity theory) should not
be confused with general systems theory, an holistic ap-
proach developed in the 1950s and 1960s that in its most
radical form argued that everything affects everything else:
according to systems theory, phenomena that appear to
have simple causes, such as unemployment, actually have
a variety of complex causes – complex in the sense that
the causes are interrelated, nonlinear, and difficult to de-
termine [133]. Conversely, the complexity approach looks
for simple rules that underpin complexity, an agenda that
has been entirely transferred to ABM.

Also, ABM can be thought of as a bridge be-
tween methodological individualism and methodological
holism. In agent-based models aggregate outcomes (the
whole, e. g. the unemployment rate) are computed as the
sum of individual characteristics (its parts, e. g. individual
employment status). However, aggregate behavior can of-
ten be recognized as distinct from the behavior of the com-
prising agents, leading to the discovery of emergent prop-
erties. In this sense, the whole is more than – and different
from – the sum of its parts. It might even be the case that
the whole appears to act as if it followed a distinct logic,
with its own goals and means, as in the example of a cartel
of firms that act in order to influence the market price of
a good. From the outside, the whole appears no different
from a new agent type (e. g. a family, a firm). A new entity
is born; the computational experiment has been successful
in growing artificial societies from the bottom up [61].

This bottom-up approach to complexity consists in de-
ducing the macroscopic objects (macros) and their phe-
nomenological complex ad-hoc laws in terms of a multi-
tude of elementary microscopic objects (micros) interact-
ing by simple fundamental laws [154], and ABM provides
a technique that allows one to systematically follow the
birth of these complex macroscopic phenomenology. The
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macros at a specific scale can become themicros at the next
scale.

Depending on the scope of the analysis, it is generally
convenient to stop at some scale in the way down to recon-
struct aggregate, top-level dynamics from the bottom up.
When applied to economics, only a few levels (e. g. amicro,
a meso and a macro level) are in general sufficient to pro-
vide a thorough understanding of the system. Defining the
elementary units of analysis amounts to fixing the limits
for the reductionist approach, which is not aprioristically
discarded but rather integrated in the analysis. These units
are in fact characterized by an inner structure that does not
depend on the environment in which they are embedded.
They can thus be analyzed separately.

The need for the ABM approach at any given scale
is often linked to the existence of some underlying auto-
catalytic process at a lower level. Autocatalytic processes
are dynamic processes with positive feedbacks, where the
growth of some quantity is to some extent self-perpetuat-
ing, as in the case when it is proportional to its initial value.
The importance of positive feedbacks has been recognized
in the literature on increasing returns, in particular with
respect to the possibility of multiple equilibria [151], since
the time of Marshall. However, the traditional analysis is
static, and does not address how an equilibrium out of
several might be selected. Looking at the problem from
a dynamic stochastic process perspective, selection is ex-
plained in terms of one set of small historical events mag-
nified by increasing returns.

Moreover, the existence of an autocatalytic process im-
plies that looking at the average, or most probable, behav-
ior of the constituent units is non representative of the dy-
namics of the system: autocatalyticity insures that the be-
havior of the entire system is dominated by the elements
with the highest auto-catalytic growth rate rather than by
the typical or average element [154]. In presence of auto-
catalytic processes, even a small amount of individual het-
erogeneity invalidates any description of the behavior of
the system in terms of its average element: the real world is
controlled asmuch by the tails of distributions as bymeans
or averages.We need to free ourselves from average think-
ing [3].

The fact that autocatalytic dynamics are scale invari-
ant (i. e. after a transformation that multiplies all the vari-
ables by a common factor) is a key to understanding the
emergence of scale invariant distributions of these vari-
ables (e. g. power laws), at an aggregate level. The relevance
of scale free distributions in economics (e. g. of firm size,
wealth, income, etc.) is now extensively recognized (Brock,
1999), and has been the subject of through investigation in
the econophysics literature [120].

Additional Features of Agent-BasedModels

We have so far introduced the three fundamental char-
acteristics of ABM: there are agents that play the role
of actors, there is no script or Deus ex-machina and the
story is played live, i. e. it is computed. Following Ep-
stein [58,59,60], we can further characterize the method-
ology, by enumerating a number of features that, although
not necessary to define an agent-based model, are often
present. These are:

Heterogeneity

While in analytical models there is a big advantage in re-
ducing the ways in which individuals differ, the computa-
tional burden of ABM does not change at all if different
values of the parameters (e. g. preferences, endowments,
location, social contacts, abilities etc.) are specified for dif-
ferent individuals. Normally, a distribution for each rel-
evant parameter is chosen, and this simply implies that
a few parameters (those governing the distribution) are
added to the model.

Explicit Space

This can be seen as specification of the previous point: in-
dividuals often differ in the physical place where they are
located, and/or in the neighbors with whom they can or
have to interact (which define the network structure of the
model, see below).

Local Interaction

Again, this can be seen as a specification of the network
structure connecting the agents. Analytical models often
assume either global interaction (as inWalrasianmarkets),
or very simple local interaction. ABM allow for much
richer specifications. No direct interaction (only through
prices) is allowed in the GE, while direct interaction (local
and stochastic, usually [101]) is the rule for the complexity
approach: figures 1a-c give a graphical representation of
Walrasian, random and scale-free interaction respectively.
Note that the empirical evidence supports the third case:
hubs and power laws are the rule in the real world [38,52].

Actually, some neoclassical economists asked for an
analysis of how social relations affect the allocation of re-
sources (e. g., [12,107,134]). They went almost completely
unheard, however, until the upsurge in the early 1990s of
a brand new body of work aimed at understanding and
modeling the social context of economic decisions, usu-
ally labeled new social economics or social interaction eco-
nomics [56]. Models of social interactions (Manski [118]
offers an operational classification of the channels through



38 Agent Based Models in Economics and Complexity

Agent BasedModels in Economics and Complexity, Figure 1
a a Walrasian GE representation; b a randomgraph; c a scale free graph in which several hubs can be identified

which the actions of one agent may affect those of other
agents within a reference group) are generally able to pro-
duce several properties, such as multiple equilibria [34];
non-ergodicity and phase transition [54]; equilibrium strat-
ification in social and/or spatial dimension [27,83]; the ex-
istence of a social multiplier of behaviors [84]. The key
idea consists in recognizing that the social relationships
in which individual economic agents are embedded can
have a large impact on economic decisions. In fact, the
social context impacts on individual economic decisions
through several mechanisms. First, social norms, cultural
processes and economic institutions may influence mo-
tivations, values, and tastes and, ultimately, make pref-
erences endogenous [31]. Second, even if we admit that
individuals are endowed with exogenously given prefer-
ences, the pervasiveness of information asymmetries in
real-world economies implies that economic agents vol-
untarily share values, notions of acceptable behavior and
socially based enforcement mechanisms in order to re-
duce uncertainty and favor coordination [50]. Third, the
welfare of individuals may depend on some social charac-
teristics like honor, popularity, stigma or status [41]. Fi-
nally, interactions not mediated by enforceable contracts
may occur because of pure technological externalities in
network industries [152] or indirect effects transmitted
through prices (pecuniary externalities) in non-competi-
tive markets [28], which may lead to coordination failures
due to strategic complementarities [42].

Bounded Rationality

Interestingly, while in analytical models it is generally eas-
ier to implement some form of optimal behavior rather
than solvingmodels where individuals follow “reasonable”
rules of thumb, or learn either by looking at what hap-
pened to others or what happened to them in the past,
for ABM the opposite is true. However, it can be argued
that real individuals also face the same difficulties in de-

termining and following the optimal behavior, and are
characterized by some sort of bounded rationality: “There
are two components of this: bounded information and
bounded computing power. Agents have neither global in-
formation nor infinite computational capacity. Although
they are typically purposive, they are not global optimizers;
they use simple rules based on local information” (p. 1588
in [59]).

The requirement on full rationality is indeed very
strong, since it requires an infinite computational capac-
ity (the ability of processing tons of data in a infinitesimal
amount of time) and all the information. Moreover, ac-
cording to the mainstream approach, information is com-
plete and free for all the agents. Note that one of the as-
sumptions in the Walrasian approach is that each agent
has only private information: this is equivalent to say that
strategic behavior about information collection and dis-
semination is ruled out and the collection of the whole
set of the information is left to the market via the auc-
tioneer (or a benevolent dictator [25]). Indeed, one could
read the rational expectation “revolution” as the tentative
to decentralize the price setting procedure by defenestrat-
ing the auctioneer. Limited information is taken into ac-
count, but the constraints have to affect every agent in the
same way (the so-called Lucas’ islands hypothesis) and the
Greenwald–Stiglitz theorem [86] states that in this case
the equilibrium is not even Pareto-constrained. If infor-
mation is asymmetric or private, agents have to be hetero-
geneous and direct interaction has to be considered: this
destroys the mainstream model and generates coordina-
tion failures.

On the contrary, agent-based models are build upon
the hypothesis that agents have limited information. Once
again, the ABM approach is much more parsimonious,
since it only requires that the agents do not commit sys-
tematic errors. Moreover, given the limited information
setting, the economic environment might change affect-
ing, and being affected by, agents’ behavior: individuals
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learn through experience and by interacting with other
agents.

Non-equilibrium Dynamics

As we will explain in more details below, ABM are recur-
sive models, in which the state of the system at time t C
1 is computed starting from the state at time t. Hence,
they allow the investigation of what happens all along the
route, not only at the start and at the end of the jour-
ney. This point is, we believe, the most important. Brian
Arthur (p. 1552 in [16]) offers an effective statement of
its relevance for economic theory: “Standard neoclassi-
cal economics asks what agents’ actions, strategies, or ex-
pectations are in equilibrium with (consistent with) the
outcome or pattern these behaviors aggregatively create.
Agent-based computational economics enables us to ask
a wider question: how agents’ actions, strategies or expec-
tations might react to –might endogenously change with –
the pattern they create. [. . . ] This out-of-equilibrium ap-
proach is not a minor adjunct to standard economic the-
ory; it is economics done in a more general way. [. . . ]
The static equilibrium approach suffers two characteris-
tic indeterminacies: it cannot easily resolve among multi-
ple equilibria; nor can it easily model individuals’ choices
of expectations. Both problems are ones of formation (of
an equilibrium and of an ‘ecology’ of expectations, respec-
tively), and when analyzed in formation – that is, out of
equilibrium – these anomalies disappear”.

As we have seen, continuous market clearing is as-
sumed by the mainstream. It is a necessary condition to
obtain “efficiency and optimality” and it is quite curious
to read of a theory assuming the explenandum. In such
a way, every out of equilibrium dynamics or path depen-
dency is ruled out and initial conditions do not matter.
The GE model assumes that transactions happen only af-
ter the vector of the equilibrium prices has been reached:
instead of being the result of the exchange, it foresees it
par tatonnement in a logical, fictitious time. Because the
real markets operate in real, historical, time and the ex-
change process determines prices, the GEmodel is not able
to describe any real economy [9]. Clower [39] suggested
(resemblance Edgeworth, [57]) that exchange might hap-
pen out of equilibrium (at false prices). In such a case,
agents will be quantity-rationed in their supply of-demand
for: because of it, the intertemporal maximization prob-
lem has to be quantity-constraints (the so-called Clower
constraint) and if the economy would reach equilibrium,
it will be non-optimal and inefficient.

The requirement on rationality is also very strong,
since it requires an infinite computational capacity (the

ability of processing tons of data in a infinitesimal amount
of time) and all the information. In fact, if information is
limited, the outcome of a rational choice may be non-opti-
mal. Once again, all the ABM approach is much more par-
simonious, since it requires that the agents do not com-
mit systematic errors. Moreover, given the limited infor-
mation setting, the economic environment might change
affecting, and being affected by, agents’ behavior: learning
and adaptive behavior are therefore contemplated.

Finally, according to Beinhocker [26], the approaches
differ also as regard dynamics (Complex Systems are open,
dynamic, non-linear systems, far from equilibrium;Main-
stream economics are closed, static, linear systems in equi-
librium) and evolution (Complex Systems have an evo-
lutionary process of differentiation, selection and am-
plification which provides the system with novelty and is
responsible for its growth in order and complexity, while
Mainstream has no mechanism for endogenously creating
novelty, or growth in order and complexity.

An Ante LitteramAgent-BasedModel:
Thomas Schelling’s SegregationModel

One of the early and most well known examples of an
agent-based model is the segregation model proposed by
Thomas Schelling [145,146], who in 2005 received the
Nobel prize for his studies in game theory (surveys of
more recent applications of ABM to economics can be
found in [159,160,161,163]). To correctly assess the im-
portance of the model, it must be evaluated against the
social and historical background of the time. Up to the
end of the 1960s racial segregation was institutionalized in
the United States. Racial laws required that public schools,
public places and public transportation, like trains and
buses, had separate facilities for whites and blacks. Resi-
dential segregation was also prescribed in some States, al-
though it is now widely recognized that it mainly came
about through organized, mostly private efforts to ghet-
toize blacks in the early twentieth century – particularly
the years between the world wars [63,126]. But if the so-
cial attitude was the strongest force in producing residen-
tial segregation, the Civil Rights movement of the 1960s
greatly contributed to a change of climate, with the white
population exhibiting increasing levels of tolerance. Even-
tually, the movement gained such strength to achieve its
main objective, the abolition of the racial laws: this was
sealed in the Civil Rights Act of 1968 which, among many
other things, outlawed a wide range of discriminatory con-
duct in housing markets. Hence, both the general pub-
lic attitude and the law changed dramatically during the
1960s. As a consequence, many observers predicted a rapid
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decline in housing segregation. The decline, however, was
almost imperceptible. The question thenwaswhy this hap-
pened. Schelling’s segregation model brought an answer,
suggesting that small differences in tolerance level or ini-
tial location could trigger high level of segregation even
without formal (i. e. legal) constraints, and even for de-
cent levels of overall tolerance. In the model, whites and
blacks are (randomly) located over a grid, each individual
occupying one cell. As a consequence, each individual has
at most eight neighbors (Moore neighborhood), located
on adjacent cells. Preferences over residential patterns are
represented as the maximum quota of racially different
neighbors that an individual tolerates. For simplicity, we
can assume that preferences are identical: a unique num-
ber defines the level of tolerance in the population. For ex-
ample, if the tolerance level is 50% and an individual has
only five neighbors, he would be satisfied if no more than
two of his neighbors are racially different. If an individual
is not satisfied by his current location, he tries to move to
a different location where he is satisfied.

The mechanism that generates segregation is the fol-
lowing. Since individuals are initially located randomly on
the grid, by chance there will be someone who is not satis-
fied. His decision to move creates two externalities: one in
the location of origin and the other in the location of des-
tination. For example, suppose a white individual decides
to move because there are too many black people around.
As he leaves, the ethnic composition of his neighborhood
is affected (there is one white less). This increases the pos-
sibility that another white individual, who was previously
satisfied, becomes eager to move. A similar situation oc-
curs in the area of destination. The arrival of a white in-

Agent BasedModels in Economics and Complexity, Figure 2
NETLOGO implementation of Schelling’s segregationmodel. a Initial (random) pattern. The average share of racially similar neighbors
is roughly50%.With a tolerance level of 70% (40%), less than20% (more than80%)of the individuals arenot satisfied.b Final pattern.
The average share of racially similar neighbors is 72.1%. Everyone is satisfied. c Final pattern. The average share of racially similar
neighbors is 99.7%. Everyone is satisfied

dividual affects the ethnic composition of the neighbor-
hood, possibly causing some black individual to become
unsatisfied. Thus, a small non-homogeneity in the initial
residential pattern triggers a chain effect that eventually
leads to high levels of segregation. This mechanism is re-
inforced when preferences are not homogeneous in the
population.

Figure 2, which shows the NETLOGO implementation
of the Schelling model, exemplifies [173]. The left panel
depicts the initial residential pattern, for a population of
2000 individuals, evenly divided between green and red,
living on a 51 � 51 cells torus (hence the population den-
sity is 76.9%). Two values for the tolerance threshold are
tested: in the first configuration, tolerance is extremely
high (70%), while in the second it is significantly lower
(30%), although at a level that would still be considered
decent by many commentators. The initial residential pat-
tern (obviously) shows no levels of segregation: every in-
dividual has on average 50% of neighbors of a different
race. However, after just a few periods the equilibrium
configurations of the middle (for a tolerance level of 70%)
and right (for tolerance level of 30%) panels are obtained.
The level of segregation is high: more than three quar-
ters of neighbors are on average of the same racial group,
even in case (b), when individuals are actually happy to
live in a neighborhood dominated by a different racial
group! Moreover, most people live in perfectly homoge-
neous clusters, with different ethnic clusters being often
physically separated from each other by a no man’s land.
Only the relative mix brought by confining clusters keeps
down the measure of overall segregation. Should the over-
all composition of the population be biased in favor of one
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ethnic group, we would clearly recognize the formation of
ghettoes.

Note that the formation of racially homogeneous eth-
nic clusters and ghettoes is an emergent property of the
system, which could hardly be deduced by looking at in-
dividual behavior alone, without considering the effects
of interaction. Moreover, the clusters themselves could be
considered as the elementary unit of analysis at a differ-
ent, more aggregate level, and their behavior, e. g. whether
they shrink, expand, merge or vanish, studied with respect
to some exogenous changes in the environment. Not only
a property, i. e. a statistical regularity, has emerged, but
also a whole new entity can be recognized. However, this
new entity is nothing else but a subjective interpretation
by some external observer of an emergent property of the
system.

The Development of Agent-BasedModeling

The early example of the segregationmodel notwithstand-
ing, the development of agent-based computational eco-
nomics is closely linked with the work conducted at the
Santa Fe Institute for the study of complexity, a private,
non-profit, independent research and education center
founded in 1984 in Santa Fe, NewMexico. The purpose of
the institute has been, since its foundation, to foster multi-
disciplinary collaboration in pursuit of understanding the
common themes that arise in natural, artificial, and social
systems. This unified view is the dominant theme of what
has been called the new science of complexity.

The outcomes of this research program are well de-
picted in three books, all bearing the title The economy as
an evolving complex system [4,17,29]. The following quo-
tation, from the preface of the 1997 volume, summarizes
very accurately the approach:

“In September 1987 twenty people came together at
the Santa Fe Institute to talk about ‘the economy as
a evolving, complex system’. Ten were theoretical
economists, invited by Kenneth J. Arrow, and ten
were physicists, biologists and computer scientists,
invited by Philip W. Anderson. The meeting was
motivated by the hope that new ideas bubbling in
the natural sciences, loosely tied together under the
rubric of ‘the sciences of complexity’, might stim-
ulate new ways of thinking about economic prob-
lems. For ten days, economists and natural scien-
tists took turns talking about their respective worlds
and methodologies. While physicists grappled with
general equilibrium analysis and non-cooperative
game theory, economists tried to make sense of spin
glass models, Boolean networks, and genetic algo-

rithms. The meeting left two legacies. The first was
the 1988 volume of essays; the other was the found-
ing, in 1988, of the Economics Program at the Santa
Fe Institute, the Institute’s first resident research
program. The Program’s mission was to encourage
the understanding of economic phenomena from
a complexity perspective, which involved the devel-
opment of theory as well as tools for modeling and
for empirical analysis. [. . . ] But just what is the com-
plexity perspective in economics? That is not an easy
question to answer. [. . . ] Looking back over the de-
velopments in the past decade, and of the papers
produced by the program, we believe that a coher-
ent perspective – sometimes called the ‘Santa Fe ap-
proach’ – has emerged within economics.”

The work carried out at the Santa Fe Institute greatly
contributed to popularize the complexity approach to
economics, although a similar line of research was ini-
tiated in Europe by chemists and physicists concerned
with emergent structures and disequilibrium dynamics
(more precisely, in Brussels by the group of the Nobel
prize winner physical chemist Ilya Prigogine ([128]) and
in Stuttgart by the group of the theoretical physicist Her-
mann Haken [91], as discussed in length by Rosser [141]).

Two main reasons can help explaining why the Santa
Fe approach gained some visibility outside the restricted
group of people interested in the complexity theory
(perhaps contributing in this way to mount what Hor-
gan [96,97], called an intellectual fad). Together, they of-
fered an appealing suggestion of both what to do and how
to do it. The first reason was the ability to present the com-
plexity paradigm as a unitary perspective. This unitary vi-
sion stressed in particular the existence of feedbacks be-
tween functionalities and objectives: individual objectives
determine to some extent the use and modification of ex-
isting functionalities, but functionalities direct to some ex-
tent the choice of individual objectives. It is this analytical
focus that proved to be valuable in disciplines as diverse
as the social sciences, the biological sciences and even ar-
chitecture [70]. The second reason has to do with the cre-
ation of a specific simulation platform that allowed rel-
atively inexperienced researchers to build their own toy
models that, thanks to the enormous and sustained in-
crease in commonly available computing power, could run
quickly even on small PCs. This simulation platform was
called SWARM [18], and consisted in a series of libraries
that implemented many of the functionalities and techni-
calities needed to build an agent-based simulation, e. g. the
schedule of the events, the passing of time and graphical
widgets to monitor the simulation. In addition to offer-
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ing a practical tool to write agent-based simulations, the
SWARM approach proposed a protocol in simulation de-
sign, which the SWARM libraries exemplified.

The principles at the basis of the SWARM protocol are:

(i) The use of an object-oriented programming language
(SWARM was first written in OBJECTIVE C, and later
translated into JAVA), with different objects (and ob-
ject types) being a natural counterpart for different
agents (and agent types);

(ii) A separate implementation of the model and the tools
used for monitoring and conducting experiments on
the model (the so-called observer);

(iii) An architecture that allows nesting models one into
another, in order to build a hierarchy of swarms –
a swarm being a group of objects and a schedule of
actions that the objects execute. One swarm can thus
contain lower-level swarms whose schedules are inte-
grated into the higher-level schedule.

A number of different simulation platforms that ad-
hered to the SWARM protocol for simulation design have
been proposed since, the most widespread being REPAST
([129]; see also [135]). However, other alternative ap-
proaches to writing agent-based models exist. Some rely
on general-purpose mathematical software, like MATHE-
MATICA, MATLAB or MATCAD. Others, exemplified by
the STARLOGO/NETLOGO experience [137], are based on
the idea of an agent-based specific language.

Finally, despite the fact that ABM are most often com-
puter models, and that the methodology could not de-
velop in the absence of cheap and easy-to-handle per-
sonal computers, it is beneficial to remember that one of
the most well-known agent-based models, the segregation
model we have already described, abstracted altogether
from the use of computers. As Schelling recalls, he had
the original idea while seated on plane, and investigated
it with paper and pencil. When he arrived home, he ex-
plained the rules of the game to his son and got him to
move zincs and coppers from the child’s own collection
on a checkerboard, looking for the results: The dynamics
were sufficiently intriguing to keepmy twelve-year-old en-
gaged p. 1643 in [148].

A Recursive System Representation
of Agent-BasedModels

Although the complexity theory is, above all, a mathemat-
ical concept, a rather common misunderstanding about
agent-based simulations is that they are not as sound as
mathematical models. In an often-quoted article, Thomas
Ostrom [130] argued that computer simulation is a third

symbol system in its own right, aside verbal description
and mathematics: simulation is no mathematics at all
(see [79]). An intermediate level of abstraction, according
to this view, characterizes computer simulations: they are
more abstract than verbal descriptions, but less abstract
than pure mathematics. Ostrom (p. 384 in [130]) also ar-
gued that any theory that can be expressed in either of
the first two symbol systems can also be expressed in the
third symbol system. This implies that there might be ver-
bal theories, which cannot be adequately expressed in the
second symbol system of mathematics, but can be in the
third [79].

This view has become increasingly popular among so-
cial simulators themselves, apparently because it offers
a shield to the perplexity of the mathematicians, while
hinting at a sort of superiority of computer simulations.
Our opinion is that both statements are simply and plainly
wrong. Agent-based modeling – and more in general sim-
ulation – is mathematics, as we argue in this paragraph.
Moreover, the conjecture that any theory can be expressed
via simulation is easily contradicted: think for instance of
simulating Hegel’s philosophical system.

Actually, agent-based simulations are nothing else but
recursive systems [59,110], where the variables s that de-
scribe at time t the state of each individual unit are deter-
mined, possibly in a stochastic way, as a function of the
past states s and some parameters a:

si;t D fi(si;t�1; s�i;t�1; ai ; a�i ; t) (1)

The individual state variables could include the memory of
past values, as in the case when an unemployed person is
characterized not only by the fact that he is unemployed,
but also by when he last had a job. The function f i and
the parameters ai determine individual behavior. They can
possibly change over time, either in a random way or de-
pending on some lagged variable or on higher-order pa-
rameters (as in the Environment-Rule-Agent framework of
Gilbert and Terna [80]); when this is the case, their ex-
pression can simply be substituted for in Eq. (1). Equa-
tion (1) allows the recursive computation of the system: at
anymoment in time the state of each unit can be expressed
as a (possibly stochastic) function of the initial values X0
only, where X0 includes the initial states and parameters
of all the individual units:

si;t D gi(X0; t) (2)

The aggregate state of the system is simply defined as

St D
X

i

si;t (3)
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Equilibrium in this system is described as a situation where
the aggregate state S, or some other aggregate statistics Y
computed on the individual states or the individual pa-
rameters are stationary.

Notice that this formalization describes both tradi-
tional dynamic micro models and agent-based simula-
tions. In principle an agent-based model, not differently
from traditional dynamic micro models, could be solved
analytically. The problem is that the expressions involved
quickly become unbearable, as (i) the level of hetero-
geneity, as measured by the distribution of the parame-
ters ai and functional forms f i, increases; (ii) the amount
of interaction, as measured by the dependency of si;t
on s�i;t�1, increases; (iii) the functional forms f become
more complicated, e. g. with the introduction of if-else
conditions, etc.

Hence, the resort to numerical simulation. Traditional
analytical models on the other hand must take great care
that the system can be solved analytically, i. e. by sym-
bolic manipulation. Hence the use of simple functions as
the omnipresent Cobb–Douglas, the assumption of homo-
geneous units (that can then be replaced by a RA), the
choice of simple interaction processes, often mediated by
a centralized coordination mechanism. However, analyti-
cal tractability alone is a poor justification of any modeling
choice. As the Nobel laureate Harry Markowitz wrote, “if
we restrict ourselves to models which can be solved an-
alytically, we will be modeling for our mutual entertain-
ment, not to maximize explanatory or predictive power”
(as reported in [112]). Restricting to analytically solvable
modls – as they are called in the not sufficiently well-
known paper by Axel Leijonhufvud [108] – looks danger-
ously close to the tale of the man who was searching for
his keys under the light of a street lamp at night and, once
asked if he had lost them there, he answered “No, but this
is where the light is”.

Analysis of Model Behavior

Being able to reach a close solution means that it is pos-
sible to connect inputs and outputs of the model, at any
point in time, in a clear way: the input-output transforma-
tion function, or reduced form, implied by the structural
form in which the model is expressed, is analytically ob-
tained (e. g. the equilibrium expression of some aggregate
variable of interest, as a function of themodel parameters).
Hence, theorems can be proved and laws expressed.

On the contrary, in a simulation model the reduced
form remains unknown, and only inductive evidence
about the input/output transformation implied by the
model can be collected. Performing multiple runs of the

simulation with different parameters does this. In other
words, simulations suffer from the problem of stating gen-
eral propositions about the dynamics of the model start-
ing only from point observations. Since scientific expla-
nations are generally defined as the derivation of general
laws, which are able to replicate the phenomena of inter-
ests [93,94], simulations appear to be less scientific than
analytical models. As Axelrod [19] points out, “like deduc-
tion, [a simulation] starts with a set of explicit assump-
tions. But unlike deduction, it does not prove theorems.
Instead, a simulation generates data that can be analyzed
inductively”. Induction comes at the moment of explain-
ing the behavior of the model. It should be noted that al-
though induction is used to obtain knowledge about the
behavior of a given simulation model, the use of a sim-
ulation model to obtain knowledge about the behavior
of the real world refers to the logical process of abduc-
tion [109,117]. Abduction [66,132], also called inference to
the best explanation, is a method of reasoning in which one
looks for the hypothesis that would best explain the rele-
vant evidence, as in the case when the observation that the
grass is wet allows one to suppose that it rained.

Being constrained to unveil the underlying input-out-
put transformation function by repetitively sampling the
parameter space, simulations cannot prove necessity, i. e.
they cannot provide in the traditional sense necessary con-
ditions for any behavior to hold. This is because nothing
excludes a priori that the system will behave in a radically
different way as soon as the value of some parameter is
changed, while it is generally not possible to sample all val-
ues of the parameter space. In other words, the artificial
data may not be representative of all outcomes the model
can produce. While analytical results are conditional on
the specific hypothesis made about themodel only, simula-
tion results are conditional both on the specific hypothesis
of the model and the specific values of the parameters used
in the simulation runs: each run of such a model yields is
a sufficiency theorem, [yet] a single run does not provide
any information on the robustness of such theorems [20].

The sampling problem becomes increasingly harder as
the number of the parameters increase. This has been re-
ferred to as the curse of dimensionality [143]. To evaluate
its implications, two arguments should be considered. The
first one is theoretical: if the impossibility to gain a full
knowledge of the system applies to the artificial world de-
fined by the simulation model, it also applies to the real
world. The real data generating process being itself un-
known, stylized facts (against which all models are in gen-
eral evaluated) could in principle turn wrong, at some
point in time. From an epistemological point of view, our
belief that the sun will rise tomorrow remains a probabilis-
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tic assessment. The second, and more decisive, consider-
ation is empirical: we should not worry too much about
the behavior of a model for particular evil combinations
of the parameters, as long as these combinations remain
extremely rare (one relevant exception is when rare events
are the focus of the investigation, e. g. in risk management,
see [150]). If the design of the experiments is sufficiently
accurate, the problem of how imprecise is the estimated
input-output transformation function becomes marginal:

While the curse of dimensionality places a practical
upper bound on the size of the parameter space that
can be checked for robustness, it is also the case that
vast performance increases in computer hardware
are rapidly converting what was once perhaps a fatal
difficulty into a manageable one [20].

In conclusion, extensive experimentation is the only
way to get a full understanding of the simulation behav-
ior. Sampling of the parameter space can be done ei-
ther systematically, i. e. by grid exploration, or randomly.
Following Leombruni et al. [111], we can further distin-
guish between two levels at which sampling can be done:
a global level and a local level. Local sampling is conducted
around some specific parameter configurations of interest,
by letting each parameter vary and keeping all the oth-
ers unchanged. This is known as sensitivity analysis, and
is the equivalent to the study of the partial derivatives of
the input-output transformation function in an analytical
model.

As an example, Fig. 3 reports a plot of the equilibrium
level of segregation in the Schelling model, for decreas-
ing values of tolerance (left panel) and increasing popu-
lation density (right panel). Tolerance level is sampled in
the range [0, .7] by increasing steps of .05, while popula-
tion size is sampled in the range [1000, 2000] by increasing
steps of 100. To get rid of random effects (in the initial res-
idential pattern and in the choice of a different location of
unsatisfied individuals), 100 runs are performed for every
value of the parameter being changed, and average out-
comes are reported. This gives an idea of the local effects
of the two parameters around the central parameter con-
figuration where the population size is equal to 2000 and
the tolerance level is equal to 70%.

For what concerns the effect of tolerance on segrega-
tion (left panel), it should be noted that the somewhat ir-
regular shape of the relationship is a consequence not of
the sample size but of the small neighborhood individu-
als take into consideration (a maximum of eight adjacent
cells, as we have seen), and the discretization it brings. As
the effect of population size on segregation (right panel) is
concerned, it may seem at a first glance counter-intuitive

that segregation initially diminishes, as the population
density increases. This is due to the fact that clusters can
separate more if there are more free locations. Of course,
nothing excludes the possibility that these marginal effects
are completely different around a different parameter con-
figuration. To check whether this is the case, it is necessary
either to repeat the sensitivity analysis around other con-
figurations, or to adopt a multivariate perspective.

Allowing all parameters to change performs global
sampling, thus removing the reference to any particular
configuration. To interpret the results of such a global
analysis, a relationship between inputs and outputs in the
artificial data can be estimated, e. g.:

Y D m(X0) : (4)

Where Y is the statistics of interest (say, the Gini coeffi-
cient of wealth), computed in equilibrium, i. e. when it has
reached stationarity, andX0 contains the initial conditions
and the structural parameters of the model: X0 D fs0; ag.
If the (not necessary unique) steady state is independent of
the initial conditions, Eq. 4 simplifies to:

Y D m(A) : (5)

Where A contains only the parameters of the simulation.
The choice of the functional formm to be estimated,which
is sometimes referred to asmetamodel [103] is to a certain
extent arbitrary, and should be guided by the usual criteria
for model specification for the analysis of real data.

As an example, we performed a multivariate analysis
on the artificial data coming out of the Schelling’s segre-
gation model, by letting both the population size and the
tolerance threshold to vary. Overall, 2115 parameter con-
figurations are tested. After some data mining, our pre-
ferred specification is an OLS regression of the segregation
level on a third order polynomial of the tolerance thresh-
old, a second order polynomial of population density, plus
an interaction term given by the product of tolerance and
density. The interaction term, that turns out to be highly
significant, implies that the local analysis of Fig. 3 has no
general validity.

The regression outcome is reported in Table 1.
Such a model allows predicting the resulting segrega-

tion level for any value of the parameters. Of course, as the
complexity of the model increases (e. g. leading to multiple
equilibria) finding an appropriate meta-model becomes
increasingly arduous.

Finally, let’s remark that the curse of dimensionality
strongly suggests that the flexibility in model specification
characterizing agent-based models is to be used with care,
never neglecting the KISS (Keep it simple, Stupid) prin-



Agent Based Models in Economics and Complexity 45

Agent BasedModels in Economics and Complexity, Figure 3
Sensitivity analysis for the Schelling’s segregation model. Segregation is measured as the share of racially similar neighbors. The
reference parameter configuration is population size D 2000, tolerance level D 40%

Agent BasedModels in Economics and Complexity, Table 1
Regression results for Schelling’s segregation model. Instead of repeating the experiment n times for each parameter configuration,
in order to average out the randomeffects of themodel, we preferred to test a number of different parameter configurations n times
higher. Thus, population size is explored in the range [1000, 2000] by increasing steps of 10, and tolerance level is explored in the
range [0, 7] by increasing steps of .05

Source SS df MS
Model 666719.502 6 111119.917
Residual 12033.9282 2108 5.70869461
Total 678753.43 2114 321.075416

Number of obs = 2115
F(6, 2108) = 19465.03
Prob > F = 0.0000
R-squared = 0.9823
Adj R-squared = 0.9822
Root MSE = 2.3893

Segregation Coef. Std. Err. t P > jtj [95% Conf. Interval]
tolerance 3.379668 .0819347 41.25 0.000 3.218987 3.54035
tolerance_2 � .0655574 .0013175 � 49.76 0.000 � .0681411 � .0629737
tolerance_3 .0003292 6.73e� 06 48.94 0.000 .000316 .0003424
density � 23.83033 3.274691 � 7.28 0.000 � 30.25229 � 17.40837
density_2 20.05102 2.372174 8.45 0.000 15.39897 24.70306
interaction � .1745321 .0153685 � 11.36 0.000 � .2046712 � .144393
_cons 57.31189 1.957341 29.28 0.000 53.47336 61.15041

ciple. Schelling’s segregation model is in this respect an
example of simplicity, since it has but a few parameters:
this is not incoherent with the complexity approach, since
it stresses how simple behavioral rules can generate very
complex dynamics.

Validation and Estimation

The previous section has dealt with the problem of inter-
preting the behavior of an agent-basedmodel, and we have
seen that this can be done by appropriately generating and
analyzing artificial data. We now turn to the relationship
between artificial and real data, that is (i) the problem of

choosing the parameter values in order to have the be-
havior of the model being as close as possible to the real
data, and (ii) the decision whether amodel is good enough,
which often entails a judgment on “how close” as close as
possible is. The first issue is referred to as the problem of
calibration or estimation of the model, while the second
one is known as validation.

Note that all models have to be understood. Thus, for
agent-based models analysis of the artificial data is always
an issue. However, not all models have to be estimated or
validated. Some models are built with a theoretical focus
(e. g. Akerlof’s market for lemons), and thus comparison
with the real data is not an issue – although it could be ar-
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gued that some sort of evaluation is still needed, although
of a different kind.

Estimation

Although the terms calibration and estimation are some-
times given slightly different meanings (e. g. [105]), we
agree with Hansen and Heckman (p. 91 in [92]) that “the
distinction drawn between calibrating and estimating the
parameters of a model is artificial at best. Moreover, the
justification for what is called calibration is vague and con-
fusing. In a profession that is already too segmented, the
construction of such artificial distinctions is counterpro-
ductive.”

Our understanding is that, too often, calibration sim-
ply refers to a sort of rough estimation, e. g. by means of
visual comparison of the artificial and real data. However,
not all parameters ought to be estimated by means of for-
mal statistical methods. Some of them have very natural
real counterparts and their value is known (e. g. the inter-
est rate): the simulation is run with empirical data. Un-
known parameters have on the other had to be properly
estimated.

In analytical models the reduced form coefficients, e. g.
the coefficients linking output variables to inputs, can be
estimated in the real data. If the model is identified, there
is a one-to-one relationship between the structural and the
reduced form coefficients. Thus, estimates for the struc-
tural coefficients can be recovered. In a simulation model
this can’t be done. However, we could compare the out-
come of the simulation with the real data, and change the
structural coefficient values until the distance between the
simulation output and the real data is minimized. This is
called indirect inference [85], and is also applied to analyt-
ical models e. g. when it is not possible to write down the
likelihood. There are many ways to compare real and arti-
ficial data. For instance, simple statistics can be computed
both in real and in artificial data, and then aggregated in
a unique measure of distance. Clearly, these statistics have
to be computed just once in the real data (which does not
change), and once every iteration until convergence in the
artificial data, which depends on the value of the structural
parameters. The change in the value of the parameters of
each iteration is determined according to some optimiza-
tion algorithm, with the aim to minimize the distance.

In the method of simulated moments different order
of moments are used, and then weighted to take into ac-
count their uncertainty (while the uncertainty regarding
the simulated moments can be reduced by increasing the
number of simulation runs, the uncertainty in the estima-
tion of the real, population moment on the basis of real

sample data cannot be avoided). The intuition behind this
is to allow parameters estimated with a higher degree of
uncertainty to count less, in the final measure of distance
between the real and artificial data [174]. Having different
weights (or no weights at all) impinges on the efficiency
of the estimates, not on their consistency. If the number
of moments is equal to the number of structural param-
eters to be estimated, the model is just-identified and the
minimized distance, for the estimated values of the param-
eters, is 0. If the number of moments is higher than the
number of parameters the model is over-identified and the
minimized distance is greater than 0. If it is lower it is un-
der-identified. Another strategy is to estimate an auxiliary
model both in the real and in the artificial data, and then
compare the two sets of estimates obtained. The regres-
sion coefficients have the same role as the moments in the
method of simulatedmoments: they are just a way of sum-
marizing the data. Hence, if the number of coefficients in
the auxiliary model is the same as the number of struc-
tural parameters to be estimated the model is just-identi-
fied and the minimized distance is 0. The specification of
the auxiliary model is not too important. It can be proved
that misspecification (e. g. omission of a relevant variable
in the relationship to be estimated) only affects efficiency,
while the estimates of the structural parameters remain
consistent. A natural choice is of course the meta-model
of Eq. 4.

Validation

A different issue is determining “how good” a model is.
Of course, an answer to this question cannot be unique,
but must be made in respect to some evaluation crite-
rion. This in turn depends on the objectives of the analy-
sis [62,102,111,164]. The need for evaluation of the model
is no different in agent-basedmodels and in traditional an-
alytical models. However, like all simulations agent-based
models require an additional layer of evaluation: the valid-
ity of the simulator (the program that simulates) relative
to the model (program validity).

Assuming this is satisfied and the program has no
bugs, Marks [121] formalizes the assessment of the model
validity as follows: the model is said to be useful if it can
exhibit at least some of the observed historical behaviors,
accurate if it exhibits only behaviors that are compatible
with those observed historically, and complete if it exhibits
all the historically observed behaviors. In particular, letting
R be the real world output, and M be the model output,
four cases are possible:

a. No intersection between R and M (R \ M D ;): the
model is useless;
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b. M is a subset of R (M � R): the model is accurate, but
incomplete;

c. R is a subset of M (M 	 R): the model is complete,
but inaccurate (or redundant, since themodelmight tell
something about what could yet happen in the world);

d. M is equivalent to R (M , R): the model is complete
and accurate.

Of course, the selection of the relevant historical behav-
iors is crucial, and amounts to defining the criteria against
which the model is to be evaluated.Moreover, the recogni-
tion itself of historical behavior passes through a process of
analysis and simplification that leads to the identification
of stylized facts, which are generally defined in stochastic
terms. Thus, a model is eventually evaluated according to
the extent to which it is able to statistically replicate the
selected stylized facts.

Finally, let’s note that the behavior of the model might
change significantly for different values of the parameters.
Hence, the process of validation always regards both the
structure of the model and the values of the parameters.
This explains why and how validation and estimation are
connected: as we have already noted, estimation is an at-
tempt to make the behavior of the model as close as pos-
sible to real behavior; validation is a judgment on how far
the two behaviors (still) are. A model where the parame-
ters have not been properly estimated and are e. g. simple
guesses can of course be validated. However, by definition
its performance can only increase should the values of the
parameters be replaced with their estimates.

The Role of Economic Policy

Before economics was political economy. According to the
classical economists, the economic science has to be used
to control the real economies and steer them towards de-
sirable outcomes. If one considers the economic system
as an analogue of the physical one, it is quite obvious to
look for natural economic policy prescriptions (one policy
fits all). This is the approach of mainstream (neoclassical)
economists. There is a widespread opinion, well summa-
rized by Brock and Colander [33], that, with respect to the
economic policy analysis of the mainstream, (i) complex-
ity does not add anything new to the box of tools. This
point needs substantial corrections (see also the reflections
by Durlauf [3]). The complexity approach showed us that
the age of certainty ended with the non-equilibrium revo-
lution, exemplified by the works of Prigogine. Considering
the economy as an evolving (adaptive) system we have to
admit that our understanding of it is limited (there is no
room for Laplace’ demon in complexity). Individual be-
havioral rules evolve according to their past performance:

this provides a mechanism for an endogenous change of
the environment. As a consequence the rational expec-
tation hypothesis loses significance. However, agents are
still rational in that they do what they can in order not
to commit systematic errors [113]. In this setting there is
still room for policy intervention outside the mainstream
myth of a neutral and optimal policy. Because emergent
facts are transient phenomena, policy recommendations
are less certain, and they should be institution and histor-
ically oriented [65,170]. In particular, it has been empha-
sized that complex systems can either be extremely fragile
and turbulent (a slight modification in some minor detail
brings macroscopic changes), or relatively robust and sta-
ble: in such a context, policy prescriptions ought to be case
sensitive.

In a heterogenous interacting agents environment,
there is also room for an extension of the Lucas critique.
It is well known that, according to it, because the underly-
ing parameters are not policy-invariant any policy advice
derived from large-scale econometric models that lack mi-
crofoundations would be misleading. The Lucas Critique
implies that in order to predict the effect of a policy ex-
periment, the so-called deep parameters (preferences, tech-
nology and resource constraints) that govern individual be-
havior have to be modeled. Only in this case it is possi-
ble to predict the behaviors of individuals, conditional on
the change in policy, and aggregate them to calculate the
macroeconomic outcome. But here is the trick: aggrega-
tion is a sum only if interaction is ignored. If non-price
interactions (or other non-linearities) are important, then
the interaction between agents may produce very different
outcomes.Mainstreammodels focus on analytical solvable
solutions: to get them, they have to simplify the assump-
tions e. g. using the RA approach or a Gaussian represen-
tation of heterogeneity. At the end, the main objective of
these models is to fit the theory, not the empirics: how
to explain, e. g., the scale-free network of the real econ-
omy represented in Fig. 1c by using the non interacting
network of the mainstream model of Fig. 1a? At a mini-
mum, one should recognize that themainstream approach
is a very primitive framework and, as a consequence, the
economic policy recommendations derivable from it are
very far from being adequate prescriptions for the real
world.

Real economies are composed by millions of interact-
ing agents, whose distribution is far from being stochas-
tic or normal. As an example, Fig. 4 reports the distribu-
tion of the firms’ trade-credit relations in the electronic-
equipment sector in Japan in 2003 (see [47]). It is quite
evident that there exist several hubs, i. e. firms with many
connections: the distribution of the degree of connectivity
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Agent BasedModels in Economics and Complexity, Figure 4
Network of firms (electrical machinery and other machines sec-
tor, Japan). Source: De Masi et al. [47]

is scale free, i. e. there are a lot of firms with one or two
links, and very a few firms with a lot of connections. Let
us assume the Central Authority has to prevent a financial
collapse of the system, or the spreading of a financial cri-
sis (the so-called domino effect, see e. g. [104] and [157]).
Rather than looking at the average risk of bankruptcy (in
power law distributions the mean may even not exist, i. e.
there is an empirical mean, but it is not stable), and to infer
it is a measure of the stability of the system, by means of
a network analysis the economy can be analyzed in terms
of different interacting sub-systems, and local interven-
tion can be recommended to prevent failures and their
spread.

Instead of a helicopter drop of liquidity, one can make
targeted interventions to a given agent or sector of activ-
ity: Fujiwara, [72], show how to calculate the probability
of going bankrupt by solo, i. e. because of idiosyncratic ele-
ments, or domino effect, i. e. because of the failure or other
agents with which there exist credit or commercial links.

One of the traditional fields of applications of eco-
nomic policy is redistribution. It should be clear that
a sound policy analysis requires a framework built with-
out the RA straight jacket. A redistributive economic pol-
icy has to take into account that individuals are different:
not only they behave differently, e. g. with respect to saving
propensities, but they also have different fortunes: the so-
called St.Thomas (13:12) effect (to anyone who has, more
will be given and he will grow rich; from anyone who has
not, even what he has will be taken away), which is the road
to Paradise for Catholics, and to the power-law distribu-
tion of income and wealth for the econophysicists.

Gaffeo et al. [75], show that there is a robust link be-
tween firms’ size distribution, their growth rate and GDP
growth. This link determines the distributions of the am-
plitude frequency, size of recessions and expansion etc.
Aggregate firms’ size distribution can be well approxi-
mated by a power law [21,74], while sector distribution
is still right skewed, but without scale-free characteris-
tics [22]. Firms’ growth rates are far from being normal:
in the central part of the distribution they are tent shaped
with very fat tails. Moreover, empirical evidence shows
that exit is an inverse function of firms’ age and size and
proportional to financial fragility. In order to reduce the
volatility of fluctuations, policy makers should act on the
firms’ size distribution, allowing for a growth of their cap-
italization, their financial solidity and wealth redistribu-
tion [48,49]. Since these emerging facts are policy sensi-
tive, if the aggregate parameters change the shape of the
curve will shift as well.

Differently from Keynesian economic policy, which
theorizes aggregate economic policy tools, and main-
stream neoclassical economics, which prescribes individ-
ual incentives because of the Lucas critique but ignores in-
teraction which is a major but still neglected part of that
critique, the ABM approach proposes a bottom up analy-
sis. What generally comes out is not a one-size-fits-all pol-
icy since it depends on the general as well as the idiosyn-
cratic economic conditions; moreover, it generally has to
be conducted at different levels (from micro to meso to
macro). In short, ABM can offer new answers to old unre-
solved questions, although it is still in a far too premature
stage to offer definitive tools.

Future Directions

We have shown that mainstream approach to economics
uses a methodology [71], which is so weak in its assump-
tions as to have been repeatedly ridiculed by the episte-
mologists [37], and dates back to the classical mechani-
cal approach, according to which reductionism is possible.
We have also seen that adopting the reductionist approach
in economics is to say that agents do not interact directly:
this is a very implausible assumption (billions of Robinson
Crusoes who never meet Friday) and cannot explain the
emerging characteristics of our societies, as witnessed by
the empirical evidence. The reductionist approach of the
mainstream is also theoretically incoherent, since it can be
given no sound microfoundations [8,100].

In the fourth edition of his Principles, Marshall wrote,
“The Mecca of the economist is biology”. What he meant
to say was that, because economics deals with learning
agents, evolution and change are the granum salis of our
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economic world. A theory built upon the issue of alloca-
tions of given quantities is not well equipped for the anal-
ysis of change. This allocation can be optimal only if there
are no externalities (increasing returns, non-price interac-
tions etc.) and information is complete, as in the case of the
invisible hand parabola. In the history of science, there is
a passage from a view emphasizing centralized intelligent
design to a view emphasizing self organized criticality [27],
according to which a system with many heterogenous in-
teracting agents reaches a statistical aggregate equilibrium,
characterized by the appearance of some (often scale free)
stable distributions. These distributions are no longer op-
timal or efficient according to some welfare criterion: they
are simply the natural outcome of individual interaction.

Because of the above-mentioned internal and exter-
nal inconsistencies of themainstream approach, a growing
strand of economists is now following a different method-
ology based upon the analysis of systems with many het-
erogenous interacting agents. Their interaction leads to
empirical regularities, which emerge from the system as
a whole and cannot be identified by looking at any sin-
gle agent in isolation: these emerging properties are, ac-
cording to us, the main distinguishing feature of a com-
plex system. The focus on interaction allows the scientist
to abandon the heroic and unrealistic RA framework, in
favor of the ABM approach, the science of complexity pop-
ularized by the SFI. Where did the Santa Fe approach go?
Did it really bring a revolution in social science, as some of
its initial proponents ambitiously believed?Almost twenty
years and two “The economy as an evolving complex sys-
tem” volumes later, Blume and Durlauf summarized this
intellectual Odyssey as follows:

“On some levels, there has been great success. Much
of the original motivation for the Economics Pro-
gram revolved around the belief that economic
research could benefit from an injection of new
mathematical models and new substantive perspec-
tives on human behavior. [. . . ] At the same time,
[. . . ] some of the early aspirations were not met”
(Chaps. 1–2 in [29]).

It is probably premature to try to give definitive answers.
For sure, ABM and the complexity approach are a very
tough line of research whose empirical results are very
promising (see e. g., Chaps. 2–3 in [77]). Modeling an
agent-based economy however remains in itself a complex
and complicated adventure.
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Glossary

Autoregressive model describes a stochastic process as
a weighted average of its previous values and a stochas-
tic error term.

Threshold autoregressive model is an autoregressive
model in which parameters change depending on
the time index or the previous values of the process.

Markov-switching autoregressive model is an autore-
gressive model in which parameters change over time
depending on an unobserved Markov chain.

Prior distribution summarizes the information about
the parameters of interest after observing the data.

Posterior distribution summarizes the information
about the parameters of interest after observing the
data.

Definition of the Subject

Economic fluctuations display definite nonlinear features.
Recessions, wars, financial panics, and varying govern-
ment policies change the dynamics of almost all macroe-
conomic and financial time series. In the time series liter-
ature, such events are modeled by modifying the standard
linear autoregressive (abbreviated, AR) model

yt D c C �1yt�1 C �2yt�2 C � � � C �p yt�p C 	t ;

where yt is a covariance stationary process, 	t is an in-
dependent and identically distributed noise process, 	t 

i:i:d:N(0; �2), and the parameters c, �i , and �2 are fixed
over time. In particular, the literature assumes that yt fol-

lows two or more regimes. The threemost commonly used
nonlinear models differ in their description of the tran-
sition between regimes. In the threshold autoregressive
(abbreviated, TAR) model, regime changes abruptly; in
the smooth threshold autoregressive (abbreviated, STAR)
model, regime changes slowly. Nevertheless, in both mod-
els the regime change depends on the time index or lagged
values of yt . In the Markov-switching autoregressive (ab-
breviated, MAR) model, however, the regime change de-
pends on the past values of an unobserved random vari-
able, the state of theMarkov chain, and possibly the lagged
values of yt .

Arguably, the best-known example of the nonlinear
time series model is the model of cyclical fluctuations of
the US economy. It was first introduced and estimated
by Hamilton [45] for quarterly US real Gross National
Product over the 1952(II)–1984(IV) period. The model
has two discrete regimes. The first regime is associated
with a positive 1:2% growth rate and the second regime
is associated with a negative �0:4% growth rate. Against
his original motivation to find decade-long changes in
growth rate trends for the US economy, Hamilton finds
that negative growth regimes occur at the business cy-
cle frequency. Positive growth regimes last, on average,
10 quarters, and negative growth regimes last, on aver-
age, 4 quarters. Moreover, he finds that the estimated
regimes coincide closely with the official National Bu-
reau of Economic Research (abbreviated, NBER) recession
dates.

Figure 1 illustrates Hamilton’s results for the ex-
tended 1952(II)–2006(IV) sample. Panel (a) shows the
quarterly growth rate of the US real Gross Domestic
Product, currently the more common measure of output;
panel (b) plots the estimated probability that the US econ-
omy is in a negative growth regime. The shaded regions
represent recessionary periods as determined informally
and with some delay by the NBER: It took nine months
for the NBER’s Business Cycle Dating Committee to deter-
mine the latest peak of the US economy, which occurred
in March 2001 but was officially announced in Novem-
ber 2001. Even though the NBER dates were not used in
the model, the periods with high probability of a nega-
tive growth rate coincide almost perfectly with the NBER
dates.

In addition to the formal recession dating methodol-
ogy, Hamilton [45] presents clear statistical evidence for
the proposition that the US business cycle is asymmetric:
Behavior of output during normal times, when labor, capi-
tal, and technology determine long-run economic growth,
is distinct from behavior during recessions, when all these
factors are underutilized.
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Bayesian Methods in Non-linear Time Series, Figure 1
Output growth and recession probabilities

Introduction

Hamilton’s paper triggered an explosion of interest in
nonlinear time series. The purpose of this paper is to give
a survey of the main developments from the Bayesian per-
spective. The Bayesian framework treats model parame-
ters as random variables and interprets probability as a de-
gree of belief about particular realizations of a random
variable conditional on available information. Given the
observed sample, the inference updates prior beliefs, for-
mulated before observing the sample, into posterior beliefs
using Bayes’ theorem

p(� jy) D f (yj�)
(�)
f (y)

;

where y is the sample observations y D (y1; : : : ; yT ), � is
the vector of parameters � D (c; �1; : : : ; �p; �

2), 
(�) is
the prior distribution that describes beliefs prior to observ-
ing the data, f (yj�) is the distribution of the sample con-

ditional on the parameters, f (y) is the marginal distribu-
tion of the sample, and p(� jy) is the posterior distribution
that describes the beliefs after observing the sample. Zell-
ner [100], Bauwens, Lubrano, and Richard [7], Koop [58],
Lancaster [61], and Geweke [39] cover Bayesian econo-
metrics extensively and provide excellent introductions to
relevant computational techniques.

We review the three most commonly used nonlinear
models in three separate sections. We start each section
by describing a baseline model and discussing possible
extensions and applications (Matlab implementation of
baseline models is available at http://www.people.vcu.edu/
~okorenok/share/mlab.zip). Then we review the choice of
prior, inference, tests against the linear hypothesis, and
conclude with models selection. A short discussion of re-
cent progress in incorporating regime changes into theo-
retical macroeconomic models concludes our survey.

Our survey builds on reviews of the TAR and STAR
models in Tong [95], Granger and Terasvirta [41], Teras-

http://www.people.vcu.edu/~okorenok/share/mlab.zip
http://www.people.vcu.edu/~okorenok/share/mlab.zip
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virta [90], Bauwens, Lubrano, and Richard [7], Lubra-
no [63], Potter [74], Franses and van Dijk [34], van Dijk,
Terasvirta, and Franses [98], and on reviews of the MAR
models in Hamilton [46], Potter [74], and Kim and Nel-
son [51].

We limit our survey of nonlinear models only to
the TAR, STAR, and MAR models. For a reader in-
terested in a wider range of time series models from
a Bayesian prospective, we recommend Steel’s [84] survey:
He overviews linear, as well as nonlinear, and parametric,
as well as nonparametric, models.

Threshold AutoregressiveModel

A threshold regression was introduced by Quandt [75]
and was extended to the threshold autoregressive model
by Tong [92,93] and Tong and Lim [94]. Tong [95] had
a great impact on popularizing TAR models.

We limit our baseline model to a single switching vari-
able zt . The choice of the switching variable depends on
the purpose of the investigation. For the analysis of struc-
tural breaks at an unknown point in time, Perron and
Vogelsang [70], as well as DeJong [24], among many oth-
ers, use the time index (zt D t). For the purpose of pre-
diction, Geweke and Terui [37], Chen and Lee [15], and
others, use a lagged value of the time series (zt D yt�d ),
the self-exciting threshold autoregressive (abbreviated,
SETAR) model.

In our discussion, the number of lags in the model p
and a delay d is fixed. We also limit the baseline model to
the homoscedastic case so that the variance of 	t is con-
stant in both regimes.

Introducing a more general notation, x0
t D (1; yt�1;

: : : ; yt�p), ˇ0 D (c; �1; : : : ; �p), the two-regime TAR
model becomes

yt D x0
tˇ1 C 	t if zt < � (first regime);

yt D x0
tˇ2 C 	t if zt � � (second regime) ;

or more succinctly

yt D [1 � I[�;1)(zt)]x0
tˇ1 C I[�;1)(zt)x0

tˇ2 C 	t ; (1)

where IA(x) is an indicator function that is equal to one if
x 2 A, in particular I[�;1)(zt) D 1 if zt 2 [�;1). The in-
dicator function introduces the abrupt transition between
regimes. It is convenient to rewrite the model in a more
compact form

yt D x0
t(�)ˇ C 	t ; (2)

where x0
t(�) D (x0

t; I[�;1)(zt)x0
t) and ˇ0 D (ˇ0

1; ı
0) with

ı D ˇ2 � ˇ1.

If the number of observations in regime i is less than
or equal to the number of parameters, we cannot esti-
mate parameters, or the model is not identified. In the
Bayesian inference, we resolve the identification problem
by restricting the region of possible parameter values to
the one where the number of observations per regime is
greater than the number of regressors.

The baseline model can be extended in several ways.
First, we can allow the variance of the error term to dif-
fer in each regime. In this case, we rescale the data and
introduce an additional parameter � D �22 /�

2
1 , as in Lu-

brano [63]. Second, we can allow the number of lags to
differ in each regime. Then p equals to maxfp1; p2g.

A more substantial change is required if we want to in-
crease the number of regimes r. We can either use a single
transition variable

yt D xtˇi(t) C �i(t)	t ;

where i(t) D 1 if zt < �1, i(t) D 2 if �1 � zt < �2,
. . . , i(t) D r if �r�1 � zt ; or we can use a combination
of two (or more) transition variables as in Astatkie, Watts,
and Watt [5], where first stage transition is nested in the
second stage transition

yt D [(1 � I[�1;1)(z1t))x0
tˇ1 C I[�1;1)(z1t)x0

tˇ2]
� [1 � I[�2;1)(z2t)]

C [(1 � I[�1;1)(z1t))x0
tˇ3 C I[�1;1)(z1t)x0

tˇ4]
� I[�2;1)(z2t) C 	t ;

nested TAR model.
Also, we can treat either the choice of number of lags,

the delay, or the number of regimes as an inference prob-
lem. Then p, d, and r are added to the vector of the model
parameters, as in Geweke and Terui [37] and Koop and
Potter [57].

Finally, the univariate TAR model can be extended to
describe a vector of time series as in Tsay [96]. The n
dimensional two-regime TAR model can be specified in
a manner similar to Eq. (1) as

Yt D [1 � I[�;1)(zt)](C1 C˚11Yt�1 C � � � C˚1pYt�p)
C I[�;1)(zt)(C2 C˚21Yt�1 C � � � C˚2pYt�p)C 	t ;

where Yt D (y1t ; : : : ; ynt)0 is a (n�1) vector, C1 is a (n�1)
vector,˚ ji , j D 1; 2, i D 1; : : : ; p are (n�n) matrices, and
	t D (	1t ; : : : ; 	nt) is a vector of error terms with mean
zero and positive definite covariance matrix˙ .

The TAR model has a wide range of applications. Tiao
and Tsay [91], Potter [73], Pesaran and Potter [71], Roth-
man [78], and Koop and Potter [54] demonstrate both



Bayesian Methods in Non-linear Time Series 57

statistically significant and economically important non-
linearities in the US business cycle. Pfann, Schotman, and
Tschernig [72] find strong evidence of high volatility and
low volatility regimes in the behavior of US short-term in-
terest rates. Dwyer, Locke, and Yu [26], Martens, Kofman,
and Vorst [66], and Forbes, Kalb, and Kofman [33] de-
scribe the relationship between spot and futures prices of
the S&P 500 index and model financial arbitrage in these
markets as a threshold process. Obstfeld and Taylor [68]
study the law of one price and purchasing power parity
convergences and find strong evidence of two regimes.
They demonstrate fast, months rather than years, conver-
gence when price differences are higher than transaction
costs, and slow or no convergence otherwise.

To simplify the exposition, our discussion of infer-
ence for all models will be conditional on the initial ob-
servations in the sample. We assume that y1�p ; : : : ; y0
are observable. Two alternative treatments are possible.
One can treat the initial observations as unobserved ran-
dom variables and include the marginal density of ini-
tial observations into the likelihood. Alternatively, in the
Bayesian analysis, one can treat the initial observations as
any other parameter and augment the parameter space, � ,
with y1�p ; : : : ; y0.

Prior

The first step in Bayesian inference is to formalize prior be-
liefs about the model’s parameters by choosing functional
forms and parameters of prior distributions.

The prior density for � depends on our choice of zt .
First, we can limit the prior support by the minimum and
the maximum of zt . Second, if zt D t the threshold is
a date, and so the prior density is naturally discrete. If,
however, zt D yt�d , the threshold � is continuous and
so is the prior density.

For a model to be identified, we restrict the support of
the prior density to the region where the number of obser-
vations per regime is greater than the number of regres-
sors. We assign an equal weight to the entire support to
get the ‘non-informative’ prior for � that is proportional to
a constant


(�) / I[z(k1);z(T�k2)](�) ; (3)

where k1 and k2 are the number of regressors in the first
and second regimes, and the subscript (t) indicates the or-
der in the sample, z(1) � z(2) � � � � � z(T). For example,
z(1) D 1 and z(T) D T if zt is a time index since the order-
ing is natural. For an alternative prior distribution of � see
Ferreira [31].

We assume that the prior density for ˇ and �2 is in-
dependent of the prior density for � . Also, because, con-
ditional on � , the model (2) is linear, we use the natural
conjugate prior for ˇ and �2


(ˇj�2) D N(ˇjˇ0; �2M�1
0 );


(�2) D IG2(�2j�0; s0);

where IG2(:) denotes the density of the InvertedGamma-2
distribution. The functional form of the Inverted Gamma-
2 density is given by

IG2(�2j�; s) D 

��

2

��1 � s
2

� �
2 

�2
�� 1

2 (�C2)

exp
�
� s
2�2

�
:

The natural conjugate prior allows us to use analytical in-
tegration that considerably simplifies the inference.

Estimation

The next step of the Bayesian analysis is to combine sam-
ple information with our prior beliefs to form the poste-
rior beliefs. Given prior distributions, we update prior dis-
tributions with the sample likelihood into posterior dis-
tributions using Bayes’ theorem. The posterior distribu-
tion can be further summarized for each parameter with
its marginal expectation and variance.

Using the assumption of Normal errors, the likelihood
function of the model (2) is

f (ˇ; �2; � jy) / ��T exp
�

� 1
2�2

X
(yt � x0

t(�)ˇ)
2



:

(4)

The posterior density is a product of the prior and the
likelihood

p(ˇ; �2; � jy) D 
(ˇj�2)
(�2)
(�) f (ˇ; �2; � jy) : (5)

Conditional on the threshold parameter, model (2) is
linear. Applying the results from the standard natural con-
jugate analysis in the linear regression model (for details
see Zellner [100]), the posteriors density of ˇ, conditional
on threshold and the data, can be obtained by integrating
the posterior with respect to �2

p(ˇj�; y) D
Z

p(ˇ; �2j�; y) d�2

D t(ˇjˇ(�); s(�);M(�); �) ; (6)
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where t(:) denotes the density of the multivariate Student
t-distribution with

M(�) D M0 C
X

xt(�)0xt(�);

ˇ(�) D M(�)�1
�X

xt(�)yt C M0ˇ0

�
;

s(�) D s0 C ˇ0
0M0ˇ0 C

X
y2t � ˇ0(�)M(�)ˇ(�);

� D �0 C T :

Further, by integrating Eq. (6) with respect to ˇ, we ob-
tain the marginal posterior density for � , which is pro-
portional to the inverse of the integrating constant of
t(ˇjˇ(�); s(�);M(�); �) times the threshold prior density

p(� jy) / s(�)��/2jM(�)j�1/2
(�) : (7)

Though analytical integration of this function is not avail-
able, the fact that it is a univariate function defined on
bounded support greatly simplifies the numerical integra-
tion.

By integrating numerically the posterior for ˇ condi-
tional on the threshold and the data, we find marginal pos-
terior density for ˇ

p(ˇjy) D
Z

p(ˇj�; y)p(� jy) d�:

Finally, using analytical results for the expectation of the
conditional density ˇ, we can find the marginal moments
of ˇ by integrating only over �

E(ˇjy) D
Z

E(ˇj�; y)p(� jy) d�;

Var(ˇjy) D
Z

Var(ˇj�; y)p(� jy) d�

C
Z
(E(ˇj�; y) � E(ˇjy))(E(ˇj�; y)

� E(ˇjy))0p(� jy) d�:
Similarly, applying the results from the standard natu-

ral conjugate analysis, we obtain the posterior density of
�2 conditional on the threshold and the data. Then we
integrate out � numerically to get the marginal posterior
density for �2

p(�2jy) D
Z

IG2(�2j�; s(�))p(� jy) d� ;

and the marginal moments E(�2jy) and Var(�2jy).

Testing for Linearity andModel Selection

After estimating the TAR model, we might ask whether
our data are best characterized by two regimes or a sin-
gle regime? Model (2) becomes linear when both regimes

have identical regression coefficients, so that the difference
ˇ1 �ˇ2 D ı is zero. There are two methods to the null hy-
pothesis testH0 : ı D 0. The first approach is the Bayesian
equivalent of the F-test. Taking into account that ˇ condi-
tional on � has a Student t-distribution and that the linear
transformation of a Student random vector is also a Stu-
dent, the quadratic transformation of ı

�(ıj�; y) D (ı � ı(�))0M22:1(�)(ı � ı(�)) T � k
k2s(�)

(8)

has a Fisher distribution, where

M22:1(�) D M22(�) � M21(�)M�1
11 (�)M12 ;

and ı(�) is our estimate. M(�) is partitioned by dividing
ˇ into ˇ1 and ı. The posterior ‘p-value’ of the Bayesian
F-test gives the unconditional probability that �(ıjy) ex-
ceeds �(ı D 0jy). It can be computed numerically as

Pr(�(ı) > �(ı D 0)jy)
D
Z

F(�(ı D 0jy); k2; T � k) � p(� jy) d� ; (9)

where F(�(ı D 0jy); k2; T � k) is the Fisher distribution
function with k2 and T � k degrees of freedom. The null
hypothesis is accepted if, for example, Pr(�(ı) > �(ı D
0)jy) is larger than 5%.

The second approach, the posterior odds, is more gen-
eral, and can also be used to select the number of lags p,
the delay parameter d, or the number of regimes r. Koop
and Potter [55,56] advocate and illustrate this approach
in the context of the TAR model. To choose between
two competing models, m1 with �1 D (ˇ1; ı; �; �2) and
m2 with �2 D (ˇ1; 0; �; �2), we calculate the posterior
odds ratio

po12 D f (yjm1)
(m1)
f (yjm2)
(m2)

;

where 
(mi ) is the prior probability for the model i, and
f (yjmi) is the marginal likelihood or marginal density of
the sample. Since f (yjmi) is a normalizing constant of the
posterior density, it can be calculated as

f (yjmi) D
Z

f (yj�i ;mi )
(�i jmi) d�i :

With a ‘non-informative’ prior that assigns equal
weight to each model, the posterior odds reduces to the
ratio of marginal likelihoods, or the Bayes factor. Again,
applying the standard natural conjugate analysis of the lin-
ear regression model, the marginal likelihood for model i
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is

f (yjmi) D
Z 


�
�(�i jmi )

2

�
s

�0
2
0






�0
2
�



T
2

s(�i jmi)�
�(�i jmi )

2

�
� jM0j

jM(�i jmi)j
� 1

2

(�i jmi) d� ; (10)

which can be calculated numerically. The model with the
highest marginal likelihood is preferred.

Smooth Transition AutoregressiveModel

In some applications, imposing an abrupt transition be-
tween regimes might be undesirable. For example, if the
initial estimate of output is slightly below the threshold,
even a small upward revision will result in a substan-
tial change of the forecast in the TAR model. Bacon and
Watts [6], in a regression model context, and Chan and
Tong [14], in the TARmodel context, propose to make the
transition between regimes smooth. Terasvirta [89] devel-
ops a modeling cycle for the STAR model that includes
specification, estimation, and evaluation stages as in the
Box and Jenkins [9] modeling cycle for the linear time se-
ries model.

In the STAR model, a smooth transition is imposed by
replacing the indicator function in Eq. (1) by the cumula-
tive distribution function

yt D [1�F(� (zt ��))]x0
tˇ1CF(� (zt��))x0

tˇ2C	t : (1a)
Terasvirta [89] uses the logistic function

F(� (zt � �)) D 1
1 C exp(�� (zt � �))

;

where � 2 [0;1) determines the degree of smoothness.
As � increases, smoothness decreases. In the limit, as � ap-
proaches infinity, F(:) becomes an indicator function, with
F(� (zt � �)) 
 1 when zt � � . We can rewrite Eq. (1a) as

yt D x0
t(�; �)ˇ C 	t ; (2a)

where x0
t(�; �) D (x0

t ; F(� (zt � �))x0
t).

Note that the identification problem discussed for the
TAR model does not occur in the STAR model. We can-
not have fewer observations than regressors because we no
longer classify observations into regimes. The new param-
eter � , however, introduces a new identification problem.
If � D 0, the logistic function equals 1

2 for any value of
� , so � is not identified. Also x0

t(�; �) is perfectly collinear
unless the two regimes have no common regressors. Per-
fect collinearity implies that ı is also not identified. As in

the TARmodel, we choose such prior densities that resolve
the identification problem.

The baseline model can be extended in several direc-
tions. Generally, the transition function F(:) is not limited
to the logistic function. Any continuous, monotonically
increasing function F(:) with F(�1) D 0 and F(1) D 1
can be used. For example, the popular alternative to the
logistic function is the exponential function

F(� (zt � �)) D 1 � exp(�� (zt � �)2) :
In the regression model context, Bacon and Watts [6]
show that results are not sensitive to the choice of F(:). As
in the TAR model, we can increase the number of regimes
either with a single transition variable

yt D x0
tˇ1 C F(�1(zt � �1))x0

t(ˇ2 � ˇ1) C : : :

C F(�r(zt � �r ))x0
t(ˇr � ˇr�1) C 	t ;

or with a combination of transition variables

yt D [(1 � F(�1(z1t � �1)))x0
tˇ1 C F(�1(z1t � �1))x0

tˇ2]
� [(1 � F(�2(z2t � �2)))]
C [(1 � F(�1(z1t � �1)))x0

tˇ3

C F(�1(z1t � �1))x0
tˇ4] � [F(�2(z2t � �2))] C 	t :

See van Dijk and Franses [97] for a discussion of the mul-
tiple regime STAR model.

Also, we can treat the choice of number of lags p, de-
lay d, or number of regimes r as an inference problem,
adding p, d, and r to the vector of parameters in the model.
In addition, we can allow the variance of the error term to
change between regimes, or more generally, use an autore-
gressive conditional heteroscedasticity form as in Lund-
bergh and Terasvirta [64], or a stochastic volatility form
as in Korenok and Radchenko [59].

Finally, similar to the TARmodel, the univariate STAR
model can be extended to model a vector of time series
as in Granger and Swanson [42]. The n dimensional two-
regime STAR model can be specified as

Yt D [1 � F(� (zt � �))](C1 C ˚11Yt�1 C � � � C˚1pYt�p)
C F(� (zt � �))(C2 C˚21Yt�1 C � � � C˚2pYt�p)
C 	t ;

where we use the same notation as in themultivariate TAR
model.

Applications of the STAR model include models of
the business cycles, real exchange rates, stock and futures
prices, interest rates, and monetary policy. Terasvirta and
Anderson [88] and van Dijk and Franses [97] demon-
strate nonlinearities in the US business cycles. Skalin and
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Terasvirta [82] find similar nonlinearities in Swedish busi-
ness cycles. Michael, Nobay, and Peel [67], Sarantis [80],
and Taylor, Peel, and Sarno [87] show that the real ex-
change rate nonlinearly depends on the size of the de-
viation from purchasing power parity; Lundbergh and
Terasvirta [65] and Korenok and Radchenko [59] use the
STAR model to fit the behavior of exchange rates inside
a target zone. Taylor, vanDijk, Franses, and Lucas [86] de-
scribe the nonlinear relationship between spot and futures
prices of the FTSE100 index. Anderson [1] uses the STAR
model to study yield movements in the US Treasury Bill
Market. Finally, Rothman, van Dijk, and Franses [79] find
evidence of a nonlinear relationship between money and
output; Weise [99] demonstrates that monetary policy has
a stronger effect on output during recessions.

Prior

As in the TAR model, the natural conjugate priors for ˇ
and �2 facilitate analytical integration. Bauwens, Lubrano,
and Richard [7] impose the identification at � D 0 by
modifying the prior density of ˇ


(ˇj�2; � ) D N(ˇj0; �2M�1
0 (� )) ;

where, assuming prior independence between ˇ1 and ı,
M0 is defined as

M0(� ) D
�

M0;11 0
0 M0;22/ exp(� )

�

:

As � gets closer to zero, the prior variance falls, increasing
precision around ı D 0. The choice of ı D 0 is consistent
with the linear hypothesis, which can be formulated as ei-
ther ı D 0 or � D 0. When � is positive, prior precision
about ı D 0 decreases as variance rises, so more weight is
given to the information in the sample. We keep the natu-
ral conjugate prior of �2 without modifications.

We do not modify the prior for the threshold parame-
ter � . When � is large, the smooth transition function is
close to the step transition function. Thus, we prefer to
limit the prior to the region where the number of observa-
tions per regime is greater than the number of regressors
to avoid the TAR identification problem.

The prior for the smoothness parameter, � , cannot be
‘non-informative’ or flat. As � ! 1 the smooth transi-
tion function becomes a step transition with a strictly pos-
itive likelihood. This means that the marginal likelihood
function of � is not integrable. To avoid the integration
problem, Bauwens, Lubrano, and Richard [7] use the trun-
cated Cauchy density


(� ) / (1 C � 2)�1I[0;1)(� ) :

Estimation

Inference in the STAR model follows the TAR methodol-
ogy, taking into account the additional parameter � , and
the new definitions of M0(� ) and xt(�; � ).

In particular, the likelihood function of model (2a) is

f (ˇ; �2; �; � jy) / ��T

exp
�

� 1
2�2

X
(yt � x0

t(�; � )ˇ)
2



; (4a)

the posterior density is

p(ˇ; �2; �; � jy) D 
(ˇj�2)
(�2)
(�)
(� )
f (ˇ; �2; �; � jy) ; (5a)

and the joint posterior density of � and � is proportional
to the inverse of the integrating constant of the Student
t-density t(ˇjˇ(�; � ); s(�; � );M(�; � ); �) times the prior
densities for c and �

p(�; � jy) / js(�; � )j�(T�k)/2jM(�; � )j�1/2


(�)
(� ) ; (7a)

where

M(�; � ) D M0(� ) C
X

xt(�; � )0xt(�; � ) ;

ˇ(�; � ) D M(�; � )�1
�X

xt(�; � )yt C M0(� )ˇ0
�
;

s(�; � ) D s0 C ˇ0
0M0(� )ˇ0

C
X

y2t � ˇ0(�; � )M(�; � )ˇ(�; � ) ;

� D �0 C T :

This function is bivariate and can be integrated numeri-
cally with respect to � and � . Then, as in the TAR model,
we use numerical integration to obtain marginal densities
and moments for ˇ and �2.

Compared to the TAR model, ˇ1 and ˇ2 cannot be
interpreted as regression coefficients in regime 1 and
regime 2. Smooth transition implies that the effect of
change in xt on yt is a weighted average of two regimes
with weights changing from one observation to the other.

Testing for Linearity and Model Selection

The STAR model becomes linear when either ı D 0 or
� D 0. The test for H0 : ı D 0 is equivalent to the test in
the TAR model. The quadratic transformation of ı

�(ıj�; �; y)
D (ı � ı(�; � ))0M22:1(�; � )(ı � ı(�; � )) T � k

k2s(�; � )
;

(8a)
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where

M22:1(�; � ) D M22(�; � )�M21(�; � )M�1
11 (�; � )M12(�; � );

has a Fisher distribution. We can find the posterior ‘p-
value’ of the Bayesian F-test numerically as

Pr(�(ı) > �(ı D 0)jy)

D
“

F(�(ı D 0jy); k2; T � k)p(�; � jy) d� d� :

(9a)

The null hypothesis is accepted, for example, if Pr(�(ı) >
�(ı D 0)jy) is larger than 5%.

The test for H0 : � D 0 can be conducted using
the 95% highest posterior density interval (abbreviated,
HPDI), defined as the smallest interval with 95% proba-
bility of � to be in the interval

max
h

PDI(h) D
�

� j
Z

p(�; � )
(�) d� � h



;

s.t. Pr(PDI(h)) � 0:95:

The null hypothesis is accepted, for example, if � D 0 is
inside the 95% HPDI.

As in the TAR model, linearity tests and model selec-
tion can be conducted using posterior odds. In the STAR
model, the marginal likelihood for model i is given by

f (yjmi) D
ZZ 


�
�(�i ;�i jmi )

2

�
s

�0
2
0






�0
2
�



T
2

s(�i ; �i jmi )�
�(�i ;�i jmi )

2

�
� jM0j

jM(�i ; �i jmi)j
� 1

2

(�i jmi)
(�i jmi) d�i d�i ;

(10a)

which can be calculated numerically. The model with the
highest marginal likelihood is preferred.

Markov-SwitchingModel

Unlike the threshold models, where the regime transition
depends on a time index or on lagged values of yt , the
Markov-switching autoregressive model relies on a ran-
dom variable, st . A Markov-switching regression was in-
troduced in econometrics by Goldfeld and Quandt [40]
and was extended to the Markov-switching autoregressive
model by Hamilton [45].

As in the threshold models, we limit our baselineMAR
model to two regimes that differ only in mean. The vari-
ance of the error term is constant. The number of lags p
is determined by the model choice. The two-regime MAR
model becomes

(yt � �st ) D
pX

iD1

�i(yt�i � �st�i ) C 	t ;

�st D �0 if st D 0 (first regime);
�st D �0 C �1 if st D 1 (second regime);

(11)

where �st D �0 C st�1. An unobserved discreet random
variable st takes only integer values of 0 or 1. The transi-
tion probability Pr(st D jjst�1 D i) D pi j that state i will
be followed by state j depends only on st� 1, the first or-
der Markov-switching process, with transition probability
matrix

P D
�

p11 p21
p12 p22

�

:

Since we have only two possible regimes and pi1Cpi2 D 1,
we estimate only two free parameters, the probabilities of
remaining in the same regime p11 and p22. We also as-
sume that, conditional on previous history of states s D
(s1; : : : ; sT )0, the transition probabilities are independent
of other parameters and the data.

In general, we do not have a clear association between
regimes and the state indicator. This introduces an iden-
tification problem when we change regime identifiers, 0
and 1, and accordingly change ��

0 D �0 C �1 and ��
1 D

��1. For example, if st D 0 during recessions, then the
long run average during recessions is �0 and the long-run
average during expansions is�0C�1. On the other hand, if
st D 0 during expansions, then the long-run average dur-
ing expansions is ��

0 D �0 C�1 and the long-run average
during recessions is ��

0 � �1 or ��
1 D ��1.

The second identification problem occurs in the MAR
model when �1 D 0; the model becomes linear. In this
case, the conditional mean E(yt jst D 0) D E(yt jst D
1) D �0 is independent of the state realizations, s, and
transition probability matrix, P. Neither s nor P are iden-
tified.

The baseline model can be extended in several direc-
tions. The Markov-switching component can be modi-
fied by increasing the number of regimes as in Calvet and
Fisher [11] and Sims and Zha [81] or by increasing the
order of the Markov-switching process so that st depends
on st�1; : : : ; st�r . Both changes can be incorporated by in-
creasing the number of states in the baseline model, as in
Hamilton [46].

Diebold, Lee, andWeinbach [22], Filardo [32], and Pe-
ria [69] relax the assumption of time invariant Markov-
switching by making the transition probabilities depend
on lagged values of yt . In most applications, however, rel-
atively few transitions between regimes makes it difficult
to estimate the transition probabilities and restricts model
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choice to two or three regimes with time-invariant proba-
bilities.

The error term can be modified by introducing
regime-switching for the variance of the error term as in
Hamilton and Susmel [47], and Cai [10]; by relaxing the
assumption of Gaussian density for the error term as in
Dueker [25]; or by specifying a general Markov-switching
moving average structure for the error term as in Billio,
Monfort, and Robert [8].

Finally, the univariate Markov-switching model can
be extended to a multivariate model. Diebold and Rude-
busch [23] propose a model where a number of time series
are driven by a common unobserved Markov-switching
variable, the dynamic factor model. The dynamic factor
model captures the fact that many economic series show
similar changes in dynamic behavior during recessions.
Krolzig [60] provides a detailed exposition of how the
baseline model can be extended to the Markov-switching
vector autoregressive model.

The applications of the MAR model include models of
business cycles, interest rates, financial crises, portfolio di-
versification, options pricing, and changes in government
policy. Hamilton [45], Filardo [32], Diebold and Rude-
busch [23], Kim and Nelson [51], Kim and Piger [53], and
Hamilton [48] find statistically significant evidence that
expansionary and contractionary phases of the US busi-
ness cycle are distinct. Hamilton [44], Cai [10], Garcia and
Perron [35], Gray [43], Dueker [25], Smith [83], Hamil-
ton [48], and Dai, Singleton, and Yang [18] describe dra-
matic changes in interest rate volatility associated with the
OPEC oil shocks, the changes in the Federal Reserve op-
erating procedures in 1979–1982, and the stock market
crash of October 1987. Ang and Bekaert [3] show a sim-
ilar increase in volatility in Germany during the reunifica-
tion period. Jeanne and Masson [49] use the MAR model
to describe the crisis of the European Monetary System in
1992–1993; Cerra and Saxena [13] find permanent losses
in output after the Asian crisis. Ang and Bekaert [2] re-
port that the correlation between international equity re-
turns is higher during bear markets relative to bull mar-
kets. Radchenko [76] shows that gasoline prices respond
faster to a permanent oil price change compared to a tran-
sitory change. Finally, Sims and Zha [81] document abrupt
changes of shocks to US monetary policy, and Davig and
Leeper [20] document the regime changes in fiscal policy.

Prior

As in the threshold models, the natural conjugate priors
facilitate considerably the integration of the posterior den-
sity. Conditional on st , �0, and �1, the MAR model is lin-

ear

yt(st) D x0
t(st)�̃ C 	t ; (12)

where

yt(st) D yt � �st ;

x0
t(st) D (yt�1 � �st�1 ; : : : ; yt�p � �st�p ) ;

and �̃ D (�1; : : : ; �p)0. For the regression coefficient �̃
and the variance of the error term �2, the natural conju-
gate prior is given by


(�̃j�2) D N(�̃j�̃0; �2M�1
0;�)IA(�̃);


(�2) D IG2(�2j�0; s0) ;

whereA is a regionwhere the roots of polynomial 1��1L�
� � � � �pLp D 0 lie outside the complex unit circle. This
restriction imposes stationarity on yt(st).

Conditional on st and �̃, the MAR model is also linear

yt(�̃) D x0
t(�̃)�̃C 	t ; (13)

where

yt(�̃) D yt �
pX

iD1

�i yt�p ;

x0
t(�̃) D

 

1; st �
pX

iD1

�i st�p

!

;

and �̃ D (�0; �1)0. The natural conjugate prior for �̃ is


(�̃) D N(�̃j�̃0;M�1
0;�)I(0;1)(�1) ;

where the indicator function imposes an identification
constraint. In particular, we constrain the mean of the sec-
ond regime to be greater than the mean of the first regime
and in this way fix the order of regimes. We also impose
�1 ¤ 0.

Kim and Nelson [51] show that the natural conju-
gate prior for the vector of transition probabilities p̃ D
(p11; p22)0 is


(p̃) D B(p11j˛1; ˇ1)B(p22j˛2; ˇ2) ;

where B(:) denotes the density of Beta distribution defined
on the interval [0; 1].

Estimation

In the Bayesian approach, we add realizations of the vector
of states to the model parameters: � D (�0; �1; �1; : : : ;
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�p; �; p11; p22; s1; : : : ; sT )0. Analytical or numerical inte-
gration of the posterior density p(� jy), where � is pC 5C
T � 1, may be difficult.

Albert and Chib [4] developed inference methodol-
ogy that overcomes the curse of dimensionality using
Gibbs-sampling, a Markov chain Monte Carlo simulation
method of integration. The technique was further refined
by Kim and Nelson [50]. Monte Carlo integration takes
random draws from the posterior density and, by aver-
aging them, produces estimates of moments. In partic-
ular, Gibbs-sampling allows us to generate many draws
� (g); g D 1; : : : ;G; from joint density of p(� jy) using
only conditional densities p(�i j�i¤ j; y) either for all i or
for blocks of parameters. The joint and marginal distribu-
tion of � (g) converge at an exponential rate to the joint
and marginal distribution of � under fairly weak condi-
tions. Casella and George [12], Gelfand and Smith [36],
and Geweke [38] provide the details.

To implement the Gibbs-sampling simulation, we
have to describe the conditional posterior distributions for
all parameters or parameter blocks. It is convenient to sep-
arate parameters into five blocks: the state vector s, the
transition probabilities p̃, the regression coefficients �̃ in
the conditional linear model (12), the regression coeffi-
cients �̃ in the conditional linear model (13), and the vari-
ance of the error term �2.

The state vector s is a first-order Markov process,
which implies that given stC1 all information, for exam-
ple stC2; : : : ; sT and ytC1; : : : ; yT , is irrelevant in describ-
ing st . Then the posterior density of s conditional on other
parameters becomes

p(sjp̃; �̃; �̃; �2; y)

D p(sT jp̃; �̃; �̃; �2; y)
T�1Y

tD1

p(st jstC1; p̃; �̃; �̃; �2; yt) ;

(14)

where yt D (y1; : : : ; yt)0. The functional form of the pos-
terior density suggests that we can generate draw of the
state vector recursively. First we generate the last element
sT . Then, conditional on sT , we generate sT� 1. More gen-
erally, conditional on stC1, we generate st for t D T � 1;
T � 2; : : : ; 1.

To generate the state vector, Kim and Nelson [50] use
the output fromHamilton’s [45] filter. To facilitate exposi-
tion, we suppress the conditioning on parameters and con-
sider first a model without lags.

Hamilton’s filter starts from the observation that, be-
fore observing the data, the probability of finding the state
in regime j, Pr(s0 D jjy0), equals the unconditional proba-

bility, Pr(st D j), which is proportional to the eigenvector
of P associated with unitary eigenvalue.

Using transition probabilities and the probability of
observing regime j conditional on observations obtained
through date t, Pr(st D jjyt), we predict the next period
regime

Pr(stC1 D jjyt) D Pr(st D 0jyt)p0 j CPr(st D 1jyt)p1 j :
(15)

Once yt + 1 is observed, we update the prediction using
Bayes rule

Pr(stC1 D jjytC1) D Pr(stC1 D jjytC1; yt)

D f (ytC1jstC1 D j; yt) Pr(stC1 D jjyt)
f (ytC1jyt) ; (16)

where the numerator is the joint probability of observing
yt + 1 and stC1 D j, which is a product of the probabil-
ity of observing yt + 1 given that state st + 1 is in regime j
(for example f (ytC1jstC1 D 0; yt) D N(�0; �

2)) and our
prediction from Eq. (15). The denominator is the uncon-
ditional density of observing yt + 1, which is a sum of the
numerator over all possible regimes

f (ytC1jyt) D
X

j

f (ytC1jstC1 D j; yt) Pr(stC1 D jjyt) :

(17)

Starting from Pr(s0 D jjy0), the filter iterates through
Eqs. (15)–(17) until we calculate Pr(st D jjyt) for every t
and j. As a by-product of the filter we obtain the likelihood
function

f (�̃; �̃; p̃; �2; sjy) D
Y

t
f (ytC1jyt) : (18)

For the AR(1) model, the filter should be adjusted.
Given Pr(st D jjyt), we forecast the next period regime
and the previous period regime jointly, taking one sum-
mand in Eq. (15) at a time

Pr(stC1 D j; st D ijyt) D pi j Pr(st D ijyt) ; (15a)

for j D 0; 1 and i D 0; 1. After ytC1 is observed, we update
our prediction to

Pr(stC1 D j; st D ijytC1)

D f (ytC1jstC1 D j; st D i; yt) Pr(stC1 D j; st D ijyt)
f (ytC1jyt) ;

(16a)
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where f (ytC1jstC1 D j; st D i; yt) is the density of ob-
serving yt C 1 given that state st C 1 is in regime j and
state st is in regime i (for example f (ytC1jstC1 D 0; st D
0; yt) DN(�0 C �1(yt � �0); �2))

f (ytC1jyt) D
X

j

X

i

f (ytC1jstC1 D j; st D i; yt)

� Pr(stC1 D j; st D ijyt) : (17a)

Summing (16a) over i,

Pr(stC1 D jjytC1) D
X

i

Pr(stC1 D j; st D ijytC1); (19)

finishes the iteration. Iterating through Eqs. (15a)–(17a)
and (19) we get Pr(st D jjyt) for every t and j. The exten-
sion to a more general AR(p) model is similar.

The output of Hamilton’s filter gives only the first term
in the product (14), which is sufficient to generate sT . To
generate the other states st conditional on yt and st C 1,
t D T � 1; T � 2; : : : ; 1, we again use Bayes rule

Pr(st D jjstC1 D i; yt) D p ji Pr(st D jjyt)
P

j p ji Pr(st D jjyt) ; (20)

where Pr(st D jjyt) is the output from Hamilton’s filter.
Since st is a discrete random variable taking on values 0
and 1, we can generate it by drawing random numbers
from uniform distribution between 0 and 1, and compar-
ing them to Pr(st D 1jstC1 D i; yt).

Conditional on other parameters in the model, the
likelihood function of transition probabilities reduces to
a simple count nij of transitions from state i to state j

f (p̃j�̃; �̃; �2; s; y) D pn1111 (1 � p11)n12 pn2222 (1 � p22)n21 ;

which is the product of the independent beta distributions.
The posterior distribution for the transition probabilities
conditional on the other parameters is a product of inde-
pendent beta distributions

p(p̃j�̃; �̃; �2; s; y)
D B(˛1 C n11; ˇ1 C n12) � B(˛2 C n22; ˇ2 C n21) :

To derive posterior distributions for �̃ , �̃, and �2

conditional on other parameters, we use standard results
for a linear model with the natural conjugate priors. The
natural conjugate priors are reviewed, for example, by
Geweke [39], Koop [58], or Lancaster [61]. In particular,
the conditional distribution of the regression coefficients

is Normal

p(�̃jp̃; �̃; �2; s; y)
D N

�
˙�

�
��2M0;��̃0 C ��2

X
xt(s)0yt(s)

�
; ˙�

�

� IA(�̃);
p(�̃jp̃; �̃; �2; s; y)
D N

�
˙�

�
M0;��̃0 C ��2

X
xt(�̃)0yt(�̃)

�
; ˙�

�

� I(0;1)(�1);

where

˙� D
�
��2M0;� C ��2

X
xt(s)0xt(s)

��1
;

˙� D
�
M0;� C ��2

X
xt(�̃)0xt(�̃)

��1
:

The conditional distribution for the variance of error term
is Inverted Gamma-2

p(�2jp̃; �̃; �̃; s; y)
D IG2

�
s0 C

X
(yt(st) � x0

t(st)�̃)
2; �0 C T

�
:

Testing for Linearity and Model Selection

Given our prior, the linear model is not nested in theMAR
model. To test against a linear model, we use the Bayes
factor. We also use the Bayes factor to select the number
of regimes and the number of lags.

The Bayes factor is a ratio of marginal likelihoods of
the alternative models. To find the marginal likelihood,
we need to integrate the product of the likelihood func-
tion and the prior density with respect to all parameters.
Chib [16] shows that the marginal likelihood can be com-
puted from the output of the Gibbs sampler requiring only
that the integrating constants of the conditional posterior
distributions be known. This requirement is satisfied for
the natural conjugate priors.

From the Bayes’s theorem it follows that the identity

f (y) D f (yj�)
(�)
p(� jy) ;

holds for any � . The complete functional form of the nu-
merator is given by the product of the likelihood (18) and
the prior densities. Chib suggests evaluating the denom-
inator, the posterior density, at the posterior mode ��.
Then the posterior density at the posterior mode can be
written as

p


��jy� D p



�̃�jy� p 
�̃�j�̃�; y

�

� p 
�̃2�j�̃�; �̃�; y
�
p


p̃�jy; ��; �̃�; �2�� :
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The first term

p


�̃�jy� D

Z
p


�̃�j�̃; �2; p̃; s; y� p 
�̃; �2; p̃; sjy� d�̃ d�2 dp̃ ds;

can be estimated by averaging over the full conditional
density

p̂


�̃�jy� D G�1

GX

gD1

p
�
�̃�j�̃(g); �2(g); p̃(g); s(g); y

�
:

This estimate converges at an exponential rate to the true
marginal distribution of �̃.

In the second term,

p


�̃j�̃�; y

�

D
Z

p


�̃�j�̃�; �2; p̃; s; y

�
p


�2; p̃; sj�̃�; y

�
d�2 dp̃ ds ;

the complete conditional density of �̃ cannot be averaged
directly because the Gibbs sampler does not provide draws
conditional on �̃�. We generate necessary draws by addi-
tional G iterations of the original Gibbs sampler, but in-
stead of generating �̃ we set it equal to �̃�. Then the esti-
mate of the second term

p̂


�̃�j�̃�; y

�

D G�1
2GX

gDGC1

p
�
�̃�j�̃�; �2(g); p̃(g); s(g); y

�
;

converges at an exponential rate to the true p


�̃j�̃�; y

�
.

Similarly, by generating additional draws from the Gibbs
sampler we compute p̂



�̃2�j�̃�; �̃�; y

�
and p̂(p̃�jy; ��;

�̃�; �2�).
Substituting our estimate of posterior density into

marginal likelihood results in

ln f


y
� D ln f



yj���C ln




��� � ln p̂



�̃�jy�

� ln p̂


�̃�j�̃�; y

� � ln p̂


�̃2�j�̃�; �̃�; y

�

� ln p̂


p̃�jy; ��; �̃�; �2�� :

The model with the highest marginal likelihood is pre-
ferred.

Future Directions

Given the large volume of evidence collected in the non-
linear time series, incorporating regime-switching policies

and disturbances into general equilibrium models may
lead to a better understanding of monetary and fiscal poli-
cies.

Over the years, the time series literature has col-
lected substantial statistical evidence that output, unem-
ployment, and interest rates in the US exhibit differ-
ent behavior in recessions and expansions. Contrary to
the real business cycle models in which short-run and
long-run fluctuations have the same origin, the statisti-
cal evidence suggests that the forces that cause output to
rise may be quite different from those that cause it to
fall.

Also, many studies provide evidence that monetary
and fiscal policies have changed substantially throughout
US history. Taylor [85], Clarida, Gali, and Gertler [17],
Romer and Romer [77], and Lubik and Schorfheide [62]
show that, since the mid-1980s, the Fed reacted more
forcefully to inflation. Favero and Monacelli [30] and
Davig and Leeper [20] demonstrate that US fiscal policy
has fluctuated frequently responding to wars, recessions,
and more generally to the level of debt. Sims and Zha [81],
after extensive comparison of 17 regime-switching struc-
tural VAR models, report that their best-fitting model re-
quires nine regimes to incorporate the large shocks, for ex-
ample, generated by theOPEC oil embargo or theVietnam
War. They conclude that, “It is time to abandon the idea
that policy change is best modelled as a once-and-for-all,
nonstochastic regime switch” (p. 56).

The research by Davig and Leeper [19,20,21] and
Farmer, Waggoner, and Zha [27,28,29] show consider-
able promise in introducing nonlinear regime-switching
components into dynamic stochastic general equilibrium
models. For example, Davig and Leeper [20] estimate
regime-switching rules for monetary policy and tax pol-
icy and incorporate them into the otherwise standard
new-Keynesian model. Unlike expansionary fiscal policy
in the fixed-regime model, fiscal expansion in the regime-
switching model increases inflation and output.
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Glossary

Business policy and strategy A firm’s business strategy
defines how andwhere it competes, and its approach to
doing so. A business strategy typically specifies a firm’s
goals, the products and services offered and the mar-
kets served, and the basis for competing (price, service,
quality, etc.). A strategy may also define the organiza-
tion structure, systems and policies which implement
the strategy. In addition, firm’s will have systems and
policies which focus on operations and functions, and
are not truly “strategic” in nature. Nevertheless, these
operational policies can be important in determining
business performance.

Business dynamics Business dynamics is the study of
how the structure of a business (or a part of the busi-
ness), the policies it follows, and its interactions with
the outside world (customers, competitors, suppliers)
determine its performance over time. Business struc-
ture consists of feedback loops surrounding the stocks
and flows of resources, customers, and competitive
factors that cause change over time; business policies
are important components of these feedback loops.
Business dynamics is a means of determining the likely
performance that will result from alternative business
policies and strategies.

Definition of the Subject

System dynamics has long been applied to problems of
business performance. These applications range from op-
erational/functional performance to overall strategic per-
formance. Beginning with its founding at MIT’s Sloan

School of Management in 1957, an important focus of re-
search, teaching, and application has been on understand-
ing why companies and markets exhibit cycles, or under-
perform competitors in terms of growth or profitability.
The original publication in the field was Forrester’s In-
dustrial Dynamics [26], which not only laid the theoret-
ical foundations for the field, but also provided an un-
derstanding of the causes of instability in supply chains.
Since that initial work, research and application has been
widespread. It has addressed the dynamics underlying in-
stability in manufacturing and service organizations, the
processes which encourage or inhibit growth, the dynam-
ics of research organizations, and the causes of cost and
schedule overruns on individual projects. It has been ap-
plied inmany industries, frommanufacturing to high-tech
to financial services and utilities, both by academics and
consultants. Business theory and applications are taught at
many universities, including but not limited to MIT, Lon-
don Business School and others in England, Bergen (Nor-
way), Manheim and Stuttgart (Germany) (see [62,72] for
more details). Business policy and strategy has and will
continue to be one of the major application areas for sys-
tem dynamics.

Introduction

Business strategy, sometimes called simply ‘policy’ or
‘strategy’, is primarily concerned with how and where
firm’s choose to compete. It includes such decisions as
setting goals, selecting which products and services to of-
fer in which markets, establishing the basis for compet-
ing (price, service, quality, etc.), determining the organi-
zation structure, systems and policies to accomplish the
strategy, and designing policies for steering that strat-
egy continually into the future. Academic and applied re-
search on business strategy developed separately from sys-
tem dynamics. That research, while widely disparate, has
largely focused on static assessments and tools. For exam-
ple, cross-sectional studies of many companies attempt to
identify key differences that determine success or failure as
a guide tomanagement; “strategic frameworks” (for exam-
ple, learning curves, growth share matrices, Porter’s five
forces [79,80]) assist managers in framing strategy and in-
tuitively assessing performance over time; scenario plan-
ning helps managers visualize alternative futures; the re-
source-based view of the firm and core competencies [81]
help managers identify how resources and capabilities de-
termine the best way to compete.While these tools provide
valuable insights and frameworks, they leave the connec-
tion between a firm’s business strategy and the evolution of
its performance over time to the intuition of managers –
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while traditional business strategy addresses the starting
point and the desired end point, and the mechanisms that
might allow the firm to transition between the two, the
ability of those mechanisms to achieve that transition, and
the path for getting between the two, is left unanswered.

Academic and applied research on operational and
functional performance has similarly developed separately
from system dynamics. Although it is difficult to general-
ize, this research is again typically static in nature and/or
focused on the detailed management of a part of the orga-
nization over a relatively short period of time (for example,
optimization of production scheduling during a month,
quarter or year; optimal inventory management during
a quarter or year). While this detailed management is nec-
essary for running a business, it often overlooks the longer
run implications of the policies established to manage the
business in the short run, and of the impacts of one part of
the business on other parts.

In contrast, system dynamics addresses how structure
(feedback loops, stocks and flows) and policies determine
performance over time – how does the firm, or a part of
the firm, get from its current state to some future state.
Evolving from this structural theory, system dynamicists
have studied why firms and industries exhibit instability
and cycles, and why firms grow or decline. Two real exam-
ples of problematic behavior over time are shown in Fig. 1.
The example on the left shows the pattern of orders for
commercial jet aircraft – a system dynamicist would try
to understand why the orders are cyclical, and what can
be done to make them less so (or to take advantage of the
cycles by forecasting that cyclicality); the example on the
right shows market shares of major players in a recently
deregulated telecom market – a system dynamicist, work-
ing for the incumbent telecom, would try to understand
the causes of market share loss and what can be done to
reverse that loss.

From its beginnings in the late 1950s, system dynam-
ics has been used to progressively develop structural the-
ories to explain instability in supply chains [26], cycles of
growth [28], boom and bust in product sales [100], and
cost and schedule overrun on projects [54], to mention
just a few. While system dynamics has at times borrowed,
or in some cases reinvented, concepts from business policy
and strategy, this structural theory development has until
recently evolved largely independently of traditional busi-
ness research and practice. There is, however, a great deal
of potential synergy between traditional business research,
particularly strategy research, and system dynamics that is
increasingly being exploited.

This paper surveys the application of system dynamics
to business policy and strategy. The next section discusses

the role of system dynamics models in policy and strat-
egy formulation and implementation. Topics include how
system dynamics fits into the typical policy and strategy
formulation process, how system dynamics offers syner-
gies with more traditional approaches, and how to con-
duct a modeling effort in order to enhance the implemen-
tation of any changes in policy or strategy. In Sect. The-
ory Development – Understanding the Drivers of Business
Dynamics, system dynamics contribution to theory devel-
opment is discussed – what are the structures underlying
common business problems, and how can performance be
improved? For example, what creates instability in supply
chains, or “boom and bust” in product sales, and how can
these behaviors be changed? Finally, in Sect. Applications
and Case Examples applications to real world situations
are presented – case studies that illustrate the value and
impact of using system dynamics for policy and strategy
development and implementation in specific firms and in-
dustries. As there has been a substantial amount of work
done in this area, I must be selective, trying to touch on
major themes and a representative sampling of work. In-
evitably this will reflect my personal experiences, and my
apologies to others that I have omitted either intentionally
or unintentionally.

Using System DynamicsModels in Policy
and Strategy Formulation and Implementation

Role of System Dynamics Models in Policy
and Strategy Formulation

There is general agreement among system dynamics mod-
elers on the role that models play in the policy and strategy
formulation process. This role has been depicted diagram-
matically and described by Morecroft [65], Sterman [100],
and Dyson et al. [23]. The role of the model in policy
and strategy formulation is to act as a “virtual world” –
a simpler and transparent version of the “real world”. The
model serves as a vehicle for testing our understanding of
the causes of behavior in the real world, and as a labora-
tory for experimentation with alternative policies and/or
strategies.

One version of that role is shown in Fig. 2. In many
cases, the process starts with the definition of a problem –
an aspect of behavior that is problematic or threatening.
This might be a decline in market share or profitability,
or the threat posed by a new competitive product or ser-
vice, as illustrated in the example of Fig. 1. Sometimes the
problem can be expressed in terms of achieving business
goals or objectives in the future. As illustrated in Fig. 2,
the overall policy/strategy management process can be di-
vided into three components: analysis, planning, and con-
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Policy/strategy management process and the role of system dynamics models [52]

trol. “Analysis” is usually triggered by a significant and/or
persistent deviation between actual and expected perfor-
mance. It involves the iterative structuring, testing and re-
finement of an organization’s understanding of its opera-
tional or strategic problems and of the options open to it
to deal with the performance gap. The model is the vehi-
cle for this analysis – does our understanding of the sys-
tem as reflected in model equations in fact produce behav-
ior consistent with the observed problem, and if not, how

can our understanding of structure be made more con-
sistent with reality? The process of evaluating alternative
policies/strategies often sheds new light on the problems
faced by an organization or reveals the need for further an-
alyzes. Note that the “modeling” cycle is iterative and com-
pares simulated behavior to actual performance – the sci-
entificmethod applied to strategy. Simulation of themodel
shows how business structure, policies, and external events
together caused the past performance of the firm, and how
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future performance will evolve if structure, policies, and
external events differ. The next phase, “planning”, is also
an iterative process; it involves the evaluation, selection,
and implementation of policies/strategies – some authors
refer to this as “rehearsing” strategy. Evaluation of alter-
native policies/strategies depends not only on projected
accomplishment of organizational goals, but also on the
realities of current performance. The existing operational
policies or existing strategy (vision, mission, strategic ob-
jectives) and goals are subject to refinement, as required,
based on the successes and problems encountered, and in
response to changing conditions.

A third phase of the policy/strategy formulation pro-
cess is here called “control”. On-going policy/strategy
management involves the continual, systematic monitor-
ing of performance and the effective feeding back of suc-
cesses, problems, threats, opportunities, experience, and
lessons learned to the other components of the pol-
icy/strategy management process. The control phase is
where organizations continue to learn. The model provides
an essential element to the control process – a forecast of ex-
pected performance against which actual performance can
be monitored on a regular basis. Deviations provide a sig-
nal for additional analysis: Has the policy/strategy been
implemented effectively? Have conditions about the ex-
ternal environment changed? Are competitors acting dif-
ferently than expected? Has the structure of the system
changed? The model provides a means of assessing the
likely causes of the deviation, and thereby provides an
early warning of the need to act.

Synergy Between Traditional Strategy
and System Dynamics

While Fig. 2 illustrates how system dynamics models fit
into the policy/strategy formulation process, there is also
a synergy between system dynamics models and tradi-
tional strategy frameworks and concepts. Figure 3 illus-
trates the factors that drive business performance from
a system dynamics perspective. Starting with resources,
a firm’s resources determine its product attractiveness;
a firm’s market share is based on that attractiveness com-
pared to the attractiveness of competitor products; mar-
ket share drives customer orders, which in turn gener-
ates profits and cash flow to finance the acquisition of ad-
ditional resources for further growth – thereby complet-
ing a growth-producing feedback around the outside of
the figure (or as in the example of the telecom in Fig. 1,
“growth”in the downward direction for the incumbent).
However, the acquisition of additional resources can con-
strain future growth. To the extent increased resources in-

crease costs, then profits and cash flow are reduced, and/or
prices may need to increase. Both constrain growth (as
might happen for the startups in the telecom example of
Fig. 1).

There are a number of places in Fig. 3 where the sys-
tem dynamics approach can be, and has been, connected
to traditional strategy research and practice. For example,
concepts such as learning curves, economics of scale, and
economies of scope define possible connections between
resources and costs – system dynamics models typically
represent these connections. Figure 3 shows a number of
factors external to the firm: market demand, competitor
product attractiveness, technology, and supplier inputs.
Strategy frameworks such as “five forces” and visioning
approaches such as “scenario-based planning” [112], pro-
vide methods for thinking through these inputs – system
dynamics models determine the consequences of alterna-
tive assumptions for the performance of the firm (note
that system dynamics models also often internally repre-
sent structural dynamics of competitors, suppliers, and the
market as appropriate to explain the behaviors and issues
of interest, rather than specifying them as exogenous in-
puts). For example, Fig. 4 shows a “sector” diagram of
the major components of a strategy model developed by
a consulting company for a telecom company dealing with
loss of market share as in Fig. 1 above (from [35], orig-
inally developed by Lyneis). The model not only repre-
sents factors internal to the dynamics of the telecom firm,
but also factors related to the internal dynamics of com-
petitors, regulatory responses to telecom and competitor
performance, financial market responses to telecom per-
formance, and market reactions to telecom and competi-
tor competitive position. This sector diagram connects to
a number of the traditional strategy frameworks. In addi-
tion to these general connections, a number of system dy-
namics papers have detailed specific connections to strat-
egy concepts: learning curves and product portfolios [59];
duopoly competition [97]; diversification [31,68]; and in-
dustry structure and evolution [93].

Many of the connections between system dynamics
and traditional strategy practice and research are dis-
cussed in Warren’s Competitive Strategy Dynamics [105]
and Strategic Management Dynamics [108]. More impor-
tantly, Warren’s book details and expands on the con-
nections between the system dynamics concepts of struc-
ture, particularly the concepts of stocks and flows, and
the well-established resource-based view (RBV) of strategy
and performance. (See [63], and [30], for explanations of
the development of RBV; a managerial explanation of how
this theoretical perspective can be applied can be found in
Chap. 5 in [36]. Again, system dynamics provides a means
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Drivers of business performance (adapted from [49])

of simulating the consequences of alternative resource ac-
quisition and allocation strategies on firmperformance. As
such, there would seem to be a strong synergy between sys-
tem dynamics and this strategy approach.

In summary, while system dynamics and traditional
strategy approaches developed largely independently, the
potential synergies between the two are significant. Until
recently, few researchers and practitioners have made the
effort to cross disciplines and exploit this synergy. More
effort and publication are needed to demonstrate areas of
synergy and get system dynamics into the mainstream of
business strategy research and ultimately practice.

Working with Management Teams
to Achieve Implementation

While Fig. 2 depicts the overall role of the model in strat-
egy management, the approach to developing and using
the model itself involves an iterative, multi-phased pro-
cess. That process has evolved over time as practitioners

and researchers have learned from experience. Since its in-
ception, system dynamics has been concerned with having
an impact on business decisions. Jay Forrester, the founder
of the field, stressed the importance of working on im-
portant problems – those that affect the success or fail-
ure of firms – and generating solutions that are relevant
to those problems. Ed Roberts, one of the first researchers
and practitioners in the field, was also involved in early re-
search and experimentation on organizational change and
howmodels can fit into that process [90,92]. The emphasis
on having an impact has remained a central tenet of system
dynamics, and over the years system dynamics practition-
ers have developed and refined methods of working with
managers to not only solve problems, but also to enhance
the likelihood of those solutions being implemented.

Starting with Roberts and his consulting firm Pugh-
Roberts Associates (now a part of the PA Consulting
Group), a number of researchers and practitioners have
contributed to the evolving approach of working with
managers to affect organizational change. These include,
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“Sector” diagram from a typical strategy model

but are not limited to, Coyle and his group originally at
Bradford University in the UK [14,15], Morecroft and
his group at the London Business School [65,71], Rich-
mond [88], Sterman [100] and Hines [37] at MIT, the
“group model building” approach ([87,104]; � Group
Model Building and Peter Senge’s organizational learn-
ing [95]. While there are some differences in emphasis and
details, there is in general agreement on the high-level pro-
cess of using system dynamics to affect corporate strategy
development and change. In this section, I describe that
process, discuss some specific areas where there is some
divergence in practice, and end with some examples to the
approach in practice.

In the early years, the approach ofmost system dynam-
icists to consulting was heavy on “product” and light on
“process”. Like management science in general, many in
system dynamics took the view that as experts we would
solve the client’s problem for him, and present him with
the solution. Practitioners gradually recognized that ele-
gant solutions did not necessarily lead to implementation,
and consulting styles changed to include increased client

involvement [90,109]. At the same time, the “product”
was evolving to meet the needs of clients (and to take ad-
vantage of the increased power of computers). Practition-
ers evolved from the smaller, policy-based models which
characterized the original academic approach to more de-
tailed models, along with the use of numerical time series
data to calibrate these models and determine the expected
numerical payoff to alternative strategies [52]. In addition,
during the 1980s academic research began to focus more
on “process:” the use of models in support of business
strategy and on more effective ways to involve the client
in the actual building of the model [65,66,87,88,104].

System dynamics practitioners now generally agree on
a four-phased approach to accomplish these objectives:

1. Structuring the Problem
2. Developing an Initial Model and Generating Insight
3. Refining and Expanding the Model, and Developing

a Strategy
4. On-going Strategy Management and Organizational

Learning.
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In practice, there is sometimes a fifth phase of work. Often
modelers simplify a final project model in order to capture
the core feedback loops that lie behind observed dynamics.
Many of the generic structures discussed later in this pa-
per arose in this way. In other cases, modelers will create
management “games” and/or learning labs from the final
project model.

As discussed below, the relative mix between “prod-
uct” (detail complexity and calibration of model) and
“process” (degree of involvement of client in model de-
velopment and use) is perhaps the main difference in the
style and approach of different practitioners of system dy-
namics. For those new to system dynamics, or for those
seeking good examples, there is an excellent example of
this process, including model development, by Kunc and
Morecroft [44].

Phase 1 – Structuring the Problem The purpose of the
first phase of analysis is to clearly define the problem of
interest (either a past problem behavior or a desired fu-
ture trajectory), the likely causes of that problem (or de-
sired trajectory), and any constraints that may arise in im-
plementing a solution. It identifies the performance ob-
jectives of the organization and possible solutions – all
to be rigorously tested in later phases. Similar to more
traditional policy and strategy approaches, during this
phase the consultant team reviews company documents,
the business press, and available company data, and in-
terviews company managers, and possibly customers and
competitors. During this phase, the hypothesized drivers
of business performance are identified: what compels cus-
tomers to buy this product, what compels them to buy
from one supplier versus another, what drives the internal
acquisition and allocation of resources, what major exter-
nalities affect the business (e. g., the economy, regulations,
etc.), perhaps drawing on frameworks such as “five forces”
and SWOT analyzes. More importantly, these drivers are
linked in a cause-effect model to form a working hypoth-
esis of the reasons for company behavior. This hypothe-
sis formation builds heavily on the tools and techniques of
what is now commonly called “systems thinking”:

1. Behavior-over-time graphs (referencemodes) – Graphs
of problematic behavior over time, often with objec-
tives for future performance highlighted (using actual
data where readily available).

2. Causal-loop and mixed causal, stock-flow diagram-
ming as a diagrammatic hypothesis of the causes of
problematic behavior.

3. System archetypes, or common generic problem behav-
iors and structures observed over and over again in dif-

ferent businesses, as a means of identifying structure
(see for example [95] and [43]); and

4. Mental simulation – does the hypothesis embodied in
the conceptual model seem capable of explaining the
observed problem(s)? Mental simulation is also used to
identify the possible impact of alternative courses of ac-
tion.

Note that the exercise to this point, as commonly prac-
ticed, is almost entirely qualitative. Warren [105,108] in-
troduces quantitative dimensions even in this phase.

Phase 2 – Developing an Initial Model and Generat-
ing Insight The power of system dynamics comes from
building and analyzing formal computer models. This is
best done in two steps. In the first, a small, insight-based
model is developed to understand the dynamics of the
business so as to generate insights into the direction of
actions needed to improve behavior. The small, insight-
based model is also the next logical progression beyond
“systems thinking” in the education of the client in the
methods and techniques of system dynamics modeling.
In the second quantitative modeling step (Phase 3 below),
a more detailed version of the first model is developed, and
is often calibrated to historical data. Its purpose is to quan-
tify the actions needed, to assure that the model accurately
reflects all relevant knowledge, and to sell others.

Small models (anywhere from 20–100 equations)
make it much easier to understand the relationship be-
tween structure and behavior: how is it that a particular
set of positive feedback loops, negative feedback loops, and
stocks and delays interact to create the behavior shown
in the simulation output? This can only be determined by
experimentation and analysis, which is very difficult with
largemodels. The focus of the first model is on insight gen-
eration, communication, and learning, rather than deter-
mining a specific shift in strategic direction or investment.
These models can help managers improve their intuition
(mental models) about the nature of their business, and
thereby to better understand the rationale behind more
detailed strategies that evolve in later phases of model de-
velopment.

In summary, Phase 2 delivers:

� A small model which recreates the observed pattern
of behavior or hypothesized future behavior (and is
roughly right quantitatively);

� Analysis and understanding of the principal causes of
that pattern of behavior;

� Ideas of high leverage areas that could improve behav-
ior into the future; and
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� Recommendations as to where additional detail will
improve the strategy advice, or will make the results of
the model more usable and/or easier to accept by oth-
ers.

Phase 3 – Refining and Expanding the Model, and De-
veloping a Strategy The final phase of model develop-
ment entails the iterative expansion of the model to in-
clude more detail, and often calibration to historical data,
as deemed appropriate for the situation. One progressively
adds detail and structure, initially to make the process
manageable, and then as necessary to correct discrepan-
cies between simulated output and data, or to add policy
handles and implementation constraints. Further, model
development is likely to continue in the “on-going learn-
ing” phase as additional structure and/or detail is required
to address new issues that arise. The purpose of this more
elaborate modeling phase is to:

1. Assure that the model contains all of the structure neces-
sary to create the problem behavior. Conceptual models,
and even small, insight-based models, can miss dynam-
ically important elements of structure, often because
without data, the reference mode is incomplete or in-
accurate (see [52] for examples of this).

2. Accurately price out the cost-benefit of alternative
choices. Strategic moves often require big investments,
and “worse-before-better” solutions. Knowing what is
involved, and the magnitude of the risks and payoff,
will make sticking with the strategy easier during imple-
mentation. Understanding the payoff and risks requires
quantifying as accurately as possible the strengths of re-
lationships.

3. Facilitate strategy development and implementation.
Business operates at a detail level – information is often
assembled at this level, and actions must be executed
at that level. Therefore, the closer model information
needs and results can be made to the normal business
lines and planning systems of the company, the easier
strategy development and implementationwill be. And,

4. Sell the results to those not on the client’s project team.
Few, if any, managers can dictate change – most often,
change requires consensus, cooperation, and action by
others. The “selling” of results may be required for
a number of reasons. If, as in the optimal client situa-
tion, consensus among key decision-makers is achieved
because they are all a part of the project team, then the
only “selling” may be to bring on board those whose
cooperation is needed to implement the change. Un-
der less optimal client circumstances where the project
is executed by advisors to key decision-makers, or by

a support function such as strategy or planning, then
selling to decision maker(s) and to other functions will
be required.

There are two important elements in this phase of work:
adding detail to the model; and possibly calibrating it to
historical data. Adding detail to the small, insight-based
model usually involves some combination of: (1) disaggre-
gation of products, staff, customers, etc.; (2) adding cause
and effect relationships, and feedback loops, often where
the more detailed disaggregation requires representing al-
locations, etc., but also to represent additional feedback ef-
fects that may seem secondary to understanding key dy-
namics, but may come into play under alternative scenar-
ios, or may later help to “prove” the feedbacks were not
important; (3) including important external inputs, typi-
cally representing the economy, regulatory changes, etc.;
and (4) adding detailed financial sectors, which entail nu-
merous equations, with important feedback from prof-
itability and cash flow to ability to invest, employment lev-
els, pricing, and so on. Calibration is the iterative process
of adjusting model parameters, and revising structure, to
achieve a better correspondence between simulated out-
put and historical data. Whereas the Phase 2 model pri-
marily relies on our store of knowledge and information
about cause-effect structure, the Phase 3 model relies on
our store of information about what actually happened
over time.

In summary, Phase 3 delivers:

� An internally consistent data base of strategic informa-
tion;

� A detailed, calibrated model of the business issue;
� A rigorous explanation and assessment of the causes of

performance problems;
� Analyzes in support of strategic and/or tactical issues;
� Specific recommendations for actions; and
� Expectations regarding the performance of the business

under the new strategy, and the most likely scenario.

Phase 4 – On-going Strategy Management System and
Organizational Learning True strategy management
(“control”) involves the on-going, systematic monitoring
of performance and the effective feeding back of successes,
problems, threats, opportunities, experience, and lessons
learned to the other components of the strategy manage-
ment process. The control phase is where organizations
continue to learn. The model provides an essential ele-
ment to the control process – a forecast of expected per-
formance against which actual performance can be mon-
itored on a regular basis. Deviations provide a signal for
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additional analysis: Has the strategy been implemented
effectively? Have conditions about the external environ-
ment changed? Are competitors acting differently than
expected? Has the structure of the system changed? The
model provides a means of assessing the likely causes of
the deviation, and thereby provides an early warning of the
need to act. This feedback is only possible with a detailed,
calibrated model.

Differences in Emphasis and Style

While there is general agreement among system dynamics
practitioners regarding the role of models in the strategy
development process and of the basic steps in that process
as described above, there are some differences in empha-
sis and style regarding: (1) the use of causal-loop diagrams
(CLDs) vs. stock-flow (SF) diagrams; (2) whether you can
stop after Phase 1 (i. e., after the “qualitative” phase of
work); (3) is calibration necessary and/or cost effective;
and (4) how much model detail is desirable.

CLDs vs. SF There are disagreements within the field
about the value of causal loop diagramming (versus stock-
flow diagrams). Causal-loop diagrams focus on the feed-
back loop structure that is believed to generate behav-
ior; stock-flow diagrams also include key stocks and flows,
and in the extreme correspond one-to-one with complete
model equations. In my view, there is no “right” answer to
this debate. Themost important point is that in Phase 1 di-
agramming one is trying to develop a dynamic hypothesis
that can explain the problem behavior, and that can form
the basis of more detailed diagramming and modeling –
whether that dynamic hypothesis is a CLD, a stock-flow
diagram with links and loops labeled, or some combina-
tion depends in part on:

� Personal style and experience – some people, Jay For-
rester perhaps being the best example, seem to always
start with the key stocks and flows and work from there;
Kim Warren [106] also argues for this approach as an
effectivemeans of connecting to the waymanagers view
the problem and to the data;

� The structure of the system – some systems have “ob-
vious” key chains of stocks and flows, and so starting
there makes the most sense (for example, the aging
chains in the urban dynamics model [29], the rework
cycle on projects, and inventory control systems); other
systems, without critical chains of stocks and flows,
may be easier to address starting with CLDs;

� Whether or not you are doing the model for yourself
or with a group – especially if the group is not conver-
sant with the basics of system dynamics, starting with

CLDs is easier, and it’s also easier to brainstorm with
CLDs (which is different than developing a dynamic
hypothesis); but again, it’s personal preference and na-
ture of system as well. In practice, I have found that
CLDs alone, or a mixed stock-flow/causal diagram, are
extremely valuable for eliciting ideas in a group setting
about the cause-effect structure of the business, and
later for explaining the dynamics observed in simula-
tion output. However, one cannot build a model liter-
ally from a causal diagram, and either explicit or im-
plicit translation is required.

Qualitative vs. Quantitative Modeling Some practi-
tioners of system dynamics believe that strategic insights
can sometimes be obtained after the first phase of work,
after the dynamic hypothesis and mental simulation (and
note that much of traditional strategy practice relies on
such qualitative insights). Coyle [17,18] argues for this; the
popularity of “systems thinking” engendered by Senge’s
work [95] has spawned a number of practitioners that use
only qualitative modeling [52]. Coyle’s views generated
a strong counter response from [41]. Wolstenholme [110]
provides a history and discusses his view on the advantages
and disadvantages of each approach. My own view is that
while Phase 1 and the systems thinking that is a key part
of it are a necessary start, it should not be the end point.
Two problems limit its effectiveness in supporting busi-
ness strategy. First, simple causal diagrams represented by
system archetypes, while useful pedagogically, take a very
narrow view of the situation (typically, one or two feed-
back loops). In reality, more factors are likely to affect
performance, and it is therefore dangerous to draw pol-
icy conclusions from such a limited view of the system.
A more complete representation of the problem considers
more feedback effects and distinguishes stocks from flows,
but introduces the second problem: research has shown
that the human mind is incapable of drawing the correct
dynamic insights from mental simulations on a system
with more than two or three feedback loops [78,98]. In
fact, without the rigor and check of a formal simulation
model, a complex causal diagram might be used to argue
any number of different conclusions. In addition to over-
coming these limitations, as discussed below, formal mod-
eling adds significant value to the development and imple-
mentation of effective business strategies. Warren (p. 347
in [107]) also stresses need to focus on quantitative behav-
ior to achieve management consensus.

Need for Data/Validation The necessity of obtaining
numerical data and calibrating model output to that data
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is also questioned by some practitioners. While I agree
that curve fitting via exogenous variables is not a use-
ful endeavor, proper calibration is an important part of
the scientific method that involves systematically compar-
ing simulation output to data, identifying causes of error,
and correcting discrepancies by improving first the struc-
ture of the model and then its parametrization. In some
cases, discrepancies are ignored because they are deemed
to be caused by factors irrelevant to the problem of in-
terest, or may be “fixed” by exogenous factors if these
are deemed significant by the client and are consistent
with the remaining model structure and calibration. As
Homer [38,39] argues, the use of historical data and cal-
ibration is essential to scientific modeling.

In some cases, organizations lack the data on key fac-
tors felt to be essential to the dynamic performance of the
business, and by implication essential to sound strategic
management of the business. The modeling process can
highlight these short-comings and, in the short-term, sub-
stitute educated assumptions for this data. In the longer-
term, companies can be encouraged to acquire this impor-
tant data (and substitute it for much of the unimportant
information companies generally pore over).

Accurate calibration can greatly enhance confidence in
a model. This can be especially important when trying to
convince others of the appropriateness of actions a man-
agement team is going to take, or to demonstrate to oth-
ers the need to take action themselves based on the results
of the model. Calibration can also be important for other
reasons: (1) numerical accuracy is often necessary to eval-
uate the relative cost and benefits of changes in strategy,
or to assess short-term costs before improvements occur;
(2) calibration often uncovers errors in the data or other
models, especially incomplete or incorrect mental models
that form the basis for the dynamic hypothesis (see [52]
for examples); and (3) the “control” feedback in the fourth
phase of the strategy management process is only possible
with a detailed, calibrated model.

Level of Detail and Model Complexity Some prac-
titioners argue that large, complex models should be
avoided, for a number of reasons: they can be even more
like black boxes; they can be difficult to understand (not
only for the non-modelers, but even the modelers); and
they are costly to develop. Morecroft argues that a detailed
model “loses its agility and becomes less effective as a basis
for argument”. (p. 227 in [65]) In practice, the first two is-
sues can be avoided and/or minimized by executing the
model development in three phases as discussed above.
This allows the client to grow slowly with the concepts,
and it allows the modeling team to develop a solid un-

derstanding of the model. The third problem is generally
not an issue if you are working on significant problems –
in my view the cost of the consulting engagement is triv-
ial relative to the expected payoff. While I believe that the
client obtains value, regardless of when you stop, strategy
consulting is one case where the “80/20 rule” does not ap-
ply – the client does not get 80% of the value for 20% of the
cost (which would be essentially at the end of Phase 1). In
part this is a function of what I view as the objective of the
project – providing tools, strategic analyzes, and advice in
support of an important strategic and/or investment deci-
sion. In this situation, the “value” is back-end loaded. Fi-
nally, effective strategy management is only possible with
a detailed, calibrated model.

In addition, detail and calibration are often necessary
to sell the model to others. In many situations, everyone
who may have an input to a strategic decision or be neces-
sary for successful implementation cannot be a part of the
client team. As surprising as it may seem, the selling of re-
sults (as opposed to understanding) is easier to accomplish
with a detailed, calibrated model than with a small model.
First, the numerical accuracy gives the model face validity.
Second, a detailed model more often allows the modeler
to counter the “have you considered (insert pet theory)?”
criticism. I have often found that when you start explain-
ing the model to others, they respond by asking “Have you
considered this feedback? Or this effect?” And if you have
not, that ends the discussion. Even though you may think
that feedback or that effect may not have any impact, if
it is not included in the model you cannot say “Yes, we
looked at that and it did not have any impact”, and ex-
plain why. If it is not in the model the critic can argue that
your results would be changed by the inclusion of their
pet theory. One has a hard time countering that assertion
without a convincing argument based on simulation re-
sults. Finally, a detailed, calibrated model helps tell a con-
vincing story. The simulation output, which corresponds
closely to the data, can be used to explain (again with out-
put) why, for example, a loss of market share occurred.
How price relative to the competitions’ price was the key
factor, and/or how the factors affecting share changed over
time. The simulation output can and should be tied to spe-
cific events. We have found that an explanation like this is
compelling, and is important in enhancing the credibility
of the model and the modeler.

The benefits of large, complex models in a consult-
ing setting are also noted by Winch [111]. He specifically
finds that “For the executive team to have confidence in
the impartiality of the model, each person must feel it cap-
tures the detailed pressures and processes of his or her own
sphere of responsibility yet produces a holistic view of the
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organization”. (pp. 295–6 in [111]), and that the model
was essential to getting everyone to agree: “The process
of building system dynamics models, in each case ostensi-
bly as a forecasting and evaluation tool, enabled the man-
agers eventually to develop a shared view, which formed
the basis for formulating and agreeing upon a final strat-
egy”. (p. 298).

Process Examples

There are a number of published examples that support
the four-phase process of applying system dynamics to
business strategy:

� Lyneis [52] provides not only a more fully developed
description of the detailed, calibrated-model Pugh–
Roberts approach, but also illustrates its application to
the credit card and airline manufacturing industries.

� Morecroft et al. [70] describe how a model was cre-
ated and used to stimulate debate and discussion about
growth management in a biotechnology startup firm.
The paper highlights several novel features about the
process used for capturing management team knowl-
edge. A heavy emphasis was placed on mapping the op-
erating structure of the factory and distribution chan-
nels. Qualitative modeling methods (structural dia-
grams, descriptive variable names, “friendly” algebra)
were used to capture the management team’s descrip-
tions of the business. Simulation scenarios were crafted
to stimulated debate about strategic issues such as ca-
pacity allocation, capacity expansion, customer recruit-
ment, customer retention, and market growth, and to
engage the management team in using the computer to
design strategic scenarios. The article concludes with
comments on the impact of the project.

� Winch [111] examines the role that building and us-
ing a system dynamics model plays in developing con-
sensus within management teams facing key strategic
decisions: A shared view emerges within the team as
individual views of the company, its industry, and the
socioeconomic climate are articulated and compared.
Examples are given based on two actual consulting
assignments in which differing views concerning the
competitive environment and the general business out-
look initially pointed to quite different strategies. The
emergence of consensus was considered a major ben-
efit in addition to the forecasts and quantitative eval-
uations the model provided. In its analysis and exam-
ples, this article emphasizes both the “hard” benefits of
forecasts and an objective framework for quantitative
evaluations and the “soft” benefits of building consen-
sus within management teams.

� Coyle [15,16] also has an approach that he discusses,
with emphasis on CLDs (he terms these “influence di-
agrams”, and his group was instrumental in initial use
of this technique).

� Snabe and Grossler [94] show how modeling can be
supportive for strategy implementation in organiza-
tions and illustrate with a detailed case study from
a high-tech company.

� A special issue of the Journal of the Operational Re-
search Society on System Dynamics for Policy, Strat-
egy, and Management, edited by Coyle and More-
croft [19], contains a number of papers which in part
discuss consulting process issues [21,110,112] among
others).

� The special issue Fall 2001 of System Dynamics Re-
view on consulting practice contains papers by Thomp-
son [102], Campbell [11], and Backus et al. [5] that fo-
cus on the consulting process.

Theory Development – Understanding the Drivers
of Business Dynamics

Another important contribution of system dynamics to
business policy and strategy formulation is the develop-
ment of structural theories to explain commonly observed
patterns of behavior. Theory development provides us
with: an understanding of the basic drivers of business
dynamics; insights, enhanced mental models, and policy
guidelines for improved performance; and building blocks
of tested model equations for real applications (equations
for the model must be provided for models to add to
our base of theory). System dynamicists have developed
structural theories to explain the basic patterns of business
dynamics: (1) cycles and instability; (2) productivity and
eroding performance; (3) life cycles; and (4) growth. Each
is discussed in turn below.

Cycles and Instability: Stock Management,
Supply Chains, and Manufacturing Systems

The very first applications of system dynamics were to
understanding the tendencies of production-distribution
systems, or “supply chains”, toward cycles and instability;
these applications remain important to this day [25,26].
For example, the “Beer Game”, now distributed by the Sys-
tem Dynamics Society, was developed and refined at MIT
beginning in the early 1960s and remains one of the most
popular introductions to both system dynamics principles,
and to supply chain issues.

Supply chains are an important component of all in-
dustrialized societies. They exist in any industry where
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goods are produced and distributed to consumers, for ex-
ample, food and beverage production and distribution, or
manufactured goods such as automobiles and appliances.
Supply chains exhibit a classic behavior pattern which has
impacts not only on the individual company, but also for
the economy as a whole: as one moves up the supply chain
from the end user, any variation in orders from the end
user are progressively amplified and delayed at each ad-
ditional stage in the chain –factory variations are greater
than customer variations; raw materials production vari-
ations are greater than factory variations (see Chap. 17
and 20 in [100] for real world examples of this behavior).
This behavior is also sometimes referred to as the “bull-
whip”effect.

Figure 5 illustrates the structure of one stage of a typ-
ical supply chain and the causes of amplification: a stock
of inventory is depleted by shipments (here assumed equal
to demand) and replenished by production completions
(or more generally, shipments from a supplier); the stock
of goods in production (or goods being assembled and
shipped by a supplier) are increased by production and
reduced, after the production (and/or shipping) delay, by
production completions. This structure has a tendency to
“amplify” any changes in demand – that is, “production”
(or orders and reorders, depending on the system) in-
crease or decrease more than any increase or decrease in
demand, and tend to lag changes in demand. For exam-
ple, in Fig. 5, when demand increases, even if production
increases immediately inventory falls because production
completions are delayed by the production (and/or ship-
ping) delay. Therefore, production must increase higher
than demand (amplification) in order to rebuild invento-
ries. In addition to production and shipping delays, inven-

Business Policy and Strategy, System Dynamics Applications to, Figure 5
Structure and causes of amplification in one stage of a supply chain

tory might also fall because of delays caused by smoothing
information about demand (such that production changes
lag changes in demand). Production further increases
above demand because of the need to increase inventories
and production or supply lines to higher target levels. Intu-
itively, and verified by simulations, amplification is greater
if: desired inventories are larger; production/transit delays
are longer; and/or responses to inventory gaps are more
aggressive (smaller adjustment time constant, as discussed
below).

This basic structure in Fig. 5 also illustrates the “stock
management” problem. In Fig. 5, the stock of finished
goods inventory must be managed in order to serve cus-
tomer demand in a timely fashion. Figure 6 details the
structure typically used to control stocks, one of the most
used and important structures in system dynamics:

Production D Expected Demand
C Inventory Correction C Goods In Process Correction

Inventory Correction
D (Desired Inventory � Inventory)/Time to Correct

Inventory Desired Inventory
D Expected Demand � Months Coverage Goal

Goods In Process Correction D
(Desired Goods In Production � Goods In Production)
/Time to Correct Inventory

Desired Goods In Production
D Expected Demand � Production Time

Stock management is complicated by delays in replen-
ishing the stock, here a production delay. Depending on
the pattern of demand, there is often a tradeoff between
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Stock management structure

amplification and variations in inventory –less aggressive
responses (longer time to correct inventory) generally re-
duce amplification but cause greater variations in inven-
tory (and therefore may necessitate higher target levels to
reduce the likelihood of stockouts); more aggressive re-
sponses (shorter time to correct inventory) increase am-
plification and demands on manufacturing and suppli-
ers, and potentially costs, but can result in more stable
inventory levels. However, under some demand patterns
and production conditions, aggressive responses can in-
crease both amplification and inventory instability. While
as noted below structural changes can significantly im-
prove the overall performance of stock management and
supply chain systems, nevertheless this fundamental trade-
off between amplification and inventory levels will remain.
The “optimal” solution will vary by firm, and over time as
the inherent pattern of demand changes. These dynamics
and tradeoffs are discussed in depth in [49,100].

In a typical supply chain, there are multiple stages
connected in series, for example, in the automotive in-
dustry: dealers, car manufacturers/assemblers, machine
tool producers, parts manufacturers, raw material suppli-
ers (with potentially several stock management stages in
some of these main categories). The upstream stages suf-
fer greater amplification than the downstream stages. In
the main, this occurs because each stage uses as its de-
mand signal the orders from the prior stage, which are
amplified by that stage’s stock management policies as dis-
cussed above. Other reasons for increased upstream am-

plification include [2]: (1) in determining“expected de-
mand”, each stage tends to extrapolate trends in orders
from the prior stage; (2) order batching; (3) price fluc-
tuations (in response to inventory levels); and (4) short-
age gaming (ordering more than you really need to get
a higher share of the rationed goods from the supplier;
see [52] for an example in the aircraft industry). System
dynamics analyzes have identified a number of structural
changes which can improve supply chain and stock man-
agement performance: (1) reduce delays; (2) reduce in-
ventory; and (3) share information (for example, if up-
stream stages are aware of the downstream end user cus-
tomer demand pattern, they can use that information
rather than the amplified orders from the prior stage as
the basis for their decisions, and at least partially avoid
amplification [20].

Applications of system dynamics to supply chainman-
agement, and production management, remain an im-
portant area of research and applications. Akkermans
and Daellaert [1], in an article entitled “The Rediscov-
ery of Industrial Dynamics: The Contribution of Sys-
tem Dynamics to Supply Chain Management in a Dy-
namic and Fragmented World”, provide an excellent sur-
vey of supply chain management and system dynamics
potential role in moving that field forward. Additional
work in this area includes Morecroft’s original analysis of
the dynamics created by MRP systems ([64]); Gonçalves
doctoral dissertation [32], some of which is summarized
in [33,34]; Anderson and Fine [3] on capital equipment
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supply cycles, and Zahn et al. [114] on flexible assembly
systems. Each of these discusses variations on the basic
stock/production/supply chain management systems, and
provides references for further research.

In addition to inventories, firms need to manage other
stocks and resources, including raw materials, employ-
ees, capital equipment, and so on; the stock management
structure described above for inventory applies to these
other stocks as well. The management of stocks and re-
sources is central to dynamic and strategy problems in
many industries. First, the management of one stock of-
ten influences the ability to manage other stocks (for ex-
ample, capital equipment and employees determine pro-
duction). Not only does this interdependency create con-
straints, the additional negative feedback control in man-
aging resources is another source of cyclical behavior (see
Chap. 19 in [100], andChap. 5 of [69]). Second, in addition
to the stocks of resources, production is affected by the
productivity of those resources. Dynamic drivers of pro-
ductivity, such as experience and fatigue, are discussed in
the next section.

Business Policy and Strategy, System Dynamics Applications to, Figure 7
Commodity industry dynamics showing three controlling feedbacks (adopted from [100])

While the negative control feedbacks described above
are central to the observed cyclical behavior of supply
chains and resource-based firms, an additional negative
feedback through the market adds a further source of in-
stability. This dynamic is perhaps clearest in commodity-
based industries, which have also been extensively mod-
eled by system dynamicists as first summarized by Mead-
ows [58]. As illustrated in Fig. 7, these models integrate
the supply chain with the dynamics created by supply
and demand – in a typical commodity system, there are
three major negative feedback loops: two supply feedbacks
(one through production, often representing the resource
labor, and one through the resource capacity), and one
demand feedback (for example, an increase in inventory
causes prices to fall, which increases demand and leads
to a decrease in inventory from what it otherwise would
be). Commodity industries typically exhibit behaviors that
include cycles of two periodicities, one determined pri-
marily by the shorter production feedback loop and an-
other longer cycle driven by the capacity loop (see Chap.
20 in [100] for both detailed equations and for examples of
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the structure applied to the livestock and paper industries).
The demand feedback loop, however, can play a role in the
dynamics as well – if the demand feedback is strong and
with a short delay, then demand corrections occur before
the supply feedbacks operate and system stability is im-
proved; however, if the magnitude of the delay in the de-
mand loop is similar to the magnitude of the delays in ei-
ther of the supply loops, the intensity of the corresponding
cycle is increased as two negative feedback loops are both
independently acting to “solve” the inventory problem. In
addition, commodity industries, where they involve a de-
pletable resource such as oil, can experience long-term re-
source depletion dynamics [101].

In conclusion, manufacturing and supply chain dy-
namics are central to many of the behaviors observed in
businesses (see Chap. 20 in [100] for real world examples
of these cycles). The supply chain, stock management, re-
source management, and commodity structures discussed
above are therefore important components of many sys-
tem dynamics models developed to support business pol-
icy and strategy. In some cases, the firm can change poli-
cies to reduce the severity of these cycles; in other cases,
especially where the cycles are driven primarily by indus-
try dynamics, the individual firm can use the enhanced un-
derstanding and forecasting of these cycles for more strate-
gic decisions such as new product introduction and capac-
ity planning (as in the commercial aircraft market case il-
lustrated in Fig. 1 and discussed in Sect. Applications and
Case Examples).

Productivity and Eroding Performance:
Service Industry Dynamics

Service-based firms (e. g. professional services, transporta-
tion, catalog and online shopping, etc.), and the service
arms of manufacturing-based organizations, have a some-
what different set of structural dynamics. Firms in these
industries have a number of characteristics that make
them more difficult to manage than more manufacturing
intensive industries: (1) their product is difficult if not im-
possible to inventory, and so something else must buffer
changes in demand; (2) they are particularly dependent on
the performance of people (although the productivity of
resources is also important to manufacturing-based busi-
nesses as well); and (3) the performance of the system can
be harder to detect, and so they are much more subject to
a gradual erosion in performance and goals. “The major
recurring problems observed in service industry – erosion
of service quality, high turnover, and low profitability –
can be explained by the organization’s response to changes
in work pressure.“ (see p. 28 of [75]).

One of the primary distinguishing features of service-
based firms is that their end product is people-dependent
and cannot be inventoried.While theremay be inventories
of products that support delivery of the service, that de-
livery must be performed based on current resources. As
a result, work or order backlogs are the stock that buffers
demand from“production”. A simplified example is shown
in Fig. 8. Customer orders (demand) fill an order backlog,
which is depleted by order fulfillment. Order fulfillment is
based on the firm’s service“capacity” and the amount of
time spent per order – for the same capacity, order ful-
fillment will be greater if less time is spent per order (al-
though service quality may suffer). Capacity is dependent
upon people, overtime, and productivity, as discussed fur-
ther below. Employees are increased or decreased based
on desired capacity, which in turn depends on order back-
log relative to the firm’s service standard (time per order).
Work pressure depends on desired capacity relative to the
current stock of employees – to the extent the number
of employees does not increase as needed, work pressure
builds which can result in increases in effective capacity
via overtime, or reductions in time spent per order. Time
spent per order depends on the firm’s service standard for
time spent per order, modified by work pressure – if work
pressure is high, time spent can be reduced. The service
standard often responds to actual performance.

Another important characteristic of service supply
firms shown in Fig. 8 is that their capacity is particu-
larly dependent on the performance of people, both in
numbers and in productivity. While productivity is also
a factor in manufacturing systems, the sensitivity of per-
formance to people factors is generally less than in ser-
vice-based firms. Therefore, models of such firms gener-
ally represent in some detail the factors that drive pro-
ductivity, including: (1) skill and experience, often using
an aging chain or “rookie-pro” structure [100,113]; (2) fa-
tigue from sustained amounts of overtime; and (3) work
intensity increasing productivity, but with “haste-makes-
waste” impacts on errors and rework (not shown in Fig. 8).
In these situations, when demand is growing there are
considerable short-term forces which reduce productivity
and cause a deterioration in service quality: adding peo-
ple reduces productivity because of “experience dilution”;
working overtime increases fatigue and reduces productiv-
ity; pressures to work more intensely increase errors and
cause additional work. As shown in Fig. 8, these produc-
tivity effects form reinforcing feedback loops which can
drive down a service system’s performance: an increase
in work backlog and desired capacity causes the firm to
hire more people; experience levels and productivity de-
cline as a result, thereby reducing order fulfillment below
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what it otherwise would have been; order backlog does
not fall as much as expected, necessitating additional ca-
pacity, further hires, and decreased experience; this com-
pletes the “experience dilution” R4 loop. The “burnout”
loop through overtime and fatigue is similarly a reinforc-
ing loop (R3).

Oliva [75] shows that how management responds to
these work pressure problems can determine the long-
term success or failure of a service-based organization,
largely as a result of the third characteristic of such sys-
tems: performance of the system can be harder to detect,
and so they are much more subject to a gradual erosion in
performance and goals. Oliva demonstrates that if the firm
reduces its service standards (goals) in response to deteri-
orating performance (loop R1 goal erosion), a death spiral
can ensue in which the declining goals cause the firm to
add fewer people, which locks in a situation of excessive
work pressure and further declining performance (thereby
completing the “death spiral” loop R2). Unless there is
a cyclical downturn in demand which alleviates the pres-
sure, a firm’s service performance will gradually erode un-
til competition captures the market. He further discusses
solutions to these problems, including buffers and faster
response. Oliva’s work, together with applications noted

below, suggest that a service company should hire steadily
rather than in spurts to avoid problems of inexperience,
should hire enough workers to avoid overwork and a drift
to low standards, and (in the case of equipment service)
should give preventive maintenance high priority to avoid
a spiral of equipment failures.

The resultant financial pressures engendered by the
dynamics described above often drive service organiza-
tions to investments in process improvement and other
cost containment initiatives to seek efficiency gains. Such
investments, while offering perhaps the only long-term so-
lution to remaining competitive, cause short-term work-
loads that further increase the demands on service person-
nel. This is demonstrated in the work of Repenning and
Kaufman [83], and Repenning and Sterman [84,85].

Akkermans and Vos [2], and Anderson et al. [4] have
studied the extent to which service industries have multi-
stage supply chains similar to manufacturing industries,
albeit with backlogs rather than inventories. Akkermans
and Vos demonstrate that “inventory” cycles in service
chains manifest themselves in terms of order backlog and
workload cycles, and that while some of the causes of am-
plification existent in product supply chains apply to ser-
vice supply chains (demand signaling and pricing), oth-
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ers, particularly those related to inventory management,
do not (order batching, shortage gaming). They find that
the real drivers of amplification in service supply chains
come from the interactions of workloads, process quality,
and rework. Because of delays in hiring and firing, capac-
ity is slow to respond to changes, and is likely to exacerbate
cycles. Anderson et al. [4] find that the bullwhip effect may
or may not occur in service supply chains, depending on
the policies used to manage each stage. However, when it
does occur, they find that the systemic improvements that
can often be achieved in physical supply chains by locally
applied policies (e. g., reducing delay times and sharing in-
formation) do not have as many parallels in service chains.
Instead service supply chains are characterized by numer-
ous tradeoffs between improving local performance and
improving system performance.

The modeling of service delivery has also had a long
history in system dynamics, though the number of pub-
lished works is more modest than in other areas. Much
of the early work was in the area of health care and ed-
ucation [46], Later works of note include models of Peo-
ple Express Airlines [98], Hanover Insurance claims pro-
cessing [96]. NatWest Bank lending [74], and DuPont
chemical plant equipment maintenance [12]. Homer [40]
presents a case application for a major producer of equip-
ment for semiconductor manufacturing that demonstrates
many of the structures and policy issues enumerated
above. These works incorporate the basic dynamic theory
discussed above and illustrated in Fig. 8, and add another
set of important structural theories to the building blocks
for business strategy applications (note that the modeling
of various effects on productivity is much more extensive
in the area of project modeling, as discussed in [55]).

Life Cycles of Products and Diffusion

Another important pattern of behavior characteristic of
many firms (or subsets of firms) is that of a life cycle (for
the flow) and S-shaped pattern for the stock, as illustrated
in Fig. 9: a gradual increase from a low level up to a peak,
followed by a gradual decline either to zero or to some
replacement level (sometimes referred to as “boom and
bust” behavior). Sterman [100] and Oliva et al. [76] pro-
vide some real world examples of this behavior. The ex-
ample shown is common for the sales of new products: the
flow represents people becoming customers, and the stock,
customers.

The structure which creates this “boom and bust” dy-
namics is shown in Fig. 10. In the marketing literature this
structure is referred to as the “Bass Diffusion Model” af-
ter its original proponent [8]. The structure consists of

three feedback loops: a reinforcing “word of mouth” loop
that dominates behavior in the first half of customer sales
growth; a balancing “market saturation” loop that con-
strains and eventually shuts down growth as the number
of potential customers falls to zero; and another balanc-
ing loop “advertising saturation”, which represents other
means of stimulating awareness, such as advertising, di-
rect sales efforts, and media reports. These other channels
are usually assumed to be proportional to the size of the
pool of potential customers, and therefore initially stim-
ulate the flow of “becoming customers” but then decline
over time as the pool is depleted.

The dynamics of this structure, extensions to it (for ex-
ample, loss of customers, competition, repeat sales), and
policy implications are discussed in depth in Chap. 9
in [100] and Chap. 6 in [69]. This structure forms the
basis of many system dynamics models that represent
product sales, customer development, and the diffusion
of innovations. Published examples include the work of
Milling [60,61] and Maier [57] on the management of in-
novation diffusions and Oliva et al. [76] on boom and bust
in e-commerce. Milling discusses the�Diffusion of Inno-
vations, System Dynamics Analysis of the in more depth.

Growth Dynamics

Growth is fundamentally a dynamic process, and therefore
it is no surprise that since its early days system dynam-
icists have shown an interest in the dynamics of corpo-
rate growth. Forrester [27,28], Packer [77], Lyneis [48,49],
Morecroft [67], Morecroft and Lane [70] and others stud-
ied corporate growth in the field’s early years. More re-
cently, the People Express [98] and B&B (“Boom and
Bust”) flight simulators [78] illustrate the field’s interest in
growth dynamics.

In his 1964 article, Forrester identified the range of
possible growth patterns (see Fig. 11): smooth, steady
growth; growth with repeated setbacks; stagnation; and
decline. Examples of these patterns can be found in many
real world industries, as illustrated for the computer in-
dustry in Fig. 11 (see also [50] for examples). In his clas-
sic article “Market Growth as Influenced by Capital In-
vestment”, Forrester detailed the three types of feedback
loops which can create the range of possible growth pat-
terns. These are illustrated in Fig. 11 (the equations for
this model are provided in the original Forrester article;
the model is also presented and discussed and analyzed in
detail in Chap. 15 in [100], and Chap. 7 in [69]).

On the left in Fig. 12 is the reinforcing “salesforce
expansion” loop: the salesforce generates sales, a portion
of those sales are allocated to future marketing budgets,
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Life cycle behavior mode (“Boom and Bust”)
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Basic structure generating boom and bust dynamics

which allows an increase in the size of the salesforce and
a further increase in sales. The salesforce expansion loop
in isolation can create smooth growth forever (until the
market is saturated). However, assuming a fixed capac-
ity, the balancing “capacity constraints” loop activates: if
sales exceed capacity, delivery delay increases such that,
after a delay, sales effectiveness falls and sales decline. The
goal of the loop is to equate sales and capacity, and the
two loops together can produce growth followed by stag-
nation (with fluctuations caused by delays in the balancing
loop). In response to increasing delivery delay, however,

firms often increase capacity (“capacity expansion” loop):
when delivery delay exceeds the firm’s delivery delay goal,
capacity orders increase, which after a delay increases ca-
pacity and thereby reduces delivery delay; the goal of this
loop is to equate delivery delay to the firm’s delivery delay
goal. However, once delivery delay is reduced, sales effec-
tiveness and sales increase, thereby stimulating additional
salesforce expansion, such that the growth with setbacks
pattern of behavior can result. The final loop shown in
Fig. 12 is the reinforcing “goal erosion” loop: if the firm’s
delivery delay goal responds to the actual delivery delay
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Stylized patterns of growth and examples from the computer hardware industry

Business Policy and Strategy, System Dynamics Applications to, Figure 12
Feedback loops creating observed patterns of growth (adapted from Forrester 1968)

performance, a downward spiral can ensue – the goal in-
creases, less expansion occurs than had before, capacity is
less than needed, delivery delay increases, the goal is fur-
ther increased, and so on (this loop is similar to the ser-
vice standard goal erosion loop discussed above). The goal
erosion loop can create the decline dynamics illustrated in
Fig. 11 (although in actual practice the decline would likely
occur over a much more extended period than shown).

In actual practice, there are numerous positive feed-
back loops through resources that might stimulate growth.
These loops are listed below, and many are discussed and
diagrammed in Chap. 10 in [100]. In each of these loops,

an increase in sales causes management actions and/or in-
vestments that further increase the resource and sales:

� Sales channels – sales capability (which might include
salesforce as discussed above, or retail stores), adver-
tising, word-of-mouth contagion (as in the diffusion
model),media hype (sales create media exposure which
attracts potential customers and more sales)

� Price – Product attractiveness channels (operational-
izing the link between resources and costs in Fig. 2 –
spreading of fixed costs over more units, thereby low-
ering unit costs; learning curves; economies of scale;
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economies of scope; investments in process improve-
ments)

� Market channels which increase the pool of potential
customers – network effects (the more people using cell
phones the greater their value), development of com-
plementary goods (software applications for comput-
ers)

� Product investment channels – product improvement,
new products

� Market power channels – over suppliers, over labor,
over customers, cost of capital.

With all these positive feedback loops, how can anyone
fail? In fact, there are also numerous constraints to growth,
including: depletion of the pool of potential customers as
discussed in the last section; growth of competition; de-
lays in acquiring production capacity and/or service ca-
pacity; limits to financial capital (which can increase de-
lays or limit acquiring productive assets); and increases in
organizational size, complexity and administrative over-
heads (which might make the resources – costs loop in
Fig. 2 revert to a positive connection, thereby constrain-
ing growth). Structures for representing these constraints
are provided in the earlier references to this section, espe-
cially [49,69,100], and form the building blocks for many
of the practical applications of system dynamics to busi-
ness growth strategy.

As system dynamicists have long recognized, manag-
ing growth is one of the more challenging management
tasks. It entails fostering the positive, reinforcing feed-
back loops while simultaneously relaxing the constraining,
negative feedback loops. While it is difficult to generalize
without sounding platitudinous, a number of important
lessons have emerged from studies of growth. Lyneis [50]
discusses these in more detail, and references other work:

Lesson 1 You won’t achieve what you don’t try for (if
a firm is timid in its growth objectives, it will be
timid in the acquisition of resources – balancing loops
through for example delivery delay will then drive sales
growth to the firm’s resource growth). Corollary 1:
Don’t mistake forecasts for reality (a firm may be con-
tinually surprised by how accurate their sales forecasts
are, because if resources are based on these forecasts,
the balancing loops will drive sales to those resources).
Corollary 2: Provide sufficient buffers and contingen-
cies (these help minimize the risks that the balancing
loops will become dominant).

Lesson 2 Avoid the temptation to reduce objectives in the
face of performance problems (the “goal erosion” loop
in Figs. 8 and 12).

Lesson 3 In a world of limited resources, something must
limit growth. Proactivelymanaging these limits is a key
factor affecting performance. For example, if finan-
cial constraints are limiting expansion, with resul-
tant delivery constraints on sales, why not increase
prices to limit sales, and use the extra cash to finance
expansion?

Lesson 4 Make an effort to account for delays, especially
inmarket response (for example, improvements in ser-
vice will take a while to manifest themselves in im-
proved sales, so avoid the temptation to cut back pro-
ductive resources that will later be needed).

Lesson 5 Account for short-term productivity losses such
as fatigue and experience dilution in resource expan-
sion decisions (in the short-term, you may be getting
less capacity than you think).

Lesson 6 Account for likely competitor responses in tak-
ing actions (it’s easy for competitors to follow price
changes, and trigger a price war; improvements in
other components of product attractiveness are harder
to detect and replicate).

Applications and Case Examples

The process and structural developments discussed in the
last sections have formed the basis of numerous applica-
tions of system dynamics in support of business strategy.
In turn, these applications have provided the practice field
through which the process has been refined, and the struc-
tural models, insights, and tools validated. While most of
the published “real world” applications of system dynam-
ics do not provide details of the models, they do neverthe-
less provide diagrams which show the nature of the model,
representative results and policy conclusions, and the role
the models played in business strategy formulation.

Space limitations preclude covering specific applica-
tions in depth. Therefore, I have chosen to reference appli-
cations in a number of different areas so readers can find
references to the literature in their particular area of in-
terest. Before getting to that, however, there are a couple
of general references worthy of note: Roberts [91] covers
many of the early published applications of system dynam-
ics, with sections on manufacturing, marketing, research
and development, and management and financial control.
Coyle [14,15,16] touches on many of the applications ini-
tiated by his team at the University of Bradford, including
work in the defense, natural resources, and utility indus-
tries. Richardson [86] provides an edited collection of aca-
demic journal articles containing some of the best work in
system dynamics for business (and public) policy from its
early years to the 1990s. Beyond these general compendi-
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ums, business strategy applications can perhaps best be
classified by the industry of interest.

First, there have been a number of industry-wide mod-
els. The purpose of these models is typically to understand
the drivers of change in the industry, and to forecast de-
mand for use in other planning models. These include:

� Aircraft market as illustrated in Fig. 1 above [47,53]
� Health care market [42,103]
� Oil market [69,71,101]
� Shipping market [82].

Second, in addition to these industry-wide models, multi-
ple applications to specific firms (which might also include
some industry and/or competitive modeling), have been
done in the following industry sectors:

� Utilities/Regulation – In the electric industry, work by
Ford [24], Lyneis [51], Bunn and Larson [10,45] Ford
covers some of this work elsewhere in � System Dy-
namics Models of Environment, Energy and Climate
Change.

� Telecoms [35]
� Financial Services – work for MasterCard [52] and in

the insurance industry [7,13,96,102].

Finally, applications to specific types of firms, particularly
small and medium size enterprises [9].

For particular examples of where system dynamics
has had an impact in changing or forming business strat-
egy, the MasterCard application described by Lyneis [52]
and the General Motors OnStar application described by
Barabba et al. [6] are noteworthy. These applications pro-
vide some detail about the model structure and describe
how the modeling process changed management intuition
and thereby led to significant shifts in business strategy.
The MasterCard model represents growth and competi-
tive dynamics in some detail, and is used to illustrate the
multi-stage development process detailed in Sect. Using
System Dynamics Models in Policy and Strategy Formula-
tion and Implementation above. The OnStar example de-
scribes the process of modeling an industry that does not
yet exist. The model itself builds from the diffusion model
discussed above, with significant elaboration of potential
customers, provision of service, alliances, dealers, and fi-
nancial performance. The paper details the significant role
that the system dynamics model played in reshaping GM’s
strategy.

Future Directions

System dynamics has made significant theoretical and
practical contributions to business strategy. These contri-

butions fall into two general categories: first, the process
through which models are developed, working with man-
agement teams to enhance model validity and implemen-
tation; and second, understanding of the business struc-
tures and policies which cause observed problem behav-
ior within firms and industries. Nevertheless, the impact
of system dynamics on business strategy has been mod-
est – relatively few firms use system dynamics. In my view,
several factors contribute to this slow uptake. These are
listed below, with possible actions that could be taken to
alleviate.

1. Knowledge of system dynamics and its potential in
strategy formulation is limited. Senior executives of
firm’s are unaware of system dynamics, or its poten-
tial [106]. In part this is because system dynamics is
taught at relatively few business schools. Over time, this
problem will be solved, but it will take a long time. But
more importantly, researchers and practitioners of sys-
tem dynamics rarely publish their work in publications
which are widely read by senior management, such as
the Harvard Business Review. This is a problem which
can be addressed in the near future if researchers and
practitioners made the effort to communicate with this
market.

2. System dynamics is not well connected with traditional
strategy research and practice. As noted earlier, system
dynamics and traditional strategy developed largely in-
dependently.While the potential synergies between the
two are significant, until recently few researchers and
practitioners have made the effort to cross disciplines.
More effort and publication are needed to demon-
strate areas of synergy and get system dynamics into
the mainstream of business strategy research and ulti-
mately practice. Warren [108] makes a start on this.

3. System dynamics is hard. Building system dynamics
models, calibrating them to data, and analyzing their
behavior to improve business strategy requires signif-
icant skill and experience. This has traditionally been
developed via an apprenticeship program, either in uni-
versity or consulting firms. Much more can be done to
hasten this process. First, tried and true model struc-
tures that can be used as building blocks for models
must be better documented, and gaps closed. While the
theoretical basis for business dynamics described above
is a good start, and reflects structures which all prac-
ticing system dynamicists should know, the underly-
ing models and building blocks are widely dispersed
and difficult to access. For example, the models in [100]
are contained within a 900 page introductory textbook;
the models in [49] are in old software and the book is
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out of print. In both cases, the models are only start-
ing points and much unpublished work has occurred
that expands these introductory models to make them
more relevant and directly applicable to real business
strategy problems. Efforts could and should be made to
expand the library of business strategy building blocks.
In addition, the process of building models and work-
ing with managers needs to be better documented and
disseminated, both in formal courses and in published
works, so as to facilitate the apprenticeship learning
process.
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Glossary

ABS Automated Bond System. The original automated
limit-order market for bonds operated by the NYSE
that executed orders according to strict price/time pri-
ority. ABS was replaced by the NYSE Bonds Platform
in 2007.

Agency trade A bond transaction executed by a broker-
dealer on behalf of another party. A broker-dealers is
compensated by a commission on an agency trade.

Broker A firm that acts as an intermediary by executing
agency trades.

Broker-dealer A firm that engages in both agency trades
and principal trades.

Broker’s broker A broker-dealer that exclusively exe-
cutes agency trades of municipal bonds with other bro-
ker-dealers. Broker’s brokers do not execute principal
trades and they do not trade directly with public in-
vestors.

Commission A form of compensation that a customer
pays a broker-dealer for executing an agency trade.
Broker-dealers must explicitly disclose the commis-
sion to the customer as a separate item on the cus-
tomer’s trade confirmation.

Dealer A firm that engages in principal trades for its own
account.

FINRA Financial Industry Regulatory Authority. The
self-regulatory organization (SR0) created in July 2007

from the consolidation of NASD and the member reg-
ulation, enforcement and arbitration functions of the
NYSE. FINRA rules are approved by the SEC and en-
forced by themselves.

FIPS Fixed Income Pricing Service. The electronic sys-
tem operated by the National Association of Securi-
ties Dealers (NASD) from 1994 through 2002 to collect
and disseminate real-time quotations and hourly trade
reports for a subset of high-yield corporate bonds.
FIPS was retired in July 2002 with the implementation
of TRACE.

Market maker A specific designation made by a regula-
tory authority for a broker-dealer that holds itself out
to trade securities by publishing regular or continuous
quotations to buy (bid) or sell (offer). Currently, there
are no broker-dealers regulated as market makers in
the US corporate or municipal bond markets.

Mark-up and mark-down A form of compensation that
a customer pays a broker-dealer for executing a prin-
cipal trade. Customers pay a mark-up when they buy
a bond from a broker-dealer; they pay a mark-down
when they sell a bond to a broker-dealer. Unlike com-
missions, mark-ups and mark-downs do not need to
be disclosed on customer trade confirmations.

MSRB Municipal Securities Rulemaking Board. The self-
regulatory organization (SRO) charged with primary
rulemaking authority over broker-dealers in connec-
tion with their municipal bond transactions. MSRB
rules are approved by the SEC and enforced by FINRA
(formerly NASD).

NASD Formerly known as the National Association of
Securities Dealers. The self-regulatory organization
(SRO) charged with, among other things, primary
rulemaking authority over broker-dealers in connec-
tion with their corporate bond transactions. In July
2007, NASD and the member regulation, enforcement
and arbitration functions of the NYSE consolidated to
form FINRA.

NYSE New York Stock Exchange. Operates the NYSE
Bonds Platform (formerly ABS) trading system for ex-
change-listed corporate bonds.

OTC securities Over the-counter securities. Securities
that are not traded on an organized exchange.

Principal trade A bond transaction executed by a broker-
dealer for its proprietary account. The broker-dealer is
compensated by a mark-up or mark-down on a prin-
cipal trade.

Riskless principal trade A principal trade in which a bro-
ker-dealer purchases a bond to satisfy a previously re-
ceived order to buy, or a broker-dealer sells a bond to
satisfy a previously received order to sell. The trans-
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action is riskless to the broker-dealer because the firm
does not bear any inventory (price) risk.

RTTRS (or TRS) (Real-Time) Transaction Reporting
System. MSRB’s municipal bond transaction reporting
and dissemination system.

Serial offering A bond issuance in which several differ-
ent bonds are offered with different, often consecutive,
maturities. Municipal bonds are typically issued in se-
rial offerings.

SRO Self-regulatory Organization. A non-governmental
industry association that has statutory authority to reg-
ulate members through the promulgation and enforce-
ment of rules and regulations governing business prac-
tices. The SEC oversees SRO activities and approves
SRO rules.

SEC US Securities and Exchange Commission. The pri-
mary governmental overseer and regulator of US secu-
rities markets, including the corporate and municipal
bond markets. Broker-dealers and SROs are overseen
by the SEC’s Division of Trading and Markets (for-
merly Division of Market Regulation).

TRACE (formerly NASD TRACE) Transaction Report-
ing and Compliance Engine. FINRA’s corporate bond
transaction reporting and dissemination system.

Definition of the Subject

The subject of this article is the microstructure of the US
corporate and municipal bond markets. � Treasury Mar-
ket, Microstructure of the U.S. provide a complementary
discussion of the microstructure of the US Treasury bond
market.

Market microstructure is broadly defined as the study
of the economics of markets and trading. Market mi-
crostructure research covers a wide range of interrelated
topics including market structure and design issues (e. g.,
trading systems and rules); price formation and price dis-
covery; strategic trading behavior; market quality, liquid-
ity, and trading costs (explicit and implicit); information,
disclosure, and transparency; and consequences of regula-
tory policy (intended and unintended).

While much has been written on the microstructure
of equity markets since the mid-1980s, the bond markets
have only recently started receiving attention from aca-
demic researchers. The development of research in both
markets can largely be attributed to the availability of qual-
ity intraday trade, quote, and/or order data (“tick” data) to
empirical researchers.

The seminal theoretical work in market microstruc-
ture was conducted contemporaneously with the early eq-
uity market microstructure research, and much of the un-

derlying economics is general enough to be appropriate for
the bondmarkets. As a result, the significant contributions
of bond market research so far have been almost exclu-
sively empirical in nature. The last study featured in this
article by Green, Hollifield, and Schurhoff [23] is a notable
exception.

Conversely, the empirical methods developed specifi-
cally for the structure and design of equity markets are not
well-suited for the bond markets. Accordingly, many of
the important contributions of bond market microstruc-
ture research stem from not only the results and conclu-
sions, but also from the development of new empirical
methods. This article will provide details on some of these
methods as well as discuss the important results, conclu-
sions, and policy implications.

But, before moving on to a detailed discussion of bond
market microstructure research, an important question
needs to be answered.Why should we care about the bond
markets? We should care because the bond markets pro-
vide an important source of capital for issuers and an im-
portant source of securities for investors. In other words,
the bond markets are large. How large are they? The an-
swer to this question depends on one’s definition of size.

Figure 1 shows that an astonishingly large number, ap-
proximately 1.5 million, corporate and municipal bonds
are outstanding. The vast majority of these are municipal
bonds, which are typically issued in serial offerings con-
sisting of a set of up to 20 (or more) bonds issued at the
same time with different maturities. Thus, the number of
bonds dwarfs the number of equities.

In terms of total dollar amounts outstanding, Fig. 1
shows that US corporate and municipal bond markets
combined are roughly half the size of the US equity mar-
kets. The average daily trading volume in these bond mar-
kets is about $36 billion, which is about 1/3 of the average
daily trading volume of $115 billion in the equity markets.
While the discussion of the microstructure of the Treasury
bond markets is left to� TreasuryMarket, Microstructure
of the U.S., it is worth noting that total US bond market
trading volume (corporate, municipal, and Treasury) ex-
ceeds US equity market trading volume. Thus, no matter
what measure is used, it is apparent that the bond markets
offer important sources of capital for issuers and securities
for investors.

The remainder of this article proceeds as follows. Sec-
tion “Introduction” provides a historical overview of the
US corporate and municipal bond markets. Section “Early
Corporate and Municipal Bond Market Microstructure
Research” through “The Links Between Bond Market Mi-
crostructure Research and Other Finance and Economics
Research” review the significant contributions to the bond
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Corporate andMunicipal Bond Market Microstructure in the U.S., Figure 1
Comparison USmunicipal corporate and bondmarkets with US equity markets

market microstructure literature. Section “Early Corpo-
rate and Municipal Bond Market Microstructure Re-
search” reviews the early corporate and municipal bond
market microstructure research. Section “Fixed Income
Pricing Service (FIPS) Research” reviews the research en-
abled by the National Association of Securities Dealer’s
(NASD’s) Fixed Income Pricing Service that began in May
1994. Section “Municipal Bond Market Research” reviews
the municipal bond market research enabled by the Mu-
nicipal Securities Rulemaking Board’s (MSRB’s) transac-
tion data. Section “Transaction Reporting and Compli-
ance Engine (TRACE) Research”reviews the research en-
abled by the NASD’s Transaction Reporting and Compli-
ance Engine (TRACE) system that began in July 2002. Sec-
tion “The Links Between BondMarket Microstructure Re-
search and Other Finance and Economics Research” pro-
vides examples of how bond market microstructure re-
search is linked to other areas of finance and economics
research.

Introduction

Today, virtually all US corporate and municipal bond
trading occurs in over the-counter (OTC) dealer markets
with transparent prices. But, that was not always the case.
In the early 20th century there were active and transparent
markets for both corporate bonds andmunicipal bonds on
the New York Stock Exchange (NYSE). Then, bond trad-
ing beganmigrating to opaque OTC dealermarkets. In the

late 20th century, post-trade transparency was added to
the both the corporate and municipal bond OTC markets.

What factors are responsible for the evolution of the
bond markets over the past century? What caused the mi-
gration of trading in the early 20th century? How (and
why) was post-trade transparency added to the bond mar-
kets in the late 20th century? The brief history of US corpo-
rate and municipal bond markets below provides answers
to these questions.

The Early 20th Century

Biais and Green [9] provide a fascinating historical
overview of the US corporate and municipal bond mar-
kets. Early 20th century NYSE bond trading took place
among the “bond crowd”. Bond trading originally took
place in the same trading room as stock trading, with the
bond crowd organizing around three trading booths in the
“bond corner” of the Exchange. In 1928, the NYSE opened
a separate trading room, the “bond room”, in response to
increases in trading volumes. Trading in the bond room
was separated into four different crowds. US corporate
and municipal bonds were traded in either the “active”
crowd or the “inactive” crowd. The inactive crowd was also
known as the “cabinet” crowd because bond orders were
written on slips of paper and filed in the bond cabinets.
Foreign bonds and Government securities each had their
own bond crowds. A small number of active bonds were
traded on the floor in an open outcry market.
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NYSE bond trading was “order-driven”. The exchange
collected, posted, and matched public customer orders.
Public investors paid commissions to brokers to facil-
itate their NYSE bond trades. All NYSE bond brokers
could observe the book of available orders and the re-
cent trades, and inform their customers about them. Thus,
NYSE bond trading enjoyed a very high level of “pre-
trade transparency” and “post-trade transparency”. Pre-
trade transparency refers to the dissemination of informa-
tion about trading interests. Pre-trade information can in-
clude price (bid and ask) and depth quotations, as well as
limit order prices and sizes. Post-trade transparency refers
to the dissemination of information about past trades.
While post-trade information includes not only prices,
such as trade execution times and volumes, post-trade
transparency in the bond markets is sometimes referred to
as simply “price transparency”. Madhavan [38] and Har-
ris [24] provide excellent discussions all the different di-
mensions of transparency as well as the relatedmarket mi-
crostructure literature.

In the late 1920s, municipal bond trading migrated to
the over the-counter (OTC) market. Corporate bond trad-
ing migrated to the OTC market in the 1940s. Biais and
Green [9] examine a number of potential explanations for
the decline in municipal and corporate bond trading on
the NYSE. They find that the decline of exchange trading
in bonds was not due to a decline in the supply of bonds
outstanding or a decline in listings in response to costly
rules and regulations promulgated by the newly created
SEC.

Biais and Green [9] find that the migration of bond
trading from theNYSE to theOTCmarkets coincided with
changes in the investor base. In the late 1920s, retail in-
vestor interest in municipal bonds waned, as they became
more attracted to the higher returns on equities. As retail
interest in municipal bonds waned, institutions became
the dominant investor in the market. During the 1940s,
a similar shift in the relative importance of retail investors
and institutional investors occurred in the corporate bond
market. Biais and Green [9] conclude that the migra-
tion of bond trading from the NYSE to the OTC mar-
kets was an evolution in response to the changing investor
base.

Biais and Green [9] provide evidence that institutions
fared better in OTC bond markets and argue that the deal-
ers were happy to accommodate this new class of dom-
inant investors. Because liquidity was no longer concen-
trated on a centralized transparent exchange, retail in-
vestors were effectively forced into trading with dealers
in these decentralized opaque OTC markets. Not surpris-
ingly, retail investors faredjt worse in these markets. Both

municipal and corporate bond transaction costs increased
significantly for retail investors.

The Late 20th Century and Early 21st Century

While the most significant change in the bond markets in
the early 20th century was a migration of trading from
the exchange to OTC, the most significant change in the
late 20th century was the introduction of price trans-
parency. Unlike trading migration, bond market trans-
parency was not caused by market forces. Rather, trans-
parency was added to the bond markets by direct regula-
tory intervention.

The Municipal Securities Rulemaking Board (MSRB)
introduced price transparency to the municipal bondmar-
ket. TheMSRB was created by Congress in 1975 as the self-
regulatory organization (SRO) charged with primary rule-
making authority over broker-dealers in connection with
their municipal bond transactions.

The MSRB began publicly disseminating municipal
bond price information in January 1995. “Interdealer
Daily Reports” provided statistics on total interdealermar-
ket activity reported for the previous day, as well as in-
formation about price and volume for each security that
was “frequently traded” on that day. The MSRB defined
frequently traded securities to be securities with four or
more interdealer transactions on a particular day. The In-
terdealer Daily Report included the total par value traded,
the daily high and low price, and the average price of trades
having a par value between $100,000 and $1 million for
each frequently traded issue. Transaction price informa-
tion on securities with three or fewer interdealer transac-
tions on a particular day (“infrequently traded” securities)
was not disseminated.

In August 1998, the MSRB began producing “Com-
bined Daily Reports”. The Combined Daily Reports
merged information from customer and interdealer trans-
actions and provided daily high, low, and average prices
for frequently traded securities of municipal securities on
a one-day delayed basis. The frequently traded threshold
was four transactions per day, taking into account both
customer and interdealer transactions.

In January 2000, the MSRB began publicly dissem-
inating transaction details on individual trades in fre-
quently traded securities through “Daily Transaction Re-
ports”. Trade information on infrequently traded securi-
ties was still not disseminated until October 2000, when
the MSRB began producing “Monthly Comprehensive Re-
ports”. These reports provided information on a one-
month delayed basis for all transactions from the previous
month, including infrequently traded issues.
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By June 2003, the MSRB was publicly disseminating
transaction details for all trades in all securities (frequently
traded and infrequently traded) on a one-day lag basis
through “T+1 Daily Reports”. In January 2005, the MSRB
began disseminating prices on a real-time basis through
its Real-Time Transaction Reporting System (RTTRS or
TRS).

The National Association of Securities Dealers
(NASD) introduced price transparency to the corporate
bond market. NASD (now FINRA) is the self-regulatory
organization (SRO) charged with primary rulemaking
authority over broker-dealers in connection with their
corporate bond transactions. Regulatory concern for price
transparency spiked in the late 1980s and early 1990s.

At that time, the high-yield corporate bond market
faced unprecedented instability, highlighted by insider
trading scandals and the ultimate collapse of the dominant
dealer and underwriter Drexel Burnham Lambert. Con-
cern over future market instability, along with the recog-
nition of a need for better monitoring, led to regulatory
intervention that provided a small degree of transparency
in this market segment. The Fixed Income Pricing Service
(FIPS) began in 1994. FIPS was the result of the SEC en-
couraging NASD to develop an electronic reporting and
dissemination facility for non-convertible high-yield cor-
porate bonds.

But, FIPS only provided partial transparency for this
particular segment of the corporate bond market. While
every trade in FIPS-eligible bonds was reported to FIPS,
only summary information on a small subset (50 bonds)
of the most active bonds was disseminated to the pub-
lic. Alexander, Edwards, and Ferri [2] point out that some
members of the SEC staff at that time feared that adding
price transparency to less active bonds could possibly
harm the market. FIPS added both pre-trade transparency
and post-trade transparency to the market by dissemi-
nating quotations and hourly trade summaries, respec-
tively. The hourly trade summaries contained high and
low prices as well as total trading volume.

Many bond market participants and some SEC staff
felt that FIPS added a sufficient amount of transparency to
the corporate bond market. SEC Chairman Arthur Levitt
disagreed. In 1998, he gave a speech entitled The Impor-
tance of Transparency in America’s Debt Market in which
he famously quipped “The sad truth is that investors in the
corporate bond market do not enjoy the same access to in-
formation as a car buyer or a homebuyer or, dare I say,
a fruit buyer”. To address the lack of price transparency
in the corporate bond market, he called on NASD to take
several related actions. He called on NASD to adopt rules
requiring dealers to report all corporate bond transactions;

to develop a system to receive all corporate bond transac-
tion information; to create a database of the transactions,
and in conjunction, create a surveillance program to bet-
ter detect fraud in corporate bonds; and, to disseminate
the bond transaction prices to the public in order to help
them make better investment decisions.

NASD responded by developing the Transaction Re-
porting and Compliance Engine (TRACE) system, which
began operation in July 2002. Corporate bond dealers
were required to report all transaction in TRACE-eligi-
ble securities. TRACE-eligible securities included invest-
ment grade and high-yield debt, convertible and non-con-
vertible debt, and publicly issued debt and privately issued
(Rule 144A) debt. While all TRACE-eligible transactions
were reported to TRACE from the beginning of its op-
eration, the dissemination of the trade information was
phased-in over time. The phase-in approach was adopted
by NASD, and approved by the SEC, because of indus-
try concerns that adding transparency to the bond market
would somehow harm liquidity.

The TRACE phase-in approach began with the dis-
semination of trade information on the largest, highest-
rated bonds first. Price transparency was introduced to
smaller and lower-rated bonds over time. By February
2005, prices were transparent on effectively 99% of trades,
and by the end of that year, pricing information on all
TRACE-eligible trades was being disseminated on a real-
time basis to the public.

By the beginning of the 21st century, investors (and
market microstructure researchers) were able to access
an unprecedented amount of information about the OTC
municipal and corporate bond markets from the post-
trade transparency brought by TRS and TRACE, respec-
tively. It is worth noting that bond trading never com-
pletelymigrated to the OTCmarkets. The NYSE continues
to list and trade some bonds. The NYSE developed the Au-
tomated Bond System (ABS), a computerized limit-order
market for bonds, in an effort to encourage the migration
of trading back to the exchange. The displayed public limit
orders on ABS provided pre-trade transparency for some
bonds.

However, the vast majority of bonds are not listed on
the NYSE ABS or any other exchange, so all of the trading
in these bonds occurs in the OTC markets. Moreover, for
many of the bonds that are listed on the NYSE ABS, a ma-
jority of their trades still occur over the-counter. There-
fore, the early 21st century bond markets can be charac-
terized as dealer markets with a high degree of post-trade
transparency, but with virtually no pre-trade transparency.
It remains to be seen whether market forces, regulatory
initiatives, or some combination of the two will eventually
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lead to the introduction of some form of pre-trade trans-
parency, the emergence of bond market-makers, and/or
a migration of trading back to an order-driven market in
the US corporate and municipal bond markets.

Early Corporate andMunicipal BondMarket
Microstructure Research

Early bondmarket microstructure researchers were forced
to rely on data sources that covered only certain segments
of the market because comprehensive bond market data
simply did not exist. Bond dealers kept their own trad-
ing records because there was no central reporting facil-
ity. Bond dealers were not required to publicly disseminate
their trades. Researchers, as well as investors and regula-
tors, were able to see snapshots of parts of the bond mar-
kets, but no one was able to see the complete picture.

But, even with the data limitations, early bond mar-
ket researchers found creative ways to tease out useful in-
formation. Their initial findings shed the first light on the
opaque bond markets. For example, Schultz [42] provides
indirect evidence that higher bond market trading costs
may be attributable to the lack of transparency. Variants
of their original empirical methods continue to be used by
more recent researchers.

Any encyclopedic article on corporate bond market
microstructure research would be incomplete if it did not
mention the efforts of the Fixed Income Research Pro-
gram (FIRP), and more importantly its founder Profes-
sor Arthur Warga, in promoting early bond market re-
search. Art Warga’s influence on the development of the
bond market microstructure literature extends beyond his
own research. He collected, consolidated, cleaned, and or-
ganized various fragmented sources of bond market data
to create the Fixed Income Securities Database (FISD),
which he made accessible to academic and regulatory
researchers. Many within the market microstructure re-
search community informally refer to the FISD as simply
the “Warga database”.

Warga (1991)

Warga [44] uses an econometricmodel to investigate bond
pricing discrepancies that arise when researchers (and
commercial bond pricing services) use data from the two
different sources that were generally available in 1990. The
one source was exchange data in the form of actual trans-
action prices from the NYSE Automated Bond System
(ABS). The other source was OTC dealer data in the form
trader-quoted prices.

Warga [44] denotes the unobserved, true value of
bond i as P�

i and the unobserved, true bid-ask spread as

BAi. He assumes that P�
i is the midpoint of BAi. He also

assumes that the prices/quotes observed in both markets
are unbiased in the sense that they deviate from the true
unobserved prices/quotes by a random error term. Then,
for month-end NYSE transaction prices (PNY ):

PNYi D P�
i C ui ;

and, for month-end Lehman Brothers bid quotes (PB):

PBi D P�
i � 1

2
BAi C �i :

Combining these two equations and letting "� D �� C ��

yields:

PBi � PNYi D �1
2
BAi C "i :

Squaring both sides results in:



PBi � PNYi

�2 D 1
4
(BAi)2 � (BAi) "i C "2i :

Assuming the random error terms are orthogonal to
prices/quotes, the expected squared price discrepancies is:

E
h

PBi � PNYi

�2i D 1
4
(BAi )2 C �2

"i
;

where �2" equals the variance of the discrepancy.
Warga [44] regresses the squared price discrepancies

on six observable liquidity-related variables – bond rat-
ing, duration, NYSE dollar trading volume, bond age, is-
sue amount outstanding, and the time of trade of the last
trade price on the NYSE – with the following equation:



PBi � PNYi

�2 D ˛0 C ˛1MOODYS C ˛2DURTN
C˛3OUTSTDC˛4DVOLC˛5AGEC˛6TIMEC! :

Warga [44] finds that squared discrepancies are larger for
bonds with lower credit ratings, higher duration, smaller
issue sizes, lower trading volume, and trade prices that oc-
curred earlier in the day. While he finds that these vari-
ables are capable of explaining some of the observed vari-
ation in price discrepancies, he also concludes that com-
mingling exchange and dealer bond pricing data does not
induce any biases.

Hong andWarga (2000)

Hong and Warga [29] use a benchmark method to esti-
mate average daily effective spreads with newly available
trade data. They obtain exchange market data from the
NYSE ABS and OTC dealer market data from the Capital
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Access International (CAI) database. CAI obtains trading
data on insurance companies, mutual funds, and pension
funds from various regulatory filings.

They calculate the effective spread for a given bond on
a given day as the dollar-volume-weighted average price
transacted at the ask minus the dollar-volume-weighted
average price transacted at the bid:

NX

iD1

PAi W
A
i �

MX

jD1

PBj W
B
j ;

where PAi is the price of transaction i occurring at the ask,
WA

i is the dollar-value weight of transaction i, and N is
the number of transactions occurring at the ask for a given
bond on a given day. Similarly, PBj is the price of transac-
tion j occurring at the bid, WB

j is the dollar-value weight
of transaction j, and M is the number of transactions oc-
curring at the bid for a given bond on a given day.

Hong andWarga [29] find that the average daily effec-
tive spreads for corporate bond transactions occurring on
the NYSE ABS that involve at least 10 bonds is about $0.21
for investment grade bonds and about $0.19 for high-yield
bonds. For corporate bond trades occurring in the OTC
dealer market, they find that the average daily effective
spreads is about $0.13 for investment grade bonds and
about $0.19 for high-yield bonds. They note that these
spread estimates are smaller than previous estimates based
on data from an earlier period, which is consistent with
evidence that corporate bond spreads may have declined
over time.

Hong and Warga [29] also find that OTC dealer mar-
ket spreads exhibit much larger dispersion than NYSE
ABS spreads. The standard deviations of daily effective
spreads for the dealer market are two to three times larger
than those for the exchange market. This result suggests
that investors, particularly uninformed retail investors,
could benefit from more transparency in the OTC mar-
kets.

Schultz (2001)

Schultz [42] also uses CAI institutional trade data. He de-
velops an econometric model similar to Warga [44] to es-
timate average round trip corporate bond trading costs
from institutional trade data and estimated contempora-
neous bid quotes.

Schultz [42] estimates daily corporate bond bid quotes
from the month-end bid quotes available from the Warga
database. He develops a threestep estimation procedure
that uses daily Treasury bond bid quotes, based on the
observation that most of the day-to-day changes in in-

vestment grade corporate bond prices are explained by
changes in the level of risk-free interest rates.

The first step is to calculate a predicted month-end
quote for each corporate bond by taking its previous
month-end quote and multiplying it by the change in the
price of Treasury bonds of similar duration. The second
step is to subtract the predicted month-end quote from
the actual month-end quote. This calculation yields the
monthly pricing error from predicting that the change in
the corporate bond prices is exactly the same as the change
in Treasury bond prices. Themonthly pricing error is con-
verted to an average daily pricing error by dividing it by
the number of trading days in the month. The third step
is to estimate the bid quote for a particular within-month
trade date by starting with the previous end-of-month
quote and adding on the average daily pricing error times
the number trading days since the previous month end.

Schultz [42] finds that his bid quote estimates are ac-
curate for investment grade bonds, but not for high-yield
bonds. This is not surprising, since changes in high-yield
prices are more often due to changes in firm-specific factor
than changes in Treasury bond prices. Therefore, he does
not attempt to estimate trading costs for high-yield bonds
with this methodology.

For investment grade bonds, Schultz [42] estimates
round-trip transactions costs by regressing the difference
between the CAI trade prices and his estimate of the con-
temporaneous bid quote on a dummy variable that takes
the value of 1 for buys and 0 for sells:

�i D ˛0 C ˛1D
Buy
i C "i ;

where �i is the price of trade i minus estimated bid price
and DBuy

i equals one if trade i is a buy and zero otherwise.
The coefficient ˛i is an estimate of the average round-trip
transaction costs. His estimate of the average round-trip
transaction costs across all trades is about $0.27 per $100
of par value.

Schultz [42] also examines the determinants of corpo-
rate bond trading costs with the following regression:

�i D ˛0 C ˛1D
Buy
i C ˛2Si C ˛3DInst

i C ˛4DDeal
i

C ˛5DInst
i DDeal

i C ˛6DInst
i Si C ˛7DDeal

i Si C "i ;

where Si is the signed (positive for buys, negative for sells)
natural logarithm of the dollar trade size, DInst

i is a dummy
variable that takes a value of one for buys and negative
one for sells by one of the 20 most active institutions and
a value of zero otherwise, and DDeal

i is a dummy variable
that takes a value of one for buys and negative one for
sells if the trade involves one of the 12 active dealers and
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a value of zero otherwise. For the interactive term for ac-
tive institutions and dealers, DInst

i DDeal
i , the product of the

dummies is positive for buys and negative for sells when
the trade involves both an active institution and an active
dealer and a value of zero otherwise.

Schultz [42] finds that institutional corporate bond
trading costs decline with trade size. He does not find any
evidence that trading costs are related to credit rating. But,
this is not surprising given the fact that his analysis is lim-
ited to the four investment grade rating classes (Aaa, Aa,
A, Baa).

Schultz [42] finds that trading costs are lower when
a large bond dealer is used. In other words, small bond
dealers charge more than large ones. He also finds that
inactive institutions pay more than twice as much as ac-
tive institutions to trade the same bonds. Schultz [42] at-
tributes this result to the lack of transparency in the corpo-
rate bond market during his sample period. In an opaque
market, obtaining price information is costly, so only ac-
tive institutions will find it worthwhile to bear them.

Chakravarty and Sarkar (2003)

Chakravarty and Sarkar [12] use CAI data and benchmark
methods to calculate “traded bid ask-spreads” over one-
day, two-day, and five-day windows in the corporate, mu-
nicipal, and Treasury bond markets. Similar to Hong and
Warga [29], they define the traded bid-ask spread per day
as the difference between its mean daily selling price and
its mean daily buying price.

To check the sensitivity of their estimates to the re-
quirement of one buy trade and one sell trade for each
bond day, Chakravarty and Sarkar [12] calculate spreads
over non-overlapping two-day and five-day windows.
Their two-day traded bid-ask spread is calculated as the
difference between the two-day means of the selling prices
and the buying prices.

Chakravarty and Sarkar [12] find that the mean traded
bid-ask spread per day per $100 par value is $0.21 for cor-
porate bonds, $0.23 for municipal bonds, and $0.08 for
Treasury bonds. In all threemarkets, they find that spreads
increase with longer time-to-maturity, lower credit rat-
ings, and lower trading volume. These results suggest that
spreads are positively related to interest rate risk and credit
risk, and negatively related to trading activity. For corpo-
rate bonds, Chakravarty and Sarkar [12] find that spreads
increase with age.

Chakravarty and Sarkar [12] pool observations across
all three bond markets for cross-market comparisons. Af-
ter controlling for credit risk, Chakravarty and Sarkar [12]
find no significant difference in the spreads of corporate

bonds and Treasury bonds, but they find that municipal
bonds have higher spreads.

Fixed Income Pricing Service (FIPS) Research

FIPS provided new price and volume data that allowed
market microstructure researchers to conduct studies that
were not previously possible. Alexander, Edwards, and
Ferri [1] use FIPS volume data to test various hypotheses
about bond liquidity. Alexander, Edwards, and Ferri [2]
use FIPS returns and equity returns to tease out new evi-
dence on agency conflicts between stockholders and bond-
holders. Hotchkiss and Ronen [31] use FIPS returns and
equity returns to examine the relative informational effi-
ciency of the corporate bond market. Somewhat surpris-
ingly, they find that that informational efficiency of the
corporate bond market is similar to the stock market.

Alexander, Edwards, and Ferri (2000a)

Alexander, Edwards, and Ferri [1] examine the determi-
nants of trading volume of FIPS high-yield bonds using
a pooled time-series cross-sectional approach. They use
the following linear specification:

Trading Volumei t D ˇ0 C ˇ1Ln (Sizei t) C ˇ2Agei t
C ˇ3Private Equityi t C ˇ4Credit Ratingi t
C ˇ5Durationi t C ˇ6Price Variability C "i t ;

where the dependent variable, Trading Volume, is mea-
sured in three different ways for each bond i in each
month t. The three trading volume measures are the
natural log of the average daily number of trades
(Ln(Trades)), the natural log of the average daily number
of bonds traded (Ln(Bonds)), and average daily turnover
(Turnover). Ln(Size) is the natural logarithm of the issue’s
par value outstanding, Age is a dummy variable equal to
one if the issue has been outstanding for less than two
years, Private Equity is a dummy variable equal to one if
the issue has no public equity outstanding in any part of
the month, Credit Rating is a dummy variable equal to
one if the issue is rated below B- by Standard & Poor’s at
any point during the month, Duration is the bond’s modi-
fied duration, and Price Variability is the monthly average
absolute value of the daily percentage change in volume-
weighted price.

They find consistent results for all three measures of
trading volume. Larger issues and younger issues are more
heavily traded. They point out that the age result extends
earlier empirical results that found that the liquidity of
Treasury securities drops off a few months after issuance.
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Alexander, Edwards, and Ferri [1] also find that bonds
of firms without public equity trade more frequently than
bonds of firms with public equity. This last finding is in-
consistent with a disclosure hypothesis that predicts that
more relaxed disclosure rules for firms without public eq-
uity will lead lower liquidity, as measured by trading vol-
ume. However, it is consistent with the competing substi-
tution hypothesis that predicts that high-yield bonds of
private firms will attract trading volume that otherwise
would have occurred in the equity.

Alexander, Edwards, and Ferri (2000b)

Alexander, Edwards, and Ferri [2] use equity data and
FIPS bond data to investigate the relationship between
a firm’s stock return and its bond return. They exam-
ine the long-term co-movement between a firm’s bond
returns and its stock returns. They also examine stock
and bond returns around events typically associated with
agency conflicts to see whether their co-movements pro-
vide evidence of agency conflicts.

To examine the long-term co-movement between
a firm’s bond returns and its stock returns, Alexander, Ed-
wards, and Ferri [2] use three regression approaches. The
first approach is a time-series regression model:

RBit D ˇ0 C ˇ1XRSi t C ˇ2XRSi t�1 C ˇ3RBINDit

C ˇ4RBINDit�1 C "i t ;

where RBit is the bond return for firm i on day t, XRS
is the current (t) and lagged (t � 1) excess stock return,
and RBIND is the current (t) and lagged (t � 1) high-yield
bond index return, and "it is the residual bond return for
firm i on day t. The second approach is a pooled time-se-
ries cross-sectional model that uses the regression equa-
tion above and follows the pooling technique of Greene
(1993). The third approach is a cross-sectional regression
model that follows the approach of Fama and MacBeth.
For each sample day, the excess bond returns are regressed
on the current and lagged excess stock returns:

XRBit D ˇ0 C ˇ1XRSi t C ˇ2XRSi t�1 C "i t :

The estimates of ˇ1 in each of the three regressions
show whether the stock and bond returns tend to co-move
together (positive), in the opposite direction (negative), or
not at all (insignificant). Alexander, Edwards, and Ferri [2]
find that all three regressions produce similar results. The
ˇ1 estimates are positive and statistically significant, indi-
cating that excess bond returns are positively correlated
with excess stock returns. But, Alexander, Edwards, and

Ferri [2] point out the that the magnitudes of the coeffi-
cients suggest that the correlation is economically small.

To examine the behavior of stock and bond returns
around events typically associated with agency conflicts,
Alexander, Edwards, and Ferri [2] look at cumulative ex-
cess stock and bond returns around announcements of
corporate events that are typically associated with wealth
transfers from bondholders to stockholders, or vice versa.
Events include debt issuances and redemptions, stock is-
suances and repurchases, dividend changes, new credit
agreements, and others. They use Wilcoxon rank-sum
tests to determinewhether themeans of the cumulative ex-
cess bond returns around potentially wealth-transferring
events are significantly different from the returns other-
wise. They find that the means are significantly different
and that the mean cumulative excess bond returns around
the wealth-transferring events is negative, while the re-
turns are at other times are positive.

Thus, Alexander, Edwards, and Ferri [2] show that
wealth-transferring corporate events (from bondholders
to stockholders, or vice versa) can cause a firm’s bond re-
turns to diverge from its typical positive (weak) co-move-
ment with its stock returns. In addition, they point out that
this result is a likely factor in the weak long-term time-se-
ries correlations observed between stock and bond returns.

Hotchkiss and Ronen (2002)

Hotchkiss and Ronen [31] use FIPS data for 55 high-yield
bonds to examine the informational efficiency of the cor-
porate bond market relative to the market for the under-
lying stock. They find that stocks do not lead bonds in re-
flecting firm-specific information. They also find that pric-
ing errors for bonds are no worse than for the underlying
stocks, even on an intraday level.

Hotchkiss and Ronen [31] use a vector autoregression
(VAR) approach applied to daily and hourly returns with
a return-generating process that includes an interest rate
risk factor and an equity market (systematic) risk factor:

RBt D ˛t C
nbX

iD1

ˇB
i RBt�i C

niX

iD0

ˇL
i RLt�i

C
nsX

iD0

ˇM
i RMt�i C "t ;

where RBt is the FIPS bond portfolio return, RLt is the
Lehman Intermediate Government Bond Index return,
and RMt is the S&P 500 Index return. The number of lags
for the bond, interest rate, and stock returns are nb = 3,
ni = 0, and ns = 4, respectively. Hotchkiss and Ronen [31]
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include lagged bond returns (RBt�i ) to consider autocor-
relation-adjusted bond returns. They also consider a spec-
ification that replaces the Lehman index return with the
default risk-free return, RDt , as interest rate factor:

RBt D ˛t C
nbX

iD1

ˇB
i RBt�i C

niX

iD0

ˇD
i RDt�i

C
nsX

iD0

ˇM
i RMt�i C "t :

Finally, they add the underlying stock (firm-specific)
return, RSt :

RBt D ˛t C
nbX

iD1

ˇB
i RBt�i C

niX

iD0

ˇD
i RDt�i

C
nsX

iD0

ˇM
i RMt�i C

nsX

iD0

ˇS
i RSt�i C "t :

With these three regressions, Hotchkiss and Ro-
nen [31] find that high-yield bond returns exhibit a very
strong interest rate risk component and that this compo-
nent is significantly greater for higher-rated bonds. They
also find that high-yield bond returns exhibit a very strong
systematic risk component and that this component is
slightly weaker for higher-rated bonds.

To test whether stock returns lead bond returns,
Hotchkiss and Ronen [31] conduct Granger causality tests
at the daily and hourly levels. They estimate the VAR for
the variable set zt D [RBt ;RSt]0 using the specification:

zt D B1zt� j C B2zt� j C �t ;

where RBt is the bond return and RSt is the stock re-
turn, for day (hour) t, Bi are conformable matrices, and
�t is a disturbance vector. To test whether stock returns
Granger cause bond returns they estimate the following
bivariate VAR model using ordinary least squares (OLS):

RBt D c1 C
jX

iD1

aiRBt�iC
jX

iD1

biRSt�i C �1;t ;

where c is a constant, as and bs are coefficients, vt is the
disturbance vector, and j is the lag length. The null hy-
pothesis is that stock returns do not Granger cause bond
returns, or that H0 D �

bi
� D 0; for all i. Tests of whether

bond returns Granger cause stock returns are conducted
in a similar way. F-tests indicate that lagged stock returns
are not significant in explaining bond returns. Thus, stocks
do not lead bonds in reflecting firm-specific information.

The Granger causality test results also indicate that lagged
bond returns are not significant in explaining stock re-
turns.

Hotchkiss and Ronen’s [31] interpretation of the
Granger causality test results is that the contemporane-
ous correlations between stock returns and bond returns
are best described as a joint reactions to common factors.
This motivates an additional investigation of the compar-
ative reaction of stocks and bonds to firm-specific infor-
mation. To conduct this investigation, they examine how
quickly firm-specific information contained in earnings
announcements are incorporated into bond prices relative
to stock prices. First, they compare reported earnings to
the median of analysts’ earnings forecasts and calculate the
log forecast error:

FEi D ln


Ai
ı
Fi
�
;

where FEi is the log forecast error for firm i, Ai is the an-
nounced earnings per share, and Fi is the forecast earnings
per share. Next, they run the following regressions to ex-
amine whether earnings information is reflected in bond
returns or stock returns:

RB[�1;t] D ˛0 C ˛1 � FE C ˛2 � RM[�1;t] C "

RS[�1;t] D ˛0 C ˛1 � FE C ˛2 � RM[�1;t] C " ;

where RB and RS are the bond and stock returns, respec-
tively, for the period starting at day (hour) �1 prior to the
announcement and ending at day C7 (hour C14) after the
announcement, and RM is the market (S&P 500 Index) re-
turn. Both the daily and hourly regression results indicate
that all information is quickly impounded into both bond
prices and stock prices.

Finally, Hotchkiss and Ronen [31] compare the mar-
ket quality for the high-yield FIPS bonds to the underly-
ing stocks by examining whether price errors of different
magnitudes are associated with the different markets. The
estimate the following market quality measure:

MQi D 1 � 2 � 
�2si
ı
�2Ri
�
;

where �2si is the variance of the pricing error described in
Hasbrouck [27] and �2Ri is the variance of the return. The
intuitive interpretation of this measure is the proportion
of the total return variance that is due to fundamental vari-
ance. In general, they find that the market quality measure
for bonds is no worse than for the underlying stocks.

Municipal BondMarket Research

With the MSRB’s introduction of central reporting and
price transparency to the municipal bond market, mi-
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crostructure researchers were able to make use of a com-
prehensive source quality transaction-level municipal
bond data for the first time. This new data provided re-
searchers the opportunity to develop new methods, ex-
amine existing microstructure issues in greater detail, and
identify new avenues of research.

Two prominent municipal bond studies, Harris and
Piwowar [26] and Green, Hollifield, and Schurhoff [22],
develop and use very differentmethods to examine various
economic aspects of trading in the municipal bond mar-
ket. These two studies provide independent sets of similar
and robust results that support two important conclusions
related to retail investors. The first is that municipal bonds
are expensive for retail investors to trade. Harris and Pi-
wowar [26] and Green, Hollifield, and Schurhoff [22] both
find that, unlike in equitymarkets,municipal bond trading
costs decrease with trade size.

The second is that “complexity” is costly for retail in-
vestors. Harris and Piwowar [26] find that “instrument
complexity” makes municipal bonds more expensive to
trade. Instrument complexity is measured in terms of at-
tached features, such as calls, puts, sinking funds, credit
enhancement, nonstandard interest payment frequencies,
and nonstandard interest accrual methods. Green, Holli-
field, and Schurhoff [22] find that “deal complexity”
also increases trading costs. Bond dealers charge higher
markups on more difficult trades.

Harris and Piwowar (2006)

Harris and Piwowar [26] estimate municipal bond trad-
ing costs using an econometric model. They denote the
unobserved “true value” of the bond at the time t asVt
and assume that the price of a trade, Pt, is equal to Vt
plus or minus a price concession that depends on whether
the trade is buyer-initiated or seller-initiated. The absolute
customer transaction cost, c(St), is estimated as the effec-
tive half-spread, measured as a percentage of the price.

IDt is an indicator variable that takes a value of 1 if the
trade was an interdealer trade or 0 if the trade was a cus-
tomer trade. Qt is an indicator variable that takes a value
of 1 if the customer was a buyer, �1 if the customer was
a seller, or 0 if it was an interdealer trade. This results in:

Pt D Vt C QtPt c(St) C IDt Ptıt

D Vt

�

1 C QtPt c(St) C IDt Ptıt
Vt

�

:

The continuously compounded bond price and “true
value” returns between trades t and s, rPts and rVts respec-
tively, are found by taking logs of both sides, making two

small approximations, and subtracting the same expres-
sion for trade s:

rPts D rVts C Qtc(St) � Qs c (Ss) C IDt ıt � IDs ıs :

The “true value” return rVts is represented with a fac-
tor model by decomposing it into the linear sum of a time
drift, a short-term municipal bond factor return, a long-
term municipal bond factor return, and a bond-specific
valuation factor, "ts:

rVts D Daysts


5% � CouponRate

�

C ˇAvgSLAvgC
ts ˇDifSLDif

C
ts "ts ;

where Daysts counts the number of calendar days be-
tween trades t and s, CouponRate is the bond coupon rate.
SLAvgts and SLDifts are the average and difference, respec-
tively, of continuously compounded short- and long-du-
ration factor returns between trades t and s. The first term
models the continuously compounded bond price return
that traders expect when interest rates are constant and
the bond’s coupon interest rate differs from a notional
five percent bond, the median coupon rate in their sam-
ple. The two index returns model municipal bond value
changes due to changes in interest rates and tax-exempt
yield spreads. Harris and Piwowar [26] use repeat sales
methods to estimate these indices. They assume that the
bond-specific valuation factor "ts has mean zero and vari-
ance given by

�2"ts D NSessions
ts �2Sessions

where NSessions
ts is the total number of full and partial trad-

ing sessions between trades t and s.
To model customer transaction costs, Harris and Pi-

wowar [26] consider several alternative functional forms
that are flexible enough to model very high average trad-
ing costs for small trade sizes and very low average trading
costs for large trade sizes. Harris and Piwowar [26] choose
following parsimonious expression:

c(St) D c0 C c1
1
St

C c2 log St C �t ;

where the first three terms specify the cost function that
represents average trade costs and �t represents the unex-
plained variation in the observed customer trading costs.
The constant term allows total transaction costs to grow
in proportion to size. The second term captures fixed costs
per trade and the third term allows the costs per bond to
vary by size.
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The Harris and Piwowar [26] time-series estimation
model is obtained by combining the last four equations:

rPts � Daysts


5% � CouponRate

� D c0 (Qt � Qs )

C c1
�

Qt
1
St

� Qs
1
Ss

�

C c2


Qt log St � Qs log Ss

�

C ˇSLAvgSLAvgC
ts ˇSLDifSLDif

C
ts �ts ;

where the expression for the regression term, �ts, is given
by:

�ts D "ts C Qt�t � Qs�s C IDt ıt � IDs ıs :

The mean of the error term is zero and its variance is:

�2ts D NSessions
ts �2Sessions C Dts�

2
ı C (2 � Dts) �2� ;

where Dts represents the number (0, 1, or 2) of interdealer
trades involved in trades t and s. For each bond, Harris and
Piwowar [26] separately estimate their time-series transac-
tion cost estimation model using an iterated least squares
method, with the weight given by the inverse of the esti-
mates of �2ts. For a wide range of trade sizes, they calcu-
late weighted cross-sectional mean cost estimates across
all municipal bonds. Each bond’s weight is given by the
inverse of its estimation error variance at that trade size.

Harris and Piwowar [26] find that retail-size municipal
bond trades are substantially more expensive than similar-
sized equity trades. Average effective spreads in municipal
bonds are almost 2% for representative retail-size trades
($20,000). They point out that this is the equivalent of al-
most 4 months of total annual return for a bond with a 6%
yield-to-maturity.

Harris and Piwowar [26] also find that retail-size mu-
nicipal bond trades are more expensive than institutional-
size trades. Unlike in equities, municipal bond transaction
costs decrease with trade size. Harris and Piwowar [26]
also find that, unlike in equities, municipal bond trans-
action costs do not depend on trade frequency. They at-
tribute these results to the lack of price transparency in the
municipal bond market during their sample period.

To investigate how estimated transaction costs vary
across municipal bonds, Harris and Piwowar [26] conduct
cross-sectional weighted least squares regressions for var-
ious trade sizes. The dependent variable is the estimated
average transaction costs in a given municipal bond at
a given trade size. The weight for each bond observation
is given by the inverse of the estimation error variance of
its cost estimate. The independent variables include mea-
sures of credit quality, age, and instrument complexity.

Harris and Piwowar [26] show that bond trading costs
increase with credit risk, time to maturity, and time since

issuance. They also find that trading costs increase with
instrument complexity, and that retail investors are more
adversely affected by instrument complexity than institu-
tional investors. They conjecture that investors and issuers
might benefit if simpler bonds were issued.

Green, Hollifield, and Schurhoff (2007a)

Green, Hollifield, and Schurhoff [22] focus on trades that
can reasonably be assumed to represent two sides of a sin-
gle intermediated transaction, and employ a structural
model to decompose the cost faced by a customer into
a portion that represents the cost the dealer incurs and
a portion attributable to the dealer’s market power. They
formulate and estimate a simple structural bargaining
model that allows them to estimatemeasures of dealer bar-
gaining power and relate it to characteristics of the trades.

Green, Hollifield, and Schurhoff [22] use a theoreti-
cal model to seek evidence that the high costs of trad-
ing are due to dealer market power and to find out how
the exercise of market power depends on the characteris-
tics of the trade. They develop a simple theoretical model
of the interaction between dealers and their customers in
which the expected profits to the dealer reflect both the
dealer’s costs and his bargaining power relative to the cus-
tomer. Both of these, in turn, can be parametrized as func-
tions of observable variables, and estimated as a Stochas-
tic Frontier Model. The dealer’s cost is the stochastic fron-
tier, which represents the expected mark-up the customer
would obtain if dealers were always driven by their reser-
vation values, as they would be if the provision of dealer
services were perfectly competitive. The observed mark-
up, expressed in excess returns over a municipal bond in-
dex, can be written as:

pi � p�
i

p�
i

� Rindex;i

D
�
c (Xi ; �)

p�
i

� E


Rindex;i

ˇ
ˇ Xi

�
	

C "i C �i ;

where pi is the dealer’s selling price, p�
i is the dealer’s pur-

chase price, and Rindex;i is the municipal bond market in-
dex return.

The first term on the right-hand side of the equation
represents the dealer’s costs in excess of the expected mu-
nicipal bond index return, whereXi is a set of conditioning
variables observable to the buyer and seller and � is a set of
parameters to be estimated. They refer to this term as the
cost of intermediation.

The second and third terms capture how the observed
markup can differ from the dealer’s cost of intermediation.
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The second term, "i, is a symmetric, normally-distributed
error term:

"i � ei
p�
i

� �i ;

reflecting a zero-mean forecast error:

�i D Rindex;i � E


Rindex;i

ˇ
ˇ Xi

�
:

The third term, � i, is a one-sided, exponentially-dis-
tributed error term:

� � �i
�
E


pi j Xi

� � c (Xi ; �) � vi
�

p�
i

;

reflecting the distribution of sellers’ reservation values (vi)
and dealer bargaining power.

Green, Hollifield, and Schurhoff [22] estimate re-
stricted and unrestricted versions of the following regres-
sion model via maximum likelihood:

pi � p�
i

p�
i

� Rindex;i D �0 C
LX

lD1

�l Xi l C "i C �i ;

with l D 1; : : :; L conditioning variables. The resid-
ual "i is normally distributed with standard deviation
b0…K

kD1e
bik Zk , with Zik for k D 1; : : :;K conditioning

variables. The residual � i is exponentially distributed with
mean and standard deviation a0…K

kD1e
aik Zk . In the “mar-

ket power” version of their model, all of the parameters
are unrestricted. In the restricted (“no market power”)
model, all of the parameters on the one-sided error are
constrained to zero: a0 D a1 D : : : D ak D 0.

The data used by Green, Hollifield, and Schurhoff [22]
includes both customer trades and interdealer trades. But,
because their data does not identify the specific broker-
dealer associated with a given trade, they must infer their
trades and profits indirectly by studying pairs of trades that
appear to be direct exchanges of bonds through a single
dealer. They assume that a customer buy transaction of
a given size of a given bond that occurs within a very short
time of customer sell transaction of the same size in the
same bond are most likely related. The reasonableness of
this assumption is confirmed by Harris and Piwowar [26],
whose data contains dealer identities.

Green, Hollifield, and Schurhoff [22] find that munic-
ipal bond dealers earn lower average markups on larger
trades, even though larger trades lead the dealers to bear
more risk of losses. Their results suggest that municipal
bond dealers exercise substantial market power, particu-
larly in retail-sized transactions. Their measures of market
power decrease in trade size and increase in variables that
indicate the complexity of the trade for the dealer.

Transaction Reporting
and Compliance Engine (TRACE) Research

TRACE not only brought unprecedented transparency to
corporate bond market investors, it also provided an un-
precedented opportunity for market microstructure re-
searchers to examine new issues. Chief among them was
the “natural experiment” of adding price transparency to
an opaque market. Three prominent studies (collectively,
“the TRACE studies”) that examined the introduction of
price transparency to the corporate bond market were Ed-
wards et al. [17], Bessembinder, Maxwell, and Venkatara-
man [7], and Goldstein, Hotchkiss, and Sirri [20].

These TRACE studies were very complementary in
terms of their contributions to the market microstructure
literature. To understand the full impact of this collective
research, it is important to remember that they were writ-
ten at a time when many market participants and some
regulators were concerned that public dissemination of
bond pricing data might have an adverse impact on liq-
uidity. Using different experimental designs and empiri-
cal methods, the TRACE studies produced similar results,
conclusions, and implications for regulatory policymak-
ers. Overall, the results in all three TRACE studies show
that public investors benefit significantly from the intro-
duction of price transparency.

Edwards et al. [17] estimate transaction costs for all
corporate bonds that trade at least nine times between
January 2003 and January 2005. Their TRACE data set
includes all reported OTC trades in corporate bonds,
whether transparent or not. Consistent with the results
of Harris and Piwowar [26] for the municipal bond mar-
ket, Edwards et al. [17] find that corporate bonds are ex-
pensive for retail investors to trade and that corporate
bond transaction costs decrease significantly with trade
size. They find that effective spreads in corporate bonds
average 1.24% of the price of representative retail-sized
trades ($20,000). They point out that this is the equiva-
lent of over 2 months of the total annual return for a bond
with a 6% yield to maturity, or 52 cents per share for a $40
stock. In cross-sectional tests, Edwards et al. [17] find that
transaction costs are lower for highly rated bonds, recently
issued bonds, and bonds close to maturity.

Edwards et al. [17] find that costs are lower for bonds
with transparent trade prices, and they drop when the
TRACE system starts to publicly disseminate their prices.
Their results suggest that introduction of price trans-
parency results in a drop in customer trading costs of at
least 5 basis points (bps). In 2003, public investors traded
approximately $2 trillion in bonds for which prices were
not disseminated. If the prices for these bonds had been
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TRACE-transparent, a quick back-of the-envelope calcu-
lation shows investors could have saved a minimum of $1
billion that year. Edwards et al. [17] point out that the $1
billion figure represents a lower bound for two reasons.
First, because many unsophisticated investors were un-
aware that prices became available, and because learning
how to use the price data takes, time, the long-run ben-
efits are undoubtedly much greater. Second, they do not
capture the initial reduction in trading costs at the initia-
tion of TRACE. Bessembinder, Maxwell, and Venkatara-
man [7] find that sophisticated institutional investors ben-
efited from an immediate reduction in trading costs of
about $1 billion.

Bessembinder, Maxwell, and Venkataraman [7] esti-
mate their trade execution costs for a sample of institu-
tional (insurance company) trades in corporate bonds be-
fore and after the initiation of public transaction report-
ing for some bonds through the TRACE system in July
2002. They find that the average reduction in one-way
trading costs or bonds eligible for TRACE transaction re-
porting is about 5 to 8 bps. This translates to a reduction
in trade execution costs of about 50%. Moreover, they find
a 20% reduction for bonds not eligible for TRACE report-
ing. Bessembinder, Maxwell, and Venkataraman [7] inter-
pret their results as suggesting that better pricing informa-
tion regarding some bonds also improves valuation and
execution cost monitoring for related bonds. They find no
evidence that market quality deteriorated in other dimen-
sions.

Bessembinder, Maxwell, and Venkataraman [7] also
find that larger trading cost reductions for less liquid and
lower-rated bonds, and for larger trades. They estimate
that their results equate to annual trading cost reduc-
tions of roughly $1 billion per year for the entire corpo-
rate bond market, reinforcing that market design can have
first-order effects, even for relatively sophisticated institu-
tional customers.

Goldstein, Hotchkiss, and Sirri [20] design and con-
struct a controlled experiment to examine the impact of
introducing price transparency on liquidity for BBB-rated
corporate bonds. They selected the 120 BBB-rated bonds
for which the NASD began disseminating trade data on
April 14, 2003. They simultaneously selected a control
sample of non-disseminated bonds.

Goldstein, Hotchkiss, and Sirri [20] find that DRT
spreads decrease for most BBB-rated corporate bonds
whose prices become transparent, and that this effect is
strongest for intermediate trade sizes. The only caveat to
this result is that they do not find any significant trans-
parency effect for the most thinly-traded bonds. Overall,
Goldstein, Hotchkiss, and Sirri [20] conclude that their

finds indicate that the introduction of post-trade price
transparency has a neutral or positive effect on market liq-
uidity.

The similar results and conclusions in the three com-
plementary TRACE studies collectively generate impor-
tant policy implications. Foremost, policymakers should
take comfort in the fact that there are few, if any, in-
stances in the combined results that show any harm to
investors from introducing price transparency to securi-
ties markets. To the contrary, the results show that both
retail and institutional investors benefit from price trans-
parency. The empirical results from the TRACE studies
support the well-founded economic theoretical arguments
that transparency should lower transaction costs, espe-
cially for smaller trades.

Speeches and testimony by US bond market regula-
tors, such as those listed in the bibliography, show that
these studies critically informed the debate over adding
price transparency to the US bond markets. Moreover,
they continue to provide important lessons for policy
makers in bond markets outside of the United States. The
bibliography also contains a partial listing of international
reports, discussion papers, and conference proceedings
that prominently cite the TRACE studies.

Edwards, Harris, and Piwowar (2007)

Edwards et al. [17] apply the Harris and Piwowar [26]
econometric approach to corporate bonds. They also ex-
tend the approach by allowing liquidity to be time varying.
This extension allows them to examine how the introduc-
tion of price transparency affects corporate bond transac-
tion costs.

Theymodel the unobserved value return rVts by decom-
posing it into the linear sum of a time drift, an average
bond index return, differences between index returns for
long and short term bonds and for high and low quality
bonds, and a bond-specific valuation factor, "ts.

rVts D Daysts


DriftRate

�C ˇ1AveIndexRetts
C ˇ2DurationDifts C ˇ3CreditDifts C "ts ;

where Daysts counts the number of calendar days between
trades t and s,DriftRate is the bond coupon rate subtracted
from five percent, AveIndexRetts is the index return for
the average bond between trades t and s and DurationDifts
and CreditDifts are the corresponding differences between
index returns for long and short term bonds and high
and low credit risk bonds. The first term accounts for the
continuously compounded bond price return that traders
expect when interest rates are constant and the bond’s
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coupon interest rate differs from five percent. The three
factor returns account for bond value changes due to shifts
in interest rates and credit spreads. Edwards et al. [17] es-
timate the bond indices using repeat sale regression meth-
ods with terms that account for bond transaction costs. Fi-
nally, the bond-specific valuation factor "ts has mean zero
and variance given by

�2"ts D NSessions
ts �2Sessions ;

where NSessions
ts is the number of trading sessions and frac-

tions of trading sessions between trades t and s.
Edwards et al. [17] model customer transaction costs

using the following additive expression:

c(St) D c0 C c1
1
St

C c2 log St C c3St C c4S2t C �t ;

where �t represents variation in the actual customer trans-
action cost that is unexplained by the average transaction
cost function. This variation may be random or due to an
inability of the average transaction cost function to repre-
sent average trade costs for all trade sizes. They assume �t
has zero mean and variance given by �2� .

The first three terms of the cost function are the same
as in Harris and Piwowar [26], where the constant term al-
lows total transaction costs to grow in proportion to size,
the second term characterizes any fixed costs per trade,
and the third term allows for costs per bond to vary by
trade size. The two additional terms allow more flexibility
in the costs to vary by size. Because corporate bonds trade
more frequently than municipal bonds, Edwards et al. [17]
did not need to be as concerned about degrees of freedom
as Harris and Piwowar [26].

Combining the last three equations produces the Ed-
wards et al. [17] version of the Harris and Piwowar [26]
transaction cost estimation model:

rPts � Daysts


DriftRate

� D c0 (Qt � Qs)

C c1
�

Qt
1
St

� Qs
1
Ss

�

C c2


Qt log St � Qs log Ss

�

C c3 (QtSt � QsSs) C c4


QtS2t � QsS2s

�

Cˇ1AveIndexRetts C ˇ2DurationDifts Cˇ3CreditDifts
C �ts ;

where the left hand side is simply the continuously com-
pounded bond return expressed as the equivalent rate on
a notional five percent coupon bond. Edwards et al. [17]
estimate their time-series model in the same way as Harris
and Piwowar [26].

Edwards et al. [17] extend Harris and Piwowar [26]
by introducing a pooled time-series regression model that
they use to estimate average transaction costs for each day
for a class of bonds. With this model, they are able to es-
timate the daily average transaction costs for bonds that
became transparent in 2003, and compare these estimates
to those for comparable bonds that were either TRACE-
transparent throughout 2003 or never TRACE-transpar-
ent in 2003.

The pooled time-series regression model that Edwards
et al. [17] use to estimate daily transaction costs differs in
two respects from the time-series regression model that
they use to estimate average transaction costs for a given
bond. First, they specify separate average transaction cost
functions, cT (St), for each day T in the sample. Second, to
minimize the total number of parameters to be estimated,
they use the three-parameter average cost function:

cT (St) D c0T C c1T
1
St

C c2T log St C �t :

For a given bond, the change in value between bond trades
is modeled as:

logVt � logVs D fs rS C
T�1X

JDSC1

rJ C ftrT C est ;

where S is the day on which trade s took place and T is the
day onwhich a subsequent trade t took place, rJ is the com-
mon index return (to be estimated) for day J and fs and ft ,
respectively, are the fractions of the S and T trading days
overlapped by the period spanned by transactions s and t.
This portion of the specification is the same as appears
in many paired trade regression index estimation proce-
dures. With these changes, the regression model is

rPts � Daysts


5% � CouponRate

� D c0TQt � c0SQs

C c1TQt
1
St

� c1SQs
1
Ss

C c2TQt log St � c2SQs log Ss

C fs rS C
T�1X

JDSC1

rJ C ftrT C �ts :

They use iterated weighted least squares methods,
where the weights are equal to the predicted values of
the regression of the squared residuals on the indepen-
dent variables appearing in the residual variation ex-
pression. Edwards et al. [17] estimate the model using
a three-month wide sliding window that moves forward
one month at a time. The time series of coefficient esti-
mates are assembled from the center months of each of
the sliding regressions. They compute transaction costs for



108 Corporate and Municipal Bond Market Microstructure in the U.S.

various transaction sizes by evaluating the estimated trans-
action cost functions at the given transaction sizes. Using
the estimated variance-covariance matrix of the estima-
tors, they also compute daily standard errors of the various
daily transaction cost estimates.

Bessembinder, Maxwell, and Venkataraman (2006)

Bessembinder, Maxwell, and Venkataraman [7] develop
and estimate an indicator variable regression model:

�P D a C wXt C �SQ�
t C ˛S�Q C !t ;

where�P is the change in the price of the bond from time
t � 1 to time t, a is the regression intercept, w is the frac-
tion of public information that is observable in the data
with realizations Xt, �S is the informational component
of the spread, ˛S is the non-informational component of
the spread (where ˛ D (1 � � )), Q�

t is the market maker’s
estimate of bond value due to surprises in order flow,�Q
is the change in indicator variable Q (which takes a value
of 1 if the trade is a customer buy and �1 if it is a customer
sell) from time t�1 to time t, and!t is the regression error
term.

Bessembinder, Maxwell, and Venkataraman [7] de-
velop this regression model in the following way. Et(V )
is the market-maker’s estimate of the bond’s unobserved
true value (V) at time t conditional on whether the ob-
served trade is a customer buy or a customer sell. Transac-
tion prices are given by:

Pt D Et (V) C ˛SQt :

The market maker’s estimate of bond value at time t,
Et(V ), is her estimate from the prior period, Et�1(V), up-
dated to reflect surprises in order flow, Qt �Et�1 (Qt), and
public information revealed since the prior period, �� Sub-
stitution yields:

Et (V ) D Et�1 (V) C �SQ�
t C �t ;

where Q�
t D Qt � Et�1 (Qt). To allow for the possibility

that bond market order flow is positively autocorrelated,
Bessembinder, Maxwell, and Venkataraman [7] assume
that it follows a simple AR1 process, so that Et�1 (Qt) D
� (Qt�1). The change in the price of the bond from time
t � 1 to time t is:

Pt � Pt�1 D �SQ�
t C ˛SQt � ˛SQt�1 C �t :

Substituting �P for Pt – Pt�1 and �Q for Qt – Qt�1, this
expression can be rewritten as:

�P D �SQ�
t C ˛S�Q C �t :

To incorporate observable public information that af-
fects bond value, they assume that a fraction w of public
information becomes observable in the data with realiza-
tions Xt, while the remaining portion (1�w) is due to un-
observable innovations Ut that represent statistical noise.
Substitution yields their regression model:

�P D wXt C �SQ�
t C ˛S�Q C !t ;

where ! D (1 � w)Ut . Bessembinder, Maxwell, and
Venkataraman [7] show that their model is equivalent to
the Madhavan et al. [39] model. Moreover, in the special
case of no autocorrelation in order flow (� D 0), their
model is equivalent to Huang and Stoll [33], Schultz [42]
and Warga [44].

Goldstein, Hotchkiss, and Sirri (2007)

Goldstein, Hotchkiss, and Sirri [20] use two different
methods to estimate transaction costs for a sample of
BBB-rated bonds. Their first method involves identify-
ing “dealer round-trip” (DRT) transaction chains. These
transaction chains involve a dealer purchasing a bond
from a customer and then selling that same bond to an-
other customer within a specified period of time. DRT
spreads are calculated as the difference between the cus-
tomer buy price at the end of the transaction chain and
the customer sell price at the beginning of the chain. Their
DRT method is similar to the methods used in the mu-
nicipal bond studies of Green et al. [22] and Biais and
Green [9], except their data contains individual dealer
identifiers. Goldstein, Hotchkiss, and Sirri [20] estimate
DRT spreads for transaction chains that occur with one-
day, five-day, and unlimited time intervals. They estimate
DRT spreads for various trade size groups.

Their second method is a regression method similar to
Warga [44] and Schultz [42]. For each trade size group,
Goldstein, Hotchkiss, and Sirri [20] estimate spreads by
regressing the difference between the transaction price for
a customer (T) and an estimated bid price (B) on a dummy
variable that equals one for customer buys and zero for
customer sells:

[T � B]i D ˛0 C ˛1D
Buy
i C "i ;

where estimated bid prices are obtained from Reuters
dealer bid price estimates from the end of the day prior
to the transaction. Reuters estimates are based on daily
quotes obtained directly from individual dealers.

Goldstein, Hotchkiss, and Sirri [20] estimate a second
regression to consider the effect of dissemination while
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controlling for other bond characteristics impacting the
spread:

[T � B]i D ˛0 C ˛1D
Buy
i C ˛2DDisseminatedBond

i

C ˛3DPost-disseminationPeriod
i

C ˛4DDisseminationBond�Post-disseminationPeriod
i

C ˛5X5 C � � � C ˛10X10 C "i ;

where additional dummies are included for disseminated
bonds, transactions that occur in the post-dissemination
period, and the interaction of these two dummies for
transaction in disseminated bonds that occur in the post-
dissemination period. As in Schultz [42] the additional
dummies are expressed a C1 for buys and �1 for sells.
Variables X5; : : :; X10 are six bond characteristics related
to spreads: trade size, time-to-maturity, age, issue amount,
average daily volume over the prior 30 days, and days since
last trade.

The Links Between BondMarketMicrostructure Re-
search and Other Finance and Economics Research

The discussion of bond market research has thus far been
presented solely within the framework of the market mi-
crostructure literature. However, some of the most inter-
esting bond market research is connected to other areas
of finance and economics. The instrument complexity re-
sults of Harris and Piwowar [26], for example, provide
evidence to support Carlin’s [11] formal model of strate-
gic price complexity in security design for retail markets.
Additionally, Chen, Lesmond, and Wei [13] provide an
example of how bond market microstructure research is
linked to asset pricing models in finance. Green, Holli-
field, and Schurhoff [23] develop a theoretical model that
is analogous to the costly consumer search models in the
broader economics literature.

Chen, Lesmond, andWei (2007)

Beginning with Amihud and Mendelson [3], market mi-
crostructure research has consistently shown that a liquid-
ity premium exists in equity markets. Recently, bond mar-
ket microstructure researchers have begun investigating
whether a liquidity premium also exists in bond markets.
One such paper is Chen, Lesmond, and Wei [13]. Their
investigation of the link between bond liquidity and cor-
porate yield spreads provides important implications for
the default risk literature.

Chen, Lesmond, and Wei [13] investigate whether liq-
uidity is priced in corporate yield spreads. They use several

approaches, including a regression approach that is an ex-
tension to the Lesmond, Ogden, and Trzcinka [36] (LOT)
approach developed for equities. The LOT approach as-
sumes that a zero return day (or a non-trading day) is
observed when the true price changes by less than the
transaction costs. Because marginal informed investors
will only trade on information if the trade yields expected
profits net of transaction costs, an individual bond’s trad-
ing costs represent a threshold that must be exceeded be-
fore its return will reflect new information. The premise of
this approach is that if the value of the information is in-
sufficient to exceed the costs of trading, then the marginal
investor will either reduce trading or not trade, causing
a zero return.

Chen, Lesmond, and Wei [13] extend the LOT ap-
proach to corporate bonds by applying a two-factor re-
turn-generating model to estimate bond trading costs:

R�
j;t D ˇ j1Duration�

j;t�R f t

C ˇ j2Duration�
j;t�S&P Indext C " j;t ;

where R�
j;t is the unobserved “true” return for bond j on

day t that investors would bid given zero trading costs. The
daily change in the 10-year risk-free interest rate, �R f t ,
is the factor that is more important for investment grade
bonds, while the second factor,�S&P Indext , the daily re-
turn on the Standard & Poor’s 500 equity index, is more
important for high-yield bonds. Both factors are scaled by
Durationj;t , the bond’s duration.

Chen, Lesmond, and Wei [13] then apply the Ami-
hud and Mendelson [3] liquidity premium to bonds. In
Amihud and Mendelson [3], observed asset prices differ
from true values because of a liquidity premium that com-
pensates investors for liquidity costs. Chen, Lesmond, and
Wei [13] state the liquidity effects on bond returns as:

Rj;t D R�
j;t � ˛i; j ;

where Rj;t is the measured return, ˛2; j is the effective buy-
side cost, and ˛1; j is the effective sell-side cost for bond j.
The resulting liquidity constraint is:

Rj;t D R�
j;t � ˛1 j if R�

j;t < ˛1 j and ˛1 j < 0
Rj;t D 0 if ˛1 j � R�

j;t � ˛2 j

R j;t D R�
j;t � ˛2 j if R�

j;t > ˛2 j and ˛2 j > 0 :

Combining the liquidity constraint with the return
generatingmodel, Chen, Lesmond, andWei [13] us amax-
imum likelihood method outlined in LOT to estimate
transaction costs. They specify the log-likelihood function
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as:
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where˚i; j represents the cumulative distribution function
for each bond-year evaluated at:



˛1; j � ˇ j1Durationj;t ��R f t

�

� j

�


ˇ j2Durationj;t ��S&P Indext

�

� j
:

†1 (region 1) represents the negative nonzero mea-
sured returns, †2 (region 2) represents the positive
nonzero measured returns, and †0 (region 0) represents
the zero measured returns. The difference in the buy-side
and sell-side cost estimates, ˛2; j � ˛1; j , represents round-
trip trading costs.

Themodel’s implicit assumption that informationmo-
tivates bond trades and that information is efficiently im-
pounded into bond prices is supported by the results of
Hotchkiss and Ronen [31]. The error term captures noise
trading and trades due to unanticipated public informa-
tion.

In addition to LOT estimates, Chen, Lesmond, and
Wei [13] use bid-ask spreads and zero-returns as liquidity
cost measures. The bid-ask spreads the use are bond-year
proportional bid-ask spreads, calculated as the average
of quarterly proportional spreads. Quarterly proportional
spreads are calculated from quarterly bid-ask spreads ob-
tained from Bloomberg consensus quotes among market
participants, divided by the average bid and ask price.
Zero-returns are simply the percentage of days with re-
turns equal to zero.

They find that liquidity costs are related to credit rat-
ing. Liquidity costs are much higher for high-yield bonds
than for investment grade bonds. They also find that liq-
uidity costs are related to maturity. Liquidity costs for

long-maturity bonds are higher than for short-maturity
bonds.

They also find that yield spreads generally increase
with maturity for investment grade bonds. But, they find
that yield spreads generally decrease with maturity for
high-yield bonds. They point out the endogeneity issue
stemming from the Helwege and Turner [28] finding that
relatively safer firms within the same high-yield credit rat-
ing category tend to issue longer-term bonds. This endo-
geneity issue causes the average yield spread to decline
with maturity for high-yield bonds.

To investigate whether liquidity is priced in corpo-
rate yield spreads, Chen, Lesmond, and Wei [13] first run
the following regression specification for investment grade
bonds and high-yield bonds separately:

Yield Spreadi t D �0 C �1Liquidityi t C �2Maturityi t
C �3Amount Outstandingi t C �4Couponi t
C �5Treasury Ratei t C �610Yr � 2Yr Treasury Ratei t
C �7EuroDollari t C �8Volatilityi t C �9Bond Ratingi t
C �10PreTax Coverage Dummyit
C �11Operating Income/Salesi t C �12Debt/Assetsi t

C �13Debt/Capitalizationi t C "i t ;

where the subscript it refers to bond i in year t. Liquid-
ity refers to the three liquidity cost measures – bid-ask
spread, zero-returns, or the LOT estimate. Additional vari-
ables control for bond-specific, firm-specific, and macroe-
conomic factors. Maturity is the number of years until
the bond matures relative to the year being analyzed, and
Amount Outstanding is natural logarithm of the dollar
amount outstanding, Coupon is the bond coupon rate.
Treasury Rate is the 1-year Treasury Note rate, 10Yr-2Yr
Treasury Rate is the difference between the 10-year and
2-year Treasury rates, and Eurodollar is the 30-day Eu-
rodollar rate minus the 3-month T-Bill rate. Volatility is
the equity volatility for each issuer and Bond Rating is
a credit rating scale that ranges from 1 (AAA rating) to
10 (BBB- rating) for investment grade bonds and from
1(BB+ rating) to 12 (D rating) for high-yield bonds. Pre-
Tax Coverage Dummy represents four dummy variables
corresponding to groupings of pre-tax income, Operat-
ing Income/Sales,Debt/Assets, andDebt/Capitalization are
each firm’s respective accounting ratios.

They find that all three liquidity measures are posi-
tively related to the yield spread in both the investment
grade and high-yield samples. The liquidity coefficients are
statistically significant at the 1% level in every scenario.
This provides strong evidence that liquidity is priced in
corporate yield spreads. This finding is robust to control-
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ling for issuer influences with issuer fixed-effects regres-
sions. The only caveat is that they achieve slightly weaker
results for the zero-return liquidity cost measure than for
bid-ask spreads and LOT estimates. This finding is also
robust to controlling for potential endogeneity problems
arising from the contemporaneous measurement of the
yield spread, liquidity costs, and credit rating. They per-
form this robustness check by employing a simultaneous
equations model using three equations that correspond to
each of the potentially endogenous variables:

Yield Spreadi t D �0 C �1Liquidityi t C �2Maturityi t
C �3Couponi t C �4Treasury Ratei t
C �510Yr � 2Yr Treasury Ratei t C �6EuroDollari t
C �7Volatilityi t C �8Bond Ratingi t
C �9PreTax Coverage Dummyit
C �10Operating Income/Salesi t C �11Debt/Assetsi t

C �12Debt/Capitalizationi t C "i t ;

Liquidityi t D �0 C �1Maturityi t C �2Agei t
C �3Amount Outstandingi t C �4Bond Ratingi t

C �5Bond Volatilityi t C �6Yield Spreadi t C "i t ;

Credit Ratingi t D �0 C �1Treasury Ratei t
C �210Yr � 2Yr Treasury Ratei t
C �3PreTax Coverage Dummyit
C �4Operating Income/Salesi t
C �5Debt/Assetsi t C �6Debt/Capitalizationi t

C �7Yield Spradi t C " :

The model is estimated using twostage least squares.
The simultaneous equation model estimation results show
that the potential endogeneity does not affect the relation
between liquidity and yield spreads for either the invest-
ment grade or the high-yield bonds.

Thus, Chen, Lesmond, and Wei [13] find extremely
consistent and robust evidence that liquidity is a key deter-
minant in corporate yield spreads. This finding provides
at least a partial explanation for the findings of Collin-
Dufresne, Goldstein, and Martin [15] and others who
show that default risk does not completely explain corpo-
rate yield spreads.

Green, Hollifield, and Schurhoff (2007b)

Green, Hollifield, and Schurhoff [23] examine secondary
market trading in newly issued municipal bonds for the

first 60 trading days of their lives. They begin by descrip-
tively documenting the price behavior of newly issuedmu-
nicipal bonds. They show that municipal bonds are under-
priced when issued. But, unlike equities, the average price
rises slowly over a period of several days. Green, Holli-
field, and Schurhoff [23] also find that the observed price
patterns are complex. High levels of price dispersion are
observed for small trade sizes in the aftermarket for new
municipal bond issues.While some small traders purchase
bonds on attractive terms, others do not. In contrast, there
is very little price dispersion for large trade sizes. Virtually
all of the large traders purchase bonds on attractive terms.

They argue that the price level and dispersion pat-
terns are the result of bond dealers discriminating be-
tween informed and uninformed customers. Accordingly,
Green, Hollifield, and Schurhoff [23] develop and esti-
mate a mixed distribution model for the markups that
uninformed and informed investors pay when they pur-
chase newly issued bonds. Their model incorporates in-
vestor search costs, i. e., the costs in terms of time and ef-
fort needed for investors to become informed about new
bond issues.

The mixed distribution model of Green, Hollifield,
and Schurhoff [23] is analogous to economic models of
costly consumer search, such as the gametheoretic model
of Shilony [43] that focuses on advertising and price com-
petition among retail stores in homogeneous productmar-
kets. Shilony [43] assumes that all stores are required to
advertise, but the advertising is segmented (e. g., signs are
posted on store windows). Consumers have a preference
for the particular store that that offers them free access to
the advertising (e. g., the store right outside their house or
the one that they regularly visit) and they will pay more for
a product at this store even if it does not offer the lowest
price.

The institutional mechanisms of the primary market
and the structure of the secondary market for munici-
pal bonds fits particularly well with the informational in-
terpretation of Shilony’s [43] model. Every investor has
free information about the price that will be charged by
his broker. Also, because all firms must disseminate their
last sale information on a real-time basis, the investor can
choose to look on www.investinginbonds.com or some
other free website to find the range of prices charged by
all brokers. But, this last sale information does not identify
which broker charged the lowest price. To find this out,
the investor must incur some cost.

Green, Hollifield, and Schurhoff [23] begin with the as-
sumption that there are both observable and unobservable
sources of heterogeneity in the costs investors face in gath-
ering and using information about prices of new munici-

http://www.investinginbonds.com


112 Corporate and Municipal Bond Market Microstructure in the U.S.

pal issues. They assume that for investor i, the difference
between the benefit and the cost of learning about a new
issue is z�

i with:

z�
i D wiı C �i ;

where wi is a vector of conditioning variables, ı is a pa-
rameter vector, and �� is an error term. The error term is
observed by the investor, but not by the econometrician.
Investor i becomes informed about the price of a new is-
sue if and only if z�

i � 0. They do not observe z�
i , but they

do observewi and the price the investor pays for the bond.
An investor who is uninformed about the reoffering

price for a new bond is willing to pay the percentage
markup yU of:

yUi D xiˇ C "Ui ;

where xi is a vector of conditioning variables,ˇ is a param-
eter vector, and "Ui is an error term. Similarly, an investor
who is informed about the underwriter’s pricing of a new
bond is willing to pay the percentage markup yI of:

yIi D xi� C "Ii ;

where xi is a vector of conditioning variables, � is a pa-
rameter vector, and "Ii is an error term. The uncertainty
about the percentage markup is expected to be lower when
the investor is informed than when the investor is unin-
formed:

�I < �U :

They use this condition to empirically identify the in-
formed versus uninformed distributions from which the
observed markups, yi, are drawn:

yi D
�

yUi if z�
i < 0 ;

yIi if z�
i � 0 :

Green, Hollifield, and Schurhoff [23] use iterated ex-
pectations to show that investors take the markup into ac-
count when deciding whether to become informed about
an upcoming bond issue or not:

E


yi jwi ; xi

� D E


yi jInformedi ;wi ; xi

�

Pr (Informedi jwi )
CE



yi jUninformedi ;wi ; xi

�
Pr (Uninformedi jwi ) :

They estimate their model under the assumption that
the error terms are drawn independently and identically
from a multivariate normal distribution:
0

@
ui
"Ui
"Ii

1
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 N

0

@

0

@
0
0
0

1

A ;

2

4
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�U�U �2U 0
�I�I 0 �2I

3

5

1

A ;

where �U is the correlation between ui and "Ui and �I is
the correlation between ui and "Ii. Denoting the cumula-
tive standard normal distribution as ˚ and the standard
normal density as ', Green, Hollifield, and Schurhoff [23]
show that the condition that investor i becomes informed
if and only if z�

i � 0 implies that:

Pr (Informedi jwi ) D Pr


z�
i � 0 jwi

�

D Pr (ui � �wiı jwi )
D ˚ (wiı) ;

and

Pr (Uninformedi jwi ) D 1 � ˚ (wiı) :

By combining equations and using the distributional
assumptions of the error terms, Green, Hollifield, and
Schurhoff [23] show that

E


yi jInformedi ;wi ; xi

� D xi� C �I�I
� (wiı)
˚ (wiı)

;

and

E


yi jUninformedi ;wi ; xi

� D xiˇC�U�U �� (wiı)
1 � ˚ (wiı)

:

Therefore, the expected markup is:

E


yi jwi ; xi

� D
�

xi� C �I�I
� (wiı)
˚ (wiı)

�

˚ (wiı)

C
�

xiˇ C �U�U
�� (wiı)

1 � ˚ (wiı)

�

1 � ˚ (wiı) :

Green, Hollifield, and Schurhoff [23] estimate this
equation as a switching regression. Their results are con-
sistent with two pricing regimes for newly issued mu-
nicipal bonds. Uninformed investors pay higher average
prices than informed investors and there is very little vari-
ation in prices paid by informed investors. They also find
that the upward trend in prices after issuance is related
to the change in the mix if informed and uninformed in-
vestors. Informed investors buy soon after issuance, while
uninformed investors buy later on.

With respect to the decision about whether to become
informed about a new municipal bond issue, they find
that large buyers are more likely to become informed than
small buyers. To examine how much money is left on
the table by uninformed investors who pay large markups
to dealers, Green, Hollifield, and Schurhoff [23] classify
each transaction into either the Informed or Uninformed
regime. The classification is based on whether the expected
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benefit from becoming informed about a new bond issue
is greater than the cost of doing so:

Informedi D 1 , E


z�
i jyi ;wi ; xi

� � 0;
Uninformedi D 1 , E



z�
i jyi ;wi ; xi

�
< 0 :

The difference in the expected markup between an in-
formed investor and an uninformed investor is:

E


yUi yIi jUninformedi ;wi ; xi

� D xi (ˇ � �)

C (�U�U � �I�I) �� (wiı)
1 �˚ (wiı)

:

They define the money left on the table in each transaction
with an uninformed investor as

�i D
8
<

:

max
˚
E


yUi yIi jUninformedi ;wi ; xi

�
; 0
�
;

if Uninformedi D 1;
0; else :

They denote the estimates of �i as b�i and obtain a cu-
mulative measure across all sales transactions i in a given
bond issue j, and then across all issues in a bond deal:

3Money Left on the Table D
X

Issues j

X

i2 j

b�i :

Green, Hollifield, and Schurhoff [23] find that money left
on the table by uninformed investors represents a signifi-
cant fraction of the overall expected profits to the under-
writers and dealers.
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Glossary

Cause map A cause map is similar to a cognitive map
however it is not composed of an individuals percep-
tion but rather the views/statements from a number
of participants. It follows the same formalisms as cog-
nitive mapping but does not reflect cognition as it is
composite.

Cognitive map A cognitive map is a representation of
an individuals perception (cognition) of an issue. It
is graphically depicted illustrating concepts/statements
connected together with arrows representing causality.
They are created using a set of established formalisms.

Complex project A complex project is a project in which
the project behaviors and outcomes are difficult to pre-
dict and difficult to explain post-hoc.

Disruption and delay Disruption and delay (D&D) is
primarily the consequence of interactions which feed
on themselves as a result of an initial disruption or de-
lay or portfolio of disruptions and delays.

Project A project is a temporary endeavor undertaken to
create a unique product or service [1].

Definition of the Subject

There are many examples of complex projects suffering
massive time and cost overruns. If a project has suffered
such an overrun there may be a need to understand why
it behaved the way it did. Two main reasons for this is
(i) to gain learning for future projects or (ii) because one

party of the project wishes to claim compensation from
another party and thus is trying to explain what occurred
during the project. In the latter case, system dynamics has
been used for the last 30 years to help to understand why
projects behave the way they do. Its success in this arena
stems from its ability to model and unravel complex dy-
namic behavior that can result in project overruns. Start-
ing from the first use of system dynamics in a claim situa-
tion in the late 1970’s [2], it has directly influenced claim
results worth millions of dollars. However, the number
of claims which system dynamics has been involved in is
still small as it is not perceived by project management
practitioners as a standard tool for analyzing projects. Sys-
tem dynamics has a lot to offer in understanding complex
projects, not only in a post-mortem situation, but it could
also add value in the pre-project analysis stage and during
the operational stage of a project.

Introduction

In this chapter we discuss the role of system dynamics
(SD) modeling in understanding, and planning, a complex
project. In particular we are interested in understanding
how and why projects can go awry in a manner that seems
surprising and often very difficult to unravel.

When we refer to projects we mean “a temporary en-
deavor undertaken to create a unique product or ser-
vice” [1]. Projects are a specific undertaking, which im-
plies that they are “one-shot”, non-repetitive, time-lim-
ited, and, when complex, frequently bring about revolu-
tionary (rather than evolutionary) improvements, start (to
some extent) without precedent, and are risky with respect
to customer, product, and project. If physical products are
being created in a project, then the product is in some way
significantly different to previous occasions of manufac-
turing (for example, in its engineering principles, or the
expected operating conditions of the product, etc.), and it
is this feature that means there is a need to take a project
orientation.

Complex projects often suffer massive cost overruns.
In recent decades those that have been publicized re-
late to large public construction projects, for example air-
ports, bridges, and public buildings. Some examples in-
clude Denver’s US$5 billion airport that was 200% over-
spent [3], the 800 million Danish Kroner Oresund bridge
that was 68% overspent [4], and the UK’s Scottish Parlia-
ment, which was 10 times the first budget [5]. The Ma-
jor Projects Association [6] talks of a calamitous history
of cost overruns of very large projects in the public sec-
tor. Flyvberg et al., [7] describe 258 major transportation
infrastructure projects showing 90% of projects overspent.
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Morris and Hough [8] conclude that “the track record of
projects is fundamentally poor, particularly for the larger
and more difficult ones. . . . Projects are often completed
late or over budget, do not perform in the way expected,
involve severe strain on participating institutions or are
canceled prior to their completion after the expenditure
of considerable sums of money.” (p.7).

“Complex” projects are ones in which the project be-
haviors and outcomes are difficult to predict and difficult
to explain post-hoc. Complex projects, by their nature,
comprise multiple interdependencies, and involve nonlin-
ear relationships (which are themselves dynamic). For ex-
ample, choices to accelerate might involve the use of ad-
ditional overtime which can affect both learning curves
and productivity as a result of fatigue – each of which are
non-linear relationships. In addition many of the impor-
tant features of complex projects are manifested through
‘soft’ relationships – for example managers will recognize
deteriorating morale as projects become messy and look
a failure, but assessing the impact of morale on levels of
mistakes and rate of working has to be a matter of qualita-
tive judgment. These characteristics are amenable partic-
ularly to SD modeling which specializes in working with
qualitative relationships that are non-linear [9,10,11].

It is therefore surprising that simulation modeling has
not been used more extensively to construct post-mortem
analyzes of failed projects, and even more surprising be-
cause of SD’s aptitude for dealing with feedback. Nev-
ertheless the authors have been involved in the analysis
of 10 projects that have incurred time and cost overruns
and PA Consulting Group have claimed to have used SD
to explain time and cost overruns for over 30 litigation
cases [12]. Although in the mid-1990’s, attempts to inte-
grate SDmodelingwithmore typical approaches to project
management were emerging, their use has never become
established within the project management literature or
practice [13,14,15]. In addition, recognition that the trend
towards tighter project delivery and accelerated develop-
ment times meant that parallelism in project tasks was be-
coming endemic, and the impact of increasing parallelism
could result in complex feedback dynamics where vicious
cycles exist [16]. These vicious cycles are often the con-
sequence of actions taken to enforce feedback control de-
signed to bring a project back on track.

As project managers describe their experiences of
projects going wrong they will often talk of these “vicious
cycles” occurring, particularly with respect to the way in
which customer changes seem to generate much more re-
work than might be expected, and that the rework itself
then generates evenmore rework. Consider a small part of
a manager’s description of what he sees going on around

him:

“For some time now we’ve been short of some really
important information the customer was supposed
to provide us. As a consequence we’ve been forced
to progress the contract by making engineering as-
sumptions, which, I fear, have led to more mistakes
being made than usual. This started giving us more
rework than we’d planned for. But, of course, re-
work on some parts of the project has meant re-
opening work that we thought we’d completed, and
that, in turn has reopened evenmore past work. En-
gineering rework has led to the need for production
work-arounds and so our labour in both engineer-
ing and production have been suffering stop/starts
and interruptions – and each time this happens they
take time to get back up to speed again. This has
led to productivity dropping because of unnecessary
tasks, let alone productivity losses from the work-
force getting fed-up with redoing things over and
over again and so just becoming demoralized and so
working slower. Inevitably all the rework and con-
sequential productivity losses have put pressure on
us to accelerate the project forcing us to have to
make more engineering assumptions and do work-
arounds.”

Figure 1 shows a ‘cause map’ of the arguments presented
by this project manager – the words used in the map are
those used by the project manager and the arrows rep-
resent the causality described by the manager. This de-
scription is full of vicious cycles (indeed there are 35 vi-
cious cycles discussed – see Fig. 1) all triggered by a short-
age of customer furnished information and resulting in
the rework cycle [17,18,19,20,21] and the need to accel-
erate in order to keep the project on schedule. Using tra-
ditional project management models such as Critical Path
Method/Network Analysis cannot capture any of the dy-
namics depicted in Fig. 1, but SD simulation modeling is
absolutely appropriate [22].

So, why has SDmodeling been so little used? Partly it is
because in taking apart a failed project the purpose is usu-
ally associated with a contractor wishing to make a claim
for cost-overruns. In these circumstances the traditions of
successful claims and typical attitudes of courts tend to de-
termine the approach used. A ‘measured-mile’ approach is
common, where numerical simplicity replaces the need for
a proper understanding [23].

It was not until the early 1980’s that the use of sim-
ulation modeling became apparent from publications in
the public-domain. The settlement of a shipbuilding claim
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Delay and Disruption in Complex Projects, Figure 1
Causemap showing the interactions described by a project manager and illustrating the feedback loops resulting from the complex
dynamics behavior of a project under duress. The arrows represent causality

[2] prompted interest in SD modeling and [24], in the
same year, reported on the use of management science
modeling for the same purpose. It was not surprising that
this modeling for litigation generated interest in modeling
where the purpose was oriented to learning about failed
projects (indeed the learning can follow from litigation
modeling [25], although it rarely does).

As Fig. 1 demonstrates, it is not easy to understand
fully the complex dynamic behavior of a project under
duress. Few would realize that 35 feedback loops are en-
compassed in the description that led to Fig. 1. Indeed one
of the significant features of complex projects is the like-
lihood of underestimating the complexity due to the dy-
namics generated by disruptions. [6] has reported on the
more specific difficulty of understanding feedback behav-
ior and research in the field of managerial judgment re-
inforces the difficulties of biases unduly influencing judg-
ment [27].

In the work presented here we presume that there is
a customer and a contractor, and there is a bidding pro-
cess usually involving considerations of liquidated dam-
ages for delays and possibly strategic reputational conse-
quences for late delivery. Thus, we expect the project to

have a clear beginning and an end when the customer (in-
ternal or external) signs off a contract. Finally, we do not
explore the whole project business life cycle, but that part
where major cost overruns occur: thus, we start our con-
sideration when a bid is to be prepared, consider develop-
ment and manufacturing or construction, but stop when
the product of the project is handed over to the customer.

Thus, in this chapter we shall be concerned specifi-
cally with the use of SD to model the consequences of
disruptions and delays. Often these disruptions are small
changes to the project, for example design changes [28].
The work discussed here is the consequence of 12 years
of constructing detailed SD simulation models of failed
complex projects. The first significant case was reported
in Ackermann et al. [10] and Bennett et al. [29]. In each
case the prompt for the work was the reasonable prospect
of the contractor making a successful claim for damages.
In all the cases the claim was settled out of court and the
simulation model played a key role in settling the dispute.

The chapter will firstly consider why modeling disrup-
tion and delay (D&D) is so difficult. It will discuss what
is meant by the term D&D and the typical consequences
of D&D. This will be examined using examples from real



Delay and Disruption in Complex Projects 119

projects that have suffered D&D. The contribution of SD
modeling to the analysis of D&D and thus to the expla-
nation of project behavior will then be discussed. A pro-
cess of modeling which has been developed over the last
12 years and one that provides a means of modeling and
explaining project behavior will be introduced. This pro-
cess involves constructing both qualitative causemaps and
quantitative system dynamics models. The chapter will
conclude by considering potential future developments for
the use of SD in modeling complex projects.

Disruption and Delay

(The following contains excerpts from Eden at al. [22]
which provides a full discussion on the nature of D&D).

The idea that small disruptions can cause serious con-
sequences to the life of a major project, resulting in mas-
sive time and cost overruns, is well established. The terms
‘disruption and delay’ or ‘delay and disruption’ are also of-
ten used to describe what has happened on such projects.
However, although justifying the direct impact of disrup-
tions and delays is relatively easy, there has been consid-
erable difficulty in justifying and quantifying the claim for
the indirect consequences. Our experience from working
on a series of such claims is that some of the difficulty de-
rives from ambiguity about the nature of disruption and
delay (D&D). We now consider what we mean by D&D
before moving onto considering the types of consequences
that can result from the impact of D&D.

What is a Disruption?

Disruptions are events that prevent the contractor com-
pleting the work as planned. Many disruptions to com-
plex projects are planned for at the bid stage because they
may be expected to unfold during the project. For exam-
ple, some level of rework is usually expected, even when
everything goes well, because there will always be ‘nor-
mal’ errors and mistakes made by both the contractor and
client. The disruption and delay that follows would typ-
ically be taken to be a part of a risk factor encompassed
in the base estimate, although this can be significantly un-
derestimated [30]. However, our experience suggests that
there are other types of disruptions that can be significant
in their impact and are rarely thought about during origi-
nal estimating. When these types of disruptions do occur,
their consequences can be underestimated as they are of-
ten seen by the contractor as aberrations with an expecta-
tion that their consequences can be controlled and man-
aged. The linkage between risk assessment and the risks
as potential triggers of D&D is often missed [31]. Inter-
ferences with the flow of work in the project is a common

disruption. For example, when a larger number of design
comments than expected are made by the client an in-
creased number of drawings need rework. However it also
needs to be recognized that these comments could have
been made by the contractors own methods engineering
staff. In either case, the additional work needed to respond
to these comments, increases the contractor’s workload
and thus requires management to take mitigating actions
if they still want to deliver on time. These mitigating ac-
tions are usually regarded as routine and capable of easily
bringing the contract back to plan, even though they can
have complex feedback ramifications.

Probably one of the most common disruptions to
a project comes when a customer or contractor causes
changes to the product (a Variation or Change Order). For
example, the contractor maywish to alter the product after
engineering work has commenced and so request a direct
change.However, sometimes changesmay bemade unwit-
tingly. For example, a significant part of cost overrunsmay
arise where there have been what might be called ‘give-
aways’. These may occur because the contractor’s engi-
neers get excited about a unique and creative solution and
rather than sticking to the original design, produce some-
thing better but with additional costs. Alternatively, when
the contractor and customer have different interpretations
of the contract requirements unanticipated changes can
occur. For example, suppose the contract asks for a door
to open and let out 50 passengers in 2 minutes, but the
customer insists on this being assessed with respect to the
unlikely event of dominantly large, slow passengers rather
than the contractor’s design assumptions of an average
person. This is often known as ‘preferential engineering’.
In both instances there are contractor and/or customer re-
quested changes that result in the final product beingmore
extensive than originally intended.

The following example, taken from a real project and
originally cited in Eden et al. [30], illustrates the impact of
a client induced change to the product:

Project 1: The contract for a ‘state of the art’ train
had just been awarded. Using well-established de-
sign principles – adopted from similar train sys-
tems – the contractor believed that the project was
on track. However within a few months problems
were beginning to emerge. The client team was be-
having very differently from previous experience
and using the contract specification to demand per-
formance levels beyond that envisioned by the es-
timating team. One example of these performance
levels emerged during initial testing, 6 months into
the contract, and related to water tightness. It was
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discovered that the passenger doors were not suf-
ficiently watertight. Under extreme test conditions
a small (tiny puddle) amount of water appeared. The
customer demanded that there must be no ingress
of water, despite acknowledging that passengers ex-
periencing such weather would bring in more water
on themselves than the leakage.

The contractor argued that no train had ever met
these demands, citing that most manufacturers and
operators recognized that a small amount of wa-
ter would always ingress, and that all operators ac-
cepted this. Nevertheless the customer interpreted
the contract such that new methods and materials
had to be considered for sealing the openings. The
dialog became extremely combative and the con-
tractor was forced to redesign. An option was pre-
sented to the customer for their approval, one that
would have ramifications for the production pro-
cess. The customer, after many tests and after the
verdict of many external experts in the field, agreed
to the solution after several weeks. Not only were
many designs revisited and changed, with an im-
pact on other designs, but also the delays in resolu-
tion impacted the schedule well beyond any direct
consequences that could be tracked by the sched-
ule system (www.Primavera.com) or costs forecast-
ing system.

What is a Delay?

Delays are any events that will have an impact on the final
date for completion of the project. Delays in projects come
from a variety of sources. One common source is that of
the client-induced delay.Where there are contractual obli-
gations to comment upon documents, make approvals,
supply information or supply equipment, and the client is
late in these contractually-defined duties, then there may
be a client-induced delay to the expected delivery date (al-
though in many instances the delay is presumed to be ab-
sorbed by slack). But also a delay could be self-inflicted: if
the sub-assembly designed and built did not work, a delay
might be expected.

The different types of client-induced delays (approvals,
information, etc.) have different effects and implications.
Delays in client approval, in particular, are often ambigu-
ous contractually. A time to respond to approvals may not
have been properly set, or the expectations of what was
required within a set time may be ambiguous (for exam-
ple, in one project analyzed by the authors the clients had
to respond within n weeks – but this simply meant that
they sent back a drawing after n weeks with comments,

then after the drawing was modified, they sent back the
same drawing after a further m weeks with more com-
ments). Furthermore, excessive comments, or delays in
comments can cause chains of problems, impacting, for
example, on the document approval process with sub-con-
tractors, or causing over-load to the client’s document ap-
proval process.

If a delay occurs in a project, it is generally considered
relatively straightforward to cost. However, ramifications
resulting from delays are often not trivial either to under-
stand or to evaluate. Let us consider a delay only in terms
of the CPM (Critical PathMethod), the standard approach
for considering the effects of delays on a project [32]. The
consequences of the delay depend onwhether the activities
delayed are on the Critical Path. If they are on the Criti-
cal Path, or the delays are sufficient to cause the activities
to become on the critical path, it is conceptually easy to
compute the effect as an Extension Of Time (EOT) [33].
However, even in this case there are complicating issues.
For example; what is the effect on other projects being un-
dertaken by the contractor? When this is not the first de-
lay, then to which schedule does the term “critical path”
refer? To the original, planned programme, which has al-
ready been changed or disrupted, or to the “as built”, ac-
tual schedule? Opinions differ here. It is interesting to note
that, “the established procedure in the USA [of using as-
built CPM schedules for claims] is almost unheard of in
the UK” [33].

If the delay is not on the Critical Path then, still think-
ing in CPM terms, there are only indirect costs. For ex-
ample, the activities on the Critical Path are likely to be
resource dependent, and it is rarely easy to hire and fire at
will – so if non-critical activities are delayed, the project
may need to work on tasks in a non-optimal sequence to
keep the workforce occupied; this will usually imply mak-
ing guesses in engineering or production, requiring later
re-work, less productive work, stop/starts, workforce over-
crowding, and so on.

The following example, taken from a real project, illus-
trates the impact of a delay in client furnished information
to the project:

Project 2: A state of the art vessels project had
been commissioned which demanded not only the
contractor meeting a challenging design but ad-
ditionally incorporating new sophisticated equip-
ment. This equipment was being developed in an-
other country by a third party. The client had origi-
nally guaranteed that the information on the equip-
ment would be provided within the first fewmonths
of the contract – time enough for the information

http://www.Primavera.com
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to be integrated within the entire design. However
time passed and no detailed specifications were pro-
vided by the third party – despite continual requests
from the contractor to the client.

As the project had an aggressive time penalty the
contractor was forced to make a number of assump-
tions in order to keep the design process going.
Further difficulties emerged as information from
the third party trickled in demanding changes from
the emerging design. Finally manufacturing which
had been geared up according to the schedule were
forced to use whatever designs they could access in
order to start building the vessel.

Portfolio Effect of many Disruptions

It is not just the extent of the disruption or delay but the
number of them which may be of relevance. This is par-
ticularly the case when a large number of the disruptions
and/or delays impact immediately upon one another thus
causing a portfolio of changes. These portfolios of D&D
impacts result in effects that would probably not occur if
only one or two impacts had occurred. For example, the
combination of a large number of impacts might result in
overcrowding or having to work in poor weather condi-
tions (see example below). In these instances it is possible
to identify each individual item as a contributory cause of
extra work and delay but not easy to identify the combined
effect.

The following example, taken from another real
project, illustrates the impact of a series of disruptions to
the project:

Project 3: A large paper mill was to be extended
and modernized. The extension was given extra ur-
gency by new anti-pollution laws imposing a limit
on emissions being enacted with a strict deadline.

Although the project had started well, costs seemed
to be growing beyond anything that made sense
given the apparent minor nature of the disruptions.
Documents issued to the customer for ‘information
only’ were changed late in the process. The cus-
tomer insisted on benchmarking proven systems,
involving visits to sites working with experimen-
tal installations or installations operating under dif-
ferent conditions in various different countries. In
addition there were many changes of mind about
where equipment should be positioned and how
certain systems should work. Exacerbating these
events was the circumstance of both the customer’s
and contractor’s engineers being co-located, leading

to ‘endless’ discussions and meetings slowing the
rate of both design and (later) commissioning.

Relations with the customer, who was seen by
the contractor to be continually interfering with
progress of the project, were steadily deteriorating.
In addition, and in order to keep the construction
work going, drawings were released to the construc-
tion team before being fully agreed. This meant that
construction was done in a piecemeal fashion, of-
ten inefficiently (for example, scaffolding would be
put up for a job, then taken down so other work
could proceed, then put up in the same place to do
another task for which drawings subsequently had
been produced). As the construction timescale got
tighter and tighter, many more men were put on the
site than was efficient (considerable overcrowding
ensued) and so each task took longer than esti-
mated.

As a result the project was behind schedule, and, as
it involved a considerable amount of external con-
struction work, was vulnerable to being affected by
the weather. In the original project plan (as used for
the estimate) the outer shell (walls and roof) was
due to be completed by mid-Autumn. However, the
project manager now found himself undertaking the
initial construction of the walls and roofing in the
middle of winter! As chance would have it, the cold-
est winter for decades, which resulted in many days
being lost while it was too cold to work. The combi-
nation of the particularly vicious winter and many
interferences resulted in an unexpectedly huge in-
crease in both labour hours and overall delay. Over-
time payments (for design and construction work-
ers) escalated. The final overspend was over 40%
more than the original budget.

Consequences of Disruptions and Delays

Disruption and delay (D&D) is primarily the consequence
of interactions which feed on themselves as a result of an
initial disruption or delay or portfolio of disruptions and
delays. If an unexpected variation (or disruption) occurs
in a project then, if no intervention was to take place, a de-
livery delay would occur. In an attempt to avoid this sit-
uation, management may choose to take actions to pre-
vent the delay (and possible penalties). In implementing
these actions, side-effects can occur which cause further
disruptions. These disruptions then cause further delays
to the project. In order to avoid this situation, additional
managerial action is required. Thus, an initial disruption
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has led to a delay, which has led to a disruption, which
has led to a further delay. A positive feedback loop has
been formed, where both disruption and delay feed back
on themselves causing further disruptions and delays. Due
to the nature of feedback loops, a powerful vicious cycle
has been created which, if there is no alternative interven-
tion, can escalate with the potential of getting ‘out of con-
trol’. It is the dynamic behavior caused by these vicious cy-
cles which can cause severe disruption and consequential
delay in a project.

The dynamic behavior of the vicious cycles which are
responsible for much of the D&D in a project make the
costing of D&D very difficult. It is extremely difficult to
separate each of the vicious cycles and evaluate their in-
dividual cost. Due to the dynamic behavior of the inter-

Delay and Disruption in Complex Projects, Figure 2
Excerpt from a cause map showing some of the consequences of disruption and delay in Project 2. Boxed statements are specific
illustrations with statements underlined representing generic categories (e. g. changes of mind). Statements in bold text represent
the SD variables with the remainder providing additional context. All links are causal however those in bold illustrate sections of
a feedback loop. The numbers at the beginning of concept are used as reference numbers in the model

actions between vicious cycles, the cost of two individual
cycles will escalate when they interact with one another,
thus disruptions have to be costed as part of a portfolio of
disruptions.

Returning to Project 2, the vessel case, as can be
seen in Fig. 2, the client caused both disruptions (con-
tinuous changes of mind) and delays (late permission to
use a particular product). Both of these caused the con-
tractor to undertake rework, and struggle with achiev-
ing a frozen (fixed) design. These consequences in turn
impacted upon staff morale and also developed as noted
above dynamic behavior – where rework resulted in more
submissions of designs, which led to further comments,
some of which were inconsistent and therefore led to fur-
ther rework. As mentioned in the introduction, the rework
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cycle [17,18,19,20,21] can be a major driver of escalating
feedback within a complex project.

Managerial Actions and the Consequences of D&D

The acceleration of disrupted projects to avoid overall
project delays is common practice by managers who are
under pressure from the client and/or their own senior
management to deliver on time. However, the belief that
this action will always help avoid delays is naive as it does
not take into account an appreciation of the future conse-
quences that can be faced. For example, one typical action
designed to accelerate a project is to hire new staff. In do-
ing so, some of the difficulties which may follow are:

� New staff take time to become acquainted with both the
project and thus their productivity is lower than that of
an existing skilled worker.

� New staff require training on the project and this will
have an impact on the productivity of existing staff.

� Rather than hiring new staff to the organization, staff
may be moved from other parts of the organization.
This action results in costs to other projects as the other
project is short of staff and so may have to hire work-
ers from elsewhere, thereby sufferingmany of the prob-
lems discussed above.

Many of the outcomes of this action and other similar ac-
tions can lead to a reduction in expected productivity lev-
els. Low productivity is a further disruption to the project
through a lack of expected progress. If management iden-
tifies this lack of progress, then further managerial actions
may be taken in an attempt to avoid a further delay in de-
livery. These actions often lead to more disruptions, rein-
forcing the feedback loop that had been set up by the first
actions.

Two other common managerial actions taken to avoid
the impact of a disruption on delivery are (i) the use
of overtime and (ii) placing pressure on staff in an at-
tempt to increase work rate. Both of these actions can also
have detrimental effects on staff productivity once they
have reached particular levels. Although these actions are
used to increase productivity levels, effects on fatigue and
morale can actually lead to a lowering of productivity via
a slower rate of work and/or additional work to be com-
pleted due to increased levels of rework [21,34]. This low-
ering of productivity causes a delay through lack of ex-
pected progress on the project, causing a further delay
to delivery. Management may then attempt to avoid this
by taking other actions which in turn cause a disruption
which again reinforces the feedback loop that has been set
up.

Analyzing D&D and Project Behavior

The above discussion has shown that whilst D&D is a se-
rious aspect of project management, it is a complicated
phenomenon to understand. A single or a series of disrup-
tions or delays can lead to significant impacts on a project
which cannot be easily thought through due to human
difficulties in identifying and thinking through feedback
loops [26,35]. This makes the analysis of D&D and the re-
sulting project behavior particularly difficult to explain.

SDmodeling hasmade a significant contribution to in-
creasing our understanding of why projects behave in the
way they do and in quantifying effects. There are two situ-
ations in which this is valuable: the claim situation, where
one side of the party is trying to explain the project’s be-
havior to the other (and, usually, why the actions of the
other party has caused the project to behave in the way it
has) and the post-project situation, where an organization
is trying to learn lessons from the experience of a project.
In the case of a claim situation, although it has been shown
that SD modeling can meet criteria for admissibility to
court [36], there are a number of objectives which SD, or
any modeling method, would need to address [37]. These
include the following:

1. Prove causality – show what events triggered the D&D
and how the triggers of D&D caused time and cost
overruns on the project.

2. Prove the ‘quantum’ – show that the events that caused
D&D created a specific time and cost over-run in the
project. Therefore, there is a need to replicate over time
the hours of work due to D&D that were over-and-
above those that were contracted, but were required to
carry out the project.

3. Prove responsibility – show that the defendant was
responsible for the outcomes of the project. Also to
demonstrate the extent to which plaintiff’s manage-
ment of the project was reasonable and the extent that
overruns could not have been reasonably avoided.

4. All of the above have to be proved in a way which will
be convincing to the several stakeholders in a litigation
audience.

Over the last 12 years the authors have developed a model
building process that aims to meet each of these purposes.
This process involves constructing qualitative models to
aid the process of building the ‘case’ and thus help to prove
causality and responsibility (purposes 1 and 3). In addi-
tion, quantitative system dynamics models are involved in
order to help to prove the quantum (purpose 2). However,
most importantly, the process provides a structured, trans-
parent, formalized process from “real world” interviews to
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resulting output which enablesmultiple audiences, includ-
ing multiple non-experts as well as scientific/expert au-
diences to appreciate the validity of the models and thus
gain confidence in these models and the consulting pro-
cess in which they are embedded (purpose 4). The process
is called the ‘Cascade Model Building Process’. The next
section describes the different stages of the model building
process and some of the advantages of using the process.

CascadeModel Building Process

(The following contains excerpts from Howick et al. [38],
which contains a full description of the Cascade Model
Building process).

The ‘Cascade Model Building Process’ involves four
stages (see Fig. 3) each of which are described below.

Stage 1: Qualitative Cognitive and Cause Map

The qualitative cognitive maps and /or project cause map
aim to capture the key events that occurred on the project,
for example a delay as noted above in the vessel example in
Project 2. The process of initial elicitation of these events

Delay and Disruption in Complex Projects, Figure 3
The CascadeModel Building Process

can be achieved in two ways. One option is to interview,
and construct cognitive maps [39,40,41] for each partici-
pant’s views. Here the aim is to gain a deep and rich un-
derstanding that taps the wealth of knowledge of each in-
dividual. These maps act as a preface to getting the group
together to review and assess the total content represented
as amerged causemap [42] in a workshop setting. The sec-
ond option is to undertake group workshops where partic-
ipants can contribute directly, anonymously and simulta-
neously, to the construction of a cause map. The partici-
pants are able to ‘piggy back’ off one another, triggering
new memories, challenging views and developing to-
gether a comprehensive overview [43]. As contributions
from one participant are captured and structured to form
a causal chain, this process triggers thoughts from others
and as a result a comprehensive view begins to unfold. In
Project 1, this allowed the relevant design engineers (not
just those whose responsibility was the water tight doors,
but also those affected who were dealing with car-body
structure, ventilation, etc.), methods personnel and con-
struction managers to surface a comprehensive view of the
different events and consequences that emerged.
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The continual development of the qualitative model,
sometimes over a number of group workshops, engenders
clarity of thought predominantly through its adherence to
the coding formalisms used for causemapping [44]. Mem-
bers of the group are able to debate and consider the im-
pact of contributions on one another. Through bringing
the different views together it is also possible to check for
coherency – do all the views fit together or are there in-
consistencies? This is not uncommon as different parts
of the organizations (including different discipline groups
within a division e. g. engineering) encounter particular ef-
fects. For example, during an engineering project, man-
ufacturing can often find themselves bewildered by engi-
neering processes – why are designs so late. However, the
first stage of the cascade process enables the views from
engineering, methods,manufacturing, commissioning etc.
to be integrated. Arguments are tightened as a result, in-
consistencies identified and resolved and detailed audits
(through analysis and features in the modeling software)

Delay and Disruption in Complex Projects, Figure 4
Excerpt from a cause map showing some of the conversations regarding the water ingress situation in Project 1. As with Fig. 2,
statements that have borders are the illustrations, those with bold font represent variables with the remainder detailing context.
Dotted arrows denote the existence of further material which can be revealed at anytime

undertaken to ensure consistency between both modeling
team and model audience. In some instances the docu-
ments generated through reports about the organizational
situation can be coded into a cause map and merged into
the interview and workshop material [45].

The causemap developed at this stage is usually large –
containing up to 1000 nodes. Computer supported analy-
sis of the causal map can inform further discussion. For
example, it can reveal those aspects of causality that are
central to understanding what happened. Events that have
multiple consequences for important outcomes can be de-
tected. Feedback loops can be identified and examined.
The use of software facilitates the identification of some-
times complex but important feedback loops that follow
from the holistic view that arises from the merging of ex-
pertise and experience across many disciplines within the
organization.

The resulting cause map from stage 1 can be of par-
ticular use in proving causality. For example, Fig. 4 repre-
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sents some of the conversations made regarding the wa-
ter ingress situation described in the above case. In this
figure, consequences such as additional engineering effort
and engineering delays can be traced back to events such
as client found water seeping out of door.

Stage 2: Cause Map to Influence Diagram

The causal model produced from stage 1 is typically very
extensive. This extensiveness requires that a process of ‘fil-
tering’ or ‘reducing’ the content be undertaken – leading to
the development of an Influence Diagram (ID) (the second
step of the cascade process). Partly this is due to the fact
that many of the statements captured whilst enabling a de-
tailed and thorough understanding of the project, are not
relevant when building the SD model in stage 4 (as a result
of the statements being of a commentary like nature rather
than a discrete variable). Another reason is that for the
most part SD models comprise fewer variables/auxiliaries
to help manage the complexity (necessary for good mod-
eling as well as comprehension).

The steps involved in moving from a cause map to an
ID are as follows:

Step 1: Determining the core/endogenous variables of
the ID

(i) Identification of feedback loops: It is not uncom-
mon to find over 100 of these (many of these may
contain a large percentage of common variables)
when working on large projects with contribu-
tions from all phases of the project.

(ii) Analysis of feedback loops: Once the feedback
loops have been detected they are scrutinized to
determine a) whether there are nested feedback
‘bundles’ and b) whether they traverse more than
one stage of the project. Nested feedback loops
comprise a number of feedback loops around
a particular topic where a large number of the vari-
ables/statements are common but with variations
in the formulation of the feedback loop. Once de-
tected, those statements that appear in the most
number of the nested feedback loops are identified
as they provide core variables in the ID model.

Where feedback loops straddle different stages of the
process for example from engineering to manufac-
turing note is taken. Particularly interesting is where
a feedback loop appears in one of the later stages of the
project e. g. commissioning which links back to engi-
neering. Here care must be taken to avoid chronologi-
cal inconsistencies – it is easy to link extra engineering

hours into the existing engineering variable however
by the time commissioning discover problems in en-
gineering, the majority if not all engineering effort has
been completed.

Step 2: Identifying the triggers/exogenous variables for
the ID The next stage of the analysis is to look for trig-

gers – those statements that form the exogenous vari-
ables in the ID. Two forms of analysis provide clues
which can subsequently be confirmed by the group:

(i) The first analysis focuses on starting at the end of
the chains of argument (the tails) and laddering up
(following the chain of argument) until a branch
point appears (two or more consequences). Often
statements at the bottom of a chain of argument
are examples which when explored further lead
to a particular behavior e. g. delay in information,
which provides insights into the triggers.

(ii) The initial set of triggers created by (i) can be con-
firmed through a second type of analysis – one
which takes two different means of examining the
model structure for those statements that are cen-
tral or busy. Once these are identified they can be
examined in more detail through creating hierar-
chical sets based upon them and thus “tear drops”
of their content. Each of these teardrops is exam-
ined as possible triggers.

Step 3: Checking the ID Once the triggers and the feed-
back loops are identified care is taken to avoid dou-
ble counting – where one trigger has multiple conse-
quences some care must be exercised in case the mul-
tiple consequences are simple replications of one an-
other.

The resulting ID is comparable to a ‘causal loop dia-
gram’ [46] which is often used as a pre-cursor to a SD
model. From the ID structure it is possible to create “sto-
ries” where a particular example triggers an endogenous
variable which illustrates the dynamic behavior experi-
enced.

Stage 3: Influence Diagram to System Dynamics
Influence Diagram (SDID)

When a SD model is typically constructed after produc-
ing a qualitative model such as an ID (or causal loop di-
agram), the modeler determines which of the variables in
the ID should form the stocks and flows in the SD model,
then uses the rest of the ID to determine the main rela-
tionships that should be included in the SD model. How-
ever when building the SD model there will be additional
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Delay and Disruption in Complex Projects, Figure 5
A small section of an ID from Project 2 showing mitigating actions (italics), triggers (underline) and some of the feedback cycles

variables/constants that will need to be included in order
to make it ‘work’ that were not required when capturing
the main dynamic relationships in the ID. The SDID is an
influence diagram that includes all stocks, flows and vari-
ables that will appear in the SD model and is, therefore
a qualitative version of the SD model. It provides a clear
link between the ID and the SD model.

The SDID is therefore far more detailed than the ID
and other qualitativemodels normally used as a pre-cursor
to a SD model.

Methods have been proposed to automate the for-
mulation of a SD model from a qualitative model such
as a causal loop diagram [47,48,49] and for understand-
ing the underlying structure of a SD model [50]. How-
ever, these methods do not allow for the degree of trans-
parency required to enable the range of audiences involved
in a claim situation, or indeed as part of an organiza-
tional learning experience, to follow the transition from
onemodel to the next. The SDID provides an intermediary
step between an ID and a SD model to enhance the trans-
parency of the transition from one model to another for
the audiences. This supports an auditable trail from one
model to the next.

The approach used to construct the SDID is as follows:
The SDID is initially created in parallel with the SDmodel.

As a modeler considers how to translate an ID into a SD
model, the SDID provides an intermediary step. For each
variable in the ID, the modeler can do either of the follow-
ing:

(i) Create one variable in the SD & SDID: If the modeler
wishes to include the variable as one variable in the SD
model, then the variable is simply recorded in both the
SDID and the SD model as it appears in the ID.

(ii) Create multiple variables in the SD & SDID: To en-
able proper quantification of the variable, additional
variables need to be created in the SD model. These
variables are then recorded in both the SD model and
SDIDwith appropriate links in the SDIDwhich reflect
the structure created in the SD model.

The SDID model forces all qualitative ideas to be placed in
a format ready for quantification. However, if the ideas are
not amenable to quantification or contradict one another,
then this step is not possible. As a result of this process,
a number of issues typically emerge including the need to
add links and statements and the ability to assess the over-
all profile of the model though examining the impact of
particular categories on the overall model structure. This
process can also translate back into the causal model or ID
model to reflect the increased understanding.
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Delay and Disruption in Complex Projects, Figure 6
Section of an ID fromProject 1 showing the factors affecting pro-
ductivity

Stage 4: The System Dynamics Simulation Model

The process of quantifying SD model variables can be
a challenge, particularly as it is difficult to justify subjec-
tive estimates of higher-level concepts such as “produc-
tivity” [51]. However, moving up the cascade reveals the
causal structure behind such concepts and allows quan-
tification at a level that is appropriate to the data-collec-
tion opportunities available. Figure 6, taken from the ID
for Project 1, provides an example. The quantitative model
will require a variable “productivity” or “morale”, and the
analyst will require estimation of the relationship between
it and its exogenous and (particularly) endogenous causal
factors. But while the higher-level concept is essential to
the quantitative model, simply presenting it to the project
team for estimation would not facilitate justifiable esti-
mates of these relationships.

Reversing the Cascade

The approach of moving from stage 1 through to stage 4
can increase understanding and stimulate learning for all
parties. However, the process of moving back up the cas-
cade can also facilitate understanding between the parties.
For example, in Fig. 7 the idea that a company was forced
to use subcontractors and thus lost productivity might be
a key part of a case for lawyers. The lawyers and the project
team might have come at Fig. 7 as part of their construc-
tion of the case. Moving back up from the ID to the Cause
Map (i. e. Fig. 7 to Fig. 8) as part of a facilitated discus-
sion not only helps the parties to come to an agreed def-
inition of the (often quite ill-defined) terms involved, it
also helps the lawyers understand how the project team ar-
rived at the estimate of the degree of the relationship. Hav-
ing established the relationship, moving through the SDID
(ensuring well-defined variables etc.) to the SD model en-

Delay and Disruption in Complex Projects, Figure 7
Section of an ID fromProject 1 indicating the influence of the use
of subcontractors on productivity

ables the analysts to test the relationships to see whether
any contradictions arise, or if model behaviors are signifi-
cantly different from actuality, and it enables comparison
of the variables with data that might be collected by (say)
cost accountants. Where there are differences or contra-
dictions, the ID can be re-inspected and if necessary the
team presented with the effect of the relationship within
the SD model explained using the ID, so that the ID and
the supporting cause maps can be re-examined to identify
the flaws or gaps in the reasoning. Thus, in this example, as
simulation modelers, cost accountants, lawyers and engi-
neers approach the different levels of abstraction, the cas-
cade process provides a unifying structure within which
they can communicate, understand each other, and equate
terms in each others discourse.

Advantages of the Cascade

The Cascade integrates a well-established method, cause
mapping, with SD. This integration results in a number
of important advantages for modeling to explain project
behavior:

Achieving Comprehensiveness Our experience sug-
gests that one of the principal benefits of using the cascade
process derives from the added value gained through de-
veloping a rich and elaborated qualitative model that pro-
vides the structure (in a formalized manner) for the quan-
titative modeling. The cascade process immerses users in
the richness and subtlety that surrounds their view of the
projects and ensures involvement and ownership of all of
the qualitative and quantitative models. The comprehen-
siveness leads to a better understanding of what occurred,
which is important due to the complex nature of D&D,
and enables effective conversations to take place across dif-
ferent organizational disciplines.

The process triggers new contributions as memories
are stimulated and both new material and new connec-
tions are revealed. The resultant models thus act as or-
ganizational memories providing useful insights into fu-
ture project management (both in relation to bids and im-
plementation). These models provide more richness and
therefore an increased organizational memory when com-
pared to the traditional methods used in group model
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Delay and Disruption in Complex Projects, Figure 8
Section of a CauseMap from Project 1 explaining the relationship between the use of subcontractors and productivity

building for system dynamics models (for example [52]).
However this outcome is not untypical of other problem
structuring methods [53].

Testing the Veracity of Multiple Perspectives The cas-
cade’s bi-directionality enabled the project team’s under-
standings to be tested both numerically and from the per-
spective of the coherency of the systemic portrayal of logic.
By populating the initial quantitative model with data [10]
rigorous checks of the validity of assertions were possible.

In a claim situation, blame can be the fear of those par-
ticipating in accounting for history and often restricts con-
tributions [44]. When initiating the cascade process, the
use of either interviews or group workshops increases the
probability that the modeling team will uncover the rich
story rather than partial explanations or as is often the
case with highly politicized situations, ‘sanitized’ explana-
tions. By starting with ‘concrete’ events that can be veri-
fied, and exploring their multiple consequences, the resul-
tant model provides the means to reveal and explore the
different experiences of various stakeholders in the project.

Modeling Transparency By concentrating the qualita-
tive modeling efforts on the capture and structuring of
multiple experiences and viewpoints the cascade process
initially uses natural language and rich description as the
medium which facilitates generation of views and enables
a more transparent record to be attained.

There are often insightful moments as participants
viewing the whole picture realize that the project is more
complex than they thought. This realization results in two
advantages. The first is a sense of relief that they did not
act incompetently given the circumstances i. e. the conse-

quences of D&D took over – which in turn instills an at-
mosphere more conducive to openness and comprehen-
siveness (see [44]). The second is learning – understand-
ing the whole, the myriad and interacting consequences
and in particular the dynamic effects that occurred on the
project (that often acts in a counter-intuitive manner) pro-
vides lessons for future projects.

Common Understanding Across many Audiences
Claim situations involve numerous stakeholders, with
varying backgrounds. The cascade process promotes own-
ership of the models from this mixed audience. For exam-
ple, lawyers are more convinced by the detailed qualitative
argument presented in the cause map (stage 1) and find
this part of greatest utility and hence engage with this
element of the cascade. However, engineers get more in-
volved in the construction of the quantitative model and
evaluating the data encompassed within it.

A large, detailed system dynamics model can be ex-
tremely difficult to understand for many of the stakehold-
ers in a claim process [54]. However, the rich qualitative
maps developed as part of the cascade method are pre-
sented in terms which are easier for people with no model-
ing experience to understand. In addition, by moving back
up the cascade, the dynamic results that are output by the
simulation model are given a grounding in the key events
of the project, enabling the audience to be given fuller ex-
planations and reasons for the D&D that occurred on the
project.

Using the cascademethod, any structure or parameters
that are contained in the simulation model can be easily,
and quickly, traced back to information gathered as a part
of creating the cognitive maps or cause maps. Each contri-
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bution in these maps can then normally be traced to an in-
dividual witness who could defend that detail in themodel.
This auditable trail can aid the process of explaining the
model and refuting any attacks made on the model.

Clarity The step-by-step process forces the modeler to
be clear in what statements mean. Any illogical or incon-
sistent statements highlighted, require the previous stage
to be revisited and meanings clarified, or inconsistencies
cleared up. This results in clear, logical models.

Confidence Building As a part of gaining overall con-
fidence in a model, any audience for the model will wish
to have confidence in the structure of the model (for ex-
ample [55,56,57,58]). When assessing confidence levels in
a part of the structure of a SD model, the cascade process
enables anymember of the ‘client’ audience to clearly trace
the structure of the SD model directly to the initial natural
language views and beliefs provided from individual inter-
views or group sessions.

Scenarios are also an important test in which the con-
fidence of the project team in the model can be consid-
erably strengthened. Simulation is subject to the demands
to reproduce scenarios that are recognizable to the man-
agers capturing a portfolio of meaningful circumstances
that occur at the same time, including many qualitative
aspects such as morale levels. For example, if a particular
time-point during the quantitative simulation is selected,
clearly the simulated values of all the variables, and in par-
ticular the relative contributions of factors in each rela-
tionship, can be output from the model. If we consider
Fig. 6, the simulation might show that at a particular point
in a project, loss of productivity is 26% and that the loss
due to:

“Use of subcontractors” is 5%.

“Difficulty due to lack of basic design freeze” is 9%.

“Performing design work out of order” is 3%.
“loss of morale” is 5%.

“overtime” is 4%.

Asking the project team their estimates of loss of produc-
tivity at this point in time, and their estimation of the rela-
tive contribution of these five factors, will help to validate
the model. In most cases this loss level is best captured by
plotting the relative levels of productivity against the time
of critical incidents during the life the project. Discussion
around this estimation might reveal unease with the sim-
ple model described in Fig. 6, which will enable discussion
around the ID and the underlying cause map, either to val-
idate the agreed model, or possibly to modify it and return

up the cascade to further refine the model. In this scenario,
validation of the cascade process provides a unifying struc-
ture within which the various audiences can communicate
and understand each other.

The Cascade Model Building Process provides a rigor-
ous approach to explaining why a project has behaved in
a certain way. The cascade uses rich, qualitative stories to
give a grounding in the key events that drive the behavior
of the project. In addition, it provides a quantifiable struc-
ture that allows the over time dynamics of the project to be
described. The Cascade has therefore contributed signifi-
cantly in understanding why projects behave in the way
they do.

This chapter has focused on the role of SDmodeling in
explaining the behavior of complex projects. The final two
sections will consider the implications of this work and
will explore potential future directions for the use of SD
modeling of projects.

Implications for Development

So what is the current status of SD modeling of projects?
What is the research agenda for studying projects using
SD? Below we consider each aspect of the project life-cycle
in turn, to suggest areas where SD modeling may be ap-
plied, and to consider where further work is needed.

The first area is pre-project risk analysis. Risk analy-
sis traditionally looks at risks individually, but looking at
the systemicity in risks has clear advantages [59]. Firstly,
the use of cause mapping techniques by an experienced
facilitator, aided by software tools, is a powerful means
of drawing out knowledge of project risk from an indi-
vidual manager (or group of managers), enhancing clar-
ity of thought, allowing investigation of the interactions
between risks, and enhancing creativity. It is particularly
valuable when used with groups, bringing out interactions
between the managers and helping to surface cultural dif-
ferences. And it clearly enables analysis of the systemicity,
in particular identification of feedback dynamics, which
can help explicate project dynamics in the ways discussed
above. The influence of such work has led to the ideas of
causemaps, influence diagrams and SD to be included into
risk practice standard advice (the UK “PRAM” Guide, edi-
tion 2 [60] – absent from Edition 1). In one key exam-
ple [31], the work described above enabled the team to de-
velop a ‘Risk Filter’ in a large multi-national project-based
organization, for identifying areas of risk exposure on fu-
ture projects and creating a framework for their investiga-
tion. The team reviewed the system after a few years; it had
been used by 9 divisions, on over 60 major projects, and
completed by 450 respondents; and it was used at several
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stages during the life of a project to aid in the risk assess-
ment and contribute to a project database. The system al-
lowed investigation of the interactions between risks, and
so encouraged the management of the causality of rela-
tionships between risks, rather than just risks, thus focus-
ing attention on those risks and causality that create the
most frightening ramifications on clusters of risks, as a sys-
tem, rather than single items. This also encouraged con-
versations about risk mitigation across disciplines within
the organization. Clearly cause mapping is useful in risk
analysis, but there are a number of research questions that
follow, for example:

� In looking at possible risk scenarios, what are appro-
priate methodologies to organize and facilitate hetero-
geneous groups of managers? And how technically can
knowledge of systemicity and scenarios be gathered
into one integrated SDmodel and enhance understand-
ing? [61]

� How can SD models of possible scenarios be populated
to identify key risks? How does the modeling cascade
help in forward-looking analysis?

� There are many attempts to use Monte-Carlo simula-
tion to model projects, without taking the systemic is-
sues into account – leading to models which can be se-
riously misleading [62]. SD models can give a much
more realistic account of the effect of risks – but how
can essentially deterministic SD models as described
above be integrated into a stochastic framework to un-
dertake probabilistic risk analyzes of projects which ac-
knowledges the systemicity between the risks and the
systemic effects of each risk?

� The use of SD is able to identify structures which give
projects a propensity for the catastrophic systemic ef-
fects discussed in the Introduction. In particular, the
three dimensions of structural complexity, uncertainty,
and severe time-limitation in projects can combine to-
gether to cause significant positive feedback. However,
defining metrics for such dimensions still remains an
important open question. While a little work has been
undertaken to give operational measures to the first of
these (for example [63,64]), and deMeyer et al. [65] and
Shenhar and Dvir [66] suggest selecting the manage-
ment strategy based on such parameters, there has been
little success so far in quantifying these attributes. The
use of the SDmodels discussed above needs to be devel-
oped to a point where a project can be parametrized to
give quantitatively its propensity for positive feedback.

� Finally, SD modeling shows that the effects of indi-
vidual risks can be considerably greater than intuition
would indicate, and the effects of clusters of risks par-

ticularly so. How can this be quantified so that risks or
groups of risks can be ranked in importance to provide
prioritization to managers? Again, Howick et al. [61]
gives some initial indications here, but more work is
needed.

The use of SD in operational control of projects has been
less prevalent (Lyneis et al., [12] refers to and discusses ex-
amples of where it has been used). For a variety of reasons,
SD and the traditional project management approach do
not match well together. Traditional project-management
tools look at the project in its decomposed pieces in
a structured way (networks, work breakdown structures,
etc.); they look at operational management problems at
a detailed level; SD models aggregate into a higher strate-
gic level and look at the underlying structure and feed-
back. Rodrigues andWilliams [67] describe one attempt at
an integrated methodology, but there is scope for research
into howwork with the SD paradigm can contribute to op-
erational management of projects, and Williams [68] pro-
vides some suggestions for hybrid methods.

There is also a more fundamental reasonwhy SDmod-
els do not fit in easily into conventional project manage-
ment. Current project management practice and discourse
is dominated by the “Bodies of Knowledge” or BoKs [69],
which professional project management bodies consider
to be the core knowledge of managing projects [1,70], pre-
senting sets of normative procedures which appear to be
self-evidently correct. However, there are three underlying
assumptions to this discourse [71].

� Project Management is self-evidently correct: it is ra-
tionalist [72] and normative [73].

� The ontological stance is effectively positivist [74].
� Project management is particularly concerned with

managing scope in individual parts [75].

These three assumptions lead to three particular emphases
in current project management discourse and thus in the
BoKs [71]:

� A heavy emphasis on planning [73,76].
� An implication of a very conventional control mod-

el [77].
� Project management is generally decoupled from the

environment [78].

The SD modeling work provided explanations for why
some projects severely over-run, which clash with these as-
sumptions of the current dominant project management
discourse.

� Unlike the third assumption, the SD models show be-
havior arising from the complex interactions of the
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various parts of the project, which would not be pre-
dicted from an analysis of the individual parts of the
project [79].

� Against the first assumption, the SD models show
project behavior which is complex and non-intuitive,
with feedback exacerbated through management re-
sponse to project perturbations, conventional methods
provide unhelpful or even disbeneficial advice and are
not necessarily self-evidently correct.

� The second assumption is also challenged. Firstly, the
models differ from the BoKs in their emphasis on, or
inclusion of, “soft” factors, often important links in the
chains of causality. Secondly, they show that the mod-
els need to incorporate not only “real” data but man-
agement perceptions of data and to capture the socially
constructed nature of “reality” in a project.

The SDmodels tell us why failures occur in projects which
exhibit complexity [63] – that is, when they combine struc-
tural complexity [80] – many parts in complex combi-
nations – and uncertainty, in project goals and in the
means to achieve those goals [81]. Goal uncertainty in
particular is lacking in the conventional project manage-
ment discourse [74,82], and it is when uncertainty affects
a structurally complex traditionally-managed project that
the systemic effects discussed above start to occur. But
there is a third factor identified in the SD modeling. Fre-
quently, events arise that compromise the plan at a faster
rate than that at which it is practical to re-plan. When
the project is heavily time-constrained, the project man-
ager feels forced to take acceleration actions. A structurally
complex project when perturbed by external uncertainties
can become unstable and difficult to manage, and under
time-constraints dictating acceleration actions whenman-
agement has to make very fast and sometimes very many
decisions, the catastrophic over-runs described above can
occur. Work from different direction seeking to estab-
lish characteristics that cause complexity projects come
up with similar characteristics (for example [66]). But the
SD modeling explains how the tightness of the time-con-
straints strengthen the power of the feedback loops which
means that small problems or uncertainties can cause un-
expectedly large effects; it also shows how the type of un-
der-specification identified by Flyvberg et al. [4] brings
what is sometimes called “double jeopardy” – under-es-
timation (when the estimate is elevated to the status of
a project control-budget) which leads to acceleration ac-
tions that then cause feedback which causes much greater
over-spend than the degree of under-estimation.

Because of this, the greatest contribution that SD has
made – and perhaps can make – is to increase our under-

standing of why projects behave in the way they do. There
are two situations in which this is valuable: the claim situ-
ation, where one side of the party is trying to explain the
project’s behavior to the others (and, usually, why the ac-
tions of the other party has caused the project to behave
in the way it has) and the post-project situation, where an
organization is trying to learn lessons from the experience
of a project.

The bulk of the work referred to in this chapter comes
in the first of these, the claim situation. However, while
these have proved popular amongst SD modelers, they
have not necessarily found universal acceptance amongst
the practicing project-management community. Work is
needed therefore in a number of directions. These will be
discussed in the next section.

Future Directions

We have already discussed the difficulty that various audi-
ences can have in comprehending a large, detailed system
dynamics model [54], and that gradual explanations that
can be given by working down (and back up) the cascade
to bring understanding to a heterogeneous group (which
might include jurors, lawyers, engineers and so on) and so
link the SD model to key events in the project. While this
is clearly effective, more work is needed to investigate the
use of the cascade. In particular, ways in which the cas-
cade can be most effective in promoting understanding, in
formalizing the methodology and the various techniques
mentioned above to make it replicable, as well as how best
to use SD here (Howick [54] outlines nine particular chal-
lenges the SD modeler faces in such situations). Having
said this, it is still the case that many forums in which
claims are made are very set in conventional project-man-
agement thinking, and we need to investigate more how
the SD methods can be combined with more traditional
methods synergistically, so that each supports the other
(see for example [83]).

Significant unrealized potential of thesemethodologies
are to be found in the post-project “lessons learned” sit-
uation. Research has shown many problems in learning
generic lessons that can be extrapolated to other projects,
such as getting to the root causes of problems in projects,
seeing the underlying systemicity, and understanding the
narratives around project events (Williams [84], which
gives an extensive bibliography in the area). Clearly, the
modeling cascade, working from the messiness of individ-
ual perceptions of the situation to an SD model, can help
in these areas. The first part of the process (Fig. 3), work-
ing through to the cause map, has been shown to enhance
understanding in many cases; for example, Robertson and
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Williams [85] describe a case in an insurance firm, and
Williams [62] gives an example of a project in an elec-
tronics firm, where the methodology was used very “quick
and dirty” but still gave increased understanding of why
a (in that case successful) project turned out as it did, with
some pointers to lessons learned about the process. How-
ever, as well as formalization of this part of the method-
ology and research into the most effective ways of bring-
ing groups together to form cause maps, more clarity is
required as to how far down the cascade to go and the ad-
ditional benefits that the SDmodeling brings. “Stage 4” de-
scribes the need to look at quantification at a level that is
appropriate to the data-collection opportunities available,
and theremight perhaps be scope for SDmodels of parts of
the process explaining particular aspects of the outcomes.
Attempts to describe the behavior of the whole project at
a detailed level may only be suitable for the claims situ-
ation; there needs to be research into what is needed in
terms of Stages 3 and 4 for gaining lessons from projects
(or, if these Stages are not carried out, how the benefits
such as enhanced clarity and validity using the causemaps,
can be gained).

One idea for learning lessons from projects used by the
authors, following the idea of simulation “learning labs”,
was to incorporate learning from a number of projects un-
dertaken by one particular large manufacturer into a sim-
ulation learning “game” [25]. Over a period of 7 years, sev-
eral hundred Presidents, Vice-Presidents, Directors and
Project Managers from around the company used the sim-
ulation tool as a part of a series of seniormanagement sem-
inars, where it promoted discussion around the experience
and the effects encountered, and encouraged considera-
tion of potential long-term consequences of decisions, en-
abling cause and effect relationships and feedback loops to
be formed from participants’ experiences. More research
is required here as to how such learning can be made most
effective.

SD modeling has brought a new view to project man-
agement, enabling understanding of the behavior of com-
plex projects that was not accessible with other methods.
The chapter has described methodology for where SD has
been used in this domain. This last part of the chapter has
looked forward to a research agenda into how the SD work
needs to be developed to bring greater benefits within the
project-management community.
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Glossary

Adopters The cumulated number of persons who have
bought a product over time.

Diffusion The spread of a new product, process or con-
cept in the market. The process of bringing innovation
into wide use.

Invention The process of bringing new technology into
being.

Innovator A customer with general interest in innova-
tions making his buying decision independent of oth-
ers.

Innovation The process of bringing new technology into
use.

Installed base Installed base is defined as the amount of
users in a network system.

Imitator An imitator buy a new product because he ob-
served or communicated with customers who have al-
ready bought the product. The buying decision of imi-
tators is influenced by the adoption of other customers.

Network effects A product is characterized by a network
effect, if the utility of that product is a function of the
installed base. The utility increases with the installed
base.

Definition of the Subject

The article describes how system dynamics-based models
can contribute to the understanding and improved man-
agement of the diffusion of innovations. It emphasizes

the importance of an integrated feedback-oriented view
of the different stages of innovation processes. The aim
is to generate insight in the complexity and the dynam-
ics of innovation processes. Based on the classical Bass
model of innovation diffusion, the system dynamics per-
spective is introduced. In a systematic approach several
structures to model the complexity and dynamics of man-
agerial decision-making in the context of the diffusion
of innovation are described and analyzed. Aspects cov-
ered consider market structure, network externalities, dy-
namic pricing, manufacturing related decisions and the
link between research and development and the diffusion
of a new product in themarket place. The article concludes
with managerial implications.

Introduction

Continuous activities to renew a company’s range of prod-
ucts are crucial for the survival in a competitive envi-
ronment. However, to improve the competitive position
or the competitive advantage, ongoing innovation activity
through the development, test, and introduction of new
products is necessary. At least since the 1970s, it could be
observed that new and technically more complex and so-
phisticated products have to be developed in a shorter time
span. Resources have to be allocated to research and devel-
opment (R&D) projects that are expected to be economi-
cally successful. New products have to be introduced to
global markets with severe competition. Decisions about
the adequate time to market and appropriate pricing, ad-
vertising, and quality strategies have to be made.

The complexity and difficulties to manage innovation
activities partly derive from the comprehensiveness of the
innovation processes. To be competitive, companies have
to be successful in all stages of the innovation process, i. e.,
the process of invention, innovation, and diffusion. This
becomes obvious when new product failure rates and in-
novation costs are analyzed. Figure 1 illustrates the cas-
cading process of innovation activity and the related inno-
vation costs.

For one successful new product in the market place, 64
promising ideas must be channeled through the process
of invention and innovation. The cost at each stage of the
invention and innovation process increases from a $1000
to $5 million per attempt. Not only is failure more expen-
sive in later stages – which requires an effective manage-
ment to reduce the failure rates – successful new products
have to earn all necessary resources for the whole process.
This requires the following: (1) to manage R&D projects
and processes effectively and efficiently – including thor-
ough and educated assessment of the economic potential
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Outcome of activities along the process of invention and innovation

of a new product – to reduce failure rates in later stages and
(2) to increase management attention in the final stages
since failures in late stages of the process are much more
expensive.

Models of innovation diffusion can support the com-
plex and highly dynamic tasks. The article will briefly ex-
amine how system dynamics-based analysis of innovation
diffusion can contribute to the understanding of the struc-
tures and forces driving the processes of innovation and
diffusion. It will show how system dynamics models can
support the decision-making and how they can help to re-
duce failures in the later stages of innovation activities.

Principle Structures toModel the Diffusion
of Innovations

Traditional Innovation Diffusion Models
from a System Dynamics Perspective

In literature discusses plenty of models about the diffusion
of innovations. Many models are based on Frank M. Bass’
model of innovation diffusion. In this model, product pur-

chases result from two distinct forms of buying behav-
ior, i. e., innovative purchases and imitative purchases. Ac-
cording to the original Bass model, innovative purchases
of a period can be calculated as a fraction of the remain-
ing market potential (N � Xt�1) with N being the mar-
ket potential and Xt�1 D Pt�1

�D0 S� representing the ac-
cumulation of all past purchases of the product S� until
period t � 1.

According to this, innovative purchases Sinnot can be
calculated as

Sinnot D ˛ �
 

N �
t�1X

�D0

S�

!

(1)

where ˛ represents the coefficient of innovation. In the
original model, this coefficient is a constant essentially rep-
resenting the fraction of innovators of the remaining mar-
ket potential at any point of time. Imitative purchases,
however, are influenced by the number of purchases in the
past. Potential adopters of an innovation make their pur-
chasing decision depending on the spread of the product
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Product life cycle behavior generated by the Bass model

in the market place. The more customers have adopted the
product in the past, the higher is the social pressure to pur-
chase the product as well. Imitative demand of a period
Simit
t hence can be calculated as

Simit
t D ˇ �

Pt�1
�D0 S�

N
�
 

N �
t�1X

�D0

S�

!

(2)

with ˇ representing the coefficient of imitation – a prob-
ability that a purchase takes place by someone who ob-
served the use of a product. Together, the total purchases
in a period Stotalt equal Sinnot C Simit

t and hence are calcu-
lated as

Stotalt D Sinnot C Simit
t D ˛ �

 

N �
t�1X

�D0

S�

!

C ˇ �
Pt�1

�D0 S�

N
�
 

N �
t�1X

�D0

S�

!

: (3)

Innovative and imitative purchases together create the
typical product life cycle behavior of the diffusion of an
innovation in the market place as shown in Fig. 2.

The model above is a simple mathematical represen-
tation of the product life cycle concept, a key framework
in business management. It describes the time pattern
a product follows through subsequent stages of introduc-
tion, growth, maturity, and decline. Because of its mathe-
matical simplicity and its ability to represent the diffusion
of an innovation, the Bass model has been used for param-
eter estimation and therefore serves as a base for projec-
tions of future sales. Although the concept is a powerful

heuristic, manymodels generating this typical behavior do
not consider e. g., actual economic environment, competi-
tion, capital investment, cost and price effects. Innovation
diffusionmodels, which do not comprise the relevant deci-
sion variables, exhibit a significant lack of policy content.
They do not explain how structure conditions behavior.
They cannot indicate how actions of a firm can promote
but also impede innovation diffusion. For an improved
understanding of innovation dynamics generated by feed-
back structures that include managerial decision variables
or economic conditions, the system dynamics approach is
highly suitable.

Equations (1) to (3) can easily be transformed into the
system dynamics terminology. (N � Xt�1) represents the
stock of the remaining market potential at any point in
time and Xt�1 represents the accumulation of all prod-
uct purchases over time. The sales of a period Stotalt are the
flows connecting these two stocks as shown in the Fig. 3.

Diffusion of Innovations, System Dynamics Analysis of the, Fig-
ure 3
Stock-flow view of the Bass model
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The coefficients ˛ and ˇ represent the probability of
a purchase taking place; they are constants in the original
Bass model and independent of any decisions or changes
over time. For this reason, the model has been criticized
and subsequent models have been developed that make
the coefficients depending on variables like price or ad-
vertising budget. Most of the extensions, however, include
no feedback between the diffusion process and these de-
cision variables. This is a severe shortcoming since in
the market place, diffusion processes are strongly influ-
enced by feedback. What in classical innovation diffu-
sions models typically is referred to as word-of-mouth
processes is nothing else than a reinforcing feedback pro-
cess. Adopters of an innovation – represented by the cu-
mulated sales Xt�1 – communicate with potential cus-
tomers (N � Xt�1) and – by providing information about
the product – influence their behavior. However, feedback
in innovation diffusion goes beyond the pure word-of-
mouth processes. It also involves the decision processes
of a company and the outcome generated by the pur-

Diffusion of Innovations, System Dynamics Analysis of the, Figure 4
Feedback structures driving innovation processes

chasing decision of the customers like the sales volume
generated.

Figure 4 describes as a causal loop diagram the di-
versity of potential influences of corporate decision vari-
ables (marked with hexagons) on demand of the prod-
ucts by making the probability of a purchase – the co-
efficients ˛ and ˇ – depending on decision variables. It
also shows how corporate decisions are interconnected
through several feedback structures and influence the dif-
fusion of a new product in the market place. Although be-
ing far from a comprehensive structure of potential feed-
back, the figure gives an impression of the complex dy-
namic nature of innovation diffusion processes.

Decision variables like pricing or advertising directly
influence the purchase probability of a potential customer.
The higher the advertising budgets and the lower the price,
the higher will be demand for the products of a com-
pany. Furthermore, there are indirect and/or delayed ef-
fects on the speed of the spread of a new product in the
market. Actual sales of a product may be limited by insuf-
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ficient production and inventory levelswhich increases de-
livery delays (perceived or actual) and therefore reduce de-
mand. Growing demand, however,motivates the company
to expand its capacity and to increase the volume of pro-
duction. This leads to higher cumulated production and
through experience curve effects to decreasing costs per
unit, lower prices, and further increased demand. Other
influences might reflect that a certain percentage of total
available production capacity has to be allocated to ensure
the quality of the output – either by final inspection or dur-
ing the production process. Quality control then will im-
prove product quality, which directly affects demand.

Models developed in this manner can serve as sim-
ulators to analyze the consequences of strategies and to
improve understanding. They can show e. g., how pricing
and investment strategies depend on each other and quan-
tify the impact of intensified quality control on produc-
tion and sales. They are suitable tools to investigate the ef-
fects resulting from the impact of a particularmanagement
problem on the dynamic complexity of innovation diffu-
sion. Creating an understanding of the processes and in-
teractions is the main purpose of system dynamics-based
innovation diffusion models. Subsequently, a base struc-
ture of a system dynamics-based model will be described.

Base Structure of a System Dynamics-Based Model
of Innovation Diffusion

First, a model will be discussed that maps the diffusion of
an innovation in a monopolistic situation or can serve as
an industry level model. Secondly, competition between
potential and existing companies is introduced. Thirdly,
substitution between successive product generations is
considered. Each step adds complexity to the model. This
approach allows for a better understanding of the forces
driving the spread of a new product in the market.

In the following, the coarse structure of a model gen-
erating the life cycle in the market of a new product is
presented and analyzed in its dynamic implications in
Sect. “Representing Managerial Decision Making in In-
novation Diffusion Models”. Figure 5 gives an aggregated
view the main model structure. It also introduces – in
contrast to the mathematical terms known from the Bass
model, variable names, which are informative and consis-
tent with the use in system dynamics models.

The diffusion of a new product is generated by the be-
havior of the before mentioned two different types of buy-
ers: innovators and imitators. If the potential customers
(PC) – i. e., the remaining market potential of a prod-
uct – decide to purchase, either as innovators or as im-
itators, they become adopters (ADOP). The variables PC

and ADOP and their associated transfer rates are the basic
variables of the core diffusion process. The untapped mar-
ket (UM) covers latent demand that can be activated by ap-
propriate actions and leads to an increase in the number of
potential customers and therefore increases the remaining
market potential. Besides the growth resulting from the in-
flux from the untapped market, a decline in market vol-
ume can be caused by the loss of potential customers to
competitors. This lost demand (LD) turned to competing
products that aremore attractive, e. g., products of a higher
level of technological sophistication, quality or lower price.

The differentiation into the two buying categories “in-
novators” and “imitators” refers to the Bass model of inno-
vation diffusion as described in Subsect. “Traditional In-
novation Diffusion Models from a system dynamics Per-
spective”. The distinction is made because these two types
of buyers react differently to prices charged, product qual-
ity offered, advertisements or the market penetration al-
ready achieved. The term “innovator” refers to customers
who make their purchasing decision without being influ-
enced by buyers who already purchased the product, the
adopters. In the beginning of an innovation diffusion pro-
cess, innovators take up the new product because they
are interested in innovations. The number of innovators
is a function of the potential customers. Mathematically,
the purchasing decision of innovators DInno is defined by
a coefficient of innovation ˛ times the number of potential
customers PC.

Dinno
(t) D ˛(t) � PC(t) (4)

with:

Dinno
(t) Demand from innovators

˛(t) Coefficient of innovation
PC(t) Potential customers :

The purchasing decision of “imitators” is calculated dif-
ferently. Imitators buy a new product because they ob-
serve or communicate with customers who have already
adopted the product. They imitate the observed buying
behavior. Innovators initiate new product growth, but the
diffusion gains momentum from the word-of-mouth pro-
cess between potential customers and the increasing level
of adopters. The driving force behind the imitation pro-
cess is communication – either personal communication
between an adopter and someone who still does not own
the product or just observation of someone already own-
ing and using the product. Although, the Bass model de-
scribes how the imitators’ purchases can be calculated – as
shown in Eq. (2) – the equation can also be derived from
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Diffusion of Innovations, System Dynamics Analysis of the, Figure 5
Coarse structure of the innovation diffusionmodel

a combinatorial analysis of the number of possible con-
tacts between the adopters and the potential customers.
If N is the total number of people in a population con-
sisting of potential customers PC and adopters ADOP, the
amount of possible combinations Ck

N is

Ck
N D

 
N
k

!

D N!
k!(N � k)!

: (5)

Here we are only interested in paired combinations (k = 2)
between the elements in N

C2
N D

 
N
2

!

D N!
2!(N � 2)!

D N(N � 1)
2!

D 1
2
(N2 � N) :

(6)

Since N represents the sum of elements in PC and in
ADOP; (N D PCCADOP), the number of combinations

between potential customers and adopters is

D 1
2
�
(PC C ADOP)2 � (PC C ADOP)

�

D 1
2
�
PC2 C 2 � PC � ADOP C ADOP2 � PC � ADOP

�

(7)

and after regrouping and collecting terms, we get

D 1
2
( 2 � PC � ADOP„ ƒ‚ …
Communication between

PC and ADOP

C PC2 � PC„ ƒ‚ …
Communication

within PC

C ADOP2 � ADOP„ ƒ‚ …
Communication
within ADOP

) :
(8)

Internal communications, both within PC and ADOP,
generate no incentive to purchase the new product and
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are neglected; the process of creating imitative buying de-
cisions in Eq. (9) is, therefore, reduced to the first term
in Eq. (8), the information exchange between potential
customers and adopters.

Dimit
(t) D ˇ� � PC(t) � ADOP(t) (9)

with:

Dimit
(t) Demand from imitators

ˇ�
(t) Coefficient of imitation D ˇ(t)

N
ADOP(t) Adopters
N Initial market potential.

The coefficient of imitation ˇ�
(t) represents the original co-

efficient of innovation ˇ from the Bass model divided by
the initial market potential N. ˇ can be interpreted as the
probability that the possible contacts between members in
PC andADOP have been established, relevant information
has been exchanged, and a purchasing decision is made.

The sum of the demand of innovators and imitators
in each period, D(t), establishes the basic equation for the
spread of a new product in the market. Together with
the state variables of potential customers and adopters the
flows of buyers (innovators and imitators) constitute the
core model of innovation diffusion, which generates the
typical s-shaped pattern of an adoption process over time.

D(t) D Dinno
(t) C Dimit

(t)

D ˛(t) � PC(t) C ˇ�
(t) � PC(t) � ADOP(t) :

(10)

Although Eqs. (3) and (10) are based on different inter-
pretations and explanations, they are structurally identi-
cal since PC equals (N � Xt�1) and ADOP equals Xt�1 DPt�1

�D0 S� . The only difference is that the coefficients of in-
novation and imitation, in the context of the model based
on (10) are now a variable – rather than a constant – de-
pending on corporate decision variables like price or qual-
ity. Furthermore, corporate decisions are not just set as
predefined time paths; they are endogenously calculated
and depend on the outcome of the diffusions process itself.
Model simulations of this extended innovation diffusion
model will be discussed in Sect. “Representing Managerial
Decision Making in Innovation Diffusion Models”.

Extending the Base Structure to Include Competition

In the model described above, competition is not mod-
eled explicitly. The model only assumes a potential loss
in demand, if price, quality or ability to deliver are not

within the customers’ expectations. The internal corporate
structures of competition are not explicitly represented.
To generate diffusion patterns that are influenced by cor-
porate decisions and the resulting dynamic interactions
of the different competitors in a market, a more sophis-
ticated way to incorporate competition is needed. There-
fore, a subscript i (i D 1; 2; : : : ; k) representing a par-
ticular company is introduced as a convenient and effi-
cient way to model the different competitors. In a com-
petitive innovation diffusion model the calculation of in-
novative and imitative demand of a company has to be
modified. Equation (4) that determines the innovative de-
mand in a monopolistic situation becomes Eq. (11) – in
the following discussion, the time subscript (t) is omitted
for simplicity. The coefficient of innovation ˛ has to be di-
vided by the number of competitors N to ensure that each
company will have the same share of innovative demand
as long as there is no differentiation among the competi-
tors’ products through, e. g., through pricing or advertis-
ing. The subscript i in the coefficient of innovation is nec-
essary because it considers that the decisions of an individ-
ual company regarding product differentiation influences
its proportion of innovative buyers. A third modification
is necessary, because the number of competitors may vary
over time. Therefore, the term 'i represents a factor to
model different dates of market entry. It takes the value
1 if a company i is present at the market, otherwise it is 0.
Hence, the demand of company i is 0, as long as it is not
present at the market and

Pk
iD1 'i represents the actual

number of competitors. The variable potential customers
PC has no subscript because all companies in the mar-
ket compete for a common group of potential customers,
whereas innovative demand has to be calculated for each
company.

Dinno
i D ˛i

NC
� PC � 'i (11)

with:

˛i coefficient of innovation for company i

NC number of active competitors D
kX

iD1

'i

'i factor of market presence company i
i subscript representing the companies

i D (1; 2; : : : ; k) :

The buying decisions of imitators are influenced by obser-
vation of, or communication with the adopters (ADOP). In
a competitive environment two alternative approaches can
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be used to calculate imitative demand. These different ap-
proaches are a result of different interpretations of the ob-
ject of the communication processes. In the first interpre-
tation, the ‘product related communication’, the adopters
of a particular company’s product communicate informa-
tion about the product they have purchased e. g., an elec-
tronic device like aMP3 player of a particular company. In
this case, the calculation of imitative demand has to con-
sider the number of potential contacts between the poten-
tial customers PC and the adopters of the products of com-
pany i (ADOPi) as shown in Eq. (12).

Dimit
i D ˇi

N
� ADOPi � PC � 'i (12)

with:

ˇi coefficient of imitation for company i:

The second interpretation about the object of communi-
cation is the ‘product form-related communication’. Here,
the adopters communicate information about a product
form, for example, DVD players in general and not about
an MP3 player of a particular company. The equation to
calculate imitative demand for the model of product form
related communication is shown in Eq. (13). The sum of
adopters for each company i


Pk
iD1 ADOPi

�
represents

the total number of adopters in themarket. The product of
the total adopters and the potential customers then repre-
sents the total number of potential contacts in the market.
Imitative demand of a company i depends on the share of

Diffusion of Innovations, System Dynamics Analysis of the, Figure 6
Effects of a company’s share of adopters for different �

total adopters ADOPiPk
iD1 ADOPi

this company holds.

Dimit
i D ˇi

N
� ADOPi
Pk

iD1 ADOP
� PC �

kX

iD1

ADOPi � �i : (13)

If the term that represents a company’s share of the to-
tal adopters of a market ADOPiPk

iD1 ADOPi
is raised to the power

of � as in Eq. (14), weaker (0 < � < 1) or stronger (� > 1)
influences of a company’s share of total adopters on de-
mand can be represented explicitly. For � D 1, Eq. (14) is
identical to Eq. (13).

Dimit
i D ˇi

N
�
 

ADOPi
Pk

iD1 ADOP

!�

�PC �
kX

iD1

ADOPi ��i (14)

with:

� factor representing customers’ resistance
to “Me-too”-pressure.

Figure 6 shows the effects of a company’s share of the total
adopters for different � . For a given share of total adopters
this means: the higher � , the lower is the value of the term
 

ADOPi
Pk

iD1 ADOPi

!�

and the stronger is the importance of a high share of total
adopters. The parameter � can be interpreted as a measure
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Diffusion of Innovations, System Dynamics Analysis of the, Figure 7
Coarse structure of an oligopolistic innovation diffusion model

of the importance of customer loyalty or as resistance to
“me-too” pressure.

Figure 7 illustrates the coarse structure of an
oligopolistic innovation diffusion model as described by
Eqs. (11) and (14). The hexahedron at the top represents
the stock of potential customers PC for the whole market.
The blocks with the different shading represent for each
company i the level of adopters, i. e., the cumulated sales of
the company. The total number of adopters of the product
form corresponds to the addition of these blocks.

Since the sales are calculated separately for each com-
pany i there are n outflows from the stock of potential cus-
tomers to the adopters. Again, sales comprise innovative
and imitative demand, which are influenced by the coeffi-
cient of innovation ˛i and imitation ˇi . Both coefficients
are influenced by managerial decisions of each company i
like pricing, advertising, quality, market entry timing, etc.
and measure the relative influence of the decisions com-
pared to the competitor’s decisions. Therefore, the values
˛i and ˇi not only depend on the decisions of company i,
they also depend on the competitor’s decisions. Both vari-
ables are crucial for the speed and the maximum volume
of demand for the products of a company i.

Figure 8 shows the results of simulations based on
Eq. (11) for innovative demand and Eq. (14) for imita-
tive demand with the effects of a market entry delay of

Diffusion of Innovations, System Dynamics Analysis of the, Fig-
ure 8
Follower’s market share and sales for different market entry
times
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the second company – the influences of other decision
variables are switched off. Several model simulations have
been made assuming a market entry delay of company 2
between 0 and 12 months.

The plots in Fig. 8 show the development of market
share and sales of the second company over time. Since
there is no further product differentiation, both competi-
tors have the same market share when they enter the mar-
ket at the same time.With each month delay of the second
company the market share that can be achieved at the end
of the simulation decreases. A three months delay reduces
the finally achievedmarket share to 40%; a 12-month delay
even causes a decrease in market share down to approxi-
mately 25%. Accordingly, the maximum sales volume de-
creases significantly with each month delay in market en-
try time.

Representing Network Externalities

In the following, we will investigate the diffusion of a spe-
cific type of goods in order to show the importance of un-
derstanding the diffusion of goods with network effects
(based on [22]). The trend towards an information soci-
ety has stressed the relevance of goods satisfying infor-
mation and communication needs. Many products of this
market segment such as electronic mail contain attributes
that necessitate a specific examination, since the diffusion
of goods showing network effects differs from that of con-
ventional products. The main difference between conven-
tional products and products with network effects is that
the utility of the latter cannot be regarded as a constant
value. With regard to these products, utility is an endoge-
nous variable which results in a specific diffusion behavior.
Two effects are responsible for this particular behavior: the
bandwagon effect and the penguin effect. A refined system
dynamics model supports a better understanding of this
special diffusion process.

The fact that the utility is not constant can be reasoned
by a concept commonly referred to as “network effect”.
A product is characterized by a network effect, if the utility
of that product is a function of the installed base, which is
defined as the amount of users in a network system. The
utility increases with the installed base. This leads to a vir-
tual interdependency of the users inside the network. The
interdependency is based on the bandwagon effect and the
penguin effect. Starting from the fundamental diffusion
model of Bass the characteristics of network effects are in-
tegrated into the model in order to simulate the diffusion
behavior.

Many definitions for network effects (sometimes also
called “positive demand externalities”) can be found in the

literature. Basically, it can be stated that network exter-
nalities exist if the utility of a product for a customer de-
pends on the number of other customers who have also
bought and use this product. These network externalities
can be indirect or direct, whereby we concentrate on the
latter. A typical example for a product with direct network
effects is the telephone. The utility that a telephone sys-
tem can generate increases with the amount of feasible
communication connections. Other examples are e-mail,
fax, instant messaging, etc. each of which satisfies commu-
nication needs. But none of these products can generate
any utility for a user on its own. In order to create utility
the existence of other users adopting this product is re-
quired. Accordingly, the product’s utility changes dynam-
ically with the number of users, i. e., the installed base.

The installed base Bt determines the utility of prod-
ucts influenced by network externalities. In terms of di-
rect network externalities the utility is based on Bt exclu-
sively since utility can only be generated by interconnec-
tions within the underlying network solely. Accordingly,
the utility of a product with direct network externalities is
a function of the number of feasible connections It . The
number of connections is determined by the number of
users on the one hand and the technological restriction
of the network on the other hand, whereby the latter one
represents the number of users being able to communicate
via the network simultaneously (for instance, classical tele-
phone system r D 2, telephone conferencing r � 2). Thus,
Ut can be calculated by the formula:

Ut D Ut (It) D
nX

kD2

 
Bt

r

!

D
nX

kD2

Bt!
r! (Bt � r)!

;

whereby r; Bt > 0 : (15)

Since the achievable utility of a product with direct net-
work externalities depends exclusively on the network size
the adoption process depends on the decision of potential
users influencing the diffusion process significantly. This
leads to two different effects: Firstly, the utility for each
user grows exponentially with an increasing amount of ac-
tual users according to the formula. This implies that the
more people are attracted the more are part of the network
leading to an exponential growth of the diffusion process
which is referred to as the “bandwagon effect”: The higher
the number of people the more are decoyed as well result-
ing in a reinforcing process. Although this effect occurs
with conventional products as well, in case of products
with direct network externalities, it is much stronger since
the exponentially growing utility has a greater impact on
the diffusion process.
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Secondly, utility must be created by the utilization of
the users first in order to establish a new communication
network which determines the diffusion process signifi-
cantly since products influenced by direct network exter-
nalities cannot generate an original utility by itself. Ac-
cordingly, early adopters of a network are confronted with
the risk that they cannot derive sufficient benefit from the
network so that they must rely on potential users to follow
entering the network in the future. Therefore, the adoption
decision of a potential user depends on the future decision
of other potential users. All in all, this leads to a hesitating
behavior of all potential adopters resulting in an imaginary
network barrier, which is based on the risk of backing the
wrong horse, which is also known as the “penguin effect”.

Finally, another important aspect must be considered
when analyzing the diffusion process of products with net-
work externalities. In terms of conventional products the
decision to buy a product is the final element of the deci-
sion process. Contrary to that, concerning products with
network externalities the adoption process is not finished
with the decision to enter a network since the subsequent
utilization of the product is important for the diffusion
process. If the expected utility of the communication prod-
uct cannot be achieved users may stop using this product
leading to a smaller installed base and a lower network
utility which is important for other users that may stop
their utilization as well and for the adoption process of po-
tential users.

Diffusion of Innovations, System Dynamics Analysis of the, Figure 9
Comparison of diffusion behavior

In the following, the basic structure of the underlying
model will be described. Analogously to the model pre-
sented in the preceding paragraphs there exists a group of
potential users (in this model, we only focus on the core
diffusion process without considering competitors or la-
tent demand in order to keep the complexity of the model
low.) If these potential users decide to adopt the commu-
nication product, they become part of the installed base
B. The adoption process is illustrated by the adoption rate
AR, which is primarily influenced by the variable word of
mouth. In order to consider the average utility per user – as
it is necessary for analyzing products with network exter-
nalities – the imitation coefficient ˇ has been endogenized
contrary to the classical Bass model. Therefore, the vari-
able ˇ is influenced by the “word-of-mouth” effect which
depends on the average utility per user. If actual utility
is bigger than the desired utility all individuals in contact
with users adopt and buy the product. If it is smaller, how-
ever, only a fraction adopts. The size of this fraction de-
pends on the distance between actual and desired utility.

Figure 9 depicts two simulation runs showing the sys-
tem behavior of the diffusion process of conventional
products and products influenced by direct network ex-
ternalities. Graph UTIL1 represents the adoption rate, i. e.,
the amount of buyers of a conventional product per pe-
riod. The graph UTIL1 shows the behavior of the variable
installed base Bwhich is the accumulation of adoption rate
(note that the graphs have a different scale). The graphs
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RISK1 show the system behavior for products influenced
by direct network externalities, i. e., the adoption rate AR
and the corresponding installed base B.

A comparison of both simulation runs shows that
diffusion needs longer to take off in terms of products
influenced by direct network externalities, but showing
a steeper proceeding of Installed Base B in later periods.
This behavior can be verified comparing the adoption
rates of the two runs: although adoption starts later with an
endogenously generated adoption fraction, it nevertheless
has a higher amplitude. This behavior can be interpreted
as the penguin effect and the bandwagon effect.

Finally, it has to be taken into account that some users
of the installed base might quit to use the product since
they are disappointed from its utility. Accordingly, it is an
important issue to find ways in order to raise the patience
of users to stay within the network. That gives potential
users the chance to follow into the network which will in-
crease the utility for the user as well.

From the simulation analysis the following conclu-
sions can be drawn. The importance of the installed base
for a success diffusion process is shown. Without a suffi-
cient amount of users it is not possible to generate a utility
on a satisfying level which prevents potential users to en-
ter the network or even making users leave the network.
Accordingly, ways must be found to increase the utility
that a network creates for a user in order to reach the crit-
ical mass. This can be done in several ways of which some
will be discussed briefly. One possible way is to increase
the installed base by compatibility to other networks. Fur-
thermore, the risk to back the wrong horse can be mit-
igated by product pre-announcements in order to lower
the imaginary network barrier by making potential users
familiar with the product. Another possibility is to in-
crease the group of relevant users, i. e., to enlarge the av-
erage group size within the network, since not all users
are equally important for a potential user. Furthermore,
the technological potential can be improved by introduc-
ing multilateral interconnections between the members of
a network.

RepresentingManagerial DecisionMaking
in Innovation DiffusionModels

Subsequently the basic structures of innovation diffusion
processes described above will be extended and simulated
to demonstrate the impact of managerial decision-making
on the diffusion of innovations. The model used for the
simulations serves as a simulator to determine how indi-
vidual strategies can accelerate or hampermarket penetra-
tion and profit performance. The models are not designed

to predict the basic market success or failure of innova-
tions. Although, they are rather comprehensive, several as-
sumptions apply here as for all models. E.g., in all model
runs, the basic market acceptance of the innovation is as-
sumed. Furthermore, the simulations assume for the mo-
ment that no competition exists.

Dynamic Pricing Without Direct Competition

In a first step the basic model from Subsect. “Base Struc-
ture of a System Dynamics-Based Model of Innovation
Diffusion” is extended to generate dynamic cost behav-
ior as suggested in Fig. 5. Standard costs are the basis
for the calculation of prices – an important decision vari-
able. Experience curve effects aremodeled based on cumu-
lated production in order to map the long-term behavior
of standard cost. The actual costs of a product in a cer-
tain period are derived from the standard cost modified
for variations resulting from capacity utilization.

The concept of experience curve effects suggests a di-
rect relationship between cumulated production X(t) and
average standard cost per unit cs(t), adjusted for inflation;
where cs defines standard unit cost at the planned level of
production. Every doubling of X(t) is associatedwith a cost
reduction in real terms by a constant percentage according
to:

cs(t) D cn
�
X(t)

n

��ı

(16)

where cn stands for the cost of unit n (n 
 X) and ı rep-
resents a constant depending on the experience rate. For
many businesses experience rates of 10% to 20% have been
observed and ample empirical evidence for this relation-
ship is available.

The costs of a product in each period of time C(t) are
a function of cumulated production X(t) and capacity uti-
lization determined by the production volume of a period
x(t) as defined in Eq. (17). Figure 10 shows the behavior of
the dynamic cost function

C(t) D ˚


X(t); x(t)

�
: (17)

Furthermore, the model comprises elements of (i) market
development, (ii) product pricing and its impact on the
profits from producing and selling the products, i. e., the
operating results, and (iii) resource allocation, e. g., cap-
ital investment, production volume, and quality control.
Pricing and quality affects the coefficients of innovation ˛
and imitation ˇ from Eq. (10). Figure 11 shows the run of
a model version including market development.
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ure 10
Dynamic cost function

The time behavior of production, demand, and oper-
ating results duplicate usual characteristics of the life cycle
of a successful innovation. After the product launch, addi-
tional customers can be gained from an untapped market
as diffusion and thereby product awareness proceeds and
prices decline. The maximum of demand from imitators –
the quantitatively most important fraction of demand – is
reached when the amount of possible communications be-
tween potential customers and adopters reaches its maxi-

Diffusion of Innovations, System Dynamics Analysis of the, Figure 11
Reference mode of the basic innovation diffusion model

mum. The decreasing level of potential customers and the
depletion of the untapped market cause the decline to-
wards the end of the simulation. The behavior also shows
that demand rises much faster than the company can in-
crease its production capacity. The behavior of Fig. 11 will
serve as reference mode for further analysis.

Pricing strategies and decisions are additional impor-
tant elements, which require an extension of the model.
The problem of the “right price” for a new product is es-
sential but still unsolved in the area of innovation manage-
ment. Difficulties to recommend the optimal pricing pol-
icy derive in particular from the dynamics in demand in-
terrelations, cost development, potential competition, and
the risk of substitution through more advanced products.
Regardless of this complex framework, several attempts
in management science try to derive and to apply opti-
mal pricing policies. However, they are faced with difficul-
ties, both mathematical and practical. Their results are too
complicated to support actual pricing decisions. Therefore
simulation studies found more frequently their way into
management science.

The extended model includes four predefined pricing
policies to investigate their impact onmarket development
on operating results:

Myopic profitmaximization assuming perfect informa-
tion about cost and demand. The optimal price popt is de-
rived from elasticity of demand "(t) and per unit standard
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cost cs(t) considering the impact of short term capacity uti-
lization:

popt(t) D cs(t) � "t

"t � 1
: (18)

Skimming price strategy aims at serving innovative cus-
tomers with high reservation prices and then subsequently
reduces prices. The model applies a simple decision rule
modifying popt(t) through an exponential function that raises
the price during the first periods after market introduc-
tion:

pskim(t) D popt(t) �
�
1 C a � e�t

T

�
: (19)

Full cost coverage, i. e., standard cost per unit plus a profit
margin 
 to assure prices above cost level even during the

Diffusion of Innovations, System Dynamics Analysis of the, Figure 12
Comparison of the outcome of pricing strategies

early stages of the life cycle:

pfcc(t) D cs(t) � 
 : (20)

Penetration pricing aims at rapidly reaching high produc-
tion volumes to benefit from the experience curve and to
increase the number of adopters. It uses a similar policy as
for the skimming price, but instead of a surcharge it de-
creases prices early after market introduction:

ppen(t) D cs(t) � 
 �
�
1 � a � e�t

T

�
: (21)

The simulation runs shown in Fig. 12 give an overview of
the development of profits, cumulated profits, and sales for
the four pricing strategies discussed above. The model as-
sumes the following: (1) there is an inflow from the un-
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tapped market, which depends on the dynamic develop-
ment of prices; (2) there is no risk of competition; (3) re-
peat purchases do not occur. Taking profits into account,
Fig. 12 indicates that – over the time horizon observed –,
the classic pricing rule of profit optimization leads to su-
perior results from a financial point of view. However, if
judged by the market development, the strategy of pene-
tration prices is the appropriate strategy. This strategy al-
lows rapid penetration of the market by setting relatively
low prices, especially in the early stages of the life cycle.
The combined price and diffusion effects stimulate de-
mand and reduce the risk of losing potential customers to
upcoming substitution products.

Figure 12 also indicates a disadvantage of the penetra-
tion strategy. Since the market is already completely sat-
isfied after period 54, there is only little time to develop
and introduce a new product in the market successfully.
The slower market growth of the skimming and optimum
price strategy leaves more time for the development of
a new product, but the attractive profit situation and the
slow development also increase the risk that competitors
might enter the market. In a dynamic demand situation
where prices influence market growth, where substitution
or competition can occur, and where delivery delays even-
tually accelerate the decision of potential buyers to turn
to other products, a strategy of rapid market penetration
seems to be the most promising one. It will, therefore, be
the basis for the following simulation runs investigating
manufacturing’s role in innovation management.

Linking Manufacturing-Related Decision Variables

The role of manufacturing is important for the successful
management of innovations. Manufacturing has to pro-
vide sufficient capacity to produce the goods sold. The in-
vestments to adjust capacity influence a company’s abil-
ity to meet demand and deliver on time. It is assumed
that the necessary financial resources for the investments
are available. The aggregated capacity provided by the
company includes both, machinery equipment and pro-
duction personnel. Since the manufacturing function also
has to ensure the quality of the output through dedicat-
ing a portion of its total available capacity to quality con-
trol, the capacity resources can be used to either manufac-
ture the products or to assure the desired level of quality.
Capacity allocation to improve quality takes away capac-
ity for production. This additional feedback structure –
as indicated in Fig. 5 – maps the allocation of resources
for quality control to the achieved ability to meet prod-
uct demand. If manufacturing capacity does not meet de-
mand, a temporary reduction of capacity for quality as-

surance seems a plausible strategy. Quality control re-
sources than are allocated to manufacturing rather than
testing whether quality standards are met. In this scenario,
it would be expected that total cost remain unchanged
and the additional manufacturing capacity gained through
the reallocation can be used to provide more products
to the customers, increase sales, and improve the overall
results.

Figure 13 shows the simulation assuming the same sce-
nario as in the base mode together with penetration prices
and reduced quality resources if demand exceeds produc-
tion capacity. It also shows a quality index plotted as an
additional variable. Quality is defined to be 1, if the ac-
tual quality capacity equals a standard value of quality re-
sources necessary. It is assumed that 10% of total produc-
tion capacity is necessary to assure 100% quality. For val-
ues above the 10%-level, quality is better; for values below,
it is poorer. The simulation indicates that the policy of re-
duced quality resources successfully decreases the discrep-
ancy between demand and production as seen in the refer-
ence mode of Fig. 11. This results from the increased pro-
portion of capacity used for production and an additional
effect caused by lower product quality, which then de-
creases demand. Although the maximum sales are nearly
the same in the simulation of reduced quality control strat-
egy, the peek demand occurs around 5 months later. In-
stead of gaining higher sales only the shape of the life cy-
cle changed. However, operating results had improved, in
particular the sharp decline of profits in the base mode
of the simulation could be slowed down and losses could
be avoided. The reduced quality control strategy caused
a slower capacity build-up and therefore, when product
sales declined capacity adjustment was easier to achieve.

Diffusion of Innovations, System Dynamics Analysis of the, Fig-
ure 13
Reduced quality control
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Diffusion of Innovations, System Dynamics Analysis of the, Fig-
ure 14
Cumulated discounted profits – penetration vs. skimming pric-
ing in combination with quality control strategies

From the financial point of view the strategies of penetra-
tion prices and reduced quality control fit quiet well.

The results are different if a strategy of quality reduc-
tion is used in combination with a strategy of skimming
pricing. Figure 14 compares the outcome of cumulated
discounted profits for the strategy of reduced quality and
penetration prices or skimming prices with the devel-
opment of the reference mode – the simulations with-
out quality adjustment. The behavior indicates that in the
case of skimming prices, quality reductions slow down
the development of the market and cumulated profits
significantly.

The simulation results raise the question whether em-
phasizing quality when demand is higher than capacity
would be a more appropriate way to react. As the up-
per part of Fig. 15 points out, the strategy of emphasized
quality leads to an accelerated product life cycle in the
case of the penetration pricing strategy. Tremendous ca-
pacity build-up is necessary after the introduction of the
new product. As demand declines, a plenty of capacity is
idle, causing significant losses during the downswing of
the product life cycle.

Emphasizing quality turns out to be more effective
in the case of skimming prices. The additional demand
gained from quality improvements also accelerates the
product life cycle, but at a much slower rate and leads to
improved cumulated profits. Emphasizing quality in com-
bination with skimming or optimum prices leads to im-
proved cumulated profits, compared to both, the simu-
lation without quality reaction and the quality reduction
run.

The simulations show the importance of a detailed
judgment of strategic choices. Strategies must be consis-

tent with each other and with the real world structures
mapped by themodel. The simulations above assume a sit-
uation without existing or potential competition. In such
an environment there is no interest paid for fast mar-
ket penetration. Hence, a penetration pricing strategy is
the most unfavorable alternative. However, this changes
if structural elements are added to the model that incor-
porate competition – even as in the simple structure from
Fig. 5, which considers the loss of demand to a competitor.
Lost demand therefore is represented as a process equiv-
alent to the imitative demand from Eq. (9). The calcula-
tion of lost demand starts in period 15 through an initial
switching of a potential customer to the competitor. This
switch starts a process that drives demand for the com-
petitors’ products and is influenced through the quality
the company offers. If the company provides poor quality,
more potential customers and market potential from the
untappedmarket will directly move to the competitor. The
accumulation of lost demand corresponds to the number
of adopters the competitors gained over time. Simulations
with these additional structures give some additional in-
sights (Fig. 16).

Penetration pricing leads again to the fastest market
development. In the competitive surrounding, however,
emphasizing quality accelerates the market development
and leads to better performance than quality reductions.
This is in contrast to the simulations without competition
shown in Fig. 13 to Fig. 15. Skimming prices in combi-
nation with reduced quality control shows the poorest fi-
nancial and market performance. A strategy of reduced
quality control causes in the competitive environment the
demand to increase at a slower rate than in the base run,
where no quality adjustments were made when demand
exceeded capacity. In both cases, the skimming and the
penetration price scenario, quality reductions lead to the
poorest performance.

Linking R&D and New Product Development

The models discussed above are able to generate under
different conditions the typical diffusion patterns of new
products in the market place. However, these models do
not consider the stage of new product development. New
products have to be developed before they can be intro-
duced into the market. A costly, lengthy, and risky period
of R&D has to be passed successfully. The diverging trends
of shortening product life cycles and increasing R&D costs
show the importance of an integrated view of all inno-
vation stages. In the remainder, a comprehensive model
comprising both, the process of R&D and an oligopolistic
innovation diffusion with subsequent product generations
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Emphasized quality in all innovation stages

is used to investigate the interrelations between the stages
of innovation processes. The integration of both modules
is shown in Fig. 17.

The volume and the intensity of the research and
development activities feed the R&D-process. The num-
ber of research personnel determines the volume. Since
R&D personnel requires resources like laboratory equip-
ment, material for experiments etc., the intensity of R&D
depends on the budget available for each person work-
ing in the R&D sector. This information is calculated in
a more comprehensive model in the sector of R&D plan-
ning, which also includes policies about resource allo-
cation within the research and development stages, i. e.,

mainly the question of how much to spend on which new
product development project.

Depending on the volume and the intensity of R&D,
the technological knowledge of each product generation
for each company evolves over time. The module of the
R&D-process feeds back the current state of the techno-
logical knowledge for each company and product genera-
tion.

The basic assumptions of the model are as follows. The
model maps the structures of two competitors. Both com-
petitors can introduce up to five successive product gener-
ations. The initial values of the model ensure that all com-
petitors start from the same point. All firms have already
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Behavior of the basemodel including simple competitive structures

introduced the first product generation and share the mar-
ket equally. The resources generated by the first product
are used to develop subsequent product generations. In the
base run each company follows the same set of strategies.
Therefore, except for minor differences resulting from the
stochastic nature of the R&D-process, they show the same
behavior over time. Figure 18 provides a simulation run of
the model with all modules and sectors coupled.

The curves show for a single company the develop-
ment of the sales of the products and the total sales. They
emphasize the importance of a steady flow of new and im-
proved products. Without on-time replacement of older
products, the total sales of the products will flatten or de-

teriorate like in the simulation around periods 44, 92, and
116. The model also generates the typical s-shaped curves
of technological development (lower part of Fig. 18). Each
product generation has a higher technological potential
and the knowledge developed for the preceding product
generations partly can be used by the successive product
generations. For this reason the subsequent product gen-
erations start at a level different from zero.

In a dynamic environment such as the computer in-
dustry, where investments in R&D and manufacturing
equipment are high, the product life cycles are short, and
time-to-market as well as time-to-volume are essential
variables, it is important to understand the dynamic con-
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Linking R&D-processes with corporate andmarket structures

sequences of decisions and strategies in the different areas.
Figure 19 describes some of the important feedback loops
linking the process of invention to the processes of inno-
vation and diffusion.

Central element in the figure is the calculation of the
sales of a company according to Eqs. (11) and (14). The
coefficients of innovation and imitation are influenced by
the multiplier of relative competitive advantage, which de-
pends on the relative technical capability and the price
advantage of a company. The technical capability of the
products is influenced by the strength of its R&D-pro-
cesses and the total amount of R&D expenditures. Em-
pirical studies in Germany have shown that measures like
sales volume, profits or R&D budgets of earlier periods are
quite common as a basis for R&D budgeting. However,
using historic sales volume as a basis to determine R&D
budgets invokes the positive feedback loop “competing by
technical capability”. With an increasing number of prod-
ucts sold and growing value of sales the budget and the
number of personnel for R&D grow. This leads to an im-
proved competitive position, if the technical capabilities of
a product increases. The higher the sales volume, the bet-
ter is the resulting competitive position. This produces in-
creasing coefficients of innovation and imitation and leads
to higher sales. This budgeting strategy is implemented in
the model for the next simulation runs.

The second loop “price competition” links pricing
strategies to sales volume. The actual price of a product
is influenced by three factors. The first factor, standard
costs, is endogenous. As cumulated production increases,
the experience gained from manufacturing causes declin-
ing standard costs. The second and third elements influ-
encing the calculation of prices are exogenous: parame-
ters which define the pricing strategy and demand elastic-
ity. Caused by increasing cumulated production, standard
costs fall over the life cycle and prices are also declining.
Lower prices affect the relative price and improve the ef-
fect of price on the coefficients of innovation and imita-
tion, which leads to increased sales and higher cumulated
production.

The loop “pricing limits” reduces the effects of the re-
inforcing loops described above to some extent. The stan-
dard cost and price reductions induce – ceteris paribus –
a decrease in the sales volume and set off all the conse-
quences on the R&D-process, the technical know-how, the
market entry time and sales shown in the first feedback
loop – but in the opposite direction. Additionally, since
standard cost cannot be reduced endlessly this feedback
loop will show a goal seeking behavior.

With equivalent initial situations and the same set of
strategies, both companies behave in an identical way for
all product generations. If one company has a competitive
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Exemplary behavior of the integrated innovation model

advantage, the reinforcing feedback loops suggest that this
company will achieve a dominating position. In the sim-
ulation shown in Fig. 20, both competitors have the same
competitive position for the first product generation. But
the first company will be able to enter the market 2 months
earlier than the competitor, because the initial outcome of
the R&D process is slightly better than the second com-
pany’s second product generation. Both competitors fol-
low a strategy of skimming prices and demand elasticity
has the value �2.

The initial gain in the outcome of the R&D-process
initiates a process of sustained and continuing competi-
tive advantage for the first company. It will improve con-

tinuously, since the positive feedback loop “competing by
technical capability” dominates. The first company’s ad-
vantage in the market introduction leads to an increasing
readiness for market entry. It is able to launch the third
product generation 3 months earlier than the follower and
will introduce the fourth product generation in period 112.
The follower is not able to introduce its fourth genera-
tion during the time horizon of the simulation, i. e., the
pioneers advantage has extended to more than 8 months.
The first company’s competitive advantage is a result of
the slightly higher initialization of the knowledge system
and the dominance of the positive feedback loops, which
causes shortened time-to-market and higher sales volume
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Feedback structure influencing the diffusion process

over all successive product life cycles. Additionally, the
technical capabilities of both competitors’ product gen-
erations show the same reinforcing effect. The difference
between the technical capability of both competitors in-
creases in favor of company 1 until they approach the
boundaries of the technology.

Although literature discusses a variety of models to
find optimal pricing strategies, these models usually only
consider the market stage of a new product and neglect
the interactions with the development stage of a new prod-
uct. Pricing decisions not only drive the diffusion of an
innovation, but they also have a strong impact on the
resources available for research and development. Since
the comprehensive innovation model links the stages of
developing and introducing a new product, the follow-
ing simulations will show the impact of pricing strate-
gies on performance in a competitive environment. In
the analysis shown the first company uses the strategy
of skimming price for all product generations. The sec-
ond company alternatively uses a skimming price strat-
egy in the first model run, myopic profit maximization
strategy in the second run, and the strategy of penetration
prices in the third run. The initial conditions are identi-
cal, except the price strategy settings. Sales volume, mar-
ket position, and cumulated discounted profits are used

to judge the advantages of the alternative pricing strate-
gies. Market entry time is used as a measure of time-to-
market.

The logic behind the skimming price strategy is to sell
new products with high profit margins in the beginning of
a life cycle to receive high returns on investment, achieve
short pay off periods, and high resources for the R&D-
process. However, in a dynamic competitive setting the
strategy of myopic profit maximization and penetration
prices achieve better results (Fig. 21). Company 1 which
uses a skimming price strategy achieves the lowest sales
volume. Myopic profit maximization prices and penetra-
tion prices of the second competitor causes the sales to in-
crease stronger through the combined price and diffusion
effect.

The results are confirmed if the variable market posi-
tion – an aggregate of the market share a company has for
its different products – is taken into account. For values
greater than 1 the market position is better than the one of
the competitor. Using the penetration strategy, company 2
can improve its market share, achieve higher sales volume
and therefore has more resources available for R&D. This
enables it to launch new products earlier than company 1.
As shown in Table 1, the advantage of time-to-market in-
creases from product generation to product generation.
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Reinforcing effects of initial competitive advantage

Diffusion of Innovations, System Dynamics Analysis of the, Table 1
Consequences of pricing strategies on market entry time

Product generation 2 Product generation 3 Product generation 4
Pricing strategy C2* C1 C2 Delay C1 to C2 C1 C2 Delay C1 to C2 C1 C2 Delay C1 to C2
Skimming prices 38 38 0 71 71 0 n.i. n.i. –
Profit maximization 36 35 1 71 69 2 n.i. 118 > 2
Penetration prices 37 35 2 74 66 8 n.i. 102 > 8

*C1 uses skimming prices in all simulations; **n.i. = product was not introduced

The improvement in time-to-market for the first com-
pany’s second product generation results from the slightly
higher sales volume compared to the use of skimming
pricing strategies for both competitors. The second com-

pany achieves the strongest improvements in time-to-
market if it uses a penetration pricing strategy.

In terms of cumulative profits (Fig. 22) one would
expect that skimming prices should generate the highest
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Sales volume andmarket position for different pricing strategies

cumulated profits, however, this is not true. Penetration
prices generate the highest results followed by skimming
prices. The strategy of myopic profit maximization shows
the least favorable outcome.

The simulations so far assumed a price response func-
tion with a constant price elasticity " of �2. Since price
elasticity influences both, the demand for a product as
well as the price level (cf. Fig. 19), the influence of price
elasticities have to be investigated before recommenda-
tions can be made. Assuming that company 1 uses a strat-
egy of skimming prices and the second competitor follows
a strategy of penetration pricing, Fig. 23 shows the time

path of cumulated discounted profits and market position
for " between �3.2 and �1.2.

Due to the different profit margins – resulting from
myopic profit maximization being the basis for price cal-
culation – the use of the absolute value of the cumulated
profits is not appropriate. Therefore, the second com-
pany’s share of the total cumulated profits is used for eval-
uation purposes. The measure is calculated as

 
cum.profits2P2
iD1 cum.profitsi

!

:
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Time path of cumulated profits

The first graph in Fig. 23 shows that the initial dis-
advantage of the second company rises with increasing
demand elasticity. However, its chance of gaining an ad-
vantage increases as well. In the case of lower demand
elasticities (" > �1:7) firm 2 cannot make up the initial
disadvantage during the whole simulation. For demand
elasticities (" > �1:4) the cumulated profits ratio even
deteriorates. Considering the market position the picture
is similar. For demand elasticities " > �1:6 the pene-
trations strategy leads to a loss in the market position in
the long run. The improvements resulting from the in-
troduction of the successive product generations are only
temporary.

Managerial Implications

The simulations above lead to the insight that general rec-
ommendations for strategies are not feasible in such com-
plex and dynamic environments. The specific structures
like competitive situation, demand elasticity, or strategies
followed by the competitors have to be taken into account.
Recommendations only can be given in the context of the
specific situation. Furthermore, the evaluation of strate-
gies depends on the objectives of a company. If a firm
wants to enhance its sales volume or the market share, the
strategy of penetration pricing is the superior one. View-
ing cumulative profits and the readiness for market entry
as prime objectives, the strategy of skimming prices is the
best. However, these recommendations hold only for high
demand elasticities. Furthermore, the model does not con-
sider price reactions of competitors. The evaluation of im-

proved strategic behavior would become even more diffi-
cult. The outcome and the choice of a particular strategy
depend on many factors that influence the diffusion pro-
cess. The dynamics and the complexity of the structures
make it almost unfeasible to find optimal solutions. Im-
provements of the system behavior gained through a bet-
ter understanding, even if they are incremental, are steps
into the right direction.

Future Directions

The series ofmodels presented here are designed in amod-
ular fashion. They offer the flexibility to be adapted to
different types of innovations, to different structures, ini-
tial conditions and situations. The models provide the op-
portunity to investigate courses of action in the setting of
a management laboratory. They allow one to investigate
different strategies and to learn in a virtual reality. They
emphasize the process of learning in developing a strat-
egy rather than the final result. To support learning pro-
cesses, the models could be combined with an easy-to-
use interface and serve as a management flight simulator
which allows one to gain experience and understanding
from playing.

Although the models cover a variety of different as-
pects in the management of innovations, they still can
be extended. Besides more detailed mapping of corporate
structures behind managerial decision processes the struc-
tures representing the diffusion process can be extended
in various ways. Although some research already discusses
the problems of mapping the substitution among succes-
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Impact of demand elasticity on performance measures
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sive product generations, this area deserves further atten-
tion. In particular in high-tech industries with short prod-
uct life cycles the interrelations between successive prod-
uct generations strongly influence the overall success of
a company. Furthermore, the diffusion structures could be
extended to include cross-buying and up-buying behavior
of customers and by that link models of innovation diffu-
sion to the field of customer equity marketing.
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Glossary

Absentee owners Parties not present on land and capital
resources owned by them.

Artisan owners Parties using own labor together with
land and capital resources owned by them to produce
goods and services.

Behavioral relations Causal factors influencing a deci-
sion.

Capital intensive A process or industry that requires
large sums of financial resources to produce a partic-
ular good.

Capital Machinery equipment, cash and material inputs
employed for the production of goods and services.

Capitalist sector A subeconomy in which all resources
are privately owned and their allocation to production
and renting activities is exclusively carried out through
a price system.

Capitalist system An economic system in which all re-
sources are in theory privately owned and their alloca-
tion to production and renting activities is exclusively
carried out through a price system.

Commercial Pertaining to buying and selling with intent
to make profit.

Controlling feedback A circular information path that
counters change.

Corporate pertaining to a profit maximizing firm.
Economic dualism Side-by-side existence of multiple

subeconomies.
Economic sector A collection of production units with

common characteristics.
Entrepreneurship Ability to take risk to start a new busi-

ness.
Feedback loops Circular information paths created when

decisions change information that affects future deci-
sions.

Financial market Amechanism that allows people to eas-
ily buy and sell commodities, financial instruments
and other fungible items of value at low transaction
costs and at prices that reflect efficient markets.

Household income Income accrued to a household from
wages, profits and rents received by all its members.

Institutionalist economic models Models attributing
performance of economies to institutional relation-
ships and advocating selective government inter-
vention to change the behavior that creates dysfunc-
tions.

Iron law of wages David Ricardo’s most well-known ar-
gument about wages“naturally” tending towards
a minimum level corresponding to the subsistence
needs of the workers.

Keynesian A belief that the total spending in the economy
is influenced by a host of economic decisions – both
public and private.

Labor intensive A process or industry with significant la-
bor costs.

Labor productivity Output per worker or worker-hour.
Labor Economically active persons in an economy.
Marginal factor cost The incremental costs incurred by

employing one additional unit of input.
Marginal revenue product The additional income gener-

ated by using one more unit of input.
Market economy An economy which relies primarily on

interactions between buyers and sellers to allocate re-
sources.

Marxist economic theory A theory highlighting ex-
ploitive mechanisms in an economic system and ad-
vocating central governance.

Marxist system A centrally run economic system empha-
sizing in theory the Marxist axiom “from each accord-
ing to ability to each according to need”.

Model An abstract representation of relationships in
a real system.

Neoclassical economic theory A theory highlighting
constructive market forces in an economic system and
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advocating consumer sovereignty and a price system
as invisible sources of governance.

Non-linear A system whose behavior can’t be expressed
as a sum of the behaviors of its parts.

Opportunity cost Real value of resources used in the
most desirable alternative, or the amount of one com-
modity foregone when more of another is consumed.

Ordinary differential equation A relation that contains
functions of only one independent variable, and one
or more of its derivatives with respect to that variable.

Output elasticity Change in output caused by addition of
one unit of a production factor.

Perfect market A hypothetical economic system that has
a large number of buyers and sellers – all price tak-
ers trading a homogeneous product – with complete
information on the prices being asked and offered in
other parts of the market; and with perfect freedom of
entry to and exit from the market.

Political economy Interaction of political and economic
institutions, and the political environment.

Production factor A resource input such as land, labor,
or capital contributing to production of output.

Productivity The amount of output created (in terms of
goods produced or services rendered) per unit input
used.

Purchasing power parity The value of a fixed basket of
goods and services based on the ratio of a countries’
price levels relative to a country of reference.

Revisionist economic models Models recognizing both
constructive and exploitive forces and advocating gov-
ernment intervention against exploitation.

Sector A collection of production units with common
characteristics.

Self-employment Work for a self-owned production unit
without a defined wage.

System dynamics A methodology for studying and man-
aging complex feedback systems, such as one finds in
business and other social systems.

Subeconomy A collection of production units and house-
holds with common characteristics.

Theories of value How people positively and negatively
value things and concepts, the reasons they use inmak-
ing their evaluations, and the scope of applications of
legitimate evaluations across the social world.

Unearned income Income received as rents.
Wage employment Work for a defined wage.

Definition of the Subject

Poverty is perhaps themost widelywritten about subject in
economic development, although there is little agreement

over its causes and how to alleviate it. The undisputed facts
about poverty are that it is pervasive, growing and that the
gap between the rich and the poor is widening.

It is widely believed that the governments – irrespec-
tive of their ideological inclinations – have the respon-
sibility to intervene to help the poor. Poverty alleviation
is also the key mandate of International Bank for Recon-
struction and Development (World Bank) and the many
civil society organizations. World Bank places poverty line
at purchasing power parity of $1 per day, which has im-
proved a bit in terms of percentage below over the past
three decades, except in Africa, but remains large in terms
of head count. This threshold is however unrealistic since
it targets absolutely basket cases. A poverty line at pur-
chasing power parity of $3 per day, which is close to av-
erage purchasing power per capita in the poor countries
shows that both poverty head count and gap between rich
and poor have been expanding across board. World Bank
web site at http://iresearch.worldbank.org/PovcalNet/jsp/
index.jsp allows making such computations for selected
countries, regions, years and poverty lines.

Neoclassical economic theory does not explicitly ad-
dress the process of income distribution among house-
holds, although it often views income distribution as
shares of profits and wages. In most economic surveys
and censuses, however, income distribution is invariably
measured in terms of shares of various percentages of the
households. The fact that more than 80% of the income
is claimed by fewer than 20% of the households who also
own most of the capital resources in almost all countries
of the world, the theory and the measurement have some
common ground. Neoclassical theory has, however, shed
little light on the process of concentration of wealth and
how can this dysfunction be alleviated.

System dynamics, although rarely used for the design
of public policy for addressing poverty, allows us to con-
struct and experiment withmodels of social systems to un-
derstand their internal trends and test policy combinations
for changing them. In this paper I have used system dy-
namics modeling to understand the process of concentra-
tion of wealth and re-evaluate the on-going poverty allevi-
ation effort.

The model, which subsumes resource allocation, pro-
duction and entitlements, explains the many manifesta-
tions of income distribution in a market economy. It gen-
erates multiple patterns of asset ownership, wage and em-
ployment assumed in neo-classical, Marxist and revision-
ist perspectives on economic growth while it allows own-
ership to change through the normal course of buying
and selling transactions based on rational though, infor-
mation-bound criteria. Privately owned resources can be

http://iresearch.worldbank.org/PovcalNet/jsp/index.jsp
http://iresearch.worldbank.org/PovcalNet/jsp/index.jsp
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employed through hiring wage-labor, rented out or used
for self-employment. In addition to the labor market con-
ditions, the wage rate depends also on the opportunity
cost of accepting wage employment as workers may be ei-
ther self-employed or wage-employed. Since this oppor-
tunity cost varies with the capital resources owned by the
workers, which may support self-employment, the wage
rate is strongly affected by the distribution of ownership.
Thus, ownership can become concentrated or widely dis-
tributed depending on legal and social norms governing
transactions in the economy, which the model replicates.
Extended experimentation with this model serves as a ba-
sis to identify critical policy instruments thatmake best use
of the system potential for resource constrained growth
and poverty alleviation through widening participation in
the market and improving income distribution.

Introduction

The opening up of the major centrally planned economies
of the world has brought to the fore problems concerning
the psychological deprivation, inefficiencies of resource al-
location and production, and the lack of dynamism ex-
perienced in the working of central planning in a social-
ist system. The accompanying enthusiasm for free mar-
ket in a capitalist system has, however, hidden many of
the dysfunctional aspects of this alternative. It should be
recognized that both systems emerged from time-specific
and geography-specific empirical evidence. Since their un-
derlying models treat as given specific economic patterns,
the institutional roles and the legal norms associated with
each system have inherent weaknesses, which create dys-
functions when implemented in different environmental
contexts [43,64]. Thus, neither model may furnish an ad-
equate basis for the design of policies for sustainable eco-
nomic development and poverty alleviation. A search is,
therefore, necessary for an organizational framework that
might explain the internal trends inherent in each model
as special modes of a complex system subsuming the va-
riety of behavioral patterns recognized by specific models
before an effective policy for change can be conceived [52].

Using as an experimental apparatus a formal model of
the decision structure affecting wage determination, sav-
ing and investment behavior, and the disbursement of in-
come, presented earlier in [53], this paper seeks to iden-
tify the fundamental economic relations for creating a dy-
namic and sustainable market system that may also in-
crease opportunities for the poor, whose market entry is
often limited by their financial ability and social posi-
tion [58], to participate in the economy and be entitled to
the value it creates. System dynamics provides the techni-

cal framework to integrate the various behavioral relations
in the system [13,63].

Notwithstanding the many objections to the abstract
models of orthodox economics, which are difficult to iden-
tify in the real world [28,46], the model of this paper draws
on neo-classical economics to construct a basic structure
for growth and market clearing. This structure is, how-
ever, progressively modified by relaxing its simplifying as-
sumptions about aggregation of sub-economies, wage de-
termination, ownership, income disbursement, saving and
investment behavior, financial markets, and technologi-
cal differentiation between sub-economies to realize the
many growth and income distribution patterns addressed
in a variety of economic growth models.

The modified model I finally create represents a real
world imperfect market in which expectations formed un-
der bounded rational conditions govern the decisions of
the economic actors [59], as recognized in the pioneer-
ing works of Kaldor (1969) [24], Kalecki (1965) [25],
Wientraub (1956) [66], and Joan Robinson (1978) [45].
The model also subsumes the concept of economic du-
alism first recognized by Boeke (1947) [7] and devel-
oped further by Lewis (1958) [29], Sen (1966) [57], Bard-
han (1973) [4] and others to represent the multiple sub-
economies that co-exist especially in the developing coun-
tries. Such a model is more identifiable with respect to the
real world as compared with the time and geography spe-
cific concepts propounded by the various, often controver-
sial, theories of economic growth.

Simulation experiments with the model explore entry
points into the economic system for creating an egalitar-
ian wage and income distribution pattern through indirect
policy instruments. Also explored are the functions of en-
trepreneurship and innovation and the mechanisms that
may increase the energy of those processes toward facili-
tating economic growth and alleviating poverty.

The Alternative EconomicModels
and Their Limitations

The economic models used as the bases for designing de-
velopment policies over the past several decades have as-
cended largely from time-specific and geography-specific
experiences rather than from a careful study of the variety
of behavioral patterns occurring over various time periods
and across several geographic locations. Among these, the
socialist and the capitalist models are most at odds. They
differ in their assumptions about ownership and income
distribution patterns, the basis for wage determination, the
influence of technology on income growth and the func-
tions of entrepreneurship and innovation [21,55].
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The neo-classical economic theory, which is the basis
for the capitalist model, is silent on the ownership of capi-
tal resources, often assuming it in default to be widely dis-
tributed [5]. Thus, the labor-wage rate may bear little re-
lationship to the income of households, who are also re-
cipients of profits. It is assumed that private control of
productive resources is a means for market entry, which
creates unlimited potential for economic growth, although
private investment is not often seen to be subject to self-
finance due to the assumption that financial markets are
perfect. The neo-classical economic theory also postulates
that short-run labor-wage rates depend on labor market
conditions, while in the long run, they are determined by
the marginal revenue product of labor. Neo-classical mod-
els of economic growth, however, often make the sim-
plifying assumption that equilibrium continues to pre-
vail in both factor and product markets over the course
of growth. Thus, only minor fluctuations may occur in
wages, profits and prices in the short run, and these can
be ignored.

The belief in the existence of such equilibrium is fur-
ther strengthened by the Keynesian argument for the in-
effectiveness of the market mechanisms due to the de-
pendence of prices on long-term wage contracts and pro-
duction plans which may not respond easily to short-run
changes of the market. As a result of the belief in this
theory of wage determination, technological choices that
increase labor productivity are expected to have a posi-
tive effect on wage rates and household income, because
they increase the marginal revenue product of labor. En-
trepreneurship is viewed as important for new entry into
economic activity, which is open to all, and innovation is
supposed to benefit society through increased productiv-
ity. With these assumptions, the capitalist system advo-
cates minimal government intervention in the economy.
This model is widely presented in the many texts on eco-
nomic development. Pioneering texts include Hirshleifer
(1976) [22] and Kindelberger and Herrick (1977) [27].

Marxist economic theory, which underpins the social-
ist model, assumes on the other hand that ownership of
capital resources is concentrated in a minority exclud-
ing the workers and that the majority of households re-
ceive no part of the profits. Thus, wage payments have
a strong effect on household income. The Marxist the-
ory views private ownership as a source of exploitation
and postulates labor-wage rates determined by the con-
sumption necessary for a worker to support production in
a grossly labor surplus economy following Ricardo’s iron
law of wages [32,39]. The labor-wage rate is, thus, based
on the real value of the commodities needed for a worker
to subsist, which is more or less fixed, irrespective of the

contribution of labor to the production process. In such
conditions, technological choices that increase labor pro-
ductivity may indeed only serve to increase the share of
the surplus of product per unit of labor appropriated by
the capitalists. In this model, entrepreneurship is viewed
as an asocial activity and innovation seen to originate from
the need to boost falling returns on capital. Attributing
the development of these conditions to market failure,
the socialist system assigns control of the economy to the
government.

There also exist a number of revisionist models of po-
litical economy attempting to explain the nature of in-
terdependence of the multiple sub-economies observed
to co-exist in many developing countries in violation of
the theoretical premises of the neo-classical model ac-
cording to which all production factors must eventu-
ally move to the most efficient sector. These models of-
ten attribute the development of disparities between the
various sub-economies to exploitative mechanisms that
tend to maintain an upper hand of the stronger influ-
ence groups. The revisionist analyses have largely led to
making moral appeals for the government policy to tar-
get the poor and the disadvantaged in its development ef-
fort, which is a stated mandate of the International Bank
for Reconstruction and Development (World Bank). Tar-
geting the poor has also been advocated widely by nu-
merous development economists over the past half cen-
tury. They include such prominent economists as Myrdal
(1957) [36], Lipton (1977) [30], Galbraith (1979) [15], and
Sen (1999) [58].

Indeed, each economic system can often be endorsed
with the help of selected historical evidence, and this has
been fully exploited to fuel the traditional debate between
the neo-classical and Marxist economic schools. Interest-
ing artifacts of this debate include the normative theo-
ries of value suggested by each system to justify the vari-
ous wage systems, which have little practical significance
for development policy [44,62]. This is unfortunate, since
contradictions of evidence should clearly indicate the exis-
tence of fundamental organizational arrangements in the
economic system, which are capable of creating the mul-
tiple behavior patterns on which the various economic
models are based. Once identified, such arrangementsmay
also serve as entry points for the design of evolutionary
changes in an existing pattern. To quote Professor Joan
Robinson:

Each point of view bears the stamp of the period
when it was conceived. Marx formed his ideas in the
grim poverty of the forties. Marshal saw capitalism
blossoming in peace and prosperities in the sixties.
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Keynes had to find an explanation for the morbid
condition of ‘poverty in the midst of plenty’ in the
period between the wars. But each has significance
for other times, for in so far as each theory is valid,
it throws light upon essential characteristics of the
systemwhich have always been present in it and still
have to be reckoned with. [43]

Following sections of this paper experiment with a sys-
tem dynamics model of an economic system, widely found
in the developing countries and presented earlier in [53],
to understand the variety of economic patterns experi-
enced over time and geography under different legal and
social norms. Furthermore, exploratory experimentation
with this model helps to outline the basic principles of
a market system that can sustain growth, create equitable
distribution of benefits and facilitate innovation and pro-
ductivity improvement, all widely deemed necessary for
poverty alleviation.

A SystemDynamicsModel of Resource Allocation,
Production and Entitlements

A system dynamics model subsuming the broad decision
rules that underlie resource allocation, production, and
income disbursement processes of a developing country
economic system was proposed in Saeed (1988) [49] and
further experimented with in Saeed (1994) [53]. In this
model, capital, labor, and land (which may also be as-
sumed as a proxy for natural resources) are used as pro-
duction factors. Model structure provides for the function-
ing of two modes of production, commercial, in which re-
sources are employed on the basis of their profitability and
which is managed by the capitalist sector of the economy;
and self-employed, in which workers not employed in the
commercial mode make a living. These two modes of pro-
duction have been referred to variously in the literature,
for example as oligopolistic and peripheral firms [16], for-
mal and informal sectors [29], andmodern and traditional
subeconomies [12].

It has been assumed in the model that all workers,
whether self-employed using their own or rented capital
resources or employed as wage-workers by the capitalist
sector, are members of a homogeneous socio-economic
group with a common interest, which is to maximize con-
sumption. This group is also the sole supplier of labor in
the economy since the small number of working capital-
ists is ignored. On the other hand, the capitalist sector is
assumed to maximize profit while it is also the sole wage-
employer in the economy [2,3,57].

It is assumed that private ownership is protected by
law, but land and capital assets can be freely bought, sold

and rented by their owners. Each buying and selling trans-
action between the two sectors must be accompanied by
a corresponding transfer of the cash value of the assets de-
termined by the going market prices. The model also per-
mits the appearance of technological differences between
the capitalist and the self-employed sectors, when more
than one technologies embodied in the type of capital used
(named traditional and modern in the model) are avail-
able and the two sectors cannot employ the preferred tech-
nology with equal ease [30,41], or when the self-employed
sector is burdened by excess workers not employed by the
commercial sector while it lacks the financial capacity to
use its preferred technology.

Figure 1 shows how workers and capital might po-
tentially be retained and employed by the two sectors
in the model. Rectangles represent stocks, valve symbols
flows and circles intermediate computations following the
diagramming convention of system dynamics modeling.
The size of each sector is not specified and is determined
endogenously by the model, depending on assumptions
about the socio-technical environment in which the sys-
tem functions.

The changes in the quantities of the production fac-
tors owned or employed by each sector are governed by
the decisions of the producers and the consumers of out-
put and by the suppliers of the production factors act-
ing rationally according to their respective motivations
within the bounds of the roles defined for them by the
system [59]. The value of production is shared by house-
holds on the basis of the quantity of the production fac-
tors they contribute and the factor prices they can bar-
gain for [10]. Income share of the workers, less any in-
vestment needed to maintain self-employment, divided by
the total workforce, determines average consumption per
worker, which represents the opportunity cost of accept-
ing wage-employment and this is the basis for negotiating
a wage [57,62].

Investment and saving rates in the two sectors are de-
coupled through a balance of internal savings. The finan-
cial markets are segmented by sectors and the investment
decisions of a sector are not independent of its liquid-
ity position, given by the unspent balance of its savings.
Thus, investment decisions depend on profitability crite-
ria, but are constrained by the balance of internal savings
of each sector [33,34]. Figure 2 shows the mechanisms of
income disbursement, saving and internal finance incor-
porated into the model.

The saving propensity of all households is assumed not
to be uniform. Since capitalist households receive incomes
that are much above subsistence, their saving propensity
is stable. On the other hand, the saving propensity of the
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Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Allevation, Figure 1
Potential worker and capital distribution between capitalist and self employed sectors

worker households depends on their need to save to sup-
port investment for self-employment and on how their ab-
solute level of income compares with their inflexible con-
sumption [23,26,31].

The broad mathematical and behavioral relation-
ships incorporated into the model are given in the Ap-
pendix “Model Description”. Technical documentation
and a machine-readable listing of the model written in
DYNAMO code are available from the author on request.

Replicating Income Distribution Patterns Implicit
in Models of Alternative Economic Systems

Themodel is simulated under different assumptions about
wages, rents, financial markets and technology and its be-
havior analyzed in relation to the various theoretical and
empirical premises its information relationships represent.

As an arbitrary initial condition, production factors
are equally divided between the two sectors and equilib-
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Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Allevation, Figure 2
Income disbursement process

rium in both product and factor markets is assumed to ex-
ist under the conditions of a perfect economic system as
described in neo-classical economics. Thus, the marginal
revenue products of land and capital are initially assumed
to be equal to their respective marginal factor costs deter-
mined by an exogenously specified interest rate which rep-
resents the general pattern of preferences of the commu-
nity for current as against future consumption [22]. The
marginal revenue product of workers is initially set equal
to wage rate. The market is initially assumed to be clear
and there is no surplus of supply or demand.

Replicating the Theoretical Neo-classical System

This experiment is aimed at understanding internal trends
of a system representing the neo-classical economic the-
ory. To transform the model to represent this system, it
is assumed that the production factors employed by each
sector are owned by it and no renting practice exists [5].
The wage rate is assumed to be determined by themarginal

revenue product of workers and the availability of labor in-
stead of the opportunity cost to the workers of supplying
wage-labor. Financial markets are assumed to be perfect
and investment decisions of the two sectors are uncoupled
from their respective liquidity positions. It is also assumed
that the technology of production is the same in the two
sectors and, in terms of the model, only traditional cap-
ital is available to both of them. The only difference be-
tween the two sectors is that the capitalist sector can vary
all production factors, including labor to come to an effi-
cient mix, while the self-employed sector may absorb all
labor not hired by the capitalist sector, while it can freely
adjust other production factors to achieve an efficient mix.

The model thus modified stays in equilibrium when
simulated as postulated in neo-classical economic theory.
When this equilibrium is disturbed arbitrarily by transfer-
ring a fraction of the workers from the capitalist to the self-
employed sector, themodel tends to restore its equilibrium
in a manner also similar to that described by the neo-clas-
sical economic theory. This is shown in Fig. 3.



170 Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Allevation

Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Allevation, Figure 3
Recovery from dis-equilibrium in a neo-classical system

The transfer raises the marginal revenue product of
workers in the capitalist sector, which immediately pro-
ceeds to increase its workforce. The transfer also raises the
intensity of workers in the self-employed sector as a re-
sult of which the marginal revenue products of land and
capital in that sector rise. Hence, it proceeds to acquire
more land and capital. These activities continue until the
marginal revenue products of the factors and their propor-
tions are the same in the two sectors. Note that while the
factor proportions and marginal revenue products of the
factors are restored by the model to their original values,
the absolute amounts of the various factors are different
when new equilibrium is reached. There is, however, no
difference in endowments per worker between the capital-
ist and the self-employed sectors.

Since factor payments are determined purely on the
basis of contribution to the production process while the
quantities of production factors allocated to each sector
depend on economic efficiency, the wages and factor allo-
cations seem to be determined fairly and efficiently, as if by
an invisible hand. Ownership in such a situation can either
be communal or very widely distributed among house-
holds since otherwise the wage bargaining process will not
lead to fair wages. Renting of production factors among
households is irrelevant since transfer to parties who can
efficiently employ them is automatic.

Before anything is said about the empirical validity of
the simplifying assumptions made in this model, the his-
torical context of these assumptions must be examined
carefully. The simplified model is based on Adam Smith’s
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description of an industrial economy observed at the start
of the industrial revolution. This economy was run by ar-
tisan-turned capitalists and there were many of these cap-
italists competing with one another, although, none had
the financial muscle to outbid the others except through
his/her ability to employ resources efficiently [60].

As far as labor wage rate was concerned, although
there were instances of exploitation of workers at a later
stage of the industrial revolution, the artisan workers
could obtain a wage that was equal to their contribution
of labor to the production process, as otherwise they could
easily be self-employed since the economy was still quite
labor intensive and the tools needed for self-employment
may not have cost very much. Also, since ownership of the
tools of a trade may have been quite widespread while the
contribution of capital resources to the production pro-
cess was quite small as compared to that of labor, a ma-
jor part of the income might have accrued to the work-
ing households. In such circumstances, the simplifying as-
sumptions of the neo-classical model may appear quite
reasonable.

The neo-classical model became irrelevant, however,
as the system made progress in the presence of a social or-
ganizational framework that legally protected ownership
of all types and freely allowed the renting of assets, thus
making possible an absentee mode of owning productive
resources while technological changes also made the con-
tribution of capital resources to the production process
more significant.

CreatingWorker Capitalism

It is not only methodologically expedient but also peda-
gogically interesting to explore what ownership and wage
patterns might have emerged if labor-wages were deter-
mined through bargaining mechanisms incorporated into
the model instead of fair payment equal to the marginal
revenue product of workers, while all other assumptions
of a perfect market of the experiment of the last section
were maintained.

Figure 4 shows a simulation of the model in which
wage rate is determined by the average consumption ex-
penditure per worker (as given in Eqs. (1) and (2) of the
model described in the Appendix “Model Description”)
while renting of production factors and financial fragmen-
tation of the households are still not allowed. This change
in assumptions disturbs the initial market equilibrium in
the model thus activating its internal tendency to seek
a new equilibrium. No exogenous disequilibrating changes
are needed to generate the dynamic behavior in this simu-
lation and in those discussed hereafter.

As a result of this change, the compensation de-
manded for working in the capitalist sector becomes much
higher than the marginal revenue product of the workers.
Thus, wage-workers are laid off and accommodated in the
self-employed sector. Consequently, the marginal revenue
product of land and capital in the self-employed sector in-
creases and its bids for these resources rise. On the other
hand, the decrease in the workforce of the capitalist sector
increases its land and capital intensities and hence lowers
their marginal revenue products. The falling productivity
of these resources increases the opportunity cost of hold-
ing them. Since renting is not allowed, the capitalist sector
is persuaded to sell the resources to the self-employed who
can easily buy them since investment in the model is not
subject to internal self-finance.

As the self-employed sector increases its land and cap-
ital holdings, its production rises. When increases in the
production of this sector exceed the wage income lost due
to decreasing wage disbursements from the capitalist sec-
tor, the net revenue of the workers, and hence their average
consumption, rises. The wage rate is thus pushed up fur-
ther, which necessitates further reductions in wage-work-
ers. These processes spiral into a gradual transfer of all re-
sources to the self-employed sector.

The marginal revenue products of land and labor in
the two sectors tend to equilibrate at different values, but
the capitalist sector exists only in theory because towards
the end of the simulation almost all the resources are
owned and managed by the self-employed. Since no part
of the income is obtained by absentee owners, and work-
ing households may own and manage resources according
to the quantity of labor they can supply, the income distri-
bution may appear to be truly egalitarian.

Even though the above simulation is hypothetical, the
wage and income distribution pattern shown by it may
be experienced when the separation of resources from the
households employing them is socially or legally ruled
out or the state allocates capital resources and land ac-
cording to the quantity and quality of labor supplied by
a household. Instances of peasant economies having such
characteristics have been recorded in history in tribal cul-
tures and, in a somewhat advanced form, in medieval In-
dia [35]. Interestingly, such implicit assumptions are also
subsumed in the illusive perfect market the neoclassical
economic theory is based on.

Appearance of Absentee Ownership

When ownership of resources is legally protected, whether
they are productively employed or owned in absentia,
many renting and leasing arrangementsmay appear which
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Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Allevation, Figure 4
The develop of worker capitalismwhen wages depend on bargaining position of workers

may allow a household to own resources without hav-
ing to employ them for production [47]. This is borne
out in the simulation of Fig. 5, in which resources are di-
vided by the capitalist sector between commercial produc-
tion and renting activities depending on the rates of re-
turn in each. Rents depend on long-term averages of the
marginal revenue products of the respective factors and
on the demand for renting as compared with the sup-
ply of rentable assets. In the new equilibrium reached
by the model, the commercial mode of production and
wage-employment gradually disappear but a substantial
part of the resources continues to be owned by the cap-

italist sector, which rents these out to the self-employed
sector.

Such a pattern develops because of the combined ef-
fect of wage and tenure assumptions incorporated into the
model. When workers are laid off by the capitalist sec-
tor in response to a high wage rate, the marginal revenue
products of land and capital for commercially employing
these resources in this sector fall. However, as the laid-
off workers are accommodated in the self-employed sec-
tor, themarginal revenue products of land and capital, and
hence their demand in this sector, rise. Therefore, rents are
bid up and the capitalist sector is able to get enough return
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Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Allevation, Figure 5
The appearance of absentee ownership when renting is also allowed

from renting land and capital to justify maintaining its in-
vestment in these.

Again, the marginal revenue products of the produc-
tion factors in the commercial mode of production are
only hypothetical as that mode is not practiced towards
the end of the simulation. The renting mechanism allows
the self-employed sector to adjust its factor proportions
quickly when it is faced with the accommodation of a large
number of workers. When the economy reaches equilib-
rium, themarginal rates of return of the production factors
in the self-employed sector are the same as those at the be-
ginning of the simulation. But, the wage demanded equili-
brates at a level lower than that for the exclusively self-em-

ployed economy described in the simulation of Figure 4,
because a part of the income of the economy is now being
obtained by the absentee owners of the capitalist sector in
the form of rent.

Note that, although the total income of the economy
falls a little during the transition, it rises back to the origi-
nal level towards the end equilibrium since the technology
is uniform, irrespective of the mode of production. Also
note that the end equilibrium distribution of income de-
pends on initial distribution of factors when modifying as-
sumptions are introduced, and on the volume of transfers
occurring over the course of transition. Thus, an unlim-
ited number of income and ownership distribution pat-
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terns would be possible depending on initial conditions
and the parameters of themodel representing the speeds of
adjustment of its variables. The common characteristics of
these patterns, however, are the presence of absentee own-
ership, the absence of a commercial mode of production,
and a shadow wage that is less than an exclusively self-em-
ployed system.

Separation of Ownership fromWorkers
and the Creation of a Marxist System

The ownership of resources becomes separated from the
workers and concentrated in the capitalist sector in the

Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Allevation, Figure 6
Separation of ownership from workers as postulated byMarx system when investment must also be internally financed

model, irrespective of the initial conditions of resource
distribution, when the assumption about the existence of
a perfect financial market is also relaxed.

Figure 6 shows the ownership and wage pattern which
develops when acquisition of resources by the capitalist
and self-employed sectors is made dependent, in addition
to their profitability, on the ability to self-finance their pur-
chase. Recall also that the ability to self-finance depends on
the unspent balance of savings, and the saving rate of the
self-employed sector is sensitive both to the utility of sav-
ing in this sector to support investment for self-employ-
ment and to the rent burden of this sector compared with
the factor contribution to its income from land and capi-
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tal. The saving rate of the capitalist sector is assumed to be
constant.

Such a pattern develops because of an internal goal of
the system to employ resources in the most efficient way
while the ownership of these resources can only be with
the households who have adequate financial ability, which
is also not independent of ownership.

Creation of a Dualist System

A dualist system is characterized by the side-by-side ex-
istence of both commercial and self-employed modes of
production. The former appears to be economically effi-

Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Allevation, Figure 7
Creation of dualist systemwhen technological differentiation develops between the capitalist and self-employed sectors

cient and is often also capital-intensive. The latter is seen
to be economically inefficient and is also invariably labor-
intensive. The side-by-side existence of these twomodes of
production in many developing countries has often puz-
zled observers, since according to the neo-classical eco-
nomic theory, any inefficient production mode must be
displaced by the efficient one.

A stable commercially run capital-intensive produc-
tion sector existing together with a self-employed labor-
intensive sector develops in the model if a technological
differentiation is created between the capitalist and self-
employed sectors. This is shown in the simulation in Fig. 7,
in which an exogenous supply of modern capital is made
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available after end equilibrium of the simulation in Fig. 6
is reached.

Capital differentiation between the two sectors appears
since the scale of the self-employed producers does not al-
low them to adopt modern technologies requiring indi-
visible capital inputs. The capitalist sector starts meeting
its additional and replacement capital needs by acquiring
a mixture of modern and traditional capital while the self-
employed sector can use only traditional capital. However,
the capital demand of the capitalist sector is met by mod-
ern capital as much as the fixed supply permits. The bal-
ance of its demand is met by acquiring traditional capital.

The output elasticity of modern capital is assumed to
be higher than that of the traditional capital while the
use of the former also allows an autonomous increase in
output. The output elasticity of land is assumed to re-
main constant. The assumption of uniform returns to scale
is maintained. Thus, the output elasticity of workers de-
creases whenmodern capital is introduced. These assump-
tions serve to represent the high productivity and labor-
saving characteristics of the modern capital.

As its capital becomes gradually more modern and
potentially more productive, the capitalist sector is able
to employ its productive resources with advantage in the
commercial mode of production, instead of renting these
out, and to employ wage-workers at the going wage rate.
The increased productivity and income derived from this
make it both economically and financially viable for the
capitalist sector to invest more. Thus, its share of re-
sources, when a new equilibrium is reached, is further
increased.

Since the output elasticity of workers falls with the in-
crease in the fraction of modern capital, the marginal rev-
enue product of workers in the commercial mode may not
rise much with the increase in its output. At the same time,
since resources are being transferred away by the capitalist
sector from renting to commercial employment, the labor
intensity and the demand for renting rises in the self-em-
ployed sector. Hence rents are bid up and it again becomes
profitable for the capitalist sector to allocate resources to
renting. The amount of resources rented out, however, will
depend on the degree of technological differentiation that
may be created between the two sectors.

The wage rate reaches equilibrium at a lower level and
the rents at higher levels than without technological differ-
entiation. Rents, however, equal marginal revenue prod-
ucts of land and capital, which rise in the capitalist sector
because of employing superior technology and in the self-
employed sector due to increased labor intensity.

Interestingly, dualist patterns appeared in the develop-
ing countries, both in the agricultural and industrial sec-

tors, only after modern capital inputs became available
in limited quantities. Labor-intensive peasant agriculture
and small-scale industry and services carried out by the
self-employed came to exist side-by-side with the com-
mercially run farms and large-scale industry employing
wage labor and modern technologies. However, worker
income, both in wage-employment and self-employment,
remained low [19].

Feedback Loops UnderlyingWage
and Income Patterns

The internal goal of a dynamic system represented by a set
of non-linear ordinary differential equations is created by
the circular information paths or feedback loops which are
formed by the causal relations between variables implicit
in the model structure. These causal relations exist in the
state space independently of time (unless time also repre-
sents a state of the system). The existence of such feedback
loops is widely recognized in engineering and they are of-
ten graphically represented in the so-called block and sig-
nal flow diagrams [17,40,65].

While many feedback loops may be implicit in the dif-
ferential equations describing the structure of a system,
only a few of these would actively control the system be-
havior at any time. The nonlinearities existing in the rela-
tionships between the state variables determine which of
the feedback loops would actively control the system be-
havior. A change may occur in the internal goals of a sys-
tem if its existing controlling feedback loops become in-
active while simultaneously other feedback loops present
in its structure become active. Such a shift in the con-
trolling feedback loops of a system is sometimes called
a structural change in the social sciences and it can re-
sult both from the dynamic changes occurring over time
in the states of the system and from policy intervention.
The realization of a specific wage and income distribution
pattern depends not on assumptions about initial con-
ditions but on legal and social norms concerning own-
ership, renting, financing of investment and the state of
technology, determining which feedback loops would be
dominant [14,40].

Figure 8 describes the feedback loops, formed by the
causal relations implicit in the model structure that appear
to polarize income distribution by separating asset own-
ership from working households and creating a low wage
rate, as shown in Fig. 6. An arrow connecting two vari-
ables indicates the direction of the causality while a posi-
tive or a negative sign shows the slope of the function re-
lating cause to effect. For clarity, only key variables located
along each feedback path are shown.
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Dynamics of Income Distribution in a Market Economy: Possibil-
ities for Poverty Allevation, Figure 8
Feedback loops creating dysfunctional income distribution
trends in the capitalis system

When productive resources can potentially be engaged
in commercial or self-employed modes by owners and
renters, any autonomous increase in the wage rate would
not only decrease the desired capitalist owned resources
for commercial employment, it would also concomitantly
decrease the utility of investing in resources for self-em-
ployment. Thus, while the ownership of resources freed
from commercial employment is not transferred to the
self-employed sector, the surplus labor released by the
commercial sector has to be absorbed in self-employment.
As a result, worker income is depressed while the demand
for renting rises. Thus, it not only continues to be prof-
itable for the capitalist sector to hold its investments in
land and capital, it also gives this sector a financial edge
over the self-employed sector, whose savings continue to
decline as its rent burden rises. These actions spiral into
an expansion of ownership of resources by the capital-
ist sector even though the commercial mode of produc-
tion is eliminated due to the high cost of wage labor. This
also precipitates a very low wage rate when equilibrium is
reached since a low claim to income of the economy cre-
ates low opportunity costs for the self-employed workers
for accepting wage-employment.

Ironically, the fine distinction between the corporate,
artisan and absentee types of ownership is not recognized
in the political systems based on the competing neoclassi-
cal andMarxist economic paradigms. The former protects
all types of ownership; the latter prohibits all. None creates
a feasible environment in which a functional form of own-
ership may help to capture the entrepreneurial energy of
the enterprise.

Possibilities for Poverty Alleviation

A functional economic system must incorporate the
mechanisms to mobilize the forces of self-interest and en-
trepreneurship inherent in private ownership of the re-
sources. Yet, it must avoid the conflicts inherent in the in-
equalities of income and resource ownership that led to
the creation of the alternative socialist paradigm, which is
devoid of such forces. According to the preceding analy-
sis, the fundamental mechanism which creates the possi-
bility of concentration of resource ownership is the equal
protection accorded to the artisan and absentee forms of
ownership by the prevailing legal norms. The financial
fragmentation of households and the differences in their
saving patterns further facilitate the expansion of absen-
tee ownership. Technological differences between the cap-
italist and self-employed sectors not only make possible
the side-by-side existence of the two modes of produc-
tion, they also exacerbate the dichotomy between own-
ership of resources and workership. Apparently, the pol-
icy agenda for changing resource ownership and income
distribution patterns should strive to limit renting and
should additionally prevent the development of financial
fragmentation and technological differentiation between
the commercial and self-employed production modes if
the objective is to minimize the conflicts related to income
distribution.

Assisting the Poor

Programs to provide technological, organizational, and fi-
nancial assistance to the poor have been implemented ex-
tensively in the developing countries over the past few
decades although they have changed neither income dis-
tribution nor wage rate as reflected in many learned writ-
ings over these decades as well as the data published by UN
andWorld Bank. This occurred because the increased pro-
ductivity of the self-employed mode first pushed up wage
rate, making renting-out resources more attractive for the
capitalist sector than commercial production. However,
the consequent decrease in wage payments and increase
in rent payments pushed down the income share of the
workers, which again suppressed the wage rate. Any ef-
forts to facilitate the small-scale sector to increase its pro-
ductivity through technological development also failed to
affect income distribution since the mechanism of renting
allowed the gains of the improved productivity to accrue
to the absentee owners of the resources [56]. This experi-
ence is verified by the simulation of Fig. 9, which incorpo-
rates the policies to improve productivity, creating finan-
cial institutions and assisting the self-employed to adopt
modern technologies. These policies only increase the size
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of the self-employed sector without increasing worker in-
come, due to the possibility of separation of the mode of
production from the ownership of resources. This indi-
cates that influencing the decision to retain resources in
absentee mode for renting out should be the key element
of a policy framework to improve income distribution that
should alleviate poverty.

Influencing Income Distribution

The cost of owning capital resources in absentee form can
be increased by imposing a tax on rent income. The results
of implementing this policy, together with the policies of

Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Allevation, Figure 9
Perpetuation of low wage and unequal income distribution resulting from widely used economic development policies

Fig. 9 are shown in Fig. 10. In the face of a tax on rent in-
come, resources which cannot be employed efficiently un-
der the commercial system are offered for sale to the self-
employed instead of being leased out to them. Purchase of
these resources by the self-employed raises the entitlement
of the workers to the income of the economy, which in-
creases the opportunity cost of supplying wage-labor to the
commercial sector. This raises wage rate, which makes the
commercial mode of production even more uneconomi-
cal, unless it is able to apply a superior technology. Such
changes spiral in the long run into a transfer of a substan-
tial amount of resources to the self-employed sector. Con-
comitant efforts to decrease the financial fragmentation of
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Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Allevation, Figure 10
Changes in wage and income distribution resulting from adding taxation of rent income to the policy package

households and the technological differentiation between
the two modes of production, along with improving pro-
ductivity, further accelerate these changes.

Facilitation of Innovation and Productivity
Improvement

Macroeconomic analyses concerning the industrialized
countries show that technological innovation is one of
the most important sources of growth [9,61]. Studies con-
ducted at the organizational level in the industrialized
countries also show that innovations creating technolog-
ical progress originate largely from small entrepreneurs

or from large companies structured in a way to encour-
age small independent working groups [38,42]. Thus, en-
trepreneurial activity is often credited with raising produc-
tivity through creation of technical and business-related
innovations [6]. The high and rising cost of labor in the de-
veloped countries, possibly also forces the wage-employ-
ers into finding innovative ways of maintaining high labor
productivity and continuously striving to improve it.

On the other hand, economic growth has been dom-
inated in the developing countries by relatively large and
often highly centralized and vertically integrated compa-
nies. Technologies of production have mostly been re-
planted from the industrialized countries and indige-
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nous innovation and technological development have had
a poor track record [1]. These technologies often do not
perform as well as at their respective sources, but due
to the availability of cheap labor, their inefficient perfor-
mance still yields comfortable profits; hence little effort
is made to improve productivity. There also exist serious
limitations on the number of small players as large cross-
section of the households in the developing countries lack
the resources to effectively participate in any form of en-
trepreneurial activity [53,58]. Innovation being a proba-
bilistic process, limited participation drastically limits its
scope.

There exists a promising institution in most develop-
ing countries, however, which has great potential as a fo-
cal point of entrepreneurial activity, which has remained
dormant for lack of empowerment. This institution is the
small family enterprise in the self-employed sector, which
may take the form of a shop-house or an artisan manu-
facturing firm in the urban sector or a peasant farm in
the rural sector. It allows participation from all mem-
bers of the family while also providing the informal small-
group organization considered conducive to innovation in
many studies. Its members are highly motivated to work
hard and assume the risk of enterprise because of their
commitment to support the extended family. This enter-
prise is somewhat similar to the small manufacturing units
that created the industrial revolution in England in the
early nineteenth century. It has also been observed that
the small family enterprise tends to maximize consump-
tion; hence its income significantly affects demand, which
creates new marketing opportunities [1,4]. Unfortunately,
this enterprise has been systematically suppressed and dis-
criminated against in favor of the large-scale capitalist sec-
tor. Even its output remains largely unaccounted for in the
national accounting systems of most countries [11,20].

The small family enterprise, variously described as the
informal, labor-intensive, traditional, peasant, peripheral
and sometimes inefficient sector in the developing coun-
tries has been stifled in the first instance by a set of so-
cial and legal norms through which the wealth has become
concentrated in an absentee ownership mode. Working
households are mostly poor and own few assets [19]. The
prosperity of these households will not only provide the
much-needed financial resources for entrepreneurial ac-
tivity, their capacity to spend will also create manymarket-
ing opportunities for the potential entrepreneur. Thus, in-
fluencing income distribution, through the policy frame-
work proposed in the last section, ranks first on the agenda
also for developing entrepreneurship and encouraging in-
novation. Once a significant cross-section of the populace
becomes a potential participant in the economic activity,

the development of infrastructure and facilitation to man-
age risk will also appear to be effective instruments to sup-
port entrepreneurship and innovation [51]. The rise in the
wage rates due to the possibility of alternative self-employ-
ment opportunities would, at the same time, force the large
commercial enterprise to invest in technological innova-
tion for productivity improvement, which should further
improve the efficacy of the overall system.

Conclusion

Both neoclassical andMarxist models of economic growth
seem to make restricting assumptions about ownership
and mechanisms of wage determination, which are linked
with specific time- and geography- related historical ev-
idence. These restricting assumptions give internal con-
sistency and a semblance of sustainability to each model,
although they remove both from reality. A failure in the
free-market system based on the no-classical model oc-
curs when the invisible hand concentrates ownership of
resources in a small minority, suppressing wage rate and
creating social conflict due to income inequalities. On the
other hand, a failure in the socialist system based on the
Marxist model occurs, when the visible hand empowered
to act in the public interest stifles entrepreneurial energy
while also ignoring public interest in favor of its power in-
terests [48,50].

A behavioral model underlying wage and income dis-
tribution has been proposed in this paper, in which the
opportunity cost of supplying a unit of labor to the cap-
italist sector is used as a basis for negotiating a wage. Nei-
ther this opportunity cost nor the ownership pattern are
taken as given, while the dynamic interaction between the
two creates a tendency in the system to generate numerous
wage and income distribution patterns, subsuming those
postulated in the neo-classical andMarxist theories of eco-
nomics. The realization of a specific wage and income dis-
tribution pattern depends on legal and social norms con-
cerning ownership, renting, the financing of investment
and the state of technology.

Private ownership seems to have three forms, com-
mercial, artisan and absentee. Predominance of artisan
ownership creates an egalitarian wage and income distri-
bution pattern while a healthy competition between the
commercial and artisan firms may release considerable
entrepreneurial energy. These functional forms can grow
only if the renting of resources can be discouraged. On
the other hand, absentee ownership creates a low wage
rate and an unequal income distribution, while the growth
of this form of ownership is facilitated through the rent-
ing mechanism. Potentially, all three ownership forms can
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exist in an economic system. The problem, therefore, is
not to favor or condemn private ownership per se as the
alternative theories of economics have often advocated,
but to understand the reasons behind the development of
a particular ownership pattern and identify human moti-
vational factors that would change an existing pattern into
a desired one.

The most important reform needed at government
level to alleviate poverty is the discouragement of the ab-
sentee ownership of capital assets, which would create
a wider distribution of wealth. Widespread artisan owner-
ship resulting from this would increase participation in en-
trepreneurial activity, which would allow adequate perfor-
mance from the human actors in the system. Such reforms
may however not be possible in the authoritarian systems
of government pervasive in the developing countries since
they must often limit civil rights and public freedoms to
sustain power. Hence, the creation of a democratic polit-
ical system may be a pre-condition to any interventions
aimed at poverty alleviation. This, I have discussed else-
where [50,53,54].

Future Directions

While the market system has often been blamed by the
proponents of central planning for leading to concentra-
tion of wealth and income among few, it in fact offers
a powerful means for redistributing income if the process
of concentration is carefully understood and an interven-
tion designed on the basis of this understanding. In fact,
all economic systems can be reformed to alleviate the dys-

Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Allevation, Table 1
Developmental problems, policies implemented to address them and unintended consequences experienced

Initially perceived
problems

Policies implemented Unintended consequences

Poverty Economic growth
capital formation
sectoral development
technology transfer
external trade

Low productivity
indebtedness
natural resources depletion
environmental degradation
continuing/increased poverty

Food shortage Intensive agriculture
land development
irrigation
fertilizer application
use of new seeds

Land degradation
depletion of water aquifers
vulnerability to crop failure
population growth
continuing/increased vulnerability to food shortage

Social unrest Spending on internal security
and defense infrastructure

limiting civil rights

Poor social services
poor economic infrastructure
authoritarian governance
insurgence
continuing/increased social unrest

functional tendencies they are believed to have, provided
the circular relationships creating such dysfunctions can
be understood which should be the first objective of policy
design for economic development.

Contrary to this position, economic development has
often viewed developmental problems as pre-existing con-
ditions, whichmust be changed through external interven-
tion. Poverty, Food shortage, poor social services and hu-
man resources development infrastructure, technological
backwardness, low productivity, resource depletion, en-
vironmental degradation and poor governance are cases
in point. In all such cases, the starting point for a pol-
icy search is the acceptance of a snapshot of the existing
conditions. A developmental policy is then constructed
as a well-intended measure that should improve exist-
ing conditions. Experience shows, however, that policies
implemented with such a perspective not only give un-
reliable performance, they also create unintended conse-
quences. This happens because the causes leading to the
existing conditions and their future projections are not
adequately understood. The well-intentioned policies ad-
dressing problem symptoms only create ad hoc changes,
which are often overcome by the system’s reactions.

Table 1 collects three key developmental problems,
poverty, food shortage and social unrest, and the broad
policies implemented over the past several decades to ad-
dress them. These problems have, however, continued to
persist or even become worse.

The policy response for overcoming poverty was to
foster economic growth so aggregate income could be in-
creased; that for creating food security was intensive agri-
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culture so more food could be produced; and for contain-
ing social unrest, the broad prescription is to strengthen
internal security and defense infrastructure so public
could be protected from social unrest. The unintended
consequences of these policies are many, but in most in-
stances, they include a continuation or worsening of the
existing problems.

Thus, poverty and income differentials between rich
and poor have in fact shown a steady rise, which is also
accompanied by unprecedented debt burdens and exten-
sive depletion of natural resources and degradation of en-
vironment. Food shortages have continued but are now
accompanied also by land degradation, depletion of water
aquifers, the threat of large-scale crop failure due to a re-
duction in crop diversity and a tremendous growth in pop-
ulation. Social unrest has often intensified together with
appearance of organized insurgence burgeoning expendi-
tures on internal security and defense, which has stifled
development of social services and human resources and
have created authoritarian governments with little com-
mitment to public welfare.

The unintended consequences are oftenmore complex
than the initial problems and have lately drawn concerns at
the global level, but whether an outside hand at the global
level would alleviate them is questionable. This is evident
from the failure to formulate and enforce global public
policy in spite of active participation by national govern-
ments, global agencies like the UN, the World Bank, the
World Trade Organization, and advocacy networks some-
times referred to as the civil society. This failure can largely
be attributed to the lack of a clear understanding of the
roles of the actors who precipitated those problems and
whose motivations must be influenced to turn the tide.

Thus, development planning must adopt a problem
solving approach in a mathematical sense if it is to achieve
sustainable solutions. In this approach, a problem must
be defined as an internal behavioral tendency and not as
a snap shot of existing conditions. It may represent a set
of patterns, a series of trends or a set of existing conditions
that appear either to characterize a system or to be resilient
to policy intervention. In other words, an end condition by
itself must not be seen as a problem definition. The com-
plex pattern of change implicit in the time paths preced-
ing this end condition would, on the other hand, represent
a problem. The solution to a recognized problem should
be a solution in a mathematical sense, which is analogous
to creating an understanding of the underlying causes of
a delineated pattern. A development policy should then
be perceived as a change in the decision rules that would
change a problematic pattern to an acceptable one. Such
a problem solving approach can be implemented with ad-

vantage using system dynamics modeling process that en-
tails building and experimenting with computer models of
problems, provided of course a succinct problem defini-
tion has first been created.

Appendix

Model Description

Wage rate WR is assumed to adjust over period WRAT
towards indicated wage rate IWR.

d/dt[WR] D (IWR � WR)/WRAT (1)

IWR depends on the wage-bargaining position of the
workers, which is determined by their opportunity cost of
accepting wage-employment. It is assumed that the oppor-
tunity cost of transferring a self-employed worker to wage-
work is zero when wage offered is equal to the current con-
sumption expenditure per worker averaged over the whole
workforce.

IWR D [(Rs � (1 � SPs) C (ASs/LAS))/TW] ; (2)

where Rs, SPs and ASs are, respectively, income share, sav-
ing propensity and accumulated unspent savings of the
self-employed sector. LAS and TW are, respectively, life
of accumulated unspent savings and total workforce. Sub-
scripts s and f designate, respectively, self-employed and
capitalist sectors.

Ownership of land and capital as well as contribution
to labor are the bases for claim to income while absentee
ownership is possible through leasing arrangements. Thus,
Rs is computed by adding together the value of output
produced by the self-employed sector VQs and the wage
payments received by the wage-workersWf, and subtract-
ing from the sum the rent payments made to the absentee
owners. Rf is given by adding together the value of out-
put produced by the capitalist sectorVQf and the rent pay-
ments it receives from the self-employed sector, and sub-
tracting from the sum the wage-payments it makes.

Rs D VQs C WR � Wf � LR � RL � KR � RK ; (3)

Rf D VQf � WR � Wf C LR � RL C KR � RK ; (4)

where LR, RL, KR, and RK , are, respectively, land rent,
rented land, capital rent, and rented capital.

KR and LR depend, respectively, on the long-term av-
erages of themarginal revenue products of capital and land
(AMRPK and AMRPL) in the economy, and the demand
for renting capital and land (RKD and RLD) as compared
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with the supply of rentable assets (RK and RL). The de-
mand for renting, in turn, depends on the lack of owner-
ship of adequate resources for productively employing the
workers in the self-employed sector.

KR D AMRPK � f1[RKD/RK] ; f 0
1 > 0 (5)

RKD D DKEs � KOs : (6)

Where DKEs is desired capital to be employed in the self-
employed sector and KOs is capital owned by it. Land rent
LR and demand for renting land RLD are determined sim-
ilarly.

The saving propensity of all households in not uni-
form. Since capitalist households associated with the capi-
talist sector receive incomes which are much above subsis-
tence, their saving propensity is stable. On the other hand,
the saving propensity of the worker households depends
on their need to save for supporting investment for self-
employment and on how their absolute level of income
compares with their inflexible consumption. Thus, SPs in
the model is determined by the utility of investment in the
self-employed sector arising from a comparison of worker
productivity in the sector with the wage rate in the capi-
talist sector, and the rent burden of this sector compared
with the factor contribution to its income from land and
capital.

SPs D � � f2[MRPWs/WR] � f3[(LR � RL C KR � RK)
/(VQs � MRPWs � Ws)] ; (7)

SPf D � ; (8)

where f 0
2 > 0, f 0

3 < 0, � is a constant, and MRPW is
marginal revenue product of workers.

AS represent the balance of unspent savings, which de-
termine the availability of liquid cash resources for pur-
chase of assets. AS are consumed over their life LAS
whether or not any investment expenditure occurs.

d/dt[ASi ]

D Ri � SPi � ASi /LAS � LAi � PL �
X

j

KAj
i � GPL ;

i D s,f ; j D m,t ; (9)

where LA, PL, KA, and GPL are, respectively, land acquisi-
tions, price of land, capital acquisitions, and general price
level. Subscript i refers to any of the two sectors, self-em-
ployed (s) and capitalist (f), and superscript j to the type of
capital, modern (m) or traditional (t).

Wf is assumed to adjust towards indicated workers IWf
given by desired workers DWf and total workforce TW.

TW is assumed to be fixed, although, relaxing this as-
sumption does not alter the conclusions of this paper. All
workers who are not wage-employed must be accommo-
dated in self-employment. ThusWs represents the remain-
ing workers in the economy.

d/dt[Wf] D (IWf � Wf)/WAT (10)

IWf D TW � f4(DWf/TW) (11)

Ws D TW � Wf (12)

where 1 � f4 � 0, and f 0
4 > 0. WAT is worker adjustment

time.
The desired workers in each sector DWi is determined

by equating wage rate with the marginal revenue prod-
uct of workers. A modified Cobb–Douglas type produc-
tion function is used.

DWi D Ew
i � VQi /WR ; (13)

where Ew
i is the elasticity of production of workers in a sec-

tor.
Land and capital owned by the capitalist sector (LOf

andKOf) are allocated to commercial production (KEf and
LEf) and renting (RK and RL) activities depending on the
desired levels of these factors in each activity. Thus,

RK D (DRK/(DRK C DKEf)) � KOf (14)

RL D (DRL/(DRL C DLEf)) � LOf (15)

KEf D KOf � RK (16)

LEf D LOf � RL (17)

Capital and land employed by the self-employed sector
consist of these production factors owned by them and
those rented from the capitalist sector.

KEs D Kos C RK (18)

LEs D Los C RL : (19)

Desired capital and land to be employed in any sector
(DKEi andDLEi) are determined on the basis of economic
criteria.

d/dt(DKEi )/KEi D f6[MRPKi /MFCK] (20)

d/dt(DLEi)/LEi D f5[MRPLi /MFCL] ; (21)

where f 0
5 and f 0

6 > 0. MRPLi and MRPKi are respectively
marginal revenue products of land and capital in a sector,
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and MFCL AND MFCK are respectively marginal factor
costs of land and capital.

MRPLi D (El
i � VQi /LEi ) (22)

MRPKi D (Ek
i � VQi /KEi ) (23)

MFCL D PL � IR (24)

MFCK D IR C (1/LK) � GPL ; (25)

where El
i and E

k
i are, respectively, elasticities of production

of land and capital in a sector. PL is price of land, IR is
exogenously defined interest rate, LK is life of capital and
GPL is general price level.

Changes in the quantities of capital and land desired to
be rented out (DRK and DRL) depend on their respective
rentsKR and LR compared with theirmarginal factor costs
MFCK andMFCL.

d/dt[DRK]/RK D f7[KR/MFCK] ; f 0
7 > 0 (26)

d/dt[DRL]/RL D f8[LR/MFCL] ; f 0
8 > 0 : (27)

The value of output produced by each sector is given by
the product of the quantity it produces Qi and the general
price level GPL.

VQi D Qi � GPL (28)

Qi D Ai � KEki

i � LE
li

i � WEwi

i ; (29)

where Ki, Li, and Wi represent capital, land and workers
employed by a sector. Ai represent technology constants,
which increase with the use of modern capital.

Ai D Å � f9
�
Km
i /(K

t
i C Km

i )
�
; (30)

where f 0
9 > 0 and Å is a scaling factor based on initial

conditions of inputs and output of the production process.
Ownership is legally protected and the financial mar-

ket is fragmented by households. Thus, purchase of any
productive assets must be self-financed by each sector
through cash payments. Land ownership LOi of each sec-
tor changes through acquisitions LAi from each other.
Each sector bids for the available land on the basis of eco-
nomic criteria, its current holdings, and the sector’s liquid-
ity.

LAi D d/dt[LOi] (31)

LOi D
�

DLOi /
X

i

DLOi

�

� TL ; (32)

where DLOi is desired land ownership in a sector and TL
is total land which is fixed,

DLOi D LOi � f6[MRPLi /MFCL] � f11[CAi ] ; (33)

where f 0
11[CAi ] is > 0, and CAi is cash adequacy of a sec-

tor.
Cash adequacy of a sector CAi is given by the ratio

of its accumulated unspent savings to the desired savings.
The latter is computed by multiplying cash needed to fi-
nance investment and the traditional rate of consumption
of savings in the sector by cash coverage CC.

CAi D ASi /

 �

(ASi /LAS) C (LAi � PL)

C
�X

j

KAi j � GPL
��

� CC

!

: (34)

Capital ownership in a sector KOi D KOt
i CKOm

i changes
through acquisitions KAj

i and decay. Although there is
a preference for modern capital, its acquisition KAm

i de-
pends on the ability to accommodate the technology rep-
resented by it. Inventory availability of each type of capital
KIAj also limits its purchases.

d/dt[KOi] D
X

j

KAj
i � KOi /LK ; (35)

KAj
i D DKAj

i � KIAj ; (36)

DKAm
i D (KOi /LK)� f5[MRPKi /MFCK]� f11[CAi]�TCFi ;

(37)

DKAt
i D (KOi /LK) � f5[MRPKi /MFCK]

� f11[CAi] � (1 � TCFi ) ;
(38)

where DKAi are desired capital acquisitions, f 0
11 � 0, and

LK is life of capital. TCFi represent exogenously defined
technological capability. 0 < TCFi < 1.

KIAj D f12

"

KIj/

 
X

i

DKAj
i

!

� KIC

#

; (39)

where 0 6 f12 6 1, f 0
12 > 0, and KIC is capital inventory

coverage

d/dt[KIj] D KQj �
X

i

KAj
i ; (40)

where KQj represent supply of capital. KQm is imported,
while KQt is created within the economy by allocating
a part of the capacity to its production.
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Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Allevation, Figure 11
Behavioral relationships f1 through f8

KQt D
X

Qi �
�X

i

DKAt
i /TD

�

: (41)

The price of land PL is assumed to adjust towards indi-
cated price of land IPL which is given by the economy-
wide average of the marginal revenue product of landAM-
RPL, interest rate IR and the desired land ownership in

each sector DLOi

d/dt[PL] D (IPL � PL)/LPAT ; (42)

IPL D (AMRPL/IR) � f13

"
X

i

DLOi /TL

#

;

where f 0
13 > 0 : (43)



186 Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Allevation

Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Allevation, Figure 12
Behavioral relationships f9 through f16

General price level GPL is determined by supply and de-
mand considerations.

d/dt[GPL] D GPLN � f14[TD/
X

i

Qi] (44)

where f 0
14 > 0.GPLN is normal value ofGPL and TD is to-

tal demand for goods and services to be produced within
the economy. TD is given by adding up non-food con-
sumption Ci, traditional capital acquisition KAt

i and pro-
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duction of traditional capital for inventory, food demand
FD and government spending G which is equal to taxes, if
any, collected.

TD D
X

Ci C
X

i

DKAt
i

C
  

KIC �
X

i

DKAt
i � KIj

!

/IAT

!

C FD C G ; (45)

d/dt(Ci ) D
[(((Ri � (1 � SPi) C ASi /LAS)/GPL) � FNFCi) � Ci ]

CAT
;

(46)

where IAT is inventory adjustment time, FNFCi fraction
non-food consumption, and CAT is consumption adjust-
ment time. Food demand FD is given by multiplying pop-
ulation Pwith normal per capita food demandNFPCD and
a function f 15 representing a weak influence of price.

FD D P � NFPCD � f15[GPL/GPLN] ; (47)

where f 0
15 < 0 and P bears a fixed proportion with total

workforce TW.
The elasticity of production of land El

i is assumed to
be constant as is suggested by empirical evidence concern-
ing agricultural economies [Strout 1978, Heady andDillon
1961]. Elasticity of production of capital Ek

i depends on
the technology of production, which is determined by the
proportions of traditional and modern capital employed.
Since constant returns to scale are assumed, Ew

i is given
by (47).

Ek
i D f16[Km

i /(K
t
i C Km

i )] ; f 0
16 > 0 ; (48)

Ew
i D 1 � Ek

i � El
i : (49)

Behavioral Relationships

Sixteen behavioral relationships [ f1 � � � f16] have been in-
corporated into the model. The slope characteristics of
these relationships have already been described in above
equations. The graphical forms of the functions repre-
senting these relationships are shown in Figs. 11 and 12
placed below. General considerations for specifying such
relationships are discussed in [63].
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Glossary

Filtered probability of a regime The probability that the
unobserved Markov chain for a Markov-switching
model is in a particular regime in period t, conditional
on observing sample information up to period t.

Gibbs sampler An algorithm to generate a sequence of
samples from the joint probability distribution of
a group of random variables by repeatedly sampling
from the full set of conditional distributions for the
random variables.

Markov chain A process that consists of a finite number
of states, or regimes, where the probability of moving
to a future state conditional on the present state is in-
dependent of past states.

Markov-switching model A regime-switching model in
which the shifts between regimes evolve according to
an unobserved Markov chain.

Regime-Switching Model A parametric model of a time
series in which parameters are allowed to take on dif-
ferent values in each of some fixed number of regimes.

Smooth transition threshold model A threshold mod-
el in which the effect of a regime shift on model pa-
rameters is phased in gradually, rather than occurring
abruptly.

Smoothed probability of a regime The probability that
the unobserved Markov chain for a Markov-switching
model is in a particular regime in period t, conditional
on observing all sample information.

Threshold model A regime-switching model in which
the shifts between regimes are triggered by the level of
an observed economic variable in relation to an unob-
served threshold.

Time-varying transition probability A transition pro-
bability for a Markov chain that is allowed to vary de-
pending on the outcome of observed information.

Transition probability The probability that a Markov
chain will move from state j to state i.

Definition of the Subject

Regime-switching models are time-series models in which
parameters are allowed to take on different values in each
of some fixed number of “regimes.” A stochastic process
assumed to have generated the regime shifts is included as
part of the model, which allows for model-based forecasts
that incorporate the possibility of future regime shifts. In
certain special situations the regime in operation at any
point in time is directly observable. More generally the
regime is unobserved, and the researcher must conduct
inference about which regime the process was in at past
points in time. The primary use of these models in the ap-
plied econometrics literature has been to describe changes
in the dynamic behavior of macroeconomic and financial
time series.

Regime-switching models can be usefully divided into
two categories: “threshold” models and “Markov-switch-
ing” models. The primary difference between these ap-
proaches is in how the evolution of the state process is
modeled. Threshold models, introduced by Tong [91],
assume that regime shifts are triggered by the level of
observed variables in relation to an unobserved thresh-
old. Markov-switching models, introduced to economet-
rics by [16,39,41], assume that the regime shifts evolve ac-
cording to a Markov chain.

Regime-switching models have become an enor-
mously popular modeling tool for applied work. Of par-
ticular note are regime-switching models of measures of
economic output, such as real Gross Domestic Product
(GDP), which have been used to model and identify the
phases of the business cycle. Examples of such mod-
els include [3,7,41,57,60,61,73,75,77,90,93]. A sampling of
other applications include modeling regime shifts in in-
flation and interest rates [2,25,34], high and low volatility
regimes in equity returns [23,46,48,92], shifts in the Fed-
eral Reserve’s policy“rule” [55,83], and time variation in
the response of economic output to monetary policy ac-
tions [35,53,69,81].

1I am grateful to Jim Hamilton and Bruce Mizrach for comments
on an earlier draft.
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Introduction

There is substantial interest in modeling the dynamic
behavior of macroeconomic and financial quantities ob-
served over time. A challenge for this analysis is that these
time series likely undergo changes in their behavior over
reasonably long sample periods. This change may occur in
the form of a “structural break”, in which there is a shift
in the behavior of the time series due to some perma-
nent change in the economy’s structure. Alternatively, the
change in behavior might be temporary, as in the case of
wars or “pathological” macroeconomic episodes such as
economic depressions, hyperinflations, or financial crises.
Finally, such shifts might be both temporary and recur-
rent, in that the behavior of the time series might cy-
cle between regimes. For example, early students of the
business cycle argued that the behavior of economic vari-
ables changed dramatically in business cycle expansions
vs. recessions.

The potential for shifts in the behavior of economic
time series means that constant parameter time series
models might be inadequate for describing their evolu-
tion. As a result, recent decades have seen extensive inter-
est in econometric models designed to incorporate param-
eter variation. One approach to describing this variation,
denoted a “regime-switching” model in the following, is
to allow the parameters of the model to take on different
values in each of some fixed number of regimes, where,
in general, the regime in operation at any point in time
is unobserved by the econometrician. However, the pro-
cess that determines the arrival of new regimes is assumed
known, and is incorporated into the stochastic structure of
the model. This allows the econometrician to draw infer-
ence about the regime that is in operation at any point in
time, as well as form forecasts of which regimes are most
likely in the future.

Applications of regime-switching models are usually
motivated by economic phenomena that appear to involve
cycling between recurrent regimes. For example, regime-
switching models have been used to investigate the cycling
of the economy between business cycle phases (expansion
and recession), “bull” and“bear”markets in equity returns,
and high and low volatility regimes in asset prices. How-
ever, regime switching models need not be restricted to
parameter movement across recurrent regimes. In partic-
ular, the regimes might be non-recurrent, in which case
the models can capture permanent“structural breaks” in
model parameters.

There are a number of formulations of regime-switch-
ing time-series models in the recent literature, which can
be usefully divided into two broad approaches. The first

models regime change as arising from the observed be-
havior of the level of an economic variable in relation to
some threshold value. These “threshold” models were first
introduced by Tong [91], and are surveyed by [78]. The
second models regime change as arising from the outcome
of an unobserved, discrete, random variable, which is as-
sumed to follow a Markov process. These models, com-
monly referred to as “Markov-switching” models, were in-
troduced in econometrics by [16,39], and became popu-
lar for applied work following the seminal contribution
of Hamilton [41]. Hamilton and Raj [47] and Hamil-
ton [44] provide surveys of Markov-switching models,
while Hamilton [43] and Kim and Nelson [62] provide
textbook treatments.

There are by now a number of empirical applications
of regime-switching models that establish their empirical
relevance over constant parameter alternatives. In partic-
ular, a large amount of literature has evaluated the statis-
tical significance of regime-switching autoregressive mod-
els of measures of US economic activity. While the early
literature did not find strong evidence for simple regime-
switching models over the alternative of a constant param-
eter autoregression for US real GDP (e. g. [33]), later re-
searchers have found stronger evidence using more com-
plicated models of real GDP [57], alternative measures of
economic activity [45], and multivariate techniques [63].
Examples of other studies finding statistical evidence in
favor of regime-switching models include Garcia and Per-
ron [34], who document regime switching in the condi-
tional mean of an autoregression for the US real interest
rate, and Guidolin and Timmermann [40], who find ev-
idence of regime-switching in the conditional mean and
volatility of UK equity returns.

This article surveys the literature surrounding regime-
switching models, focusing primarily on Markov-switch-
ing models. The organization of the article is as fol-
lows. Section “Threshold and Markov-Switching Models
of Regime Change”describes both threshold and Markov-
switching models using a simple example. The article then
focuses on Markov-switching models, with Sect. “Estima-
tion of a Basic Markov-Switching Model” discussing esti-
mation techniques for a basic model, Sect. “Extensions of
the Basic Markov-Switching Model” surveying a number
of primary extensions of the basic model, and Sect. “Speci-
fication Testing for Markov-Switching Models” surveying
issues related to specification analysis. Section “Empirical
Example: Identifying Business Cycle Turning Points” gives
an empirical example, discussing how Markov-switching
models can be used to identify turning points in the US
business cycle. The article concludes by highlighting some
particular avenues for future research.
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Threshold andMarkov-SwitchingModels
of Regime Change

This section describes the threshold and Markov-switch-
ing approaches to modeling regime-switching using a spe-
cific example. In particular, suppose we are interested in
modeling the sample path of a time series, fytgTtD1, where
yt is a scalar, stationary, random variable. A popular choice
is an autoregressive (AR) model of order k:

yt D ˛ C
kX

jD1

� j yt� j C "t ; (1)

where the disturbance term, "t, is assumed to be normally
distributed, so that "t 
 N(0; �2). The AR(k) model in (1)
is a parsimonious description of the data, and has a long
history as a tool for establishing stylized facts about the dy-
namic behavior of the time series, as well as an impressive
record in forecasting.

In many cases however, we might be interested in
whether the behavior of the time series changes across dif-
ferent periods of time, or regimes. In particular, we may be
interested in the following regime-switching version of (1):

yt D ˛St C
kX

jD1

� j;St yt� j C "t ; (2)

where "t 
 N(0; �2St ). In (2), the parameters of the AR(k)
depend on the value of a discrete-valued state variable,
St D i; i D 1; : : : ;N , which denotes the regime in op-
eration at time t. Put simply, the parameters of the AR(k)
model are allowed to vary among one ofN different values
over the sample period.

There are several items worth emphasizing about the
model in (2). First, conditional on being inside of any par-
ticular regime, (2) is simply a constant parameter linear
regression. Such models, which are commonly referred to
as “piecewise linear”, make up the vast majority of the ap-
plications of regime-switching models. Second, if the state
variable were observed, the model in (2) is simply a lin-
ear regression model with dummy variables, a fact that
will prove important in our discussion of how the param-
eters of (2) might be estimated. Third, although the spec-
ification in (2) allows for all parameters to switch across
all regimes, more restrictive models are certainly possible,
and indeed are common in applied work. For example,
a popular model for time series of asset prices is one in
which only the variance of the disturbance term is allowed
to vary across regimes. Finally, the shifts in the parame-
ters of (2) are modeled as occurring abruptly. An example
of an alternative approach, in which parameter shifts are
phased in gradually, can be found in the literature investi-

gating “smooth transition” threshold models. Suchmodels
will not be described further here, but are discussed in de-
tail in [93].

Threshold and Markov-switching models differ in the
assumptions made about the state variable, St . Threshold
models assume that St is a deterministic function of an ob-
served variable. In most applications this variable is taken
to be a particular lagged value of the process itself, in which
case regime shifts are said to be “self-exciting”. In partic-
ular, define N � 1 “thresholds” as �1 < �2 < : : : < �N�1.
Then, for a self-exciting threshold model, St is defined as
follows:

St D 1 yt�d < �1 ;

St D 2 �1 � yt�d < �2 ;

:::
:::

St D N �N�1 � yt�d :

(3)

In (3), d is known as the “delay” parameter. In most cases
St is unobserved by the econometrician, because the de-
lay and thresholds, d and � i, are generally not observ-
able. However, d and � i can be estimated along with other
model parameters. [78] surveys classical and Bayesian ap-
proaches to estimation of the parameters of threshold
models.

Markov-switching models also assume that St is un-
observed. In contrast to threshold models however, St is
assumed to follow a particular stochastic process, namely
an N-state Markov chain. The evolution of Markov chains
are described by their transition probabilities, given by:

P(St D ijSt�1 D j; St�2 D q; : : :)
D P(St D ijSt�1 D j) D pi j ; (4)

where, conditional on a value of j, we assume
PN

iD1 pi j D
1. That is, the process in (4) specifies a complete proba-
bility distribution for St . In the general case, the Markov
process allows regimes to be visited in any order and for
regimes to be visited more than once. However, restric-
tions can be placed on the pij to restrict the order of regime
shifts. For example, [12] notes that the transition proba-
bilities can be restricted in such a way so that the model
in (2) becomes a “changepoint” model in which there are
N � 1 structural breaks in the model parameters. Finally,
the vast majority of the applied literature has assumed that
the transition probabilities in (4) evolve independently of
lagged values of the series itself, so that

P(St D ijSt�1 D j; St�2 D q; : : : ; yt�1; yt�2; : : :)
D P(St D ijSt�1 D j) D pi j ; (5)
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which is the polar opposite of the threshold process de-
scribed in (3). For this reason, Markov-switching mod-
els are often described as having regimes that evolve “ex-
ogenously” of the series, while threshold models are said
to have “endogenous” regimes. However, while popu-
lar in practice, the restriction in (5) is not necessary for
estimation of the parameters of the Markov-switching
model. Section “Extensions of the Basic Markov-Switch-
ing Model” of this article discusses models in which the
transition probabilities of the Markov process are allowed
to be partially determined by lagged values of the series.

The threshold and Markov-switching approaches are
best viewed as complementary, with the “best” model
likely to be application specific. Certain applications ap-
pear tailor-made for the threshold assumption. For exam-
ple, we might have good reason to think that the behavior
of time series such as an exchange rate or inflation will ex-
hibit regime shifts when the seriesmoves outside of certain
thresholds, as this will trigger government intervention.
The Markov-switching model might instead be the obvi-
ous choice when one does not wish to tie the regime shifts
to the behavior of a particular observed variable, but in-
stead wishes to let the data speak freely as to when regime
shifts have occurred.

In the remainder of this article I will survey various
aspects regarding the econometrics of Markov-switching
models. For readers interested in learning more about
threshold models, the survey article of Potter [78] is an ex-
cellent starting point.

Estimation of a Basic Markov-SwitchingModel

This section discusses estimation of the parameters of
Markov-switching models. The existing literature has fo-
cused almost exclusively on likelihood-based methods for
estimation. I retain this focus here, and discuss both max-
imum likelihood and Bayesian approaches to estimation.
An alternative approach based on semi-parametric estima-
tion is discussed in [4].

To aid understanding, we focus on a specific baseline
case, which is the Markov-switching autoregression given
in (2) and (5). We simplify further by allowing for N = 2
regimes, so that St = 1 or 2. It is worth noting that in many
cases two regimes is a reasonable assumption. For exam-
ple, in the literature using Markov-switching models to
study business cycles phases, a two regime model, meant
to capture an expansion and recession phase, is an obvi-
ous starting point that has been used extensively.

Estimation of Markov-switching models necessitates
two additional restrictions over constant parameter mod-
els. First of all, the labeling of St is arbitrary, in that switch-

ing the vector of parameters associated with St = 1 and
St = 2 will yield an identical model. A commonly used ap-
proach to normalize the model is to restrict the value of
one of the parameters when St = 1 relative to its value when
St = 2. For example, for the model in (2) we could restrict
˛2 <˛1. For further details on the choice of normalization,
see [49]. Second, the transition probabilities in (5) must be
constrained to lie in [0,1]. One approach to implement this
constraint, which will be useful in later discussion, is to use
a probit specification for St . In particular, the value of St is
assumed to be determined by the realization of a random
variable, �t , as follows:

St D
�

1 if �t < �St�1

2 if �t � �St�1




; (6)

where �t 
 i:i:d:N(0; 1). The specification in (6) depends
on two parameters, � 1 and � 2, which determine the tran-
sition probabilities of the Markov process as follows:

p1 j D P(�t < � j) D ˚(� j)
p2 j D 1 � p1 j

; (7)

where j= 1, 2 and ˚ is the standard normal cumulative
distribution function.

There are two main items of interest on which to con-
duct statistical inference for Markov-switching models.
The first are the parameters of the model, of which there
are 2(k+ 3) for the two-regime Markov-switching autore-
gression. In the following we collect these parameters in
the vector

� D (˛1; �1;1; �2;1; : : : ; �k;1; �1; ˛2; �1;2; �2;2; : : : ;

�k;2; �2; �1; �2)0 :
(8)

The second item of interest is the regime indicator vari-
able, St. In particular, as St is unobserved, we will be in-
terested in constructing estimates of which regime was in
operation at each point in time. These estimates will take
the form of posterior probabilities that St D i; i D 1; 2.
We assume that the econometrician has a sample of T + k
observations, (yT ; yT�1; yT�2; : : : ; y�(k�1)). The series of
observations available up to time t is denoted as ˝t D
(yt ; yt�1; yt�2; : : : ; y�(k�1)).

We begin with maximum likelihood estimation of � .
Maximum likelihood estimation techniques for various
versions of Markov-switching regressions can be found
in the existing literature of multiple disciplines, for ex-
ample [52,76,79] in the speech recognition literature,
and [16,41] in the econometrics literature. Here we fo-
cus on the presentation of the problem given in [41], who
presents a simple iterative algorithm that can be used to
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construct the likelihood function of a Markov-switching
autoregression, as well as compute posterior probabilities
for St .

For a given value of � , the conditional log likelihood
function is given by:

L(�) D
TX

tD1

log f (ytj˝t�1; �) : (9)

Construction of the conditional log likelihood function
then requires construction of the conditional density func-
tion, f (yt j˝t�1; �), for t D 1; : : : ; T . The “Hamilton
Filter” computes these conditional densities recursively
as follows: Suppose for the moment that we are given
P(St�1 D jj˝t�1; �), which is the posterior probability
that St�1 D j based on information observed through pe-
riod t � 1. Equations (10) and (11) can then be used to con-
struct f (ytj˝t�1; �):

P(St D ij˝t�1; �) D
2X

jD1

P


St D ijSt�1 D j;˝t�1; �

�

� P 
St�1 D jj˝t�1; �
�
; (10)

f


yt j˝t�1; �

� D
2X

iD1

f


yt jSt D i;˝t�1; �

�

� P (St D ij˝t�1; �) : (11)

From (5), the first term in the summation in (10) is simply
the transition probability, pij, which is known for any par-
ticular value of � . The first term in (11) is the conditional
density of yt assuming that St = i, which, given the within-
regime normality assumption for " t , is:

f (ytjS1 D i;˝0; �)

D 1
�i

p
2


exp

0

B
B
B
B
B
@

�
 

yt � ˛i �
kP

jD1
� j;i yt� j

!2

2�2i

1

C
C
C
C
C
A
:
(12)

With f (yt j˝t�1; �) in hand, the next step is then to up-
date (10) and (11) to compute f (ytC1j˝t ; �). To do so
requires P(St D ij˝t ; �) as an input, meaning we must
update P(St D ij˝t�1; �) to reflect the information con-
tained in yt . This updating is done using Bayes’ rule:

P(St D ij˝t ; �)

D f (yt jSt D i;˝t�1; �)P (St D ij˝t�1)
f


yt j˝t�1; �

� ;
(13)

where each of the three elements on the right-hand side
of (13) are computable from the elements of (10) and (11).

Given a value for P(S0 D ij˝0; �) to initialize the filter,
Eqs. (10) through (13) can then be iterated to construct
f (yt j˝t�1; �); t D 1; : : : ; T , and therefore the log like-
lihood function, L(�). The maximum likelihood estimate
�̂MLE, is then the value of � that maximizes L(�), and can
be obtained using standard numerical optimization tech-
niques.

How do we set P(S0 D ij˝0; �) to initialize the filter?
As is discussed in [41], exact evaluation of this probabil-
ity is rather involved. The usual practice, which is possi-
ble when St is an ergodic Markov chain, is to simply set
P(S0 D ij˝0; �) equal to the unconditional probability,
P(S0 D i). For the two-regime case considered here, these
unconditional probabilities are given by:

P(S0 D 1) D 1 � p22
2 � p11 � p22

P(S0 D 2) D 1 � P(S0 D 1) :
(14)

Alternatively, P(S0 D ij˝0; �) could be treated as an ad-
ditional parameter to be estimated. See Hamilton [43] and
Kim and Nelson [62] for further details.

An appealing feature of the Hamilton filter is that, in
addition to the likelihood function, the procedure also di-
rectly evaluates P(St D ij˝t ; �), which is commonly re-
ferred to as a “filtered” probability. Inference regarding the
value of St is then sometimes based on P(St D ij˝t ; �̂MLE),
which is obtained by running the Hamilton filter with
� D �̂MLE. In many circumstances, we might also be inter-
ested in the so-called “smoothed” probability of a regime
computed using all available data, or P(St D ij˝T ; �). [54]
presents an efficient recursive algorithm that can be ap-
plied to compute these smoothed probabilities.

We now turn to Bayesian estimation of Markov-
switching models. In the Bayesian approach, the parame-
ters � are themselves assumed to be random variables, and
the goal is to construct the posterior density for these pa-
rameters given the observed data, denoted f (� j˝T). In all
but the simplest of models, this posterior density does not
take the form of any well known density whose properties
can be analyzed analytically. In this case, modern Bayesian
inference usually proceeds by sampling the posterior den-
sity repeatedly to form estimates of posterior moments
and other objects of interest. These estimates can be made
arbitrarily accurate by increasing the number of samples
taken from the posterior. In the case of Markov-switch-
ing models, Albert and Chib [1] demonstrate that samples
from f (� j˝T) can be obtained using a simulation-based
approach known as the Gibbs Sampler. The Gibbs Sam-
pler, introduced by [37,38,89], is an algorithm that pro-
duces random samples from the joint density of a group of
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random variables by repeatedly sampling from the full set
of conditional densities for the random variables.

We will sketch out the main ideas of the Gibbs Sam-
pler in the context of the two-regime Markov-switching
autoregression. It will prove useful to divide the parameter
space into � D (� 0

1; �
0
2)

0, where �1 D (˛1; �1;1; �2;1; : : : ;

�k;1; �1; ˛2; �1;2; �2;2; : : : ; �k;2; �2)0 and �2 D (�1; �2)0.
Suppose it is feasible to simulate draws from the three con-
ditional distributions, f (�1j�2; S̃;˝T ), f (�2j�1; S̃;˝T ),
and P(S̃j�1; �2;˝T ), where S̃ D (S1; S2; : : : ; ST )0.
Then, conditional on arbitrary initial values, � (0)2 and
S̃(0), we can obtain a draw of �1, denoted �

(1)
1 , from

f (�1j� (0)2 ; S̃(0);˝T ), a draw of �2, denoted �
(1)
2 , from

f (�2j� (1)1 ; S̃(0);˝T ), and a draw of S̃, denoted S̃(1), from
P(S̃j� (1)1 ; �

(1)
2 ;˝T ). This procedure can be iterated to ob-

tain � ( j)1 ; �
( j)
2 , and S̃( j) , for j= 1, . . . , J. For large enough J,

and assuming weak regularity conditions, these draws will
converge to draws from f (� j˝T) and P(S̃j˝T). Then, by
taking a large number of such draws beyond J, one can es-
timate any feature of f (� j˝T) and P(S̃j˝T), such as mo-
ments of interest, with an arbitrary degree of accuracy. For
example, an estimate of P(St D ij˝T) can be obtained by
computing the proportion of draws of S̃ for which St = i.

Why is the Gibbs Sampler useful for a Markov-
switching model? It turns out that although f (� j˝t) and
P(S̃j˝T ) cannot be sampled directly, it is straightfor-
ward, assuming natural conjugate prior distributions, to
obtain samples from f (�1j�2; S̃;˝T ), f (�2j�1; S̃;˝T ), and
P(S̃j�1; �2;˝T ) . This is most easily seen for the case of
�1, which, when S̃ is conditioning information, represents
the parameters of a linear regression with dummy vari-
ables, a case for which techniques to sample the parameter
posterior distribution are well established (Zellner 96). An
algorithm for obtaining draws of S̃ from P(S̃j�1; �2;˝T )
was first given in Albert and Chib [1], while Kim and Nel-
son [59] develop an alternative, efficient, algorithm based
on the notion of “multi-move”Gibbs Sampling introduced
in [6]. For further details regarding the implementation
of the Gibbs Sampler in the context of Markov-switching
models, see Kim and Nelson [62].

The Bayesian approach has a number of features that
make it particularly attractive for estimation of Markov-
switching models. First of all, the requirement of prior
density functions for model parameters, considered by
many to be a weakness of the Bayesian approach in gen-
eral, is often an advantage for Bayesian analysis ofMarkov-
switching models [42]. For example, priors can be used
to push the model toward capturing one type of regime-
switching vs. another. The value of this can be seen for
Markov-switching models of the business cycle, for which

the econometrician might wish to focus on portions of
the likelihood surface related to business cycle switching,
rather than those related to longer term regime shifts in
productivity growth. Another advantage of the Bayesian
approach is with regards to the inference drawn on St. In
the maximum likelihood approach, the methods of [54]
can be applied to obtain P(St D ij˝T ; �̂MLE). As these
probabilities are conditioned on the maximum likelihood
parameter estimates, uncertainty regarding the unknown
values of the parameters has not been taken into account.
By contrast, the Bayesian approach yields P(St D ij˝T ),
which is not conditional on a particular value of � and thus
incorporates uncertainty regarding the value of � that gen-
erated the observed data.

Extensions of the BasicMarkov-SwitchingModel

The basic, two-regime Markov-switching autoregression
in (2) and (5) has been used extensively in the literature,
and remains a popular specification in applied work. How-
ever, it has been extended in a number of directions in the
substantial literature that follows [41]. This section surveys
a number of these extensions.

The estimation techniques discussed in Sect. “Es-
timation of a Basic Markov-Switching Model” can be
adapted in a straightforward manner to include several ex-
tensions to the basic Markov-switching model. For exam-
ple, the filter used in (10) through (13) can be modified in
obvious ways to incorporate the case of N > 2 regimes, as
well as to allow yt to be a vector of random variables, so
that the model in (2) becomes a Markov-switching vector
autoregression (MS-VAR). Hamilton [43] discusses both
of these cases, while Krolzig [68] provides an extensive dis-
cussion of MS-VARs. [83] is a recent example of applied
work using an MS-VAR with a large number of regimes.
In addition, the (known) within-regime distribution of the
disturbance term, "t, could be non-Gaussian, as in [23]
or [45]. Further, the parameters of (2) could be extended
to depend not just on St , but also on a finite number of
lagged values of St, or even a second state variable possibly
correlated with St . Indeed, such processes can generally be
rewritten in terms of the current value of a single, suitably
redefined, state variable. [58,66] provide examples of such
a redefinition. For further discussion of all of these cases,
see [43].

The specification for the transition probabilities in (5)
restricted the probability St = i to depend only on the value
of S t� 1. However, in some applications we might think
that these transition probabilities are driven in part by ob-
served variables, such as the past evolution of the pro-
cess. To this end, [21,28] developMarkov-switching mod-
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els with time-varying transition probabilities (TVTP), in
which the transition probabilities are allowed to vary de-
pending on conditioning information. Suppose that zt
represents a vector of observed variables that are thought
to influence the realization of the regime. The probit rep-
resentation for the state process in (6) and (7) can then be
extended as follows:

St D
�

1 if �t <


�St�1 C z0

t�St�1

�

2 if �t � 

�St�1 C z0

t�St�1

�



; (15)

with associated transition probabilities:

p1 j(zt) D P


�t < (� j C z0

t� j)
� D ˚



� j C z0

t� j
�

p2 j(zt) D 1 � p1 j(zt) ;
(16)

where j= 1, 2 and ˚ is again the standard normal cu-
mulative distribution function. Estimation of the Markov-
switching autoregression with TVTP is then straightfor-
ward. In particular, assuming that zt contains lagged val-
ues of yt or exogenous random variables, a maximum
likelihood estimation proceeds by simply replacing pij
with pi j(zt) in the filter given in (10) through (13).
Bayesian estimation of TVTP models via the Gibbs Sam-
pler is also straightforward, and is discussed in [29]. De-
spite its intuitive appeal, the literature contains relatively
few applications of the TVTP model. A notable example
of the TVTP framework is found in Durland and Mc-
Curdy [24], Filardo and Gordon [29] and Kim and Nel-
son [59], who study business cycle “duration dependence”,
or whether the probability of a business cycle phase shift
depends on how long the economy has been in the current
phase. Other applications include Ang and Bekaert [2],
who model regime-switches in interest rates, and Lo and
Piger [69], who investigate sources of time-variation in the
response of output to monetary policy actions.

The TVTP model is capable of relaxing the restric-
tion that the state variable, St , is independent of the lagged
values of the series, yt , and thus of lagged values of the
disturbance term, "t. Kim, Piger and Startz [65] consider
a Markov-switching model in which St is also correlated
with the contemporaneous value of "t, and is thus “en-
dogenous”. They model this endogenous switching by as-
suming that the shock to the probit process in (6), �t , and
"t are jointly normally distributed as follows:

�
"t
�t

	


 N(0; ˙); ˙ D
�

1 �

� 1

	

: (17)

Kim, Piger and Startz [65] show that when � 6D 0, the con-
ditional density in (12) is no longer Gaussian, but can be
evaluated analytically. Thus, the likelihood function for
the endogenous switching model can be evaluated with

simple modifications to the recursive filter in (10) through
(13). Tests of the null hypothesis that St is exogenous can
also be implemented in a straightforward manner. Chib
and Dueker [13] consider endogenous switching as in (17)
from a Bayesian perspective.

The extensions listed above are primarily modifica-
tions to the stochastic process assumed to drive St . A more
fundamental extension of (2) is to consider Markov-
switching in time series models that are more complicated
than simple autoregressions. An important example of this
is a state-space model with Markov-switching parameters.
Allowing for Markov-switching in the state-space repre-
sentation for a time series is particularly interesting be-
cause a large number of popular time-series models can
be given a state-space representation. Thus, incorporat-
ing Markov-switching into a general state-space represen-
tation immediately extends the Markov-switching frame-
work to these models.

To aid discussion, consider the following Markov-
switching state-space representation for a vector of R ran-
dom variables, Yt D (y1t ; y2t; : : : ; yRt)0, given as follows:

Yt D H0
St Xt C Wt

Xt D ASt C FSt Xt�1 C Vt
; (18)

where Xt D (x1t; x2t ; : : : ; xDt)0;Wt 
 N(0; BSt ) and
Vt 
 N(0;QSt ). The parameters of the model undergo
Markov switching, and are contained in the matrices
HSt ; BSt ;ASt ; FSt ;QSt . A case of primary interest is when
some or all of the elements of Xt are unobserved. This is
the case for a wide range of important models in prac-
tice, including models with moving average (MA) dy-
namics, unobserved components (UC) models, and dy-
namic factor models. However, in the presence ofMarkov-
switching parameters, the fact that Xt is unobserved in-
troduces substantial complications for construction of the
likelihood function. In particular, as is discussed in de-
tail in [54] and Kim and Nelson [62], exact construction
of the conditional density f (ytj˝t�1; �) requires that one
consider all possible permutations of the entire history of
the state variable, St ; St�1; St�2; : : : ; S1. For even moder-
ately sized values of t, this quickly becomes computation-
ally infeasible.

Tomake inference viamaximum likelihood estimation
feasible, [54] develops a recursive filter that constructs an
approximation to the likelihood function. This filter “col-
lapses” the number of lagged regimes that are necessary
to keep track of by approximating a nonlinear expecta-
tion with a linear projection. Kim and Nelson [62] pro-
vide a detailed description of the Kim [54] filter, as well as
a number of examples of its practical use.
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If one is willing to take a Bayesian approach to the
problem, Kim and Nelson [59] show that inference can be
conducted via the Gibbs Sampler without resorting to ap-
proximations. As before, the conditioning features of the
Gibbs sampler greatly simplifies the analysis. For exam-
ple, by conditioning on S̃ D (S1; S2; : : : ; ST )0, the model
in (18) is simply a linear, Gaussian, state-space model with
dummy variables, for which techniques to sample the pos-
terior distribution of model parameters and the unob-
served elements of Xt are well established [6]. Kim and
Nelson [62] provide detailed descriptions of how theGibbs
Sampler can be implemented for a state-space model with
Markov switching.

There are many applications of state space models
with Markov switching. For example, a large literature
uses UCmodels to decompose measures of economic out-
put into trend and cyclical components, with the cyclical
component often interpreted as a measure of the busi-
ness cycle. Until recently, this literature focused on lin-
ear representations for the trend and cyclical compo-
nents [14,51,72,94]. However, one might think that the
processes used to describe the trend and cyclical compo-
nents might display regime switching in a number of di-
rections, such as that related to the phase of the business
cycle or to longer-run structural breaks in productivity
growth or volatility. A UC model with Markov switch-
ing in the trend and cyclical components can be cast
as a Markov-switching state-space model as in (18). Ap-
plications of such regime-switching UC models can be
found in [58,60,64,71,84]. Another primary example of
a Markov-switching state-space model is a dynamic fac-
tor model with Markov-switching parameters, examples
of which are given in [7,59]. Section“Empirical Example:
Identifying Business Cycle Turning Points” presents a de-
tailed empirical example of such a model.

SpecificationTesting for Markov-SwitchingModels

Our discussion so far has assumed that key elements in the
specification of regime-switchingmodels are known to the
researcher. Chief among these is the number of regimes,
N. However, in practice there is likely uncertainty about
the appropriate number of regimes. This section discusses
data-based techniques that can be used to select the value
of N.

To fix ideas, consider a simple version of the Markov-
switching model in (2):

yt D ˛St C "t ; (19)

where "t 
 N(0; �2). Consider the problem of trying to
decide between a model with N = 2 regimes vs. the sim-

plermodel withN = 1 regimes. Themodel with one regime
is a constant parameter model, and thus this problem can
be interpreted as a decision between a model with regime-
switching parameters vs. one without. An obvious choice
for making this decision is to construct a test of the null
hypothesis of N = 1 vs. the alternative of N = 2. For exam-
ple, one might construct the likelihood ratio statistic:

LR D 2


L(�̂MLE(2)) � L(�̂MLE(1))

�
; (20)

where �̂MLE(1) and �̂MLE(2) are the maximum likelihood es-
timates under the assumptions of N = 1 and N = 2 respec-
tively. Under the null hypothesis there are three fewer pa-
rameters to estimate, ˛2, � 1 and � 2, than under the alter-
native hypothesis. Then, to test the null hypothesis, one
might be tempted to proceed by constructing a p-value for
LR using the standard �2 (3) distribution.

However, this final step is not justified, and can lead
to very misleading results in practice. In particular, the
standard conditions for LR to have an asymptotic �2 dis-
tribution include that all parameters are identified under
the null hypothesis [17]. In the case of the model in (19),
the parameters � 1 and � 2, which determine the transition
probabilities pij, are not identified assuming the null hy-
pothesis is true. In particular, if ˛1 =˛2, then pij can take
on any values without altering the likelihood function for
the observed data. A similar problem exists when testing
the general case of N vs. N + 1 regimes.

Fortunately, a number of contributions in recent years
have produced asymptotically justified tests of the null
hypothesis of N regimes vs. the alternative of N + 1
regimes. In particular, [33,50] provide techniques to com-
pute asymptotically valid critical values for LR. Recently
Carrasco, Hu and Ploberger [5] have developed an asymp-
totically optimal test for the null hypothesis of parame-
ter constancy against the general alternative of Markov-
switching parameters. Their test is particularly appealing
because it does not require estimation of the model under
the alternative hypothesis, as is the case with LR.

If one is willing to take a Bayesian approach, the com-
parison of models with N vs.N + 1 regimes creates no spe-
cial considerations. In particular, one can proceed by com-
puting standard Bayesianmodel comparison metrics, such
as Bayes Factors or posterior odds ratios. Examples of such
comparisons can be found in [11,63,78].

Empirical Example:
Identifying Business Cycle Turning Points

This section presents an empirical example demonstrat-
ing how the Markov-switching framework can be used to
model shifts between expansion and recession phases in
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the US business cycle. This example is of particular interest
for two reasons. First, although Markov-switching models
have been used to study a wide variety of topics, their most
common application has been as formal statistical models
of business cycle phase shifts. Second, the particular model
we focus on here, a dynamic factor model with Markov-
switching parameters, is of interest in its own right, with
a number of potential applications.

The first presentation of a Markov-switching model
of the business cycle is found in [41]. In particular, [41]
showed that US real GDP growth could be characterized
as an autoregressive model with a mean that switched be-
tween low and high growth regimes, where the estimated
timing of the low growth regime corresponded closely
to the dates of US recessions as established by the Busi-
ness Cycle Dating Committee of the National Bureau of
Economic Research (NBER). This suggested that Markov-
switchingmodels could be used as tools to identify the tim-
ing of shifts between business cycle phases, and a great
amount of subsequent analysis has been devoted toward
refining and using the Markov-switching model for this
task.

The model used in [41] was univariate, considering
only real GDP. However, as is discussed in [22], a long em-
phasized feature of the business cycle is comovement, or
the tendency for business cycle fluctuations to be observed
simultaneously in a large number of economic sectors and
indicators. This suggests that, by using information from
many economic indicators, the identification of business
cycle phase shifts might be sharpened. One appealing way
of capturing comovement in a number of economic in-
dicators is through the use of dynamic factor models, as
popularized by [85,86]. However, these models assumed
constant parameters, and thus do not model business cy-
cle phase shifts explicitly.

To simultaneously capture comovement and business
cycle phase shifts, [7] introduces Markov-switching pa-
rameters into the dynamic factor model of [85,86]. Specifi-
cally, defining y�

r t D yr t � ȳr as the demeaned growth rate
of the rth economic indicator, the dynamic factor Markov-
switching (DFMS) model has the form:

y�
r t D ˇr ct C er t : (21)

In (21), the demeanedfirst difference of each series is made
up of a component common to each series, given by the
dynamic factor ct, and a component idiosyncratic to each
series, given by ert. The common component is assumed
to follow a stationary autoregressive process:

�(L)(ct � �St ) D "t ; (22)

where "t 
 i:i:d:N(0; 1). The unit variance for "t is im-
posed to identify the parameters of the model, as the fac-
tor loading coefficients, ˇr , and the variance of "t are not
separately identified. The lag polynomial �(L) is assumed
to have all roots outside of the unit circle. Regime switch-
ing is introduced by allowing the common component
to have a Markov-switching mean, given by �St , where
St D f1; 2g. The regime is normalized by setting �2 < �1.
Finally, each idiosyncratic component is assumed to fol-
low a stationary autoregressive process:

�r(L)er t D !r t : (23)

where � r(L) is a lag polynomial with all roots outside the
unit circle and !r t 
 N(0; �2!;r).

[7] estimates the DFMSmodel for US monthly data on
non-farm payroll employment, industrial production, real
manufacturing and trade sales, and real personal income
excluding transfer payments, which are the four monthly
variables highlighted by the NBER in their analysis of busi-
ness cycles. The DFMS model can be cast as a state-space
model with Markov switching of the type discussed in
Sect. “Extensions of the Basic Markov-Switching Model”.
Chauvet estimates the parameters of the model via max-
imum likelihood, using the approximation to the likeli-
hood function given in [54]. Kim and Nelson [59] instead
use Bayesian estimation via the Gibbs Sampler to estimate
the DFMS model.

Here I update the estimation of the DFMS model pre-
sented in [59] to a sample period extending from Febru-
ary 1967 through February 2007. For estimation, I use
the Bayesian Gibbs Sampling approach, with prior distri-
butions and specification details identical to those given
in [59]. Figure 1 displays P(St D 2j�T ) obtained from the
Gibbs Sampler, which is the estimated probability that the
low growth regime is active. For comparison, Fig. 1 also
indicates NBER recession dates with shading.

There are two items of particular interest in Fig. 1.
First of all, the estimated probability of the low growth
regime is very clearly defined, with P(St D 2j�T ) gener-
ally close to either zero or one. Indeed, of the 481 months
in the sample, only 32 had P(St D 2j�T ) fall between
0.2 and 0.8. Second, P(St D 2j�T) is very closely aligned
with NBER expansion and recession dates. In particular,
P(St D 2j�T) tends to be very low during NBER expan-
sion phases and very high during NBER recession phases.

Figure 1 demonstrates the added value of employing
the DFMS model, which considers the comovement be-
tween multiple economic indicators, over models consid-
ering only a single measure of economic activity. In par-
ticular, results for the Markov-switching autoregressive
model of real GDP presented in [41] were based on a data
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Econometrics: Models of Regime Changes, Table 1
Dates of Business Cycle Turning Points Produced by NBER and Dynamic Factor Markov-SwitchingModel

Peaks Troughs
DFMS NBER Discrepancy DFMS NBER Discrepancy
Oct 1969 Dec 1969 2M Nov 1970 Nov 1970 0M
Dec 1973 Nov 1973 �1M Mar 1975 Mar 1975 0M
Jan 1980 Jan 1980 0M Jun 1980 Jul 1980 1M
Jul 1981 Jul 1981 0M Nov 1982 Nov 1982 0M
Aug 1990 Jul 1990 �1M Mar 1991 Mar 1991 0M
Nov 2000 Mar 2001 4M Nov 2001 Nov 2001 0M

Econometrics: Models of Regime Changes, Figure 1
Probability of US Recession from Dynamic Factor Markov-
Switching Model

sample ending in 1984, and it is well documented that
Hamilton’s original model does not perform well for cap-
turing the two NBER recessions since 1984. Subsequent
research has found that allowing for structural change in
the residual variance parameter [61,70] or omitting all lin-
ear dynamics in the model [1,9] improves the Hamilton
model’s performance. By contrast, the results presented
here suggest that the DFMSmodel accurately identifies the
NBER recession dates without a need for structural breaks
or the omission of linear dynamics.

In some cases, we might be interested in converting
P(St D 2j�T ) into a specific set of dates establishing the
timing of shifts between business cycle phases. To do so
requires a rule for establishing whether a particular month
was an expansion month or a recession month. Here we
consider a simple rule, which categorizes any particular
month as an expansion month if P(St D 2j�T) � 0:5 and
a recession month if P(St D 2j�T ) > 0:5. Table 1 displays
the dates of turning points between expansion and reces-
sion phases (business cycle peaks), and the dates of turning

points between recession and expansion phases (business
cycle troughs) that are established by this rule. For com-
parison, Table 1 also lists the NBER peak and trough dates.

Table 1 demonstrates that the simple rule applied to
P(St D 2j�T ) does a very good job of matching the
NBER peak and trough dates. Of the twelve turning points
in the sample, the DFMS model establishes eleven within
two months of the NBER date. The exception is the peak
of the 2001 recession, for which the peak date from the
DFMS model is four months prior to that established by
the NBER. In comparing peak and trough dates, the DFMS
model appears to do especially well at matching NBER
trough dates, for which the date established by the DFMS
model matches the NBER date exactly in five of six cases.

Why has the ability of Markov-switching models to
identify business cycle turning points generated so much
attention? There are at least four reasons. First, it is some-
times argued that recession and expansion phases may not
be of any intrinsic interest, as they need not reflect any
real differences in the economy’s structure. In particular,
as noted by [95], simulated data from simple, constant pa-
rameter, time-series models, for which the notion of sepa-
rate regimes is meaningless, will contain episodes that look
to the eye like“recession” and “expansion” phases. By cap-
turing the notion of a business cycle phase formally inside
of a statistical model, the Markov-switching model is then
able to provide statistical evidence as to the extent to which
business cycle phases are a meaningful concept. Second,
although the dates of business cycle phases and their asso-
ciated turning points are of interest to many economic re-
searchers, they are not compiled in a systematic fashion for
many economies.Markov-switching models could then be
applied to obtain business cycle turning point dates for
these economies. An example of this is given in [74], who
use Markov-switching models to establish business cycle
phase dates for US states. Third, if economic time-series do
display different behavior over business cycle phases, then
Markov-switching models designed to capture such dif-
ferences might be exploited to obtain more accurate fore-
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casts of economic activity. Finally, the current probabil-
ity of a new economic turning point is likely of substantial
interest to economic policymakers. To this end, Markov-
switching models can be used for “real-time” monitoring
of new business cycle phase shifts. Indeed, Chauvet and
Piger [10] provide evidence that Markov-switching mod-
els are often quicker to establish US business cycle turn-
ing points, particularly at business cycle troughs, than is
the NBER. For additional analysis of the ability of regime-
switching models to establish turning points in real time,
see [8,9].

Future Directions

Research investigating applied and theoretical aspects of
regime-switching models should be an important compo-
nent of the future research agenda inmacroeconomics and
econometrics. In this section I highlight three directions
for future research which are of particular interest.

To begin, additional research oriented toward improv-
ing the forecasting ability of regime-switching models is
needed. In particular, given that regime-switching mod-
els of economic data contain important deviations from
traditional, constant parameter, alternatives, we might ex-
pect that they could also provide improved out-of-sample
forecasts. However, as surveyed in [15], the forecasting im-
provements generated by regime-switching models over
simpler alternatives is spotty at best. That this is true is
perhaps not completely surprising. For example, the abil-
ity of a Markov-switching model to identify regime shifts
in past data does not guarantee that the model will do
well at detecting regime shifts quickly enough in real time
to generate improved forecasts. This is particularly prob-
lematic when regimes are short lived. Successful efforts to
improve the forecasting ability of Markov-switching mod-
els are likely to come in the form of multivariate models,
which can utilize additional information for quickly iden-
tifying regime shifts.

A second potentially important direction for future re-
search is the extension of the Markov-switching dynamic
factor model discussed in Sects.“Extensions of the Basic
Markov-Switching Model” and “Empirical Example: Iden-
tifying Business Cycle Turning Points” to settings with
a large cross-section of data series. Indeed, applications
of the DFMS model have been largely restricted to a rel-
atively small number of variables, such as in the model of
the US business cycle considered in Sect. “Empirical Ex-
ample: Identifying Business Cycle Turning Points”. How-
ever, in recent years there have been substantial develop-
ments in the analysis of dynamic factor models compris-
ing a large number of variables, as in [31,32,87,88,92]. Re-

search extending the regime-switching framework to such
“big data” factor models will be of substantial interest.

Finally, much remains to be done incorporating
regime-switching behavior into structural macroeco-
nomic models. A number of recent studies have begun
this synthesis by considering the implications of regime-
switches in the behavior of a fiscal or monetary poli-
cymaker for the dynamics and equilibrium behavior of
model economies [18,19,20,26,27]. This literature has al-
ready yielded a number of new and interesting results, and
is likely to continue to do so as it expands. Less atten-
tion has been paid to reconciling structural models with
a list of new “stylized facts” generated by the application
of regime-switching models in reduced-form settings. As
one example, there is now a substantial list of studies, in-
cluding [3,45,57,58,82], and Kim and Nelson [60] find-
ing evidence that the persistence of shocks to key macroe-
conomic variables varies dramatically over business cycle
phases. However, such an asymmetry is absent from most
modern structural macroeconomic models, which gener-
ally possess a symmetric propagation structure for shocks.
Research designed to incorporate and explain business cy-
cle asymmetries and other types of regime-switching be-
havior inside of structural macroeconomic models will be
particularly welcome.
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Glossary

Cointegration Cointegration is an econometric property
relating time series variables. If two or more series are
themselves nonstationary, but a linear combination of
them is stationary, then the series are said to be coin-
tegrated.

Short memory A time series is said to be short memory if
its information decays through time. In particular, we
say that a variable is short memory in mean (in distri-
bution), if the conditional mean (distribution) of the
variable at time t given the information at time t � h
converges to a constant (to an unconditional distribu-
tion) as h diverges to infinity. Shocks in short memory
time series have transitory effects.

Extended memory A time series is said to be extended
memory in mean (in distribution), if it is not short
memory in mean (distribution). Shocks in extended
memory time series have permanent effects.

Nonlinear cointegration If two or more series are of ex-
tended memory, but a nonlinear transformation of
them is short memory, then the series are said to be
nonlinearly cointegrated.

Error correction model An Error Correction Model is
a dynamic model in which the rate of growth of the
variables in any period is related to the previous pe-
riod’s gap from long-run equilibrium.

Definition of the Subject

This paper is a selective review of the literature on non-
linear cointegration and nonlinear error correction mod-

els. The concept of cointegration plays a major role in
macroeconomics, finance and econometrics. It was intro-
duced by Granger in [42] and since then, it has achieved
immense popularity among econometricians and applied
economists. In fact in 2003 the Royal Swedish Academy
of Science gave the Bank of Sweden Prize in Economic
Sciences in Memory of Alfred Nobel to C. W. J. Granger
for his contribution to the analysis of economic relation-
ships based on cointegrated variables. In this paper we dis-
cuss the nonlinear extensions of the linear cointegration
theory. Some authors consider nonlinear cointegration as
a particular case of nonlinear error correction models. Al-
though both concepts are related, we believe that it is use-
ful to distinguish between them. After making this point
clear, by relating linear and nonlinear error correction
models, we discuss alternative measures of temporal de-
pendence (memory) and co-dependence that are useful to
characterize the usual notion of integration of order zero,
I(0), and cointegration in nonlinear contexts. We dis-
cuss parametric and nonparametric notions of nonlinear
cointegration. Finally, we conclude pointing out several
lines of research that we think are promising in nonlinear
and nonstationary contexts and therefore deserve further
analysis.

Introduction

Granger in [42] introduced the concept of cointegration in
a linear context; for further development see [20,64,65,85].
The alternative ways to deal with integrated and cointe-
grated series are now clear only in the linear context; see
for example [43,52,57,59,67,77,105].

In macroeconomic and financial applications there are
many cases where nonlinearities have been found in non-
stationary contexts and therefore, there is a need for a the-
oretical justification of those empirical results. To reach
this goal is not an easy target since the usual difficulties
analyzing nonlinear time series models within a station-
ary and ergodic framework are enhanced in nonstationary
contexts.

The purpose of this survey on nonlinear cointegration
is to give a selected overview on the state of the art of
econometrics that simultaneously analyzes nonstationar-
ites and nonlinearities. The structure of this paper is the
following: Sect. “Linear Measures of Memory and Lin-
ear Error Correction Models” discusses linear concepts of
memory and dependence, cointegrated and error correc-
tion models. Section “Nonlinear Error Correction (NEC)
Models” introduces nonlinear error correction models.
Section “Nonlinear Cointegration” investigates nonlinear
measures of memory and dependence and nonlinear coin-
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tegration. Finally, Sect. “Future Directions” concludes and
mentions some open questions for future research.

Linear Measures ofMemory
and Linear Error CorrectionModels

The time series xt is integrated of order d, denoted xt 

I(d), if �d xt D (1 � L)d xt 
 I(0), where L is the lag
operator such that Lkxt D xt�k and d is an integer num-
ber. Here I(0) denotes a covariance stationary short mem-
ory process with positive and bounded spectral density.
We can extrapolate the concepts of integration to the frac-
tional case where now d is not an integer but a real num-
ber. However, in this paper we will not cover fractional
integration nor fractional cointegration; see Chapter 9.4.1
in [103] for a review.

Following the ideas of the seminal paper of [42], the
most simple definition of cointegration could be the fol-
lowing; we say that two I(1) series, yt and xt , are cointe-
grated if there is a linear combination (1;�ˇ)(yt , xt)0 that
is I(0); zt D yt � ˇxt is I(0), but any other linear com-
bination, zt D yt � ˛xt , is I(1) where ˛ ¤ ˇ. For sim-
plicity, through all this paper we will assume a bivariate
system with a single cointegrating vector. Notice that the
second condition of the above definition of cointegration
(zt D yt � ˛xt , is I(1) for any ˛ ¤ ˇ) is redundant in the
linear context. However, it will be useful for the identifica-
tion of the cointegrating vector in nonlinear cointegration,
see Definition 3.

A nonparametric characterization of cointegration
was introduced by [1] and [78]. Let xt; yt be the two I(d)
time series of interest, d D 1, and let �yx (�; t) represent
the cross-covariance function (CCF) of xt ; yt , defined by
�yx (�; t) D cov



yt ; xt��

�
, where we make explicit the

time dependence in �yx (�; t) to allow for some degree of
heterogeneity in the series. Similarly, define �x (�; t) D
cov (xt; xt�� ). Cointegration implies that the rates of con-
vergence of �yx (�; t) and �x (�; t) should be the same as �
increases without bound and � D o(t). Intuitively, un-
der cointegration, the remote past of xt should be as use-
ful as the remote past of yt in terms of the long-run lin-
ear forecast of yt . For example, suppose xt ; yt 
 I(1) and
zt D yt � ˇxt a sequence of independent and identically
distributed (i.i.d.) random variables independent of xt . In
this case, �yx (�; t)/�x (�; t) D ˇ for all �; t, � 6 t. In more
general cases, zt might have serial correlation and might
not be independent of xt and therefore, the constancy of
this ratio will only take place for � ’s beyond some value, see
the Monte Carlo simulation results in [78]. On the other
hand, in the spurious cointegration case where xt ; yt are
stochastically independent, lim�!1 �yx (�; t)/�x (�; t) D

0 for all �; t, � 6 t, therefore the ratio �yx (�; t)/�x (�; t)
is consistent against this type of spurious alternative hy-
pothesis. As we will see later on, this notion of coin-
tegration accepts nonlinear generalizations (nonlinear
cointegration).

The most simple version of Granger’s Representation
Theorem, see [20], states that two series yt and xt are coin-
tegrated if and only if they have an error correction rep-
resentation, see Eqs (1a)–(1c) below. Therefore, either xt
Granger-causes yt or yt Granger-causes xt or both.

Let yt and xt be two I(1) series, where xt is a pure ran-
dom walk and yt is generated by the following linear error
correction (EC) model (1a) with linear cointegration (1b),

�yt D  1�xt C �zt�1 C �t (1a)

yt D ˇxt C zt (1b)

�xt D "t (1c)

where all the random error terms (� t , zt, "t) are I(0). The
errors zt of (1b) form the error correction terms of (1a)
and have usually more persistence (longer memory) than
the other two random error terms (� t , "t). Therefore, in
the system of Eqs. (1a)–(1c), xt Granger-causes yt but not
the other way around.

Notice that we can write Eq. (1a), with �1 D  1 � ˇ,
in an equivalent way that will be very useful to introduce
later on nonlinear error correction (NEC) models,

zt D zt�1 C �1�xt C �zt�1 C �t : (2)

Several alternative estimation procedures have been
discussed in the literature to estimate the cointegrating pa-
rameter ˇ:

i) Maximum likelihood approach of [66] and [7]. As-
sumes that the conditional distribution of y given x
and the lagged values of x and y is Normal and that
the bivariate data generating process (DGP) of y and
x is a VAR of finite autoregressive order k, VAR(k) in
error correction form. Furthermore, if the contem-
poraneous x-variable is weakly exogenous, then the
partial maximum likelihood estimators is obtained by
nonlinear least squares (NLS) on the error correc-
tion model obtained substituting (1b) in (1a). [98]
and [38], derived the asymptotic properties of the
NLS estimator of the error correction model (1a)
and (1b), without the Normality assumption.

ii) Two-step approach of Engle and Granger, see [20]. In
the first step, Eq. (1b) is estimated by ordinary least
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squares (OLS) to get the residuals (z). In the second
step, Eq. (1a) is estimated by OLS after substituting
zt�1 by the corresponding lagged residuals from the
first step. The OLS estimator of the first step is super-
consistent but biased, and the limiting distribution de-
pends on nuisance parameters. However, if zt is seri-
ally uncorrelated and xt is strictly exogenous, then the
OLS estimator in (1b) coincides with the fully mod-
ified estimator and therefore it is asymptotically effi-
cient, see [38].

iii) Fully modified OLS, FM-OLS. This is a 2-step proce-
dure developed by [79,80,86], and [81]. In the first
step, Eq. (1b) is estimated by OLS. In the second
step, semiparametric corrections are made for the se-
rial correlation of the residuals zt and for the en-
dogeneity of the x-regressors. Under general condi-
tions the fully modified estimator, is asymptotically
efficient. The small sample behavior of these esti-
mators was analyzed by Monte Carlo simulations
by [53,56,57,58,71,86].

iv) Fully modified instrumental variable estimator, FM-
IV, of [71,86]. [78] showed that their nonparametric
notion of cointegration has an instrumental variable
(IV) interpretation if the instruments are the lagged
values of x. Furthermore, they showed that choosing
those instruments has an extra advantage; we do not
need to make the usual two corrections (endogeneity
and serial correlation) to obtain a fully modified es-
timator. This particular IV-estimator has important
advantages (bias reductions) over OLS in small sam-
ples.

v) Recently [89] also studied the asymptotic properties
of instrumental variables estimators (IV) in a frac-
tional cointegration context, as in [78]. They propose
to use IV estimates based on single equations estima-
tion like (1b) employing exclusion and normalization
restrictions, without correcting for the serial correla-
tion of zt .

vi) [100] and [91], suggested a parametric correction for
the endogeneity of the regressor (xt) when estimat-
ing (1b) by OLS. The idea, based on the work of [97]
about testing for causality, is to include additional fu-
ture and past values of the �xt in Eq. (1b) when esti-
mating it by OLS.

vii) [87] proposed to add integral error correction terms
(lagged values of the EC terms), to the procedure de-
scribed in vi) in order to parsimoniously correct for
serial correlation.

[63], using Monte Carlo simulations, compares some
of these parametric and semi parametric estimators of

the cointegrating vector. In the context of normally dis-
tributed errors, [63] recommends to model explicitly
the dynamics instead of using nonparametric corrections
based on fully modified estimators.

Nonlinear Error Correction (NEC) Models

There are interesting macroeconomic applications where
nonlinearities have been found in nonstationary contexts.
The first example of a nonlinear error correction (NEC)
model is the UK money demand from 1878 to 1970
of [25,27]. Later on [61] used this nonlinear error cor-
rection strategy in their money demand estimation as an
improvement over the usual linear money demands equa-
tions suggested by [37,60,76].

The variables of the usual money demand are:m D log
money stock (millions), y D log real net national product
Y , p D log of the price deflator of Y , rs D log of short
term interest rate, rl D log of long-term interest rate, and
RS D short term interest rate (without logs). Let V be the
velocity of circulation of money, a version of the quantity
theory of money says that MV(RS) D PY or in logs m C
v(RS) D p C y. Rearranging terms we can write (m � p �
y) D �v(RS) as a long run money demand.

[27] applied the 2-step approach of [20] obtaining the
following results:

1st Step:


m � p � y

�
t D �0:31 � 7RSt C ût (3a)

where ût are the residuals from 1878 to 2000 of the cointe-
grating relationship estimated by the super-consistent or-
dinary least squares (OLS) estimator. The inverse of the
log of velocity of circulation of money, (m � p � y) D
log


 M
PY
� D �v(RS), is I(1) and the short run interest rate

(RS) is also I(1). Therefore, since the error term ût is stable
and significant it is I(0), see conditions (e) and (f) of The-
orem 1 below. Equation (3a), or (3b), is the first example
of nonlinear cointegration given by;

M
PY

D exp(�0:31 � 7RS C û) : (3b)

Similar nonlinear cointegrating relationships based on
long run money demand equations are recently estimated
by [3].

[22] and [27] showed that, even if OLS might not
be a consistent estimator (see [95]) when the errors
of (3a), (3b) are nonlinear, the OLS estimates of (3a) and
the NLS estimates of (4) in 1-step are very similar.
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2nd Step:

(1 � L)


m � p

�
t D 0:45 (1 � L)



m � p

�
t�1

� (1 � L)2


m � p

�
t�2 � 0:60 (1 � L) pt

C 0:39 (1 � L) pt�1 � 0:021 (1 � L) rst
� 0:062



1 � L2

�
rlt � 2:55 (ût�1 � 0:2) û2t�1

C 0:005 C 3:7 (D1 C D3) C "̂t

(4)

where D1 and D3 are dummy variables for the two world
wars. The second nonlinear characteristic of model (4),
apart from the nonlinear cointegration relationship,
comes from the fact that the ût�1 term enters in a cubic
polynomial form as a particular nonlinear error correction
(NEC) model, see also Sect. 3.3 in [17,18,95] discuss the
inconsistencies derived from the 2-step approach OLS es-
timator in the context of nonlinear smooth transition er-
ror correction model. However, Monte Carlo simulations
should be done to identify the type of nonlinearities that
create series biases and inconsistencies using the 2-step es-
timation of NECmodels.

A Nonlinear Version
of Granger Representation Theorem

To justify this type of nonlinear models, we need to gen-
eralize the linear notions of temporal memory based on
the linear ARIMA concepts of integration, usually I(1) and
I(0), to nonlinear measures of dependence. Several gener-
alizations have been proposed in the literature, as we will
see later on. Our first definition is motivated from asymp-
totic theory, more concretely from functional central limit
theorems (FCLT). See Subsect. “A Nonlinear Version of
Granger Representation Theorem” for alternative defini-
tions.

FCLT-Based Definition of I(0): A sequence fmtg is I(0)
if the “high level” condition that mt verifies a FCLT is satis-
fied, i. e.

T�1/2
[Tr]X

tD1

mt
d�! B(r)

where B(r) is a Brownian motion, see [73,74,99].

Definition 1 (Strong mixing) Let fvtg be a sequence of
random variables. Let =t

s � �(vs ; : : : ; vt) be the generated
sigma-algebra. Define the ˛-mixing coefficients

˛m � sup
t

sup
n
F2=t

�1

;G2=1

tCm

o
jP (G \ F) � P (G) P (F)j

The process fvtg is said to be strong mixing (also ˛-mix-
ing) if ˛m ! 0 as m ! 1. If ˛m 6 m�a we say that fvtg
is strong mixing of size �a.

Definition 2 (NED) Let fwtg be a sequence of random
variables with E

˚
w2
t
�
< 1 for all t. It is said that fwtg is

NED on the underlying sequence fvtg of size �a if � (n) is
of size �a, where � (n) given by

sup
�
�wt � EtCn

t�n (wt)
�
�
2 � � (n)

where EtCn
t�n (wt) D E(wt jvt�n ; : : : ; vtCn) and k�k2 is the

L2 norm of a random vector, defined as E1/2 j�j2 where j�j
denotes the Euclidean norm.

Weak-Dependence-Based Definition of I(0): A se-
quence is I(0) if it is NED on an underlying ˛-mixing se-
quence fvtg but the sequence fxtg given by xt D Pt

sD1 ws
is not NED onfvtg. In this case, we will say that xt is I(1).

Notice that if xt is I(1) then�xt is I(0). This definition ex-
cludes I(�1) series as I(0), like zt D et �et�1 for ˛-mixing
sequences et , since in this case

Pt
sD1 zs is ˛-mixing.

Definition 3 Two I(1) sequences fytg and fxtg are (lin-
early) cointegrated with cointegrating vector [1;�ˇ]0, if
yt � ˇxt is NED on a particular ˛-mixing sequence but
yt � ı12xt is not NED for ı12 ¤ ˇ.

Theorem 1 (Granger’s Representation Theorem,
see [31]) Consider the nonlinear correction model (NEC)
for the (2 � 1) vector Xt D (yt ; xt)0, given by

�Xt D �1�Xt�1 C F(Xt�1) C �t : (5)

Assume that:

(a) �t D (�yt ; �xt )
0 is ˛-mixing of size �s/(s�2) for s > 2

(b)
P

t vt is not NED on ˛-mixing sequence
(c) E kvtk2 6 �v
(d) F(Xt�1) D J(Zt�1), where Zt � yt � ˇxt and J (�)

is a continuously differentiable function, which satisfies
a generalized Lipschitz condition of Lemma 2 of [31].

(e) Let SR (�1) < 1, where SR(M) is the spectral radius of
the matrix M, and

(f) for some fixed ı 2 (0; 1)

SR
�
�1 rz J(Z)
ˇ0�1 Ir C ˇ0rz J(z)

�

6 1 � ı :

The above conditions ensure that;

(i) �Xt and Zt are simultaneously NED on the ˛-mixing
sequence (vt ; ut), where ut D vy;t � ˇ0vx;t ; and

(ii) Xt is I(1).

This theorem gives sufficient conditions for cointegrated
variables to be generated by a nonlinear error correction
model.
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Single-Equation Parametric NECModels
with Linear Cointegration

Consider the following NEC with linear cointegration

�yt D  1�xt C f (zt�1; � ) C �t

yt D ˇxt C zt :

As we said in the previous section, it is not difficult to gen-
eralize this model to include other variables, lags and coin-
tegrating relations. Consider two independent ˛-mixing
sequences fatg and f�tg with a zero mean. Then the fol-
lowing three equations represent the DGP,

xt D xt�1 C at (6a)

zt D zt�1 C �1�xt C f (zt�1; � ) C vt (6b)

yt D ˇxt C zt (6c)

where the nonlinear function f (zt�1; � ) form the nonlin-
ear error correction term and ˇ ¤ 0. Notice that xt is I(1)
by construction from (6a). Notice the similarity between
Eqs. (6b) and the linear error correction of Eq. (2).

If we can ensure that zt is NED then yt is also I(1) and
linearly cointegrated with xt , where the cointegration re-
lationship, yt � ˇxt , is linear. If we apply the difference
operator to (6c) and substitute in (6b) we obtain (7),

�yt D (ˇ C �1)�xt C f (zt�1; � ) C vt (7)

which is a nonlinear error correction model with linear
cointegration, with  1 D ˇ C �1. For the sake of simplic-
ity, and without loss of generality, we impose a common
factor restriction so that �1 D 0 on (7) obtaining,

zt D zt�1 C f (zt�1; �) C vt (8)

and then  1 equals ˇ, the cointegration parameter, and
therefore (8) is a nonlinear extension of the Dickey–Fuller
equation used in unit root testing. The errors of the cointe-
gration relation are given by zt�1 D yt�1 �ˇxt�1, and the
OLS residuals are given by ẑt�1 D yt�1 � ˆ̌xt�1, where ˆ̌
is the value of ˇ estimated in the OLS regression (6c). Sub-
stituting zt by ẑt�1 in (8) we obtain a nonlinear version of
Engle and Granger’s cointegration test (cf. [20]).

Differentiating (8) with respect to zt�1 we obtain

d
dzt�1

zt D 1 C d
dzt�1

f (zt�1; � )

and therefore, our boundedness condition (see assump-
tions (e) and (f) of Theorem 1) is �1 < d

dzt�1
zt < 1, or

�2 < d f (zt�1;�)
dzt�1

< 0 (models (6b), (7) and (8) are error
correcting), which is sufficient to ensure that the series zt

is near epoch dependent (NED) and therefore yt and xt are
cointegrated, see [26,27] and [31].

We discuss now few alternative nonlinear error correc-
tion (or equilibrium correction) functions f (:) that could
generate the series zt from the system (6a) to (6c).

NECModel 1: Arctan, [32]

f (z; ı1; ı2; �2) D ��2 arctan (ı1z C ı2) for �2 > 0 :

NECModel 2: Rational Polynomial, [27]

f (z; ı1; ı2; ı3; ı4; �2) D ��2


(z C ı1)3 C ı2

�
/



(z C ı3)2 C ı4

�
for �2 > 0 :

In the first two models, the derivatives are in the de-
sired region (satisfy assumptions (e) and (f)) for appro-
priate values of some of the parameters but not for all.
However, within the class of rational polynomials the
model considered can satisfy the condition on the abso-
lute value of the derivative, see [27] and [30,32]. Other
empirical examples of nonlinear error correction models
are [11,22,29,33,49,61,72].

An important body of the literature has focused on
threshold models, see [5,6,39,48,54,75,94], among others.

NECModel 3: Switching Exponential, [30,32]

f (z; ı1; ı2; ı3; ı4; �2) D �2 (exp (�ı1z) � ı2) Ifz>0g
C �2 (ı4 � exp (ı3z)) Ifz<0g ;

where IfSg is the characteristic function of the set S, �2 >
0; ı1 > 0 and ı3.

NEC Model 4: Regime Switching Error Correction
Models, [92]

f (z; ı1; ı2; �2) D
3X

sD1

1(z 2 Rs )�s z ;

where 1(:) is the indicator function selecting the three
regimes, R1 D (�1; c1], R2 D (c1; c2] and R3 D (c2;1).

NECModel 5: RandomRegime Switching Error Correc-
tion Models, [6] and [92]

f (z; ı1; ı2; �2) D
3X

sD1

1(z C � 2 Rs )�s z ;

where 1(:) is the indicator function selecting the three
regimes, R1 D (�1; c1], R2 D (c1; c2] and R3 D (c2;1).

Another important literature is related to smooth tran-
sition error correction models, see [50,90,92].
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NEC Model 6: Smooth Transition Error Correction
Models, [102] and [92]

f (z; ı1; ı2; �2) D
3X

sD1

h(z)�s z

h(z) D
8
<

:

1 � L1(z); s D 1
L1(z) � L2(z); s D 2
L3(z); s D 3

9
=

;

where Ls (z) D (1 C exp f�� (z � cs )g
for � � 0 and s D 1; 2 :

Notice, that many smooth transition error correction
models allow the nonlinear error correction function to
affect all the parameters of the model, and not only the
error correction term. However, in this paper we do not
discuss them since they belong to a more general class of
time varyingmodels which is out of the context of this sur-
vey, see for example [50,101,102].

Nonparametric NECModels with Linear Cointegration

[25,27] applied the semi-parametric smoothing splines es-
timation procedure of [21,96,104] to the estimation of the
unknown nonlinear error correction function of Eq. (4).
They found that in the long run money demand of
the UK, see Eq. (3a), there are either multiple equilib-
ria, or a threshold error correction with two attraction
points (two equilibria); one negative and equal to � 0.05
and one positive and equal to 0.2. They suggest esti-
mating those unknown thresholds using a cubic poly-
nomial parametric functional form, see Eq. (4). Notice
that the corresponding cubic polynomial error correction
term, �2:55 (ût�1 � 0:2) û2t�1, identifies perfectly one of
the thresholds, the one that is equal to 0.2. The second
threshold could be obtained from the roots of the poly-
nomial. Other empirical examples of threshold error cor-
rection models are [5,10,48,54]. In fact [10] used a simi-
lar nonparametric approach to estimate the nonlinear er-
ror correction function, but instead of using smoothing
splines they used the Nadaraya–Watson kernel estimator
discussed in [55].

Nonlinear Cointegration

In the recent years several proposals have been considered
to extend linear cointegration and linear error correction
of Granger [42] to a nonlinear framework. One possibility
is to allow for a NEC model in the Granger’s representa-
tion. We have discussed such an approach in the previous
section. Alternatively, one may consider a nonlinear coin-
tegration relation.

Despite the fact that many macroeconomic and finan-
cial time series dynamics are nonlinear, there are still to-
day relatively few useful analytical tools capable of assess-
ing the dependence and persistence behavior of nonlinear
time series appropriately (cf. [50]). This problem is even
more accentuated by the fact that traditional measures of
dependence, such as autocorrelations and periodograms,
may be inappropriate when the underlying time series is
nonlinear and/or non-Gaussian. Then, it is generally ac-
cepted that new measures of dependence have to be de-
fined in order to develop a new concept of nonlinear coin-
tegration. We have already discussed measures based on
FCLT and on NED concepts. We shall explore several al-
ternative measures in this section. All the measures con-
sidered can be grouped in measures of conditional mean
dependence or in distributional dependence. Higher order
conditional moments, other than the mean, can of course
be considered. In any case, we shall use the general ter-
minology extended memory and short memory to indicate
a nonlinear persistence and non-persistence process, re-
spectively (cf. [44]).

Once a concept of nonlinear persistence is introduced,
a general definition of nonlinear cointegration is as fol-
lows. We say that two“extended memory” series yt and
xt are nonlinear cointegrated if there exist a function f
such that zt D f (yt ; xt) is short memory. This defini-
tion is more appropriate when dealing with distributional
persistence, and it is perhaps too general to be fully op-
erative. Identification problems arise in this general con-
text, as noted by many authors, so one should restrict the
class of functions f to avoid such identification problems.
[46] considered functions of the form zt D g(yt) � h(xt),
and estimate g and h nonparametrically by means of the
Alternating Conditional Expectations (ACE) algorithm.
See also [40] for a related approach. It is still an open prob-
lem the theoretical justification of these nonparametric es-
timation procedures.

A less ambitious approach is to consider transforma-
tions of the form zt D yt � f (xt). This framework is espe-
cially convenient with conditional mean persistence mea-
sures. We review the existing measures in the next section.

Nonlinear Measures of Memory

As already discussed by [46], a generalization of linear
cointegration to a nonlinear set-up goes through proper
extensions of the linear concepts of I(0) and I(1). We in-
troduce in this section alternative definitions of nonlinear
I(0) and I(1) processes.Wefirst focus on conditional mean
persistence, we shall discuss distributional dependence at
the end of this section. Define the conditional mean func-
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tion E(ytCh jIt), where It D (xt ; xt�1; : : : ) is the condi-
tioning set at time t. [44] defines the Short Memory in
Mean (SMM) and Extended Memory in Mean (EMM)
concepts as follows.
Definition 4 (SMM and EMM) fytg is said to be SMM
if for all t, M(t; h) D E(ytCh jIt), h > 0, tends
to a constant � as h becomes large. More precisely,
E jM(t; h) � �j2 < c(h), where c(h) � c(h; t) is some
positive sequence that tends to zero as h increases to infin-
ity, for all t. If fytg does not satisfy the previous condition
is called EMM.
Note that to be mathematically precise in Definition 4, we
should specify that fytg is SMM or EMM with respect to
fxtg. Referring to this definition, [44] considered the case
xt D yt . [46] replaced the name of EMM by long mem-
ory in mean, and [40] denoted EMM and SMM by non-
linear integrated (NLI) and nonlinear integrated of order
zero (NLI(0)), respectively. As noted by [44] the concepts
of SMM and EMM are related to a kind of “mixing in
mean” property, more precisely to the concept of mixin-
gale, see [16].

[23] introduced the pairwise equivalent measures of
the previous concepts, which, although weaker, are more
operative because they only involve finite-dimensional
random variables.
Definition 5 (PSMM and PEMM) fytg is said to be Pair-
wise SMM (PSMM) if for all t, m(t; h) D E(ytCh jxt),
h > 0, tends to a constant � as h becomes large. More
precisely, Ejm(t; h) � �j2 < c(h), where c(h) � c(h; t) is
some positive sequence that tends to zero as h increases to
infinity, for all t. If fytg does not satisfy the previous con-
dition is called Pairwise EMM (PEMM).
From the previous definitions and the law of iterated
expectations, we easily observe that a process SMM is
PSMM. The reciprocal is false. There exist processes which
are PSMM but not SMM, although they are rare in prac-
tice.

We now discuss generalizations of the usual autoco-
variances and crosscovariances to a nonlinear framework.
These generalizations were introduced by [23]. It is well-
known that in the presence of nonlinearity (or non-Gaus-
sianity) the autocovariances do not characterize the de-
pendence and the practitioner needs more reliable mea-
sures such as the pairwise regression functions m(t; h).
In general, inference on these functions involves non-
parametric estimation with bandwidth choices, hamper-
ing their application to practical situations. By a measure-
theoretic argument, the regression function m(t; h) can be
characterized by the integrated regression function �t;h(x)
given by

�t;h(x) D E
�
(ytCh � �t)1(xt 6 x)

�

D E
�
m(t; h)1(xt 6 x)

�
;

where the second equality follows by the law of iterated
expectations. The measures �t;h(x) are called the Inte-
grated Pairwise Regression Functions (IPRF), see [24].
Extensions to other weight functions different from the
indicator weight 1(xt 6 x) are possible. The integrated
measures of dependence �t;h(x) are useful for testing in-
teresting hypotheses in a nonlinear time series framework
and, unlike m(t; h), they do not need of smoothing esti-
mation and are easily estimated by the sample analogue.
Moreover, they characterize the pairwise versions of the
concepts introduced by [44], making these concepts more
operative. First we need a definition, a norm kk is nonde-
creasing if for all f and g with j f (x)j 6 jg(x)j for all x, it
holds that k f k 6 kgk. Associated to the norm kk, we de-
fine the distance d( f ; g) D k f � gk. Usual nondecreasing
norms are the L2 norm and the supremum norm.

Definition 6 (PSMMd and PEMMd ) fytg is said to be
Pairwise SMM relative to d (PSMMd) if for all t,

�
��t;h(x)

�
�,

h > 0, tends to zero as h becomes large for any t. More
precisely,

�
��t;h(x)

�
� < c(h), where c(h) � c(h; t) is some

positive sequence that tends to zero as h increases to infin-
ity for all t. If fytg does not satisfy the previous condition
is called Pairwise EMM relative to d (PEMMd ).

Theorem 2 (Relationship between PSMM and
PSMMd [23]) If the norm kk is non-decreasing and
E
˚
y2t
�
< 1 for all t, then fytg is PSMM if and only if

fytg is PSMMd.

Based on these concepts we define nonlinear cointegration
as follows. We say that two PEMMd series yt and xt are
nonlinear cointegrated if there exist a function f such that
zt D yt � f (xt) is PSMMd .

In analogy with the linear world and based on the re-
sults in [1,78], a possible nonparametric characterization
of nonlinear cointegration can be based on the rates of
convergence of �t;h(x) and � xt;h(x) D E

�
(xtCh��t)1(xt 6

x)
�
as h diverges to infinity. Intuitively, under cointegra-

tion, the remote past of xt should be as useful as the remote
past of yt in long-run non-linearly forecasting yt .

Similarly, we can define distributional measures of
persistence and nonlinear cointegration. [45] defines
a persistent process in distribution using the bivariate and
marginal densities at different lags. [41] considered para-
metric and nonparametric methods for studying serial dis-
tributional dependence. In the nonparametric case [45]
consider series expansions estimators for the nonlinear
canonical analysis of the series. These authors apply their
results to study the dynamics of the inter-trade durations



210 Econometrics: Non-linear Cointegration

of the Alcatel-stock on the Paris Borse and find evidence
of nonlinear strong persistence in distribution.

Regarding distributional dependence, we formalize
a definition given in [45]. Let ft;h(y; x), ktCh(y) and gt(x)
be, respectively, the bivariate and marginal densities of
ytCh and xt. To define persistence in distribution one can
use the Hellinger distance

Ht;h D
“ ˇ

ˇ
ˇ f 1/2t;h (y; x) � k1/2tCh(y)g

1/2
t (x)

ˇ
ˇ
ˇ
2
dydx ;

and define Pairwise Short Memory in Distribution
(PSMD) according to the decay of Ht;h to zero as h di-
verges to infinity. Alternative definitions can be given in
terms of other divergence measures or distances, see [51]
and references therein. This approach is explored in [1],
who define nonlinear cointegration usingmutual informa-
tion measures.

Persistence in distribution is related to mixing con-
cepts. In fact, uniformly in t, Ht;h 6 2˛(h), where ˛(h)
is certain ˛-mixing coefficient, see [23] for details.

The aforementioned measures of nonlinear distribu-
tional dependence need of smoothing estimation, e. g. ker-
nel estimators. Similarly to the case of conditional mean
measures, we can avoid smoothing by means of the inte-
grated measures of dependence

�t;h(y; x) D cov(1(ytCh 6 y); 1(xt 6 x))
D Ft;h(y; x) � KtCh(y)Gt(x) ;

where Ft;h(y; x), KtCh(y) and Gt(x) are, respectively, the
bivariate and marginal cumulative distribution functions
(cdf) of ytCh and xt . The measures �t;h(y; x) can bt esti-
mated at different lags by using the sample analogue, i. e.
the empirical distribution functions. Similar definitions to
Definition 6 can be given for distributional persistence
based on �t;h(y; x). See [23] for further generalizations
and definitions. Definitions of nonlinear cointegration can
be formulated along the lines in [1]. For instance, we can
say that two persistent (in distribution) series yt and xt are
nonlinear cointegrated (in distribution) if

lim
�!1

�
�
�
�
�
�t;� (�)
�xt;� (�)

� ˇ

�
�
�
�
�

D 0

for all �; t, � 6 t, where �xt;h(y; x) is defined as �t;h(y; x)
but replacing yt by xt there, ˇ is a real number and kk
a suitable norm.

Integration and Cointegration Based
on Order Statistics

[9,36,47] have considered rank based unit roots test to
avoid the extreme sensitivity of usual test like the Dickey–

Fuller type test to presence of nonlinearities and outliers,
see [19] for an overview of the problems of unit root tests
in general contexts. [2] suggested a range unit root test
(RUR) based on the first differences of the ranges of a se-
ries. The range is the difference between the maximum
and the minimum taken by a series at any given point in
time. Therefore, the difference of the ranges is a measure of
records. Counting the number of new records is an inter-
esting way of distinguishing between stationary and non-
stationary series since the frequency of new records van-
ishes faster for stationary series than for series containing
unit roots. They have shown that this RUR test is robust
to monotonic transformations, distributions of the errors
and many structural breaks and additive outliers.

[8] suggests using the differences between the se-
quences of ranks. If there is no cointegration the sequence
of ranks tends to diverge, while under cointegration they
evolve similarly. [34] consider a record counting cointe-
gration test (RCC) based on the synchronicity of the jumps
between cointegrated series. They suggest a test statistic
based on counting the number of jumps (records) that si-
multaneously occur in both series. Certainly, those series
that are cointegrated have a much larger number of simul-
taneous jumps in the ranges of the series. They show that
the cointegration test based on RCC is robust to mono-
tonic nonlinearities and many structural breaks and does
not require a prior estimation of the nonlinear or linear
cointegrating function. There is a large literature on the
effects of structural breaks and outliers on unit root and
on cointegration testing but it is out of the scope of this
paper, see for example the references in [62].

Another cointegration test robust to nonlinearities and
structural breaks is based on induced order statistics. In
particular [35] consider that two series yt and xt are coin-
tegrated (either linear or nonlinear) if the correspond-
ing induced order series are plotted around the 45° line.
Their test-statistic compares the two induced order series
by comparing their corresponding empirical distributions,
the empirical distribution of yt and the empirical distribu-
tion of yt induced by xt , using the Kolmogorov–Smirnov
type statistic.

Parametric Nonlinear Cointegration

As previously discussed, an important body of research
has focused on nonlinear cointegration relations. The
model used being a nonlinear cointegration regression or
a nonlinear regression model with integrated regressors.
References on this line of research include [12,13,82,84].
[93] study smooth transition regressions with integrated
regressors. An example considered by these authors is the
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nonlinear extension of (1b)

yt D ˛xt C ıxt g(xt � c; � ) C vt ;

where g(x� c; � ) D �1/(1Ce��(x�c)) is the logistic func-
tion. Under the restriction ı D 0 the latter model reduces
to the linear model in (1b), see [14] for linearity tests un-
der this framework. Other examples of parametric nonlin-
ear cointegration are given by Eqs. (3a), (3b) and by the
exponential model of [68], see also the references given
in [19]. Those models are a particular case of the more
general nonlinear parametric cointegration model of the
form,

yt D f (xt; ˇ) C vt ;

where xt is px1 vector of I(1) regressors, vt is zero-mean
stationary error term, and f (xt; ˇ) an smooth function of
the process xt , known up to the finite-dimensional param-
eter vector ˇ.

At least, there are two different asymptotic justifica-
tions within these nonlinear cointegration models. In the
classical asymptotic theory (e. g. [82,84]) all the existing
literature has been confined to the case p D 1, although
some extensions to single-index type regressions have
been studied, see [83]. The main reason for the restric-
tion to the univariate case is that commonly used asymp-
totic techniques are not appropriate for the case p > 1,
e. g. asymptotics based on local times are not available for
p > 2. Intrinsic to this problem is the non-recurrent prop-
erty of the p-variate Brownian motion when p > 2. On the
other hand, the triangular array asymptotics used in [93]
allow for a general p > 0.

In the classical asymptotic theory, the properties of es-
timators of ˇ, e. g. the nonlinear least squares estimator
(NLSE), depend on the specific class of functions where
f (xt; ˇ) belongs. Commonly used classes are integrable
functions, asymptotic homogeneous functions or expo-
nential functions, see [82]. The rate of convergence of the
NLSE is class-specific and, in some cases, involves random
scaling. In the triangular array asymptotic theory of [93]
the distribution theory of estimators of ˇ, e. g. rates of con-
vergence, does not depend on the specific class of func-
tions.

Several authors exploit the previous asymptotic re-
sults on ˇ to develop tests of nonlinear cointegration in
this parametric framework. In [15] the so-called KPSS test
is applied to the parametric residuals. Since the result-
ing limiting distribution depends on nuisance parameters,
these authors implement the test with the assistance of
a subsampling procedure as a smoothing device.

Nonparametric Nonlinear Cointegration

Nonparametric estimates of nonlinear cointegration rela-
tions were already computed by [46], but it has not been
until the recent works by [69,70,88] that a nonparamet-
ric estimation theory for nonstationary processes has been
developed. [88] considered a theory based on local time ar-
guments, whereas [69,70] used the theory of null recurrent
Markov processes. A comparison of both methodologies
is discussed in [4], where near-integrated nonparametric
asymptotics are studied.

More specifically, these authors estimate the transfer
function f (xt) in the nonlinear regression model

yt D f (xt) C vt ;

where the series yt and xt are univariate observed non-
stationary processes and vt is a non-observed stationary
process. [70] study the nonparametric kernel estimation
of f (xt) as

f̂ (x) D
Pn

tD0 ytKx;h(xt)Pn
tD0 Kx;h(xt)

;

where Kx;h(xt) D h�1K((y � x)/h), K is a kernel function
and h is a bandwidth parameter. These authors investi-
gate the asymptotic theory for f̂ (x) under some regularity
conditions and different assumptions on the dependence
relation between xt and vt . Especially convenient for the
nonlinear cointegration framework are those assumptions
that allow for dependence between xt and vt . The family of
nonstationary processes considered by these authors is the
class of the so-called ˇ-null recurrent Markov processes
satisfying a restriction on the tail distribution of the recur-
rence time. The class is large enough to contain the ran-
dom walk, unit-root processes as well as other nonlinear
nonstationary processes. It is shown that the nonparamet-
ric estimation theory is different to that in the stationary
case, with slower rates of convergences, as expected. This
new nonparametric asymptotic theory opens the door for
future developments in inferences in nonlinear cointegra-
tion models.

Future Directions

This chapter has provided a selected overview of the avail-
able nonlinear extensions of this concept. While in the lin-
ear set-up there exists a complete theory and set of tools
for studying the cointegration problem, it has been made
clear that a nonlinear version of this theory possesses non-
trivial challenges. A first natural nonlinear extension is to
allow for a NEC model but still a linear cointegration re-
gression. On the other hand, one can consider a nonlinear
regression cointegration equation. It has been recognized
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that an extension of the concept of linear cointegration to
a nonlinear set-up needs of appropriate extensions of the
linear concepts of I(0) and I(1) to nonlinear time series
(cf. [46]). Several extensions have been provided and dis-
cussed. We recommend operative integrated measures of
dependence, since they are simple to estimate and avoid
smoothing of the data, which can be a challenging prob-
lem when dealing with nonstationary variables (cf. [69]).
An important line of future research is the development
of inferential procedures for nonlinear cointegration based
on these new integrated measures. This is currently inves-
tigated by the authors.

There is a large evidence of empirical applications in
economics and finance where nonlinearities are found in
nonstationary contexts. However, given the difficulty of
the theory involved, only few papers provide a sound jus-
tification of the empirical use of cointegration regressions
(nonlinear cointegration) in nonlinear frameworks. The
difficulties analyzing nonlinear time series models within
a stationary and ergodic frameworks are substantially en-
hanced in nonstationary contexts. In particular, the clas-
sical asymptotic theory for nonlinear transformations of
nonstationary variables becomes case-dependent (i. e. de-
pends on the specific class of functions), and the available
results are confined to the univariate case. A challenging
and important line of research deals with the extension of
this theory to multivariate frameworks.

Recently, an important step towards the development
of a nonlinear cointegration theory has been accomplished
by the nonparametric estimation theory of [69,70]. The
application of this theory to inference in nonlinear coin-
tegrated models is not fully explored yet. Residual-based
tests for testing nonlinear cointegration, such as the so-
called KPSS test (cf. [73]), can be constructed using non-
parametric residuals. Moreover, model specification tests
for nonlinear parametric cointegration can be based on
the comparison between parametric and nonparametric
fits. Finally, in a recent unpublished lecture, Clive Granger
suggested to extend the concept of cointegration to quan-
tiles. These are promising lines of future research which
deserve serious attention in the economics literature.
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Glossary

Panel data Data on a set of cross-sectional units followed
over time.

Unobserved effects Unobserved variables that affect the
outcome which are constant over time.

Fixed effects estimation An estimation method that re-
moves the unobserved effects, implying that the unob-
served effects can be arbitrarily related to the observed
covariates.

Correlated random effects An approach to modeling
where the dependence between the unobserved effects
and the history of the covariates is parametricallymod-
eled. The traditional random effects approach is a spe-
cial case under the assumption that he unobserved ef-
fects are independent of the covariates.

Average partial effect The partial effect of a covariate av-
eraged across the distribution of the unobserved ef-
fects.

Definition of the Subject

Panel data consist of repeated observations over time on
the same set of cross-sectional units. These units can be
individuals, firms, schools, cities, or any collection of units
one can follow over time. Special econometric methods
have been developed to recognize and exploit the rich in-
formation available in panel data sets. Because the time di-
mension is a key feature of panel data sets, issues of se-
rial correlation and dynamic effects need to be considered.
Further, unlike the analysis of cross-sectional data, panel
data sets allow the presence of systematic, unobserved dif-
ferences across units that can be correlated with observed
factors whose effects are to be measured. Distinguishing

between persistence due to unobserved heterogeneity and
that due to dynamics in the underlying process is a lead-
ing challenge for interpreting estimates from panel data
models.

Panel data methods are the econometric tools used
to estimate parameters compute partial effects of interest
in nonlinear models, quantify dynamic linkages, and per-
form valid inference when data are available on repeated
cross sections. For linear models, the basis for many panel
data methods is ordinary least squares applied to suitably
transformed data. The challenge is to develop estimators
assumptions with good properties under reasonable as-
sumptions, and to ensure that statistical inference is valid.
Maximum likelihood estimation plays a key role in the es-
timation of nonlinear panel data models.

Introduction

Many questions in economics, especially those with foun-
dations in the behavior of relatively small units, can be em-
pirically studied with the help of panel data. Even when
detailed cross-sectional surveys are available, collecting
enough information on units to account for systematic
differences is often unrealistic. For example, in evaluating
the effects of a job training program on labor market out-
comes, unobserved factors might affect both participation
in the program and outcomes such as labor earnings. Un-
less participation in the job training program is randomly
assigned, or assigned on the basis of observed covariates,
cross-sectional regression analysis is usually unconvinc-
ing. Nevertheless, one can control for this individual het-
erogeneity – including unobserved, time-constant human
capital – by collecting a panel data set that includes data
points both before and after the training program.

Some of the earliest econometric applications of panel
data methods were to the estimation of agricultural pro-
duction functions, where the worry was that unobserved
inputs – such as soil quality, technical efficiency, or man-
agerial skill of the farmer – would generally be correlated
with observed inputs such as capital, labor, and amount of
land. Classic examples are [31,45].

The nature of unobserved heterogeneity was discussed
early in the development of panel data models. An impor-
tant contribution is [46], which argued persuasively that in
applications with many cross-sectional units and few time
periods, it always makes sense to treat unit-specific het-
erogeneity as outcomes of random variables, rather than
parameters to estimate. As Mundlak made clear, for eco-
nomic applications the key issue is whether the unob-
served heterogeneity can be assumed to be independent,
or at least uncorrelated, with the observed covariates. [25]
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developed a testing framework that can be used, and often
is, to test whether unobserved heterogeneity is correlated
with observed covariates. Mundlak’s perspective has had
a lasting impact on panel data methods, and his insights
have been applied to a variety of dynamic panel data mod-
els with unobserved heterogeneity.

The 1980s witnessed an explosion in both method-
ological developments and applications of panel data
methods. Following the approach in [15,16,46], and [17]
provided a unified approach to linear and nonlinear panel
data models, and explicitly dealt with issues of inference in
cases where full distributions were not specified. Dynamic
linear models, and the problems they pose for estimation
and inference, were considered in [4]. Dynamic discrete
response models were analyzed in [29,30]. The hope in
estimating dynamic models that explicitly contain unob-
served heterogeneity is that researchers can measure the
importance of two causes for persistence in observed out-
comes: unobserved, time-constant heterogeneity and so-
called state dependence, which describes the idea that, con-
ditional on observed and unobserved factors, the probabil-
ity of being in a state in the current time period is affected
by last period’s state.

In the late 1980s and early 1990s, researchers began
using panel data methods to test economic theories such
as rational expectations models of consumption. Unlike
macro-level data, data at the individual or family level
allows one to control for different preferences, and per-
haps different discount rates, in testing the implications of
rational expectations. To avoid making distributional as-
sumptions on unobserved shocks and heterogeneity, re-
searchers often based estimation on conditions on ex-
pected values that are implied by rational expectations, as
in [40].

Other developments in the 1990s include studying
standard estimators under fewer assumptions – such as
the analysis in [53] of the fixed effects Poisson estimator
under distributional misspecification and unrestricted se-
rial dependence – and the development of estimators in
nonlinear models that are consistent for parameters under
no distributional assumptions – such as the new estima-
tor proposed in [33] for the panel data censored regression
model.

The past 15 years has seen continued development of
both linear and nonlinear models, with and without dy-
namics. For example, on the linear model front, meth-
ods have been proposed for estimating models where the
effects of time-invariant heterogeneity can change over
time – as in [2]. Semiparametric methods for estimating
production functions, as in [48], and dynamic models, as
in the dynamic censored regression model in [34], have

been developed. Flexible parametric models, estimated by
maximum likelihood, have also been proposed (see [57]).

Many researchers are paying closer attention to esti-
mation of partial effects, and not just parameters, in non-
linear models – with or without dynamics. Results in [3]
show how partial effects, with the unobserved heterogene-
ity appropriately averaged out, can be identified under
weak assumptions.

The next several sections outline a modern approach
to panel data methods. Section “Future Directions” pro-
vides an account of more recent advances, and discusses
where those advances might head in the future.

Overview of Linear Panel DataModels

In panel data applications, linear models are still the most
widely used. When drawing data from a large population,
random sampling is often a realistic assumption; therefore,
we can treat the observations as independent and identi-
cally distributed outcomes. For a random draw i from the
population, the linear panel data model with additive het-
erogeneity can be written as

yi t D �t C xi tˇ C ci C ui t ; t D 1; : : : ; T ; (1)

where T is the number of time periods available for each
unit and t indexes time periods. The time periods are of-
ten years, but the span between periods can be longer or
shorter than a year. The distance between any two time
periods need not be the same, although different spans
can make it tricky to estimate certain dynamic models. As
written, Eq. (1) assumes that we have the same time peri-
ods available for each cross-sectional unit. In other words,
the panel data set is balanced.

As in any regression analysis, the left-hand-side vari-
able is the dependent variable or the response variable. The
terms �t , which depend only only time, are treated here as
parameters. In most microeconometric applications, the
cross-sectional sample size, denoted N, is large – often
very large – compared with T. Therefore, the �t can be
estimated precisely in most cases. Almost all applications
should allow for aggregate time effects as captured by �t .
Including such time effects allows for secular changes in
the economic environment that affect all units in the same
way (such as inflation or aggregate productivity). For ex-
ample, in studying the effects of school inputs on perfor-
mance using school-level panel data for a particular state,
including �t allows for trends in statewide spending along
with separate, unrelated trends in statewide test perfor-
mance. It could be that, say, real spending rose at the same
time that the statewide standardized tests were made eas-
ier; a failure to account for such aggregate trends could
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lead to a spurious association between performance and
spending. Only occasionally are the �t the focus of a panel
data analysis, but it is sometimes interesting to study the
pattern of aggregate changes once the covariates contained
in the 1 � K vector xi t are netted out.

The parameters of primary interest are contained in
the K � 1 vector ˇ, which contains the coefficients on the
set of explanatory variables.With the presence of �t in (1),
xi t cannot include variables that change only over time.
For example, if yit is a measure of labor earnings for indi-
vidual i in year t for a particular state in the US, xi t can-
not contain the state-level unemployment rate. Unless in-
terest centers on how individual earnings depend on the
state-level unemployment rate, it is better to allow for dif-
ferent time intercepts in an unrestricted fashion: this way,
any aggregate variables that affect each individual in the
same way are accounted for without even collecting data
on them. If the �t are restricted to be functions of time –
for example, a linear time trend – then aggregate variables
can be included, but this is always more restrictive than
allowing the �t to be unrestricted.

The composite error term in (1), ci C ui t , is an im-
portant feature of panel data models. With panel data, it
makes sense to view the unobservables that affect yit as
consisting of two parts: the first is the time-constant vari-
able, ci, which is often called an unobserved effect or unit-
specific heterogeneity. This term aggregates all factors that
are important for unit i’s response that do not change over
time. In panel data applications to individuals, ci is often
interpreted as containing cognitive ability, family back-
ground, and other factors that are essentially determined
prior to the time periods under consideration. Or, if i in-
dexes different schools across a state, and (1) is an equa-
tion to see if school inputs affect student performance, ci
includes historical factors that can affect student perfor-
mance and also might be correlated with observed school
inputs (such as class sizes, teacher competence, and so on).
The word “heterogeneity” is often combined with a qual-
ifier that indicates the unit of observation. For example,
ci might be “individual-specific heterogeneity” or“school-
specific heterogeneity”. Often in the literature ci is called
a “random effect” or “fixed effect”, but these labels are not
ideal. Traditionally, ci was considered a random effect if
it was treated as a random variable, and it was considered
a fixed effect if it was treated as a parameter to estimate (for
each i). The flaws with this way of thinking are revealed
in [46]: the important issue is not whether ci is random,
but whether it is correlated with xi t .

The sequence of errors fui t : t D 1; : : : ; Tg are spe-
cific to unit i, but they are allowed to change over time.
Thus, these are the time-varying unobserved factors that

affect yit , and they are often called the idiosyncratic errors.
Because uit is in the error term at time t, it is important
to know whether these unobserved, time-varying factors
are uncorrelated with the covariates. It is also important
to recognize that these idiosyncratic errors can be serially
correlated, and often are.

Before treating the various assumptions more formally
in the next subsection, it is important to recognize the
asymmetry in the treatment of the time-specific effects,
�t , and the unit-specific effects, ci. Language such as “both
time and school fixed effects are included in the equation”
is common in empirical work. While the language itself is
harmless, with large N and small T it is best to view the
time effects, �t , as parameters to estimate because they can
be estimated precisely. As alreadymentioned earlier, view-
ing ci as random draws is the most general, and natural,
perspective.

Assumptions and Estimators for the Basic Model

The assumptions discussed in this subsection are best
suited to cases where random sampling from a (large) pop-
ulation is realistic. In this setting, it is most natural to
describe large-sample statistical properties as the cross-
sectional sample size, N, grows, with the number of time
periods, T, fixed.

In describing assumptions in the model (1), it proba-
bly makes more sense to drop the i subscript in (1) to em-
phasize that the equation holds for an entire population.
Nevertheless, (1) is useful for emphasizing which factors
change i, or t, or both. It is sometimes convenient to sub-
sume the time dummies in xi t , so that the separate inter-
cepts �t need not be displayed.

The traditional starting point for studying (1) is to
rule out correlation between the idiosyncratic errors, uit ,
and the covariates, xi t . A useful assumption is that the se-
quence of explanatory variables fxi t : t D 1; : : : ; Tg is con-
temporaneously exogenous conditional on ci:

E(ui t jxi t; ci ) D 0 ; t D 1; : : : ; T : (2)

This assumption essentially definesˇ in the sense that, un-
der (1) and (2),

E(yi t jxi t; ci ) D �t C xi tˇ C ci ; (3)

so the ˇj are partial effects holding fixed the unobserved
heterogeneity (and covariates other than xtj). Strictly
speaking, ci need not be included in the conditioning set
in (2), but including it leads to the useful Eq. (3). Plus, for
purposes of stating assumptions for inference, it is conve-
nient to express the contemporaneous exogeneity assump-
tion as in (2).
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Unfortunately, with a small number of time periods,
ˇ is not identified by (2), or by the weaker assumption
Cov(xi t ; ui t) D 0. Of course, if ci is assumed to be un-
correlated with the covariates, that is Cov(xi t ; ci ) D 0 for
any t, then the composite error, vi t D ci C ui t is uncorre-
lated with xi t , and then ˇ is identified and can be consis-
tently estimated by a cross section regression using a single
time period t, or by using pooled regression across t. (See
Chaps. 7 and 10 in [55] for further discussion.) But one
of the main purposes in using panel data is to allow the
unobserved effect to be correlated with time-varying xi t .

Arbitrary correlation between ci and xi D (xi1; xi2;
: : : ; xiT) is allowed if the sequence of explanatory variables
is strictly exogenous conditional on ci,

E(ui t jxi1; xi2; : : : ; xiT ; ci ) D 0 ; t D 1; : : : ; T ; (4)

which can be expressed as

E(yi t jxi1; : : : ; xiT ; ci ) D E(yi t jxi t; ci ) D �t Cxi tˇ C ci :
(5)

Clearly, assumption (4) implies (2). Because the entire his-
tory of the covariates is in (4) for all t, (4) implies that xir
and uit are uncorrelated for all r and t, including r D t. By
contrast, (2) allows arbitrary correlation between xir and
uit for any r ¤ t. The strict exogeneity assumption (4)
can place serious restrictions on the nature of the model
and dynamic economic behavior. For example, (4) can
never be true if xi t contains lags of the dependent variable.
Of course, (4) would be false under standard economet-
ric problems, such as omitted time-varying variables, just
as would (2). But there are important cases where (2) can
hold but (4) might not. If, say, a change in uit causes reac-
tions in future values of the explanatory variables, then (4)
is generally false. In applications to the social sciences, the
potential for these kind of “feedback effects” is important.
For example, in using panel data to estimate a firm-level
production function, a shock to production today (cap-
tured by changes in uit) might affect the amount of capital
and labor inputs in the next time period. In other words,
uit and xi;tC1 would be correlated, violating (4).

How does assumption (4) (or (5)) identify the pa-
rameters? In fact, it only allows estimation of coefficients
on time-varying elements of xi t . Intuitively, because (4)
puts no restrictions on the dependence between ci and
xi , it is not possible to distinguish between the effect of
a time-constant observable covariate and that of the unob-
served effect, ci. For example, in an equation to describe
the amount of pension savings invested in the stock mar-
ket, ci might include innate of tolerance for risk, assumed

to be fixed over time. Once ci is allowed to be correlated
with any observable covariate – including, say, gender –
the effects of gender on stock market investing cannot be
identified because gender, like ci, is constant over time.
Mechanically, common estimation methods eliminate ci
along with any time-constant explanatory variables. (What
is meant by “time-varying” xitj is that for at least some i,
xitj changes over time. For some units i, xitj might be con-
stant). When a full set of year intercepts – or even just
a linear time trend – is included, the effects of variables
that increase by the same amount in each period – such as
a person’s age – cannot be included in xi t . The reason is
that the beginning age of each person is indistinguishable
from ci, and then, once the initial age is know, each subse-
quent age is a deterministic – in fact, linear – function of
time.

Perhaps the most common method of estimating ˇ

(and the �t) is so-called fixed effects (FE) or within esti-
mation. The FE estimator is obtained as a pooled OLS re-
gression on variables that have had the unit-specific means
removed. More precisely, let ÿ i t D yi t � T�1PT

rD1 yir D
yi t � ȳ i be the deviation of yit from the average over time
for unit i, ȳ i and similarly for ẍi t (which is a vector). Then,

ÿ i t D �̈t C ẍi tˇ C üi t ; t D 1; : : : ; T ; (6)

where the year intercepts and idiosyncratic errors are, of
course, also demeaned. Consistency of pooled OLS (for
fixed T and N ! 1) applied to (6) essentially requires
rests on

PT
tD1 E(ẍ

0
i t üi t) D PT

tD1 E(ẍ
0
i tui t) D 0, which

means the error uit should be uncorrelated with xir for
all r and t. This assumption is implied by (4). A rank
condition on the demeaned explanatory variables is also
needed. If �̈t is absorbed into ẍi t , the condition is rankPT

tD1 E(ẍ
0
i t ẍi t) D K, which rules out time constant vari-

ables and other variables that increase by the same value
for all units in each time period (such as age).

A different estimation method is based on an equation
in first differences. For t > 1, define�yi t D yi t � yi;t�1,
and similarly for the other quantities. The first-differenced
equation is

�yi t D ıt C�xi tˇ C�ui t ; t D 2; : : : ; T ; (7)

where ıt D �t � �t�1 is the change in the intercepts. The
first-difference (FD) estimator is pooled OLS applied to (7).
Any element xith of xi t such that�xi th is constant for all i
and t (most often zero) drops out, just as in FE estima-
tion. Assuming suitable time variation in the covariates,
E(�x0

i t�ui t) D 0 is sufficient for consistency. Naturally,
this assumption is also implied by assumption (4).

Whether FE or FD estimation is used – and it is of-
ten prudent to try both approaches – inference about ˇ
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can and generally should be be made fully robust to het-
eroksedasticity and serial dependence. The robust asymp-
totic variance of both FE and FD estimators has the so-
called“sandwich” form, which allows the vector of idiosyn-
cratic errors, ui D (ui1; : : : ; uiT )0, to contain arbitrary se-
rial correlation and heteroskedasticity, where the condi-
tional covariances and variances can depend on xi in an
unknown way. For notational simplicity, absorb dummy
variables for the different time periods into xi t . Let ˆ̌

FE
denote the fixed effects estimator and b̈ui D ÿi � Ẍi ˆ̌ FE the
T � 1 vector of fixed effects residuals for unit i. Here, Ẍi
is the T � K matrix with tth row ẍi t . Then a fully robust
estimator of the asymptotic variance of ˆ̌ FE is

bAvar( ˆ̌ FE) D
 NX

iD1

Ẍ0
i Ẍi

!�1  NX

iD1

Ẍ0
i
b̈uib̈u0

iẌi

!

�
 NX

iD1

Ẍ0
iẌi

!�1

; (8)

where it is easily seen that
PN

iD1 Ẍ
0
iẌi D PN

iD1
PT

tD1 ẍi t
ẍi t and the middle part of the sandwich consists of terms
b̈uirb̈ui t ẍ0

ir ẍi t for all r; t D 1; : : : ; T . See Chap. 10 in [55]
for further discussion. A similar expression holds for ˆ̌

FD
but where the demeaned quantities are replaced by first
differences.

When T D 2, it can be shown that the FE and FD es-
timation and inference about ˇ are identical. If T > 2, the
procedures generally differ. If (4) holds and T > 2, how
does one choose between the FE and FD approaches? Be-
cause both are consistent and

p
N-asymptotically normal,

the only way to choose is from efficiency considerations.
Efficiency of the FE and FD estimators hinges on second
moment assumptions concerning the idiosyncratic errors.
Briefly, if E(uiu0

i jxi) D E(uiu0
i ) D �2uIT , then the FE esti-

mator is efficient. Practically, the most important implica-
tion of this assumption is that the idiosyncratic errors are
serially uncorrelated. But they should also be homoskedas-
tic, which means the variances can neither depend on the
covariates nor change over time. The FD estimator is effi-
cient if the errors in (7) are serially uncorrelated and ho-
moskedasticity, which can be stated as E(�ui�u0

i jxi) D
E(�ui�u0

i) D �2e IT�1, where ei t D ui t � ui;t�1 and
�ui is the T � 1 vector of first-differenced errors. These
two sets of conditions – that fui t : t D 1; : : : ; Tg is a se-
rially uncorrelated sequence (for FE to be efficient) versus
fui t : t D 1; : : : ; Tg is a random walk (for FD to be effi-
cient) – represent extreme cases. Of course, there is much
in between. In fact, probably neither condition should be
assumed to be true, which is a good argument for robust
inference. More efficient estimation can be based on gen-

eralizedmethod ofmoments (GMM– see Chap. 8 in [55] –
or minimum distance estimation, as in [16]).

It is good practice to compute both FE and FD esti-
mates to see if they differ in substantive ways. It is also
helpful to have a formal test of the strict exogeneity as-
sumption that is easily computable and that maintains
only strict exogeneity under the null – in particular, that
takes no stand on whether the FE or FD estimator is
asymptotically efficient. Because lags of covariates can al-
ways be included in a model, the primary violation of (4)
that is of interest is due to feedback. Therefore, it makes
sense to test that xi;tC1 is uncorrelated with uit . Actually,
let wi t be a subset of xi t that is suspected of failing the
strict exogeneity assumption, and consider the augmented
model

yi t D �t C xi tˇ C wi;tC1ı C ci C ui t ;
t D 1; : : : ; T � 1 : (9)

Under the null hypothesis that fxi t : t D 1; : : : ; Tg is
strictly exogenous, H0 : ı D 0, and this is easily tested us-
ing fixed effects (using all but the last time period) or first
differencing (where, again, the last time period is lost). It
makes sense, as always, to make the test fully robust to se-
rial correlation and heteroskedasticity. This test may prob-
ably has little power for detecting contemporaneous endo-
geneity, that is, correlation between wi t and uit .

A third common approach to estimation of unob-
served effects models is so-called random effects estima-
tion. RE estimation differs from FE and FD by leaving ci
in the error term and then accounting for its presence via
generalized least squares (GLS). Therefore, the exogene-
ity requirements of the covariates must be strengthened.
The most convenient way of stating the key random effects
(RE) assumption is

E(ci jxi) D E(ci ) ; (10)

which ensures that every element of xi – that is, all ex-
planatory variables in all time periods – is uncorrelated
with ci. Together with (4), (10) implies

E(vi t jxi) D 0 ; t D 1; : : : ; T ; (11)

where vi t D ciCui t is the composite error. Condition (11)
is the key condition for general least squares methods that
exploit serial correlation in vit to be consistent (although
zero correlation would be sufficient). The random effects
estimator uses a special structure for the variance-covari-
ate matrix of vi , the T � 1 vector of composite errors. If
E(uiu0

i ) D �2uIT and ci is uncorrelated with each uit (as
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implied by assumption (4)), then

Var(vi) D

0

B
B
B
B
@

�2c C �2u �2c � � � �2c

�2c �2c C �2u
: : :

:::
:::

: : :
: : : �2c

�2c � � � �2c �2c C �2u

1

C
C
C
C
A
: (12)

Both �2c and �2u can be estimated after, say, preliminary es-
timation by pooled OLS (which is consistent under (11)) –
see, for example, Chap. 10 in [55] – and then a feasible
GLS is possible. If (12) holds, along with the system ho-
moskedasticity assumption Var(vi jxi) D Var(vi ), then
feasible GLS is efficient, and the inference is standard.
Even if Var(vi jxi) is not constant, or Var(vi) does not
have the random effects structure in (12), the RE estima-
tor is consistent provided (11) holds (Again, this is with N
growing and T fixed). Therefore, although it is still not
common, a good case can be made for using robust in-
ference – that is, inference that allows an unknown form
of Var(vi jxi) – in the context of random effects. The idea
is that the RE estimator can be more efficient than pooled
OLS even if (12) fails, yet inference should not rest on (12).
Chapter 10 in [55] contains the sandwich form of the esti-
mator.

Under the key RE assumption (11), xi t can contain
time-constant variables. In fact, one way to ensure that the
omitted factors are uncorrelated with the key covariates
is to include a rich set of time-constant controls in xi t . RE
estimation is most convincing whenmany good time-con-
stant controls are available. In some applications of RE, the
key variable of interest does not change over time, which is
why FE and FD cannot be used. (Methods proposed in [26]
can be used when some covariates are correlated with ci,
but enough others are assumed to be uncorrelated with ci).

Rather than eliminate ci using the FE or FD transfor-
mation, or assuming (10) and using GLS, a different ap-
proach is to explicitly model the correlation between ci and
xi . A general approach is to write

ci D  C xi� C ai ; (13)

E(ai ) D 0 and E(x0
i ai ) D 0 ; (14)

where � is a TK � 1, vector of parameters. Equations (13)
and (14) are definitional, and simply define the population
linear regression of ci on the entire set of covariates, xi .
This representation is due to [16], and is an example of
a correlated random effects (CRE) model. The uncorrelated
random effects model occurs when � D 0.

A special case of (13) was used in [46], assuming that
each xir has the same set of coefficients. Plus, [46] actually

used conditional expectations (which is unnecessary but
somewhat easier to work with):

ci D  C x̄i� C ai (15)

E(ai jxi) D 0 ; (16)

where recall that x̄i D T�1PT
tD1 xi t . This formulation

conserves on degrees of freedom, and extensions are useful
for nonlinear models.

Plugging (15) into the original equation gives

yi t D �t C xi tˇ C x̄i� C ai C ui t ; (17)

where is absorbed into the time intercepts. The compos-
ite error ai Cui t satisfies E(ai Cui t jxi) D 0, and so pooled
OLS or random effects applied to (17) produces consistent,p
N-asymptotically normal estimators of all parameters,

including �. In fact, if the original model satisfies the sec-
ond moments ideal for random effects, then so does (17).
Interesting, both pooled OLS and RE applied to (17) pro-
duce the fixed effects estimate of ˇ (and the �t). Therefore,
the FE estimator can be derived from a correlated random
effects model. (Somewhat surprisingly, the same algebraic
equivalence holds using Chamberlain’s more flexible de-
vice. Of course, the pooled OLS estimator is not generally
efficient, and [16] shows how to obtain the efficient mini-
mum distance estimator. See also Chap. 11 in [55]).

One advantage of Eq. (17) is that it provides another
interpretation of the FE estimate: it is obtained by holding
fixed the time averages when obtaining the partial effects
of each xitj. This results in a more convincing analysis than
not controlling for systematic differences in the levels of
the covariates across i.

Equation (17) has other advantages over just using the
time-demeaned data in pooled OLS: time-constant vari-
ables can be included in (17), and the resulting equation
gives a simple, robust way of testing whether the time-
varying covariates are uncorrelated with It is helpful to
write the original equation as

yi t D gt�Czi� Cwi tıC ci Cui t ; t D 1; : : : ; T ; (18)

where gt is typically a vector of time period dummies but
could instead include other variables that change only over
time, including linear or quadratic trends, zi is a vector
of time-constant variables, and wi t contains elements that
vary across i and t. It is clear that, in comparing FE to RE
estimation, � can play no role because it cannot be esti-
mated by FE. What is less clear, but also true, is that the
coefficients on the aggregate time variables, �, cannot be
included in any comparison, either. Only the M � 1 esti-
mates of ı, say ı̂FE and ı̂RE, can be compared. If �̂FE and
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�̂RE are included, the asymptotic variance matrix of the
difference in estimators has a nonsingularity in the asymp-
totic variance matrix. (In fact, RE and FE estimation only
with aggregate time variables are identical.) The Mundlak
equation is now

yi t D gt�Czi� Cwi tıCw̄i�Cai Cui t ; t D 1; : : : ; T;
(19)

where the intercept is absorbed into gt . A test of the key RE
assumption is H0 : � D 0 is obtained by estimating (19) by
RE, and this equationmakes it clear thereM restrictions to
test. This test was described in [5,46] proposed the robust
version. The original test based directly on comparing the
RE and FE estimators, as proposed in [25], it more difficult
to compute and not robust because it maintains that the
RE estimator is efficient under the null.

The model in (19) gives estimates of the coefficients
on the time-constant variables zi . Generally, these can be
given a causal interpretation only if

E(ci jwi ; zi ) D E(ci jwi) D  C w̄i� ; (20)

where the first equality is the important one. In other
words, zi is uncorrelated with ci once the time-varying co-
variates are controlled for. This assumption is too strong
in many applications, but one still might want to include
time-constant covariates.

Before leaving this subsection, it is worth point out that
generalized least squares methods with an unrestricted
variance-covariance matrix can be applied to every esti-
mating equation just presented. For example, after elimi-
nating ci by removing the time averages, the resulting vec-
tor of errors, üi , can have an unrestricted variance ma-
trix. (Of course, there is no guarantee that this matrix is
the same as the variance matrix conditional on the ma-
trix of time-demeaned regressors, Ẍi .) The only glitch in
practice is that Var(üi ) has rank T � 1, not T. As it turns
out, GLS with an unrestricted variance matrix for the orig-
inal error vector, ui , can be implemented on the time-de-
meaned equation with any of the T time periods dropped.
The so-called fixed effects GLS estimates are invariant to
whichever equation is dropped. See [41] or [37] for fur-
ther discussion. The initial estimator used to estimate the
variance covariance matrix would probably be the usual
FE estimator (applied to all time periods).

Feasible GLS can be applied directly the first differ-
enced equation, too. It can also be applied to (19), al-
lowing the composite errors ai C ui t , t D 1; : : : ; T , to
have an unrestricted variance-covariance matrix. In all
cases, the assumption that the conditional variance ma-
trix equals the unconditional variance can fail, and so one
should use fully robust inference even after using FGLS.

Chapter 10 in [55] provides further discussion. Such op-
tions are widely available in software, sometimes under the
rubric of generalized estimating equations (GEE). See, for
example, [43].

Models with Heterogeneous Slopes

The basic model described in the previous subsection in-
troduces a single source of heterogeneity in the additive
effect, ci. The form of the model implies that the partial ef-
fects of the covariates depend on a fixed set of population
values (and possibly other unobserved covariates if inter-
actions are included in xi t). It seems natural to extend the
model to allow interactions between the observed covari-
ates and time-constant, unobserved heterogeneity:

yi t D ci C xi tbi C ui t (21)

E(ui t jxi ; ci ; bi ) D 0 ; t D 1; : : : ; T ; (22)

where bi is K � 1. With small T, one cannot precisely esti-
mate bi . Instead, attention usually focuses on the average
partial effect (APE) or population averaged effect (PAE).
In (21), the vector of APEs is ˇ � E(bi ), the K � 1 vector
of means. In this formulation, aggregate time effects are in
xi t . This model is sometimes called a correlated random
slopes model – which means the slopes are allowed to be
correlated with the covariates.

Generally, allowing (ci ; bi ) and xi to be arbitrarily cor-
related requires T > KC1 – see [56].With a small number
of time periods and even a modest number of regressors,
this condition often fails in practice. Chapter 11 in [55]
discusses how to allow only a subset of coefficients to be
unit specific. Of interest here is the question: if the usual
FE estimator is applied – that is, ignoring the unit-specific
slopes bi – does this ever consistently estimate the APEs
in ˇ? In addition to the usual rank condition and the strict
exogeneity assumption (22), [56] shows that a simple suf-
ficient condition is

E(bi jẍi t) D E(bi) D ˇ ; t D 1; : : : ; T : (23)

Importantly, condition (23) allows the slopes, bi , to be cor-
related with the regressors xi t through permanent compo-
nents. It rules out correlation between idiosyncratic move-
ments in xi t and bi . For example, suppose the covariates
can be decomposed as xi t D fi C ri t; t D 1; : : : ; T .
Then (23) holds if E(bi jri1; ri2; : : : ; riT) D E(bi ). In other
words, bi is allowed to be arbitrarily correlated with the
permanent component, fi . Condition (23) is similar in
spirit to the key assumption in [46] for the intercept ci:
the correlation between the slopes bij and the entire his-
tory (xi1; : : : ; xiT) is through the time averages, and not
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through deviations from the time averages. If bi changes
across i, ignoring it by using the usual FE estimator effec-
tively puts ẍi t(bi � ˇ) in the error term, which induces
heteroskedasticity and serial correlation in the compos-
ite error even if the fui tg are homoskedastic and serially
independent. The possible presence of this term provides
another argument for making inference with FE fully ro-
bust to arbitrary conditional and unconditional second
moments.

The (partial) robustness of FE to the presence of cor-
related random slopes extends to a more general class of
estimators that includes the usual fixed effects estimator.
Write an extension of the basic model as

yi t D gtai C xi tbi C ui t ; t D 1; : : : ; T ; (24)

where gt is a set of deterministic functions of time. A lead-
ing case is gt D (1; t), so that each unit has its own time
trend along with a level effect. (The resulting model is
sometimes called a random trend model). Now, assume
that the random coefficients, ai , are swept away be regress-
ing yit and xi t each on gt for each i. The residuals, ÿ i t and
ẍi t , have had unit-specific trends removed, but the bi are
treated as constant in the estimation. The key condition
for consistently estimating ˇ can still be written as in (23),
but now ẍi t has hadmore features removed at unit-specific
level.When gt D (1; t), each covariate has been demeaned
within each unit. Therefore, if xi t D fi Chi tC ri t , then bi
can be arbitrarily correlated with (fi ;hi ). Of course, indi-
vidually detrending the xi t requires at least three time pe-
riods, and it decreases the variation in ẍi t compared with
the usual FE estimator. Not surprisingly, increasing the di-
mension of gt (subject to the restriction dim(gt) < T),
generally leads to less precision of the estimator. See [56]
for further discussion.

Sequentially Exogenous Regressors
and DynamicModels

The summary of models and estimators from Sect.
“Overview of Linear Panel Data Models”used the strict ex-
ogeneity assumption E(ui t jxi ; ci ) D 0 for all t, and added
an additional assumption for models with correlated ran-
dom slopes. As discussed in Sect. “Overview of Linear
Panel Data Models”, strict exogeneity is not an especially
natural assumption. The contemporaneous exogeneity as-
sumption E(ui t jxi t; ci ) D 0 is attractive, but the parame-
ters are not identified. In this section, a middle ground be-
tween these assumptions, which has been called a sequen-
tial exogeneity assumption, is used. But first, it is helpful to
understand properties of the FE and FD estimators when
strict exogeneity fails.

Behavior of Estimators Without Strict Exogeneity

Both the FE and FD estimators are inconsistent (with
fixed T, N ! 1) without the strict exogeneity assump-
tion stated in Eq. (4). But it is also pretty well known that,
at least under certain assumptions, the FE estimator can
be expected to have less “bias” for larger T. Under the
contemporaneous exogeneity assumption (2) and the as-
sumption that the data series f(xi t; ui t) : t D 1; : : : ; Tg
is“weakly dependent” – in time series parlance, “integrated
of order zero”, or I(0) – then it can be shown that

plim ˆ̌
FE D ˇ C O(T�1) (25)

plim ˆ̌
FD D ˇ C O(1) ; (26)

see Chap. 11 in [55]. In some very special cases, such as the
simple AR(1) model discussed below, the “bias” terms can
be calculated, but not generally.

Interestingly, the same results can be shown if
fxi t : t D 1; : : : ; Tg has unit roots as long as fui tg is I(0)
and contemporaneous exogeneity holds. However, there is
a catch: if fui tg is I(1) – so that the time series version of
the “model” would be a spurious regression (yit and xi t
are not “cointegrated”), then (25) is no longer true. On
the other hand, first differencing means any unit roots are
eliminated and so there is little possibility of a spurious
regression. The bottom line is that using “large T” approx-
imations such as those in (25) and (26) to choose between
FE over FD obligates one to take the time series properties
of the panel data seriously; one must recognize the pos-
sibility that the FE estimation is essentially a spurious re-
gression.

Consistent Estimation Under Sequential Exogeneity

Because both the FE and FD estimators are inconsistent
for fixed T, it makes sense to search for estimators that are
consistent for fixed T. A natural specification for dynamic
panel data models, and one that allows consistent estima-
tion under certain assumptions, is

E(yi t jxi1; : : : ; xi t ; ci ) D E(yi t jxi t; ci ) D �t Cxi tˇ C ci ;
(27)

which says that xi t contains enough lags so that further
lags of variables are not needed.When themodel is written
in error form, (27) is the same as

E(ui t jxi1; : : : ; xi t; ci ) D 0 ; t D 1; 2; : : : ; T : (28)

Under (28), the covariates fxi t : t D 1; : : : ; Tg are said to
be sequentially exogenous conditional on ci . Some estima-
tion methods are motivated by a weaker version of (28),
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namely,

E(x0
i sui t) D 0 ; s D 1; : : : ; t ; t D 1; : : : ; T ; (29)

but (28) is natural in most applications.
Assumption (28) is appealing in that it allows for finite

distributed lag models as well as models with lagged de-
pendent variables. For example, the finite distributed lag
model

yi t D �tCzi tı0Czi;t�1ı1C� � �Czi;t�LıLCci Cui t (30)

allows the elements of zi t to have effects up to L time pe-
riods after a change. With xi t D (zi t ; zi;t�1; : : : ; zi;t�L),
Assumption (28) implies

E(yi t jzi t; zi;t�1; zi;t�2; : : : ; ci )
D E(yi t jzi t; zi;t�1; zi;t�2; ci )
D �t C zi tı0 C zi;t�1ı1 C � � � C zi;t�LıL C ci ;

(31)

which means that the distributed lag dynamics are cap-
tured by L lags. The important difference with the strict
exogeneity assumption is that sequential exogeneity allows
feedback from uit to zir for r > t.

How can (28) be used for estimation? The FD transfor-
mation is natural because of the sequential nature of the
restrictions. In particular, write the FD equation as

�yi t D �xi tˇ C�ui t ; t D 2; : : : ; T : (32)

Then, under (29),

E(x0
i s�ui t) D 0 ; s D 1; : : : ; t � 1 ;

t D 2; : : : ; T ; (33)

which means any xi s with s < t can be used as an instru-
ment for the time t FD equation. An efficient estimator
that uses (33) is obtained by stacking the FD equations as

�yi D �Xiˇ C�ui ; (34)

where �yi D (�yi2; �yi3; : : : ;�yiT )0 is the (T � 1) � 1
vector of first differences and �Xi is the (T � 1) � K ma-
trix of differences on the regressors. (Time period dum-
mies are absorbed into xi t for notational simplicity.) To
apply a system estimation method to (34), define

xoi t � (xi1; xi2; : : : ; xi t) ; (35)

which means the valid instruments at time t are in xoi;t�1
(minus redundancies, of course). The matrix of instru-
ments to apply to (34) is

Wi D diag(xoi1; x
o
i2; : : : ; x

o
i;T�1) ; (36)

which has T � 1 rows and a large number of columns. Be-
cause of sequential exogeneity, the number of valid instru-
ments increases with t.

GivenWi , it is routine to apply generalized method of
moments estimation, as summarized in [27,55]. A simpler
strategy is available that can be used for comparison or as
the first-stage estimator in computing the optimal weight-
ing matrix. First, estimate a reduced form for �xi t sepa-
rately for each t. In other words, at time t, run the regres-
sion �xi t on xoi;t�1, i D 1; : : : ;N , and obtain the fitted
values, c�xi t . Of course, the fitted values are all 1 � K vec-
tors for each t, even though the number of available in-
struments grows with t. Then, estimate the FD Eq. (32) by
pooled IV using c�xi t as instruments (not regressors). It is
simple to obtain robust standard errors and test statistics
from such a procedure because the first stage estimation to
obtain the instruments can be ignored (asymptotically, of
course).

One potential problem with estimating the FD equa-
tion using IVs that are simply lags of xi t is that changes in
variables over time are often difficult to predict. In other
words, �xi t might have little correlation with xoi;t�1. This
is an example of the so-called “weak instruments” prob-
lem, which can cause the statistical properties of the IV
estimators to be poor and the usual asymptotic inference
misleading. Identification is lost entirely if xi t D �t C
xi;t�1 C qi t , where E(qi t jxi;t�1; : : : ; xi1) D 0 – that is, the
elements of xi t are random walks with drift. Then, then
E(�xi t jxi;t�1; : : : ; xi1) D 0, and the rank condition for
IV estimation fails. Of course, if some elements of xi t are
strictly exogenous, then their changes act as their own in-
struments. Nevertheless, typically at least one element of
xi t is suspected of failing strict exogeneity, otherwise stan-
dard FE or FD would be used.

In situations where simple estimators that impose few
assumptions are too imprecise to be useful, sometimes one
is willing to improve estimation of ˇ by adding more as-
sumptions. How can this be done in the panel data case
under sequential exogeneity? There are two common ap-
proaches. First, the sequential exogeneity condition can be
strengthened to the assumption that the conditional mean
model is dynamically complete, which can be written in
terms of the errors as

E(ui t jxi t; yi;t�1xi;t�1; : : : ; yi1; xi1; ci ) D 0 ;
t D 1; : : : ; T : (37)

Clearly, (37) implies (28). Dynamic completeness is nei-
ther stronger nor weaker than strict exogeneity, because
the latter includes the entire history of the covariates
while (37) conditions only on current and past xi t . Dy-
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namic completeness is natural when xi t contains lagged
dependent variables, because it basically means enough
lags have been included to capture all of the dynamics. It
is often too restrictive in finite distributed lag models such
as (30), where (37) would imply

E(yi t jzi t; yi;t�1zi;t�1; : : : ; yi1; zi1; ci )
D E(yi t jzi t; zi;t�1; : : : ; zi�L ; ci ) ; t D 1; : : : ; T ;

(38)

which puts strong restrictions on the fully dynamic condi-
tional mean: values yir , r � t � 1, do not help to predict
yit once (zi t ; zi;t�1; : : : ) are controlled for. FDLs are of in-
terest even if (38) does not hold. Imposing (37) in FDLs
implies that the idiosyncratic errors must be serially un-
correlated, something that is often violated in FDLs.

Dynamic completeness is natural in a model such as

yi t D �yi;t�1 C zi tı0 C zi;t�1ı1 C ci C ui t : (39)

Usually – although there are exceptions – (39) is supposed
to represent the conditional mean E(yi t jzi t; yi;t�1zi;t�1;

: : : ; yi1; zi1; ci ), and then the issue is whether one lag of
yit and zi t suffice to capture the dynamics.

Regardless of what is contained in xi t , assumption (37)
implies some additional moment conditions that can be
used to estimate ˇ. The extra moment conditions, first
proposed in [1] in the context of the AR(1) unobserved
effects model, can be written as

E[(�yi;t�1 ��xi;t�1ˇ)0(yi t � xi tˇ)] D 0 ;
t D 3; : : : ; T ; (40)

see also [9]. The conditions can be used in conjunction
with those in Eq. (33) in a method of moments estima-
tion method. In addition to imposing dynamic complete-
ness, the moment conditions in (40) are nonlinear in pa-
rameters, which makes them more difficult to implement
than just using (33). Nevertheless, the simulation evidence
in [1] for the AR(1) model shows that (40) can help con-
siderably when the coefficient � is large.

[7] suggested a different set of restrictions,

Cov(�x0
i t ; ci ) D 0 ; t D 2; : : : ; T : (41)

Interestingly, this assumption is very similar in spirit to as-
sumption (23), except that it is in terms of the first differ-
ence of the covariates, not the time-demeaned covariates.
Condition (41) generates moment conditions in the levels
of equation,

E
�
�x0

i t(yi t � ˛ � xi tˇ)
� D 0 ; t D 2; : : : ; T ; (42)

where ˛ allows for a nonzero mean for ci. [10] applies
these moment conditions, along with the usual conditions
in (33), to estimate firm-level production functions. Be-
cause of persistence in the data, they find the moments
in (33) are not especially informative for estimating the pa-
rameters, whereas (42) along with (33) are. Of course, (42)
is an extra set of assumptions.

The previous discussion can be applied to the AR(1)
model, which has received much attention. In its simplest
form the model is

yi t D �yi;t�1 C ci C ui t ; t D 1; : : : ; T ; (43)

so that, by convention, the first observation on y is at t D
0. The minimal assumptions imposed are

E(yisui t) D 0 ; s D 0; : : : ; t�1 ; t D 1; : : : ; T ; (44)

in which case the available instruments at time t are wi t D
(yi0; : : : ; yi;t�2) in the FD equation

�yi t D ��yi;t�1 C�ui t ; t D 2; : : : ; T : (45)

Written in terms of the parameters and observed data, the
moment conditions are

E[yis (�yi t � ��yi;t�1) D 0 ;
s D 0; : : : ; t � 2 ; t D 2; : : : ; T : (46)

[4] proposed pooled IV estimation of the FD equation with
the single instrument yi;t�2 (in which case all T�1 periods
can be used) or�yi;t�2 (in which case only T � 2 periods
can be used). A better approach is pooled IV where T � 1
separate reduced forms are estimated for �yi;t�1 as a lin-
ear function of (yi0; : : : ; yi;t�2). The fitted values c�yi;t�1,
can be used as the instruments in (45) in a pooled IV es-
timation. Of course, standard errors and inference should
be made robust to the MA(1) serial correlation in �ui t .
[6] suggested full GMM estimation using all of the avail-
able instruments (yi0; : : : ; yi;t�2), and this estimator uses
the conditions in (44) efficiently.

Under the dynamic completeness assumption

E(ui t jyi;t�1; yi;t�2; : : : ; yi0; ci ) D 0 ; (47)

the extra moment conditions in [1] become

E[(�yi;t�1 � ��yi;t�2)(yi t � �yi;t�1)] D 0 ;
t D 3; : : : ; T : (48)

[10] noted that if the condition

Cov(�yi1; ci ) D Cov(yi1 � yi0; ci ) D 0 (49)
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is added to (47) then the combined set of moment condi-
tions becomes

E[�yi;t�1(yi t �˛��yi;t�1)] D 0 ; t D 2; : : : ; T ; (50)

which can be added to the usual moment conditions (46).
Conditions (46) and (50) combined are attractive because
they are linear in the parameters, and they can produce
much more precise estimates than just using (46).

As discussed in [10], condition (49) can be interpreted
as a restriction on the initial condition, yi0, and the steady
state. When j�j < 1, the steady state of the process is
ci /(1 � �). Then, it can be shown that (49) holds if the
deviation of yi0 from its steady state is uncorrelated with
ci. Statistically, this condition becomes more useful as �
approaches one, but this is when the existence of a steady
state is most in doubt. [22] shows theoretically that such
restrictions can greatly increase the information about �.

Other approaches to dynamic models are based on
maximum likelihood estimation. Approaches that condi-
tion on the initial condition yi0, suggested by [10,13,15],
seem especially attractive. Under normality assumptions,
maximum likelihood conditional on yi0 is tractable.

If some strictly exogenous variables are added to the
AR(1) model, then it is easiest to use IV methods on the
FD equation, namely,

�yi t D ��yi;t�1 C�zi t� C�ui t ;
t D 1; : : : ; T : (51)

The available instruments (in addition to time period
dummies) are (zi ; yi;t�2; : : : ; yi0), and the extra condi-
tions (42) can be used, too. If sequentially exogenous vari-
ables, say hi t , are added, then (hi;t�1; : : : ;hi1) would be
added to the list of instruments (and �hi t would appear
in the equation).

Unbalanced Panel Data Sets

The previous sections considered estimation of models us-
ing balanced panel data sets, where each unit is observed
in each time period. Often, especially with data at the indi-
vidual, family, or firm level, data are missing in some time
periods – that is, the panel data set is unbalanced. Stan-
dard methods, such as fixed effects, can often be applied
to produce consistent estimators, and most software pack-
ages that have built-in panel data routines typically allow
unbalanced panels. However, determining whether apply-
ing standard methods to the unbalanced panel produces
consistent estimators requires knowing something about
the mechanism generating the missing data.

Methods based on removing the unobserved effect
warrant special attention, as they allow some nonrandom-
ness in the sample selection. Let t D 1; : : : ; T denote the
time periods for which data can exist for each unit from
the population, and again consider the model

yi t D �t C xi tˇ C ci C ui t ; t D 1; : : : ; T : (52)

It is helpful to have, for each i and t, a binary selection
variable, sit, equal to one of the data for unit i in time t
can be used, and zero otherwise. For concreteness, con-
sider the case where time averages are removed to elimi-
nate ci, but where the averages necessarily only include the
si t D 1 observations. Let ÿ i t D yi t � T�1

i
PT

rD1 sir yir
and ẍi t D xi t � T�1

i
PT

rD1 sirxir be the time-demeaned
quantities using the observed time periods for unit i, where
Ti D PT

tD1 si t is the number of time periods observed for
unit i – properly viewed as a random variable. The fixed ef-
fects estimator on the unbalanced panel can be expressed
as
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i tui t

!

:

(53)

With fixed T and N ! 1 asymptotics, the key condition
for consistency is

TX

tD1

E(si t ẍ0
i tui t) D 0 : (54)

In evaluating (54), it is important to remember that ẍi t
depends on (xi1; : : : ; xiT ; si1; : : : ; siT), and in a nonlinear
way. Therefore, it is not sufficient to assume (xir ; sir) are
uncorrelated with uit for all r and t. A condition that is
sufficient for (54) is

E(ui t jxi1; : : : ; xiT ; si1; : : : ; siT ; ci ) D 0 ;
t D 1; : : : ; T : (55)

Importantly, (55) allows arbitrary correlation between the
heterogeneity, ci, and selection, sit, in any time period t. In
other words, some units are allowed to be more likely to
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be in or out of the sample in any time period, and these
probabilities can change across t. But (55) rules out some
important kinds of sample selection. For example, selec-
tion at time t, sit, cannot be correlated with the idiosyn-
cratic error at time t, uit . Further, feedback is not allowed:
in affect, like the covariates, selection must be strictly ex-
ogenous conditional on ci.

Testing for no feedback into selection is easy in the
context of FE estimation. Under (55), si;tC1 and uit should
be uncorrelated. Therefore, si;tC1 can be added to the FE
estimation on the unbalanced panel – where the last time
period is lost for all observations – and a t test can be
used to determine significance. A rejection means (55) is
false. Because serial correlation and heteroskedasticity are
always a possibility, the t test should be made fully robust.

Contemporaneous selection bias – that is, correlation
between sit and uit –is more difficult to test. Chapter 17
in [55] summarizes how to derive tests and corrections
by extending the corrections in [28] (so-called “Heckman
corrections”) to panel data.

First differencing can be used on unbalanced panels,
too, although straight first differencing can result in many
lost observations: a time period is used only if it is observed
along with the previous or next time period. FD is more
useful in the case of attrition in panel data, where a unit is
observed until it drops out of the sample and never reap-
pears. Then, if a data point is observed at time t, it is also
observed at time t � 1. Differencing can be combined with
the approach in [28] to solve bias due to attrition – at least
under certain assumptions. See Chap. 17 in [55].

Random effects methods can also be applied with un-
balanced panels, but the assumptions under which the RE
estimator is consistent are stronger than for FE. In addi-
tion to (55), one must assume selection is unrelated to ci.
A natural assumption, that also imposes exogeneity on the
covariates with respect to ci, is

E(ci jxi1; : : : ; xiT ; si1; : : : ; siT ) D E(ci ) : (56)

The only case beside randomly determined sample selec-
tion where (56) holds is when sit is essentially a function
of the observed covariates. Even in this case, (56) requires
that the unobserved heterogeneity is mean independent of
the observed covariates – as in the typical RE analysis on
balanced panel.

NonlinearModels

Nonlinear panel data models are considerably more diffi-
cult to interpret and estimate than linear models. Key is-
sues concern how the unobserved heterogeneity appears

in the model and how one accounts for that heterogene-
ity in summarizing the effects of the explanatory variables
on the response. Also, in some cases, conditional indepen-
dence of the response is used to identify certain parameters
and quantities.

Basic Issues and Quantities of Interest

As in the linear case, the setup here is best suited for situ-
ations with small T and large N. In particular, the asymp-
totic analysis underlying the discussion of estimation is
with fixed T and N ! 1. Sampling is assumed to be ran-
dom from the population. Unbalanced panels are gener-
ally difficult to deal with because, except in special cases,
the unobserved heterogeneity cannot be completely elim-
inated in obtaining estimating equations. Consequently,
methods that model the conditional distribution of the
heterogeneity conditional on the entire history of the co-
variates – as we saw with the Chamberlain–Mundlak ap-
proach – are relied on heavily, and such approaches are
difficult when data are missing on the covariates for some
time periods. Therefore, this section considers only bal-
anced panels. The discussion here takes the response vari-
able, yit , as a scalar for simplicity.

The starting point for nonlinear panel data models
with unobserved heterogeneity is the conditional distribu-
tion

D(yi tjxi t; ci ) ; (57)

where ci is the unobserved heterogeneity for observation
i drawn along with the observables. Often there is a par-
ticular feature of this distribution, such as E(yi t jxi t; ci ), or
a conditional median, that is of primary interest. Even fo-
cusing on the conditional mean raises some tricky issues
in models where ci does not appear in an additive or lin-
ear form. To be precise, let E(yi t jxi t D xt ; ci D c) D
mt(xt ; c) be the mean function. If xtj is continuous, then
the partial effect can be defined as

� j(xt ; c) � @mt(xt ; c)
@xt j

: (58)

For discrete (or continuous) variables, (58) can be replaced
with discrete changes. Either way, a key question is: How
can one account for the unobserved c in (58)? In order to
estimate magnitudes of effects, sensible values of c need to
be plugged into (58), which means knowledge of at least
some distributional features of ci is needed. For example,
suppose �c D E(ci ) is identified. Then the partial effect at
the average (PEA),

� j(xt ;�c) ; (59)



Econometrics: Panel Data Methods 227

can be identified if the regression function mt is identi-
fied. Given more information about the distribution of ci ,
different quantiles can be inserted into (59), or a certain
number of standard deviations from the mean.

An alternative to plugging in specific values for c is to
average the partial effects across the distribution of ci :

APE(xt) D Eci [� j(xt ; ci )] ; (60)

the so-called average partial effect (APE). The difference
between (59) and (60) can be nontrivial for nonlinear
mean functions. The definition in (60) dates back at least
to [17], and is closely related to the notion of the average
structural function (ASF), as introduced in [12]. The ASF
is defined as

ASF(xt) D Eci [mt(xt ; ci )] : (61)

Assuming the derivative passes through the expectation
results in (60); computing a discrete change in the ASF
always gives the corresponding APE. A useful feature of
APEs is that they can be compared across models, where
the functional form of the mean or the distribution of the
heterogeneity can be different. In particular, APEs in gen-
eral nonlinear models are comparable to the estimated co-
efficients in a standard linear model.

Average partial effects are not always identified, even
when parameters are. Semi-parametric panel data meth-
ods that are silent about the distribution of ci , uncondi-
tionally or conditional on (xi1; : : : ; xiT ), cannot generally
deliver estimates of APEs, essentially by design. Instead,
an index structure is usually imposed so that parameters
can be consistently estimated.A common setupwith scalar
heterogeneity is

mt(xt ; c) D G(xtˇ C c) ; (62)

where, say,G(�) is strictly increasing and continuously dif-
ferentiable. The partial effects are proportional to the pa-
rameters:

� j(xt ; c) D ˇ j g(xtˇ C c) ; (63)

where g(�) is the derivative of G(�). Therefore, if ˇj is iden-
tified, then so is the sign of the partial effect, and even the
relative effects of any two continuous variables: the ratio
of partial effects for xtj and xth is ˇ j/ˇh . However, even if
G(�) is specified (the common case), the magnitude of the
effect evidently cannot be estimated without making as-
sumptions about the distribution of ci; otherwise, the term
E[g(xtˇ C ci )] cannot generally be estimated. The probit
example below shows how the APEs can be estimated in
index models under distributional assumptions for ci.

The previous discussion holds regardless of the exo-
geneity assumptions on the covariates. For example, the
definition of the APE for a continuous variable holds
whether xt contains lagged dependent variables or only
contemporaneous variables. However, approaches for es-
timating the parameters and the APEs depend critically on
exogeneity assumptions.

Exogeneity Assumptions on the Covariates

As in the case of linear models, it is not nearly enough
to simply specify a model for the conditional distribution
of interest, D(yi t jxi t; ci ), or some feature of it, in order
to estimate parameters and partial effects. This section of-
fers two exogeneity assumptions on the covariates that are
more restrictive versions of the linear model assumptions.

It is easiest to deal with estimation under a strict ex-
ogeneity assumption. The most useful definition of strict
exogeneity for nonlinear panel data models is

D(yi tjxi1; : : : ; xiT ; ci ) D D(yi tjxi t; ci ) ; (64)

which means that xir , r ¤ t, does not appear in the condi-
tional distribution of yit once xi t and ci have been counted
for. [17] labeled (64) strict exogeneity conditional on the
unobserved effects ci . Sometimes, a conditional mean ver-
sion is sufficient:

E(yi t jxi1; : : : ; xiT ; ci ) D E(yi t jxi t; ci ) ; (65)

which already played a role in linear models. Assump-
tion (64), or its conditional mean version, are less restric-
tive than if ci is not in the conditioning set, as discussed
in [17]. Indeed, it is easy to see that, if (64) holds and
D(ci jxi) depends on xi , then strict exogeneity without
conditioning on ci , D(yi t jxi1; : : : ; xiT ) D D(yi tjxi t), can-
not hold. Unfortunately, both (64) and (65) rule out lagged
dependent variables, as well as other situations where there
may be feedback from idiosyncratic changes in yit to future
movements in xir , r > t. Nevertheless, the conditional
strict exogeneity assumption underlies the most common
estimation methods for nonlinear models.

More natural is sequential exogeneity conditional on
the unobserved effects, which, in terms of conditional dis-
tributions, is

D(yi tjxi1; : : : ; xi t ; ci ) D D(yi tjxi t; ci ) : (66)

Assumption (66) allows for lagged dependent variables
and does not restrict feedback. Unfortunately, (66) is sub-
stantially more difficult to work with than (64) for general
nonlinear models.
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Because xi t is conditioned on, neither (64) nor (66)
allows for contemporaneous endogeneity of xi t as would
arise with measurement error, time-varying omitted vari-
ables, or simultaneous equations. This chapter does not
treat such cases. See [38] for a recent summary.

Conditional Independence Assumption

The exogeneity conditions stated in Subsect. “Exogeneity
Assumptions on the Covariates” generally do not restrict
the dependence in the responses, fyi t : t D 1; : : : ; Tg. Of-
ten, a conditional independence assumption is explicitly
imposed, which can be written generally as

D(yi1; : : : ; yiT jxi ; ci ) D
TY

tD1

D(yi t jxi ; ci ) : (67)

Equation (67) simply means that, conditional on the en-
tire history fxi t : t D 1; : : : ; Tg and the unobserved het-
erogeneity ci , the responses are independent across time.
One way to think about (67) is that time-varying unob-
servables are independent over time. Because (67) condi-
tions on xi , it is useful only in the context of the strict exo-
geneity assumption (64). Then, conditional independence
can be written as

D(yi1; : : : ; yiT jxi ; ci ) D
TY

tD1

D(yi t jxi t; ci ) : (68)

Therefore, under strict exogeneity and conditional inde-
pendence, the panel data modeling exercise reduces to
specifying a model for D(yi tjxi t; ci ), and then determin-
ing how to treat the unobserved heterogeneity, ci . In ran-
dom effects and correlated RE frameworks, conditional in-
dependence can play a critical role in being able to esti-
mate the parameters and the distribution of ci . As it turns
out, conditional independence plays no role in estimating
APEs for a broad class of models. Before explaining how
that works, the key issue of dependence between the het-
erogeneity and covariates needs to be addressed.

Assumptions About the Unobserved Heterogeneity

For general nonlinear models, the random effects assump-
tion is independence between ci and xi D (xi1; : : : ; xiT ):

D(ci jxi1; : : : ; xiT ) D D(ci ) : (69)

Assumption (69) is very strong. To illustrate how strong
it is, suppose that (69) is combined with a model for the
conditional mean, E(yi t jxi t D xt ; ci D c) D mt(xt ; c).
Without any additional assumptions, the average partial

effects are nonparametrically identified. In particular, the
APEs can be obtained directly from the conditional mean

rt(xt) � E(yi t jxi t D xt) : (70)

(The argument is a simple application of the law of iterated
expectations; it is discussed in [56]). Nevertheless, (69) is
still common inmany applications, especially when the ex-
planatory variables of interest do not change over time.

As in the linear case, a correlated random effects (CRE)
framework allows dependence between ci and xi , but the
dependence in restricted in some way. In a parametric set-
ting, a CRE approach involves specifying a distribution
for D(ci jxi1; : : : ; xiT ), as in [15,17,46], and many subse-
quent authors; see, for example, [55] and [14]. For many
models – see, for example, Subsect. “Binary Response
Models” – one can allow D(ci jxi1; : : : ; xiT) to depend on
(xi1; : : : ; xiT) in a “nonexchangeable” manner, that is, the
distribution need not be symmetric on its conditioning ar-
guments. However, allowing nonexchangeability usually
comes at the expense of potentially restrictive distribu-
tional assumptions, such as homoskedastic normal with
a linear conditional mean. For estimating APEs, it is suffi-
cient to assume, along with strict exogeneity,

D(ci jxi) D D(ci jx̄i) ; (71)

without specifying D(ci jx̄i) or restricting any feature of
this distribution. (See, for example, [3,56].) As a practical
matter, it makes sense to adopt (71) – or perhaps allow
other features of fxi t : t D 1; : : : ; Tg – in a flexible para-
metric analysis.

Condition (71) still imposes restrictions on D(ci jxi).
Ideally, as in the linear model, one could estimate at least
some features of interest without making any assumption
about D(ci jxi). Unfortunately, the scope for allowing un-
restricted D(ci jxi) is limited to special nonlinear models,
at least with smallT. Allowing D(ci jxi ) to be unspecified is
the hallmark of a “fixed effects” analysis, but the label has
not been used consistently. Often, fixed effects has been
used to describe a situation where the ci are treated as pa-
rameters to be estimated, along with parameters that do
not vary across i. Except in special cases or with large T,
estimating the unobserved heterogeneity is prone to an
incidental parameters problem. Namely, using a fixed T,
N ! 1 framework, one cannot get consistent estimators
of the ci , and the inconsistency in, say, ĉi , generally trans-
mits itself to the parameters that do not vary with i. The
incidental parameters problem does not arise in estimat-
ing the coefficients ˇ in a linear model because the estima-
tor obtained by treating the ci as parameters to estimate
is equivalent to pooled OLS on the time-demeaned data –
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that is, the fixed effects estimator can be obtained by elimi-
nating the ci using the within transformation or estimating
the ci along with ˇ. This occurrence is rare in nonlinear
models. Section “Future Directions” further discusses this
issue, as there is much ongoing research that attempts to
reduce the asymptotic bias in nonlinear models.

The “fixed effects” label has also been applied to set-
tings where the ci are not treated as parameters to esti-
mate; rather, the ci can be eliminated by conditioning on
a sufficient statistic. Let wi be a function of the observed
data, (xi ; yi), such that

D(yi1; : : : ; yi t jxi ; ci ;wi ) D D(yi1; : : : ; yi t jxi ;wi) : (72)

Then, provided the latter conditional distribution de-
pends on the parameters of interest, and can be de-
rived or approximated from the original specification of
D(yi1; : : : ; yi t jxi ; ci ), maximum likelihood methods can
be used. Such an approach is also called conditional max-
imum likelihood estimation (CMLE), where “conditional”
refers to conditioning on a function of yi . (In traditional
treatments of MLE, conditioning on so-called “exoge-
nous” variables is usually implicit.) In most cases where
the CMLE approach applies, the conditional indepen-
dence assumption (67) is maintained, although one con-
ditional MLE is known to have robustness properties: the
so-called “fixed effects” Poisson estimator (see [53]).

Maximum Likelihood Estimation and Partial MLE

There are two common approaches to estimating the pa-
rameters in nonlinear, unobserved effects panel data mod-
els when the explanatory variables are strictly exogenous.
(A third approach, generalized method of moments, is
available in special cases but is not treated here. See, for
example, Chap. 19 in [55].) The first approach is full
maximum likelihood (conditional on the entire history
of covariates). Most commonly, full MLE is applied un-
der the conditional independence assumption, although
sometimes models are used that explicitly allow depen-
dence in D(yi1; : : : ; yiT jxi ; ci ). Assuming strict exogene-
ity, conditional independence, a model for the density of
yit given (xi t ; ci ) (say, ft(yt jxt; c; �)), and a model for the
density of ci given xi (say, h(cjx; ı)), the log likelihood for
random draw i from the cross section is

log

("Z TY

tD1

ft(yi t jxi t; c; �)
#

h(cjxi ; ı)dc
)

: (73)

This log-likelihood function “integrates out” the un-
observed heterogeneity to obtain the joint density of
(yi1; : : : ; yiT) conditional on xi . In the most commonly

applied models, including logit, probit, Tobit, and various
count models (such as the Poisson model), the log like-
lihood in (73) identifies all of the parameters. Computa-
tion can be expensive but is typically tractable. The main
methodological drawback to the full MLE approach is that
it is not robust to violations of the conditional indepen-
dence assumption, except for the linear model where nor-
mal conditional distributions are used for yit and ci.

The partial MLE ignores temporal dependence in the
responses when estimating the parameters – at least when
the parameters are identified. In particular, obtain the den-
sity of yit given xi by integrating the marginal density for
yit against the density for the heterogeneity:

gt(yt jx; �; ı) D
Z

ft(yt jxt; c; �)h(cjx; ı)dc : (74)

The partialMLE (PMLE) (or pooledMLE) uses, for each i,
the partial log likelihood

TX

tD1

log[gt(yi t jxi ; �; ı) : (75)

Because the partial MLE ignores the serial dependence
caused by the presence of ci , it is essentially never effi-
cient. But in leading cases, such as probit, Tobit, and Pois-
son models, gt(yt jx; �; ı) has a simple form when h(cjx; ı)
is chosen judiciously. Further, the PMLE is fully robust
to violations of (67). Inference is complicated by the ne-
glected serial dependence, but an appropriate adjustment
to the asymptotic variance is easily obtained; see Chap. 13
in [55].

One complication with PMLE is that in the cases where
it leads to a simple analysis (probit, ordered probit, and
Tobit, to name a few), not all of the parameters in � and
ı are separately identified. The conditional independence
assumption and the use of full MLE serves to identify all
parameters. Fortunately, the PMLE does identify the pa-
rameters that index the average partial effects, a claim that
will be verified for the probit model in Subsect. “Binary
Response Models”.

Dynamic Models

General models with only sequentially exogenous vari-
ables are difficult to estimate. [8] considered binary re-
sponse models and [54] suggested a general strategy that
requires modeling the dynamic distribution of the vari-
ables that are not strictly exogenous.

Much more is known about the specific case where
the model contains lagged dependent variables along with
strictly exogenous variables. The starting point is a model
for the dynamic distribution,
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D(yi tjzi t; yi;t�1; zi;t�1 : : : ; yi1; zi1; yi0; ci ) ;
t D 1; : : : ; T ; (76)

where zi t are variables strictly exogenous (conditional on
ci ) in the sense that

D(yi tjzi ; yi;t�1; zi;t�1 : : : ; yi1; zi1; yi0; ci )
D D(yi tjzi t; yi;t�1; zi;t�1 : : : ; yi1; zi1; yi0; ci ) ; (77)

where zi is the entire history fzi t : t D 1; : : : ; Tg.
In the leading case, (76) depends only on (zi t; yi;t�1;

ci ) (although putting lags of strictly exogenous variables
only slightly changes the notation). Let ft(yt jzt; yt�1; c; �)
denote amodel for the conditional density, which depends
on parameters � . The joint density of (yi1; : : : ; yiT ) given
(yi0; zi ; ci ) is

TY

tD1

ft(yt jzt; yt�1; c; �) : (78)

The problem with using (78) for estimation is that, when it
is turned into a log likelihood by plugging in the “data”, ci
must be inserted. Plus, the log likelihood depends on the
initial condition, yi0. Several approaches have been sug-
gested to address these problems: (i) Treat the ci as pa-
rameters to estimate (which results in an incidental pa-
rameters problem). (ii) Try to estimate the parameters
without specifying conditional or unconditional distribu-
tions for ci. (This approach is available for very limited
situations, and other restrictions are needed. And, gener-
ally, one cannot estimate average partial effects.) (iii) Find,
or, more practically, approximate D(yi0jci ; zi ) and then
model D(ci jzi ). Integrating out ci gives the density for
D(yi0; yi1; : : : ; yiT jzi), which can be used in anMLE anal-
ysis (conditional on zi), (iv) Model D(ci jyi0; zi ). Then,
integrate out ci conditional on (yi0; zi ) to obtain the
density for D(yi1; : : : ; yiT jyi0; zi). Now, MLE is condi-
tional on (yi0; zi ). As shown by [57], in some leading
cases – probit, ordered probit, Tobit, Poisson regression –
there is a density h(cjy0; z) that mixes with the density
f (y1; : : : ; yT jy0; z; c) to produce a log-likelihood that is in
a common family and programmed in standard software
packages.

If mt(xt ; c; �) is the mean function E(yt jxt; c), with
xt D (zt ; yt�1), then APEs are easy to obtain. The aver-
age structural function is

ASF(xt) D Eci [mt(xt ; ci ; �)]

D E
��Z

mt(xt ; c; �)h(cjyi0; zi ;�)dc
	

jyi0; zi



:

(79)

The term inside the brackets, say rt(xt ; yi0; zi ; �;�) is
available, at least in principle, because mt() and h() have
been specified. Often, they have simple forms, or they can
be simulated. A consistent estimator of the ASF is obtained
by averaging out (yi0; zi ):

bASF(xt) D N�1
TX

tD1

rt(xt ; yi0; zi ; �̂ ; �̂) : (80)

Partial derivatives and differences with respect to elements
of xt (which, remember, includes functions of yt�1) can be
computed. With large N and small T, the panel data boot-
strap – where resampling is carried out in the cross sec-
tion so that every time period is kept when a unit i is re-
sampled – can be used for standard errors and inference.
The properties of the nonparametric bootstrap are stan-
dard in this setting because the resampling is carried out
in the cross section.

Binary Response Models

Unobserved effects models – static and dynamic – have
been estimated for various kinds of response variables, in-
cluding binary responses, ordered responses, count data,
and corner solutions.Most of the issues outlined above can
be illustrated by binary responsemodels, which is the topic
of this subsection.

The standard specification for the unobserved effects
(UE) probit model is

P(yi t D 1jxi t; ci ) D ˚(xi tˇC ci ) ; t D 1; : : : ; T ; (81)

where xi t does not contain an overall intercept but would
usually include time dummies, and ci is the scalar hetero-
geneity. Without further assumptions, neither ˇ nor the
APEs are identified. The traditional RE probit model im-
poses a strong set of assumptions: strict exogeneity, con-
ditional independence, and independence between ci and
xi with ci 
 Normal(�c ; �

2
c ). Under these assumptions,

ˇ and the parameters in the distribution of ci are iden-
tified and are consistently estimated by full MLE (condi-
tional on xi).

Under the strict exogeneity assumption (64), a corre-
lated random effects version of the model is obtained from
the Chamberlain–Mundlak device under conditional nor-
mality:

ci D  C x̄i� C ai ; ai jxi 
 Normal(0; �2a ) : (82)

The less restrictive version ci D  C xi� C ai D  C
xi1�1 C� � �CxiT�T C ai can be used, but the time average
conserves on degrees of freedom.
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As an example, suppose that yit is a binary variable in-
dicating whether firm i in year t was awarded at least one
patent, and the key explanatory variable in xi t is current
and past spending on research and development (R&D).
It makes sense that R&D spending is correlated, at least
on average, with unobserved firm heterogeneity, and so
a correlated random effects model seems natural. Unfor-
tunately, the strict exogeneity assumption might be prob-
lematical: it could be that being awarded a patent in year t
might affect future values of spending on R&D.Most stud-
ies assume this is not the case, but one should be aware
that, as in the linear case, the strict exogeneity assumption
imposes restrictions on economic behavior.

When the conditional independence assumption (67)
is added to (81), strict exogeneity, and (82), all parame-
ters in (81) and (82) are identified (assuming that all ele-
ments of xi t are time-varying) and the parameters can be
efficiently estimated by maximum likelihood (conditional
on xi ). Afterwards, the mean of ci can be consistently esti-
mated as �̂c D  ̂ C 


N�1PN
iD1 x̄i

�
�̂ and the variance

as �̂2c D �̂
0

N�1PN

iD1 x̄
0
i x̄i
�
�̂ C �̂2a . Because ai is nor-

mally distributed, ci is not normally distributed unless x̄i�
is. A normal approximation for D(ci ) gets better as T gets
large. In any case, the estimated mean and standard de-
viation can be used to plug in values of c that are a cer-
tain number of estimated standard deviations from �̂c , say
�̂c ˙ �̂c or �̂c ˙ 2�̂c .

The APEs are identified from the ASF, which is consis-
tently estimated by

bASF(xt) D N�1
NX

iD1

˚(xt ˆ̌ a C  ̂a C x̄i �̂a) (83)

where the “a” subscript means that a coefficient has been
divided by (1 C �̂2a )1/2, for example, ˆ̌ a D ˆ̌ /(1 C �̂2a )1/2.
The derivatives or changes of bASF(xt) with respect to el-
ements of xt can be compared with fixed effects estimates
from a linear model. Often, to obtain a single scale fac-
tor, a further averaging across xi t is done. The APEs com-
puted from such averaging can be compared to linear FE
estimates.

The CRE probit model is an example of a model where
the APEs are identified without the conditional indepen-
dence assumption. Without (67) – or any restriction on
the joint distribution – it can still be shown that

P(yi t D 1jxi) D ˚(xi tˇa C  a C x̄i�a) ; (84)

which means a number of estimation approaches identify
the scaled coefficients ˇa ,  a, and �a . The estimates of
these scaled coefficients can be inserted directly into (83).
The unscaled parameters and �2a are not separately identi-

fied, but in most cases this is a small price to pay for relax-
ing the conditional independence assumption. Note that
for determining directions of effects and relative effects,ˇa
is just as useful as ˇ. Plus, it is ˇa that appears in the APEs.
The partial effects at themean value of ci are not identified.

Using pooled probit can be inefficient for estimating
the scaled parameters. Full MLE, with a specified correla-
tion matrix for the T � 1 vector ui , is possible in princi-
ple but difficult in practice. An alternative approach, the
generalized estimating equations (GEE) approach, can be
more efficient than pooled probit but just as robust in that
only (84) is needed for consistency. See [38] for a summary
of how GEE – which is essentially the same as multivari-
ate weighted nonlinear least squares – applies to the CRE
probit model.

A simple test of the strict exogeneity assumption is to
add selected elements of xi;tC1, say wi;tC1, to the model
and computing a test of joint significance. Unless the full
MLE is used, the test should be made robust to serial de-
pendence of unknown form. For example, as a test of strict
exogeneity of R&D spending when yit is a patent indicator,
one can just include next year’s value of R&D spending
and compute a t test. In carrying out the test, the last time
period is lost for all firms.

Because there is nothing sacred about the standard
model (81) under (82) – indeed, these assumptions are
potentially quite restrictive – it is natural to pursue other
models and assumptions. Even with (81) as the starting
point, and under strict exogeneity, there are no known
ways of identifying parameters or partial effects with-
out restricting D(ci jxi). Nevertheless, as mentioned in
Subsect. “Assumptions About the Unobserved Hetero-
geneity”, there are nonparametric restrictions on D(ci jxi )
that do identify the APEs under strict exogeneity – even
if (81) is dropped entirely. As shown in [3], the restric-
tion D(ci jxi) D D(ci jx̄i) identifies the APEs. While fully
nonparametric methods can be used, some simple strate-
gies are evident. For example, because the APEs can be ob-
tained from D(yi t jxi t; x̄i), it makes sense to apply flexible
parametric models directly to this distribution – without
worrying about the original models for D(yi t jxi t; ci ) and
D(ci jxi).

As an example of this approach, a flexible parametric
model, such as

P(yi t D 1jxi t; x̄i)
D ˚[�t C xi tˇ C x̄i� C (x̄i ˝ x̄i )ı C (xi t ˝ x̄i)�] ;

(85)

might provide a reasonable approximation. The average
structural function is estimated as
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bASF(xt) D

N�1
NX

iD1

˚[�̂t Cxt ˆ̌ Cx̄i �̂ C(x̄i ˝x̄i )ı̂C(xt ˝x̄i )�̂];

(86)

where the estimates can come from pooled MLE, GEE, or
a method of moments procedure. The point is that exten-
sions of the basic probit model such as (85) can provide
considerable flexibility and deliver good estimators of the
APEs. The drawback is that one has to be willing to aban-
don standard underlying models for P(yi t D 1jxi t; ci )
and D(ci jxi); in fact, it seems very difficult to characterize
models for these two features that would lead to an expres-
sion such as (85).

An alternativemodel for the response probability is the
logit model

P(yi t D 1jxi t; ci ) D �(xi tˇ C ci ) ; (87)

where �(z) D exp(z)/[1 C exp(z)]. In cross section ap-
plications, researchers often find few practical differences
between (81) and (87). But when unobserved heterogene-
ity is added in a panel data context, the logit formula-
tion has an advantage: under the conditional indepen-
dence assumption (and strict exogeneity), the parame-
ters ˇ can be consistently estimated, with a

p
N-asymp-

totic normal distribution, without restricting D(ci jxi ). The
method works by conditioning on the number of “suc-
cesses” for each unit, that is, ni D PT

tD1 yi t . [17] shows
that D(yi1; : : : ; yiT jxi ; ci ; ni ) D D(yi1; : : : ; yiT jxi ; ni ),
and the latter depends on ˇ (at least when all elements of
xi t are time varying). The conditional MLE – sometimes
called the “fixed effects logit” estimator – is asymptotically
efficient in the class of estimators putting no assumptions
on D(ci jxi ). While this feature of the logit CMLE is attrac-
tive, the method has two drawbacks. First, it does not ap-
pear to be robust to violations of the conditional indepen-
dence assumption, and little is known about the practical
effects of serial dependence in D(yi1; : : : ; yiT jxi ; ci ). Sec-
ond, and perhaps more importantly, because D(ci jxi ) and
D(ci ) are not restricted, it is not clear how one estimates
magnitudes of the effects of the covariates on the response
probability. The logit CMLE is intended to estimate the
parameters, which means the effects of the covariates on
the log-odds ratio, logf[P(yi t D 1jxi t; ci )]/[1 � P(yi t D
1jxi t; ci )]g D xi tˇ C ci , can be estimated. But the mag-
nitudes of the effects of covariates on the response proba-
bility are not available. Therefore, there are tradeoffs when
choosing between CRE probit and “fixed effects” logit: the
CRE probit identifies average partial effects with or with-
out the conditional independence assumptions, at the cost

of specifying D(ci jxi), while the FE logit estimates param-
eters without specifying D(ci jxi), but requires conditional
independence and still does not deliver estimates of par-
tial effects. As often is the case in econometrics, there are
tradeoffs between assumptions between the logit and pro-
bit approaches, and also tradeoffs. See [38] for further dis-
cussion.

Estimation of parameters and APEs is more difficult in
simple dynamic probit models. Consider

P(yi t D 1jzi t; yi;t�1; ci ) D ˚(zi tı C�yi;t�1C ci) ; (88)

which assumes first-order dynamics and strict exogeneity
of fzi t : t D 1; : : : ; Tg. Treating the ci as parameters to
estimate causes inconsistency in ı and � because of the in-
cidental parameters problem. A simple analysis is available
under the assumption

ci jyi0; zi 
 Normal( C �0yi0 C zi�; �2a ) : (89)

Then,

P(yi t D 1jzi ; yi;t�1; : : : ; yi0; ai)
D ˚(zi tı C �yi;t�1 C  C �0yi0 C zi� C ai) ;

(90)

where ai � ci �  � �0yi0 � zi�. Because ai is inde-
pendent of (yi0; zi ), it turns out that standard random ef-
fects probit software can be used, with explanatory vari-
ables (1; zi t ; yi;t�1; yi0; zi ) in time period t. All parame-
ters, including �2a , are consistently estimated, and the ASF
is estimated by averaging out (yi0; zi ):

bASF(zt ; yt�1) D

N�1
NX

iD1

˚(zt ı̂a C �̂a yt�1 C  ̂a C �̂a0yi0 C zi �̂a) ;

(91)

where the coefficients are multiplied by (1C �̂2a )�1/2. APEs
are gotten, as usual, by taking differences or derivatives
with respect to elements of (zt ; yt�1). Both (88) and the
model for D(ci jyi0; zi ) can be made more flexible (such
as including interactions, or letting Var(ci jzi ; yi0) be het-
eroskedastic). See [57] for further discussion.

Similar analyses hold for other nonlinear models, al-
though the particulars differ. For count data, maximum
likelihood methods are available – based on correlated
random effects or conditioning on a sufficient statistic.
In this case, the CMLE based on the Poisson distribution
has very satisfying robustness properties, requiring only
the conditional mean in the unobserved effects model to
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be correctly specified along with strict exogeneity (Condi-
tional independence is not needed). These and dynamic
count models are discussed in Chap. 19 in [55,57].

Correlated random effects Tobit models are specified
and estimated in a manner very similar to CRE probit
models; see Chap. 16 in [55]. Unfortunately, there are no
known conditional MLEs that eliminate the unobserved
heterogeneity in Tobit models. Nevertheless, [33,34] show
how the parameters in models for corner solutions can be
estimated without distributional assumptions on D(ci jxi).
Such methods do place exchangeability restrictions on
D(yi1; : : : ; yiT jxi ; ci ), but they are not as strong as con-
ditional independence with identical distributions.

Future Directions

Research in panel data methods continues unabated. Dy-
namic linear models are a subject of ongoing interest. The
problem of feedback in linear models when the covariates
are persistent – and the weak instrument problem that it
entails – is important for panels with small T. For exam-
ple, with firm-level panel data, the number of time peri-
ods is typically small and inputs into a production func-
tion would often be well-approximated as random walks
with perhaps additional short-term dependence. The es-
timators described in Sect. “Sequentially Exogenous Re-
gressors and Dynamic Models” that impose additional as-
sumptions should be studied when those assumptions fail.
Perhaps the lower variance of the estimators from the mis-
specified model is worth the additional bias.

Models with random coefficients, especially when
those random coefficients are on non-strictly exogenous
variables (such as lagged dependent variables), have re-
ceived some attention, but many of the proposed solutions
require large T. (See, for example, [49,50]). An alternative
approach is flexible MLE, as in [57], where one models
the distribution of heterogeneity conditional on the initial
condition and the history of covariates. See [19] for any
application to dynamic product choice.

When T is large enough so that it makes sense to
use large-sample approximations with large T, as well as
large N , one must make explicit assumptions about the
time series dependence in the data. Such frameworks are
sensible for modeling large geographical units, such as
states, provinces, or countries, where long stretches of time
are observed. The same estimators that are attractive for
the fixed T case, particularly fixed effects, can have good
properties when T grows with N, but the properties de-
pend on whether unit-specific effects, time-specific effects,
or both are included. The rates at which T and N are as-
sumed to grow also affect the large-sample approxima-

tions. See [52] for a survey of linear model methods with T
and N are both assumed to grow in the asymptotic analy-
sis. A recent study that considers estimation when the data
have unit roots is [44]. Unlike the fixed T case, a unified
theory for linear models, let alone nonlinear models, re-
mains elusive when T grows with N and is an important
area for future research.

In the models surveyed here, a single coefficient is as-
sumed for the unobserved heterogeneity, whereas the ef-
fect might change over time. In the linear model, the addi-
tive ci can be replaced with t ci (with 1 D 1 as a normal-
ization). For example, the return to unobserved manage-
rial talent in a firm production function can change over
time. Conditions under which ignoring the time-varying
loads,  t , and using the usual fixed effects estimator, con-
sistently estimates the coefficients on xi t are given in [47].
But one can also estimate the  t along with ˇ using
method of moments frameworks. Examples are [2,32]. An
area for future research is to allow heterogeneous slopes
on observed covariates along with time-varying loads on
the unobserved heterogeneity. Allowing for time-varying
loads and heterogeneous slopes in nonlinear models can
allow for significant flexibility, but only parametric ap-
proaches to estimation have been studied.

There is considerable interest in estimating produc-
tion functions using proxy variables, such as investment,
for time-varying, unobserved productivity. The pioneer-
ing work is [48]; see also [42]. Estimation in this case does
not rely on differencing or time-demeaning to remove un-
observed heterogeneity, and so the estimates can be con-
siderably more precise than the FE or FD estimators. But
the assumption that a deterministic function of invest-
ment can proxy for unobserved productivity is strong. [11]
provides an analysis that explicitly allows for unobserved
heterogeneity and non-strictly exogenous inputs using the
methods described in Sect. “Sequentially Exogenous Re-
gressors and Dynamic Models”. An interesting challenge
for future researchers is to unify the two approaches to ex-
ploit the attractive features of each.

The parametric correlated random effects approach for
both static and dynamic nonlinear models is now fairly
well understood in the balanced case. Much less attention
has been paid to the unbalanced case, and missing data,
especially for fully dynamic models, is a serious challenge.
[57] discusses the assumptions under which using a bal-
anced subset produces consistent estimates.

Identification of average partial effects (equivalently,
the average structural function) has recently received the
attention that it deserves, although little is known about
how robust are the estimatedAPEs under variousmisspec-
ifications of parametric models. One might hope that us-
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ing flexible models for nonlinear responses might provide
good approximations, but evidence on this issue is lacking.

As mentioned earlier, recent research in [3] has shown
how to identify and estimate partial effects withoutmaking
parametric assumptions about E(yi t jxi t; ci ) or D(ci jxi ).
The setup in [3] allows for D(ci jxi) to depend on xi D
(xi1; : : : ; xiT) in an exchangeable way. The simplest case is
the one given in (71), D(ci jxi) D D(ci jx̄i ). Under (71)
and the strict exogeneity assumption E(yi t jxi ; ci ) D
E(yi t jxi t; ci ), the average structural function is identified
as

ASFt(xt) D Ex̄i [rt(xt ; x̄i )] ; (92)

where rt(xi t ; x̄i ) D E(yi t jxi t; x̄i ). Because rt(xi t ; x̄i ) can
be estimated very generally – even using nonparametric
regression of yit on (xi t ; x̄i ) for each t – the average par-
tial effects can be estimated without any parametric as-
sumptions. Research in [3] shows how D(ci jxi) can de-
pend on other exchangeable functions of (xi1; : : : ; xiT ),
such as sample variances and covariances. As discussed
in [38], nonexchangeable functions, such as trends and
growth rates, can be accommodated, provided these func-
tions are known. For example, for each i, let (f̂i ; ĝi) be
the vectors of intercepts and slopes from the regression
xi t on 1; t, t D 1; : : : ; T . Then, an extension of (71) is
D(ci jxi) D D(ci jf̂i ; ĝi ). It appears these kinds of assump-
tions have not yet been applied, but they are a fertile area
for future research because they extend the typical CRE
setup.

Future research on nonlinear models will likely con-
sider the issue of the kinds of partial effects that are of most
interest. [3] studies identification and estimation of the lo-
cal average response (LAR). The LAR at xt for a continuous
variable xtj is

Z
@mt(xt ; c)
@xt j

dHt(cjxt) ; (93)

where mt(xt ; c) is the conditional mean of the response
and Ht(cjxt) denotes the cdf of D(ci jxi t D xt). This is
a “local” partial effect because it averages out the hetero-
geneity for the slice of the population described by the
vector of observed covariates, xt . The APE averages out
over the entire distribution of ci , and therefore can be
called a “global average response”. See also [21]. The re-
sults in [3] include general identification results for the
LAR, and future empirical researchers using nonlinear
panel data models may find the local nature of the LAR
more appealing (although more difficult to estimate) than
APEs.

A different branch of the panel data literature has stud-
ied identification of coefficients or, more often, scaled co-
efficients, in nonlinear models. For example, [35] shows
how to estimate ˇ in the model

yi t D 1[wit C xi tˇ C ci C ui t � 0] (94)

without distributional assumptions on the composite er-
ror, ci C ui t . In this model, wit is a special continuous
explanatory variable (which need not be time varying).
Because its coefficient is normalized to unity, wit neces-
sarily affects the response, yit . More importantly, wit is
assumed to satisfy the distributional restriction D(ci C
ui t jwit; xi t ; zi ) D D(ci C ui t jxi t; zi ), which is a condi-
tional independence assumption. The vector zi is assumed
to be independent of uit in all time periods. (So, if two time
periods are used, zi could be functions of variables deter-
mined prior to the earliest time period). The most likely
scenario where the framework in [35] applies is when wit
is randomized and therefore independent of the entire vec-
tor (xi t ; zi ; ci C ui t). The key condition seems unlikely to
hold if wit is related to past outcomes on yit . The estima-
tor of ˇ derived in [35] is

p
N-asymptotically normal, and

fairly easy to compute; it requires estimation of the den-
sity of wit given (xi t ; zi ) and then a simple IV estimation.
Essentially by construction, estimation of partial effects on
the response probability is not possible.

Recently, [36] shows how to obtain bounds on param-
eters and APEs in dynamic models, including the dynamic
probit model in Eq. (85) under the strict exogeneity as-
sumption on fzi t : t D 1; : : : ; Tg. A further assumption
is that ci and zi are independent. By putting restrictions
on D(ci) –which nevertheless allow flexibility – [36] ex-
plains how to estimate bounds for the unknown �. The
bounds allow one to determine howmuch information are
in the data when few assumptions are made. Similar calcu-
lations can be made for average partial effects, so that the
size of so-called state dependence – the difference between
Eci [˚(ztı C �C ci ) � ˚(ztı C ci )] – can be bounded.

Because CRE methods require some restriction on the
distribution of heterogeneity, and estimation of scaled co-
efficients leaves partial effects unidentified, the theoreti-
cal literature has returned to the properties of parame-
ter estimates and partial effects when the heterogeneity
is treated as unit-specific parameters to estimate. Recent
work has focused on adjusting the “fixed effects” estimates
(of the common population parameters) so that they have
reduced bias.

An emerging question is whether the average partial
effects might be estimated well even though the parame-
ters themselves are biased. In other words, suppose that for
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a nonlinear model one obtains f�̂ ; ĉ1; ĉ2; : : : ; ĉNg, typically
bymaximizing a pooled log-likelihood function across all i
and t. If mt(xt ; c; �; ) D E(yt jxt ; c) is the conditional
mean function, the average partial effects can be estimated
as

N�1
NX

iD1

@mt(xt ; ĉi ; �̂)
@xt j

: (95)

In the unobserved effects probit model, (95) becomes

N�1
NX

iD1

ˆ̌ j�(xt ˆ̌ C ĉi ) : (96)

[20] studied the properties of (96) with strictly exogenous
regressors under conditional independence, assuming that
the covariates are weakly dependent over time. Interest-
ingly, the bias in (96) is of order T�2 when there is no het-
erogeneity, which suggests that estimating the unobserved
effects might not be especially harmful when the amount
of heterogeneity is small. Unfortunately, these findings do
not carry over to models with time heterogeneity or lagged
dependent variables. While bias corrections are available,
they are difficult to implement.

[24] proposes both jackknife and analytical bias cor-
rections and show that they work well for the probit case.
Generally, the jackknife procedure to remove the bias in �̂
is simple but can be computationally intensive. The idea is
this. The estimator based on T time periods has probabil-
ity limit (as N ! 1) that can be written as

�T D � C b1/T C b2/T2 C O(T�3) (97)

for vectors b1 and b2. Now, let �̂(t) denote the estimator
that drops time period t. Then, assuming stability across t,
it can be shown that the jackknife estimator,

�̃ D T�̂ � (T � 1)T�1
TX

tD1

�̂(t) (98)

has asymptotic bias of �̃ on the order of T�2.
Unfortunately, there are currently some practical limi-

tations to the jackknife procedure, as well as to the analyti-
cal corrections derived in [24]. First, aggregate time effects
are not allowed, and they would be very difficult to include
because the analysis is with T ! 1. (In other words, time
effects would introduce an incidental parameters problem
in the time dimension, in addition to the incidental param-
eters problem in the cross section). Plus, heterogeneity in
the distribution of the response yit across t changes the bias
terms b1 and b2 when a time period is dropped, and so the

adjustment in (98) does not remove the bias terms. Sec-
ond, [24] assumes independence across t conditional on
ci. It is a traditional assumption, but in static models it is
often violated, and it must be violated in dynamic models.
Plus, even without time heterogeneity, the jackknife does
not apply to dynamic models; see [23].

Another area that has seen a resurgence is so-called
pseudo panel data, as initially exposited in [18]. A pseudo-
panel data set is constructed from repeated cross sections
across time, where the units appearing in each cross sec-
tion are not repeated (or, if they are, it is a coincidence
and is ignored). If there is a natural grouping of the cross-
sectional units – for example, for individuals, birth year
cohorts – one can create a pseudo-panel data set by con-
structing group or cohort averages in each time period.
With relatively few cohorts and large cross sections, one
can identify pseudo panels in the context of minimum dis-
tance estimation. With a large number of groups, a dif-
ferent large-sample analysis might be warranted. A re-
cent contribution is [39] and [38] includes a recent sur-
vey. Open questions include the most efficient way to use
the full set of restrictions in the underlying individual-level
model.

As mentioned earlier, this chapter did not consider
panel data model with explanatory variables that are en-
dogenous in the sense that they are correlated with time-
varying unobservables. For linear models, the usual fixed
effects and first differencing transformations can be com-
bined with instrumental variables methods. In nonlin-
ear models, the Chamberlain–Mundlak approach can be
combined with so-called “control function” methods, pro-
vided the endogenous explanatory variables are continu-
ous. [38] includes a discussion of some recent advances
for complicated models such as multinomial response
models; see also [51]. Generally, structural estimation in
discrete response models with unobserved heterogeneity
and endogenous explanatory variables is an area of great
interest.
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Glossary

Cross national comparisons Comparing cross-national
data for a specific phenomenon, e. g. a surge in hous-
ing prices, is the key to distinguishing between essen-
tial factors which are common to all episodes and those
which are accessory and context dependent.

Economathematicians Mathematicians or theoretical
physicists who develop mathematical tools, models or
simulations for social phenomena but do not try to
confront these models to actual observations.

Econophysics A field of physics which originated in the
mid-1990s. Throughout this article, we use the term
in a broad sense which includes econophysics, socio-
physics and historiophysics. As a matter of fact, these
fields can hardly be studied separately in the sense that
economic effects depend upon social reactions (e. g. re-
actions of consumers to advertising campaigns); fur-
thermore, economic investigations crucially rely on
statistics which typically must combine present-day
data with data from former historical episodes.

Econophysicists Physicists who study social, economic or
political issues.

Endogenous mechanisms Models usually describe endo-
genous mechanisms. For instance a population model
would describe how people get married and have chil-
dren.

Exogenous factors Exogenous factors are more or less
unexpected external forces which act on the system.

Thus, for a population wars or epidemics may bring
about sudden population changes. It is only when ex-
ogenous factors are recurrent and fairly repetitive that
they can be taken into account in models.

Experiment Apart from its standard meaning in physics
or biology we also use this term to designate the pro-
cess of (i) defining the phenomenon that one wants
to study (ii) locating and collecting the data which are
best suited for the investigation (iii) analyzing the data
and deriving regularity rules or testing a model.

Model testing Before confronting the predictions of
a model to statistical evidence it is necessary to en-
sure that the system was not subject to unexpected
exogenous shocks. The impact of exogenous factors
which are not accounted for in themodelmust in some
way be removed, that is to say the data must be cor-
rected in a way which takes these shocks out of the
picture. Usually, such corrections are very tricky to
implement.

Definition of the Subject

“No science thrives in the atmosphere of direct
practical aim. We should still be without most of
the conveniences of modern life if physicists had
been as eager for immediate applications as most
economists are and always have been.” (J. Schum-
peter p.6 in [11])

“The free fall is a very trivial physical phenomenon,
but it was the study of this exceedingly simple fact
and its comparison with the astronomical material
which brought forth mechanics. The sound proce-
dure [in every science] is to obtain first utmost pre-
cision and mastery in a limited field, and then to
proceed to another, somewhat wider one and so on.”
(J. von Neumann and O. Morgenstern [5])

These two quotes define fairly well the path that econo-
physics tries to follow. They both insist on the fact that one
should begin by focusing on simple phenomena even if at
first sight they have little practical implications. In what
follows we will develop this point but first of all we must
address a question which comes to the mind of all persons
who hear about econophysics for the first time, namely:

“Why should physicists have something to say about
economic and social phenomena. Admittedly, biol-
ogy can benefit from physics because of themeans of
observation [e. g. exploration of protein molecules
by X-ray scattering] that it provides, but there are
no similar needs in economics.”
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I have heard this question asked repeatedly by many
of my colleagues. In my answer I usually emphasize that
what matters is more the method of investigation than
the phenomena by themselves. I stress that applying to
the social sciences the experimentalmethodology invented
by physicists and chemists would mark a great progress.
However, with the benefit of insight, I realize that these
answers may have appeared far fetched and unconvincing
to many of my listeners. A better and more factual claim
is to observe that over the past century several of the most
renowned economists and sociologists were in fact econo-
physicists in the sense defined in the glossary. Indeed, back
in the nineteenth century, the only way to get a decent
mathematical training was to study astronomy, engineer-
ing, mathematics or physics. When such people entered
the social sciences this lead to two kinds of approaches
which we may designate as econophysics and economath-
ematics (see Sect. “Glossary”). In the first category one
may mention the astronomer Adolphe Quételet (1796–
1874), Clément Juglar (1819–1905) educated as a medical
doctor, Vilfredo Pareto (1848–1923) educated as an engi-
neer, the mathematician Louis Bachelier (1870–1946), the
physicist Elliott Montroll (1916–1983), the mathematician
Benoît Mandelbrot (1924–). In the second category one
maymention LéonWalras (1834–1910) who was educated
as an engineer, the astronomer Simon Newcomb (1835–
1905), the physicist Maurice Allais (1911–).

Of course, if the economic discipline had been highly
successful there would be little need for an alternative ap-
proach. However, great doubts have been expressed by
some of the most renowned economists about the attain-
ments of their discipline. We have already cited Schum-
peter’s opinion on this matter. In addition one may men-
tion the judgments of Vassily Leontief, Anna Schwartz,
Lawrence Summers or the thesis developed in a recent
book by Masanao Aoki and Hiroshi Yoshikawa.

� Leontief and Schwartz emphasized that the present or-
ganization of economic research discourages observa-
tional research. In Schwartz’s words [12]1

“The main disincentive to improve the handling
and use of data is that the profession withholds
recognition to those who devote their energies to
measurement. Someone who introduces an in-
novation in econometrics, by contrast, will win
plaudits.”

1Leontief (p. xi in [3]) has even stronger words: “The methods
used to maintain intellectual discipline in this country’s most influen-
tial economics departments can occasionally remind one of those em-
ployed by theMarines tomaintain discipline on Parris Island [a train-
ing camp of US Marines].”

� The assessmentmade by Summers in a paper published
in 1991 is well summarized by its title: “The scientific
illusion of empirical macroeconomics”.

� In their book, Aoki and Yoshikawa ( p. 25 in [1]) point
out that the representative agent assumption which is
supposed to provide a connection between micro- and
macroeconomics is fundamentally flawed because it
neglects both social variability and stochastic fluctua-
tions. It may be true that in recent years a greater em-
phasis has been put on the issue of heterogeneity. Yet,
is this the right way to takle the problem? A model is
a simplification of reality anyway, so if it is not tenable
to use loosely defined representative agents, an alterna-
tive solution may be to focus on sharply defined agent’s
attitudes. For instance, whereas without further speci-
fication home buyers may not be well defined as a use-
ful category, the behavior of investors during the final
phases of speculative price peaks may be sufficiently re-
current to make up for a well defined category.

Introduction

What are the main characteristics of econophysics? In
what follows we will try to summarize some basic prin-
ciples. Each of them will be illustrated by one or sev-
eral studies performed by econophysicists over the past
decade. Although the wording that we use is fairly per-
sonal, we believe that fundamentally these principles are
shared by many econophysicists. In the course of more
than a decade, econophysics has become a big tree with
many branches. Obviously it is impossible to describe all
of them if only because the knowledge and understanding
of the present author is limited. He apologizes in advance
for his limitations and for the fact that the present selec-
tion is by necessity fairly subjective.

The Primacy of Observation

Econophysics started around 1995 in sync with the cre-
ation of huge computerized databases giving minute by
minute transactions on financial markets such as the New
York stock market, the dollar-yen exchange rate, the for-
ward interest rates or providing individual income data
for millions of people. It may be estimated that between
1995 and 2005 about two thirds of the papers published
by econophysicists aimed at deriving regularity rules from
such databases. Let us illustrate this point by the case of
income data. Since Pareto’s work we know that the distri-
bution of high incomes can be described by a power law
with an exponent ˛ comprised between 1 and 1.5. With
databases comprising millions of income data one can get
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high accuracy estimates for ˛ and observe how ˛ changes
as the result of economic booms or stock market crashes.
It turns out that ˛ decreases during booms and increases
in the wake of stock market collapses [6].

Other empirical investigations were carried out in the
past decades. We list some of them below. The list is ar-
ranged by topic and by research teams.

� Stock transactions, (i) Boston University: see publica-
tions involving G. Stanley. (ii) CEA (i. e. Commissariat
à l’Energie Atomique whichmeans Institute for Atomic
Research) and “Science-Finance”: see publications in-
volving J.P. Bouchaud. (iii) Nice University andUCLA:
see publications involving D. Sornette. (iv) University
of Warsaw: see publications involving J. Kertesz.

� Forward interest rates, Singapore University: see publi-
cations involving B. Baaquie.

� Exchange rates, Zurich: see publications involving
M. Dacorogna.

To many physicists the statement that observation is
supreme could seem self evident. In economics, however,
such a statement represents a revolution.We alreadymen-
tioned the fact that observation is a neglected topic in eco-
nomics. As a matter of fact, before econophysics started
it was impossible to publish a paper which would iden-
tify regularity rules without at the same time providing
a model2.

Investigating One Effect at a Time

In most natural phenomena different effects occur simul-
taneously. For instance, if one leaves a glass of cold wa-
ter in the sun, the water will of course get warmer but if
one looks at the mechanisms which are implied this in-
volves many different effects: interaction of light and wa-
ter, interaction of light and glass, conduction of heat, cre-
ation of convection currents between layers of water which
are at different temperatures, and so on. One of the main
challenges of physics was to identify these effects and to
study them separately. Similarly, most social phenomena
involve different effects; thus, one of the main tasks of the
social sciences should be to disentangle and decompose
complex phenomena into simple effects. In principle this
is easier to do in physics than in the social sciences be-
cause one can change experimental conditions fairly eas-

2In what economists call “empirical econometrics” the researcher
necessarily must provide a multivariate econometric model which
means that even before he analyses the data he already knows the the-
ory which rules the phenomenon. Moreover, all factors whether they
have a weak or a strong impact are treated on the same footing. As we
will see in the next point this has important implications.

ily. However, history shows that the main obstacle are
conceptual. The previous phenomenon involves the trans-
formation of one form of energy (light) into other forms
of energy and it is well know that it took centuries for
a clear understanding of these processes to emerge. In or-
der to convince the reader that the same approach can be
used in the social sciences we briefly describe a specific
case.

Suicide is commonly considered as a phenomenon
which is due to many factors. One of them is the strength
of the marital bond. How can we isolate that factor? Of
course, it is impossible to isolate it completely but one can
at least make it so predominant that other factors become
negligible. To achieve that objective, we consider a popu-
lation in which the number of males is much larger than
the number of females. Such a population will necessar-
ily have a large proportion of bachelors and therefore will
be an ideal testing ground to study the role of the marital
bond.Where canwe find populations with a large excess of
men? Almost all populations of immigrants are character-
ized by an excess of males. It turns out that due to specific
circumstances, this imbalance was particularly large in the
population of Chinese people living in the United States.
By the end of the 19th century there were about 27 Chi-
nese men for one Chinese woman3.

What makes the present principle important? Unless
one is able to estimate the impact of each factor separately,
one will never gain a lasting understanding. It is impor-
tant to understand why. Let us for a moment return to
the previous experiment. In the econometric approach one
would conduct multivariate regressions of the tempera-
ture as a function of various (pre-conceived) parameters
such as the volume of the liquid, the thickness of the glass
and so on. Now suppose we wish to predict what hap-
pens when water is replaced by black ink. As a result of
greater light absorption temperature differentials will be
larger and convection currents will be stronger. The fact
that many effects change at the same time will make the
multivariate estimates irrelevant. Unless one has an under-
standing of the various individual effects it will be impos-
sible to make any sound prediction. To sum up, any ma-
jor change in business and social conditions will invalidate
the previously accepted econometricmodels. This explains
why the econometric approach fails to ensure that knowl-
edge grows in a cumulative way.

What Guidance Can Physics Provide?

One can recall that the experimental methodology pi-
oneered by researchers such as Tycho Brahe (1546–

3For more details about this case, see [9].
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1601), Johannes Kepler (1571–1630) or Galileo (1564–
1642) marked the beginning of modern physics. Two cen-
turies later, that methodology was adapted to the ex-
ploration of the living world by people such as Claude
Bernard (1813–1878), Louis Pasteur (1822–1895) and
Gregor Mendel (1822–1884). In a sense it is a paradox
that this method has been used successfully for the un-
derstanding of living organisms but has not yet gained
broad acceptance in the social sciences for it can be ar-
gued with good reason that living organisms are more
complex systems than are states or societies4. In short,
applying the experimental methodology to the social sci-
ences is a move which seems both natural and long over-
due. Actually, serious efforts were made in this direc-
tion by social scientists such as Emile Durkheim (1858–
1917) or Vilfredo Pareto (1848–1923) but this route seems
to have been sidetracked in the second half of the 20th
century.

Can we use the mathematical framework of physics in
the investigation of social phenomena? This approach has
been tried with some success by renowned econophysi-
cists such as Belal Baaquie and coworkers (2004, 2007)
and Jean-Philippe Bouchaud and coworkers [2,4]. In those
cases the success must probably be attributed to the fact
that the methods of theoretical physics which were used
could be formulated in a purely mathematical way which
did not rely on any physical concepts such as energy, mo-
mentum or temperature. As we do not yet know how these
notions should be transposed to social systems, it seems
impossible to apply the formalism of statistical mechanics
to social phenomena5.

Our claim that the experimental methodology of
physics can be used to explore social phenomena must be
substantiated by explaining how it is possible to carry out
“experiments” in social phenomena. This is the purpose of
the next section.

4We will not develop this point here but it can be observed that
a bacteria or a cell contains thousands of different proteins which in-
teract in various ways. In the same line of thought one may recall that
living organisms have been around for several billions years whereas
societies appeared less than 100,000 years ago and states less than
10,000 years ago.

5It could be argued that one is free to define “social energy” in the
way which one wishes. However, one should remember that the no-
tion of energy is pivotal in physics only because it is ruled by (experi-
mentally proved) conservation laws, such as the equivalence between
heat and mechanical energy demonstrated by James Joule. Naturally,
prior to defining a “social temperature”, it would seem natural to de-
fine a herd- or swarm-temperature describing aggregated populations
of bacteria, insects or animals. As far as we know, no operational def-
inition of this kind has yet been proposed.

How Cross-National Observations Can Be Used
to Test the Role of Different Factors

Nowadays when a solid state physicist wants to measure,
say, the interaction between ultraviolet light and a crystal
of germanium, the experiment involves little uncertainties.
That is so because this field of physics is already well un-
derstood. On the contrary, in the case of new and not well
understood phenomena there is considerable uncertainty
about the specific conditions of the experimental set up. In
the two years after Léon Foucault demonstrated the Fou-
cault pendulum experiment, at least twenty physicists tried
to repeat it. Some succeeded while others did not. Indeed
the experimental conditions, e. g. the length of the pendu-
lum or the nature of the suspension wire, ensuring that the
Foucault effect will be observed were not well understood.
It is only through various attempts with different set-
tings that a better understanding progressively emerged.
For instance it was realized that by using a pendulum of
great length one would be able to reduce two undesirable
effects (i) the sensitivity of the pendulum to exogenous
noise6 (ii) the Puiseux effect which generates a rotation
of the oscillation plane which interferes with the Foucault
effect.

Few (if any) sociological phenomena are well under-
stood which means that social researchers are basically in
the same situation as those physicists in the years 1851–
1852 who tried to observe the Foucault effect7. As an il-
lustration suppose we wish to know if the publication of
a specific type of news has an effect on the number of sui-
cides8. Such an observation depends upon many parame-
ters: the nature of the news and the amount of attention
that it receives, the time interval (days, weeks or months?)
between the publication of the news and the occurrence of
the suicides. In addition one does not know if there will be
an increase or a decrease in the number of suicides, if men
will be more or less affected than women, and so on. All
these questions can in principle be answered by conduct-
ing many observations in different countries and in differ-
ent periods of time. In other words, if we are sufficiently
determined, patient and tenacious and if we can get access
to the statistical data that are needed, we should be able to
disentangle and unravel the phenomenon under consider-

6Indeed, it is when the speed of the pendulum goes through zero
that it is particularly sensitive to external perturbations; increasing the
length of the pendulum reduces the number of oscillations in a given
time interval and therefore the drift due to noise.

7As a more recent and even less understood case, one canmention
the physicists who keep on trying to observe the cold fusion effect.

8This question is connected to what is known in sociology as the
Werther effect; for more details see the papers written by Phillips (in
particular [7]) and Chap. 3 in [9].
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ation in the same way as experimenters have been able to
determine how the Foucault effect can be observed.

How Vested Interests May Affect the Accessibility
and Reliability of Social Data

So far we have emphasized the similarities between natu-
ral and social phenomena but there are also some stum-
bling blocks which are specific to the social sciences. One
of them is the fact that some data may have been altered
or swept under the carpet by some sort of ideological, po-
litical or social bias, pressure or interference. Needless to
say, extreme care must be exercised in such cases before
making use of the data.

As an illustration, suppose that an econophysicist or
a sociologist wants to study episodes of military occu-
pation of one country by another. Such episodes are of
particular interest from a sociological perspective because
they bring about strong interactions and can serve to probe
the characteristics of a society. Moreover, because armies
displaymany similarities nomatter their country of origin,
such episodes offer a set of controlled experiments. Natu-
rally, in order to be meaningful the comparison must rely
on trustworthy accounts for each of the episodes. Unfor-
tunately, it turns out that in many cases only scant and
fairly unreliable information is available . Consider for in-
stance the occupation of Iceland by British and Ameri-
can forces during World War II. Among all occupation
episodes this one was particularly massive with troops rep-
resenting 50% of the population of Iceland prior to the oc-
cupation. The same proportion in a country such as Japan
would have meant 30 million occupation troops that is
60 times more than the peak number of 500,000 reached
at the end of 1945. Quite understandably for such a high
density of troops, there were many incidents with the pop-
ulation of Iceland9; yet, is is difficult to find detailed evi-
dence. Due to the paucity of data a superficial investigation
would easily lead to the conclusion that there were in fact
only few incidents. It does not require much imagination
to understand why this information has not been released.
The fact that in a general way all countries whatsoever are
reluctant to recognize possible misconduct of their mili-
tary personnel explains why the information is still clas-
sified in British and American archives. Because Iceland
and the United States became close allies after 1945, one

9According to a report that Prime Minister Hermann Jonasson
sent to the American Headquarters, there were 136 incidents between
troops and Icelanders during the period between July 1941 (arrival
of the American troops) and April 1942 (Hunt 1966) in Reykjavik
alone. Unfortunately, no copy of this report seems to be available at
the National Archives of Iceland.

can also understand that the Icelandic National Archive is
reluctant to release information about these incidents. The
same observation also applies (and for the same reasons)
to the occupation of Japan, 1946–1951; for more details see
Roehner pp. 90–98 in [9] and [10]. Naturally, similar cases
abound. Due to a variety of reasons well-meaning govern-
ments, archivists and statistical offices keep sensitive files
closed to social scientists. Most often it is in fact sufficient
to catalog sensitive file units in a fairly obscure way. The
plain effect is that the information will not be found ex-
cept perhaps by pure luck, a fairly unlikely prospect in big
archives.

How Can Exogenous Factors be Taken into Account?

This question is not specific to social phenomena, it is also
of importance in physics. As a matter of fact, in astronomy
it provides a powerful method for observing objects that
cannot be observed directly. Thus, we know the existence
of exoplanets only from the perturbing effect which they
have on the position of the star around which they move.
However, for social phenomena the problem of exogenous
factors is much more serious because (i) they may not be
known to observers (ii) even once they are identified it is
very difficult to correct the data in a reliable way. One of
the main pitfalls in the modeling of socio-economic phe-
nomena is to explain them through endogenous mecha-
nisms while they are in fact due to exogenous factors. The
following examples make clear that this difficulty exists for
many phenomena, whether they belong to the financial,
economic or social sphere.

� In their paper of 2005 about consensus formation and
shifts in opinion Michard and Bouchaud confront their
theory to two classes of social phenomena: (i) the dif-
fusion of cell phones (ii) the diffusion of birth rate pat-
terns. In the first case it is clear that advertising cam-
paigns may have played an important role. Of course,
one could argue that these campaigns were part of
the endogenous diffusion process. However, this argu-
ment does not hold for big telecom companies (e. g.
Vodafone) which operate in many countries. In such
cases the decision about the magnitude of the advertis-
ing campaigns are taken by the board of the company
which means that such campaigns can hardly be con-
sidered as endogenous effects. Similarly, birth rates de-
pend upon exogenous factors. For instance the length
of time spent in higher education has an effect on the
average age of marriage and the later has an effect on
birth rates.

� On 21 July 2004 the share price of Converium, a Swiss
reinsurance company listed on the New York Stock
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Exchange dropped 50%. Was this fall the result of an
avalanche effect due to a movement of panic among in-
vestors? In fact, the most likely explanation is that it
was the consequence of a decision taken by the board
of Fidelity International, a major investment fund and
one of the main shareholders of Converium. Indeed in
a statement issued by Converium on August 3, 2004 it
was announced that Fidelity had reduced its holdings
from 9.87% to 3.81%. In other words, it would be com-
pletely irrelevant to explain such a fall through a herd
effect model or through any other endogenous mech-
anism (more details can be found in [8]). Similar con-
clusions apply to corporate stock buybacks, as well as
to mergers, acquisitions, buyouts and takeovers; in all
these cases decisions taken by a few persons (the av-
erage board of directors has nine members) may trig-
ger substantial changes in share prices. How should
such effects be taken into account by stock market
models?

� At the end of 2004 and in the first months of 2005
British housing prices began to decline after having
risen rapidly during several years. Yet after May 2005,
they suddenly began to pick up again at an annual
rate of about 10%. This resurgence was particularly in-
triguing because at the same time US housing prices
began to decline. To what factor should this unex-
pected rise be attributed? Most certainly this was the
market response to a plan introduced by the Chancel-
lor of the Exchequer Gordon Brown in late May (The
EconomistMay 28, 2005). Under this plan which aimed
at propping up house prices new buyers would benefit
from a zero-interest loan for 12% of the price. In ad-
dition, the government would cover all losses incurred
by banks as a result of possible bankruptcies of bor-
rowers (at least so long as prices did not fall by more
than 12%). It appears that the plan indeed propped
up the market. Consequently, in order to confront the
predictions of any model (e. g. see Richmond’s paper
which was published in 2007) with observation the im-
pact of this plan effect must first be taken out of the
picture.

� The same difficulty is also encountered in socio-polit-
ical phenomena. Here is an illustration. On 5 October
2000, in protest against the publication of the results of
the presidential election there was a huge mass demon-
stration in Belgrade which involved thousands of peo-
ple from the provinces who were transported to the
federal capital by hundreds of buses. It clearly showed
that president Milosevic was no longer in control of
the police and army and lead to his retirement from
the political scene. Thus, what NATO air strikes (24

March-11 June 199910) had not been able to achieve
was accomplished by one night of street demonstra-
tions. What was the part of exogenous factors in this
event? Although in many similar cases it is very dif-
ficult to know what really happened, in this specific
case a partial understanding is provided by a long ar-
ticle published in the New York Times11. In this article
we learn that several American organizations belong-
ing to the intelligence network supported, financed and
trained Serbian opposition groups. For instance the ar-
ticle mentions the Albert Einstein Foundation, the In-
ternational Republican Institute, the National Endow-
ment for Democracy, the US Agency for International
Development. Although the amount of the total finan-
cial support is not known, the New York Times article
says that it exceeded $ 28 million. The plan comprised
two facets: the organization of demonstrations on the
one hand and the infiltration of the army and police on
the other hand in order to undermine their loyalty and
convince them to remain passive during the demon-
strations. According to the article this second facet re-
mains classified. With an exogenous interference of
such a magnitude, it would clearly be meaningless to
describe this upheaval as a purely endogenous process.
Moreover, the fact that we have only partial knowledge
about the exogenous forces makes it very difficult (if
not altogether impossible) to come up with a satisfac-
tory description. It should also be noted that the influ-
ence of these groups did not disappear overnight after
October 4, which means that the subsequent history of
Serbiamust also take them into account at least to some
extent.

Future Directions

In this article we have described the challenges and obsta-
cles to which one is confronted in trying to understand so-
cio-economic phenomena. In parallel we have shown that
the econophysics approach has many assets. One of them
which has not yet been mentioned is the fact that econo-
physicists are not subject to the rigid barriers which ex-

10It can be noted that similarly to what would happen in 2003 for
the invasion of Iraq, these air strikes were carried out without the
authorization of the United Nations Security Council.

11New York Times, Sunday 26 November 2000, Magazine Section,
p. 43, 7705 words; the article by Roger Cohen is entitled: “Who re-
ally brought down Milosevic”. What makes this account particularly
convincing is the fact that it was preceded by another article enti-
tled:“US anti-Milosevic plan faces major test at polls” which appeared
on September 23, 2000 (p. 6, 1150 words); this article described the
way Milosevic would be removed from power two weeks before the
events. The article makes clear that the course of events would be the
same no matter what the results of the election would be.
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ist between various fields and subfields of the human sci-
ences. Thus, if it turns out that in order to explain an eco-
nomic phenomena one needs to understand a social effect,
econophysicists would have no problem in shifting from
one field to another. There is another historical chance that
we have not mentioned so far, namely the development of
the Internet. In the past decade 1997–2007 the amount of
information to which one has access has increased tremen-
dously. Electronic catalogs of major libraries or of national
archives, indexes of newspaper, search engines on the In-
ternet, searchable databases of books, all these innovations
contributed to give the researcher easy access to informa-
tion sources that have never been available before. In par-
ticular it has become fairly easy to find cross-national data.
Thus, social scientists and econophysicists are in a better
position than ever for carrying out the kind of compara-
tive studies that we called for in this article.
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Glossary

Probability density P(x) is defined so that the probability
of finding a random variable x in the interval from x to
x C dx is equal to P(x) dx.

Cumulative probability C(x) is defined as the integral
C(x) D R1

x P(x)dx. It gives the probability that the
random variable exceeds a given value x.

The Boltzmann–Gibbs distribution gives the probabil-
ity of finding a physical system in a state with the en-
ergy ". Its probability density is given by the exponen-
tial function (1).

The Gamma distribution has the probability density
given by a product of an exponential function and
a power-law function, as in (9).

The Pareto distribution has the probability density
P(x) / 1/x1C˛ and the cumulative probability
C(x) / 1/x˛ given by a power law. These expres-
sions apply only for high enough values of x and do
not apply for x ! 0.

The Lorenz curve was introduced by American eco-
nomist Max Lorenz to describe income and wealth in-
equality. It is defined in terms of two coordinates x(r)
and y(r) given by (19). The horizontal coordinate x(r)
is the fraction of the population with income below r,
and the vertical coordinate y(r) is the fraction of in-
come this population accounts for. As r changes from 0
to 1, x and y change from 0 to 1, parametrically defin-
ing a curve in the (x; y)-plane.

The Gini coefficient G was introduced by the Italian
statistician Corrado Gini as a measure of inequality in

a society. It is defined as the area between the Lorenz
curve and the straight diagonal line, divided by the area
of the triangle beneath the diagonal line. For perfect
equality (everybody has the same income or wealth)
G D 0, and for total inequality (one person has all in-
come or wealth, and the rest have nothing) G D 1.

The Fokker–Planck equation is the partial differential
equation (22) that describes evolution in time t of the
probability density P(r, t) of a random variable r expe-
riencing small random changes �r during short time
intervals �t. It is also known in mathematical liter-
ature as the Kolmogorov forward equation. The dif-
fusion equation is an example of the Fokker–Planck
equation.

Definition of the Subject

Econophysics is an interdisciplinary research field apply-
ing methods of statistical physics to problems in eco-
nomics and finance. The term “econophysics” was first
introduced by the prominent theoretical physicist Eu-
gene Stanley in 1995 at the conference Dynamics of Com-
plex Systems, which was held in Calcutta (now known as
Kolkata) as a satellite meeting to the STATPHYS-19 con-
ference in China [1,2]. The term appeared in print for
the first time in the paper by Stanley et al. [3] in the
proceedings of the Calcutta conference. The paper pre-
sented a manifesto of the new field, arguing that “behavior
of large numbers of humans (as measured, e. g., by eco-
nomic indices) might conform to analogs of the scaling
laws that have proved useful in describing systems com-
posed of large numbers of inanimate objects” [3]. Soon
the first econophysics conferences were organized: Inter-
national Workshop on Econophysics, Budapest, 1997 and
InternationalWorkshop on Econophysics and Statistical Fi-
nance, Palermo, 1998 [2], and the book An Introduction to
Econophysics [4] was published.

The term “econophysics” was introduced by analogy
with similar terms, such as “astrophysics”, “geophysics”,
and“biophysics”, which describe applications of physics to
different fields. Particularly important is the parallel with
biophysics, which studies living creatures, which still obey
the laws of physics. It should be emphasized that econo-
physics does not literally apply the laws of physics, such
as Newton’s laws or quantum mechanics, to humans, but
rather uses mathematical methods developed in statistical
physics to study statistical properties of complex economic
systems consisting of a large number of humans. So, it may
be considered as a branch of applied theory of probabili-
ties. However, statistical physics is distinctly different from
mathematical statistics in its focus, methods, and results.
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Originating from physics as a quantitative science,
econophysics emphasizes quantitative analysis of large
amounts of economic and financial data, which became
increasingly available with the massive introduction of
computers and the Internet. Econophysics distances it-
self from the verbose, narrative, and ideological style of
political economy and is closer to econometrics in its
focus. Studying mathematical models of a large number
of interacting economic agents, econophysics has much
common ground with the agent-based modeling and
simulation. Correspondingly, it distances itself from the
representative-agent approach of traditional economics,
which, by definition, ignores statistical and heterogeneous
aspects of the economy.

Twomajor directions in econophysics are applications
to finance and economics. Observational aspects are cov-
ered in the article � Econophysics, Observational. The
present article,� Econophysics, Statistical Mechanics Ap-
proach to, concentrates primarily on statistical distribu-
tions of money, wealth, and income among interacting
economic agents.

Another direction related to econophysics has been
advocated by the theoretical physicist Serge Galam since
the early 1980s under the name“sociophysics” [5], with
the first appearance of the term in print in [6]. It echoes
the term physique sociale proposed in the nineteenth cen-
tury by Auguste Comte, the founder of sociology. Un-
like econophysics, the term “sociophysics” did not catch
on when first introduced, but it is coming back with the
popularity of econophysics and active promotion by some
physicists [7,8,9]. While the principles of both fields have
a lot in common, econophysics focuses on the narrower
subject of economic behavior of humans, where more
quantitative data are available, whereas sociophysics stud-
ies a broader range of social issues. The boundary be-
tween econophysics and sociophysics is not sharp, and
the two fields enjoy a good rapport [10]. A more detailed
description of the historical development in presented in
Sect. “Historical Introduction”.

Historical Introduction

Statistical mechanics was developed in the second half of
the nineteenth century by James Clerk Maxwell, Ludwig
Boltzmann, and JosiahWillard Gibbs. These physicists be-
lieved in the existence of atoms and developedmathemati-
cal methods for describing their statistical properties, such
as the probability distribution of velocities of molecules
in a gas (the Maxwell–Boltzmann distribution) and the
general probability distribution of states with different en-
ergies (the Boltzmann–Gibbs distribution). There are in-

teresting connections between the development of statis-
tical physics and statistics of social phenomena, which
were recently brought up by the science journalist Philip
Ball [11,12].

Collection and study of “social numbers”, such as the
rates of death, birth, and marriage, has been growing
progressively since the seventeenth century (see Chap. 3
in [12]). The term “statistics” was introduced in the eigh-
teenth century to denote these studies dealing with the
civil “states”, and its practitioners were called“statists”.
Popularization of social statistics in the nineteenth cen-
tury is particularly accredited to the Belgian astronomer
Adolphe Quetelet. Before the 1850s, statistics was consid-
ered an empirical arm of political economy, but then it
started to transform into a general method of quantitative
analysis suitable for all disciplines. It stimulated physicists
to develop statistical mechanics in the second half of the
nineteenth century.

Rudolf Clausius started development of the kinetic
theory of gases, but it was James Clerk Maxwell who
made a decisive step of deriving the probability distribu-
tion of velocities of molecules in a gas. Historical stud-
ies show (see Chap. 3 in [12]) that, in developing statis-
tical mechanics, Maxwell was strongly influenced and en-
couraged by the widespread popularity of social statistics
at the time. This approach was further developed by Lud-
wig Boltzmann, who was very explicit about its origins (see
p. 69 in [12]):

“The molecules are like individuals, . . . and the
properties of gases only remain unaltered, because
the number of these molecules, which on the aver-
age have a given state, is constant.”

In his book Populäre Schriften from 1905 [13], Boltz-
mann praises JosiahWillard Gibbs for systematic develop-
ment of statistical mechanics. Then, Boltzmann says (cited
from [14]):

“This opens a broad perspective if we do not only
think of mechanical objects. Let’s consider to apply
this method to the statistics of living beings, society,
sociology and so forth.”

(The author is grateful to Michael E. Fisher for bring-
ing this quote to his attention.)

It is worth noting that many now-famous economists
were originally educated in physics and engineering. Vil-
fredo Pareto earned a degree in mathematical sciences and
a doctorate in engineering. Working as a civil engineer,
he collected statistics demonstrating that distributions of
income and wealth in a society follow a power law [15].
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He later became a professor of economics at Lausanne,
where he replaced Léon Walras, also an engineer by edu-
cation. The influential American economist Irving Fisher
was a student of Gibbs. However, most of the mathemat-
ical apparatus transferred to economics from physics was
that of Newtonian mechanics and classical thermodynam-
ics [16]. It culminated in the neoclassical concept of mech-
anistic equilibrium where the “forces” of supply and de-
mand balance each other. Themore general concept of sta-
tistical equilibrium largely eluded mainstream economics.

With time, both physics and economics became more
formal and rigid in their specializations, and the social ori-
gin of statistical physics was forgotten. The situation is well
summarized by Philip Ball (see p. 69 in [12]):

“Today physicists regard the application of statis-
tical mechanics to social phenomena as a new and
risky venture. Few, it seems, recall how the process
originated the other way around, in the days when
physical science and social science were the twin sib-
lings of a mechanistic philosophy and when it was
not in the least disreputable to invoke the habits of
people to explain the habits of inanimate particles”.

Some physicists and economists attempted to connect
the two disciplines during the twentieth century. The the-
oretical physicist Ettore Majorana argued in favor of ap-
plying the laws of statistical physics to social phenom-
ena in a paper published after his mysterious disappear-
ance [17]. The statistical physicist Elliott Montroll co-
authored the book Introduction to Quantitative Aspects of
Social Phenomena [18]. Several economists applied statis-
tical physics to economic problems [19,20,21,22]. An early
attempt to bring together the leading theoretical physicists
and economists at the Santa Fe Institute was not entirely
successful [23]. However, by the late 1990s, the attempts
to apply statistical physics to social phenomena finally co-
alesced into the robust movements of econophysics and
sociophysics, as described in Sect. “Definition of the Sub-
ject”.

The current standing of econophysics within the
physics and economics communities is mixed. Although
an entry on econophysics has appeared in the New Pal-
grave Dictionary of Economics [24], it is fair to say that
econophysics is not accepted yet by mainstream eco-
nomics. Nevertheless, a number of open-minded, nontra-
ditional economists have joined this movement, and the
number is growing. Under these circumstances, econo-
physicists have most of their papers published in physics
journals. The journal Physica A: Statistical Mechanics and
Its Applications emerged as the leader in econophysics

publications and has even attracted submissions from
some bona fide economists. The mainstream physics com-
munity is generally sympathetic to econophysics, although
it is not uncommon for econophysics papers to be re-
jected by Physical Review Letters on the grounds that “it
is not physics”. There are regular conferences on econo-
physics, such as Applications of Physics in Financial Anal-
ysis (sponsored by the European Physical Society), Nikkei
Econophysics Symposium, and Econophysics Colloquium.
Econophysics sessions are included in the annual meet-
ings of physical societies and statistical physics confer-
ences. The overlap with economics is the strongest in the
field of agent-based simulation. Not surprisingly, the con-
ference series WEHIA/ESHIA, which deals with hetero-
geneous interacting agents, regularly includes sessions on
econophysics.

StatisticalMechanics of Money Distribution

When modern econophysics started in the middle of
the 1990s, its attention was primarily focused on anal-
ysis of financial markets. However, three influential pa-
pers [25,26,27], dealing with the subject of money and
wealth distributions, were published in 2000. They started
a new direction that is closer to economics than finance
and created an expanding wave of follow-up publications.
We start reviewing this subject with [25], whose results are
the most closely related to the traditional statistical me-
chanics in physics.

The Boltzmann–Gibbs Distribution of Energy

The fundamental law of equilibrium statistical mechan-
ics is the Boltzmann–Gibbs distribution. It states that the
probability P(") of finding a physical system or subsystem
in a state with the energy " is given by the exponential
function

P(") D ce
�"
T ; (1)

where T is the temperature, and c is a normalizing con-
stant [28]. Here we set the Boltzmann constant kB to unity
by choosing the energy units for measuring the physical
temperature T. Then, the expectation value of any physi-
cal variable x can be obtained as

hxi D
P

k xke
�"k
T

P
k e

�"k
T

; (2)

where the sum is taken over all states of the system. Tem-
perature is equal to the average energy per particle: T 

h"i, up to a numerical coefficient of the order of 1.
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Equation (1) can be derived in different ways [28]. All
derivations involve the two main ingredients: statistical
character of the system and conservation of energy ". One
of the shortest derivations can be summarized as follows.
Let us divide the system into two (generally unequal) parts.
Then, the total energy is the sum of the parts, " D "1 C "2,
whereas the probability is the product of probabilities,
P(") D P("1)P("2). The only solution of these two equa-
tions is the exponential function (1).

A more sophisticated derivation, proposed by Boltz-
mann himself, uses the concept of entropy. Let us consider
N particles with total energy E. Let us divide the energy
axis into small intervals (bins) of width �" and count the
number of particles Nk having energies from "k to "kC�".
The ratio Nk/N D Pk gives the probability for a particle
having the energy "k . Let us now calculate the multiplic-
ity W, which is the number of permutations of the parti-
cles between different energy bins such that the occupation
numbers of the bins do not change. This quantity is given
by the combinatorial formula in terms of the factorials

W D N!
N1!N2!N3! : : :

: (3)

The logarithm of multiplicity of called the entropy S D
lnW . In the limit of large numbers, the entropy per parti-
cle can be written in the following form using the Stirling
approximation for the factorials:

S
N

D �
X

k

Nk

N
ln
�
Nk

N

�

D �
X

k

Pk ln Pk : (4)

Now we would like to find what distribution of particles
between different energy states has the highest entropy,
i. e. the highest multiplicity, provided that the total energy
of the system, E D P

k Nk"k , has a fixed value. Solution
of this problem can be easily obtained using the method of
Lagrange multipliers [28], and the answer gives the expo-
nential distribution (1).

The same result can be derived from the ergodic the-
ory, which says that the many-body system occupies all
possible states of a given total energy with equal probabil-
ities. Then it is straightforward to show [29,30] that the
probability distribution of the energy of an individual par-
ticle is given by (1).

Conservation of Money

The derivations outlined in Sect. “The Boltzmann–Gibbs
Distribution of Energy” are very general and use only the
statistical character of the system and the conservation of
energy. So, one may expect that the exponential Boltz-

mann–Gibbs distribution (1) may apply to other statistical
systems with a conserved quantity.

The economy is a big statistical system with millions of
participating agents, so it is a promising target for applica-
tions of statistical mechanics. Is there a conserved quan-
tity in economy? Drăgulescu and Yakovenko [25] argue
that such a conserved quantity is money m. Indeed, the
ordinary economic agents can only receive money from
and give money to other agents. They are not permitted to
“manufacture” money, e. g., to print dollar bills. When one
agent i pays money�m to another agent j for some goods
or services, themoney balances of the agents change as fol-
lows:

mi ! m0
i D mi ��m ;

mj ! m0
j D mj C�m :

(5)

The total amount of money of the two agents before and
after the transaction remains the same,

mi C mj D m0
i C m0

j ; (6)

i. e., there is a local conservation law for money. The
rule (5) for the transfer of money is analogous to the trans-
fer of energy from one molecule to another in molecular
collisions in a gas, and (6) is analogous to conservation of
energy in such collisions.

Addressing some misunderstandings developed in
economic literature [31,32,33,34], we should emphasize
that, in the model of [25], the transfer of money from
one agent to another happens voluntarily, as a payment
for goods and services in a market economy. However, the
model only keeps track of money flow, and does not keep
track of what kinds of goods and service are delivered. One
reason for this is that many goods, e. g., food and other
supplies, and most services, e. g., getting a haircut or going
to a movie, are not tangible and disappear after consump-
tion. Because they are not conserved and also because they
are measured in different physical units, it is not very prac-
tical to keep track of them. In contrast, money is measured
in the same unit (within a given country with a single cur-
rency) and is conserved in transactions, so it is straightfor-
ward to keep track of money flow.

Unlike ordinary economic agents, a central bank or
a central government can inject money into the economy.
This process is analogous to an influx of energy into a sys-
tem from external sources, e. g., the Earth receives energy
from the Sun. Dealingwith these situations, physicists start
with an idealization of a closed system in thermal equi-
librium and then generalize to an open system subject to
an energy flux. As long as the rate of money influx from
central sources is slow compared with relaxation processes
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in the economy and does not cause hyperinflation, the
system is in quasi-stationary statistical equilibrium with
slowly changing parameters. This situation is analogous to
heating a kettle on a gas stove slowly, where the kettle has
a well-defined, but slowly increasing temperature at any
moment of time.

Another potential problem with conservation of
money is debt. This issue is discussed in more detail in
Sect. “Models with Debt”. As a starting point, Drăgulescu
and Yakovenko [25] first considered simplemodels, where
debt is not permitted. This means that money balances of
agents cannot go below zero: mi � 0 for all i. Transac-
tion (5) takes place only when an agent has enough money
to pay the price,mi � �m, otherwise the transaction does
not take place. If an agent spends all the money, the bal-
ance drops to zero mi D 0, so the agent cannot buy any
goods from other agents. However, this agent can still pro-
duce goods or services, sell them to other agents, and re-
ceive money for them. In real life, cash balance dropping
to zero is not at all unusual for people who live from pay-
check to paycheck.

The conservation law is the key feature for the suc-
cessful functioning of money. If the agents were permitted
to “manufacture” money, they would be printing money
and buying all goods for nothing, which would be a dis-
aster. The physical medium of money is not essential, as
long as the conservation law is enforced. Money may be in
the form of paper cash, but today it is more often repre-
sented by digits in computerized bank accounts. The con-
servation law is the fundamental principle of accounting,
whether in the single-entry or in the double-entry form.
More discussion of banks and debt is given in Sect. “Mod-
els with Debt”.

The Boltzmann–Gibbs Distribution of Money

Having recognized the principle of money conservation,
Drăgulescu and Yakovenko [25] argued that the stationary
distribution of money should be given by the exponential
Boltzmann–Gibbs function analogous to (1):

P(m) D ce
�m
Tm : (7)

Here c is a normalizing constant, and Tm is the “money
temperature”, which is equal to the average amount of
money per agent: T D hmi D M/N , whereM is the total
money, and N is the number of agents.

To verify this conjecture, Drăgulescu and Yako-
venko [25] performed agent-based computer simulations
of money transfers between agents. Initially all agents were
given the same amount of money, say, $ 1000. Then, a pair
of agents (i, j) were randomly selected, the amount �m

Econophysics, Statistical Mechanics Approach to, Figure 1
Stationary probability distribution of money P(m) obtained in
agent-based computer simulations. Solid curves: fits to the Boltz-
mann–Gibbs law (7). Vertical lines: the initial distribution of
money. (Reproduced from [25])

was transferred from one agent to another, and the process
was repeated many times. Time evolution of the probabil-
ity distribution of money P(m) can be seen in computer
animation videos at the Web pages [35,36]. After a transi-
tory period, money distribution converges to the station-
ary form shown in Fig. 1. As expected, the distribution is
very well fitted by the exponential function (7).

Several different rules for�m were considered in [25].
In one model, the amount transferred was fixed to a con-
stant �m D 1$. Economically, it means that all agents
were selling their products for the same price �m D 1$.
Computer animation [35] shows that the initial distri-
bution of money first broadens to a symmetric, Gaus-
sian curve, characteristic for a diffusion process. Then, the
distribution starts to pile up around the m D 0 state,
which acts as the impenetrable boundary, because of the
imposed condition m � 0. As a result, P(m) becomes
skewed (asymmetric) and eventually reaches the station-
ary exponential shape, as shown in Fig. 1. The bound-
ary at m D 0 is analogous to the ground-state energy in
statistical physics. Without this boundary condition, the
probability distribution of money would not reach a sta-
tionary state. Computer animation [35,36] also shows how
the entropy of money distribution, defined as S/N D
�Pk P(mk ) ln P(mk ), grows from the initial value S D 0,
when all agents have the same money, to the maximal
value at the statistical equilibrium.

While the model with �m D 1 is very simple and in-
structive, it is not very realistic, because all prices are taken
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to be the same. In another model considered in [25], �m
in each transaction is taken to be a random fraction of the
average amount of money per agent, i. e.,�m D �(M/N),
where � is a uniformly distributed random number be-
tween 0 and 1. The random distribution of �m is sup-
posed to represent the wide variety of prices for different
products in the real economy. It reflects the fact that agents
buy and consume many different types of products, some
of them simple and cheap, some sophisticated and ex-
pensive. Moreover, different agents like to consume these
products in different quantities, so there is variation in the
amounts�m paid, even though the unit price of the same
product is constant. Computer simulation of this model
produces exactly the same stationary distribution (7) as in
the first model. Computer animation for this model is also
available on the Web page [35].

The final distribution is universal despite different
rules for �m. To amplify this point further, Drăgulescu
and Yakovenko [25] also considered a toy model, where
�m was taken to be a random fraction of the average
amount of money of the two agents:�m D �(mi Cmj)/2.
This model produced the same stationary distribution (7)
as the other two models.

The pairwise models of money transfer are attrac-
tive in their simplicity, but they represent a rather prim-
itive market. The modern economy is dominated by big
firms, which consist of many agents, so Drăgulescu and
Yakovenko [25] also studied a model with firms. One
agent at a time is appointed to become a “firm”. The firm
borrows capital K from another agent and returns it with
interest hK, hires L agents and pays them wagesW, man-
ufactures Q items of a product, sells them to Q agents at
price R, and receives profit F D RQ�LW�hK. All of these
agents are randomly selected. The parameters of themodel
are optimized following a procedure from economics text-
books [37]. The aggregate demand–supply curve for the
product is used in the form R(Q) D v/Q	 , where Q is the
quantity consumers would buy at price R, and � and v are
some parameters. The production function of the firm has
the traditional Cobb–Douglas form: Q(L;K) D L
K1�
,
where � is a parameter. Then the profit of the firm F is
maximized with respect to K and L. The net result of the
firm activity is a many-body transfer of money, which still
satisfies the conservation law. Computer simulation of this
model generates the same exponential distribution (7), in-
dependently of the model parameters. The reasons for the
universality of the Boltzmann–Gibbs distribution and its
limitations are discussed from a different perspective in
Sect. “Additive Versus Multiplicative Models”.

Well after paper [25] appeared, Italian econophysi-
cists [38] found that similar ideas had been published

earlier in obscure journals in Italian by Eleonora Ben-
nati [39,40]. They proposed calling these models the Ben-
nati–Drăgulescu–Yakovenko game [41]. The Boltzmann
distribution was independently applied to social sciences
by Jürgen Mimkes using the Lagrange principle of maxi-
mization with constraints [42,43]. The exponential distri-
bution of money was also found in [44] using a Markov
chain approach to strategic market games. A long time
ago, Benoit Mandelbrot observed (see p. 83 in [45]):

“There is a great temptation to consider the ex-
changes of money which occur in economic interac-
tion as analogous to the exchanges of energy which
occur in physical shocks between gas molecules”.

He realized that this process should result in the expo-
nential distribution, by analogy with the barometric dis-
tribution of density in the atmosphere. However, he dis-
carded this idea, because it does not produce the Pareto
power law, and proceeded to study the stable Lévy dis-
tributions. Ironically, the actual economic data, discussed
in Sect. “Empirical Data on Money and Wealth Distribu-
tions” and “Empirical Data on Income Distribution”, do
show the exponential distribution for the majority of the
population. Moreover, the data have finite variance, so the
stable Lévy distributions are not applicable because of their
infinite variance.

Models with Debt

Now let us discuss how the results change when debt is
permitted. Debt may be considered as negative money.
When an agent borrows money from a bank (considered
here as a big reservoir of money), the cash balance of the
agent (positive money) increases, but the agent also ac-
quires a debt obligation (negative money), so the total bal-
ance (net worth) of the agent remains the same, and the
conservation law of total money (positive and negative)
is satisfied. After spending some cash, the agent still has
the debt obligation, so the money balance of the agent be-
comes negative. Any stable economic system must have
a mechanism preventing unlimited borrowing and unlim-
ited debt. Otherwise, agents can buy any products without
producing anything in exchange by simply going into un-
limited debt. The exact mechanisms of limiting debt in the
real economy are complicated and obscured. Drăgulescu
and Yakovenko [25] considered a simple model where the
maximal debt of any agent is limited by a certain amount
md. This means that the boundary condition mi � 0
is now replaced by the condition mi � �md for all
agents i. Setting interest rates on borrowed money to be
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Econophysics, Statistical Mechanics Approach to, Figure 2
Stationary distributions of money with and without debt. The
debt is limited tomd D 800. Solid curves: fits to the Boltzmann–
Gibbs laws with the “temperatures” T D 1800 and T D 1000.
(Reproduced from [25])

zero for simplicity, Drăgulescu and Yakovenko [25] per-
formed computer simulations of the models described in
Sect. “The Boltzmann–Gibbs Distribution of Money” with
the new boundary condition. The results are shown in
Fig. 2. Not surprisingly, the stationary money distribu-
tion again has an exponential shape, but now with the new
boundary condition at m D �md and the higher money
temperature Td D md C M/N . By allowing agents to go
into debt up to md, we effectively increase the amount of
money available to each agent by md. So, the money tem-
perature, which is equal to the average amount of effec-
tively available money per agent, increases. A model with
nonzero interest rates was also studied in [25].

We see that debt does not violate the conservation law
of money, but rather modifies boundary conditions for
P(m). When economics textbooks describe how “banks
create money” or “debt creates money” [37], they count
only positive money (cash) as money, but do not count li-
abilities (debt obligations) as negative money. With such
a definition, money is not conserved. However, if we in-
clude debt obligations in the definition of money, then
the conservation law is restored. This approach is in
agreement with the principles of double-entry accounting,
which records both assets and debts. Debt obligations are
as real as positive cash, as many borrowers painfully real-
ized in their experience. A more detailed study of positive
and negative money and bookkeeping from the point of
view of econophysics is presented in a series of papers by
the physicist Dieter Braun [46,47,48].

Econophysics, Statistical Mechanics Approach to, Figure 3
The stationary distribution of money for the required reserve ra-
tio r D 0:8. The distribution is exponential for positive and neg-
ative money with different “temperatures” TC and T� , as illus-
trated by the inset on log–linear scale. (Reproduced from [49])

One way of limiting the total debt in the economy is
the so-called required reserve ratio r [37]. Every bank is
required by law to set aside a fraction r of the money de-
posited with the bank, and this reserved money cannot be
loaned further. If the initial amount of money in the sys-
tem (the money base) is M0, then with loans and borrow-
ing the total amount of positive money available to the
agents increases to M D M0/r, where the factor 1/r is
called the money multiplier [37]. This is how “banks cre-
ate money”. Where does this extra money come from? It
comes from the increase of the total debt in the system.
The maximal total debt is equal to D D M0/r � M0 and
is limited by the factor r. When the debt is maximal, the
total amounts of positive,M0/r, and negative,M0(1� r)/r,
money circulate between the agents in the system, so there
are effectively two conservation laws for each of them [49].
Thus, we expect to see the exponential distributions of
positive and negative money characterized by two differ-
ent temperatures: TC D M0/rN and T� D M0(1 � r)/rN .
This is exactly what was found in computer simulations
in [49], shown in Fig. 3. Similar two-sided distributions
were also found in [47].

Proportional Money Transfers and Saving Propensity

In the models of money transfer considered thus far, the
transferred amount �m is typically independent of the
money balances of agents. A different model was intro-
duced in the physics literature earlier [50] under the name
multiplicative asset exchangemodel. This model also satis-
fies the conservation law, but the amount of money trans-
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Econophysics, Statistical Mechanics Approach to, Figure 4
Stationary probability distribution of money in the multiplica-
tive random exchange model (8) for � D 1/3. Solid curve: the
exponential Boltzmann–Gibbs law. (Reproduced from [25])

ferred is a fixed fraction � of the payer’s money in (5):

�m D �mi : (8)

The stationary distribution of money in this model, shown
in Fig. 4 with an exponential function, is close, but not ex-
actly equal, to the Gamma distribution:

P(m) D cmˇ e
�m
T : (9)

Equation (9) differs from (7) by the power-law prefactor
mˇ . From the Boltzmann kinetic equation (discussed in
more detail in Sect. “Additive Versus Multiplicative Mod-
els”), Ispolatov et al. [50] derived a formula relating the
parameters � and ˇ in (8) and (9):

ˇ D �1 � ln 2
ln(1 � � )

: (10)

When payers spend a relatively small fraction of their
money � < 1/2, (10) gives ˇ > 0, so the low-money pop-
ulation is reduced and P(m ! 0) D 0, as shown in Fig. 4.

Later, Thomas Lux brought to the attention of physi-
cists [32] that essentially the same model, called the in-
equality process, had been introduced and studied much
earlier by the sociologist John Angle [51,52,53,54,55], see
also the review [56] for additional references. While Ispo-
latov et al. [50] did not give much justification for the pro-
portionality law (8), Angle [51] connected this rule with
the surplus theory of social stratification [57], which ar-
gues that inequality in human society develops when peo-
ple can produce more than necessary for minimal subsis-

tence. This additional wealth (surplus) can be transferred
from original producers to other people, thus generating
inequality. In the first paper by Angle [51], the parameter �
was randomly distributed, and another parameter, ı, gave
a higher probability of winning to the agent with a higher
money balance in (5). However, in the following papers, he
simplified the model to a fixed � (denoted as ! by Angle)
and equal probabilities of winning for higher- and lower-
balance agents, which makes it completely equivalent to
the model of [50]. Angle also considered a model [55,56]
where groups of agents have different values of � , simulat-
ing the effect of education and other “human capital”. All
of these models generate a Gamma-like distribution, well
approximated by (9).

Another model with an element of proportionality
was proposed in [26]. (This paper originally appeared as
a follow-up preprint cond-mat/0004256 to the preprint
cond-mat/0001432 of [25].) In this model, the agents set
aside (save) some fraction of their money �mi , whereas
the rest of their money balance (1 � �)mi becomes avail-
able for random exchanges. Thus, the rule of exchange (5)
becomes

m0
i D �mi C �(1 � �)(mi C mj) ;

m0
j D �mj C (1 � �)(1 � �)(mi C mj) :

(11)

Here the coefficient � is called the saving propensity, and
the random variable � is uniformly distributed between 0
and 1. It was pointed out in [56] that, by the change of
notation � ! (1 � � ), (11) can be transformed to the
same form as (8), if the random variable � takes only dis-
crete values 0 and 1. Computer simulations [26] of the
model (11) found a stationary distribution close to the
Gamma distribution (9). It was shown that the parame-
ter ˇ is related to the saving propensity � by the formula
ˇ D 3�/(1 � �) [38,58,59,60]. For � ¤ 0, agents always
keep some money, so their balances never go to zero and
P(m ! 0) D 0, whereas for � D 0 the distribution be-
comes exponential.

In the subsequent papers by the Kolkata school [1]
and related papers, the case of random saving propensity
was studied. In these models, the agents are assigned ran-
dom parameters � drawn from a uniform distribution be-
tween 0 and 1 [61]. It was found that this model produces
a power-law tail P(m) / 1/m2 at high m. The reasons
for stability of this law were understood using the Boltz-
mann kinetic equation [60,62,63], but most elegantly in
the mean-field theory [64]. The fat tail originates from the
agents whose saving propensity is close to 1, who hoard
money and do not give it back [38,65]. An interesting ma-
trix formulation of the problem was presented in [66].
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Patriarca et al. [67] studied the relaxation rate in the
money transfer models. Drăgulescu and Yakovenko [25]
studied a model with taxation, which also has an element
of proportionality. TheGamma distribution was also stud-
ied for conservativemodels within a simple Boltzmann ap-
proach in [68] and using much more complicated rules of
exchange in [69,70].

Additive Versus Multiplicative Models

The stationary distribution of money (9) for the models of
Sect. “Proportional Money Transfers and Saving Propen-
sity” is different from the simple exponential formula (7)
found for the models of Sect. “The Boltzmann–Gibbs Dis-
tribution of Money”. The origin of this difference can be
understood from the Boltzmann kinetic equation [28,71].
This equation describes time evolution of the distribution
function P(m) due to pairwise interactions:

dP(m)
dt

D
“

˚� f[m;m0]![m��;m0C�]P(m)P(m0)

C f[m��;m0C�]![m;m0]P(m ��) � P(m0 C�)
�
dm0d� :

(12)

Here f[m;m0]![m��;m0C�] is the probability of transfer-
ring money � from an agent with money m to an agent
with money m0 per unit time. This probability, multi-
plied by the occupation numbers P(m) and P(m0), gives
the rate of transitions from the state [m,m0] to the state
[m��;m0 C�]. The first term in (12) gives the depopula-
tion rate of the statem. The second term in (12) describes
the reverse process, where the occupation number P(m)
increases. When the two terms are equal, the direct and
reverse transitions cancel each other statistically, and the
probability distribution is stationary: dP(m)/dt D 0. This
is the principle of detailed balance.

In physics, the fundamental microscopic equations of
motion of particles obey time-reversal symmetry. This
means that the probabilities of the direct and reverse pro-
cesses are exactly equal:

f[m;m0]![m��;m0C�] D f[m��;m0C�]![m;m0] : (13)

When (13) is satisfied, the detailed balance condition
for (12) reduces to the equation P(m)P(m0) D P(m �
�)P(m0 C �), because the factors f cancel out. The
only solution of this equation is the exponential function
P(m) D c exp(�m/Tm ), so the Boltzmann–Gibbs distri-
bution is the stationary solution of the Boltzmann kinetic
equation (12). Notice that the transition probabilities (13)
are determined by the dynamical rules of the model, but
the equilibrium Boltzmann–Gibbs distribution does not

depend on the dynamical rules at all. This is the origin
of the universality of the Boltzmann–Gibbs distribution.
It shows that it may be possible to find out the station-
ary distribution without knowing details of the dynamical
rules (which are rarely known very well), as long as the
symmetry condition (13) is satisfied.

The models considered in Sect. “The Boltzmann–
Gibbs Distribution of Money” have the time-reversal sym-
metry. The model with the fixed money transfer � has
equal probabilities (13) of transferring money from an
agent with balancem to an agent with balancem0 and vice
versa. This is also true when � is random, as long as the
probability distribution of � is independent of m and m0.
Thus, the stationary distribution P(m) is always exponen-
tial in these models.

However, there is no fundamental reason to expect
time-reversal symmetry in economics, so (13) may be not
valid. In this case, the system may have a nonexponen-
tial stationary distribution or no stationary distribution
at all. In model (8), the time-reversal symmetry is bro-
ken. Indeed, when an agent i gives a fixed fraction � of
his money mi to an agent with balance mj , their balances
become (1 � � )mi and mj C �mi . If we try to reverse
this process and appoint an agent j to be the payer and
to give the fraction � of her money, � (mj C �mi ), to
agent i, the system does not return to the original configu-
ration [mi ,mj]. As emphasized by Angle [56], the payer
pays a deterministic fraction of his money, but the re-
ceiver receives a random amount from a random agent,
so their roles are not interchangeable. Because the propor-
tional rule typically violates the time-reversal symmetry,
the stationary distribution P(m) in multiplicative mod-
els is typically not exactly exponential.1Making the trans-
fer dependent on the money balance of the payer effec-
tively introduces a Maxwell’s demon into the model. That
is why the stationary distribution is not exponential, and,
thus, does not maximize entropy (4). Another view on
the time-reversal symmetry in economic dynamics is pre-
sented in [72].

These examples show that the Boltzmann–Gibbs dis-
tribution does not hold for any conservative model. How-
ever, it is universal in a limited sense. For a broad class
of models that have time-reversal symmetry, the station-
ary distribution is exponential and does not depend on the
details of the model. Conversely, when the time-reversal
symmetry is broken, the distribution may depend on the
details of the model. The difference between these two

1However, when �m is a fraction of the total money mi C mj of
the two agents, the model is time-reversible and has an exponential
distribution, as discussed in Sect. “The Boltzmann–Gibbs Distribu-
tion of Money”.
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classes of models may be rather subtle. Deviations from
the Boltzmann–Gibbs law may occur only if the tran-
sition rates f in (13) explicitly depend on the agent’s
moneym orm0 in an asymmetricmanner. Drăgulescu and
Yakovenko [25] performed a computer simulation where
the direction of payment was randomly selected in ad-
vance for every pair of agents (i, j). In this case, money
flows along directed links between the agents: i ! j !
k, and the time-reversal symmetry is strongly violated.
This model is closer to the real economy, where one typ-
ically receives money from an employer and pays it to
a grocery store. Nevertheless, the Boltzmann–Gibbs dis-
tribution was found in this model, because the transition
rates f do not explicitly depend on m and m0 and do not
violate (13).

In the absence of detailed knowledge of real micro-
scopic dynamics of economic exchanges, the semiuniver-
sal Boltzmann–Gibbs distribution (7) is a natural starting
point. Moreover, the assumption of [25] that agents pay
the same prices �m for the same products, independent
of their money balances m, seems very appropriate for
themodern anonymous economy, especially for purchases
over the Internet. There is no particular empirical evidence
for the proportional rules (8) or (11). However, the differ-
ence between the additive (7) and multiplicative (9) distri-
butions may be not so crucial after all. From the mathe-
matical point of view, the difference is in the implemen-
tation of the boundary condition at m D 0. In the addi-
tive models of Sect. “The Boltzmann–Gibbs Distribution
of Money”, there is a sharp cutoff of P(m) at m D 0.
In the multiplicative models of Sect. “Proportional Money
Transfers and Saving Propensity”, the balance of an agent
never reaches m D 0, so P(m) vanishes at m ! 0 in
a power-lawmanner. At the same time, P(m) decreases ex-
ponentially for largem for both models.

By further modifying the rules of money transfer and
introducing more parameters in the models, one can ob-
tain even more complicated distributions [73]. However,
one can argue that parsimony is the virtue of a good math-
ematical model, not the abundance of additional assump-
tions and parameters, whose correspondence to reality is
hard to verify.

StatisticalMechanics ofWealth Distribution

In the econophysics literature on exchange models, the
terms “money” and “wealth” are often used interchange-
ably; however, economists emphasize the difference be-
tween these two concepts. In this section, we review the
models of wealth distribution, as opposed to money distri-
bution.

Models with a Conserved Commodity

What is the difference between money and wealth? One
can argue [25] that wealthwi is equal to moneymi plus the
other property that an agent i has. The latter may include
durable material property, such as houses and cars, and fi-
nancial instruments, such as stocks, bonds, and options.
Money (paper cash, bank accounts) is generally liquid and
countable. However, the other property is not immediately
liquid and has to be sold first (converted into money) to be
used for other purchases. In order to estimate the mone-
tary value of property, one needs to know the price p. In
the simplest model, let us consider just one type of prop-
erty, say, stocks s. Then the wealth of an agent i is given by
the formula

wi D mi C psi : (14)

It is assumed that the price p is common for all agents and
is established by some kind of market process, such as an
auction, and may change in time.

It is reasonable to start with amodel where both the to-
tal money M D P

i mi and the total stock S D P
i si are

conserved [74,75,76]. The agents pay money to buy stock
and sell stock to get money, and so on. Although M and
S are conserved, the total wealth W D P

i wi is gener-
ally not conserved, because of the price fluctuation [75]
in (14). This is an important difference from the money
transfer models of Sect. “Statistical Mechanics of Money
Distribution”. Here the wealth wi of an agent i, not partic-
ipating in any transactions, may change when transactions
between other agents establish a new price p. Moreover,
the wealth wi of an agent i does not change after a transac-
tion with an agent j. Indeed, in exchange for payingmoney
�m, agent i receives the stock �s D �m/p, so her to-
tal wealth (14) remains the same. In principle, the agent
can instantaneously sell the stock back at the same price
and recover the money paid. If the price p never changes,
then the wealth wi of each agent remains constant, despite
transfers of money and stock betweenagents.

We see that redistribution of wealth in this model
is directly related to price fluctuations. One mathemat-
ical model of this process was studied in [77]. In this
model, the agents randomly change preferences for the
fraction of their wealth invested in stocks. As a result, some
agents offer stock for sale and some want to buy it. The
price p is determined from the market-clearing auction
matching supply and demand. Silver et al. [77] demon-
strated in computer simulations and proved analytically
using the theory of Markov processes that the station-
ary distribution P(w) of wealth w in this model is given
by the Gamma distribution, as in (9). Various modifi-
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cations of this model [32], such as introducing monop-
olistic coalitions, do not change this result significantly,
which shows the robustness of the Gamma distribution.
For models with a conserved commodity, Chatterjee and
Chakrabarti [75] found the Gamma distribution for a fixed
saving propensity and a power law tail for a distributed
saving propensity.

Another model with conserved money and stock was
studied in [78] for an artificial stock market where traders
follow different investment strategies: random, momen-
tum, contrarian, and fundamentalist. Wealth distribu-
tion in the model with random traders was found have
a power-law tail P(w) 
 1/w2 for large w. However, un-
like in most other simulation, where all agents initially
have equal balances, here the initial money and stock
balances of the agents were randomly populated accord-
ing to a power law with the same exponent. This raises
the question whether the observed power-law distribution
of wealth is an artifact of the initial conditions, because
equilibrization of the upper tail may take a very long sim-
ulation time.

Models with Stochastic Growth of Wealth

Although the total wealth W is not exactly conserved in
the models considered in Sect. “Models with a Conserved
Commodity”, W nevertheless remains constant on aver-
age, because the total moneyM and stock S are conserved.
A different model for wealth distribution was proposed
in [27]. In this model, time evolution of the wealth wi of
an agent i is given by the stochastic differential equation

dwi

dt
D �i (t)wi C

X

j(¤i)

Ji jw j �
X

j(¤i)

J jiwi ; (15)

where �i(t) is a Gaussian random variable with mean h�i
and variance 2�2. This variable represents growth or loss
of wealth of an agent due to investment in stock mar-
ket. The last two terms describe transfer of wealth be-
tween different agents, which is taken to be proportional
to the wealth of the payers with the coefficients Ji j . So,
the model (15) is multiplicative and invariant under the
scale transformation wi ! Zwi . For simplicity, the ex-
change fractions are taken to be the same for all agents:
Ji j D J/N for all i ¤ j, where N is the total number of
agents. In this case, the last two terms in (15) can be writ-
ten as J(hwi � wi ), where hwi D P

i wi /N is the aver-
age wealth per agent. This case represents a “mean-field”
model, where all agents feel the same environment. It can
be easily shown that the average wealth increases in time
as hwit D hwi0e(h	iC�2)t . Then, it makes more sense to

consider the relative wealth w̃i D wi /hwit . Equation (15)
for this variable becomes

dw̃i

dt
D (�i (t) � h�i � �2)w̃i C J(1 � w̃i) : (16)

The probability distribution P(w̃; t) for the stochastic dif-
ferential equation (16) is governed by the Fokker–Planck
equation:

@P
@t

D @[J(w̃ � 1) C �2w̃]P
@w̃

C�2
@

@w̃

�

w̃
@(w̃P)
@w̃

�

: (17)

The stationary solution (@P/@t D 0) of this equation is
given by the following formula:

P(w̃) D c
e

�J
�2 w̃

w̃
2CJ
�2

: (18)

The distribution (18) is quite different from the Boltz-
mann–Gibbs (7) and Gamma (9) distributions. Equa-
tion (18) has a power-law tail at large w̃ and a sharp cut-
off at small w̃. Equation (15) is a version of the generalized
Lotka–Volterra model, and the stationary distribution (18)
was also obtained in [79,80]. The model was generalized to
include negative wealth in [81].

Bouchaud and Mézard [27] used the mean-field ap-
proach. A similar result was found for a model with pair-
wise interaction between agents in [82]. In this model,
wealth is transferred between the agents using the propor-
tional rule (8). In addition, the wealth of the agents in-
creases by the factor 1 C � in each transaction. This fac-
tor is supposed to reflect creation of wealth in economic
interactions. Because the total wealth in the system in-
creases, it makes sense to consider the distribution of rela-
tive wealth P(w̃). In the limit of continuous trading, Slan-
ina [82] found the same stationary distribution (18). This
result was reproduced using a mathematically more in-
volved treatment of this model in [83]. Numerical simula-
tions of the models with stochastic noise � in [69,70] also
found a power-law tail for large w.

Let us contrast the models discussed in Sect. “Models
with a Conserved Commodity” and “Models with Stochas-
tic Growth of Wealth”. In the former case, where money
and commodity are conserved and wealth does not grow,
the distribution of wealth is given by the Gamma distri-
bution with an exponential tail for large w. In the latter
models, wealth grows in time exponentially, and the distri-
bution of relative wealth has a power-law tail for large w̃.
These results suggest that the presence of a power-law tail
is a nonequilibrium effect that requires constant growth or
inflation of the economy, but disappears for a closed sys-
tem with conservation laws.
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Reviews of the models discussed were also given
in [84,85]. Because of lack of space, we omit discus-
sion of models with wealth condensation [27,50,86,87,88],
where a few agents accumulate a finite fraction of the
total wealth, and studies of wealth distribution on net-
works [89,90,91,92]. Here we discuss the models with
long-range interaction, where any agent can exchange
money and wealth with any other agent. A local model,
where agents trade only with the nearest neighbors, was
studied in [93].

Empirical Data on Money andWealth Distributions

It would be very interesting to compare theoretical re-
sults for money and wealth distributions in various mod-
els with empirical data. Unfortunately, such empirical data
are difficult to find. Unlike income, which is discussed in
Sect. “Data and Models for Income Distribution”, wealth
is not routinely reported by the majority of individuals to
the government. However, in many countries, when a per-
son dies, all assets must be reported for the purpose of
inheritance tax. So, in principle, there exist good statis-
tics of wealth distribution among dead people, which, of
course, is different from the wealth distribution among
living people. Using an adjustment procedure based on
the age, gender, and other characteristics of the deceased,
the UK tax agency, the Inland Revenue, reconstructed
the wealth distribution of the whole population of the
UK [94]. Figure 5 shows the UK data for 1996 reproduced
from [95]. The figure shows the cumulative probability
C(w) D R1

w P(w0)dw0 as a function of the personal net
wealth w, which is composed of assets (cash, stocks, prop-
erty, household goods, etc.) and liabilities (mortgages and
other debts). Because statistical data are usually reported at
nonuniform intervals of w, it is more practical to plot the
cumulative probability distribution C(w) rather than its
derivative, the probability density P(w). Fortunately, when
P(w) is an exponential or a power-law function, then C(w)
is also an exponential or a power-law function.

The cumulative probability distribution in Fig. 5 is
plotted on a log–log scale, where a straight line represents
a power-law dependence. The figure shows that the dis-
tribution follows a power law C(w) / 1/w˛ with expo-
nent ˛ D 1:9 for wealth greater than about £100,000. The
inset in Fig. 5 shows the data on log–linear scale, where
the straight line represents an exponential dependence.
We observe that below £100,000 the data are well fitted
by the exponential distribution C(w) / exp(�w/Tw ) with
the effective “wealth temperature” Tw D £60,000, (which
corresponds to the median wealth of £41,000). So, the dis-
tribution of wealth is characterized by the Pareto power

Econophysics, Statistical Mechanics Approach to, Figure 5
Cumulative probability distribution of net wealth in the UK
shown on log–log and log–linear (inset) scales. Points represent
the data from the Inland Revenue, and solid lines are fits to the
exponential (Boltzmann–Gibbs) and power (Pareto) laws. (Re-
produced from [95])

law in the upper tail of the distribution and the exponen-
tial Boltzmann–Gibbs law in the lower part of the distribu-
tion for the great majority (about 90%) of the population.
Similar results are found for the distribution of income,
as discussed in Sect. “Data and Models for Income Dis-
tribution”. One may speculate that the wealth distribution
in the lower part is dominated by distribution of money,
because the corresponding people do not have other sig-
nificant assets, so the results of Sect. “Statistical Mechan-
ics ofMoney Distribution” give the Boltzmann–Gibbs law.
On the other hand, the upper tail of the wealth distribu-
tion is dominated by investment assess, where the results
of Sect. “Models with Stochastic Growth of Wealth” give
the Pareto law. The power law was studied by many re-
searchers for the upper-tail data, such as the Forbes list of
the 400 richest people [96,97], but much less attention was
paid to the lower part of the wealth distribution. Curiously,
Abdul-Magd [98] found that the wealth distribution in an-
cient Egyptian society was consistent with (18).

For direct comparison with the results of Sect. “Statis-
tical Mechanics of Money Distribution”, it would be very
interesting to find data on the distribution of money, as
opposed to the distribution of wealth.Making a reasonable
assumption that most people keep most of their money
in banks, one can approximate the distribution of money
by the distribution of balances on bank accounts. (Bal-
ances on all types of bank accounts, such as checking, sav-
ing, and money manager, associated with the same person
should be added up.) Despite imperfections (people may



Econophysics, Statistical Mechanics Approach to 259

have accounts with different banks or not keep all their
money in banks), the distribution of balances on bank ac-
counts would give valuable information about the distri-
bution of money. The data for a big enough bank would be
representative of the distribution in the whole economy.
Unfortunately, it has not been possible to obtain such data
thus far, even though it would be completely anonymous
and not compromise the privacy of bank clients.

Measuring the probability distribution of money
would be very useful, because it determines how much
people can, in principle, spend on purchases without going
into debt. This is different from the distribution of wealth,
where the property component, such as house, car, or re-
tirement investment, is effectively locked up and, in most
cases, is not easily available for consumer spending. So, al-
though wealth distribution may reflect the distribution of
economic power, the distribution of money is more rele-
vant for consumption. Money distribution can be useful
for determining prices that maximize revenue of a manu-
facturer [25]. If a price p is set too high, few people can
afford it, and, if a price is too low, the sales revenue is
small, so the optimal price must be in-between. The frac-
tion of the population who can afford to pay the price p
is given by the cumulative probability C(p), so the total
sales revenue is proportional to pC(p). For the exponential
distribution C(p) D exp(�p/Tm ), the maximal revenue
is achieved at p D Tm , i. e., at the optimal price equal to
the average amount of money per person [25]. Indeed, the
prices of mass-market consumer products, such as com-
puters, electronics goods, and appliances, remain stable for
many years at a level determined by their affordability to
the population, whereas the technical parameters of these
products at the same price level improve dramatically ow-
ing to technological progress.

Data andModels for IncomeDistribution

In contrast to money and wealth distributions, a lot more
empirical data are available for the distribution of income r
from tax agencies and population surveys. In this section,
we first present empirical data on income distribution and
then discuss theoretical models.

Empirical Data on Income Distribution

Empirical studies of income distribution have a long his-
tory in the economics literature [99,100,101]. Following
the work by Pareto [15], much attention was focused
on the power-law upper tail of the income distribution
and less on the lower part. In contrast to more compli-
cated functions discussed in the literature, Drăgulescu and
Yakovenko [102] introduced a new idea by demonstrating

Econophysics, Statistical Mechanics Approach to, Figure 6
Cumulative probability distribution of tax returns for USA in
1997 shown on log–log and log–linear (inset) scales. Points rep-
resent the Internal Revenue Service (IRS) data, and solid lines are
fits to the exponential and power-law functions. (Reproduced
from [103])

that the lower part of income distribution can be well fitted
with a simple exponential function P(r) D c exp(�r/Tr )
characterized by just one parameter, the “income tem-
perature” Tr . Then it was recognized that the whole in-
come distribution can be fitted by an exponential func-
tion in the lower part and a power-law function in the
upper part [95,103], as shown in Fig. 6. The straight line
on the log–linear scale in the inset of Fig. 6 demonstrates
the exponential Boltzmann–Gibbs law, and the straight
line on the log–log scale in the main panel illustrates the
Pareto power law. The fact that income distribution con-
sists of two distinct parts reveals the two-class structure
of American society [104,105]. Coexistence of the expo-
nential and power-law distributions is known in plasma
physics and astrophysics, where they are called the “ther-
mal” and “superthermal”parts [106,107,108]. The bound-
ary between the lower and upper classes can be defined as
the intersection point of the exponential and power-law
fits in Fig. 6. For 1997, the annual income separating the
two classes was about $120,000. About 3% of the popula-
tion belonged to the upper class, and 97% belonged to the
lower class.

Silva and Yakovenko [105] studied time evolution of
income distribution in the USA during 1983–2001 on the
basis of data from the Internal Revenue Service (IRS), the
government tax agency. The structure of the income distri-
bution was found to be qualitatively the same for all years,
as shown in Fig. 7. The average income in nominal dol-
lars approximately doubled during this time interval. So,
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Econophysics, Statistical Mechanics Approach to, Figure 7
Cumulative probability distribution of tax returns plotted on log–log scale versus r/Tr (the annual income r normalized by the aver-
age income Tr in the exponential part of the distribution). The IRS data points are for 1983–2001, and the columns of numbers give
the values of Tr for the corresponding years. (Reproduced from [105])

the horizonal axis in Fig. 7 shows the normalized income
r/Tr , where the“income temperature” Tr was obtained by
fitting of the exponential part of the distribution for each
year. The values of Tr are shown in Fig. 7. The plots for
the 1980s and 1990s are shifted vertically for clarity. We
observe that the data points in the lower-income part of
the distribution collapse on the same exponential curve
for all years. This demonstrates that the shape of the in-
come distribution for the lower class is extremely stable
and does not change in time, despite the gradual increase
of the average income in nominal dollars. This observation
suggests that the lower-class distribution is in statistical,
“thermal” equilibrium.

On the other hand, Fig. 7 shows that the income distri-
bution in the upper class does not rescale and significantly

changes in time. Silva and Yakovenko [105] found that the
exponent ˛ of the power law C(r) / 1/r˛ decreased from
1.8 in 1983 to 1.4 in 2000. This means that the upper tail
became “fatter”. Another useful parameter is the total in-
come of the upper class as the fraction f of the total in-
come in the system. The fraction f increased from 4% in
1983 to 20% in 2000 [105]. However, in 2001, ˛ increased
and f decreased, indicating that the upper tail was reduced
after the stock market crash at that time. These results in-
dicate that the upper tail is highly dynamical and not sta-
tionary. It tends to swell during the stock market boom
and shrink during the bust. Similar results were found for
Japan [109,110,111,112].

Although relative income inequality within the lower
class remains stable, the overall income inequality in the
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USA has increased significantly as a result of the tremen-
dous growth of the income of the upper class. This is illus-
trated by the Lorenz curve and the Gini coefficient shown
in Fig. 8. The Lorenz curve [99] is a standard way of rep-
resenting income distribution in the economics literature.
It is defined in terms of two coordinates x(r) and y(r) de-
pending on a parameter r:

x(r) D
Z r

0
P(r0)dr0 ;

y(r) D
R r
0 r0P(r0)dr0

R1
0 r0P(r0)dr0 :

(19)

The horizontal coordinate x(r) is the fraction of the pop-
ulation with income below r, and the vertical coordinate
y(r) is the fraction of the income this population accounts
for. As r changes from 0 to 1, x and y change from 0 to 1
and parametrically define a curve in the (x, y)-plane.

Figure 8 shows the data points for the Lorenz curves in
1983 and 2000, as computed by the IRS [113]. Drăgulescu
andYakovenko [102] analytically derived the Lorenz curve
formula y D x C (1� x) ln(1� x) for a purely exponential
distribution P(r) D c exp(�r/Tr ). This formula is shown
by the red line in Fig. 8 and describes the 1983 data rea-
sonably well. However, for 2000, it is essential to take into
account the fraction f of income in the upper tail, which

Econophysics, Statistical Mechanics Approach to, Figure 8
Lorenz plots for income distribution in 1983 and 2000. The data
points are from the IRS [113], and the theoretical curves repre-
sent (20) with f from Fig. 7. Inset: The closed circles are the IRS
data 113 for the Gini coefficient G, and the open circles show the
theoretical formula G D (1 C f )/2. (Reproduced from [105])

modifies the Lorenz formula as follows [103,104,105]:

y D (1 � f )[x C (1 � x) ln(1 � x)] C f�(x � 1) : (20)

The last term in (20) represent the vertical jump of the
Lorenz curve at x D 1, where a very small percentage of
the population in the upper class accounts for a substantial
fraction f of the total income. The blue curve represent-
ing (20) fits the 2000 data in Fig. 8 very well.

The deviation of the Lorenz curve from the straight
diagonal line in Fig. 8 is a certain measure of income in-
equality. Indeed, if everybody had the same income, the
Lorenz curve would be a diagonal line, because the frac-
tion of income would be proportional to the fraction of
the population. The standard measure of income inequal-
ity is the so-called Gini coefficient 0 � G � 1, which is
defined as the area between the Lorenz curve and the diag-
onal line, divided by the area of the triangle beneath the di-
agonal line [99]. Time evolution of the Gini coefficient, as
computed by the IRS [113], is shown in the inset of Fig. 8.
Drăgulescu and Yakovenko [102] derived analytically the
result that G D 1/2 for a purely exponential distribution.
In the first approximation, the values of G shown in the
inset of Fig. 8 are indeed close to the theoretical value 1/2.
If we take into account the upper tail using (20), the for-
mula for the Gini coefficient becomesG D (1C f )/2 [105].
The inset in Fig. 8 shows that this formula is a very good
fit to the IRS data for the 1990s using the values of f de-
duced from Fig. 7. The values G < 1/2 for the 1980s can-
not be captured by this formula, because the Lorenz data
points are slightly above the theoretical curve for 1983 in
Fig. 8. Overall, we observe that income inequality has been
increasing for the last 20 years, because of swelling of the
Pareto tail, but decreased in 2001 after the stock market
crash.

Thus far we have discussed the distribution of individ-
ual income. An interesting related question is the distribu-
tion P2(r) of family income r D r1 C r2, where r1 and r2
are the incomes of spouses. If individual incomes are dis-
tributed exponentially P(r) / exp(�r/Tr ), then

P2(r) D
Z r

0
dr0P(r0)P(r � r0) D cr exp(�r/Tr ) ; (21)

where c is a normalization constant. Figure 9 shows
that (21) is in good agreement with the family income dis-
tribution data from the US Census Bureau [102]. In (21),
we assumed that incomes of spouses are uncorrelated. This
simple approximation is indeed supported by the scatter
plot of incomes of spouses shown in Fig. 10. Each family
is represented in this plot by two points (r1, r2) and (r2, r1)
for symmetry. We observe that the density of points is ap-
proximately constant along the lines of constant family in-



262 Econophysics, Statistical Mechanics Approach to

Econophysics, Statistical Mechanics Approach to, Figure 9
Probability distribution of family income for families with two
adults (USCensusBureaudata). Solid line: fit to (21). (Reproduced
from [102])

Econophysics, Statistical Mechanics Approach to, Figure 10
Scatter plot of the spouses’ incomes (r1, r2) and (r2, r1) based on
the data from the Panel Study of Income Dynamics (PSID). (Re-
produced from [103])

come r1 C r2 D const, which indicates that incomes of
spouses are approximately uncorrelated. There is no sig-
nificant clustering of points along the diagonal r1 D r2,
i. e., no strong positive correlation of spouses’ incomes.

The Gini coefficient for the family income distribu-
tion (21) was calculated in [102] as G D 3/8 D 37:5%.
Figure 11 shows the Lorenz quintiles and the Gini coeffi-

Econophysics, Statistical Mechanics Approach to, Figure 11
Lorenz plot for family income calculated from (21), compared
with the US Census data points. Inset: The US Census data points
for the Gini coefficient for families, compared with the theoreti-
cally calculated value 3/8=37.5%. (Reproduced from [102])

cient for 1947–1994 plotted from the US Census Bureau
data. The solid line, representing the Lorenz curve calcu-
lated from (21), is in good agreement with the data. The
systematic deviation for the top 5% of earners results from
the upper tail, which has a less pronounced effect on fam-
ily income than on individual income, because of income
averaging in the family. The Gini coefficient, shown in the
inset of Fig. 11, is close to the calculated value of 37.5%.
Moreover, the averageG for the developed capitalist coun-
tries of North America and western Europe, as determined
by the World Bank [103], is also close to the calculated
value of 37.5%.

Income distribution has been examined in econo-
physics papers for different countries: Japan [68,109,110,
111,112,114,115,116], Germany [117,118], the UK [68,85,
116,117,118], Italy [118,119,120], the USA [117,121], In-
dia [97], Australia [91,120,122], and New Zealand [68,
116]. The distributions are qualitatively similar to the
results presented in this section. The upper tail follows
a power law and comprises a small fraction of the pop-
ulation. To fit the lower part of the distribution, the use
of exponential, Gamma, and log-normal distributions was
reported in different papers. Unfortunately, income distri-
bution is often reported by statistical agencies for house-
holds, so it is difficult to differentiate between one-earner
and two-earner income distributions. Some papers re-
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ported the use of interpolating functions with different
asymptotic behavior for low and high incomes, such as the
Tsallis function [116] and the Kaniadakis function [118].
However, the transition between the lower and upper
classes is not smooth for the US data shown in Figs. 6
and 7, so such functions would not be useful in this case.
The special case is income distribution in Argentina dur-
ing the economic crisis, which shows a time-dependent bi-
modal shape with two peaks [116].

Theoretical Models of Income Distribution

Having examined the empirical data on income distribu-
tion, let us now discuss theoretical models. Income ri is the
influx of money per unit time to an agent i. If the money
balance mi is analogous to energy, then the income ri
would be analogous to power, which is the energy flux per
unit time. So, one should conceptually distinguish between
the distributions of money and income. While money is
regularly transferred from one agent to another in pairwise
transactions, it is not typical for agents to trade portions
of their income. Nevertheless, indirect transfer of income
may occur when one employee is promoted and another
demoted, while the total annual budget is fixed, or when
one company gets a contract, whereas another one loses it,
etc. A reasonable approach, which has a long tradition in
the economics literature [123,124,125], is to treat individ-
ual income r as a stochastic process and study its probabil-
ity distribution. In general, one can study a Markov pro-
cess generated by a matrix of transitions from one income
to another. In the case where income r changes by a small
amount �r over a time period �t, the Markov process
can be treated as income diffusion. Then one can apply the
general Fokker–Planck equation [71] to describe evolution
in time t of the income distribution function P(r, t) [105]:

@P
@t

D @

@r

�

AP C @(BP)
@r

	

;

A D �h�ri
�t

; B D h(�r)2i
2�t

:

(22)

The coefficients A and B in (22) are determined by the first
and second moments of income changes per unit time.
The stationary solution @tP D 0 of (22) obeys the follow-
ing equation with the general solution:

@(BP)
@r

D �AP ;

P(r) D c
B(r)

exp
�

�
Z r A(r0)

B(r0) dr
0
�

:
(23)

For the lower part of the distribution, it is reasonable to
assume that �r is independent of r, i. e., the changes of
income are independent of income itself. This process is
called additive diffusion [105]. In this case, the coefficients

in (22) are constants A0 and B0. Then (23) gives the ex-
ponential distribution P(r) / exp(�r/Tr ), with the effec-
tive income temperature Tr D B0/A0. Notice that a mean-
ingful stationary solution (23) requires that A > 0, i. e.,
h�ri < 0. The coincidence of this result with the Boltz-
mann–Gibbs exponential law (1) and (7) is not acciden-
tal. Indeed, instead of considering pairwise interaction be-
tween particles, one can derive (1) by considering en-
ergy transfers between a particle and a big reservoir, as
long as the transfer process is “additive” and does not in-
volve aMaxwell-demon-like discrimination. Stochastic in-
come fluctuations are described by a similar process. So,
although money and income are different concepts, they
may have similar distributions, because they are governed
by similar mathematical principles. It was shown explicitly
in [25,82,83] that the models of pairwise money transfer
can be described in a certain limit by the Fokker–Planck
equation.

On the other hand, for the upper tail of the income
distribution, it is reasonable to expect that �r / r, i. e.,
income changes are proportional to income itself. This is
known as the proportionality principle of Gibrat [123],
and the process is called multiplicative diffusion [105]. In
this case, A D ar and B D br2, and (23) gives the power-
law distribution P(r) / 1/r˛C1, with ˛ D 1 C a/b.

Generally, lower-class income comes from wages and
salaries, where the additive process is appropriate, whereas
upper-class income comes from bonuses, investments,
and capital gains, calculated in percentages, where the
multiplicative process applies [126]. However, the additive
and multiplicative processes may coexist. An employee
may receive a cost-of-living rise calculated in percentages
(the multiplicative process) and a merit rise calculated in
dollars (the additive process). In this case, we have A D
A0 C ar and B D B0 Cbr2 D b(r20 C r2), where r20 D B0/b.
Substituting these expressions into (23), we find

P(r) D c
e�( r0

Tr ) arctan(
r
r0
)

[1 C ( r
r0 )

2]
1Ca
2b

: (24)

The distribution (24) interpolates between the exponen-
tial law for low r and the power law for high r, because
either the additive or the multiplicative process dominates
in the corresponding limit. The crossover between the two
regimes takes place at r 
 r0, where the additive and
multiplicative contributions to B are equal. The distribu-
tion (24) has three parameters: the “income temperature”
Tr D A0/B0, the Pareto exponent ˛ D 1 C a/b, and
the crossover income r0. It is a minimal model that cap-
tures the salient features of the empirical income distribu-
tion shown in Fig. 6. A mathematically similar, but more
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economically oriented model was proposed in [114,115],
where labor income and asset accumulation are described
by the additive and multiplicative processes correspond-
ingly. A general stochastic process with additive and mul-
tiplicative noise was studied numerically in [127], but the
stationary distribution was not derived analytically. A sim-
ilar process with discrete time increments was studied by
Kesten [128]. Recently, a formula similar to (24) was ob-
tained in [129].

To verify the multiplicative and additive hypotheses
empirically, it is necessary to have data on income mobil-
ity, i. e., the income changes �r of the same people from
one year to another. The distribution of income changes
P(�rjr) conditional on income r is generally not available
publicly, although it can be reconstructed by researchers
at the tax agencies. Nevertheless, the multiplicative hy-
pothesis for the upper class was quantitatively verified
in [111,112] for Japan, where tax identification data is pub-
lished for the top taxpayers.

The power-law distribution is meaningful only when it
is limited to high enough incomes r > r0. If all incomes r
from 0 to 1follow a purely multiplicative process, then
one can change to a logarithmic variable x D ln(r/r�)
in (22) and show that it gives a Gaussian time-dependent
distribution Pt(x) / exp(�x2/2�2t) for x, i. e., the log-
normal distribution for r, also known as the Gibrat distri-
bution [123]. However, the width of this distribution in-
creases linearly in time, so the distribution is not station-
ary. This was pointed out by Kalecki [124] a long time
ago, but the log-normal distribution is still widely used
for fitting income distribution, despite this fundamental
logical flaw in its justification. In a classic paper, Cham-
pernowne [125] showed that a multiplicative process gives
a stationary power-law distribution when a boundary con-
dition is imposed at r0 ¤ 0. Later, this result was rediscov-
ered by econophysicists [130,131]. In our (24), the expo-
nential distribution of the lower class effectively provides
such a boundary condition for the power law of the up-
per class. Notice also that (24) reduces to (18) in the limit
r0 ! 0, which corresponds to purely multiplicative noise
B D br2.

There are alternative approaches to income distribu-
tion in the economics literature. One of them, proposed
by Lydall [132], involves social hierarchy. Groups of peo-
ple have leaders, who have leaders of a higher order, and
so on. The number of people decreases geometrically (ex-
ponentially) with the increase of the hierarchical level. If
individual income increases by a certain factor (i. e., mul-
tiplicatively) when moving to the next hierarchical level,
then income distribution follows a power law [132]. How-
ever, the original argument of Lydall can be easilymodified

to produce an exponential distribution. If individual in-
come increases by a certain amount, i. e., income increases
linearly with the hierarchical level, then income distribu-
tion is exponential. The latter process seems to be more
realistic for moderate incomes below $ 100,000. A simi-
lar scenario is the Bernoulli trials [133], where individuals
have a constant probability of increasing their income by
a fixed amount. We see that the deterministic hierarchi-
cal models and the stochastic models of additive and mul-
tiplicative income mobility represent essentially the same
ideas.

Other Applications of Statistical Physics

Statistical physics was applied to a number of other sub-
jects in economics. Because of lack of space, only two such
topics are briefly discussed in this section.

Economic Temperatures in Different Countries

As discussed in Sect. “Empirical Data on Money and
Wealth Distributions”and “Empirical Data on Income
Distribution”, the distributions of money, wealth, and in-
come are often described by exponential functions for the
majority of the population. These exponential distribu-
tions are characterized by the parameters Tm , Tw , and
Tr , which are mathematically analogous to temperature in
the Boltzmann–Gibbs distribution (1). The values of these
parameters, extracted from the fits of the empirical data,
are generally different for different countries, i. e., differ-
ent countries have different economic“temperatures”. For
example, Drăgulescu and Yakovenko [95] found that the
US income temperature was 1.9 times higher than the UK
income temperature in 1998 (using the exchange rate of
dollars to pounds at that time). Also, there was ˙25%
variation between income temperatures of different states
within the USA. [95].

In physics, a difference of temperatures allows one to
set up a thermal machine. In was argued in [25] that the
difference of money or income temperatures between dif-
ferent countries allows one to extract profit in interna-
tional trade. Indeed, as discussed at the end of Sect. “Em-
pirical Data on Money and Wealth Distributions”, the
prices of goods should be commensurate with money
or income temperature, because otherwise people can-
not afford to buy those goods. So, an international trad-
ing company can buy goods at a low price T1 in a “low-
temperature” country and sell them at a high price T2
in a “high-temperature” country. The difference of prices
T2 � T1 would be the profit of the trading company. In
this process, money (the analog of energy) flows from
the“high-temperature” to the “low-temperature” country,
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in agreement with the second law of thermodynamics,
whereas products flow in the opposite direction. This pro-
cess very much resembles what is going on in the global
economy now. In this framework, the perpetual trade
deficit of the USA is the consequence of the second law
of thermodynamics and the difference of temperatures
between the USA and “low-temperature”countries, such
as China. Similar ideas were developed in more detail
in [134,135], including a formal Carnot cycle for interna-
tional trade.

The statistical physics approach demonstrates that
profit originates from statistical nonequilibrium (the dif-
ference of temperatures), which exists in the global econ-
omy. However, it does not answer the question what is
the origin of this difference. By analogy with physics, one
would expect that the money flow should reduce the tem-
perature difference and, eventually, lead to equilibrization
of temperatures. In physics, this situation is known as the
“thermal death of the universe”. In a completely equili-
brated global economy, it would be impossible to make
profit by exploiting differences of economic temperatures
between different countries. Although globalization of the
modern economy does show a tendency toward equilib-
rization of living standards in different countries, this pro-
cess is far from straightforward, and there are many ex-
amples contrary to equilibrization. This interesting and
timely subject certainly requires further study.

Society as a Binary Alloy

In 1971, Thomas Schelling [136] proposed the now-
famous mathematical model of segregation. He consid-
ered a lattice, where the sites can be occupied by agents
of two types, e. g., blacks and whites in the problem of
racial segregation. He showed that if the agents have some
probabilistic preference for the neighbors of the same type,
the system spontaneously segregates into black and white
neighborhoods. This mathematical model is similar to the
so-called Ising model, which is a popular model for study-
ing phase transitions in physics. In this model, each lat-
tice site is occupied by a magnetic atom, whose magnetic
moment has only two possible orientations, up or down.
The interaction energy between two neighboring atoms
depends on whether their magnetic moments point in the
same or in the opposite directions. In physics language, the
segregation found by Schelling represents a phase transi-
tion in this system.

Another similar model is the binary alloy, a mixture
of two elements which attract or repel each other. It was
noticed in [137] that the behavior of actual binary alloys
is strikingly similar to social segregation. In the following

papers [42,138], this mathematical analogy was developed
further and compared with social data. Interesting con-
cepts, such as the coexistence curve between two phases
and the solubility limit, were discussed in this work. The
latter concept means that a small amount of one substance
dissolves in another up to some limit, but phase separa-
tion (segregation) develops for higher concentrations. Re-
cently, similar ideas were rediscovered in [139,140,141].
The vast experience of physicists in dealing with phase
transitions and alloys may be helpful for practical appli-
cations of such models [142].

Future Directions, Criticism, and Conclusions

The statistical models described in this review are quite
simple. It is commonly accepted in physics that theoreti-
cal models are not intended to be photographic copies of
reality, but rather to be caricatures, capturing the most es-
sential features of a phenomenon with a minimal number
of details. With only few rules and parameters, the mod-
els discussed in Sect. “Statistical Mechanics of Money Dis-
tribution”, “Statistical Mechanics of Wealth Distribution”,
and“Data andModels for Income Distribution” reproduce
spontaneous development of stable inequality, which is
present in virtually all societies. It is amazing that the cal-
culated Gini coefficients, G D 1/2 for individuals and
G D 3/8 for families, are actually very close to the US
income data, as shown in Figs. 8 and 11. These simple
models establish a baseline and a reference point for devel-
opment of more sophisticated and more realistic models.
Some of these future directions are outlined below.

Future Directions

Agents with a Finite Lifespan The models discussed in
this review consider immortal agents who live forever,
like atoms. However, humans have a finite lifespan. They
enter the economy as young people and exit at an old
age. Evolution of income and wealth as functions of age
is studied in economics using the so-called overlapping-
generations model. The absence of the age variable was
one of the criticisms of econophysics by the economist
Paul Anglin [31]. However, the drawback of the standard
overlapping-generationsmodel is that there is no variation
of income and wealth between agents of the same age, be-
cause it is a representative-agentmodel. It would be best to
combine stochastic models with the age variable. Also, to
take into account inflation of average income, (22) should
be rewritten for relative income, in the spirit of (17). These
modifications would allow one to study the effects of de-
mographic waves, such as baby boomers, on the distribu-
tions of income and wealth.
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Agent-Based Simulations of the Two-Class Society
The empirical data presented in Sect. “Empirical Data on
Income Distribution” show quite convincingly that the US
population consists of two very distinct classes character-
ized by different distribution functions. However, the the-
oretical models discussed in Sect. “Statistical Mechanics of
Money Distribution”and “Statistical Mechanics of Wealth
Distribution” do not produce two classes, although they do
produce broad distributions. Generally, not much atten-
tion has been paid in the agent-based literature to simula-
tion of two classes. One exception is [143], in which spon-
taneous development of employers and employees classes
from initially equal agents was simulated [36]. More work
in this direction would be certainly desirable.

Access to Detailed Empirical Data A great amount of
statistical information is publicly available on the Inter-
net, but not for all types of data. As discussed in Sect.
“Empirical Data on Money and Wealth Distributions”, it
would be very interesting to obtain data on the distribu-
tion of balances on bank accounts, which would give in-
formation about the distribution of money (as opposed to
wealth). As discussed in Sect. “Theoretical Models of In-
come Distribution”, it would be useful to obtain detailed
data on income mobility, to verify the additive and mul-
tiplicative hypotheses for income dynamics. Income dis-
tribution is often reported as a mix of data on individual
income and family income, when the counting unit is a tax
return (joint or single) or a household. To have ameaning-
ful comparison with theoretical models, it is desirable to
obtain clean data where the counting unit is an individual.
Direct collaboration with statistical agencies would be very
useful.

Economies in Transition Inequality in developed cap-
italist countries is generally quite stable. The situation is
very different for former socialist countries making a tran-
sition to a market economy. According to theWorld Bank
data [103], the average Gini coefficient for family income
in eastern Europe and the former Soviet Union jumped
from 25% in 1988 to 47% in 1993. The Gini coefficient in
the socialist countries before the transition was well be-
low the equilibrium value of 37.5% for market economies.
However, the fast collapse of socialism left these coun-
tries out of market equilibrium and generated a much
higher inequality. One may expect that, with time, their
inequality will decrease to the equilibrium value of 37.5%.
It would be very interesting to trace how fast this relax-
ation takes place. Such a study would also verify whether
the equilibrium level of inequality is universal for all mar-
ket economies.

Relation to Physical Energy The analogy between en-
ergy and money discussed in Sect. “Conservation of
Money” is a formal mathematical analogy. However, ac-
tual physical energy with low entropy (typically in the
form of fossil fuel) also plays a very important role in the
modern economy, as the basis of current human technol-
ogy. In view of the looming energy and climate crisis, it
is imperative to find realistic ways for making a transition
from the current “disposable” economy based on “cheap”
and“unlimited” energy and natural resources to a sustain-
able one. Heterogeneity of human society is one of the im-
portant factors affecting such a transition. Econophysics,
at the intersection of energy, entropy, economy, and sta-
tistical physics, may play a useful role in this quest [144].

Criticism from Economists

As econophysics is gaining popularity, some criticism
has appeared from economists [31], including those
who are closely involved with the econophysics move-
ment [32,33,34]. This reflects a long-standing tradition in
economic and social sciences of writing critiques on dif-
ferent schools of thought. Much of the criticism is useful
and constructive and is already being accommodated in
econophysics work. However, some criticism results from
misunderstanding or miscommunication between the two
fields and some from significant differences in scientific
philosophy. Several insightful responses to the criticism
have been published [145,146,147]; see also [7,148]. In this
section, we briefly address the issues that are directly re-
lated to the material discussed in this review.

Awareness of Previous Economics Literature One
complaint of [31,32,33,34] is that physicists are not well
aware of the previous economics literature and either
rediscover known results or ignore well-established ap-
proaches. To address this issue, it is useful to keep in
mind that science itself is a complex system, and scien-
tific progress is an evolutionary process with natural se-
lection. The sea of scientific literature is enormous, and
nobody knows it all. Recurrent rediscovery of regularities
in the natural and social world only confirms their valid-
ity. Independent rediscovery usually brings a different per-
spective, broader applicability range, higher accuracy, and
better mathematical treatment, so there is progress even
when some overlap with previous results exists. Physicists
are grateful to economists for bringing relevant and spe-
cific references to their attention. Since the beginning of
modern econophysics, many old references have been un-
covered and are now routinely cited.

However, not all old references are relevant to the
new development. For example, Gallegati et al. [33] com-
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plained that the econophysics literature on income dis-
tribution ignores the so-called Kuznets hypothesis [149].
The Kuznets hypothesis postulates that income inequal-
ity first rises during an industrial revolution and then
decreases, producing an inverted-U-shaped curve. Galle-
gati et al. [33] admitted that, to date, the large amount
of literature on the Kuznets hypothesis is inconclusive.
Kuznets [149] mentioned that this hypothesis applies to
the period from colonial times to the 1970s; however, the
empirical data for this period are sparse and not very reli-
able. The econophysics literature deals with reliable vol-
umes of data for the second half of the twentieth cen-
tury, collected with the introduction of computers. It is
not clear what is the definition of industrial revolution
and when exactly it starts and ends. The chain of tech-
nological progress seems to be continuous (steam engine,
internal combustion engine, cars, plastics, computers, In-
ternet), so it is not clear where the purported U-curve is
supposed to be placed in time. Thus, the Kuznets hypoth-
esis appears to be, in principle, unverifiable and unfalsifi-
able. The original paper by Kuznets [149] actually does not
contain any curves, but it has one table filled with made-
up, imaginary data! Kuznets admits that he has “neither
the necessary data nor a reasonably complete theoretical
model” (p. 12 in [149]). So, this paper is understandably
ignored by the econophysics community. In fact, the data
analysis for 1947–1984 shows amazing stability of income
distribution [150], consistent with Fig. 11. The increase of
inequality in the 1990s resulted from growth of the upper
class relative to the lower class, but the relative inequal-
ity within the lower class remains very stable, as shown in
Fig. 7.

Reliance on Visual Data Analysis Another complaint
of [33] is that econophysicists favor graphic analysis of
data over the formal and “rigorous” testing prescribed
by mathematical statistics, as favored by economists. This
complaint goes against the trend of all sciences to use in-
creasingly sophisticated data visualization for uncovering
regularities in complex systems. The thick IRS publication
1304 [151] is filled with data tables, but has virtually no
graphs. Despite the abundance of data, it gives a reader no
idea about income distribution, whereas plotting the data
immediately gives insight. However, intelligent plotting is
the art with many tools, which not many researchers have
mastered. The author completely agrees with Gallegati et
al. [33] that too many papers mindlessly plot any kind of
data on a log–log scale, pick a finite interval, where any
smooth curved line can be approximated by a straight line,
and claim that there is a power law. In many cases, replot-
ting the same data on a log–linear scale converts a curved

line into a straight line, which means that the law is actu-
ally exponential.

Good visualization is extremely helpful in identifying
trends in complex data, which can then be fitted to amath-
ematical function; however, for a complex system, such
a fit should not be expected with infinite precision. The
fundamental laws of physics, such as Newton’s law of grav-
ity or Maxwell’s equations, are valid with enormous preci-
sion. However, the laws in condensed matter physics, un-
covered by experimentalists with a combination of visual
analysis and fitting, usually have much lower precision, at
best 10% or so. Most of these laws would fail the formal
criteria of mathematical statistics. Nevertheless these ap-
proximate laws are enormously useful in practice, and ev-
eryday devices engineered on the basis of these laws work
very well for all of us.

Because of the finite accuracy, different functions may
produce equally good fits. Discrimination between the ex-
ponential, Gamma, and log-normal functions may not be
always possible [122]. However, the exponential function
has fewer fitting parameters, so it is preferable on the basis
of simplicity. The other two functions can simply mimic
the exponential function with a particular choice of the ad-
ditional parameters [122]. Unfortunately, many papers in
mathematical statistics introduce too many fitting param-
eters into complicated functions, such as the generalized
beta distribution mentioned in [33]. Such overparameter-
ization is more misleading than insightful for data fitting.

Quest for Universality Gallegati et al. [33] criticized
physicists for trying to find universality in economics data.
They also seemed to equate the concepts of power law,
scaling, and universality. These are three different, albeit
overlapping, concepts. Power laws usually apply only to
a small fraction of data at the high ends of various distri-
butions. Moreover, the exponents of these power laws are
usually nonuniversal and vary from case to case. Scaling
means that the shape of a function remains the same when
its scale changes. However, the scaling function does not
have to be a power-law function. A good example of scal-
ing is shown in Fig. 7, where income distributions for the
lower class collapse on the same exponential line for about
20 years of data. We observe amazing universality of in-
come distribution, unrelated to a power law. In a general
sense, the diffusion equation is universal, because it de-
scribes a wide range of systems, from dissolution of sugar
in water to a random walk in the stock market.

Universalities are not easy to uncover, but they form
the backbone of regularities in the world around us. This
is why physicists are so interested in them. Universalities
establish the first-order effect, and deviations represent the
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second-order effect. Different countries may have some-
what different distributions, and economists often tend to
focus on these differences. However, this focus on details
misses the big picture that, in the first approximation, the
distributions are quite similar and universal.

Theoretical Modeling of Money, Wealth, and Income
It was pointed out in [31,33,34] that many econophysics
papers confuse or misuse the terms for money, wealth, and
income. It is true that terminology is sloppy in many pa-
pers and should be refined. However, the terms in [25,26]
are quite precise, and this review clearly distinguishes be-
tween these concepts in Sect. “Statistical Mechanics of
Money Distribution”, “Statistical Mechanics of Wealth
Distribution”, and “Data and Models for Income Distri-
bution”.

One contentious issue is about conservation of money.
Gallegati et al. [33] agree that“transactions are a key eco-
nomic process, and they are necessarily conservative”, i. e.,
money is indeed conserved in transactions between agents.
However, Anglin [31], Gallegati et al. [33], and Lux [34]
complain that the models of conservative exchange do not
consider production of goods, which is the core economic
process and the source of economic growth. Material pro-
duction is indeed the ultimate goal of an economy, but
it does not violate conservation of money by itself. One
can grow coffee beans, but nobody can grow money on
a money tree. Money is an artificial economic device that
is designed to be conserved. As explained in Sect. “Statis-
tical Mechanics of Money Distribution”, the money trans-
fer models implicitly assume that money in transactions is
voluntarily paid for goods and services generated by pro-
duction for the mutual benefit of the parties. In principle,
one can introduce a billion variables to keep track of ev-
ery coffee bean and other product of the economy. What
difference would it make for the distribution of money?
Despite the claims in [31,33], there is no contradiction
between models of conservative exchange and the classic
work of Adam Smith and David Ricardo. The difference is
only in the focus: We keep track of money, whereas they
keep track of coffee beans, from production to consump-
tion. These approaches address different questions, but do
not contradict each other. Because money constantly cir-
culates in the system as payment for production and con-
sumption, the resulting statistical distribution of money
may very well not depend on what exactly is produced and
in what quantities.

In principle, the models with random transfers of
money should be considered as a reference point for de-
veloping more sophisticated models. Despite the totally
random rules and “zero intelligence” of the agents, these

models develop well-characterized, stable, and stationary
distributions of money. One can modify the rules to make
the agents more intelligent and realistic and see howmuch
the resulting distribution changes relative to the reference
one. Such an attempt was made in [32] by modifying the
model of [77] with various more realistic economic ingre-
dients. However, despite the modifications, the resulting
distributions were essentially the same as in the original
model. This example illustrates the typical robustness and
universality of statistical models: Modifying details of mi-
croscopic rules does not necessarily change the statistical
outcome.

Another misconception, elaborated in [32,34], is that
the money transfer models discussed in Sect. “Statistical
Mechanics of Money Distribution” imply that money is
transferred by fraud, theft, and violence, rather than vol-
untarily. One should keep in mind that the catchy labels
“theft-and-fraud”, “marriage-and-divorce”, and “yard-
sale” were given to the money transfer models by the jour-
nalist Brian Hayes [152] in a popular article. Econophysi-
cists who originally introduced and studied these models
do not subscribe to this terminology, although the early
work of Angle [51] did mention violence as one source
of redistribution. In the opinion of the author, it is in-
deed difficult to justify the proportionality rule (8), which
implies that agents with high balances pay proportionally
greater amounts in transactions than agents with low bal-
ances. However, the additive model of [25], where money
transfers �m are independent of money balances mi of
the agents, does not have this problem. As explained in
Sect. “The Boltzmann–Gibbs Distribution of Money”, this
model simply means that all agents pay the same prices for
the same product, although prices may be different for dif-
ferent products. So, this model is consistent with voluntary
transactions in a free market.

McCauley [145] argued that conservation of money
is violated by credit. As explained in Sect. “Models with
Debt”, credit does not violate conservation law, but cre-
ates positive and negative money without changing net
worth. Negative money (debt) is as real as positive money.
McCauley [145] claimed that money can be easily created
with the tap of a computer key via credit. Then why would
an employer not tap the key and double salaries, or a fund-
ing agency double research grants? Because budget con-
straints are real. Credit may provide a temporary relief, but
sooner or later it has to be paid back. Allowing debt may
produce a double-exponential distribution as shown in
Fig. 3, but it doesn’t change the distribution fundamentally.

As discussed in Sect. “Conservation of Money”, a cen-
tral bank or a central government can inject new money
into the economy. As discussed in Sect. “Statistical Me-
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chanics of Wealth Distribution”, wealth is generally not
conserved. As discussed in Sect. “Data and Models for In-
comeDistribution”, income is different frommoney and is
described by a different model (22). However, the empir-
ical distribution of income shown in Fig. 6 is qualitatively
similar to the distribution of wealth shown in Fig. 5, and
we do not have data on money distribution.

Conclusions

The “invasion” of physicists into economics and finance at
the turn of the millennium is a fascinating phenomenon.
The physicist Joseph McCauley proclaims that “Econo-
physics will displace economics in both the universities
and boardrooms, simply because what is taught in eco-
nomics classes doesn’t work” [153]. Although there is
some truth in his arguments [145], one may consider a less
radical scenario. Econophysics may become a branch of
economics, in the same way as games theory, psycholog-
ical economics, and now agent-based modeling became
branches of economics. These branches have their own in-
terests, methods, philosophy, and journals. The main con-
tribution from the infusion of new ideas from a differ-
ent field is not in answering old questions, but in raising
new questions. Much of the misunderstanding between
economists and physicists happens not because they are
getting different answers, but because they are answering
different questions.

The subject of income and wealth distributions and so-
cial inequality was very popular at the turn of another cen-
tury and is associated with the names of Pareto, Lorenz,
Gini, Gibrat, and Champernowne, among others. Follow-
ing the work by Pareto, attention of researchers was pri-
marily focused on the power laws. However, when physi-
cists took a fresh, unbiased look at the empirical data, they
found a different, exponential law for the lower part of the
distribution. Themotivation for looking at the exponential
law, of course, came from the Boltzmann–Gibbs distribu-
tion in physics. Further studies provided a more detailed
picture of the two-class distribution in a society. Although
social classes have been known in political economy since
KarlMarx, the realization that they are described by simple
mathematical distributions is quite new. Demonstration of
the ubiquitous nature of the exponential distribution for
money, wealth, and income is one of the new contribu-
tions produced by econophysics.
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Glossary

Complexity A definitive feature of nonlinear systems of
interacting elements. It comprises high instability with
respect to initial and boundary conditions, and com-
plex but non-random behavior patterns (“order in
chaos”).

Extreme events Rare events having a large impact. Such
events are also known as critical phenomena, disas-
ters, catastrophes, and crises. They persistently reoccur
in hierarchical complex systems created, separately or
jointly, by nature and society.

Fast acceleration of unemployment (FAU) The start of
a strong and lasting increase of the unemployment
rate.

Pattern recognition of rare events The methodology of
artificial intelligence’ kind aimed at studying distinc-
tive features of complex phenomena, in particular – at
formulating and testing hypotheses on these features.

Premonitory patterns Patterns of a complex system’s be-
havior that emerge most frequently as an extreme
event approaches.

Recession The American National Bureau of Economic
Research defines recession as “a significant decline in
economic activity spread across the economy, lasting
more than a few months”. A recession may involve si-
multaneous decline in coincident measures of overall
economic activity such as industrial production, em-
ployment, investment, and corporate profits.

Start of the homicide surge (SHS) The start of a strong
and lasting increase in the smoothed homicide rate.

Definition of the Subject

At stake in the development of accurate and reliable meth-
ods of prediction for social systems is the capacity of scien-
tific reason to improve the human condition. Today’s civi-
lization is highly vulnerable to crises arising from extreme
events generated by complex and poorly understood sys-
tems. Examples include external and civil wars, terrorist
attacks, crime waves, economic downturns, and famines,
to name just a few. Yet more subtle effects threaten mod-
ern society, such as the inability of democratic systems
to produce policies responsive to challenges like climate
change, global poverty, and resource depletion.

Our capacity to predict the course of events in com-
plex social systems is inherently limited. However, there is
a new and promising approach to predicting and under-
standing complex systems that has emerged through the
integration of studies in the social sciences and the math-
ematics of prediction. This entry describes and analyzes
that approach and its real-world applications. These in-
clude algorithmic prediction of electoral fortunes of in-
cumbent parties, economic recessions, surges of unem-
ployment, and outbursts of crimes. This leads to impor-
tant inferences for averting and responding to impending
crises and for improving the functioning of modern demo-
cratic societies.

That approach was successfully applied also to natural
disasters such as earthquakes. Ultimately, improved pre-
diction methods enhance our capacity for understanding
the world and for protecting and sustaining our civiliza-
tion.

Extreme events. Hierarchical complex systems persis-
tently generate extreme events – the rare fast changes that
have a strong impact on the system. Depending on conno-
tation they are also known as critical phenomena, disas-
ters, catastrophes, and crises. This article examines the de-
velopment and application of the algorithmic prediction
of extreme socio-economic and political events.

The prediction problem is formulated as follows:
given are time series that describe dynamics of the sys-
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Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 1
Possible outcomes of prediction

tem up to the current moment of time t and contain po-
tential precursors of an extreme event;

to predict whether an extreme event will or will not oc-
cur during the subsequent time period (t, t + �); if the an-
swer is “yes”, this will be the “period of alarm”.

As the time goes by, predictions form a discrete se-
quence of alarms. The possible outcomes of such a predic-
tion are shown in Fig. 1. The actual outcome is determined
unambiguously, since the extreme events are identified in-
dependently of the prediction either by the actual happen-
ing (e. g. by an election result) or by a separate algorithm
(e. g. homicide surge) after they occur.

Such “yes or no” prediction is aimed not at analyzing
the whole dynamics of the system, but only at identify-
ing the occurrence of rare extreme events. In a broad field
of prediction studies this prediction is different from and
complementary to the classical Kolmogoroff–Wiener pre-
diction of continuous functions, and to traditional cause-
and-effect analysis.

The problem includes estimating the predictions’ ac-
curacy: the rates of false alarms and failures to predict, and
the total duration of alarms in relation to the total time
considered. These characteristics represent the inevitable
probabilistic component of prediction; they provide for sta-
tistical validation of a prediction algorithm and for opti-
mizing preparedness to predicted events (e. g. recessions
or crime surges).

Twofold importance. The prediction problem is piv-
otal in two areas:

� Fundamental understanding of complex systems. Pre-
diction algorithms quantitatively define phenomena
that anticipate extreme events. Such quantitative def-
inition is pivotal for fundamental understanding of
a complex system where these events occur, including

the intertwined mechanisms of system’s development
and its basic features, e. g. multiple scaling, correlation
range, clustering, fragmentation etc. (see Sects. “Com-
mon Elements of Data Analyzes”, “Elections”, “US
Economic Recessions”, “Unemployment”). The under-
standing of complex systems remains a major unsolved
problem of modern science, tantamount to transform-
ing our understanding of the natural and humanworld.

� Disaster preparedness. On the practical side prediction
is pivotal for coping with a variety of disasters, com-
monly recognized as major threats to the survival and
sustainability of our civilization (e. g. [22]; see also ma-
terials of G8-UNESCO World Forum on “Education,
Innovation and Research: New Partnership for Sus-
tainable Development”, http://g8forum.ictp.it). The re-
liable advance prediction of extreme events can save
lives, contribute to social and economic stability, and
to improving the governing of modern societies.

Introduction

Predictability vs. Complexity: The Need
for Holistic Approach [7,12,13,15,17,27,32]

Natural science had for many centuries regarded the Uni-
verse as a completely predictable machine. As Pierre Si-
mon de Laplace wrote in 1776, “. . . if we knew exactly the
laws of nature and the situation of the universe at the ini-
tial moment, we could predict exactly the situation of the
same universe at a succeeding moment.” However, at the
turn of the 20th century (1905) Jules Henry Poincare dis-
covered, that “. . . this is not always so. It may happen that
small differences in the initial conditions will produce very
great ones in the final phenomena. Prediction becomes
impossible”.

This instability to initial conditions is indeed a defini-
tive attribute of complex systems. Nonetheless, through
the robust integral description of such systems, it is possi-
ble to discover regular behavior patterns that transcend the
inherent complexity. For that reason studying complex-
ity requires the holistic approach that proceeds from the
whole to details, as opposed to the reductionism approach
that proceeds from details to the whole. It is in principle
not possible “to understand a complex system by breaking
it apart” [13].

Among the regular behavior patterns of complex sys-
tems are “premonitory” ones that emerge more frequently
as an extreme event approaches. These premonitory pat-
terns make complex systems predictable. The accuracy of
predictions, however, is inevitably limited due to the sys-
tems’ complexity and observational errors.

http://g8forum.ictp.it
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Premonitory patterns and extreme events are consec-
utive manifestations of a system’s dynamics. These pat-
terns may not trigger extreme events but merely signal the
growth of instability, making the system ripe for the emer-
gence of extreme events.

Methodology

The prediction algorithms described here are based on
discovering premonitory patterns. The development of
the algorithms requires the integration of complementary
methods:

� Theoretical and numerical modeling of complex sys-
tems; this includes “universal”models considered in
statistical physics and non-linear dynamics (e. g. [1,3,5,
8,12,15,20,42]), and system-specific models, if avail-
able.

� Exploratory data analysis.
� Statistical analysis of limited samples, which is relevant

since the prediction targets are by definition rare.
� Practical expertise, even if it is intuitive.
� Risk analysis and theory of optimal control for optimiz-

ing prediction strategy along with disaster prepared-
ness.

Pattern Recognition of Rare Events This methodol-
ogy provides an efficient framework for integrating di-
verse information into prediction algorithms [4,11,19].
This methodology has been developed by the artificial in-
telligence school of I. Gelfand for the study of rare phe-
nomena of a highly complex origin. In terminology of pat-
tern recognition, the “object of recognition” is the time
moment t. The problem is to recognize whether it belongs
to the period of alarm, i. e. to a time interval � preceding
an extreme event. An alarm starts when certain combina-
tions of premonitory patterns emerges.

Several features of that methodology are important for
predicting extreme events in the absence of a complete
closed theory that would unambiguously define a predic-
tion algorithm. First, this kind of pattern recognition re-
lies on simple, robust parameters that overcome the bane
of complexity analysis – incomplete knowledge of the sys-
tem’s causal mechanisms and chronic imperfections in the
available data. In its efficient robustness, pattern recogni-
tion of rare events is akin to exploratory data analysis as
developed by J. Tukey [50]. Second, unlike other statistical
methods, e. g. regression analysis, that methodology can
be used for small samples such as presidential elections or
economic recessions. Also, it integrates quantitative and
judgmental parameters and thereby more fully captures

the full dimensions of the prediction problem than pro-
cedures that rely strictly on quantitative variables.

Summing up, the methodology described here can
help in prediction when there are (1) many causal vari-
ables, (2) qualitative knowledge about which variables are
important, and (3) limited amounts of data [2].

Besides societal predictions, pattern recognition of
rare events has been successfully applied in seismology
and earthquake prediction (e. g. [11,19,20,44,46]), geolog-
ical prospecting (e. g. [45]) and in many other fields. Re-
view can be found in [21,47]. Tutorial materials are avail-
able at the web site of the Abdus Salam International Cen-
tre for Theoretical Physics (http://cdsagenda5.ictp.it/full_
display.php?da=a06219).

Validation of Prediction Algorithms The algorithms
include many adjustable elements, from selecting the data
and defining the prediction targets, to specifying numeri-
cal parameters involved. In lieu of theory that would un-
ambiguously determine these elements they have to be
developed retrospectively, by “predicting” past extreme
events. The application of the methodology to known
events creates the danger of self-deceptive data-fitting: As
J. von Neumann put it “with four exponents I can fit an ele-
phant”. The proper validation of the prediction algorithms
requires three consecutive tests.

� Sensitivity analysis: testing whether predictions are sen-
sitive to variations of adjustable elements.

� Out of sample analysis: application of an algorithm to
past data that has not been used in the algorithm’s de-
velopment. The test is considered successful if algo-
rithm retains its accuracy.

� Predicting future events – the only decisive test of a pre-
diction algorithm (see for example Sect. “Elections” be-
low).

A highly efficient tool for such tests is the error Diagram,
showing major characteristics of prediction accuracy [33,
34,35,36,37,38,39]. Its example is given in Fig. 10. Exhaus-
tive sets of these tests are described in [10,11,24,52].

Common Elements of Data Analyzes

The methodology discussed above was used for predicting
various kinds of extreme events, as illustrated in the next
four Sections. Naturally, from case to case this methodol-
ogy was used in different ways, according to specifics of
phenomena considered. However in all cases data analysis
has essential common elements described below.

Sequence of analysis comprises four stages: (i) Defin-
ing prediction targets. (ii) Choosing the data (time series),

http://cdsagenda5.ictp.it/full_display.php?da=a06219
http://cdsagenda5.ictp.it/full_display.php?da=a06219
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where premonitory patterns will be looked for and sum-
ming up a priori constrains on these patterns. (iii) For-
mulating hypothetical definition of these patterns and de-
veloping prediction algorithm; determining the error dia-
gram. (iv) Validating and optimizing that algorithm.

Preliminary transformation of raw data. In predict-
ing recessions (Sect. “US Economic Recessions”), fast ac-
celeration of unemployment (Sect. “Unemployment”) and
crime surges (Sect. “Homicide Surges”) raw data were time
series of relevant monthly indicators, hypothetically con-
taining premonitory patterns. Let f (m) be such an indica-
tor, with integer m showing time in months. Premonitory
behavior of some indicators is better captured by their lin-
ear trends.

Let W f (l/q; p) be the local linear least-squares regres-
sion of a function f (m) within the sliding time window
(q; p):

W f (l/q; p) D K f (q; p)l C B f (q; p); q � l � p ; (1)

where integers l, q, and p stand for time in months.
Premonitory behavior of most indicators was captured

by the following two functions:

� The trend of f (m) in the s months long window, (m �
s;m). For brevity we denote

K f (m/s) D K f (m � s;m) (2)

� The deviation of f (m) from extrapolation of its long-
term regression (i. e. regression on a long time window
(q;m � 1):

R f (m/q) D f (m) � W f (m/q;m � 1) : (3)

Both functions can be used for prediction since their val-
ues do not depend on the information about the future (af-
ter the monthm) which would be anathema in prediction.

Discretization. The prediction algorithms use one or
several premonitory patterns. Each pattern is defined at
the lowest – binary – level of resolution, as 0 or 1, distin-
guishing only the presence of absence of a pattern at each
moment of time. Then the objects of recognition are de-
scribed by binary vectors of the same length. This ensures
the robustness of the prediction algorithms.

Simple algorithm called Hamming distance is used
for classification of binary vectors in applications consid-
ered here, [14,20,28]. Each vector is either premonitory or
not. Analyzing the samples of vectors of each class (“the
learning material”), the algorithm determines a reference
binary vector (“kernel”) with components typical for the
premonitory vector. Let D be the Hamming distance of

a vector from the kernel (the number of non-coinciding
binary components). The given vector is recognized as
premonitory class, if D is below a certain threshold D*.
This criterion takes advantage of the clustering of precur-
sors in time.

Summing up, these elements of the pattern recognition
approach are common for its numerous applications, their
diversity notwithstanding. Experience in the specific ap-
plications is described in Sects. “Elections”, “US Economic
Recessions”, “Unemployment”, “Homicide Surges”. The
conceptual summary of the accumulated experience is
given in the final Sect. “Summary: Findings and Emerging
Possibilities”.

Elections

This Section describes algorithms for predicting the out-
come of the US Presidential and mid-term Senatorial elec-
tions [28,29,30,31]. Elections’ time is set by the law as fol-
lows.

� National elections are held every even-numbered year,
on the first Tuesday after the first Monday in Novem-
ber (i. e., between November 2 and November 8, inclu-
sively).

� Presidential elections are held once every 4 years, i. e.
on every other election day. People in each of the 50
states andDistrict of Columbia are voting separately for
“electors” pledged to one or another of the Presiden-
tial candidates. These electors make up the “Electoral
College” which directly elects the President. Since 1860,
when the present two-party system was basically estab-
lished, the Electoral College reversed the decision of the
popular vote only three times, in 1888, 1912, and 2000.
Algorithmic prediction of such reversals is not devel-
oped so far.

� A third of Senators are elected for a 6-year term every
election day; “mid-term” elections held in the middle
of a Presidential term are considered here.

Methodology

The prediction target is an electoral defeat of an “incum-
bent” party, i. e. the party holding the contested seat.
Accordingly, the prediction problem is formulated as
whether the incumbent party will retain this seat or lose
it to the challenging party (and not whether Republican or
Democrat will win). As is shown below, that formulation
is crucial for predicting the outcomes of elections consid-
ered.

Data. The pre-election situation is described by robust
common sense parameters defined at the lowest (binary)
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level of resolution, as the yes or no answers to the ques-
tionnaires given below (Tables 1, 2). The questions are
formulated in such a way that the answer no favors the
victory of the challenging party. According to the Ham-
ming distance analysis (Sect. “Common Elements of Data
Analyzes”) the victory of the challenging party is pre-
dicted when the number of answers no exceeds a thresh-
old D*.

Mid-term Senatorial Elections

The prediction algorithm was developed by a retrospective
analysis of the data on three elections, 1974, 1978, and
1982. The questionnaire is shown in Table 1. Victory of
the challenger is predicted if the number of answers no is
5 or more [28,29,30].

The meaning of these questions may be broader than
their literal interpretation. For example, financial contri-

Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Table 1
Questionnaire for mid-term Senatorial Elections [28]

1. (Incumbency): The incumbent -party candidate is the sitting senator.
2. (Stature): The incumbent -party candidate is a major national figure.
3. (Contest): There was no serious contest for the incumbent -party nomination.
4. (Party mandate): The incumbent party won the seat with 60% or more of the vote in the previous election.
5. (Support): The incumbent -party candidate outspends the challenger by 10% or more.
6. (Obscurity): The challenging -party candidate is not a major national figure or a past or present governor or member of Congress.
7. (Opposition): The incumbent party is not the party of the President.
8. (Contest): There is no serious contest for the challenging -party nomination (the nominee gains a majority of the votes cast in the

first primary and beats the second-place finisher at least two to one).

Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Table 2
Questionnaire for Presidential elections [29,30]

KEY 1 (Party Mandate): After the midterm elections, the incumbent party holds more seats in the US House of Representatives than
it did after the previous midterm elections.

KEY 2 (Contest): There is no serious contest for the incumbent -party nomination.
KEY 3 (Incumbency): The incumbent -party candidate is the sitting president.
KEY 4 (Third party): There is significant third-party or independent campaign.
KEY 5 (Short-term economy): The economy is not in recession during the election campaign.
KEY 6 (Long-term economy): Real per -capita economic growth during the term equals or exceeds mean growth during the

previous two terms.
KEY 7 (Policy change): The incumbent administration effects major changes in national policy.
KEY 8 (Social unrest): There is no sustained social unrest during the term.
KEY 9 (Scandal): The incumbent administration is unattained by a major scandal.
KEY 10 (Foreign/military failure): The incumbent administration suffers no major failure in foreign or military affairs.
KEY 11 (Foreign/military success): The incumbent administration achieves a major success in foreign or military affairs.
KEY 12 (Incumbent charisma): The incumbent -party candidate is charismatic or a national hero.
KEY 13 (Challenger charisma): The challenging -party candidate is not charismatic or a national hero.

butions (key 5 in Table 2) not only provide the resources
required for an effective campaign, but may also constitute
a poll in which the preferences are weighed by the money
attached.

Predicting future elections. This algorithm (without
any changes from year to year and from state to state)
was applied in advance to the five subsequent elections,
1986–2002. Predictions are shown in Fig. 2. Altogether,
150 seats were put up for election. For each seat a sep-
arate prediction was made, 128 predictions were correct,
and 22 – wrong.

Statistical significance of this score is 99.9%. In other
words the probability to get such a score by chance is be-
low 0.1% [28,29,30]. For some elections these predictions
might be considered as trivial, since they coincide with
prevailing expectation of experts. Such elections are iden-
tified by Congressional Review. Eliminating them from the
score still results in 99% significance.
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Presidential Elections

The prediction algorithm was developed by a retrospective
analysis of the data on the past 31 elections, 1860–1980;
that covers the period between victories of A. Lincoln and
R. Reagan inclusively. The questionnaire is shown in Ta-
ble 2. Victory for the challenger is predicted if the number
of answers no is 6 or more [29,30].

Predicting of future elections. This algorithm (without
any changes from year to year state) was applied in ad-
vance to the six subsequent elections, 1984–2004. Predic-
tions are shown in Fig. 3. All of them happened to be cor-
rect. In 2000 the decision of popular majority was reversed
by the Electoral College; such reversals are not targeted by
this algorithm [29,30].

Understanding Elections

Collective behavior. The finding that aggregate-level pa-
rameters can reliably anticipate the outcome of both pres-
idential and senatorial elections points to an electoral be-
havior highly integrated not only for the nation as a whole
but also within the diverse American states.

� A presidential election is determined by the collective,
integrated estimation of performance of incumbent ad-
ministration during the previous four years.

� In case of senatorial elections the electorate has more
diffused expectations of performance but puts more
importance on political experience and status than in
the case of presidential elections. Senate incumbents,
unlike presidential ones, do not suffer from a bad econ-
omy or benefit from a good one. (This suggests that
rather than punishing the party holding a Senate seat
for hard times, the voters may instead regard the in-
cumbent party as a safe port in a storm).

Similarity. For each election year in all states the outcomes
of elections follow the same pattern that transcends the
diversities of the situations in each of the individual elec-
tions.

The same pattern of the choice of the US President pre-
vails since 1860, i. e. since election of A Lincoln, despite
all the overwhelming changes in the electorate, the econ-
omy, the social order and the technology of politics dur-
ing these 130 years. (For example, the electorate of 1860
did not include the groups, which constitute 3/4 of present
electorate, such as women, African Americans, or most of
the citizens of the Latin American, South European, East-
ern European, and Jewish descent [30].

An alternative (andmore traditional) concept of Amer-
ican elections focuses on the division of voters into in-
terest and attitudinal groups. By this concept the goal of

the contestants is to attract the maximum number of vot-
ing blocks with minimal antagonism from other blocks.
Electoral choice depends strongly on the factors irrelevant
to the essence of the electoral dilemma (e. g. on the cam-
paign tactics). The drawbacks of this concept are discussed
in [18,30]. In sum, the work on presidential and senatorial
elections described above suggests the following new ways
of understanding American politics and perhaps the poli-
tics of other societies as well.

1. Fundamental shifts in the composition of the elec-
torate, the technology of campaigning, the prevailing
economic and social conditions, and the key issues of
campaigns do not necessarily change the pragmatic ba-
sis on which voters choose their leaders.

2. It is governing not campaigning that counts in the out-
comes of presidential elections.

3. Different factors may decide the outcome of executive
as compared to legislative elections.

4. Conventional campaigning will not improve the
prospects for candidates faced with an unfavorable
combination of fundamental historical factors. Disad-
vantaged candidates have an incentive to adopt inno-
vative campaigns that break the pattern of conventional
politics.

5. All candidates would benefit from using campaigns to
build a foundation for governing in the future.

US Economic Recessions

US National Bureau of Economic Research (NBER) has
identified the seven recessions that occurred in the US
since 1960 (Table 3). The starting points of a recession and
of the recovery from it follow themonthsmarked by a peak
and a trough of economic activity, respectively.

A peak indicates the last month before a recession, and
a trough – the last month of a recession.

Prediction targets considered are the first month after
the peak and after the trough (“the turns to the worst and
to the best”, respectively). The start of the first recession, in
1960, is not among the targets, since the data do not cover
a sufficient period of time preceding the recession.

The data used for prediction comprise the following
six monthly leading economic indicators obtained from
the CITIBASE data base, Jan. 1960–June 2000 (abbrevia-
tions are the same, as in [49]).

G10FF = FYGT10 � FEDFUN Difference between the
annual interest rate on 10 year US Treasury bonds, and
federal fund annual interest rate.
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Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Figure 2
Made-in-advance predictions of the mid-term senatorial elections (1986–2002). Each election is represented by the two-letter state
abbreviation with the election year shown by two last digits. Each column shows elections with certain number D of answers “no” to
the questionnaire given in Table 1 (such answers are favorable to challenging party). Value ofD, indicated at the top, is the Hamming
distance from the kernel
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Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Figure 3
Division of presidential elections (1860–2004) by the number D of answers “no” to the questionnaire given in Table 2 (such answers
are favorable to challenging party). D is the Hamming distance from the kernel

Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Table 3
American Economic Recessions since 1960

# Peaks Troughs
1 1960:04 1961:02
2 1969:12 1970:11
3 1973:11 1975:03
4 1980:01 1980:07
5 1981:07 1982:11
6 1990:07 1991:03
7 2001:03 2001:11

IP Industrial Production, total: index of real (constant
dollars, dimensionless) output in the entire economy.
This represents mainly the manufacturing industry,
because of the difficulties in measuring the quantity of
the output in services (such as travel agents, banking,
etc.).

LHELL Index of “help wanted” advertising. This is put
together by a private publishing company that mea-
sures the amount of job advertising (column-inches)
in a number of major newspapers.

LUINC Average weekly number of people claiming un-
employment insurance.

INVMTQ Total inventories in manufacturing and trade,
in real dollars. Includes intermediate inventories (for
example held by manufacturers, ready to be sent to
retailers) and final goods inventories (goods on the
shelves in stores).

FYGM3 Interest rate on 90 day US treasury bills at an an-
nual rate (in percent).

These indicators were already known [48,49], as those that
correlate with a recession’s approach.

Prediction of a Recession Start

Single indicators exhibit the following premonitory pat-
terns:

G10FF: small value
IP and INVMTQ: small deviation from the long-term

trend Rf (3)
FYGM3: large deviation from the long-term trend Rf

LHELL: small trend Kf (2)
LUINC: large trend Kf

The prediction algorithm triggers an alarm after a month
when most of the patterns emerge simultaneously. It
lasts � months and can be extended by the same rule, if
premonitory patterns keep emerging. Formal quantitative
definition of the algorithm can be found in [23] along with
its validation by sensitivity and out-of-sample analyzes.

Alarms and recessions are juxtaposed in Fig. 4. We see
that five recessions occurring between 1961 and 2000 were
predicted by an alarm. The sixth recession started in April
2001, one month before the corresponding alarm. (Reces-
sion of 1960 was not considered for prediction, since data
analyzed start just before it.)

Only the first six recessions listed in Table 1 were con-
sidered in the developing of the algorithm [23]. Duration
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Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Figure 4
Alarms (black bars) and recessions (gray bars)

of each alarm was between 1 and 14 months. Total dura-
tion of all alarms was 38 months, or 13.6% of the time in-
terval considered. There were no false alarms. No alarms
were yielded so far by subsequent prediction in advance
and no recession was identified during that time.

Prediction of a Recession End

Prediction targets are the starting points of recovery from
recessions; these points are indicated in the last column of
Table 3.

The data comprise the same six indicators that indi-
cate the approach of a recession (see Subsect. “Prediction
of a Recession Start”); they are analyzed only within the
recessions’ periods.

Data analysis shows intriguing regularity illustrated in
Fig. 5:

� Financial indicators change in opposite directions be-
fore the recession and before the recovery.

� Economic indicators change in the same direction be-
fore the recession and the recovery; but the change is
stronger before the recovery, i. e., the economic situa-
tion worsens.

Prediction algorithm is formulated in the same terms as in
the previous case but an alarm is triggered after three con-
secutive months when most of the patterns emerge simul-
taneously. The alarms predict when the recovery will start.
Alarms and prediction targets are juxtaposed in Fig. 6. Du-
ration of a single alarm is one to five months. Total dura-
tion of alarms is 16 months, which is 22% of time covered
by all recessions. There are neither false alarms nor failures
to predict.

Unemployment

Here we describe uniform prediction of the sharp and last-
ing unemployment surge in France, Germany, Italy, and
the USA [25].

Prediction Target

A prediction target is schematically illustrated in Fig. 7.
Thin curve shows monthly unemployment with seasonal

Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 5
Premonitory changes of indicators before the start of a recession
and before its end. See explanations in the text

variations. On the thick curve seasonal variations are
smoothed away. The arrow indicates a sharp upward bend
of the smoothed curve. The moment of that bend is the
prediction target. It is called by the acronym FAU, for
“Fast Acceleration of Unemployment”.

Smoothing was done as follows: Let u(m) be number
of unemployed in a month m D 1; 2; : : : . After smooth-



282 Extreme Events in Socio-economic and Political Complex Systems, Predictability of

Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 6
Prediction of recovery from a recession. Black bars – periods of
recessions. Gray bars – alarms preceding the end of a recession

ing out the seasol variation we obtain time series U(m) D
Wu(m/m � 6;m C 6) ; this is the linear regression over
the year-long time interval (m � 6;m C 6). A natural ro-
bust measure of unemployment acceleration at the timem

Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 7
Fast acceleration of unemployment (FAU): schematic definition.
Thin line – monthly unemployment; with seasonal variations.
Thick line – monthly unemployment, with seasonal variations
smoothed away. The arrow indicates a FAU – the sharp bend of
the smoothed curve. The moment of a FAU is the target of pre-
diction

is the bend of the linear trend of U; in notations used
in (1) this is the function F(m/s) D KU (m C s;m) �
KU (m;m � s). The FAUs are identified by the local max-
ima of F(m) exceeding a certain threshold F. The timem*
and the height F* of such a maximum are, respectively, the
time and the magnitude of a FAU. Subsequent local min-
imum of F(m) identifies the month me when acceleration
ends. Figure 8 shows thus defined FAUs for France.

The Data

The analysis has been initially made for France and three
groups of data have been analyzed.

� Composite macroeconomic indicators of national econ-
omy
1. IP: Industrial production indicator, composed of

weighted production levels in numerous sectors of
the economy, in % relative to the index for 1990.

2. L: Long-term interest rate on 10-year government
bonds, in %.

3. S: Short-term interest rate on 3-month bills, in %.
� Characteristics of more narrow areas of French economy

4. NC: The number of new passenger car registrations,
in thousands of units.

5. EI: Expected prospects for the national industrial
sector.

6. EP: Expected prospects for manufacturers.
7. EO: Estimated volume of current orders.
Indicators 5–7 distinguish only “good” and “bad” ex-
pectations determined polling 2,500 manufacturers,
whose answers are by the size of their businesses.

� Indicators related to US economy.
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Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Figure 8
Unemployment in France. Top: Monthly unemployment, thousands of people. Thin line: u(m), data from the OECD database; note
the seasonal variations. Thick line: U(m), data smoothed over one year. Bottom: Determination of FAUs. F(m) shows the change in
the linear trend of unemployment U(m). FAUs are attributed to the local maxima of F(m) exceeding threshold F D 4:0 shown by
horizontal line. The thick vertical lines showmoments of the FAUs

8. FF/$: Value of US dollar in French francs.
9. AR: The state of the American economy: is it close

to a recession or not? This indicator shows the pres-
ence or absence of a current pre-recession alarm (see
Subsect. “Prediction of a Recession Start”).

The data baseswith above indicators for Europe are issued
by the Organization for Economic Cooperation and De-
velopment [43] and the InternationalMonetary Fund [16].

American analogues of indicators IP, L, and S are pro-
vided by CITIBASE; they are described in Sect. “US Eco-
nomic Recessions>” under abbreviations IP, FYGM3 and
FIGT10 respectively.

Prediction

Single indicators exhibit the following premonitory behav-
ior.

� Steep upward trends of composite indicators (#1–#3).
This behavior reflects “overheating” of the economy
and may sound counterintuitive for industrial produc-
tion (#1), since the rise of production is supposed to
createmore jobs. However, a particularly steep rise may
create oversupply.

� Steep downward trends of economic expectations by
general public (#4) and business community (#5–#8).

� Proximity of an American recession (#9). Before anal-
ysis was made such and opposite precursors might be
expected for equally plausible reasons, so that this find-
ing, if further confirmed, does provide a constraint on
understanding unemployment’s dynamics.

Among different combinations of indicators the macroe-
conomic ones (#1–#3) jointly give relatively better predic-
tions, with smallest rates of errors and highest stability in
sensitivity tests.

Retrospective prediction. Macroeconomic indicators
were used jointly in the Hamming distance prediction al-
gorithm (Sect. “Common Elements of Data Analyzes”).
Being robust and self-adjusting to regional conditions, this
algorithm was applied without any changes to the four
countries considered here.

Alarms and FAUs are juxtaposed in Fig. 9. Error di-
agram in Fig. 10 shows quality of prediction for different
countries. For US the quality is lower than for European
countries, though still higher than in random predictions.

Prediction of the future FAUs was launched for USA.
The results are shown in Fig. 11. It shows that by Jan-
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Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 9
Retrospective predictions for four countries: FAUs and alarms
obtained by the prediction algorithm. The thick vertical lines
show the moments of FAUs in a country. Bars – the alarms with
different outcome: 1 – alarms that predict FAUs, 2 – alarms
starting shortly after FAUs within the periods of unemployment
surge, 3 – false alarms. Shaded areas on both sides indicate the
times, for which data on economic indicators were unavailable

Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 10
Error diagram for prediction of FAUs in different countries; � is
total duration of alarms in % to the time interval considered, f –
total number of false alarms

uary 2008 two correct predictions have been made, with-
out ether false alarms or failures to predict. In November
2006 the second prediction was filed on the web site of
the Anderson School of Management, University of Cal-
ifornia, Los Angeles (http://www.uclaforecast.com/). This

started the documented experiment in testing the algo-
rithm by predicting future FAUs on that website.

Homicide Surges

This section analyzes the prediction of homicide rates in
an American megacity – Los Angeles, CA [24].

Prediction Target

A prediction target is the start of a sharp and lasting acceler-
ation of the homicide rate; it is called by the acronym SHS,
for “Start of the Homicide Surge.” It is formally determined
by the analysis of monthly homicides rates, with seasonal
variations smoothed out, as described in Subsect. “Predic-
tion Target”. Prediction targets thus identified are shown
by vertical lines in Figs. 12 and 14 below.

The Data

The analyzed data include monthly rates of the homicides
and 11 types of lesser crimes, listed in Table 2. Definitions
of these crimes are given in [6].

The data are taken from two sources:

� The National Archive of Criminal Justice Data, placed
on the web site (NACJD), 1975–1993.

� Data bank of the Los Angeles Police Depart-
ment(LAPD) Information TechnologyDivision), 1990–
2003.

The algorithm does not use socio-economic determi-
nants of crime, or other data that might be also useful.
The objective was to develop a simple, efficient predic-
tion model; development of comprehensive causal model
would be a complementary objective.

Prediction

Premonitory behavior of indicators is illustrated in Fig. 13.
The first phase is characterized by an escalation of bur-
glaries and assaults, but not of robberies. Later on, closer
to a homicide surge, robberies also increase.

The Prediction algorithm based on Hamming distance
(see Sect. “Common Elements of Data Analyzes”) uses
seven indicators listed in Table 4. Other five indicators
marked by * are used in sensitivity tests; and the homicide
rate is used for identification of targets SHS.

Alarms and homicide surges are juxtaposed in Fig. 14.
The SHS episode in November 1994 has occurred simul-
taneously with the corresponding alarm. It is captured by
an alarm, which starts in the month of SHS without a lead
time. Prediction missed the October 1999 episode: it oc-
curred two months before the start of the corresponding

http://www.uclaforecast.com/
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Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Figure 11
Experiment in predicting future FAUs, September (1999)–January (2008). Thin blue curve showsmonthly unemployment rate in USA,
according to data of Bureau of Labor Statistics, US Department of Labor (http://www.data.bls.gov). Thick curve shows this rate with
seasonal variation smoothed away. Vertical red lines show prediction targets – the moments of FAU, gray bar – the period of unem-
ployment’s growth; pink bars – periods of alarms

Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 12
Target of prediction – the Start of the Homicide Surge (“SHS”);
schematic definition. Gray bar marks the period of homicide
surge

alarm. Such delays should be taken into account for vali-
dating the algorithm. Note, however, that the last predic-
tion did remain informative.

Altogether alarms occupy 15% of the time considered.
During phase 2 (as defined in Fig. 13) this rate might be
reduced [24].

Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 13
Scheme of premonitory changes in crime statistics

Summary: Findings and Emerging Possibilities

The findings described above enhance predictive under-
standing of extreme events and indicate yet untapped pos-
sibilities for further R&D in that field.

http://www.data.bls.gov
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Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Figure 14
Performance of prediction algorithm through 1975–2002. Thin curve – original time series, total monthly number of homicides in
Los Angeles city, per 3,000,000 inhabitants. Data from NACJD [6] have been used for 1975–1993 and from the Data Bank of the
Los Angeles Police Department (LAPD Information Technology Division) for subsequent 9 years. Thick curve – smoothed series, with
seasonal variations eliminated. Vertical lines show the targets of prediction – episodes of SHS (Subsect. “Prediction Target”). Gray
bars show the periods of homicide surge. Red bars show the alarms declared by the prediction algorithm [24]

Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Table 4
Types of crimes considered (after [6])

Homicide Robberies Assaults Burglaries
� All � All � All* � Unlawful not forcible entry

� With firearms � With firearms � Attempted forcible entry*
� With knife or cutting instrument � With knife or cutting instrument
� With other dangerous weapon � With other dangerous weapon*
� Strong -arm robberies* � Aggravated injury assaults*

*Analyzed in sensitivity tests only

Pattern Recognition Approach

Information extracted from the already available data is in-
deed increased by this approach. To each problem con-
sidered here one may apply the following conclusion of J.
Stock, a leading expert in the field: “Prediction/of reces-
sions/requires fitting non-linear, high-dimensional mod-
els to a handful of observations generated by a possibly
non-stationary economic environment. . . . The evidence
presented here suggests that these simple binary transfor-
mations of economic indicators have significant predictive
content for recessions. It is striking that these models, in
which the information in the data is reduced to binary
indicators, have predictive contents comparable to or, in

many cases, better than that of more conventional mod-
els.” Importantly, this is achieved by using not more de-
tailed data and models, but more robust aggregation (Sub-
sect. “Predictability vs. Complexity: The Need for Holistic
Approach”).

Partial “universality” of premonitory patterns is estab-
lished by broad research in modeling and data analysis.
This includes the common definition of the patterns, their
self-adjustment, scaling, and similarity [9,10,20,26,42]; see
also references in Sects. “Elections”, “US Economic Reces-
sions”, “Unemployment”, “Homicide Surges”).

Relation to “cause and effect” analysis (perpetrators or
witnesses?). Premonitory patterns might be either “per-
petrators” contributing to causing extreme events, or the
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“witnesses” – parallel manifestations of the system’s de-
velopment. The cause that triggered a specific extreme
event is usually identified, at least in retrospect. It may be,
for example, a certain governmental decision, a change in
the international situation, a natural disaster, the deple-
tion of natural resources etc. However an actual extreme
event might materialize only if the system is destabilized
and “ripe” for it. Patterns of each kind signal such a ripe
situation.

What premonitory patters to use for prediction? Exist-
ing theories and experience reduce the number of such
patterns, but too many of them remain hypothetically
promising and have to be chosen by a trial and error proce-
dure. Inevitably a prediction algorithm begins with a lim-
ited number of promising patterns. They should be suffi-
cient for prediction, but other patterns may be equally or
more useful and should be considered in further develop-
ment of the algorithm.Most relevant “perpetrators” might
not be included in the most useful patterns (e. g. due to
their sensitivity to too many factors).

Relation to policy-making: prediction and disaster pre-
paredness. Reliable predictions of future extreme events
in complex societal systems would allow policy-makers to
take remedial action before rather than after the onset of
such afflictions as economic disasters, crime surges, etc. As
in case of military intelligence predictions would be use-
ful if their accuracy is known, albeit not necessarily high.
Analysis of error diagrams allows to regulate the tradeoff
between the rates of failures to predict and false alarms ac-
cording to the needs of a decision-maker.

Relation to governing and campaigning. The findings
presented here for the USA elections show that top elected
officials would have better chances for reelection, if they
focus on effective governing, and not on rhetoric, packag-
ing and image-making. Candidates will benefit themselfes
and their parties if they run substantive campaigns that
build a foundation for governing during the next term.

Further Possibilities

A wealth of yet untapped data and models is readily avail-
able for the continuation of the kinds of studies described
and analyzed in this article. Following are some immediate
possibilities; specific examples can be found in the given
references.

� Continuing experiments in advance prediction, for
which the above findings set up a base (Sect. “Elec-
tions”). Successes and errors are equally impor-
tant [37,38].

� Incorporating other available data into the analysis
(Sects. “US Economic Recessions”,“Unemployment”)

� Predicting the same kind of extreme events in different
contexts (Sect. “Unemployment”)

� Predicting the end of a crisis (Sect. “US Economic Re-
cessions”).

� Multistage prediction with several lead times (Sect.
“Homicide Surges”)
Less imminent, but within reach are:

� “Universal” scenarios of extreme development and low-
parametric definition of an ensemble of premonitory
patterns [9,51,52].

� Validation of an algorithm and joint optimization of
prediction and preparedness strategy [38].

� Developing prediction algorithms for other types of ex-
treme events.

The authors would be glad to provide specific information
upon request.

Generalizations

The problems considered here have the following common
features:

� The absence of a closed theory that would unambigu-
ously determine prediction methodology. This leads
to the need for intense intertwining of mathematics,
statistical physics and non-linear dynamics, a range
of societal sciences, and practical experience (Sub-
sect. “Methodology”). In reality this requires long-term
collaboration of respective experts. As can be seen from
the references to Sects. “Elections”, “US Economic Re-
cessions”, “Unemployment”, “Homicide Surges” previ-
ous applications inevitably involved the teams of such
experts.

� Predictions in advance is the only final validation of the
results obtained.

� The need for holistic analysis driven to extreme robust-
ness.

� Considerable, albeit limited, universalityof the premon-
itory phenomena.

Two classical quotations shed the light on these features:
A. N. Kolmogoroff . “It became clear for me that it is

unrealistic to have a hope for the creation of a pure theory
[of the turbulent flows of fluids and gases] closed in itself.
Due to the absence of such a theory we have to rely upon
the hypotheses obtained by processing of the experimental
data.”

M. Gell-Mann: “. . . if the parts of a complex system or
the various aspects of a complex situation, all defined in
advance, are studied carefully by experts on those parts or
aspects, and the results of their work are pooled, an ad-
equate description of the whole system or situation does
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not usually emerge. . . . The reason, of course, is that these
parts or aspects are typically entangled with one another.
. . . We have to supplement the partial studies with a trans-
disciplinary crude look at the whole.”

In the general scheme of things the problem consid-
ered belongs to amuch wider field – the quest for a univer-
sal theory of complex systems extended to predicting ex-
treme events – the Holy Grail of complexity studies. This
quest encompasses the natural and human-made com-
plex systems that comprise what some analysts have called
“the global village”. It requires entirely new applications
of modern science, such as algebraic geometry, combina-
torics, and thermodynamics. As a means for anticipating,
preventing and responding to natural andmanmade disas-
ters and for improving the outcomes of economic and po-
litical systems, the methods described here may hold one
key for the survival and sustainability of our civilization.
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Introduction

Economics and finance have slowly emerged from the
Walrasian, representative agent paradigm exemplified by
the research agenda in general equilibrium theory. This
program may have reached its pinnacle in the 1970s, with
a highly abstract treatment of the existence of a market
clearing mechanism. The normative foundation of this re-
search was provided by powerful welfare theorems that
demonstrated the optimality of the market allocations.
Unfortunately, this abstract world had little economics
in it. The models rarely provided empirical implications.
Lifetime consumption and portfolio allocation plans were
formed in infancy, unemployment was Pareto optimal,
and the role for government was largely limited to public
goods provision.

The demonstration by Benhabib, Brock, Day, Gale,
Grandmont, [1,4,8,9] and others, that even simple math-
ematical models could display highly complex dynamics
was the beginning of a new research program in eco-
nomics. This section on finance and econometrics surveys
some of the developments of the last 20 years that were
inspired by this research.

Econometrics

Time series econometrics was originally built on the rep-
resentation theorems for Euclidean spaces. The existence
of a Wold decomposition in linear time series led to the
widespread use of Box–Jenkins [3] style modeling as an al-
ternative to structural or reduced form models.

A number of stylized facts about the economy emerged
that simply could not be explained in this linear world.
Rob Engle [2] and Tim Bollerslev [5] showed that volatil-

ity was quite persistent, even in markets that appeared to
be nearly random walks. In � GARCH Modeling, Chris-
tian Hafner surveys the extensive development in this
area.

James Hamilton [10] and Salih Neftci [11] demon-
strated that the business cycle was asymmetric and could
be well described by a Markov switching model. James
Morley � Macroeconomics, Non-linear Time Series in
and Jeremy Piger � Econometrics: Models of Regime
Changes describe the developments in this area. Virtu-
ally all the moments, not just the conditional mean, are
now thought to be varying over the business cycle. These
models help us to understand why recessions are shorter
than expansions and why certain variables lead and lag the
cycle.

Nearly all the business cycle models involve the use of
latent or unobservable state variables. This reflects a re-
ality that policy makers themselves face. We rarely know
whether we are in a recession until it is nearly over.
These latent variable models are often better described
in a Bayesian rather than a classical paradigm. Oleg Ko-
renok� BayesianMethods in Non-linear Time Series pro-
vides an introduction to the frontier research in this area.

Markets are often drawn towards equilibrium states in
the absence of exogenous shocks, and, since the 1940s, this
simple idea was reflected in the building of macroecono-
metric models. In linear models, Engle and Granger [6]
formalized this notion in an error correction framework.
When the adjustment process is taking place between two
variables that are not stationary, we say that they are coin-
tegrated. Escanciano and Escribano extend the error cor-
rection framework and cointegration analysis to nonlinear
models in� Econometrics: Non-linear Cointegration.

Because we often know very little about the data gen-
erating mechanism for an economy, nonparametric meth-
ods have become increasingly popular in the analysis of
time series. Cees Diks discusses in�Nonparametric Tests
for Independence methods to analyze both data and the
residuals from an econometric model.

Our last two entries look at the data generated by indi-
vidual consumers and households. Pravan Trivedi � Mi-
croeconometrics surveys the microeconometric literature,
and Jeff Wooldridge � Econometrics: Panel Data Meth-
ods examines the tools and techniques useful for analyzing
cross-sectional data.

Agent BasedModeling

The neo-classical synthesis in economics was built upon
the abstraction of a single optimizing agent. This assump-
tion simplified the model building and allowed for analyt-
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ical solutions of the standard models. As computational
power became cheaper, it became easier to relax these
assumptions. Many economists underestimated the com-
plexity of a world in which multiple agents interact in a dy-
namic setting. Econophysicists, as Bertrand Roehner de-
scribes in � Econophysics, Observational, were not sur-
prised. Roehner is just one of scores of physicists who have
brought their tools and perspectives to economics.

Agent based modeling has had a large impact on fi-
nance. Financial economics had been led by a Chicago in-
fluenced school that saw markets as both rational and ef-
ficient. Behavioral finance has eroded the view that people
alwaysmake optimizing decisions evenwhen large sums of
money are at stake. The boundedly rational agents in Se-
bastiano Manzan’s � Finance, Agent Based Modeling in
are prone to speculative bubbles. Markets crash suddenly
in agent based computational models and in large scale ex-
perimental stock markets.

Finance

The foundation of financial economics is the theory of op-
timal consumption and saving. The goal of the empirical
literature was to identify a set of risk factors that would
explain why certain assets have a higher return than oth-
ers. Ralitsa Petkova � Financial Economics, The Cross–
Section of Stock Returns and the Fama-French Three
Factor Model surveys the canonical model of Fama and
French [7] and the extensions to this model in the last
decade.

With risk averse agents, asset returns are often pre-
dictable. Stijn van Nieuwerburgh and Ralph S.J. Koijen
� Financial Economics, Return Predictability and Mar-
ket Efficiency demonstrate the robustness of this result in
a structural model and show that the dividend price ratio
does predict future stock returns.

Mototsugu Shintani addresses in � Financial Fore-
casting, Sensitive Dependence the concept of predictabil-
ity from an information theoretic perspective through the
use of Lyapunov exponents. The exponents not only tell
us which systems display sensitive dependence on initial
conditions (“chaos”) but also provide a predictive horizon
for data generated by the model. Shintani finds that finan-
cial data appear to not be chaotic, even though they display
local dependence on initial conditions.

Mark Kamstra and Lisa Kramer’s entry on� Financial
Economics, Time Variation in the Market Return primar-
ily focus on the equity premium, the substantially higher
return in the US and other countries on equities, over de-
fault free securities like Treasury bonds. They document
its statistical significance and discuss some behavioral ex-

planations. They demonstrate that behavioral moods can
influence asset prices.

Terence Mills’ � Financial Economics, Non-linear
Time Series in surveys the use of nonlinear time series
techniques in finance. Gloria Gonzalez-Rivera and Tae-
Hwy Lee look at the ability of nonlinear models to fore-
cast in � Financial Forecasting, Non-linear Time Series
in. They also cover the methodology for assessing forecast
improvement. The best forecast may not be the one that
predicts the mean most accurately; it may instead be the
one that keeps you from large losses.

Our last two papers in this area focus on volatility.
Markus Haas and Christian Pigorsch discuss the ubiqui-
tous phenomenon of fat-tailed distributions in asset mar-
kets in � Financial Economics, Fat-Tailed Distributions.
They provide evidence on the frequency of extreme events
in many different markets, and develop the implications
for risk management when the world is not normally dis-
tributed. Torben Andersen and Luca Benzoni� Stochastic
Volatility introduce the standard volatility model from the
continuous time finance literature. They contrast it with
the GARCH model discussed earlier and develop econo-
metric methods for estimating volatility from discretely
sampled data.

MarketMicrostructure

Market microstructure examines the institutional mech-
anisms by which prices adjust to their fundamental val-
ues. The literature has grown with the availability of trans-
actions frequency databases. Clara Vega and Christian
Miller � Market Microstructure survey the topic largely
from a theoretical perspective. Because disparate markets
are likely to have different mechanisms and regulators, the
literature has evolved by instrument. Carol Osler � Mar-
ket Microstructure, Foreign Exchange examines the mi-
crostructure of the foreign currency market, the largest
and most liquid asset market. Bruce Mizrach and Chris
Neely� Treasury Market, Microstructure of the U.S. look
at the government bond market in the US as it has evolved
into an electronic market. Michael Piwowar � Corporate
and Municipal Bond Market Microstructure in the U.S.
looks at two bond markets with a large number of issues
that trade only very infrequently. Both the markets which
he examines have become substantially more transparent
through recent government initiatives.

Conclusion

This section covers a wide range of material from theoret-
ical time series analysis to descriptive modeling of finan-
cial markets. The theme of complexity is a unifying one in
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the sense that the models are generally nonlinear and can
produce a wide range of possible outcomes. There is com-
plexity in the data which now evolves at a millisecond fre-
quency. Readers should find a variety of perspectives and
directions for future research in a heterogenous but inter-
connected range of fields.
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Glossary

Rational expectations (RE) An assumption often intro-
duced in economic models. It assumes that agents sub-
jective distribution is equal to the true probability dis-
tribution of a random variable. The implication is that
expectation errors are purely random.

Bounded rationality The assumption that agents have
limited ability to acquire and process information and
to solve complex economic problems. These limita-
tions imply that expectations can diverge from RE.

Efficient markets hypothesis (EMH) An application of
rational expectations to asset prices. The EMH as-
sumes that asset prices reflect all available information.
It implies that asset prices behave like a random walk
process and their changes are purely random.

Artificial financial markets A market populated by
agents that have bounded rational expectations and
learning from available information. Trading in these
markets occurs based on traditional price setting
mechanisms or more realistic mechanisms inspired
by electronic markets.

Definition of the Subject

Finance can be broadly defined as studying the allocation
of resources over time in an uncertain environment. Con-
sumers are interested in saving part of their current in-
come and transfer it for consumption in the future (e. g.,
saving for retirement). On the other hand, firms are look-
ing to raise capital to finance productive investments that
will payoff in the future. In both decisions, the future is
uncertain and individuals and firms are required to evalu-
ate the risks involved in buying an asset (e. g., stocks and
bonds) or investing in a project.

The traditional modeling approach in finance is to in-
troduce strong assumptions on the behavior of agents.
They are assumed to have perfect knowledge of the struc-
ture of the economy and to correctly process the available
information. Based on these two assumptions, agents are
able to form Rational Expectations (RE) such that their
beliefs are not systematically wrong (in other words, the
forecasting errors are random). Common sense suggests
that these assumptions impose unreasonable requirements
on the cognitive and computational abilities of agents. In
practice, investors and firms are trying to learn to behave
“rationally” in an economic system that is continuously
evolving and where information is imperfect. In addition,
there is an increasing amount of empirical evidence that is
not consistent with RE theories.

These limitations have motivated an interest in fi-
nance to relax the strong assumptions on agents’ behav-
ior. Agent-based modeling contributes to this literature by
assuming that consumers and firms have limited compu-
tational abilities (also known as bounded rationality) and
learning (rather than knowing) the mechanisms govern-
ing the economy. These models have two main targets.
First, to determine the conditions that lead a population of
bounded-rational interacting agents to produce an aggre-
gate behavior that resembles the one of a RE representative
agent model. Second, they aim at explaining the empiri-
cal facts and anomalies that the standard approach fails to
explain.

This entry is structured as follows. In Sect. “Introduc-
tion” we discuss in more detail the application of agent-
based modeling in finance. In particular, most of the
early literature has focused on one specific aspect of fi-
nancial economics, asset pricing. Sects. “The Standard RE
Model” to “Computational Agent-Based Models” intro-
duce the standard asset pricing model and describe the
agent-based approaches that have been proposed in the
literature. Sect. “Other Applications in Finance” presents
some (more recent) applications of agent-based models
to corporate finance and market microstructure and, fi-
nally, Sect. “Future Directions” discusses some possible fu-
ture directions on the application of agent-basedmodels in
finance.

Introduction

The goal of asset pricing models is to provide an expla-
nation for the “fair” valuation of a financial asset paying
an uncertain cash flow. A key role in asset pricing mod-
els is played by agents expectations regarding the future
cash flow of the asset. Standard economic models assume
that agents have Rational Expectations (RE). The RE hy-
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pothesis is the outcome of some more basic assumptions
on agents behavior: they know and use all the informa-
tion available, they have unlimited computational ability,
and rationality is common knowledge in the population.
Common sense and introspection suggest that these are
quite strong assumptions if the target is to build a realistic
model of agents behavior. A justification for assuming RE
in asset pricing models is provided by [37]:

. . . this hypothesis (like utility maximization) is not
“behavioral”: it does not describe the way agents
think about their environment, how they learn, pro-
cess information, and so forth. It is rather a prop-
erty likely to be (approximately) possessed by the
outcome of this unspecified process of learning and
adapting.

Agent-based models try to address the issues left unspeci-
fied by the RE proponents: how do agents learn and pro-
cess the information available? In other words, how do
they form expectations? In fact, in the intent of the RE pro-
ponents, rationality is simply a property of the outcome
(e. g., asset price) rather than an assumption about the sub-
jective expectation formation process.

The innovative aspect of the agent-based approach is
that it explicitly models “this unspecified process of learn-
ing and adaptation” (in Lucas’s words). The common ele-
ments of the wide range of agent-based asset pricing mod-
els are:

Expectations agents hold subjective expectations that are
bounded rational, that is, they are based on processing
the available (and possibly imperfect and costly) infor-
mation and that evolve over time. Agent-based models
explicitly specify the way individuals form their expec-
tation, instead of leaving it totally unspecified as in the
RE approach.

Heterogeneity agents have different subjective expecta-
tions about the future due to heterogeneity in the way
they process or interpret information. The RE setup
suppresses agents heterogeneity: given the same infor-
mation set, there is only one way to be rational and
agents are thus homogeneous.

Evolution agents evolve in the sense that they abandon
a belief if it performs poorly. Instead, rational models
typically rely on the latent assumption that non-ratio-
nal agents will not survive a (unspecified) process of
evolutionary market competition.

Based on these basic ingredients, the agent based literature
has now grown in different directions and we can distin-
guish two clearly defined approaches to agent-based mod-
eling. The main difference between them is how they com-
bine the different characteristics discussed above:

Analytical models these models assume that there are
many expectation types and agents switch between
them according to a deterministic or stochastic pro-
cess. In the deterministic case, evolution is based on
the past performance of the beliefs: agents discard be-
lief types that perform badly compared to the other
available. Instead, models with stochastic switching as-
sume that a process governs the imitation and muta-
tion of types, with possible additional features of herd-
ing. Thesemodels are simple and analytically tractable.

Computational models agents beliefs can change (or
mutate) over time, due to the evolutionary selection of
the best performing beliefs. Contrary to the analytical
approach, the computational models renounce to ana-
lytical tractability in order to investigate more realistic
expectation formation processes. Most of these mod-
els adopt fitness criteria (e. g., a Genetic Algorithm) to
model the evolution of expectations.

The first aim of the agent-based literature is to under-
stand whether introducing less restrictive assumptions on
agents behavior (bounded rationality, heterogeneity, and
evolutionary selection of expectations) is consistent with
the economy converging to the RE equilibrium. If this is
the case, it can be argued that relaxing the homogeneity
and rationality of agents represents a feasible way to de-
scribe the way individuals learn and adapt to achieve an
outcome consistent with RE. The second aim of this lit-
erature is to provide an explanation for the empirical be-
havior of asset prices. To illustrate the main stylized facts
of financial returns, we consider the Standard & Poors 500
(S&P500) Composite Index (a U.S. equity index). Figure 1
shows the Price-to-Dividend (PD) ratio from 1871 until
2006 at the monthly frequency. It is clear that the PD ra-

Finance, Agent BasedModeling in, Figure 1
Monthly Price-to-Dividend Ratio for the S&P500 Index from1871
to 2006
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tio fluctuates significantly with some periods of extreme
valuations, as in the late 1990s. The debate on the reasons
for these fluctuations has not reached (yet) a widely ac-
cepted conclusion. On the one hand, there are RE models
that explain the variation in the PD ratio by changes in the
risk premium, i. e., the ex-ante rate of return required by
agents to invest in the risky asset. Instead, other models at-
tribute these swings to irrational expectations of investors,
that are prone to optimism (and overvaluation) when asset
prices are increasing. The two explanations are not mutu-
ally excluding since both factors might contribute to ex-
plain the observed fluctuations of the PD ratio.

Figure 2 considers the S&P500 Index from 1977 until
2007 at the daily frequency. The figure shows the returns
(defined as the percentage change of the price of a finan-
cial asset) and the absolute value of the returns. Figure 3
describes the statistical properties of returns, such as the
histogram and the autocorrelation function of the returns
and absolute returns. The main stylized facts of daily re-
turns are:

Volatility clustering returns alternate periods of high
and low volatility (or variability). In calm periods, re-
turns oscillate within a small range, while in turbulent
periods they display a much wider range of variation.
This is a feature common to different asset classes (e. g.,
equities, exchange rates, and bonds). The time series of
returns and absolute returns on the S&P500 in Fig. 2
clearly show this pattern. In certain periods returns

Finance, Agent BasedModeling in, Figure 2
Daily observations of the S&P500 Index from 1977 to 2007. (top) Time series of the Index, (middle) the returns, (bottom) the absolute
value of returns

vary in a narrow interval between ˙1%, while in other
periods their variability is higher (e. g., between ˙3
and 5%).

Leptokurtic distribution the distribution of asset returns
has a sharp peak around the mean and fat tails (com-
pared to the normal distribution). Large events (posi-
tive and negative) are more likely to occur compared
to what is expected under the assumption of normal-
ity. This property emerges clearly from the top plot of
Fig. 3 that shows the histogram of the S&P500 returns
and the normal distribution (based on the estimated
mean and variance).

No serial correlation returns do not display significant
linear serial correlation. The autocorrelation function
of the returns (mid-plot of Fig. 3) is close to 0 at all lags
considered.

Persistence in volatility on the other hand, volatility
(measured by absolute or square returns) has signifi-
cant linear dependence. The autocorrelation of the ab-
solute returns in Fig. 3 is about 0.1 (and still signifi-
cant) at lag 100.

Another relevant fact that is short of explanations is the
large trading volume that occurs in financial markets.
A model in which everybody is rational and knows that
everybody else is rational cannot account for the existence
of such relevant volume of trade. Agent-based models aim
at explaining this phenomenon based on the assumption
that agents hold heterogeneous expectations. Volume can
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Statistical properties of the S&P500 returns: (top) histogram and normal distribution, (middle) autocorrelation function (max lag 20)
for the returns, (bottom) autocorrelation function (max lag 100) for the absolute returns

arise, for example, if an optimistic agent is willing to buy
an asset from a pessimistic agent (that is willing to sell).
An interesting feature of trading volume is its asymme-
try during markets cycles: it is typically high when finan-
cial markets are booming, and low when the prices are
decreasing. There is also empirical evidence that trading
volume and volatility are correlated, suggesting that the
same economic mechanism might be able to explain both
phenomena.

Summarizing, the aim of the agent-based approach to
asset pricing is to introduce more realistic assumptions
on the way agents form expectations, learn from new in-
formation, and adapt to a changing environment. The re-
search questions the agent-based approach is trying to an-
swer are:

1. Under what conditions are these models able to re-
produce the RE equilibrium (although starting from
a more general setup where agents are not – a priori –
assumed to have RE)?

2. Another issue is the empirical validity of these mod-
els: are they able to explain the empirical features of fi-
nancial returns that standard RE models fail to account
for?

In the following Sections, we describe some of the most
well-known examples of agent-based models in finance,
both in the analytical and computational group. However,
we first introduce a basic RE model that is the starting

point for most of the literature. In Sect. “Other Applica-
tions in Finance” we discuss other interesting applications
of agent-based models in finance.

The Standard REModel

We briefly consider the standard asset pricing model that
is used as a benchmark in the agent-based literature.
A more detailed discussion can be found in [25]. The
model assumes that agent i faces the choice of investing
her wealth among two assets: a riskless asset that pays
a constant return r, and a risky asset that pays a stochas-
tic dividend in period t denoted by Dt . A typical assump-
tion is that agents have Constant Absolute Risk Aversion
(CARA) preferences defined as U(Wi ) D �e�
Wi , where
U(�) indicates the utility function, Wi denotes the wealth
of agent i and � is the coefficient of absolute risk aversion.
These preferences imply the following demand of shares
of the risky asset, Xi;t :

Xi;t D Ei;t(PtC1 C DtC1) � (1 C r)Pt
��2i;t(PtC1 C DtC1)

; (1)

where Pt is the price of the risky asset in period t, Ei;t(�)
is the conditional expectation of agent i about next-period
payoff of the risky investment, and �2i;t(�) is the conditional
variance of the payoff for agent i. Agents buy shares of the
risky asset (Xi;t > 0) if they expect the return of a share to
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be higher compared to investing the same amount (Pt) in
the riskless asset.

The equilibrium price of the risky asset is such that the
aggregate demand and supply are equal. Assuming that
there are S number of shares of the risky asset available,
the equilibrium condition is

S D
X

i

Xi;t : (2)

The aggregation across different individuals is simpli-
fied by assuming a representative agent with expectation
Et(PtC1 C DtC1) (and similarly for the conditional vari-
ance) for all i’s in the economy. This is equivalent to as-
sume that agents are homogeneous in their expectation
about the future payoff of the risky asset. In addition, as-
suming that the representative agent holds RE, it can be
shown that the equilibrium price of the risky asset is a lin-
ear function of Dt given by

Pt D a C bDt ;

where a and b are constant (and related to the structural
parameters of the model).

There is an extensive literature that aims at relaxing the
strong restrictions imposed by the RE hypothesis. Models
of rational learning assume that agents (typically in a rep-
resentative agent setup) have to learn (rather than know)
the structure of the economy, e. g., the parameters govern-
ing the cash flow process. In this case, agents are rational
in the sense that they process optimally the information
available. However, they do not hold rational expectations
since they have imperfect knowledge of the structure of the
economy. An alternative route followed in the literature
is to consider the effect of behavioral biases in the expec-
tation formation process. A comparison of the vast liter-
ature on rational learning and behavioral models is pro-
vided by [6].

Agent-based models build on these extensions of the
basic asset pricing model by considering both rational
learning and irrational expectations in a richer economic
structure where agents hold heterogeneous expectations.
We will now discuss some of the most well-known models
in the analytical and computational agent-based literature
and deal with their main differences.

Analytical Agent-BasedModels

The analytical models assume that the population of
agents can choose among a small number of beliefs (or
predictors) about next period payoff of the risky asset. Het-
erogeneity is introduced by allowing agents with different
predictors to co-exist, and learning might occur if they are

allowed to switch between different beliefs in an evolution-
ary way.

These models can be described as follows. Assume
there are a set ofH belief types publicly available to agents.
Denote the belief of type h (for h D 1; : : : ;H) about next
period payoff by Eh;t(PtC1 C DtC1) and the conditional
variance by �2h;t(PtC1 C DtC1). Since these models depart
from the assumption of RE, they typically introduce a be-
havioral assumption that the beliefs are either of the fun-
damentalist or the trend-following type. [20] and [21] con-
ducted survey studies of exchange rate traders and found
that their expectations could be represented as trend-fol-
lowing in the short-run, but fundamentalist in the long
run. Fundamentalist expectations are characterized by the
belief that the market price is anchored to the asset funda-
mental valuation and deviations (of the price from the fun-
damental) are expected to disappear over time. In this case,
the belief uses both information about the asset price and
the dividend process (that drives the fundamental value)
to form an expectation about the future. On the other
hand, trend-following expectations exploit only informa-
tion contained in the price series to extrapolate the future
dynamics. These types of beliefs are obviously not consis-
tent with the RE equilibrium although they are supported
by empirical evidence of their widespread use in financial
markets.

Another key assumption of agent-based models con-
cerns the evolution of beliefs: agents switch between ex-
pectations based on their past performance or because of
interaction with other agents in the population. It is pos-
sible to distinguish two families of models with different
evolutionary dynamics:

Deterministic evolution agents switch between the dif-
ferent beliefs based on a deterministic function. Typ-
ically, the switching is determined by past forecast ac-
curacy of the predictors or their realized profits.

Stochastic evolution a stochastic process governs the
switching of agents between beliefs.

Deterministic Evolution

An example of an agent-based model with deterministic
evolution is proposed by [7]. A simple version of their
model assumes that there are only two types of beliefs:
fundamentalists and trend-followers. Some simplifying as-
sumptions are used in deriving the equilibrium price: the
dividend process Dt is assumed to be i:i:d (with mean
D̄) and agents have homogeneous expectations about the
dividend process. In this case, the expectation about next
period payoff Eh;t(PtC1 C DtC1) in Eq. (1) becomes
Eh;t(PtC1) C D̄.
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Lets denote by P�(D D̄/r) the constant RE fundamen-
tal price. The fundamentalist type has the following belief:

EF;t(PtC1) D P� C gF(Pt�1 � P�) : (3)

When 0 < gF < 1, fundamentalists believe the asset price
will revert toward its fundamental value, and gF can be in-
terpreted as the speed at which this adjustment is expected
to occur. This model assumes that when agents form their
belief at time t they actually do not observe the realized
asset price for period t. This explains the fact that the ex-
pectation is a function of the last observed price, Pt�1.

Brock and Hommes assume that agents pay a cost C
to acquire the fundamentalist predictor. The underlying
idea is to let them choose whether to buy a “sophisticated”
predictor (that requires calculating the fundamental value)
or, alternatively, to extrapolate from past realized prices.
The belief of the trend-followers is given by:

ETF;t(PtC1) D gTFPt�1 : (4)

The value of the parameter gTF determines the strength
of extrapolation of the trend-followers. If gTF > 1, they
expect an upward trend in prices and, vice versa, for 0 <
gTF < 1.

Assuming the supply of the risky asset, S, in Eq. (2) is
equal to 0, the equilibrium asset price, Pt , is given by:

Pt D
�
nF;t(1 � gF) � r

1 C r

�

P�

C
�
nF;t(gF � gTF) C gTF

1 C r

�

Pt�1 ; (5)

where nF;t indicates the fraction of agents in the popu-
lation using the fundamentalist belief and the remaining
nTF;t(D 1 � nF;t) using the trend-following one. [7] as-
sumes the evolution of the fractions nF;t is governed by
a discrete choice probability model:

nF;t D 1
1 � exp

�
ˇ(UTF;t�1 � UF;t�1)

� ; (6)

where Uh;t�1(h D F; TF) is a measure of the fitness of
belief h defined as:

UF;t�1 D
F;t�1 C �UF;t�2 � C; and
UTF;t�1 D
TF;t�1 C �UTF;t�2 ;

where 
h;t�1 measures the fitness performance (measured
by realized profits or forecast accuracy) of the belief h
at time t � 1 and � is a parameter that determines the
memory in the performance measure. C in UF;t�1 rep-
resents the cost that agents face if they adopt the funda-
mentalist belief (while the trend-following is available at

no cost). The fraction in Eq. (6) depends on the parame-
ter ˇ(> 0) that determines the speed at which agents re-
spond to differentials of performance among beliefs. If ˇ
is small, agents are very reluctant to switch and require
a significantly large difference in fitness to adopt another
predictor. On the other hand, when ˇ is large, even small
differences of performance cause dramatic changes in the
fractions. For a given value of ˇ, if the fundamentalist be-
lief significantly outperforms the trend-following (that is,
UF;t�1 � UTF;t�1), then the fraction nF;t�1 tends to 1,
meaning that most agents in the economy switch to the
fundamentalist expectation.

The interesting feature of this model is that it can con-
verge to the RE equilibrium or generate complicated dy-
namics depending on the value of the parameters. For
some combinations of the gF and gTF parameters, the sys-
tem converges to the RE equilibrium (i. e., the deviation
is equal to 0). However, trend-followers can destabilize
the economy when their extrapolation rate, gTF is high
enough. For small values of ˇ the dynamical system con-
verges to the RE equilibrium. However, for increasing val-
ues of ˇ the system experiences a transition toward a non-
fundamental steady state and complicated dynamics (limit
cycles and strange attractors) emerge.

In the presence of information cost (to buy the funda-
mentalist predictor) and evolutionary switching between
strategies, the economy might still converge to the RE
equilibrium for a large set of parameter values. However, it
is also able to generate large fluctuations of the asset price
around the fundamental value. Figure 4 shows a time se-
ries of the asset price Pt and the fraction of fundamen-
talists described in Eqs. (5) and (6). The constant funda-
mental value in this Figure is equal to 25. As it is clear
from the picture, the asset price experiences large swings
away from the fundamentals that are explained by the in-
creased importance of agents using the trend-following
belief. When the mispricing becomes too large, the econ-
omy experiences a sudden change of sentiment with most
agents switching to the fundamentalist belief. In this sense,
the model is more appropriate to explain the boom-bust
dynamics of financial markets.

Although the purely deterministic model captures the
relevant features of the dynamics of financial markets,
adding a stochastic component provides simulated series
that better resemble the observed ones (such as Fig. 1). The
model can be extended by considering an approximation
error term in Eq. (5) that interacts with the dynamics of
the model. Figure 5 shows the asset price and the fraction
of fundamentalists for a normally distributed error term
with standard deviation equal to 2. The asset price shows
large and persistent deviations from the fundamental value
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Brock and Hommesmodel with 2 belief types, fundamentalists and trend-followers. The top plot represents a time series of the asset
price and the bottom plot depicts the fraction of fundamentalists, nF;t . The parameters of the model: intensity of choice ˇ D 0:5,
the interest rate r D 0:0083, the parameter of the fundamentalists gF D 0:8, the parameter of the trend-followers belief g D 1:014,
the cost of the fundamentalist predictor C D 0:5, memory parameter � D 0:99

(P� D 25), in some periods as extreme as reaching 100
while, in other periods, moremoderate. Since the dividend
process is assumed to be i:i:d:, the price can also be in-
terpreted as a valuation (PD) ratio. Comparing the prop-
erties of this time series with the one for the S&P500 in
Fig. 1, it seems that it is able to capture its main qualitative
features. [5] provide empirical evidence of the ability of
a similar model to explain the long-run behavior of stock
prices.

The model proposed by Brock and Hommes is an ex-
ample of a literature interested in the (possible) emergence
of complicated dynamics in asset pricing models. An early
contribution to the deterministic literature is [15]. They
assume that there are two types of investors: some ex-
trapolating from past deviations while the other group is
more sophisticated and able to evaluate whether the as-
set is over- or under-valued (and sells or buys more ag-
gressively if the mispricing is large). A third actor in the
model is the market maker. The role of the market maker
is to aggregate demand and supply and to fix the price of
the asset. This mechanism is different from the assump-
tion in Eq. (2). In that case, agents submit their demand
function (quantity as a function of price) and the price is
set at the value that clears the market. Instead, the market
maker receives orders from the agents andmoves the price
to offset excess demand or supply. This represents a dise-
quilibrium mechanism since market makers use their in-
ventory of stocks to provide liquidity in case of excess de-
mand and accumulate stocks in case of excess supply. The

results for this model are similar to what was discussed
above. The RE equilibrium is obtained when the sophis-
ticated agents dominate the market. However, limit cycles
and chaos arise when the trend-following agents are rela-
tively important and the economy fluctuates between pe-
riods of increasing asset prices and sudden crashes. An-
other model that assumes the market maker mechanism
is proposed by [9]. In this case, agents form their expec-
tations based on either the fundamental or extrapolative
approach. However, the excess demand function of the
chartist is assumed to be nonlinear. When the extrapo-
lation rate of the chartist is sufficiently high, the system
becomes unstable and limit cycles arise. While these early
models assumed that the fractions of agents are fixed, [16]
and [17] introduced, in a similar setup, time-variation in
those fractions. The driving force for the variation of the
fractions is the relative performance of the beliefs (sim-
ilar to what we discussed above for the model of Brock
and Hommes). Some of the more recent models that ex-
tend these early contributions are [10,11,12,18,19,24,50],
and [51]. A comprehensive survey of the literature is pro-
vided in [26].

Stochastic Evolution

An early example of an agent-based model in which in-
dividuals switch in a stochastic fashion was proposed
by [27]. He uses a slightly different setup compared to
the Standard RE Model. In his model the asset is a for-
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Same model and parameter values used in Fig. 4 with an error term added to Eq. (5) that is normally distributed with mean zero and
standard deviation equal to 2

eign bond and the agent has to decide whether to invest at
home (at the riskless interest rate r) or buy a unit of foreign
currency and invest abroad (at the risky interest rate �t ,
assumed to be normally distributed with mean � and vari-
ance �2�). The price PtC1 represents the exchange rate. The
only difference with the model described earlier is that in
the demand of type h agent in Eq. (1), Eh;t(PtC1 C DtC1)
is replaced by (1 C �)Eh;t(PtC1). The fundamental value
of the asset in this model is assumed to evolve as a random
walk, that is, P�

t D P�
t�1 C 	t where 	t 
 N(0; �2� ).

Similarly to the previous model, there are two types of
beliefs: fundamentalists and chartists. The fundamentalist
belief is the same as in Eq. (3), while the chartists have be-
lief given by:

ETF;t(PtC1) D (1 � gTF)Pt C gTFPt�1 :

The switching between beliefs in Kirman’s model is driven
by two mechanism: social interactions and herding. In-
teraction means that agents meet in pairs and communi-
cate about their beliefs. The result of this communication
is that, with a probability (1 � ı), an agent changes her
belief to the one of the other agent. In this model, mar-
ket information (such as prices or dividends) do not play
any role in the decision of the agents to adopt the funda-
mentalist or trend-following beliefs. This is in sharp con-
trast to the model of [7] where the selection of the belief is
endogenous and based on their past performance. In ad-
dition to the probability of switching belief due to social
interaction, there is a probability 	 that an agent indepen-
dently changes belief. If we denote by NF;t the number of

agents in the population (N is the total number of agents)
using the fundamentalist belief at time t, Kirman models
the evolution from NF;t�1 to NF;t according to a markov
chain with the following transition probabilities:

P(NF;t � NF;t�1 D 1) D
�

1 � NF;t�1

N

�

�

	 C (1 � ı)
NF;t�1

N � 1

�

P(NF;t � NF;t�1 D �1) DNF;t�1

N�
	 C (1 � ı)

N � NF;t�1

N � 1

�

P(NF;t � NF;t�1 D 0) D1 � P(NF;t � NF;t�1 D 1)
�P(NF;t � NF;t�1 D �1) :

The second part of the opinion formation can be charac-
terized as herding. Kirman assumes that the agents receive
a noisy signal, qi;t , about the fraction of the population
that is fundamentalist:

qi;t D NF;t

N
C �i;t ;

where �i;t is distributed as N(0; �2
�
) and i D 1; : : : ;N .

Based on this signal about the average opinion in the econ-
omy, agents herd by coordinating in adopting the belief
that is more popular. Agent i uses the fundamentalist be-
lief if her signal, qi;t , is larger than 0.5 and the trend-fol-
lowing belief otherwise. The fraction of agents using the
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fundamentalist belief (denoted by nF;t) is then given by:

nF;t D 1
N

NX

iD1

I(qi;t � 0:5) :

Given the beliefs of the two types, the fractions and assum-
ing that the supply of foreign currency is proportional to
the time varying fundamental value, the equilibrium price
of the model is given by:

Pt D nF;t � �

A
P�
t � nF;t gF

A
P�
t�1C (1 � nF;t)gTF

A
Pt�1 ; (7)

where the constants � andA are functions of the structural
parameters of the model.

Figure 6 shows a time series simulated from Kirman’s
model. The fraction of agents using the fundamentalist
belief, nF;t , displays significant variation over time, with
some periods being close to 1 (most agents are fundamen-
talists) and other periods close to zero (trend-followers
dominate). The resulting price dynamics can be character-
ized as follows. When fundamentalists dominate the mar-
ket, the asset price tracks closely the fundamental value
and returns volatility is high. On the other hand, when
trend-followers dominate themarket the price tends to de-
viate significantly from the fundamental and volatility is
lower. The time series provide a clear intuition about the

Finance, Agent BasedModeling in, Figure 6
Time series generated from the model proposed by [27] for the following parameter values: N D 1000, variance of the � 2

� D 10,
� D 0:00018538, r D 0:000133668, gF D 0:6, gTF D 0:475, ı D 0:10, � D 0:000325, and � 2

�
D 0:43/N. The top plot shows the

fraction of fundamentalist agents in the population, the middle plot the deviation of the market price from the fundamental value,
and the bottom plot displays the absolute value of the asset returns

ability of the model to account for periods of large devia-
tion from the fundamentals and of persistent volatility.

A main objective of this model is to provide an expla-
nation for the stylized facts of financial returns that were
discussed earlier. Figure 7 shows some of the statistical
properties for the simulated series. The histogram shows
the typical leptokurtic property of financial returns. The
distribution of the simulated returns shows a higher con-
centration of probability mass around zero and in the tails
(compared to the normal distribution). The returns auto-
correlations are very close to zero and statistically insignif-
icant. However, the absolute returns show significantly
positive and slowly-decaying autocorrelations. Hence, the
simulated series from Kirman’s model are able to replicate
the relevant empirical features of daily financial returns.

[41] and [42] propose a model inspired by the opin-
ion formation mechanism of Kirman. The model assumes
that agents are either fundamentalists or chartists. In addi-
tion, the chartist group is composed of agents that are ei-
ther optimistic or pessimistic. Agents can switch between
the two sub-groups due to herding (following the majority
opinion) and also to incorporate the recent trend in as-
set prices. Instead, the switching between fundamentalist
and chartist beliefs is based on the excess profits of the
rules. In this aspect, the model allows for a feedback ef-
fect from market price to the fractions similarly to [7].
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Statistical properties of the time series in Fig. 6. The top plot shows histogramof the series and the parametric distribution under the
assumption of normality, and the bottom plots show the autocorrelation of the returns and absolute returns, respectively

A market maker mechanism aggregates the demand for
the risky asset of the agents and determines the prices. An-
other model based on interacting agents and herding be-
havior is proposed by [14]. They model the communica-
tion among (groups of) agents as a random graph and the
returns dynamics closely match the stylized facts of finan-
cial returns. [26] and [49] provide extensive overviews of
models based on random communication in a population
of interacting agents.

Computational Agent-BasedModels

Computational agent-based models move one step fur-
ther compared to analytical models. The setup is very
similar: the simple asset pricing model described above,
the assumption of heterogeneity of beliefs in the pop-
ulation, and evolutionary pressure to use the best per-
forming predictors. However, computational models do
not assume a priori the form of agents’ beliefs. Instead,
they let agents learn, adapt and explore a large set of
strategies and use the best performing ones. In this sense
these models allow to investigate the emergence of trad-
ing strategies and their survival in the market. A relevant
question, and an unsettled dispute between academics
and practitioners, is the role and importance of techni-
cal analysis. Computational agent-based models do not
assume (a priori) that trend-following rules are used by
agents (as in the analytical approach), but allow for these

rules to emerge from the evolutionary and learning pro-
cesses. Hence, they can indicate the conditions that lead
to the emerge and survival of trend-following rules in the
market.

One of the first and most famous example of a compu-
tational agent-based model is the Santa Fe Institute (SFI)
artificial market proposed by [3]. As mentioned above, the
key feature of this and similar models is the way the expec-
tation formation process is represented.

Each agent in the economy is endowed with a set of
predictors, in the form of condition/forecast rules. These
rules are a form of classifier system that identify a state of
the world and indicate an action (in this case a forecast of
future returns). Each agent in the economy is assumed to
rely on a set J of market predictors (classifier rules) that
consist of two elements:

Condition a set of bit-strings that characterize different
possible states of themarket. Each bit represents a state
of the world, and the design of the SFI market allows
for a set of bits related to fundamentals (that relate the
asset price to the underlying dividend process) and an-
other set of technical bits (that relate the current price
to a moving-average of past prices of different length).
The role of the bit-strings is to provide the agent with
the ability to identify the current state of the market.

Forecast associated with each bit-string j (for j D 1;
: : : ; J) is a parameter vector (a j; bj) that together with
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the linear forecasting rule E j
i;t(PtC1CDtC1) D a j(PtC

Dt)C bj provides agent i with the forecast for next pe-
riod payoff. The agent then combines the forecast of
the H most accurate predictors that are active, based
on the observed market condition.

The next building block of the SFI artificial market is the
learning process. This is implemented using a Genetic Al-
gorithm (GA) that enables learning in both the condition
and the forecast part of the classifier. Agents have a proba-
bility p to update their predictors through learning in every
period. The frequency of learning (measured by p) plays
a relevant role in the resulting dynamics of the model since
it identifies how quickly agents adapt to changes in the en-
vironment and respond to it. In the learning phase, 15%
of the worst performing predictors are dropped, and new
rules are generated using a GAwith uniform crossover and
mutation.

The aim of the model is to test the hypotheses dis-
cussed above:

1. Does the SFI market converge to the RE equilibrium?
2. Can the SFImarket explain the stylized facts of financial

returns?

It turns out that the answer is positive to both questions,
depending on the speed of learning parameter p. This pa-
rameter plays a crucial role in the resulting dynamics of
the SFI market and two regimes can be identified:

Slow-learning in this case the agents are engaged in learn-
ing (via the GA) every 1000 periods (on average). The
resulting price dynamics shows convergence to the
RE equilibrium characterized by agents having homo-
geneous expectations, negligible trading volume (al-
though some occurs when agents change their beliefs
due to learning), and returns that are normal and ho-
moskedastic. What is remarkable is that the conver-
gence to the RE equilibrium is not built-in the model,
but it is achieved by the learning and evolutionary pro-
cess taking place in the SFI market. Another interest-
ing result is that the technical trading bits of the classi-
fier play no role and are never active.

Fast-learning in this experiment the agents update their
predictors via learning (on average) every 250 periods.
The price dynamics shows the typical features of fi-
nancial time series, such as alternating periods of high
and low volatility, fat tailed distribution, high trading
volume, and bubbles and crashes. An interesting re-
sult of the fast-learning experiment is the emergence of
the trend-following rules. The technical trading bits of
the predictors are activated and their effect on the asset

price spurs even more agents to activate them. In this
sense, trend-following beliefs emerge endogenously in
the economy and they are not eliminated in the evo-
lution of the system, but survive. This is a quite rele-
vant result also from an empirical point of view. As we
mentioned earlier, technical analysis is widely used by
practitioners and the SFI market provides an explana-
tion for its emergence (and survival).

[29,30], and [31] have recently proposed an artificial mar-
ket that is largely inspired by the SFI market. However,
LeBaron changed some very relevant assumptions com-
pared to the earlier model. An innovation in this new
artificial market is the assumption on the preferences of
agents. While the SFI market (and many analytical mod-
els) rely on CARA preferences, [29] considers Constant
Relative Risk Aversion (CRRA) preferences. In this case,
wealth plays a role in the demand of agents (while with
CARA does not) and, consequently, allows for differen-
tial market impact of agents based on their wealth. An-
other innovation concerns the expectation formation pro-
cess. [29] departs from the SFI market assumption of dif-
ferent “speed of learning” across agents. Instead, LeBaron
assumes that agents have different memory length in eval-
uating strategies. In every period agents assess the prof-
itability of the strategy adopted. However, agents evalu-
ate their strategy using different backtesting periods: some
agents test their strategies on only the last few months,
while other agents consider the last 20 years. In this sense,
they are heterogeneous in their memory rather than in
the speed of learning. Another feature of this model is
that the classifier predictor is replaced by a neural net-
work. The learning and evolution is always character-
ized by a GA. Despite these innovations, the earlier re-
sults of the SFI market are confirmed: a market popu-
lated by long-memory agents converges to the RE equi-
librium. However, in an economy with agents holding
different memory lengths, the asset price series shows
the typical features of financial returns (no serial cor-
relation, volatility clustering, fat-tailed distribution, high
trading volume, and correlation between volume and
volatility).

Another recent artificial stock market model is pro-
posed by [8]. The setup is the simple asset pricing model
described in Sect. “The Standard RE Model”. Chen and
Yeh assume that the expectation of agent i about next pe-
riod payoff is of the form Ei;t(PtC1CDtC1) D (PtC�)(1C
�1tanh(�2 fi;t)). The quantity fi;t characterizes the expec-
tation of the agent and it evolves according to genetic pro-
gramming. If fi;t is equal to zero the agent believes in the
efficiency and rationality of the market, that is, expects the
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asset price tomorrow to increase by the expected dividend
growth rate.

Compared to the SFI market, they adopt a Genetic
Programming (GP) approach to model agents’ learning
and evolution. The model assumes that agents evolve due
to two types of pressures: peer-pressure (the agent perfor-
mance compared to the rest of the population) and self-
pressure (own evaluation of the performance). The prob-
ability that an agent searches for better forecasting rules
depends on both forms of pressure. If agents rank low in
terms of performance compared to their peers, then the
probability that they will search for other forecasting rules
is higher. The population of forecasting rules evolves due
to competition with new rules that are generated by apply-
ing genetic operators (reproduction, cross-over, mutation)
to the existing rules. The rules space evolves independently
of the rules adopted by the agents. When an agent decides
to search (due to the pressuresmentioned above), forecast-
ing rules are randomly selected from the population until
a rule is found that outperforms the one currently adopted
by the agent. Chen and Yeh show that the price dynamics
of the model is consistent with an efficient market. The in-
vestigation of the statistical properties of the returns gen-
erated by the model shows that the series does not have
any linear and nonlinear dependence, although there is
some evidence for volatility clustering. Analyzing the type
of rules that agents use, they show that only a small frac-
tion of them are actually using forecasting rules that are
consistent with an efficient market (in the sense that they
believe that Ei;t(PtC1 CDtC1) D Pt C� in which case fi;t
is equal to 0). In other words, although a large majority
of agents uses rules that imply some form of predictabil-
ity in asset returns, the aggregation of their beliefs delivers
an asset price that looks “unpredictable”. In this sense they
claim that the efficiency (or unpredictability) of the artifi-
cial market is an emerging property that results from the
aggregation of heterogeneous beliefs in the economy. An-
other property that emerges from the analysis of this mar-
ket is the rationality of a representative agent. Chen and
Yeh consider the expectation of a representative agent by
averaging the expectations across the agents in the econ-
omy. The forecasting errors of this “representative” expec-
tation indicate that they satisfy a test for rationality: there
is no evidence of systematic forecasting errors in the ex-
pectation (in statistical terms, the errors are independent).

Evolution and learning (via GA) have received quite
a lot of attention in the literature. Other artificial-market
models have been proposed in the literature. Some early
examples are [4], and [46]. Some more recent examples
are [1,2,47,48]. [32] is an extensive survey of the computa-
tional agent-based modeling approach.

Other Applications in Finance

The common theme across the models presented above is
to show that departing from a representative rational agent
is a viable way to explain the empirical behavior of asset
prices. The more recent agent-based literature has shifted
interest toward nesting this type of models in more real-
istic market structures. There are two typical assumptions
used in the agent-based literature to determine the asset
price: a market clearing or a market maker mechanism.
Recent progress in the analysis of the micro-structure of
financial markets has indicated the increasing importance
of alternative trading mechanisms, such as order-driven
markets. In these markets, traders decide whether to buy
(sell) using a market or limit order. A market order means
that the trader is ready to buy (sell) a certain quantity of
stocks at the best available price; instead, with limit or-
ders traders fix both a quantity of shares and a price at
which they are willing to buy (sell). Limit orders are stored
in the book until a matching order arrives to the mar-
ket. They are different from quote-driven markets, where
a market maker provides quotes and liquidity to investors.
This has spurred a series of articles that propose agent-
based models in this more realistic market structure. In
particular, [13,36,44], and [45] consider an order-driven
market where agents submit limit orders. Typically these
models make simple behavioral assumptions on the be-
lief formation process and do not consider learning and
evolution of agents’ expectations (typical of the compu-
tational agent-based models). In this sense, these models
are closer to the stochastic agent-based approach reviewed
in Sect. “Analytical Agent-Based Models”. Recently, [33]
has proposed a computational model for an order-driven
market in which strategies evolve by imitation of the most
successful rules.

[13] propose an order-driven market model in which
the demand for the risky asset of the agents is deter-
mined by a fundamentalist, a chartist, and a noise com-
ponent. The agents share the same demand function but
the weights on the components are different across agents.
Simulating the model suggests that the stylized facts of fi-
nancial returns can be explained when all behavioral com-
ponents (fundamentalist, chartist, and noise) participate
to determine agents’ beliefs. An additional feature of this
setup is that it accounts for the persistence in the volatil-
ity of returns and trading volume. Such a micro-structural
model allows also to investigate the effect of some keymar-
ket design parameters (such as tick size, liquidity, and av-
erage life of an order) on the price formation process.

[44] consider a market structure where agents sub-
mit limit orders and the price is determined by market
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clearing of supply (sell orders) and demand (buy orders)
schedules. The behavioral assumptions are closely related
to the clustering approach of [14]: a probabilistic mecha-
nism governs the formation of clusters and, within a clus-
ters, all agents coordinate in buying or selling the risky
asset. Another behavioral assumption introduced in this
model concerns the (positive) relation between market
volatility and the limit order price. When the volatility
is low, agents set the price of their limit order close to
yesterday’s asset price. However, when the market is ex-
periencing wide swings in prices, agents’ set limit prices
that are significantly above or below yesterday’s price for
their orders. The results suggest that the model is able to
explain the main stylized facts of financial returns. [45]
consider an economy with a similar market structure
but more sophisticated assumption on agents’ behavior.
They assume the population is composed of four types of
agents: random traders (with 50% probability to buy or
sell), momentum (buy/sell following an increase/decrease
in prices), contrarian (act in the opposite direction of
momentum traders), and fundamentalists (buy/sell if the
price is below/above the fundamental value). They simu-
late the model in a way that non-random agents do not
affect the asset price. The idea is to investigate the survival
of these types of agents in the economy without affecting
the aggregate properties of the model. They show that, on
average, the fraction of wealth of momentum agents de-
creases while it increases for fundamentalist and contrar-
ian traders.

Another recent paper that models an order-driven
market is [36]. Agents can submit market and limit or-
ders. They introduce the behavioral assumption that the
agents are all fundamentalists, although they are hetero-
geneous in their belief of the fundamental value of the
asset. They show that simulated series from this sim-
ple model follow a leptokurtic distribution and attribute
this property to the structure of the market (rather than
the behavioral assumptions). The same result is also ob-
tained when random traders are considered. However,
they are not able to explain other stylized fact such as
the autocorrelation structure of volatility. This paper is
interesting because it suggest that some of the stylized
facts discussed earlier might not be related to agents’
bounded rationality, but rather to the details of the market
mechanism that is typically neglected in the agent-based
literature.

Another area of application of agent-basedmodeling is
corporate finance. [43] propose an agent-based model to
investigate the security issuance preferences of firms and
investors. The empirical evidence indicates that there is
a clear dominance of debt financing, compared to other

instruments, such as equities and convertible debt. This
is a puzzle for theoretical models where it is customar-
ily assumed that the payoff structure of the financing in-
struments are common knowledge. Under this assump-
tion, the price should reflect the different characteristics
of the securities and investors should be indifferent among
them. Noe et al. consider a model that departs from the as-
sumption of perfect knowledge about the security charac-
teristics, and assume that firms and investors are learning
(via a GA) about the profitability of the different alterna-
tives. Debt and equity imply different degrees of risk-shar-
ing between investors and firms: in particular, debt pro-
vides lower risk and return, contrary to equities that have
a more volatile payoff structure. Investors’ learning about
the risk-return profile of the different instruments leads to
the prevalence of debt on equity or convertible debt. An-
other conclusion of this model is that learning is imper-
fect: agents learn to price specific contracts and have dif-
ficulties in dealing with contracts that rarely occur in the
market.

Future Directions

Agent-based modeling in finance has had a significant im-
pact in shaping the way we understand the working of
financial markets. By introducing realistic behavioral as-
sumptions, agent-based models have demonstrated that
they provide a coherent explanation for many empiri-
cal findings in finance. In addition, they are also able to
provide a framework to explain how aggregate rationality
can emerge in a population of bounded rational learning
agents.

The strength of the agent-based approach is the abil-
ity to specify in greater detail the agents’ behavior and
the structure of market interactions. Simple agent-based
models use realistic assumptions and can be solved ana-
lytically. However, they sacrifice the important aspect of
the emergence of aggregate pattern based on agents’ learn-
ing. This can be achieved by computational agent-based
models. Since the approach is not bounded by the ana-
lytical tractability of the model, very detailed (and poten-
tially more realistic) assumption can be introduced. How-
ever, this can represent a weakness of the approach since
it might lead to over-parametrized models where it is hard
to disentangle the role played by each of the assumptions
on the aggregate behavior. In this sense, agent-basedmod-
eling should aim at balancing parsimony and realism of
agents’ description.

As already suggested in Sect. “Other Applications in
Finance”, the application of agent-basedmodels is not lim-
ited to asset pricing issues. Recently, they have been used
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in corporate finance and market microstructure. This is
certainly a trend that will increase in the future since these
models are particularly suitable to investigate the interac-
tion of market structure and agents’ behavior.
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Glossary

Leptokurtosis A distribution is leptokurtic if it is more
peaked in the center and thicker tailed than the nor-
mal distribution with the samemean and variance. Oc-
casionally, leptokurtosis is also identified with a mo-
ment-based kurtosis measure larger than three, see
Sect. “Introduction”.

Return Let St be the price of a financial asset at time t.
Then the continuous return, rt, is rt D log (St/St�1).
The discrete return, Rt , is Rt D St/St�1 � 1. Both are
rather similar if �0:15 < Rt < 0:15, because rt D
log(1 C Rt). See Sect. “Introduction”.

Tail The (upper) tail, denoted by F̄(x) D P (X > x),
characterizes the probability that a random variable X
exceeds a certain “large” threshold x. For analytical
purposes, “large” is often translated with “as x ! 1”.
For financial returns, a daily change of 5% is already
infinitely large. A Gaussian model essentially excludes
such an event.

Tail index The tail index, or tail exponent, ˛, character-
izes the rate of tail decay if the tail goes to zero, in
essence, like a power function, i. e., F̄(x) D x�˛L (x),
where L is slowly varying. Moments of order lower
(higher) than ˛ are (in)finite.

Definition of the Subject

Have a look at Fig. 1. The top plot shows the daily percent-
age changes, or returns, of the S&P500 index ranging from

January 2, 1985 to December 29, 2006, a total of 5,550 daily
observations. We will use this data set throughout the arti-
cle to illustrate some of the concepts and models to be dis-
cussed. Two observations are immediate. The first is that
both small and large changes come clustered, i. e., there are
periods of low and high volatility. The second is that, from
time to time, we observe rather large changes which may
be hard to reconcile with the standard distributional as-
sumption in statistics and econometrics, that is, normal-
ity. The most outstanding return certainly occurred on
October 19, 1987, the “Black Monday”, where the index
lost more than 20% of its value, but the phenomenon is
chronic. For example, if we fit a normal distribution to the
data, the resulting model predicts that we observe an ab-
solute daily change larger than 5% once in approximately
1,860 years, whereas we actually encountered that 13 times
during our 22-year sample period. This suggests that, com-
pared to the normal distribution, the distribution of the
returns is fat-tailed, i. e., the probability of large losses and
gains is much higher than would be implied by a time-
invariant unconditional Gaussian distribution. The latter
is obviously not suitable for describing the booms, busts,
bubbles, and bursts of activity which characterize financial
markets, and which are apparent in Fig. 1.

The two aforementioned phenomena, i. e., volatility
clustering and fat tails, have been detected in almost every
financial return series that was subject to statistical anal-
ysis since the publication of Mandelbrot’s [155] seminal
study of cotton price changes, and they are of paramount
importance for any individual or institution engaging in
the financial markets, as well as for financial economists
trying to understand their mode of operation. For exam-
ple, investors holding significant portions of their wealth
in risky assets need a realistic assessment of the likelihood
of severe losses. Similarly, economists trying to learn about
the relation between risk and return, the pricing of finan-
cial derivatives, such as options, and the inherent dynam-
ics of financial markets, can only benefit from building
their models on adequate assumptions about the stochas-
tic properties of the variables under study, and they have
to reconcile the predictions of their models with the actual
facts.

This article reviews some of the most important con-
cepts and distributional models that are used in empiri-
cal finance to capture the (almost) ubiquitous stochastic
properties of returns as indicated above. Section “Intro-
duction” defines in a somewhat more precise manner than
above the central variable of interest, the return of a finan-
cial asset, and gives a brief account of the early history of
the problem. Section “Defining Fat-Tailedness” discusses
various operationalizations of the term “fat-tailedness”,
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Financial Economics, Fat-Tailed Distributions, Figure 1
The top plot shows the S&P500 percentage returns, rt, from January 1985 to December 2006, i. e., rt D 100 � log(St/St�1), where St
is the index level at time t. The left plot of the middle panel shows a nonparametric density estimate (solid), along with the fitted
normal density (dotted); the right graph is similar but shows the respective log-densities in order to better visualize the tail regions.
The bottom left plot represents a Hill plot for the S&P500 returns, i. e., it displays ˆ̨ k;n defined in (11) for k � 500. The bottom right
plot shows the complementary cdf, F̄(x), on a log-log scale, see Sect. “Empirical Evidence About the Tails” for discussion

and Sect. “Empirical Evidence About the Tails” summa-
rizes what is or is at least widely believed to be known
about the tail characteristics of typical return distribu-
tions. Popular parametric distributional models are dis-

cussed in Sect. “Some Specific Distributions”. The alpha
stable model as the archetype of a fat-tailed distribution
in finance is considered in detail, as is the generalized hy-
perbolic distribution, which provides a convenient frame-
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work for discussing, as special or limiting cases, many of
the important distributions employed in the literature. An
empirical comparison using the S&P500 returns is also in-
cluded. In Sect. “Volatility Clustering and Fat Tails”, the
relation between the two “stylized facts” mentioned above,
i. e., clusters of volatility and fatness of the tails, is high-
lighted, where we concentrate on the GARCH approach,
which has gained outstanding popularity among finan-
cial econometricians. This model has the intriguing prop-
erty of producing fat-tailed marginal distributions even
with light-tailed innovation processes, thus emphasizing
the role of the market dynamics. In Sect. “Application to
Value-at-Risk”, we compare both the unconditional para-
metric distributional models introduced in Sect. “Some
Specific Distributions” as well as the GARCH model of
Sect. “Volatility Clustering and Fat Tails” on an economic
basis by evaluating their ability to accurately measure the
Value-at-Risk, which is an important tool in risk man-
agement. Finally, Sect. “Future Directions” identifies some
open issues.

Introduction

To fix notation, let St be the price of an asset at time t, e. g.,
a stock, a market index, or an exchange rate. The continu-
ously compounded or log return from time t to time tC�t,
rt;tC�t , is then defined as

rt;tC�t D log StC�t � log St : (1)

Often the quantity defined in (1) is also multiplied by 100,
so that it can be interpreted in terms of percentage returns,
see Fig. 1.Moreover, in applications,�t is usually set equal
to one and represents the horizon over which the returns
are calculated, e. g., a day, week, or month. In this case, we
drop the first subscript and define rt :D log St � log St�1.
The log returns (1) can be additively aggregated over time,
i. e.,

rt;tC� D
�X

iD1

rtCi : (2)

Empirical work on the distribution of financial returns is
usually based on log returns. In some applications a use-
ful fact is that, over short intervals of time, when returns
tend to be small, (1) can also serve as a reasonable approx-
imation to the discrete return, Rt;tC�t :D StC�t/St � 1 D
exp(rt;tC�t)�1. For further discussion of the relationship
between continuous and discrete returns and their respec-
tive advantages and disadvantages, see, e. g., [46,76].

The seminal work of Mandelbrot [155], to be discussed
in Subsect. “Alpha Stable and Related Distributions”, is
often viewed as the beginning of modern empirical fi-
nance. As reported in [74], “[p]rior to the work of Man-

delbrot the usual assumption . . . was that the distribution
of price changes in a speculative series is approximately
Gaussian or normal”. The rationale behind this prevalent
view, which was explicitly put forward as early as 1900
by Bachelier [14], was clearly set out in [178]: If the log-
price changes (1) from transaction to transaction are inde-
pendently and identically distributed with finite variance,
and if the number of transactions is fairly uniformly dis-
tributed in time, then (2) along with the central limit theo-
rem (CLT) implies that the return distribution over longer
intervals, such as a day, a week, or a month, approaches
a Gaussian shape.

However, it is now generally acknowledged that the
distribution of financial returns over horizons shorter than
a month is not well described by a normal distribution. In
particular, the empirical return distributions, while uni-
modal and approximately symmetric, are typically found
to exhibit considerable leptokurtosis, i. e., they are more
peaked in the center and have fatter tails than the Gaussian
with the same variance. Although this has been occasion-
ally observed in the pre-Mandelbrot literature (e. g., [6]),
the first systematic account of this phenomenon appeared
in [155] and the follow-up papers by Fama [74,75] and
Mandelbrot [156], and it was consistently confirmed since
then. The typical shape of the return distribution, as com-
pared to a fitted Gaussian, is illustrated in the middle panel
of Fig. 1 for the S&P500 index returns, where a nonpara-
metric kernel density estimator (e. g., [198]) is superim-
posed on the fitted Gaussian curve (dashed line). Interest-
ingly, this pattern has been detected not only for modern
financial markets but also for those of the eighteenth cen-
tury [103].

The (location and scale-free) standardized fourth mo-
ment, or coefficient of kurtosis,

K [X] D E
�
(X � �)4

�

�4
; (3)

where � and � are the mean and the standard deviation
of the random variable (rv) X, respectively, is sometimes
used to assess the degree of leptokurtosis of a given distri-
bution. For the normal distribution, K D 3, and K > 3,
referred to as excess kurtosis, is taken as an indicator of
a leptokurtic shape (e. g., [164], p. 429). For example, the
sample analogue of (3) for the S&P500 returns shown in
Fig. 1 is 47.9, indicating very strong excess kurtosis. A for-
mal test could be conducted using the fact that, under nor-
mality, the sample kurtosis is asymptotically normal with
mean 3 and standard deviation

p
24/T (T being the sam-

ple size), but the result can be anticipated.
As is well-known, however, such moment-based sum-

mary measures have to be interpreted with care, because
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a particular moment need not be very informative about
a density’s shape. We know from Finucan [82] that if two
symmetric densities, f and g, have common mean and
variance and finite fourth moment, and if g is more peaked
and has thicker tails than f , then the fourth moment (and
hence K) is greater for g than for f , provided the densi-
ties cross exactly twice on both sides of the mean. How-
ever, the converse of this statement is, of course, not true,
and a couple of (mostly somewhat artificial) counterexam-
ples can be found in [16,68,121]. [158] provides some in-
tuition by relating density crossings to moment crossings.
For example, (only) if the densities cross more than four
times, it may happen that the fourth moment is greater for
f , but the sixth and all higher moments are greater for g,
reflecting the thicker tails of the latter. Nevertheless, Fin-
ucan’s result, along with his (in some respects justified)
hope that we can view “this pattern as the common expla-
nation of a high observed kurtosis”, may serve to argue for
a certain degree of usefulness of the kurtosis measure (3),
provided the fourth moment is assumed to be finite. How-
ever, a nonparametric density estimate will in any case be
more informative. Note that the density crossing condi-
tion in Finucan’s theorem is satisfied for the S&P500 re-
turns in Fig. 1.

Defining Fat-Tailedness

The notion of leptokurtosis as discussed so far is rather
vague, and both financial market researchers as well as
practitioners, such as risk managers, are interested in
a more precise description of the tail behavior of financial
variables, i. e., the laws governing the probability of large
gains and losses. To this end, we define the upper tail of
the distribution of a rv X as

F̄(x) D P (X > x) D 1 � F(x) ; (4)

where F is the cumulative distribution function (cdf) of X.
Consideration of the upper tail is the standard convention
in the literature, but it is clear that everything could be
phrased just as well in terms of the lower tail.

We are interested in the behavior of (4) as x be-
comes large. For our benchmark, i. e., the normal distri-
bution with (standardized) density (pdf) �(x) D (2
)�1/2

exp(�x2/2), we have (cf. p. 131 in [79])

F̄(x) Š 1p
2
x

exp
�

� x2

2

�

D �(x)
x

as x ! 1 ; (5)

where the notation f (x) Š g(x) as x ! 1 means that
limx!1 f (x)/g(x) D 1. Thus, the tails of the normal tend
to zero faster than exponentially, establishing its very light
tails.

To appreciate the difference between the general con-
cept of leptokurtosis and the approach that focuses on the
tails, consider the class of finite normal mixtures as dis-
cussed in Subsect. “Finite Mixtures of Normal Distribu-
tions”. These are leptokurtic in the sense of peakedness
and tailedness (compared to the normal), but are light-
tailed according to the tail-based perspective.

While it is universally accepted in the literature that
the Gaussian is too light-tailed to be an appropriate model
for the distribution of financial returns, there is no com-
plete agreementwith respect to the actual shape of the tails.
This is not surprising because we cannot reasonably ex-
pect to find a model that accurately fits all markets at any
time and place. However, the current mainstream opinion
is that the probability for the occurrence of large (positive
and negative) returns can often appropriately be described
by Pareto-type tails. Such tail behavior is also frequently
adopted as the definition of fat-tailedness per se, but the
terminology in the literature is by no means unique.

A distribution has Pareto-type tails if they decay es-
sentially like a power function as x becomes large, i. e., F̄
is regularly varying (at infinity) with index �˛ (written
F̄ 2 RV�˛), meaning that

F̄(x) D x�˛L(x) ; ˛ > 0 ; (6)

where L > 0 is a slowly varying function, which can be
interpreted as “slower than any power function” (see [34,
188,195] for a technical treatment of regular variation).
The defining property of a slowly varying function is
limx!1 L(tx)/L(x) D 1 for any t > 0, and the afore-
mentioned interpretation follows from the fact that, for
any � > 0, we have (cf. [195], p. 18)

lim
x!1 x�L(x) D 1 ; lim

x!1 x��L(x) D 0 : (7)

Thus, for large x, the parameter ˛ in (6), called the tail
index or tail exponent, controls the rate of tail decay and
provides a measure for the fatness of the tails.

Typical examples of slowly varying functions include
L(x) D c, a constant, L(x) D c C o(1), or L(x) D (log x)k ,
x > 1, k 2 R. The first case corresponds to strict
Pareto tails, while in the second the tails are asymptoti-
cally Paretian in the sense that F̄(x) Š cx�˛ , which in-
cludes as important examples in finance the (non-normal)
stable Paretian (see (13) in Subsect. “Alpha Stable and Re-
lated Distributions”) and the Student’s t distribution con-
sidered in Sect. “The Student t Distribution”, where the
tail index coincides with the characteristic exponent and
the number of degrees of freedom, respectively. As an
example for both, the Cauchy distribution with density
f (x) D [
(1Cx2)]�1 has cdf F(x) D 0:5C
�1 arctan(x).
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As arctan(x) D P1
0 (�1)i x2iC1/(2i C 1) for jxj < 1,

and arctan(x) D 
/2 � arctan(1/x) for x > 0, we have
F̄(x) Š (
x)�1.

For the distributions mentioned in the previous para-
graph, it is known that their moments exist only up to
(and excluding) their tail indices, ˛. This is generally true
for rvs with regularly varying tails and follows from (7)
along with the well-known connection between moments
and tail probabilities, i. e., for a non-negative rv X, and
r > 0, E [Xr] D r

R1
0 xr�1F̄(x)dx (cf. [95], p. 75). The

only possible minor variation is that, depending on L,
E
�
X˛
�
may be finite. For example, a rv X with tail F̄(x) D

cx�1(log x)�2 has finite mean. The property thatmoments
greater than ˛ do not exist provides further intuition for ˛
as a measure of tail-fatness.

As indicated above, there is no universal agreement in
the literature with respect to the definition of fat-tailed-
ness. For example, some authors (e. g., [72,196]) empha-
size the class of subexponential distributions, which are (al-
though not exclusively) characterized by the property that
their tails tend to zero slower than any exponential, i. e.,
for any � > 0, limx!1 e�x F̄(x) D 1, implying that the
moment generating function does not exist. Clearly a reg-
ularly varying distribution is also subexponential, but fur-
ther members of this class are, for instance, the lognor-
mal as well as the stretched exponential, or heavy-tailed
Weibull, which has a tail of the form

F̄(x) D exp
�
�xb

�
; 0 < b < 1 : (8)

The stretched exponential has recently been considered
by [134,152,153] as an alternative to the Pareto-type dis-
tribution (6) for modeling the tails of asset returns. Note
that, as opposed to (6), both the lognormal as well as the
stretched exponential possess power moments of all or-
ders, although no exponential moment.

In addition, [22] coined the term semi-heavy tails for
the generalized hyperbolic (GH) distribution, but the label
may be employed more generally to refer to distributions
with slower tails than the normal but existing moment
generating function. The GH, which is now very popular
in finance and nests many interesting special cases, will be
examined in detail in Subsect. “The Generalized Hyper-
bolic Distribution”.

As will be discussed in Sect. “Empirical Evidence
About the Tails”, results of extreme value theory (EVT)
are often employed to identify the tail shape of return dis-
tributions. This has the advantage that it allows one to
concentrate fully on the tail behavior, without the need
to model the central part of the distribution. To sketch
the idea behind this approach, suppose we attempt to

classify distributions according to the limiting behavior
of their normalized maxima. To this end, let fXi ; i � 1g
be an iid sequence of rvs with common cdf F, Mn D
max fX1; : : : ; Xng, and assume there exist sequences an >
0, bn 2 R, n � 1, such that

P
�
Mn � bn

an
� x

�

D Fn (anx C bn)
n!1����! G(x) ; (9)

where G is assumed nondegenerate. To see that normal-
ization is necessary, note that limn!1 P (Mn � x) D
limn!1 Fn(x) D 0 for all x < xM :D supfx : F(x) <
1g � 1, so that the limiting distribution is degenerate and
of little help. If the above assumptions are satisfied, then,
according to the classical Fisher–Tippett theorem of ex-
treme value theory (cf. [188]), the limiting distribution G
in (9) must be of the following form:

G� (x) D exp
�
� (1 C �x)�1/�

�
; 1 C �x > 0 ; (10)

which is known as the generalized extreme value distri-
bution (GEV), or von Mises representation of the extreme
value distributions (EV). The latter term can be explained
by the fact that (10) actually nests three different types of
EV distributions, namely

(i) the Fréchet distribution, denoted byGC
�
, where � > 0

and x > �1/� ,
(i) the so-calledWeibull distribution of EVT, denoted by

G�
�
, where � < 0 and x < �1/� , and

(iii) the Gumbel distribution, denoted by G0, which cor-
responds to the limiting case as � ! 0, i. e., G0(x) D
exp (� exp(�x)), where x 2 R.

A cdf F belongs to the maximum domain of attrac-
tion (MDA) of one of the extreme value distributions
nested in (10), written F 2 MDA



G�

�
, if (9) holds, i. e.,

classifying distributions according to the limiting behav-
ior of their extrema amounts to figuring out the MDAs
of the extreme value distributions. It turns out that it is
the tail behavior of a distribution F that accounts for the
MDA it belongs to. In particular, F 2 MDA(GC

�
) if and

only if its tail F̄ 2 RV�˛ , where ˛ D 1/� . As an example,
for a strict Pareto distribution, i. e., F(x) D 1 � (u/x)˛ ,
x � u > 0, with an D n1/˛u/˛ and bn D n1/˛u, we have
limn!1 Fn(anxCbn) D limn!1(1 � n�1(1Cx/˛)�˛)n

D GC
1/˛(x). Distributions in MDA(G�

�
) have a finite right

endpoint, while, roughly, most of the remaining distribu-
tions, such as the normal, the lognormal and (stretched)
exponentials, belong to MDA(G0). The latter also ac-
commodates a few distributions with finite right end-
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point. See [188] for precise conditions. The important
case of non-iid rvs is discussed in [136]. A central re-
sult is that, rather generally, vis-à-vis an iid sequence
with the same marginal cdf, the maxima of stationary se-
quences converge to the same type of limiting distribution.
See [63,167] for an application of this theory to ARCH(1)
and GARCH(1,1) processes (see Sect. “Volatility Cluster-
ing and Fat Tails”), respectively.

One approach to exploit the above results, referred
to as the method of block maxima, is to divide a given
sample of return data into subsamples of equal length,
pick the maximum of each subsample, assume that these
have been generated by (10) (enriched with location and
scale parameters to account for the unknown an and bn),
and find the maximum-likelihood estimate for � , loca-
tion, and scale. Standard tests can then be conducted to
assess, e. g., whether � > 0, i. e., the return distribution
has Pareto-type tails. An alternative but related approach,
which is based on further theoretical developments and of-
ten makes more efficient use of the data, is the peaks over
thresholds (POT) method. See [72] for a critical discussion
of these and alternative techniques.

We finally note that 1�GC
1/˛ (˛ (x � 1)) Š x�˛ , while

1 � G0(x) Š exp(�x), i. e., for the extremes, we have
asymptotically a Pareto and an exponential tail, respec-
tively. This may provide, on a meta-level, a certain ratio-
nale for reserving the notion of genuine fat-tailedness for
the distributions with regularly varying tails.

Empirical Evidence About the Tails

The first application of power tails in finance appeared
in Mandelbrot’s [155] study of the log-price changes of
cotton. Mandelbrot proposed to model returns with non-
normal alpha stable, or stable Paretian, distributions, the
properties of which will be discussed in some detail in
Subsect. “Alpha Stable and Related Distributions”. For the
present discussion, it suffices to note that for this model
the tail index ˛ in (6), also referred to as characteristic ex-
ponent in the context of stable distributions, is restricted
to the range 0 < ˛ < 2, and that much of its theoretical
appeal derives from the fact that, due to the generalized
CLT, “Mandelbrot’s hypothesis can actually be viewed as
a generalization of the central-limit theorem arguments
of Bachelier and Osborne to the case where the under-
lying distributions of price changes from transaction to
transaction . . . have infinite variances” [75]. For the cot-
ton price changes, Mandelbrot came up with a tail index of
about 1.7, and his work was subsequently complemented
by Fama [75] with an analysis of daily returns of the stocks
belonging to the Dow Jones Industrial Average. [75] came

to the conclusion that Mandelbrot’s theory was supported
by these data, with an average estimated ˛ close to 1.9.

The findings of Mandelbrot and Fama initiated an
extensive discussion about the appropriate distributional
model for stock returns, partly because the stable model’s
implication that the tails are so fat that even the variance
is infinite appeared to be too radical to many economists
used to working with models built on the assumption of fi-
nite second moments. The evidence concerning the stable
hypothesis gathered in the course of the debate until the
end of the 1980s was not ultimately conclusive, but there
were many papers reporting mainly negative results [4,28,
36,40,54,67,98,99,109,135,176,180,184].

From the beginning of the 1990s, a number of re-
searchers have attempted to estimate the tail behav-
ior of asset returns directly, i. e., without making spe-
cific assumptions about the entire distributional shape.
[86,115,142,143] use the method of block maxima (see
Sect. “Defining Fat-Tailedness”) to identify the maximum
domain of attraction of the distribution of stock returns.
They conclude that the Fréchet distribution with a tail in-
dex ˛ > 2 is most likely, implying Pareto-type tails which
are thinner than those of the stable Paretian.

A second strand of literature assumes a priori the pres-
ence of a Pareto-type tail and focuses on the estimation
of the tail index ˛. If, as is often the case, a power tail is
deemed adequate, an explicit estimate of ˛ is of great inter-
est both from a practical and an academic viewpoint. For
example, investors want to assess the likelihood of large
losses of financial assets. This is often done using meth-
ods of extreme value theory, which require an accurate
estimate of the tail exponent. Such estimates are also im-
portant because the properties of statistical tests and other
quantities of interest, such as empirical autocorrelation
functions, frequently depend on certain moment condi-
tions (e. g., [144,167]). Clearly the desire to figure out the
actual tail shape has also an intrinsic component, as is re-
flected in the long-standing debate on the stable Paretian
hypothesis. People simply wanted to know whether this
distribution, with its appealing theoretical properties, is
consistent with actual data. Moreover, empirical findings
may guide economic theorizing, as they can help both in
assessing the validity of certain existing models as well as
in suggesting new explanations. Two examples will briefly
be discussed at the end of the present section.

Within this second strand of literature, the Hill estima-
tor [106] has become the most popular tool. It is given by

ˆ̨k;n D
0

@ 1
k � 1

k�1X

jD1

log Xj;n � log Xk;n

1

A

�1

; (11)
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where Xi;n denotes the ith upper order statistic of a sam-
ple of length n, i. e., X1;n � X2;n � � � � � Xn;n . See [64,
72] for various approaches to deriving (11). If the tail is
not regularly varying, the Hill estimator does not estimate
anything.

A crucial choice to be made when using (11) is the se-
lection of the threshold value k, i. e., the number of order
statistics to be included in the estimation. Ideally, only ob-
servations from the tail region should be used, but choos-
ing k to small will reduce the precision of the estima-
tor. There exist various methods for picking k optimally
in a mean-squared error sense [61,62], but much can be
learned by looking at the Hill plot, which is obtained by
plotting ˆ̨k;n against k. If we can find a range of k-values
where the estimate is approximately constant, this can be
taken as a hint for where the “true” tail index may be lo-
cated. As illustrated in [189], however, the Hill plot may
not always be so well-behaved, and in this case the semi-
automatic methods mentioned above will presumably also
be of little help.

The theoretical properties of (11), along with techni-
cal conditions, are summarized in [72,189]. Briefly, for
iid data generated from a distribution with tail F̄ 2
RV�˛ , the Hill estimator has been shown to be consis-
tent [159] and asymptotically normal with standard de-
viation ˛/

p
k [100]. Financial data, however, are usually

not iid but exhibit considerable dependencies in higher-
order moments (see Sect. “Volatility Clustering and Fat
Tails”). In this situation, i. e., with ARCH-type dynam-
ics, (11) will still be consistent [190], but little is known
about its asymptotic variance. However, simulations con-
ducted in [123] with an IGARCH model, as defined in
Sect. “Volatility Clustering and Fat Tails”, indicate that,
under such dependencies, the actual standard errors may
be seven to eight times larger than those implied by the
asymptotic theory for iid variables.

The Hill estimator was introduced into the economet-
rics literature in the series of articles [107,113,125,126].
[125,126], using weekly observations, compare the tails
of exchange rate returns in floating and fixed exchange
rate systems, such as the Bretton Woods period and the
EMS. They find that for the fixed systems, most tail in-
dex estimates are below 2, i. e., consistent with the al-
pha stable hypothesis, while the estimates are significantly
larger than 2 (ranging approximately from 2.5 to 4) for
the float. [126] interpret these results in the sense that
“a float lets exchange rates adjust more smoothly than any
other regime that involves some amount of fixity”. Subse-
quent studies of floating exchange rates using data ranging
from weekly [107,110,111] over daily [58,89,144] to very
high-frequency [59,61,170] have confirmed the finding of

these early papers that the tails are not fat enough to be
compatible with the stable Paretian hypothesis, with esti-
mated tail indices usually somewhere in the region 2.5–5.
[58] is the first to investigate the tail behavior of the euro
against the US dollar, and finds that it is similar both to
the German mark in the pre-euro era as well as to the yen
and the British pound, with estimated exponents hovering
around 3–3.5.

Concerning estimation with data at different time
scales, a comparison of the results reported in the litera-
ture reveals that the impact on the estimated tail indices
appears to be moderate. [59] observe an increase in the es-
timates whenmoving from 30-minute to daily returns, but
they argue that these changes, due to the greater bias at the
lower frequencies, are small enough to be consistent with
˛ being invariant under time aggregation.

Note that if returns were independently distributed,
their tail behavior would in fact be unaffected by time ag-
gregation. This is a consequence of (2) along with Feller’s
(p. 278 in [80]) theorem on the convolution of regularly
varying distributions, stating that any finite convolution
of a regularly varying cdf F(x) has a regularly varying tail
with the same index. Thus, in principle, the tail survives
forever, but, as long as the variance is finite, the CLT en-
sures that in the course of aggregation an increasing prob-
ability weight is allocated to the center of the distribution,
which becomes closer to a Gaussian shape. The probabil-
ity of observing a tail event will thus decrease. However,
for fat-tailed distributions, the convergence to normality
can be rather slow, as reflected in the observation that pro-
nounced non-normalities in financial returns are often ob-
served even at a weekly and (occasionally) monthly fre-
quency. See [41] for an informative discussion of these is-
sues. The fact that returns are, in general, not iid makes
the interpretation of the approximate stability of the tail
index estimates observed across papers employing differ-
ent frequencies not so clear-cut, but Feller’s theorem may
nevertheless provide some insight.

There is also an extensive literature reporting tail index
estimates of stock returns, mostly based on daily [2,89,92,
112,113,144,145,146,177] and higher frequencies [2,91,92,
147,181]. The results are comparable to those for floating
exchange rates in that the tenor of this literature, which as
a whole covers all major stock markets, is that most stock
return series are characterized by a tail index somewhere
in the region 2.5–5, and most often below 4. That is, the
tails are thinner than expected under the stable Paretian
hypothesis, but the finiteness of the third and in particular
the fourth moments (and hence kurtosis) may already be
questionable. Again, the results appear to be relatively in-
sensitive with respect to the frequency of the data, indicat-
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ing a rather slow convergence to the normal distribution.
Moreover, most authors do not find significant differences
between the left and the right tail, although, for stock re-
turns, the point estimates tend to be somewhat lower for
the left tail (e. g., [115,145]).

Applications to the bond market appear to be rare,
but see [201], who report tail index estimates between 2.5
and 4.5 for 5-minute and 1-hour Bund future returns and
somewhat higher values for daily data. [160] compare the
tail behaviors of spot and future prices of various com-
modities (including cotton) and find that, while future
prices resemble stock prices with tail indices in the re-
gion 2.5–4, spot prices are somewhat fatter tailed with ˛
hovering around 2.5 and, occasionally, smaller than 2.

Summarizing, it is now a widely held view that the dis-
tribution of asset returns can typically be described as fat-
tailed in the power law sense but with finite variance. Thus,
currently there seems to exist a far reaching consensus that
the stable Paretianmodel is not adequate for financial data,
but see [162,202] for a different viewpoint. A consequence
of the prevalent view is that asset return distributions be-
long to the Gaussian domain of attraction, but that the
convergence appears to be very slow.

To illustrate typical findings as reported above, let us
consider the S&P500 returns described in Sect. “Definition
of the Subject”. A first informal check of the appropriate-
ness of a power law can be obtained by means of a log-log
plot of the empirical tail, i. e., if 1 � F(x) D F̄(x) � cx�˛

for large x, then a plot of the log of the empirical com-
plementary cdf, F̄(x), against log x should display a linear
behavior in its outer part. For the data at hand, such a plot
is shown in the bottom right panel of Fig. 1. Assuming ho-
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Shown are, for k � 500, the 95%, 50%, and 5% quantiles of the distribution of the Hill estimator ˆ̨ k;n, as defined in (11), over
176 stocks included in the S&P500 stock index

mogeneity across the tails, we pool negative and positive
returns by first removing the sample mean and then tak-
ing absolute values. We have also multiplied (1) by 100,
so that the returns are interpretable in terms of percentage
changes. The plot suggests that a power law regimemay be
starting from approximately the 90% quantile. Included in
Fig. 1 is also a regression line (“fit”) fitted to the log-tail
using the 500 upper (absolute) return observations. This
yields, as a rough estimate for the tail index, a slope of
ˆ̨ D 3:13, with a coefficient of determination R2 D 0:99.
A Hill plot for k � 500 in (11) is shown in the bottom
left panel of Fig. 1. The estimates are rather stable over
the entire region and suggest an ˛ somewhere in the in-
terval (3; 3:5), which is reconcilable with the results in the
literature summarized above. A somewhat broader picture
can be obtained by considering individual stocks. Here we
consider the 176 stocks that were listed in the S&P500
from January 1985 to December 2006. Figure 2 presents,
for each k � 500, the 5%, 50%, and 95% quantiles of the
distribution of (11) over the different stocks. The median
is close to 3 throughout, and it appears that an estimate in
(2:5; 4:5) would be reasonable for most stocks.

At this point, it may be useful to note that the issue
is not whether a power law is true in the strict sense but
only if it provides a reasonable approximation in the rele-
vant tail region. For example, it might be argued that asset
returns actually have finite support, implying finiteness of
all moments and hence inappropriateness of a Pareto-type
tail. However, as concisely pointed out in [144], “saying
that the support of an empirical distribution is bounded
says very little about the nature of outlier activity that may
occur in the data”.
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We clearly cannot expect to identify the “true” dis-
tribution of financial variables. For example, [153] have
demonstrated that by standard techniques of EVT it is
virtually impossible, even in rather large samples, to dis-
criminate between a power law and a stretched exponen-
tial (8) with a small value of b, thus questioning, for ex-
ample, the conclusiveness of studies relying on the block
maxima method, as referred to above. A similar point was
made in [137], who showed by simulation that a three-
factor stochastic volatility model, with a marginal distri-
bution known to have all its moments finite, can generate
apparent power laws in practically relevant sample sizes.
As put forward in [152], “for most practical applications,
the relevant question is not to determine what is the true
asymptotic tail, but what is the best effective description of
the tails in the domain of useful applications”.

As is evident in Fig. 1, a power law may (and often
does) provide a useful approximation to the tail behav-
ior of actual data, but there is no reason to expect that it
will appear in every market, and a broad range of heavy
and semi-heavy tailed distributions (such as the GH in
Subsect. “The Generalized Hyperbolic Distribution”) may
provide an adequate fit. For instance, [93] investigate the
tail behavior of high-frequency returns of one of the most

Financial Economics, Fat-Tailed Distributions, Figure 3
The figure shows, on a log-log scale, the complementary cdf, F̄(x), for the largest 500 absolute return observations both for the daily
S&P500 returns from January 1985 to December 2006 and the daily DAX returns from July 1987 to July 2007

frequently traded stocks on the Paris Stock Exchange (Al-
catel) and conclude that the tails decay at an exponen-
tial rate, and [119,197] obtain similar results for daily re-
turns of the Nikkei 225 index and various individual US
stocks, respectively. As a further illustration, without rig-
orous statistical testing, Fig. 3 shows the log-log tail plot
for daily returns of the German stock market index DAX
from July 3, 1987 to July 4, 2007 for the largest 500 out
of 5,218 (absolute) return observations, along with a re-
gression-based linear fit. For purposes of comparison, the
corresponding figure for the S&P500 has also been repro-
duced from Fig. 1.While the slopes of the fitted power laws
exhibit an astonishing similarity (in fact, the estimated tail
index of the DAX is 2.93), it is clear from Fig. 3 that an
asymptotic power law, although not necessarily inconsis-
tent with the data, is much less self-evident for the DAX
than for the S&P500, due to the apparent curvature partic-
ularly in the more extreme tail.

It is finally worthwhile to mention that financial the-
ory in general, although some of its models are built on
the assumption of a specific distribution, has little to say
about the distribution of financial variables. For example,
according to the efficient markets paradigm, asset prices
change in response to the arrival of relevant new infor-
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mation, and, consequently, the distributional properties of
returns will essentially reflect those of the news process.
As noted by [148], an exception to this rule is the model
of rational bubbles of [35]. [148] show that this class of
processes gives rise to an (approximate) power law for the
return distribution. However, the structure of the model,
i. e., the assumption of rational expectations, restricts the
tail exponent to be below unity, which is incompatible with
observed tail behaviors.

More recently, prompted by the observation that esti-
mated tail indices are often located in a relatively narrow
interval around 3, [83,84,85] have developed a model to
explain a hypothesized “inverse cubic law for for the distri-
bution of stock price variations” [91], valid for highly de-
veloped economies, i. e., a power law tail with index ˛ D 3.
This model is based on Zipf’s law for the size of large in-
stitutional investors and the hypothesis that large price
movements are generated by the trades of large market
participants via a square-root price impact of volume, V ,
i. e., r Š h

p
V , where r is the log return and h is a con-

stant. Putting these together with a model for profit maxi-
mizing large funds, which have to balance between trading
on a perceived mispricing and the price impact of their ac-
tions, leads to a power law distribution of volume with tail
index 1.5, which by the square-root price impact function
and simple power law accounting then produces the “cu-
bic law”. See [78,182] for a discussion of this model and the
validity of its assumptions. In a somewhat similar spirit,
[161] find strong evidence for exponentially decaying tails
of daily Indian stock returns and speculate about a general
inverse relationship between the stage of development of
an economy and the closeness to Gaussianity of its stock
markets, but it is clear that this is really just speculation.

Some Specific Distributions

Alpha Stable and Related Distributions

As noted in Sect. “Empirical Evidence About the Tails”,
the history of heavy tailed distributions in finance has its
origin in the alpha stable model proposed by Mandel-
brot [154,155]. Being the first alternative to the Gaussian
law, the alpha stable distribution has a long history in fi-
nancial economics and econometrics, resulting in a large
number of books and review articles.

Apart from its good empirical fit the stable distribution
has also some attractive theoretical properties such as the
stability property and domains of attraction. The stability
property states that the index of stability (or shape parame-
ter) remains the same under scaling and addition of differ-
ent stable rv with the same shape parameter. The concept
of domains of attraction is related to a generalized CLT.

More specifically, dropping the assumption of a finite vari-
ance in the classical CLT, the domains of attraction states,
loosely speaking, that the alpha stable distribution is the
only possible limit distribution. For a more detailed dis-
cussion of this concept we refer to [169], who also provide
an overview over alternative stable schemes.While the fat-
tailedness of the alpha stable distributions makes it already
an attractive candidate for modeling financial returns, the
concept of the domains of attraction provides a further ar-
gument for its use in finance, as under the relaxation of the
assumption of a finite variance of the continuously arriv-
ing return innovations the resulting return distribution at
lower frequencies is generally an alpha stable distribution.

Although the alpha stable distribution is well estab-
lished in financial economics and econometrics, there still
exists some confusion about the naming convention and
parameterization. Popular terms for the alpha stable dis-
tribution are the stable Paretian, Lévy stable or simply sta-
ble laws. The parameterization of the distribution in turn
varies mostly with its application. For instance, to numer-
ically integrate the characteristic function, it is preferable
to have a continuous parameterization in all parameters.

The numerical integration of the alpha stable distribu-
tions is important, since with the exception of a few special
cases, its pdf is unavailable in closed form. However, the
characteristic function of the standard parameterization is
given by

E
�
exp (itX)

� D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

exp

�c˛ jtj˛ 
1 � iˇ sign (t) tan �˛

2
�

C i� t
�

˛ ¤ 1
exp


�c jtj 
1 C iˇ 2
�
sign (t) ln (jtj)�

C i� t
�

˛ D 1 ;
(12)

where i is the imaginary unit, sign (�) denotes the sign
function, which is defined as

sign (x) D

8
<̂

:̂

�1 x < 0
0 x D 0
1 x > 0 ;

0 < ˛ � 2 denotes the shape parameter, characteristic
exponent or index of stability, �1 � ˇ � 1 is the skewness
parameter, and � 2 R and c � 0 are the location and scale
parameters, respectively.

Figure 4 highlights the impact of the parameters ˛
and ˇ. ˇ controls the skewness of the distribution. The
shape parameter ˛ controls the behavior of the tails of the
distribution and therefore the degree of leptokurtosis. For
˛ < 2moments only up to (and excluding) ˛ exist, and for
˛ > 1 we have E [X] D � . In general, for ˛ 2 (0; 1) and
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Financial Economics, Fat-Tailed Distributions, Figure 4
Density function (pdf) of the alpha stable distribution for different parameter vectors. The right panelplots the log-densities to better
visualize the tail behavior. The upper (lower) section present the pdf for different values of ˇ (˛)

ˇ D 1 (ˇ D �1) the support of the distribution is the set
(�;1) (or (�1; �)) rather than the whole real line. In the
following we call this stable distribution with ˛ 2 (0; 1),
� D 0 and ˇ D 1 the positive alpha stable distribution.

Moreover, for ˛ < 2 the stable law has asymptotic
power tails,

F̄(x) D P (X > x) Š c˛d (1 C ˇ) x�˛

fS (x; ˛; ˇ; c; �) Š ˛c˛d (1 C ˇ) x�˛C1

with d D sin



�˛
2
�

 (˛)/
 .

For ˛ D 2 the stable law is equivalent to the normal
law with variance 2c2, for ˛ D 1 and ˇ D 0 the Cauchy
distribution is obtained, and for ˛ D 1/2,ˇ D 1 and � D 0
the stable law is equivalent to the Lévy distribution, with
support over the positive real line.

An additional property of the stable laws is that they
are closed under convolution for constant ˛, i. e., for two
independent alpha stable rvs X1 
 S (˛; ˇ1; c1; �1) and

X2 
 S (˛; ˇ2; c2; �2) with common shape parameter ˛
we have

X1 CX2 
 S
�

˛;
ˇ1c˛

1 C ˇ2c˛
2

c˛
1 C c˛

2
;


c˛
1 C c˛

2
�1/˛

; �1 C �2

�

and

aX1Cb 


8
<̂

:̂

S


˛; sign (a)ˇ; jaj c; a� C b

�
˛ ¤ 1

S


1; sign (a)ˇ; jaj c; a� C b � 2

�
ˇca log jaj�

˛ D 1 :

These results can be extended to n stable rvs. The closed-
ness under convolution immediately implies the infinite
divisibility of the stable law. As such every stable law cor-
responds to a Lévy process. A more detailed analysis of
alpha stable processes in the context of Lévy processes is
given in [192,193].

The computation and estimation of the alpha stable
distribution is complicated by the aforementioned non-
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existence of a closed form pdf. As a consequence, a num-
ber of different approximations for evaluating the density
have been proposed, see e. g. [65,175]. On the basis of these
approximations, parameter estimation is facilitated using
for example the maximum-likelihood estimator, see [66],
or other estimation methods. As maximum-likelihood es-
timation relies on computationally demanding numerical
integration methods, the early literature focused on al-
ternative estimation methods. The most important meth-
ods include the quantile estimation suggested by [77,163],
which is still heavily applied in order to obtain starting val-
ues for more sophisticated estimation procedures, as well
as the characteristic function approach proposed by [127,
131,186]. However, based on its nice asymptotic properties
and presently available computational power, the maxi-
mum-likelihood approach is preferable.

Many financial applications also involve the simula-
tion of a return series. In derivative pricing, for example,
the computation of an expectation is oftentimes impossi-
ble as the financial instrument is generally a highly non-
linear function of asset returns. A common way to alle-
viate this problem is to apply Monte Carlo integration,
which in turn requires quasi rvs drawn from the respec-
tive return distribution, i. e. the alpha stable distribution.
A useful simulation algorithm for alpha stable rvs is pro-
posed by [49], which is a generalization of the algorithm
of [120] to the non-symmetric case. A random variable X
distributed according to the stable law, S (˛; ˇ; c; �), can
be generated as follows:

1. Draw a rv U, uniformly distributed over the interval
(�
/2; 
/2), and an (independent) exponential rv E
with unit mean,

2. if ˛ ¤ 1, compute

X D cS
sin (˛ (U C B))

cos1/˛ (U)

�
�
cos (U � ˛ (U C B))

E

�(1�˛)/˛
C �

where

B :D arctan


ˇ tan



�˛
2
��

˛

S :D
�
1 C ˇ2 tan2

�
˛

2

��1/(2˛)

for ˛ D 1 compute

X D c 2
�

�



�
2 C ˇU

�
tan (U) � ˇ log

� �
2 E cos (U)
�
2 C ˇU

��

C 2


ˇc log (c) C � :

Interestingly, for ˛ D 2 the algorithm collapses to the
Box–Muller method [42] to generate normally distributed
rvs.

As further discussed in Subsect. “The Generalized Hy-
perbolic Distribution”, the mixing of normal distributions
allows one to derive interesting distributions having sup-
port over the real line and exhibiting heavier tails than
the Gaussian. While generally any distribution with sup-
port over the positive real line can be used as the mixing
distribution for the variance, transformations of the pos-
itive alpha stable distribution are often used in financial
modeling.

In this context the symmetric alpha stable distributions
have a nice representation. In particular, if X 
 S(˛�; 0;
c; 0) and A (independent of X) is an ˛/˛� positive alpha
stable rv with scale parameter cos˛�/˛ 
 �˛

2˛�

�
then

Z D A1/˛�

X 
 S (˛; 0; c; 0) :

For ˛� D 2 this property implies that every symmetric
alpha stable distribution, i. e. an alpha stable distribution
with ˇ D 0, can be viewed as being conditionally normally
distributed, i. e., it can be represented as a continuous vari-
ance normal mixture distribution.

Generally, the tail behavior of the resulting mixture
distribution is completely determined by the (positive)
tails of the variance mixing distribution. In the case of the
positive alpha stable distribution this implies that the re-
sulting symmetric stable distribution exhibits very heavy
tails, in fact the second moment does not exist. As the lit-
erature is controversial on the adequacy of such heavy tails
(see Sect. “Empirical Evidence About the Tails”), transfor-
mations of the positive alpha stable distribution are often-
times considered to weight down the tails. The method of
exponential tilting is very useful in this context. In a gen-
eral setup the exponential tilting of a rv X with respect
to a rv Y (defined on the same probability space) defines
a new rv X̃, whose pdf can be written as

fX̃ (x; �) D fX(x)
E
�
exp (�Y)jX D x

�

E
�
exp (�Y)

� ;

where the parameter � determines the “degree of dampen-
ing”. The exponential tilting of a rv X with respect to itself,
known as Esscher transformation, is widely used in finan-
cial economics and mathematics, see e. g. [88]. In this case
the resulting pdf is given by

fX̃ (x; �) D exp (�x)
E
�
exp (�X)

� fX(x)

D exp (�x � K (�)) fX(x) ; (13)
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with K (�) denoting the cumulant generating function,
K (�) :D log



E
�
exp (�X)

��
.

The tempered stable (TS) laws are given by an appli-
cation of the Esscher transform (13) to a positive alpha
stable law. Note that the Laplace transform E[exp(�tX)],
t � 0, of a positive alpha stable rv is given by exp(�ı
(2t)˛), where ı D c˛/(2˛ cos(�˛

2 )). Thus, with � D
�(1/2)� 1/˛ � 0, the pdf of the tempered stable law is given
by

fTS (x;˛; ı; � )D
exp


� 1
2�

1/˛x
�

E
�
exp


� 1
2�

1/˛X
�� fS (x;˛; 1; c (ı; ˛) ; 0)

Dexp


ı� � 1

2�
1/˛x

�
fS (x;˛; 1; c (ı; ˛) ; 0)

with 0 < ˛ < 1, ı > 0, and � � 0.
A generalization of the TS distribution was proposed

by [22]. This class of modified stable (MS) laws can be ob-
tained by applying the following transformation

fMS (x; ˛; �; ı; � ) D c (˛; �; ı; � ) x
C˛ fTS (x;˛; ı; � ) ;
(14)

with � 2 R, � _ (��) > 0 and c (˛; �; ı; � ) is a norm-
ing constant. For a more detailed analysis, we refer to [22].
Note that the terms “modified stable” or “tempered stable
distribution” are not unique in the literature. Very often
the so-called truncated Lévy flights/processes (see for ex-
ample [56,130,157]) are also called TS processes (or corre-
sponding distributions). These distributions are obtained
by applying a smooth downweighting of the large jumps
(in terms of the Lévy density).

The MS distribution is a quite flexible distribution de-
fined over the positive real line and nests several important
distributions. For instance, for ˛ D 1/2, the MS distribu-
tion reduces to the generalized inverse Gaussian (GIG) dis-
tribution, which is of main interest in Subsect. “The Gen-
eralized Hyperbolic Distribution”.

Note that in contrast to the unrestricted MS distribu-
tion, the pdf of the GIG distribution is available in closed
form and can be straightforwardly obtained by applying
the above transformation. In particular, for ˛ D 1/2, the
positive alpha stable distribution is the Lévy distribution
with closed form pdf given by

fS (x; 1/2; 1; c; 0) D
r

c
2


exp

� c

2x
�

x3/2
:

Applying the Esscher transformation (13) with � D
�(1/2)� 2 yields the pdf of the inverse Gaussian (or Wald)
distribution

fIG (x; ı; � ) D ıp
2


x�3/2 exp


ı� � 


ı2x�1 C � 2x
�
/2
�
;

where ı > 0 and � � 0. Applying the transformation (14)
delivers the pdf of the GIG distribution,

fGIG (x;�; ı; � ) D (� /ı)


2K
 (ı� )
x
�1

� exp 
� 
ı2x�1 C � 2x
�ı

2
�
; (15)

with K
 (�) being the modified Bessel function of the third
kind and of order � 2 R. Note that this function is of-
tentimes called the modified Bessel function of the second
kind or Macdonald function. Nevertheless, one represen-
tation is given by

K
(x) D 1
2

Z 1

0
y
�1 exp

�

�1
2
x


y C y�1�

�

dy :

The parameters of the GIG distribution are restricted to
satisfy the following conditions:

ı � 0 and � > 0 if � > 0
ı > 0 and � > 0 if � D 0
ı > 0 and � � 0 if � < 0 :

(16)

Importantly, in contrast to the positive alpha stable law, all
moments exist and are given by

E
�
Xr� D

�
ı

�

�r K
Cr(ı� )
K
(ı� )

(17)

for all r > 0. For a very detailed analysis of the GIG distri-
bution we refer to [117]. The GIG distribution nests sev-
eral positive distributions as special cases and as limit dis-
tributions. Since all of these distributions belong to a spe-
cial class of the generalized hyperbolic distribution, we
proceed with a discussion of the latter, thus providing
a broad framework for the discussion of many important
distributions in finance.

The Generalized Hyperbolic Distribution

The mixing of normal distributions is well suited for fi-
nancial modeling, as it allows construction of very flexi-
ble distributions. For example, the normal variance-mean
mixture, given by

X D �C ˇV C p
VZ ; (18)

with Z being normally distributed and V a positive ran-
dom variable, generally exhibits heavier tails than the
Gaussian distribution. Moreover, this mixture possesses
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interesting properties, for an overview see [26]. First, sim-
ilarly to other mixtures, the normal variance-mean mix-
ture is a conditional Gaussian distribution with condition-
ing on the volatility states, which is appealing when mod-
eling financial returns. Second, if the mixing distribution,
i. e. the distribution of V , is infinitely divisible, then X is
likewise infinitely divisible. This implies that there exists
a Lévy process with support over the whole real line, which
is distributed at time t D 1 according to the law of X. As
the theoretical properties of Lévy processes are well estab-
lished in the literature (see, e. g., [24,194]), this result im-
mediately suggests to formulate financial models in terms
of the corresponding Lévy process.

Obviously, different choices for the distribution of V
result in different distributions of X. However, based on
the above property, an infinitely divisible distribution is
most appealing. For theMS distributions discussed in Sub-
sect. “Alpha Stable and Related Distributions”, infinite di-
visibility is not yet established, although [22] strongly sur-
mise so. However, for some special cases infinite divisi-
bility has been shown to hold. The most popular is the
GIG distribution yielding the generalized hyperbolic (GH)
distribution for X. The latter distribution was introduced
by [17] for modeling the distribution of the size of sand
particles. The infinite divisibility of the GIG distribution
was shown by [20].

To derive the GH distribution as a normal variance-
mean mixture, let V 
 GIG(�; ı; � ) as in (15), with
� D p

˛2 � ˇ2, and Z 
 N(0; 1) independent of V . Ap-
plying (18) yields the GH distributed rv X 
 GH(�; ˛; ˇ;
�; ı) with pdf

fGH (x;�; ˛; ˇ; �; ı)

D (ı� )
 (ı˛)1/2�


p
2
ıK
 (ı� )

 

1 C (x � �)2

ı2

!
/2�1/4

� K
�1/2

 

˛ı

r

1 C (x � �)2

ı2

!

exp (ˇ(x � �))

for � 2 R and

ı � 0 and jˇj < ˛ if � > 0
ı > 0 and jˇj < ˛ if � D 0
ı > 0 and jˇj � ˛ if � < 0 ;

which are the induced parameter restrictions of the GIG
distribution given in (16).

Note that, based on the mixture representation (18),
the existing algorithms for generating GIG distributed rvs
can be used to draw rvs from the GH distribution, see [12,
60].

For jˇ C uj < ˛, the moment generating function of
the GH distribution is given by

E
�
exp (uX)

� D exp (�u)
�

˛2 � ˇ2

˛2 � (ˇ C u)2

�
/2

�
K


�
ı
p
˛2 � (ˇ C u)2

�

K


�
ı
p
˛2 � ˇ2

� : (19)

As the moment generating function is infinitely differen-
tiable in the neighborhood of zero, moments of all orders
exist and have been derived in [25]. In particular, themean
and the variance of a GH rv X are given by

E [X] D �C ˇı
p
˛2 � ˇ2
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1

A

D E [XGIG] C ˇ2V [XGIG] ;

with XGIG 
 GIG (�; ı; � ) denoting a GIG distributed rv.
Skewness and kurtosis can be derived in a similar way us-
ing the third and fourth derivative of the moment generat-
ing function (19). However, more information on the tail
behavior is given by

fGH (x;�; ˛; ˇ; �; ı) Š jxj
�1 exp ((�˛ C ˇ) x) ;

which shows that the GH distribution exhibits semi-heavy
tails, see [22].

The moment generating function (19) also shows that
the GH distribution is generally not closed under convo-
lution. However, for � 2 f�1/2; 1/2g, the modified Bessel
function of the third kind satisfies

K� 1
2
(x) D K 1

2
(x) D

r



2x
exp (�x) ;

yielding the following form of the moment generating
function for � D �1/2

E
�
exp (uX)j� D �1/2

�

D exp (�u)
exp

�
ı
p
˛2 � ˇ2

�

exp
�
ı
p
˛2 � (ˇ C u)2

� ;

which is obviously closed under convolution. This spe-
cial class of the GH distribution is called normal inverse
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Gaussian distribution and is discussed in more detail in
Subsect. “TheNormal Inverse GaussianDistribution”. The
closedness under convolution is an attractive property of
this distribution as it facilitates forecasting applications.

Another very popular distribution that is nested in the
GH distribution is the hyperbolic distribution given by
� D 1 (see the discussion in Subsect. “The Hyperbolic
Distribution”). Its popularity is primarily based on its pdf,
which can (except for the norming constant) be expressed
in terms of elementary functions allowing for a very fast
numerical evaluation. However, given the increasing com-
puter power and the slightly better performance in repro-
ducing the unconditional return distribution, the normal
inverse Gaussian distribution is now the most often used
subclass.

Interestingly, further well-known distributions can be
expressed as limiting cases of the GH distribution, when
certain of its parameters approach their extreme values.
To this end, the following alternative parametrization of
the GH distribution turns out to be useful. Setting � D
1/
q
1 C ı

p
˛2 � ˇ2 and � D �ˇ/˛ renders the two pa-

rameters invariant under location and scale transforma-
tions. This is an immediate result of the following property
of the GH distribution. If X 
 GH (�; ˛; ˇ; �; ı), then

a C bX 
 GH
�

�;
˛

jbj ;
ˇ

jbj ; a C b�; ı jbj
�

:

Furthermore, the parameters are restricted by 0 � j�j <
� < 1, implying that they are located in the so-called shape
triangle introduced by [27]. Figure 5 highlights the impact
of the parameters in the GH distribution in terms of �; �
and �. Obviously, � controls the skewness and � the tailed-
ness of the distribution. The impact of � is not so clear-cut.
The lower panels in Fig. 5 depict the pdfs for different val-
ues of � whereby the first two moments and the values of
� and � are kept constant to show the “partial” influence.

As pointed out by [69], the limit distributions can be
classified by the values of � and � as well as by the values %
and � of a second location and scale invariant parametriza-
tion of the GH, given by % D ˇ/˛ and � D ı

p
˛2 � ˇ2, as

follows:

� � D 1 and �1 � � � 1: The resulting limit distribu-
tions depend here on the values of �. Note, that in order
to reach the boundary either ı ! 0 or jˇj ! ˛.
– For � > 0 and jˇj ! ˛ no limit distribution ex-

ists, but for ı ! 0 the GH distribution converges to
the distribution of a variance gamma rv (see Sub-
sect. “The Variance Gamma Distribution”). How-
ever, note that jˇj < ˛ implies j�j < � and so
the limit distribution is not valid in the corners.

For these cases, the limit distributions are given by
� D j�j and 0 < � � 1, i. e. the next case.

– For � D 0 there exists no proper limit distribution.
– For � < 0 and ı ! 0 no proper distribution ex-

ists but for ˇ ! ˙˛ the limit distribution is given
in [185] with pdf

2
C1 
ı2 C (x � �)2�(
�1/2)/2

p
2

 (��) ı2
˛
�1/2

� K
�1/2

�

˛

q
ı2 C (x � �)2

�

� exp (˙˛ (x � �)) ; (20)

which is the limit distribution of the corners, since
ˇ D ˙˛ is equivalent to � D ˙� . This distri-
bution was recently called the GH skew t distribu-
tion by [1]. Assuming additionally that ˛ ! 0 and
ˇ D %˛ ! 0 with % 2 (�1; 1) yields the limit dis-
tribution in between


 (��C 1/2)p

ı2
 (��)

 

1 C (x � �)2

ı2

!
�1/2

;

which is the scaled and shifted Student’s t distri-
bution with �2� degrees of freedom, expectation
� and variance 4�2�/ (� � 2), for more details see
Subsect. “The Student t Distribution”.

� � D j�j and 0 < � � 1: Except for the upper corner the
limit distribution of the right boundary can be derived
for

ˇ D ˛ � �

2
; ˛ ! 1 ; ı ! 0 ; ˛ı2 ! �

with � > 0 and is given by the �-shifted GIG dis-
tribution GIG



�;

p
� ;

p
�
�
. The distribution for the

left boundary is the same distribution but mirrored at
x D 0. Note that the limit behavior does not depend
on �. However, to obtain the limit distributions for the
left and right upper corners we have to distinguish for
different values of �. Recall that for the regime � D 1
and �1 � � � 1 the derivation was not possible.
– For � > 0 the limit distribution is a gamma distri-

bution.
– For � D 0 no limit distribution exists.
– For � < 0 the limit distribution is the reciprocal

gamma distribution.
� � D � D 0: This is the case for ˛ ! 1 or ı ! 1.

If only ˛ ! 1 then the limit distribution is the Dirac
measure concentrated in �. If in addition ı ! 1 and
ı/˛ ! �2 then the limit distribution is a normal distri-
bution with mean�C ˇ�2 and variance �2.
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Financial Economics, Fat-Tailed Distributions, Figure 5
Density function (pdf) of the GHdistribution for different parameter vectors. The right panelplots the log-densities to better visualize
the tail behavior. The upper andmiddle sectionpresent the pdf for different values of� and	. Note that these correspond to different
values of ˛ and ˇ. The lower panel highlights the influence of 
 if the first two moments, as well as � and 	, are held fixed. This
implies that ˛; ˇ; � and ı have to be adjusted accordingly
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As pointed out by [185] applying the unrestricted GH dis-
tribution to financial data results in a very flat likelihood
function especially for �. This characteristic is illustrated
in Fig. 6, which plots the maximum of the log likelihood
for different values of � using our sample of the S&P500
index returns. This implies that the estimate of � is gen-
erally associated with a high standard deviation. As a con-
sequence, rather than using the GH distribution directly,
the finance literature primarily predetermines the value
of �, resulting in specific subclasses of the GH distribu-
tion, which are discussed in the sequel. However, it is still
interesting to derive the general results in terms of the GH
distribution (or the corresponding Lévy process) directly
and to restrict only the empirical application to a subclass.
For example [191] derived a diffusion process with GH
marginal distribution, which is a generalization of the re-
sult of [33], who proposed a diffusion process with hyper-
bolic marginal distribution.

The Hyperbolic Distribution Recall, that the hyper-
bolic (HYP) distribution can be obtained as a special case
of the GH distribution by setting � D 1. Thus, all proper-
ties of the GH law can be applied to the HYP case. For in-
stance the pdf of the HYP distribution is straightforwardly
given by (19) setting � D 1

fH (x;˛; ˇ; �; ı) :D fGH (x; 1; ˛; ˇ; �; ı)

D
p
˛2 � ˇ2

2˛ıK1

�
ı
p
˛2 � ˇ2

�

� exp
�
�˛
p
ı2 C (x � �)2

Cˇ(x � �)) ; (21)
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Partially maximized log likelihood, estimated maximum log likelihood values of the GH distribution for different values of 


where 0 � jˇj < ˛ are the shape parameter and � 2 R
and ı > 0 are the location and scale parameter, respec-
tively.

The distribution was applied to stock return data
by [70,71,132] while [33] derived a diffusion model with
marginal distribution belonging to the class of HYP distri-
butions.

The Normal Inverse Gaussian Distribution The nor-
mal inverse Gaussian (NIG) distribution is given by the
GH distribution with � D �1/2 and has the following pdf

fNIG (x;˛; ˇ; �; ı) :D fGH
�

x;�1
2
; ˛; ˇ; �; ı

�

D
˛ıK1

�

˛

q
ı2 C (x � �)2

�




q
ı2 C (x � �)2

� exp (ı� C ˇ(x � �)) (22)

with 0 < jˇj � ˛, ı > 0 and � 2 R. The moments of
a NIG distributed rv can be obtained from the moment
generating function of the GH distribution (19) and are
given by

E [X]D�C ıˇ
p
˛2 � ˇ2

and V [X]D ı˛2

p
˛2 � ˇ23

S [X]D3
ˇ

˛

q
ı
p
˛2 � ˇ2

and K [X]D3
˛2 C 4ˇ2

ı˛2
p
˛2 � ˇ2

:

This distribution was heavily applied in financial eco-
nomics for modeling the unconditional as well as the con-
ditional return distribution, see e. g. [18,21,185]; as well
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as [10,19,114], respectively. Recently, [57] used the NIG
distribution for modeling realized variance and found im-
proved forecast performance relative to a Gaussian model.
A more realistic modeling of the distributional properties
is not only important for risk management or forecasting,
but also for statistical inference. For example the efficient
method of moments, proposed by [87] requires the avail-
ability of a highly accurate auxiliary model, which pro-
vide the objective function to estimate a more structural
model. Recently, [39] provided such an auxiliary model,
which uses the NIG distribution and realized variance
measures.

Recall that for � D �1/2 the mixing distribution is the
inverse Gaussian distribution, which facilitates the gener-
ation of rvs. Hence, rvs with NIG distribution can be gen-
erated in the following way:

1. Draw a chi-square distributed rv C with one degree of
freedom and a uniformly distributed rv over the inter-
val (0; 1) U

2. Compute

X1 D ı

�
C 1

2ı�

�
ıC
�

�
p
4ı3C/� C ı2C2/� 2

�

3. IfU < ı/(� (ı/�CX1)) returnX1 else return ı2/(� 2X1).

As pointed out by [187] the main difference between the
HYP and NIG distribution: “Hyperbolic log densities, be-
ing hyperbolas, are strictly concave everywhere. Therefore
they cannot form any sharp tips near x D 0 without loos-
ing too much mass in the tails . . . In contrast, NIG log
densities are concave only in an interval around x D 0,
and convex in the tails.” Moreover, [19] concludes, “It is,
moreover, rather typical that asset returns exhibit tail be-
havior that is somewhat heavier than log linear, and this
further strengthens the case for the NIG in the financial
context”.

The Student t Distribution Next to the alpha stable
distribution Student’s t (t thereafter) distribution has the
longest history in financial economics. One reason is that
although the non-normality of asset returns is widely ac-
cepted, there still exists some discussion on the exact tail
behavior. While the alpha stable distribution implies ex-
tremely slowly decreasing tails for ˛ ¤ 2, the t distribu-
tion exhibits power tails and existing moments up to (and
excluding) �. As such, the t distribution might be regarded
as the strongest competitor to the alpha stable distribution,
shedding also more light on the empirical tail behavior of
returns. The pdf for the scaled and shifted t distribution is

given by

ft (x; �; �; �) D 
 ((� C 1) /2)p
�

 (�/2) �

�
�

1 C 1
�

� x � �

�

�2��(�C1)/2
(23)

for � > 0, � > 0 and � 2 R. For � D 0 and
� D 1 the well-known standard t distribution is obtained.
The shifted and scaled t distribution can also be inter-
preted as a mean-variance mixture (18) with a reciprocal
gamma distribution as a mixing distribution. The mean,
variance, and kurtosis (3) are given by�, �2�/ (� � 2), and
3 (� � 2) / (� � 4), provided that � > 1, � > 2, and � > 4,
respectively. The tail behavior is

ft (x; �; �; �) Š cx���1 :

The t distribution is one of the standard non-normal
distributions in financial economics, see e. g. [36,38,184].
However, as the unconditional return distribution may
exhibit skewness, a skewed version of the t distribution
might be more adequate in some cases. In fact, several
skewed t distributions were proposed in the literature, for
a short overview see [1]. The following special form of the
pdf was considered in [81,102]

ft;FS (x; �; �; �; ˇ)

D 2ˇ
ˇ2 C 1






�C1
2
�


 (�/2)
p

��

�
�
1C 1

�


 x��
�

�2 � 1
ˇ 2 I(X��) C ˇ2I(x<�)

��� �C1
2

with ˇ > 0. For ˇ D 1 the pdf reduces to the pdf of the
usual symmetric scaled and shifted t distribution. Another
skewed t distribution was proposed by [116] with pdf

ft;JF (x; �; �; �; ˇ)

D 
 (� C ˇ) 21���ˇ


 (�/2)
 (�/2 C ˇ)
p
� C ˇ�
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B
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C
A

(�C1)/2

�

0

B
@1 �

x��
�q

� C ˇ C 
 x��
�

�2

1

C
A

ˇC(�C1)/2

for ˇ > ��/2. Again, the usual t distribution can be ob-
tained as a special case for ˇ D 0. A skewed t distribution
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in terms of the pdf and cdf of the standard t distribution
ft (x; �; 0; 1) and Ft (x; �; 0; 1) is given by [13,43]

ft;AC (x; �; �; �; ˇ)

D 2
�
ft
� x � �

�
; �; 0; 1

�

� Ft
 

ˇ
� x � �

�

�s � C 1

� C 
 x��
�

�2 ; � C 1; 0; 1

!

for ˇ 2 R.
Alternatively, a skewed t distribution can also be ob-

tained as a limit distribution of the GH distribution. Recall
that for � < 0 and ˇ ! ˛ the limit distribution is given
by (20) as

ft;GH (x;�;�; ı; ˛)

D 2
C1 
ı2 C (x � �)2�(
�1/2)/2

p
2

 (��) ı2
˛
�1/2

� K
�1/2

�

˛

q
ı2 C (x � �)2

�

� exp (˛ (x � �)) :

for ˛ 2 R. The symmetric t distribution is obtained
for ˛ ! 0. The distribution was introduced by [185] and
a more detailed examination was recently given in [1].

The Variance Gamma Distribution The variance
gamma (VG) distribution can be obtained as a mean-
variance mixture with gamma mixing distribution. Note
that the gamma distribution is obtained in the limit from
the GIG distribution for � > 0 and ı ! 0. The pdf of the
VG distribution is given by

fVG (x;�; ˛; ˇ; �) :D lim
ı!0

fGH (x;�; ˛; ˇ; ı; �)

D � 2
 jx � �j
�1/2 K
�1/2 (˛ jx � �j)p


 (�) (2˛)
�1/2

expˇ (x � �) :
(24)

Note, the usual parameterization of the VG distribution

f �
VG


x; ��; ��; ��; ���

D 2 exp
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is different from the one used here, however the parame-
ters can be transformed between these representations in

the following way

�� D
s

2�
˛2 � ˇ2 ; �� D 2ˇ�

˛2 � ˇ2 ;

�� D 1
�
; �� D � :

This distribution was introduced by [149,150,151]. For
� D 1 (the HYP case) we obtain a skewed, shifted and
scaled Laplace distribution with pdf

fL (x;˛; ˇ; �)
:D lim

ı!0
fGH (x; 1; ˛; ˇ; ı; �)

D ˛2 � ˇ2

2˛
exp (�˛ jx � �j C ˇ (x � �)) :

A generalization of the VG distribution to the so-called
CGMY distribution was proposed by [48].

The Cauchy Distribution Setting � D �1/2, ˇ ! 0
and ˛ ! 0 the GH distribution converges to the Cauchy
distribution with parameters � and ı. Since the Cauchy
distribution belongs to the class of symmetric alpha stable
(˛ D 1) and symmetric t distributions (� D 1) we refer
to Subsect. “Alpha Stable and Related Distributions” and
“The Student t Distribution” for a more detailed discus-
sion.

The Normal Distribution For ˛ ! 1, ˇ D 0 and
ı D 2�2 the GH distribution converges to the normal dis-
tribution with mean � and variance �2.

Finite Mixtures of Normal Distributions

The density of a (finite) mixture of k normal distributions
is given by a linear combination of k Gaussian component
densities, i. e.,

fNM (x; �) D
kX

jD1

� j�
�
x;� j; �

2
j

�
;

�


x;�; �2

� D 1p
2
�

exp

 

� (x � �)2
2�2

!

;

(25)

where � D (�1; : : : ; �k�1; �1; : : : ; �k ; �
2
1 ; : : : ; �

2
k ), �k D

1 � Pk�1
jD1 � j , � j > 0, � j 2 R, �2j > 0, j D 1; : : : ; k,

and (�i ; �
2
i ) ¤ (� j; �

2
j ) for i ¤ j. In (25), the �j, �j, and

�2j are called the mixing weights, component means, and
component variances, respectively.

Finite mixtures of normal distributions have been ap-
plied as early as 1886 in [174] to model leptokurtic phe-
nomena in astrophysics. A voluminous literature exists,
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see [165] for an overview. In our discussion, we shall fo-
cus on a few aspects relevant for applications in finance.
In this context, (25) arises naturally when the component
densities are interpreted as different market regimes. For
example, in a two-component mixture (k D 2), the first
component, with a relatively high mean and small vari-
ance, may be interpreted as the bull market regime, oc-
curring with probability �1, whereas the second regime,
with a lower expected return and a greater variance, rep-
resents the bear market. This (typical) pattern emerges for
the S&P500 returns, see Table 1. Clearly (25) can be gen-
eralized to accommodate non-normal component densi-
ties; e. g., [104] model stock returns using mixtures of gen-
eralized error distributions of the form (40). However, it
may be argued that in this way much of the original ap-
peal of (25), i. e., within-regime normality along with CLT
arguments, is lost.

The moments of (25) can be inferred from those of the
normal distribution, with mean and variance given by

E [X] D
kX

jD1

� j� j ; and

V [X] D
kX

jD1

� j

�
�2j C �2

j

�
�
0

@
kX

jD1

� j� j

1

A

2

;

(26)

respectively. The class of finite normal mixtures is very
flexible in modeling the leptokurtosis and, if existent,
skewness of financial data. To illustrate the first property,
consider the scale normal mixture, where, in (25), �1 D
�2 D � � � D �k :D �. In fact, when applied to financial
return data, it is often found that the market regimes differ
mainly in their variances, while the component means are
rather close in value, and often their differences are not
significant statistically. This reflects the observation that
excess kurtosis is a much more pronounced (and ubiqui-
tous) property of asset returns than skewness. In the scale
mixture case, the density is symmetric, but with higher
peaks and thicker tails than the normal with the same
mean and variance. To see this, note that

P
j(� j/� j) >

(
P

j � j�
2
j )

�1/2 , (
P

j � j�
2
j )

1/2 > [
P

j(� j/� j)]�1. But
(
P

j � j�
2
j )

1/2 >
P

j � j� j > [
P

j(� j/� j)]�1 by Jensen’s
and the arithmetic-harmonic mean inequality, respec-
tively. This shows fNM(�; �) > �(�;�;

P
j � j�

2
j ), i. e.,

peakedness. Tailedness follows from the observation that
the difference between the mixture and the mean-vari-
ance equivalent normal density is asymptotically domi-
nated by the component with the greatest variance. More-
over, the densities of the scale mixture and the mean-vari-
ance equivalent Gaussian intersect exactly two times on
both sides of the mean, so that the scale mixture satis-

Financial Economics, Fat-Tailed Distributions, Table 1
Maximum-likelihood parameter estimates of the iid model

Distri-
bution

Parameters Loglik

GH

̂ �̂ ˆ̨ ˆ̌ ı̂

�7479.2�1.422 0.087 0.322 �0.046 1.152
(0.351) (0.018) (0.222) (0.022) (0.139)

tGH
�̂ ı̂ 
̂ ˆ̨

�7479.70.084 1.271 3.445 �0.041
(0.018) (0.052) (0.181) (0.021)

tJF
�̂ �̂ �̂ ˆ̌

�7480.03.348 0.098 0.684 0.091
(0.179) (0.025) (0.012) (0.049)

tAC
�̂ �̂ �̂ ˆ̌

�7480.13.433 0.130 0.687 �0.123
(0.180) (0.042) (0.013) (0.068)

tFS
�̂ �̂ �̂ ˆ̌

�7480.33.432 0.085 0.684 0.972
(0.180) (0.020) (0.012) (0.017)

Sym-
metric
t

�̂ �̂ �̂

�7481.73.424 0.056 0.684
(0.179) (0.011) (0.012)

NIG
�̂ ˆ̨ ˆ̌ ı̂

�7482.00.088 0.784 �0.048 0.805
(0.018) (0.043) (0.022) (0.028)

HYP
�̂ ˆ̨ ˆ̌ ı̂

�7499.50.090 1.466 �0.053 0.176
(0.018) (0.028) (0.023) (0.043)

VG
�̂ ˆ̨ ˆ̌ 
̂

�7504.20.092 1.504 �0.054 1.115
(0.013) (0.048) (0.019) (0.054)

Alpha
stable

ˆ̨ ˆ̌ ĉ �̂

�7522.51.657 �0.094 0.555 0.036
(0.024) (0.049) (0.008) (0.015)

Finite
mixture
(k D 2)


̂1 �̂1 �̂2 �̂2
1 �̂2

2
�7580.80.872 0.063 �0.132 0.544 4.978

(0.018) (0.012) (0.096) (0.027) (0.530)

Cauchy
�̂ �̂

�7956.60.060 0.469
(0.010) (0.008)

Normal
�̂ �̂

�8168.90.039 1.054
(0.014) (0.010)

Shown are maximum likelihood estimates for iid models with dif-
ferent assumptions about the distribution of the innovations. Stan-
dard errors are given in parentheses. “Loglik” is the value of the
maximized log likelihood function.

fies the density crossing condition in Finucan’s theorem
mentioned in Sect. “Definition of the Subject” and ob-
served in the center panel of Fig. 1. This follows from the
fact that, if a1; : : : ; an and �1 < � � � < �n are real con-
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stants, and N is the number of real zeros of the function
'(x) D P

i aie
�i x , then W � N is a non-negative even

integer, where W is the number of sign changes in the
sequence a1; : : : ; an [183]. Skewness can be incorporated
into the model when the component means are allowed
to differ. For example, if, in the two-component mixture,
the high-variance component has both a smallermean and
mixing weight, then the distribution will be skewed to the
left.

Because of their flexibility and the aforementioned
economic interpretation, finite normalmixtures have been
frequently used to model the unconditional distribution of
asset returns [40,44,129,179], and they have become rather
popular since the publication of Hamilton’s [101] paper
onMarkov-switching processes, where the mixing weights
are assumed to be time-varying according to a k-state
Markov chain; see, e. g., [200] for an early contribution in
this direction.

However, although a finite mixture of normals is
a rather flexible model, its tails decay eventually in a Gaus-
sian manner, and therefore, according to the discussion
in Sect. “Empirical Evidence About the Tails”, it may of-
ten not be appropriate to model returns at higher fre-
quencies unconditionally. Nevertheless, when incorpo-
rated into a GARCH structure (see Sect. “Volatility Clus-
tering and Fat Tails”), it provides a both useful and intu-
itively appealing framework for modeling the conditional
distribution of asset returns, as in [5,96,97]. These papers
also provide a discussion of alternative interpretations of
the mixture model (25), as well as an overview over the
extensive literature.

Empirical Comparison

In the following we empirically illustrate the adequacy of
the various distributions discussed in the previous sections
for modeling the unconditional return distribution. Ta-
ble 1 presents the estimation results for the S&P500 index
assuming iid returns. The log likelihood values clearly in-
dicate the inadequacy of the normal, Cauchy and stable
distributions. This is also highlighted in the upper panel
of Fig. 7, which clearly shows that the tails of the Cauchy
and stable distributions are too heavy, whereas those of
the normal distribution are too weak. To distinguish the
other distributions in more detail, the lower left panel is
an enlarged display of the shadowed box in the upper
panel. It illustrates nicely that the two component mixture,
VG and HYP distribution exhibit semiheavy tails, which
are probably a little bit to weak for an adequate model-
ing as is indicated by the log likelihood values. Similarly,
the two-component finite normal mixture, althoughmuch

better than the normal, cannot keep up with most of the
other models, presumably due to its essentially Gaussian
tails. Although the pdf of the NIG distribution lies some-
where in between the pdfs of the HYP and the different
t distributions, the log likelihood value clearly indicates
that this distribution is in a statistical sense importantly
closer to the t distributions. A further distinction between
the other distributions including all kinds of t distribu-
tions and the GH distribution is nearly impossible, as can
be seen from the lower right plot, which is an enlarged
display of the lower left panel. The log likelihood values
also do not allow for a clear distinction. Note also that
the symmetric t distribution performs unexpectedly well.
In particular, its log likelihood is almost indistinguishable
from those of the skewed versions. Also note that, for all
t distributions, the estimated tail index, �, is close to 3.5,
which is in accordance with the results from semiparamet-
ric tail estimation in Sect. “Empirical Evidence About the
Tails”.

The ranking of the distributions in terms of the log
likelihood depends of course heavily on the dataset, and
different return series may imply different rankings. How-
ever, Table 1 also highlights some less data-dependent re-
sults, which are more or less accepted in the literature,
e. g., the tails of the Cauchy and stable distributions are
too heavy, and those of the HYP and VG are too light for
the unconditional distribution. This needs of course no
longer be valid in a different modeling setup. Especially in
a GARCH framework the conditional distribution don’t
need to imply such heavy tails because the model itself im-
poses fatter tails.

In Sect. “Application to Value-at-Risk”, the compari-
son of the models will be continued on the basis of their
ability the measure the Value-at-Risk, an important con-
cept in risk management.

Volatility Clustering and Fat Tails

It has long been known that the returns of most financial
assets, although close to being unpredictable, exhibit sig-
nificant dependencies in measures of volatility, such as ab-
solute or squared returns. Moreover, the empirical results
based on the recent availability of more precise volatility
measures, such as the realized volatility, which is defined
as the sum over the squared intradaily high-frequency re-
turns (see, e. g., [7] and [23]), also point towards the same
direction. In particular, the realized volatility has been
found to exhibit strong persistence in its autocorrelation
function, which shows a hyperbolic decay indicating the
presence of long memory in the volatility process. In fact,
this finding as well as other stylized features of the realized
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Financial Economics, Fat-Tailed Distributions, Figure 7
Plot of the estimated pdfs of the different return distributions assuming iid returns

volatility have been observed across different data sets and
markets and are therefore by now widely acknowledged
and established in the literature. For a more detailed and
originating discussion on the stylized facts of the high-fre-
quency based volatility measures for stock returns and ex-
change returns we refer to [8,9], respectively.

The observed dependence of time-varying pattern of
the volatility is usually referred to as volatility clustering.
It is also apparent in the top panel of Fig. 1 and was
already observed by Mandelbrot [155], who noted that
“large changes tend to be followed by large changes – of ei-
ther sign – and small changes tend to be followed by small
changes”. It is now well understood that volatility cluster-
ing can explain at least part of the fat-tailedness of the un-
conditional return distribution, even if the conditional dis-
tribution is Gaussian. This is also supported by the recent
observation that if the returns are scaled by the realized
volatility then the distribution of the resulting series is ap-
proximately Gaussian (see [9] and [8]). To illustrate, con-

sider a time series f	tg of the form
	t D �t�t ; (27)

where f�tg is an iid sequence with mean zero and unit
variance, with �t being independent of � t , so that �2t is
the conditional variance of 	t . With respect to the kurtosis
measureK in (3), it has been observed by [108], and earlier
by [31] in a different context, that, as long as �2t is not con-
stant, Jensen’s inequality implies E[	4t ] D E[�4t ]E[�4t ] >
E[�4t ]E2[�2t ], so that the kurtosis of the unconditional dis-
tribution exceeds that of the innovation process. Clearly,
K provides only limited information about the actual
shape of the distribution, andmore meaningful results can
be obtained by specifying the dynamics of the conditional
variance, �2t . A general useful result [167] for analyzing the
tail behavior of processes such as (27) is that, if � t and � t
are independent non-negative random variables with � t
regularly varying, i. e., P(�t > x) D L(x)x�˛ for some
slowly varying L, and E[�˛Cı

t ] < 1 for some ı > 0, then
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�t�t is likewise regularly varying with tail index ˛, name-
ly,

P (�t�t > x) Š E
�
�˛
�
P (�t > x) as x ! 1 : (28)

Arguably the most popular model for the evolution
of �2t in (27) is the generalized autoregressive condi-
tional heteroskedasticity process of orders p and q, or
GARCH(p; q), as introduced by [37,73], which specifies
the conditional variance as

�2t D ˛0 C
qX

iD1

˛i	
2
t�i C

pX

iD1

ˇi�
2
t�i : (29)

The case p D 0 in (29) is referred to as an ARCH(q) pro-
cess, which is the specification considered in [73]. Tomake
sure that the conditional variance remains positive for all t,
appropriate restrictions have to be imposed on the param-
eters in (29), i. e., ˛i, i D 0; : : : ; q, and ˇi, i D 1; : : : ; p.
It is clearly sufficient to assume that ˛0 is positive and all
the other parameters are non-negative, as in [37], but these
conditions can be relaxed substantially if p; q > 0 and
p C q > 2 [173].

(27) and (29) is covariance stationary iff

P (z) D zm �
mX

iD1

(˛i C ˇi ) zm�i D 0 ) jzj < 1 ; (30)

where m D max fp; qg, and ˛i D 0 for i > q, and ˇi D 0
for i < p, which boils down to

P
i ˛i C P

i ˇi < 1 in
case the non-negativity restrictions of [37] are imposed.
The situation

P
i ˛i CP

i ˇi D 1 is referred to as an inte-
grated GARCH (IGARCH) model, and in applications it is
often found that the sum is just below unity. This indicates
a high degree of volatility persistence, but the interpreta-
tion of this phenomenon is not so clear-cut [166]. If (30)
holds, the unconditional variance of the process defined
by (27) and (29) is given by

E
�
	2t
� D ˛0

1 �Pq
iD1 ˛i �Pp

iD1 ˇi
: (31)

In practice, the GARCH(1,1) specification is of particular
importance, and it will be the focus of our discussion too,
i. e., we shall concentrate on the model (27) with

�2t D ˛0 C 

˛1�

2
t�1 C ˇ1

�
�2t�1 ;

˛0 > 0 ; ˛1 > 0 ; 1 > ˇ1 � 0 : (32)

The case ˛1 D 0 corresponds to a model with constant
variance, which is of no interest in the current discussion.

An interesting property of the GARCH process is that
its unconditional distribution is fat-tailed even with light-

tailed (e. g., Gaussian) innovations, i. e., the distributional
properties of the returns will not reflect those of the in-
novation (news) process. This has been known basically
since [37,73], who showed that, even with normally dis-
tributed innovations, (G)ARCH processes do not have all
their moments finite. For example, for the GARCH(1,1)
model, [37] showed that, with m 2 N , the unconditional
(2m)th moment of 	t in (27) is finite if and only if

E
�
(˛1�2t C ˇ1)m

�
< 1 ; (33)

which, as long as ˛1 > 0, will eventually be violated for all
practically relevant distributions. The argument in [37] is
based on the relation

E
�
�2mt

� D
mX

iD0

 
m
i

!

˛ i
0E
h

˛1�

2
t�1 C ˇ1

�m�i
i

E
h
�
2(m�i)
t�1

i
; (34)

which follows from (32). The coefficient of E
�
�2mt�1

�
on

the right-hand side of (34) is just the expression appear-
ing in (33), and consequently the (2m)th unconditional
moment cannot be finite if this exceeds unity. The heavy-
tailedness of the GARCH process is sometimes also exem-
plified by means of its unconditional kurtosis measure (3),
which is finite for the GARCH(1,1) model with Gaussian
innovations iff 3˛21 C 2˛1ˇ1 Cˇ2

1 < 1. Writing (34) down
for m D 2, using (31) and substituting into (3) gives

K [	t] D 3
�
1 � (˛1 C ˇ1)2

�

1 � (˛1 C ˇ1)2 � 2˛21
> 3 ;

as E
�
	4t
� D 3E

�
�4t
�
. [73] notes that “[m]any statistical

procedures have been designed to be robust to large er-
rors, but . . . none of this literature has made use of the
fact that temporal clustering of outliers can be used to pre-
dict their occurrence and minimize their effects. This is
exactly the approach taken by the ARCH model”. Condi-
tions for the existence of and expressions for higher-or-
der moments of the GARCH(p; q) model can be found
in [50,105,122,139]. The relation between the conditional
and unconditional kurtosis of GARCH models was inves-
tigated in [15], see also [47] for related results.

A more precise characterization of the tails of GARCH
processes has been developed by applying classical results
about the tail behavior of solutions of stochastic difference
equations as, for example, in [124]. We shall continue to
concentrate on the GARCH(1,1) case, which admits rela-
tively explicit results, and which has already been written
as a first-order stochastic difference equation in (32). Iter-
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ating this,

�2t D �20

tY

iD1



˛1�

2
t�i C ˇ1

�

C ˛0

"

1 C
t�1X

kD1

kY

iD1



˛1�

2
t�i C ˇ1

�
#

: (35)

Nelson [171] has shown that the GARCH(1,1) process (32)
has a strictly stationary solution, given by

�2t D ˛0

"

1 C
1X

kD1

kY

iD1



˛1�

2
t�i C ˇ1

�
#

; (36)

if and only if

E
�
log



˛1�

2
t C ˇ1

��
< 0 : (37)

The keynote of the argument in [171] is the application
of the strong law of large numbers to the terms of the
form

Qk
iD1(˛1�

2
t�i C ˇ1) D expfPk

1 log


˛1�

2
t�i C ˇ1

�g
in (35), revealing that (35) converges almost surely if (37)
holds. Note thatE

�
log



˛1�

2
t C ˇ1

��
< logE

�
˛1�

2
t C ˇ1

�

D log (˛1 C ˇ1), i. e., stationary GARCH processes need
not be covariance stationary. Using (36) and standard mo-
ment inequalities, [171] further established that, in case
of stationarity, E

�j	t jp
�
, p > 0, is finite if and only if

E[(˛1�2t C ˇ1)p/2] < 1, which generalizes (33) to non-
integer moments. It may now be supposed, and, build-
ing on the results of [90,124], has indeed been established
by [167], that the tails of the marginal distribution of 	t
generated by a GARCH(1,1) process decay asymptotically
in a Pareto-type fashion, i. e.,

P(j	t j > x) Š cx�˛ as x ! 1 ; (38)

where the tail index ˛ is the unique positive solution of the
equation

h (˛) :D E
h

˛1�

2
t C ˇ1

�˛/2i D 1 : (39)

This follows from (28) along with the result that the tails of
�2t and � t are asymptotically Paretian with tail indices ˛/2
and ˛, respectively. For a discussion of technical condi-
tions, see [167]. [167] also provides an expression for the
constant c in (38), which is difficult to calculate explicitly,
however. For the ARCH(1) model with Gaussian inno-
vations, (39) becomes (2˛1)˛/2 
 [(˛ C 1) /2] /

p

 D 1,

which has already been obtained by [63] and was fore-
shadowed in the work of [168]. The results reported above
have been generalized in various directions, with qual-
itatively similar conclusions. The GARCH(p; q) case is
treated in [29], while [140,141] consider various exten-
sions of the standard GARCH(1,1) model.

Although the unconditional distribution of a GARCH
model with Gaussian innovations has genuinely fat tails,
it is often found in applications that the tails of empirical
return distributions are even fatter than those implied by
fitted Gaussian GARCH models, indicating that the con-
ditional distribution, i. e., the distribution of �t in (27),
is likewise fat-tailed. Therefore, it has become standard
practice to assume that the innovations �t are also heavy
tailed, although it has been questioned whether this is the
best modeling strategy [199]. The most popular example
of a heavy tailed innovation distribution is certainly the t
considered in Subsect. “The Student tDistribution”, which
was introduced by [38] into the GARCH literature. Some
authors have also found it beneficial to let the degrees of
freedom parameter � in (23) be time-varying, thus obtain-
ing time-varying conditional fat-tailedness [45].

In the following, we shall briefly discuss a few
GARCH(1,1) estimation results for the S&P500 series in
order to compare the tails implied by these models with
those from the semiparametric estimation procedures in
Sect. “Empirical Evidence About the Tails”. As distribu-
tions for the innovation process f�tg, we shall consider the
Gaussian, t, and the generalized error distribution (GED),
which was introduced by [172] into the GARCH literature,
see [128] for a recent contribution and asymmetric exten-
sions. It has earlier been used in an unconditional context
by [94] for the S&P500 returns. The density of the GED
with mean zero and unit variance is given by

fGED (x; �) D ��

21/�C1
 (1/�)
exp

�

�j�xj�
2

�

; � > 0 ;

(40)

where � D 21/�
p

 (3/�) /
 (1/�). Parameter � in (40)

controls the thickness of the tails. For � D 2, we get the
normal distribution, and a leptokurtic shape is obtained
for � < 2. In the latter case, the tails of (40) are therefore
thicker than those of the Gaussian, but they are not fat in
the Pareto sense. However, even if one argues for Pareto
tails of return distributions, use of (40) may be appropri-
ate as a conditional distribution in GARCH models, be-
cause the power law already accompanies the volatility dy-
namics. To make the estimates of the parameter ˛1 in (32)
comparable, we also use the unit variance version of the t,
which requires multiplying X in (23) by

p
(� � 2) /�. Re-

turns are modeled as rt D � C 	t , where � is a constant
mean and 	t is generated by (27) and (32). Parameter es-
timates, obtained by maximum-likelihood estimation, are
provided in Table 2. In addition to the GARCH param-
eters in (32) and the shape parameters of the innovation
distributions, Table 2 reports the log likelihood values and
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Financial Economics, Fat-Tailed Distributions, Figure 8
The figure displays the function h (˛), as defined in (39), for Gaussian�t,˛ D 0:0799 and various values ofˇ1. Note that ˆ̨ 1 D 0:0799
and ˆ̌1 D 0:911 are the maximum likelihood estimates for the S&P500 returns, as reported in Table 2

the implied tail indices, ˆ̨ , which are obtained by solv-
ing (39) numerically. First note that all the GARCH mod-
els have considerably higher likelihood values than the iid
models in Table 1, which highlights the importance of ac-
counting for conditional heteroskedasticity. We can also
conclude that the Gaussian assumption is still inadequate
as a conditional distribution in GARCH models, as both
the t and the GED achieve significantly higher likelihood
values, and their estimated shape parameters indicate pro-
nounced non-normalities. However, the degrees of free-
dom parameter of the t, �, is somewhat increased in com-
parison to Table 1, as part of the leptokurtosis is now ex-
plained by the GARCH effects.

Compared to the nonparametric tail estimates ob-
tained in Sect. “Empirical Evidence About the Tails”, the
tail index implied by the Gaussian GARCH(1,1) model
turns out to be somewhat too high, while those of themore
flexible models are both between 3 and 4 and therefore
more in line with what has been found in Sect. “Empirical
Evidence About the Tails”. However, for all three models,
the confidence intervals for ˛, as obtained from 1,000 sim-
ulations from the respective estimated GARCH processes,
are rather wide, so that we cannot conclusively rule out
the existence of the unconditional fourth (and even fifth)
moment. The width of the confidence intervals reflects
the fact that the implied tail indices are very sensitive to
small variations in the underlying GARCH parameters.
For example, if, in the GARCH model with conditional
normality, we replace the estimate ˆ̌1 D 0:911 with 0.9,
the implied tail index is 7.31, and with ˇ1 D 0:92, we get
˛ D 2:05, which is close to an infinite variance. The situa-
tion is depicted in Fig. 8, showing h (˛) in (39) for the dif-
ferent values of ˇ1. The shape of h follows generally from

h(0) D 1, h0(0) < 0 by (37), h00 > 0, i. e., h is convex, and
lim˛!1 h (˛) D 1 as long as P

�

˛1�

2
t C ˇ1

�
> 1

�
> 0,

so that h (˛) D 1 has a unique positive solution. Note
that both 0.9 and 0.92 are covered by 0:911 ˙ 2 � 0:009,
i. e., a 95% confidence interval for ˇ1. This shows that the
GARCH-implied tail indices are rather noisy.

Alternatively, we may avoid precise assumptions about
the distribution of the innovation process f�tg and rely on
quasi maximum-likelihood results [138]. That is, we esti-
mate the innovations by �̂t D 	̂t/�̂t , t D 1; : : : ; 5; 550,
where f�̂tg is the sequence of conditional standard de-
viations implied by the estimated Gaussian GARCH
model, and then solve the sample analogue of (39), i. e.,
T�1PT

tD1( ˆ̨1�̂
2
t C ˆ̌1)˛/2 D 1, a procedure theoretically

justified in [32]. Doing so, we obtain ˆ̨ D 2:97, so that we
recover the “universal cubic law”. However, the 95% confi-
dence interval, calculated from 1,000GARCH simulations,
where the innovation sequences are obtained by sam-
pling with replacement from the �̂t-series, is (1:73; 4:80),
which is still reconcilable with a finite fourth moment,
and even with an infinite second moment. These results
clearly underline the caveat brought out by [72] (p. 349),
that “[t]here is no free lunch when it comes to [tail index]
estimation”.

Application to Value-at-Risk

In this section, we compare the models discussed in Sects.
“Some Specific Distributions” and “Volatility Clustering
and Fat Tails” on an economic basis by employing the
Value-at-Risk (VaR) concept, which is a widely used mea-
sure to describe the downside risk of a financial position
both in industry and in academia [118]. Consider a time
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Financial Economics, Fat-Tailed Distributions, Table 2
GARCH parameter estimates

Distribution �̂ ˆ̨ 0 ˆ̨ 1 ˆ̌1 �̂ ˆ̨ Loglik

Normal
0.059 0.012 0.080 0.911

—
4.70 �7271.7

(0.011) (0.002) (0.008) (0.009) (3.20, 7.22)

GED
0.063 0.007 0.058 0.936 1.291 3.95 �7088.2
(0.010) (0.002) (0.007) (0.008) (0.031) (2.52, 6.95)

Symmetric t
0.063 0.006 0.051 0.943 6.224 3.79 �7068.1
(0.010) (0.002) (0.006) (0.007) (0.507) (2.38, 5.87)

Shown are maximum-likelihood estimation results for GARCH(1,1) models, as
given by (27) and (32), with different assumptions about the distribution of the
innovations 	t in (27). Standard errors for the model parameters and 95% confi-
dence intervals for the implied tail indices, ˆ̨ , are given in parentheses. “Loglik” is
the value of the maximized log likelihood function.

series of portfolio returns, rt, and an associated series of
ex-ante VaR measures with target probability � , VaRt(�).
The VaRt(�) implied by a modelM is defined by

PrMt�1 (rt < �VaRt (�)) D � ; (41)

where PrMt�1 (�) denotes a probability derived from
modelM using the information up to time t � 1, and the
negative sign in (41) is due to the convention of reporting
VaR as a positive number. For an appropriately specified
model, we expect 100 � �% of the observed return values
not to exceed the (negative of the) respective VaR forecast.
Thus, to assess the performance of the differentmodels, we
examine the percentage shortfall frequencies,

U� D 100 � x
T

D 100 � �̂ ; (42)

where T denotes the number of forecasts evaluated, x is
the observed shortfall frequency, i. e., the number of days
for which rt < �VaRt (�), and �̂ D x/T is the empir-
ical shortfall probability. If �̂ is significantly less (higher)
than � , then model M tends to overestimate (underesti-
mate) the risk of the position. In the present application,
in order to capture even the more extreme tail region, we
focus on the target probabilities � D 0:001, 0.0025, 0.005,
0.01, 0.025, and 0.05.

To formally test whether a model correctly estimates
the risk (according to VaR) inherent in a given financial
position, that is, whether the empirical shortfall proba-
bility, �̂ , is statistically indistinguishable from the nom-
inal shortfall probability, � , we use the likelihood ratio
test [133]

LRTVaR D �2

(

x log
�

�̂
C (T � x) log

1 � �

1 � �̂

)
asy
 �2 (1) :

(43)

On the basis of the first 1,000 return observations, we
calculate one-day-ahead VaR measures based on param-
eter estimates obtained from an expanding data window,
where the parameters are updated every day. Thus we get,
for each model, 4,550 one-day-ahead out-of-sample VaR
measures.

Table 3 reports the realized one-day-ahead percent-
age shortfall frequencies for the different target probabili-
ties, � , as given above. The upper panel of the table shows
the results for the unconditional distributions discussed
in Sect. “Some Specific Distributions”. The results clearly
show that the normal distribution strongly underestimates
(�̂ > �) the downside risk for the lower target probabili-
ties, while the Cauchy as well as the alpha stable distribu-
tions tend to significantly overestimate (�̂ < �) the tails.
This is in line with what we have observed from the em-
pirical density plots presented in Fig. 7, which, in contrast
to the out-of-sample VaR calculations, are based on esti-
mates for the entire sample. Interestingly, the finite nor-
mal mixture distribution also tends to overestimate the
risk at the lower VaR levels, leading to a rejection of cor-
rect coverage for almost all target probabilities. In contrast,
the HYP distribution, whose empirical tails have been very
close to those of the normal mixture in-sample (see Fig. 7),
nicely reproduces the target probabilities, as does the VG
distribution.

Similarly to the log likelihood results presented in Sub-
sect. “Empirical Comparison” the Value-at-Risk evalua-
tion does not allow for a clear distinction between the dif-
ferent t distributions, the GH and the NIG distribution.
Similar to the Cauchy and the stable, they all tend to over-
estimate the more extreme target probabilities, while they
imply too large shortfall probabilities at the five percent
quantile.

The fact thatmost unconditional distributional models
tend to overestimate the risk at the lower target probabil-
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Financial Economics, Fat-Tailed Distributions, Table 3
Backtesting Value-at-Risk measures

Unconditional Distributional Models
Distribution U0:001 U0:0025 U0:005 U0:01 U0:025 U0:05

GH 0.04 0:11�� 0:24��� 0:73� 2.70 5:89���

tGH 0.07 0:11�� 0:22��� 0:75� 2.75 5:96���

tJF 0.04 0:11�� 0:31�� 0.88 2.64 5.32
tAC 0.04 0:11�� 0:26�� 0.84 2.48 5.16
tFS 0.07 0:13� 0:33�� 0.95 2.77 5.38
Symmetric t 0.07 0.15 0:31�� 0.92 3:08�� 6:35���

NIG 0.07 0.15 0:26�� 0:70�� 2.35 5.34
HYP 0.13 0.24 0.51 0.95 2.50 5.16
VG 0.13 0.24 0.51 0.92 2.46 5.10
Alpha stable 0.04 0:11�� 0:33�� 0:75� 2.44 4.90
Finite mixture (k D 2) 0.04 0:07��� 0:11��� 0:37��� 2:99�� 6:40���

Cauchy 0:00��� 0:00��� 0:00��� 0:00��� 0:09��� 0:88���

Normal 0:48��� 0:64��� 0:97��� 1:36�� 2.44 4:02���

GARCH(1,1) Models
Distribution U0:001 U0:0025 U0:005 U0:01 U0:025 U0:05

Normal 0:40��� 0:66��� 0:92��� 1:36�� 2:95� 4:57
GED 0:20� 0.33 0:44 0.79 2.48 4.79
Symmetric t 0:11 0.26 0.40 0.92 2.86 5.45

The table shows the realized one-day-ahead percentage shortfall frequencies, U� , for
given target probabilities, � , as defined in (42). Asterisks � , �� and ��� indicate signifi-
cance at the 10%, 5% and 1% levels, respectively, as obtained from the likelihood ratio
test (43).

ities may be due to our use of an expanding data window
and the impact of the “Black Monday”, where the index
decreased by more than 20%, at the beginning of our sam-
ple period. In this regard, the advantages of accounting for
time-varying volatility via a GARCH(1,1) structure may
become apparent, as this model allows the more recent ob-
servations to have much more impact on the conditional
density forecasts.

In fact, by inspection of the results for the GARCH
models, as reported in the lower part of Table 3, it turns
out that the GARCH(1,1) model with a normal distribu-
tion strongly underestimates the empirical shortfall prob-
abilities at all levels except the largest (5%). However, con-
sidering a GED or t distribution for the return innovations
within the GARCH model provides accurate estimates of
downside risks.

To further discriminate between the GARCH pro-
cesses and the iid models, tests for conditional coverage
may be useful, which are discussed in the voluminous VaR
literature (e. g., [53]).

Finally, we point out that the current application is
necessarily of an illustrative nature. In particular, if the
data generating process is not constant but evolves slowly

over time and/or is subject to abrupt structural breaks, use
of a rolling data window will be preferred to an expanding
window.

Future Directions

As highlighted in the previous sections, there exists
a plethora of different and well-established approaches
for modeling the tails of univariate financial time series.
However, on the multivariate level the number of mod-
els and distributions is still very limited, although the joint
modeling of multiple asset returns is crucial for portfo-
lio risk management and allocation decisions. The prob-
lem is then to model the dependencies between financial
assets. In the literature, this problem has been tackled,
for example, by means of multivariate extensions of the
mean-variance mixture (18) [19], multivariate GARCH
models [30], regime-switching models [11], and copu-
las [51]. The problem is particularly intricate if the num-
ber of assets to be considered is large, and much work
remains to understand and properly model their depen-
dence structure.
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It is also worth mentioning that the class of GARCH
processes, due to its interesting conditional and uncondi-
tional distributional properties, has been adopted, for ex-
ample, in the signal processing literature [3,52,55], and it
is to be expected that it will be applied in other fields in the
future.
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Glossary

Arbitrage The possibility of producing a riskless profit by
exploiting price differences between identical or linked
assets.

Market efficiency A market is called efficient when all
available information is reflected accurately, instantly
and fully in the prices of traded assets. Depending on
the definition of the available information set, private,
public or that contained in historical prices, market ef-
ficiency is considered as strong, semi-strong or weak,
respectively. Themarket price of an asset in an efficient
market is an unbiased estimate of its true value. Sys-
tematic excess profits, which cannot be justified on the
basis of the underlying risk, are not possible in such
a market.

Martingale The term was originally used to describe
a particular gambling strategy in which the stake is
doubled following a losing bet. In probability theory
it refers to a stochastic process that is a mathemat-
ical model of ‘fair play’. This has been one of the
most widely assumed processes for financial prices. It
implies that the best forecast for tomorrow’s price is
simply today’s price or, in other words, that the ex-
pected difference between any two successive prices is
zero. Assuming a positive (negative) expected differ-
ence leads to the more general and realistic class of
submartingale (supermartingale) processes. The mar-
tingale process implies that price differences are seri-
ally uncorrelated and that univariate linear time series
models of prices have no forecasting value. However,
martingales do not preclude the potential usefulness of

nonlinear models in predicting the evolution of higher
moments, such as the variance. The efficient market
hypothesis is often incorrectly equated to the so-called
random walk hypothesis, which roughly states that fi-
nancial prices are martingales.

Option A call (put) option is a contractual agreement
which gives the holder the right to buy (sell) a spec-
ified quantity of the underlying asset, within a speci-
fied period of time, at a price that is agreed when the
contract is executed. Options are derivative assets since
their value is based upon the variation in the under-
lying, which is typically the price of some asset such
as a stock, commodity, bond, etc. Other basic types
of derivatives include futures, forwards and swaps. An
option is real, in contrast to financial, when the corre-
sponding right refers to some business decision, such
as the right to build a factory.

Portfolio theory The study of how resources should be
optimally allocated between alternative investments
on the basis of a given time investment horizon and
a set of preferences.

Systematic risk Reflects the factors affecting all securities
or firms in an economy. It cannot be reduced by di-
versification and it is also known as market risk. In the
context of one of the most popular financial models,
the Capital Asset Pricing Model (CAPM), systematic
risk is measured by the beta coefficient.

Unsystematic risk This is the part of risk that is unique
to a particular security or firm and can be reduced
through diversification. This risk cannot be explained
on the basis of fluctuations in the market as whole and
it is also known as residual or idiosyncratic risk.

Volatility Ameasure of overall risk for an asset or portfo-
lio which represents the sum of systematic and unsys-
tematic risk. While several different approaches have
been proposed for approximating this unobservable
variable, the simplest one is based on the annualized
standard deviation estimated using a historical sample
of daily returns.

Definition of the Subject

Financial economics is the branch of economic science
that deals with how groups of agents, such as households,
firms, investors, creditors and economies as a whole, al-
locate and exchange financial resources in the context of
markets. A wide variety of problems and applications fall
within this broad subject area, including asset pricing,
portfolio optimization, market efficiency, capital budget-
ing, interest and exchange rate modeling, risk manage-
ment, forecasting and trading, market microstructure and
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behavioral finance. It is a highly quantitative and empiri-
cal discipline which draws its theoretical foundations and
tools primarily from economics, mathematics and econo-
metrics. Academic research in this area has flourished over
the past century in line with the growing importance of
financial markets and assets for the everyday life of cor-
porations and individuals (for a historical overview of fi-
nancial economics, see [69]). Consequently, at least 6 out
of the 39 Nobel prizes in Economics have been awarded
for research undertaken in areas related to financial eco-
nomics. The close relationship between finance and time
series analysis becamewidely apparent when Sir CliveW.J.
Granger and Robert F. Engle III jointly received the 2003
Nobel Prize. Their work in time series econometrics has
had a profound impact both on academic research and on
the practice of finance. In particular, the ARCH model,
first proposed by Engle [27] for modeling the variability
of inflation, is today one of the most well known and im-
portant applications of a nonlinear time series model in
finance. We should also acknowledge the Nobel Prize re-
ceived by Robert C. Merton and Myron S. Scholes in 1993
for their pioneering work in the 1970s on pricing financial
derivatives. In particular, they, along with Fischer Black,
developed an analytical framework and simple mathemat-
ical formulae for pricing derivative assets, such as options
and warrants, which have highly nonlinear payoff func-
tions. Their work was the first step in the development of
the derivatives industry and the whole risk management
culture and practice in finance.

The close link between finance and nonlinear time se-
ries analysis is by no means accidental, being a conse-
quence of four main factors. First, financial time series
have always been considered ideal candidates for data-
hungry nonlinear models. The fact that organized finan-
cial markets and information brokers (e. g., newspapers,
data vendors, analysts, etc.) have been around for many
years has meant that an abundance of high quality histor-
ical data exists. Most of this data is in the form of time se-
ries and usually spans several decades, sometimes exceed-
ing a century. Furthermore, asset prices can now be col-
lected at ultra-high frequencies, often less than a minute,
so that sample sizes may run into millions of observa-
tions. Second, the poor forecasting performance of lin-
ear models allied to the prospect of obtaining large finan-
cial gains by ‘beating the market’ on the basis of supe-
rior forecasts produced by nonlinear time series models
has provided a natural motive for researchers from sev-
eral disciplines. Third, developments in the natural sci-
ences since the 1980s with respect to chaos theory, nonlin-
ear dynamics and complexity have fueled a ‘nonlinearist’
movement in finance and have motivated a new research

agenda on relevant theories, models and testing proce-
dures for financial time series. Underlying this movement
was the concern that the apparent unpredictability of fi-
nancial time series may simply be due to the inadequacy
of standard linear models. Moreover, it was also thought
that the irregular fluctuations in financial markets may
not be the result of propagated exogenous random shocks
but, rather, the outcome of some, hopefully low-dimen-
sional, chaotic system (see the entry by Shintani on � Fi-
nancial Forecasting, Sensitive Dependence). Fourth, and
most importantly, although the bulk of financial theory
and practice is built upon affine models, a wealth of the-
oretical models and supporting empirical evidence has
been published suggesting that the nature of some finan-
cial problems may be inherently nonlinear. Two prime ex-
amples are the time-varying and asymmetric nature of fi-
nancial risk and the highly nonlinear relationships that
arise in situations involving financial options and other
derivatives.

Introduction

Traditionally, theorists and empirical researchers in fi-
nance and economics have had rather different views con-
cerning nonlinearity. Theorists have shown some interest
in nonlinearities and have used them in a variety of dif-
ferent ways, such as first order conditions, multimodality,
ceilings and floors, regime switching, multiple equilibria,
peso problems, bandwagon effects, bubbles, prey-preda-
tor dynamics, time-varying parameters, asymmetries, dis-
continuities and jump behavior, non-additivity, non-tran-
sitivity, etc. Theories and structural models that have non-
linear elements can be found in most areas of finance
and economics (selective reviews with a focus mainly on
economics are given by Brock and de Lima [19], Lorenz
(see Chaps. 1–3 and 6 in [53]), Mullineux and Peng [67],
Rosser [74]; other sources include Chap. 3 and pp. 114–
147 in [40], [75]). Prominent examples include the noise-
trader models of exchange rate determination [34,35], the
target-zone exchange rate models [36,50] and the im-
perfect knowledge models [37]. Nonlinearities find their
natural place in the theory of financial derivatives (for
overviews, see [46,62]) and real options [26], where pay-
off functions and relationships between pricing variables
are inherently highly nonlinear. The popularity of nonlin-
earities is limited by the prevailing equilibrium theory as-
sumptions (convexity and continuity conditions, concav-
ity of utility and production functions, constant returns to
scale, intertemporally independent tastes and technology,
rational aggregate expectations and behavior, etc.) which
invariably lead to linear relationships.
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For many years, nonlinearities were not a serious con-
sideration when attempting to build empirical models. Al-
fred Marshall, one of the great pioneers of mathematical
economics, epitomized the culture against nonlinear mod-
els when saying that “natura non facit saltum”, or nature
dislikes jumps. Although he contemplated the possibility
of multiple equilibria and switching behavior and under-
stood that this situation would entail a tendency for stable
and unstable equilibria to alternate, he dismissed it as de-
riving “from the sport of imagination rather than the obser-
vation of facts”. Correspondingly, in empirical and theo-
retical finance the mainstream approach has been to trans-
form any nonlinearities to linearized forms using Taylor
series expansions which excluded second-and higher-or-
der terms. Since the 1990s, however, there has been a sig-
nificant turn in favor of nonlinear modeling in finance. In
addition to the reasons advanced earlier, this development
has also been the result of advances in econometric estima-
tion and of the widespread availability of cheap computer
power. Some of the basic nonlinear models and relevant
theories that have been used in finance will be discussed in
the subsequent section (for a comprehensive review of the
linear and nonlinear time series models used in finance,
see [22,63]).

Basic Nonlinear Financial Time SeriesModels

Most of the theoretical and empirical research in financial
economics has typically hypothesized that asset price time
series are unit root stochastic processes with returns that
are serially unpredictable. For many years it was thought
that this unpredictability was necessary in order to en-
sure that financial markets function properly according to
the Efficient Market Hypothesis (EMH; see the reviews by
Fama [32,33]). Within this framework, a market is consid-
ered efficient with respect to a specific information set, an
asset pricing model and a data generating process, respec-
tively. For example, a general condition of efficiency is that
market prices fully, correctly and instantaneously reflect
the available information set. This is sometimes formal-
ized as the RandomWalk Hypothesis (RWH), which pre-
dicts that prices follow random walks with price changes
that are unforecastable on the basis of past price changes.
An even milder condition is that trading on the informa-
tion set does not allow profits to be made at a level of
risk that is inconsistent with the underlying asset pric-
ing model. Although initially the EMH and RWH were
thought to be an unavoidable consequence of the widely
accepted paradigm of rational expectations, this was later
refuted by a series of studies showing that random walk
behavior was neither a necessary nor sufficient condi-

tion for rationally determined financial prices. Market effi-
ciency has profound practical economic implications inso-
far as financial prices serve both as ways of integrating and
distributing available information and as asset allocation
devices.

One of the simplest models of financial prices that can
be derived on the basis of unpredictability is the martin-
gale process:

pt D pt�1 C "t (1)

where pt is the price of an asset observed at time t and "t
is the martingale increment or martingale difference. The
martingale has the following properties: a) E(jpt j) < 1
for each t, b) E(pt j=s) D ps whenever s 6 t, where =s
is the �-algebra comprized of events determined by ob-
servations over the interval [0; t], so that =s 
 =t when
s 6 t. The martingale possesses theMarkov property since
the differences �pt D pt � pt�1 D "t are unpredictable
on the basis of past differences. By successive backward
substitution in (1) we can express the current price as the
accumulation of all past errors. In financial terms, errors
can be thought to be the result of unexpected information
or news. By restricting the differences "t to be identically
and independently distributed (iid) we obtain what is of-
ten called the random walk process. The random walk is
a term and assumption which is widely employed in fi-
nance. It was first used by Karl Pearson in a letter toNature
in 1905 trying to describe a mosquito infestation in a for-
est. Soon after, Pearson compared the process to the walk
of an intoxicated man, hence the graphical term “drunk-
ard’s walk“.

By representing the random walk in continuous time
with a growth rate �, as is often useful when dealing with
derivatives, we obtain the generalizedWiener process (also
called Brownian motion or diffusion):

dpt D �dt C �dwt (2)

where dwt is a standard normal random variable. The pa-
rameters� and � are referred to in finance as the drift and
volatility of the process, respectively. Another point worth
mentioning is that in both discrete and continuous time
the analysis is typically undertaken using logarithmically
transformed prices. This precludes the paradoxical possi-
bility of obtaining negative prices while, at the same time,
regularizing the statistical behavior of the data. Assuming
that prices are lognormally distributed means that loga-
rithmic returns are normally distributed and can be calcu-
lated as log pt � log pt�1 or log(pt/pt�1). These represent
continuously compounded returns and are approximately
equal to simple percentage returns.
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Random walks, along with continuous-time mathe-
matical finance, were formally introduced in 1900 by Louis
Bachelier in his brilliant doctoral dissertation Théorie de
la Spéculation. Under the supervision of the great Henri
Poincaré, who first realized the possibility of chaotic mo-
tion, Bachelier developed the mathematical framework of
random walks in continuous time in order to describe the
unpredictable evolution of stock prices and to build the
first option pricing model (biographical details of Bache-
lier are given in [58]). Random walks were independently
discovered by Albert Einstein in 1905 and, of course, have
since played a fundamental role in physics and mathemat-
ics. They were later rigorously treated, along with fore-
casting and nonlinear modeling, by Norbert Wiener, the
father of cybernetics. Several important deviations from
the Bachelierian random walk and normal distribution
paradigm were developed several decades later by Benoit
Mandelbrot and his co-authors (for an overview see [59],
and the references given therein). This research developed
around the generalized Central Limit Theorem (CLT), the
stable family of distributions, long-term dependence pro-
cesses, scaling and fractals. Indeed, it is clear that Man-
delbrot views his research as similar to that of Bachelier
in that both were inspired by finance and both found great
applications later in physics or, to useMandelbrot’s words,
both were cases of the “unexpected historical primacy of
financial economics over physics” (see p. 174 in [59]).

Much of the motivation behind nonlinear time series
modeling in finance has to do with certain empirical char-
acteristics, or stylized facts, which have been observed over
the years across many financial assets, markets and time
periods. Since these characteristics were not always consis-
tent with a linear data generating process, nonlinear mod-
els seemed to be a reasonable explanation. In particular,
starting with Mandelbrot and others in the 1960s, several
empirical studies have reported that financial assets typi-
cally have daily returns exhibiting:

� Nonnormality: skewed and leptokurtic (fat-tailed and
high-peaked) unconditional distributions.

� Jump behavior: discontinuous variations that result in
extreme observations.

� Volatility clustering: large (small) returns inmagnitude
tend to be followed by large (small) returns of either
sign.

� Unpredictability: zero or weak serial autocorrelations
in returns.

In order to illustrate these characteristics, we investigate
the empirical behavior of daily logarithmic prices and re-
turns (simply referred to as prices and returns hereafter)
for the S&P 500 index. The series is publicly available

from Yahoo Finance. The empirical analysis is undertaken
using the econometric software packages EViews 5.0 by
Quantitative Micro Software and Time Series Modelling
4.18 by James Davidson, respectively. The sample con-
sists of 14,582 closing (end of the day) prices covering
the period 3/1/1950–14/12/2007. The index is calculated
as a weighted average of the common stock prices for the
500 largest firms traded on the New York Stock Exchange
(NYSE) and is adjusted for dividends and splits. The S&P
500 is often used as a proxy for the so-called market port-
folio and as a measure of the overall performance of the
US stock market.

The prices depicted in the left part of Fig. 1 exhibit the
upward drifting random walk behavior which is so rou-
tinely observed in financial time series. This is consistent
with the fact that the series could not be predicted on
the basis of past values using a member of the ARIMA
class of linear models (as popularized by Box and Jenk-
ins [16]). More specifically, the best fit was offered by an
ARIMA(1,1,1) model, althoughwith a disappointingly low
R-squared statistic of just 0.64% (absolute t-statistics in
brackets):

�pt D 0:0003
(3:9175)

� 0:3013
(3:3030)

�pt�1 C 0:3779
(4:2664)

"t�1 C "t : (3)

Such weak linear serial predictabilities are often found
at high sampling frequencies and are usually explained by
market microstructures. They do not represent true pre-
dictabilities but, rather, result from specific market mech-
anisms and trading systems (see the survey by Biais et
al. [12]).

A close examination of the return series, presented in
the right part of Fig. 1, suggests the presence of large, dis-
continuous variations. In particular, we can count 26 daily
returns which, in absolute value, exceed five standard de-
viations. This implies that such extreme events occur with
a probability of 0.18% or, on average, almost once every
two years (assuming 250 trading days in each calendar
year). Under a normal distribution, such ‘five-standard de-
viation’ events should be extremely rare, with a probability
of occurrence of only 0.00003%, or less than 3 days in ev-
ery 40,000 years! The fat tails of the return distribution are
also reflected in the kurtosis coefficient of 37.3, which is
much larger than the value of 3 that corresponds to a nor-
mal distribution. In terms of asymmetry, the distribution
is skewed to the left with the relevant coefficient estimated
at �1.3.

Clearly, the normal distribution provides a poor ap-
proximation of reality here: the distribution of the er-
rors in the random process described by (1) should be al-
lowed to follow some non-Gaussian, fat-tailed and possi-
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Daily S&P 500 log Index Prices (left) and Returns (right) (3/1/1950–14/12/2007) (Returns are trimmed to ˙5% in order to improve the
readability of the graph)

bly skewed distribution (see the entry by Haas and Pig-
orsch on � Financial Economics, Fat-Tailed Distribu-
tions). Various distributions having these properties have
been proposed, including the Student-t, the mixture of
normals, double Weibull, generalized beta, Tukey’s g �
h, generalized exponential, asymmetric scale gamma, etc.
(see [48,71]). Although some of the non-Gaussian dis-
tributions that have been proposed have many desirable
properties, empirical evidence regarding their appropri-
ateness for describing financial returns has been inconclu-
sive. Moreover, these distributions often bring with them
acute mathematical problems in terms of representation,
tractability, estimation, mixing and asymptotics. A distri-
bution that has received considerable attention is the sta-
ble family (also known as the stable Paretian, Pareto–Lévy,
or Lévy flight), which was initially proposed by Mandel-
brot [54,55]. Stable distributions are highly flexible, have
the normal and Cauchy as special cases, and can represent
‘problematic’ empirical densities that exhibit asymmetry
and leptokurtosis. Furthermore, they are consistent with
stochastic behavior that is characterized by discontinuities
or jumps. From a theoretical point of view, stable distri-
butions are particularly appealing since they are the lim-
iting class of distributions in the generalized CLT, which
applies to scaled sums of iid random variables with infi-
nite variances. Stable distributions also exhibit invariance
under addition, a property that is important for financial
data, which are usually produced as the result of time ag-
gregation. For a comprehensive discussion of these distri-
butions, see [54,55,64,65,71,76].

In terms of the conditional distribution, it is evident
from the graph of returns that the variance is not homo-

geneous across time, as one would expect for an iid pro-
cess. In line with this observation, the autocorrelation of
squared or absolute returns suggest the presence of strong
dependencies in higher moments, something that in turn
is indicative of conditional heteroskedasticity (see Fig. 3
below). On the basis of the above, it appears that the simple
random walk model is far too restrictive and that the more
general martingale process provides a better approxima-
tion to the data. Unlike the random walk, the martingale
rules out any dependence in the conditional expectation
of �ptC1 on the information available at t, while allow-
ing dependencies involving higher conditional moments
of �ptC1. This property of martingales is very useful for
explaining clusters in variances, since it allows persistence
(correlation) in the conditional variances of returns.

It should be noted that much of the empirical work
on nonlinear financial time series has involved modeling
time varying variances. This concentration on the variance
stems from it being the most widely used measure of risk,
which, in orthodox finance theory, is the sole determinant
of the expected return of any asset. Knowing the expected
return enables the opportunity cost of any investment or
asset to be estimated and, ultimately, to have a fair price
put on its value by discounting all future revenues against
the expected return. Variance was introduced in the path-
breaking research of Nobel Laureate Harry Markowitz in
the 1950s on investment portfolio selection, which laid
the basis for what is known today as modern portfolio
theory. The main innovation of Markowitz was that he
treated portfolio selection as a tractable, purely quantita-
tive problem of utility maximization under uncertainty,
hence the term ‘quant analysis’. Markowitz assumed that
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economic agents face a choice over two-dimensional in-
difference curves of investment preferences for risk and
return. Under some additional assumptions, he obtained
a solution to this problem and described the preferences of
homogeneous investors in a normative manner using the
mean and variance of the probability distribution of single
period returns: such investors should optimize their port-
folios on the basis of a ‘mean-variance’ efficiency criterion,
which yields the investment with the highest expected re-
turn for a given level of return variance.

Let us now turn to some of the processes that have
been used to model regularities in variance. For example,
consider the GARCH(1,1) process, which has become very
popular for modeling the conditional variance, �2t , as a de-
terministic function of lagged variances and squared er-
rors (see the entry by Hafner on� GARCH Modeling):

�2t D ˛0 C ˛1"
2
t�1 C ˇ1�

2
t�1 (4)

where the "t are, in general, the residuals from a fit-
ted conditional mean equation. This specification corre-
sponds to a single-lagged version of the GARCH(p; q)
(Generalized Autoregressive Conditional Heteroskedas-
ticity) model proposed by Bollerslev [13] and can easily
be modified to include additional lagged squared errors
and variances. The GARCH model is an extension of the
ARCH process originally proposed by Engle [27] and has
served as the basis for the development of an extensive
family of related models. For a review of this huge lit-
erature see, among others, [10,14,15,52,79], and Chap. 5
in [63]. Multivariate extensions of GARCH processes have
also been proposed, but bring several computational and
estimation problems (see [9,21]).

Two alternative approaches to modeling conditional
variances in finance are extreme value estimators (see [17])
and realized variance (see [8]). Extreme value estimators
depend on opening, closing, high and low prices during
the trading day. Although they perform relatively well in
terms of efficiency and are easy to estimate, they are quite
badly biased. Realized variances are considered to be very
accurate and are easily estimated as the sum of squared re-
turns within a fixed time interval. Their limitation is that
they require high frequency data at the intradaily level,
which can be strongly affected by market microstructures
and may not always be readily available. Rather than fo-
cusing on just the conditional variance, models have also
been proposed for higher moments, such as conditional
skewness and kurtosis (e. g., [43,47]).

To illustrate the application of some of the most
popular GARCH parameterizations, consider again the
S&P 500 return series. Using Maximum Likelihood
(ML) estimation with t-student errors, the following

‘GARCH(1,1)-in-Mean’ (GARCH-M) model was ob-
tained (absolute z-statistics appear in brackets):

�pt D 0:0785
(10:0994)

�t C "t

�2t D 5:77 � 10�7
(6:5616)

C 0:0684
(16:3924)

"2t�1 C 0:9259
(218:0935)

�2t�1 :

In this model, originally proposed by Engle et al. [30],
returns are positively related to the conditional standard
deviation, � t . This is a particularly useful specification
since it is directly consistent with Markowitz’s theory
about the positive relation between expected return and
risk. In particular, the slope coefficient in the conditional
mean equation can be interpreted as a relative risk aver-
sion parameter,measuring how investors are compensated
by higher returns for bearing higher levels of risk.

It is instructive to show in Fig. 2 both the estimated
GARCH(1,1)-M conditional standard deviations and the
standardized residuals, "t/�t . On the one hand, the model
clearly produces mean reversion in volatility, which re-
sembles the empirical behavior observed in the original
series. Although the estimated conditional variance pro-
cess appears to be highly persistent, it is nevertheless sta-
tionary since the sufficiency condition is satisfied because
˛1 C ˇ1 D 0:0684 C 0:9259 D 0:9943 < 1. On the other
hand, the standardized residuals have a far more homo-
geneous conditional volatility than the original series and
more closely resemble a white noise process. Moreover,
the standardized residuals are closer to a normal distribu-
tion, with a kurtosis coefficient of 7.7, almost five times
smaller than that of the original return series.

Careful inspection of the relationship between returns
and conditional variance often reveals an asymmetric re-
lationship. Threshold GARCH (TGARCH) and Exponen-
tial GARCH (EGARCH) are two of the specifications of-
ten used to model this commonly encountered nonlinear-
ity. These models were estimated using the ML approach
and the following conditional variance specifications were
obtained.

TGARCH

�2t D 7:50 � 10�7
(8:5110)

C 0:0259
(6:3766)

"2t�1

C 0:0865
(13:1058)

"2t�1 g C 0:9243
(224:9279)

�2t�1

EGARCH

log(�2t ) D � 0:2221
(13:7858)

C 0:1209
(16:9612)

j"t�1/�t�1j
� 0:0690

(15:9599)
"t�1/�t�1 C 0:9864

(703:7161)
log(�2t�1) :

In the TGARCH model, the threshold parameter is de-
fined as g D 1 if "t�1 < 0 and 0 otherwise. Standard
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Financial Economics, Non-linear Time Series in, Figure 2
GARCH(1,1)-M standarddeviations (left) and standardized residuals (right) (Residuals are trimmed to˙6 standarddeviations in order
to improve the readability of the graph)

Financial Economics, Non-linear Time Series in, Figure 3
Autocorrelation function of S&P 500 simple (left) and absolute returns (right)

GARCH models, such as the GARCH-M estimated pre-
viously, assume that positive and negative errors (or news)
have a symmetric effect on volatility. In the TGARCH
and EGARCH models, news has an asymmetric effect
on volatility depending on its sign. Specifically, in the
TGARCH model news will have differential impacts on
volatility depending on the signs and sizes of the coeffi-
cients on "2t�1 and "

2
t�1 � g: good news ("t�1 > 0) has an

impact of 0.0259, while bad news ("t�1 < 0) has a stronger
impact of 0:0259 C 0:0865 D 0:1124. Since the coefficient
of "2

t�1
� g is positive (0.0865), bad news tends to increase

volatility, producing what is known as the ‘leverage’ ef-
fect. This was first observed in the 1970s and postulates
that negative returns will usually reduce the stock price

and market value of the firm, which in turn means an in-
crease in leverage, i. e. a higher debt to equity ratio, and ul-
timately an increase in volatility. In the EGARCH model,
forecasts are guaranteed to be positive since logarithms of
the conditional variance are modeled. Since the sign of the
coefficient on "t�1/�t�1 is non-zero and negative we can
conclude that the effect of news on volatility is asymmetric
and that a leverage effect is present.

Inspection of the autocorrelation functions (ACFs) in
Fig. 3 for the returns and absolute returns of the S&P 500,
the latter being a proxy for volatility, suggests very differ-
ent behavior of the two series. While returns have an ACF
that is typical of a white noise process, the autocorrelations
of the absolute returns die out very slowly and become
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negative only after 798 lags! It turns out that many finan-
cial series have such extremely persistent or long-memory
behavior. This phenomenon was first described by Man-
delbrot [56,57] in the context of the ‘Hurst effect’ and was
latter defined as fractional Brownian motion (see the rel-
evant review by Brock [18]). Hosking [45] and Granger
and Joyeux [39] modeled long-memory by extending the
ARIMA class of processes to allow for fractional unit
roots (for reviews, see [3,11,73,82]). The ARFIMA(p; d; q)
model uses a fractional difference operator based on a bi-
nomial series expansion of the parameter d for any value
between �0.5 and 0.5:

�d D 1�dBC d (d � 1)
2!

B2� d (d � 1) (d � 2)
3!

B3C : : :

(5)

where B is the backshift (or lag) operator with Bmxt D
xt�m . In a similar fashion, investigating the existence of
long-memory in the conditional variance of the returns
could be undertaken in the context of a Fractional GARCH
model (see [4]).

In our S&P 500 example, we have shown that non-
linearities enter through the conditional variance process
and do so in an asymmetric manner. A natural question to
ask is whether nonlinearities also exist in the conditional
mean. Consider, for example, a generalization of the lin-
ear ARMA process

�pt D f (�pt�i ; "t�i ) C "t (6)

where f () is a nonlinear function and �pt�i ; "t�i are
lagged price differences and errors, respectively. A wide
variety of testing procedures have been proposed for ex-
amining the possibility of nonlinearities in the conditional
mean process (for reviews see the relevant sections in [40],
and [63]). Here we use the BDS test of the null hypothe-
sis of serial independence, which has been widely applied
and has been shown to have good power against a variety
of nonlinear alternatives (see [20]). The test is inspired by
chaos theory and phase space analysis and is based on the
concept of the correlation integral. Specifically, the test re-
lies on the property that, for an iid series, the probability
of the distance between any two points being no greater
than a predefined distance (") should be constant. A joint
probability can also be calculated for sets comprising mul-
tiple pairs of points chosen by moving through consecu-
tive sequences of observations in the sample. The number
of consecutive data points used in such a set is called the
(embedding) dimension and may be chosen by the user.
Brock et al. [20] constructed an asymptotically normally
distributed test statistic for the constancy of the distance "

between points. When this test was applied to the residu-
als from anMA(1)-EGARCH(1,1) model fitted to the S&P
500 returns, it was always insignificant across a variety of
dimensions, implying that any nonlinear dependencies in
the returns are due solely to GARCH effects.

An agnostic, yet often convenient, way to approximate
the unknown nonlinear function (6) is to consider some
nonparametric estimator (see [72]). Although several non-
parametric estimators have been used with mixed success,
one of the most popular is based on the neural network
family of models (see [80]). A rich variety of parametric
nonlinear functions have also been proposed in finance.
A convenient and intuitive way of introducing nonlin-
earity is to allow ‘regime switching’ or ‘time-variation’ in
the parameters of the data generating process (for a re-
view see [70]). Three of the most popular approaches in
this category are the Markov switching, the Threshold Au-
toregressive (TAR) and the Smooth Transition (STAR)
models. In the first approach (for a popular implemen-
tation, see [41,42]), the model parameters switch accord-
ing to a multiple (typically two) unobserved state Markov
process. In TAR models (see [81], for a comprehensive
description), nonlinearities are captured using piecewise
autoregressive linear models over a number of different
states. For example, consider the simple two regime case:

xt D
(
!1 CPp

iD1 '1i xt�iC1 C �1"t ; st�d < c
!2 CPp

iD1 '2i xt�iC1 C �2"t ; st�d > c
(7)

where c is the threshold value, st is a threshold variable,
d is a delay parameter assumed to be less than or equal
to p, and the "t are iid standard normal variates assumed to
be independent of lagged sts. The threshold variable is of-
ten determined by a linear combination of the lagged xts,
in which case we obtain the Self Exciting TAR (SETAR)
model. This has become a popular parameterization in
finance since it can produce different dynamic behav-
ior across regimes with characteristics such as asymme-
try, limit cycles, jumps and time irreversibility (recall the
TGARCH model introduced earlier, which has a related
specification). STAR models allow a smooth switch be-
tween regimes using a smooth transition function. Tran-
sition functions that have been considered include the cu-
mulative distribution of the standard normal, the expo-
nential (ESTAR) and the logistic (LSTAR).

It is instructive to see how regime switching can be ap-
plied in the context of asset pricing models (for a com-
prehensive treatment of asset pricing, see [24]). The best
known and most influential framework, which builds
upon Markowitz’s portfolio theory, is the Capital As-
set Pricing Model (CAPM) proposed by Sharpe, Lintner,
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Black and others. The CAPM can be expressed as a single-
period equilibrium model:

E(ri ) D rf C ˇi
�
E(rm) � rf

�
(8)

where E(ri ) is the expected return on asset i; E(rm) is the
expected return on the market portfolio, rf is the risk-free
interest rate, and the slope ˇi is the so-called beta coef-
ficient of asset i, measuring its systematic risk. Empirical
implementations and tests of the CAPM are usually based
on the ‘excess market’ and ‘market model’ regressions,
respectively

ri;t � rf;t D rf;t C ˇi
�
rm;t � rf;t

�C "i;t (9)

and

ri;t D ˛i C ˇi rm;t C "i;t : (10)

The variance of the residuals "i;t reflects the unsystem-
atic risk in asset i. In practice the CAPM is typically es-
timated using ordinary least squares regression with five
years of monthly data. A wealth of empirical evidence has
been published showing that the basic assumptions of the
CAPM regressions with respect to parameter stability and
residual iid-ness are strongly refuted (see [60]). In partic-
ular, betas have been found to be persistent but unstable
over time due to factors such as stock splits, business cycle
conditions, market maturity and other political and eco-
nomic events. In order to demonstrate the modeling of
time-varying betas in the CAPM, consider first the simple
market model regression for the stock returns of Tiffany &
Co (listed on the New York Stock Exchange) against S&P
500 returns:

rt D 1:4081
(17:5396)

rm;t C "t ; R2 D 28:75% :

The regression was estimated using weekly returns from
30/12/1987 to 14/12/2007, a total of 1,044 observations.
The R2 statistic denotes the proportion of total risk that
can be explained by the model and which is thus system-
atic. The beta coefficient is significantly higher than unity,
suggesting that the stock is ‘aggressive’ in that it carries
more risk than the market portfolio. Allowing the beta co-
efficient to switch according to aMarkov process produces
the following two-regime market model:

rt D

8
<̂

:̂

Regime 1: 0:4797
(1:9220)

rm;t C "t

Regime 2: 1:9434
(10:6381)

rm;t C "t
R2 D 41:63% :

The explanatory power of the model has increased signif-
icantly and the stock is now characterized by both pas-
sive (ˇ D 0:4797 < 1) and aggressive (ˇ D 1:9434 >

1) systematic risk behavior regimes. The Markov transi-
tion probabilities P



i j j� ; j D 1; 2, were estimated as

P(1j1) D 0:6833, P(1j2) D 0:3167, P(2j1) D 0:2122 and
P(2j2) D 0:7878. The smoothed probabilities for regime
1 are depicted in Fig. 4 and are seen to be rather volatile,
so that the returns switch regimes rather frequently. For
a discussion of the threshold CAPM see [2].

Another important category of models allows for non-
linear relationships between persistent financial time se-
ries. The most popular framework here is that of cointe-
gration, which deals with variables that are individually
nonstationary but have some joint stationary representa-
tion. For example, consider the linear combination of two
unit root (I(1)) processes xt and yt

xt D a C yt C "t : (11)

In general, "t will also be I(1). However, as shown by Engle
and Granger [29], if "t is actually I(0), then xt and yt are
said to be (linearly) cointegrated and will have an error-
correction representation which, for example, could take
the form

�xt D ��"t�1 C ut (12)

where �� denotes the strength of reversal to the equilib-
rium cointegrating relationship through the error-correc-
tion term, i. e., the lagged residual from the cointegrating
regression (11). The finance literature has considered non-
linear generalizations of both the cointegrating regression
(11) and the error-correction model (12) (see the entry by
Escribano et al. on � Econometrics: Non-linear Cointe-
gration). Nonlinear error-correction mechanisms can be
accommodated rather straightforwardly within the cointe-
gration analysis framework, with the residuals from a lin-
ear cointegration relationship entering a nonlinear error-
correction model. It has been shown that such nonlin-
earities may arise simply because of complex relation-
ships between variables (see pp. 59–61 in [40]). Justifica-
tions in terms of finance theory have been based on fac-
tors such as arbitrage in the presence of transaction costs,
heterogeneity among arbitrageurs, existence of partial ad-
justment models and market segmentation, agents’ max-
imizing or minimizing behavior, constraints on central
bank intervention, and intertemporal choice behavior un-
der asymmetric adjustment costs. While almost all the dif-
ferent nonlinear specifications discussed previously have
also been applied in error-correction modeling, threshold
models hold a prominent position, as they allow large er-
rors from equilibrium, i. e., those above some threshold, to
be corrected while small errors are ignored (see, for exam-
ple, [6]). The use of nonlinearities directly within the coin-
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Tiffany stock Markov switchingmarket model smoothed probabilities for Regime 1 of 2

tegrating relationship is not as straightfoward and brings
several conceptual and estimation problems (see [63]).

Returning to the bivariate market model setting, it has
been found that cointegrating relationships do exist be-
tween stock prices and index levels (see [60]). In our ex-
ample, the logarithms of Tiffany’s stock prices are coin-
tegrated with S&P 500 logarithmic price levels. The fol-
lowing asymmetric error correction model was then esti-
mated:

rt D �0:0168
(3:0329)

"t�1 g C ut

where g is the heavyside function defined previously with
g D 1 if "t�1 < 0 and 0 otherwise, "t�1 being obtained
from the cointegrating regression.

Several studies have shown that empirical characteris-
tics and regularities, such as those discussed previously are
very unlikely to remain stable if the sampling frequency of
the data changes. For example, we find that if the S&P 500
returns are estimated at an annual frequency using the first
available January price, then their distribution becomes
approximately Gaussian with skewness and kurtosis coef-
ficients estimated at �0.4 and 2.7, respectively. The annual
prices are highly predictable using an ARIMA(2,1,2) pro-
cess with an impressive adjustedR-squared value of 15.7%.
Moreover, standard tests of heteroskedasticity suggest that
the variance of annual returns can be assumed to be con-
stant! In contrast, for very high sampling frequencies, say

at the intradaily or tick-by-tick level, the data behave in
a different manner and are characterized by strong sea-
sonalities, e. g., variances and volumes follow an inverse J
shape throughout the trading day (see the review byGood-
hart and O’Hara [38], and the discussion in [28]).

Finally, let us now turn our discussion to models in
a continuous time setting. As previously mentioned, the
analysis of derivatives provides a natural setting for non-
linear modeling since it deals with the pricing of assets
with highly nonlinear payoff functions. For example, un-
der the widely used Black–Scholes option pricing model
(see [46], for a thorough description), stock prices are log-
normally distributed and follow a Wiener process. The
Black–Scholes model allows for highly nonlinear relation-
ships between the pricing variables and parameters, as
shown in Fig. 5.

Another popular use of continuous time processes is
in modeling the autonomous dynamics of processes such
as interest rates and the prices of stocks and commodities.
A generic stochastic differential equation that can be used
to nest alternative models is the following:

dSt D � (St ; t) dt C � (St ; t) dWt C y (St; t) dqt (13)

where St is the price at time t, dWt is a standard Wiener
process, � (St ; t) is the drift, and � (St ; t) is the diffu-
sion coefficient. Both the drift and diffusion coefficients
are assumed to be functions of time and price, respec-
tively. A jump component is also allowed by incorporat-
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Call option prices, volatility and interest rate in the Black–Scholes model (Call option prices were estimated using the Black–Scholes
model assuming a strike price of 50, 1 year time to maturity and a zero dividend yield)

ing a Poisson process, dqt , with a constant arrival param-
eter �, i. e., Prfdqt D 1g D �dt and Prfdqt D 0g D
1 � �dt: y is the jump amplitude, also a function of time
and price. dWt , dqt and y are assumed to be mutually
independent processes. Several nonlinear models can be
obtained by combining various assumptions for the com-
ponents � (St ; t), � (St ; t) and y (St ; t). For example, con-
sider the following processes.

Mean Reverting Square-Root Process (MRSRP)

dSt D � (� � St) dt C �
p
StdWt (14)

Constant Elasticity of Variance (CEV)

dSt D � (� � St) dt C �S�
t dWt (15)

Geometric Wiener Process augmented by Jumps (GWPJ)

dSt D 

� � �� j

�
StdtC�StdWt C 


ey � 1
�
Stdqt (16)

MRSRP augmented by Jumps (MRSRPJ)

dSt D � (� � St) dt C �
p
StdWt C ydqt : (17)

Model (14) has beenwidely used inmodeling interest rates
(e. g., [1,23,25]) and stochastic volatility (e. g., [44,68]).
Process (16) is often used for representing the dynamics
of stock prices and indices (e. g., [61]). Model (17) has

been recently employed by several researchers for mod-
eling volatility, because it allows rapid changes in volatil-
ity during times of market stress (e. g., [31]). While pro-
cess (16) has a proportional structure, with � being the
expected return of the asset per unit of time and � its
volatility, the other processes have mean reverting drifts.
In Eqs. (14), (15) and (17) � is the speed of mean reversion,
� is the unconditional long-run mean, and � the volatility
of the price process. In Eq. (15), � is a free parameter to
be estimated that determines the dependence of the diffu-
sion component on the current level of S. In Eqs. (16) and
(17), � is the average number of jumps per year and y is the
jump size, which can be drawn from a normal or a double
exponential distribution (see [49]).

An alternative way of representing the conditional
variance is to use a stochastic volatility model, in which
volatility is driven by its own noise (see the entry by An-
dersen and Benzoni on � Stochastic Volatility). Stochas-
tic volatility models are advantageous in that they are very
flexible and have representations in both discrete and con-
tinuous time. The square root volatilitymodel (also known
as a scalar affine diffusion), proposed by Heston [44], is
one of the most popular models in this area and is repre-
sented by the stochastic processes

d log(pt) D (� � 0:5�t) dt Cp
VtdW1t

dVt D (˛ � ˇ�t) dt C �V
p
VtdW2t

(18)
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where Vt is the instantaneous (latent) stochastic volatility,
which is assumed to follow a mean reverting square root
process. The parameter k measures the speed of mean re-
version, while � is the unconditional long run mean. dW1t
and dW2t are Brownian motions with instantaneous cor-
relation �dt.

Future Directions

The coverage in this essay has, unavoidably, been far from
exhaustive. The realm of relevant nonlinear models and
theories in finance is extremely rich and is developing
fast (a useful review of new developments is [66]). By
transcending the representative agent framework and by
extending the standard notion of rationality, researchers
are now allowing for interactions between heterogeneous
groups of investors using agent based models (for an
overview of these fascinating developments, see [51] and
the entry on� Finance, Agent BasedModeling in byMan-
zan). While such approaches can reproduce stylized facts
such as volatility clustering and long-term dependencies,
it remains to be seen how they can be standardized and
applied to the solution of specific problems by academics
and practitioners.
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Glossary

Stock return The stock return in this entry refers to the
return on the portfolio of all stocks that are traded on
the three largest equity markets in the US: the NYSE,
NASDAQ, and AMEX. The return is measured as the
price of the stock at the end of the year plus the div-
idends received during the year divided by the price
at the beginning of the year. The return of each stock
is weighted by its market capitalization when forming
the portfolio. The source for the data is CRSP.

Dividend-price ratio and dividend yield The dividend-
price ratio of a stock is the ratio of the dividends re-
ceived during the year divided by the price of the stock
at the end of the year. The dividend yield, instead, is
the ratio of the dividends received during the year di-
vided by the price of the stock at the beginning of the
year. The stock return is the sum of the dividend yield
and the capital gain yield, which measures the ratio of
the end-of-year stock price to the beginning-of-year
stock price.

Predictability A stock return rtC1 is said to be predictable
by some variable xt if the expected return conditional
on xt , E[rtC1 j xt], is different from the unconditional
expected return, E[rtC1]. No predictability means that
the best predictor of tomorrow’s return is the constant,
unconditional average return, i. e., E[rtC1 j xt] D
E[rtC1]. When stock returns are unpredictable, stock
prices are said to follow a random walk.

Market model The market model links the return on any
asset i, ri t to the return on the market portfolio (rt).

Under joint normality of returns, it holds:

ri t D ˛i C ˇi rt C "i t ; (1)

with E["i t] D 0 and Var["i t] D �2"i , see [16]. The
typical assumption in the literature until the 1980s has
been that E[r] is constant.

Definition of the Subject

The efficient market hypothesis, due to [21,22] and [23],
states that financial markets are efficient with respect to
a particular information set when prices aggregate all
available information. Testing the efficientmarket hypoth-
esis requires a “market model” which specifies how infor-
mation is incorporated into asset prices. Efficiency of mar-
kets is then synonymous with the inability of investors to
make economic, i. e., risk-adjusted, profits based on this
information set [36]. The question of market efficiency
and return predictability is of tremendous importance for
investors and academics alike. For investors, the presence
of return predictability would lead to different optimal as-
set allocation rules. Failing to make portfolios conditional
on this information may lead to substantial welfare losses.
For academics, return predictability or the lack thereof
has substantial implications for general equilibrium mod-
els that are able to accurately describe the risks and returns
in financial markets.

Introduction

Until the 1980s, the standard market model assumed con-
stant expected returns. The first empirical evidence, which
showed evidence that returns were predictable to some ex-
tent, was therefore interpreted as a sign of market ineffi-
ciency [25,54]. [56] proposed the alternative explanation
of time-varying expected returns. This prompted the ques-
tion of why aggregate stock market returns would be time
varying in equilibrium. [23] provides a summary of this
debate.

Recently developed general equilibrium models show
that expected returns can indeed be time varying, even if
markets are efficient. Time-variation in expected returns
can result from time-varying risk aversion [11], long-run
consumption risk [5], or time-variation in risk-sharing
opportunities, captured by variation in housing collat-
eral [44]. Predictability of stock returns is now, by-and-
large, interpreted as evidence of time-varying expected re-
turns rather than market inefficiency.

Motivating Predictive Regressions

Define the gross return on an equity investment between
period t and period t C 1 as
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RtC1 D PtC1 C DtC1

Pt
;

where P denotes the stock price and D denotes the divi-
dend. [9] log-linearizes the definition of a return to obtain:

rtC1 D k C�dtC1 C �dptC1 � dpt : (2)

All lower-case letters denote variables in logs; dt stands for
dividends, pt stands for the price, dpt � dt � pt is the
log dividend–price ratio, and rt stands for the return. The
constants k and � D (1 C exp(dp))�1 are related to the
long-run average log dividend–price ratio dp. By iterating
forward on Eq. (2) and by imposing a transversality con-
dition (i. e., we rule out rational bubbles), one obtains

dpt D dpCEt

1X

jD1

� j�1�(rtC j � r)� (�dtC j �d)
�
: (3)

Since this equation holds both ex-post and ex-ante, an
expectation operator can be added on the right-hand
side. This equation is one of the central tenets of the re-
turn predictability literature, the so-called Campbell and
Shiller [12,13] equation. It says that, as long as the expected
returns and expected dividend growth are stationary, devi-
ations of the dividend–price ratio (dpt) from its long-term
mean (dp) ought to forecast either future returns, or future
dividend growth rates, or both.

This accounting identity has motivated some of the
earliest empirical work in return predictability, which re-
gressed returns on the lagged dividend–price ratio, as in
Eq. (4):

(rtC1 � r̄) D �r(dpt � dp) C � rtC1 ; (4)

(�dtC1 � d) D �d (dpt � dp) C �dtC1 ; (5)

(dptC1 � dp) D �(dpt � dp) C �
d p
tC1 ; (6)

where r̄ is the long-run mean return and � r is a mean-zero
innovation. The logic of (3) suggests that the dividend–
price ratio could predict future dividend growth rates in-
stead of, or in addition to, future returns. Testing for div-
idend growth predictability would lead one to estimate
Eq. (5), where d denotes the long-run mean log dividend
growth.

The empirical return predictability literature started
out by estimating Eq. (4) with the dividend–price ratio
on the right-hand side; see [12,17,24,29,34,53] and [42],
among others. It found evidence for return predictability,
i. e., �r > 0. This finding was initially interpreted as evi-
dence against the efficient market hypothesis.

Around the same time, [25] and [52] document a neg-
ative autocorrelation in long-horizon returns. Good past
returns forecast bad future returns. [16] and [18] summa-
rize the evidence based on long-horizon autocorrelations
and variance ratios, and conclude that the statistical evi-
dence in favor of mean reversion in long-horizon returns
is weak, possibly due to small sample problems. This mo-
tivates [4] to use a large cross-section of countries and use
a panel approach instead. They in turn document strong
evidence in favor of mean-reversion of long-horizon re-
turns with an estimated half-life of 3–3.5 years.

Second, other financial ratios, such as the earnings-
price ratio or the book-to-market ratio, or macro-eco-
nomic variables such as the consumption-wealth ratio, the
labor income-to-consumption ratio, or the housing collat-
eral ratio, as well as corporate decisions, and the cross-
sectional price of risk have subsequently been shown to
predict returns as well; see [3,38,39,43,45,50] and [51],
among others.

Third, long-horizon returns are typically found to be
more predictable than one-period ahead returns. The co-
efficient �r(H) in the H-period regression

HX

jD1

rtC j D �r(H) dpt C � rt;tCH (7)

exceeds the coefficient �r in the one-period regression.
This finding is interpreted as evidence for the fact that the
time-varying component in expected returns is quite per-
sistent.

Fourth, these studies conclude that growth rates of
fundamentals, such as dividends or earnings, aremuch less
forecastable than returns using financial ratios. This sug-
gests that most of the variation of financial ratios is due to
variation in expected returns.

Fifth, predictability of stock returns does not only arise
for the US. Studies by [10,26,33], and [2] analyze a large
cross-section of countries and find evidence in favor of
predictability by financial ratios in some countries, even
though the evidence is mixed. More robust results are
documented for the predictive ability of term structure
variables.

These conclusions regarding predictability of stock re-
turns are controversial because the forecasting relation-
ship of financial ratios and future stock returns exhibits
three disconcerting statistical features. First, correct infer-
ence is problematic because financial ratios are extremely
persistent. The empirical literature typically augments
Eq. (4) with an auto-regressive specification for the predic-
tor variable, as in Eq. (6), where dp is the long-run mean
of the dividend–price ratio. The estimated autoregressive
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Financial Economics, Return Predictability andMarket Efficiency, Figure 1
Parameter Instability in Return Predictability Coefficient

parameter � is near unity and standard tests leave the pos-
sibility of a unit root open (i. e., � D 1). [2,27,46,55]
and [58] conclude that the statistical evidence of forecasta-
bility is weaker once tests are adjusted for high persis-
tence. [1,2,15,42,57] and [20] derive asymptotic distribu-
tions for predictability coefficients under the assumption
that the forecasting variable follows a local-to-unit root,
yet stationary, process.

Second, financial ratios have poor out-of-sample fore-
casting power, as shown in [7,31], and [32], but see [35]
and [14] for different interpretations of the out-of-sample
tests and evidence.

Third, the forecasting relationship of returns and fi-
nancial ratios exhibits significant instability over time. Fig-
ure 1 shows that in rolling 30-year regressions of annual
log CRSP value-weighted returns on lagged log dividend–
price ratios, the ordinary least squares (OLS) regression
coefficient varies between zero and 0.5 and the associated
R2 ranges from close to zero to 30% depending on the sub-
sample.

The figure plots estimation results for the equation
rtC1 � r̄ D �r(dpt � dp) C � rtC1. It shows the estimates
for �r using 30-year rolling windows. The dashed line in
the left panels denote the point estimate plus or minus

one standard deviation. The standard errors are asymp-
totic. The parameters r̄ and dp are the sample means of
log returns r and the log dividend–price ratio dp. The data
are annual for 1927–2004.

[60] and [49] report evidence in favor of breaks in the
OLS coefficient in the forecasting regression of returns on
the lagged dividend–price ratio, while [41] report evidence
for structural shifts in dp. [47] use Bayesian methods to
estimate structural breaks in the equity premium.

Empirical Evidence Revisited

Table 1 reviews the empirical evidence using annual value-
weighted CRSP log return, dividend growth, and divi-
dend–price ratio data for 1927–2004. In Panel A, the sys-
tem of Eqs. (4) and (5) is estimated by GMM. The first
row indicates that a higher dividend–price ratio leads to
a higher return (�r D :094 in Column 2) and a higher div-
idend growth rate (�d D :005 in Column 1). The latter
coefficient has the wrong sign, but the coefficient is statis-
tically indistinguishable from zero. The asymptotic stan-
dard error on the estimate for �r is .046. The correspond-
ing asymptotic p-value is 3.6% so that �r is statistically dif-
ferent from zero at conventional levels. In other words, the
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Financial Economics, Return Predictability andMarket Efficiency,
Table 1
Return and Dividend Growth Predictability in the Data

�d �r � PV violation
Panel A: No Long-Horizon Moments H D f1g
No Break .005 .094 .945 �.046

(.037) (.046) (.052)
1 Break (’91) .019 .235 .813 .004

(.047) (.055) (.052)
2 Breaks (’54, ’94) .124 .455 .694 �.001

(.073) (.079) (.070)
Panel B: Long-Horizon Moments H D f1; 3; 5g
No Break .021 .068 .990 .189

(.018) (.038) (.032)
1 Break (’91) .012 .210 .834 .076

(.019) (.043) (.042)
2 Breaks (’54, ’94) .080 .409 .697 .100

(.065) (.078) (.060)

dividend–price ratio seems to predict stock returns, but
not dividend growth. A similar result holds if returns in
excess of a risk-free rate are used, or real returns instead of
nominal returns.

[41] conduct an extensive Monte Carlo analysis to in-
vestigate the small-sample properties of estimates for �r
and �d. Consistent with [55], the estimate for �r displays
an upward small-sample bias. In addition, the standard er-
ror on �r is understated by the asymptotic standard er-
ror. As a result, one can no longer reject the null hypoth-
esis that �r is zero. Based on this evidence, one is tempted
to conclude that neither returns nor dividend growth are
forecastable.

The second and third rows implement the suggestion
of [41] to correct the long-run mean dividend–price ratio,
dp, for structural breaks. The data strongly suggest either
one break in 1991, or two breaks in 1954 and 1994 in favor
of either no breaks or three breaks. This break-adjusted
dividend–price ratio is less persistent and less volatile. Its
lower persistence alleviates the econometric issues men-
tioned above.

The second row of Table 1 uses the one-break ad-
justed dividend–price ratio as a regressor in the return and
dividend growth predictability equations. The evidence
in favor of return predictability is substantially strength-
ened. The point estimate for �r more than doubles to
.235, and is highly significant. In the two-break case in the
third row, the point estimate further doubles to 0.455. The
small-sample bias in �r is negligible relative to the size of
the coefficient. The R2 of the return equation is 10% in
the one-break case and even 23% in the two-break case.

This compares to 3.8% in the no-break case. Furthermore,
rolling regression estimates of �r indicate that it is much
more stable over time when the break-adjusted dp series
is used as a regressor. The dividend growth coefficient �d
remains statistically indistinguishable from zero. This ev-
idence strengthens the view that returns are predictable
and dividend growth is not, and that these findings are not
an artefact of statistical issues.

This table reports GMM estimates for the parameters
(�d ; �r ; �) and their asymptotic standard errors (in paren-
theses). The results in panel A are for the system with
one-year ahead equations for dividend growth and returns
(H D 1, N D 0). The results in panel B are for the sys-
tem with one-year, three-year and five-year ahead equa-
tions for dividend growth and returns (H D f1; 3; 5g,
N D 2). The first-stage GMM weighting matrix is the
identity matrix. The asymptotic standard errors and p-val-
ues are computed using the Newey–West HAC procedure
(second stage weighting matrix) with four lags in panel
A and H D 5 lags in panel B. The last column denotes the
present-value constraint violation of the univariate OLS
slope estimators: (1���ols)�1(�olsr ��olsd ). It is expressed in
the same units as �d and �r. In panel B this number is the
average violation of the three constraints, one constraint
at each horizon. The dividend–price ratio in rows 1 and 4
is the unadjusted one. In rows 2 and 5, the dividend–price
ratio is adjusted for one break in 1991, and in rows 3 and
6, it is the series adjusted for two breaks in 1954 and 1994.
All estimation results are for the annual sample 1927–
2004.

Structural Model

What are researchers estimating when they run the re-
turn predictability regression (4)? How are the return and
dividend growth predictability regressions in (4) and (5)
related? To answer these important questions, we set up
a simple structural model with time-varying expected re-
turns and expected dividend growth rates. This structural
model has the system of Eqs. (4)–(6) as its reduced-form.
The main purpose of this model is to show that (i) the
dividend–price ratio is a contaminated predictor of re-
turns and dividend growth rates, (ii) that the parameters in
(4)–(6) have to satisfy a cross-equation restriction, which
we call the present-value constraint, and (iii) this restric-
tion enables decomposing the dividend–price ratio into
expected returns and expected dividend growth. Similar
models can be derived for financial ratios other than the
dividend–price ratio (e. g., [61]). [6] show how stock re-
turns and book-to-market ratios are related in a general
equilibrium model.
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A Present-Value Model

We assume that expected dividend growth, z, and expected
returns, x, follow an AR(1) process with autoregressive co-
efficient � :

�dtC1 � d D zt C 	tC1 ; ztC1 D �zt C �tC1 ; (8)

rtC1 � r̄ D xt C �tC1 ; xtC1 D �xt C �tC1 : (9)

The model has three fundamental shocks: an innovation
in unexpected dividends 	tC1, an innovation in expected
dividends �tC1, and an innovation in expected returns
�tC1. We assume that all three errors are serially uncorre-
lated and have zero cross-covariance at all leads and lags:
Cov(	tC1; �tC j) D 0; 8 j ¤ 1, Cov(�tC1; �tC j) D 0; 8 j ¤
1, and Cov(	tC1; �tC j) D 0; 8 j, except for a contempora-
neous correlation between expected return and expected
dividend growth innovations Cov(�t ; �t) D �, and a corre-
lation between expected and unexpected dividend growth
innovations Cov(�t ; 	t) D �. We discuss innovations to
unexpected returns � below.

In steady-state, the log dividend–price ratio is a func-
tion of the long-runmean return and dividend growth rate
dp D log



(r̄ � d)/(1 C d)

�
. The log dividend–price ratio

in (3) can then be written as:

dpt � dp D xt � zt
1 � ��

: (10)

The dividend–price ratio is the difference of two AR(1)
processes with the same root � , which is again an AR(1)
process. I.e., we recover Eq. (6).

The return decomposition in [9] implies that the inno-
vation to unexpected returns follows from the three fun-
damental shocks (i. e., combine (2) with (8)–(10)):

�tC1 D ��
1 � ��

�tC1 C �

1 � �� �tC1 C 	tC1 : (11)

Since both � and � are positive and �� < 1, a positive
shock to expected returns leads, ceteris paribus, to a neg-
ative contemporaneous return. Likewise, a shock to ex-
pected or unexpected dividend growth induces a positive
contemporaneous return.

Contaminated Predictor

The first main insight from the structural model is that
the demeaned dividend–price ratio in (10) is an imper-
fect forecaster of both returns and dividend growth. Re-
turns are predicted by xt (see Eq. (9)), but variation in the
dividend–price ratio is not only due to variation in x, but
also in expected dividend growth zt . The same argument

applies to dividend growth which is predicted by zt (see
Eq. (8)). This implies that the regressions in the reduced-
form model in (4) and (5) suffer from an errors-in-vari-
ables problem [24,30,37].

To illustrate the bias, we can link the regression co-
efficients �r and �d explicitly to the underlying structural
parameters:

�r D Cov(rtC1; dpt)
Var(dpt)

D
(1 � ��)(�2

�
� �)

�2
�

C �2
�

� 2�
; (12)

�d D Cov(�dtC1; dpt)
Var(dpt)

D
�(1 � ��)(�2

�
� �)

�2
�

C �2
�

� 2�
: (13)

If growth rates are constant, i. e., � D 0 and �� D 0, then
the dividend–price ratio is a perfect predictor of returns
and �?

r D 1 � �� . In all other cases, there is a bias in the
return predictability coefficient:

�?
r � �r D

(1 � ��)(�2
�

� �)

�2
�

C �2
�

� 2�
: (14)

[24] argue that �r is downward biased (�?
r � �r > 0).

In fact, the structural parameters that are implied by the
reduced-form model parameters indicate an upward bias.
This occurs because the correlation between expected div-
idend growth and expected returns is sufficiently high.

A similar argument applies to �d. [40] construct a vari-
able based on the co-integrating relationship between con-
sumption, dividends from asset wealth, and dividends
from human wealth. They show that this variable has
strong predictive power for dividend growth, and they
show that expected returns and expected growth rates are
highly positively correlated. This implies that expected
growth rates and expected returns have an offsetting effect
on financial ratios, which makes it hard to reliably detect
time-varying growth rates using such financial ratios.

Present-Value Constraint

The second main insight from the structural model is that
there is a cross-equation restriction on the three innova-
tions � D (�d ; � r ; �d p) of the reduced-form model (4)–
(6). Expressed in terms of the structural parameters, these
innovations are:

�dtC1 D 	tC1 C xt
� ��d
1 � ��

�

C zt
�

�r

1 � ��

�

(15)

� rtC1 D 	tC1 C xt
� ��d
1 � ��

�

C zt
�

�r

1 � ��

�

� �

�
�tC1 � �tC1

1 � ��
�

(16)
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�
d p
tC1 D �tC1 � �tC1

1 � ��
: (17)

They imply the present value restriction:

��
d p
tC1 D �dtC1 � � rtC1 , �r � �d D 1 � �� : (18)

Another way to write this restriction is as a restriction on
a weighted sum of �r and �d: Any two equations from
the system (4)–(6) implies the third. Evidence that divi-
dend growth is not forecastable is evidence that returns
are forecastable: if �d D 0 in Eq. (18), then �r > 0 be-
cause �� < 1. If estimating (5) uncovers that a high divi-
dend–price ratio forecasts a higher future dividend growth
(�d > 0), as we showed it does, then this strengthens the
evidence for return predictability. [19] makes an impor-
tant and closely related point: That it is important to im-
pose the present-value relationship when testing the null
hypothesis of no return predictability. That null (�r D 0)
is truly a joint hypothesis, because it implies a negative co-
efficient in the dividend growth equation (�d < 0). [19],
too, finds strong evidence for return predictability.

Returning to Panel A of Table 1, Column 3 backs out
the AR(1) coefficient � from the estimated �d and �r, and
from the present-value constraint (18).1 In the first row,
� D :945, and is statistically undistinguishable from a unit
root. This high persistence is a familiar result in the liter-
ature. The last column reports the left-hand side and the
right-hand side of Eq. (18) for univariate OLS regressions
of (4)–(6). It shows the violation of the present-value con-
straint. In the first row, the violation is half as large as the
actual point estimate �r. The standardOLS point estimates
do not satisfy the present-value constraint, which can lead
to faulty inference.

However, when we use the break-adjusted dividend–
price ratio series in rows 2 and 3, we find that (1) the
persistence of the break-adjusted dp ratio is much lower
than the unadjusted series (.81 and .69 versus .95), and (2)
the present-value constraint is satisfied by the OLS coeffi-
cients.

A similar present-value constraint can be derived for
long-horizon return and dividend growth regressions:

�r(H) D �r

�
1 � �H

1 � �
�

�d (H) D �d

�
1 � �H

1 � �
�

:

Not only are the coefficients on the long-horizon return
predictability regressions for all horizons linked to each

1The linearization parameter � is tied to the average dividend–
price ratio, and is held fixed at 0.9635.

other (see [8]), all long-horizon regression coefficients in
the return equations are also linked to those from the div-
idend growth equations. I. e., there is one present-value
constraint for each horizon H. Imposing these restrictions
in a joint estimation procedure improves efficiency.

Panel B of Table 1 shows the results from a joint es-
timation of 1-year, 3-year, and 5-year cumulative returns
and dividend growth rates on the lagged dividend–price
ratio. Because of the restrictions, there are only two pa-
rameters to be estimated from these six equations. The re-
sults are close to those from the one-year system in Panel
A, confirming the main message of [8]. The main conclu-
sion remains that returns are strongly predictable, and div-
idend growth rates are not.

Exploiting Correlation in Innovations

The present-value model implies a restriction on the in-
novations in returns and the dividend–price ratio (see
Eq. (18)). A third main insight from the structural model
is that this correlation contains useful information for esti-
mating the structural parameters, and hence for howmuch
return predictability and dividend growth predictability
there truly is. [48] show that exploiting the correlation
between expected and unexpected stock returns can lead
to substantially more accurate estimates. The information
in correlations is incorporated by specifying a prior belief
about the correlation between expected and unexpected
returns, and updating that prior in a Bayesian fashion us-
ing observed data. Their method ignores the present-value
constraint. The structural parameters in Panel B of Ta-
ble 1, which impose the present-value constraint, imply
that two-thirds of the variability in the price-dividend ra-
tio is due to expected future returns and one-third is due
to expected future dividend growth rates.

Likewise, [59] write down a model like (8)–(9) where
expected returns and growth rates of dividends are auto-
regressive, exploiting the present-value constraint. Be-
cause the price-dividend ratio is linear in expected re-
turns x and expected dividend growth z (see Eq. (10)),
its innovations in (17) can be attributed to either in-
novations in expected returns or expected growth rates.
The present-value constraint enables one to disentangle
the information in price-dividend ratios about both ex-
pected returns and growth rates, and therefore to undo
the contamination coming from correlated innovations.
With this decomposition in hand, it is then possible to re-
cover the full time-series of expected returns, x, and ex-
pected growth rates, z. [59] show that the resulting pro-
cesses are strong predictors of realized returns and real-
ized dividend growth rates, respectively. This underscores
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the importance of specifying a present-value model to ad-
dress return predictability.

Geometric or Arithmetic Returns

As a final comment, most predictive regressions are esti-
mated using geometric, i. e. log returns, instead of arith-
metic, i. e. simple returns. This choice is predominantly
motivated by the [12] log-linearization discussed before.
Since investors are ultimately interested in arithmetic in-
stead of log returns, [59] specify a process for expected
simple returns instead. This is made possible by applying
the techniques of linearity-inducing models, recently in-
troduced by [28].

Future Directions

The efficient market hypothesis, which states that mar-
kets efficiently aggregate all information, was first inter-
preted to mean that returns are not predictable. Early evi-
dence of predictability of stock returns by the lagged div-
idend–price ratio seemed to be evidence against the ef-
ficient market hypothesis. However, return predictability
and efficient markets are not incompatible because re-
turn predictability arises naturally in a world with time-
varying expected returns. In the last 15 years, the em-
pirical literature has raised a set of statistical objections
to return predictability findings. Meanwhile, the theoret-
ical literature has progressed, seemingly independently, in
its pursuit of new ways to build models with time-vary-
ing expected returns. Only very recently has it become
clear that theory is necessary to understand the empirical
facts.

In this entry, we have set up a simple present-value
model with time-varying expected returns that generates
the regression that is the focus of the empirical literature.
The model also features time-varying expected dividend
growth. It shows that the dividend–price ratio contains
information about both expected returns and expected
dividend growth. A regression of returns on the dividend–
price ratio may therefore be a poor indicator of the true ex-
tent of return predictability. At the same time, the present-
value model provides a solution to this problem: It disen-
tangles the two pieces of information in the price-dividend
ratio. This allows us to interpret the standard predictabil-
ity regressions in a meaningful way. Combining data with
the present-value model, we conclude that there is strong
evidence for return predictability. We interpret this as ev-
idence for the presence of time-varying expected returns,
not evidence against the efficient market hypothesis. The
main challenge for the future is to better understand the
underlying reasons for this time-variation.

Bibliography

Primary Literature

1. Amihud Y, Hurvich CM (2004) Predictive regressions: A re-
duced-bias estimation method. Financial Quant Anal 39:813–
841

2. Ang A, Bekaert G (2007) Stock return predictability: Is it there?
Rev Financial Stud 20(3):651–707

3. Baker M, Wurgler J (2000) The equity share in new issues and
aggregate stock returns. J Finance 55:2219–2258

4. Balvers R, Wu Y, Gilliland E (2000) Mean reversion across na-
tional stock markets and parametric contrarian investment
strategies. J Finance 55:745–772

5. Bansal R, Yaron A (2004) Risks for the long-run: A potential res-
olution of asset pricing puzzles. J Finance 59(4):1481–1509

6. Berk JB, Green RC, Naik V (1999) Optimal investment, growth
options and security returns. J Finance 54:1153–1607

7. Bossaerts P, Hillion P (1999) Implementing statistical criteria to
select return forecastingmodels: What dowe learn? Rev Finan-
cial Stud 12:405–428

8. Boudoukh J, Richardson M, Whitelaw RF (2007) The myth of
long-horizon predictability. Rev Financial Stud (forthcoming)

9. Campbell JY (1991) A variance decomposition for stock re-
turns. Econ J 101:157–179

10. Campbell JY (2003) Consumption-based asset pricing. In: Con-
stantinides G, Harris M, Stulz R (eds) Handbook of the Eco-
nomics of Finance. North-Holland, Amsterdam (forthcoming)

11. Campbell JY, Cochrane JH (1999) By force of habit: A consump-
tion-based explanation of aggregate stock market behavior.
J Political Econ 107:205–251

12. Campbell JY, Shiller RJ (1988) The dividend–price ratio and ex-
pectations of future dividends and discount factors. Rev Finan-
cial Stud 1:195–227

13. Campbell JY, Shiller RJ (1991) Yield spreads and interest rates:
A bird’s eye view. Rev Econ Stud 58:495–514

14. Campbell JY, Thompson S (2007) Predicting excess stock re-
turns out of sample: Can anything beat the historical average?
Rev Financial Stud (forthcoming)

15. Campbell JY, Yogo M (2002) Efficient tests of stock return pre-
dictability. Harvard University (unpublished paper)

16. Campbell JY, Lo AW, MacKinlay C (1997) The Econometrics of
Financial Markets. Princeton University Press, Princeton

17. Cochrane JH (1991) Explaining the variance of price-dividend
ratios. Rev Financial Stud 5(2):243–280

18. Cochrane JH (2001) Asset Pricing. Princeton University Press,
Princeton

19. Cochrane JH (2006) The dog that did not bark: A defense of
return predictability. University of Chicago Graduate School of
Business (unpublished paper)

20. Eliasz P (2005) Optimal median unbiased estimation of coef-
ficients on highly persistent regressors. Department of Eco-
nomics, Princeton University (unpublished paper)

21. Fama EF (1965) The behavior of stock market prices. J Bus
38:34–101

22. Fama EF (1970) Efficient capital markets: A review of theory
and empirical work. J Finance 25:383–417

23. Fama EF (1991) Efficient markets: II. J Finance 46(5):1575–1618
24. Fama EF, French KR (1988) Dividend yields and expected stock

returns. J Financial Econ 22:3–27



360 Financial Economics, Return Predictability and Market Efficiency

25. Fama EF, French KR (1988) Permanent and temporary compo-
nents of stock prices. J Political Econ 96(2):246–273

26. Ferson WE, Harvey CR (1993) The risk and predictability of in-
ternational equity returns. Rev Financial Stud 6:527–566

27. Ferson WE, Sarkissian S, Simin TT (2003) Spurious regressions
in financial economics? J Finance 58(4):1393–1413

28. Gabaix X (2007) Linearity-generating processes: A modelling
tool yielding closed forms for asset prices. MIT (working paper)

29. Goetzman WN, Jorion P (1993) Testing the predictive power of
dividend yields. J Finance 48:663–679

30. GoetzmanWN, Jorion P (1995) A longer look at dividend yields.
J Bus 68:483–508

31. Goyal A, Welch I (2003) Predicting the equity premium with
dividend ratios. Manag Sci 49(5):639–654

32. Goyal A, Welch I (2006) A comprehensive look at the empirical
performance of the equity premium prediction. Rev Financial
Stud (forthcoming)

33. Hjalmarsson E (2004) On the predictability of global stock re-
turns, Yale University (unpublished paper)

34. Hodrick R (1992) Dividend yields and expected stock returns:
Alternative procedures for inference andmeasurement. Rev Fi-
nancial Stud 5:357–386

35. Inoue A, Kilian L (2004) In-sample or out-of-sample tests of
predictability: Which one should we use? Econom Rev 23:
371–402

36. Jensen MC (1978) Some anomalous evidence regarding mar-
ket efficiency. J Financial Econ 6:95–101

37. Kothari S, Shanken J (1992) Stock return variation and ex-
pected dividends: A time-series and cross-sectional analysis.
J Financial Econ 31:177–210

38. Lamont O (1998) Earnings and expected returns. J Finance
53:1563–87

39. Lettau M, Ludvigson SC (2001) Consumption, aggregate
wealth and expected stock returns. J Finance 56(3):815–849

40. Lettau M, Ludvigson SC (2005) Expected returns and expected
dividend growth. J Financial Econ 76:583–626

41. Lettau M, Van Nieuwerburgh S (2006) Reconciling the return
predictability evidence. Rev Financial Stud (forthcoming)

42. Lewellen JW (2004) Predicting returns with financial ratios.
J Financial Econ 74(2):209–235

43. Lustig H, Van Nieuwerburgh S (2005) Housing collateral, con-
sumption insurance and risk premia: An empirical perspective.
J Finance 60(3):1167–1219

44. Lustig H, Van Nieuwerburgh S (2006) Can housing collateral
explain long-run swings in asset returns? University of Cali-
fornia at Los Angeles and New York University (unpublished
manuscript)

45. Menzly L, Santos T, Veronesi P (2004) Understanding pre-
dictability. J Political Econ 112(1):1–47

46. Nelson CC, KimMJ (1993) Predictable stock returns: The role of
small sample bias. J Finance 43:641–661

47. Pastor L, Stambaugh RF (2001) The equity premium and struc-
tural breaks. J Finance 56(4):1207–1239

48. Pastor L, Stambaugh RF (2006) Predictive systems: Living with
imperfect predictors, graduate School of Business. University
of Chicago Journal of Finance (forthcoming)

49. Paye BS, Timmermann A (2006) Instability of return prediction
models. J Empir Finance 13(3):274–315

50. Piazzesi M, Schneider M, Tuzel S (2007) Housing, consumption,
and asset pricing. J Financial Econ 83(March):531–569

51. Polk C, Thompson S, Vuolteenaho T (2006) Cross-sectional
forecasts of the equity risk premium. J Financial Econ 81:
101–141

52. Poterba JM, Summers LH (1988) Mean reversion in stock re-
turns: Evidence and implications. J Financial Econ 22:27–60

53. Rozeff MS (1984) Dividend yields are equity risk premia. J Port-
folio Manag 49:141–160

54. Shiller RJ (1984) Stock prices and social dynamics. Brook Pap
Econ Act 2:457–498

55. Stambaugh RF (1999) Predictive regressions. J Financial Econ
54:375–421

56. Summers LH (1986) Does the stock market rationally reflect
fundamental values? J Finance 41:591–601

57. Torous W, Volkanov R, Yan S (2004) On predicting returns with
nearly integrated explanatory variables. J Bus 77:937–966

58. Valkanov R (2003) Long-horizon regressions: Theoretical re-
sults and applications. J Financial Econ 68:201–232

59. van Binsbergen J, Koijen RS (2007) Predictive regressions:
A present-value approach. Duke University (working paper)

60. Viceira L (1996) Testing for structural change in the pre-
dictability of asset returns. Harvard University (unpublished
manuscript)

61. Vuolteenaho T (2000) Understanding the aggregate book-
market ratio and its implications to current equity-premium
expectations. Harvard University (unpublished paper)

Books and Reviews
Campbell JY, Lo AW, MacKinlay C (1997) The Econometrics of Fi-

nancial Markets. Princeton University Press, Princeton
Cochrane JH (2005) Asset Pricing. Princeton University Press,

Princeton, NJ
Malkiel BG (2004) A Random Walk Down Wall Street. W.W. Norton,

New York



Financial Economics, The Cross-Section of Stock Returns and the Fama-French Three Factor Model 361

Financial Economics, The
Cross-Section of Stock Returns and
the Fama-French Three Factor Model
RALITSA PETKOVA
Mays Business School, Texas A&M University,
College Station, USA

Article Outline

Glossary
Definition of the Subject
Introduction
The Fama–French Model

as a Linear Beta Pricing Model
Explaining the Performance of the Fama–French Model:

A Risk-Based Interpretation
Other Risk-Based Interpretations
Future Directions
Bibliography

Glossary

Market capitalization Market capitalization is a measure
of the size of a public company. It is equal to the share
price times the number of shares outstanding. Small
stocks have small market capitalizations, while large
stocks have large market capitalizations.

Book-to-market ratio A ratio used to compare a com-
pany’s book value to its market capitalization value. It
is calculated by dividing the latest book value by the
latest market value of the company.

Value stocks Value stocks tend to trade at lower prices
relative to fundamentals like dividends, earnings, sales
and others. These stocks are considered undervalued
by value investors. Value stocks usually have high div-
idend yields, and high book-to-market ratios.

Growth stocks Growth stocks tend to trade at higher
prices relative to fundamentals like dividends, earn-
ings, sales and others. Growth stocks usually do not
pay dividends and have low book-to-market ratios.

Market beta The market beta is a measure of the system-
atic risk of a security in comparison to the market as
a whole. It measures the tendency of the security re-
turn to respond to market movements.

Capital asset pricing model (CAPM) The CAPM de-
scribes the relationship between risk and expected
return and it is used in the pricing of risky securities.
According to the CAPM, the expected return of a se-
curity equals the rate on a risk-free security plus a risk
premium that increases in the security’s market beta.

Definition of the Subject

Different stocks have different expected rates of return and
many asset pricing models have been developed to un-
derstand why this is the case. According to such mod-
els, different assets earn different average returns because
they differ in their exposures to systematic risk factors in
the economy. Fama and French [12] derive a model in
which the systematic risk factors are the market index,
and two portfolios related to the size of a company, and
its ratio of book value to market value (book-to-market).
The size and book-to-market factors are empirically moti-
vated by the observation that small stocks and stocks with
high book-to-market ratios (value stocks) earn higher av-
erage returns than justified by their exposures to market
risk (beta) alone. These observations suggest that size and
book-to-market may be proxies for exposures to sources
of systematic risk different from the market return.

Introduction

An important class of asset pricing models in finance are
linear beta models. They assume that the expected return
of an asset in excess of the risk-free rate is a linear function
of exposures to systematic sources of risk. Usually, the as-
set’s exposures to common sources of risk in the economy
are referred to as betas. In general, linear beta models as-
sume the following form for the unconditional expected
excess return on assets:

E(Ri ) D �Mˇi;M C
X

�Kˇi;K ; for all i (1)

where E(Ri ) is the expected excess return of asset i, �M
is the market risk premium or the price for bearing mar-
ket risk, and �K is the price of risk for factor K . The
model stated above implies that exposures to systematic
sources of risk are the only determinants of expected re-
turns. Thus, assets with high betas earn higher expected
returns. The betas are the slope coefficients from the fol-
lowing return-generating process:

Ri;t D ˛i Cˇi;MRM;t C
X

ˇi;KKt C"i;t; for all i (2)

where Ri;t is the return on asset i in excess of the risk-free
rate at the end of period t, RM;t is the excess return on
the market portfolio at the end of period t, and Kt is the
realization for factor K at the end of period t.

One approach of selecting the pervasive risk factors is
based on empirical evidence. For example, many empiri-
cal studies document that small stocks have higher aver-
age returns than large stocks, and value stock have higher
average returns than growth stocks (see [12] for a review).
The differences in average returns of these classes of stocks
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are statistically and economically significant. If the market
sensitivities of small and value stocks were high then their
high average returns would be consistent with the Capi-
tal Asset Pricing Model (CAPM), which predicts that the
market beta is the only determinant of average returns.
However, the patterns in returns for these stocks cannot
be explained by the CAPM.

In a series of papers, Fama and French [12,13,14] show
that a three-factor model performs very well at captur-
ing the size and value effects in average stock returns. The
three factors are the excess return on the market portfolio,
the return on a portfolio long in value stocks and short in
growth stocks, and the return on a portfolio long in small
stocks and short in large stocks.

The impressive performance of the Fama–French
three-factor model has spurred an enthusiastic debate in
the finance literature over what underlying economic in-
terpretation to give to the size and book- to-market fac-
tors. One side of the debate favors a risk-based explana-
tion and contends that these factors reflect systematic risks
that the static CAPM has failed to capture. For example,
if the return distributions of different assets change over
time (i. e., expected returns, variances, correlation), then
the investment opportunity set available to investors varies
over time as well. If individual assets covary with variables
that track this variation then the expected returns of these
assets will reflect that. Fama and French argue that the fac-
tors in their model proxy for such variables.

Another side of the debate favors a non-risk explana-
tion. For example, Lakonishok, Shleifer, and Vishny [22]
argue that the book-to-market effect arises since investors
over-extrapolate past earnings growth into the future and
overvalue companies that have performed well in the past.
Namely, investors tend to over-extrapolate recent perfor-
mance: they overvalue the firms with good recent perfor-
mance (growth) and undervalue the firms with bad recent
performance (value). When the market realizes its mis-
take, the prices of the former fall, while the prices of the lat-
ter rise. Therefore on average, growth firms tend to under-
perform value firms. Daniel and Titman [9] suggest that
stocks characteristics, rather than risks, are priced in the
cross-section of average returns. Other authors attribute
the success of the size and book-to-market factors to data-
snooping and other biases in the data [21,27]. Berk, Green,
and Naik [1] and Gomes, Kogan, and Zhang [17] derive
models in which problems in the measurement of market
beta may explain the Fama–French results.

This article focuses on the risk-based explanation be-
hind the success of the Fama–French three-factor model.
If the Fama–French factors are to be explained in the con-
text of a rational asset pricing model, then they should

be correlated with variables that characterize time varia-
tion in the investment opportunity set. The rest of the ar-
ticle is organized as follows. Section “The Fama–French
Model as a Linear Beta Pricing Model” discusses the set-
up of the Fama–French model and presents some empir-
ical tests of the model. Section “Explaining the Perfor-
mance of the Fama–French Model: A Risk-Based Inter-
pretation” argues that the Fama–French factors proxy for
fundamental variables that describe variation in the invest-
ment opportunity set over time, and presents empirical re-
sults. Section “Other Risk-Based Interpretations” presents
additional arguments for the relation between the Fama–
French factors and more fundamental sources of risk. Sec-
tion “Future Directions” summarizes and concludes.

The Fama–FrenchModel
as a Linear Beta PricingModel

Model Set-up

Fama and French [12] propose a three-factor linear beta
model to explain the empirical performance of small and
high book-to-market stocks. The intuition behind the fac-
tors they propose is the following.

If small firms earn higher average returns than large
firms as a compensation for risk, then the return differ-
ential between a portfolios of small firms and a portfolio
of large firms would mimic the factor related to size pro-
vided the two portfolios have similar exposures to other
sources of risk. Similarly, if value firms earn higher aver-
age returns than growth firms as a compensation for risk,
then the return differential between a portfolio of value
firms and a portfolio of growth firms, would mimic the
factor related to book-to-market provided the two port-
folios have similar exposure to other sources of risk. Fama
and French [12] construct two pervasive risk factors in this
way that are now commonly used in empirical studies. The
composition of these factors is explained below.

In June of each year independent sorts are used to al-
locate the NYSE, AMEX, and NASDAQ stocks to two size
groups and three book-to-market groups. Big stocks are
above the median market equity of NYSE firms and small
stocks are below. Similarly, low book-to-market stocks are
below the 30th percentile of book-to-market for NYSE
firms, medium book-to-market stocks are in the middle
40 percent, and high book-to-market stocks are in the top
30 percent. Size is market capitalization at the end of June.
Book-to-market is book equity at the last fiscal year end
of the prior calendar year divided by market cap as of 6
months before formation. Firms with negative book eq-
uity are not considered. At the end of June of each year, six
value-weight portfolios are formed, SL, SM, SH, BL, BM,
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and BH, as the intersections of the size and book-to-mar-
ket groups. For example, SL is the value-weight return on
the portfolio of stocks that are below the NYSE median in
size and in the bottom 30 percent of book-to-market. The
portfolios are rebalanced annually. SMB in each period is
the difference between the equal-weight averages of the re-
turns on the three small stock portfolios and the three big
stock portfolios, constructed to be neutral with respect to
book-to-market:

SMB D (SLC SM C SH)/3� (BLC BM C BH)/3 : (3)

Similarly, HML in each period is the difference be-
tween the return on a portfolio of high book-to-market
stocks and the return on a portfolio of low book-to-market
stocks, constructed to be neutral with respect to size:

HML D (SH C BH)/2 � (SL C BL)/2 : (4)

Therefore, the Fama–French three-factor linear model
implies that:

E(Ri ) D �Mˇi;MC�SMBˇi;SMBC�HMLˇi;HML; for all i
(5)

where E(Ri ) is the excess return of asset i, �M is themarket
risk premium, � SMB is the price of risk for the size factor,
and �HML is the price of risk for the book-to-market fac-
tor. The betas are the slope coefficients from the following
return-generating process:

Ri;t D ˛i C ˇi;MRM;t C ˇi;SMBRSMB;t

C ˇi;HMLRHML;t C "i;t; for all i (6)

where Ri;t is the return on asset i in excess of the risk-free
rate at the end of period t, RM;t is the excess return on the
market portfolio at the end of period t, RSMB;t is the return
on the SMB portfolio at the end of period t, and RHML;t is
the return on theHML portfolio at the end of period t.

Testing the Fama–French Model and Results

The return-generating process is Eq. (6) applies to the ex-
cess return of any asset. The Fama–French model is usu-
ally tested on a set of portfolios sorted by book-to-market
and size. Similarly to the construction of HML and SMB,
25 value-weighted portfolios are formed as the intersec-
tions of five size and five book-to-market groups. These
25 portfolios are the test assets used most often in test-
ing competing asset-pricing models. These assets repre-
sent one of the most challenging set of portfolios in the
asset pricing literature.

In this article, monthly data for the period from July of
1963 to December of 2001 is used. The returns on themar-
ket portfolio, the risk-free rate, HML, and SMB are taken
from Ken French’s web site, as well as the returns on 25
portfolios sorted by size and book-to-market.

To test the Fama–French specification in Eq. (5), the
Fama–MacBeth [15] cross-sectional method can be used.
In the first pass of this method, a multiple time-series re-
gression as in (6) is estimated for each one of the 25 portfo-
lios mentioned above which provides estimates of the as-
sets’ betas with respect to the market return, and the size
and book-to-market factors.

Table 1 reports the estimates of the factor loadings
computed in the first-pass time-series regression (6) for
each portfolio. The table also present joint tests of the sig-
nificance of the corresponding loadings, computed from
a seemingly unrelated regressions (SUR) system. This is
done in order to show that the Fama–French factors are
relevant in the sense that the 25 portfolios load signifi-
cantly on them.

The results from Table 1 reveal that within each size
quintile, the loadings of the portfolios with respect toHML
increase monotonically with book-to-market. Within each
size group, portfolios in the lowest book-to-market quin-
tile (growth) have negative betas with respect to HML,
while portfolios in the highest book-to-market quintile
(value) have positive betas with respect to HML. Further,
within each book-to-market quintile, the loadings of the
portfolios with respect to SMB decrease monotonically
with size. Within each book-to-market group, portfolios
in the lowest size quintile (small) have positive betas with
respect to SMB, while portfolios in the highest size quin-
tile (large) have negative betas with respect to SMB. The
table shows that small and large portfolios, and value and
growth portfolios have similar market betas.

Note that only six of the 25 intercepts in Table 1 are
significant (although the intercepts are jointly significant).
The large R-square statistics show that the excess returns
of the 25 portfolios are explained well by the three-factor
model. Furthermore the large t-statistics on the size and
book-to-market betas show that these factors contribute
significantly to the explanatory power of the model.

The second step of the Fama–MacBeth procedure in-
volves relating the average excess returns of the 25 port-
folios to their exposures to the risk factors in the model.
More specifically, the following cross-sectional relation is
estimated

Ri;t D �0C�Mb̌i;M C(�HML)b̌i;HMLC(�SMB)b̌i;SMB

C ei;t : (7)
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Financial Economics, The Cross-Section of Stock Returns and the Fama-French Three Factor Model, Table 1
Loadings on the Fama–French Factors from Time-Series Regressions
This table reports loadings on the excess market return, RM, and the Fama–French factors RHML and RSMB computed in time-series
regressions for 25 portfolios sorted by size and book-to-market. The corresponding t-statistics are also reported and are corrected
for autocorrelation and heteroscedasticity using the Newey–West estimator with five lags. The sample period is from July 1963 to
December 2001. The intercepts are in percentage form. The last column reports F-statistics and their corresponding p-values from
an SUR system, testing the joint significance of the corresponding loadings. The p-values are in percentage form. R2s from each
time-series regression are reported in percentage form

Regression: Ri;t D ˛i C ˇi;MRM;t C ˇi;HMLRHML;t C ˇi;SMBRSMB;t C "i;t

Low 2 3 4 High Low 2 3 4 High
˛ t˛ F

Small �0.38 0.01 0.04 0.18 0.12 �3.40 0.18 0.56 2.84 1.91 2.96
2 �0.17 �0.10 0.08 0.08 �0.00 �2.25 �1.45 1.15 1.28 �0.01 0.01
3 �0.07 �0.00 �0.09 0.01 0.00 �1.03 �0.03 �1.26 0.17 0.06
4 0.16 0.21 �0.08 0.04 �0.05 1.67 �2.27 �0.99 0.61 �0.54
Large 0.21 �0.04 �0.02 �0.09 �0.21 3.25 �0.53 �0.27 �1.29 �2.36

ˇM tˇM F
Small 1.04 0.96 0.93 0.92 0.98 44.38 39.40 50.88 46.60 43.39 > 100
2 1.11 1.03 1.00 0.99 1.08 48.84 45.42 46.47 60.69 52.11 < 0.01
3 1.09 1.07 1.03 1.01 1.10 52.59 38.53 32.93 52.70 38.97
4 1.05 1.11 1.08 1.03 1.17 46.03 36.33 36.86 41.15 36.74
Large 0.96 1.04 0.99 1.01 1.04 45.08 49.22 36.71 46.18 31.59

ˇHML tˇHML F
Small �0.31 0.09 0.31 0.47 0.69 �5.86 1.79 9.62 14.97 17.10 > 100
2 �0.38 0.18 0.43 0.59 0.76 �8.52 2.96 7.36 13.97 23.28 < 0.01
3 �0.43 0.22 0.52 0.67 0.82 �14.90 3.10 7.39 10.58 15.94
4 �0.45 0.26 0.51 0.61 0.83 �10.55 3.42 7.43 11.92 16.07
Large �0.38 0.14 0.27 0.64 0.85 �10.47 2.58 5.65 11.82 20.56

ˇ SMB tˇSMB F
Small 1.41 1.33 1.12 1.04 1.09 36.39 24.68 36.50 24.34 25.40 > 100
2 1.00 0.89 0.75 0.70 0.82 27.61 18.51 15.90 25.31 25.68 < 0.01
3 0.72 0.51 0.44 0.38 0.53 24.97 7.68 6.81 8.28 8.87
4 0.37 0.20 0.16 0.20 0.26 9.26 3.42 2.64 6.70 4.22
Large �0.26 �0.24 �0.24 �0.22 �0.08 �9.25 �6.92 �6.12 �6.81 �2.11

R2

92.61 94.32 94.89 94.51 94.58
95.16 93.99 93.56 93.85 94.62
94.88 90.22 89.49 89.69 90.31
93.52 88.31 87.65 88.41 85.77
93.35 89.79 84.32 87.39 80.60

The b̌ terms are the independent variables in the re-
gression, while the average excess returns of the assets are
the dependent variables. If loadings with respect to the
Fama–French factors are important determinants of aver-
age returns, then there should be a significant price of risk
associated with the factors.

Since the betas are estimated from the time-series re-
gression in (6), they represent generated regressors in
(7). This is the classical errors-in-variables problem, aris-
ing from the two-pass nature of this approach. Following

Shanken [33], a correction procedure can be used that ac-
counts for the errors-in-variables problem. Shanken’s cor-
rection is designed to adjust for the overstated precision
of the Fama–MacBeth standard errors. It assumes that the
error terms from the time-series regression are indepen-
dently and identically distributed over time, conditional
on the time series of observations for the risk factors. The
adjustment also assumes that the risk factors are generated
by a stationary process. Jagannathan andWang [19] argue
that if the error terms are heteroscedastic, then the Fama–
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Financial Economics, The Cross-Section of Stock Returns and the
Fama-French Three Factor Model, Table 2
Cross-Sectional Regressions with the Fama–French Factor
Loadings
This table presents Fama–MacBeth cross-sectional regressions
using the average excess returns on 25 portfolios sorted by
book-to-market and size. The full-sample factor loadings, which
are the independent variables in the regressions, are computed
in one multiple time-series regression. The coefficients are ex-
pressed as percentage per month. The Adjusted R2 follows Ja-
gannathan and Wang [18] and is reported in percentage form.
The first set of t-statistics, indicated by FM t-stat, stands for
the Fama–MacBeth estimate. The second set, indicated by SH
t-stat, adjusts for errors-in-variables and follows Shanken [33].
The sample period is from July 1963 to December 2001

The Fama–French Three-Factor Model
�0 �M �HML � SMB Adj. R2

Estimate 1.15 �0.65 0.44 0.16 71.00
FM t-stat 3.30 �1.60 3.09 1.04
SH t-stat 3.19 �1.55 3.07 1.00

MacBeth procedure does not necessarily result in smaller
standard errors of the cross-sectional coefficients. In light
of these two issues, researchers often report both unad-
justed and adjusted cross-sectional statistics.

Table 2 reports the estimates of the factor prices of
risk computed in the second-pass cross-sectional re-
gression (7). The table also presents the t-statistics for
the coefficients, adjusted for errors-in-variables following
Shanken [33]. The table shows that the market beta is not
an important factor in the cross-section of returns sorted
by size and book-to-market.1 Further, the table reveals
that loadings on HML represent a significant factor in the
cross-section of the 25 portfolios, even after correcting for
the sampling error in the loadings. Loadings on SMB do
not appear to be significant in the cross-section of portfo-
lio returns for this time period. The large R-square of 0.71
shows that the loadings from the Fama–French model ex-
plain a significant portion of the cross-sectional variation
in the average returns of these portfolios.

It is also helpful to examine the performance of the
model visually. This is done by plotting the fitted expected
return of each portfolio against its realized average return
in Fig. 1. The fitted expected return is computed using the
estimated parameter values from the Fama–French model
specification. The realized average return is the time-series
average of the portfolio return. If the fitted expected return

1The estimate of the market risk premium tends to be negative.
This result is consistent with previous results reported in the litera-
ture. Fama and French [11], Jagannathan and Wang [18], and Lettau
and Ludvigson [24] report negative estimates for the market risk pre-
mium, using monthly or quarterly data.

Financial Economics, The Cross-Section of Stock Returns and the
Fama-French Three Factor Model, Figure 1
Fitted Expected Returns vs. Average Realized Returns for
1963:07-2001:12.
This figure shows realized average returns (%) on the horizon-
tal axis and fitted expected returns (%) on the vertical axis for 25
size and book-to-market sorted portfolios. Each two-digit num-
ber represents a separate portfolio. The first digit refers to the
size quintile (1 being the smallest and 5 the largest), while the
second digit refers to the book-to-market quintile (1 being the
lowest and 5 the highest). For each portfolio, the realized aver-
age return is the time-series average of the portfolio return and
the fitted expected return is the fitted value for the expected re-
turn from the corresponding model. The straight line is the 45-
degree line from the origin

and the realized average return for each portfolio are the
same, then they should lie on a 45-degree line through the
origin.

Figure 1 shows the fitted versus realized returns for the
25 portfolios in two different models for the period from
July of 1963 to December of 2001. Each two-digit num-
ber represents a separate portfolio. The first digit refers to
the size quintile of the portfolio (1 being the smallest and
5 the biggest), while the second digit refers to the book-
to-market quintile (1 being the lowest and 5 the highest).
For example, portfolio 15 has the highest book-to-market
value among the portfolios in the smallest size quintile. In
other words, it is the smallest value portfolio.

It can be seen form the graph that the model goes
a long way toward explaining the value effect: in general,
the fitted expected returns on value portfolios (bigger sec-
ond digit) are higher than the fitted expected returns on
growth portfolios (lower second digit). This is consistent
with the data on realized average returns for these portfo-
lios. By inspection of Fig. 1, a few portfolios stand out as
problematic for the FF model, in terms of distance from
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the 45-degree line, namely the growth portfolios within
the smallest and largest size quintiles (11, 41, and 51) and
the value portfolios within the largest size quintiles (45, 54,
and 55).

In summary, the Fama–French model performs re-
markably well at explaining the average return difference
between small and large, and value and growth portfolios.

The natural question that arises is what drives the su-
perior performance of the Fama–Frenchmodel in explain-
ing average stock returns. One possible explanation is that
the Fama–French factorsHML and SMB proxy for sources
of risk not captured by the return on the market portfo-
lio. This explanation is consistent with a multifactor asset
pricing model like the Intertemporal Capital Asset Pricing
Model (ICAPM), which states that if investment oppor-
tunities change over time, then variables other than the
market return will be important factors driving stock re-
turns. Therefore, one possible interpretation of the HML
and SMB portfolios is that they proxy for variables that
describe how investment opportunities change over time.
The following sections examine the ICAPM explanation
behind the performance of the Fama–French model.

Explaining the Performance of the Fama–French
Model: A Risk-Based Interpretation

The ICAPM Framework

The analysis in this paper assumes that asset returns are
governed by the discrete-time version of the ICAPM of
Merton [29]. According to the ICAPM, if investment op-
portunities change over time, then assets’ exposures to
these changes are important determinants of average re-
turns in addition to the market beta. Campbell [3] devel-
ops a framework to model changes in the investment op-
portunity set as innovations in state variables that capture
uncertainty about investment opportunities in the future.
Therefore, the model for the unconditional expected ex-
cess returns on assets becomes

E(Ri ) D �Mˇi;M C
X

(�uK )ˇi;uK ; for all i (8)

where E(Ri ) is the excess return of asset i, �M is the market
risk premium, and �uK is the price of risk for innovations
in state variableK . The betas are the slope coefficients from
the following return-generating process:

Ri;t D ˛iCˇi;MRM;tC
X

(ˇi;uK )uKt C"i;t; for all i (9)

where Ri;t is the return on asset i in excess of the risk-free
rate at the end of period t, RM;t is the excess return on
the market portfolio at the end of period t, and uKt is the
innovation to state variable K at the end of period t. The

innovation is the unexpected component of the variable.
According to the asset-pricing model, only the unexpected
component of the state variable should command a risk
premium. Note that the innovations to the state variables
are contemporaneous to the excess market returns. This
equation captures the idea that the market portfolio and
the innovations to the state variables are the relevant risk
factors.

It is important to specify a process for the time-se-
ries dynamics of the state variables in the model. A vector
autoregressive (VAR) approach, for example, specifies the
excessmarket return as the first element of a state vector zt.
The other elements of zt are state variables that proxy for
changes in the investment opportunity set. The assump-
tion is that the demeaned vector zt follows a first-order
VAR:

zt D Azt�1 C ut : (10)

The residuals in the vector ut are the innovations terms
which are the risk factors in Eq. (2). These innovations are
risk factors since they represent the surprise components
of the state variables that proxy for changes in the invest-
ment opportunity set.

The State Variables of Interest

For the empirical implementation of the model described
above, it is necessary to specify the identity of the state
variables. Petkova [31] chooses a set of state variables to
model the following aspects of the investment opportunity
set: the yield curve and the conditional distribution of asset
returns. In particular, she chooses the short-term Treasury
bill, the term spread, the aggregate dividend yield, and the
default spread.

The choice of these state variables is motivated as fol-
lows. The ICAPM dictates that the yield curve is an impor-
tant part of the investment opportunity set. Furthermore,
Long [28] points out that the yield curve is important in an
economy with a bond market. Therefore, the short-term
Treasury bill yield (RF) and the term spread (TERM) are
good candidates that capture variations in the level and the
slope of the yield curve. Litterman and Scheinkman [26]
show that the two most important factors driving the term
structure of interest rates are its level and its slope.

In addition to the yield curve, the conditional distribu-
tion of asset returns is a relevant part of the investment op-
portunity set facing investors in the ICAPM world. There
is growing evidence that the conditional distribution of
asset returns, as characterized by its mean and variance,
changes over time. The time-series literature has identified
variables that proxy for variation in the mean and variance
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of returns. The aggregate dividend yield (DIV), the de-
fault spread (DEF), and interest rates are among the most
common.2

The variables described above are good candidates for
state variable within the ICAPM. Merton [29] states that
stochastic interest rates are important for changing in-
vestment opportunities. In addition, the default spread,
the dividend yield, and interest rate variables have been
used as proxies for time-varying risk premia under chang-
ing investment opportunities. Therefore, all these variables
are likely to capture the hedging concerns of investors re-
lated the changes in interest rates and to variations in risk
premia.

As argued in the previous sections of this article, two
other variables proposed as candidates for state variables
within the ICAPM are the returns on the HML and SMB
portfolios. Fama and French [12] show that these factors
capture common variation in portfolio returns that is in-
dependent of the market and that carries a different risk
premium. The goal of the following section is to show that
the FF factors proxy for the state variables described above
that have been shown to track time-variation in themarket
risk premium and the yield curve.

Econometric Approach

First, a vector autoregressive (VAR) process for the vector
of state variables is specified. The first element of the vector
is the excess return on themarket, while the other elements
are DIV , TERM, DEF, RF, RHML, and RSMB, respectively.
For convenience, all variables in the state vector have been
demeaned. The first-order VAR is as follows:

8
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where ut represents a vector of innovations for each ele-
ment in the state vector. From ut six surprise series can be
extracted, corresponding to the dividend yield, the term
spread, the default spread, the one-month T-bill yield, and
the FF factors. They are denoted as follows: uDIV , uTERM ,
uDEF , uRF , uHML, and uSMB, respectively. This VAR rep-

2The following is only a partial list of papers that document time-
variation in the excess market return and the variables they use:
Campbell [2], term spread; Campbell and Shiller [4], dividend yield;
Fama and Schwert [16], T-bill rate; Fama and French [10], default
spread.

resents a joint specification of the dynamics of all candi-
date state variables within the ICAPM. This specification
treats the FF factors as potential candidates for state vari-
ables that command separate risk premia from the other
variables.

The innovations derived from the VAR model are
risk factors in addition to the excess return of the mar-
ket portfolio. Asset’s exposures to these risk factors are
important determinants of average returns according to
the ICAPM. To test the ICAPM specification, the Fama–
MacBeth [15] cross-sectional method can be used as pre-
viously discussed. In the first pass of this method, a multi-
ple time-series regression is specified which provides esti-
mates of the assets’ loadings with respect to the market re-
turn and the innovations in the state variables. More pre-
cisely, the following time-series regression is examined for
each asset:

Ri;t D ˛i Cˇi;MRM;tC(ˇi;ûDIV )ûDIV
t C(ˇi;ûTERM)û

TERM
t

C (ˇi;ûDEF)ûDEFt C (ˇi;ûRF )ûRFt C (ˇi;ûHML)ûHML
t

C (ˇi;û SMB )ûSMB
t C "i;t; for all i :

(12)

The û-terms represent the estimated surprises in the state
variables. Note that the innovations terms are generated
regressors and they appear on the right-hand side of the
equation. However, as pointed out by Pagan [30], the OLS
estimates of the parameters’ standard errors will still be
correct if the generated regressor represents the unantic-
ipated part of a certain variable. On the other hand, if the
û-terms are only noisy proxies for the true surprises in the
state variables, then the estimates of the factor loadings in
the above regression will be biased downwards. This will
likely bias the results against finding a relation between the
innovations and asset returns.

The second step of the Fama–MacBeth procedure in-
volves relating the average excess returns of all assets to
their exposures to the risk factors in the model. Therefore,
the following cross-sectional relation applies

Ri;t D �0 C �Mb̌i;M C (�ûDIV)b̌i;ûDIV C (�ûTERM)b̌i;ûTERM

C (�ûDEF)b̌i;ûDEF C (�ûRF )b̌i;ûRF C (�ûHML)b̌i;ûHML

C (�û SMB )b̌i;û SMB C ei;t; for all t :
(13)

Data, Time-Series Analysis, and Results

In this section, monthly data for the period from July of
1963 to December of 2001 is used. The state variables in
the context of the ICAPM are the dividend yield of the
value-weightedmarket index (computed as the sumof div-
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idends over the last 12 months, divided by the level of
the index), the difference between the yield of a 10-year
and a 1-year government bond (term spread), the differ-
ence between the yield of a long-term corporate Baa bond
and a long-term government bond (default spread), and
the one-month Treasury-bill yield. Data on bond yields
is taken from the FRED® database of the Federal Reserve
Bank of St. Louis. The T-bill yield and the term spread are
used to measure the level and the slope of the yield curve,
respectively.

VAR Estimation The state variables are the FF factors
and the four predictive variables described above. All of
them are included in a first-order VAR system. Camp-
bell [3] emphasizes that it is hard to interpret estimation
results for a VAR factor model unless the factors are or-
thogonalized and scaled in some way. In his paper the in-
novations to the state variables are orthogonal to the excess
market return and to labor income. Following Campbell,
the VAR system in Eq. (4) is triangularized in a similar
way: the innovation in the excess market return is unaf-
fected, the orthogonalized innovation in DIV is the com-
ponent of the original DIV innovation orthogonal to the
excess market return, and so on. The orthogonalized in-
novation to DIV is a change in the dividend/price ratio
with no change in the market return, therefore it can be
interpreted as a shock to the dividend. Similarly, shocks
to the term spread, the default spread, the short-term rate,
and the FF factors are orthogonal to the contemporaneous
stock market return. As in Campbell [3], the innovations
are scaled to have the same variance as the innovation in
the excess market return.

It is interesting to note that the returns on the FF
factors are very highly correlated with their respective
innovation series. For example, the correlation between
RHML;t and ûHML

t is 0.90, while the correlation between
RSMB;t and ûSMB

t is 0.92. Therefore, the returns on the
HML and SMB portfolios are good proxies for the inno-
vations associated with those variables.

Relation Between RHML and RSMB and the VAR Innova-
tions As a first step towards testing whether the FF fac-
tors proxy for innovations in state variables that track in-
vestment opportunities, the joint distribution of RHML and
RSMB and innovations to DIV , TERM, DEF, and RF is ex-
amined. The following time-series regression is analyzed

ût D c0 C c1RM;t C c2RHML;t C c3RSMB;t C "t (14)

for each series of innovations in the state variables. The re-
sults for these regressions are presented in Table 3, with

Financial Economics, The Cross-Section of Stock Returns and the
Fama-French Three Factor Model, Table 3
Time-Series Regressions Showing the Contemporaneous Rela-
tions Between Innovations in State Variables and the Fama–
French Factors
This table presents time-series regressions of innovations in the
dividend yield (ûDIVt ), term spread (ûTERMt ), default spread (ûDEFt ),
and one-month T-bill yield (ûRFt ) on the excessmarket return, RM,
and the Fama–French factors RHML and RSMB. The innovations to
the state variables are computed in a VAR system. The t-statistics
are below the coefficients and are corrected for heteroscedas-
ticity and autocorrelation using the Newey–West estimator with
five lags. The Adjusted R2 is reported in percentage form. The
sample period is from July 1963 to December 2001

Regression: ût D c0 C c1RM;t C c2RHML;t C c3RSMB;t C "t

Dep. Variable c0 c1 c2 c3 Adj. R2

ûDIVt 0.00 �0.08 �0.30 �0.01 3.00
0.85 �0.70 �2.43 �0.09

ûTERMt �0.00 0.06 0.24 0.03 2.00
�0.56 0.75 2.30 0.59

ûDEFt �0.00 0.07 0.17 �0.12 2.00
�0.38 1.11 2.10 �1.92

ûRFt 0.00 �0.04 �0.13 0.01 0.00
0.36 �0.51 �1.36 0.14

the corresponding t-statistics, below the coefficients, cor-
rected for heteroscedasticity and autocorrelation. Innova-
tions in the dividend yield, ûDIV

t , covary negatively and
significantly with the return on HML. In addition, ûTERMt
covaries positively and significantly with the HML return.
These results are robust to the presence of the market fac-
tor in the regression. The return on the HML portfolio
covaries positively and significantly with ûDEF

t , while the
return on the SMB factor covaries negatively with ûDEF

t
(the corresponding t-statistic is marginally significant).
The last regression in Table 3 indicates that the FF factors
are not significant determinants of innovations in the T-
bill yield. The results in the table remain unchanged if the
independent variables in the equation above are the inno-
vations to RHML and RSMB derived from the VAR system.
The R-squares in the regressions reported in Table 3 are
rather low. This does not imply, however, that the innova-
tions in the state variables cannot potentially price assets
as well as the FF factors. It could be the case that only the
information in the FF factors correlated with the state vari-
ables is relevant for the pricing of risky assets. A similar
point is made by Vassalou [34].

As pointed out by FF [10], the values of the term spread
signal that expected market returns are low during expan-
sions and high during recessions. In addition, FF docu-
ment that the term spread very closely tracks the short-
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term fluctuations in the business cycle. Therefore, positive
shocks to the term premium are associated with bad times
in terms of business conditions, while negative shocks are
associated with good times. In light of the results docu-
mented by Petkova and Zhang [32], that value stocks are
riskier than growth stocks in bad times and less risky dur-
ing good times, the relation between HML and shocks to
the term spread seems natural.

Another interpretation of the relation between shocks
to the term spread and theHML portfolio is in the context
of cash flow maturities of assets. This point is discussed by
Cornell [8] and Campbell and Vuolteenaho [5]. The argu-
ment is that growth stocks are high-duration assets, which
makes them similar to long-term bonds andmore sensitive
to innovations in the long end of the term structure. Simi-
larly, value stocks have lower duration than growth stocks,
which makes them similar to short-term bonds and more
sensitive to shocks to the short end of the yield curve.

Chan and Chen [6] have argued that small firms exam-
ined in the literature tend to be marginal firms, that is, they
generally have lost market value due to poor performance,
they are likely to have high financial leverage and cash flow
problems, and they are less likely to survive poor economic
conditions. In light of this argument, it is reasonable to as-
sume that small firms will be more sensitive to news about
the state of the business cycle. Therefore, it is puzzling that
I find no significant relation between SMB and surprises to
the term spread. Innovations in the term spread seem to be
mostly related to HML. This observation suggests that the
HML portfolio might represent risk related to cash flow
maturity, captured by unexpected movements in the slope
of the term structure.

Innovations in default spread, uDEF
t , stand for changes

in forecasts about expected market returns and changes
in forecasts about default spread. FF [10] show that the
default premium tracks time variation in expected re-
turns that tends to persist beyond the short-term fluctu-
ations in the business cycle. A possible explanation for the
negative relation between SMB and shocks to the default
spread could be that bigger stocks are able to track long-
run trends in the business cycle better than the smaller
stocks. The result that HML is also related to shocks in
the default spread is consistent with the interpretation of
HML as a measure of distress risk. The distress risk in-
terpretation of the book-to-market effect is advocated by
FF [11,12,13,14] and Chen and Zhang [7], among others.

In summary, the empirical literature has documented
that both value and small stocks tend to be under distress,
with high leverage and cash flow uncertainty. The results
in this study suggest that the book-to-market factor might
be related to asset duration risk, measured by the slope of

the term structure, while the size factor might be related to
asset distress risk, measured by the default premium.

It is reasonable to test whether the significant relation
between the state variables surprises and the FF factors
gives rise to the significant explanatory power ofHML and
SMB in the cross-section of returns. The next section ex-
amines whetherHML and SMB remain significant risk fac-
tors in the presence of innovations to the other state vari-
ables. The results from the cross-sectional regressions sug-
gest that HML and SMB lose their explanatory power for
the cross-section of returns once accounting for the other
variables. This supports an ICAPM explanation behind the
empirical success of the FF three-factor model.

Cross-Sectional Regressions

Incremental Explanatory Power of the Fama–French
Factors This section examines the pricing performance
of the full set of state variables considered before over
the period from July 1963 to December 2001. The full set
of state variables consists of the dividend yield, the term
spread, the default spread, the short-term T-bill yield, and
the FF factors. The innovations to these state variables de-
rived from a VAR system are risk factors in the ICAPM
model. The objective is to test whether an asset’s loadings
with respect to these risk factors are important determi-
nants of its average return.

The first specification is

Ri;t D �0 C �MKTb̌i;MKT C (�ûDIV)b̌i;ûDIV

C (�ûTERM)b̌i;ûTERM C (�ûDEF)b̌i;ûDEF

C (�ûRF )b̌i;ûRF C (�ûHML )b̌i;ûHML

C (�ûSMB)b̌i;ûSMB C ei;t ; (15)

where the b̌ terms stand for exposures to the correspond-
ing factor, while the � terms stand for the reward for bear-
ing the risk of that factor. The b̌ terms are the independent
variables in the regression, while the average excess returns
of the assets are the dependent variables. If loadings with
respect to innovations in a state variable are important de-
terminants of average returns, then there should be a sig-
nificant price of risk associated with that state variable.

The results are reported in Table 4. The table shows
that assets’ exposures to innovations in RHML and RSMB
are not significant variables in the cross-section in the
presence of betas with respect to surprises in the other
state variables. The corresponding t-statistics are 1.40 and
1.56, respectively, under the errors-in-variables correc-
tion. Therefore, based on the results presented in Table 4,
the hypothesis that innovations in the dividend yield, the
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Financial Economics, The Cross-Section of Stock Returns and the Fama-French Three Factor Model, Table 4
Cross-Sectional Regressions Showing the Incremental Explanatory Power of the Fama–French Factor Loadings
This table presents Fama–MacBeth cross-sectional regressions using the average excess returns on 25 portfolios sorted by book-
to-market and size. The full-sample factor loadings, which are the independent variables in the regressions, are computed in one
multiple time-series regression. The coefficients are expressed as percentage per month. The table presents results for the model
including the excess market return, RM , and innovations in the dividend yield, term spread, default spread, one-month T-bill yield,
and the Fama–French factors HML and SMB. The Adjusted R2 follows Jagannathan and Wang [18] and is reported in percentage
form. The first set of t-statistics, indicated by FM t-stat, stands for the Fama–MacBeth estimate. The second set, indicated by SH
t-stat, adjusts for errors-in-variables and follows Shanken [33]. The table examines the sample period from July 1963 to December
2001

The Model with Innovations in All State Variables
�0 �M �ûDIV �ûTERM �ûDEF �ûRF �ûHML �ûSMB Adj. R2

Estimate 1.11 –0.57 –0.83 3.87 0.37 –2.90 0.42 0.41 77.26
FM t-stat 3.29 –1.45 –0.94 3.53 0.42 –3.33 1.62 1.75
SH t-stat 2.36 –1.10 –0.69 2.56 0.31 –2.44 1.40 1.56

term spread, the default spread, and the short-term T-bill
span the information contained in the FF factors cannot
be rejected.

AModel Based on RM, and Innovations in DIV , TERM,
DEF, andRF This part examines separately the set of in-
novations in the variables associated with time-series pre-
dictability: the dividend yield, the term spread, the default
spread, and the short-term T-bill. The model specification
is as follows

Ri;t D ˛i C ˇi;MRM;t C (ˇi;ûDIV)ûDIV
t

C (ˇi;ûTERM)û
TERM
t C (ˇi;ûDEF)ûDEFt

C (ˇi;ûRF )ûRFt C "i;t; for all i (16)

Ri;t D�0 C �Mb̌i;M C (�ûDIV)b̌i;ûDIV C (�ûTERM)b̌i;ûTERM

C (�ûDEF)b̌i;ûDEF C (�ûRF )b̌i;ûRF C e; for all t
(17)

which corresponds to a model in which the relevant risk
factors are innovations to predictive variables. The objec-
tive is to compare the pricing performance of this model
with that of the Fama–French model for the cross-sec-
tion of returns sorted by book-to-market and size. The
specification is motivated by the previous observation that
HML and SMB do not add explanatory power to the
set of state variables that are associated with time-series
predictability.

Table 5 report the estimates of the factor loadings com-
puted in the first-pass time-series regressions defined in
Eq. (16). It also presents joint tests of the significance of
the corresponding loadings, computed from a SUR sys-
tem. This is done in order to show that the innovations
factors are relevant in the sense that the 25 portfolios load

significantly on them. A similar analysis was performed
on the Fama–French model in Sect. “The Fama–French
Model as a Linear Beta Pricing Model”.

An F-test implies that the 25 loadings on innovations
to the term spread are jointly significant, with the cor-
responding p-value being 0.47%. Furthermore, portfolios’
loadings on ûTERMt are related to book-to-market: within
each size quintile, the loadings increase monotonically
from lower to higher book-to-market quintiles. In fact,
the portfolios within the lowest book-to-market quintile
have negative sensitivities with respect to ûTERMt , while
the portfolios within the highest book-to-market quintile
have positive loadings on ûTERMt . This pattern resembles
very much the one observed in Table 1 for the loadings on
RHML.

Similarly, loadings on shocks to default spread are
jointly significant in Table 5, with the correspond-
ing p-value being 0.24%.Moreover, the slopes on ûDEF

t are
systematically related to size. Within each book-to-market
quintile, the loadings increase almost monotonically from
negative values for the smaller size quintiles to positive val-
ues for the larger size quintiles. This pattern closely resem-
bles the mirror image of the one observed in Table 1 for
the loadings on RSMB. The slopes on dividend yield and
T-bill innovations do not exhibit any systematic patterns
related to size or book-to-market. However, both of these
are jointly significant.

Note that the R2s in the time-series regressions with
the innovations factors in Table 5 are smaller than the
ones in the regressions with the FF factors in Table 1. This
indicates that potential errors-in-variables problems that
arise in measuring the factor loadings will be more seri-
ous in the case of the innovations terms. Therefore, the
results will be potentially biased against finding signifi-
cant factor loadings on the shocks to the predictive vari-
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Financial Economics, The Cross-Section of Stock Returns and the Fama-French Three Factor Model, Table 5
Loadings on RM, ûDIVt , ûTERMt , ûDEFt , and ûRFt from Time-Series Regressions
This table reports loadings on the excessmarket return, RM, and innovations in the dividend yield (ûDIVt ), term spread (ûTERMt ), default
spread (ûDEFt ), and short-term T-bill (ûRFt ) computed in time-series regressions for 25 portfolios sorted by size and book-to-market.
The corresponding t-statistics are also reported and are corrected for autocorrelation and heteroscedasticity using the Newey–West
estimator with five lags. The sample period is from July 1963 to December 2001. The last column reports F-statistics and their corre-
sponding p-values from an SUR system, testing the joint significance of the corresponding loadings. The p-values are in percentage
form. R2s from each time-series regression are reported in percentage form

Regression: Ri;t D ˛i C ˇi;MRM;t C ˇi;ûDIV û
DIV
t C ˇi;ûTERM û

TERM
t C ˇi;ûDEF û

DEF
t C ˇi;ûRF û

RF
t C "i;t

Low 2 3 4 High Low 2 3 4 High
ˇMKT tˇMKT F

Small 1.44 1.23 1.09 1.01 1.02 24.20 22.74 20.76 19.57 18.87 > 100
2 1.44 1.18 1.04 0.98 1.05 31.33 25.11 22.63 21.90 18.76 < 0.01
3 1.38 1.12 0.98 0.90 0.98 39.96 32.34 22.52 21.58 17.66
4 1.27 1.08 0.97 0.90 0.99 45.46 29.07 24.02 23.95 19.60
Large 1.01 0.95 0.85 0.78 0.78 42.69 36.55 26.89 20.47 15.34

ˇûDIV tˇûDIV
F

Small 4.75 0.43 –5.02 –5.61 –7.88 0.76 0.08 –0.89 –1.10 –1.44 2.33
2 3.38 –4.01 –7.66 –6.76 –6.51 0.76 –0.79 –1.55 –1.35 –1.09 0.02
3 7.45 –1.30 –5.91 –8.27 –9.18 2.34 –0.35 –1.16 –1.53 –1.36
4 8.65 –5.83 –6.17 –8.18 –11.81 2.90 –1.29 –1.21 –1.72 –2.04
Large –0.78 –3.49 –1.73 –9.69 –9.50 –0.29 –1.18 –0.47 –1.83 –1.49

ˇûTERM tˇûTERM
F

Small 1.51 1.04 1.69 2.82 8.68 0.26 0.26 0.47 0.79 2.24 1.89
2 –8.21 –2.73 –0.19 1.36 5.16 –1.87 –0.75 0.06 0.46 1.44 0.47
3 –6.34 –3.52 –1.72 2.08 4.39 –1.77 –1.17 –0.55 0.55 1.18
4 –0.73 –1.51 0.21 0.02 2.13 –0.26 –0.59 0.06 0.01 0.54
Large –5.98 –3.26 0.78 –0.90 2.90 –2.22 –1.37 0.31 –0.26 0.74

ˇûDEF tˇûDEF
F

Small –15.45 –14.54 –6.86 –4.79 –8.58 –2.27 –2.17 –1.39 –1.09 –1.68 1.99
2 –10.03 –5.90 –4.78 0.82 –2.20 –2.04 –1.62 –1.37 0.22 –0.49 0.24
3 –11.17 0.22 1.73 4.03 0.81 –2.75 0.08 0.49 1.15 0.18
4 –5.80 4.81 4.80 8.03 1.08 –2.10 1.92 1.44 2.50 0.25
Large –2.45 3.99 9.12 7.25 2.56 –0.96 1.91 3.85 1.91 0.63

ˇûRF tˇûRF
F

Small 4.07 –2.58 0.07 1.03 2.77 0.77 –0.50 0.01 0.22 0.56 1.76
2 –4.37 –5.20 –6.25 –4.57 0.97 –1.00 –1.19 –1.60 –1.16 0.20 1.08
3 –7.63 –4.40 –6.53 –4.08 0.71 –2.29 –1.38 –2.07 –1.09 0.15
4 –3.43 0.47 –2.04 –5.74 –3.71 –1.12 0.16 –0.69 –1.61 –0.90
Large –3.55 –0.59 4.81 –0.89 0.30 –1.14 –0.22 1.41 –0.25 0.06

R2

61.51 60.92 63.41 62.41 59.93
73.93 73.95 74.47 71.88 67.96
79.81 81.80 77.54 73.58 68.96
84.99 86.05 80.32 77.51 69.42
87.65 86.11 77.89 67.67 55.88

ables. Kan and Zhang [20] emphasize that checking the
joint significance of the assets’ factor loadings is an impor-
tant step in detecting useless factors in the cross-section of
returns.

Table 6 contains the results for Eq. (17) which corre-
spond to the second pass of the Fama–MacBeth method.
The results reveal that the explanatory power of this model
is very close to the one for the Fama–French model re-
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Financial Economics, The Cross-Section of Stock Returns and the
Fama-French Three Factor Model, Table 6
Cross-Sectional Regressions with Loadings on Innovations in
State Variables
This table presents Fama–MacBeth cross-sectional regressions
using the average excess returns on 25 portfolios sorted by
book-to-market and size. The full-sample factor loadings, which
are the independent variables in the regressions, are computed
in one multiple time-series regression. The coefficients are ex-
pressed as percentage per month. The Adjusted R2 follows Ja-
gannathan and Wang [18] and is reported in percentage form.
The first set of t-statistics, indicated by FM t-stat, stands for
the Fama–MacBeth estimate. The second set, indicated by SH
t-stat, adjusts for errors-in-variables and follows Shanken [33].
The sample period is from July 1963 to December 2001

The Model with RM and Innovations in DIV , TERM, DEF, and RF
�0 �M �ûDIV �ûTERM �ûDEF �ûRF Adj. R2

Estimate 0.64 –0.07 –1.39 4.89 –0.54 –3.22 77.00
FM t-stat 1.74 –0.16 –1.56 4.44 –0.58 –3.79
SH t-stat 1.08 –0.11 –0.99 2.79 –0.37 –2.40

ported previously in Table 2. Figure 2 plots the fitted ver-
sus the realized average returns from the model. It can be
seen form the graph that the model based on innovation
in predictive variables goes a long way toward explaining
the value effect: in general, the fitted expected returns on
value portfolios (bigger second digit) are higher than the
fitted expected returns on growth portfolios (lower second
digit). This is consistent with the data on realized average
returns for these portfolios. Further, the model with RM ,
ûDIV , ûTERM , ûDEF , and ûRF is more successful at pricing
the portfolios that are challenging for the Fama–French
model. The realized returns on growth portfolios within
the smallest and largest size groups and the value portfo-
lios within the largest size groups are brought closer to the
45-degree line under the model with the four innovations
factors.

In summary, this section has shown that the per-
formance of the model based on innovation in predic-
tive variables is very close to the performance of the
Fama–French model in the cross-section of average re-
turns sorted by size and book-to-market. This suggest that
the Fama–French factors HML and SMB might proxy for
fundamental state variables that describe variation in in-
vestment opportunities over time.

Other Risk-Based Interpretations

Liew and Vassalou [25] show that there is a relation be-
tween the Fama–French portfolios HML and SMB and
macroeconomic events. They find that not only in the
US but also in several other countries, the corresponding

Financial Economics, The Cross-Section of Stock Returns and the
Fama-French Three Factor Model, Figure 2
Fitted Expected Returns vs. Average Realized Returns for
1963:07-2001:12.
This figure shows realized average returns (%) on the horizon-
tal axis and fitted expected returns (%) on the vertical axis for 25
size and book-to-market sorted portfolios. Each two-digit num-
ber represents a separate portfolio. The first digit refers to the
size quintile (1 being the smallest and 5 the largest), while the
second digit refers to the book-to-market quintile (1 being the
lowest and 5 the highest). For each portfolio, the realized aver-
age return is the time-series average of the portfolio return and
the fitted expected return is the fitted value for the expected re-
turn from the corresponding model. The straight line is the 45-
degree line from the origin. The Model with the Excess Market
Return and Innovations in the Dividend Yield, Term Spread, De-
fault Spread, and Short-Term T-bill

HML and SMB portfolios contain information about fu-
ture GDP growth. Therefore, the authors conclude that
the size and book-to-market factors are related to future
macroeconomic growth. This evidence is consistent with
interpreting theHML and SMB factors as proxies for busi-
ness cycle risk.

Other studies try to relate the difference in average re-
turns between value and growth portfolios to the time-
varying nature of the riskiness of those portfolios. Namely,
if value stocks are riskier than growth stocks during bad
economic times and if the price of bearing risk is higher
during those times, then it follows that value stocks should
earn higher average returns than growth stocks. Lettau and
Ludvigson [24] document that HML is indeed sensitive to
bad news in bad macroeconomic times.

Petkova and Zhang [32] is another study that looks
are the time-varying risk of value and growth portfo-
lios. They find that the market risk of value stocks is
high in bad times when the expected premium for risk
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is high and it is low in good times when the expected
premium for risk is low. What might lead to this time-
varying of value and growth stocks? Zhang [35] suggest
that the reason might be irreversible investment. He notes
that firms with high book-to-market ratios on average will
have larger amounts of tangible capital. In addition, it is
more costly for firms to reduce than to expand capital.
In bad times, firms want to scale down, especially value
firms that are less productive than growth firms (Fama and
French [13]). Because scaling down is more difficult, value
firms are more adversely affected by economic downturns.
In good times, growth firms face less flexibility because
they tend to invest more. Expanding is less urgent for
value firms because their previously unproductive assets
have become more productive. In sum, costly reversibil-
ity causes value firms to have higher (lower) betas than
growth firms in bad (good) times and this contributes
to the return differential between these two classes of
stocks.

Future Directions

The Fama–French model states that asset returns are
driven by three market-wide factors: the excess return on
the market portfolio, and the returns on two portfolios re-
lated to size (SMB) and book-to-market (HML). TheHML
and SMB portfolios capture the empirical observation that
value firms earn higher average returns than growth firms,
and small firms earn higher average returns than large
firms. The Fama–Frenchmodel has been very successful at
explaining average stock returns, but the exact economic
interpretation of theHML and SMB portfolios has been an
issue of debate.

This article examines the risk-based explanation be-
hind the empirical success of the Fama–French model
and suggests that the value and size premia arise due
to differences in exposure to systematic sources of risk.
As mentioned in the introduction, several authors (e. g.,
Lakonishok, Shleifer, Vishny [22], La Porta, Lakonishok,
Shleifer, Vishny [23]), however, claim that the value pre-
mium results from irrationality on the side of investors.
Namely, investors tend to over-extrapolate recent stock
performance: they overvalue the stocks of growth firms
and undervalue the stocks of value firms. When the mar-
ket realizes its mistake, the prices of the former fall,
while the prices of the latter rise, resulting in the value
premium.

The Fama–French model provides a useful perfor-
mance benchmark relative to a set of market-wide factors.
The results in this article suggest that the Fama–French
factors proxy for systematic sources of risk that capture

time variation in investment opportunities. However, the
debate about the economic interpretation behind the size
and value premia is still not settled. Whether they arise as
a result of rational compensation for risk or irrational in-
vestor behavior is still a matter of controversy.
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Glossary

AR(k) An autoregressive process of order k; a time se-
ries model allowing for first order dependence; for in-
stance, an AR(1) model is written as yt D ˛C�1yt�1C
	t where ˛ and � are parameters, � is typically assumed
to be less than 1 in absolute value, and 	t is an innova-
tion term, often assumed to be Gaussian, independent,
and identically distributed over t.

ARCH(q) A special case of the GARCH(p, q) model (see
below) where p D 0.

Basis point A hundredth of one percent.
Bootstrap A computer intensive resampling procedure,

where random draws with replacement from an origi-
nal sample are used, for instance to perform inference.

Discount rate The rate of return used to discount future
cashflows, typically calculated as a risk-free rate (e. g.
the 90-dayUS T-bill rate) plus an equity risk premium.

Equity premium puzzle The empirical observation that
the ex post equity premium (see entry below) is higher
than is indicated by financial theory.

Ex ante equity premium The extra return investors ex-
pect they will receive for holding risky assets, over and
above the return they would receive for holding a risk-
free asset like a Treasury bill. “Ex ante” refers to the
fact that the expectation is formed in advance.

Ex post equity premium The extra return investors re-
ceived after having held a risky asset for some period
of time. The ex post equity premium often differs from
the ex ante equity premium due to random events that
impact a risky asset’s return.

Free cash flows Cash flows that could be withdrawn from
a firm without lowering the firm’s current rate of
growth. Free cash flows are substantially different from
accounting earnings and even accounting measures of
the cash flow of a firm.

Fundamental valuation The practice of determining
a stock’s intrinsic value by discounting cash flows to
their present value using the required rate of return.

GARCH(p, q) Generalized autoregressive conditional
heteroskedasticity of order (p, q), where p is the or-
der of the lagged variance terms and q is the order of
the lagged squared error terms; a time series model
allowing for dependence in the conditional variance of
a random variable, y. A GARCH(1,1) model is speci-
fied as:

yt D ˛ C 	t ; 	t 
 

0; h2t

�

h2t D � C ˇh2t�1 C �	2t�1 ;

where ˛, � , ˇ, and � are parameters and 	t is an inno-
vation term.

Market anomalies Empirical regularities in financial
market prices or returns that are difficult to reconcile
with conventional theories and/or valuation methods.

Markov model A model of a probabilistic process where
the random variable can only take on a finite number
of different values, typically called states.

Method of moments A technique for estimating parame-
ters (like parameters of the conditional mean and con-
ditional variance) by matching sample moments, then
solving the equations for the parameters to be esti-
mated.

SAD Seasonal Affective Disorder, a medical condition by
which reduced daylight in the fall and winter leads
to seasonal depression for roughly ten percent of the
world’s population.

Sensation seeking A measure used by psychologists to
capture an individual’s degree of risk tolerance. High
sensation-seeking tendency correlates with low risk
tolerance, including tolerance for risk of a financial na-
ture.

Simulated method of moments A modified version of
the method of moments (see entry above) that is based
on Monte Carlo simulation, used in situations when
the computation of analytic solutions is infeasible.

Definition of the Subject

The realized return to any given asset varies over time, oc-
casionally in a dramatic fashion. The value of an asset, its
expected return, and its volatility, are of great interest to in-
vestors and to policy makers. An asset’s expected return in
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excess of the return to a riskless asset (such as a short-term
US Treasury bill) is termed the equity premium. The value
of the equity premium is central to the valuation of risky
assets, and hence a much effort has been devoted to deter-
mining the value of the equity premium, whether it varies,
and if it varies, how predictable it is. Any evidence of pre-
dictable returns is either evidence of a predictably varying
equity premium (say, because risk varies predictably) or
a challenge to the rationality of markets and the efficient
allocation of our society’s scarce resources.

In this article, we start by considering the topic of valu-
ation, with emphasis on simulation-based techniques. We
consider the valuation of income-generating assets in the
context of a constant equity premium, and we also ex-
plore the consequences of allowing some time-variation
and predictability in the equity premium. Next we con-
sider the equity premium puzzle, discussing a simulation-
based technique which allows for precise estimation of the
value of the equity premium, and which suggests some
constraints on the types of models that should be used
for specifying the equity premium process. Finally, we fo-
cus on evidence of seasonally varying expected returns in
financial markets. We consider evidence that as a whole
either presents some challenges to traditional hypotheses
of efficient markets, or suggests agents’ risk tolerance may
vary over time.

Introduction

The pricing of a firm is conceptually straightforward. One
approach to valuing a firm is to use historical dividend
payments and discount rate data to forecast future pay-
ments and discount rates. Restrictions on the dividend and
discount rate processes are typically imposed to produce
an analytic solution to the fundamental valuation equation
(an equation that involves calculating the expectation of an
infinite sum of discounted dividends).

Common among many of the available valuation tech-
niques is some form of consideration of multiple scenar-
ios, including good and bad growth and discount rate
evolutions, with valuation based on a weighted average
of prices from the various scenarios. The valuation tech-
nique we focus some attention on, the Donaldson and
Kamstra [14] (henceforth DK) methodology, is similar to
pricing path-dependent options, as it utilizes Monte Carlo
simulation techniques and numerical integration of the
possible paths followed by the joint processes of dividend
growth and discount rates, explicitly allowing path-depen-
dence of the evolutions. The DK method is very similar in
spirit to other approaches in the valuation literature which
consider multiple scenarios. One distinguishing feature of

the DK methodology we consider is the technique it em-
ploys for modeling the discount rate.

Cochrane [9] highlights three interesting approaches
for modeling the discount rate: a constant discount rate,
a consumption-based discount rate, and a discount rate
equal to some variable reference return plus a risk pre-
mium. Virtually the entire valuation literature limits its
attention to the constant discount rate case, as constant
discount rates lead to closed-form solutions to many valu-
ation formulas. DK explore all threemethods for modeling
the discount rate and find they lead to qualitatively simi-
lar results. However, their quantitative results indicate an
overall better fit to the price and return data when using
a reference return plus a risk premium. Given DK’s find-
ings, we use a discount rate equal to some variable refer-
ence return plus a risk premium. In implementing this ap-
proach for modeling the discount rate used in valuation, it
is simplest to assume a constant equity premium is added
to the reference rate, in particular since the reference rate is
permitted to vary (since it is typically proxied using a vari-
able rate like the three-month US T-bill rate). We do not,
however, restrict ourselves to the constant equity premium
case.

Using the simulation-based valuation methodology of
DK and the method of simulatedmoments, we explore the
evidence for a time-varying equity premium and its impli-
cations for a long-standing puzzle in financial economics,
the equity premium puzzle of Mehra and Prescott [51].
Over the past century the average annual return to invest-
ing in the US stock market has been roughly 6% higher
than the return to investing in risk-free US T-bills. Making
use of consumption-based asset-pricing models, Mehra
and Prescott argue that consumption within the US has
not been sufficiently volatile to warrant such a large pre-
mium on risky stocks relative to riskless bonds, leading
them to describe this large premium as the “equity pre-
mium puzzle.”

Utilizing simulations of the distribution from which
ex post equity premia are drawn, conditional on various
possible values for investors’ ex ante equity premium and
calibrated to S&P 500 dividends and US interest rates, we
present statistical tests that show a true ex ante equity pre-
mium as low as 2% could easily produce ex post premia
of 6%. This result is consistent with the well-known ob-
servation that ex post equity premia are observed with er-
ror, and a large range of realized equity premia are consis-
tent with any given value of the ex ante equity premium.
Examining the marginal and joint distributions of finan-
cial statistics like price-dividend ratios and return volatil-
ity that arise in the simulations versus actual realizations
from the US economy, we argue that the range of ex ante



Financial Economics, Time Variation in the Market Return 377

equity premia most consistent with the US market data is
very close to 3.5%, and the ex ante equity premium process
is very unlikely to be constant over time.

A natural question to ask is why might the equity pre-
mium fluctuate over time? There are only two likely expla-
nations: changing risk or changing risk aversion. Evidence
from the asset-pricing literature, including [20,37,49], and
many others shows that priced risk varies over time. We
explore some evidence that risk aversion itself may vary
over time, as revealed in what is often termed market
anomalies.Market anomalies are variations in expected re-
turns which appear to be incongruous with variations in
discount rates or risk. The most stark anomalies have to
do with deterministic asset return seasonalities, including
seasonalities at the weekly frequency such as the weekend
effect (below-average equity returns on Mondays), annual
effects like the above-average equity returns typically wit-
nessed in the month of January, and other effects like the
lower-than-average equity returns often witnessed follow-
ing daylight saving time-change weekends, and opposing
cyclicality in bond versus equity returns correlated to the
length of day (known as the SAD effect). We briefly review
some of these outstanding puzzles, focusing our attention
on the SAD effect and the daylight saving effect.

Valuation

Overview

We begin our discussion of valuation with a broad survey
of the literature, including dividend-based valuation, rela-
tive valuation, and accounting-based methods. We intro-
duce dividend-based valuation first.

Fundamental valuation techniques that utilize divi-
dends in a discrete time framework include Gordon [25],
Hawkins [30], Michaud and Davis [53], Farrell [22],
Sorensen and Williamson [73], Rappaport [63], Barsky
and DeLong [2], Hurley and Johnson [33], [34], Donald-
son and Kamstra [14], and Yao [78]. Invariably these ap-
proaches are partial equilibrium solutions to the valuation
exercise. Papers that use continuous time tools to evaluate
the fundamental present value equation include Campbell
and Kyle [6], Chiang, Davidson, and Okuney [8], Dong
and Hirshleifer [17], and Bakshi and Chen [3]. The Dong
and Hirshleifer [17] and Bakshi and Chen [3] papers con-
duct valuation by assuming dividends are proportional to
earnings and then modeling earnings. Continuous time
papers in this literature typically start with the represen-
tative agent/complete markets economic paradigm. Mod-
els are derived from primitive assumptions on markets
and preferences, such as the equilibrium condition that
there exist no arbitrage opportunities, dividend (cash flow)

growth rates follow an Ornstein–Uhlenbeck mean-revert-
ing process, and preferences over consumption are repre-
sented by the log utility function. Time-varying stochas-
tic discount rates (i. e. the pricing kernel) fall out of the
marginal rate of utility of consumption in these models,
and the solution to the fundamental valuation problem is
derived with the same tools used to price financial deriva-
tives. A critique of dividend-discounting methods is that
dividends are typically smoothed and are set low enough
so that the dividend payments can be maintained through
economic downturns. Authors such as Hackel and Livnat
(see p. 9 in [27]) argue that these sorts of considerations
imply that historical records of dividend payments may
therefore be poor indicators of future cash payments to in-
vestors.

A distinct valuation approach, popular amongst prac-
titioners, determines the value of inactively traded firms by
finding an actively traded firm that has similar risk, prof-
itability, and investment-opportunity characteristics and
then multiplying the actively traded firm’s price-earnings
(P/E) ratio by the inactively traded firm’s earnings. This
approach to valuation is often referred to as the relative
value method or the constant P/E model. References to
this sort of approach can be found in textbooks like [4],
and journal articles such as [60,62].

There are also several valuation approaches that are
based on the book value of equity, abnormal earnings,
and free-cash flows. These approaches are linked to divi-
dends and hence to formal fundamental valuation by well-
established accounting relationships. They produce price
estimates by valuing firm assets and income streams. The
most popular of this class of techniques include the resid-
ual income and free-cash-flow methods. See [23,57,61] for
further information. All of these valuation methods im-
plicitly or explicitly take the present value of the stream of
firm-issued dividends to the investor. The motivation for
considering accounting relationships is that these account-
ing measures are not easily manipulated by firms and so
should reflect more accurately the ability of firms to gener-
ate cashflows and hence allow more accurate assessments
of the fundamental value of a firm than techniques based
on dividends.

Fundamental Valuation Methods in Detail

Now that we have surveyed the valuation literature in gen-
eral, we turn to a formal derivation of several fundamen-
tal valuation techniques. Investor rationality requires that
the current market price Pt of a stock which will pay a per
share dividend (cash payment) DtC1 one period from now
and then sell for PtC1, discounting payments received dur-
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ing period t (i. e., from the beginning of period t to the be-
ginning of period t C 1) at rate rt, must satisfy Eq. (1):

Pt D Et

�
PtC1 C DtC1

1 C rt




: (1)

Et is the expectations operator conditional on information
available up to the end of period t. Solving Eq. (1) for-
ward under the transversality condition that the expected
present value of PtCk goes to zero as k goes to infinity
(a “no-bubble” assumption) produces the familiar result
that the market price equals the expected present value of
future dividends (cash payments); i. e.,

Pt D
1X

kD0

Et

( kY

iD0

�
1

1 C rtCi

	!

DtCkC1

)

: (2)

Defining the growth rate of dividends from the be-
ginning of period t to the beginning of period t C 1 as
gdt � (DtC1 � Dt)/Dt it follows that

Pt D DtEt

( 1X

kD1

 kY

iD0

"
1 C gdtCi

1 C rtCi

#!)

: (3)

Equation (3) is the fundamental valuation equation, which
is not controversial and can be derived under the law of
one price and non-satiation alone, as by Rubinstein [69]
and others. Notice that the cash payments DtCk in-
clude all cash disbursements from the firm, including cash
dividends and share repurchases. Fundamental valuation
methods based directly on Eq. (3) are typically called divi-
dend discount models.

Perhaps the most famous valuation estimate based on
Eq. (3) comes from the Gordon [25] GrowthModel. If div-
idend growth rates and discount rates are constant, then it
is straightforward to derive the Gordon fundamental price
estimate from Eq. (3):

PGt D Dt

"
1 C gd

r � gd

#

; (4)

where r is the constant discount rate value and gd is the
(conditionally) constant growth rate of dividends. To pro-
duce the Gordon Growth Model valuation estimate, all we
need are estimates of the dividend growth rate and dis-
count rate, which can be obtained in a variety of ways, in-
cluding the use of historically observed dividends and re-
turns.

Extensions of the Gordon Growth Model exploit the
fundamental valuation equation, imposing less stringent
assumptions. The simple Gordon Growth Model imposes

a constant growth rate on dividends (dividends are ex-
pected to grow at the same rate every period) while Hurley
and Johnson [33] and [34] and Yao [78] develop Markov
models (models that presume a fixed probability of, say,
maintaining the dividend payment at current levels, and
a probability of raising it, thus incorporating more real-
istic dividend growth processes). Two examples of these
models found in Yao [78] are the Additive Markov Gor-
don model (Eq. (1) of Yao [78] and the Geometric Markov
Gordon model (Eq. (2) of Yao [78]). These models can be
interpreted as considering different scenarios for dividend
growth for a particular asset, estimating the appropriate
price for the asset under each scenario, and then averaging
the prices using as weights the probability of given scenar-
ios being observed.

The Additive Markov Gordon Growth Model is:

PADDt D Dt/r C �
1/r C (1/r)2

� �
qu � qd

�
� ; (5)

where r is the average discount rate, qu is the proportion
of the time the dividend increases, qd is the proportion of
the time the dividend decreases, and � D PT

tD2 jDt �
Dt�1j/(T � 1) is the average absolute value of the level
change in the dividend payment.

The Geometric Markov Gordon Growth Model is:

PGEOt D Dt

"
1 C (qu � qd)�%

r � (qu � qd)�%

#

; (6)

where�% D PT
tD2 j(Dt � Dt�1)/Dt�1j/(T � 1) is the av-

erage absolute value of the percentage rate of change in the
dividend payment.

The method of DK is also an extension of the Gordon
Growth Model, taking the discounted dividend growth
model of Eq. (3) and re-writing it as

Pt D Dt

1X

kD0

Et

( kY

iD0

ytCi

)

; (7)

where ytCi D (1C gdtCi)/(1C rtCi) is the discounted div-
idend growth rate. Under the DK method, the fundamen-
tal price is calculated by forecasting the range of possible
evolutions of ytCi up to some distant point in the future,
period t C I, calculating PV D Dt

PI
kD0(

Qk
iD0 ytCi) for

each possible evolution of ytCi , and averaging these values
of PV across all the possible evolutions. (The value of I is
chosen to produce a very small truncation error. Values of
I D 400 to 500 for annual data have been found by DK
to suffice). In this way, the DK approach mirrors other ex-
tensions of the Gordon Growth Model. It is primarily dis-
tinguished from other approaches that extend the Gordon
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Growth Model in two regards. First, more sophisticated
time series models, estimated with historical data, are used
to generate the different outcomes (scenarios) by applica-
tion ofMonte Carlo simulation. Second, in contrast to typ-
ical modeling in which only dividend growth rates vary,
the joint evolution of cashflow growth rates and discount
rates are explicitly modeled as time-varying.

Among the attractive features of the free-cash-flow
and residual income valuation methods is that they avoid
the problem of forecasting dividends, by exploiting rela-
tionships between accounting data and dividends. It is the
practical problem of forecasting dividends to infinity that
have led many researchers to explore methods based on
accounting data. See, for instance, Penman and Sougian-
nis [61].

Assume a flat term structure (i. e., a constant discount
rate rt D r for all t) and write

Pt D
1X

kD1

Et fDtCkg
(1 C r)k

: (8)

The clean-surplus relationship relating dividends to
earnings is invoked in order to derive the residual income
model:

BtCk D BtCk�1 C EtCk � DtCk ; (9)

where BtCk is book value and EtCk is earnings per share.
Solving for DtCk in Eq. ( 9) and substituting into Eq. (8)
yields

Pt D
1X

kD1

Et fBtCk�1 C EtCk � BtCkg
(1 C r)k

;

or

Pt D Bt C
1X

kD1

Et fEtCk � r � BtCk�1g
(1 C r)k

� Et fBtC1g
(1 C r)1

D Bt C
1X

kD1

Et fEtCk � r � BtCk�1g
(1 C r)k

;

(10)

where BtC1/(1C r)1 is assumed to equal zero. EtCk � r �
BtCk�1 is termed abnormal earnings.

To derive the free cash flow valuation model, we relate
dividends to cash flows with a financial assets relation in
place of the clean surplus relation:

f atCk D f atCk�1 C itCk C ctCk � DtCk ; (11)

where f atCk is financial assets net of financial obligations,
itCk is interest revenues net of interest expenses, and ctCk

is cash flows realized from operating activities net of in-
vestments in operating activities, all of which can be posi-
tive or negative. A net interest relation is often assumed,

itCk D r f atCk�1 : (12)

See Fetham and Ohlson [23] for further discussion. Solv-
ing for DtCk in Eq. (11) and substituting into Eq. (8), uti-
lizing Eq. (12) and assuming the discounted present value
of financial assets f atCk goes to zero as k increases, yields
the free-cash-flow valuation equation:

Pt D f at C
1X

kD1

Et fctCkg
(1 C r)k

: (13)

More on the Fundamental ValuationMethod
of Donaldson and Kamstra

A number of approaches can be taken to conduct valua-
tion using the DK model shown in Eq. (7). By imposing
a very simple structure for the conditional expectation of
discounted dividend growth rate (yt in Eq. (7)), the expres-
sion can be solved analytically, for instance by assuming
that the discounted dividend growth rate is a constant. As
shown by DK, however, analytic solutions become com-
plex for even simple ARMA models, and with sufficient
non-linearity, the analytics can be intractable. For this rea-
son, we present a general solution algorithm based on the
DK method of Monte Carlo simulation.

This method simulates yt into the future and performs
a numerical (Monte Carlo) integration to estimate the
terms fQi

kD0 ytCkg where ytCk D (1 C gdtCk)/(1 C rtCk)
in the classic case of a dividend-paying firm. A general
heuristic is as follows:
Step I: Model yt , t D 1; : : : ; T , as conditionally time-

varying, for instance as an AR(k)-GARCH(p, q) pro-
cess, and use the estimated model to make conditional
mean forecasts ŷt , t D 1; : : : ; T , and variance fore-
casts, conditional on data observed only before pe-
riod t. Ensure that this model is consistent with theory,
for instance that the mean level of y is less than one.
This mean value can be calibrated to available data,
such as the mean annual y value of 0.94 observed in the
last 50 years of S&P 500 data. Recall that although an-
alytic solutions are available for simple processes, the
algorithm presented here is applicable to virtually ar-
bitrarily non-linear conditional processes for the dis-
counted cash payment rate y.

Step IIa: Simulate discounted cash payment growth rates.
That is, produce ys that might be observed in period t
given what is known at period t � 1. To do this for
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a given period t, simulate a population of J indepen-
dent possible shocks (say draws from a normal distri-
bution with mean zero and appropriate variance, or
bootstrapped from the data) 	t; j , j D 1; : : : ; J, and
add these shocks separately to the conditional mean
forecast ŷt from Step I, producing yt; j D ŷt C 	t; j ,
j D 1; : : : ; J. The result is a simulated cross-section
of J possible realizations of yt standing at time t � 1,
i. e. different paths the economy may take next period.

Step IIb: Use the estimatedmodel from Step I tomake the
conditional mean forecast ŷtC1; j , conditional on only
the jth realization for period t (i. e., yt; j and 	t; j) and
the data known at period t � 1, to form ytC1; j .

Step IIc: Repeat Step IIb to form ytC2; j; ytC3; j; : : : ; ytCI; j
for each of the J economies, where I is the number of
periods into the future at which the simulation is trun-
cated. Form the perfect foresight present value (P�

t; j)
for each of the J possible economies:

P�
t; j D At

�
yt; j C yt; j ytC1; j C yt; j ytC1; j ytC2; j

C � � � C
IY

iD0

ytCi; j

�
; j D 1; : : : ; J :

Provided I is chosen to be large enough, the truncated
terms

QK
iD0 ytCi; j , K D I C 1; : : : ;1 will be negligi-

ble.
Step III: Calculate the DK fundamental price for each t D

1; : : : ; T :

PDKt D
JX

jD1

P�
t; j/J : (14)

Financial Economics, Time Variation in the Market Return, Exhibit 1
Diagram of DK Monte Carlo integration

These fundamental price estimates PDKt can be com-
pared to the actual price (if market prices exist) at the
beginning of period t to test for bubbles as demon-
strated by DK, or if period t is the future, PDKt is the
fundamental price forecast. This procedure is repre-
sented diagrammatically in Exhibit 1.

To illustrate the sort of forecasts that can be produced us-
ing this technique, we illustrate graphically the S&P 500
index over the past 100 years together with predicted val-
ues based on the Gordon Growth Model and the DK
method. The free-cash-flow and residual income methods
are not easily adapted to forecasting index prices like the
S&P 500, and so are omitted here. The type of data de-
picted in the following figure is described in some detail
by Kamstra [39].

Figure 1 has four panels. In the panels, we plot the level
of the S&P 500 index (marked with bullets and a solid
line) alongside price forecasts from each of the valuation
techniques. In Panel A we plot the index together with
the basic Gordon Growth Model price forecasts (marked
with stars), in Panels B and C we plot the index together
with the Additive and Geometric Gordon Growth Mod-
els’ forecasts (with squares and triangles respectively), and
in Panel D we plot the index alongside the DK method’s
forecasts (marked with diamonds). In each panel the price
scale is logarithmic.

We see in Panels A, B, and C that the use of the any
of the Gordon models for forming annual forecasts of the
S&P 500 index level produces excessively smooth price
forecasts. (If we had plotted return volatility, then the mar-
ket returns would appear excessively volatile in compari-
son to to forecasted returns). Evidence of periods of in-
flated market prices relative to the forecasted prices, i. e.,
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Financial Economics, Time Variation in the Market Return, Figure 1
S&P 500 index level versus price forecasts from four models. S&P 500 index: �, Gordon Growth price: ?, Additive Gordon Growth
price: �, Geometric Gordon Growth price: 4, DK price ˘

evidence of price bubbles, is apparent in the periods cov-
ering the 1920s, the 1960s, the last half of the 1980s, and
the 1990s. However, if the Gordon models are too simple
(since each Gordon-based model ignores the forecastable
nature of discount rates and dividend growth rates), then
this evidence may be misleading.

In Panel D, we see that the DK model is better able to
capture the volatility of the market, including the boom of
the 1920s, the 1960s and the 1980s. The relatively better
performance of the DK price estimate highlights the im-
portance of accounting for the slow fade rate of dividend
growth rates and discount rates, i. e., the autocorrelation
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of these series. The failure of the DK method to capture
the height of the 1990s boom leaves evidence of surpris-
ingly high prices during the late 1990s. If the equity pre-
mium fell in the 1990s, as some researchers have specu-
lated (see for instance Pástor and Stambaugh [59]), then
all four sets of the plotted fundamental valuation forecasts
would be expected to produce forecasts that undershoot
actual prices in the 1990s, as all these methods incorpo-
rate a constant equity premium. If this premium were set
too high, future cashflows would be discounted too aggres-
sively, biasing the valuation methods downward.

The Equity Premium Puzzle

The fact that all four fundamental valuation methods we
consider spectacularly fail to capture the price boom of
the 1990s, possibly as a result of not allowing a time-vary-
ing equity premium, sets the stage to investigate the equity
premium puzzle of Mehra and Prescott [51]. The equity
premium is the extra return, or premium, that investors
demand in order to be compelled to purchase risky stock
instead of risk-free debt. We call this premium the ex ante
equity premium (denoted 
e), and it is formally defined as
the difference between the expected return on risky assets,
EfRg, and the expected risk-free rate, Efrfg:

e � EfRg � Efrfg : (15)

The ex post equity premium is typically estimated us-
ing historical equity returns and risk-free rates, as we do
not observe the ex ante premium. Define R as the average
historical annual return on the S&P 500 and rf as the av-
erage historical return on US T-bills. A standard approach
to calculate ex post equity premium, 
̂e, is:


̂e � R � rf : (16)

Of course it is unlikely that the stock return we esti-
mate ex post equals investors’ anticipated ex ante return.
Thus a 6% ex post equity premium in the US data may
not be a challenge to economic theory. The question we
ask is therefore: if investors’ true ex ante premium is X%,
what is the probability that the US economy could ran-
domly produce an ex post premium of at least 6%? We
can then argue whether or not the 6% ex post premium
observed in the US data is consistent with various ex ante
premium values, X%, with which standard economic the-
ory may be more compatible. We can also consider key
financial statistics and yields from the US economy to in-
vestigate if an X% ex ante equity premium could likely be
consistent with the combinations that have been observed,
such as high Sharpe ratio and low dividend yields, low in-
terest rates and high ex post equity premia, and so on.

Authors have investigated the extent to which ex ante
considerations may impact the realized equity premium.
For example, Rietz [65] investigated the effect that the fear
of a serious, but never realized, depression would have
on equilibrium asset prices and equity premia. Jorion and
Goetzmann [38] take the approach of comparing the US
stock market’s performance with stockmarket experiences
in many other countries. They find that, while some mar-
kets such as the US and Canada have done very well over
the past century, other countries have not been so fortu-
nate; average stock market returns from 1921 to 1996 in
France, Belgium, and Italy, for example, are all close to
zero, while countries such as Spain, Greece, and Roma-
nia have experienced negative returns. It is difficult, how-
ever, to conduct statistical tests because, first, the stock in-
dices Jorion and Goetzmann consider are largely contem-
poraneous and returns from the various indices are not
independent. Statistical tests would have to take into ac-
count the panel nature of the data and explicitly model
covariances across countries. Second, many countries in
the comparison pool are difficult to compare directly to
the United States in terms of economic history and un-
derlying data generating processes. (Economies like Egypt
and Romania, for example may have equity premia gen-
erated from data generating processes that differ substan-
tially from that of the US).

There are some recent papers that make use of fun-
damental information in examining the equity premium.
One such paper, Fama and French [21], uses historical div-
idend yields and other fundamental information to calcu-
late estimates of the equity premium which are smaller
than previous estimates. Fama and French obtain point
estimates of the ex post equity premium ranging from
2.55% (based on dividend growth rate fundamentals) to
4.78% (based on bias-adjusted earnings growth rate fun-
damentals), however these estimates have large standard
errors. For example, for their point estimate of 4.32%
based on non-bias-adjusted earnings growth rates, a 99%
confidence interval stretches from approximately �1% to
about 9%. Mehra and Prescott’s [51] initially troubling es-
timate of 6% is easily within this confidence interval and
is in fact within one standard deviation of the Fama and
French point estimate.

Calibrating to economy-wide dividends and discount
rates, Donaldson, Kamstra, and Kramer [16] employ sim-
ulation methods similar to DK to simulate a distribution
of possible price and return outcomes. Comparing these
simulated distributions with moments of the actual data
then permits them to test various models for the equity
premium process. Could a realized equity premium of 6%
be consistent with an ex ante equity premium of 2%?
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Could an ex ante equity premium of 2% have produced
the low dividend yields, high ex post equity premia, and
high Sharpe ratios observed in the US over the last half
century?

A summary of the basic methodology implemented by
Donaldson, Kamstra, and Kramer [16], is as follows:

(a) Assume a mean value for the equity premium that in-
vestors demand when they first purchase stock (e. g.,
2%) and a time series process for the premium, say
a deterministic drift downward in the premium of 5
basis points per year, asymptoting no lower than per-
haps 1%. This assumed premium is added to the risk-
free interest rate to determine the discount rate that
an investor would rationally apply to a forecasted div-
idend stream in order to calculate the present value of
dividend-paying stock.

(b) Estimate econometric models for the time-series pro-
cesses driving dividends and interest rates in the US
economy (and, if necessary, for the equity premium
process), allowing for autocorrelation and covariation.
Then use these models to Monte Carlo simulate a va-
riety of potential paths for US dividends, interest rates,
and equity premia. The simulated paths are of course
different in each of these simulated economies because
different sequences of random innovations are ap-
plied to the common stochastic processes in each case.
However, the key drivers of the simulated economies
themselves are all still identical to those of the US
economy since all economies share common stochas-
tic processes fitted to US data.

(c) Given the assumed process for the equity premium in-
vestors demand ex ante (which is the same for all sim-
ulated economies in a given experiment), use a dis-
counted-dividend model to calculate the fundamental
stock returns (and hence ex post equity premia) that
arise in each simulated economy. All economies have
the same ex ante equity premium process, and yet all
economies have different ex post equity premia. Given
the returns and ex post equity premia for each econ-
omy, as well as the means of the interest rates and div-
idend growth rates produced for each economy, it is
feasible to calculate various other important charac-
teristics, like Sharpe ratios and dividend yields.

(d) Examine the distribution of ex post equity premia, in-
terest rates, dividend growth rates, Sharpe ratios, and
dividend yields that arise conditional on various val-
ues of the ex ante equity premia. Comparing the per-
formance of the US economy with intersections of the
various univariate and multivariate distributions of
these quantities and conducting joint hypothesis tests

allows the determination of a narrow range of equity
premia consistent with the US market data. Note that
this is themethod of simulatedmoments, which is well
adapted to estimate the ex ante equity premium. The
simulated method of moments was developed by Mc-
Fadden [50] and Pakes and Pollard [58]. Duffie and
Singleton [18] and Corradi and Swanson [11] employ
simulatedmethod of moments in an asset pricing con-
text.

Further details on the simulation methodology are pro-
vided by Donaldson, Kamstra, and Kramer [16]. They
make use of annual US stock and Treasury data observed
from 1952 through 2004, with the starting year of 1952
motivated by the US Federal Reserve Board’s adoption of
a modern monetary policy regime in 1951. The model
that generated the data we use to illustrate this simula-
tion methodology is Model 6 of Donaldson, Kamstra, and
Kramer [16], a model that allows for trending, autocorre-
lated, and co-varying dividend growth rates, interest rates
and equity premia, as well as for a structural break in the
equity premium process. We show later that allowing for
trends and structural breaks in the equity premium pro-
cess is a crucial factor in the model’s ability to capture the
behavior of the observed US market data.

We focus on the intuition behind the Donaldson,
Kamstra, and Kramer technique by looking at bivariate
plots of simulated data, conditional on various values of
the ex ante equity premium. In every case, the pair of
statistics we plot are dependent on each other in some
way, allowing us to make interesting conditional state-
ments. Among the bivariate distributions we consider, we
will see some that serve primarily to confirm the ability of
our simulations to produce the character and diversity of
results observed in US markets. Some sets of figures rule
out ex ante equity premia below 2.5% while others rule
out ex ante equity premia above 4.5%. Viewed collectively,
the figures serve to confirm that the range of ex ante eq-
uity premia consistent with US market data is in the close
vicinity of 3.5%.

Figure 2 contains joint distributions of mean returns
and return standard deviations arising in our simulations
based on four particular values of the ex ante equity pre-
mium (2.5% in Panel A, 3.5% in Panel B, 4.5% in Panel C,
and 6% in Panel D). Each panel contains a scatter plot of
two thousand points, with each point representing a pair
of statistics (mean return and return standard deviation)
arising in one of the simulated half-century economies.
The combination based on the US realization is shown in
each plot with a crosshair (a pair of solid straight lines
with the intersection marked by a solid dot). The set of
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Financial Economics, Time Variation in the Market Return, Figure 2
Bivariate scatterplots of simulated data for a model allowing for trends and structural breaks. The model upon which these scat-
terplots are based allows for trends and structural breaks in the equity premium process, as well as autocorrelated and co-varying
dividendgrowth rates, interest rates, and equity premia. Observedmarket data are indicatedwith crosshairs, and confidence ellipses
are marked as follows. Ex ante equity premium of 2.5%: ˘, Ex ante equity premium of 3.5%: ı, Ex ante equity premium of 4.5%: �,
Ex ante equity premium of 6%: ˚

simulated pairs in each panel is surrounded by an ellipse
which represents a 95% bivariate confidence bound, based
on the asymptotic normality (or log-normality, where ap-
propriate) of the plotted variables. (The 95% confidence

ellipsoids are asymptotic approximations based on joint
normality of the sample estimates of the moments of the
simulated data. All of the sample moment estimates we
consider are asymptotically normally distributed, as can
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be seen by appealing to the appropriate law of large num-
bers). The confidence ellipse for the 2.5% case is marked
with diamonds, the 3.5% case with circles, the 4.5% case
with squares, and the 6% case with circled crosses.

Notice that the sample mean for the US economy (the
intersection of the crosshairs) lies loosely within cloud
of points that depict the set of simulated economies for
each ex ante equity premium case. That is, our simulations
produce mean returns and return volatility that roughly
match the US observed moments of returns, without our
having calibrated to returns. Notice also that the intersec-
tion of the crosshairs is outside (or very nearly outside)
the 95% confidence ellipse in all cases except that of the
3.5% ex ante equity premium. (In unreported results that
study a finer grid of ex ante equity premium values, we
found that only those simulations based on values of the
ex ante equity premium between about 2.5% and 4.5% lead
to 95% confidence ellipses that encompass the US econ-
omy crosshairs. As the value of the ex ante equity premium
falls below 2.5% or rises above 4.5%, the confidence ellipse
drifts further away from the crosshairs). Based on this set
of plots, we can conclude that ex ante equity premia much
less than or much greater than 3.5% are inconsistent at the
5% confidence level with the observed mean return and
return volatility of S&P 500 returns. �2 tests presented in
Donaldson, Kamstra, and Kramer [16] confirm this result.

We can easily condense the information contained
in these four individual plots into one plot, as shown in
Panel A of Fig. 3. The scatterplot of points representing
individual simulations are omitted in the condensed plot,
but the confidence ellipses themselves (and the symbols
used to distinguish between them) are retained. Panel A of
Fig. 3 repeats the ellipses shown in Fig. 2, so that again we
see that only the 3.5% ex ante equity premium case is well
within the confidence ellipse at the 5% significance level. In
presenting results for additional bivariate combinations,
we follow the same practice, omitting the points that rep-
resent individual simulations and using the same set of
symbols to distinguish between confidence ellipses based
on ex ante equity premia of 2.5%, 3.5%, 4.5%, and 6%.

In Panel B of Fig. 3 we consider the four sets of con-
fidence ellipses for mean return and mean dividend yield
combinations. Notice that as we increase the ex ante eq-
uity premium, the confidence ellipses shift upward and to
the right. Notice also that with higher values of the ex ante
equity premium we tend to have more variable dividend
yields. That is, the confidence ellipse covers a larger range
of dividend yields when the value of the ex ante equity
premium is larger. The observed combination of S&P 500
mean return and mean dividend yield, represented by the
intersecting crosshairs, lies within the confidence ellipse

for the 2.5% and 3.5% cases, very close to the ellipse for
the 4.5% case, and far outside the ellipse for the 6% case.

Panel C of Fig. 3 plots confidence ellipses for mean in-
terest rates versus mean ex post equity premia. The inter-
section of the crosshairs is within all four of the shown
confidence ellipses. As we calibrate our model to the US
interest rate, and as the ex post equity premium has a large
variance, it is not surprising that the US experience is con-
sistent with the simulated data from the entire range of ex
ante equity premia considered here. This result is merely
telling us that the ex post equity premium is not, by itself,
particularly helpful in narrowing the possible range for the
ex ante equity premium (consistent with the empirical im-
precision in measuring the ex post equity premium which
has been extensively documented in the literature). Notice
as well that the confidence ellipses in Panel C are all nega-
tively sloped: we see high mean interest rates with low eq-
uity premia and low mean interest rates with high equity
premia. Many researchers, including Weil [74], have com-
mented that the flip side of the high equity premium puz-
zle is the low risk-free rate puzzle. Here we confirm that
the dual puzzle arises in our simulated economies as well.
It appears that this puzzle is a mechanical artifact coming
out of the calculation of the premium.As the ex post equity
premium equals the mean return minus the mean interest
rate, a decrease in the interest rate, all else held constant,
must lead to a higher ex post equity equity premium.

Panel D of Fig. 3 contains the confidence ellipses for
the Sharpe ratio (or reward-to-risk ratio, calculated as the
average annual difference between the arithmetic return
and the risk-free rate divided by the standard deviation
of the annual differences) and the mean dividend yield.
As the ex ante equity premium is increased from 2.5%,
the confidence ellipses shift from being centered on the
crosshairs to far to the right of the crosshairs. TheUS expe-
rience, indicated by the crosshairs at a Sharpe ratio of ap-
proximately 0.4 and a mean dividend yield of about 3.5%,
is well outside the 95% confidence ellipse for the 6% ex
ante equity premium case, suggesting a 6% ex ante eq-
uity premium is inconsistent with the jointly observed
S&P 500 Sharpe ratio and mean dividend yield. Indeed
Fama and French [21] and Jagannathan, McGrattan, and
Scherbina [35] make reference to dividend yields to argue
that the equity premium may be much smaller than 6%;
our analysis gives us a glimpse of just how much smaller it
might be.

Overall in Fig. 3, the joint realization of key charac-
teristics of the US market data suggests that the true ex
ante equity premium is no lower than 2.5%, no higher than
4.5%, and is most likely near 3.5%. Multivariate �2 tests
performed by Donaldson, Kamstra, and Kramer [16] indi-
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Financial Economics, Time Variation in the Market Return, Figure 3
Confidence ellipses based on simulated data for a model allowing for trends and structural breaks. The model upon which these
scatterplots are based allows for trends and structural breaks in the equity premiumprocess, aswell as autocorrelated and co-varying
dividendgrowth rates, interest rates, and equity premia. Observedmarket data are indicatedwith crosshairs, and confidence ellipses
are marked as follows. 2.5% ex post equity premium: ˘, 3.5% ex post equity premium: ı, 4.5% ex post equity premium: �, 6% ex
post equity premium: ˚

cate a 95% confidence interval of plus-or-minus 50 basis
points around 3.5%.

Consider now Fig. 4, which details simulated data from
a restricted model that has a time-varying equity premium
but no trends or structural breaks. Donaldson, Kamstra,

and Kramer [16] study this simplified model and find that
it performs poorly relative to the model we consider in
Figs. 2 and 3 in terms of its ability to capture the behav-
ior of US market data. Figure 4 shows that with the re-
strictedmodel, no values of the ex ante equity premium are



Financial Economics, Time Variation in the Market Return 387

Financial Economics, Time Variation in the Market Return, Figure 4
Confidence ellipses based on simulated data for a restricted model that does not allow for trends and structural breaks. The
model uponwhich these scatterplots are based does not allow for trends or structural breaks in the equity premiumprocess, but does
allow for autocorrelated and co-varyingdividend growth rates, interest rates, and equity premia. Observedmarket data are indicated
with crosshairs, and confidence ellipses aremarked as follows. 2.5%ex post equity premium:˘, 3.5%ex post equity premium:ı, 4.5%
ex post equity premium: �, 6% ex post equity premium: ˚

consistent with the observedUSmean return, standard de-
viation, and dividend yield. That is, the simulation-based
mean return and dividend yield ellipses do not contain the
US data crosshairs for any value of the ex ante equity pre-
mium considered. (�2 tests presented in Donaldson, Kam-

stra, and Kramer [16] strongly support this conclusion).
The implication is that it is essential to model trends and
structural breaks in the equity premium process in order
to accurately capture the dynamics of observed US data.
Donaldson, Kamstra, and Kramer show that model failure
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becomes even more stark if the equity premium is con-
strained to be constant.

Overall, the evidence in Figs. 3 and 4 does not itself
resolve the equity premium puzzle, but evidence in Fig. 3
(based on the model that allows for trends and structural
breaks in the equity premium process) does provide a nar-
row target range of plausible equity premia that economic
models should be able to explain. Additionally, the evi-
dence in Figs. 3 and 4 points to a secondary issue ignored
in the literature prior to the work of Donaldson, Kam-
stra, and Kramer [16], that it is crucial to model the eq-
uity premium as both time-varying and as having trends
and structural breaks. We saw in Fig. 4 that high return
volatility, high ex post equity premia, and low dividend
yields cannot be explained easily by constant equity pre-
mium models. This result has clear implications for val-
uation: simple techniques that restrict the discount rate to
a constant are remarkably inconsistent with the US experi-
ence of time-varying equity premia, and serious attention
should be paid to modeling a time-varying rate for use in
discounting future expected cash flows.

Time-Varying Equity Premia:
Possible Biological Origins

To the extent that the simulation techniques considered
in the previous section suggest that the equity premium
varies over time, it is interesting to consider some empir-
ical evidence of time-varying equity premia. We first sur-
vey some examples of high-frequency variations in the eq-
uity premium, and then we explore in detail two examples
which may arise due to reasons that relate to human biol-
ogy and/or psychology.

There is a wide range of evidence of high-frequency
movement in the equity premium. At the highest fre-
quency, we observe roughly ‘U-shaped’ intra-day returns
(see [29,36,77]), with returns being perhaps somewhat
higher during the morning trading period than in the af-
ternoon (see [46]). At the weekly frequency, returns from
Friday’s close until Monday’s close are low and even neg-
ative on average, as first identified by Cross [12]. Rogal-
ski [66] found prices rose during Mondays, thus identi-
fying the negative average realizations that followed Fri-
days as a weekend effect and not a Monday effect. Turning
to the monthly domain, Ogden [56] documented a turn
of the month effect where returns in the first half of the
month are higher than returns in the second half of the
month. At the annual frequency, there is the well-known
turn-of-the-year effect, first shown by Rozeff and Kin-
ney [68]. Keim [45] showed that half of the year’s excess re-
turns for small firms arose in January, and half of the Jan-

uary returns took place in the first five days of the month.
Further, Reinganum [64] showed that January returns are
higher for small firms whose price performed poorly in the
previous year. All of this is consistent with the tax-loss-
selling hypothesis whereby investors realize losses at the
end of the tax year, leading to higher returns in January
after the tax-loss selling ends.

Next we turn our attention to two cases of time-vary-
ing equity premia that may arise for reasons related to
human physiology. One is Seasonal Affective Disorder
(SAD), and another is daylight saving time changes.

Seasonal Affective Disorder

Past research suggests there are seasonal patterns in the eq-
uity premium which may arise due to cyclical changes in
the risk tolerance of individual investors over the course of
the year related to SAD. Themedical condition of SAD, ac-
cording to Rosenthal [67], is a recurrent depression asso-
ciated with diminished daylight in the fall, affecting many
millions of Americans, as well as peoples from around the
world, even those located near the equator. (In a study of
303 patients attending a primary care facility in Vancou-
ver, Schlager, Froom, and Jaffe [70] found that 9% were
clinically diagnosedwith SAD and another 29%had signif-
icant winter depressive symptoms without meeting con-
ditions for major depression. Other studies have found
similar magnitudes, though some research has found that
prevalence varies by latitude, with more extreme latitudes
having a larger proportion of SAD-sufferers.) SAD is clas-
sified as a major depressive disorder. The symptoms of
SAD include anxiety, periods of sadness, chronic fatigue,
difficulty concentrating, lethargy, sleep disturbance, sugar
and carbohydrate craving and associated weight gain, loss
of interest in sex, and of course, clinical depression. Psy-
chologists have shown that depressed people have less tol-
erance for risk in general. (See [7,32,82,83]). Psycholo-
gists refer to risk tolerance in terms of “sensation seeking”
tendency, measured using a scale developed by Zucker-
man [80], [81]. Those who tolerate (or seek) high levels of
risk tend to score high on the sensation-seeking scale. Dif-
ferences in sensation-seeking tendencies have been linked
to gender (see [5] for example), race (see [31] for in-
stance), age (see, for example, [84]), and other personal
characteristics.

Economists and psychologists working together have
shown that sensation-seeking tendency translates into tol-
erance for risk of a specifically financial or economic na-
ture. For instance, Wong and Carducci [76] find that indi-
viduals who score low on tests of sensation seeking display
greater risk aversion in making financial decisions, includ-
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ing the decision to purchase stocks, bonds, and insurance.
Harlow and Brown [28] document the link between sen-
sation seeking and financial risk tolerance by building on
results from psychiatry which show that high blood levels
of a particular enzyme are associated with depression and
a lack of sensation seeking while low levels of the enzyme
are associated with a high degree of sensation seeking.
Harlow and Brown write, “Individuals with neurochemi-
cal activity characterized by lower levels of [the enzyme]
and with a higher degree of sensation-seeking are more
willing to accept economic risk . . . Conversely, high levels of
this enzyme and a low level of sensation seeking appear to
be associated with risk-averse behavior.” (pp. 50–51, em-
phasis added). These findings suggest an individual’s level
of sensation seeking is indicative of his or her tolerance for
financial risk.

Given these relationships, Kamstra, Kramer, and
Levi [42] conjecture that during the fall and winter sea-
sons, when a fraction of the population suffers from SAD,
the proportion of risk-averse investors rises. Risk-averse
investors shun risky stocks in the fall, they argue, which
has a negative influence on stock prices and returns. As
winter progresses and daylight becomesmore plentiful, in-
vestors start to recover from their depression and become
more willing to hold risky assets, at which time stock prices
and returns should be positively influenced.

If the extent or severity of SAD is greater at more
extreme latitudes, then the SAD effect on stock returns
should be greater in stock markets at high latitudes and
less in markets close to the equator. Also, the pattern of
returns in the Southern Hemisphere should be the oppo-
site of that in the Northern Hemisphere as are the seasons.
Thus, Kamstra, Kramer and Levi [42] study stock mar-
ket indices for the US, Sweden, Britain, Germany, Canada,
New Zealand, Japan, Australia, and South Africa. They
regress each country’s daily stock returns on a variety of
standard control variables plus two variables intended to
capture the impact of SAD on returns. The first of these
two variables, SADt , is a simple function of the length of
night at the latitude of the respectivemarket for the fall and
winter months for which SAD has been documented to be
most severe. The second of these variables, a fall dummy
variable denoted Fallt , is included because the SAD hy-
pothesis implies the expected effect on returns is differ-
ent before versus after winter solstice. Specifically, when
agents initially become more risk averse, they should shun
risky assets which should cause prices to be lower than
would otherwise be observed, and when agents revert to
normal as daylight becomes more plentiful, prices should
rebound. The result should be lower returns in the au-
tumn, higher returns in the winter, and thus a high equity

premium for investors who hold through the autumn and
winter periods. The Fallt dummy variable is used to cap-
ture the lower autumn returns. Both SADt and Fallt are
appropriately defined for the Southern Hemisphere coun-
tries, accounting for the six month difference in seasons
relative to the Northern Hemisphere markets.

Table 1 summarizes the average annual effect due to
each of the SAD variables, SADt and Fallt , for each of
the international indices Kamstra, Kramer, and Levi [42]
study. For comparison, the unconditional average annual
return for each index is also provided. Observe that the an-
nualized return due to SADt is positive in every country,
varying from 5.7 to 17.5 percent. The SAD effect is gen-
erally larger the further are the markets from the equa-
tor. The negative annualized returns due to Fallt demon-
strate the fact that SAD typically causes returns to be
shifted from the fall to the winter. Garrett, Kamstra, and
Kramer [24] study seasonally-varying risk aversion in the
context of an equilibrium asset pricing model, allowing the
price of risk to vary with length of night through the fall
and winter seasons. They find the risk premium on equity
varies through the seasons in a manner consistent with in-
vestors being more risk averse due to SAD in the fall and
winter.

Kamstra, Kramer, and Levi [43] show that there is an
opposite seasonal pattern in Treasury returns relative to
stock returns, consistent with time-varying risk aversion
being the underlying force behind the seasonal pattern
previously shown to exist in stock returns. If SAD-affected
investors are shunning risky stocks in the fall as they be-
come more risk averse, then they should be favoring safe
assets at that time, which should lead to an opposite pat-
tern in Treasury returns relative to stock returns. The sea-
sonal cycle in the Treasury market is striking, with a varia-
tion of more than 80 basis points between the highest and
lowest average monthly returns. The highest Treasury re-
turns are observedwhen equity returns are lowest, and vice
versa, which is a previously unknown pattern in Treasury
returns.

Kamstra, Kramer, and Levi [43] define a new measure
which is linked directly to the clinical incidence of SAD.
The new measure uses data on the weekly or monthly on-
set of and recovery from SAD, obtained from studies of
SAD patients in Vancouver and Chicago conducted by
medical researchers. Young, Meaden, Fogg, Cherin, and
Eastman [79] and Lam [47] document the clinical onset of
SAD symptoms and recovery from SAD symptoms among
North Americans known to be affected by SAD. Young
et al. study 190 SAD-sufferers in Chicago and find that
74 percent of them are first diagnosed with SAD in the
weeks between mid-September and early November. Lam
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Financial Economics, Time Variation in the Market Return, Table 1
Average annual percentage return due to SAD variables

Country (Index) Annual return
due to SADt

Annual return
due to fallt

Unconditional
annual return

US (S&P 500) 9.2��� �3:6�� 6.3���

Sweden (Veckans Affärar) 13.5�� �6:9�� 17.1���

Britain (FTSE 100) 10.3�� �2.3 9.6���

Germany (DAX 30) 8.2� �4:3�� 6.5��

Canada (TSX 300) 13.2��� �4:3�� 6.1���

New Zealand (Capital 40) 10.5�� �6:6�� 3.3
Japan (NIKKEI 225) 6.9� �3:7�� 9.7���

Australia (All ordinaries) 5.7 0.5 8.8���

South Africa (Datastream global index) 17.5� �2.1 14.6���

One, two, and three asterisks denote significantly different from zero at the ten, five, and
one percent level respectively, based on one-sided tests. Source: Table 3 in [42].

studies 454 SAD patients in Vancouver on a monthly basis
and finds, that the peak timing of diagnosis is during the
early fall. Lam [47] also studies the timing of clinical remis-
sion of SAD and finds it peaks in April, with almost half of
all SAD-sufferers first experiencing complete remission in
that month. March is the secondmost commonmonth for
subjects to first experience full remission, corresponding
to almost 30 percent of subjects. For most SAD patients,
the initial onset and full recovery are separated by several
months over the fall and winter.

Direct use of Kamstra, Kramer, and Levi’s [43] vari-
able (which is an estimate of population-wide SAD on-
set/recovery based on specific samples of individuals)
could impart an error-in-variables problem (see [48]), thus
they utilize an instrumented version detailed in the pa-
per, which they call Onset/Recovery, denoted ÔRt . The
instrumented SADmeasure ÔRt reflects the change in the
proportion of SAD-affected individuals actively suffering
from SAD. The measure is defined year-round (unlike the
original Kamstra, Kramer, and Levi [42], SADt variable,
which is defined for only the fall and winter months), tak-
ing on positive values in the summer and fall and negative
values in the winter and spring. Its value peaks near the
fall equinox and reaches a trough near the spring equinox.
(The exact monthly values of ÔRt are reported by Kam-
stra, Kramer, and Levi [43].) The opposite signs on ÔRt
across the fall and winter seasons should, in principle, per-
mit it to capture the opposite impact on equity or Treasury
returns across the seasons, without use of a dummy vari-
able. Kamstra, Kramer, and Levi [43] find that use of ÔRt
as a regressor to explain seasonal patterns in Treasury and
equity returns renders the SADt and Fallt (used by Kam-
stra, Kramer, and Levi [42]) as economically and statisti-
cally insignificant, suggesting the Onset/Recovery variable

does a far better job of explaining seasonal variation in re-
turns than the original proxies which are not directly re-
lated to the incidence of SAD.

Kamstra, Kramer, and Levi [43] show that the sea-
sonal Treasury and equity return patterns are unlikely to
arise from macroeconomic seasonalities, seasonal varia-
tion in risk, cross-hedging between equity and Treasury
markets, investor sentiment, seasonalities in the Treasury
market auction schedule, seasonalities in the Treasury debt
supply, seasonalities in the Federal Reserve Board’s inter-
est-rate-setting cycle, or peculiarities of the sample period
considered. They find that the seasonal cycles in equity
and Treasury returns become more pronounced during
periods of high market volatility, consistent with time-
varying risk aversion among market participants. Further-
more, they apply the White [75] reality test and find that
the correlation between returns and the clinical incidence
of seasonal depression cannot be easily dismissed as the
simple result of data snooping.

DeGennaro, Kamstra, and Kramer [13] and Kamstra,
Kramer, and Levi [13] provide further corroborating evi-
dence for the hypothesis that SAD leads to time variation
in financial markets by considering (respectively) bid-ask
spreads for stocks and the flow of funds in and out of risky
and safe mutual funds. In both papers they find strong
support for the link between seasonal depression and time-
varying risk aversion.

Daylight Saving Time Changes

The second potential biological source of time-varying eq-
uity premia we consider arises on the two dates of the
year when most of the developed world shifts clocks for-
ward or backward an hour in the name of daylight sav-
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ing. Psychologists have found that changes in sleep pat-
terns (due to shift work, jet lag, or daylight saving time
changes, for example) are associated with increased anxi-
ety, which is suggestive of a link between changes in sleep
habits and time-varying risk tolerance. See [26,52], and ci-
tations found in [10] and [72] for more details on the link
between sleep disruptions and anxiety. In addition to caus-
ing heightened anxiety, changes in sleep patterns also in-
hibit rational decision-making, lower one’s information-
processing ability, affect judgment, slow reaction time, and
reduce problem-solving capabilities. Even a change of one
hour can significantly affect behavior.

Kamstra, Kramer, and Levi [40] explore the finan-
cial market ramifications of a link between daylight sav-
ing time-change-induced disruptions in sleep patterns and
individuals’ tolerance for risk. They find, consistent with
psychology studies that show a gain or loss of an hour’s
sleep leads to increased anxiety, investors seem to shun
risky stock on the trading day following a daylight sav-
ing time change. They consider stock market indexes
from four countries where the time changes happen on
non-overlapping dates, the US, Canada, Britain, and Ger-
many. Based on stock market behavior over the past three
decades, the authors find that the magnitude of the aver-
age return on spring daylight saving weekends is typically
between two to five times that of ordinary weekends, and
the effect is even stronger in the fall. Kamstra, Kramer, and
Levi [41] show that the effect is not driven by a few ex-
tremely negative observations, but rather the entire distri-
bution of returns shifts to the left following daylight sav-
ing time changes, consistent with anxious investors selling
risky stock.

Future Directions

We divide our discussion in this section into three parts,
one for each major topic discussed in the article.

Regarding fundamental valuation, a promising future
path is to compare estimates emerging from sophisticated
valuation methods to market prices, using the compari-
son to highlight inconsistencies in the modeling assump-
tions (such as restrictions on the equity premium used by
the model, restrictions on the growth rate imposed for ex-
pected cash flows, and the implied values of those quanti-
ties that can be inferred from market prices). Even if one
believes that markets are efficient and investors are ratio-
nal, there is still much to be learned from calculating fun-
damentals using models and examining discrepancies rel-
ative to observed market prices.

Regarding the simulation techniques for estimating
the equity premium, a promising direction for future re-

search is to exploit these tools to forecast the volatility of
stock prices. This may lead to new alternatives to exist-
ing option-implied volatility calculations and time-series
techniques such as ARCH (for an overview of these meth-
ods see [15]). Another fruitful future direction would be to
apply the simulation techniques to the valuation of indi-
vidual companies’ stock (as opposed to valuing, say, stock
market indexes).

Regarding the topic of time-varying equity premia that
may arise for biological reasons, a common feature of
both of the examples explored in Sect. “Time-Varying Eq-
uity Premia: Possible Biological Origins”, SAD and day-
light-saving-time-change-induced fluctuations in the risk
premium, is that in both cases the empirical evidence is
based on aggregate financial market data. There is a re-
cent trend in finance toward documenting phenomena at
the individual level, using data such as individuals’ finan-
cial asset holdings and trades in their brokerage accounts.
(See [1,54,55] for instance). A natural course forward is to
build upon the existing aggregate market support for the
prevalence of time-varying risk aversion by testing at the
individual level whether risk aversion varies through the
course of the year due to seasonal depression and during
shorter intervals due to changes in sleep patterns. An ad-
ditional potentially fruitful direction for future research is
to integrate into classical asset pricing models the notion
that biological factors might impact asset returns through
changes in agents’ degree of risk aversion. That is, human
traits such as seasonal depression may lead to regularities
in financial markets that are not mere anomalies; rather
they may be perfectly consistent with rational agents mak-
ing sensible decisions given their changing tolerance for
risk. This new line of research would be similar in spirit to
the work of Shefrin [71] who considers the way behavioral
biases like overconfidence can be incorporated into the
pricing kernel in standard asset pricing models. While the
behavioral biases Shefrin considers typically involve hu-
mans making errors, the biological factors described here
might be considered rational due to their involvement of
time-varying risk aversion.
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Glossary

Arbitrage pricing theory (APT) the expected return of
an asset is a linear function of a set of factors.

Artificial neural network is a nonlinear flexible func-
tional form, connecting inputs to outputs, being ca-
pable of approximating a measurable function to
any desired level of accuracy provided that sufficient
complexity (in terms of number of hidden units) is
permitted.

Autoregressive conditional heteroskedasticity (ARCH)
the variance of an asset returns is a linear function of
the past squared surprises to the asset.

Bagging short for bootstrap aggregating. Bagging is
a method of smoothing the predictors’ instability by
averaging the predictors over bootstrap predictors and
thus lowering the sensitivity of the predictors to train-
ing samples. A predictor is said to be unstable if
perturbing the training sample can cause significant
changes in the predictor.

Capital asset pricing model (CAPM) the expected re-
turn of an asset is a linear function of the covari-
ance of the asset return with the return of the market
portfolio.

Factor model a linear factor model summarizes the di-
mension of a large system of variables by a set of factors
that are linear combinations of the original variables.

Financial forecasting prediction of prices, returns, direc-
tion, density or any other characteristic of financial as-

sets such as stocks, bonds, options, interest rates, ex-
change rates, etc.

Functional coefficient model a model with time-varying
and state-dependent coefficients. The number of states
can be infinite.

Linearity in mean the process fytg is linear in mean con-
ditional on Xt if

Pr
�
E(yt jXt) D X 0

t�
�� D 1 for some �� 2 Rk :

Loss (cost) function When a forecast ft;h of a variable
YtCh is made at time t for h periods ahead, the loss
(or cost) will arise if a forecast turns out to be dif-
ferent from the actual value. The loss function of the
forecast error etCh D YtCh � ft;h is denoted as
ctCh(YtCh ; ft;h), and the function ctCh(�) can change
over t and the forecast horizon h.

Markov-switching model features parameters changing
in different regimes, but in contrast with the threshold
models the change is dictated by a non-observable state
variable that is modelled as a hidden Markov chain.

Martingale property tomorrow’s asset price is expected
to be equal to today’s price given some information set

E(ptC1jFt) D pt :

Nonparametric regression is a data driven technique
where a conditional moment of a random variable is
specified as an unknown function of the data and es-
timated by means of a kernel or any other weighting
scheme on the data.

Random field a scalar random field is defined as a func-
tion m(!; x) : ˝ � A ! R such that m(!; x) is a ran-
dom variable for each x 2 Awhere A 
 Rk .

Sieves the sieves or approximating spaces are approxima-
tions to an unknown function, that are dense in the
original function space. Sieves can be constructed us-
ing linear spans of power series, e. g., Fourier series,
splines, or many other basis functions such as artifi-
cial neural network (ANN), and various polynomials
(Hermite, Laguerre, etc.).

Smooth transition models threshold model with the in-
dicator function replaced by a smooth monotonically
increasing differentiable function such as a probability
distribution function.

Threshold model a nonlinear model with time-varying
coefficients specified by using an indicator which takes
a non-zero value when a state variable falls on a speci-
fied partition of a set of states, and zero otherwise. The
number of partitions is finite.

Varying cross-sectional rank (VCR) of asset i is the pro-
portion of assets that have a return less than or equal
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to the return of firm i at time t

zi;t � M�1
MX

jD1

1(y j;t � yi;t)

Volatility Volatility in financial economics is often mea-
sured by the conditional variance (e. g., ARCH) or
the conditional range. It is important for any decision
making under uncertainty such as portfolio allocation,
option pricing, risk management.

Definition of the Subject

Financial Forecasting

Financial forecasting is concerned with the prediction
of prices of financial assets such as stocks, bonds, op-
tions, interest rates, exchange rates, etc. Though many
agents in the economy, i. e. investors, money managers,
investment banks, hedge funds, etc. are interested in the
forecasting of financial prices per se, the importance of
financial forecasting derives primarily from the role of fi-
nancial markets within the macro economy. The devel-
opment of financial instruments and financial institutions
contribute to the growth and stability of the overall econ-
omy. Because of this interconnection between financial
markets and the real economy, financial forecasting is also
intimately linked to macroeconomic forecasting, which
is concerned with the prediction of macroeconomic ag-
gregates such as growth of the gross domestic product,
consumption growth, inflation rates, commodities prices,
etc. Financial forecasting and macroeconomic forecasting
share many of the techniques and statistical models that
will be explained in detail in this article.

In financial forecasting a major object of study is the
return to a financial asset, mostly calculated as the contin-
uously compounded return, i. e., yt D log pt � log pt�1
where pt is the price of the asset at time t. Nowadays fi-
nancial forecasters use sophisticated techniques that com-
bine the advances in modern finance theory, pioneered by
Markowitz [113], with the advances in time series econo-
metrics, in particular the development of nonlinear mod-
els for conditional moments and conditional quantiles of
asset returns.

The aim of finance theory is to provide models for ex-
pected returns taking into account the uncertainty of the
future asset payoffs. In general, financial models are con-
cerned with investors’ decisions under uncertainty. For in-
stance the portfolio allocation problem deals with the al-
location of wealth among different assets that carry dif-
ferent levels of risk. The implementation of these theories
relies on econometric techniques that aim to estimate fi-

nancial models and testing them against the data. Finan-
cial econometrics is the branch of econometrics that pro-
vides model-based statistical inference for financial vari-
ables, and therefore financial forecasting will provide their
corresponding model-based predictions. However there
are also econometric developments that inform the con-
struction of ad hoc time series models that are valuable on
describing the stylized facts of financial data.

Since returns fytg are random variables, the aim of
financial forecasting is to forecast conditional moments,
quantiles, and eventually the conditional distribution of
these variables. Most of the time our interest will be
centered on expected returns and volatility as these two
moments are crucial components on portfolio allocation
problems, option valuation, and risk management, but it
is also possible to forecast quantiles of a random variable,
and therefore to forecast the expected probability density
function. Density forecasting is the most complete forecast
as it embeds all the information on the financial variable of
interest. Financial forecasting is also concerned with other
financial variables like durations between trades and di-
rections of price changes. In these cases, it is also possible
to construct conditional duration models and conditional
probit models that are the basis for forecasting durations
and market timing.

Critical to the understanding of the methodological
development in financial forecasting is the statistical con-
cept of martingale, which historically has its roots in the
games of chance also associated with the beginnings of
probability theory in the XVI century. Borrowing from
the concept of fair game, financial prices are said to en-
joy themartingale property if tomorrow’s price is expected
to be equal to today’s price given some information set;
in other words tomorrow’s price has an equal chance to
either move up or move down, and thus the best forecast
must be the current price. The martingale property is writ-
ten as

E(ptC1jFt) D pt

where E is the expectation operator and the information
set Ft � fpt ; pt�1; pt�2; : : : g is the collection of past and
current prices, though it may also include other variables
known at time t such as volume. From a forecasting point
of view, the martingale model implies that changes in fi-
nancial prices (ptC1 � pt) are not predictable.

The most restrictive form of the martingale property,
proposed by Bachelier [6] in his theory of speculation is
the model (in logarithms)

log ptC1 D �t C log pt C "tC1 ;



396 Financial Forecasting, Non-linear Time Series in

where �t D � is a constant drift and "tC1 is an identically
and independently distributed (i.i.d.) error that is assumed
to be normally distributed with zero mean and constant
variance �2. This model is also known as a random walk
model. Since the return is the percentage change in prices,
i. e. yt D log pt � log pt�1, an equivalent model for asset
returns is

ytC1 D �t C "tC1 :

Then, taking conditional expectations, we find that
E(ytC1jFt) D �t . If the conditional mean return is not
time-varying, �t D �, then the returns are not fore-
castable based on past price information. In addition and
given the assumptions on the error term, returns are in-
dependent and identically distributed random variables.
These two properties, a constant drift and an i.i.d error
term, are too restrictive and they rule out the possibility
of any predictability in asset returns. A less restrictive and
more plausible version is obtained when the i.i.d assump-
tion is relaxed. The error term may be heteroscedastic so
that returns have different (unconditional or conditional)
variances and consequently they are not identically dis-
tributed, and/or the error term, though uncorrelated, may
exhibit dependence in higher moments and in this case the
returns are not independent random variables.

The advent of modern finance theory brings the no-
tion of systematic risk, associated with return variances
and covariances, into asset pricing. Though these theo-
ries were developed to explain the cross-sectional vari-
ability of financial returns, they also helped many years
later with the construction of time series models for fi-
nancial returns. Arguably, the two most important asset
pricing models in modern finance theory are the Capital
Asset Pricing Model (CAPM) proposed by Sharpe [137]
and Lintner [103] and the Arbitrage Pricing Theory (APT)
proposed by Ross [131]. Both models claim that the ex-
pected return to an asset is a linear function of risk; in
CAPM risk is related to the covariance of the asset return
with the return to the market portfolio, and in APT risk
is measured as exposure to a set of factors, which may in-
clude the market portfolio among others. The original ver-
sion of CAPM, based on the assumption of normally dis-
tributed returns, is written as

E(yi ) D y f C ˇim
�
E(ym ) � y f

�
;

where yf is the risk-free rate, ym is the return to the market
portfolio, and ˇim is the risk of asset i defined as

ˇim D cov(yi ; ym)
var(ym)

D �im

�2m
:

This model has a time series version known as the con-
ditional CAPM [17] that it may be useful for forecast-
ing purposes. For asset i and given an information set as
Ft D fyi;t; yi;t�1; : : : ; ym;t ; ym;t�1; : : : g, the expected re-
turn is a linear function of a time-varying beta

E(yi;tC1jFt) D y f C ˇim;t
�
E(ym;tC1jFt) � y f

�

where ˇim;t D cov(yi;tC1 ;ym;tC1jFt )
var(ym;tC1jFt )

D �im;t
�2
m;t

. From this
type of models is evident that we need to model the con-
ditional second moments of returns jointly with the con-
ditional mean. A general finding of this type of models
is that when there is high volatility, expected returns are
high, and hence forecasting volatility becomes important
for the forecasting of expected returns. In the same spirit,
the APTmodels have also conditional versions that exploit
the information contained in past returns. AK-factor APT
model is written as

yt D c C B0 ft C "t ;

where f t is aK�1 vector of factors and B is aK�1 vector of
sensitivities to the factors. If the factors have time-varying
second moments, it is possible to specify an APT model
with a factor structure in the time-varying covariance ma-
trix of asset returns [48], which in turn can be exploited
for forecasting purposes.

The conditional CAPM and conditional APT models
are fine examples on how finance theory provides a base to
specify time-series models for financial returns. However
there are other time series specifications, more ad hoc in
nature, that claim that financial prices are nonlinear func-
tions – not necessarily related to time-varying second mo-
ments – of the information set and by that, they impose
some departures from the martingale property. In this
case it is possible to observe some predictability in asset
prices. This is the subject of nonlinear financial forecast-
ing. We begin with a precise definition of linearity versus
nonlinearity.

Linearity and Nonlinearity

Lee, White, and Granger [99] are the first who precisely
define the concept of “linearity”. Let fZtg be a stochastic
process, and partition Zt as Zt D (yt X 0

t)0, where (for sim-
plicity) yt is a scalar and Xt is a k � 1 vector. Xt may (but
need not necessarily) contain a constant and lagged values
of yt . LWG define that the process fytg is linear in mean
conditional on Xt if

Pr
�
E(yt jXt) D X 0

t�
�� D 1 for some �� 2 Rk :
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In the context of forecasting, Granger and Lee [71]
define linearity as follows. Define �tCh D E(ytChjFt)
being the optimum least squares h-step forecast of ytCh
made at time t. �tCh will generally be a nonlinear func-
tion of the contents ofFt . Denote mtCh the optimum lin-
ear forecast of ytCh made at time t be the best forecast
that is constrained to be a linear combination of the con-
tents of Xt 2 Ft . Granger and Lee [71] define that fytg
is said to be linear in conditional mean if �tCh is linear
in Xt , i. e., Pr

�
�tCh D mtCh

� D 1 for all t and for all h.
Under this definition the focus is the conditional mean
and thus a process exhibiting autoregressive conditional
heteroskedasticity (ARCH) [44] may nevertheless exhibit
linearity of this sort because ARCH does not refer to the
conditional mean. This is appropriate whenever we are
concerned with the adequacy of linear models for forecast-
ing the conditional mean returns. See [161], Section 2, for
a more rigorous treatment on the definitions of linearity
and nonlinearity.

This definition may be extended with some caution to
the concept of linearity in higher moments and quantiles,
but the definition may depend on the focus or interest of
the researcher. Let "tCh D ytCh � �tCh and �2tCh D
E("2tChjFt). If we consider the ARCH and GARCH as lin-
ear models, we say

˚
�2tCh

�
is linear in conditional vari-

ance if �2tCh is a linear function of lagged "2t� j and �
2
t� j

for some h or for all h. Alternatively, �2tCh D E("2tChjFt)
is said to be linear in conditional variance if �2tCh is a lin-
ear function of xt 2 Ft for some h or for all h. Similarly,
we may consider linearity in conditional quantiles. The
issue of linearity versus nonlinearity is most relevant for
the conditional mean. It is more relevant whether a cer-
tain specification is correct or incorrect (rather than lin-
ear or nonlinear) for higher order conditional moments
or quantiles.

Introduction

There exists a nontrivial gap between martingale differ-
ence and serial uncorrelatedness. The former implies the
latter, but not vice versa. Consider a stationary time series
fytg. Often, serial dependence of fytg is described by its
autocorrelation function �( j), or by its standardized spec-
tral density

h(!) D 1
2


1X

jD�1
�( j)e�i j! ; ! 2 [�
; 
] :

Both h(!) and �( j) are the Fourier transform of each
other, containing the same information of serial correla-
tions of fytg. A problem with using h(!) and �( j) is that
they cannot capture nonlinear time series that have zero

autocorrelation but are not serially independent. Nonlin-
ear MA and Bilinear series are good examples:

Nonlinear MA : Yt D bet�1et�2 C et ;
Bilinear : Yt D bet�1Yt�2 C et :

These processes are serially uncorrelated, but they are pre-
dictable using the past information. Hong and Lee [86]
note that the autocorrelation function, the variance ratios,
and the power spectrum can easily miss these processes.
Misleading conclusions in favor of the martingale hypoth-
esis could be reached when these test statistics are insignif-
icant. It is therefore important and interesting to explore
whether there exists a gap between serial uncorrelatedness
and martingale difference behavior for financial forecast-
ing, and if so, whether the neglected nonlinearity in con-
ditional mean can be explored to forecast financial asset
returns.

In the forthcoming sections, we will present, with-
out being exhaustive, nonlinear time series models for fi-
nancial returns, which are the basis for nonlinear fore-
casting. In Sect. “Nonlinear Forecasting Models for the
Conditional Mean”, we review nonlinear models for the
conditional mean of returns. A general representation is
ytC1 D �(yt ; yt�1; : : : ) C "tC1 with �(�) a nonlinear
function of the information set. IfE(ytC1jyt ; yt�1; : : : ) D
�(yt ; yt�1; : : : ), then there is a departure from the mar-
tingale hypothesis, and past price information will be rel-
evant to predict tomorrow’s return. In Sect. “Nonlinear
Forecasting Models for the Conditional Variance”, we re-
view models for the conditional variance of returns. For
instance, a model like ytC1 D � C utC1�tC1 with time-
varying conditional variance �2tC1 D E((ytC1 � �)2jFt)
and i.i.d. error utC1, is still a martingale-difference for re-
turns but it represents a departure from the independence
assumption. The conditional mean return may not be pre-
dictable but the conditional variance of the return will be.
In addition, as we have seen modeling time-varying vari-
ances and covariances will be very useful for the imple-
mentation of conditional CAPM and APT models.

Nonlinear ForecastingModels
for the ConditionalMean

We consider models to forecast the expected price changes
of financial assets and we restrict the loss function of
the forecast error to be the mean squared forecast error
(MSFE). Under this loss, the optimal forecast is �tCh D
E(ytCh jFt). Other loss functions may also be used but it
will be necessary to forecast other aspects of the forecast
density. For example, under a mean absolute error loss
function the optimal forecast is the conditional median.
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There is evidence for �tCh being time-varying. Simple
linear autoregressive polynomials in lagged price changes
are not sufficient to model �tCh and nonlinear specifica-
tions are needed. These can be classified into parametric
and nonparametric. Examples of parametric models are
autoregressive bilinear and threshold models. Examples of
nonparametric models are artificial neural network, kernel
and nearest neighbor regression models.

It will be impossible to have an exhaustive review of
the many nonlinear specifications. However, as discussed
in White [161] and Chen [25], some nonlinear models are
universal approximators. For example, the sieves or ap-
proximating spaces are proven to approximate very well
unknown functions and they can be constructed using
linear spans of power series, Fourier series, splines, or
many other basis functions such as artificial neural net-
work (ANN), Hermite polynomials as used in e. g., [56]
for modelling semi-nonparametric density, and Laguerre
polynomials used in [119] for modelling the yield curve.
Diebold and Li [36] and Huang, Lee, and Li [89] use the
Nelson–Siegel model in forecasting yields and inflation.

We review parametric nonlinear models like thresh-
old model, smooth transition model, Markov switching
model, and random fields model; nonparametric models
like local linear, local polynomial, local exponential, and
functional coefficient models; and nonlinear models based
on sieves like ANN and various polynomials approxima-
tions. For other nonlinear specifications we recommend
some books on nonlinear time series models such as Fan
and Yao [52], Gao [57], and Tsay [153]. We begin with
a very simple nonlinear model.

A Simple Nonlinear Model with Dummy Variables

Goyal and Welch [66] forecast the equity premium on the
S&P 500 index – index return minus T-bill rate – using
many predictors such as stock-related variables (e. g., divi-
dend-yield, earning-price ratio, book-to-market ratio, cor-
porate issuing activity, etc.), interest-rate-related variables
(e. g., treasury bills, long-term yield, corporate bond re-
turns, inflation, investment to capital ratio), and ex ante
consumption, wealth, income ratio (modified from [101]).
They find that these predictors have better performance
in bad times, such as the Great Depression (1930–33), the
oil-shock period (1973–75), and the tech bubble-crash pe-
riod (1999–2001). Also, they argue that it is reasonable to
impose a lower bound (e. g., zero or 2%) on the equity pre-
mium because no investor is interested in (say) a negative
premium.

Campbell and Thompson [23], inspired by the out-of-
sample forecasting of Goyal and Welch [66], argue that if

we impose some restrictions on the signs of the predic-
tors’ coefficients and excess return forecasts, some predic-
tors can beat the historical average equity premium. Sim-
ilarly to Goyal and Welch [66], they also use a rich set
of forecasting variables – valuation ratios (e. g., dividend
price ratio, earning price ratio, and book to market ratio),
real return on equity, nominal interest rates and inflation,
and equity share of new issues and consumption-wealth
ratio. They impose two restrictions – the first one is to re-
strict the predictors’ coefficients to have the theoretically
expected sign and to set wrong-signed coefficients to zero,
and the second one is to rule out a negative equity pre-
mium forecast. They show that the effectiveness of these
theoretically-inspired restrictions almost always improve
the out-of sample performance of the predictive regres-
sions. This is an example where “shrinkage” works, that is
to reduce the forecast error variance at the cost of a higher
forecast bias but with an overall smaller mean squared
forecast error (the sum of error variance and the forecast
squared bias).

The results from Goyal and Welch [66] and Campbell
and Thompson [23] support a simple form of nonlinearity
that can be generalized to threshold models or time-vary-
ing coefficient models, which we consider next.

Threshold Models

Many financial and macroeconomic time series exhibit
different characteristics over time depending upon the
state of the economy. For instance, we observe bull and
bear stock markets, high volatility versus low volatility pe-
riods, recessions versus expansions, credit crunch versus
excess liquidity, etc. If these different regimes are present
in economic time series data, econometric specifications
should go beyond linear models as these assume that there
is only a single structure or regime over time. Nonlinear
time series specifications that allow for the possibility of
different regimes, also known as state-dependent models,
include several types of models: threshold, smooth transi-
tion, and regime-switching models.

Threshold autoregressive (TAR) models [148,149] as-
sume that the dynamics of the process is explained by an
autoregression in each of the n regimes dictated by a con-
ditioning or threshold variable. For a process fytg, a gen-
eral specification of a TAR model is

yt D
nX

jD1

2

4�
( j)
o C

p jX

iD1

�
( j)
i yt�i C "

( j)
t

3

5 1(r j�1 < xt � r j):

There are n regimes, in each one there is an autoregressive
process of order pj with different autoregressive param-
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eters �( j)
i , the threshold variable is xt with rj thresholds

and ro D �1 and rn D C1, and the error term is as-
sumed i.i.d. with zero mean and different variance across
regimes "( j)t 
 i.i.d.

�
0; �2j

�
, or more generally "( j)t is as-

sumed to be a martingale difference. When the threshold
variable is the lagged dependent variable itself yt�d , the
model is known as self-exciting threshold autoregressive
(SETAR) model. The SETAR model has been applied to
the modelling of exchange rates, industrial production in-
dexes, and gross national product (GNP) growth, among
other economic data sets. The most popular specifications
within economic time series tend to find two, at most three
regimes. For instance, Boero and Marrocu [18] compare
a two and three-regime SETAR models with a linear AR
with GARCHdisturbances for the euro exchange rates. On
the overall forecasting sample, the linear model performs
better than the SETAR models but there is some improve-
ment in the predictive performance of the SETAR model
when conditioning on the regime.

Smooth Transition Models

In the SETAR specification, the number of regimes is dis-
crete and finite. It is also possible to model a continuum
of regimes as in the Smooth Transition Autoregressive
(STAR) models [144]. A typical specification is

yt D �0C
pX

iD1

�i yt�i C
 

�0 C
pX

iD1

�i yt�i

!

F(yt�d )C"t

where F(yt�d ) is the transition function that is continu-
ous and in most cases is either a logistic function or an
exponential,

F(yt�d ) D �
1 C exp


�� 
yt�d � r
����1

F(yt�d ) D 1 �
h
exp


�� 
yt�d � r
�2�i

This model can be understood as many autoregressive
regimes dictated by the values of the function F(yt�d ), or
alternatively as an autoregression where the autoregressive
parameters change smoothly over time. When F(yt�d )
is logistic and � ! 1, the STAR model collapses to
a threshold model SETAR with two regimes. One impor-
tant characteristic of these models, SETAR and STAR, is
that the process can be stationary within some regimes
and non-stationary within others moving between explo-
sive and contractionary stages.

Since the estimation of these models can be demand-
ing, the first question to solve is whether the nonlinearity
is granted by the data. A test for linearity is imperative be-
fore engaging in the estimation of nonlinear specifications.

An LM test that has power against the two alternatives
specifications SETAR and STAR is proposed by Luukko-
nen et al. [110] and it consists of running two regressions:
under the null hypothesis of linearity, a linear autore-
gression of order p is estimated in order to calculate the
sum of squared residuals, SSE0; the second is an auxiliary
regression

yt Dˇ0 C
pX

iD1

ˇi yt�i C
pX

iD1

pX

jD1

 i j yt�i yt� j

C
pX

iD1

pX

jD1

�i j yt�i y2t� j C
pX

iD1

pX

jD1

�i j yt�i y3t� j C ut

from which we calculate the sum of squared residu-
als, SSE1. The test is constructed as �2 D T(SSE0 �
SSE1)/SSE0 that under the null hypothesis of linearity is
chi-squared distributed with p(p C 1)/2 C 2p2 degrees
of freedom. There are other tests in the literature, for in-
stance Hansen [80] proposes a likelihood ratio test that
has a non-standard distribution, which is approximated by
implementing a bootstrap procedure. Tsay [151] proposes
a test based on arranged regressions with respect to the in-
creasing order of the threshold variable and by doing this
the testing problem is transformed into a change-point
problem.

If linearity is rejected, we proceed with the estimation
of the nonlinear specification. In the case of the SETAR
model, if we fix the values of the delay parameter d and
the thresholds rj, the model reduces to n linear regres-
sions for which least squares estimation is straightforward.
Tsay [151] proposes a conditional least squares (CLS) esti-
mator. For simplicity of exposition suppose that there are
two regimes in the data and the model to estimate is

yt D
"

�(1)
o C

p1X

iD1

�
(1)
i yt�i

#

1(yt�d � r)

C
"

�(2)
o C

p2X

iD1

�
(2)
i yt�i

#

1(yt�d > r) C "t

Since r and d are fixed, we can apply least squares es-
timation to the model and to obtain the LS estimates for
the parameters � i’s. With the LS residual "̂t , we obtain the
total sum of squares S(r; d) D P

t "̂
2
t . The CLS estimates

of r and d are obtained from (r̂; d̂) D argmin S(r; d).
For the STAR model, it is also necessary to specify

a priori the functional form of F(yt�d ). Teräsvirta [144]
proposes a modeling cycle consisting of three stages: spec-
ification, estimation, and evaluation. In general, the spec-
ification stage consists of sequence of null hypothesis to
be tested within a linearized version of the STAR model.
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Parameter estimation is carried out by nonlinear least
squares or maximum likelihood. The evaluation stage
mainly consists of testing for no error autocorrelation, no
remaining nonlinearity, and parameter constancy, among
other tests.

Teräsvirta and Anderson [146] find strong nonlinear-
ity in the industrial production indexes of most of the
OECD countries. The preferredmodel is the logistic STAR
with two regimes, recessions and expansions. The dynam-
ics in each regime are country dependent. For instance, in
USA they find that the economy tends to move from re-
cessions into expansions very aggressively but it will take
a large negative shock to move rapidly from an expansion
into a recession. Other references for applications of these
models to financial series are found in [28,73,94].

For forecasting with STARmodels, see Lundbergh and
Teräsvirta [109]. It is easy to construct the one-step-ahead
forecast but the multi-step-ahead forecast is a complex
problem. For instance, for the 2-regime threshold model,
the one-step-ahead forecast is constructed as the condi-
tional mean of the process given some information set

E(ytC1jFt ; �)

D
"

�(1)
o C

p1X

iD1

�
(1)
i ytC1�i

#

1(ytC1�d � r)

C
"

�(2)
o C

p2X

iD1

�
(2)
i ytC1�i

#

1(ytC1�d > r)

provided that ytC1�i ; ytC1�d 2 Ft . However, a multi-
step-ahead forecast will be a function of variables that be-
ing dated at a future date do not belong to the information
set; in this case the solution requires the use of numeri-
cal integration techniques or simulation/bootstrap proce-
dures. See Granger and Teräsvirta [72], Chapter 9, and
Teräsvirta [145] for more details on numerical methods
for multi-step forecasts.

Markov-Switching Models

A Markov-switching (MS) model [76,77] also features
changes in regime, but in contrast with the SETARmodels
the change is dictated by a non-observable state variable
that is modelled as a Markov chain. For instance, a first
order autoregressive Markov switching model is specified
as

yt D cst C �st yt�1 C "t

where st D 1; 2; : : : ;N is the unobserved state variable
that is modelled as an N-state Markov chain with transi-
tion probabilities pi j D P(st D jjst�1 D i), and "t 


i.i.d. N(0; �2) or more generally "t is a martingale dif-
ference. Conditioning in a given state and an informa-
tion set Ft , the process fytg is linear but uncondition-
ally the process is nonlinear. The conditional forecast is
E(ytC1jstC1 D j;Ft ; �) D c j C � j yt and the uncon-
ditional forecast based on observable variables is the sum
of the conditional forecasts for each state weighted by the
probability of being in that state,

E(ytC1jFt ; �)

D
NX

jD1

P(stC1 D jjFt ; �)E(ytC1jstC1 D j;Ft ; �) :

The parameter vector � D (c1 : : : cN ; �1 : : : �N ; �2)0 as
well as the transition probabilities pij can be estimated by
maximum likelihood.

MS models have been applying to the modeling of for-
eign exchange rates with mixed success. Engel and Hamil-
ton [43] fit a two-state MS for the Dollar and find that
there are long swings and by that they reject the random
walk behavior in the exchange rate. Marsh [114] estimates
a two-state MS for the Deutschemark, the Pound Sterling,
and the Japanese Yen. Though the model approximates
the characteristics of the data well, the forecasting perfor-
mance is poor when measured by the profit/losses gener-
ated by a set of trading rules based on the predictions of
the MS model. On the contrary, Dueker and Neely [40]
find that for the same exchange rate a MS model with
three states variables – in the scale factor of the variance
of a Student-t error, in the kurtosis of the error, and in
the expected return – produces out-of-sample excess re-
turns that are slightly superior to those generated by com-
mon trading rules. For stock returns, there is evidence that
MSmodels perform relatively well on describing two states
in the mean (high/low returns) and two states in the vari-
ance (stable/volatile periods) of returns [111]. In addition,
Perez-Quiros and Timmermann [124] propose that the er-
ror term should be modelled as a mixture of Gaussian and
Student-t distributions to capture the outliers commonly
found in stock returns. This model provides some gains in
predictive accuracy mainly for small firms returns. For in-
terest rates in USA, Germany, and United Kingdom, Ang
and Bekaert [5] find that a two-state MS model that in-
corporates information on international short rate and on
term spread is able to predict better than an univariate MS
model. Additionally they find that in USA the classifica-
tion of regimes correlates well with the business cycles.

SETAR, STAR, and MS models are successful spec-
ifications to approximate the characteristics of financial
and macroeconomic data. However, good in-sample per-
formance does not imply necessarily a good out-of-sam-
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ple performance, mainly when compared to simple lin-
ear ARMA models. The success of nonlinear models de-
pends on how prominent the nonlinearity is in the data.
We should not expect a nonlinear model to perform bet-
ter than a linear model when the contribution of the non-
linearity to the overall specification of the model is very
small. As it is argued in Granger and Teräsvirta [72], the
prediction errors generated by a nonlinear model will be
smaller only when the nonlinear feature modelled in-sam-
ple is also present in the forecasting sample.

A State Dependent Mixture Model
Based on Cross-sectional Ranks

In the previous section, we have dealt with nonlinear
time series models that only incorporate time series in-
formation. González-Rivera, Lee, andMishra [63] propose
a nonlinear model that combines time series with cross
sectional information. They propose the modelling of ex-
pected returns based on the joint dynamics of a sharp jump
in the cross-sectional rank and the realized returns. They
analyze the marginal probability distribution of a jump
in the cross-sectional rank within the context of a dura-
tion model, and the probability of the asset return condi-
tional on a jump specifying different dynamics depending
on whether or not a jump has taken place. The resulting
model for expected returns is a mixture of normal distri-
butions weighted by the probability of jumping.

Let yi;t be the return of firm i at time t, and fyi;tgMiD1 be
the collection of asset returns of theM firms that constitute
the market at time t. For each time t, the asset returns are
ordered from the smallest to the largest, and define zi;t ,
the Varying Cross-sectional Rank (VCR) of firm i within
the market, as the proportion of firms that have a return
less than or equal to the return of firm i. We write

zi;t � M�1
MX

jD1

1(y j;t � yi;t) ; (1)

where 1(�) is the indicator function, and forM large, zi;t 2
(0; 1]. Since the rank is a highly dependent variable, it is
assumed that small movements in the asset ranking will
not contain significant information and that most likely
large movements in ranking will be the result of news in
the overall market and/or of news concerning a particu-
lar asset. Focusing on large rank movements, we define,
at time t, a sharp jump as a binary variable that takes the
value one when there is a minimum (upward or down-
ward) movement of 0.5 in the ranking of asset i, and zero
otherwise:

Ji;t � 1(jzi;t � zi;t�1j � 0:5) : (2)

A jump of this magnitude brings the asset return above
or below the median of the cross-sectional distribution of
returns. Note that this notion of jumps differs from the
more traditional meaning of the word in the context of
continuous-time modelling of the univariate return pro-
cess. A jump in the cross-sectional rank implicitly depends
on numerous univariate return processes.

The analytical problem now consists in modeling
the joint distribution of the return yi;t and the jump
Ji;t , i. e. f (yi;t; Ji;tjFt�1) where Ft�1 is the informa-
tion set up to time t � 1. Since f (yi;t; Ji;tjFt�1) D
f1(Ji;tjFt�1) f2(yi;tjJi;t;Ft�1), the analysis focuses first on
the modelling of the marginal distribution of the jump,
and subsequently on the modelling of the conditional dis-
tribution of the return.

Since Ji;t is a Bernoulli variable, the marginal distribu-
tion of the jump is f1(Ji;tjFt�1) D pJi;ti;t (1 � pi;t)(1�J i;t )

where pi;t � Pr(Ji;t D 1jFt�1) is the conditional prob-
ability of a jump in the cross-sectional ranks. The mod-
elling of pi;t is performed within the context of a dynamic
duration model specified in calendar time as in Hamilton
and Jordà [79]. The calendar time approach is necessary
because asset returns are reported in calendar time (days,
weeks, etc.) and it has the advantage of incorporating any
other available information also reported in calendar time.

It is easy to see that the probability of jumping and du-
ration must have an inverse relationship. If the probability
of jumping is high, the expected duration must be short,
and vice versa. Let �N(t) be the expected duration. The ex-
pected duration until the next jump in the cross-sectional
rank is given by �N(t) D P1

jD1 j(1 � pt) j�1pt D p�1
t .

Note that
P1

jD0(1 � pt) j D p�1
t . Differentiating with re-

spect to pt yields
P1

jD0 � j(1 � pt) j�1 D �p�2
t . Multiply-

ing by �pt gives
P1

jD0 j(1 � pt) j�1pt D p�1
t and thus

P1
jD1 j(1� pt) j�1pt D p�1

t . Consequently, to model pi;t ,
it suffices to model the expected duration and compute
its inverse. Following Hamilton and Jordà [79], an autore-
gressive conditional hazard (ACH) model is specified. The
ACH model is a calendar-time version of the autoregres-
sive conditional duration (ACD) of Engle and Russell [49].
In both ACD and ACH models, the expected duration is
a linear function of lag durations. However as the ACD
model is set up in event time, there are some difficulties on
how to introduce information that arrives between events.
This is not the case in the ACHmodel because the set-up is
in calendar time. In the ACDmodel, the forecasting object
is the expected time between events; in the ACH model,
the objective is to forecast the probability that the event
will happen tomorrow given the information known up to
today. A general ACH model is specified as
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�N(t) D
mX

jD1

˛ jDN(t)� j C
rX

jD1

ˇ j�N(t)� j : (3)

Since pt is a probability, it must be bounded between zero
and one. This implies that the conditional duration must
have a lower bound of one. Furthermore, working in cal-
endar time it is possible to incorporate information that
becomes available between jumps and can affect the prob-
ability of a jump in future periods. The conditional hazard
rate is specified as

pt D [�N(t�1) C ı
0

Xt�1]�1 ; (4)

where Xt�1 is a vector of relevant calendar time vari-
ables such as past VCRs and past returns. This completes
the marginal distribution of the jump f1(Ji;tjFt�1) D
pJi;ti;t (1 � pi;t)(1�J i;t ).

On modelling f2(yt jJt;Ft�1; �2), it is assumed that the
return to asset i may behave differently depending upon
the occurrence of a jump. The modelling of two potential
different states (whether a jump has occurred or not) will
permit to differentiate whether the conditional expected
return is driven by active or/and passivemovements in the
asset ranking in conjunction with its own return dynam-
ics. A priori, different dynamics are possible in these two
states. A general specification is

f2(yt jJt;Ft�1; �2) D
�

N(�1;t; �
2
1;t) if Jt D 1

N(�0;t; �
2
0;t) if Jt D 0 ; (5)

where � j;t is the conditional mean and �2j;t the condi-
tional variance in each state ( j D 1; 0). Whether these two
states are present in the data is an empirical question and
it should be answered through statistical testing.

Combining the models for the marginal density of the
jump and the conditional density of the returns, the esti-
mation can be conducted with maximum likelihood tech-
niques. For a sample fyt; JtgTtD1, the joint log-likelihood
function is

TX

tD1

ln f (yt; Jt jFt�1; �)

D
TX

tD1

ln f1(Jt jFt�1; �1) C
TX

tD1

ln f2(yt jJt;Ft�1; �2) :

Let us callL1(�1) D PT
tD1 ln f1(Jt jFt�1; �1) andL2(�2) D

PT
tD1 ln f2(yt jJt;Ft�1; �2). The maximization of the joint

log-likelihood function can be achieved by maximizing
L1(�1) and L2(�2) separately without loss of efficiency by
assuming that the parameter vectors �1 and �2 are “varia-
tion free” in the sense of Engle et al. [45].

The log-likelihood function L1(�1) D PT
tD1 ln f1(Jt j

Ft�1; �1) is

L1(�1) D
TX

tD1

�
Jt ln pt(�1) C (1 � Jt) ln(1 � pt(�1))

�
; (6)

where �1 includes all parameters in the conditional dura-
tion model.

The log-likelihood function L2(�2) D PT
tD1 ln f2(yt j

Jt ;Ft�1; �2) is

L2(�2)D
TX

tD1

ln

2

6
4

Jtq
2
�21;t

exp

(

�1
2

�
yt��1;t

�1;t

�2
)

C 1 � Jt
q
2
�20;t

exp

(

�1
2

�
yt��0;t

�0;t

�2
)
3

7
5;

where �2 includes all parameters in the conditional means
and conditional variances under both regimes.

If the two proposed states are granted in the data,
the marginal density function of the asset return must be
a mixture of two normal density functions where the mix-
ture weights are given by the probability of jumping pt :

g(yt jFt�1; �) �
1X

JtD0

f (yt; Jt jFt�1; �)

D
1X

JtD0

f1(JtjFt�1; �1) f2(yt jJt;Ft�1; �2)

D pt � f2(yt jJt D 1;Ft�1; �2)
C (1 � pt) � f2(yt jJt D 0;Ft�1; �2);

(7)

as f1(Jt jFt�1; �1) D pJtt (1 � pt)(1�Jt ). Therefore, the one-
step ahead forecast of the return is

E(ytC1jFt ; �)

D
Z

ytC1 � g(ytC1jFt ; �)dytC1

D ptC1(�1) � �1;tC1(�2) C (1 � ptC1(�1)) � �0;tC1(�2) :
(8)

The expected return is a function of the probability of
jumping pt , which is a nonlinear function of the informa-
tion set as shown in (4). Hence the expected returns are
nonlinear functions of the information set, even in a sim-
ple case where �1;t and �0;t are linear.

This model was estimated for the returns of the con-
stituents of the SP500 index from 1990 to 2000, and its per-
formance was assessed in an out-of-sample exercise from
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2001 to 2005 within the context of several trading strate-
gies. Based on the one-step-ahead forecast of the mix-
ture model, a proposed trading strategy called VCR-Mix-
ture Trading Rule is shown to be a superior rule because
of its ability to generate large risk-adjusted mean returns
when compared to other technical and model-based trad-
ing rules. The VCR-Mixture Trading Rule is implemented
by computing for each firm in the SP500 index the one-
step ahead forecast of the return as in (8). Based on the
forecasted returns fŷ i;tC1(�̂t)gT�1

tDR , the investor predicts
the VCR of all assets in relation to the overall market, that
is,

ẑi;tC1 D M�1
MX

jD1

1(ŷ j;tC1 � ŷ i;tC1);

t D R; : : : ; T � 1 ; (9)

and buys the top K performing assets if their forecasted
return is above the risk-free rate. In every subsequent out-
of-sample period (t D R; : : : ; T � 1), the investor revises
her portfolio, selling the assets that fall out of the top per-
formers and buying the ones that rise to the top, and she
computes the one-period portfolio return


tC1 D K�1
MX

jD1

y j;tC1 � 1 
ẑ j;tC1 � zKtC1
�
;

t D R; : : : ; T � 1 ;

(10)

where zKtC1 is the cutoff cross-sectional rank to
select the K best performing stocks such thatPM

jD1 1


ẑ j;tC1 � zKtC1

� D K. In the analysis of González-
Rivera, Lee, andMishra [63] a portfolio is formed with the
top 1% (K D 5 stocks) performers in the SP500 index.
Every asset in the portfolio is weighted equally. The eval-
uation criterion is to compute the “mean trading return”
over the forecasting period

MTR D P�1
T�1X

tDR


tC1 :

It is also possible to correct MTR according to the level
of risk of the chosen portfolio. For instance, the tradi-
tional Sharpe ratio will provide the excess return per unit
of risk measured by the standard deviation of the selected
portfolio

SR D P�1
T�1X

tDR

(
tC1 � r f ;tC1)

��
tC1(�̂t)

;

where r f ;tC1 is the risk free rate. The VCR-Mixture Trad-
ing Rule produces a weeklyMTR of 0:243% (63:295% cu-

mulative return over 260 weeks), equivalent to a yearly
compounded return of 13:45%, that is significantly more
than the next most favorable rule, which is the Buy-and-
Hold-the-Market Trading Rule with a weekly mean re-
turn of �0:019%, equivalent to a yearly return of �1:00%.
To assess the return-risk trade off, we implement the
Sharpe ratio. The largest SR (mean return per unit of stan-
dard deviation) is provided by the VCR-Mixture rule with
a weekly return of 0:151% (8:11% yearly compounded re-
turn per unit of standard deviation), which is lower than
the mean return provided by the same rule under the
MTR criterion, but still a dominant return when compared
to the mean returns provided by the Buy-and-Hold-the-
Market Trading Rule.

Random Fields

Hamilton [78] proposed a flexible parametric regression
model where the conditional mean has a linear para-
metric component and a potential nonlinear component
represented by an isotropic Gaussian random field. The
model has a nonparametric flavor because no functional
form is assumed but, nevertheless, the estimation is fully
parametric.

A scalar random field is defined as a functionm(!; x) :
˝ � A ! R such that m(!; x) is a random variable for
each x 2 A where A 
 Rk . A random field is also de-
noted as m(x). If m(x) is a system of random variables
with finite dimensional Gaussian distributions, then the
scalar random field is said to be Gaussian and it is com-
pletely determined by its mean function �(x) D E

�
m(x)

�

and its covariance function with typical elementC(x; z) D
E
�
(m(x) � �(x))(m(z) � �(z))� for any x; z 2 A. The

random field is said to be homogeneous or stationary if
�(x) D � and the covariance function depends only on
the difference vector x � z and we should write C(x; z) D
C(x � z). Furthermore, the random field is said to be
isotropic if the covariance function depends on d(x; z),
where d(�) is a scalar measure of distance. In this situation
we write C(x; z) D C(d(x; z)).

The specification suggested by Hamilton [78] can be
represented as

yt D ˇ0 C x0
tˇ1 C �m(g ˇ xt) C 	t ; (11)

for yt 2 R and xt 2 Rk , both stationary and ergodic
processes. The conditional mean has a linear component
given by ˇ0 C x0

tˇ1 and a nonlinear component given by
�m(g ˇ xt), where m(z), for any choice of z, represents
a realization of a Gaussian and homogenous random field
with a moving average representation; xt could be prede-
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termined or exogenous and is independent of m(�), and
	t is a sequence of independent and identically distributed
N(0; �2) variates independent of both m(�) and xt as well
as of lagged values of xt. The scalar parameter � represents
the contribution of the nonlinear part to the conditional
mean, the vector g 2 Rk

0;C drives the curvature of the con-
ditional mean, and the symbol ˇ denotes element-by-ele-
ment multiplication.

Let Hk be the covariance (correlation) function of
the random field m(�) with typical element defined as
Hk(x; z) D E

�
m(x)m(z)

�
. Hamilton [78] proved that the

covariance function depends solely upon the Euclidean
distance between x and z, rendering the random field
isotropic. For any x and z 2 Rk , the correlation be-
tween m(x) and m(z) is given by the ratio of the volume
of the overlap of k-dimensional unit spheroids centered
at x and z to the volume of a single k-dimensional unit
spheroid. If the Euclidean distance between x and z is
greater than two, the correlation between m(x) and m(z)
will be equal to zero. The general expression of the corre-
lation function is

Hk(h) D
(
Gk�1(h; 1)/Gk�1(0; 1) if h � 1
0 if h > 1

; (12)

Gk(h; r) D
Z r

h
(r2 � w2)k/2dw ;

where h � 1
2dL2 (x; z), and dL2 (x; z) � �

(x�z)0(x�z)
�1/2

is the Euclidean distance between x and z.
Within the specification (11), Dahl and González-Ri-

vera [33] provided alternative representations of the ran-
dom field that permit the construction of Lagrange mul-
tiplier tests for neglected nonlinearity, which circumvent
the problem of unidentified nuisance parameters under
the null of linearity and, at the same time, they are robust
to the specification of the covariance function associated
with the random field. Theymodified the Hamilton frame-
work in two directions. First, the random field is specified
in the L1 norm instead of the L2 norm, and secondly they
considered random fields that may not have a simplemov-
ing average representation. The advantage of the L1 norm,
which is exploited in the testing problem, is that this dis-
tance measure is a linear function of the nuisance parame-
ters, in contrast to the L2 norm which is a nonlinear func-
tion. Logically, Dahl and González-Rivera proceeded in
an opposite fashion to Hamilton. Whereas Hamilton first
proposed a moving average representation of the random
field, and secondly, he derived its corresponding covari-
ance function, Dahl and González-Rivera first proposed
a covariance function, and secondly they inquire whether
there is a random field associated with it. The proposed

covariance function is

Ck(h�) D
(
(1 � h�)2k if h� � 1
0 if h� > 1

; (13)

where h� � 1
2dL1 (x; z) D 1

2 jx � zj01. The function (13)
is a permissible covariance, that is, it satisfies the positive
semidefiniteness condition, which is q0Ckq � 0 for all
q ¤ 0T . Furthermore, there is a random field associated
with it according to the Khinchin’s theorem (1934) and
Bochner’s theorem (1959). The basic argument is that the
class of functions which are covariance functions of ho-
mogenous random fields coincides with the class of pos-
itive semidefinite functions. Hence, (13) being a positive
semidefinite function must be the covariance function of
a homogenous random field.

The estimation of these models is carried out by max-
imum likelihood. From model (11), we can write y 

N(Xˇ; �2Ck C �2IT) where y D (y1; y2; : : : ; yT )0, X1 D
(x0

1; x
0
2; : : : ; x

0
T)

0, X D (1 : X1), ˇ D (ˇ0; ˇ0
1)

0, 	 D
(	1; 	2; : : : ; 	T )

0 and �2 is the variance of 	t .Ck is a generic
covariance function associated with the random field,
which could be equal to the Hamilton spherical covariance
function in (12), or to the covariance in (13). The log-like-
lihood function corresponding to this model is

`(ˇ; �2; g; �2) D � T
2
log(2
) � 1

2
log j�2Ck C �2IT j

� 1
2
(y�Xˇ)0(�2CkC�2IT)�1(y�Xˇ):

(14)

The flexible regression model has been applied suc-
cessfully to detect nonlinearity in the quarterly growth rate
of the US real GNP [34] and in the Industrial Production
Index of sixteen OECD countries [33]. This technology is
able to mimic the characteristics of the actual US business
cycle. The cycle is dissected according tomeasures of dura-
tion, amplitude, cumulation and excess cumulation of the
contraction and expansion phases. In contrast to Harding
and Pagan [82] who find that nonlinear models are not
uniformly superior to linear ones, the flexible regression
model represents a clear improvement over linear mod-
els, and it seems to capture just the right shape of the
expansion phase as opposed to Hamilton [76] and Dur-
land and McCurdy [41] models, which tend to overesti-
mate the cumulation measure in the expansion phase. It is
found that the expansion phasemust have at least two sub-
phases: an aggressive early expansion after the trough, and
a moderate/slow late expansion before the peak implying
the existence of an inflexion point that we date approx-
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imately around one-third into the duration of the expan-
sion phase. This shape lends support to parametric models
of the growth rate that allow for three regimes [136], as op-
posed to models with just two regimes (contractions and
expansions). For the Industrial Production Index, test-
ing for nonlinearity within the flexible regression frame-
work brings similar conclusions to those in Teräsvirta and
Anderson [146], who propose parametric STAR models
for industrial production data. However, the tests pro-
posed in Dahl and González-Rivera [33], which have su-
perior performance to detect smooth transition dynamics,
seem to indicate that linearity cannot be rejected in the
industrial production indexes of Japan, Austria, Belgium
and Sweden as opposed to the findings of Teräsvirta and
Anderson.

Nonlinear Factor Models

For the last ten years forecasting using a data-rich envi-
ronment has been one of the most researched topic in eco-
nomics and finance, see [140,141]. In this literature, factor
models are used to reduce the dimension of the data but
mostly they are linear models. Bai and Ng (BN) [7] intro-
duce a nonlinear factor model with a quadratic principal
component model as a special case. First consider a simple
factor model

xi t D �0
i Ft C ei t : (15)

By the method of principal component, the elements of ft
are linear combinations of elements of xt . The factors are
estimated by minimizing the sum of squared residuals of
the linear model, xi t D �i Ft C ei t .

The factor model in (15) assumes a linear link function
between the predictor xt and the latent factors Ft . BN con-
sider a more flexible approach by a nonlinear link function
g(�) such that

g(xi t) D � 0
i Jt C vi t ;

where Jt are the common factors, and � i is the vector of
factor loadings. BN consider g(xi t) to be xit augmented
by some or all of the unique cross-products of the ele-
ments of fxi tgNiD1. The second-order factor model is then
x�
i t D � 0

i Jt C vi t where x�
i t is an N� � 1 vector. Estimation

of Jt then proceeds by the usual method of principal com-
ponents. BN consider x�

i t D fxi t x2i tgNiD1 with N� D 2N ,
which they call the SPC (squared principal components).

Once the factors are estimated, the forecasting equa-
tion for ytCh would be

ytCh D (1F̂ 0
t)� C "t :

The forecasting equation remains linear whatever the link
function g is. An alternative way of capturing nonlinearity
is to augment the forecasting equation to include functions
of the factors

ytCh D (1F̂ 0
t)� C a(F̂t) C "t ;

where a(�) is nonlinear. A simple case when a(�) is
quadratic is referred to as PC2 (squared factors) in BN.

BN note that the PC2 is conceptually distinct from
SPC. While the PC2 forecasting model allows the volatil-
ity of factors estimated by linear principal components to
have predictive power for y, the SPC model allows the
factors to be possibly nonlinear functions of the predic-
tors while maintaining a linear relation between the fac-
tors and y. Ludvigson and Ng [108] found that the square
of the first factor estimated from a set of financial factors
(i. e., volatility of the first factor) is significant in the regres-
sionmodel for themean excess returns. In contrast, factors
estimated from the second moment of data (i. e., volatility
factors) are much weaker predictors of excess returns.

Artificial Neural Network Models

Consider an augmented single hidden layer feedforward
neural network model f (xt; �) in which the network out-
put yt is determined given input xt as

yt D f (xt; �) C "t

D xtˇ C
qX

jD1

ı j (xt� j) C "t

where � D (ˇ0� 0ı0)0, ˇ is a conformable column vector
of connection strength from the input layer to the out-
put layer; � j is a conformable column vector of connec-
tion strength from the input layer to the hidden units,
j D 1; : : : ; q; ı j is a (scalar) connection strength from
the hidden unit j to the output unit, j D 1; : : : ; q; and is
a squashing function (e. g., the logistic squasher) or a radial
basis function. Input units x send signals to intermediate
hidden units, then each of hidden unit produces an acti-
vation  that then sends signals toward the output unit.
The integer q denotes the number of hidden units added
to the affine (linear) network. When q D 0, we have a two
layer affine network yt D xtˇC"t . Hornick, Stinchcombe
and White [88] show that neural network is a nonlinear
flexible functional form being capable of approximating
any Borel measurable function to any desired level of ac-
curacy provided sufficiently many hidden units are avail-
able. Stinchcombe and White [138] show that this result
holds for any  (�) belonging to the class of “generically
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comprehensively revealing” functions. These functions
are “comprehensively revealing” in the sense that they
can reveal arbitrary model misspecifications E(yt jxt) ¤
f (xt; ��) with non-zero probability and they are “generic”
in the sense that almost any choice for � will reveal the
misspecification.

We build an artificial neural network (ANN) model
based on a test for neglected nonlinearity likely to have
power against a range of alternatives. See White [158] and
Lee, White, and Granger [99] on the neural network test
and its comparison with other specification tests. The neu-
ral network test is based on a test function h(xt) chosen as
the activations of ‘phantom’ hidden units  (xt
 j); j D
1; : : : ; q, where 
 j are random column vectors indepen-
dent of xt . That is,

E[ (xt
 j)"�
t j
 j] D E[ (xt
 j)"�

t ] D 0 j D 1; : : : ; q ;
(16)

under H0, so that

E(�t"
�
t ) D 0 ; (17)

where �t D ( (xt
1); : : : ;  (xt
q))0 is a phantom hid-
den unit activation vector. Evidence of correlation of "�

t
with � t is evidence against the null hypothesis that yt is
linear in mean. If correlation exists, augmenting the linear
network by including an additional hidden unit with ac-
tivations  (xt
 j) would permit an improvement in net-
work performance. Thus the tests are based on sample
correlation of affine network errors with phantom hidden
unit activations,

n�1
nX

tD1

�t "̂t D n�1
nX

tD1

�t(yt � xt ˆ̌) : (18)

Under suitable regularity conditions it follows from the

central limit theorem that n�1/2Pn
tD1�t "̂t

d! N(0;W�)
as n ! 1, and if one has a consistent estimator for its
asymptotic covariance matrix, say Ŵn , then an asymptotic
chi-square statistic can be formed as

 

n�1/2
nX

tD1

�t "̂t

!0
Ŵ�1

n

 

n�1/2
nX

tD1

�t "̂t

!
d! �2(q) :

(19)

Elements of� t tend to be collinear withXt and with them-
selves. Thus LWG conduct a test on q� < q principal
components of � t not collinear with xt , denoted ��

t . This
test is to determine whether or not there exists some ad-
vantage to be gained by adding hidden units to the affine

network. We can estimate Ŵn robust to the conditional
heteroskedasticity, or we may use with the empirical null
distribution of the statistic computed by a bootstrap pro-
cedure that is robust to the conditional heteroskedasticity,
e. g., wild bootstrap.

Estimation of an ANN model may be tedious
and sometimes results in unreliable estimates. Recently,
White [161] proposes a simple algorithm called Quick-
Net, a form of “relaxed greedy algorithm” because Quick-
Net searches for a single best additional hidden unit based
on a sequence of OLS regressions, that may be analo-
gous to the least angular regressions (LARS) of Efron,
Hastie, Johnstone, and Tibshirani [42]. The simplicity of
the QuickNet algorithm achieves the benefits of using
a forecasting model that is nonlinear in the predictors
while mitigating the other computational challenges to the
use of nonlinear forecasting methods. See White [161],
Section 5, for more details on QuickNet, and for other is-
sues of controlling for overfit and the selection of the ran-
dom parameter vectors 
 j independent of xt.

Campbell, Lo, and MacKinlay [22], Section 12.4, pro-
vide a review of these models. White [161] reviews
the research frontier in ANN models. Trippi and Tur-
ban [150] review the applications of ANNs to finance and
investment.

Functional Coefficient Models

A functional coefficient model is introduced by Cai, Fan,
and Yao [24] (CFY), with time-varying and state-depen-
dent coefficients. It can be viewed as a special case of
Priestley’s [127] state-dependentmodel, but it includes the
models of Tong [149], Chen and Tsay [26] and regime-
switching models as special cases. Let f(yt ; st)0gntD1 be
a stationary process, where yt and st are scalar variables.
Also let Xt � (1; yt�1; : : : ; yt�d )0. We assume

E(yt jFt�1) D a0(st) C
dX

jD1

a j(st)yt� j ;

where the fa j(st)g are the autoregressive coefficients de-
pending on st, which may be chosen as a function of Xt
or something else. Intuitively, the functional coefficient
model is an AR process with time-varying autoregressive
coefficients. The coefficient functions fa j(st)g can be esti-
mated by local linear regression. At each point s, we ap-
proximate a j(st) locally by a linear function a j(st) � a j C
bj(st � s), j D 0; 1; : : : ; d, for st near s, where aj and bj are
constants. The local linear estimator at point s is then given
by â j(s) D â j , where f(â j; b̂ j)gdjD0 minimizes the sum of
local weighted squares

Pn
tD1[yt �E(yt jFt�1)]2Kh(st � s),



Financial Forecasting, Non-linear Time Series in 407

with Kh(�) � K(�/h)/h for a given kernel function K(�) and
bandwidth h � hn ! 0 as n ! 1. CFY [24], p. 944,
suggest to select h using a modified multi-fold “leave-one-
out-type” cross-validation based on MSFE.

It is important to choose an appropriate smooth vari-
able st. Knowledge on data or economic theory may be
helpful. When no prior information is available, st may be
chosen as a function of explanatory vectorXt or using such
data-drivenmethods as AIC and cross-validation. See Fan,
Yao and Cai [52] for further discussion on the choice of st .
For exchange rate changes, Hong and Lee [85] choose st
as the difference between the exchange rate at time t � 1
and the moving average of the most recent L periods of ex-
change rates at time t � 1. The moving average is a proxy
for the local trend at time t � 1. Intuitively, this choice of
st is expected to reveal useful information on the direction
of changes.

To justify the use of the functional coefficient model,
CFY [24] suggest a goodness-of-fit test for anAR(d) model
against a functional coefficient model. The null hypothesis
of AR(d) can be stated as

H0 : a j(st) D ˇ j; j D 0; 1; : : : ; d ;

where ˇj is the autoregressive coefficient in AR(d). Under
H0, fytg is linear in mean conditional on Xt. Under the al-
ternative to H0, the autoregressive coefficients depend on
st and the AR(d) model suffers from “neglected nonlinear-
ity”. To testH0, CFY compares the residual sum of squares
(RSS) under H0

RSS0 �
nX

tD1

"̂2t D
nX

tD1

2

4Yt � ˆ̌0 �
dX

jD1

ˆ̌ jYt� j

3

5

2

with the RSS under the alternative

RSS1 �
nX

tD1

"̃2t D
nX

tD1

2

4Yt � â0(st) �
dX

jD1

â j(st)Yt� j

3

5

2

:

The test statistic is Tn D (RSS0 � RSS1)/RSS1. We re-
ject H0 for large values of Tn. CFY suggest the following
bootstrap method to obtain the p-value of Tn: (i) generate
the bootstrap residuals f"bt gntD1 from the centered resid-
uals "̃t � "̄ where "̄ � n�1Pn

tD1 "̃t and define ybt �
X 0
t
ˆ̌C"bt , where ˆ̌ is the OLS estimator for AR(d); (ii) cal-

culate the bootstrap statistic Tb
n using the bootstrap sam-

ple fybt ; X 0
t ; stgntD1; (iii) repeat steps (i) and (ii) B times

(b D 1; : : : ; B) and approximate the bootstrap p-value of
Tn by B�1PB

bD1 1(T
b
n � Tn). See Hong and Lee [85] for

empirical application of the functional coefficientmodel to
forecasting foreign exchange rates.

Nonparametric Regression

Let fyt ; xtg; t D 1; : : : ; n, be stochastic processes, where yt
is a scalar and xt D (xt1; : : : ; xtk) is a 1 � k vector which
may contain the lagged values of yt . Consider the regres-
sion model

yt D m(xt) C ut

where m(xt) D E


yt jxt

�
is the true but unknown regres-

sion function and ut is the error term such thatE(ut jxt) D
0.

If m(xt) D g(xt ; ı) is a correctly specified family of
parametric regression functions then yt D g(xt; ı) C ut
is a correct model and, in this case, one can construct
a consistent least squares (LS) estimator of m(xt) given by
g(xt ; ı̂), where ı̂ is the LS estimator of the parameter ı.

In general, if the parametric regression g(xt ; ı) is in-
correct or the form of m(xt) is unknown then g(xt ; ı̂) may
not be a consistent estimator of m(xt). For this case, an al-
ternative approach to estimate the unknown m(xt) is to
use the consistent nonparametric kernel regression esti-
mator which is essentially a local constant LS (LCLS) es-
timator. To obtain this estimator take a Taylor series ex-
pansion of m(xt) around x so that

yt D m(xt) C ut
D m(x) C et

where et D (xt � x)m(1)(x) C 1
2 (xt � x)2m(2)(x) C

� � � C ut and m(s)(x) represents the sth derivative of m(x)
at xt D x. The LCLS estimator can then be derived by
minimizing

nX

tD1

e2t Ktx D
nX

tD1

(yt � m(x))2Ktx

with respect to constant m(x), where Ktx D K

 xt�x

h
�

is a decreasing function of the distances of the regressor
vector xt from the point x D (x1; : : : ; xk), and h ! 0
as n ! 1 is the window width (smoothing parameter)
which determines how rapidly the weights decrease as the
distance of xt from x increases. The LCLS estimator so es-
timated is

m̂(x) D
Pn

tD1 ytKtxPn
tD1 Ktx

D (i0K(x)i)�1 i0K(x)y

where K(x) is the n � n diagonal matrix with the diag-
onal elements Ktx (t D 1; : : : ; n), i is an n � 1 column
vector of unit elements, and y is an n � 1 vector with el-
ements yt (t D 1; : : : ; n). The estimator m̂(x) is due to
Nadaraya [118] and Watson [155] (NW) who derived this
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in an alternative way. Generally m̂(x) is calculated at the
data points xt , in which case we can write the leave-one
out estimator as

m̂(x) D
Pn

t0D1;t0¤t yt0Kt0 t
Pn

t0D1;t0¤t Kt0 t
;

where Kt0 t D K xt0 �xt
h . The assumption that h ! 0 as

n ! 1 gives xt � x D O(h) ! 0 and hence Eet ! 0 as
n ! 1. Thus the estimator m̂(x) will be consistent under
certain smoothing conditions on h;K, and m(x). In small
samples however Eet ¤ 0 so m̂(x) will be a biased estima-
tor, see [122] for details on asymptotic and small sample
properties.

An estimator which has a better small sample bias and
hence the mean square error (MSE) behavior is the local
linear LS (LLLS) estimator. In the LLLS estimator we take
a first order Taylor-Series expansion of m(xt) around x so
that

yt D m(xt) C ut D m(x) C (xt � x)m(1)(x) C vt
D ˛(x) C xtˇ(x) C vt
D Xtı(x) C vt

where Xt D (1 xt) and ı(x) D [˛(x) ˇ(x)0]0 with ˛(x) D
m(x)� xˇ(x) and ˇ(x) D m(1)(x). The LLLS estimator of
ı(x) is then obtained by minimizing

nX

tD1

v2t Ktx D
nX

tD1

(yt � Xtı(x))2Ktx

sand it is given by

ı̃(x) D (X0K(x)X)�1X0K(x)y : (20)

where X is an n � (k C 1) matrix with the tth row Xt (t D
1; : : : ; n).

The LLLS estimator of ˛(x) and ˇ(x) can be calculated
as ˜̨(x) D (1 0)ı̃(x) and ˜̌(x) D (0 1)ı̃(x). This gives

m̃(x) D (1 x)ı̃(x) D ˜̨(x) C x ˜̌(x) :

Obviously when X D i, ı̃(x) reduces to the NW’s LCLS
estimator m̂(x). An extension of the LLLS is the local poly-
nomial LS (LPLS) estimators, see [50].

In fact one can obtain the local estimators of a general
nonlinear model g(xt ; ı) by minimizing

nX

tD1

[yt � g(xt; ı(x))]2Ktx

with respect to ı(x). For g(xt; ı(x)) D Xtı(x) we get the
LLLS in (20). Further when h D 1;Ktx D K(0) is a con-
stant so that theminimization of K(0)

P
[yt�g(xt ; ı(x))]2

is the same as the minimization of
P

[yt � g(xt ; ı)]2, that
is the local LS becomes the global LS estimator ı̂.

The LLLS estimator in (20) can also be interpreted as
the estimator of the functional coefficient (varying coeffi-
cient) linear regression model

yt D m(xt) C ut
D Xtı(xt) C ut

where ı(xt) is approximated locally by a constant ı(xt) '
ı(x). The minimization of

P
u2t Ktx with respect to ı(x)

then gives the LLLS estimator in (20), which can be in-
terpreted as the LC varying coefficient estimator. An ex-
tension of this is to consider the linear approximation
ı(xt) ' ı(x) C D(x)(xt � x)0 where D(x) D @ı(xt )

@x0

t
evalu-

ated at xt D x. In this case

yt D m(xt) C ut D Xtı(xt) C ut
' Xtı(x) C XtD(x)(xt � x)0 C ut
D Xtı(x) C [(xt � x) ˝ Xt]vecD(x) C ut
D Xx

t ı
x (x) C ut

where Xx
t D [Xt (xt � x) ˝ Xt] and ıx (x) D [ı(x)0

(vecD(x))0]0. The LL varying coefficient estimator of ıx (x)
can then be obtained by minimizing

nX

tD1

[yt � Xx
t ı

x (x)]2Ktx

with respect to ıx (x) as

ı̇x (x) D (Xx0K(x)Xx )�1Xx0K(x)y : (21)

From this ı̇(x) D (I 0)ı̇x (x), and hence

ṁ(x) D (1 x 0)ı̇x (x) D (1 x)ı̇(x) :

The above idea can be extended to the situations where
�t D (xt zt) such that

E(yt j�t) D m(�t) D m(xt ; zt) D Xtı(zt) ;

where the coefficients are varying with respect to only
a subset of � t ; zt is 1 � l and � t is 1 � p, p D k C l . Exam-
ples of these include functional coefficient autoregressive
models of Chen and Tsay [26] and CFY [24], random co-
efficient models of Raj and Ullah [128], smooth transition
autoregressive models of Granger and Teräsvirta [72], and
threshold autoregressive models of Tong [149].

To estimate ı(zt) we can again do a local con-
stant approximation ı(zt) ' ı(z) and then mini-
mize

P
[yt � Xtı(z)]2Ktz with respect to ı(z), where
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Ktz D K( zt�z
h ). This gives the LC varying coefficient

estimator

ı̃(z) D (X0K(z)X)�1X0K(z)y (22)

where K(z) is a diagonal matrix of Ktz ; t D 1; : : : ; n.
When z D x, (22) reduces to the LLLS estimator ı̃(x)
in (20).

CFY [24] consider a local linear approximation
ı(zt) ' ı(z) C D(z)(zt � z)0. The LL varying coefficient
estimator of CFY is then obtained by minimizing

nX

tD1

[yt � Xtı(zt)]2Ktz

D
nX

tD1

[yt � Xtı(z) � [(zt � z) ˝ Xt]vecD(z)]2Ktz

D
nX

tD1

[yt � Xz
t ı

z(z)]2Ktz

with respect to ız (z) D [ı(z)0 (vecD(z))0]0 where Xz
t D

[Xt (zt � z) ˝ Xt]. This gives

ı̈z(z) D (Xz0K(z)Xz )�1Xz0K(z)y ; (23)

and ı̈(z) D (I 0)ı̈z(z). Hence

m̈(�) D (1 x 0)ı̈z(z) D (1 x)ı̈(z) :

For the asymptotic properties of these varying coefficient
estimators, see CFY [24]. When z D x, (23) reduces to the
LL varying coefficient estimator ı̇x (x) in (21). See Lee and
Ullah [98] for more discussion of these models and issues
of testing nonlinearity.

Regime Switching Autoregressive Model
Between Unit Root and Stationary Root

To avoid the usual dichotomy between unit-root non-
stationarity and stationarity, we may consider models
that permit two regimes of unit root nonstationarity and
stationarity.

One model is the Innovation Regime-Switching (IRS)
model of Kuan, Huang, and Tsay [96]. Intuitively, it may
be implausible to believe that all random shocks exert only
one effect (permanent or transitory) on future financial as-
set prices in a long time span. This intuition underpins
the models that allow for breaks, stochastic unit root, or
regime switching. As an alternative, Kuan, Huang, and
Tsay [96] propose the IRS model that permits the random
shock in each period to be permanent or transitory, de-
pending on a switching mechanism, and hence admits dis-
tinct dynamics (unit-root nonstationarity or stationarity)

in different periods. Under the IRS framework, standard
unit-root models and stationarity models are just two ex-
treme cases. By applying the IRS model to real exchange
rate, they circumvent the difficulties arising from unit-root
(or stationarity) testing. They allow the data to speak for
themselves, rather than putting them in the straitjacket
of unit-root nonstationarity or stationarity. Huang and
Kuan [90] re-examine long-run PPP based on the IRS
model and their empirical study on US/UK real exchange
rates shows that there are both temporary and permanent
influences on the real exchange rate such that approxi-
mately 42% of the shocks in the long run are more likely
to have a permanent effect. They also found that transi-
tory shocks dominate in the fixed-rate regimes, yet perma-
nent shocks play a more important role during the float-
ing regimes. Thus, the long-run PPP is rejected due to the
presence of a significant amount of permanent shocks, but
there are still long periods of time in which the deviations
from long-run PPP are only transitory.

Another model is a threshold unit root (TUR) model
or threshold integrated moving average (TIMA) model of
Gonzalo andMartíneza [65]. Based on this model they ex-
amine whether large and small shocks have different long-
run effects, as well as whether one of them is purely tran-
sitory. They develop a new nonlinear permanent – transi-
tory decomposition, that is applied to US stock prices to
analyze the quality of the stock market.

Comparison of these two models with the linear au-
toregressive model with a unit root or a stationary AR
model for the out-of-sample forecasting remains to be ex-
amined empirically.

Bagging Nonlinear Forecasts

To improve on unstable forecasts, bootstrap aggregat-
ing or bagging is introduced by Breiman [19]. Lee and
Yang [100] show how bagging works for binary and quan-
tile predictions. Lee and Yang [100] attributed part of the
success of the bagging predictors to the small sample esti-
mation uncertainties. Therefore, a question that may arise
is that whether the good performance of bagging predic-
tors critically depends on algorithms we employ in non-
linear estimation.

They find that bagging improves the forecasting per-
formance of predictors on highly nonlinear regression
models – e. g., artificial neural network models, especially
when the sample size is limited. It is usually hard to choose
the number of hidden nodes and the number of inputs (or
lags), and to estimate the large number of parameters in
an ANN model. Therefore, a neural network model gen-
erate poor predictions in a small sample. In such cases,
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bagging can do a valuable job to improve the forecasting
performance as shown in [100], confirming the result of
Breiman [20]. A bagging predictor is a combined predic-
tor formed over a set of training sets to smooth out the “in-
stability” caused by parameter estimation uncertainty and
model uncertainty. A predictor is said to be “unstable” if
a small change in the training set will lead to a significant
change in the predictor [20].

As bagging would be valuable in nonlinear forecasting,
in this section, we will show how a bagging predictor may
improve the predicting performance of its underlying pre-
dictor. Let

Dt � f(Ys ;Xs�1)gtsDt�RC1 (t D R; : : : ; T)

be a training set at time t and let '(Xt;Dt) be a forecast of
YtC1 or of the binary variable GtC1 � 1(YtC1 � 0) using
this training setDt and the explanatory variable vectorXt .
The optimal forecast '(Xt ;Dt) for YtC1 will be the condi-
tional mean of YtC1 given Xt under the squared error loss
function, or the conditional quantile of YtC1 on Xt if the
loss is a tick function. Below we also consider the binary
forecast for GtC1 � 1(YtC1 � 0).

Suppose each training set Dt consists of R observa-
tions generated from the underlying probability distribu-
tion P. The forecast f'(Xt ;Dt)gTtDR can be improved if
more training sets were able to be generated from P and
the forecast can be formed from averaging the multiple
forecasts obtained from the multiple training sets. Ide-
ally, if P were known and multiple training setsD( j)

t ( j D
1; : : : ; J) may be drawn from P, an ensemble aggregating
predictor 'A(Xt) can be constructed by the weighted aver-
aging of '(Xt ;D( j)

t ) over j, i. e.,

'A(Xt) � EDt'(Xt;Dt) �
JX

jD1

wj;t'(Xt ;D( j)
t ) ;

where EDt (�) denotes the expectation over P, wj;t is the
weight function with

PJ
jD1 wj;t D 1, and the subscript A

in 'A denotes “aggregation”.
Lee and Yang [100] show that the ensemble aggregat-

ing predictor 'A(Xt) has not a larger expected loss than the
original predictor '(Xt ;Dt). For any convex loss function
c(�) on the forecast error ztC1, we will have

EDt ;YtC1 ;Xt c(ztC1) � EYtC1 ;Xt c(EDt (ztC1));

where EDt (ztC1) is the aggregating forecast error, and
EDt ;YtC1;Xt (�) � EXt [EYtC1 jXt fEDt (�) jXtg] denotes the
expectation EDt (�) taken over P (i. e., averaging over the
multiple training sets generated from P), then taking an

expectation of YtC1 conditioning on Xt, and then tak-
ing an expectation of Xt . Similarly we define the nota-
tion EYtC1 ;Xt (�) � EXt [EYtC1 jXt (�) jXt]. Therefore, the
aggregating predictor will always have no larger expected
cost than the original predictor for a convex loss function
'(Xt ;Dt). The examples of the convex loss function in-
cludes the squared error loss and a tick (or check) loss
�˛(z) � [˛ � 1(z < 0)]z.

How much this aggregating predictor can improve
depends on the distance between EDt ;YtC1;Xt c(ztC1) and
EYtC1 ;Xt c(EDt (ztC1)). We can define this distance by� �
EDt ;YtC1;Xt c(ztC1)�EYtC1 ;Xt c(EDt (ztC1)). Therefore, the
effectiveness of the aggregating predictor depends on the
convexity of the cost function. The more convex is the
cost function, the more effective this aggregating predictor
can be. If the loss function is the squared error loss, then
it can be shown that � D VDt

�
'(Xt ;Dt)

�
is the vari-

ance of the predictor, which measures the “instability” of
the predictor. See Lee and Yang [100], Proposition 1, and
Breiman [20]. If the loss is the tick function, the effective-
ness of bagging is also different for different quantile pre-
dictions: bagging works better for tail-quantile predictions
than for mid-quantile predictions.

In practice, however, P is not known. In that case
we may estimate P by its empirical distribution, P̂(Dt),
for a given Dt . Then, from the empirical distribution
P̂(Dt), multiple training sets may be drawn by the boot-
strap method. Bagging predictors, 'B(Xt ;D�

t ), can then
be computed by taking weighted average of the predictors
trained over a set of bootstrap training sets. More specifi-
cally, the bagging predictor 'B(Xt ;D�

t ) can be obtained in
the following steps:

1. Given a training set of data at time t, Dt �
f(Ys ;Xs�1)gtsDt�RC1, construct the jth bootstrap sam-
ple D�( j)

t � f(Y�( j)
s ;X�( j)

s�1)gtsDt�RC1, j D 1; : : : ; J, ac-
cording to the empirical distribution of P̂(Dt) ofDt .

2. Train the model (estimate parameters) from the jth
bootstrapped sampleD�( j)

t .
3. Compute the bootstrap predictor '�( j)(Xt ;D�( j)

t ) from
the jth bootstrapped sampleD�( j)

t .
4. Finally, for mean and quantile forecast, the bagging

predictor 'B(Xt ;D�
t ) can be constructed by averaging

over J bootstrap predictors

'B(Xt ;D�
t ) �

JX

jD1

ŵ j;t'
�( j)(Xt;D�( j)

t ) ;

and for binary forecast, the bagging binary predic-
tor 'B(Xt ;D�

t ) can be constructed by majority voting
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over J bootstrap predictors:

'B(Xt ;D�
t ) � 1

0

@
JX

jD1

ŵ j;t'
�( j)(Xt ;D�( j)

t ) > 1/2

1

A

with
PJ

jD1 ŵ j;t D 1 in both cases.

One concern of applying bagging to time series is
whether a bootstrap can provide a sound simulation sam-
ple for dependent data, for which the bootstrap is required
to be consistent. It has been shown that some bootstrap
procedure (such as moving block bootstrap) can provide
consistent densities for moment estimators and quantile
estimators. See, e. g., Fitzenberger [54].

Nonlinear ForecastingModels
for the Conditional Variance

Nonlinear Parametric Models for Volatility

Volatility models are of paramount importance in finan-
cial economics. Issues such as portfolio allocation, op-
tion pricing, risk management, and generally any decision
making under uncertainty rely on the understanding and
forecasting of volatility. This is one of the most active ares
of research in time series econometrics. Important surveys
as in Bollerslev, Chou, and Kroner [15], Bera and Hig-
gins [13], Bollerslev, Engle, and Nelson [16], Poon and
Granger [125], and Bauwens, Laurent, and Rombouts [12]
attest to the variety of issues in volatility research. The
motivation for the introduction of the first generation of
volatility models namely the ARCH models of Engle [44]
was to account for clusters of activity and fat-tail behavior
of financial data. Subsequent models accounted for more
complex issues. Among others and without being exclu-
sive, we should mention issues related to asymmetric re-
sponses of volatility to news, probability distribution of
the standardized innovations, i.i.d. behavior of the stan-
dardized innovation, persistence of the volatility process,
linkages with continuous time models, intraday data and
unevenly spaced observations, seasonality and noise in in-
traday data. The consequence of this research agenda has
been a vast array of specifications for the volatility process.

Suppose that the return series fytgTC1
tD1 of a finan-

cial asset follows the stochastic process ytC1 D �tC1 C
"tC1, where E(ytC1jFt) D �tC1(�) and E("2tC1jFt) D
�2tC1(�) given the information set Ft (�-field) at time t.
Let ztC1 � "tC1/�tC1 have the conditional normal dis-
tribution with zero conditional mean and unit conditional
variance. Volatility models can be classified in three cate-
gories: MA family, ARCH family, and stochastic volatility
(SV) family.

The simplest method to forecast volatility is to cal-
culate a historical moving average variance, denoted as
MA(m), or an exponential weighted moving average
(EWMA):

MA(m) �2
t D 1

m

Pm
jD1(yt�j � �̂m

t )
2; �̂m

t D 1
m

Pm
jD1 yt�j

EWMA �2
t D (1 � 
)

Pt�1
jD1 
j�1(yt�j � �̂t )2;

�̂t D 1
t�1

Pt�1
jD1 yt�j

In the EWMA specification, a common practice is to
fix the � parameter, for instance � D 0:94 [129]. For
these two MA family models, there are not parameters to
estimate.

Second, the ARCH family is very extensive with many
variations on the original model ARCH(p) of Engle [44].
Some representativemodels are: GARCHmodel of Boller-
slev [14]; Threshold GARCH (T-GARCH) of Glosten
et al. [60]; Exponential GARCH (E-GARCH) of Nel-
son [120]; quadratic GARCH models (Q-GARCH) as
in Sentana [135]; Absolute GARCH (ABS-GARCH) of
Taylor [143] and Schwert [134] and Smooth Transition
GARCH (ST-GARCH) of González-Rivera [61].

ARCH(p) �2
t D ! CPp

iD1 ˛i"
2
t�i

GARCH �2
t D ! C ˇ�2

t�1 C ˛"2t�1

I-GARCH �2
t D ! C ˇ�2

t�1 C ˛"2t�1; ˛ C ˇ D 1
T-GARCH �2

t D ! C ˇ�2
t�1 C ˛"2t�1 C �"2t�11("t�1 � 0)

ST-GARCH �2
t D ! C ˇ�2

t�1 C ˛"2t�1 C �"2t�1F("t�1; ı)
with F("t�1; ı) D [1 C exp(ı"t�1)]�1 � 0:5

E-GARCH ln�2
t D ! C ˇ ln�2

t�1 C ˛[jzt�1j � czt�1]
Q-GARCH �2

t D ! C ˇ�2
t�1 C ˛("t�1 C � )2

ABS-GARCH �t D ! C ˇ�t�1 C ˛j"t�1j

The EWMA specification can be viewed as an inte-
grated GARCHmodel with ! D 0, ˛ D �, and ˇ D 1��.
In the T-GARCH model, the parameter � allows for pos-
sible asymmetric effects of positive and negative innova-
tions. In Q-GARCH models, the parameter � measures
the extent of the asymmetry in the news impact curve.
For the ST-GARCH model, the parameter � measures the
asymmetric effect of positive and negative shocks, and the
parameter ı > 0 measures the smoothness of the tran-
sition between regimes, with a higher value of ı making
ST-GARCH closer to T-GARCH.

Third, the stationary SV model of Taylor [143] with �t
is i.i.d. N (0; �2	) and � t is i.i.d. N(0; 
2/2) is a representa-
tive member of the SV family.

SV �2
t D exp(0:5ht ); ln(y2t ) D �1:27 C ht C �t;

ht D � C �ht�1 C 	t .
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With so many models, the natural question becomes
which one to choose. There is not a universal answer to
this question. The best model depends upon the objectives
of the user. Thus, given an objective function, we search
for the model(s) with the best predictive ability control-
ling for possible biases due to “data snooping” [105]. To
compare the relative performance of volatility models, it is
customary to choose either a statistical loss function or an
economic loss function.

The preferred statistical loss functions are based on
moments of forecast errors (mean-error, mean-squared
error, mean absolute error, etc.). The best model will min-
imize a function of the forecast errors. The volatility fore-
cast is often compared to a measure of realized volatil-
ity. With financial data, the common practice has been
to take squared returns as a measure of realized volatil-
ity. However, this practice is questionable. Andersen and
Bollerslev [2] argued that this measure is a noisy estimate,
and proposed the use of the intra-day (at each five min-
utes interval) squared returns to calculate the daily realized
volatility. This measure requires intra-day data, which is
subject to the variation introduced by the bid-ask spread
and the irregular spacing of the price quotes.

Some other authors have evaluated the performance
of volatility models with criteria based on economic loss
functions. For example,West, Edison, and Cho [157] con-
sidered the problem of portfolio allocation based on mod-
els that maximize the utility function of the investor. En-
gle, Kane, and Noh [46] and Noh, Engle, and Kane [121]
considered different volatility forecasts to maximize the
trading profits in buying/selling options. Lopez [107] con-
sidered probability scoring rules that were tailored to
a forecast user’s decision problem and confirmed that
the choice of loss function directly affected the forecast
evaluation of different models. Brooks and Persand [21]
evaluated volatility forecasting in a financial risk man-
agement setting in terms of Value-at-Risk (VaR). The
common feature to these branches of the volatility litera-
ture is that none of these has controlled for forecast de-
pendence across models and the inherent biases due to
data-snooping.

Controlling for model dependence [160], González-
Rivera, Lee, and Mishra [62] evaluate fifteen volatility
models for the daily returns to the SP500 index accord-
ing to their out-of-sample forecasting ability. The forecast
evaluation is based, among others, on two economic loss
functions: an option pricing formula and a utility func-
tion; and a statistical loss function: a goodness-of-fit based
on a Value-at-Risk (VaR) calculation. For option pricing,
volatility is the only component that is not observable and
it needs to be estimated. The loss function assess the dif-

ference between the actual price of a call option and the es-
timated price, which is a function of the estimated volatil-
ity of the stock. The second economic loss function refers
to the problem of wealth allocation. An investor wishes to
maximize her utility allocating wealth between a risky asset
and a risk-free asset. The loss function assesses the perfor-
mance of the volatility estimates according to the level of
utility they generate. The statistical function based on the
goodness-of-fit of a VaR calculation is important for risk
management. The main objective of VaR is to calculate
extreme losses within a given probability of occurrence,
and the estimation of the volatility is central to the VaR
measure. The preferred models depend very strongly upon
the loss function chosen by the user. González-Rivera,
Lee, and Mishra [62] find that, for option pricing, sim-
ple models such as the exponential weighted moving av-
erage (EWMA) proposed by Riskmetrics [64] performed
as well as any GARCH model. For an utility loss function,
an asymmetric quadratic GARCH model is the most pre-
ferred. For VaR calculations, a stochastic volatility model
dominates all other models.

Nonparametric Models for Volatility

Ziegelmann [163] considers the kernel smoothing tech-
niques that free the traditional parametric volatility es-
timators from the constraints related to their specific
models. He applies the nonparametric local ‘exponential’
estimator to estimate conditional volatility functions, en-
suring its nonnegativity. Its asymptotic properties are
established and compared with those for the local linear
estimator for the volatility model of Fan and Yao [51].
Long, Su, and Ullah [106] extend this idea to semipara-
metric multivariateGARCH and show that theremay exist
substantial out-of-sample forecasting gain over the para-
metric models. This gain accounts for the presence of non-
linearity in the conditional variance-covariance that is ne-
glected in parametric linear models.

Forecasting Volatility Using High Frequency Data

Using high-frequency data, quadratic variation may be es-
timated using realized volatility (RV). Andersen, Boller-
slev, Diebold, and Labys [3] and Barndorff-Nielsen and
Shephard [11] establish that RV, defined as the sum of
squared intraday returns of small intervals, is an asymptot-
ically unbiased estimator of the unobserved quadratic vari-
ation as the interval length approaches zero. Besides the
use of high frequency information in volatility estimation,
volatility forecasting using high frequency information has
been addressed as well. In an application to volatility pre-
diction, Ghysels, Santa-Clara, and Valkanov [58] investi-



Financial Forecasting, Non-linear Time Series in 413

gate the predictive power of various regressors (lagged re-
alized volatility, squared return, realized power, and daily
range) for future volatility forecasting. They find that the
best predictor is realized power (sum of absolute intra-
day returns), andmore interestingly, direct use of intraday
squared returns in mixed data sampling (MIDAS) regres-
sions does not necessarily lead to better volatility forecasts.

Andersen, Bollerslev, Diebold, and Labys [4] represent
another approach to forecasting volatility using RV. The
model they propose is a fractional integrated AR model:
ARFI(5, d) for logarithmic RV’s obtained from foreign
exchange rates data of 30-minute frequency and demon-
strate the superior predictive power of their model.

Alternatively, Corsi [32] proposes the heterogeneous
autoregressive (HAR) model of RV, which is able to re-
produce long memory. McAleer and Medeiros [115] pro-
pose a new model that is a multiple regime smooth transi-
tion (ST) extension of theHARmodel, which is specifically
designed to model the behavior of the volatility inherent
in financial time series. The model is able to describe si-
multaneously long memory as well as sign and size asym-
metries. They apply the model to several Dow Jones In-
dustrial Average index stocks using transaction level data
from the Trades and Quotes database that covers ten years
of data, and find strong support for longmemory and both
sign and size asymmetries. Furthermore, they show that
the multiple regime smooth transition HAR model, when
combined with the linear HAR model, is flexible for the
purpose of forecasting volatility.

Forecasting BeyondMean and Variance

In the previous section, we have surveyed the major de-
velopments in nonlinear time series, mainly modeling the
conditional mean and the conditional variance of finan-
cial returns. However it is not clear yet that any of those
nonlinear models may generate profits after accounting
for various market frictions and transactions costs. There-
fore, some research efforts have been directed to inves-
tigate other aspects of the conditional density of returns
such as higher moments, quantiles, directions, intervals,
and the density itself. In this section, we provide a brief
survey on forecasting these other features.

Forecasting Quantiles

The optimal forecast of a time seriesmodel depends on the
specification of the loss function. A symmetric quadratic
loss function is the most prevalent in applications due to
its simplicity. Under symmetric quadratic loss, the opti-
mal forecast is simply the conditional mean. An asymmet-
ric loss function implies a more complicated forecast that

depends on the distribution of the forecast error as well as
the loss function itself [67].

Consider a stochastic process Zt � (Yt ; X 0
t)0 where

Yt is the variable of interest and Xt is a vector of other
variables. Suppose there are T C 1 (� R C P) observa-
tions. We use the observations available at time t, R �
t < T C 1, to generate P forecasts using each model.
For each time t in the prediction period, we use either
a rolling sample fZt�RC1; : : : ; Ztg of size R or the whole
past sample fZ1; : : : ; Ztg to estimatemodel parameters ˆ̌t .
We can then generate a sequence of one-step-ahead fore-
casts f f (Zt; ˆ̌t)gTtDR .

Suppose that there is a decision maker who takes an
one-step point forecast ft;1 � f (Zt; ˆ̌t) of YtC1 and uses
it in some relevant decision. The one-step forecast error
etC1 � YtC1 � ft;1 will result in a cost of c(etC1), where
the function c(e) will increase as e increases in size, but
not necessarily symmetrically or continuously. The opti-
mal forecast f �

t;1 will be chosen to produce the forecast er-
rors that minimize the expected loss

min
ft;1

Z 1

�1
c(y � ft;1)dFt(y) ;

where Ft(y) � Pr(YtC1 � yjIt) is the conditional distri-
bution function, with It being some proper information
set at time t that includes Zt� j , j � 0. The corresponding
optimal forecast error will be

e�
tC1 D YtC1 � f �

t;1 :

Then the optimal forecast would satisfy

@

@ ft;1

Z 1

�1
c(y � f �

t;1)dFt(y) D 0 :

Whenwe interchange the operations of differentiation and
integration,
Z 1

�1
@

@ ft;1
c(y� f �

t;1)dFt(y) � E

�
@

@ ft;1
c(YtC1 � f �

t;1)jIt
�

Based on the “generalized forecast error”, gtC1 �
@

@ ft;1
c(YtC1 � f �

t;1), the condition for forecast optimality
is:

H0 : E


gtC1jIt

� D 0 a:s: ;

that is a martingale difference (MD) property of the gener-
alized forecast error. This forms the optimality condition
of the forecasts and gives an appropriate regression func-
tion corresponding to the specified loss function c(�).

To see this we consider the following two examples.
First, when the loss function is the squared error loss

c(YtC1 � ft;1) D (YtC1 � ft;1)2 ;
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the generalized forecast error will be gtC1 � @
@ f t

c(YtC1 �
f �
t;1) D �2e�

tC1 and thus E


e�
tC1jIt

� D 0 a:s:, which im-
plies that the optimal forecast

f �
t;1 D E (YtC1jIt)

is the conditional mean. Next, when the loss is the check
function, c(e) D �

˛ � 1(e < 0)
� � e � �˛(etC1), the opti-

mal forecast ft;1, for given ˛ 2 (0; 1), minimizing

min
ft;1

E
�
c(YtC1 � ft;1)jIt

�

can be shown to satisfy

E
�
˛ � 1(YtC1 < f �

t;1)jIt
� D 0 a:s:

Hence, gtC1 � ˛ � 1(YtC1 < f �
t;1) is the generalized fore-

cast error. Therefore,

˛ D E
�
1(YtC1 < f �

t;1)jIt
� D Pr(YtC1 � f �

t;1jIt) ;
and the optimal forecast f �

t;1 D q˛ (YtC1jIt) � q˛
t is the

conditional ˛-quantile.
Forecasting conditional quantiles are of paramount

importance for risk management, which nowdays is key
activity in financial institutions due to the increasing fi-
nancial fragility in emergingmarkets and the extensive use
of derivative products over the last decade. A risk mea-
surement methodology called Value-at-Risk (VaR) has re-
ceived a great attention from both regulatory and aca-
demic fronts. During a short span of time, numerous pa-
pers have studied various aspects of the VaRmethodology.
Bao, Lee, and Saltoglu [8] examine the relative out-of-sam-
ple predictive performance of various VaR models.

An interesting VaR model is the CaViaR (conditional
autoregressive Value-at-Risk) model suggested by Engle
and Manganelli [47]. They estimate the VaR from a quan-
tile regression rather than inverting a conditional distribu-
tion. The idea is similar to the GARCH modeling in that
VaR is modeled autoregressively

qt (˛) D a0 C a1qt�1 (˛) C h(xt j�) ;
where xt 2 Ft�1, � is a parameter vector, and h(�) is
a function to explain the VaR model. Depending on the
specification of h(�), the CaViaR model may be

qt (˛) D a0 C a1qt�1 (˛) C a2jrt�1j ;

qt (˛) D a0Ca1qt�1 (˛)Ca2jrt�1jCa3jrt�1j�1(rt�1 < 0);

where the second model allow nonlinearity (asymmetry)
similarly to the asymmetric GARCH models.

Bao, Lee, and Saltoglu [8] compare various VaR mod-
els. Their results show that the CaViaR quantile regression
models of Engle and Manganelli [47] have shown some
success in predicting the VaR risk measure for various pe-
riods of time, and it is generally more stable than the mod-
els that invert a distribution function.

Forecasting Directions

It is well known that, while financial returns fYtg may not
be predictable, their variance, sign, and quantiles may be
predictable. Christofferson and Diebold [27] show that bi-
nary variable GtC1 � 1(YtC1 > 0), where 1(�) takes the
value of 1 if the statement in the parenthesis is true, and
0 otherwise, is predictable when some conditional mo-
ments are time varying, Hong and Lee [86], Hong and
Chung [85], Linton andWhang [104], Lee and Yang [100]
amongmany others find some evidence that the directions
of stock returns and foreign exchange rate changes are pre-
dictable.

Lee and Yang [100] also show that forecasting quan-
tiles and forecasting binary (directional) forecasts are re-
lated, in that the former may lead to the latter. As noted by
Powell [126], using the fact that for any monotonic func-
tion h(�), q˛

t (h(YtC1)jXt) D h(q˛
t (YtC1jXt)), which fol-

lows immediately from observing that Pr(YtC1 < yjXt) D
Pr[h(YtC1) < h(y)jXt], and noting that the indicator
function is monotonic, q˛

t (GtC1jXt) D q˛
t (1(YtC1 >

0)jXt) D 1(q˛
t (YtC1jXt) > 0). Therefore, predictability of

conditional quantiles of financial returns may imply pre-
dictability of conditional direction.

Probability Forecasts

Diebold and Rudebush [38] consider the probability fore-
casts for the turning points of the business cycle. They
measure the accuracy of predicted probabilities, that is the
average distance between the predicted probabilities and
observed realization (as measured by a zero-one dummy
variable). Suppose there are T C 1 (� R C P) observa-
tions. We use the observations available at time t (R �
t < T C 1), to estimate a model. We then have time se-
ries of P D T � R C 1 probability forecasts fptC1gTtDR
where pt is the predicted probability of the occurrence of
an event (e. g., business cycle turning point) in the next pe-
riod t C 1. Let fdtC1gTtDR be the corresponding realization
with dt D 1 if a business cycle turning point (or any de-
fined event) occurs in period t and dt D 0 otherwise. The
loss function analogous to the squared error is the Brier’s
score based on quadratic probability score (QPS):

QPS D P�1
TX

tDR

2(pt � dt)2 :
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TheQPS ranges from 0 to 2, with 0 for perfect accuracy. As
noted by Diebold and Rudebush [38], the use of the sym-
metric loss function may not be appropriate as a forecaster
may be penalized more heavily for missing a call (making
a type II error) than for signaling a false alarm (making
a type I error). Another loss function is given by the log
probability score (LPS)

LPS D �P�1
TX

tDR

ln
�
pdtt (1 � pt)(1�dt )

�
;

which is similar to the loss for the interval forecast. A large
mistake is penalized more heavily under LPS than under
QPS. More loss functions are discussed in Diebold and
Rudebush [38].

Another loss function useful in this context is the
Kuipers score (KS), which is defined by

KS D Hit Rate � False Alarm Rate ;

where Hit Rate is the fraction of the bad events that were
correctly predicted as good events (power, or 1� probabil-
ity of type II error), and False Alarm Rate is the fraction
of good events that had been incorrectly predicted as bad
events (probability of type I error).

Forecasting Interval

Suppose Yt is a stationary series. Let the one-period ahead
conditional interval forecast made at time t from a model
be denoted as

Jt;1(˛) D (Lt;1(˛);Ut;1(˛)); t D R; : : : ; T ;

where Lt;1(˛) and Ut;1(˛) are the lower and upper lim-
its of the ex ante interval forecast for time t C 1 made
at time t with the coverage probability ˛. Define the in-
dicator variable XtC1(˛) D 1[YtC1 2 Jt;1(˛)]. The se-
quence fXtC1(˛)gTtDR is i.i.d. Bernoulli (˛). The optimal
interval forecast would satisfy E(XtC1(˛)jIt) D ˛, so that
fXtC1(˛) � ˛g will be an MD. A better model has a larger
expected Bernoulli log-likelihood

E˛XtC1(˛)(1 � ˛)[1�XtC1(˛)] :

Hence, we can choose a model for interval forecasts with
the largest out-of-sample mean of the predictive log-like-
lihood, which is defined by

P�1
TX

tDR

ln
�
˛xtC1(˛)(1 � ˛)[1�xtC1(˛)]

�
:

Evaluation of Nonlinear Forecasts

In order to evaluate the possible superior predictive ability
of nonlinear models, we need to compare competing mod-
els in terms of a certain loss function. The literature has re-
cently been exploding on this issue. Examples are Granger
and Newbold [69], Diebold andMariano [37], West [156],
White [160], Hansen [81], Romano and Wolf [130], Gi-
acomini and White [59], etc. In different perspective, to
test the optimality of a given model, Patton and Tim-
mermann [123] examine various testable properties that
should hold for an optimal forecast.

Loss Functions

The loss function (or cost function) is a crucial ingredient
for the evaluation of nonlinear forecasts. When a forecast
ft;h of a variable YtCh is made at time t for h periods ahead,
the loss (or cost) will arise if a forecast turns out to be dif-
ferent from the actual value. The loss function of the fore-
cast error etCh D YtCh � ft;h is denoted as c(YtCh ; ft;h).
The loss function can depend on the time of prediction
and so it can be ctCh(YtCh ; ft;h). If the loss function is not
changing with time and does not depend on the value of
the variable YtCh , the loss can be written simply as a func-
tion of the error only, ctCh(YtCh ; ft;h) D c(etCh).

Granger [67] discusses the following required proper-
ties for a loss function: (i) c(0) D 0 (no error and no loss),
(ii) mine c(e) D 0, so that c(e) � 0, and (iii) c(e) is mono-
tonically nondecreasing as emoves away from zero so that
c(e1) � c(e2) if e1 > e2 > 0 and if e1 < e2 < 0.

When c1(e); c2(e) are both loss functions, Grang-
er [67] shows that further examples of loss functions can
be generated: c(e) D ac1(e) C bc2(e); a � 0; b � 0 will be
a loss function. c(e) D c1(e)a c2(e)b , a > 0; b > 0 will be
a loss function. c(e) D 1(e > 0)c1(e) C 1(e < 0)c2(e) will
be a loss function. If h(�) is a positive monotonic nonde-
creasing function with h(0) finite, then c(e) D h(c1(e)) �
h(0) is a loss function.

Granger [68] notes that an expected loss (a risk mea-
sure) of financial return YtC1 that has a conditional pre-
dictive distribution Ft(y) � Pr(YtC1 � yjIt) with Xt 2 It
may be written as

Ec(e) D A1

Z 1

0
jy� f jpdFt(y)CA2

Z 0

�1
jy� f jpdFt(y);

with A1;A2 both > 0 and some � > 0. Considering the
symmetric case A1 D A2, one has a class of volatility mea-
sures Vp D E

�jy � f jp�, which includes the variance with
p D 2, and mean absolute deviation with p D 1.

Ding, Granger, and Engle [39] study the time series
and distributional properties of these measures empiri-
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cally and show that the absolute deviations are found to
have some particular properties such as the longest mem-
ory. Granger remarks that given that the financial returns
are known to come from a long tail distribution, p D 1
may be more preferable.

Another problem raised by Granger is how to choose
optimal Lp-norm in empirical works, to minimizeE[j"t jp]
for some p to estimate the regression model Yt D
E(Yt jXt ;ˇ) C "t . As the asymptotic covariance matrix of
ˆ̌ depends on p, the most appropriate value of p can be
chosen to minimize the covariance matrix. In particular,
Granger [68] refers to a trio of papers [84,116,117] who
find that the optimal p D 1 from Laplace and Cauchy dis-
tribution, p D 2 for Gaussian and p D 1 (min/max es-
timator) for a rectangular distribution. Granger [68] also
notes that in terms of the kurtosis �, Harter [84] suggests
to use p D 1 for � > 3:8; p D 2 for 2:2 � � � 3:8;
and p D 3 for � < 2:2. In finance, the kurtosis of returns
can be thought of as being well over 4 and so p D 1 is
preferred.

Forecast Optimality

Optimal forecast of a time series model extensively de-
pends on the specification of the loss function. Symmet-
ric quadratic loss function is the most prevalent in ap-
plications due to its simplicity. The optimal forecast un-
der quadratic loss is simply the conditional mean, but an
asymmetric loss function implies amore complicated fore-
cast that depends on the distribution of the forecast error
as well as the loss function itself [67], as the expected loss
function if formulated with the expectation taken with re-
spect to the conditional distribution. Specification of the
loss function defines the model under consideration.

Consider a stochastic process Zt � (Yt ; X 0
t)0 where

Yt is the variable of interest and Xt is a vector of other
variables. Suppose there are T C 1 (� R C P) observa-
tions. We use the observations available at time t, R �
t < T C 1, to generate P forecasts using each model.
For each time t in the prediction period, we use either
a rolling sample fZt�RC1; : : : ; Ztg of size R or the whole
past sample fZ1; : : : ; Ztg to estimatemodel parameters ˆ̌t .
We can then generate a sequence of one-step-ahead fore-
casts f f (Zt; ˆ̌t)gTtDR .

Suppose that there is a decision maker who takes an
one-step point forecast ft;1 � f (Zt; ˆ̌t) of YtC1 and uses
it in some relevant decision. The one-step forecast error
etC1 � YtC1 � ft;1 will result in a cost of c(etC1), where
the function c(e) will increase as e increases in size, but
not necessarily symmetrically or continuously. The opti-
mal forecast f �

t;1 will be chosen to produce the forecast er-

rors that minimize the expected loss

min
ft;1

Z 1

�1
c(y � ft;1)dFt(y) ;

where Ft(y) � Pr(YtC1 � yjIt) is the conditional distri-
bution function, with It being some proper information
set at time t that includes Zt� j , j � 0. The corresponding
optimal forecast error will be

e�
tC1 D YtC1 � f �

t;1:

Then the optimal forecast would satisfy

@

@ ft;1

Z 1

�1
c(y � f �

t;1)dFt(y) D 0 :

When we may interchange the operations of differentia-
tion and integration,
Z 1

�1
@

@ ft;1
c(y� f �

t;1)dFt(y) � E

�
@

@ ft;1
c(YtC1 � f �

t;1)jIt
�

the “generalized forecast error”, gtC1 � @
@ ft;1

c(YtC1 � f �
t;1),

forms the condition of forecast optimality:

H0 : E


gtC1jIt

� D 0 a:s:;

that is a martingale difference (MD) property of the gener-
alized forecast error. This forms the optimality condition
of the forecasts and gives an appropriate regression func-
tion corresponding to the specified loss function c(�).

Forecast Evaluation of Nonlinear Transformations

Granger [67] note that it is implausible to use the same
loss function for forecasting YtCh and for forecasting
htC1 D h(YtCh) where h(�) is some function, such as
the log or the square, if one is interested in forecasting
volatility. Suppose the loss functions c1(�); c2(�) are used
for forecasting YtCh and for forecasting h(YtCh), respec-
tively. Let etC1 � YtC1 � ft;1 will result in a cost of
c1(etC1), for which the optimal forecast f �

t;1 will be cho-
sen from min ft;1

R1
�1 c1(y � ft;1)dFt(y), where Ft(y) �

Pr(YtC1 � yjIt). Let "tC1 � htC1 � ht;1 will result in
a cost of c2("tC1), for which the optimal forecast h�

t;1 will
be chosen from minht;1

R1
�1 c2(h � ht;1)dHt(h), where

Ht(h) � Pr(htC1 � hjIt). Then the optimal forecasts
for Y and h would respectively satisfy

Z 1

�1
@

@ ft;1
c1(y � f �

t;1)dFt(y) D 0 ;
Z 1

�1
@

@ht;1
c2(h � h�

t;1)dHt(h) D 0 :
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It is easy to see that the optimality condition for f �
t;1

does not imply the optimality condition for h�
t;1 in gen-

eral. Under some strong conditions on the functional
forms of the transformation h(�) and of the two loss func-
tions c1(�); c2(�), the above two conditions may coincide.
Granger [67] remarks that it would be strange behavior to
use the same loss function for Y and h(Y). We leave this
for further analysis in a future research.

Density Forecast Evaluation

Most of the classical finance theories, such as asset pric-
ing, portfolio selection and option valuation, aim to model
the surrounding uncertainty via a parametric distribu-
tion function. For example, extracting information about
market participants’ expectations from option prices can
be considered another form of density forecasting exer-
cise [92]. Moreover, there has also been increasing interest
in evaluating forecasting models of inflation, unemploy-
ment and output in terms of density forecasts [29]. While
evaluating each density forecast model has become versa-
tile since Diebold et al. [35], there has beenmuch less effort
in comparing alternative density forecast models.

Given the recent empirical evidence on volatility clus-
tering and asymmetry and fat-tailedness in financial re-
turn series, relative adequacy of a given model among al-
ternative models would be useful measure of evaluating
forecast models. Deciding on which distribution and/or
volatility specification to use for a particular asset is a com-
mon task even for finance practitioners. For example, de-
spite the existence of many volatility specifications, a con-
sensus on which model is most appropriate has yet to be
reached. As argued in Poon andGranger [125], most of the
(volatility) forecasting studies do not produce very con-
clusive results because only a subset of alternative models
are compared, with a potential bias towards the method
developed by the authors. Poon and Granger [125] argue
that lack of a uniform forecast evaluation technique makes
volatility forecasting a difficult task. They wrote (p. 507),
“ . . . it seems clear that one form of study that is included
is conducted just to support a viewpoint that a particular
method is useful. It might not have been submitted for
publication if the required result had not been reached.
This is one of the obvious weaknesses of a comparison
such as this; the papers being prepared for different rea-
sons, use different data sets, many kinds of assets, vari-
ous intervals between readings, and a variety of evaluation
techniques”.

Following Diebold et al. [35], it has become common
practice to evaluate the adequacy of a forecast model based
on the probability integral transform (PIT) of the process

with respect to the model’s density forecast. If the density
forecast model is correctly specified, the PIT follows an
i.i.d. uniform distribution on the unit interval and, equiva-
lently, its inverse normal transform follows an i.i.d. normal
distribution. We can therefore evaluate a density forecast
model by examining the departure of the transformed PIT
from this property (i.i.d. and normality). The departure
can be quantified by the Kullback-Leibler [97] informa-
tion criterion, or KLIC, which is the expected logarithmic
value of the likelihood ratio (LR) of the transformed PIT
and the i.i.d. normal variate. Thus the LR statistic mea-
sures the distance of a candidate model to the unknown
true model.

Consider a financial return series fytgTtD1. This ob-
served data on a univariate series is a realization of
a stochastic process YT � fY� : ˝ ! R, � D 1; 2; : : : ; Tg
on a complete probability space (˝;FT ; PT

0 ), where˝ D
RT � �T

�D1R and FT D B(RT ) is the Borel �-field gen-
erated by the open sets of RT , and the joint probability
measure PT

0 (B) � P0[YT 2 B], B 2 B(RT ) completely
describes the stochastic process. A sample of size T is de-
noted as yT � (y1; : : : ; yT )0.

Let �-finite measure �T on B(RT ) be given. Assume
PT
0 (B) is absolutely continuous with respect to �T for all
T D 1; 2; : : : , so that there exists a measurable Radon–
Nikodým density gT (yT) D dPT

0 /d�
T , unique up to a set

of zero measure-�T .
Following White [159], we define a probability

model P as a collection of distinct probability measures
on the measurable space (˝;FT ). A probability model P
is said to be correctly specified for YT if P contains PT

0 .
Our goal is to evaluate and compare a set of parametric
probability models fPT

�
g, where PT

�
(B) � P� [YT 2 B].

Suppose there exists a measurable Radon–Nikodým den-
sity f T(yT ) D dPT

�
/d�T for each � 2 � , where � is a fi-

nite-dimensional vector of parameters and is assumed to
be identified on � , a compact subset of Rk . See Theo-
rem 2.6 in White [159].

In the context of forecasting, instead of the joint den-
sity gT (yT), we consider forecasting the conditional den-
sity of Yt , given the information Ft�1 generated by Yt�1.
Let 't



yt
� � 't(yt jFt�1) � g t(yt)/g t�1(yt�1) for t D

2; 3; : : : and '1


y1
� � '1(y1jF0) � g1(y1) D g1(y1).

Thus the goal is to forecast the (true, unknown) condi-
tional density 't



yt
�
.

For this, we use an one-step-ahead conditional den-
sity forecast model  t



yt ;�

� �  t(yt jFt�1;�) �
f t(yt)/ f t�1(yt�1) for t D 2; 3; : : : and  1



y1
� �

 1(y1jF0) � f 1(y1) D f 1(y1). If  t(yt ;�0) D 't(yt)
almost surely for some �0 2 � , then the one-step-ahead
density forecast is correctly specified, and it is said to be
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optimal because it dominates all other density forecasts
for any loss functions as discussed in the previous section
(see [35,67,70]).

In practice, it is rarely the case that we can find an
optimal model. As it is very likely that “the true distribu-
tion is in fact too complicated to be represented by a sim-
ple mathematical function” [133], all the models proposed
by different researchers can be possibly misspecified and
thereby we regard each model as an approximation to the
truth. Our task is then to investigate which density fore-
cast model can approximate the true conditional density
most closely. We have to first define a metric to measure
the distance of a given model to the truth, and then com-
pare different models in terms of this distance.

The adequacy of a density forecast model can be mea-
sured by the conditional Kullback-Leibler [97] Informa-
tion Criterion (KLIC) divergence measure between two
conditional densities,

It (' :  ;�) D E't [ln 't


yt
� � ln t



yt ;�

�
] ;

where the expectation is with respect to the true condi-
tional density 't (�jFt�1), E't ln't



yt jFt�1

�
< 1, and

E't ln t


yt jFt�1;�

�
< 1. Following White [159], we

define the distance between a density model and the true
density as the minimum of the KLIC

It


' :  ;��

t�1
� D E't

�
ln 't



yt
� � ln t



yt ;��

t�1
��
;

where ��
t�1 D argmin It (' :  ;�) is the pseudo-true

value of � [133]. We assume that ��
t�1 is an interior point

of � . The smaller this distance is, the closer the density
forecast t


�jFt�1;��
t�1
�
is to the true density 't (�jFt�1).

However, It


' :  ;��

t�1
�
is unknown since ��

t�1 is
not observable. We need to estimate ��

t�1. If our purpose
is to compare the out-of-sample predictive abilities among
competing density forecast models, we split the data into
two parts, one for estimation and the other for out-of-sam-
ple validation. At each period t in the out-of-sample period
(t D R C 1; : : : ; T), we estimate the unknown param-
eter vector ��

t�1 and denote the estimate as �̂ t�1. Using
f�̂ t�1gTtDRC1, we can obtain the out-of-sample estimate of
It


' :  ;��

t�1
�
by

IP(' :  ) � 1
P

TX

tDRC1

ln['t(yt)/ t(yt ; �̂ t�1)]

where P D T � R is the size of the out-of-sample period.
Note that

IP(' :  ) D 1
P

TX

tDRC1

ln
�
't(yt)/ t



yt ;��

t�1
��

C 1
P

TX

tDRC1

ln[ t


yt ;��

t�1
�
/ t(yt ; �̂ t�1)] ;

where the first term in IP(' :  ) measures model un-
certainty (the distance between the optimal density 't(yt)
and the model  t



yt ;��

t�1
�
) and the second term mea-

sures parameter estimation uncertainty due to the distance
between ��

t�1 and �̂ t�1.
Since the KLIC measure takes on a smaller value when

a model is closer to the truth, we can regard it as a loss
function and use IP(' :  ) to formulate the loss-differ-
ential. The out-of-sample average of the loss-differential
between model 1 and model 2 is

IP (' :  1) � IP(' :  2)

D 1
P

TX

tDRC1

ln
h
 2

t

�
yt ; �̂

2
t�1

�
/ 1

t

�
yt ; �̂

1
t�1

�i
;

which is the ratio of the two predictive log-likelihood func-
tions. With treating model 1 as a benchmark model (for
model selection) or as the model under the null hypoth-
esis (for hypothesis testing), IP(' :  1) � IP (' :  2)
can be considered as a loss function to minimize. To sum
up, the KLIC differential can serve as a loss function for
density forecast evaluation as discussed in Bao, Lee, and
Saltoglu [10]. See Corradi and Swanson [31] for the related
ideas using different loss functions.

Using the KLIC divergence measure to characterize
the extent of misspecification of a forecast model, Bao, Lee,
and Saltoglu [10], in an empirical study with the S&P500
and NASDAQ daily return series, find strong evidence for
rejecting the Normal-GARCH benchmark model, in fa-
vor of the models that can capture skewness in the con-
ditional distribution and asymmetry and long-memory in
the conditional variance. Also, Bao and Lee [8] investi-
gate the nonlinear predictability of stock returns when the
density forecasts are evaluated/compared instead of the
conditional mean point forecasts. The conditional mean
models they use for the daily closing S&P500 index re-
turns include the martingale difference model, the lin-
ear ARMA models, the STAR and SETAR models, the
ANN model, and the polynomial model. Their empirical
findings suggest that the out-of-sample predictive abili-
ties of nonlinear models for stock returns are asymmet-
ric in the sense that the right tails of the return series
are predictable via many of the nonlinear models while
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we find no such evidence for the left tails or the entire
distribution.

Conclusions

In this article we have selectively reviewed the state-of-the-
art in nonlinear time series models that are useful in fore-
casting financial variables. Overall financial returns are
difficult to forecast, and this may just be a reflection of the
efficiency of the markets on processing information. The
success of nonlinear time series on producing better fore-
casts than linear models depends on how persistent the
nonlinearities are in the data. We should note that though
many of the methodological developments are concerned
with the specification of the conditional mean and condi-
tional variance, there is an active area of research inves-
tigating other aspects of the conditional density – quan-
tiles, directions, intervals – that seem to be promising from
a forecasting point of view.

For a more extensive coverage to complement this re-
view, the readers may find the following additional refer-
ences useful. Campbell, Lo, and MacKinlay [22], Chap-
ter 12, provides a brief but excellent summary of non-
linear time series models for the conditional mean and
conditional variance as well and various methods such as
ANN and nonparametric methods. Similarly, the inter-
ested readers may also refer to the books and monographs
of Granger and Teräsvirta [72], Franses and van Dijk [55],
Fan and Yao [52], Tsay [153], Gao [57], and some book
chapters such as Stock [139], Tsay [152], Teräsvirta [145],
and White [161].

Future Directions

Methodological developments in nonlinear time series
have happened without much guidance from economic
theory. Nonlinear models are for most part ad hoc spec-
ifications that, from a forecasting point of view, are vali-
dated according to some statistical loss function. Though
we have surveyed some articles that employ some eco-
nomic rationale to evaluate the model and/or the fore-
cast – bull/bear cycles, utility function, profit/loss func-
tion –, there is still a vacuum on understanding why, how,
and when nonlinearities may show up in the data.

From a methodological point of view, future devel-
opments will focus on multivariate nonlinear time series
models and their associated statistical inference. Nonlin-
ear VAR-type models for the conditional mean and high-
dimensional multivariate volatility models are still in their
infancy. Dynamic specification testing in a multivariate
setting is paramount to the construction of a multivariate
forecast and though multivariate predictive densities are

inherently difficult to evaluate, they are most important in
financial economics.

Another area of future research will deal with the
econometrics of a data-rich environment. The advent of
large databases begs the introduction of new techniques
andmethodologies that permits the reduction of the many
dimensions of a data set to a parsimonious but highly in-
formative set of variables. In this sense, criteria on how to
combine information and how to combine models to pro-
duce more accurate forecasts are highly desirable.

Finally, there are some incipient developments on
defining new stochastic processes where the random vari-
ables that form the process are of a symbolic nature, i. e. in-
tervals, boxplots, histograms, etc. Though the mathemat-
ics of these processes are rather complex, future develop-
ments in this area will bring exciting results for the area of
forecasting.
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Glossary

Global Lyapunov exponent A global stability measure of
the nonlinear dynamic system. It is a long-run aver-
age of the exponential growth rate of infinitesimally
small initial deviation and is uniquely determined in
the ergodic and stationary case. In this sense, this ini-
tial value sensitivity measure does not depend on the
initial value. A system with positive Lyapunov expo-
nents is considered chaotic for both deterministic and
stochastic cases.

Local Lyapunov exponent A local stability measure
based on a short-run average of the exponential
growth rate of infinitesimally small initial deviations.
Unlike the global Lyapunov exponent, this initial value
sensitivity measure depends both on the initial value
and the horizon for the average calculation. A smaller
local Lyapunov exponent implies a better performance
at the point of forecast.

Noise amplification In a stochastic system with the addi-
tive noise, the effect of shocks can either grow, remain,
or die out with the forecast horizon. If the system is
nonlinear, this effect depends both on the initial value
and size of the shock. For a chaotic system, the degree
of noise amplification is so high that it makes the fore-
cast almost identical to the iid forecast within the next
few steps ahead.

Nonlinear impulse response function In a stochastic
system with the additive noise, the effect of shocks on
the variable in subsequent periods can be summarized
in impulse response functions. If the system is linear,

the impulse response does not depend on the initial
value and its shape is proportional to the size of shocks.
If the system is nonlinear, however, the impulse re-
sponse depends on the initial value, or the history, and
its shape is no longer proportional to the size of shocks.

Definition of the Subject

Empirical studies show that there are at least some compo-
nents in future asset returns that are predictable using in-
formation that is currently available.When the linear time
series models are employed in prediction, the accuracy of
the forecast does not depend on the current return or the
initial condition. In contrast, with nonlinear time series
models, properties of the forecast error depend on the ini-
tial value or the history. The effect of the difference in ini-
tial values in a stable nonlinear model, however, usually
dies out quickly as the forecast horizon increases. For both
deterministic and stochastic cases, the dynamic system is
chaos if a small difference in the initial value is amplified at
an exponential rate. In a chaotic nonlinear model, the re-
liability of the forecast can decrease dramatically even for
a moderate forecast horizon. Thus, the knowledge of the
sensitive dependence on initial conditions in a particular
financial time series offers practically useful information
on its forecastability. The most frequently used measure
of initial value sensitivity is the largest Lyapunov expo-
nent, defined as the long-run average growth rate of the
difference between two nearby trajectories. It is a global
initial value sensitivity measure in the sense that it con-
tains the information on the global dynamic property of
the whole system. The dynamic properties around a sin-
gle point in the system can be also described using other
local measures. Both global and local measures of the sen-
sitive dependence on initial conditions can be estimated
nonparametrically from data without specifying the func-
tional form of the nonlinear autoregressive model.

Introduction

When the asset market is efficient, all the information con-
tained in the history of the asset price is already reflected
in the current price of the asset. Mathematically, the con-
ditional mean of asset returns becomes independent of
the conditioning information set, and thus price changes
must be unpredictable (a martingale property). A conve-
nient model to have such a characteristic is a random walk
model with independent and identically distributed (iid)
increments given by

ln Pt � ln Pt�1 D xt



Financial Forecasting, Sensitive Dependence 425

for t D 0; 1; 2; : : : , where Pt is the asset price and xt is an
iid random variable with mean�x and variance �2x . When
�x D 0, the model becomes a random walk without drift,
otherwise, it is a random walk with drift �x .

Chaos is a nonlinear deterministic process that can
generate a random-like fluctuation. In principle, if a purely
deterministic model, instead of a random walk process, is
used to describe the dynamics of the asset return xt , all fu-
ture asset returns should be completely predictable. How-
ever, in the case of chaos, a small perturbation can make
the performance of a few steps ahead forecast almost iden-
tical to that of a random walk forecast. A leading example
is the tent map:

xt D 1 � j2xt�1 � 1j
with some initial value x0 between 0 and 1. This map al-
most surely has the uniform distribution U(0; 1) as its nat-
ural measure, defined as the distribution of a typical tra-
jectory of xt. This dynamic system thus provides aperiodic
trajectory or random-like fluctuation of xt as the number
of iteration increases. By introducing a randomness in the
initial value x0, marginal distribution of xt approaches the
natural measure. This property, referred to as ergodicity,
implies that the temporal average of any smooth function
of a trajectory xt ;M�1PM�1

tD0 h(xt), converges to a math-
ematical expectation E[h(xt)] D R1

�1 h(x)
(x)dx as M
tends to infinity, where the marginal distribution of xt
is expressed in terms of the probability density function
(pdf) 
(x). The natural measure U(0; 1) is also a station-
ary or invariant distribution since the marginal distribu-
tion of xt for any t � 1, is U(0; 1) whenever initial value
x0 follows U(0; 1). In this case, the mean �x and variance
�2x are 1/2 and 1/12, respectively. Furthermore, almost all
the trajectories are second-order white noise in the sense
that they have a flat spectrum and zero autocorrelation at
all leads and lags.

Therefore, the knowledge of the marginal distribution

(x) or spectrum of asset returns cannot be directly used
to distinguish between the case of a random walk com-
bined with an iid random variable and the case of the tent
map generating the returns. Yet, the two cases have signif-
icantly different implications on the predictability of asset
returns, at least for the extremely short horizon. When the
initial value x0 is given, using �x D 1/2 as a one-period-
ahead forecast at t D 0 provides a minimummean square
forecast error (MSFE) of �2x D 1/2 for the former case. In
contrast, using 1� j2x0 � 1j as the forecast gives zero fore-
cast error for the latter case.With a very tiny perturbation,
however, the MSFE of the multiple-period-ahead forecast
for the latter case quickly approaches �2x D 1/2, which is
identical to that of the random walk case.

Another example is the logistic map:

xt D 4xt�1(1 � xt�1)

with some initial value x0 between 0 and 1. This map again
provides chaotic fluctuation with the natural measure al-
most surely given by beta distribution B(1/2; 1/2). Pro-
vided the same distribution as its stationary or invariant
distribution, the mean �x and variance �2x are 1/2 and
1/8, respectively (see [37] for the invariant distribution
of the logistic map in general). Again, the random walk
model combined with an iid random variable with the
same marginal distribution B(1/2; 1/2) is not distinguish-
able from the logistic map based only on the marginal dis-
tribution nor spectra. But the two have very different pre-
dictive implications.

The key feature of chaos that is not observed in the iid
random variable is the sensitivity of the trajectories to the
choice of initial values. This sensitivity can be measured
by the Lyapunov exponent which is defined as the average
rate of divergence (or convergence) of two nearby trajec-
tories. Indeed, the positivity of the Lyapunov exponent in
a bounded dissipative nonlinear system is a widely used
formal definition of chaos. To derive this measure for the
two examples above, first consider a one-dimensional gen-
eral nonlinear system

xt D f (xt�1)

where f : R ! R is a continuously differentiable map,
with two initial values x0 D x0 and x�

0 D x0 C ı where
ı represents infinitesimal difference in the initial condi-
tion. When the distance between two trajectories fxtg1

tD0
and fx�

t g1
tD0 after M steps is measured by the exponential

growth rate of ı using x�
M � xM D ı exp(M�M(x0)), the

average of the growth rate in each iteration is given by

�M(x0) D 1
M

ln
ˇ
ˇ
ˇ
ˇ
x�
M � xM
ı

ˇ
ˇ
ˇ
ˇ :

Further, let f (M) be the M-fold composition of f . Then
from the first order term in the Taylor series expansion of
x�
M � xM D f (M)(x0 C ı) � f (M)(x0) around x0, com-

bined with the chain rule applied to d f (M)(x)/dxjxDx0
yields [ f 0(x0) f 0(x1) � � � f 0(xM�1)]ı D [

QM
tD1 f

0(xt�1)]ı.
Thus, the product

QM
tD1 f

0(xt�1) is the amplifying factor
to the initial difference after M periods. Substituting this
approximation result into the average growth rate formula
yields �M(x0) D M�1PM

tD1 ln j f 0(xt�1)j. This measure is
called a local Lyapunov exponent (of orderM) and in gen-
eral depends on both x0 andM (see Fig. 1).

Next, consider the case M tending to infinity. If xt is
ergodic and stationary, M�1PM

tD1 ln j f 0(xt�1)j converges
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Lyapunov exponent is an exponential growth rate

to E[ln j f 0(xt�1)j] D R1
�1 ln j f 0(x)j
(x)dx, which does

not depend on x0. Thus, a global Lyapunov exponent, or
simply a Lyapunov exponent, of a one-dimensional system
is defined as � D limM!1 �M(x0) or

� D lim
M!1

1
M

MX

tD1

ln
ˇ
ˇ f 0(xt�1)

ˇ
ˇ :

According to this definition, the computation of the Lya-
punov exponent of the tent map is straightforward. Since
the tent map is xt D 2xt�1 for 0 � xt�1 � 1/2 and xt D
2 � 2xt�1 for 1/2 < xt�1 � 1, its first derivative f 0(xt�1)
is 2 for 0 � xt�1 � 1/2 and �2 for 1/2 < xt�1 � 1. Using
the uniform distribution as its stationary distribution, we
have

� D
Z 1/2

0
ln j2j dx C

Z 1

1/2
ln j�2j dx D ln 2 (� 0:693) :

Similarly, for the logistic map xt D axt�1(1 � xt�1) with
a D 4,

� D
Z 1

0

ln j4 � 8xj



p
x(1 � x)

dx D ln 4 � ln 2 D ln 2 :

Thus, both the tent map and the logistic map with a D 4
have a common positive Lyapunov exponent. The value
ln 2 implies that, on average, the effect of an initial devi-
ation doubles each time of iteration. Such a rapid rate of
divergence is the source of the fact that their trajectories
become unpredictable very quickly. Chaos is thus charac-
terized by sensitive dependence on initial conditions mea-
sured by a positive Lyapunov exponent.

Let us next consider a simple linear difference equa-
tion xt D �xt�1 with j�j < 1. Since its first derivative

f 0(x) is a constant �, not only the Lyapunov exponent but
also the local Lyapunov exponent �M(x0) does not de-
pend on the initial value x0. For example, when � D 0:5,
� D �M(x0) D � ln 2 (� �0:693). The logistic map
xt D axt�1(1 � xt�1), can be either chaotic or stable de-
pending on the choice of a. When a D 1:5, all the trajec-
tories converge to a point mass at xt D 1/3, where the first
derivative is 1/2 thus � D � ln 2. For these two examples,
the system has a common negative Lyapunov exponent.
In this case, the effect of the initial condition is short-lived
and the system is not sensitive to initial conditions. The
value � ln 2 implies that, on average, the effect of initial
deviation reduces by one half each time of iteration.

Knowing the Lyapunov exponent of the asset returns,
or their transformation, thus offers a useful information
regarding the predictability of a financial market. In par-
ticular, for a system with sensitive dependence (namely,
the one with a positive Lyapunov exponent), the perfor-
mance of a multiple step forecast can worsen quickly as
the forecast horizon increases if there are (i) a small un-
certainty about the current value at the time of forecast
(observation noise) and/or (ii) a small additive noise in the
system (system noise).

Lyapunov Exponent and Forecastability

Lyapunov Spectrum

As a global measure of initial value sensitivity in a multi-
dimensional system, the largest Lyapunov exponent and
Lyapunov spectrum will first be introduced. For the p-di-
mensional deterministic nonlinear system,

xt D f


xt�1; : : : ; xt�p

�
;

where f : Rp ! R is continuously differentiable, the
(global) largest Lyapunov exponent of the system is de-
fined as

� D lim
M!1

1
2M

ln
ˇ
ˇ�1(T0

MTM)
ˇ
ˇ

where �1(T0
MTM) is the largest eigenvalue of T0

MTM , and
TM D JM�1 � JM�2 �� � �� J0. Here Jt�1’s are Jacobianmatrices
defined as

Jt�1 D
2

6
6
6
6
6
4

� f1(Xt�1) � f2(Xt�1) � � � � fp�1(Xt�1) � fp(Xt�1)
1 0 � � � 0 0
0 1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � 1 0

3

7
7
7
7
7
5
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for t D 1; : : : ;M, where � f j(Xt�1) D @ f (Xt�1)/@xt� j ,
for j D 1; : : : ; p, are partial derivatives of the conditional
mean function evaluated at Xt�1 D (xt�1; : : : ; xt�p)0.

Using an analogy to the one-dimensional case, the
local Lyapunov exponent can be defined similarly by
�M(x) D (2M)�1 ln

ˇ
ˇ�1(T0

MTM)
ˇ
ˇ with initial value x D

(x0; x�1; : : : ; x�pC1)0. Note that (2M)�1 ln
ˇ
ˇ�1(T0

MTM)
ˇ
ˇ

reduces to the sum of absolute derivatives in logs
used for the one-dimensional case since (2M)�1PM

tD1
ln[ f 0(xt�1)2] D M�1PM

tD1 ln j f 0(xt�1)j.
In the multi-dimensional case, the whole spectrum of

Lyapunov exponents can be also considered using ith Lya-
punov exponent �i, for i D 1; : : : ; p, defined by replac-
ing the largest eigenvalue �1 with the ith largest eigen-
value �i. A set of all Lyapunov exponents is called the
Lyapunov spectrum. Geometrically, each Lyapunov expo-
nent represents the rate of growth (or contraction) of the
corresponding principal axis of a growing (or shrinking)
ellipsoid. An attracting set of a dynamic system, or simply
the attractor, is defined as the set to which xt approaches
in the limit. The attractor can be a point, a curve, a man-
ifold, or more complicated set. The Lyapunov spectrum
contains information on the type of the attractor. For ex-
ample, a system with all negative Lyapunov exponents has
an equilibrium point as an attracting set. To understand
this claim, let xEQ be an equilibrium point and consider
a small initial deviation ı D (ı1; : : : ; ıp)0 from xEQ. By
the linearization of f : Rp ! R at xEQ, the deviation from
xEQ afterM periods is approximated by c1�1 expfe�1Mg C
� � � C cp�p expfe�pMg, where e�i ’s and �i’s are the eigen-
values and eigenvectors of JEQ, respectively, where JEQ is
Jt�1 evaluated at Xt�1 D xEQ, and ci’s are scalar constants.
The real part ofe�i , denoted by Re[e�i], represents the rate
of growth (contraction) around the equilibrium point xEQ
along the direction of �i if Re[e�i] is positive (negative).
Thus if Re[e�i ] < 0 for all i D 1; : : : ; p, xEQ is asymp-
totically stable and is an attractor. Otherwise, xEQ is either
unstable with Re[e�i ] > 0 for all i, or a saddle point with
Re[e�i ] > 0 for some i, provided that none of Re[e�i ] is
zero. In this simple case, ith Lyapunov exponent �i corre-
sponds to Re[e�i ].

Financial Forecasting, Sensitive Dependence, Table 1
Lyapunov spectrum and attractors

Attractor Point Closed curve k-torus Strange attractor
Steady state equilibriumpoint limit cycle (periodic) k-periodic chaotic
Dimension 0 1 k (integer) noninteger
Lyapunov exponents 
i < 0 (i D 1; : : : ; p) 
1 D 0


i < 0 (i D 2; : : : ; p)

1 D � � � D 
k D 0

i < 0 (i D k C 1; : : : ; p)


1 > 0

Among all the Lyapunov exponents, the largest Lya-
punov exponent �1, or simply �, is a key measure to dis-
tinguish chaos from other stable systems. By using an anal-
ogy to the equilibrium point example, � > 0 implies the
expansion in the direction of �1. An attractor requires that
the sum of all the Lyapunov exponents be negative since
contraction on the wholemust be stronger than the expan-
sion. When this condition is met with some positive �i’s,
the system is said to have a strange attractor. Chaos is thus
excluded if the largest Lyapunov exponent is not positive.
A system with a zero largest Lyapunov exponent implies
that the average distance of two orbits (along some direc-
tions) is same as their initial deviation, the property often
referred to as Lyapunov stability. A zero largest Lyapunov
exponent and strictly negative remaining Lyapunov expo-
nents lead to a system with a limit cycle. If only the first
two (k) largest Lyapunov exponents are zero, the system
has a two-torus (k-torus) attractor. The types of attractors
and their relationship to the signs of Lyapunov exponents
are summarized in Table 1.

Entropy and Dimension

In a deterministic system with initial value sensitivity,
the information on how quickly trajectories separate on
the whole has a crucial implication in the predictability.
This is because if two different trajectories which are ini-
tially indistinguishable become distinguishable after a fi-
nite number of steps, the knowledge of the current state
is useful in forecasting only up to a finite times ahead.
Kolmogorov entropy of the system measures the rate at
which information is produced and has a close relation-
ship to the Lyapunov exponents. In general, the sum of
all positive Lyapunov exponents provides an upper bound
to Kolmogorov entropy, which contains the information
on how quickly trajectories separate on the whole. Un-
der some conditions, both the entropy and the sum be-
come identical (see [22,56]). This fact can intuitively be
understood as follows. Suppose a system with k positive
Lyapunov exponents and an attractor of size L. Here, the
size of an attractor roughly refers to the range of an in-
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variant distribution of an attractor, which becomes unpre-
dictable as a result of magnified small initial deviation of
size d. Note that the length of the first k principal axes af-
terM steps of iteration is proportional to exp(M

Pk
iD1 �i ).

From d exp(M
Pk

iD1 �i ) D L, the expected time M to
reach the size of attractor is given by (1/

Pk
iD1 �i ) ln(L/d).

This result implies that the larger
Pk

iD1 �i becomes, the
shorter the period during which the path is predictable.

Lyapunov exponents are also closely related to the no-
tion of dimension designed to classify the type of attrac-
tors. An equilibrium point has zero dimension. A limit
cycle is one-dimensional since it resembles an interval in
a neighborhood of any point. A k-torus is k-dimensional
since it locally resembles an open subset of Rk. However,
the neighborhood of any point of a strange attractor does
not resemble any Euclidean space and does not have inte-
ger dimension. Among many possibilities of introducing
a non-integer dimension, one can consider the Lyapunov
dimension, or Kaplan–Yorke dimension, defined as

DL D k C 1
j�kC1j

kX

iD1

�i

where �i is the ith Lyapunov exponent and k is the largest
integer for which

Pk
iD1 �i � 0. This definition provides

the dimension of zero for an equilibrium point, one for
a limit cycle, and k for a k-torus. For a chaotic exam-
ple, suppose a three-dimensional system with a positive
Lyapunov exponent (�1 D �C > 0), a zero Lyapunov
exponent (�2 D 0), and a negative Lyapunov exponent
(�3 D �� < 0). The Lyapunov dimensionDL is then given
by 2C�C/j��jwhich is a fraction that lies strictly between
2 and 3 since an attractor should satisfy �C C �� < 0.
Likewise, in general, the Lyapunov dimension DL will be
a fraction between k and k C 1 since

Pk
iD1 �i � j�kC1j

always holds by the definition of k (see Fig. 2).
Since the Lyapunov spectrum contains richer infor-

mation than the largest Lyapunov exponent alone, several
empirical studies reported the Lyapunov spectrum [18], or
the transformation such as Kolmogorov entropy and Lya-
punov dimension [1,2] of financial time series. However,
one must be careful on the interpretation of these quanti-
ties since their properties under noisy environment is not
rigorously established. In addition, it should be noted that
some other forms of the entropy and the dimension can
be computed without estimating each Lyapunov exponent
separately. For example, [36] recommended using an ap-
proximation to Kolmogorov entropy, given by

K2 D lim
ı!0
p!1

ln
�

Cp(ı)
CpC1(ı)

�

Financial Forecasting, Sensitive Dependence, Figure 2
Lyapunov dimension

where Cp(ı) is the correlation integral defined by

Cp(ı) D lim
T!1 ]f(t; s)j kXt � Xsk < ıg/T2

where Xt D (xt; : : : ; xt�pC1)0 and k�k is a vector norm.
The approximation given by K2 provides a lower bound
of Kolmogorov entropy (see [22]). The correlation dimen-
sion, a type of dimension, can also be defined as

DC D lim
ı!0

lnCp(ı)
ln ı

:

Both the K2 entropy and correlation dimension can be
estimated by replacing Cp(ı) with its sample analogue.
In applications to financial time series, these two mea-
sures are computed in [30] and [50]. Finally, note that
the correlation integral has been used as the basis of the
BDS test, a well-established nonlinear dependence test fre-
quently used in economic application, developed by [9].
Formally, the test statistic relies on the sample analogue of
Cp(ı) � [C1(ı)]p and follows normal distribution under
the null hypothesis of iid randomness. The BDS test ap-
pears to have a good power against the alternative of lin-
ear or nonlinear dependence including some low-dimen-
sional chaotic process. Thus, the BDS test is useful in pro-
viding the indirect evidence of sensitive dependence and
can be complementarily used along with a more direct test
based on Lyapunov exponents (see [5] for an example on
the comparison between the two approaches).

System Noise and Noisy Chaos

Unlike the data generated from a purely deterministic sys-
tem, economic and financial data are more likely to be
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contaminated by noise. There are two main types of ran-
dom noise used to extend the deterministic model to the
stochastic model in the analysis of initial value sensitiv-
ity: observation noise and system noise. In the case of the
observation noise, or measurement noise, observables are
given as the sum of stochastic noise and the unobserv-
ables generated from the deterministic model. In contrast,
with the system noise, or dynamic noise, observables are
generated directly from a nonlinear autoregressive (AR)
model. In practice, it is often convenient to introduce the
system noise in the additive manner. Theoretically, sys-
tem noise can make the system to have a unique stationary
distribution. Note that for the examples of tent map and
logistic map, aperiodic trajectory, or random-like fluctu-
ation, could not be obtained with some choice of initial
condition with measure zero. In general, the deterministic
system can have infinitely many stationary distributions.
However, typically, the presence of additive noise can ex-
clude all degenerate marginal distributions. Furthermore,
additive system noise is convenient to generalize the use
of the Lyapunov exponents, originally defined in the de-
terministic system as a measure of sensitive dependence,
to the case of a stochastic system.

To see this point, first, consider the following simple
linear system with an additive system noise. Adding an iid
stochastic error term "t, with E("t) D 0 and E("2t ) D �2,
in the previously introduced linear difference equation
leads to a linear AR model of order one,

xt D �xt�1 C "t :

The model has a stationary distribution if j�j < 1. Even
if the error term is present, since f 0(xt�1) D �, a one-di-
mensional Lyapunov exponent can be computed as � D
ln j�j < 0, the value identical to the case of the determinis-
tic linear difference equation. Thus, the stationarity condi-
tion j�j < 1 in the linear model always implies a negative
Lyapunov exponent, while a unit root process � D 1 im-
plies zero Lyapunov exponent.

Next, consider the introduction of a system noise to
a nonlinear system. A general (stationary) nonlinear AR
model of order one is defined as

xt D f (xt�1) C "t

where f : R ! R is a smooth function. For a known
unique stationary marginal distribution 
(x), Lyapunov
exponent can be computed as E[ln j f 0(xt�1)j] DR1

�1 ln j f 0(x)j
(x)dx. Thus, by using an analogy of the
definition of deterministic chaos, noisy chaos can be de-
fined as a stationary nonlinear AR model with a posi-
tive Lyapunov exponent. Even if an analytical solution is

not available, the value of Lyapunov exponent is typically
obtained numerically or by simulation. Similarly, for the
multidimensional nonlinear AR model,

xt D f (xt�1; : : : ; xt�p) C "t ;

(noisy) chaos can be defined by a positive largest Lyapunov
exponent computed from the Jacobian and the stationary
joint distribution of Xt�1 D (xt�1; : : : ; xt�p)0. Further-
more, as long as the process has a stationary distribution,
for both the chaotic and non-chaotic case,M-period ahead
least squares predictor fM(x) � E[xtCMjXt D x] and its
conditional MSFE �2M(x) � E[fxtCM � fM(x)g2jXt D x]
depend on the initial condition x D (x0; x�1; : : : ; x�pC1)0
but do not depend on the timing of forecast t.

Noise Amplification

The next issue involves the prediction in the stochastic dy-
namic system. When additive noise is present in the non-
linear system, the amplification of noise can depend on the
initial values and is not necessarily monotonic in horizon.
This feature is not unique to the chaotic model but holds
for general nonlinear models. However, a small noise is
expected to be amplified rapidly in time if the nonlinear
system is chaotic.

To understand the process of noise amplification, con-
sider the previously introduced linear AR model of order
one with a non-zero coefficient � and an initial condition
x0 D x0. Then, at the periodM,

xM D �f�xM�2 C "M�1g C "M

D �2xM�2 C �"M�1 C "M

D �Mx0 C "M C � � � C �M�1"1 :

Since f"1; "2; : : : ; "Mg are not predictable at period 0, the
least square M-period ahead predictor is �Mx0 with its
MSFE �2M given by �M�

2 where

�M D 1 C � � � C �2(M�1) D 1 C
M�1X

jD1

�2 j

is a monotonically increasing proportional factor that does
not depend on x0. Since �M > 1, MSFE is strictly greater
than the variance of the noise for allM. However, for a sta-
tionary process with j�j < 1, increments in such a noise
amplification become smaller and �M converges to 1/(1 �
�2) asM tends to infinity. Thus, eventually, theMSFE con-
verges to the unconditional variance �2x D �2/(1 � �2). In
a special case with � D 0, when the asset price have iid
increments, the proportional factor becomes 1 for all M
giving its MSFE �2M D �2x D �2 for allM.
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Suppose, instead, a general nonlinear AR model of or-
der one with an initial condition x0 D x0. In addition, let
j"tj � � almost surely, where � > 0 is a small constant. By
Taylor series expansion, for M � 1,

xM D f f f (xM�2) C "M�1g C "M

D f (2) (xM�2) C f 0f f (xM�2)g"M�1 C "M C O(�2) :

Using the fact that xM�2 D f (M�2)(x0) C O(�), and re-
peating applications of Taylor series expansion,

xM D f (2) (xM�2) C f 0f f (M�1)(x0)g"M�1 C "M C O(�2)

D f (M) (x0) C "M C f 0f f (M�1)(x0)g"M�1 C � � �

C
M�1Y

kD1

f 0f f (k)(x0)g"1 C O(�2) :

Thus the least square M-period ahead predictor is
f (M)(x0) with its conditional MSFE given by

�2M(x0) D �M(x0)�2 C O(�3)

where

�M(x0) D 1 C
M�1X

jD1

2

4
M�1Y

kD j

f 0f f (k)(x0)g
3

5

2

:

A comparison of �M for the linear model and �M(x0)
for the nonlinear model provides some important features
of the nonlinear prediction. First, unlike the linear case,
the proportional factor now depends not only on the fore-
cast horizon M but also on the initial condition x0. Thus,
in general, performance of the nonlinear prediction de-
pends on where you are.

Second, �M(x0) does not need to be monotonically
increasing with M in nonlinear case. The formula for
�M(x0) can be rewritten as

�MC1(x0) D 1 C �M(x0) f 0f f (M)(x0)g2 :

Thus, �MC1(x0) < �M(x0) is possible when
f 0f f (M)(x0)g2 < 1 � 1/�M(x0). Therefore, with some
initial value and M, the (M C 1)-period ahead MSFE can
be smaller than theM-period ahead MSFE.

Third, and most importantly, unlike the station-
ary linear model, which imposes the restriction j�j <

1; j f 0(x)j > 1 is possible for a large range of values of x in
the nonlinear model even if it has a bounded and station-
ary distribution. In such a case, �M(x0) can grow rapidly
for the moderate or short forecast horizon M. The rapid
noise amplification makes the long-horizon forecast very

unreliable especially when the model is chaotic. To see this
point, it is convenient to rewrite the proportional factor
�M(x0) in terms of the local Lyapunov exponent as

�M(x0) D 1 C
M�1X

jD1

exp
n
2(M � j)�M� j ( f ( j)(x0))

o
:

When the local Lyapunov exponent is positive, the pro-
portional factor grows at an exponential rate as M grows.
Recall that in the case of iid forecast (random walk fore-
cast in terms of price level), the MSFE �2M becomes �2x .
Likewise, for the chaotic case with infinitesimally small
�2, the MSFE �2M reaches �2x only after a few steps even
if the MSFE is close to zero for the one-step ahead fore-
cast. Thus, the global Lyapunov exponent or other local
measures of sensitive dependence contain important in-
formation on the predictability in the nonlinear time series
framework.

Nonparametric Estimation
of the Global Lyapunov Exponent

Local Linear Regression

The measures of initial value sensitivity can be computed
from the observed data. Since the Lyapunov exponent is by
definition the average growth rate of initial deviations be-
tween two trajectories, it can be directly computed by find-
ing pairs of neighbors and then averaging growth rates of
the subsequent deviations of such pairs [77]. This ‘direct’
method, however, provides a biased estimator when there
is a random component in the system [51]. A modified re-
gression method proposed by [63] is considered more ro-
bust to the presence of measurement noise but not nec-
essarily when the system noise is present. A natural ap-
proach to compute the Lyapunov exponent in the nonlin-
ear ARmodel framework is to rely on the estimation of the
nonlinear conditional mean function f : Rp ! R. For ex-
ample, based on an argument similar to the deterministic
case, the noisy logistic map, xt D axt�1(1 � xt�1) C "t ,
can be either chaotic or stable depending on the value of
the parameter a. The first derivative f 0(x) D a � 2ax can
be evaluated at each data point once an estimate of a is
provided. Thus, the parametric approach in the estima-
tion of Lyapunov exponents has been considered in some
cases (e. g., [7]). In practice, however, information on the
functional form is rarely available and the nonparametric
approach is a reasonable alternative. In principle, any non-
parametric estimator can be used to estimate the function f
and its partial derivatives in the nonlinear AR model,

xt D f


xt�1; : : : ; xt�p

�C "t
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where f is smooth and "t is a martingale difference se-
quence with E["t jxt�1; xt�2; : : : ] D 0 and E["2t jxt�1;

xt�2; : : : ] D �2(xt�1; : : : ; xt�p) D �2(x). To simplify the
discussion, here, the one based on a particular type of the
kernel regression estimator is explained in detail. Methods
based on other types of nonparametric estimators will be
later mentioned briefly (see, for example, [27], on the non-
parametric approach in time series analysis).

The local linear estimator of the conditional mean
function and its first partial derivatives at a point x can
be obtained by minimizing the weighted least squares cri-
terion

PT
tD1(xt � ˇ0 � ˇ0

1(Xt�1 � x))2KH(Xt�1 � x),
where H is the d � d bandwidth matrix, K is d-variate
kernel function such that

R
K(u)du D 1, and KH(u) D

jHj�1/2 K(H�1/2u). For example, the standard p-variate
normal density

K(u) D 1
2
�p/2 exp(�jjujj2/2)

with H given by hIp where h is a scalar bandwidth and Ip
is an identity matrix of order p, can be used in the estima-
tion. The solution to the minimization problem is given by
b̌(x) D (X0

xWxXx )�1X0
xWxY where

Xx D

2

6
4

1 (X0 � x)0
:::

:::

1 (XT�1 � x)0

3

7
5 ;

Y D (x1; : : : ; xT )0 and Wx D diag fKH(X0 � x); : : : ;
KH(XT�1 �x)g. The local linear estimator of the nonlinear
function f (x) and its first derivatives (@ f )/(@xt� j)(x) for
j D 1; : : : ; p are given by b̌0(x) Dbf (x) and

b̌1(x) D

2

6
6
4

b̌11(x)
:::

b̌1p(x)

3

7
7
5 D

2

6
6
4

�bf 1(x)
:::

�bf p(x)

3

7
7
5 ;

respectively. [22] and [21] proposed a method, known as
the ‘Jacobian’ method, to estimate the Lyapunov exponent
by substituting� fi (x) in the Jacobian formula by its non-
parametric estimator �bf i (x). It should be noted that, in
general, the “sample size” T used for estimating Jacobian
bJ t and the “block length”M, which is the number of eval-
uation points used for estimating the Lyapunov exponent,
can be different. Formally, the Lyapunov exponent estima-
tor of � is given by

b�M D 1
2M

ln �1
�
bT0
MbTM

�
;

bTM D
MY

tD1

bJM�t DbJM�1 �bJM�2 � � � � �bJ0 ;

where

bJ t�1 D
2

6
6
6
6
6
6
4

�bf 1(Xt�1)�bf 2(Xt�1) � � � �bf p�1(Xt�1)�bf p(Xt�1)
1 0 � � � 0 0
0 1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � 1 0

3

7
7
7
7
7
7
5

;

for t D 0; 1; : : : ;M � 1, where�bf j(x) is a nonparametric
estimator of� f j(x) D @ f (x)/@xt� j for j D 1; : : : ; p.

As an estimator for the global Lyapunov exponent, set-
ting M D T gives the maximum number of Jacobians and
thus the most accurate estimation can be expected. The-
oretically, however, it is often convenient to have a block
lengthM smaller than T. For a fixedM, with T tends to in-
finity, b�M is a consistent estimator of the local Lyapunov
exponent with initial value x D (x0; x�1; : : : ; x�pC1)0
(see [48]). In case both M and T increase with M/T tends
to zero,b�M is still a consistent estimator of the global Lya-
punov exponent.

Statistical Inference on the Sign of Lyapunov Exponent

Since the positive Lyapunov exponent is the condition that
distinguishes the chaotic process from the stable system
without high initial value sensitivity, conducting the infer-
ence regarding the sign of the Lyapunov exponent is of-
ten of practical interest. For such inference, a consistent
standard error formula forb�M is available. Under the con-
dition that M grows at a sufficiently slow rate, a standard
error can be computed by

p
b̊/M where

b̊ D
M�1X

jD�MC1

w( j/SM)b�( j)

with b� ( j) D 1
M

MX

tDj jjC1

b�tb�t�j jj ;

b�t Db� t �b�M with b� t D 1
2
ln

0

@
�1

�
bT0
tbTt
�

�1

�
bT0
t�1
bTt�1

�

1

A

for t � 2 and b�1 D 1
2
ln �1

�
bT0
1bT1
�
;

where w(u) and SM denote a kernel function and a lag
truncation parameter, respectively (see [67,68,74]). An ex-
ample of w(u) is the triangular (Bartlett) kernel given by
w(u) D 1 � juj for juj < 1 and w(u) D 0, otherwise. The
lag truncation parameter SM should grow at a rate slower
than the rate ofM.
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The procedure above relies on the asymptotic normal-
ity of the Lyapunov exponent estimator. Therefore, if the
number of Jacobians,M, is not large, an approximation by
the normal distribution may not be appropriate. An alter-
native approach to computing the standard error is to use
the resample methods, such as bootstrapping or subsam-
pling. See [32,35] and [79] for the applications of resam-
pling methods to the evaluation of the global Lyapunov
exponent estimates.

Consistent Lag Selection

Performance of the nonparametric Lyapunov exponent es-
timator is often influenced by the choice of lag length p in
the nonlinear AR model when the true lag is not known in
practice. To see this point, artificial data is generated from
a noisy logistic map with an additive system error given by

xt D axt�1(1 � xt�1) C �(xt�1)"t

where "t 
 iid U(�1/2; 1/2) and �(xt�1) D 0:5 �
minfaxt�1(1 � xt�1); 1 � axt�1(1 � xt�1)g. Note that the
conditional heteroskedasticity function �(x) here ensures
that the process xt is restricted to the unit interval [0; 1].
When a D 4:0, the system has a positive Lyapunov expo-
nent 0.699. Figure 3 shows an example of a sample path
from a deterministic logistic map (left) and a noisy logistic
map with the current specification of an error term (right).
When a D 1:5, the system has a negative Lyapunov ex-
ponent �0.699. Table 2 reports the mean and median of

Financial Forecasting, Sensitive Dependence, Figure 3
Logistic map and noisy logistic map

Financial Forecasting, Sensitive Dependence, Table 2
Lyapunov exponent estimates when T D 50: logistic map

p D 1 p D 2 p D 3 p D 4

Logistic map
with a D 4:0
(true 
 D 0:699)

Mean 0.694 0.706 0.713 0.720

Median 0.696 0.704 0.710 0.715

Logistic map
with a D 1:5
(true 
 D �0:699)

Mean �0.560 �0.046 0.115 0.179

Median �0.661 �0.152 0.060 0.149

nonparametric estimates of Lyapunov exponents using the
lags from 1 to 4,M D T D 50, based on 1,000 replications.

The simulation results show that overfitting has rel-
atively small effect when the true Lyapunov exponent is
positive. On the other hand, in case of negative Lyapunov
exponent, the upward bias caused by including redundant
lags in the nonparametric regression can result in positive
Lyapunov exponent estimates. Therefore, when the true
lag length of the system is not known, lag selection proce-
dure will be an important part of the analysis of sensitive
dependence.

There are several alternative criteria that are designed
to select lag length p in the nonparametric kernel autore-
gressions.With respect to lag selection in the nonparamet-
ric analysis of chaos, [15] suggested minimizing the cross-
validation (CV) defined by

bCV (p) D T�1
TX

tD1

n
xt �bf�(t�1)(Xt�1)

o2
W2(Xt�1)
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Financial Forecasting, Sensitive Dependence, Table 3
Frequencies of selected lags when T D 50: logistic map

p D 1 p D 2 p D 3 p D 4

Logistic map
with a D 4:0
(true 
 D 0:699)

CV 0.989 0.011 0.000 0.000
FPE 0.998 0.002 0.000 0.000
CFPE 1.000 0.000 0.000 0.000

Logistic map
with a D 1:5
(true 
 D �0:699)

CV 0.697 0.168 0.080 0.055
FPE 0.890 0.085 0.017 0.008
CFPE 0.989 0.011 0.000 0.000

wherebf�(t�1)(Xt�1) is the leave-one-out estimator evalu-
ated at Xt�1 andW2(x) is a weight function. [70] suggested
minimizing the nonparametric version of the final predic-
tion error (FPE) defined by

bFPE(p) D T�1
TX

tD1

n
xt �bf (Xt�1)

o2
W2(Xt�1)

C 2
Thp K(0)

pT�1
TX

tD1

fxt �bf (Xt�1)g2

� W2(Xt�1)/b
(Xt�1)

where b
(x) is a nonparametric joint density estimator
at x. [71] proposed a modification to the FPE to prevent
overfitting in a finite sample with a multiplicative correc-
tion term f1Cp(T�pC1)g�4/(pC4) . All three nonparamet-
ric criteria, the CV, FPE, and the corrected version of the
FPE (CFPE) are proved to be consistent lag selection cri-
teria so that the probability of selecting the correct p con-
verges to one as T increases. Table 3 reports frequencies
of selected lags based on these criteria among 1,000 itera-
tions.

The simulation results show that all the lag selection
criteria perform reasonably well when the data is gener-
ated from a noisy logistic map.

While a noisy logistic map has the nonlinear AR(1)
form, it should be informative to examine the performance
of the procedures when the true process is the AR model
of a higher lag order. [15] considered a nonlinear AR(2)
model of the form,

xt D 1 � 1:4x2t�1 C 0:3xt�2 C "t

where "t 
 iid U(�0:01; 0:01). This is a noisy Hénon map
with a positive Lyapunov exponent, � D 0:409. Table 4
shows the mean and median of 1,000 nonparametric esti-
mates of Lyapunov exponents using the lags from 1 to 4,
M D T D 50, when the data is artificially generated from
this higher order noisy chaos process.

As in the finding from a chaotic logistic map example,
estimates do not seem to be very sensitive to the choice of
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Lyapunov exponent estimates when T D 50: Hénonmap

p D 1 p D 2 p D 3 p D 4
Hénon map
(true 
 D 0:409)

Mean 0.411 0.419 0.424 0.431
Median 0.407 0.423 0.427 0.425

Financial Forecasting, Sensitive Dependence, Table 5
Frequencies of selected lags when T D 50: Hénonmap

p D 1 p D 2 p D 3 p D 4

Hénon map
(true 
 D 0:409)

CV 0.006 0.740 0.250 0.004
FPE 0.028 0.717 0.253 0.002
CFPE 0.043 0.762 0.194 0.001

lags. The results on the lag selection criteria are provided
in Table 5.

The table shows that frequencies of selecting the true
lag (p D 2) becomes less than in the case of the chaotic
logistic map in Table 3. However, the performance of CV
improves when it is compared to the case of stable logistic
map.

The results from this small-scale simulation exercise
show that when the true lag length is not known, combin-
ing the automatic lag selection method with Lyapunov ex-
ponent estimation is recommended in practice.

Other Nonparametric Estimators

In addition to the class of kernel regression estimators,
which includes Nadaraya–Watson, local linear or local
polynomial estimators, other estimators have also been
employed in the estimation of the Lyapunov exponent.
With the kernel regression method, Jacobians are evalu-
ated using a local approximation to the nonlinear func-
tion at the lagged point Xt�1. Another example of the lo-
cal smoothingmethod used in Lyapunov exponent estima-
tion is the local thin-plate splines suggested by [51,54]. The
local estimation method, however, is subject to the data
sparseness problem in the high-dimensional system. Al-
ternatively, Jacobians can be evaluated using a global ap-
proximation to the unknown function. As a global esti-
mation method, a global spline function may be used to
smooth all the available sample. However, the most fre-
quently used global method in Lyapunov exponent esti-
mation in practice is the neural nets ([2,18,68], among oth-
ers). A single hidden-layer, feedforward neural network is
given by

f (Xt�1) D ˇ0 C
kX

jD1

ˇ j (a0
jXt�1 C bj)
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where  is an activation function (most commonly a lo-
gistic distribution function) and k is a number of hidden
units. The neural network estimator bf can be obtained
by minimizing the (nonlinear) least square criterion. Jaco-
bians are then evaluated using the analytical first deriva-
tive of neural net function. Compared to other functional
approximations, the neural net form is less sensitive to in-
creasing lag length, p. Thus, it has a merit in terms of the
effective sample size.

Four Local Measures of Sensitive Dependence

Local Lyapunov Exponent

The global Lyapunov exponent measures the initial value
sensitivity of long horizon forecast. For the ergodic and
stationary case, this initial value sensitivity measure does
not depend on the initial value. By definition, the global
Lyapunov exponent is the limit of the local Lyapunov ex-
ponent when its order M tends to infinity. Unlike the
global Lyapunov exponent, the local Lyapunov exponent is
a function of an initial value and thus the initial value sen-
sitivity of the short-term forecast depends on where you
are. In this sense, local measures of sensitive dependence
contain more detailed information on the predictability in
the nonlinear dynamic system.

Financial Forecasting, Sensitive Dependence, Figure 4
Local and global Lyapunov exponents of logistic map

Recall that both the deterministic tent map and the lo-
gistic map with a D 4:0 have a common positive Lya-
punov exponent 0.693. Thus in terms of long-horizon pre-
dictability, two processes have exactly the same degree of
initial value sensitivity. Yet, in terms of short term forecast,
it is possible that predictability at the same point differs
among two processes.

The sign of local Lyapunov exponents of the single
process can also be different in some range of initial val-
ues. Figure 4 shows the local Lyapunov exponents of the
deterministic logistic map with a D 4:0 for different val-
ues of M. Consistent with the definition, as M grows, it
approaches to a flat line at the value of 0.693. However,
when M is finite, there is a range of initial values asso-
ciated with a negative local Lyapunov exponent. Within
such a range of initial values, sensitive dependence is low
and predictability is high even if it is a globally chaotic
process.

Analysis of local Lyapunov exponent is also valid in
the presence of noise. Studies by [4,48,78], among others,
investigate the properties of the local Lyapunov exponent
in a noisy system.

The local Lyapunov exponent can be estimated non-
parametrically from data using the following procedure.
First, obtain the nonparametric Jacobian estimatebJ t�1 for
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each t using a full sample, as in the case of global Lya-
punov exponent estimation. Second, choose a single hori-
zon M of interest. Third, choose the p-dimensional initial
value x D (xt� ; xt��1; : : : ; xt��pC1)0 from the data subse-
quence fxtgT�M

tD�pC1. Finally, the local Lyapunov exponent
estimator at x is given by b�M(x) D (2M)�1 ln �1(bT0

M
bTM)

wherebTM D Qt�CM
tDt�

bJM�t .
While the local Lyapunov exponent is a simple and

straightforward local measure of the sensitive dependence,
three other useful local measures will be introduced below.

Nonlinear Impulse Response Function

The impulse response function (IRF) is a widely usedmea-
sure of the persistence effect of shocks in the analysis of
economic time series. Here, it is useful to view the IRF as
the difference between the two expected future paths: one
with and the other without a shock occurred at the cur-
rent period. When the shock, or the initial deviation, is
very small, the notion of impulse responses is thus closely
related to the concept of sensitive dependence on initial
conditions. To verify this claim, a simple example of a one-
dimensional linear IRF is first provided below, followed by
the generalization of the IRF to the case of nonlinear time-
series model.

For a linear AR model of order one, xt D �xt�1 C "t ,
theM-period ahead IRF to a unit shock is defined as

IRFM D �M :

Let fx�
t g1

tD0 be a sample path that contains a single unit
shock whereas fxtg1

tD0 is a sample path without any shock.
Also let x0 D x0 be an initial condition for the latter
path. Then, this linear IRF can be interpreted in two ways.
One interpretation is the sequence of the responses to
a shock defined to increase one unit of x0 at time 0 (x1 D
�x0; x�

1 D �(x0 C 1), x�
1 � x1 D �; : : : ; x�

M � xM D �M).
In this case, the initial value of x�

t is given as x�
0 D x0 C 1,

so the shock can be simply viewed as the deviation of two
paths at the initial condition. The other interpretation is
the sequence of the responses to a shock defined to in-
crease one unit of x1 at time 1 (x1 D �x0; x�

1 D �x0 C 1,
x�
1 � x1 D 1; : : : ; x�

MC1 � xMC1 D �M). In contrast to
the first case, two paths have a common initial condition
x�
0 D x0 D x0, but the second path is perturbed as if

a shock of "1 D 1 is realized at time 1 through the dy-
namic system of xt D �xt�1 C "t . In either interpretation,
however, IRFM is the difference between x�

t and xt at ex-
actly M-period after the shock has occurred and the IRF
does not depend on the initial condition x0. In addition,
the shape of IRF is preserved even if we replace the unit
shock with a shock of size ı. The IRF becomes �Mı and

thus the IRF to a unit shock can be considered as a ratio of
�Mı to ı or the normalized IRF.

In the linear framework, the choice between the two
interpretations does not matter in practice since the two
cases yield exactly the same IRF. However, for nonlinear
models, two alternative interpretations lead to different
definitions of the IRF. Depending on the objective of the
analysis, one may use the former version [31] or the lat-
ter version [42,58] of the nonlinear IRFs. The M-period
ahead nonlinear impulse response based on the first inter-
pretation considered by [31] is defined as

IRFM(ı; x) D E
�
xtCM�1jXt�1 D x��

� E
�
xtCM�1jXt�1 D x

�

D E
�
xMjX0 D x�� � E

�
xMjX0 D x

�

D fM(x�) � fM(x)

where Xt�1 D (xt�1; : : : ; xt�p)0; x� D (x0 C ı; x�1; : : : ;

x�pC1)0 and x D (x0; x�1; : : : ; x�pC1)0. Unlike the lin-
ear IRF, the nonlinear IRF depends on the size of shock
ı and the initial condition (or the history) X0 D x. Inter-
estingly, the partial derivative � fM;1(x) D @ fM(x)/@xt�1
corresponds to normalized IRF (proportional to the non-
linear IRF) for small ı since

lim
ı!0

IRFM(ı; x)
ı

D lim
ı!0

fM(x0 C ı; x�1; : : : ; x�pC1)
ı

� f (x0; x�1; : : : ; x�pC1)
ı

D � fM;1(x) :

In the one-dimensional case, the IRF simplifies to

IRFM(ı; x0) D E
�
xtCM�1jxt�1 D x0 C ı

�

� E
�
xtCM�1jxt�1 D x0

�

D E
�
xMjx0 D x0 C ı

�� E
�
xMjx0 D x0

�

D fM(x0 C ı) � fM(x0) :

The first derivative f 0
M(x), thus corresponds to the IRF to

an infinitesimally small deviation since

lim
ı!0

IRFM(ı; x0)
ı

D lim
ı!0

fM(x0 C ı) � f (x0)
ı

D f 0
M(x0):

Recall that �M(x0) D M�1 ln jQM
tD1 f

0(xt�1)j. If QM
tD1

f 0(xt�1) can be approximated by f 0
M(x0), both normalized

IRF and the local Lyapunov exponent contain the same in-
formation regarding the initial value sensitivity.
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Next, based on the second interpretation, IRF can be
alternatively defined as

IRF�
M(ı; x) D E

�
xtCM�1jxt D f (x) C ı;Xt�1 D x

�

� E(xtCM�1jXt�1 D x)
D E

�
xMjx1 D f (x) C ı;X0 D x

�

� E(xM jX0 D x)
D fM�1(x�) � fM(x)

where Xt�1 D (xt�1; : : : ; xt�p)0 and x D (x0; x�1; : : : ;

x�pC1)0 and x� D ( f (x) C ı; x0; x�1; : : : ; x�pC2)0. This
version of nonlinear IRF is sometimes referred to as the
generalized impulse response function [42,58]. Using the
fact that

fM(x) D fM�1


f (x); x0; x�1; : : : ; x�pC2

�
;

the equivalence of the partial derivative � fM�1;1(x) D
@ fM�1(x)/@xt�1 and the small deviation IRF can be also
shown as

lim
ı!0

IRF�
M(ı; x)
ı

D lim
ı!0

fM�1


f (x) C ı; x0; x�1; : : : ; x�pC2

�

ı

� fM�1


f (x); x0; x�1; : : : ; x�pC2

�

ı

D � fM�1;1( f (x); x0; x�1; : : : ; x�pC2) :

In the one dimensional case, the IRF formula reduces
to

IRF�
M(ı; x0) D E

�
xtCM�1jxt D f (x0) C ı; xt�1 D x0

�

� E(xtCM�1jxt�1 D x0)
D E

�
xMjx1 D f (x0) C ı; x0 D x0

�

� E(xM jx0 D x0)
D E

�
xM�1jx0 D f (x0) C ı

�

� E(xM jx0 D x0)
D fM�1( f (x0) C ı) � fM(x0)
D fM�1( f (x0) C ı) � fM�1( f (x0)) :

Similarly, the small deviation IRF is given by

lim
ı!0

IRF�
M(ı; x0)
ı

D lim
ı!0

fM�1( f (x0) C ı) � fM�1( f (x0))
ı

D f 0
M�1( f (x0)) :

The nonlinear impulse response function can be es-
timated nonparametrically without specifying the func-

tional form by an analogy to Lyapunov exponent estima-
tion (see [72] and [66]). Instead of minimizing

PT
tD1(xt �

ˇ0�ˇ0
1(Xt�1�x))2KH(Xt�1�x), the local linear estimator

of M-period ahead predictor fM(x) and its partial deriva-
tives (@ fM)/(@xt� j)(x) for j D 1; : : : ; p can be obtained
by minimizing,

PT�MC1
tD1 (xtCM�1 � ˇM;0 � ˇ0

M;1(Xt�1 �
x))2KH(Xt�1 � x), or b̌M;0(x) Dbf M(x) and

b̌M;1(x) D

2

6
6
4

b̌M;11(x)
:::

b̌M;1p(x)

3

7
7
5 D

2

6
6
4

�bf M;1(x)
:::

�bf M;p(x)

3

7
7
5 ;

respectively, where b̌M(x) D (b̌M;0(x); b̌M;1(x)0)0 D
(X0

xWxXx )�1X0
xWxY,

Xx D

2

6
4

1 (X0 � x)0
:::

:::

1 (XT�M � x)0

3

7
5 ;

Y D (xM; : : : ; xT)0 and Wx D diag fKH(X0 � x); : : : ;
KH(XT�M � x)g. The local linear estimator of the IRF is
then given by

bIRFM(ı; x) Dbf M(x�) �bf M(x)

where x� D (x0 C ı; x�1; : : : ; x�pC1)0 and x D (x0;
x�1; : : : ; x�pC1)0. Similarly, the estimator of the alterna-
tive IRF is given by

bIRF�
M(ı; x) Dbf M�1(x�) �bf M(x)

where x� D (bf (x) C ı; x0; x�1; : : : ; x�pC2)0 and x D
(x0; x�1; : : : ; x�pC1)0. When x and ı are given, comput-
ing nonparametric IRFs for a sequence ofM provide a use-
ful information on the persistence of deviation without
specifying the autoregressive function. However, instead
of reporting IRFs for many possible combinations of x
and ı, one can also compute the small deviation IRF based
on the nonparametric estimate of the first partial deriva-
tive at x. The local linear estimator of the small devia-
tion IRF is given by �bf M;1(x) for the first version, and
�bf M�1;1(bf (x); x0; x�1; : : : ; x�pC2) for the second ver-
sion, respectively. A large change in the value of deriva-
tives with increasing M represents the sensitive depen-
dence on initial conditions.

Yao and Tong’s Variance Decomposition

The initial value sensitivity of the system with dynamic
noise also has an implication in the presence of addi-
tional observation noise. Suppose that current observa-



Financial Forecasting, Sensitive Dependence 437

tion is subject to a measurement error, a rounding er-
ror, or when only preliminary estimates of aggregate eco-
nomic variables announced by the statistical agency are
available. When the true current position deviates slightly
from x D (x0; x�1; : : : ; x�pC1)0 by ı D (ı1; : : : ; ıp)0, the
performance of the same predictor may be measured by
E[fxtCM � fM(x)g2jXt D x C ı]. Under a certain condi-
tion, this MSFE can be decomposed as follows:

E
�fxtCM � fM(x)g2jXt D x C ı

�

D �2M(x C ı) C f fM(x C ı) � fM(x)g2
D �2M(x C ı) C fı0� fM(x)g2 C o(jjıjj2)

where� fM(x) D (� fM;1(x); : : : ;� fM;p(x))0; � fM; j(x) D
(@ fM)/(@xt� j)(x) for j D 1; : : : ; p. This decomposition
shows two dominant components in the MSFE. The first
component represents the prediction error caused by the
randomness in the system at point x C ı. This compo-
nent will be absent in the case where there is no dynamic
noise "t in the system. The second component represents
the difference caused by the deviation ı from the initial
point x. When the non-zero deviation ı is much smaller
than � , the standard deviation of "t , the first component
�2M(x C ı) D �2M(x) C O(jjıjj) is the dominant term
because the second component fı0� fM(x)g2 is of order
O(jjıjj2). However, for a nonlinear system with a very
small error "t, the contribution of the second term can
become nonnegligible. Thus, [80] considered � fM(x) as
a measure of sensitivity to initial conditions for theM-pe-
riod ahead forecast (They referred to the M-step Lya-
punov-like index).

If fM(x) is replaced by a mean square consistent esti-
matorbf M(x), such as a local linear estimator b̌M;0(x),

lim
T!1 E

h
fxTCM �bf M(x)g2jXT D x C ı

i

D �2M(x C ı) C fı0� fM(x)g2 C o(jjıjj2) :

Thus the decomposition is still valid. For the estimation
of the sensitivity measure � fM(x), the local linear esti-
mator b̌M;0(x) D �bf M(x) can be used. In practice, it
is convenient to consider a norm version of the measure
LIM(x) D jj� fM(x)jj and report its estimator

bLIM(x) D jj�bf M(x)jj

evaluated at various x. In a one-dimensional case, they
are LIM(x0) D j f 0

M(x0)j and bLIM(x0) D jbf 0
M(x0)j,

respectively. Note that LIM(x) is related to the deriva-
tive of the normalized nonlinear impulse response func-
tion IRFM(ı; x). Recall that, in the one-dimensional case,

a normalized IRF to infinitesimal shocks becomes the first
derivative. Thus, LIM(x0) is the absolute value of the esti-
mator of the corresponding IRF. In the multidimensional
case, IRF to small shocks becomes the partial derivative
with respect to the first components. If shocks are also
given to other initial values in IRF, computing the norm
of the estimator of all IRFs yields LIM(x).

This sensitivity measure is also related to the local
Lyapunov exponent. In the one-dimensional case, with
a fixed M, the local Lyapunov exponent can be written
as �M(x0) D M�1 ln jQM

tD1 f
0(xt�1)j. If the contribu-

tion of "t is very small, d f (M)(x0)/dx � QM
tD1 f

0(xt�1)
and then the estimator bf 0

M(x0) becomes an estimator
of d f (M)(x0)/dx. Thus �M(x0) can be also estimated by
M�1 ln bLIM(x0).

Information Matrix

The last measure of the initial value sensitivity is the
one based on the distance between two distributions
of M-steps ahead forecast, conditional on two nearby ini-
tial values x D (x0; x�1; : : : ; x�pC1)0 and x C ı where
ı D (ı1; : : : ; ıp)0. Let 
M(yjx) and�
M(yjx) be the con-
ditional density function of xM given X0 D x and a p � 1
vector of its partial derivatives. [81] suggested using Kull-
back–Leibler information to measure the distance, which
is given by

KM(ı; x) D
Z C1

�1
˚

M(yjx C ı) � 
M(yjx)�

� ln ˚
M(yjx C ı)/
M(yjx)�dy :
Assuming the smoothness of conditional distribution

and interchangeability of integration and differentiation,
Taylor series expansion around x for small ı yields

KM(ı; x) D ı0IM(x)ı C o(jjıjj2)
where

IM(x) D
Z C1

�1
�
M(yjx)�
M(yjx)0/
M(yjx)dy :

If initial value x is treated as a parameter vector of the dis-
tribution, IM(x) is the Fisher’s information matrix, which
represents the information on x contained in xM . This
quantity can be used as an initial value sensitivity measure
since more information on x implies more sensitivity of
distribution of xM to the initial condition x. This informa-
tion matrix measure and the M-step Lyapunov-like index
are related via the following inequality when the system is
one-dimensional,

IM(x0) � LI2M(x0)
�2M(x0)

:
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Thus, for a given M-step Lyapunov-like index, a larger
conditional MSFE implies more sensitivity. In addition,
because that �M(x0) � M�1 ln LIM(x0) and �2M(x0) �
�2[1 CPM�1

jD1 expf2(M � j)�M� j( f ( j)(x0))g],

ln IM(x0) � 2M�M(x0)

�ln

2

41 C
M�1X

jD1

exp
n
2(M � j)�M� j( f ( j)(x0))

o
3

5�ln �2

holds approximately.
As an alternative to Kullback–Leibler distance, [28]

considered L2-distance given by

DM(ı; x) D
Z C1

�1
f
M(yjx C ı) � 
M(yjx)g2dy :

Because of a similar argument, for small ı;DM(ı; x)
can be approximated by

DM(ı; x) D ı0 JM(x)ı C o(jjıjj2)
where

JM(x) D
Z C1

�1
�
M(yjx)�
M(yjx)0dy :

Note that JM(x) cannot be interpreted as Fisher’s informa-
tion but can still be used as a sensitivity measure.

Both IM(x) and JM(x) can be estimated non-
parametrically. Consider the minimization problem ofPT�MC1

tD1 (�h(xtCM�1 � y) � ˇM;0 � ˇ0
M;1(Xt�1 � x))2

KH(Xt�1 � x) where �h(u) D �(u/h)/h, h is the band-
width and � is a univariate kernel function, instead of
minimizing

PT�MC1
tD1 (xtCM�1 � ˇM;0 � ˇ0

M;1(Xt�1 �
x))2KH(Xt�1 � x). Then, b̌M;0(x; y) D b
M(yjx) and
b̌M;1(x; y) D �b
M(yjx), where b̌M(x; y) D (b̌M;0(x; y);
b̌M;1(x; y)0)0 D (X0

xWxXx )�1X0
xWxYy ,

Xx D

2

6
4

1 (X0 � x)0
:::

:::

1 (XT�M � x)0

3

7
5 ;

Yy D f�h(xM � y); : : : ; �h(xT � y)g0 and Wx D
diag fKH(X0 � x); : : : ;KH(XT�M � x)g. Then the estima-
tors of IM(x) and JM(x) are given by

bIM(x) D
Z C1

�1
�b
M(yjx)�b
M(yjx)0/b
M(yjx)dy

and

bJM(x) D
Z C1

�1
�b
M(yjx)�b
M(yjx)0dy ;

respectively.

Forecasting Financial Asset Returns
and Sensitive Dependence

Nonlinear Forecasting of Asset Returns

In this subsection, a quick review of the general issues of
forecasting financial asset returns is first provided, then
the empirical results on the nonlinear forecasting based on
nonparametric methods are summarized.

In the past, the random walk model was considered as
the most appropriate model to describe the dynamics of
asset prices in practice (see [24]). However, after decades
of investigation, more evidence on some predictable com-
ponents of asset returns has been documented in the lit-
erature. Although the evidence is often not very strong,
several studies report the positive serial dependence for
relatively short horizon stock returns. For example, [47]
show that first-order autocorrelation of weekly returns on
the Center for Research in Security Prices (CRSP) index
is as high as 30 percent and significant when an equal-
weighted index is used, but is somewhat less when a value-
weighted index is used ([12] provide similar evidence for
the daily return). The conditional mean of stock returns
may not depend only on the past returns but also on other
economic variables, including dividend yields, price earn-
ings ratio, short and long interest rates, industrial produc-
tion and inflation rate. A comprehensive statistical analy-
sis to evaluate the 1-month-ahead out-of-sample forecast
of 1 month excess returns by these predictors is conducted
by [55]. Some results on the long-horizon predictability in
stock returns, based on lagged returns (e. g., [25] and [57])
and other economic variables such as dividend yields or
dividend-price ratios (e. g., [26] and [13]) are also avail-
able. This evidence on long-horizon forecasts, however, is
still controversial because the standard statistical inference
procedure may not be reliable in case when the correlation
coefficient is computed from a small number of nonover-
lapping observations [62] or when the predictor is very
persistent in the forecasting regression [73].

The question is whether the introduction of nonlin-
ear structure helps improve the forecasting performance of
future asset returns. When the nonlinear condition mean
function is unspecified, the neural network method has of-
ten been employed as a reliable nonparametric method in
predicting the returns. For IBM daily stock returns, [75]
found no improvement in out-of-sample predictability
based on the neural network model. For daily returns of
the Dow Jones Industrial Average (DJIA) index, [33] esti-
mated a nonlinear AR model using the same method. He,
in contrast, showed that MSFE reduction over a bench-
mark linear AR model could be as large as 12.3 percent
for the 10-day-ahead out-of-sample forecast. The role of
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economic fundamentals as predictors can be also investi-
gated under the nonlinear framework. Using a model se-
lection procedure similar to the one employed by [55],
some evidence of MSFE improvement from neural net-
work-based forecast of excess returns was provided in [60]
and [59] but no encouraging evidence was found in simi-
lar studies by [61] and [49]. In practice, ‘noise traders’ or
‘chartists’ may predict prices using some technical trad-
ing rules (TTRs) rather than using economic fundamen-
tals. For example, a simple TTR based on the moving aver-
age can generate a buy signal when the current asset price
level Pt is above n�1Pn

iD1 Pt�iC1 for some positive inte-
ger n and a sell signal when it is below. [11] found some
evidence on the nonlinearity in the conditional mean of
DJIA returns conditional on buy-sell signals. [33] further
considered including past buy-sell signals as predictors in
the neural network model and found that an improvement
in MSFE over the linear AR model was even larger than
the case when only lagged returns are used as a predictor
in the neural network model. One useful nonlinear model
is the functional coefficient AR model where the AR coef-
ficient can depend on time or some variables. For exam-
ple, as in [39], the AR coefficient can be a function of buy-
sell signals. [44] claimed that a functional coefficient AR
model with a coefficient as a function of the moving aver-
age of squared returns well described the serial correlation
feature of stock returns.

This moderate but increasing evidence of nonlinear
forecastability applies not only to the stock market but also
to the foreign exchange market. In the past, [52] could not
find any reasonable linear model that could out-perform
the random walk model in an out-of-sample forecast of
foreign exchange rates. The nonlinear AR model was es-
timated nonparametrically by [19] but no forecasting im-
provement over the randomwalkmodel could be found in
their analysis. However, many follow-up studies, includ-
ing [34,39,43,76], provided some evidence on forecastabil-
ity with nonlinear AR models estimated using neural net-
works or other nonparametric methods.

One important and robust empirical fact is that much
higher positive serial correlation is typically observed for
the volatility measures such as the absolute returns, jxtj,
and their power transformation, jxt j˛ for ˛ > 0, than
for the returns, xt ([20,69]). This observation is often re-
ferred to as a volatility clustering. As a result, forecast-
ing volatility has been much more successful than fore-
casting returns themselves. The most commonly used ap-
proach in forecasting volatility is to describe the condi-
tional variance of asset returns using the class of ARCH
and GARCH models ([8,23]). The volatility of stock re-
turns is also known to respond more strongly to negative

shocks in returns than positive ones. This ‘leverage effect’
often motivates the introduction of nonlinear structure in
volatility modeling such as the EGARCH model of [53].
Instead of estimating the unknown parameter in a speci-
fied ARCH model, the nonparametric method can be also
employed to estimate the possibly nonlinear ARCHmodel
in forecasting (see [46]). The better forecastability of mar-
ket direction (or market timing), sign (xt), than that of re-
turns, has also been documented in the literature. Exam-
ples are [55] for the stock market and [39,43], and [16]
for the foreign exchange market. Since the return, xt , can
be decomposed into a product of the two components,
jxtj � sign (xt), one may think the strong linear or nonlin-
ear forecastability of the volatility and the sign of returns
should lead to forecastability of the returns as well. Inter-
estingly, however, [17] theoretically showed that the serial
dependence of asset return volatilities and that of return
signs did not necessarily imply the serial dependence of
returns.

In summary, a growing number of recent studies show
some evidence of linear and nonlinear forecastability of as-
set returns, and stronger evidence of forecastability of their
nonlinear transformations, such as the squared returns,
absolute returns and the sign of returns. In this sense, the
nonlinearity seems to be playing a non-negligible role in
explaining the dynamic behavior of asset prices.

Initial Value Sensitivity in Financial Data

Theoretically, when investors have heterogeneous expec-
tations about the future prices, asset price dynamics can be
chaotic with a positive Lyapunov exponent [10]. A com-
prehensive list on earlier empirical work related to the
sensitive dependence and chaos in financial data is pro-
vided in [2,6]. Many early studies employed either the
BDS test or a dimension estimator and provided the in-
direct evidence on sensitive dependence and chaos. For
example, [64] applied the BDS test to weekly returns on
the value-weighted CRSP portfolio and rejected iid ran-
domness. [41] further examined weekly value-weighted
and equally weighted CRSP portfolio returns, as well as
Standard & Poor 500 (S&P 500) index returns for var-
ious frequencies, and found strong evidence against iid.
Similar findings are also reported for the daily foreign ex-
change rate returns in [40]. For financial variables, high-
frequency data or tick data is often available to researchers.
Earlier examples of studies on chaos using high-frequency
data include [50], who found some evidence of low-di-
mensional chaos based on the correlation dimension and
K2 entropy of 20-second S&P 500 index returns, with
a number of observations as large as 19,027. Estimation
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results on Lyapunov exponents for high-frequency stock
returns are also available. In addition to the BDS test, [1]
and [2] employed the neural network method and found
negative Lyapunov exponents in 1- and 5-minute returns
of cash series of S&P 500, UK Financial Times Stock
Exchange-100 (FTSE-100) index, Deutscher Aktienindex
(DAX), the Nikkei 225 Stock Average, and of futures series
of S&P 500 and FTSE-100. Using the resampling proce-
dure of [32], [65] obtained significantly negative Lyapunov
exponents for daily stock returns of the Austrian Traded
Index (ATX). For the foreign exchange market, [18] es-
timated Lyapunov exponents of the Canadian, German,
Italian and Japanese monthly spot exchange rates us-
ing neural nets and found some mixed result regarding
their sign.

By using the absolute returns or their power trans-
formation instead of using returns themselves, sensitive
dependence of volatility on initial conditions may be ex-
amined nonparametrically. [68] used neural nets and es-
timated Lyapunov exponents of higher order daily re-
turns of the DJIA index. Figure 5 shows their global Lya-
punov exponent estimates for simple returns, squared re-
turns and absolute returns. For all cases, Lyapunov ex-
ponents are significantly negative but the values of ab-
solute returns are always larger than that of simple re-

Financial Forecasting, Sensitive Dependence, Figure 5
Global Lyapunov exponents of stock returns

turns. While some estimates are close to zero, the observa-
tion of the monotonically increasing Lyapunov exponent
with increasing p, for daily and absolute returns, resem-
bles the simulation results of the previous section imply-
ing the upward bias when the true Lyapunov exponent is
negative.

For the exchange rate market, [29] applied [63]’s
method to absolute changes and their power transforma-
tion of Canadian and German nominal exchange rates and
did not reject the null hypothesis of chaos.

For a local measure of initial value sensitivity, [68]
also reported the median values of 145 estimates of lo-
cal Lyapunov exponents for DJIA returns, in addition
to the global Lyapunov exponents. [45] reported the
nonlinear impulse response functions of yen/dollar and
deutschemark/dollar exchange rate returns based on para-
metrically estimated GARCH model. [14] reported a Lya-
punov-like index of [80] for the simple returns and abso-
lute returns of CRSP data used in [64]. From Fig. 6, they
concluded that (i) the first half of the CRSP series is more
volatile than its second half, suggesting that the market
becomes more mature with time, and (ii) volatile periods
tend to form clusters. [65] reported the information ma-
trix measure of local sensitive dependence computed from
ATX data based on the parametric estimation of ARCH



Financial Forecasting, Sensitive Dependence 441

Financial Forecasting, Sensitive Dependence, Figure 6
Upper panel displays the time series plot of the CRSP daily returns. Lower panel shows the absolute CRSP daily returns with data
coloured redwhenever their Lyapunov-like indices are above the third quartile of the indices, and data coloured yellow if their indices
are between the median and the third quartile

and GARCH models, in addition to nonparametric esti-
mates of the global Lyapunov exponent.

On the whole, empirical studies on global and local
sensitivity measures suggested less sensitive dependence
than the chaotic model would predict, but some sensitivity
of short-term forecastability on initial conditions.

Future Directions

Some of the possible directions of future research topics
are in order.

The first direction is to search for the economic the-
ory behind the initial value sensitivity if detected in the
data. The statistical procedures introduced here are basi-
cally data description and the empirical results obtained
by this approach are not directly connected to underly-
ing economic or finance theory. Theories, such as the one
developed by [10], can predict complex behavior of as-
set prices but direct estimation of the model are typically
not possible. Thus, for most cases, the model is evalu-
ated by matching the actual data with the one generated
from the model in simulation. Thus direct implication to
the sensitive dependence measure would provide a more
convincing argument for the importance of knowing the
structure. [38] may be considered as one attempt in this
direction.

The second direction is to develop better procedures
in estimating the initial value sensitivity with the im-
proved accuracy in the environment of a relatively small
sample size. In the Jacobian method of estimating the

Lyapunov exponent, the conditional mean function has
been estimated either parametrically and nonparametri-
cally. A fully nonparametric approach, however, is known
to suffer from a high dimensionality problem. A semipara-
metric approach, such as the one for an additiveARmodel,
is likely to be useful in this context but has not been used
in the initial value sensitivity estimation.

The third direction is towards further analysis based
on high-frequency data, which has become more com-
monly available in empirical finance. Much progress has
been made in the statistical theory on the realized volatil-
ity computed from such data, and forecasting volatility
of asset returns based on the realized volatility has been
empirically successful (see, e. g., [3]). However, so far,
this approach has not been used in detecting the initial
value sensitivity in volatility. In addition, realized volatil-
ity is known to suffer from market microstructure noise
when sampling frequency increases. Given the fact that
the initial value sensitivity measures can be considered in
the framework of the nonlinear AR models, namely, the
stochastic environment in the presence of noise, it is of in-
terest in investigating the robustness of the procedure to
the market microstructure noise when applied to high-fre-
quency returns.
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Glossary

Fractal An adjective or a noun representing complex con-
figurations having scale-free characteristics or self-
similar properties. Mathematically, any fractal can be
characterized by a power law distribution.

Power law distribution For this distribution the proba-
bility density is given by a power law, p(r) D c � r�˛�1,
where c and ˛ are positive constants.

Foreign exchange market A free market of currencies,
exchanging money in one currency for other, such as
purchasing a United States dollar (USD) with Japanese
yen (JPY). The major banks of the world are trading
24 hours and it is the largest market in the world.

Definition of the Subject

Market price fluctuation was the very first example of frac-
tals, and since then many examples of fractals have been
found in the field of Economics. Fractals are everywhere
in economics. In this article the main attention is focused
on real world examples of fractals in the field of economics,
especially market properties, income distributions, money
flow, sales data and network structures. Basic mathemat-
ics and physics models of power law distributions are re-
viewed so that readers can start reading without any spe-
cial knowledge.

Introduction

Fractal is the scientific word coined by B.B. Mandel-
brot in 1975 from the Latin word fractus, meaning “frac-
tured” [25]. However, fractal does not directly mean frac-
ture itself. As an image of a fractal Fig. 1 shows a photo of

Fractals and Economics, Figure 1
Fractured pieces of plaster fallen on a hard floor (provided by H.
Inaoka)

fractured pieces of plaster fallen on a hard floor. There are
several large pieces, manymiddle size pieces and countless
fine pieces. If you have a microscope and observe a part
of floor carefully then you will find in your vision several
large pieces, many small pieces and countless fine pieces,
again in the microscopic world. Such scale-invariant na-
ture is the heart of the fractal. There is no explicit defini-
tion on the word fractal, it generally means a complicated
scale-invariant configuration.

Scale-invariance can be defined mathematically [42].
Let P(� r) denote the probability that the diameter of
a randomly chosen fractured piece is larger than r, then
this distribution is called scale-invariant if this function
satisfies the following proportional relation for any posi-
tive scale factor � in a considering scale range:

P(� �r) / P(� r) : (1)

The proportional factor should be a function of �, so we
can re-write Eq. (1) as

P(� �r) D C(�)P(� r) : (2)

Assuming that P(� r) is a differentiable function, and dif-
ferentiate Eq. (2) by �, and then let � D 1.

rP0(� r) D C0(1)P(� r) (3)

As C0(1) is a constant this differential equation is readily
integrated as

P(� r) D c0rC
0(1) : (4)

P(� r) is a cumulative distribution and it is a non-in-
creasing function in general, the exponent C0(1) can be re-
placed by �˛ where ˛ is a positive constant. Namely, from
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the scale-invariance with the assumption of differentiabil-
ity we have the following power law:

P(� r) D c0r�˛ : (5)

The reversed logic also holds, namely for any power law
distribution there is a fractal configuration or a scale-in-
variant state.

In the case of real impact fracture, the size distribution
of pieces is experimentally obtained by repeating sieves of
various sizes, and it is empirically well-known that a frac-
tured piece’s diameter follows a power law with the expo-
nent about ˛ D 2 independent of the details about the
material or the way of impact [14]. This law is one of the
most stubborn physical laws in nature as it is known to
hold from 10�6 m to 105 m, from glass pieces around us to
asteroids. From theoretical viewpoint this phenomenon is
known to be described by a scale-free dynamics of crack
propagation and the universal properties of the exponent
value are well understood [19].

Usually fractal is considered geometric concept intro-
ducing the quantity fractal dimension or the concept of
self-similarity. However, in economics there are very few
geometric objects, so, the concept of fractals in economics
are mostly used in the sense of power law distributions.

It should be noted that any geometrical fractal object
accompanies a power law distribution even a determinis-
tic fractal such as Sierpinski gasket. Figure 2 shows Sier-
pinski gasket which is usually characterized by the fractal
dimension D given by

D D log 3
log 2

: (6)

Paying attention to the distribution of length r of white tri-
angles in this figure, it is easy to show that the probability
that a randomly chosen white triangle’s side is larger than
r, P(� r), follows the power law,

P(� r) / r�˛ ; ˛ D D D log 3
log 2

: (7)

Here, the power law exponent of distribution equals to the
fractal dimension; however, such coincidence occurs only
when the considering distribution is for a length distribu-
tion. For example, in Sierpinski gasket the area s of white
triangles follow the power law,

P(� s) / s�˛ ; ˛ D log 3
log 4

: (8)

The fractal dimension is applicable only for geometric
fractals, however, power law distributions are applicable

Fractals and Economics, Figure 2
Sierpinski gasket

for any fractal phenomena including shapeless quantities.
In such cases the power law exponent is the most impor-
tant quantity for quantitative characterization of fractals.

According to Mandelbrot’s own review on his life the
concept of fractal was inspired when he was studying eco-
nomics data [26]. At that time he found two basic prop-
erties in the time series data of daily prices of New York
cotton market [24]:

(A) Geometrical similarity between large scale chart and
an expanded chart.

(B) Power law distribution of price changes in a unit time
interval, which is independent of the time scale of the
unit.

He thought such scale invariance in both shape and
distribution is a quite general property, not only in price
charts but also in nature at large. His inspiration was cor-
rect and the concept of fractals spread over physics first
and then over almost all fields of science. In the history of
science it is a rare event that a concept originally born in
economics has been spread widely to all area of sciences.

Basic mathematical properties of cumulative distribu-
tion can be summarized as follows (here we consider dis-
tribution of non-negative quantity for simplicity):

1. P(� 0) D 1 , P(� 1) D 0.
2. P(� r) is a non-increasing function of r.
3. The probability density is given as p(r) � � d

dr P(� r).
As for power law distributions there are three peculiar
characteristics:

4. Difficulty in normalization. Assuming that P(� r) D
c0r�˛ for all in the range 0 � r < 1, then the nor-
malization factor c0 must be 0 considering the limit
of r ! 0. To avoid this difficulty it is generally as-
sumed that the power law does not hold in the vicinity
of r D 0. In the case of observing distribution from real
data there are naturally lower and upper bounds, so this
difficulty should be necessary only for theoretical treat-
ment.
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5. Divergence of moments. As for moments defined by
hrni � R1

0 rn p(r)dr, hrni D 1 for n � ˛. In the
special case of 2 � ˛ > 0 the basic statistical quantity,
the variance, diverges, �2 � hr2i � hri2 D 1. In the
case of 1 � ˛ > 0 even the average can not be defined
as hri D 1.

6. Stationary or non-stationary? In view of the data anal-
ysis, the above characteristics of diverging moments
is likely to cause a wrong conclusion that the phe-
nomenon is non-stationary by observing its averaged
value. For example, assume that we observe k samples
fr1; r2; : : : ; rkg independently from the power law dis-
tribution with the exponent, 1 � ˛ > 0. Then, the sam-
ple average, hrik � 1

k fr1 C r2 C � � � C rkg, is shown to
diverge as, hrik / k1/˛ . Such tendency of monotonic
increase of averaged quantity might be regarded as a re-
sult of non-stationarity, however, this is simply a gen-
eral property of a power law distribution. The best way
to avoid such confusion is to observe the distribution
directly from the data.

Other than the power law distribution there is another im-
portant statistical quantity in the study of fractals, that is,
the autocorrelation. For given time series, fx(t)g, the auto-
correlation is defined as,

C(T) � hx(t C T)x(t)i � hx(t)i2
hx(t)2i � hx(t)i2 ; (9)

where h� � � i denotes an average over realizations. The au-
tocorrelation can be defined only for stationary time series
with finite variance, in which any statistical quantities do
not depend on the location of the origin of time axis.

For any case, the autocorrelation satisfies the following
basic properties,

1. C(0) D 1 and C(1) D 0
2. jC(T)j � 1 for any T � 0.
3. The Wiener–Khinchin theorem holds, C(T) DR1

0 S( f ) cos 2
 f d f , where S(f ) is the power spectrum
defined by S( f ) � hbx( f )bx(� f )i, with the Fourier trans-
form,bx( f ) � R

x(t)e2� i f tdt.

In the case that the autocorrelation function is charac-
terized by a power law, C(T) / T�ˇ , ˇ > 0, then the
time series fx(t)g is said to have a fractal property, in the
sense that the autocorrelation function is scale-indepen-
dent for any scale-factor, � > 0, C(�T) / C(T). In the
case 1 > ˇ > 0 the corresponding power spectrum is
given as S( f ) / f�1Cˇ .

The power spectrum can be applied to any time se-
ries including non-stationary situations. A simple way of

telling non-stationary situation is to check the power law
exponent of S( f ) / f�1Cˇ in the vicinity of f D 0, for
0 > ˇ the time series is non-stationary.

Three basic examples of fractal time series are the fol-
lowings:

1. White noise. In the case that fx(t)g is a stationary inde-
pendent noise, the autocorrelation is given by the Kro-
necker’s function, C(T) D ıT , where

ıT D
(
1 ; T D 0
0 ; T ¤ 0 :

The corresponding power spectrum is S( f ) / f 0. This
case is called white noise from an analogy that super-
position of all frequency lights with the same amplitude
make a colorless white light. White noise is a plausible
model of random phenomena in general including eco-
nomic activities.

2. Random walk. This is defined by summation of a white
noise, X(t) D X(0) CPt

sD0 x(s), and the power spec-
trum is given by S( f ) / f�2. In this case the autocor-
relation function can not be defined because the data is
non-stationary. Random walks are quite generic mod-
els widely used from Brownian motions of colloid to
market prices. The graph of a random walk has a frac-
tal property such that an expansion of any part of the
graph looks similar to the whole graph.

3. The 1/f noise. The boundary of stationary and non-
stationary states is given by the so-called 1/f noise,
S( f ) / f�1. This type of power spectrum is also widely
observed in various fields of sciences from electrical
circuit noise [16] to information traffics in the Inter-
net [53]. The graph of this 1/f noise also has the fractal
property.

Examples in Economics

In this chapter fractals observed in real economic ac-
tivities are reviewed. Mathematical models derived from
these empirical findings will be summarized in the next
chapter.

As mentioned in the previous chapter the very first ex-
ample of a fractal was the price fluctuation of the New
York cottonmarket analyzed byMandelbrot with the daily
data for a period of more than a hundred years [24]. This
research attracted much attention at that time, however,
there was no other goodmarket data available for scientific
analysis, and no intensive follow-up research was done un-
til the 1990s. Instead of earnest scientific data analysis arti-
ficial mathematical models of market prices based on ran-
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domwalk theory became popular by the name of Financial
Technology during the years 1960–1980.

Fractal properties of market prices are confirmed with
huge amount of high resolution market data since the
1990s [26,43,44]. This is due to informationization of fi-
nancial markets in which transaction orders are processed
by computers and detail information is recorded auto-
matically, while until the 1980s many people gathered
at a market and prices are determined by shouting and
screaming which could not be recorded. Now there are
more than 100 financial market providers in the world
and the number of transacted items exceeds one million.
Namely, millions of prices in financial markets are chang-
ing with time scale in seconds, and you can access anymar-
ket price at real time if you have a financial provider’s ter-
minal on your desk via the Internet.

Among these millions of items one of the most repre-
sentative financial markets is the US Dollar-Japanese Yen
(USD-JPY) market. In this market Dollar and Yen are ex-
changed among dealers of major international banks. Un-
like the case of stock markets there is no physical trad-
ing place, but major international banks are linked by
computer networks and orders are emitted from each
dealer’s terminal and transactions are done at an electronic
broking system. Such a broking system and the computer
networks are provided by financial provider companies
like Reuters.

The foreign exchange markets are open 24 hours and
deals are done whenever buy- and sell-orders meet. The
minimum unit of a deal is one million USD (called a bar),
and about three million bars are traded everyday in the
whole foreign exchange markets in which more than 100
kinds of currencies are exchanged continuously. The to-
tal amount of money flow is about 100 times bigger than
the total amount of daily world trade, so it is believed that
most of deals are done not for the real world’s needs, but
they are based on speculative strategy or risk hedge, that
is, to get profit by buying at a low price and selling at
a high price, or to avoid financial loss by selling decreas-
ing currency.

In Fig. 3 the price of one US Dollar paid by Japanese
Yen in the foreign exchange markets is shown for 13
years [30]. The total number of data points is about 20
million, that is, about 10 thousand per day or the aver-
aged transaction interval is seven seconds. A magnified
part of the top figure for one year is shown in the second
figure. The third figure is the enlargement of one month
in the second figure. The bottom figure is again a part of
the third figure, here the width is one day. It seems that at
least the top three figures look quite similar. This is one of
the fractal properties of market price (A) introduced in the

Fractals and Economics, Figure 3
Dollar-Yen rate for 13 years (Top). Dark areas are enlarged in the
following figure [30]

previous chapter. This geometrical fractal property can be
found in any market, so that this is a very universal market
property.

However, it should be noted that this geometrical frac-
tal property breaks down for very short time scale as typi-
cally shown in Fig. 4. In this figure the abscissa is 10 min-
utes range and we can observe each transaction separately.
Obviously the price up down is more zigzag and more dis-
crete than the large scale continuous market fluctuations
shown in Fig. 3. In the case of USD-JPY market the time
scale that this breakdown of scale invariance occurs typi-
cally at time scale of several hours.

The distribution of rate change in a unit time (one
minute) is shown in Fig. 5. Here, there are two plots of cu-
mulative distributions, P(> �x) for positive rate changes
and P(> j�xj) for negative rate changes, which are al-
most identical meaning that the up-down symmetry of
rate changes is nearly perfect. In this log–log plot the es-
timated power law distribution’s exponent is 2.5. In the
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Fractals and Economics, Figure 4
Market price changes in 10minutes

Fractals and Economics, Figure 5
Log–log plot of cumulative distribution of rate change [30]

original finding of Mandelbrot, (B) in the previous chap-
ter, the reported exponent value is about 1.7 for cotton
prices. In the case of stock markets power laws are con-
firmed universally for all items, however, the power expo-
nents are not universal, taking value from near one to near
five, typically around three [15]. Also the exponent values
change in time year by year.

In order to demonstrate the importance of large fluc-
tuations, Fig. 6 shows a comparison of three market prices.
The top figure is the original rate changes for a week. The
middle figure is produced from the same data, but it is con-
sisted of rate changes of which absolute values are larger
than 2� , that is, about 5 % of all the data. In the bottom
curve such large rate changes are omitted and the residue
of 95 % of small changes makes the fluctuations. As known
from these figures the middle figure is much closer to the
original market price changes. Namely, the contribution
from the power law tails of price change distribution is
very large for macro-scale market prices.

Power law distribution of market price changes is
also a quite general property which can be confirmed for

Fractals and Economics, Figure 6
USD-JPY exchange rate for a week (top) Rate changes smaller
than 2� are neglected (middle) Rate changes larger than 2� are
neglected (bottom)

any market. Up-down symmetry also holds universally in
short time scale in general, however, for larger unit time
the distribution of price changes gradually deforms and
for very large unit time the distribution becomes closer to
a Gaussian distribution. It should be noted that in special
cases of market crashes or bubbles or hyper-inflations the
up-down symmetry breaks down and the power law dis-
tribution is also likely to be deformed.

The autocorrelation of the time sequence of price
changes generally decays quickly to zero, sometimes ac-
companied by a negative correlation in a very short time.
This result implies that the market price changes are ap-
parently approximated by white noise, and market prices
are known to follow nearly a random walk as a result.
However, market price is not a simple random walk. In
Fig. 7 the autocorrelation of volatility, which is defined
by the square of price change, is shown in log–log scale.
In the case of a simple random walk this autocorrela-
tion should also decay quickly. The actual volatility au-
tocorrelation nearly satisfies a power law implying that
the volatility time series has a fractal clustering property.
(See also Fig. 31 representing an example of price change
clustering.)

Another fractal nature of markets can be found in the
intervals of transactions. As shown in Fig. 8 the transac-
tion intervals fluctuate a lot in very short time scale. It is
known that the intervals make clusters, namely, shorter in-
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Fractals and Economics, Figure 7
Autocorrelation of volatility [30]

Fractals and Economics, Figure 8
Clustering of transaction intervals

Fractals and Economics, Figure 9
Power spectrum of transaction intervals [50]

tervals tend to gather. To characterize such clustering ef-
fect we can make a time sequence consisted of 0 and 1,
where 0 denotes no deal was done at that time, and 1 de-
notes a deal was done. The corresponding power spectrum
follows a 1/f power spectrum as shown in Fig. 9 [50].

Fractal properties are found not only in financial mar-
kets. Company’s income distribution is known to follow

Fractals and Economics, Figure 10
Income distribution of companies in Japan

also a power law [35]. A company’s income is roughly
given by subtraction of incoming money flow minus out-
going money flow, which can take both positive and nega-
tive values. There are about six million companies in Japan
and Fig. 10 shows the cumulative distribution of annual
income of these companies. Clearly we have a power law
distribution of income I with the exponent very close to
�1 in the middle size range, so-called the Zipf’s law,

P(> I) / I�ˇ ; ˇ D 1 : (10)

Although in each year every company’s income fluctuates,
and some percentage of companies disappear or are newly
born, this power law is known to hold for more than 30
years. Similar power laws are confirmed in various coun-
tries, the case of France is plotted in Fig. 11 [13].

Observingmore details by categorizing the companies,
it is found that the income distribution in each job cate-
gory follows nearly a power lawwith the exponent depend-
ing on the job category as shown in Fig. 12 [29]. The impli-
cation of this phenomenon will be discussed in Sect. “In-
come Distribution Models”.

A company’s size can also be viewed by the amount of
whole sale or the number of employee. In Figs. 13 and 14
distributions of these quantities are plotted [34]. In both
cases clear power laws are confirmed. The size distribution
of debts of bankrupted companies is also known to follow
a power law as shown Fig. 15 [12].

A power law distribution can also be found in per-
sonal income. Figure 16 shows the personal income dis-
tribution in Japan in a log–log plot [1]. The distribution
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Fractals and Economics, Figure 11
Income distribution of companies in France [13]

Fractals and Economics, Figure 12
Income distribution of companies in each category [29]

Fractals and Economics, Figure 13
The distribution of whole sales [34]

Fractals and Economics, Figure 14
The distribution of employee numbers [34]

Fractals and Economics, Figure 15
The size distribution of debts of bankrupted companies [12]

is clearly separated into two parts. The majority of peo-
ple’s incomes are well approximated by a log-normal dis-
tribution (the left top part of the graph), and the top few
percent of people’s income distribution is nicely charac-
terized by a power law (the linear line in the left part of the
graph). The majority of people are getting salaries from
companies. This type of composite of two distributions
is well-known from the pioneering study by Pareto about
100 years ago and it holds in various countries [8,22].

A typical value of the power exponent is about two,
significantly larger than the income distribution of com-
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Fractals and Economics, Figure 16
Personal income distribution in Japan [1]

panies. However, the exponent of the power law seems to
be not universal and the value changes county by country
or year by year. There is a tendency that the exponent is
smaller, meaning more rich people, when the economy is
improving [40].

Another fractal in economics can be found in a net-
work of economic agents such as banks’ money transfer
network. As a daily activity banks transfer money to other
banks for various reasons. In Japan all of these interbank
money transfers are done via a special computer network
provided by the Bank of Japan. Detailed data of actual
money transfer among banks are recorded and analyzed
for the basic study.

The total amount of money flow among banks in
a day is about 30 � 1012 yen with the number of trans-
actions about 10 000. Figure 17 shows the distribution of
the amount of money at a transaction. The range is not
wide enough but we can find a power law with an expo-
nent about 1.3 [20].

The number of banks is about 600, so the daily trans-
action number is only a few percent of the theoretically
possible combinations. It is confirmed that there are many
pairs of banks which never transact directly. We can de-
fine active links between banks for pairs with the averaged
number of transaction larger than one per day. By this cri-
terion the number of links becomes about 2000, that is,
about 0.5 percent of all possible link numbers. Compared
with the complete network, the actual network topologies
are much more sparse.

In Fig. 18 the number distribution of active links per
site are plotted in log–log plot [21]. As is known from
this graph, there is an intermediate range in which the

Fractals and Economics, Figure 17
The distribution of the amount of transferredmoney [21]

Fractals and Economics, Figure 18
The number distribution of active links per site [20]

link number distribution follows a power law. In the ter-
minology of recent complex network study, this property
is called the scale-free network [5]. The scale-free net-
work structure among these intermediate banks is shown
in Fig. 19.

There are about 10 banks with large link numbers
which deviate from the power law, also small link num-
ber banks with link number less than four are out of the
power law. Such small banks are known to make a satellite
structure that many banks linked to one large link num-
ber banks. It is yet to clarify why intermediate banks make
fractal network, and also to clarify the role of large banks
and small banks which are out of the fractal configuration.

In relation with the banks, there are fractal properties
other than cash flow and the transaction network. The dis-
tribution of the whole amount of deposit of Japanese bank
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Fractals and Economics, Figure 19
Scale-free network of intermediate banks [20]

Fractals and Economics, Figure 20
Distribution of total deposit for Japanese banks [57] Power law
breaks down from 1999

is approximated by a power law as shown in Fig. 20 [57].
In recent years large banks merged making a few mega
banks and the distribution is a little deformed. Histori-
cally there were more than 6000 banks in Japan, however,
now we have about 600 as mentioned. It is very rare that
a bank disappears, instead banks are merged or absorbed.
The number distribution of banks which are historically
behind a present bank is plotted in Fig. 21, again a power
law can be confirmed.

Other than the example of the bank network, network
structures are very important generally in economics. In
production process from materials, through various parts
to final products the network structure is recently studied
in view of complex network analysis [18]. Trade networks
among companies can also be described by network termi-
nology. Recently, network characterization quantities such
as link numbers (Fig. 22), degrees of authority, and Page-
ranks are found to follow power laws from real trade data
for nearly a million of companies in Japan [34].

Fractals and Economics, Figure 21
Distribution of bank numbers historically behind a present
bank [57]

Fractals and Economics, Figure 22
Distribution of in-degrees and out-degrees in Japanese com-
pany network [34]

Still more power laws in economics can be found in
sales data. A recent study on the distribution of expen-
diture at convenience stores in one shopping trip shows
a clear power law distribution with the exponent close to
two as shown in Fig. 23 [33]. Also, book sales, movie hits,
news paper sales are known to be approximated by power
laws [39].

Viewing all these data in economics, we may say that
fractals are everywhere in economics. In order to under-



Fractals and Economics 453

Fractals and Economics, Figure 23
Distribution of expenditure in one shopping trip [33]

stand why fractals appear so frequently, we firstly need to
make simple toy models of fractals which can be analyzed
completely, and then, based on such basic models we can
make more realistic models which can be directly compa-
rable with real data. At that level of study we will be able to
predict or control the complex real world economy.

Basic Models of Power Laws

In this chapter we introduce general mathematical and
physical models which produce power law distributions.
By solving these simple and basic cases we can deepen our
understanding of the underlying mechanism of fractals or
power law distributions in economics.

Transformation of Basic Distributions

A power law distribution can be easily produced by vari-
able transformation from basic distributions.

1. Let x be a stochastic variable following a uniform dis-
tribution in the range (0, 1], then, y � x�1/˛ satisfies
a power law, P(> y) D y�˛ for y � 1. This is a useful
transformation in case of numerical simulation using
random variable following power laws.

2. Let x be a stochastic variable following an exponen-
tial distribution, P(> x) D e�x , for positive x, then,
y � ex/˛ satisfies a power law, P(> y) / y�˛ . As
exponential distributions occur frequently in random
process such as the Poisson process, or energy distri-
bution in thermal equilibrium, this simple exponential
variable transformation can make it a power law.

Superposition of Basic Distributions

A power law distribution can also be easily produced by
superposition of basic distributions.

Let x be a Gaussian distribution with the probability
density given by

pR(x) D
p
Rp
2


e� R
2 x

2
; (11)

and R be a �2 distribution with degrees of freedom ˛,

w(R) D

 1
2
�˛/2






˛
2
� R

˛
2 �1e� R

2 : (12)

Then, the superposition of Gaussian distribution, Eq. (11),
with the weight given by Eq. (12) becomes the T-distribu-
tion having power law tails:

p(x) D
1Z

0

W(R)pR(x)dR

D 




˛C1
2
�
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˛
2
�

1

(1 C x2)
˛C1
2

/ jxj�˛�1 ; (13)

which is P(> jxj) / jxj�˛ in cumulative distribution. In
the special case that R, the inverse of variance of the nor-
mal distribution, distributes exponentially, the value of ˛
is 2. Similar super-position can be considered for any basic
distributions and power law distributions can be produced
by such superposition.

Stable Distributions

Assume that stochastic variables, x1; x2; : : : ; xn , are inde-
pendent and follow the same distribution, p(x), then con-
sider the following normalized summation;

Xn � x1 C x2 C � � � C xn � �n

n1/˛
: (14)

If there exists ˛ > 0 and �n , such that the distribution
of Xn is identical to p(x), then, the distribution belongs to
one of the Levy stable distributions [10]. The parameter ˛
is called the characteristic exponent which takes a value
in the range (0, 2]. The stable distribution is character-
ized by four continuous parameters, the characteristic ex-
ponent, an asymmetry parameter which takes a value in
[�1, 1], the scale factor which takes a positive value and
the location parameterwhich takes any real number. Here,
we introduce just a simple case of symmetric distribution
around the origin with the unit scale factor. The probabil-
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ity density is then given as

p(x;˛) D 1
2


1Z

�1
e�i�xe�j�j˛d� : (15)

For large jxj the cumulative distribution follows the power
law, P(> x;˛) / jxj�˛ except the case of ˛ D 2. The
stable distribution with ˛ D 2 is the Gaussian distribution.

The most important property of the stable distribu-
tion is the generalized central limit theorem: If the distri-
bution of sum of any independent identically distributed
random variables like Xn in Eq. (14) converges in the limit
of n ! 1 for some value of ˛, then the limit distribution
is a stable distribution with the characteristic exponent ˛.
For any distribution with finite variance, the ordinary cen-
tral limit theory holds, that is, the special case of ˛ D 2. For
any infinite variance distribution the limit distribution is
˛ ¤ 2 with a power law tail. Namely, a power law realizes
simply by summing up infinitely many stochastic variables
with diverging variance.

Entropy Approaches

Let x0 be a positive constant and consider a probability
density p(x) defined in the interval [x0;1), the entropy
of this distribution is given by

S � �
1Z

x0

p(x) log p(x)dx : (16)

Here, we find a distribution that maximizes the entropy
with a constraint such that the expectation of logarithm of
x is a constant, hlog xi D M. Then, applying the varia-
tional principle to the following function,

L � �
1Z

x0

p(x) log p(x)dx � �1

0

@
1Z

x0

p(x)dx � 1

1

A

C �2

0

@
1Z

x0

p(x) log xdx � M

1

A (17)

the power law is obtained,

P(� x) D
�

x
x0

�� 1
M�log x0

: (18)

In other words, a power law distribution maximizes the
entropy in the situation where products are conserved.
To be more precise, consider two time dependent ran-
dom variables interacting each other satisfying the rela-
tion, x1(t) � x2(t) D x1(t0) � x2(t0), then the equilibrium
distribution follows a power law.

Another entropy approach to the power laws is to gen-
eralize the entropy by the following form [56],

Sq �
1 �

1R
x0

p(x)qdx

q � 1
; (19)

where q is a real number. This function is called the q-en-
tropy and the ordinary entropy, Eq. (15), recovers in the
limit of q ! 1. Maximizing the q-entropy keeping the
variance constant, so-called a q-Gaussian distribution is
obtained, which has the same functional form with the
T-distribution, Eq. (12), with the exponent ˛ given by

˛ D q � 3
1 � q

: (20)

This generalized entropy formulation is often applied
to nonlinear systems having long correlations, in which
power law distributions play the central role.

RandomMultiplicative Process

Stochastic time evolution described by the following for-
mulation is called the multiplicative process,

x(t C 1) D b(t)x(t) C f (t) ; (21)

where b(t) and f (t) are both independent random vari-
ables [17]. In the case that b(t) is a constant, the distribu-
tion of x(t) depends on the distribution of f (t), for exam-
ple, if f (t) follows a Gaussian distribution, then the distri-
bution of x(t) is also a Gaussian. However, in the case that
b(t) fluctuates randomly, the resulting distribution of x(t)
is known to follows a power law independent of f (t),

P(> x) / jxj�˛ ; (22)

where the exponent ˛ is determined by solving the follow-
ing equation [48],

hjb(t)j˛i D 1 : (23)

This steady distribution exists when hlog jb(t)ji < 0
and f (t) is not identically 0. As a special case that b(t) D 0
with a finite probability, then a steady state exists. It is
proved rigorously that there exists only one steady state,
and starting from any initial distribution the system con-
verges to the power law steady state.

In the case hlog jb(t)ji � 0 there is no statistically
steady state, intuitively the value of jb(t)j is so large that
x(t) is likely to diverge. Also in the case f (t) is identically
0 there is no steady state as known from Eq. (21) that
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log jx(t)j follows a simple randomwalkwith random noise
term, log jb(t)j.

The reason why this random multiplicative process
produces a power law can be understood easily by consid-
ering a special case that b(t) D b > 1 with probability 0.5
and b(t) D 0 otherwise, with a constant value of f (t) D 1.
In such a situation the value of x(t) is 1CbCb2 C� � �CbK

with probability (0:5)K . From this we can directly evaluate
the distribution of x(t),

P
�

� bKC1 � 1
b � 1

�

D 2�KC1 i: e:

P(� x) D 4(1 C (b � 1)x)�˛ ; ˛D log 2
log b

:

(24)

As is known from this discussion, the mechanism of
this power law is deeply related to the above mentioned
transformation of exponential distribution in Sect. “Trans-
formation of Basic Distributions”.

The power law distribution of a randommultiplicative
process can also be confirmed experimentally by an elec-
trical circuit in which resistivity fluctuates randomly [38].
In an ordinary electrical circuit the voltage fluctuations
in thermal equilibrium is nearly Gaussian, however, for
a circuit with random resistivity a power law distribution
holds.

Aggregation with Injection

Assume the situation that many particles are moving ran-
domly and when two particles collide they coalesce mak-
ing a particle with mass conserved. Without any injection
of particles the system converges to the trivial state that
only one particle remains. In the presence of continuous
injection of small mass particles there exists a non-trivial
statistically steady state in which mass distribution follows
a power law [41]. Actually, the mass distribution of aerosol
in the atmosphere is known to follow a power law in gen-
eral [11].

The above system of aggregation with injection can
be described by the following model. Let j be the discrete
space, and x j(t) be the mass on site j at time t, then choose
one site and let the particle move to another site and parti-
cles on the visited site merge, then add small mass particles
to all sites, this process can be mathematically given as,

x j(tC1) D

8
<̂

:̂

x j(t) C xk(t) C f j(t) ; prob D 1/N
xj(t) C f j(t) ; prob D (N � 2)/N
f j(t) ; prob D 1/N

(25)

whereN is the total number of sites and f j(t) is the injected
mass to the site j.

The characteristic function, Z(�; t) � he��x j(t)i,
which is the Laplace transform of the probability density,
satisfies the following equation by assuming uniformity,

Z(�; t C 1)

D
�
N � 2
N

Z(�; t)2 C 1
N
Z(�; t) C 1

N




he�� f j(t)i :
(26)

The steady state solution in the vicinity of � D 0 is ob-
tained as

Z(�) D 1 �ph f i�1/2 C � � � : (27)

From this behavior the following power law steady distri-
bution is obtained.

P(� x) / x�˛ ; ˛D1
2
: (28)

By introducing a collision coefficient depending on the
size of particles power laws with various values of expo-
nents realized in the steady state of such aggregation with
injection system [46].

Critical Point of a Branching Process

Consider the situation that a branch grows and splits with
probability q or stops growing with probability 1 � q as
shown in Fig. 24. What is the size distribution of the
branch? This problem can be solved in the following way.
Let p(r) be the probability of finding a branch of size r,
then the next relation holds.

p(r C 1) D q
r�1X

sD1

p(s)p(r � s) : (29)

Fractals and Economics, Figure 24
Branching process (from left to right)



456 Fractals and Economics

Multiplying yrC1 and summing up by r from 0 to 1,
a closed equation of the generating function, M(y), is ob-
tained,

M(y)�1Cq D q � y �M(y)2 ; M(y) �
1X

rD0

yr p(r) : (30)

Solving this quadratic equation and expanding in terms of
y, we have the probability density,

p(r) / r�3/2e�Q(q)r ; Q(q) � log 4q(1 � q) : (31)

For q < 0:5 the probability decays exponentially for large
r, in this case all branches has a finite size. At q D 0:5 the
branch size follows the power law, P(� r) / r�1/2, and the
average size of branch becomes infinity. For q > 0:5 there
is a finite probability that a branch grows infinitely. The
probability of having an infinite branch, p(1) D 1�M(1),
is given as,

p(1) D 2q � 1 Cp
1 � 4q(1 � q)
2q

; (32)

which grows monotonically from zero to one in the range
q D [0:5; 1]. It should be noted that the power law distri-
bution realizes at the critical point between the finite-size
phase and the infinite-size phase [42].

Compared with the preceding model of aggregation
with injection, Eq. (28), the mass distribution is the same
as the branch size distribution at the critical point in
Eq. (31). This coincidence is not an accident, but it
is known that aggregation with injection automatically
chooses the critical point parameter. Aggregation and
branching are reversed process and the steady occur-
rence of aggregation implies that branching numbers keep
a constant value on average and this requires the critical
point condition. This type of critical behaviors is called the
self-organized criticality and examples are found in vari-
ous fields [4].

Finite Portion Transport

Here, a kind of mixture of aggregation and branching
is considered. Assume that conserved quantities are dis-
tributed in N-sites. At each time step choose one site ran-
domly, and transport a finite portion, �x j(t), to another
randomly chosen site, where � is a parameter in the range
[0, 1].

x j(t C 1) D (1 � �)x j(t) ;
xk(t C 1) D xk(t) C �x j(t) : (33)

It is known that for small positive � the statistically steady
distribution x is well approximated by a Gaussian like the
case of thermal fluctuations. For � close to 1 the fluctua-
tion of x is very large and its distribution is close to a power
law. In the limit � goes to 1 and the distribution converges
to Eq. (28), the aggregation with injection case. For inter-
mediate values of � the distribution accompanies a fat tail
between Gaussian and a power law [49].

Fractal Tiling

A fractal tiling is introduced as the final basic model. Fig-
ure 25 shows an example of fractal tiling of a plane by
squares. Like this case Euclidean space is covered by var-
ious sizes of simple shapes like squares, triangles, circles
etc. The area size distribution of squares in Fig. 25 follows
the power law,

P(� x) / x�˛ ; ˛D 1/2 : (34)

Generalizing this model in d-dimensional space, the dis-
tribution of d-dimensional volume x is characterized by
a power law distribution with an exponent, ˛ D (d �1)/d,
therefore, the Zipf’s law which is the case of ˛ D 1 realizes
in the limit of d D 1. The fracture size distribution mea-
sured in mass introduced in the beginning of this article
corresponds to the case of d D 3.

A classical example of fractal tiling is the Apollonian
gasket, that is, a plane is covered totally by infinite num-
ber of circles which are tangent each other. For a given
river pattern like Fig. 26 the basin area distribution follows
a power law with exponent about ˛ D 0:4 [45]. Although
these are very simple geometric models, simple models
may sometimes help our intuitive understanding of frac-
tal phenomena in economics.

Fractals and Economics, Figure 25
An example of fractal tiling
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Fractals and Economics, Figure 26
Fractal tiling by river patterns [45]

MarketModels

In this chapter market price models are reviewed in view
of fractals. There are two approaches for construction of
market models. One is modeling the time sequences di-
rectly by some stochastic model, and the other is model-
ing markets by agent models which are artificial markets
in computer consisted of programmed dealers.

The first market price model was proposed by Bache-
lier in 1900 written as his Ph.D thesis [3], that is, five years
before the model of Einstein’s random walk model of col-
loid particles. His idea was forgotten for nearly 50 years.
In 1950’s Markowitz developed the portfolio theory based
on a random walk model of market prices [28]. The the-
ory of option prices by Black and Scholes was introduced
in the 1970s, which is also based on random walkmodel of
market prices, or to be more precise a logarithm of market
prices in continuum description [7].

In 1982 Engle introduced a modification of the sim-
ple random walk model, the ARCH model, which is the
abbreviation of auto-regressive conditional heteroscedas-
ticity [9]. This model is formulated for market price differ-
ence as,

�x(t) D �(t) f (t) ; (35)

where f (t) is a random variable following a Gaussian dis-
tribution with 0 mean and variance unity, the local vari-
ance �(t) is given as

�(t)2 D c0 C
kX

jD1

ck(�x(t � k))2 ; (36)

with adjustable positive parameters, fc0; c1; : : : ; ckg. By
the effect of this modulation on variance, the distribution
of price difference becomes superposition of Gaussian dis-
tribution with various values of variance, and the distribu-
tion becomes closer to a power law. Also, volatility cluster-
ing occurs automatically so that the volatility autocorrela-
tion becomes longer.

There are many variants of ARCH models, such as
GARCH and IGARCH, but all of them are based on purely
probabilistic modeling, and the probability of prices going
up and that of going down are identical.

Another type of market price model has been pro-
posed from physics view point [53]. The model is called
the PUCK model, an abbreviation of potentials of unbal-
anced complex kinetics, which assumes the existence of
market’s time-dependentpotential force,UM(x; t), and the
time evolution of market price is given by the following set
of equations;

x(tC1)�x(t) D � d
dx

UM(x; t)
ˇ
ˇ
ˇ
ˇ
xDx(t)�xM(t)

C f (t) ; (37)

UM(x; t) � b(t)
M � 1

x2

2
; (38)

where M is the number of moving average needed to de-
fine the center of potential force,

xM(t) � 1
M

M�1X

kD0

x(t � k) : (39)

In this model f (t) is the external noise and b(t) is the curva-
ture of quadratic potential which changes with time.When
b(t) D 0 the model is identical to the simple random walk
model. When b(t) > 0 the market prices are attracted to
the moving averaged price, xM(t), the market is stable, and
when b(t) < 0 prices are repelled from xM(t) so that the
price fluctuation is large and the market is unstable. For
b(t) < �2 the price motion becomes an exponential func-
tion of time, which can describe singular behavior such as
bubbles and crashes very nicely.

In the simplest case ofM D 2 the time evolution equa-
tion becomes,

�x(t C 1) D �b(t)
2
�x(t) C f (t) : (40)

As is known from this functional form in the case b(t) fluc-
tuates randomly, the distribution of price difference fol-
lows a power law as mentioned in the previous Sect. “Ran-
dom Multiplicative Process”, Random multiplicative pro-
cess. Especially the PUCK model derives the ARCH
model by introducing a random nonlinear potential func-
tion [54]. The value of b(t) can be estimated from the
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Fractals and Economics, Figure 27
Tick intervals of Poisson process (top) and the self-modulation
process (bottom) [52]

data and most of known empirical statistical laws includ-
ing fractal properties are fulfilled as a result [55].

The peculiar difference of this model compared with fi-
nancial technology models is that directional prediction is
possible in some sense. Actually, from the data it is known
that b(t) changes slowly in time, and for non-zero b(t)
the autocorrelation is not zero implying that the up-down
statistics in the near future is not symmetric. Moreover in
the case of b(t) < �2 the price motion show an exponen-
tial dynamical growth hence predictable.

As introduced in Sect. “Examples in Economics” the
tick interval fluctuations can be characterized by the 1/f
power spectrum. This power law can be explained by
a model called the self-modulation model [52]. Let�t j be
the jth tick interval, and we assume that the tick interval
can be approximated by the following random process,

�t jC1 D � j
1
K

K�1X

kD0

�t j�k C g j ; (41)

where �j is a positive random number following an ex-
ponential distribution with the mean value 1, and K is
an integer which means the number of moving average,
gj is a positive random variable. Due to the moving aver-
age term in Eq. (41) the tick interval automatically make
clusters as shown in Fig. 27, and the corresponding power
spectrum is proved to be proportional to 1/ f as typically
represented in Fig. 28.

The market data of tick intervals are tested whether
Eq. (41) really works or not. In Fig. 29 the cumulative
probability of estimated value of �j from market data is
plotted where themoving average size is determined by the
physical time of 150 seconds and 400 seconds. As known
from this figure, the distribution fits very nicely with the
exponential distribution when the moving average size is
150 seconds. This result implies that dealers in the mar-
ket are mostly paying attention to the latest transaction for
about a few minutes only. And the dealers’ clocks in their

Fractals and Economics, Figure 28
The power spectrum of the self-modulation process [52]

Fractals and Economics, Figure 29
The distribution of normalized time interval [50]

minds move quicker if the market becomes busier. By this
self-modulation effect transactions in markets automati-
cally make a fractal configuration.

Next, we introduce a dealer model approach to the
market [47]. In any financial market dealers’ final goal is to
gain profit from the market. To this end dealers try to buy
at the lowest price and to sell at the highest price. Assume
that there areN dealers at a market, and let the jth dealer’s
buying and selling prices in their mind Bj(t) and S j(t). For
each dealer the inequality, Bj(t) < S j(t), always holds. We
pay attention to the maximum price of fBj(t)g called the
best bid, and to the minimum price of fS j(t)g called the



Fractals and Economics 459

best ask. Transactions occur in the market if there exists
a pair of dealers, j and k, who give the best bid and best ask
respectively, and they fulfill the following condition,

Bj(t) � Sk(t) : (42)

In the model the market price is given by the mean value
of these two prices.

As a simple situation we consider a deterministic time
evolution rule for these dealers. For all dealers the spread,
S j(t)�Bj(t), is set to be a constant L. Each dealer has a po-
sition, either a seller or a buyer. When the jth dealer’s po-
sition is a seller the selling price in mind, S j(t), decreases
every time step until he can actually sell. Similar dynamics
is applied to a buyer with the opposite direction of motion.
In addition we assume that all dealers shift their prices in
mind proportional to a market price change. When this
proportional coefficient is positive, the dealer is catego-
rized as a trend-follower. If this coefficient is negative, the
dealer is called a contrarian. These rules are summarized
by the following time evolution equations.

Bj(t C 1) D Bj(t) C a jS j C bj�x(t) ; (43)

where Sj takes either +1 or �1 meaning the buyer position
or seller position, respectively,�x(t) gives the latest mar-
ket price change, fa jg are positive numbers given initially,
fbjg are also parameters given initially.

Figure 30 shows an example of market price evolu-
tion in the case of three dealers. It should be noted that
although the system is deterministic, namely, the future
price is determined uniquely by the set of initial values,
resulting market price fluctuates almost randomly even in
the minimum case of three dealers. The case of N D 2
gives only periodic time evolution as expected, while for
N � 3 the system can produce market price fluctuations
similar to the real market price fluctuations, for example,
the fractal properties of price chart and the power law dis-
tribution of price difference are realized.

In the case that the value of fbjg are identical for all
dealers, b, then the distribution of market price difference
follows a power law where the exponent is controllable by
this trend-follow parameter, b as shown in Fig. 31 [37].
The volatility clustering is also observed automatically for
large dealer number case as shown in Fig. 32 (bottom)
which looks quite similar to a real price difference time
series Fig. 32 (top).

By adding a few features to this basic dealer model it is
now possible to reproduce almost all statistical characteris-
tics of market, such as tick-interval fluctuations, abnormal
diffusions etc. [58]. In this sense the study of market be-
haviors are now available by computer simulations based

Fractals and Economics, Figure 30
Price evolution of a market with deterministic three dealers

Fractals and Economics, Figure 31
Cumulative distribution of a dealer model for different values
of b. For weaker trend-follow the slope is steeper [38]

on the dealer model. Experiments on the market is either
impossible or very difficult for a real market, however, in
an artificial market we can repeat occurrence of bubbles
and crashes any times, so that we might be able to find
a way to avoid catastrophic market behaviors by numeri-
cal simulation.

IncomeDistributionModels

Let us start with a famous historical problem, the St. Pe-
tersburg Paradox, as a model of income. This paradox was
named after Daniel Bernoulli’s paper written when he was
staying in the Russian city, Saint Petersburg, in 1738 [6].
This paradox treats a simple lottery as described in the
following, which is deeply related to the infinite expected

http://en.wikipedia.org/wiki/Saint_Petersburg
http://en.wikipedia.org/wiki/Saint_Petersburg
http://en.wikipedia.org/wiki/1738
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Fractals and Economics, Figure 32
Price difference time series for a real market (top) and a dealer
model (bottom)

value problem in probability theory and also it has been
attracting a lot of economists’ interest in relation with the
essential concept in economics, the utility [2].

Assume that you enjoy a game of chance, you pay
a fixed fee, X dollars, to enter, and then you toss a fair coin
repeatedly until a tail firstly appears. You win 2n dollars
where n is the number of heads. What is the fair price of
the entrance fee, X?

Mathematically a fair price should be equal to the ex-
pectation value, therefore, it should be given as,

X D
1X

nD0

2n � 1
2nC1 D 1 : (44)

This mathematical answer implies that even X is one mil-
lion dollars this lottery is generous enough and you should
buy because expectation is infinity. But, would you dare to
buy this lottery, in which you will win only one dollar with
probability 0.5, and two dollars with probability 0.25, . . . ?

Bernoulli’s answer to this paradox is to introduce the
human feeling of value, or utility, which is proportional to
the logarithm of price, for example. Based on this expected
utility hypothesis the fair value of X is given as follows,

X D
1X

nD0

U(2n)
2nC1 D

1X

nD0

log(2n)
2nC1 D1Clog 2 � 1:69 ; (45)

where the utility function,U(x) D 1C log x, is normalized
to satisfy U(1) D 1. This result implies that the appropri-
ate entry fee X should be about two dollars.

The idea of utility was highly developed in economics
for description of human behavior, in the way that human
preference is determined by maximal point of utility func-
tion, the physics concept of the variational principle ap-
plied to human action. Recently, in the field of behavioral
finance which emerged from psychology the actual obser-
vation of human behaviors about money is the main task
and the St. Petersburg paradox is attracting attention [36].

Although Bernoulli’s solution may explain the human
behavior, the fee X D 2 is obviously so small that the
bookmaker of this lottery will bankrupt immediately if the
entrance fee is actually fixed as two dollars and if a lot of
people actually buy it. The paradox is still a paradox.

To clarify what is the problem we calculate the distri-
bution of income of a gambler. As an income is 2n with
probability 2�n�1, the cumulative distribution of income
is readily obtained as,

P(� x) / 1/x : (46)

This is the power law which we observed for income dis-
tribution of companies in Sect. “Examples in Economics”.

The key of this lottery is the mechanism that the prize
money doubles at each time a head appears and the coin
toss stops when a tail appears. By denoting the number
of coin toss by t, we can introduce a stochastic process or
a new lottery which is very much related to the St. Peters-
burg lottery.

x(t C 1) D b(t)x(t) C 1 ; (47)

where b(t) is 2 with probability 0.5 and is 0 otherwise. As
introduced in Sect. “Random Multiplicative Process”, this
problem is solved easily and it is confirmed that the steady
state cumulative distribution of x(t) also follows Eq. (46).
The difference between the St. Petersburg lottery and the
new lottery Eq. (47) is the way of payment of entrance
fee. In the case of St. Petersburg lottery the entrance fee
X is paid in advance, while in the case of new lottery you
have to add one dollar each time you toss a coin. This new

http://en.wikipedia.org/wiki/Game_of_chance
http://en.wikipedia.org/wiki/Game_of_chance
http://en.wikipedia.org/wiki/Game_of_chance
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Fractals and Economics, Figure 33
Theoretical predicted exponent value vs. observed value [29]

lottery is fair from both the gambler side and the book-
maker side because the expectation of income is given by
hx(t)i D t and the amount of paid fee is also t.

Now we introduce a company’s income model by gen-
eralizing this new fair lottery in the following way,

I(t C 1) D b(t)I(t) C f (t) ; (48)

where I(t) denotes the annual income of a company, b(t)
represents the growth rate which is given randomly from
a growth rate distribution g(b), and f (t) is a random noise.
Readily from the results of Sect. “Random Multiplicative
Process”, we have a condition to satisfy the empirical rela-
tion, Eq. (10),

hb(t)i D
Z

bg(b) D 1 : (49)

This relation is confirmed to hold approximately in actual
company data [32].

In order to explain the job category dependence of the
company’s income distribution already shown in Fig. 12,
we plot the comparison of exponents in Fig. 33. Empiri-
cally estimated exponents are plotted in the ordinate and
the solutions of the following equation calculated in each
job category are plotted in the abscissa,

hb(t)ˇ i D 1 : (50)

The data points are roughly on a straight line demonstrat-
ing that the simple growth model of Eq. (48) seems to be
meaningful.

An implication of this result is that if a job category
is expanding, namely, hb(t)i > 1, then the power law ex-
ponent determined by Eq. (50) is smaller than 1. On the
other hand if a job category is shrinking, we have an expo-
nent that is larger than 1.

Fractals and Economics, Figure 34
Numerical simulation of income distribution evolution of Japa-
nese companies [32]

This type of company’s income model can be gener-
alized to take into account the effect of company’s size
dependence on the distribution of growth rate. Also, the
magnitude of the random force term can be estimated
from the probability of occurrence of negative income.
Then, assuming that the present growth rate distribution
continues we can perform a numerical simulation of com-
pany’s income distribution starting from a uniform distri-
bution as shown in Fig. 34 for Japan and in Fig. 35 for USA.
It is shown that in the case of Japan, the company size dis-
tribution converges to the power law with exponent �1 in
20 years, while in the case of USA the steady power law’s
slope is about �0.7 and it takes about 100 years to con-
verge [31]. According to this result extremely large com-
panies with size about 10 times bigger than the present
biggest company will appear in USA in this century. Of
course the growth rate distribution will change faster than
this prediction, however, this model can tell the qualita-
tive direction and the speed of change in verymacroscopic
economical conditions.

Other than this simple random multiplicative model
approach there are various approaches to explain empiri-
cal facts about company’s statistics assuming a hierarchical
structure of organization, for example [23].

Future Directions

Fractal properties generally appear in almost any huge
data in economics. As for financial market models, em-
pirical fractal laws are reproduced and the frontier of
study is now at the level of practical applications. How-
ever, there are more than a million markets in the world
and little is known about their interaction. More research
on market interaction will be promising. Company data
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Fractals and Economics, Figure 35
Numerical simulation of income distribution evolution of USA
companies [32]

so far analyzed show various fractal properties as intro-
duced in Sect. “Examples in Economics”, however, they
are just a few cross-sections of global economics. Espe-
cially, companies’ interaction data are inevitable to ana-
lyze the underlying network structures. Not only money
flow data it will be very important to observe material flow
data in manufacturing and consumption processes. From
the viewpoint of environmental study, such material flow
network will be of special importance in the near future.
Detail sales data analysis is a new topic and progress is
expected.
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Glossary

ACF Autocorrelation Function
ARMA Autoregressive Moving Average
BEKK A multivariate GARCH model named after an

early unpublished paper by Baba, Engle, Kraft and
Kroner.

CCC Constant Conditional Correlation
DCC Dynamic Conditional Correlation
CAPM Capital Asset Pricing Model
GARCH Generalized Autoregressive Conditional Het-

eroskedasticity
Heteroskedasticity A non-constant variance that de-

pends on the observation or on time.
i.i.d. independent, identically distributed
Kurtosis A standardized fourth moment of a random

variable that tells something about the shape of the
distribution. A Gaussian distribution has a kurtosis of
three. If the kurtosis is larger than three, then typically
the distribution will have tails that are thicker than
those of the Gaussian distribution.

Lag An operation that shifts the time index of a time se-
ries. For example, the first lag of yt is yt�1.

Long memory Property of covariance stationary pro-
cesses without absolutely summable ACF, meaning
that the ACF decays slowly.

Realized volatility Sum of intra-day squared returns as
a measure for daily volatility.

Skewness A standardized third moment of a random
variable that tells something about the asymmetry of
the distribution. Symmetric distributions have skew-
ness equal to zero.

Volatility Degree of fluctuation of a time series around its
mean.

Definition of the Subject

GARCH (Generalized Autoregressive Conditional Het-
eroskedasticity) is a time series model developed by [44]
and [21] to describe the way volatility changes over time.
In a GARCH model, the volatility at a given time t, �2t say,
is a function of lagged values of the observed time series yt .
The GARCH model can be written as yt D �t�t , with � t
being an independent, identically distributed (i.i.d.) error
term with mean zero and variance one, and where

�2t D ! C
qX

iD1

˛i y2t�i C
pX

jD1

ˇ j�
2
t� j (1)

with constant parameters !, ˛1; : : : ; ˛q and ˇ1; : : : ; ˇp .
Model (1) is also called GARCH(p; q), analogous to
ARMA(p; q), as it includes p lagged volatilities and q
lagged squared values of yt . In this model, �2t is the
variance of yt conditional on the observations until time
t � 1. It is specified as a linear function of lagged
squared yt and lagged conditional variances. Many ex-
tensions or modifications of the basic model in (1) have
been proposed, the most prominent being the exponential
GARCH model of [99] and the threshold GARCH models
of [123] and [59]. [71] and [42] provided classes of mod-
els that contain a large number of suggested models of the
GARCH type.

Introduction

In the late seventies of the last century it became obvious
that volatilities of financial assets are indeed not constant,
nor deterministic or seasonal, but rather stochastic in na-
ture. There is an unsystematic change between periods of
high volatility and periods of low volatility. This ‘volatility
clustering’ had already been remarked in the early works
of [93] and [54]. It was one of several stylized facts of fi-
nancial asset returns, another of which was the observa-
tion that the distribution of returns is not Gaussian. Of
course, these features were not necessarily treated in an
independent way, and in fact it was soon discovered that
very likely one of the effects was causing another, such as
volatility clustering causing leptokurtosis, or fat tailed dis-
tributions. For example, consider the simple model for as-
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GARCHModeling, Figure 1
Daily returns of the Dow Jones Index, 1928 to 2007, defined as
first difference of the log index

set returns yt ,

yt D �t�t

where �t 
 N(0; 1) and � t is stochastic with E[�2t ] D �2,
say, and independent of present and future � t. Then it is
straightforward to show that the kurtosis of yt is given by

� D E[y4t ]
E[y2t ]2

D 3 C 3
Var(�2t )
�4

: (2)

Thus, returns in this model are Gaussian distributed if
and only if Var(�2t ) D 0, i. e., volatility is non-stochas-
tic. Moreover, as the second term on the right hand side
of (2) is always positive, the kurtosis will be larger than
three under stochastic volatility, which oftenmeans that its
tails are fatter than those of the Gaussian distribution. In
other words, extreme events aremore likely under stochas-
tic volatility compared with constant volatility.

To illustrate the effects of volatility clustering and fat
tails, consider the daily returns on the Dow Jones Indus-
trial Index over the period October 1928 to April 2007.
A graph of the (log) index Xt and returns, defined as
yt D Xt � Xt�1, is given in Fig. 1. Clearly visible is the
volatility clustering in the beginning of the sample period
and around the year 2000, while the years at the end of the
sample showed less volatility. Also visible is the crash of
October 1987 where the index dropped by 22 percent.

Figure 2 shows a nonparametric estimator of the log-
arithmic density of returns, compared with the analogue
of a Gaussian distribution. Clearly, the Dow Jones returns
distributions has fat tails, i. e., there are more extreme
events than one would expect under normality. There are

GARCHModeling, Figure 2
Dow Jones log density versus the Gaussian log density

GARCHModeling, Figure 3
Dow Jones autocorrelation function of returns (upper panel) and
squared returns (lower panel)

alsomore returns close to zero than under normality. Con-
cerning volatility clustering, Fig. 3 shows the autocorrela-
tion function of returns and squared returns. While there
is very little structure in the ACF of returns, the ACF of
squared returns are all positive and highly significant. This
positive autocorrelation is explained by the fact that large
returns tend to be followed by large returns and small re-
turns tend to be followed by small returns.

Yet, realizing that volatility is stochastic does not tell
us which model we should use for it. In practice, people
are sometimes debating whether they should take histor-
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ical volatilities over 20 or 100 days, say. They notice that
calculating the standard deviation over a shorter period
is more accurate when recent upturns or downturns want
to be captured, while it is far less efficient than a longer
time window when volatility has not changedmuch. Thus,
there is some kind of bias-variance trade-off. The prob-
lem is that the optimal window length typically changes
over time, and it is virtually impossible to adjust histor-
ical volatility windows automatically to market develop-
ments. A related problem is that historical volatilities im-
ply a weighting scheme that is highly questionable: Why
should k days be incorporated in the calculation with equal
weight, but no weights are put to days up to kC1 days ago?
A smoother weighting scheme seemsmore natural, and in
particular, an exponential scheme seems attractive. Thus,
for example, we may specify for �2t

�2t D (1 � �)
1X

iD0

�i y2t�1�i (3)

with parameter � 2 (0; 1). Equation (3) can be rewritten
as

�2t D (1 � �)y2t�1 C ��2t�1 ; (4)

which looks more familiar. It is actually the model used by
RiskMetrics of JP Morgan, when the smoothing parame-
ter is fixed to 0.94. RiskMetrics is often used in practice as
a means to calculate the Value-at-Risk (VaR) of a portfo-
lio and to assess the market risk of a bank, required by the
Basel Committee for Banking Supervision, see e. g., [78]
and [95]. The VaR is essentially an extreme quantile of
the distribution of portfolio returns. Under Gaussianity,
for example, the VaR is a direct function of volatility.
The RiskMetrics model is a special case of the integrated
GARCH model of [47].

The generalized autoregressive conditional het-
eroskedasticity – GARCH – model is based on the semi-
nal work of [44] and [21]. The idea is to do exponential
smoothing in a more flexible way than RiskMetrics but
keeping the model parsimonious. The particular specifi-
cation reveals many similarities to autoregressive moving
average (ARMA) time seriesmodels. In its most often used
form, the standard GARCH model of order (1,1) reads

�2t D ! C ˛y2t�1 C ˇ�2t�1 (5)

where !, ˛ and ˇ are parameters to be estimated from the
data. Thus, the conditional variance is a linear function
of lagged squared observations yt and lagged conditional
variances. Comparing (5) with the RiskMetrics model (4),
it becomes clear that in the GARCH(1,1) model a con-
stant is added, the parameter ˛ takes the role of 1 � �

and ˇ that of �. But since ˛ and ˇ can be chosen indepen-
dently, the GARCH model is more flexible than RiskMet-
rics. In (5), substituting successively for �2t�i , one obtains
the analogue representation of (3),

�2t D !

1 � ˇ
C ˛

1X

iD0

ˇ i y2t�1�i ; (6)

which clearly shows the exponential smoothing feature of
the GARCH(1,1) model. The basic model can now be ex-
tended to allow for more lags. The GARCH(p; q) model is
given by

�2t D ! C
qX

iD1

˛i y2t�i C
pX

jD1

ˇ j�
2
t� j (7)

extending the number of parameters to pCqC1. GARCH
models of order higher than (1,1) allow for more complex
autocorrelation structures of the squared process. How-
ever, in most empirical studies coefficients corresponding
to higher lags turned out to be insignificant and thus sim-
ple GARCH(1,1) have clearly dominated models of higher
order.

Although extremely successful due to its simplicity and
yet accurate description of volatility changes, a thorough
understanding of its stochastic properties such as station-
arity or positivity constraints took many years. For ex-
ample, [98] shows that, paradoxically at first sight, con-
ditions for strict stationarity are less rigid than those for
covariance stationarity if error terms are Gaussian, the rea-
son being that covariance stationarity requires finite vari-
ances whereas strict stationarity does not. Moreover, the
often given parameter restrictions ! > 0, ˛i ; ˇ j � 0
are only sufficient but not necessary for �t > 0 almost
surely as demonstrated by [100]. These are just two exam-
ples for the subtleties of the theory of univariate GARCH
processes.

Nevertheless, the immense success of the simple
GARCH(1,1) model to explain many sorts of financial and
macroeconomic time series was irreversible, partly also be-
cause it became available in standard statistical program-
ming packages. The theory of estimation and inference de-
veloped rapidly, although perhaps still being underway,
and estimation time of a GARCH(1,1) model for a thou-
sand or so observations decreased from minutes in the
eighties over seconds in the nineties to just fractions of
a second nowadays. With these developments it became
available to a broad public, andmore andmore practition-
ers started using the model, be it for option pricing, port-
folio optimization, risk management, or other purposes.
Monographs and reviews appeared such as [14,20,60]
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and [13]. Anniversary issues of renowned journals such
as Journal of Applied Econometrics, 2002, were dedicated
entirely to new ideas in GARCH modeling. The Nobel
price for economics in 2003was awarded to two time series
econometricians, Clive Granger and Robert Engle. The lat-
ter has mainly driven the development of a new financial
econometrics discipline, based on volatility modeling but
spreading also to other areas such as modeling of extreme
events and risk management.

The pricing of options and other derivatives is perhaps
the most typical example for where models for the volatil-
ity of an asset matter. For example, the celebrated option
pricing formula of [18] does not depend on the drift of the
underlying stock but well on its volatility. In fact, among
the ingredients of the Black and Scholes formula, volatility
is the most crucial one, the other ones being either fixed
such as time of maturity or strike price, or relatively easy to
determine such as a riskfree interest rate. Volatility, how-
ever, has always been subject to debates about how exactly
to find accurate measures for it. The Black and Scholes as-
sumption of constant volatility is actually less crucial to
their formula than one often thinks. Actually, if volatility
is time-varying but in a deterministic way, then the Black
and Scholes formula remains valid. One just has to replace
the volatility parameter by the mean of the volatility func-
tion from today until the time of maturity of the option
contract, see e. g., [90]. If, however, volatility is stochas-
tic, i. e., it has an additional source of randomness, then
markets are no longer complete and the Black and Scholes
formula breaks down. In that case, assumptions about the
volatility risk premium have to be made. In continuous
time stochastic volatility models a classical paper is [74],
while in a discrete time GARCH framework, [41] derives
results for option pricing.

Properties of the GARCH(1,1) Model

For the sake of simplicity let us consider the univariate
GARCH(1,1) model given in (5), where we additionally
assume that the conditional distribution of yt is Gaussian.
The model can be written as

yt D �t�t; �t 
 i.i.d. N(0; 1) (8)

�2t D ! C ˛y2t�1 C ˇ�2t�1 : (9)

In the following we discuss a few properties of
model (8). First, the GARCH model specifies the condi-
tional variance, where the condition is the information
set generated by the process yt . Formally, it is given by
the sigma-algebra Ft D �(yt ; yt�1; : : :). With this nota-
tion we can write �2t D Var(yt jFt�1), since �2t is Ft�1-

measurable. As the information set changes over time,
the conditional variance also changes. On the other hand,
this does not imply that the unconditional variance is also
time-varying. In fact, for model (8) it is quite straightfor-
ward to show that the unconditional variance, if it exists,
is constant and given by

Var(yt) D !

1 � ˛ � ˇ
:

A necessary and sufficient condition for the existence of
the unconditional variance is

˛ C ˇ < 1 ; (10)

see [21]. He also shows that condition (10) is necessary and
sufficient for the process fytg to be covariance stationary.
In that case, the autocorrelation function of fytg is given
by �� (yt) D 0;8� � 1. Moreover, both the conditional
and unconditional mean of yt are zero, so that the process
fytg has the properties of a white noise without being an
i.i.d. process. The dependence occurs in higher moments
of the process. For example, the autocorrelation function
of the squared process, provided that fourth moments ex-
ist, is given by

�1(y2t ) D ˛
1 � ˛ˇ � ˇ2

1 � 2˛ˇ � ˇ2 (11)

�� (y2t ) D (˛ C ˇ)���1(y2t ); � � 2 : (12)

From (11) and (12) it is obvious that in the GARCH(1,1)
model all autocorrelations of squared returns are positive
with an exponential decay. This decay is slow if ˛ C ˇ

is close to one, as often found for empirical data. One
also characterizes this coefficient as the “persistence” pa-
rameter of the GARCH(1,1) model. The closer the persis-
tence parameter is to one, the longer will be the periods of
volatility clustering. On the other hand, the larger ˛ rela-
tive to ˇ, the higher will be the immediate impact of lagged
squared returns on volatility.

The necessary and sufficient condition for finite fourth
moments is given by ˇ2 C2˛ˇC3˛2 < 1, see [21]. In that
case, the kurtosis of yt is given by

� D 3 C 6˛2

1 � ˇ2 � 2˛ˇ � 3˛2
;

which is larger than three since the second term on the
right hand side is positive. Hence, the GARCH(1,1) ex-
hibits fat tails compared with a normal distribution.

A link between the GARCH model and an ARMA
model is given by considering the squared process, fytg.
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By simply adding y2t and subtracting �2t on both sides of
Eq. (9), one obtains

y2t D ! C (˛ C ˇ)y2t�1 � ˇut�1 C ut (13)

where ut D y2t ��2t . Equation (13) is an ARMA(1,1) in y2t ,
since ut is a white noise error term:We have E[ut jFt�1] D
0, which implies that all autocorrelations of ut are zero.

It is possible that the process fytg is strictly stationary
without being covariance stationary, simply because a fi-
nite variance is not necessary for strict stationarity. If the
process starts in the infinite past, a necessary and sufficient
condition for strict stationarity of the GARCH(1,1) pro-
cess as shown by [98] is given by

E[log(˛�2t C ˇ)] < 0 ; (14)

which is indeed weaker than condition (10). This fol-
lows directly by noting that (10) is equivalent to log(˛ C
ˇ) D log(E[˛�2t C ˇ]) < 0. Thus, by Jensen’s inequality,
E[log(˛�2t C ˇ)] < log(E[˛�2t C ˇ]) < 0. For example,
for an ARCH(1) model (i. e., a GARCH(1,1) model with
ˇ D 0), ˛ can be as large as 3.56 and still the process is
strictly stationary. Figure 4 shows the different stationarity
regions as a function of the two parameters. [25] general-
ized condition (14) to the GARCH(p; q) case.

Under the sufficient condition (10), the GARCH(1,1)
process with Gaussian innovations is also geometrically
ergodic and ˇ-mixing with exponential decay as shown
by [28].

GARCHModeling, Figure 4
Stationarity regions for a GARCH(1,1) process with Gaussian in-
novations. To the left of the dashed line is the region of covari-
ance stationarity, to the left of the thick line is the region of strict
stationarity, and to the right of the thick line is the region of non-
stationarity

If condition (14) holds, then the process fytg has a sta-
tionary distribution whose tails are of the Pareto type. That
is, for large x and some a; k > 0,

p(x) D Pr(yt > x) D kx�a : (15)

The coefficient a is known as the tail index. The smaller a,
the fatter the tail of the distribution. For all c; 0 � c < ˛,
E[jyt jc] < 1. [43] showed that a stationary ARCHmodel
has Pareto-like tails. Knowledge of the tail index is impor-
tant for risk management in order to assess the risk of ex-
treme events. The theoretical tail index of a fitted ARCH or
GARCH model can be compared with an estimate of the
empirical tail index in order to diagnose the goodness-of-
fit with respect to the tails. For example, taking logarithms
of (15), one obtains log p(x) D log(k)�a log(x) for large x.
Replacing x by the largest m order statistics of yt , and in-
troducing an error term, one obtains the regression

log
i
n

D log k � a log X(i) C "i ; i D 1; : : : ;m (16)

where X(i) are the largest m order statistics of yt and "i is
an error term. One can estimate the coefficients of the lin-
ear regression (16) simply by ordinary least squares. More
problematic is the choice ofm, which involves a bias-vari-
ance trade-off. For the Dow Jones returns, Fig. 5 shows the
tail index regression using m D 30. The OLS estimator
of a is 3.12, indicating that fourth moments of returns may
not exist. Another simple estimator is the Hill estimator
proposed by [72], which is based on a likelihood principle.
For the Dow Jones returns, the Hill estimator of a using
m D 30 is 2.978, which is close to the OLS estimator, sug-
gesting that even third moments may not exist. More elab-
orate estimators have been proposed and we refer to the
detailed discussion in [43].

The presence of autoregressive conditional het-
eroskedasticity has an effect on the forecast intervals for
predicted ytCk given information at time t. If volatility at
time t as measured by the GARCH model is high (low),
these will be larger (smaller) than if GARCH effects are ig-
nored. Furthermore, forecasting the volatility itself is eas-
ily possible with the standard GARCH model, since ana-
lytical expressions can be found for the conditional mean
of future volatility as a function of today’s information.
The conditional mean is the optimal predictor in a mean
square prediction error sense. For example, to forecast
�2tCk , one derives for a forecast horizon of k � 2,

E[�2tCkjFt] D !(1 C (˛ C ˇ) C � � � C (˛ C ˇ)k�2)

C (˛ C ˇ)k�1�2tC1 :
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GARCHModeling, Figure 5
Tail index regression for the Dow Jones returns

If the process is covariance stationary, i. e., ˛Cˇ < 1, then
volatility forecasts converge to the unconditional variance:

lim
k!1E[�2tCk jFt] D !

1 � ˛ � ˇ
D Var(yt) :

In the early literature on GARCH models, these were crit-
icized for not providing good forecasts in terms of con-
ventional forecast criteria. For example, when regressing
the ex post squared daily returns on the forecasted con-
ditional variance, the obtained R2 is typically small, of the
order of about ten percent. [4] found that the daily squared
return is not really the targeted value, but that daily volatil-
ity should rather be measured by the sum of intra-day
squared returns, e. g., on intervals of five minute returns,
which they called realized volatility. In terms of realized
volatility, the forecasting performance of GARCH mod-
els improved substantially to levels of about fifty percent
R2. Later, a new branch of volatility modeling opened by
noticing that if intra-day data are available, then it is in-
deed more efficient to measure daily volatility directly by
realized volatility and then do forecasting of daily volatility
using models fitted to realized volatility, see e. g., [5].

Estimation and Inference

The principal estimation method for GARCH models is
maximum likelihood (ML). In most cases one assumes
a conditional Gaussian distribution. If the true distribu-
tion is Gaussian, thenML estimators are consistent and ef-
ficient under quite general conditions. On the other hand,
if the true distribution is not Gaussian, then one loses ef-
ficiency but again under quite general conditions, con-

sistency is retained if at least the first two conditional
moments are correctly specified, see [23]. In the case of
misspecification of the conditional distribution one also
speaks of quasi maximum likelihood (QML), distinguish-
ing it from ML where the true distribution is used, which
however in general is unknown.

The log likelihood function, up to an additive constant
and conditional on some starting value for the volatility
process, reads L(�) D Pn

tD1 lt(�), where

lt(�) D �1
2
log �2t (�) � 1

2

nX

tD1

y2t
�2t (�)

and where � D (!; ˛; ˇ)0 is the parameter vector. The
maximum likelihood estimator is then defined as the max-
imizer of L(�) over some compact set�,

�̂ D argmax
�2�

L(�) : (17)

Unfortunately, there is no closed form solution to (17) but
many numerical optimization procedures exist. For exam-
ple, a popular algorithm is that of [15].

Figure 6 shows the likelihood function of
a GARCH(1,1) process generated using the parameter
estimates of the Dow Jones index returns (see Sect. “Asym-
metry, Long Memory, GARCH-in-Mean”), Gaussian in-
novations, and the same sample size of n D 19727. The
parameter ! has been determined by the variance target-
ing technique of [50], i. e., ! D �2(1�˛�ˇ), where �2 is

GARCHModeling, Figure 6
Contour plot of the likelihood function of a generated
GARCH(1,1) process using Gaussian innovations and a sample
size of n D 19727. The abscissa is the parameter ˛, the ordinate
isˇ. True values,marked by a cross in the figure, are˛ D 0:0766
and ˇ D 0:9173
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GARCHModeling, Figure 7
Contour plot of the likelihood function of the GARCH(1,1)model
fitted to observed Dow Jones index returns, 1928 to 2007, with
sample size n D 19727. The abscissa is the parameter ˛, the or-
dinate is ˇ. The maximum, marked by a cross in the figure, is ob-
tained for ˛ D 0:0766 and ˇ D 0:9173

the sample variance of observed returns. In regions where
˛ C ˇ � 1, ! is set to zero. Note the steep decline of the
likelihood for values of ˛ and ˇ that lie beyond the covari-
ance stationarity region (˛ C ˇ � 1). Figure 7 shows the
same function for the observed Dow Jones index returns.
No major difference can be detected between both graphs,
indicating an appropriate specification of the Gaussian
likelihood function.

If the first two moments of yt are correctly specified
and under further regularity conditions given by [118]
and [23], the QML estimator is consistent with asymptotic
distribution given by

p
n(�̂ � �)

L�! N(0; J�1IJ�1) (18)

where

I D E
�
@lt
@�

@lt
@� 0

	

; J D �E
�
@2 lt
@�@� 0

	

;

and where the derivatives are evaluated at the true param-
eter values. In case the conditional distribution is indeed
Gaussian, one has the identity I D J and the asymptotic
covariance matrix reduces to the inverse of the informa-
tion matrix, I�1. Note that consistency is retained if the
conditional distribution is not Gaussian, but efficiency is
lost in that case.

It is straightforward to obtain analytical formula for
the score vector, the outer product of the score and the

Hessian matrix, with which inference on parameter esti-
mates can be done using the result in (18). More primi-
tive conditions than those of [23] have been derived, e. g.,
by [57,85,91] and [66].

Maximum likelihood estimation using other than
Gaussian distributions has been considered, e. g., by [101].
He shows that if the distribution is misspecified, then con-
sistency is no longer guaranteed. In particular, if a sym-
metric distribution is assumed but the true distribution
is asymmetric, then maximum likelihood estimators are
inconsistent. In practice, a common distribution used for
maximum likelihood estimation is the Student t distribu-
tion. Given the results of [101], one should be careful in
interpreting parameter estimates if there is evidence for
skewness in standardized residuals.

Another estimation strategy based on maximum like-
lihood is a nonparametric estimation of the error density,
which has been advocated by [48]. They suggest to use
a first stage estimator of the model parameters, which is
consistent but not efficient such as the Gaussian MLE, to
construct residuals and then to use nonparametric meth-
ods to estimate the error density. Given the estimated error
density, one canmaximize the likelihood corresponding to
this nonparametric density function. These estimators will
under regulatory conditions be consistent and more effi-
cient than the Gaussian ML estimator, provided that the
true density is different from Gaussian.

A potential practical problem of maximum likelihood
estimators is its dependence on numerical optimization
routines. Recently, a closed form estimator based on the
autocorrelation structure of squared returns has been sug-
gested by [82]. Their estimator is inefficient compared to
ML but has the advantage of being uniquely determined by
the data. Further Monte Carlo evidence is necessary to see
whether it is a serious practical competitor for ML-type es-
timators. Least squares type estimators of ARCH(q) have
been considered by [118] and [103]. Again, these are in-
efficient compared with maximum likelihood estimators
but simpler to compute. [104] suggest a least absolute de-
viation estimator for GARCH models that is robust with
respect to outliers but does not allow for a closed form.
Finally, Bayesian estimation of GARCH-type models has
been investigated, e. g., by [12,115] and [32].

Testing for ARCH

In a regression such as

yt D �t C "t (19)

where �t is measurable w.r.t. Ft�1 D �(yt�1; yt�2; : : :)
and "t is a white noise sequence, inference on �t typically
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depends on the properties of the error term "t . For exam-
ple, if "t is i.i.d. Gaussian and �t is linear such as an AR(p)
model, then estimation by least squares of the autoregres-
sive coefficients in �t is efficient. If, however, "t is not i.i.d.
and for example conditionally heteroskedastic, then esti-
mation by ordinary least square (OLS) is no longer effi-
cient and some kind of generalized least squares may be
employed. Moreover, inference on the parameters in �t
will be erroneous if homoskedasticity of "t is assumed but,
in reality, "t is conditionally heteroskedastic. In particular,
standard errors in that case are typically underestimated.
To avoid this, it is essential to test for ARCH type effects
in "t . The following testing procedure, based on the La-
grange multiplier principle, has been proposed in the orig-
inal ARCH paper by [44]. The null hypothesis is that "t is
i.i.d. white noise, the alternative is the presence of ARCH.
One first estimated themodel (19) by least squares, obtains
residuals "̂t , and then runs the regression

"̂2t D ˛0 C ˛1"̂
2
t�1 C ˛2"̂

2
t�2 C � � � C ˛q "̂

2
t�q C �t (20)

where �t is an error term. Under the null hypothesis H0,
˛1 D : : : D ˛q D 0. The test statistic is � D nR2, where n
is the sample size and R2 the coefficient of determination
of the regression (20). Under H0, the test statistic follows
asymptotically a �2 distribution with q degrees of freedom.
Hence, it is an elementary exercise to test for ARCH ef-
fects in the error term of regression models. Historically, it
is remarkable that prior to the introduction of the ARCH
model, the above LM test was used by Prof. Clive Granger
as an LM test for a bilinear error term, for which it has
some power. Then, Prof. Robert Engle discovered that it
has more power for another model, which he then intro-
duced as the ARCH model.

An alternative to the LM test of [44] would be a Wald-
type test of the hypothesis H0 : ˛ D 0 in the GARCH(1,1)
model (5) using, e. g., the t-ratio as test statistic. However,
this test is non-standard since under the null hypothesis
the parameter ˛ is on the boundary of the parameter space
and the parameter ˇ is not identified. [6] treats this test in
a general framework.

Asymmetry, LongMemory, GARCH-in-Mean

In the standard GARCH model in (7), positive and neg-
ative values of lagged returns yt�i have the same impact
on volatility, since they appear in squares in the equation
for �2t . Empirically, it has been frequently noted since [17]
that for stock markets, negative returns increase volatility
more than positive returns do. Essentially, this so-called
leverage effect means that negative news have a stronger
impact on volatility than positive ones. To account for this

empirical observation, several extensions of the standard
GARCH model have been proposed in the literature. The
most commonly used are the exponential GARCH model
of [99] and the threshold GARCHmodel of [59] and [123].
The threshold model in its first order variant is given by
the process

�2t D ! C ˛y2t�1 C ˛�y2t�1I(yt�1 < 0) C ˇ�2t�1

where ˛� is an additional parameter and I(�) is the indica-
tor function. If ˛� D 0, then the threshold model reduces
to the standard GARCH model. If ˛� > 0, then negative
returns have a stronger impact on volatility than positive
ones, which corresponds to the empirical observation for
stock markets.

Secondly, the exponential GARCH (EGARCH) model
of [99] specifies log-volatility as

log �2t D ! C ��t�1 C ˛(j�t�1j � Ej�t�1j)C ˇ log �2t�1

where �t D yt/�t is i.i.d. with a generalized error dis-
tribution (GED) which nests the Gaussian and allows
for slightly fatter tails. Due to the specification of log-
volatility, no parameter restrictions are necessary to keep
volatility positive. Moreover, the conditions for weak and
strong stationarity coincide. Note that if � ¤ 0, then
Cov(y2t ; yt� j) ¤ 0 such that a leverage effect can be cap-
tured. A drawback of the EGARCH model is that asymp-
totic theory for maximum likelihood estimation and in-
ference under primitive conditions are not available yet,
but [110] are making much progress in this respect.

Another model allowing for asymmetry is the asym-
metric power ARCH (APARCH) model [36]. In its (1,1)
order form it specifies volatility as

�ı
t D ! C ˛(jyt�1j � � yt�1)ı C ˇ�ı

t�1

where ı is a positive parameter. If ı D 2 and � D 0, the
standard GARCH model is retained. For � ¤ 0, there is
an asymmetric impact of positive and negative lagged re-
turns on volatility. The additional flexibility due to the pa-
rameter ı allows to better reproduce the so-called ‘Taylor
property,’ originally noted by [111], which says that the
autocorrelations of jytjd are positive even at long lags, and
when viewed as a function of d take a maximum for d � 1
for many financial returns yt . [70] provide a formal discus-
sion of this issue.

The standard GARCH(p; q) model (7) implies that the
decay of the autocorrelation function (ACF) of squared re-
turns is geometrically fast. However, one often finds evi-
dence for a slow hyperbolical decay in financial time series,
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see for example Fig. 3. The decay pattern of the ACF is re-
lated to the structure of coefficients cj in the ARCH(1)
representation of GARCH models,

�2t D c0 C
1X

jD1

c j y2t� j : (21)

For example, in theGARCH(1,1) model, these are given by
c j D ˛ˇ j�1. Covariance stationary GARCH models have
the property that the autocovariance function of squared
returns, � (�) D Cov(y2t ; y2t�� ), is absolutely summable,
i. e.,

P
� j� (�)j < 1. Such a property is commonly called

short memory as opposed to long memory processes for
which the ACF is not absolutely summable. Long mem-
ory GARCH models have been proposed by [8] and [19],
see also the review of long memory processes in econo-
metrics by [7]. An example of a long memory GARCH
process would be given by (21) with c j D C j�� for some
constant C and parameter � > 0. A particular example
for such a process is the fractionally integrated GARCH
(FIGARCH) model of [8], which can be written as

(1 � L)d�2t D ! C ˛y2t�1

where L is the lag operator and d a positive parame-
ter. When d D 1 one obtains the integrated GARCH
(IGARCH) model of [47]. For d ¤ 1 one can use a bi-
nomial extension to obtain after inverting

(1 � L)�d D
1X

jD0


 ( j C d)

 ( j C 1)
 (d)

Lj D
1X

jD0

c jL j (22)

where 
 (�) is the Gamma function. The coefficient cj in
(22) can be shown to be of the long memory type. A sim-
ilar long memory EGARCH model has been introduced
by [19]. The drawback of these particular specifications is
that they share the property with the IGARCH model to
have infinite variance. [105] has proposed a long memory
GARCH type model that allows for finite variance.

Finally, in the finance literature a link is often made
between the expected return and the risk of an asset, since
investors are willing to hold risky assets only if their ex-
pected returns compensate for the risk. A model that in-
corporates this link is the GARCH-in-mean or GARCH-
Mmodel of [52], given by

yt D ıg(�2t ) C "t

where "t is an ARCH or GARCH error process, ı a pa-
rameter, and g a known function such as square root or
logarithm. If ı > 0 and g is monotone increasing, then
the term ıg(�2t ) can be interpreted as a risk premium that

increases expected returns E[yt] if volatility �2t is high. It
can be shown that such a model, when applied to the mar-
ket index, is consistent with the capital asset pricing model
(CAPM) of [108] and [87], see [24].

As an empirical illustration we estimate alternative
models for the Dow Jones index discussed in the intro-
duction. To recall, we have daily returns from October
1928 to April 2007. First order autocorrelation of returns
is 0.03, which due to the large number of observations is
significant at the level 1%. However, we refrain here from
fitting an autoregressive or moving average model to the
returns as the results concerning volatility estimation do
not change substantially.We only consider a constant con-
ditional mean in the model yt D � C "t , where "t is
one of the discussed GARCH-type models and � takes
into account a non-zero trend in returns. Six alternative
GARCH models are considered, all of them being of order
(1,1): standard GARCH, TGARCH, EGARCH, GARCH-
M, TGARCH-M and EGARCH-M. For the “in-mean” ver-
sions, we have chosen the square root specification for the
function g(�), which seems to work better than the loga-
rithm or the identity function. Moreover, for all “in-mean”
models the constant � turned out to be insignificant and
hence was suppressed from the model. Table 1 summa-
rizes the estimation results.

Note first that all estimated risk premia are positive
� > 0 and ı > 0, as theory would predict. Second, for all
models allowing for asymmetry, the leverage effect of neg-
ative returns is confirmed, i. e., ˛� > 0 for the TGARCH
models and � < 0 for the EGARCH models. Third, in all
cases persistence of shocks to volatility is very high, mea-
sured by ˛ C ˇ in the GARCH model, ˛ C ˛�/2 C ˇ in
the TGARCH model (assuming a symmetric innovation
distribution), and by ˇ in the EGARCH model. Thus, all
models are short memory with exponential decay of the
ACF of squared returns, but the models try to adapt to the
empirically observed slow decay of the ACF by pushing the
persistence parameter close to one. This near-IGARCH
behavior is typical for daily returns. Finally, the goodness-
of-fit seems to be best for the TGARCH-in-mean model,
taking the log-likelihood as criterion. The estimation re-
sults strongly confirm the presence of the leverage effect,
high persistence, and positive risk premium in the data.
Figure 8 shows the estimated conditional standard devia-
tion of the TGARCH-M model. For the other models, the
graph would look quite similar and is therefore not shown
here. Notice the very volatile periods at the beginning of
the sample in the 1930s, around the year 2000 correspond-
ing to the “new economy” boom and following crash, as
well as the spike in 1987 due to the crash of October 17,
1987.
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GARCHModeling, Table 1
Estimation results for the following models: GARCH, EGARCH, TGARCH, GARCH-in-mean, TGARCH-in-mean and EGARCH-in-mean,
applied to daily Dow Jones returns from 1928 to 2007. All parameters are significant at the one percent level

G TG EG GM TGM EGM
� 4.25E-04 2.64E-04 2.36E-04
ı 0.0591 0.0354 0.0286
! 8.74E-07 1.03E-06 -0.2184 8.75E-07 1.06E-06 -0.2227
˛ 0.0766 0.0308 0.1391 0.0766 0.0306 0.1378
˛� 0.0769 0.0761
� -0.0599 -0.0595
ˇ 0.9173 0.9208 0.9879 0.9172 0.9205 0.9874
L 65456.47 65600.53 65589.32 65462.45 65603.79 65590.69

GARCHModeling, Figure 8
Estimated conditional standard deviation of daily Dow Jones in-
dex returns, 1928 to 2007, using the TGARCH-in-mean model

Non- and Semi-parametricModels

Nonparametric methods refrain from associating particu-
lar parametric forms to functions or distributions. Instead,
only the class of functions is determined, for example
the class of squared integrable functions or the degree of
smoothness. The price for the flexibility is typically slower
convergence rates than parametric models. A combination
of the two approaches is often called semiparametric. One
such approach has already been mentioned in Sect. “Es-
timation and Inference” in the context of estimation by
maximum likelihood using nonparametric estimates of the
error density, as proposed by [48] for GARCH models.
[88] shows that this procedure leads to adaptive estimation
of the identifiable parameters (˛ and ˇ in a GARCH(1,1)
model) in the sense of [16]. That is, it is possible to achieve
the Cramer–Rao lower bound and do as good as if one
knew the true error distribution. The scale parameter !,

however, is not adaptively estimable. See also [40] and [37]
for related results for univariate GARCHmodels, and [65]
for an extension to semiparametric estimation of multi-
variate GARCH models.

A different approach is to directly model the volatility
process in a nonparametric way. Early models were pro-
posed by [61] and [51]. The qualitative threshold ARCH
model of [61] specifies models of the type

yt D
JX

jD1

� j I(yt�1 2 Aj)�t ; (23)

where (Aj) is a partition of the real line and � j; j D 1; : : : ;
J, are positive parameters. Thus, volatility is modeled as
a piecewise constant function of lagged returns. Note that
the threshold ARCH model of [59] and [123] is not a spe-
cial case of (23) as there the volatility function is piecewise
quadratic in lagged returns. Extensions to the ARCH(q)
and GARCH(p; q) are straightforward. [51] replaced the
piecewise constant functions by piecewise linear functions.
In both cases, one may consider their models as nonpara-
metric if the partition becomes finer as the sample size in-
creases.

Consider the model

yt D �(yt�1)�t

where �(�) is an unknown smooth function, and �t 

i.i.d. N(0; 1). For �2(x) D ˛x2 one obtains the parametric
ARCH(1) model of [44]. An example of a nonparametric
estimator of �(�) is the Nadaraya–Watson estimator given
by

�̂2(x) D
Pn

tD2 Kf(yt�1 � x)/hgy2tPn
tD2 Kf(yt�1 � x)/hg

where K is a kernel function satisfying
R
K(x)dx D 1 andR

xK(x)dx D 0, and where h > 0 is a bandwidth that
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determines the degree of smoothing. As the Nadaraya–
Watson estimator can be interpreted as fitting a constant
locally, a generalization consists of fitting a local polyno-
mial instead. This has been derived by [68] for the volatil-
ity case.

A general problem of nonparametric methods is the
so-called curse of dimensionality when smoothing has to
operate in high dimensions. Considering a nonparametric
ARCH(q) model,

yt D �(yt�1; : : : ; yt�q)�t

this problem is apparent and in practice very large data
sets are required to estimate the function g with appropri-
ate precision. One may be inclined to impose more struc-
ture on the g function such as additive or multiplicative
separability. Nonparametric multiplicative ARCH models
have been proposed by [63] and [120]. Semi-parametric
additive ARCH models of the type �2(yt�1; : : : ; yt�q) D
Pp

jD1 ˇ
j�1g(yt� j) with some unknown function g and

parameter ˇ 2 (0; 1) have been considered by [29].
Extension of nonparametric ARCH(q) models to non-

parametric GARCH(1,1) models have also been proposed.
However, in its general form yt D �t�t with �t D
g(yt�1; �t�1), the model is difficult to estimate due to lack
of structure. One might consider iterative estimation al-
gorithms, based on some initial estimate of volatility as
in [26].

Imposing a similar semi-parametric structure as for
the semi-parametric ARCH(q) model of [29], one can
write �2t D g(yt�1) C ˇ�2t�1, where again g(�) is an un-
known smooth function. Note that this model nests many
of the proposed parametric models. It has been considered
by [119] and [89].

In practice, nonparametric methods may be used
whenever it is not a priori clear what functional form fits
best the data, either by using them directly, or as a tool to
specify a parametric model in a second stage.

MultivariateGARCHModels

In economics and finance, one typically deals with mul-
tiple time series that are fluctuating in a non-systematic
manner and are considered as realizations of stochas-
tic processes. The interest for applied econometricians is
therefore to model their risk, that is, their volatility, but
also their inter-dependencies. For example, if one has rea-
sons to assume that the underlying stochastic processes
are Gaussian, then the inter-dependencies may be com-
pletely described by the correlation structure. In fact, when
we say ‘multivariate volatility models’ we usually mean the
modeling of volatilities but also that of correlations. This is

also the reason why the extension of univariate volatility to
multivariate volatility models is much more complex than
that of univariate models for the conditional mean, such
as ARMA models, to the multivariate case.

It will be immediately clear that the multivariate case
is the one that is by far more relevant in practice when fi-
nancial markets are under study. The reason is, first, the
large number of different assets, or even different types
of contracts, assets, exchange rates, interest rates, options,
futures, etc. Second, there is usually a strong link be-
tween these variables, at least within one group. For ex-
ample, asset returns in one stock market tend to be quite
strongly correlated. One would make big approximation
errors when treating the variables as independent by, e. g.,
using univariate volatility models for the conditional vari-
ances and set conditional covariances to zero. Note that,
setting conditional covariance to zero is much stronger an
assumption than setting the unconditional covariance to
zero. Ways must be found to treat the dependence of the
series in a flexible yet parsimonious way.

A first step would again be to do exponential smooth-
ing à la RiskMetrics, which can be used not only to obtain
the individual variances according to (4), but also to ob-
tain the correlations. To see this, we define just as in (4) an
exponential smoother for the covariances as

�12;t D (1 � �)"1;t�1"2;t�1 C ��12;t�1

and then obtain as usual the conditional correlation as

�t D �12;t

�1;t�2;t
;

which is guaranteed to be between minus one and one if
the same parameter � is used, typically � D 0:94. Figure 9
depicts the RiskMetrics conditional correlation series for
the DOW and NASDAQ return series.

Obviously, conditional correlations are not constant,
although it is difficult from the graph to verify such a state-
ment statistically. However, one thing to observe is that
during the New Economy boom in 1999 and 2000, esti-
mated correlations have been substantially lower, some-
times even negative, than at other times. The reason is
probably a decoupling due to the higher vulnerability of
the NASDAQ with respect to the bubble in high tech and
internet stocks. A more thorough analysis of this data set
which also compares this model with other, more flexi-
ble models is provided by [45]. We see that the RiskMet-
rics tool, even though very simple, can give some guide-
lines. One of the objectives of the econometrician is to en-
hance the model in terms of flexibility (e. g., why should �
be fixed to 0.94?), and to establish a statistical framework
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GARCHModeling, Figure 9
Conditional correlations of the Dow Jones IA and NASDAQ index
returns, daily, using the RiskMetrics model

in which hypotheses such as constant conditional correla-
tions can be tested.

From an econometrical viewpoint, modeling the
volatility of multiple time series is, for several reasons,
challenging both theoretically and practically. For the sake
of illustration, consider a bivariate GARCH model of the
Vec type that was introduced by [24]. Denote by Ht the
conditional variance matrix of the asset return vector yt .
Then a bivariate ARCH(1) model reads

Ht D
�
h1;t h12;t
h12;t h2;t

�

and where

h1t D !1 C ˛11"
2
1;t�1 C ˛12"1;t�1"2;t�1 C ˛13"

2
2;t�1

h12;t D !2 C ˛21"
2
1;t�1 C ˛22"1;t�1"2;t�1 C ˛23"

2
2;t�1

h2t D !3 C ˛31"
2
1;t�1 C ˛32"1;t�1"2;t�1 C ˛33"

2
2;t�1 :

Each conditional variance, h1t and h2t , and conditional
covariance, h12;t , depends on all lagged squared returns
(two in the bivariate case) and all lagged cross-products
(one in the bivariate case). The main reason for the rapidly
increasing complexity of the model when the dimension
is increased lies in the fact that not only all conditional
variances with their cross-dependencies have to be mod-
eled, but also all conditional correlations. It is in fact the
latter that poses the main problem, as there are a total of
N(N � 1)/2 such correlations when the dimension is N,
but only N variances. Thus, modeling variances and cor-
relations simultaneously, a total of N(N C 1)/2 entries of
the conditional covariance matrix need to be modeled. For

example, if N D 10 (a moderate dimension for many eco-
nomic or financial problems) this number is 55, if N D
100 (such as modeling all stocks of a common stock in-
dex), then 5050 series, conditional variances and covari-
ances, are at stake.

It is clear that this is too much to allow for a flexible
cross-dependence of the individual series.Without impos-
ing any structure except linearity, the multivariate gener-
alization of the standard GARCHmodel, the so-called Vec
model introduced by [24], is feasible only for low dimen-
sions, two or three say, as otherwise the number of param-
eters becomes too high relative to the number of observa-
tions typically encountered in economic practice. Another
problem is that the Vec model does not guarantee a pos-
itive definite covariance matrix. Necessary conditions for
the latter desirable property are as yet unknown in the gen-
eral Vec specification.

These are some reasons to look for other models, and
in fact, over recent years a broad variety of different ap-
proaches to the problem have been suggested in the lit-
erature. Roughly speaking, one can divide them into two
groups. The first one tries to simplify the problem by im-
posing more structure on the Vec model. Examples are
the BEKK model of [49] and the factor GARCH model
by [53]. More recently, the second group tries to sepa-
rate the problem of modeling the conditional variances
and conditional correlations. An early and simple version
of this group is to say that conditional variances are just
univariate GARCH and conditional correlations are con-
stant over time, as suggested by [22]. In its simplicity, this
constant conditional correlation (CCC) model basically
does not add any complexity beyond univariate GARCH
to the multivariate estimation problem, which renders the
model extremely useful in empirical practice. It also intro-
duced the idea of two-step estimation, where in the first
step conditional variances are modeled, and in the sec-
ond step the conditional correlations using the standard-
ized residuals of the first step. However, starting with [45]
there have been plenty of arguments in favor of time-vary-
ing conditional correlations in financial markets. In par-
ticular, a common finding is that correlations are higher
when the market moves up than when it moves down.
A test for this correlation asymmetry has been suggested
by [73]. Using a dynamic conditional correlation model
(DCC), [45] shows that time varying correlations are not
uncommon even in normal market situations. In the fol-
lowing we sketch these two branches of the multivariate
GARCH literature. It should however be mentioned that
there are models that do not fall into these two categories
such as a multivariate version of the exponential GARCH
model proposed by [79].
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Factor GARCHModels

In the following factor GARCHmodels are discussed as an
example of multivariate GARCHmodels. Themain idea of
factor models is to reduce the dimension of the system to
a tractable two or three factors, which can then be mod-
eled in a standard way. It should be noted that also ‘full-
factor’ models with number of factors equal to the num-
ber of variables have been proposed in the literature. For
example, [116] propose the model

yt D W ft

where W is a N � N parameter matrix and f t is a N-vec-
tor with conditional mean zero and diagonal conditional
variance matrix, ˙ t say. The individual conditional vari-
ances of f t can be modeled by univariate GARCH(1,1),
for example. One can restrict W to be lower triangular,
as it is well known that the Choleski decomposition of
a positive definite matrix always exists and is unique. Thus,
the conditional variance matrix of yt is given by Ht D
W˙tW D LtL0

t , where Lt D W˙1/2
t is lower triangular.

In this model, the parameters in W and those in ˙ t need
to be estimated jointly, which may be cumbersome in high
dimensions. The empirical performance of such full factor
models still remains to be investigated.

It is more common to specify only a few factors and al-
low for idiosyncratic noise. We will look at such models in
the following. Suppose that there are K (observed or un-
observed) factors, collected in a K-vector f t , with K < N .
Then a simple factor model can be written as

yt D W ft C vt (24)

where vt is a white noise vector with Var(vt) D ˝ that
represents the idiosyncratic noise. Typically, one assumes
that˝ is diagonal so that components of the idiosyncratic
noise are uncorrelated. In that case, correlation between
components of yt is induced only through the common
factors f t. If yt represents the error of a time series system,
one may constrain f t to have conditional mean zero. The
matrixW is of dimension N � K, of full column rank, and
contains the so-called factor loadings, the weights of a fac-
tor associated with the individual components of yt .

In finance, model (24) is well known from the arbitrage
pricing theory (APT) of [106], where yt are excess returns
of financial assets, f t are systematic risk factors and vt is
unsystematic risk. It can also be viewed as a generaliza-
tion of the capital asset pricing model (CAPM) developed
by [108] and [87]. For simplicity we assume here that fac-
tors are observed. If they are unobserved, identification is-
sues arise that are discussed, e. g., by [107].

For the factors, a low-dimensional GARCHmodel can
be assumed: Var( ft j Ft�1) D ˙t , where ˙ t is a (K � K)
covariance matrix. The conditional covariancematrix of yt
is given by

Ht D Var(yt j Ft�1) D W˙tW 0 C˝ : (25)

In the case of just one factor, the matrix W reduces to
a vector w and the factor volatility, �2t say, can be modeled
by univariate GARCH and the conditional variance of yt
simplifies to

Ht D ww0�2t C˝ :

If the factors are conditionally uncorrelated, i. e.,˙ t is di-
agonal with˙t D diag(�21t ; : : : ; �

2
Kt), then one can write

Ht D
KX

kD1

wkw0
k�

2
kt C˝

wherewk is the kth column ofW. [83] propose methods to
test for the number of factors K and derive results for max-
imum likelihood estimation. For the more general BEKK
model class, [31] derived asymptotic theory but assuming
moments of order eight of the process, which may exclude
many of the typically fat-tailed financial time series.

A popular factor GARCH model is the orthogonal
GARCH (OGARCH) model of [3]. In the OGARCH
model, factors f t are the K largest principal components
obtained from the (unconditional) sample covariance ma-
trix, and the loading matrix W is the matrix of associated
eigenvectors. The loadings represent the sensitivity of an
individual series on a specific factor. By construction, the
unconditional correlation between the factors is zero, due
to the orthogonality of the principal components. How-
ever, the conditional correlation may be different from
zero. Denote the (empirical) covariance matrix of yt by˙ .
The decomposition ˙ D 
�
 0 gives 
 D (�1; : : : ; �N )
with the eigenvectors � i and � D diag(�1; : : : ; �N ) with
corresponding eigenvalues �i. We order the columns of 

according to themagnitude of the corresponding eigenval-
ues such that �1 > �2 > � � � > �N . Let us assume here that
all eigenvalues are distinct, otherwise 
 may not be identi-
fied. For the case of non-distinct eigenvalues, one may use
the more general singular value decomposition and go for
the GO-GARCH (generalized orthogonal GARCH) model
of [114].

The vector of principal components, given by

�
ft
"t

�

D 
 0yt
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is partitioned into the firstK components f t, whose volatil-
ity will assumed to be stochastic, and the last N � K com-
ponents "t , whose volatility will assumed to be constant.
One could speak of K dynamic and N � K static factors.

Now decompose the matrices as follows:


(N�N) D (
1(N�K) ; 
2(N�(N�K)) ) ;

and�1 D diag(�1; : : : ; �K), �2 D diag(�KC1; : : : ; �N ).
The model can then be written as

yt D 
1 ft C 
2"t (26)

where Var( ft j Ft�1) D ˙t andVar("t j Ft�1) D �2. For
example, ˙ t may be diagonal or some K-variate GARCH
model. Note that this representation is equivalent to that
of (24) with W D 
1 and vt D 
2"t , except that ˝ D

2�2


0
2 will not be diagonal in general. The conditional

variance of yt is given by

Ht D Var(yt j Ft�1) D 
1˙t

0
1 C 
2�2


0
2

D 


�
˙t 0
0 �2

�


 0 :

If ˙ t follows a K-variate BEKK process, then it can be
shown thatHt will follow anN-variate BEKK process with
restrictions on the parameter matrices. However, the clas-
sical OGARCH assumes that factors are conditionally or-
thogonal, hence ˙ t is diagonal, additional to the fact that
they are unconditionally orthogonal by construction. This
assumption is crucial and may not always be justified in
practice. It should be emphasized that in the OGARCH
model, the factor loadings contained in the matrix 
 and
the factor variances contained in� are considered as fixed
for a given sample covariance matrix. This contrasts the
general factor model (24) where factor loadingsW are es-
timated jointly with the parameters describing the factor
dynamics.

Instead of using unconditionally orthogonal fac-
tors, [55] proposed to use conditionally orthogonal factors
by searching numerically for linear combinations of the
data such that the conditional correlation between these
combinations is minimized under norm constraints. The
existence of such linear combinations is tested using boot-
strap methods.

Constant and Dynamic
Conditional Correlation Models

[22] suggests a multivariate GARCH model with constant
conditional correlations. Let Ht be the conditional covari-
ance matrix of a series yt , andVt be a diagonal matrix with

the conditional standard deviations of yt on its diagonal.
Then the model is simply

Ht D VtRVt (27)

where R is the constant correlation matrix. Ht is positive
definite as long as the conditional variances are positive
and R is positive definite. For instance, one could spec-
ify univariate GARCH models for the individual condi-
tional variances. One the other hand, it is possible to al-
low for spill-over of volatilities from one series to other
series. Note that the CCC model is not nested in the Vec
specification. Theory of maximum likelihood estimation
for CCC-type models has been established by [77] for con-
sistency and [86] for asymptotic normality.

The assumption of constant correlations simplifies
strongly the estimation problem. However, it might some-
times be too restrictive. For example, it is often observed
that correlations between financial time series increase in
turbulent periods, and are very high in crash situations.
A Lagrange Multiplier test against the CCC model has
been suggested by [112]. An extension of the CCC model
to allow for time-varying correlations is the dynamic con-
ditional correlations (DCC) model introduced by [45].
The DCC model renders the conditional correlation ma-
trix R dependent on time, Rt say. The conditional correla-
tion between the ith and jth component of yt is modeled
as

Ri j;t D Qi j;t
p
Qii;tQ j j;t

where Qi j;t is the ijth element of the matrix Qt given by

Qt D S(1 � ˛ � ˇ) C ˛vt�1v0
t�1 C ˇQt�1 (28)

where ˛ and ˇ are parameters and vt D V�1
t yt are the

standardized but correlated residuals. That is, the condi-
tional variances of the components of vt are one, but the
conditional correlations are given by Rt . The matrix S is
the sample correlation matrix of vt , so a consistent esti-
mate of the unconditional correlation matrix. If ˛ and ˇ
are zero, we get the above CCC model. If they are differ-
ent from zero one gets a kind of ARMA structure for all
correlations. Note however that all correlations would fol-
low the same kind of dynamics, since the ARMA param-
eters are the same for all correlations. The specification of
the first term ofQt ensures that the unconditional mean of
Qt is equal to the sample covariance matrix of vt , similar
to the variance targeting technique of [50]. Also it facili-
tates the estimation, since that can be done in two steps:
First, the conditional variances in Vt are estimated us-
ing univariate GARCH models, for example, then vt , the
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GARCHModeling, Figure 10
Conditional correlations of the Dow Jones IA and NASDAQ index
returns, daily, using the DCCmodel.Dashed line: constant condi-
tional correlation

standardized (but correlated) residuals and their covari-
ance matrix S are computed, before in the second step only
two remaining parameters, ˛ and ˇ, need to be estimated.
A model similar to DCC has been proposed by [113].

Figure 10 depicts the estimated conditional correla-
tions for the DOW Jones and NASDAQ time series, using
the DCC and CCC models. Comparing the former with
the RiskMetrics estimates of Fig. 9, no substantial differ-
ence can be detected visually. However, the parameter es-
timates of ˛ and ˇ are 0.0322 and 0.9541 with standard
errors 0.0064 and 0.0109, respectively, so that the null hy-
pothesis H0 : ˛ D 0:06 is clearly rejected. Whether or
not the difference in estimated conditional correlations
matters in empirical applications has been addresses, e. g.,
by [30], who consider the problem of portfolio selection.
[96] compare the performance of CCC, DCC, OGARCH
and a model of [84] in forecasting and portfolio selection
in high dimensions. They find that the difference is not
substantial, but that the CCC model is too restrictive.

To summarize, the whole challenge of multivariate
volatility modeling is to balance model complexity and
simplicity in such a way that the model is flexible enough
to capture all stylized facts in the second moments (and
perhaps beyond that) of the series while keeping it simple
for estimation and inference.

In the following we sketch some applications of mul-
tivariate GARCH models in finance. As an early exam-
ple, [24] estimate a capital asset pricing model (CAPM)
with time-varying betas. The beta is defined as the ratio of
the asset return’s covariance with the market return, di-
vided by the variance of the market return. Denote by ri t

the excess return of asset i, and by rmt the excess return
of the market. Then the beta-form of the CAPM can be
written as

ri t D ˇi t rmt C "i D Cov(ri t ; rmt)
Var(rmt)

C "i

where "i is idiosyncratic noise whose risk cannot be diver-
sified away and is therefore called unsystematic risk. As we
observe time varying second moments, it is clear that be-
tas will also be time varying, not only due to the variance
of the market but also due to the covariances of the as-
sets with the market. However, if both returns are covari-
ance stationary, then by definition the unconditional sec-
ondmoments will be constant, and only after conditioning
on suitable information sets such as historical returns will
second moments become time varying.

Secondly, correlations between exchange rates have
been substantially time-varying, as for example in Europe
the European exchange rate mechanism enforced increas-
ing correlations. The correlation of the DEM/USD and
FRF/USD rates, for instance, increased steadily in the late
1990s until it was virtually one just before the launch of the
Euro. See, e. g., [45], whomodels these data, among others,
with alternative correlation models. Thirdly, portfolio se-
lection is another type of application. If, for example, one
is interested in the minimum variance portfolio of n assets
with covariance matrix ˙ , then the well known formula
for the optimal weight vector ˛ is given by

˛ D ˙�1�

�0˙�1�

where � is an n-vector of ones, see, e. g., [30]. Obviously,
if ˙ is allowed to be time-varying, then the optimal port-
folio weights will in general also depend on time. This has
many important practical implications, e. g., for portfolio
managers. One of the problems is to determine an opti-
mal reallocation frequency. If variances and covariances
change daily and the objective is to minimize the portfo-
lio variance over the next ten days, then one could follow
at least two strategies: either calculate the optimal portfo-
lio weights daily and reallocate accordingly. Or, calculate
the return distribution over ten days, obtain thus a covari-
ance matrix for ten-day returns, find the optimal weights
using this covariance matrix and leave the corresponding
portfolio unchanged throughout the ten days. If the ob-
jective is to minimize the variance over the ten days, then
the first method will usually outperform the second. The
intuitive reason is that the second method aggregates data,
thus losing valuable information. However, in practice one
may still prefer the secondmethod for various reasons, one
of which could be the higher transaction costs of the first
method.
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Stochastic Volatility

GARCH models discussed so far explain the conditional
variance at time t as a function of the information set at
time t � 1. In other words, it is measurable with respect
to this information set. This is not the case for models of
the stochastic volatility (SV) type, which introduce an ex-
tra error term in the volatility equation. For example, in
the univariate case such a model could take the form

yt D �t�t

log �2t D ! C ˇ log �2t�1 C �t
(29)

where � t and �t are i.i.d. mean zero random variables
with variance equal to one and �2	 , respectively. Here, log
volatility follows an AR(1) process. Since volatility is un-
observed, model (29) is a particular case of a latent vari-
able model. Note that, if the information set at time t � 1
consists of all lagged values of yt up to yt�1, then volatility
at time t is not measurable with respect to this informa-
tion set. [27] compare moment properties such as kurtosis
and persistence of SV and GARCH models. [58] propose
a model that encompasses both GARCH and stochastic
volatility and thus allows for testing against each of them.

Estimation is more complicated than for GARCH
models because the likelihood is an integral of dimension
equal to the sample size, given by

L(Y ; �) D
Z

p(Y j H; �)p(H j �)dH (30)

where Y D (y1; : : : ; yn), H D (�21 ; : : : ; �
2
n), and � D (!;

ˇ; �2	). Maximization of (30) has no closed form and nu-
merical optimization is difficult due to the high dimen-
sional integral. Therefore, other estimation methods have
been considered in the literature, for example general-
ized method of moments (GMM), simulated maximum
likelihood with Markov Chain Monte Carlo (MCMC) or
Bayesian methods, see e. g., [75,76] and [80]. An applica-
tion to currency options by [92] compares three alternative
estimation algorithms and finds that the estimation error
of the volatility series is large for all methods.

In the multivariate case, without imposing structure,
estimating a highly dimensional stochastic volatilitymodel
seems difficult. One way of imposing structure in multi-
variate SV models is to assume a factor model as, e. g.,
in [34,69,81] and [56], or constant correlations. To con-
sider a bivariate extension of stochastic volatility models,
one suggestion of [69] is to say that the stochastic variances
�1;t and �2;t of the two assets follow univariate stochastic
variance processes as in (29), and the stochastic covariance
is given by

�12;t D ��1;t�2;t ;

where � is a constant parameter between �1 and 1. This
model, very much in the spirit of the constant conditional
correlation GARCH model of [22], is quite parsimonious
and can be efficiently estimated using simulatedmaximum
likelihood as demonstrated in [33]. It is straightforward to
generalize this specification to higher dimensions. How-
ever, estimation may then become trickier. Also the re-
striction of constant correlation parameters may not be
innocuous. More empirical tests are required about good-
ness of fits, comparing the non-nested GARCH and SV
type models of about the same model complexity.

SV models lend themselves naturally to continuous
time stochastic volatility models and realized volatility.
Indeed, as shown by [9], realized volatility can be used
to estimate the volatility of SV models. The monograph
of [109] collects influential papers of the stochastic volatil-
ity literature.

Aggregation

The frequency at which financial time series are sampled
is often not unique. For example, one researcher may be
interested in the behavior of returns to the Dow Jones in-
dex at a daily frequency, but another one at a weekly or
monthly frequency. Considering log-returns, weekly re-
turns can be directly obtained from daily returns by sim-
ply summing up intra-week returns. If a model is fitted
to daily returns, an important question is what this im-
plies for the weekly returns. In particular, one may ask if
the model remains in the same class, which would then
be called closed under temporal aggregation. For the uni-
variate GARCH model, [38] have shown that only a weak
version of it is closed under temporal aggregation. Instead
of modeling the conditional variance, weak GARCHmod-
els the best linear predictor of squared returns in terms
of a constant, lagged returns and lagged squared returns.
In the weak GARCH(1,1) case, they show how to obtain
the parameters of the aggregated process as a function of
the parameters of the high frequency process. In particu-
lar, denoting the parameters of the aggregated process by
˛(m) and ˇ(m), where m is the aggregation level, then the
persistence parameter of the aggregated level is given by
˛(m) C ˇ(m) D (˛ C ˇ)m . Thus, the persistence of the
aggregated process declines geometrically fast with the ag-
gregation level. Asymptotically, the process will reduce to
white noise. One would therefore expect to see much less
conditional heteroskedasticity in monthly returns than in
weekly or daily returns. The link between parameters at
different frequencies also provides a means for model di-
agnostics. The results of [38] have been extended to the
multivariate case by [64].
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Instead of aggregating, one could go the other way and
look at “disggregating” the process temporally, i. e., sam-
pling the underlying process at finer intervals. [97] showed
that GARCH models can be viewed as approximations of
continuous time stochastic volatility models, see also [39].
However, [117] has shown that the GARCH model and
its diffusion limit are not equivalent in a statistical experi-
ment sense.

Rather than aggregating temporally, one may alter-
natively be interested in aggregating contemporaneously
in a multivariate context. For example, stock indices are
constructed as linear combinations of individual stocks.
[102] show that again the aggregated process is only weak
GARCH. Rather than aggregating multivariate GARCH
models, one can alternatively consider aggregation of
univariate heterogenous GARCH processes with random
coefficients. In linear ARMA models, this aggregation
scheme is known to produce long memory type behav-
ior of the aggregate, see [62]. [35] conjectured that this
holds in a similar way for GARCHmodels. However, [122]
shows that although the ACF of the squared aggregate de-
cays hyperbolically, it may be absolutely summable and
hence there is no long memory. For the general model
class of [94] which includes GARCH, weak GARCH and
stochastic volatility as special cases, [121] shows that con-
temporaneous aggregation leads to long memory proper-
ties of the aggregate.

Future Directions

The theory of univariate GARCH models is now well de-
veloped and understood. For example, theory of maxi-
mum likelihood estimation is available under weak con-
ditions that allow for integrated and even mildly explo-
sive processes. However, theory of multivariate GARCH
is still in its infancy and far from closed, due to arising
technical difficulties. For general specification such as the
BEKK model, no results on asymptotic normality of esti-
mates are available yet that would allow for integrated pro-
cesses. Most available results on general specifications are
high level and only for some special cases, primitive con-
ditions are established. This is certainly one of the main
directions for future research.

On the modeling side, there is no clear general answer
how to deal with the problem of high dimensions, and in
particular how to balancemodel flexibility with economet-
ric feasibility. More practical experience is necessary to see
what type of model performs best for what kind of data.
On the application side, a still open issue is how to evaluate
the volatility risk for option pricing, and how to efficiently
use multivariate GARCH models in portfolio selection or

risk management. Other frontiers for GARCH models are
discussed by [46].

An interesting new field is the combination of GARCH
models with nonparametric distributions to obtain more
accurate estimates of the Value-at-Risk, mentioned in
Sect. “Introduction”. In the univariate case this is quite ob-
vious, but in the multivariate case one has to deal with the
“curse of dimensionality”, common in the nonparamet-
rics literature. Furthermore, issues such as tail dependence
need to be modeled accurately in that case. A joint frame-
work that captures volatilities, correlations, other distribu-
tional shape features and tail dependence would be an in-
teresting target for applied research.

Finally, realized volatilities (RV) have been mentioned
at the end of Sect. “Properties of the GARCH(1,1) Model”
as a means to use intra-day data to generate accurate ex
post measures of daily volatilities. Using these RV mea-
sures, one can build time series models that predict daily
volatilities one or more steps ahead, see e. g., [5] for a de-
tailed analysis. It seems that RV provides better forecasts
than GARCH, which is not surprising as it uses more in-
formation, namely the intra-day returns. The RV literature
has evolved as an important second branch of volatility
modeling next to the discrete time GARCH or SV models.
One direction of research is the treatment of microstruc-
ture noise, present in most high frequency data, as e. g.,
in [1,2] and [67]. Another one is the modeling of jumps
using the so-called bi-power variation and the generaliza-
tion to themultivariate case using realized covariances and
bipower co-variation, see e. g., [10] and [11]. Other direc-
tions are possible and it seems likely that RV will become
the dominant econometric tool to model volatilities pro-
vided that high frequency data are available.
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Glossary

Facilitator Person who guides the group process in group
model building.

Gatekeeper Person who forms the linking pin between
modeling team and management team.

Knowledge elicitation Process of capturing the knowl-
edge contained in the mental models of teammembers
of the management team.

Modeler Person who constructs the quantified model
during group model building.

Recorder Person who takes notes during group model
building sessions and constructs workbooks.

Reference mode Graph(s) showing the behavior of the
problem over time.

Workbook Booklet which contains summary of previous
group model building sessions and prepares for subse-
quent sessions.

Client Person (or agency) who buys a model.

Definition of the Subject

Computer (simulation) models have been used to support
policy and decision making in the decades after World
War II. Over the years modelers learned that the appli-
cation of these models to policy problems was not as
straightforward as had been thought initially. As of the be-
ginning of the 1970s studies started to appear that ques-
tioned the use of large-scale computer models to support
policy and decision making (cf. [24,31]). Lee’s article bears
the significant title: ”Requiem for large scale models“,
a statement that leaves little room for ambiguity. Other au-
thors who have studied the impact records of computer
models also seem rather sceptical (e. g. [9,22,25,73]). It

is interesting to note that Greenberger et al., after inter-
viewing both modelers and policy makers (for whom the
models were constructed) found that modelers generally
pointed to the fact that they learned a lot from modeling
a particular policy issue. Policy makers on the other hand
indicated that they did not really understand the models
nor had much confidence in them. The results of these
studies pointed in the direction of learning from computer
models, i. e. conceptual or enlightenment use rather than
instrumental use, where policy recommendations could
straightforwardly be deduced from the model analysis and
outcomes. In other words it is in the process of model-
ing a policy problem where the learning takes place which
is required to (re)solve a problem. And it is also in this
process that one needs to anticipate the implementation of
policy changes. By the end of the 1970s system dynamics
modelers pointed out that implementation of model out-
comes was a neglected area (e. g. [50,74]) and that model-
ers sometimes naively assumed that implementation was
straightforward, thereby neglecting organizational deci-
sion making as a political arena.

In other words client participation in the process of
model construction and analysis is required for successful
modeling and implementation of insights from the model
into policy making. Or as Meadows and Robinson put it:

Experienced consultants state that the most impor-
tant guarantee of modelling success is the interested
participation of the client in the modelling process
(p. 408 in [34]).

Over the years this has given rise to all kinds of experi-
ments to involve clients in the process of model construc-
tion. In the 1990s the term Group Model Building was in-
troduced to refer to more or less structured approaches for
client involvement in system dynamics model construc-
tion and analysis.

Introduction

From the early days of the field, the topic of client involve-
ment in the process of model construction has raised at-
tention in the system dynamics literature. Jay Forrester,
the founder of the field of system dynamics, has repeat-
edly indicated that most of the knowledge needed to con-
struct a system dynamics models can be found in the
mental database of the participants of the system to be
modeled [20,21]. Over the years several system dynamics
modelers have experimented with approaches to involve
client (groups) in model construction and analysis. This
development in the system dynamics community paral-
lels a movement in the operational research and systems
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fields towards more attention for stakeholders’ opinions.
A number of authors (e. g. [1]) criticized traditional OR
and systems approaches as unsuitable for ill-structured
problems that arise from differences between stakeholders’
views on the problem. For ill-structured problems a range
of new methods was developed [35].

The developments in the system dynamics, operational
research and systems communities have given rise to a set
of distinct methods and approaches. However, practition-
ers work on problems that have clear similarities to those
encountered in other disciplines and frequently borrow
techniques from one another. The boundaries between
methods are therefore difficult to draw and there is a de-
gree of overlap between approaches in and between fields.
Below we first describe the distinguishing characteristics
of system dynamics, as this separates group model build-
ing most clearly from other approaches fostering client in-
volvement. We then describe a number of distinct group
model building approaches.

System Dynamics

System dynamics is most easily characterized by its em-
phasis on two ideas: (a) the importance of closed loops of
information and action for social systems, i. e. social sys-
tems as information feedback systems and (b) the need to
use formal models to study these loops. System dynami-
cists assume that the dynamic behavior of a social system is
the result of its underlying feedback structure. Actors use
the information about the structure as input to their de-
cisions, and by implementing their decision influence sys-
tem behavior. This creates an interlocked chain of action
and information which is also known as a feedback loop.
Richardson (see p. 1 in [44]) describes a feedback loop as
follows:

The essence of the concept . . . is a circle of interac-
tions, a closed loop of action and information. The
patterns of behavior of any two variables in such
a closed loop are linked, each influencing, and in
turn responding to the behavior of the other.

As an illustration of the use of information on the sys-
tem state in decisions, imagine a simple example on cus-
tomer behavior. Let us assume that if customers perceive
that a product’s functionality increases, more products will
be bought. This will increase profits and thereby the de-
sign budget. An increased design budget can be used to
improve the product’s design, which will lead more cus-
tomers to buy the product, and so on. Thus, decisions of
actors within the system have an important influence on
the system’s behavior. If we continue to add other factors

Group Model Building, Figure 1
Example of a causal loop diagram

and relations to our example and capture these in a model,
the diagram in Fig. 1 may result.

As Fig. 1 shows, a causal loop diagram consists of vari-
ables, relationships, and feedback loops. Relations can be
of two types: positive and negative. A positive relation in-
dicates that both variables change in the same direction. In
the model above, an increase in retail price will lead to an
increase in profits, indicating a positive relationship. Vari-
ables in a negative relationship change in opposite direc-
tions. An increase in costs will decrease profits, indicat-
ing a negative relationship. The snowball rolling down the
slope in the right hand side of Fig. 1 indicates a positive
feedback loop. We assumed that an increase in profit re-
sults in a direct increase in the design budget. A higher
budget allows for increased product functionality, which
increases sales volume and finally profit. Starting from an
increase in profit, the result is a further increase in profit.
This is a so-called positive or self-reinforcing loop. How-
ever, if we assume that the design department uses its com-
plete budget each year, an increased budget will contribute
to design costs and lower profits. This is a negative or bal-
ancing loop, indicated by the balance symbol.

The second important idea in system dynamics is that
formal models are necessary to understand the conse-
quences of system structure. Since system dynamics mod-
els containmany (often non-linear) relations and feedback
loops, it becomes very difficult to predict their behavior
without mathematical simulation. Systems are assumed to
consist of interacting feedback loops, which may change
in dominance over time. Diagrams such as the one de-
picted above are frequently used in the interaction with
clients. Before the dynamic consequences of the structure
captured in Fig. 1 can be studied, it is necessary to further
specify both the variables and relations used in the model.
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Group Model Building, Figure 2
Example of a stock and flows diagram

Two categories of variables are distinguished: stocks and
flows. Stocks are entities existing at a certain time period,
for example supplies, personnel, or water in a reservoir.
Flows are entities measured over a time period, such as
deliveries, recruitment, or inflow of water. Relationships
are separated into physical flows and information flows. If
we capture differences between stocks and flows and infor-
mation and physical flows in a diagram, a stock and flows
diagram results.

As can be seen in Fig. 2, information links are depicted
with a single arrow and physical flows with a double arrow.
The physical human resources flow is separated in three
stocks: number of rookies, number of junior researchers,
and number of senior researchers. Recruitment will lead
to an increase in the number of rookies. Two other flows
influence the number of people in the stocks: rookies may
be promoted to junior researchers and junior researchers
may be promoted to senior researchers. The human re-
sources flow is related to the project flow with informa-
tion links, for instance indicating that acquisition of re-
search projects is determined by the number of senior re-
searchers.

Group Model Building Approaches

As pointed out before, client involvement has been impor-
tant to system dynamics from the start of the field. Sys-
tem dynamics emphasizes feedback loops and the use of
formal models. In this section we describe how models
based on these ideas are built in interaction with actors and
stakeholders in the problem at hand. A number of differ-
ent participative model building formats can be identified,
i. e. the reference group approach [43,61]; the stepwise ap-
proach [76]; the Strategic Forum [49]; modeling as learn-
ing [29]; strategy dynamics [71,72] and Hines’ “standard
method” [39]. Below we describe each approach briefly.

In the Reference Group approach [43,61] participation
takes the form of frequent interaction between the model-

ing team and a group of eight to ten clients. The approach
starts with the identification of interest groups, of which
representatives are invited to contribute to the modeling
effort. The representatives are referred to as referents. In
a series of interviews and meetings, the problem to be ad-
dressed is defined more specifically. On the basis of this
definition and the information gathered in the interviews
and meetings, the modeling team develops a preliminary
model. In the remainder of the project the modelers are
responsible for model improvements while the referents
function as critics. This model is elaborated in a series of
meetings and is at the same time used as a tool for struc-
turing the discussion. In later sessions, model output is
used for developing scenarios. In a scenario discussion the
model is run and results are described and analyzed by
the modelers. The reference group is then asked to deter-
mine to what extent the model’s behavior corresponds to
their expectations about reality, and if it does not, to sug-
gest changes. These suggestions can trigger changes in the
model structure, initiating a new round in the discussions.

The stepwise approach [76] is founded on the idea
that full quantification of models is not always possible
or desirable. The approach starts with a definition of the
problematic behavior. If possible, this definition is given
in the form of a behavior over time of the problem of in-
terest. Modeling starts by roughly sketching the feedback
loops responsible for this behavior. The key variables re-
lated to the cause for concern are identified, followed by
the system resources connected to these key variables and
their initial states. The resources are used to derive the
central stocks in the system. From the resources, the re-
source flows can then be sketched with the associated rates
of conversion. Delays are added to these flows if they are
significant. Next, organizational boundaries, flows of in-
formation and strategies through which the stocks influ-
ence the flows, are added. Again, if there are significant
delays, these are added to the information linkages. In the
final step, information flows and strategies linking differ-
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ent resource flows are added. The steps are repeated until
the relevant feedback loops have all been included. Wol-
stenholme indicates that these steps often provide the in-
sights necessary to infer system behavior from the struc-
ture, which reduces the need for quantification. Models
can also be analyzed in a qualitative manner.

The steps that make up the Strategic Forum [49] pro-
vide a detailed insight of how clients are encouraged to
participate in modeling. The strategic forum consists of
eight steps, of which the first two are conducted before
the actual meeting (also called the forum) with the client
group. The process begins with interviews prepared by
a small questionnaire, in which three issues are addressed:
ideas on the current situation, a statement of the vision
for the future, and agreement on a preliminary map of the
problem. On the basis of the interviews, the modeler con-
structs an integrated map and accompanying computer
model. In the second step the project team designs a num-
ber of small group exercises that will be used during the
forum. The exercises are aimed at discovering important
structural and behavioral elements and are similar to the
scenario discussions in the reference group approach. The
most important difference is that before simulation results
are shown, participants have to ‘put a stake in the ground’,
i. e. they have to make a prediction of model behavior on
the basis of a change in a policy variable and values for
connected parameters. The model is then simulated and
results are compared with participants’ expectations. Dis-
crepancies between predictions and simulations are iden-
tified, and might point to inconsistencies in participants’
ideas or lead to model improvements. In the following
steps the participants meet in a series of workshops. Each
workshop opens with an introduction and a big picture
discussion. The heart of the session consists of exercises
aimed at internal consistency checks, addressing the con-
sistency between the group’s mental model and the com-
puter model. As in the other approaches, model structure
will be changed if inconsistencies with the participants’
ideas on the problem are revealed. In the final phase of
policy design, potential consequences of strategic policies
are addressed and the existing capability of realizing the
strategic objectives. A wrap-up discussion and identifica-
tion of follow-up activities concludes the Strategic Forum.

Richmond (see p. 146 in [49]) emphasizes that the
main purpose of the Strategic Forum is to check the con-
sistency of strategy. The insights gained by the client there-
fore frequently lead to changes in strategy or operating
policies, but less frequently to changes in objectives or the
mission statement. One important element of ensuring an
impact on participants’ ideas is the (dis)confirmation of
expectations on simulation outcomes.

Lane [29] describes a modeling approach developed
at Shell International Petroleum, known as ‘modeling as
learning’. Lane explicitly sets this approach apart from the
widely used expert consultancy methodology (e. g. [58]).
His approach also puts strong emphasis on involving deci-
sion makers in the modeling process. By showing decision
makers the benefits of participation early on in the process,
an attempt is made to persuade them to spend time in di-
rect interaction with the model. The approach centers on
capturing and expressing the client’s ideas, initiating a dis-
cussion on the issue with ‘no a-priori certainty regarding
quantification, or even cause and effect’ (see p. 70 in [29]).
The modelers also strive to include both hard as well as
‘soft’ aspects of the problematic situation. In doing this, it
is hoped that the clients’ ideas are included in the model
and that ownership is created. This is encouraged by mak-
ing models and model output transparent to participants,
helping the client ‘to learn whichever techniques are used
in a project’ (see p. 71 in [29]). Lane states that the focus
throughout the approach is on a process of learning, using
such elements as experimentation with the model, testing
of assumptions and representing and structuring ideas in
a logical way.

Hines’ approach [39] starts off by diagnosing the prob-
lem. This step comes down to gathering and cluster-
ing problem variables. Problem behavior is visualized by
sketching the graph over time of the problematic behav-
ior. In the second step the structure underlying the prob-
lematic behavior is captured in a causal diagram. This so-
called dynamic hypothesis incorporates many of the prob-
lem variables identified earlier. The diagram helps to clar-
ify the boundary of the problem that will be addressed and
thus limits the project scope. The next step is to identify
accumulations in the system, which will form the stocks
in the system dynamics model. In the construction of the
computer model most work is done by the modelers, with
client participation limited to providing data such as nu-
merical values and details of the work processes relevant
to the problem at hand. Model structure and behavior is
then explained to the client. Discussions with the client
then lead to a series of model iterations, increasing confi-
dence of the client in model calibration and validity. Sim-
ilar to other participative approaches, policy runs are used
to test proposed interventions in the problem.

Warren [71,72] describes an approach to participative
modeling that strongly focuses on identifying accumula-
tions (stocks) in the system. In order to identify central
accumulations, clients are asked to identify the strategic
resources in the problem at hand. Increases and decreases
in resources then lead to the identification of flows. War-
ren’s approach differs from the ones described above in
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the sense that stocks and flows are differentiated from
the outset. This means that causal loop diagrams are not
used. In addition, graphs over time are recorded next to
each variable in the model. By gradually adding elements
to the model while visually relating structure and behav-
ior, the clients’ understanding of the problem is gradually
increased.

As mentioned before, the boundaries around ap-
proaches are not easy to draw and one method may ‘bor-
row’ techniques of another. Insights and practices from the
operational research and system fields have been merged
with those in system dynamics to develop combinedmeth-
ods. For example, modeling as learning is one of the ap-
proaches incorporating elements of soft operational re-
search methodologies. Lane and Oliva [30] describe the
theoretical basis for integrating system dynamics and soft
systems methodology. The cognitive mapping approach
(e. g. [17]) also offers tools and techniques that are used
in system dynamics studies.

In addition to combining different methods, ap-
proaches are sometimes also tailored to use in specific con-
tent areas. An example is van den Belt’s [63] mediated
modeling, which combines insights from participative sys-
tem dynamics modeling and consensus building on envi-
ronmental issues.

GroupModel Building: Basic Ideas and Concepts

The separate approaches described in the last section
continue to be developed and used in practical prob-
lems. Although we are not sure that all proponents of
these approaches would characterize themselves as using
“group model building”, this term has been used more
and more in the last decades to refer to system dynam-
ics approaches with client involvement in a general sense.
The two approaches that coined the term group model
building evolved more or less simultaneously, with con-
siderable cross-fertilization of ideas, at SUNY at Albany
and Radboud University Nijmegen in the Netherlands
(see [36,69]). In an early application at Radboud Univer-
sity, participants were involved in a Delphi study consist-
ing of mailed questionnaires and workbooks, followed by
workshops [66]. In the dissertations by Verburgh [70] and
Akkermans [4] a similar approach is used under the name
of participative policy modeling and participative business
modeling, respectively. In its latest version group model
building is a very open approach, which allows for the use
of preliminarymodels or a start from scratch, uses individ-
ual interviews, documents and group sessions, qualitative
or quantitative modeling and small as well as large models.
Vennix [64,65] provides a set of guidelines for choosing

among these different approaches, building on and adding
to the studies mentioned above. Andersen and Richard-
son [5] provide a large number of “scripts” that can help
in setting up modeling projects. The procedures described
are a long way from the earlier descriptions of a set of
steps that seem to prescribe standard approaches applica-
ble to most modeling projects. Instead, the guidelines of-
fered have more the appearance of tool boxes, from which
the appropriate technique can be selected on the basis of
problem characteristics and the clients involved.

Group model building is generally conducted with
a group of at least six and up to 15 people. The group is
guided by at least two persons: a facilitator and a mod-
eler/recorder. The group is seated in a semi circle in front
of a whiteboard and/or projection screen, which serves
as a so-called group memory. A projection screen is typ-
ically used when a model is constructed with the aid of
system dynamics modeling software with a graphic inter-
face (e. g. Vensim, Powersim, Ithink). This group memory
documents the model under construction and is used as
a parking lot for all kinds of unresolved issues which sur-
face during the deliberations of the group.

In Fig. 3, the small circles indicate the persons present
in the session. Apart from the participants, there is a fa-
cilitator and a recorder. The facilitator has the most im-
portant role in the session as he or she guides the group
process. His/her task, as a neutral outsider, is to (a) elicit
relevant knowledge from the group members, (b) to (help)
translate elicited knowledge into system dynamics model-
ing terms, and (c) make sure that there is an open commu-
nication climate so that in the end consensus and commit-
ment will result. The recorder keeps track of the elements
of the model. In Fig. 3 (s)he is seated behind a computer
and the model is projected on the screen in front of the

Group Model Building, Figure 3
Typical room layout for group model building with participants
seated in a semi-circle, white board and facilitator in front, and
computer and overhead projector (adapted from [5])
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Group Model Building, Figure 4
Problem description in graphical form: reference mode of behavior

group. A separate whiteboard (upper right hand corner) is
used to depict the reference mode of behavior and record
comments or preliminary model structure. As the model
is visible to all participants, it serves as a group memory
that at each moment reflects the content of the discussion
up to that point. A group model building session is gen-
erally conducted in the so-called chauffeured style, where
only the facilitator uses electronic support and projection
equipment, while participants do not have access to elec-
tronic communication media [38]. The central screen or
whiteboard will be used to depict the model, as shown in
Fig. 3.

The role of liaison between the organization and the
modeling team is performed by the gatekeeper, who is gen-
erally also a member of the participant group. The gate-
keeper is the contact between both parties, and has an im-
portant role in the decision which participants to involve
in the sessions. Apart from the gatekeeper, the facilita-
tor and the recorder, two other roles may be important
in a modeling session [46], i. e. a process and a model-
ing coach. The process coach functions as an observer and
primarily pays attention to the group process. The model
coach needs to be experienced in system dynamics mod-
eling but might also be an expert in the content area as
well. As Richardson and Andersen [46] point out, all roles
are important in group model building but not all of them
have to be taken up by a single person. One person might
for instance combine the roles of facilitator and process
coach. Taken together, these different roles constitute the
facilitation or modeling team.

In principle the group follows the normal steps in the
construction of a system dynamics model. This means that
the first step is the identification of the strategic issue to be
discussed, preferably in the form of a so-called reference

mode of behavior, i. e. a time series derived form the sys-
tem to be modeled which indicates a (historical) undesir-
able development over time. As an example let us take the
sales of a software product. An initial problem statement
might be falling profit. Typically the problematic behavior
will be depicted in a graph over time as in Fig. 4.

In the graph above, a projection of the expected behav-
ior is included for the years after 2008.

The next step is to elicit relevant variables with which
the model construction process can be started. Depend-
ing on the type of problem this will take the form of either
a causal loop diagram or a stocks and flow diagram and
is generally referred to as the conceptualization stage. The
following step is to write mathematical equations (model
formulation) and to quantify themodel parameters. As de-
scribed in the introductory section, most of the model for-
mulation work is done backstage as it is quite time con-
suming andmembers of a management team generally are
not very much interested in this stage of model construc-
tion. In this stage, the group is only consulted for crucial
model formulations and parameter estimations. Experi-
enced groupmodel builders will start to construct a simple
running model as soon as possible and complicate it from
there on if required. In the end the model should of course
be able to replicate the reference mode of behavior (as one
of the many validity tests) before it can be sensibly be used
as ameans to simulate the potential effects of strategies and
scenarios.

Objectives of Group Model Building

As mentioned in the introduction, the founder of system
dynamics has repeatedly pointed out that much of the
knowledge and information which is needed to construct
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a model can be found in the mental models of system par-
ticipants. At first sight it may seem that the most impor-
tant objective of building a system dynamics model is to
find a robust strategy to solve the problem of the orga-
nization. In the end that is why one builds these models.
From this perspective the most important issue in group
model building is how to elicit the relevant knowledge
from the group. However, as stated before, decision mak-
ing in organizations has its own logic, and in many cases
there is quite some disagreement about the problem and
how it should be tackled. No wonder that implementa-
tion of model outcomes is difficult if the model building
process is not well integrated with decision making pro-
cesses in organizations, when it comes to creating agree-
ment and commitment with a decision. From that per-
spective knowledge elicitation is only one element in the
process of model construction. It is not somuch the model
but to a greater extent the process of model construction
which becomes important. Somewhat simplified one could
say that in the “standard” approach when an organization
is confronted with a strategic problem it hires a modeler
(or group of modelers) to construct a model and come
up with recommendations to “solve” the problem. How-
ever, in most cases these recommendations become part
of the discussion in the management team and get misun-
derstood, or adapted or frequently just disappear as a po-
tential solution from the discussion. Hence Watt’s title
of his paper: “Why won’t anyone believe us?” becomes
very much understandable from the point of view of the
modeler. So rather than creating a situation where mod-
elers “take away” the problem from the organization and
(after considerable time) return with their recommenda-
tions, the model building process is now used to structure
the problem, guide communication about it and test the
robustness of strategies taking into account other crite-
ria and information which is not included in the model,
but does play a role for the organization when making
the decision. Stated differently, the model building pro-
cess now becomes intertwined with the process of deci-
sion making in an organization. And this in turn means
that other objectives than knowledge elicitation become
important.

Simultaneously with the attempts to involve clients in
the process of constructing system dynamics models the
objectives of group model building have been defined at
several levels, i. e. the individual, the group and the or-
ganizational level (cf. [7,65]). The main goal at the indi-
vidual level is change of mental models and learning. The
idea is that participants should better understand the re-
lationship between structure and dynamics and how their
interventions may create counterintuitive results. Unfor-

tunately research has revealed that this is hardly the case.
Even after extensive training people have difficulty to un-
derstand the relationship between structure and dynamics
(for a review see [8,53]). A second goal at the individual
level is behavioral change. Frequently the conclusions of
a modeling intervention point in the direction of behav-
ioral change, for example implementing a new job rota-
tion scheme, or a change in purchasing policy. The ques-
tion can then be asked how insights from the modeling in-
tervention are translated to changes in behavior. Rouwette
(e. g. [52,53,57]) uses a framework from social psychol-
ogy to understand the impact of modeling on behavior.
The theory of Ajzen [2,3] explains behavior on the basis of
(a) attitude, (b) perceptions of norms and (c) perceptions
of control. It seems likely that each of these concepts is in-
fluenced in modeling sessions. When for example model
simulations reveal unexpected levers for improving sys-
tem behavior, we can expect that perceived control will in-
crease. Another example: let’s imagine that a manager is
participating in a modeling session, where another partic-
ipant reveals positive outcomes of a certain policy option.
If these positive outcomes were previously not known to
the manager, hearing them might make his/her attitude
towards that option more positive (cf. [42]).

At the group level objectives refer to mental model
alignment [28] and fostering consensus [51,67,75]). Cre-
ating consensus should not be confused with premature
consensus, i. e. not discussing conflicting viewpoint. Here
it concerns creation of consensus after critical debate and
discussion of opinions has taken place. This type of discus-
sion which needs to take place in a cooperative communi-
cation climate is helpful to also create commitment with
the resulting decision.

At the organizational level goals have been discussed
as system process change (are things done differently) and
system outcome change (are customers impacted differ-
ently) [11]. Although it has to be pointed out that in many
cases system changes are the result of changes in attitude
and behavior of participants in the system. An overview of
group model building objectives is given in Table 1. In this
table finds a number of additional objectives such as pos-
itive reaction and creation of a shared language, that are
more fully reviewed by Huz et al. [28], Rouwette et al. [55]
and Rouwette and Vennix [53].

Designing GroupModel Building Projects

When designing group model building projects there are
a number of questions that need to be addressed. The first
concerns the suitability of system dynamics for the prob-
lem at hand. System dynamicists generally say that a prob-
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Group Model Building, Table 1
Objectives of groupmodel building (cf. [53])

Individual Positive reaction
Mental model refinement
Commitment
Behavioral change

Group Increased quality of communication
Creation of a shared language
Consensus and alignment

Organization System changes
System improvement or results

Method Further use
Efficiency

lem needs to be dynamically complex in order to be suit-
able to model it through system dynamics. This means
that one should at least hypothesize that there are posi-
tive and negative feedback process underlying the prob-
lem. From a more practical point of view one could say
that one should be able to represent the problem in the
form of a reference mode of behavior. If the latter is not
possible one should seriously question the use of system
dynamics for the problem.

A second issue which needs to be given some thought
is the question whether to use qualitative or quantitative
modeling. Within the system dynamics community there
is still a debate about the question whether qualitative
modeling (or: mapping) can be considered system dynam-
ics (see [13,14,23]). In short those who disagree point out
that without quantification and simulation one cannot re-
liably develop a robust policy simply because the human
mind is not capable of predicting the dynamic effects of
(interventions in) a dynamically complex structure. Those
who do use mapping on the other hand point out that
mapping in itself can have the beneficial effect to struc-
ture the problem and at least will make managers aware
of potential underlying feedback loops and their poten-
tial counterintuitive effects when intervening in a dynami-
cally complex system. Basically the issue to quantify or not
depends on the goals of the group model building inter-
vention. If the ultimate goal is to find robust policies then
quantification is required. However, if the aim is to struc-
ture a problem and to create consensus on a strategic issue
then qualitative modeling may be all that is needed. This
links up with Zagonel’s [77] distinction between the use
of models as micro worlds or as boundary objects. When
used as a boundary object the emphasis is on support-
ing negotiation and exchange of viewpoints in a group.
This is clearly the case when problems are messy, i. e. con-
nected to other problems and when there is much diver-

gence of opinion on what the problem is and sometimes
even whether there is a problem at all.

A third issue is the question who to involve in the ses-
sions. There are a number of criteria which are generally
employed. First it is important to involve people who have
the power to make decisions and changes. A second crite-
rion is to involve people who are knowledgeable about the
problem at hand. A third criterion is to involve a wide va-
riety of viewpoints, in order to make sure that all relevant
knowledge about the problem is included. Of course these
guidelines may create dilemmas. For example, involving
more people in the process will make the group commu-
nication process more difficult. This may in turn endanger
the creation of consensus and commitment.

Another issue is whether to use a preliminarymodel or
to start from scratch (see [45]). Although using a prelimi-
nary model may speed up the process the inherent danger
is that it will be difficult to build group ownership over the
model. Group ownership is clearly required to create con-
sensus and commitment.

Finally, a range of methods and techniques is avail-
able to elicit relevant knowledge both from individuals
and from groups. When it comes to individuals, well
known methods are interviews, questionnaires and so-
called workbooks. The latter are a kind of modified ques-
tionnaires, which are used in between sessions to report
back to the group and ask new question in preparation
of the next session. Interviews are being used routinely as
a preparation for group model building sessions.

If a decision is made on the issues discussed above, the
next important question is how to plan and execute the
modeling sessions. This question is a central topic in the
group model building literature and its success heavily de-
pends on the correct choice of available techniques and the
quality of the facilitator.

Conducting GroupModel Building Sessions

Although careful preparation of groupmodel building ses-
sions is a necessity, the most important part of the whole
project is what happens in the group model building ses-
sions themselves. During the sessions not only the analysis
of the problem takes place (and the model is constructed),
but also the interaction process between members of the
management team unfolds. It is this interaction process
which needs to be guided in such a way that consensus and
commitment will emerge and implementation of results
will follow. As pointed out the process is guided by the
group facilitator, generally someone who is not only spe-
cialized in facilitation of group processes but also in system
dynamics model construction. The facilitator is supported
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Group Model Building, Table 2
Group model building scripts (cf. [5])

Phase in modeling Script
Defining a problem Presenting reference modes

Eliciting reference modes
Audience, purpose, and policy options

Conceptualizingmodel Sectors, a top down approach
structure Maintain sector overview while working within a sector

Stocks and flows, by sector
Name that variable or sector

Eliciting feedback Direct feedback loop elicitation
structure Capacity utilization script

System archetype templates
“Black box” means-ends script

Equation writing and Data estimation script
parametrization Model refinement script

“Parking lot” for unclear terms
Policy development Elicitingmental model-based policy stories

Create a matrix that links policy levers to key system flows
“Complete the graph” policy script
Modeler/reflector feedback about policy implications
Formal policy evaluation usingmultiattribute utility models
Scripts for “ending with a bang”

by a recorder or modeler who helps constructing the sys-
tem dynamicsmodel while the facilitator interacts with the
management team.

The facilitator may choose from a wide variety of tech-
niques in setting up and conducting a session. As a foun-
dation for choosing techniques, Andersen and Richard-
son [5] develop a set of guiding principles and so-called
scripts for group model building sessions. Guiding princi-
ples capture basic ideas in the interaction with clients, such
as break task/group structure several times each day, clar-
ify group products, maintain visual consistency and avoid
talking heads. Scripts are more concrete instances of these
principles and refer to small elements of the interaction
process [5,32]. The Table 2 shows scripts described in An-
dersen and Richardson’s [5] original paper.

In choosing a script it is first important to be aware
of the phase that is relevant in the project at that time.
A common starting point, as we saw in the description of
group model building approaches, is to define the central
problem of interest. The reference mode of behavior can
function as a guideline for involving clients in this phase.
Once the central problem is clear, a logical next step is to
move towards model conceptualization. In this step again
a number of options are available. Andersen and Richard-
son [5] describe a script for identifying sectors that are im-
portant in the problem. An alternative is to start withmore

concrete variables in the problem, using a Nominal Group
Technique [15].

Whatever scripts and techniques a facilitator employs
it is important that (s)he displays the right attitude and
uses the correct skills. Several different aspects of attitude
are important. First of all the facilitator is not the person
who thinks (s)he knows the best solution, but needs to be
helpful in guiding the group to find a solution to the strate-
gic problem the organization is faced with. Second, a facil-
itator should be neutral with respect to the problem that
is being discussed. Being too knowledgeable about a par-
ticular problem area (e. g. strategic alliances) may thus be
dangerous, because it creates the tendency to participate
in the discussions. Rather than being an expert, having
an inquiry attitude (i. e. asking questions rather than pro-
viding answers) is more helpful to the group. Finally, in-
tegrity and being authentic is important. Relying on tricks
to guide the process will prove counterproductive, because
people will look through them.

When it comes to skills, a thorough knowledge and
experience in constructing system dynamics models is
of course indispensable. Second, a facilitator needs to be
knowledgeable about group process and have the skills to
structure both the strategic problem as well as the group
interaction process. For the latter, special group process
techniques (e. g. brainstorming, Nominal Group Tech-
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nique, Delphi) may be used, and knowledge about and
skills in applying these techniques is of course a prereq-
uisite for a successful group model building intervention.
Finally, communication skills are important. Reflective lis-
tening is a skill which will help to prevent misunderstand-
ing in communication, both between participants and the
facilitator and between group members. For a more thor-
ough discussion of these attitudes and skill in the context
of group model building we refer to Vennix [64].

Researching GroupModel Building Effectiveness

In the previous sections we described goals of groupmodel
building projects and principles and scripts for guiding the
modeling process. In this section we consider the empir-
ical evidence for a relation between modeling interven-
tions and these intended outcomes. Empirical evidence
can be gathered using a variety of research strategies, such
as (field) experiments, surveys or (in-depth) case studies.
According to the review of modeling studies by Rouwette
et al. [55], the case study is the most frequently used de-
sign to study group model building interventions. We first
report on the results found by these authors and then turn
to other designs.

In the meta-analysis of Rouwette et al. [55], the major-
ity of group model building studies uses a case study de-
sign and assesses outcomes in a qualitative manner. Data
are collected using observation, and a minority of stud-
ies employs individual group interviews. Case reports may
be biased towards successful projects and are frequently
not complete. The outcomes of the modeling projects were
scored along the dimensions depicted in Table 1 in the sec-
tion on modeling goals. The findings show positive out-
comes in almost all dimensions of outcomes. Learning
about the problem seems to be a robust outcome of group
model building, for example:

� Of 101 studies that report on learning effects, 96 indi-
cate a positive effect;

� Of 84 studies focusing on implementation of results, 42
report a positive effect.

Another set of studies, using quantitative assessment of
results is described by Rouwette and Vennix [53]. Al-
though the research surveyed so far indicates positive ef-
fects of modeling on outcomes such as mental model re-
finement, consensus and implementation of results, im-
portant challenges remain. Research so far has paid lit-
tle attention to the complexity of the intervention as de-
scribed in the previous section. Pawson and Tilley [40]
urge us not to assume that interventions are similar and

lead to similar effects, since this would confuse meaning-
ful differences between studies. Rouwette and Vennix [53]
describe two ways to learnmore about the process through
which outcomes of modeling are created: base research
more on theory and/or to conduct research in more con-
trolled settings. At present only few studies address ele-
ments of group model building in a controlled setting.
Shields [59,60] investigates the effect of type of modeling
and facilitation on a group task. Most research on the use
of system dynamics models concerns so-called manage-
ment flight simulators. These studies aim to mimic the im-
portant characteristics of decision making in complex, dy-
namic problems, and test the effectiveness of various deci-
sion aids. Results are reviewed by Sterman [62], Hsiao and
Richardson [26] and Rouwette, Größler and Vennix [56].

Increased attention to theories may shedmore light on
the way in which modeling effects group decisions. The-
ories can help in specifying relations which can then be
tested. Explanatory research is needed to connect the com-
ponents and outcomes of group model building interven-
tions (see p. 194 in [7]). In the field of system dynamics
modeling, two attempts at formulating theories on mod-
eling components and outcomes are the work of Richard-
son et al. [47] and Rouwette [52]. The framework formu-
lated by Rouwette [57] builds on the theories of Ajzen [2,3]
and Petty and Cacioppa [42] described earlier. Richard-
son et al. [47] separate mental models into means, ends
and means-ends models. The ends model contains goals,
while the means model consists of strategies, tactics, and
policy levers. The means-ends model contains the con-
nection between the two former types of models and may
contain either detailed “design” logic or more simple “op-
erator” logic. On the basis of research on participants in
a management flight simulator [6], the authors conclude
that operator logic, or high level heuristics, is a necessary
condition for improving system performance. Therefore,
providing managers with operator knowledge is the key to
implementation of system changes.

Future Directions

The success of group model building and problem struc-
turing methodologies in general depends on a structured
interaction between theory, methodology refinement and
application in practical project accompanied by systematic
empirical evaluation.

Rouwette and Vennix [53] indicate three areas for fur-
ther development of theories:

� Review related methodologies used in complex orga-
nizational problems, to determine which theories are
used to explain effects. Examples that come to mind are
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theories used in the operational research and systems
fields [37].

� Forge a closer connection to research on electronic
meeting systems. In this field, studies are usually con-
ducted in controlled settings [16,18,41] and theory de-
velopment seems to be at a more advanced stage. Re-
search on electronicmeeting systems is interesting both
because of the empirical results and explanatory theo-
ries used and because of insights on the intervention
process. A recent development in the field is research
on ThinkLets [10]. A ThinkLet is defined as a named,
packaged facilitation intervention and thus seems very
similar to the concept of a group model building script.

� A third source of theories is formed by research in
psychology and group decision making. Theories from
these fields inform the definition of central concepts
in group model building (see Table 1) and theories on
modeling effectiveness. Rouwette and Vennix [54] re-
view literature on group information processing and
relate this to elements of group model building inter-
ventions.

From theories and evaluation research will come insights
to further develop the methodology along the lines of (a)
determining what kind of problem structuring methodol-
ogy is best suited in what kind of situation, (b) refinement
of procedures, (c) better understanding the nature of the
intervention, and (d) better guidelines for facilitators how
to work in different kinds of groups and situations.
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This paper describes the application of system dynamics
to health and social care in Europe.

Systems thinking and the simulation tool set of sys-
tem dynamics are introduced together with an overview
of current strategic health issues and responses in the UK
and Europe. A case study is then presented to demonstrate
how effective and apposite system dynamics studies can
be. This is followed by a pan-European review of applica-
tions of system dynamics in epidemiology and in health
treatment and diagnosis in different sectors of health and
social care, based on an extensive bibliography. Reference
is also made to health workforce planning studies. Lastly,
a review of future directions is described.

The knowledge base of this paper is located in pub-
lished work by internal and external consultants and Uni-
versities, but it should also be said that there is far more
work in system dynamics in health than is referred to in
these sources. Many internal and external consultancies
undertake studies which remain unpublished.

The description of the subject and the applications de-
scribed are comprehensive, but the review is a personal in-
terpretation of the current state of a fast-moving field by
the author and apologies are made in advance for any un-
intended omissions.

The case study in Sect. “A Case Study: Using System
Dynamics to Influence Health and Social Care Policy Na-
tionally in the UK – Delayed Hospital Discharges” is ex-
tracted from material published by Springer-Verlag, US
and published with their permission.

Glossary

System dynamics
System A collection of elements brought together for

a purpose and whose sum is greater than the parts.
Systems thinking The process of interpreting the world

as a complex, self regulating and adaptive system.
System dynamics A method based on quantitative com-

puter simulation to enhance learning and policy design
in complex systems.

Qualitative system dynamics The application of systems
thinking and system dynamics principles, without for-
mal simulation.

Dynamic complexity The number of interacting ele-
ments contained in a system and the consequences of
their interactions over time.

Human activity system Any system created and regu-
lated by human intervention.

Reductionism The opposite of systemic – seeing the
world only in its constituent parts.

Feedback Feedback refers to the interaction of the ele-
ments of the system where a system element, X, affects
another system element, Y, and Y in turn affects X per-
haps through a chain of causes and effects. Feedback
thus controls the performance of the system. Feedback
can be either natural or behavioral (created by human
intervention) (System Dynamics Society).

Unintended consequences Undesirable consequences
arising well intended action – or vice versa.

Continuous simulation The aggregate method of com-
puter simulation used in system dynamics based on
a continuous time analogy with fluid dynamics and
used to test out patterns of behavior over time.

System structure The term used in system dynamics to
refer to the total structure of a system (composing
processes, organization boundaries, information feed-
back, policy and delays).

System behavior The term used in system dynamics to
refer to the behavior over time of a particular struc-
ture.
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Reference mode of behavior An observed past trend and
future projected trends used to assist defining model
scope and time frame.

Discrete entity simulation A method of simulation
based on the movement of individual entities through
systems over time either as processes or as interactions
between entities.

Health and Social Care
Epidemiology The study of factors affecting the health

and the incidence and prevalence of illness of popu-
lations.

Health treatment The application of drugs, therapies,
and medical/surgical interventions to treat illness.

National health service (NHS) The organization in the
UK responsible for the delivery of health care.

Primary care trusts (PCTs) The local operating agencies
of the NHS, which both commission (buy) and deliver
health services.

General practitioners (GPs) Locally-based general clini-
cians who deliver primary care services and control ac-
cess to specialist health services.

Social services In England, care services which provide
non-health related care, mainly for children and older
people, located within local government in the UK.

Nursing/residential home care In England, private and
public residential establishments for the care of older
people.

Domiciliary care In England, care for older people in
their own homes.

Acute hospitals Hospital dealing with short term condi-
tions requiring mainly one-off treatment.

Outliers Patients located in hospital in wards not related
to their condition, due to bed capacity issues.

Intermediate care Short term care to expedite the treat-
ment of non-complex conditions.

Definition of the Subject

All too often complexity issues are ignored in decision
making simply because they are just too difficult to rep-
resent. Managers feel that to expand the boundaries of
the decision domain to include intricate, cross-bound-
ary interconnections and feedback will detract from the
clarity of the issue at stake. This is particularly true
when the interconnections are behavioral and hard to
quantify. Hence, the focus of decision making is either
very subjective or based on simple, linear, easy to quan-
tify components. However, such a reductionist stance,
which ignores information feedback (for example, the ef-
fects of health supply on health demand management)
and multiple-ownership of issues can result in unsus-

tainable, short term benefits with major unintended con-
sequences.

System dynamics is a particular way of thinking
and analyzing situations, which makes visible the dy-
namic complexity of human activity systems for decision
support.

It is particularly important in the health and social care
field where there are major issues of complexity associ-
ated with the incidence and prevalence of disease, an ag-
ing population, a profusion of new technologies and mul-
tiple agencies responsible for the prevention and treatment
of illness along very long patient pathways. Health is also
linked at every stage to all facets of life and health policy
has a strong political dimension in most countries.

Introduction

This paper describes and reviews work in applying system
dynamics to issues of health and social care in the UK and
Europe. Although the fundamental issues in health and
social care and many of the strategies adopted are sim-
ilar the world over, there are differences in culture, op-
erational policies and funding even over short geograph-
ical distances. Additionally, the health field can be dis-
sected in many different ways both internally and between
countries.

There is, moreover, a fundamental dilemma at the cen-
ter of health that determines both its structure and em-
phasis. Although the real long term and systemic solution
to better health lies in the prevention of illness, the health
field focuses on the study of the incidence and prevalence
of disease (Epidemiology) and on the ‘health service’ is-
sues of how to manage ill health (Health Diagnosis and
Treatment).

There are many reasons for this, not the least being
that illness prevention is in fact the province of a field
much bigger than health, which includes economics, so-
cial deprivation, drugs, poverty, power and politics.

The field of system dynamics in health reflects this
dilemma. Whilst all studies would conclude that preven-
tion is better than the cure, the majority of applications
focus on illness. Whilst more studies are required on the
truly systemic goal of moving attention away from the
status quo, for example, modeling the German system of
health care and drug addicts [52], the major focus and im-
pact of system dynamics in Europe in recent years has been
in terms of Epidemiology and Health Treatment. Hence, it
is these categories that will be the focus of this paper. How-
ever, work often transcends the two and models often in-
clude both disease and treatment states. For example, work
on AIDS covers both prevalence and drug treatment and
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work on long term conditions, particularly mental health
conditions, covers condition progression as well as alter-
native therapies.

It is important to emphasize what this paper does not
cover. By definition system dynamics is a strategic ap-
proach aimed at assisting with the understanding of high
level feedback effects at work in organizations. It is there-
fore separate from the many applications of spreadsheets
and discrete entity simulation methods applied to answer
short term operational level issues in health [9,21,29].

It is also important to note where the knowledge base
of this paper is located. System dynamics applications in
health in Europe began in the 1980s and are expanding
rapidly. However, as will be seen from the bibliography
to this paper, much of the work is applied by internal
and external consultants and Universities for health care
managers and reported in management, operational re-
search and system dynamics journals. Little of the work
so far has been addressed directly at clinicians or pub-
lished in the health literature. It should also be said that
there is far more work in system dynamics in health
than is referred to in this publication. Many internal and
external consultancies undertake studies which remain
unpublished.

Initially the fundamentals of system dynamics will be
described followed by an overview of current health is-
sues and responses in the UK and Europe. This is followed
by a case study to demonstrate how effective and apposite
system dynamics studies can be. There then follows a re-
view of applications in epidemiology and in both physi-
cal and mental health diagnosis and treatment. Mention
is also made of health workforce planning studies. Lastly,
a review of future directions is described.

The History of System Dynamics

System dynamics was conceived at MIT, Boston in the late
60s and has now grown into a major discipline [25,47]
which was formally celebrated and reviewed in 2008 [48].
It is widely used in the private business sector in produc-
tion, marketing, oil, asset management, financial services,
pharmaceuticals and consultancy. It is also used in the
public sector in defense, health and criminal justice.

System dynamics has a long history in the UK and Eu-
rope. The first formal university group was established at
the University of Bradford in England 1970. Today there
are at least a dozen university departments and business
schools offering courses in system dynamics and numer-
ous consultancies of all types using the method in one
form or another. Thousands of people have attended pri-
vate and university courses in system dynamics and, ad-

ditionally, there are almost one hundred UK members of
the System Dynamics Society, which is the largest national
grouping outside the US.

The Need for System Dynamics

Most private and public organizations are large and com-
plex. They exhibit both ‘detailed’ complexity (the number
of elements they contain), butmore importantly ‘dynamic’
complexity (the number of interconnections and interac-
tions they embrace). They have long processes which tran-
scend many sectors, each with their own accounting and
performance measures. In the case of health and social
care organizations this translates into long patient path-
ways across many agencies. Complexity and decisionmak-
ing in the public sector is also compounded by a multitude
of planning time horizons and the political dimension.

Long processes mean that there are many opportuni-
ties for intervention, but that the best levers for overall im-
provement are often well away from symptoms of prob-
lems. Such interventions may benefit sectors other than
those making the investments and require an open ap-
proach to improving patient outcomes, rather than single
agency advantage.

The management of complex organizations is compli-
cated by the fact that human beings have limited cognitive
ability to understand interconnections and consequently
have limited mental models about the structure and dy-
namics of organizations.

A characteristic of complex organizations is a tendency
for management to be risk averse, policy resistant and
quick to blame. This usually means they prefer to stick
to traditional solutions and reactive, short term gains. In
doing this managers ignore the response of other sectors
and levels of the organization. In particular, they underes-
timate the role and effect of behavioral feedback.

Such oversight can result in unintended consequences
in the medium term that undermine well-intended ac-
tions. Self organizing and adaptive responses in organiza-
tions can lead to many types of informal coping actions,
which in turn, inhibit the realization of improvement at-
tempts and distort data. A good example of these phe-
nomena, arising from studies described here, is the use of
‘length of stay’ in health and social care services as a policy
lever to compensate for capacity shortages.

Planning within complex organization reflects the
above characteristics. The core of current planning tends
to be static in nature, sector-based and reliant on data
and financial spreadsheets with limited transparency of as-
sumptions. For example the planning of new acute hos-
pitals can quickly progress to detailed levels without as-
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sessment of trends in primary and post acute care; that is,
where hospital patients come from and go to.

In contrast, sustainable solutions to problems in com-
plex organizations often require novel and balanced inter-
ventions over whole processes, which seem to defy logic
and may even be counterintuitive.

However, in order to realize such solutions requires
a leap beyond both the thinking and planning tools com-
monly used today. In order to make significant changes in
complex organizations it is necessary to think differently
and test ideas before use. System dynamics provides such
a method.

The Components of SystemDynamics

System dynamics is based on the idea of resisting the temp-
tation to be over reactive to events, learning instead to view
patterns of behavior in organizations and ground these in
the structure (operational processes and policies) of orga-
nizations. It uses purpose-built software to map processes
and policies at a strategic level, to populate thesemaps with
data and to simulate the evolution of the processes under
transparent assumptions, polices and scenarios.

System dynamics is founded upon:

� Non linear dynamics and feedback control developed
in mathematics, physics and engineering,

� Human, group and organizational behavior developed
in cognitive and social psychology and economics,

� Problem solving and facilitation developed in opera-
tional research and statistics.

System dynamics provides a set of thinking skills and a set
of modeling tools which underpin the current trend of
‘whole systems thinking’ in health and social care.

System Dynamics Thinking Skills for the Management
of Complex Organizations

In order to understand and operate in complex organi-
zations it is necessary to develop a wide range of think-
ing skills [45]. The following are summarized after Rich-
mond [42].

� Dynamic thinking – The ability to conceptualize how
organizations behave over time and how we would like
them to behave.

� System-as-cause thinking – The ability to determine
plausible explanations for the behavior of the organiza-
tion over time in terms of past actions.

� Forest thinking – The ability to see the “big picture”
(transcending organizational boundaries).

� Operational thinking – The ability to analyze the con-
tribution made to the overall behavior by the interac-
tion of processes, information feedback, delays and or-
ganizational boundaries.

� Closed-loop thinking – The ability to analyze feedback
loops, including the way that results can feedback to in-
fluence causes.

� Quantitative thinking – The ability to determine the
mathematical relationships needed to model cause and
effect.

� Scientific thinking – The ability to construct and test
hypotheses through modeling.

System Dynamics Modeling Tools for Planning
in Complex Organizations

A useful way to appreciate the tool set of system dynamics
is by a brief comparison with other computer based man-
agement tools for decision support.

System dynamics is, by definition, a strategic rather
than operational tool. It can be used in a detailed opera-
tional role, but is first and foremost a strategic tool aimed at
integrating policies across organizations, where behavioral
feedback is important. It is unique in its ability to address
the strategic domain and this places it apart frommore op-
erational toolsets such as process mapping, spreadsheets,
data analysis, discrete entity simulation and agent-based
simulation.

System dynamics is based on representing process
flows by ‘stock’ and ‘rate’ variables. Stocks are important
measurable accumulations of physical (and non-physical)
resources in the world. They are built and depleted over
time as input and output rates to them change under the
influence of feedback from the stocks and outside factors.
Recognizing the difference between stocks and rates is fun-
damental to understanding the world as a system. The su-
perimposition of organizational sectors and boundaries on
the processes is also fundamental to understanding the im-
pact of culture and power on the flows. System dynam-
ics also makes extensive use of causal maps to both help
conceptualize models and to highlight feedback processes
within models.

Applying System Dynamics with Management Teams

However, the success of system dynamics lies as much
in its process of application as in the tool set and hence
demands greater skill in conceptualization and use than
spreadsheets.

Figure 1 shows the overall process of applying system
dynamics. A key starting point is the definition of an ini-
tial significant issue of managerial concern and the estab-
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lishment of a set of committed and consistent manage-
ment teams from all agencies involved in the issue. An-
other requirement is a set of facilitators experienced in
both conceptualizing and formulating system dynamics
models. The models created must be shared extensions of
the mental models of the management teams, not the fa-
cilitators and, importantly owned by the team.

The next step is the analysis of existing trends in ma-
jor performancemeasures of the organizations and of their
future trajectories, desired and undesired. This is referred
to as the reference model of behavior of the issue and helps
with the establishment of the time scale of the analysis.
The key contribution of system dynamics is then to for-
mulate a high level process map, at an appropriate level of
aggregation, linking operations across organizations and
to populate this with the best data available. Once vali-
dated against past data, the mental models of the manage-
ment team and shown capable of reproducing the refer-
ence mode of behavior of the issue (‘what is’), the model
is used to design policies to realize desired futures (‘what
might be’). Maps and models are constructed in relatively
inexpensive purpose-built software (for example ithink,
Vensim and Powersim) with very transparent graphical
interfaces.

The key is to produce the simplest model possible con-
sistent with maintaining its transparency and having con-
fidence in its ability to cast new light on the issue of con-
cern. This means keeping the resolution of the model at
the highest possible level and this distinguishes it from
most spreadsheets and process maps.

AnOverview of Health and Social Care
in the UK and Europe

Ensuring that all residents have access to health and social
care services is an important goal in all EU countries and
all have universal or almost universal health care coverage
(European Observatory ‘Healthcare in Transition’ profiles
and OECD Health Data 2004). Even in the Netherlands,
where only 65% of the population are covered by a com-
pulsory scheme, with voluntary private insurance available
to the remainder, only 1.6% of the population are without
health insurance.

At the present time, most care in the EU is publicly
financed, with taxation and social insurance provide the
main sources of funding. Taxation is collected at either the
national level or local level, or both and social insurance
contributions are generally made by both employees and
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employers. The role of private insurance varies between
countries and generally private insurance is as a supple-
ment to, rather than as a substitute for, the main care sys-
tem. The exceptions to this are Germany and the Nether-
lands. Further, people are increasingly required to pay part
of the cost of medical care.

The delivery of health and social care is a mixture of
public and private with only 10 countries not having any
private delivery sector at all.

This paper is primarily concerned with health and so-
cial care supply issues. Although the structure and termi-
nology associated with supply varies across the EU the
underlying issues tend to be similar between countries.
Hence the major issues will be described for England.

Health in England is primarily managed and delivered
by the National Health Service (NHS) and is at the cen-
ter of a modernization agenda, whereby the government
sets out a program of change and targets against which the
public may judge improved services.

A major mechanism for reform tends to be via fre-
quent changes to organizational structure. The current
structure consist of large primary care trusts (PCTs),
which both deliver services such as General Practitioner
Services (GPs), but also purchase (commission) more spe-
cialist services from other agencies, both public and pri-
vate. A key driver of structural change is to enhance pri-
mary care and to take the pressure off acute hospitals
(acute is a word used to differentiate short term hospi-
tals from long stay ones). Initiatives here center on pro-
viding new services, such as diagnostic and treatment cen-
ters and shorter term ‘intermediate’ care. Emphasis is on
bringing the services to the users, patient choice, payment
by results (rather than through block contracts) and ser-
vice efficiency, the latter being driven by target setting and
achievement. The government has made reform of pub-
lic services a key plank in its legislative program and pres-
sure to achieve a broad range of often conflicting targets is
therefore immense. However, despite continual increases
in funding new initiatives are slow to take effect and the
performance and viability of the service is problematic
with money often being used to clear deficits rather than
generate new solutions.

Social care in England is delivered both by a public sec-
tor located with Local Government Social Services Direc-
torates and a private sector. It consists of numerous ser-
vices to support children and older people. The latter con-
sisting of care homes, nursing homes and domiciliary (at
home) care.

Many patient processes, particularly for older people,
transcend health and social care boundaries and hence
create a serious conflict of process structure and organi-

zational structure, where the relative power of the differ-
ent agencies is a major determinant of resource alloca-
tion [64]. Consequently, emphasis in this paper will be on
joint health and social care work.

A Case Study: Using SystemDynamics to Influence
Health and Social Care Policy Nationally
in the UK – Delayed Hospital Discharges

In order to give a flavor of the relevance and impact of
applying system dynamics to health and social care issues
a concise case study will be presented [65,67,70].

Issue

Delayed hospital discharge was an issue which first came
onto the UK legislative agenda in late 2001. The ‘reference
mode’ of behavior over time for this situation was that of
increasing numbers of patients occupying hospital beds,
although they had been declared “medically fit”. In March
2002, 4,258 people were “stuck” in hospital and some were
staying a long time, pushing up the number of bed days
and constituting significant lost capacity.

The government’s approach to this issue was to find
out who was supposed to “get the patients out” of acute
hospitals and threaten them with ‘fines’ if they did not im-
prove performance. This organization proved to be social
services for older people, who are located within the lo-
cal government sector and who are responsible for a small,
but significant, number of older people needing ex-hospi-
tal (‘post-acute’) care packages. Such patients are assessed
and packages organized by hospital social workers. There
was also pressure on the government from hospitals claim-
ing that some of the problem was due to lack of hospital
capacity.

The idea of fines was challenged by the Local Govern-
ment Association (LGA), which represents the interests of
all local government agencies at the national level) who
suggested that a ‘system’ approach should be undertaken
to look at the complex interaction of factors affecting de-
layed hospital discharges. This organization, together with
the NHS Confederation (the partner organization repre-
senting the interests of the National Health Service orga-
nizations at a national level) then commissioned a system
dynamics study to support their stance.

The remit was for consultants working with the rep-
resentatives of the two organizations to create a system
dynamics model of the ‘whole patient pathway’ extending
upstream and downstream from the stock of people de-
layed in hospital, to identify and test other interventions
affecting the issue.
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Model

A system dynamics model was developed interactively
with managers from the LGA and NHS, using national
data to simulate pressures in a sample health economy
covering primary, acute and post acute care over a 3 year
period. The model was driven by variable demand in-
cluding three winter pressure “peaks” when capacity in
each sector was stretched to the limit. Figure 2 shows an
overview of the sectors of the model.

The patient flows through the model were broken
down into medical flows and surgical with access to the
medical and surgical stocks of beds being constrained by
bed capacity. The medical flows were mainly emergen-
cies patients and the surgical flows mainly non-emergency
‘elective’ patients, who came via referral processes and wait
lists.

Further, medical patients were broken down into ‘fast’
and ‘slow’ streams. The former were the normal patients
who had a short stay in hospital and needed few post acute
services and the latter the more complex cases (mainly
older people), who require a longer stay and hospital and
complex onward care packages from social services. This
split was because although the slow patients were few in
number they constituted most of the people who caused
delayed discharges.

The post hospital health and social care services of in-
termediate care, nursing/residential home care, and domi-
ciliary care were included in the model and were also ca-

Health Care in the United Kingdom and Europe, System Dynamics Applications to, Figure 2
An overview of the sectors of the delayed dischargemodel

pacity constrained in terms of the number of care packages
they could provide.

The model incorporated a number of mechanisms by
which hospitals coped during periods of high demand,
for example, moving medical patients to surgical beds
(outliers) and early discharges with allowance for read-
missions.

Configuration of the Model

The model was set up to simulate a typical sample health
economy over a 3 year period when driven by a variable
demand (including three winter “peaks”). The capacity
constrained sectors of the model were given barely suf-
ficient capacity to cope. This situation was designed to
create shocks against which to test alternative policies for
performance improvement. Major performance measures
in use in the various agencies were incorporated. These
included:

1. Cumulative episodes of elective surgery.
2. Elective wait list size and wait time.
3. Numbers of patients in hospital having completed

treatment and assessment, but not yet discharged (de-
layed discharges).

4. Number of ‘outliers’.

The model was initially set up with a number of fixed ex-
periments, to introduce people to the range of experiments
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that yielded useful insights into the behavior of the whole
system. From there, they were encouraged to devise their
own experiments and develop their own theories of useful
interventions and commissioning strategies.

The three main polices tested in the fixed runs were:

1. Adding additional acute hospital bed capacity. This is
the classic response used over many years by govern-
ments throughout the world to solve any patient path-
way capacity problems and was a favorite ‘solution’
here.

2. Adding additional post acute capacity, both nursing
and residential home beds but also more domiciliary
capacity.

3. Diverting more people away from hospital admission
by use of pre-hospital intermediate capacity and also
expansion of treatment in primary care GP surgeries.

Example Results
from the Delayed Hospital Discharge Model

Figures 3, 4 and 5 show some typical outputs for the de-
layed hospital discharge model. Figure 3 captures the way
capacity utilization was displayed (actual beds occupied v
total available for both medical and surgical sectors of the
hospital) and shows the occurrence of ‘outliers’ (transfers
of patients from medical to surgical beds) whenever med-
ical capacity was reached.

Figures 4 and 5 show comparative graphs of 3 policy
runs for 2 major performance measures for 2 sectors of the

Health Care in the United Kingdom and Europe, System Dynamics Applications to, Figure 3
Medical and surgical bed utilization’s in hospital and ‘outliers’

patient pathway – delayed discharges for post acute social
services and cumulative elective procedures for acute hos-
pitals. In each case the base run is line 1. Line 2 shows the
effect of increasing hospital beds by 10% and line 3 shows
the effect of increasing post acute capacity by 10%.

The interesting feature of this example output is that
the cheaper option of increasing post acute capacity gives
lower delayed discharges and higher elective operations
whereas the more expensive option of increasing acute
hospital beds benefits the hospital but makes delayed dis-
charges worse. The key to this counter intuitive effect is
that increasing post acute capacity results in higher hospi-
tal discharges which in turn reduces the need for the ‘out-
lier’ coping policy in the hospital, hence freeing up surgical
capacity for elective operations.

Outcomes

Common Sense Solutions Can Be Misleading The ob-
vious unilateral solution of adding more acute capacity
was shown to exacerbate the delayed discharge situation.
Increasing hospital capacity means facilitating more hos-
pital admissions, but with no corresponding increase in
hospital discharges. Hence, the new capacity will simply
fill up and then more early discharges and outliers will be
needed.

Fines May Have Unintended Consequences This solu-
tion was shown to depend on where the money raised by
fines was spent. If the money levied from social services
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Health Care in the United Kingdom and Europe, System Dynamics Applications to, Figure 4
Delayed hospital discharges for 3 policy runs of the model

Health Care in the United Kingdom and Europe, System Dynamics Applications to, Figure 5
Cumulative elective operations for 3 policy runs of the model

was given to the acute sector to finance additional capacity
it was clearly demonstrated that this would make delayed
discharges worse. It would be worse still if it causes the
post-acute sector to cut services. The effects of service cuts
may also then spill over into other areas of local govern-
ment including housing and education.

It was demonstrated that there were some interventions
that could help:

1. Increasing post acute capacity gives a win-win solu-
tion to both health and social care because it increases
all acute and post acute sector performance measures.
Such action allows hospital discharges to directly in-
crease, and eliminates the need for the hospitals to ap-

ply coping policies, which in turn increases elective
operations and reduces elective wait times. Further,
counter intuitively, increasing medical capacity in hos-
pital is more effective than increasing surgical capacity
for reducing elective wait times.

2. Reducing assessment times and lengths of stay in all
sectors is beneficial to all performance measures, as
is reducing variation in flows, particularly reinforcing
feedback loops like re-admission rates.

3. Increasing diversion from hospitals into pre-admission
intermediate care was almost as beneficial as increasing
post acute capacity.

4. If fines are levied they need to be re-invested from
a whole systems perspective. This means re-balancing
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resources across all the sectors (NOT just adding to
hospital capacity).

5. In general the model showed that keeping people out
of hospital is more effective than trying to get them out
faster. This is compounded by the fact that in-patients
are more prone to infections so the longer patients are
in hospital, the longer they will be in hospital.

6. Improving the quality of data was shown to be
paramount to realizing the benefits of all policies. This
is an interesting conclusion associated with many sys-
tem dynamics studies, where explicit representation of
the structure of the organization can lead to a review
and redesign of the information needed systems to re-
ally manage the organization.

An interesting generalization of the findings was that in-
creasing stock variables where demand is rising (such as
adding capacity) is an expensive and unsustainable solu-
tion. Whereas increasing rate variables, by reducing delays
and lengths of stay, is cheaper and sustainable.

Impact

This model was shown at the Political Conferences of 2002
and generated considerable interest. It was instrumental
in causing re-thinking of the intended legislation, so that
social services was provided with investment funding to
address capacity issues, and the implementation of fines
was delayed for a year. Reference to the model was made
in the House of Lords.

Moving the main amendment, Liberal Democrat
health spokesperson Lord Clement-Jones asked the
House to agree that the Bill failed to tackle the causes
of delayed discharges and would create perverse in-
centives which would undermine joint working be-
tween local authorities and the NHS and distort pri-
orities for care of elderly people by placing the re-
quirement to meet discharge targets ahead of mea-
sures to avoid hospital admission . . . He referred
to “ithink”, the whole systems approach being put
forward by the Local Government Association,
health service managers and social services direc-
tors involving joint local protocols and local ac-
tion plans prepared in co-operation.

Postscript

This case study demonstrates the ability of system dynam-
ics to be applied quickly and purposefully to shed rigor
and insight on an important issue. The study enabled the
development of a very articulate and compelling case for
the government to move from a reactive position of blam-

ing social services to one of understanding and acting on
a systemic basis. The whole project including modeling
and communication of the outcomes was completed in 6
weeks.

Review of SystemDynamics Studies
in Epidemiology in Europe

The potential for system dynamics in population health
and disease control began in the UK in the late eight-
ies/early nineties with the extensive studies carried out
on AIDS modeling. The majority of these studies were by
Prof. Brian Dangerfield and Carole Roberts and were on-
going until 2000 [14,15,16,17,18,19,20].

The earlier studies [16] used a transition model to por-
tray the nature of the disease and to better specify the types
of data collection required for further developments of the
model. The model was then developed further over the
years [18,19] and was fed with time-series data of actual
cases. This enabled projections of future occurrence to be
forecast. The latter models were more concerned with ex-
amining the resource and cost implications of treatments
given to HIV positive individuals and at their varying
stages up until the ensuing onset of AIDS.

A recent study by Dangerfield et al. [20] saw further
development of the original model with parameter opti-
mization and recent data on the spread of AIDS in the
UK was also integrated. The rationale for the update of
the model was to investigate the recent dramatic decrease
in diagnosed Aids cases in the West. The model assesses
the effects of relatively new emergent triple antiretroviral
therapy given to HIV patients causing this reduction and
examines the possibility of continuity of the effectiveness
of this therapy.

Dangerfield explains some of the reasons [13] why sys-
tem dynamics acts as an excellent tool for epidemiologi-
cal modeling. The positive and negative feed-back loops
help imitate the natural disposition of the spread and con-
tainment of diseases amongst the general population. Fur-
ther, system dynamics allows delays associated with the
incubation predisposition of infectious diseases to be ac-
curately and easily modeled without the need for compli-
cated mathematical representation.

The work in the UK was complemented by work in
Holland on simulation as a tool in the decision-mak-
ing process to prevent HIV incidence among homosex-
ual men [23] and on models for analysis and evaluation
of strategies for preventing AIDS [32]. Further epidemi-
ological studies in system dynamics in the UK related to
the outbreak out of BSE and the subsequent infection of
humans with its human form nvCJD [12].
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These models are all characterized by modeling the
flow of people through different stocks over time repre-
senting the different stages of the disease progression. The
purpose of the model is then to test the effects of inter-
ventions aimed at slowing down the rate of progression of
the condition or indeed moving people ‘upstream’ to less
severe states of the condition.

Review of SystemDynamics Studies in Health
and Social CareManagement in Europe

By far the greatest number of studies and publications in
the use of system dynamics in health and social care is as-
sociated with patient flow modeling for health care plan-
ning. That is, the flow of patients through multiple ser-
vice delivery channels. Patient pathway definition has been
an area of health modernization and these pathways lend
themselves to representation as stock/flow resource flows
in system dynamics. The purpose of this type of modeling
is to identify bottlenecks, plan capacity, reduce wait lists,
improve the efficiency of patient assessments and times
and the design of alternative pathways with shorter treat-
ment times, (for example, intermediate care facilities both
pre and post hospital treatment).

A characteristic of patient flows is that they are long
and pass through multiple agencies and hence confront
the major health issues of working across boundaries and
designing integrated policies. Studies in this area have ex-
amined the flow of many different populations of patients
and often resulted in arrayed models to represent the flow
of different ‘populations’ or ‘needs groups’ through several
parallel service channels.

The studies have covered both physical and mental
conditions and have sometimes combined both the dy-
namic progression of people through undiagnosed and
untreated disease states and the dynamic progression of
diagnosed people through treatment pathways.

TheModeling of the Diagnosis and Treatment
of Physical Conditions

Here the most common set of models are associated with
the flow of patients from primary care, through acute hos-
pitals and onwards into post acute care such as social ser-
vices provisions for home care, nursing care and residen-
tial care. The populations have often been split between
the simple everyday cases and the complex cases associated
with older people needing greater degrees of care. They
have also involves medical and surgical splits. There are
a number of review papers which supplement the work de-
scribed below [1,18,19].

In addition to work in the 1990s on the inter-
face between health and social care [59,60,61] and
the national level UK work on older people flows
through hospitals [65,67,71,72], Wolstenholme has re-
ported that system dynamics applications are currently
underway by the authors in 10 local health communi-
ties around the UK with the objectives of modeling pa-
tient flows across agency boundaries to provide a visual
and quantitative stimulus to strategic multi-agency plan-
ning [65].

Lane has reported work in Accident and Emergency
Departments [33] and in mapping acute patient flows [34]
whilst Royston worked with the NHS to help develop and
implement policies and programs in health care in Eng-
land [43]. Taylor has undertaken award winning mod-
eling of the feedback effects of reconfiguring health ser-
vices [49,50,51], whilst Lacey has reported numerous UK
studies to support the strategic and performance manage-
ment roles of health service management, including pro-
vision of intermediate care and reduction of delayed hos-
pital discharges [31]. Other intermediate care and social
care delivery studies are described by Bayer [6,7] and fur-
ther hospital capacity studies by Coyle [11]. Elsewhere,
there have been specific studies on bed-blocking [24] and
screening [37].

In Norway system dynamics-based studies have fo-
cused on mapping the flows of patients in elderly non-
acute care settings [10]. The purpose of this study accord-
ing to Chen is to differentiate between acute and non-acute
settings and thereby increase understanding of the com-
plexity and dynamics caused by influencing elements in
the system. Also it is to provide a tool for local communi-
ties in Norway for their long term budget planning in the
non-acute health sector for the elderly.

Work on reducing waiting lists has been reported in
Holland [30,53,54,57]). Also in Holland Vennix has re-
ported comprehensive work onmodeling a regional Dutch
health care system [56].

Work has been undertaken to balance capacities in
individual hospitals in Italy [44] and in Norway [38,41].
Whist normally the realm of more operational types of si-
mulation system dynamics has proved very effective here.
There has also been work to assess the impact on health
and social care of technological innovation, particu-
larly telecare [5,8]. Additionally, system thinking has been
undertaken by doctors to examine the European time
directive [40].

Given the similar nature of a lot of these studies fur-
ther detail here will focus on the work of Vennix in par-
ticipative model building andWolstenholme in extracting
insights from numerous studies.
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Participative Model Building

A characteristic of all Vennix’s work has been groupmodel
building [55]. The main objectives of this [27] are com-
munication and learning and integration of multiple per-
spectives where the process of model building is frequently
more important than the resulting model itself [56]. Ven-
nix brought together strategic managers and important
stakeholders to participate in the process of building a sys-
tem dynamics model of the Dutch healthcare system. The
policy problem which is modeled in Vennix’s 1992 study
is related to the gradual, but persistent, rise in health care
costs in the Netherlands. Vennix [56] attempts to find the
underlying causes of those increases that emanate from
within the health care system itself rather than focusing
on exogenous factors. By doing so Vennix stands to iden-
tify potential levers within the health care system that can
be practically and appropriately be adjusted to reduce cost
increases.

Vennix attempts to extract important assumptions
from the key players by posing three straight forward ques-
tions;

a) What factors have been responsible for the increase in
health care costs?

b) How will health care costs develop in the future?
c) What are the potential effects of several policy options

to reduce these costs?

Participants are asked if they agreed or disagreed with the
statements and why they thought the statements were true
or not. The most frequently given reasons for the verbal
statements were then incorporated in to the statements
to create causal arguments from the participant’s mental
models.

Similar methods were adopted to identify policies
which represent the aggregate of many individual actions.
For example, why a GP may decide on such matters as
frequency of patients appointments, drugs choice, referral
to other medical specialist or a combination of all these.
Vennix’s model was subsequently formalized and quanti-
fied and converted into a computer-based learning envi-
ronment for use by a wider range of health personnel.

The idea of using system dynamics as a means of par-
ticipative modeling for learning is also inherent in other
work [35].

Offering Insights into Managing
the Demand for Health Care

Wolstenholme reports the insights from many applica-
tions of his own and other work. He suggests a hypothesis
that the ‘normal’ mode of operation for many health and

social care organizations today is often well beyond their
safe design capacity. This situation arises from having to
cope with whatever demand arrives at their door irrespec-
tive of their supply capability. Risk levels can be high in
these organizations and the consequences could be catas-
trophic for patients [71,72].

Evidence for the hypothesis has emerged at many
points along patient pathways in health and social care
from a number of studies carried out using system dynam-
ics simulation to identify and promote systemic practice
in local health communities. The rigor involved in knowl-
edge-capture and quantitative simulationmodel construc-
tion and running has identified mismatches between how
managers claim their organizations work and the observed
data and behavior. The discrepancies can only be ex-
plained by surfacing informal coping policies. For exam-
ple, transferring medical emergency patients to surgical
wards, resulting in canceled elective procedures, also re-
ported by Lane [35]. Indeed, the data itself becomes ques-
tionable as it reflects more the actions of managers than
the true characteristics of patients.

The result of capacity pressure can mean that man-
agers are unable, physically and financially, to break out
from a fire-fighting mode to implement better resource in-
vestment and development policies for systemic and sus-
tainable improvement. The insights reported are impor-
tant for Health and Social Care management, the mean-
ing of data and for modeling. The key message here is that
much-needed systemic solutions and whole system think-
ing can never be successfully implemented until organiza-
tions are allowed to articulate and dismantle their worst
coping strategies and return to working within best prac-
tice capacities.

The Modeling of the Treatment of Mental Health
Diagnosis and Treatments in the UK

Modeling to assist mental health reform has recently de-
veloped as a separate strand of health work in the UK [46,
69,72].

Mental health services in the UK over the past 50
years have undergone numerous major reforms. The
National Institute for Clinical Excellence [36] has re-
cently published extensive research-based guidelines on
the way stepped care might be best achieved. These in-
volved moves towards a balanced, mixed community/
institutional provision of services set within a range of sig-
nificant reforms to the National Health Service. The latest
and perhaps most significant reform is that associated with
the introduction of ‘stepped care’. Stepped care is aimed
at bringing help to more patients more cheaply by devel-
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oping intermediate staff, services and treatments between
GPs and the specialist health hospitals.

Having decided on the new treatments at each step and
having designed the basic patient pathways, modeling has
been used in the NorthWest of England to help with com-
munication of the benefits and to overcome anticipated
problems with resource reallocation issues [69]. Further
work in Lincolnshire UK [58] reports the increasing use
of ‘matrix’ modeling in mental health to capture the dy-
namics of both patient needs and treatments. This work
also demonstrates the dangers of over-investment in sit-
uations where much demand is in accrued backlogs and
incidence is reducing due to better and more successful
interventions.

The depression work has also led to work at the De-
partment of Health in the UK to help analyze the national
impact of stepped services for mental health on the totality
of the labor market and unemployment [72]. This work
is an example of the value that system dynamics can add
to conventional cost benefit analysis. A static cost benefit
analysis was developed into a system dynamics model. By
developing a bigger picture of the issue, both upstream to
where patients go after treatment and downstream from
where patients originate in the labor market, and by sim-
ulation of the enhanced vision, the dynamic cost benefit
analysis is shown to advance understanding of the issue
and plans.

The work questions the magnitude of the potential
benefits, introduces phasing issues, surfaces structural in-
sights, takes account of the dynamics of the lab-our mar-
ket and forces linkages between the plan and other ini-
tiatives to get people back to work. The paper suggests
that cost benefit analysis and system dynamics are very
complementary and should be used together in strategic
planning.

Other mental health capacity planning studies have
been carried out for individual mental health hospitals and
trusts. One such study [71] describes the application of
system dynamics to assist decision making in the reallo-
cation of resources within a specialist mental health trust
in south London. Mental health service providers in the
UK are under increasing pressure to both reduce their own
costs and tomove resources upstream inmental health pa-
tient pathways to facilitate treatingmore people, whilst not
compromising service quality.

The investigation here focused on the consequences of
converting an existing specialist service ward in a mental
health hospital into a ‘triage’ ward, where patients are as-
sessed and prioritized during a short stay for either dis-
charge or onward admission to a normal ward. Various
policies for the transition were studied together with the

implications for those patients needing post hospital ser-
vices and relocation within the community. The model
suggested that the introduction of a triage ward couldmeet
the strategic requirement of a 10% shift away from insti-
tutional care and into community services. The paper in-
cludes a number of statements from themanagement team
involved on the benefits of system dynamics and the im-
pact of its application on their thinking.

System DynamicsWorkforce PlanningModels
to Support HealthManagement

It is also important to mention that work has been car-
ried out in a number of countries in the field of work-
force planning related to health. In the UK the NHS has
deployed sophisticated workforce planning models to de-
termine the training and staffing needs associated with
numerous alternative service configurations. In the Span-
ish Health system modeling has been used to determine
the number of doctors required for a number of special-
ists services and to attempt to explore solutions for the
current imbalance among supply and demand of physi-
cians [2,4,5]. Elsewhere the factors affecting staff retention
has been studied [28] and in the Netherlands, an advisory
body of the Dutch government was given the responsibil-
ity of implying a new standard for the number of rheuma-
tologists [39]. One of the main factors that were studied in
the scenario analysis stage was the influences of changing
demographics on the demand of manpower in the health
system. Other studies have covered time reduction legisla-
tion on doctor training [22].

Future Directions

System dynamics has already made a significant impact
on health and social care thinking across the EU. Many
policy insights have been generated and the organizations
are increasingly being recognized as complex adaptive sys-
tems. However, true understanding and implementation
of the messages requires much more work and too many
organizations are still locked into a pattern of short-ter-
mism which leads them to focus on the things they feel
able to control – usually variables within their own indi-
vidual spheres of control. There are also some aspects of
system reform in some countries that are producing per-
verse incentives which encourage organizations to apply
short-term policies.

Wider communication of existing studies and further
studies are necessary to demonstrate the advantages of
sustainable, systemic solutions. The key challenge lies in
demonstrating to a wider audience of managers and clin-
icians that they can add value to the whole whilst remain-
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ing autonomous. An important element is to train more
people capable of modeling and facilitating studies and to
simplify the process and software of system dynamics.
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Glossary

Chronic illness A disease or adverse health state that per-
sists over time and cannot in general be cured, al-
though its symptoms may be treatable.

Stock An accumulation or state variable, such as the size
of a population.

Flow A rate-of-change variable affecting a stock, such as
births flowing into a population or deaths flowing out.

Feedback loop A closed loop of causality that acts to
counterbalance or reinforce prior change in a system
state.

Definition of the Subject

Health care involves a complex system of interactions
among patients, providers, payers, and other stakeholders.
This system is difficult to manage in the United States be-
cause of its free market approach and relative lack of reg-
ulation. System Dynamics simulation modeling is an ef-
fective method for understanding and explaining causes
of dysfunction in U.S. health care and for suggesting ap-
proaches to improving health outcomes and slowing rising
costs. Applications since the 1970s have covered diverse
areas in health care including the epidemiology of diseases
and substance abuse, as well as the dynamics of health care
capacity and delivery and their impacts on health. Many of
these applications have dealt with the mounting burden of
chronic illnesses, such as diabetes. In this article four such
applications are described.

Introduction

Despite remarkable successes in some areas, the health en-
terprise in the United States faces difficult challenges in
meeting its primary goal of reducing the burden of disease
and injury. These challenges include the growth of the un-

derinsured population, epidemics of obesity and asthma,
the rise of drug-resistant infectious diseases, ineffective
management of chronic illness [33], long-standing racial
and ethnic health disparities [32], and an overall decline in
the health-related quality of life [64]. Many of these com-
plex problems have persisted for decades, often proving re-
sistant to attempts to solve them [36].

It has been argued that these interventions fail because
they are made in piecemeal fashion, rather than compre-
hensively and from a whole-system perspective [15]. This
compartmentalized approach is engrained in the financial
structures, intervention designs, and evaluation methods
of most health agencies. Conventional analytic methods
are generally unable to satisfactorily address situations in
which population needs change over time (often in re-
sponse to the interventions themselves), and in which risk
factors, diseases, and health resources are in a continuous
state of interaction and flux [52].

The term dynamic complexity has been used to de-
scribe such evolving situations [56]. Dynamically complex
problems are often characterized by long delays between
causes and effects, and by multiple goals and interests that
may in some ways conflict with one another. In such situ-
ations, it is difficult to know how, where, and when to in-
tervene, because most interventions will have unintended
consequences and will tend to be resisted or undermined
by opposing interests or as a result of limited resources or
capacities.

The systems modeling methodology of System Dy-
namics (SD) is well suited to addressing the challenges
of dynamic complexity in public health. The methodol-
ogy involves the development of causal diagrams and pol-
icy-oriented computer simulation models that are unique
to each problem setting. The approach was developed by
computer pioneer Jay W. Forrester in the mid-1950s and
first described at length in his book Industrial Dynam-
ics [11] with some additional principles presented in later
works [8,9,10,12]. The International System Dynamics So-
ciety was established in 1983, and within the Society a spe-
cial interest group on health issues was organized in 2003.

SD modeling has been applied to health and health
care issues in the U.S. since the 1970s. Topic areas have
included:

� Disease epidemiology including work in heart dis-
ease [24,40], diabetes [24,34,43], obesity [25], HIV/
AIDS [29], polio [57] and drug-resistant pneumococ-
cal infections [28];

� Substance abuse epidemiology covering heroin addic-
tion [37], cocaine prevalence [30], and tobacco reduc-
tion policy [50,58];
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� Health care capacity and delivery in such areas as pop-
ulation-based HMO planning [21], dental care [20,38],
and mental health [38], and as affected by natural dis-
asters or terrorist acts [16,22,41]; and

� Interactions between health care or public health ca-
pacity and disease epidemiology [17,18,19,23,27].

Most of these modeling efforts have been done with the
close involvement of clinicians and policymakers who
have a direct stake in the problem being modeled. Estab-
lished SD techniques for group model building [60] can
help to harness the insights and involvement of those who
deal with public health problems on a day-to-day basis.

It is useful to consider how SD models compare with
those of other simulation methods that have been ap-
plied to public health issues, particularly in epidemio-
logical modeling. One may characterize any population
health model in terms of its degree of aggregation, that
is, the extent to which individuals in the population are
combined together in categories of disease, risk, or age
and other demographic attributes. At the most aggre-
gate end of the scale are lumped contagion models [3,35];
more disaggregated areMarkovmodels [13,31,44]; and the
most disaggregated are microsimulations at the level of
individuals [14,51,63].

The great majority of SD population health models are
high or moderately high in aggregation. This is related to
the fact that most SD models have a broad model bound-
ary sufficient to include a variety of realistic causal factors,
policy levers, and feedback loops. Although it is possible to
build models that are both broad in scope and highly dis-
aggregated, experience suggests that such very large mod-
els nearly always suffer in terms of their ability to be easily
and fully tested, understood, and maintained. In choosing
between broader scope and finer disaggregation, SD mod-
elers tend to opt for the former, because a broad scope is
generally needed for diagnosing and finding effective solu-
tions to dynamically complex problems [55,56].

The remainder of this article describes four of the Sys-
tem Dynamics modeling applications cited above, with
a focus on issues related to chronic illnesses and their
care and prevention. The U.S. Centers for Disease Con-
trol and Prevention (CDC) estimates that chronic illness
is responsible for 70% of all deaths and 75% of all health
care costs in the U.S. [5]. The applications discussed below
address:

� Diabetes and heart failure management at the commu-
nity level;

� Diabetes prevention and management from an epi-
demiological perspective;

� General chronic illness care and prevention at a com-
munity level; and

� General chronic illness care and prevention at the na-
tional level.

The article concludes with a discussion of promising areas
for future work.

Four Applications

Diabetes and Heart Failure Management
at the Community Level

Two hours north of Seattle in the state of Washington
lies Whatcom County, with a population of about 170
thousand. The county embarked on a major effort to ad-
dress chronic illness care and was selected by the Robert
Wood Johnson Foundation as one of seven sites in a larger
chronic care program called Pursuing Perfection [24]. The
program initially concentrated on two chronic illnesses
as prototypes for improved care: diabetes and congestive
heart failure. Both of these illnesses affect millions of peo-
ple in the U.S. and other countries and exact a heavy toll
in terms of direct medical expenditures as well as indirect
costs due to disability and premature mortality [2,45,47].
The prevalence of both diseases is growing rapidly as the
numbers of people above age 65 increase, and also due to
the epidemic rise in obesity, which is a risk factor for both
diabetes and heart disease [7,46].

Leaders of the Whatcom County program had two
critical needs for making decisions about potential inter-
ventions for improving the care of chronic illnesses such as
diabetes and heart failure. First, they wanted to get a sense
of the overall impact of these interventions on incidence
and prevalence of diabetes and heart failure, health care
utilization and cost, and mortality and disability rates in
the community. Second, they wanted to understand the
impact of the various interventions on individual health
care providers in the community and on those who pay for
care—insurers, employers, and patients themselves. There
was a concern that the costs and benefits of the program
be shared equitably and that providers who helped pro-
duce savings should not suffer a resulting loss of revenue
to their businesses.

These analytic needs could not be met with spread-
sheet and other models that project impacts in a simple,
linear fashion. Interventions in chronic illness do not have
simple direct impacts. The aging of the population, inci-
dence of new cases, progression of disease, deaths, and the
interventions themselves all create a constantly changing
situation. Interventions ideally reduce mortality rates, but
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Disease stages and intervention points in the Whatcom County Diabetes Model

this leaves more people with the disease alive and requir-
ing care for years to come.

Figure 1 presents a simplified view of the stock-and-
flow structure used in modeling non-insulin-dependent
(Type 2) diabetes. The actual model has two separate
structures like those shown in Fig. 1, one for the 18-to-64
age group and one for the 65-and-older age group, which
are linked by flows of patients turning 65. The model also
calculates an inflow of population turning 18, death out-
flows from each stock based on patient age and stage of
illness, and flows of migration into and out of the county.
The rectangular boxes in Fig. 1 represent sub-populations
with particular characteristics. The arrows signify flows of
people from one population group to another (e. g., from
uncontrolled to controlled diabetes at a particular stage).
Lines from ovals (programmatic interventions such as dis-
ease management) to population flows indicate control of
or influence on those flows.

The three stages of diabetes portrayed in this fig-
ure were identified through discussions with clinicians in
Whatcom County. The population At Risk includes those
with family history, the obese, and, most directly, those
with a condition of moderate blood sugar known as pre-
diabetes. Further increases in blood sugar lead to Stage

1 diabetes, in which blood vessels suffer degradation, but
there is not yet any damage to organs of the body, nor typi-
cally any symptoms of the encroaching disease. More than
half of Stage 1 diabetics are undiagnosed. If Stage 1 diabet-
ics go untreated, most will eventually progress to Stage 2,
marked by organ disease. In Stage 2 diabetes, blood flow
disturbances impair the functioning of organ systems and
potentially lead to irreversible damage. A patient who has
suffered irreversible organ damage, or organ failure, is said
to be in Stage 3; this would include diabetics who suffer
heart attacks, strokes, blindness, amputations, or endstage
renal disease. These patients are at the greatest risk of fur-
ther complications leading to death.

Several studies have demonstrated that the inci-
dence, progression, complications, and costs of diabetes
can be reduced significantly through concerted interven-
tion [1,4,6,59,61]. Such intervention may include primary
prevention or disease management. As indicated in Fig. 1,
primary prevention would consist of efforts to screen the
at-risk population and educate them about the diet and
activity changes they need to prevent progression to dia-
betes. Disease management, on the other hand, addresses
existing diabetics. A comprehensive disease management
approach, such as that employed by the Whatcom County
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program, can increase the fraction of patients who are able
to keep their blood sugar under effective control from the
40% or less typically seen without a program up to perhaps
80% or more.

The SD model of diabetes in Whatcom County was
first used to produce a 20-year status quo or baseline pro-
jection, which assumes that no intervention program is
implemented. In this projection, the prevalence of diabetes
among all adults gradually increases from 6.5% to 7.5%,
because of a growing elderly population; the prevalence
of diabetes among the elderly is 17%, compared with 5%
among the non-elderly. Total costs of diabetes, including
direct costs for health care and pharmaceuticals and indi-
rect economic losses due to disability, grow substantially
in this baseline projection.

The next step was to use the model to examine the im-
pact of various program options. These included: (1) a par-
tial approach enhancing disease management but not pri-
mary prevention, (2) a full implementation approach com-
bining enhancement of both diseasemanagement and pri-
mary prevention, and (3) an approach that goes beyond
full implementation by also providing greater financial as-
sistance to the elderly for purchasing drugs needed for the
control of diabetes.

Simulations of these options projected results in terms
of various outcome variables, including deaths from com-
plications of diabetes and total costs of diabetes. Figure 2
shows typical simulation results obtained by projecting
these options, in this case, the numbers of deaths over time
that might be expected due to complications of diabetes.
“Full VCTIS” refers to the complete program of primary
prevention and diseasemanagement.Under the status quo
projection, the number of diabetes-related deaths grows
continuously along with the size of the diabetic popula-
tion. The partial (disease management only) approach is
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Typical results from policy simulations with Whatcom County Diabetes Model

effective at reducing deaths early on, but becomes increas-
ingly less effective over time. The full program approach
(including primary prevention) overcomes this shortcom-
ing and by the end of the 20 year simulation reduces dia-
betes-related deaths by 40% relative to the status quo. Ad-
dition of a drug purchase plan for the elderly does even
better, facilitating greater disease control and thereby re-
ducing diabetes related deaths by 54% relative to the status
quo.

With regard to total costs of diabetes, the simulations
indicate that the full program approach can achieve net
savings only two years after the program is launched. Four
years after program launch, a drug plan for the elderly gen-
erates further reductions in disability costs beyond those
provided by the program absent such a plan. The partial
program approach, in contrast, achieves rapid net savings
initially, but gives back most of these savings over time as
diabetes prevalence grows. By the end of 20 years, the full
program approach results in a net savings amounting to
7% of the status quo costs, two-thirds of that savings com-
ing from reduction in disability-related costs. The model
suggests that these anticipated net savings are the result of
keeping people in the less severe stages of the diseases for
a longer period of time and reducing the number of dia-
betes-related hospitalizations.

The simulations provided important information and
ideas to theWhatcomCounty program planners, as well as
supporting detailed discussions of how various costs and
benefits could be equitably distributed among the partic-
ipants. This helped to reassure participants that none of
them would be unfairly affected by the proposed chronic
illness program. Perhaps the most important contribution
of modeling to the program planning process was its abil-
ity to demonstrate that the program, if implemented in its
full form, would likely reduce total costs, even though it
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would extend the longevity of many diabetics requiring
costly care. Given the sensitivity of payers who were al-
ready bearing high costs, this finding helped to motivate
their continued participation in the program.

Diabetes Prevention andManagement
from an Epidemiological Perspective

Another SDmodel of diabetes in the population was devel-
oped for the CDC’s Division of Diabetes Translation [34].
This model, a structural overview of which is presented in
Fig. 3, builds upon the Whatcom County work but looks
more closely at the drivers of diabetes onset, including
the roles of prediabetes and obesity. The core of the CDC
model is a chain of population stocks and flows portray-
ing the movement of people among the stages of normal
blood glucose, prediabetes, uncomplicated diabetes, and
complicated diabetes. The prediabetes and diabetes stages
are further divided among stocks of people whose condi-
tions are diagnosed or undiagnosed. Also shown in Fig. 3
are the potentially modifiable influences in the model that
affect the rates of population flow. These flow-rate drivers
include obesity and the detection and management of pre-
diabetes and of diabetes.

The model’s parameters were calibrated based on his-
torical data available for the U.S. adult population, as well

Health Care in the United States, System Dynamics Applications to, Figure 3
Structure of the CDC Diabetes Model

as estimates from the scientific literature. The model is
able to reproduce historical time series, some going as far
back as 1980, on diagnosed diabetes prevalence, the di-
agnosed fraction of diabetes, prediabetes prevalence, the
obese fractions of people with prediabetes and diabetes,
and the health burden (specifically, the mortality, morbid-
ity, and costs) attributable to diabetes. The model suggests
that two forces worked in opposition to affect the diabetes
health burden from 1980 to 2004. The first force is a rise
in the prevalence of obesity, which led to a greater inci-
dence and prevalence of prediabetes and diabetes through
the chain of causation seen in Fig. 3. The second and op-
posing force is a significant improvement in the control
of diabetes, achieved through greater efforts to detect and
manage the disease. The second force managed to hold the
health burden of diabetes more or less flat during 1980
to 2004.

Looking toward the future, a baseline scenario assumes
that no further changes occur in obesity prevalence af-
ter 2006, and that inputs affecting the detection and man-
agement of prediabetes and diabetes remain fixed at their
2004 values through 2050. This fixed-inputs assumption
for the baseline scenario is not meant to represent a fore-
cast of what is most likely to in the future but does pro-
vide a useful and easily-understood starting point for pol-
icy analysis.
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The baseline simulation indicates a future for diabetes
burden outcomes for the period 2004–2050 quite different
from the past. With obesity prevalence fixed, by assump-
tion, at a high point of 37% from 2006 onward, the dia-
betes onset rate remains at a high point as well, and dia-
betes prevalence consequently continues to grow through
2050, becoming more level (after about 2025) only when
the outflow of deaths starts to catch up with the inflow of
onset.

The CDC model has been used to examine a va-
riety of future scenarios involving policy interventions
(singly or in combination) intended to limit growth in
the burden of diabetes. These include scenarios improv-
ing the management of diabetes, increasing the manage-
ment of prediabetes, or reducing the prevalence of gen-
eral population obesity over time. Enhanced diabetesman-
agement can significantly reduce the burden of diabetes
in the short term, but does not prevent the growth of
greater burden in the longer term due to the growth of
diabetes prevalence. Indeed, the effect of enhanced dia-
betes management on diabetes prevalence is not to de-
crease it at all, but rather to increase it somewhat by in-
creasing the longevity of people with diabetes. Increased
management of prediabetes does, in contrast, reduce dia-
betes onset and the growth of diabetes prevalence. How-
ever, it does not have as much impact as one might expect;
this is because many people with prediabetes are not di-
agnosed, and also because the policy does nothing to re-
duce the growth of prediabetes prevalence due to obesity
in the general population. A reduction in prediabetes can
be achieved only by reducing population obesity. Signifi-
cant obesity reduction may take 20 years or more to ac-
complish fully, but the model suggests that such a policy
can be quite a powerful one in halting the growth of dia-
betes prevalence and burden even before those 20 years are
through.

Overall, the CDCmodel suggests that no single type of
intervention is sufficient to limit the growth of the diabetes
burden in both the short term and the long term. Rather,
what is needed is a combination of disease management
for the short term and primary prevention for the longer
term. The model also suggests that effective primary pre-
vention may require obesity reduction in the general pop-
ulation a focus on managing diagnosed prediabetes.

At the state and regional level, the CDC model has be-
come the basis for a model-basedworkshop called the “Di-
abetes Action Lab”. Participants have included state and
local public health officials along with non-governmen-
tal stakeholders including health care professionals, lead-
ers of not-for-profit agencies, and advocates for people liv-
ing with diabetes. The workshops have helped the partic-

ipants improve their intervention strategies and goals and
become more hopeful and determined about seeing their
actions yield positive results in the future.

The CDC diabetes model has led to other SD mod-
eling efforts at the CDC emphasizing disease prevention,
including studies of obesity [25] and cardiovascular risk.
The obesity study involved the careful analysis of popula-
tion survey data to identify patterns of weight gain over the
entire course of life from childhood to old age. It explored
likely impacts decades into the future of interventions to
reduce or prevent obesity that may be targeted at specific
age categories. Tentative findings included (1) that obesity
in the U.S. should be expected to grow at a much slower
pace in the future than it did in the 1980s and 1990s; (2)
that the average amount of caloric reduction necessary to
reverse the growth of obesity in the population is less than
100 calories per day; (3) that the current trend of focus-
ing intervention efforts on school-age children will likely
have only a small impact on future obesity in the adult
population; and (4) that it may take decades to see the full
impacts of interventions to reduce obesity in the overall
population.

General Health Care and Illness Prevention
at a Community Level

Hirsch and Immediato [19] describe a comprehensive
view of health at the level of a community. Their “Health
Care Microworld”, depicted in highly simplified form in
Fig. 4, simulates the health status and health care delivery
for people in the community. TheMicroworld was created
for a consortium of health care providers who were fac-
ing a wide range of changes in the mid-1990s and needed
a means for their staffs to understand the implications of
those changes for how they managed. The underlying SD
model consists of many hundreds of equations and was
designed to reflect with realistic detail a typical Ameri-
can community and its providers, with data taken from
public sources as well as proprietary surveys. Users of the
Microworld have a wide array of options for expanding
the capacity and performance of the community’s health
care delivery system such as adding personnel and facili-
ties, investing in clinical information systems, and process
redesign. They have a similar range of alternatives for im-
proving health status and changing the demand for care
including screening for and enhanced maintenance care
of people with chronic illnesses, programs to reduce be-
havioral risks such as smoking and alcohol abuse, environ-
mental protection, and longer-term risk reduction strate-
gies such as providing social services, remedial education,
and job training.
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Overview of the Health Care Microworld

TheMicroworld’s comprehensive view of health status
and health care delivery can provide insights not available
from approaches that focus on one component of the sys-
tem at a time. For example, users can play roles of different
providers in the community and get a better understand-
ing of why many attempts at creating integrated delivery
systems have failed because participating providers care
more about their own bottom lines and prerogatives than
about creating a viable system. When examining strate-
gies for improving health status, users can get a better
sense of how a focus on enhanced care of people with
chronic illnesses provides short-term benefits in terms of
reduced deaths, hospital admissions, and costs, but how
better long-term results can be obtained by also investing
in programs that reduce social and behavioral health risks.

General Health Care and Illness Prevention
at the National Level

Despite rapid growth in health care spending in the U.S. in
recent decades, the health of Americans has not noticeably

improved. A recent SD model [23] addresses the question
of why the U.S. has not beenmore successful in preventing
and controlling chronic illness. This model can faithfully
reproduce patterns of change in disease prevalence and
mortality in the U.S., but its structure is a generic one and
should be applicable to other countries. The model exam-
ines the growing prevalence of disease and responses to it,
responses which include the treatment of complications as
well as disease management activities designed to slow the
progression of illness and reduce the occurrence of future
complications. The model shows how progress in com-
plications treatment and disease management has slowed
since 1980 in the U.S., largely due to a behavioral tug-of-
war between health care payers and providers that has re-
sulted in price inflation and an unstable climate for health
care investments. The model is also used to demonstrate
the impact of moving “upstream” bymanaging known risk
factors to prevent illness onset, and moving even further
upstream by addressing adverse behaviors and living con-
ditions linked to the development of these risk factors in
the first place.
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Overview of a National-Level Model of Health Care and Illness Prevention. Key to feedback loops (“R” denotes self-reinforcing, “B”
denotes counterbalancing):
R1 Health care revenues are reinvested for further growth
B1 Disease management reduces need for urgent care
R2 Disease care prolongs life and further increases need for care
B2 Reimbursement restriction limits spending growth
B3 Insurance denial limits spending growth
R3 Providers circumvent reimbursement restrictions, leading to a tug-of-war with payers
B4 Risk management proportional to downstream spending can help limit it
B5 Health protection proportional to downstream spending can help limit it
B6 Health protection (via sin taxes) proportional to risk prevalence can help limit it

An overview of the model’s causal structure is pre-
sented in Fig. 5. The population stock of disease preva-
lence is increased by disease incidence and decreased by
deaths. The death rate can be reduced by a greater extent
of disease care, including urgent care and disease manage-
ment. Disease incidence draws from a stock of risk preva-
lence, where risk refers to physical or psychological con-
ditions or individual behaviors that may lead to disease.
Effective risk management can reduce the flow of peo-
ple from risk to disease, and may also in some cases al-
low people to return to a condition of being no longer
at risk. Such management may include changes in nutri-
tion or physical activity, stress management, or the use
of medications. The risk prevalence stock is increased by
adverse behaviors and living conditions. Adverse behav-
iors may include poor diet, lack of physical activity, or
substance abuse. Adverse living conditions can encompass

many factors, including crime, lack of access to healthy
foods, inadequate regulation of smoking, weak social net-
works, substandard housing, poverty, or poor educational
opportunities.

The extent of care is explained in the model by two
key factors: the abundance of health care assets, and in-
surance coverage. Health care assets are the structures and
fixed equipment used directly for health care or for the
production of health care products, as well as the human
capital of personnel involved. Insurance coverage refers to
the fraction of the population with some form of health
care insurance, either with a private insurer or through
a government plan. The uninsured are less likely than the
insured to receive health care services, especially disease
management services, something which most of the unin-
sured cannot afford whereas in most cases they can get ur-
gent care at a hospital emergency department.
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The stock of assets is increased by investments, which
may be viewed as the reinvestment of some fraction of
health care revenues. Such reinvestment drives further
growth of care and revenue, and the resulting exponen-
tial growth process is identified as loop R1 in Fig. 5. The
data indicate, however, that the reinvestment process has
slowed significantly since 1980. It is hypothesized that this
decline in the reinvestment rate has been the response by
potential investors to various forms of cost control, includ-
ing the restriction of insurance reimbursements, which af-
fect the providers of health care goods and services. With
increasing controls and restrictions, these potential in-
vestors face greater risk and uncertainty about the future
return on their investments, and the result is a greater re-
luctance to build a newhospital wing, or to purchase an ex-
pensive new piece of equipment, or even, at an individual
level, to devote a decade or more of one’s life to the hard-
ship of medical education and training. Health care costs
and cost controls have also led to elimination of private
health insurance coverage by some employers, although
some of the lost coverage has been replaced by publicly-
funded insurance.

One additional part of the downstream health care
story portrayed in Fig. 5 is the growth of health care prices.
Health care prices are measured in terms of a medical care
consumer price index (CPI), which since 1980 has grown
much more rapidly than the general CPI for the overall
economy. For the period 1980–2004, inflation in medical
care prices averaged 6.1% versus general inflation of 3.5%.
Why has health care inflation exceeded that of the general
economy? Several different phenomena have contributed
to health care inflation, but not all have contributed with
sufficient magnitude or with the timing necessary to ex-
plain the historical pattern. One phenomenon that does
appear to have such explanatory power is shown in Fig. 5
as “provider adaptation”. This is the idea that, in response
to cost containment efforts, providers may “increase fees,
prescribe more services, prescribe more complex services
(or simply bill for them), order more follow-up visits, or
do a combination of these. . . ” [49] Many tests and proce-
dures are performed that contribute little or no diagnostic
or therapeutic value, thereby inflating the cost per quality
of care delivered. By one estimate, unnecessary and infla-
tionary expense may have represented 29% of all personal
health care spending in the year 1989 [23].

The dynamics involving the extent of disease care are
portrayed in Fig. 5 in the feedback loops labeled R1, B1,
R2, B2, B3, and R3. Taken together, one may view these
loops—with the exception of Loop R3—as the story of
a “rational” downstream health care system that favors
growth and investment until the resulting costs get to

a point where further increases are perceived to be no
longer worth the expected incremental improvements in
health and productivity. Loop R3, however, introduces
dysfunction into this otherwise rational system. The loop
describes a tug-of-war between payers restricting reim-
bursement in response to high health care costs, and
providers adapting to these restrictions by effectively rais-
ing health care prices in an attempt to circumvent the re-
strictions and maintain their incomes. Because this loop
persistently drives up health care costs, it ends up hurting
health care investments and insurance coverage (through
Loops B2 and B3, respectively), thus dampening growth in
the extent of care.

Simulations of the model suggest that there are no easy
downstream fixes to the problem of an underperform-
ing and expensive health care system in the U.S. mold.
The simulations seem to suggest—perhaps counterintu-
itively—that health insurance should be stable and non-
restrictive in its reimbursements, so as to avoid behavioral
backlashes that can trigger health care inflation and under-
investment. Although a broad mandate of this sort would
likely be politically infeasible in the U.S., movement in this
direction could perhaps start with the government’s own
Medicare andMedicaid insurance programs, and then dif-
fuse naturally to private insurers over time. It is interest-
ing to consider whether a more generous and stable ap-
proach to reimbursement could not only combat illness
better than the current restrictive approach, but do it more
efficiently and perhaps even at lower cost.

The model also includes structure for evaluating the
upstream prevention of disease incidence. There are two
broad categories of such efforts described in the literature:
Risk management for people already at risk, and health
protection for the population at large to change adverse
behaviors and mitigate unhealthy living conditions. While
spending on population-based health protection and risk
management programs has grown somewhat, it still repre-
sents a small fraction of total U.S. health care spending, on
the order of 5% in 2004 [23].

Figure 5 includes three balancing loops to indicate
how, in general terms, efforts in risk management and
health protection might be funded or resourced more sys-
tematically and in proportion to indicators of capability or
relative need. Loop B4 suggests that funding for programs
promoting risk management could be made proportional
to spending on downstream care, so that when down-
stream care grows funding for risk management would
grow as well. Loop B5 suggests something similar for
health protection, supposing that government budgets and
philanthropic investments for health protection could be
set in proportion to recent health care spending. Loop B6
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takes a different approach to the funding of health pro-
tection, linking it not to health care spending but to risk
prevalence, the stock which health protection most di-
rectly seeks to reduce. The linkage to risk prevalence can
be made fiscally through “sin taxes” on unhealthy items,
such as cigarettes (already taxed throughout the U.S. to
varying extents [39]) and fatty foods [42]. In theory, the
optimal magnitude of such taxes may be rather large in
some cases, as the taxes can be used both to discourage
unhealthy activities and promote healthier ones [48].

Simulations of the model suggest that whether the ap-
proach to upstream action is risk management or health
protection, such actions can reduce illness prevalence and
ultimately save money. However, the payback time, in
terms of reduced downstream health care costs, may be
a relatively long one, perhaps on the order of 20 years.
It should be noted, however, that the model does not in-
clude losses in productivity to employers and society at
large. The Whatcom County models described above sug-
gest that when these losses are taken into account, the pay-
back on upstream action may shrink to a much shorter
time period that may be acceptable to the public as well
as to those decision makers in a position to put upstream
efforts into effect [24].

Future Directions

As long as there are dynamically complex health issues in
search of answers, the SD approach will have a place in the
analytic armamentarium. There is still much to be learned
about the population dynamics of individual chronic con-
ditions like hypertension and risk factors like obesity. SD
models could also address multiple interacting diseases
and risks, giving a more realistic picture of their overall
epidemiology and policy implications, particularly where
the diseases and risks are mutually reinforcing. For exam-
ple, it has been found that substance abuse, violence, and
AIDS often cluster in the same urban subpopulations, and
that such “syndemics” are resistant to narrow policy in-
terventions [53,54,62]. This idea could also be extended to
the case of mental depression, which is often exacerbated
by other chronic illnesses, and may, in turn, interfere with
the proper management of those illnesses. An exploratory
simulation model has indicated that SD can usefully ad-
dress the concept of syndemics [26].

There is also more to be learned about health care de-
livery systems and capacities, with the inclusion of charac-
teristics specific to selected real-world cases. Models com-
bining delivery systems and risk and disease epidemiology
could help policymakers and health care providers under-
stand the nature of coordination required to put ambi-

tious public health and risk reduction programs in place
without overwhelming delivery capacities. Such models
could reach beyond the health care delivery system per se
to examine the potential roles of other delivery systems,
such as schools and social service agencies, in health risk
reduction.

The more complete view of population health dynam-
ics advocated here may also be extended to address per-
sistent challenges in the U.S. that will likely require policy
changes at a national and state level, and not only at the
level of local communities. Examples include the large un-
derinsured population, persistent racial and ethnic health
disparities, and the persistent shortage of nurses. SD mod-
eling can help to identify the feedback structures respon-
sible for these problems, and point the way to policies that
can make a lasting difference.
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Glossary

Nonlinear time series in macroeconomics A field of
study in economics pertaining to the use of statistical
analysis of data in order to make inferences about non-
linearities in the nature of aggregate phenomena in the
economy.

Time series A collection of data corresponding to the val-
ues of a variable at different points of time.

Linear Refers to a class of models for which the depen-
dence between two random variables can be com-
pletely described by a fixed correlation parameter.

Nonlinear Refers to the class of models for which the de-
pendence between two random variables has a more
general functional form than a linear equation and/or
can change over time.

Structural change A change in the model describing
a time series, with no expected reversal of the change.

Level Refers to a definition of the business cycle that links
the cycle to alternation between phases of expansion
and recession in the level of economic activity.

Deviations Refers to a definition of the business cycle that
links the cycle to transitory deviations of economic ac-
tivity from a trend level.

Fluctuations Refers to a definition of the business cycle
that links the cycle to any short-run changes in eco-
nomic activity.

Deepness A characteristic of a process with a skewed un-
conditional distribution.

Steepness A characteristic of a process with a skewed un-
conditional distribution for its first-differences.

Sharpness A characteristic of a process for which the
probability of a peak when increasing is different than
the probability of a trough when decreasing.

Time reversibility The ability to substitute�t and t in the
equations of motion for a process without changing
the process.

Markov-switching models Models that assume the pre-
vailing regime governing the conditional distribution
of a variable or variables beingmodeled depends on an
unobserved discrete Markov process.

Self-exciting threshold models Models that assume the
prevailing regime governing the conditional distribu-
tion of a variable or variables being modeled is ob-
servable and depends on whether realized values of the
time series being modeled exceed or fall below certain
“threshold” values.

Nuisance parameters Parameters that are not of direct
interest in a test, but influence the distribution of a test
statistic.

Pivotal Refers to the invariance of the distribution of
a test statistic with respect to values of parameters in
the data generating process under the null hypothesis.

Size Probability of false rejection of a null hypothesis in
repeated experiments.

Power Probability of correct rejection of a null hypothesis
in repeated experiments.

Definition of the Subject

Nonlinear time series in macroeconomics is a broad field
of study in economics. It refers to the use of statistical
analysis of data to make inferences about nonlinearities in
the nature of aggregate phenomena in the economy. This
analysis is relevant for forecasting, the formulation of eco-
nomic policy, and the development and testing of macro-
economic theories.

Introduction

In macroeconomics, the primary aggregate phenomenon
is the flow of total production for the entire economy over
the course of a year, which is measured by real gross do-
mestic product (GDP). A collection of data correspond-
ing to the values of a variable such as real GDP at differ-
ent points of time is referred to as a time series. Figure 1
presents the time series for US real GDP for each year from
1929 to 2006.

Time series analysis employs stochastic processes to
explain and predict the evolution of a time series. In partic-
ular, a process captures the idea that different observations
are in some way related to each other. The relationship
can simply be that the observations behave as if they are
drawn from random variables with the same distribution.
Or the relationship can be that the distribution assumed to
generate one observation depends on the values of other
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US real GDP 1929–2006 (Source: St. Louis Fed website)

observations. Either way, a relationship implies that the
observations can be used jointly to make inferences about
the parameters describing the distributions (a.k.a. “estima-
tion”).

Within the context of time series in macroeconomics,
the terms “linear” and “nonlinear” typically refer to classes
of models for processes, although other meanings arise in
the literature. For the purposes of this survey, a model that
assumes the dependence between two random variables in
a process can be completely captured by a fixed correla-
tion parameter is said to be linear. A very basic example
of a linear time series model is the workhorse first-order
autoregressive (AR(1)) model:

yt D c C � yt�1 C "t ; "t 
 i.i.d. (0; �2) ; (1)

where j�j < 1. In words, the random variable yt that
generates the observation in period t is a linear function
of the random variable yt�1 that generates the observa-
tion in period t � 1. The process fytg1

�1 is stochastic be-
cause it is driven by random “shocks”, such as "t in pe-
riod t. These shocks have the same distribution in every
period, meaning that, unlike with yt and yt�1, the distri-
bution of "t does not depend on the value of "t�1 or, for
that matter, any other shock in any other period (hence
the “i.i.d.” tag, which stands for “independently and iden-
tically distributed”). It is straightforward to show that the
correlation between yt and yt�1 is equal to � and this
correlation describes the entire dependence between the
two random variables. Indeed, for the basic AR(1) model,
the dependence and correlation between any two random
variables yt and yt� j , for all t and j, depends only on the

fixed parameter � according to the simple function � j and,
given j�j < 1, the process has finite memory in terms
of past shocks. For other time series models, the func-
tions relating parameters to correlations (i. e., “autocorre-
lation generating functions”) are generally more compli-
cated, as are the restrictions on the parameters to ensure
finite memory of shocks. However, the models are still lin-
ear, as long as the parameters and correlations are fixed.

In contrast to the linear AR(1) model in (1) and other
models with fixed correlations, any model that allows for
a more general functional form and/or time variation in
the dependence between random variables can be said to
be nonlinear. This nomenclature is obviously extremely
open-ended and examples are more revealing than gen-
eral definitions. Fortunately, macroeconomics provides
many examples, with “nonlinear” typically used to de-
scribe models that are closely related to linearmodels, such
as the AR(1) model, but which relax one or two key as-
sumptions in order to capture some aspect of the data that
cannot be captured by a linear model. The focus of this
survey is on these types of nonlinear models.

It should be mentioned at the outset that, in addi-
tion to nonlinear models, “nonlinear time series” evokes
nonparametric and semiparametric methods (e. g., neural
networks). These methods tend to be data intensive and
so find more use in finance and other fields where sam-
ple sizes are larger than in macroeconomics. “Nonlinear
time series” also evokes the development and application
of tests for nonlinearity. However, these are the purview of
econometrics, not macroeconomics. Thus, tests for non-
linearity will only be discussed in the context of applica-



Macroeconomics, Non-linear Time Series in 527

tions that are particularly relevant to the choice of appro-
priate models for macroeconomic data.

Types of NonlinearModels

Starting with the linear AR(1) model in (1), there aremany
ways to introduce nonlinearities. An obvious way is to
consider a nonlinear specification for the relationship be-
tween the random variables in the model. For example,
consider the simple bilinear model:

yt D c C � yt�1 C "t C �("t�1 � yt�1) ;

"t 
 i.i.d. (0; �2) : (2)

See Granger and Andersen [57] and Rao and Gabr [139]
on bilinear models. In macroeconomics at least, there are
relatively few applications of bilinear models, although
see Peel and Davidson [119], Rothman [128], and Hris-
tova [71].

A more typical approach to introducing nonlinearities
in macroeconomics is to allow one (or more) of the pa-
rameters in a linear model to be driven by its own process.
For example, in a macroeconomics paper that was moti-
vated in part by bilinear models, Engle [46] assumed the
squares of shocks (i. e., "2t ) follow an AR process, with the
implication that the conditional variance of yt is no longer
a constant parameter. Given an AR(1) assumption for "2t ,
the conditional variance is

Et�1
�
�2t
� D ˛0 C ˛1"

2
t�1 ; (3)

where Et�1 [ ] is the conditional expectations operator,
with expectations formed using information available in
period t � 1. Engle [46] applied this “autoregressive con-
ditional heteroskedasticity” (ARCH) model to U.K. infla-
tion, although in subsequent research, it has mostly been
applied to financial time series. In particular, asset re-
turns tend to display little dependence in the mean, but
high positive dependence in terms of the variance (a.k.a.
“volatility clustering”), which is exactly what the ARCH
model was designed to capture. Beyond Engle’s original
paper, ARCH models have found little use in macroeco-
nomics, although Bansal and Yaron [4] have recently at-
tempted to resolve the so-called “equity premium puz-
zle” in part by assuming that US aggregate consumption
growth follows a GARCH(1,1) process that generalizes En-
gle’s original ARCH process. However, Ma [104] shows
that estimates supporting a GARCH(1,1) model for ag-
gregate consumption growth are due to weak identifica-
tion, with an appropriate confidence interval suggesting
little or no conditional heteroskedasticity. Weak identifi-
cation is also likely a problem for the earlier application

of GARCHmodels to macroeconomic variables by French
and Sichel [49]. In general, because most macroeconomic
data series are highly aggregated, the central limit theorem
is relevant, at least in terms of eliminating “fat tails” due to
volatility clustering that may or may not be present at the
microeconomic level or at higher frequencies than macro-
economic data are typically measured.

The ARCH model begs the question of why not con-
sider a stochastic process directly for the variance, rather
than for the squares of the shocks. The short answer is
a practical one. Amodel with “stochastic volatility” is more
difficult to estimate than an ARCHmodel. In particular, it
can be classified as a state-spacemodel with an unobserved
non-Gaussian volatility process that has a nonlinear rela-
tionship to the observable time series being modeled. In
the simple case of no serial correlation in the underlying
series (e. g., no AR dynamics), a stochastic volatility model
can be transformed into a linear state-space model for the
squares of the series, although the model still has non-
Gaussian errors. However, the lack of serial correlation
means that this simple version of themodel would bemore
appropriate for applications in finance than macroeco-
nomics. In any event, while the Kalman filter can be em-
ployed to help estimate linear Gaussian state-space mod-
els, it is less suitable for non-Gaussian state-space models
and not at all suitable for nonlinear state-space models.
Recent advances in computing power have made simu-
lation-based techniques (the Gibbs sampler and the so-
called “particle filter”) available to estimate such models,
but these techniques are far from straightforward and are
highly computationally intensive. See Kim, Shephard, and
Chib [88] and Chib, Nardari, and Shephard [21] on esti-
mation of stochastic volatility models via the Gibbs sam-
pler and particle filtering. Meanwhile, such models have
rarely been applied to macroeconomic data due to the lack
of interesting volatility dynamics discussed above.

To the extent that stochastic volatility models have
been applied in macroeconomics, the focus has been on
capturing structural change (i. e., permanent variation) in
volatility rather than volatility clustering. For example,
Stock and Watson [138] investigate the so-called “Great
Moderation” using a stochastic volatility model and con-
firm the findings reported in Kim and Nelson [77] and
McConnell and Perez-Quiros [107] that there was a per-
manent reduction in the volatility of US real GDP growth
in the mid-1980s (see also [82,116,132]). This change in
volatility is fairly evident in Fig. 2, which presents the
time series for US real GDP growth for each quarter from
1947:Q2 to 2006:Q4.

Yet, while it is sometimes merely a matter of seman-
tics, it should be noted that “structural change” is a dis-
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US real GDP growth 1947–2006 (Source: St. Louis Fed website)

tinct concept from “nonlinearity”. In particular, structural
change can be thought of as a change in the model de-
scribing a time series, where the change is permanent in
the sense that it is not expected to be reversed. Then, if
the underlying structure of each model is linear, such as
for the AR(1) model in (1), there is nothing particularly
“nonlinear” about structural change. On the other hand,
Bayesian analysis of structural change blurs the distinction
between structural change and nonlinearity. In particular,
it treats parameters as random variables for the purposes
of making inferences about them. Thus, the distinction be-
tween a model that allows “parameters” to change accord-
ing to a stochastic process and a collection of models with
the same structure, but different parameters, is essentially
a matter of taste, even if the former setup is clearly nonlin-
ear, while the latter is not. For example, consider the clas-
sic time-varying parameter model (see, for example [29]).
Like the stochastic volatility model, it assumes a stochas-
tic process for the parameters in what would, otherwise,
be a linear process. Again, starting with the AR(1) model
in (1) and letting ˇ D (c; �)0, a time-varying parameter
model typically assumes that the parameter vector evolves
according to a multivariate random walk process:

ˇt D ˇt�1 C vt; vt 
 i.i.d. (0; ˙) : (4)

Because the time-varying parameter model treats the evo-
lution of parameters as a stochastic process, it is clearly
a nonlinearmodel. At the same time, its application to data
provides an inherently Bayesian investigation of structural
change in the relationships between dependent and inde-
pendent variables, where those relationships may, in fact,
be linear. In general, then, analysis of structural change
in linear relationships should be considered an example
of nonlinear time series analysis when nonlinear models,
such as stochastic volatility models or time-varying pa-

rameter models, are used in the analysis, but structural
change should not be thought of as nonlinear in itself.

In terms of macroeconomics, time-varying parame-
ter models have recently been used to consider structural
change in vector autoregressive (VAR) models of the US
economy. Cogley and Sargent [26] employ such a model
to argue that US inflation dynamics have changed con-
siderably in the postwar period. Based on Sims’ [135] cri-
tique that evidence for structural change in time-varying
parameters may be the spurious consequence of ignoring
heteroskedasticity in the error processes for a VARmodel,
Cogley and Sargent [27] augment their time-varying pa-
rameter model with stochastic volatility and find that their
results are robust. Primiceri [123] employs a structural
VAR with time-varying parameters and stochastic volatil-
ity and also finds evidence of structural changes in infla-
tion dynamics, although he questions the role of monetary
policy in driving these changes. Whether these structural
changes are evident in Fig. 3, which displays US consumer
price inflation for eachmonth from 1960:M1 to 2006:M12,
is debatable. However, it is fairly clear that a basic AR
process with constant parameters would be an inadequate
model for inflation.

It is worth mentioning that there is a simpler time-
varying parameter model that has seen considerable use in
macroeconomics. It is the unobserved components (UC)
model used for trend/cycle decomposition. A standard
version of the model has the following form:

yt D �t C ct ; (5)

�t D �C �t�1 C �t ; �t 
 i.i.d.N


0; �2	

�
; (6)

�(L)ct D "t; "t 
 i.i.d.N


0; �2"

�
; (7)

where �(L) D 1� �1L� � � � ��pLp , the roots of �(z) D 0
lie outside the unit circle, and corr (�t ; "t) D �	". It is pos-
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US inflation 1960–2006 (Source: St. Louis Fed website)

sible to think of the UCmodel as a time-varying parameter
model in which the unconditional mean of the process is
equal to the trend � t , meaning that it undergoes structural
change, rather than remaining constant, as it does for the
AR(1) process described by (1). A glance at the upward
trajectory of real GDP in Fig. 1 makes it clear that a basic
AR process would be an extremely bad model for the time
series. Indeed,Morley, Nelson, and Zivot [114] applied the
model in (5)–(7) to 100 times the natural logarithms of US
real GDP under the assumption that the lag order p D 2
and with no restrictions on the correlation between �t and
"t and found that most of the variation in log real GDPwas
due to the trend rather than the AR cycle ct (note that nat-
ural logarithms are more appropriate for time series mod-
eling than the raw data in Fig. 1 because the “typical” scale
of variation for real GDP is more closely linked to per-
centage changes than to absolute changes). Yet, while the
UC model can be thought of as a time-varying parameter
model, it is not, in fact, nonlinear. In particular, the UC
model for log real GDP is equivalent to an autoregressive
moving-average (ARMA) model for the first differences of
log real GDP. Likewise, the AR(1) model in (1) may be
very sensible for real GDP growth in Fig. 2, even though
it would be a bad model for real GDP in Fig. 1. In general,
if it is possible to transform a time series, such as going
from Fig. 1 to Fig. 2, and employ a linear model for the
transformed series, then the time series analysis involved
is linear. Likewise, under this formulation, the simple ver-
sion of the stochastic volatility model for a series with no
serial correlation also falls under the purview of linear time
series analysis. Only time-varying parameter and stochas-
tic volatility models that cannot be transformed into linear
representations are nonlinear.

Of course, the semantics over “linear” and “nonlin-
ear” are hardly important on their own. What is impor-

tant is whether structural change is mistaken for recur-
ring changes in parameters or vice versa. In terms of
structural VAR models for the US economy, Sims and
Zha [136] argue that when parameters are allowed to un-
dergo large, infrequent changes, rather than the smaller,
more continuous changes implied by a time-varying pa-
rameter model, there is no evidence for changes in dy-
namic structure of postwar macroeconomic data. Instead,
there are only a few large, infrequent changes in the vari-
ance of shocks. Furthermore, among the models that as-
sume some change in dynamics, their Bayesian model
comparison favors a model in which only the monetary
policy rule changes. Among other things, these findings
have dramatic implications for the Lucas [100,101] cri-
tique, which suggests that correlations between macroec-
onomic variables should be highly sensitive to changes
in policy, thus leaving successful forecasting to “struc-
tural” models that capture optimizing behavior of eco-
nomic agents, rather than “reduced-form”models that rely
on correlations between macroeconomic structures. The
results in Sims and Zha [136] suggest that the Lucas cri-
tique, while an interesting theoretical proposition with the
virtue of being empirically testable, is not, in fact, sup-
ported by the data.

From the point of view of time series analysis, an inter-
esting aspect of the Sims and Zha [136] paper and earlier
papers on structural change in the US economy by Kim
and Nelson [77] and McConnell and Perez-Quiros [107]
is that they consider nonlinear regime-switching models
that allow for changes in parameters to be recurring. That
is, while the models can capture structural change, they do
not impose it. Using univariate regime-switching models
of US real GDP growth, Kim and Nelson [77] and Mc-
Connell and Perez-Quiros [107] find a one-time perma-
nent reduction in output growth volatility in 1984. How-
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ever, using their regime-switching VAR model, Sims and
Zha [136] find that a small number of volatility regimes re-
cur multiple times in the postwar period. In terms of the
earlier discussion about the lack of volatility dynamics in
macroeconomic data, this finding suggests that there are
some volatility dynamics after all, but these dynamics cor-
respond to less frequent changes than would be implied by
ARCH or a continuous stochastic volatility process. More
generally, the allowance for recurring regime switches is
relevant because time series models with regime switches
have been the most successful form of nonlinear mod-
els in macroeconomics. However, for reasons discussed
in the next section, regime-switching models are typically
employed to capture changing dynamics in measures of
economic activity over different phases of the business cy-
cle, rather than structural change in inflation or recurring
changes in shock variances.

To summarize this section, there are different types
of nonlinear time series models employed in macroeco-
nomics. While models that assume a nonlinear specifica-
tion for the relationship between observable variables ex-
ist (e. g., the bilinear model), they are rarely used in prac-
tice. By contrast, models that allow some parameters to
undergo changes over time are much more common in
macroeconomics. The examples discussed here are ARCH
models, stochastic volatility models, time-varying param-
eter models, and regime-switching models. When exam-
ining structural change, there is a conceptual question
of whether the analysis is “linear” or “nonlinear”. How-
ever, as long as the process of structural change is an ex-
plicit part of the model (e. g., the time-varying parame-
ter model), and excluding cases where it is possible to
transform the model to have a linear representation (e. g.,
the UC model to an ARMA model), the analysis can be
thought of as nonlinear. Meanwhile, time series analysis
of recurring regime switches is unambiguously nonlin-
ear. As discussed in the next section, nonlinear regime-
switching models come in many versions and have found
wide use in macroeconomics modeling business cycle
asymmetry.

Business Cycle Asymmetry

The topic of business cycle asymmetry is broad and the
literature on it extensive. As a result, it is useful to divide
the discussion in this section into four areas: i) concepts of
business cycle asymmetry and their relationships to non-
linearity; ii) nonlinear models of business cycle asymme-
try; iii) evidence for nonlinear forms of business cycle
asymmetry; and iv) the relevance of nonlinear forms of
business cycle asymmetry for macroeconomics.

Concepts

Notions of business cycle asymmetry have a long tradi-
tion in macroeconomics. Classic references to the idea
that recessions are shorter, sharper, and generally more
volatile than expansions are Mitchell [109], Keynes [72],
and Burns and Mitchell [13]. For example, in his charac-
teristic style, John Maynard Keynes writes, “. . . the substi-
tution of a downward for an upward tendency often takes
place suddenly and violently, whereas there is, as a rule,
no such sharp turning point when an upward is substi-
tuted for a downward tendency.” (see p. 314 in [72]). Sim-
ilarly, albeit more tersely, Wesley Mitchell writes, “. . . the
most violent declines exceed the most considerable ad-
vances. The abrupt declines usually occur in crises; the
greatest gains occur in periods of revival. . . Business con-
tractions appear to be a briefer and more violent process
than business expansions.” (see p. 290 in [109]). Milton
Friedman also saw business cycle asymmetry in the form
of a strong relationship between the depth of recession and
the strength of a recovery, with no corresponding relation-
ship between the strength of an expansionwith the severity
of the subsequent recession (see [50,51]).

The link between business cycle asymmetry and non-
linearity depends, in part, on the definition of “business
cycle”. Harding and Pagan [67] discuss three possible defi-
nitions that are presented here using slightly modified ter-
minology. Based on the work of Burns and Mitchell [13],
the first definition is that the business cycle is the alter-
nation between phases of expansion and recession in the
level of economic activity. The second definition, which
is often left implicit when considered, is that the business
cycle represents transitory deviations in economic activity
from a permanent or “trend” level. The third definition,
which is also often only implicitly considered, is that the
business cycle corresponds to any short-run fluctuations
in economic activity, regardless of whether they are per-
manent or transitory.

Under the “level” definition of the business cycle, there
is nothing inherently nonlinear about asymmetry in terms
of the duration of expansions and recessions. Positive drift
in the level of economic activity implies longer expan-
sions than recessions, even if the underlying process is lin-
ear. Even asymmetry in the form of relative sharpness and
steepness of a recession alluded to in the above quote from
Keynes does not necessarily indicate nonlinearity. Again,
given positive drift, an outright decline in economic ac-
tivity only occurs when there are large negative shocks
to the underlying process, while an expansion occurs for
all positive shocks and small negative shocks. Thus, a re-
cession is likely to look like a relatively sharp reversal in
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the level. Furthermore, with positive serial correlation in
growth, such as implied by a linear AR(1) process as in (1)
with � > 0, recessions will appear steeper than expan-
sions due to the dynamic effects of large negative shocks.
On the other hand, as discussed in more detail later, non-
linear models are much more successful than linear mod-
els at reproducing business cycle asymmetry in the form of
a strong link between recessions and their recoveries ver-
sus a weak link between expansions and subsequent reces-
sions noted by Friedman [50].

Under the “deviations” definition of the business cy-
cle, asymmetry is closely linked to nonlinearity. While it is
possible for asymmetry in the independent and identical
distribution of the underlying shocks to generate asymme-
try in a linear process, any persistence in the process would
severely dampen the asymmetries in the unconditional
distribution. Thus, under the assumption that the transi-
tory component of economic activity is at least somewhat
persistent, asymmetries such as differences in the dura-
tions of positive and negative deviations from trend or rel-
ative sharpness and steepness in negative deviations com-
pared to positive deviations are more suggestive of nonlin-
ear dynamics (i. e., changing correlations) than underlying
asymmetric shocks.

Under the “fluctuations” definition of the business cy-
cle, the link between nonlinearity and asymmetry also de-
pends on the relative roles of shocks and dynamics in gen-
erating asymmetries. However, because growth rates are
less persistent than most measures of the transitory com-
ponent of economic activity and because theymix together
permanent and transitory shocks that may have different
means and variances, it is quite plausible that asymmetry
in the distribution of shocks is responsible for asymme-
try in growth rates. Of course, nonlinear dynamics are also
a plausible source of asymmetry for growth rates.

Macroeconomics, Non-linear Time Series in, Figure 4
A “deep” cycle (Source: Author’s calculations based on Ramsey and Rothman [124])

In terms of asymmetries, it is useful to consider the
formal classifications developed and discussed in Sichel
[133], McQueen and Thorley [108], Ramsey and Roth-
man [124], Clements and Krolzig [24], and Korenok,
Mizrach, and Radchenko [95] of “deepness”, “steepness”,
and “sharpness”. Following Sichel [133], a process is said
to have deepness if its unconditional distribution is skewed
and steepness if the distribution of its first-differences is
skewed. Following McQueen and Thorley [108], a process
is said to have sharpness if the probability of a peak oc-
curring when it has been increasing is different than the
probability of a trough occurring when it has been de-
creasing. However, despite these definitions, the different
types of asymmetries are most easily understood with vi-
sual examples.

Figure 4 presents an example of a simulated time series
with deepness, with the distance from peak of the cycle to
the mean less than the distance from the mean to trough
of the cycle (see [124], for the details of the process gen-
erating this time series). In addition to deepness, the series
appears to display sharpness in recessions, with the peak of
the cycle more rounded than the trough, although the fact
that the simulated series is deterministic means it cannot
be directly related to the definition of sharpness in Mc-
Queen and Thorley [108] mentioned above. Meanwhile,
there is no steepness because the slope from peak to trough
is the same magnitude as the slope from trough to peak.

As discussed in Ramsey and Rothman [124], these dif-
ferent types of asymmetry can be classified in two broader
categories of “time reversible” and “time irreversible”.
Time reversibility means that the substitution of �t for t
in the equations of motion for a process leaves the pro-
cess unchanged. The upward drift that is present in many
macroeconomic time series (such as real GDP) is clearly
time irreversible. More generally, the issue of time re-
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A “steep” cycle (Source: Author’s calculations)

Macroeconomics, Non-linear Time Series in, Figure 6
US civilian unemployment rate 1960–2006 (Source: St. Louis Fed website)

versibility is relevant for determining whether business
cycle asymmetry corresponds to deepness and sharpness,
which are time reversible, or steepness, which is time ir-
reversible. For example, the time series in Fig. 4 can be
flipped on the vertical axis without any resulting change.
Thus, it is time reversible. By contrast, consider the sim-
ulated time series with “steepness” in Fig. 5. The series is
generated from a regime-switching process with asymmet-
ric shocks across two regimes and different persistence for
shocks in each regime. In this case, flipping the series on
the vertical axis would produce flat inclines and steep de-
clines. Thus, it is time irreversible.

The relevance of the distinction between time re-
versible and time irreversible processes is obvious from
Fig. 6, which presents the time series for the US civil-
ian unemployment rate for each month from 1960:M1 to
2006:M12. The inclines are steep relative to the declines.
Thus, there is a clear visual suggestion of the steepness
form of asymmetry. Indeed, themodern literature on busi-
ness cycle asymmetry begins with Neftçi’s [115] investi-
gation of this issue using a nonlinear regime-switching
model in which the prevailing “business cycle” regime in
a given period is assumed to depend on a discrete Markov

process driven by whether the US unemployment rate is
rising or falling in that period. Given the link to the first
differences of the unemployment rate, his finding that the
continuation probabilities for the two regimes are differ-
ent, with declines more likely to persist than increases,
provides formal support for the presence of the steep-
ness forms of asymmetry in the unemployment rate (also,
see [127]). It should also be noted that, while not related
to time irreversibility, the different continuation probabil-
ities also directly imply sharpness.

Models

The subsequent literature on regime-switching models in
macroeconomics can be usefully divided into two cat-
egories that are both related to Neftçi’s [115] model.
First,Markov-switching models assume that the prevailing
regime depends on an unobserved discrete Markov pro-
cess. The main distinction from Neftçi [115] is that the
Markov process is unobserved (hence, these models are
sometimes referred to as a “hiddenMarkov models”). Sec-
ond, self-exciting threshold models assume that the prevail-
ing regime is observable and depends on whether realized
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values of the time series being modeled exceed or fall be-
low certain “threshold” values, much like the regime in
Neftçi’s [115] model depends on whether the change in
the unemployment rate was positive or negative.

Hamilton [59] is the seminal paper in terms of Mar-
kov-switching models. His model has a basic AR structure,
like in (1), but for the first-differences of the time series of
interest:

�(L)


�yt � �t

� D "t; "t 
 i.i.d. (0; �2) ; (8)

where�yt is 100 times the change in the natural logarithm
of real Gross National Product (GNP). The only difference
from a linear AR model is that the mean follows a stochas-
tic process:

�t D �1 � I (St D 1) C �2 � I (St D 2) ; (9)

with the indicator function I(St D j) equal to 1 if St D j
and 0 otherwise and St D f1; 2g following an unobserved
discrete Markov state variable that evolves according to
the following fixed transition matrix:
�

p11 p21
p12 p22

	

;

where pi j � Pr[St D j jSt�1 D i ] and the columns sum
to one.

There are two aspects of Hamilton’s [59] model that
should be mentioned. First, while the demeaned speci-
fication is equivalent to a regression model specification
(e. g., (1)) in the linear setting, with � D c/(1 � �), the
two specifications are no longer equivalent in the nonlin-
ear setting. In particular, if the intercept c were switching
instead of the mean �, then past regime switches would
be propagated by the AR dynamics (see [61], for an ex-
ample of such a model). By contrast, with � switching,
there is a clear separation between the “nonlinear” dynam-
ics due to the evolution of the state variable (which does
alter the correlations between �yt and its lags) and the
“linear” dynamics due to the "t shocks and the AR param-
eters. Second, in order to eliminate arbitrariness in the la-
beling of states, it is necessary to impose a restriction such
as �1 > �2, which corresponds to higher mean growth in
state 1 than in state 2. Furthermore, given the application
to output growth, if �1 > 0 and �2 < 0, the states 1 and 2
can be labeled “expansion” and “recession”, respectively.

Hamilton’s [59] paper had a big impact on econo-
metrics and macroeconomics for two reasons. First, it in-
cluded an elegant filter that could be used to help esti-
mate Markov-switching models via maximum likelihood
and, along with a smoother, calculate the posterior dis-
tribution of the unobserved state variable (filters and

smoothers are recursive algorithms that make inferences
about unobserved state variables, with filters consider-
ing only information available at the time the state vari-
able is realized and smoothers incorporating any subse-
quent available information). Second, the resulting pos-
terior probability of the “recession” regime corresponded
closely to the National Bureau of Economic Research
(NBER) dating of recessions. The NBER dating is based
on non-structural and subjective analysis of a wide vari-
ety of indicators. The official line from its website is “The
NBER does not define a recession in terms of two consec-
utive quarters of decline in real GDP. Rather, a recession
is a significant decline in economic activity spread across
the economy, lasting more than a few months, normally
visible in real GDP, real income, employment, industrial
production, and wholesale-retail sales.” (www.nber.org/
cycles/cyclesmain.html). Thus, it is, perhaps, remarkable
that a simple time series model using only information in
real GNP could find such similar dates for recessions. Of
course, as emphasized by Harding and Pagan [66], a sim-
ple rule like “two consecutive quarters of decline in real
GDP” also does extremely well in matching the NBER re-
cessions, regardless of NBER claims that it is not follow-
ing such a rule. Yet, more important is the notion implied
by Hamilton’s [59] results that the NBER is identifying
a meaningful structure in the economy, rather than simply
reporting (sometimeswith considerable lag) that the econ-
omy had an episode of prolonged negative growth. Specif-
ically, “recession” appears to be an indicator of a different
state for the dynamics of the economy, rather than a label
for particular realizations of linear process. (As an aside,
the fact that the popular press pays so much attention to
NBER pronouncements on recessions also supports the
idea that it is identifying a meaningful macroeconomic
structure).

Numerous modifications and extensions of Hamil-
ton’s [59] model have been applied to macroeconomic
data. For example, while estimates for Hamilton’s [59]
model imply that the linear "t shocks have large perma-
nent effects on the level of real GDP, Lam [96] consid-
ers a model in which the only permanent shocks to real
GNP are due to regime switches. Despite this very differ-
ent assumption, he also finds that the regime probabili-
ties implied by his model correspond closely to NBER dat-
ing of expansions and recessions. Kim [74] develops a fil-
ter that can be used for maximum likelihood estimation
of state-space models with Markov-switching parameters
and confirms the results for Lam’s [96] model. Motivated
by Diebold and Rudebusch’s [38] application of Hamil-
ton’s [59] model to the Commerce Department’s coinci-
dent index of economic activity instead of measures of ag-

http://www.nber.org/cycles/cyclesmain.html
http://www.nber.org/cycles/cyclesmain.html
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gregate output such as real GNP or real GDP, Chauvet
[19] employs Kim’s [74] filter to estimate an unobserved
components model of a coincident index using Hamil-
ton’s [59] model as the specification for its first differences.
Other multivariate extensions include Kim and Yoo [87],
Ravn and Sola [125], Kim and Nelson [76], Kim andMur-
ray [75], Kim and Piger [81], Leamer and Potter [97], Ca-
macho [14], and Kim, Piger, and Startz [84]. The general
theme of these studies is that the multivariate information,
such as coincident indicators or aggregate consumption
and investment, helps to strongly identify the nonlinear-
ity in economic activity, with regimes corresponding even
more closely to NBER dates than for univariate analysis
based on real GNP or real GDP.

In terms of business cycle asymmetry, an important
extension of Hamilton’s [59] model involves allowing for
three regimes to capture three phases of the business cy-
cle: “expansion”, “recession”, and “recovery” (see [134]).
Papers with three-regime models include Boldin [8],
Clements and Krolzig [23], and Leyton and Smith [98].
The specification in Boldin [8] modifies the time-varying
mean in Hamilton’s [59] model as follows:

�t D �1 �I (St D 1)C�2 �I (St D 2)C�3 �I (St D 3) ; (10)

where St D f1; 2; 3g has fixed transition matrix:

2

4
p11 0 p31
p12 p22 0
0 p23 p33

3

5 :

The zeros in the transition matrix restrict the state se-
quence to follow the pattern of fStg D � � � 1 ! 2 !
3 ! 1 � � � . Given the normalization �1 > �2, the re-
striction on the transitional matrix implies that the econ-
omy goes from expansion to recession to recovery and
back to expansion. While there is no restriction on �3,
Boldin [8] finds it is greater than �1, which means that the
third regime corresponds to a high-growth recovery. As
discussed in Clements and Krolzig [24], this third regime
allows for steepness in output growth, while the basic two-
regime Hamilton [59] model can only capture deepness
and sharpness (the two are inextricably linked for a two-
regime model) in growth. Note, however, from the defini-
tions presented earlier, deepness in growth implies steep-
ness the level of output.

It is possible to capture high-growth recoveries with-
out resorting to three regimes. For example, Kim and Nel-
son [79] develop an unobserved components model that
assumes two regimes in the transitory component of US
real GDP. A slightly simplified version of their model is

given as follows:

yt D �t C ct ; (11)

�t D �C �t�1 C �t ; �t 
 i.i.d.N


0; �2	

�
; (12)

�(L)ct D � � I (St D 2)C"t; "t 
 i.i.d.N


0; �2"

�
; (13)

where yt is 100 times log real GDP, St D f1; 2g is specified
as in Hamilton’s [59] model, and state 2 is identified as the
recession regime by the restriction � < 0 (see [112,113],
on the need for and implications of this restriction). Un-
like Morley, Nelson, and Zivot [114], Kim and Nelson [79]
impose the restriction that �	" D 0 in estimation, which
they conduct via approximate maximum likelihood using
the Kim [74] filter. As with Hamilton [59] and Lam [96],
the regimes correspond closely to NBER-dated expansions
and recessions. However, because the regime switching
is in the transitory component only, the transition from
state 1 to state 2 corresponds to a downward “pluck” in
economic activity that is followed by a full recovery to
trend after the transition from state 2 to state 1. Kim
and Nelson [79] motivate their model as nesting Fried-
man’s [50,51] plucking model, which assumes output can-
not exceed a ceiling level, but is occasionally plucked below
full capacity by recessionary shocks resulting from activist
monetary policy. In line with Friedman’s observations,
Kim and Nelson’s [79] model relates the strength of a re-
covery to the severity of the preceding recession, with no
corresponding link between the strength of an expansion
and the severity of a recession (see also [2,134,150]). No-
tably, the transitory component for their estimated model
achieves the trifecta of business cycle asymmetries in the
form of deepness, steepness, and sharpness.

Another model that captures three phases of the
business cycle with only two underlying regimes is the
“bounceback” model of Kim, Morley, and Piger [83]. The
model modifies the time-varying mean in Hamilton’s [59]
model as follows:

�t D �1 �I (St D 1)C�2 �I (St D 2)C��
mX

jD1

I


St� j D 2

�
;

(14)

where the number of lagged regimes to consider in the
third term on the right hand side of (14) is determined by
the discrete “memory” parameterm, which is estimated to
be six quarters for US postwar quarterly real GDP. Given
the restriction �1 > �2, the third term can be interpreted
as a pressure variable that builds up the longer a recession
persists (up to m periods, where m D 6 quarters is long
enough to capture all postwar recessions) and is motivated
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by the “current depth of recession” variable of Beaudry
and Koop [6] discussed later. Then, if � > 0, growth will
be above�1 for up to the first six quarters of an expansion.
That is, there is a post-recession “bounceback” effect, as
in Kim and Nelson’s [79] plucking model. Meanwhile, the
specification in (14) can be thought of as a “u-shaped re-
cession” version of themodel because the pressure variable
starts mitigating the effects of a recession the longer the
regime persists. Morley and Piger [111] consider a slightly
modified “v-shaped recession” version of the model that
assumes the pressure variable only affects growth after the
recession ends, thus producing a sharper trough:

�t D �1 � I (St D 1) C �2 � I (St D 2)

C � �
mX

jD1

I (St D 1) � I 
St� j D 2
�
: (15)

This version of the model is identical to Hamilton’s [59]
model in all but the first m periods of an expansion. Fi-
nally, Morley and Piger [113] consider a “depth” version
of the model that relates the pressure variable to both the
length and severity of a recession:

�t D �1 � I (St D 1) C �2 � I (St D 2)

C � �
mX

jD1



�1 � �2 ��yt� j

� � I 
St� j D 2
�
: (16)

In this case, the post-recession bounceback effect depends
on the relative severity of a recession. Regardless of the
specification, the estimated bounceback effect for US real
GDP based on maximum likelihood estimation via the
Hamilton [59] filter is large (see [83,111,113]).

Macroeconomics, Non-linear Time Series in, Figure 7
Simulated paths for “Output” (Source: Author’s calculations)

While Kim, Morley, and Piger’s [83] bounceback
model can capture “plucking” dynamics, there is no re-
striction that regime switches have only transitory effects.
Instead, the model nests both the Hamilton [59] model as-
sumption that recessions have large permanent effects in
the case that � D 0 and Kim and Nelson’s [79] “plucking”
model assumption that recessions have no permanent ef-
fects in the case that � D (�1 � �2)/m (for the specifica-
tion in (14)). Figure 7 presents examples of simulated time
series for the plucking model, the bounceback model, and
the Hamilton model. In each case, “output” is subject to
a recession regime that lasts for six periods. For the pluck-
ing model, output returns to the level it would have been in
the absence of the recession. For the Hamiltonmodel, out-
put is permanently lower as a result of the recession. For
the bounceback model, recessions can have permanent ef-
fects, but they will be less than for the Hamilton model if
� > 0 (indeed, if � > (�1 � �2)/m, the long-run path
of the economy can be increased by recessions, a notion
related to the “creative destruction” hypothesis of Schum-
peter [131]). In practice, Kim, Morley, and Piger [83] find
a very small negative long-run impact of US recessions,
providing support for the plucking model dynamics and
implying considerably lower economic costs of recessions
than the Hamilton model.

Another extension of Hamilton’s [59] model involves
relaxing the assumption that the transition probabilities
for the unobserved state variable are fixed over time
(see [39]). Filardo [48] considers time-varying transition
probabilities for a regime-switching model of industrial
production growth where the transition probabilities de-
pend on leading indicators of economic activity. Durland
and McCurdy [40] allow the transition probabilities for
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real GNP growth to depend on the duration of the pre-
vailing regime. DeJong, Liesenfeld, and Richard [34] al-
low the transition probabilities for real GDP growth de-
pend on an observed “tension index” that is determined
by the difference between recent growth and a “sustain-
able” rate that corresponds to growth in potential output.
Kim, Piger, and Startz [84] allow for a dynamic relation-
ship between multiple unobserved discrete state variables
in a multivariate setting and find that regime-switches in
the permanent component of economic activity tend to
lead regime-switches in the transitory component when
the economy heads into recessions.

The distinction between Markov-switching models
and threshold models is blurred somewhat by time-vary-
ing transition probabilities. A standard demarcation is
that Markov-switching models typically assume the dis-
crete state variables driving changes in regimes are ex-
ogenous, while threshold models allow for endogenous
switching. However, this exogenous/endogenous demar-
cation is less useful than it may at first appear. First, as
is always the problem in macroeconomics, it is unlikely
that the variables affecting time-varying transition prob-
abilities are actually strictly exogenous, even if they are
predetermined. Second, Kim, Piger and Startz [85] have
developed an approach for maximum likelihood estima-
tion of Markov-switching models that explicitly allow for
endogenous switching. In terms of macroeconomics, Sin-
clair [137] applies their approach to estimate a version
of the regime-switching UC model in (11)–(13) for US
real GDP that allows for a non-zero correlation between
the regular shocks �t and "t , as in Morley, Nelson, and
Zivot [114], as well as dependence between these shocks
and the unobserved state variable St that generates down-
ward plucks in output. She finds that permanent shocks
are more important than suggested by Kim and Nel-
son’s [79] estimates. However, she confirms the impor-
tance of the plucking dynamic, with a test supporting the
standard exogeneity assumption for the discrete Markov-
switching state variable.

Another demarcation that would seem to provide
a possible means of distinguishing between Markov-
switching models and threshold models arises from the
fact that, starting from an AR specification, threshold
models typically extend the basic model by allowing for
changes in AR parameters, while, as discussed earlier,
Markov-switching models typically extend the model by
allowing for changes in the mean. However, this de-
marcation is also less useful than it may at first appear
since Markov-switching models have alternative repre-
sentations as autoregressive processes (see [59]). Further-
more, some threshold models assume constant AR param-

eters (e. g., [120]). In particular, regardless of presentation,
both types of models capture nonlinear dynamics in the
conditional mean.

The more general and useful demarcation between
Markov-switching models and threshold models is that
the prevailing regime is unobservable in the former, while
it is observed in the latter. Meanwhile, the observable
regimes in threshold models make it feasible to con-
sider more complicated transitions between regimes than
Markov switching models. In particular, it is possible with
a threshold model to allow a mixture of regimes to prevail
in a given time period.

Tong [145] introduced the basic threshold autoregres-
sive (TAR) model. In a “self-exciting” TAR model, the au-
toregressive coefficient depends on lagged values of the
time series. For example, a simple two-regime AR(1) TAR
model is given as follows:

yt D c C �(1) � I 
yt�m < �
� � yt�1

C�(2) � I 
yt�m > �
� � yt�1C"t ; "t 
 i.i.d.(0; �2) ;

(17)

where �(1) and �(2) are the AR(1) parameters associ-
ated with the two regimes, � is the threshold, and m is
the discrete delay parameter. A variant of the basic TAR
model that allows multiple regimes to prevail to differ-
ent degrees is the smooth transition autoregressive (STAR)
model (see [18,58,140,142]). For STARmodels, the indica-
tor function is replaced by transition functions bounded
between zero and one. The STAR model corresponding
to (17) is

yt D c C �(1) � F1


yt�m j�; �� � yt�1

C �(2) � F2


yt�m j�; �� � yt�1 C "t;

"t 
 i.i.d. (0; �2) ; (18)

where F2(yt�m j�; � ) D 1 � F1(yt�m j�; � ) and � is a pa-
rameter that determines the shape of the transition func-
tion (in general, the larger � , the closer the STAR model is
to the TARmodel). The twomost popular transition func-
tions are exponential (ESTAR) and logistic (LSTAR). The
exponential transition function is

Fe
1 D 1 � exp


�� (yt�m � �)2� ; � > 0 ; (19)

while the logistic transition function is

F l
1 D �

1 C exp

�� (yt�m � �)���1

; � > 0 : (20)

For STAR models the transition functions are such that
the prevailing autoregressive dynamics are based on
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a weighted average of the autoregressive parameters for
each regime, rather than reflecting only one or the other,
as in TAR models.

In terms of macroeconomics, both TAR and STAR
models have been employed to capture business cycle
asymmetry. A key question is what observed threshold
might be relevant. On this issue, a highly influential paper
is Beaudry and Koop [6]. Related to the notion discussed
above that recessions represent a meaningful macroeco-
nomic structure, they consider whether real GDP falls be-
low a threshold defined by its historical maximum. Specif-
ically, they define a “current depth of recession” (CDR)
variable as follows:

CDRt D max
˚
yt� j

�
j>0 � yt : (21)

Figure 8 presents the current depth of recession using US
real GDP for each quarter from 1947:Q1 to 2006:Q4.

Beaudry and Koop [6] augment a basic linear ARMA
model of US real GNP growth with lags of the CDR vari-
able. They find that the inclusion of the CDR variable im-
plies much less persistence for large negative shocks than
for small negative shocks or positive shocks. The asym-
metry in terms of the response of the economy to shocks
corresponds closely to the idea discussed earlier that deep
recessions produce strong recoveries. Indeed, the Beaudry
and Koop [6] paper provided a major motivation for most
of the extensions of Hamilton’s [59] model discussed ear-
lier that allow for high-growth recoveries.

In terms of threshold models in macroeconomics,
Beaudry and Koop [6] initiated a large literature. Tiao and
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Current depth of recession 1947–2006 (Source: Author’s calculations based on Beaudry and Koop [6])

Tsay [144], Potter [121], and Clements and Krolzig [23]
consider two-regime TAR models with the threshold ei-
ther fixed at zero or estimated to be close to zero. Pe-
saran and Potter [120] and Koop and Potter [91] con-
sider a three-regime TAR model (with many restrictions
for tractability) that incorporates the CDR variable and an
“overheating” (OH) variable reflecting cumulated growth
following large positive shocks. Specifically, a simple ho-
moskedastic, AR(1) version of Pesaran and Potter’s [120]
“floor and ceiling” model is given as follows:

�yt D c C ��yt�1 C �1CDRt�1 C �2OHt�1 C "t ;

"t 
 N(0; �2) ; (22)

where

CDRt D �(�yt � �F ) � Ft � (1 � Ft�1)

C (CDRt�1 ��yt) � Ft � Ft�1 ; (23)

Ft D I


�yt < �F

� � (1 � Ft�1)

C I


CDRt�1 ��yt > 0

� � Ft�1 ; (24)

OHt D (OHt�1 C�yt � �C ) � Ct ; (25)

Ct D (1 � Ft) � I 
�yt > �C
� � I 
�yt�1 > �C

�
: (26)

The indicator variable Ft D f0; 1g denotes whether the
economy is in the “floor” regime, while Ct D f0; 1g de-
notes whether the economy is in the “ceiling” regime. The
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CDR variable is the same as in (20) if the threshold �F D 0.
Thus, a high-growth post-recession recovery is implied by
�1 > 0. In particular, with �F D 0, the “floor” regime
is activated when real GDP falls below its historical max-
imum at the onset of a recession and remains activated
until output recovers back to its pre-recession level. The
OH variable captures whether real GDP is above a sus-
tainable level based on the threshold level �C of growth.
A capacity-constraint effect is implied by �2 < 0. Note,
however, that the “ceiling” regime that underlies the OH
variable can be activated only when the “floor” regime is
off, ruling out the possibility that a high-growth recovery
from the trough of a recession is labeled as “overheating”.
There is also a requirement of two consecutive quarters of
fast growth above the threshold level �C in order to avoid
labeling a single quarter of fast growth as “overheating”.
Meanwhile, a heteroskedastic version of the model allows
the variance of the shocks to evolve as follows:

�2t D �21 � I (Ft�1 C Ct�1 D 0)C�22 Ft�1C�23Ct�1 : (27)

Also, in a triumph of controlled complexity, Koop and
Potter [92] develop a multivariate version of this model,
discussed later.

A related literature on STAR models of business cy-
cle asymmetry includes Teräsvirta and Anderson [143],
Teräsvirta [141], van Dijk and Franses [148], and Öcal
and Osborn [117]. Similar to the development of Markov-
switching models and TAR models, van Dijk and
Franses [148] develop a multi-regime STAR model and
find evidence for more than two regimes in economic ac-
tivity. Likewise, using U.K. data on industrial production,
Öcal and Osborn [117] find evidence for three regimes
corresponding to recessions, normal growth, and high
growth. Rothman, van Dijk, and Franses [130] develop
a multivariate STAR model to examine nonlinearities in
the relationship between money and output.

While there are many different nonlinear models of
economic activity, it should be noted that, in a general
sense,Markov-switching models and thresholdmodels are
close substitutes for each other in terms of their abilities to
forecast (see [23]) and their abilities to capture business
cycle asymmetries such as deepness, steepness, and sharp-
ness (see [24]). On the other hand, specific models are par-
ticularly useful for capturing specific asymmetries and, as
discussed next, for testing the presence of nonlinear dy-
namics in macroeconomic time series.

Evidence

While estimates for regime-switching models often im-
ply the presence of business cycle asymmetries, it must be

acknowledged that the estimates may be more the con-
sequence of the flexibility of nonlinear models in fitting
the data than any underlying nonlinear dynamics. In the
regime-switching model context, an extreme example of
over-fitting comes from a basic i.i.d. mixture model. If
the mean and variance are allowed to be different across
regimes, the sample likelihood will approach infinity as the
estimated variance approaches zero in a regime for which
the estimated mean is equal to a sample observation. (It
should be noted, however, that the highest local maximum
of the sample likelihood for this model produces consis-
tent estimates of the model parameters. See [73]). Thus, it
is wise to be skeptical of estimates from nonlinear models
and to seek out a correct sense of their precision. Having
said this, the case for nonlinear dynamics that correspond
to business cycle asymmetries is much stronger than it is
often made out to be, although it would be a mistake to
claim the issue is settled.

From the classical perspective, the formal problem of
testing for nonlinearity with regime-switching models is
that the models involve nuisance parameters that are not
identified under the null hypothesis of linearity, but in-
fluence the distributions of test statistics. For example,
Hamilton’s [59] model outlined in (8)–(9) collapses to
a linear AR model if �1 D �2. However, under this
null hypothesis, the two independent transition probabil-
ities p11 and p22 in the transition matrix will no longer be
identified (i. e., they can take on different values without
changing the fit of the model). The lack of identification of
these nuisance parameters is referred to as the Davies [32]
problem and it means that test statistics of the null hypoth-
esis such as a t-statistic or a likelihood ratio (LR) statistic
will not have their standard distributions, even asymptot-
ically. An additional problem for Markov-switching mod-
els is that the null hypothesis of linearity often corresponds
to a local maximum for the likelihood, meaning that the
score is identically zero for some parameters, thus violat-
ing a standard assumption in classical testing theory. The
problem of an identically zero score is easily seen by not-
ing that one of the fundamental tests in classical statis-
tics, the Lagrange multiplier (LM) test, is based on de-
termining whether the score is significantly different than
zero when imposing the null hypothesis in a more general
model. For Hamilton’s [59] model, the scores are zero for
�d D �2 � �1, p11, and p22. Again, identically zero scores
imply nonstandard distributions for a t-statistic or an LR
statistic. In practice, these nonstandard distributions mean
that, if researchers were to apply standard critical values,
they would over-reject linearity.

Hansen [61] derives a bound for the asymptotic dis-
tribution of a likelihood ratio statistic in the setting of
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unidentified nuisance parameters and identically zero
scores. The bound is application-specific as it depends on
the covariance function of an empirical process associated
with the likelihood surface in a given setting (i. e., it is
model and data dependent). The distribution of the em-
pirical process can be obtained via simulation. In his ap-
plication, Hansen [61] tests linearity in US real GNP using
Hamilton’s [59] model. His upper bound for the p-value
of the likelihood ratio test statistic is far higher than con-
ventional levels of significance. Thus, he is unable to reject
linearity with Hamilton’s [59] model. However, when he
proposes an extended version of the model that assumes
switching in the intercept and AR coefficients, rather than
the mean as in (8)–(9), he is able to reject linearity with an
upper bound for the p-value of 0.02.

In a subsequent paper, Hansen [62] develops a differ-
ent method for testing in the presence of unidentified nui-
sance parameters that yields an exact critical value rather
than an upper bound for a p-value. Again, the method
requires simulation, as the critical value is model and
data dependent. However, this approach assumes non-
zero scores and is, therefore, more appropriate for testing
threshold models than Markov-switching models. In his
application for this approach, Hansen [62] tests linearity in
US real GNP using Potter’s [121] TAR model mentioned
earlier (see also [17,63,146,147], on testing TAR models
and [140], on testing STAR models). Referring back to the
TAR model in (17), the threshold � and the delay parame-
ter m are unidentified nuisance parameters under the null
of linearity (i. e., the case where the AR parameters and any
other parameters that are allowed to switch in the model
are actually the same across regimes). Hansen [62] finds
that the p-values for a variety of test statistics are above
conventional levels of significance, although the p-value
for the supLM (i. e., the largest LM statistic for different
values of the nuisance parameters) under the hypothesis
of homoskedastic errors is 0.04, thus providing some sup-
port for nonlinearity.

Garcia [53] reformulates the problem of testing for
Markov-switching considered in Hansen [61] by proceed-
ing as if the score with respect to the change in Markov-
switching parameters (e. g., �d D �2 � �1 for Hamil-
ton’s [59], model) is not identically zero and examining
whether the resulting asymptotic distribution for a likeli-
hood ratio test statistic is approximately correct. The big
advantage of this approach over Hansen [61] is that the
distribution is no longer sample-dependent, although it
is still model-dependent. Also, it yields an exact critical
value instead of an upper bound for the p-value. Gar-
cia [53] reports asymptotic critical values for some basic
Markov-switching models with either no linear dynamics

or a mild degree of AR(1) linear dynamics (� D 0:337)
and compares these to critical values based on a simu-
lated distribution of the LR statistic under the null of lin-
earity and a sample size of 100. He finds that his asymp-
totic critical values are similar to the simulated critical val-
ues for the simple models, suggesting that they may be
approximately correct despite the problem of an identi-
cally zero score. The asymptotic critical values are consid-
erably smaller than the simulated critical values in the case
of Hamilton’s [59] model with an AR(4) specification, al-
though this is perhaps due to small sample issues rather
than approximation error for the asymptotic distribution.
Regardless, even with the asymptotic critical values, Gar-
cia [53] is unable to reject linearity for US real GNP using
Hamilton’s [59] model at standard levels of significance,
although the p-value is around 0.3 instead of the upper
bound of around 0.7 for Hansen [61].

It is worth mentioning that the simulated critical val-
ues in Garcia’s [53] study depend on the values of param-
eters used to simulate data under the null hypothesis. That
is, the LR statistic is not pivotal. Thus, the approach of
using the simulated critical values to test linearity would
correspond to a parametric bootstrap test (see [105,106],
for excellent overviews of bootstrap methods). The use
of bootstrap tests (sometimes referred to as Monte Carlo
tests, although see MacKinnon [105,106], for the distinc-
tion) for Markov-switching models has been limited (al-
though see [96], for an early example) for a couple of rea-
sons. First, the local maximum at the null hypothesis that
is so problematic for asymptotic theory is also problem-
atic for estimation. While a researcher is likely to re-esti-
mate a nonlinear model using different starting values for
the parameters when an optimization routine converges
to this or another local maximum in an application, it is
harder to do an exhaustive search for the global maximum
for each bootstrap sample. Thus, the bootstrapped critical
valuemay be much lower than the true critical value (note,
however, that Garcia’s [53], bootstrapped critical values
were considerably higher than his asymptotic critical val-
ues). Second, given the unidentified nuisance parameters,
the test statistic may not even be asymptotically pivotal.
Thus, it is unclear how well the bootstrapped distribution
approximates the true finite sample distribution. Despite
this, bootstrap tests have often performed better in terms
of size (the probability of false rejection of the null hypoth-
esis in repeated experiments) than asymptotic tests in the
presence of unidentified nuisance parameters. For exam-
ple, Diebold and Chen [37] consider Monte Carlo analy-
sis of bootstrap and asymptotic tests for structural change
with an unknown breakpoint that is a nuisance parameter
and find that the bootstrap tests perform well in terms of
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size and better than the asymptotic tests. Enders, Falk, and
Siklos [44] find that bootstrap and asymptotic tests both
have size problems for TAR models, although bootstrap
LR tests perform better than the asymptotic tests or other
bootstrap tests. In terms of testing for nonlinearity with
Markov-switching models, Kim, Morley, and Piger [83]
bootstrap the distribution of the LR statistic testing linear-
ity for the bounceback model discussed above and reject
linearity with a p-value of less than 0.01. The local max-
imum problem is addressed by conducting a grid search
across transition probabilities.

In a recent paper, Carrasco, Hu, and Ploberger [15]
develop an information matrix-type test for Markov-
switching that is asymptotically optimal and only re-
quires estimation under the null of no Markov-switch-
ing (their null allows for other forms of nonlinearity such
as ARCH). At this point, there is little known about
the finite sample properties of the test. However, Car-
rasco, Hu, and Ploberger [15] show that it has higher
power (probability of correct rejection of the null hypoth-
esis in repeated experiments) than Garcia’s [53] approach
for a basic Markov-switching model with no autoregres-
sive dynamics. Hamilton [60] applies Carrasco, Hu, and
Ploberger’s [15] method to test for Markov switching in
the US unemployment rate (he also provides a very help-
ful appendix describing how to conduct the test). The null
hypothesis is a linear AR(4) model with student t errors.
The alternative is an AR(4) with student t errors where the
intercept is Markov-switching with three regimes. The test
statistic is 26.02, while the 5 percent critical value is 4.01.
Thus, linearity can be rejected for the unemployment rate.
Meanwhile, the estimated Markov-switching model im-
plies asymmetry in the form of steepness (the unemploy-
ment rate rises above its average more quickly than it falls
below its average rate).

In contrast to Markov-switching models or threshold
models, Beaudry and Koop’s [6] ARMA model with the
CDR variable provides a very simple test of nonlinearity.
In particular, for their preferred specification, Beaudry and
Koop [6] find support for nonlinearity with a t-statistic
of 3.39 for the CDR variable. Hess and Iwata [68] ques-
tion the significance of this statistic on the basis of Monte
Carlo analysis. However, the data generating process in
their Monte Carlo study assumed no drift in the simulated
“output” series, meaning that the simulated CDR variable
behaves much like a unit root process. By contrast, given
drift, the CDR variable can be expected to revert to zero
over a fairly short horizon, as it does in the real world (see
Fig. 8). Elwood [43] develops an unobserved components
model with a threshold process for the transitory compo-
nent and argues that there is no evidence for asymmetry

in the responses to positive and negative shocks. However,
his model does not confront the key distinction between
large negative shocks versus other shocks that Beaudry
and Koop [6] address directly with the inclusion of the
CDR variable in their model. A more fundamental issue
is whether the CDR variable is merely a proxy for an-
other variable such as the unemployment rate or interest
rates and the apparent nonlinearity is simply the result of
an omitted variable. However, as discussed in more de-
tail later, the results in Clarida and Taylor [22] and Mor-
ley and Piger [113] suggest that Beaudry and Koop’s [6]
model is capturing a nonlinear dynamic that is fundamen-
tally different than what would be implied by any linear
model.

Hess and Iwata [69] provide a more formidable chal-
lenge to Beaudry and Koop’s [6] model, and, indeed, to
many of the regime-switching models discussed earlier,
by examining the relative abilities of linear and nonlin-
ear models to reproduce particular features of US real
GDP. This alternative form of model evaluation is related
to encompassing tests for non-nested models (see [110],
on encompassing tests and [9], on the use of encompass-
ing tests to evaluate Markov-switching models). In par-
ticular, Hess and Iwata [69] simulate data from a va-
riety of models of output growth, including an AR(1)
model, an ARMA(2,2) model, Beaudry and Koop’s [6]
model, Potter’s [121] two-regime TARmodel, Pesaran and
Potter’s [120] “floor and ceiling” model, Hamilton’s [59]
two-regime Markov-switching model, and a three-regime
Markov-switching model with restrictions on the transi-
tion matrix as in Boldin [8]. They then consider whether
the simulated data for each model can successfully repro-
duce “business cycle” features in terms of the duration and
amplitude of expansions and recessions. Their definition
of the business cycle is related to the level of real GDP.
However, they label any switch between positive and nega-
tive growth, nomatter how short-lived, to be a business cy-
cle turning point. For US real GDP, their approach identi-
fies twice as many turning points as reported by the NBER.
Under this definition, Hess and Iwata [69] find that the
linear AR(1) model is better than the nonlinear models at
reproducing the duration and amplitude of “expansions”
and “recessions” in US real GDP.

Harding and Pagan [65] and Engel, Haugh, and Pa-
gan [45] confirm Hess and Iwata’s [69] findings of little or
no “value-added” for nonlinear models over linear models
using a business cycle dating procedure that more closely
matches NBER dates. The procedure is a quarterly ver-
sion of an algorithm by Bry and Broschan [12] and iden-
tifies recessions as being related to two consecutive quar-
ters of decline in real GDP. In terms of nonlinear mod-
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els, Engel, Haugh, and Pagan [45] move beyond Hess and
Iwata [69] by considering van Dijk and Franses’ [149] ver-
sion of the floor and ceiling model with ARCH errors,
Kim, Morley, and Piger’s [83] bounceback model, and De-
Jong, Liesenfeld, and Richard’s [34] tension index model.
Meanwhile, Clements and Krolzig [25] find that multi-
variate two-regime Markov-switching models provide lit-
tle improvement over linear models in capturing business
cycle features.

However, beyond the issue of how to define a busi-
ness cycle, the major question in the literature on repro-
ducing business cycle features is which features to con-
sider. Galvão [52], Kim, Morley, and Piger [83], and Mor-
ley and Piger [111] examine the ability of linear and non-
linear models to capture high-growth recoveries that are
related to the severity of the preceding recessions, which is
the asymmetry emphasized by Friedman [50], Wynne and
Balke [150], Sichel [134], and Balke andWynne [2]. When
considering this feature, there is strong support for Kim
and Nelson’s [79] plucking model and Kim, Morley, and
Piger’s [83] bounceback model over linear models. Inter-
estingly, the three-regime Markov-switching model does
not reproduce this feature. In particular, even though it
implies high-growth recoveries, the fixed transition prob-
abilities mean that the strength of the recovery is indepen-
dent of the severity of the preceding recession. However,
the strong support for the pluckingmodel and bounceback
model over linear models when considering the relation-
ship between recessions and their recoveries represents
a major reversal of the earlier findings for linear models
by Hess and Iwata [69] and others.

In terms of directly testing business cycle asymmetries,
DeLong and Summers [35] consider a nonparametric test
for steepness in real GNP and unemployment rates for
eight countries (including the US). In particular, they test
for skewness in output growth rates and changes in un-
employment rates. With the exception of changes in the
US unemployment rate, the measures of economic activity
produce no statistically significant evidence of skewness,
although the point estimates are generally large and neg-
ative for output growth and large and positive for the un-
employment rates. Of course, given that the nonparamet-
ric test of skewness is unlikely to have much power for the
relatively small sample sizes available in macroeconomics,
it is hard to treat the non-rejections as particularly deci-
sive. In amore parametric setting, Goodwin [56] considers
a likelihood ratio test for sharpness using Hamilton’s [59]
model. Applying the model and test to real GNP for eight
countries (including the US), he is able to reject non-
sharpness in every country except Germany. In a more
general setting, Clements and Krolzig [24] develop tests

of deepness, steepness, and sharpness that are conditional
on the number of regimes. For a three-regime model, they
are able to reject the null hypotheses of no steepness and
no sharpness in US real GDP growth, although the test
results are somewhat sensitive to the sample period con-
sidered. Meanwhile, Ramsey and Rothman [124] develop
a test of time reversibility and find that many measures
of economic activity are irreversible and asymmetric, al-
though the nature of the irreversibility does not always
provide evidence for nonlinearity.

In addition to classical tests of nonlinear models and
the encompassing-style approach discussed above, there
are two other approaches to testing nonlinearity that
should be briefly mentioned: nonparametric tests and
Bayesian model comparison. In terms of nonparametric
tests, there is some evidence for nonlinearity in macroec-
onomic time series. For example, Brock and Sayers [11]
apply the nonparametric test for independence (of “pre-
whitened” residuals using a linear AR model) developed
by Brock, Dechert, and Schienkman [10] and are able to
reject linearity for the US unemployment rate and in-
dustrial production. However, as is always the case with
such general tests, it is not clear what alternative is be-
ing supported (i. e., is it nonlinearity in the conditional
mean or time-variation in the conditional variance?). Also,
again, the nonparametric approach is hampered in macro-
economics by relatively small sample sizes. In terms of
Bayesian analysis, there is some support for nonlinear-
ity related to business cycle asymmetry using Bayes fac-
tors for multivariate models (see [80]). Bayes factors cor-
respond to the posterior odds of one model versus another
given equal prior odds. In essence, they compare the rela-
tive abilities of two models to predict the data given the
stated priors for the model parameters. Obviously, Bayes
factors can be sensitive to these priors. However, given
diffuse priors, they have a tendency to favor more tightly
parametrized models, as some of the prior predictions
from the more complicated models can be wildly at odds
with the data. Thus, because the findings in favor of non-
linear models correspond to relatively more complicated
models, evidence for nonlinearity using Bayes factors is
fairly compelling.

Relevance

Even accepting the presence of nonlinear dynamics related
to business cycle asymmetry, there is still a question of
economic relevance. Following the literature, the case can
be made for relevance in three broad, but related areas:
forecasting, macroeconomic policy, and macroeconomic
theory.
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In terms of forecasting, the nonlinear time series mod-
els discussed earlier directly imply different conditional
forecasts than linear models. Beaudry and Koop’s [6]
model provides a simple example with a different implied
persistence for large negative shocks than for other shocks.
By contrast, linear models imply that the persistence of
shocks is invariant to their sign or size. Koop, Pesaran, and
Potter [94] develop “generalized impulse response func-
tions” to examine shock dynamics for nonlinear models.
Their approach involves simulating artificial time series
both in the presence of the shock and in the absence of
the shock, holding all else (e. g., other shocks) equal, and
comparing the paths of the two simulated time series. This
simulation can be done repeatedly for different values of
other shocks in order to integrate out their impact on the
difference in conditional expectations of the time series
implied by presence and absence of a shock. Clarida and
Taylor [22] use related simulated forecasts to carry out the
Beveridge–Nelson (BN) decomposition (see [7]) for US
real GNP using Beaudry and Koop’s [6] model. The BN
decomposition produces estimates of the permanent and
transitory components of a time series based on long-hori-
zon conditional forecasts. Importantly, the estimated cycle
(under the “deviations” definition of the business cycle)
for Beaudry and Koop’s [6] model displays deepness that
would be difficult to replicate with any linear forecasting
model, even with multivariate information. Thus, there is
a direct sense in which Beaudry and Koop’s [6] model is
not just approximating a linear multivariate model.

In a recent paper, Morley and Piger [112] develop an
extension of the BN decomposition that produces optimal
(in a “minimum mean squared error” sense) estimates of
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“Bounceback” cycle and NBER recessions (Source: Author’s calculations based on Morley and Piger [113], and NBER website)

the cyclical component of an integrated time series when
the series can be characterized by a regime-switching pro-
cess such as for a Markov-switching model with fixed
transition probabilities. The approach, which is labeled
the “regime-dependent steady-state” (RDSS) decomposi-
tion, extracts the trend by constructing a long-horizon
forecast conditional on remaining in a particular regime
(hence, “regime-dependent”). In Morley and Piger [113],
the RDSS decomposition is applied to US real GDP us-
ing the “depth” version of Kim, Morley, and Piger’s [83]
bounceback model given by (8) and (16). Figure 9 presents
the estimated cycle for a version of the model with a struc-
tural break in �2,�1, and�2 in 1984:Q2 to account for the
Great Moderation. The figure also displays an indicator
variable for NBER-dated recessions for each quarter from
1949:Q2 to 2006:4. (For visual ease, the indicator variable
is � 8 in expansions and � 6 in recessions).

There are three particularly notable features of the cy-
cle in Fig. 9. First, there is a close correspondence between
the big negative movements in it and the NBER-dated pe-
riods of recession. Thus, in practice, there is a direct rela-
tionship between the level and deviations definitions of the
business cycle discussed earlier. Also, this correspondence
directly implies that the NBER is identifying a meaning-
ful macroeconomic structure (i. e., it is capturing a phase
that is closely related to large movements in the transitory
component of economic activity), rather than merely not-
ing negative movements in economic activity. Second, it is
fairly evident from Fig. 9 that the cycle displays all three
business cycle asymmetries in the form of deepness, steep-
ness, and sharpness. Third, the unconditional mean of the
cycle is negative. As discussed in Morley and Piger [113],
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this finding stands in contrast to cyclical estimates for all
linear models, whether univariate or multivariate.

The negative mean of the cycle in US real GDP has
strong implications for the potential benefits of macro-
economic stabilization policy. Lucas [102,103] famously
argued that the elimination of all business cycle fluctua-
tions would produce a benefit equivalent to less than one-
tenth of one percent of lifetime consumption. One rea-
son for this extraordinarily low estimate is that his calcu-
lation assumes business cycle fluctuations are symmetric.
However, as discussed in DeLong and Summers [36], Co-
hen [28], Barlevy [5], and Yellen and Akerlof [151], a non-
zero mean cyclical component of economic activity di-
rectly implies that stabilization policies, if effective, could
raise the average level of output and lower the average level
of the unemployment rate. In this setting, the potential
benefits of stabilization policy are much larger than cal-
culated by Lucas [102,103]. (In deference to Milton Fried-
man and his plucking model, it is worth mentioning that
the optimal “stabilization” policy might be a passive rule
that prevents policymakers from generating recessionary
shocks in the first place. Regardless, the point is that, given
a negativemean for the cycle in real GDP, the costs of busi-
ness cycles are high and can be affected by policy).

A related issue is asymmetry in terms of the effects of
macroeconomic policy on economic activity. For example,
DeLong and Summers [36] and Cover [31] find that nega-
tive monetary policy shocks have a larger effect on output
than positive shocks of the same size (the so-called “push-
ing on a string” hypothesis). This form of asymmetry re-
presents a third type of nonlinearity in macroeconomics
beyond structural change and business cycle asymmetry,
although it is clearly related to business cycle asymmetry.
Indeed, Garcia and Schaller [54] and Lo and Piger [99]
considerMarkov-switching models and find that asymme-
try in the effects of monetary policy shocks is more closely
related to whether the economy is in an expansion or a re-
cession, rather thanwhether the shock was positive or neg-
ative. In particular, positive shocks can have large effects
on output, but only in recessions. There is an obvious link
between this result, which is suggestive of a convex short-
run aggregate supply curve rather than the “pushing on
a string” hypothesis, and the business cycle displayed in
Fig. 9, which is also highly suggestive of a convex short-
run aggregate supply curve.

In addition to the implications for more traditional
theoretical notions in macroeconomics such as the shape
of the short-run aggregate supply curve, the findings
for business cycle asymmetry are important for modern
macroeconomic theory because dynamic stochastic gen-
eral equilibrium (DSGE) models are often evaluated and

compared based on their ability to generate internal prop-
agation that matches what would be implied by linear AR
and VAR models of US real GDP (see, for example [126]).
These linear models imply a time-invariant propagation
structure for shocks, while the business cycle presented in
Fig. 9 suggests that theory-based models should instead be
evaluated on their ability to generate levels of propagation
that vary over business cycle regimes, at least if they are
claimed to be “business cycle” models.

Future Directions

There are several interesting avenues for future research in
nonlinear time series in macroeconomics. However, two
follow directly from the findings on nonlinearities sum-
marized in this survey. First, in terms of structural change,
it would be useful to determine whether the process of
change is gradual or abrupt and the extent to which it is
predictable. Second, in terms of business cycle asymme-
tries, it would be useful to pin down the extent to which
they reflect nonlinearities in conditional mean dynamics,
conditional variance dynamics, and/or the contemporane-
ous relationship between macroeconomic variables.

The issue of whether structural change is gradual
or abrupt is only meaningful when structural change is
thought of as a form of nonlinearity in a time series
model. In particular, formal classical tests of structural
change based on asymptotic theory make no distinction
between whether there are many small change or a few
large changes. All that matters is the cumulative mag-
nitude of changes over the long horizon (see [42], on
this point). Of course, a time-varying parameter model
and a regime-switching model with permanent changes in
regimes can fit the data in very different ways in finite sam-
ples. Thus, it is possible to use finite-sample model com-
parison (e. g., Bayes factors) to discriminate between these
two behaviors. It is even possible to use a particle filter to
estimate a nonlinear state-space model that nests large, in-
frequent changes and small, frequent changes (see [90]).
In terms of predicting structural change, Koop and Pot-
ter [93] develop a flexible model that allows the number
of structural breaks in a given sample and the duration of
structural regimes to be stochastic processes and discuss
estimation of the model via Bayesian methods.

The issue of the relative importance of different types
of recurring nonlinearities is brought up by the findings
in Sims and Zha [136], discussed earlier, that there are
no changes in the conditional mean dynamics, but only
changes in the conditional variance of shocks for a struc-
tural VAR model of the US economy. Likewise, in their
multivariate three-regime TAR model, Koop and Pot-
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ter [92] consider a VAR structure, and find that a lin-
ear VAR structure with heteroskedastic errors is preferred
over a “vector floor and ceiling” structure for the con-
ditional mean dynamics. The question is how to recon-
cile these results with the large body of evidence sup-
porting nonlinearity in conditional mean dynamics dis-
cussed at length in this survey. A short answer is that
VAR models are highly parametrized in terms of the con-
ditional mean. Thus, it may be hard to identify regime
shifts or nonlinear forms of time-variation in conditional
means using a VAR model, even if they are present. On
the other hand, even for their nonlinear model, Koop
and Potter [92] find stronger evidence for nonlinearity in
the contemporaneous relationship between variables than
in the conditional mean dynamics. Meanwhile, in terms
of multivariate analysis, consideration of more parsimo-
nious factor models has typically increased the support
for nonlinear models over linear models (e. g. [80]). Thus,
a full comparison of different types of nonlinearity in
the context of a parsimonious nonlinear model would be
useful.

Another important avenue for future research in
macroeconomics is an increased integration of the find-
ings in nonlinear time series into macroeconomic theory.
In terms of structural change, there has been considerable
progress in recent years. In particular, some of the papers
on changes in policy regimes discussed earlier (e. g. [123,
136]) can be classified as“theory-oriented” given their con-
sideration of structural VAR models. Another nonlinear
time series paper on changing policy regimes with a struc-
tural model is Owyang and Ramey [118], which con-
siders the interaction between regime switching in the
Phillips curve and the policy rule. Meanwhile, Fernández-
Villaverde and Rubio-Ramírez [47] and King [89] directly
incorporate structural change (of the gradual form) in the-
ory-based DSGE models, which they proceed to estimate
with the aid of particle filters. In terms of Bayesian anal-
ysis of the sources of the Great Moderation, Chauvet and
Potter [20] and Kim, Nelson, and Piger [82] consider dis-
aggregated data (in a joint model and separately, respec-
tively) and find that the decline in volatility of economic
activity is a broadly-based phenomenon, rather than cor-
responding to particular sectors, while Kim, Morley, and
Piger [86] employ structural VAR models and find that
the decline in volatility cannot be explained by changes
in aggregate demand shocks, monetary policy shocks, or
the response of the private sector or policymakers to
shocks.

In terms of the integration of business cycle asym-
metries into macroeconomic theory, there has been less
progress in recent years, perhaps due the obviously

greater difficulty in modeling endogenous regime switch-
ing than in simply assuming exogenous structural change.
However, the theoretical literature contains some work
on asymmetries. In particular, mechanisms for regime
switching in the aggregate data that have been considered
in the past include spillovers and strategic complementar-
ities [41], animal spirits [70], a history-dependent selec-
tion criterion in an economy with multiple Nash equilib-
ria corresponding to different levels of productivity [30],
and intertemporal increasing returns [1]. However, Pot-
ter [122] notes that, while these mechanisms can gener-
ate regime switching in the aggregate data, they cannot
explain asymmetry in the form of high-growth recover-
ies following large negative shocks. He proposes a model
with Bayesian learning and an information externality
(see [16]) that can generate such dynamics. Meanwhile, in
terms of business cycle asymmetry more generally, obvi-
ous mechanisms are investment irreversibilities [55] and
capacity constraints [64]. More promisingly for future de-
velopments in macroeconomic theory, there is a grow-
ing empirical literature on the sources of business cycle
asymmetries. For example, Korenok, Mizrach, and Rad-
chenko [95] use disaggregated data and find that asymme-
tries are more pronounced in durable goods manufactur-
ing sectors than nondurable goods manufacturing sectors
(also see [129]) and appear to be related to variation across
sectors in credit conditions and reliance on raw material
inventories, while they do not appear to be related to oil
price shocks [33] or adjustment costs [3].
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Glossary

Game A (cooperative) game (in characteristic form) is de-
fined simply as a finite set of players and a function or
correspondence ascribing a worth (a non-negative real
number, interpreted as an idealized money) to each
nonempty subset of players, called a group or coalition.

Payoff vector A payoff vector is a vector listing a payoff
(an amount of utility or money) for each player in the
game.

Core The core of a game is the set (possibly empty) of fea-
sible outcomes – divisions of the worths arising from
coalition formation among the players of the game –
that cannot be improved upon by any coalition of play-
ers. core

Totally balanced game A game is totally balanced if the
game and every subgame of the game (a game with
player set taken as some subset of players of the ini-
tially given game) has a nonempty core.

Market A market is defined as a private goods economy
in which all participants have utility functions that are
linear in (at least) one commodity (money).

Shapley value The Shapley value of a game is feasible out-
come of a game in which all players are assigned their

expected marginal contribution to a coalition when all
orders of coalition formation are equally likely.

Pregame A pair, consisting of a set of player types (at-
tributes or characteristics) and a function mapping fi-
nite lists of characteristics (repetitions allowed) into
the real numbers. In interpretation, the pregame func-
tion ascribes a worth to every possible finite group
of players, where the worth of a group depends on
the numbers of players with each characteristic in the
group. A pregame is used to generate games with arbi-
trary numbers of players.

Small group effectiveness A pregame satisfies small
group effectiveness if almost all gains to collective ac-
tivities can be realized by cooperation only within ar-
bitrarily small groups (coalitions) of players.

Per capita boundedness A pregame satisfies per capita
boundedness if the supremum of the average worth of
any possible group of players (the per capita payoff) is
finite.

Asymptotic negligibility A pregame satisfies asymptotic
negligibility if vanishingly small groups can have only
negligible effects on per capita payoffs.

Market games A market game is a game derived from
a market. Given a market and a group of agents we
can determine the total utility (measured in money)
that the group can achieve using only the endowments
belonging to the group members, thus determining
a game.

Club A club is a group of agents or players that forms for
the purpose of carrying out come activity, such as pro-
viding a local public good.

An economy We use the term ‘economy’ to describe any
economic setting, including economies with clubs,
where the worth of club members may depend on the
characteristics of members of the club, economies with
pure public goods, local public goods (public goods
subject to crowding and/or congestion), economies
with production where what can be produced and the
costs of production may depend on the characteristics
of the individuals involved in production, and so on.
A large economy has many participants.

Price taking equilibrium A price taking equilibrium for
a market is a set of prices, one for each commodity,
and an allocation of commodities to agents so that each
agent can afford his part of the allocation, given the
value of his endowment.

Definition of the Subject

The equivalence of markets and games concerns the rela-
tionship between two sorts of structures that appear fun-
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damentally different – markets and games. Shapley and
Shubik [60] demonstrates that: (1) games derived from
markets with concave utility functions generate totally bal-
anced games where the players in the game are the par-
ticipants in the economy and (2) every totally balanced
game generates a market with concave utility functions.
A particular form of such a market is one where the com-
modities are the participants themselves, a labor market
for example.

But markets are very special structures, more so when
it is required that utility functions be concave. Participants
may also get utility from belonging to groups, such asmar-
riages, or clubs, or productive coalitions. It may be that
participants in an economy even derive utility (or disutil-
ity) from engaging in processes that lead to the eventual
exchange of commodities. The question is when are such
economic structures equivalent to markets with concave
utility functions.

This paper summarizes research showing that a broad
class of large economies generate balanced market games.
The economies include, for example, economies with
clubs where individuals may have memberships in multi-
ple clubs, with indivisible commodities, with nonconvexi-
ties and with non-monotonicities. The main assumption
are: (1) that an option open to any group of players is
to break into smaller groups and realize the sum of the
worths of these groups, that is, essential superadditivity is
satisfied and: (2) relatively small groups of participants can
realize almost all gains to coalition formation.

The equivalence of games with many players and mar-
kets with many participants indicates that relationships
obtained for markets with concave utility functions and
many participants will also hold for diverse social and eco-
nomic situations with many players. These relationships
include: (a) equivalence of the core and the set of compet-
itive outcomes; (b) the Shapley value is contained in the
core or approximate cores; (c) the equal treatment prop-
erty holds – that is, both market equilibrium and the core
treat similar players similarly. These results can be applied
to diverse economic models to obtain the equivalence of
cooperative outcomes and competitive, price taking out-
comes in economies with many participants and indicate
that such results hold in yet more generality.

Introduction

One of the subjects that has long intrigued economists
and game theorists is the relationship between games, both
cooperative and noncooperative, and economies. Semi-
nal works making such relationships include Shubik [67],
Debreu and Scarf [22], Aumann [4], Shapley and Shu-

bik [60,62] and Aumann and Shapley [7], all connecting
outcomes of price-taking behavior in large economies with
cores of games. See also Shapley and Shubik [63] and an
ongoing stream of papers connecting strategic behavior to
market behavior. Our primary concern here, however, is
not with the equivalence of outcomes of solution concepts
for economies, as is Debreu and Scarf [22] or Aumann [6]
for example, but rather with equivalences of the structures
of markets and games. Solution concepts play some role,
however, in establishing these equivalences and in under-
standing the meaning of the equivalence of markets and
games.

In this entry, following Shapley and Shubik [60], we
focus on markets in which utility functions of participants
are quasi-linear, that is, the utility function u of a partici-
pant can be written as u(x; �) D bu(x) C � where x 2 RLC
is a commodity bundle, � 2 R is interpreted as money and
bu is a continuous function. Each participant in an econ-
omy has an endowment of commodities and, without any
substantive loss of generality, it is assumed that no money
is initially endowed. The price of money is assumed equal
to one. A price taking equilibrium for a market then con-
sists of a price vector p 2 RL for the commodities.and
an assignment of commodities to participants such that:
the total amounts of commodities assigned to participants
equals the total amount of commodities with which par-
ticipants are endowed and; given prices, each participant
can afford his assignment of commodities and no partic-
ipant, subject to his budget constraint, can afford a pre-
ferred commodity bundle.

We also treat games with side payments, alternatively
called games with transferable utility or, in brief, TU
games. Such a game consists of a finite set N of players
and a worth function that assigns to each group of play-
ers S � N a real number v(S) 2 RC, called the worth
of the group. In interpretation, v(S) is the total payoff that
a group of players can realize by cooperation. A central
game-theoretic concept for the study of games is the core.
The core consists of those divisions of the maximal total
worth achievable by cooperation among the players in N
so that each group of players is assigned at least its worth.
A game is balanced if it has a nonempty core and totally
balanced if all subgames of the game have nonempty cores.
A subgame of a game is simply a group of players S � N
and the worth function restricted to that group and the
smaller groups that it contains.

Given a market any feasible assignment of commodi-
ties to the economic participants generates a total worth of
each group of participants. The worth of a group of partic-
ipants (viewed as players of a game) is the maximal total
utility achievable by the members of the group by allocat-
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ing the commodities they own among themselves. In this
way a market generates a game – a set of players (the par-
ticipants in the economy) and a worth for each group of
players.

Shapley and Shubik [60] demonstrate that any market
where all participants have concave, monotonic increasing
utility functions generates a totally balanced game and that
any totally balanced game generates a market, thus estab-
lishing an equivalence between a class of markets and to-
tally balanced cooperative games. A particular sort of mar-
ket is canonical; one where each participant in the market
is endowed with one unit of a commodity, his “type”. In-
tuitively, one might think of the market as one where each
participant owns one unit of himself or of his labor.

In the last twenty years or so there has been substantial
interest in broader classes of economies, including those
with indivisibilities, nonmonotonicities, local public goods
or clubs, where the worth of a group depends not only on
the private goods endowed to members of the group but
also on the characteristics of the group members. For ex-
ample, the success of the marriage of a man and a woman
depends on their characteristics and on whether their
characteristics are complementary. Similarly, the output
of a machine and a worker using the machine depends on
the quality and capabilities of the machine and how well
the abilities of the worker fit with the characteristics of the
machine – a concert pianist fits well with an high quality
piano but perhaps not so well with a sewing machine. Or
how well a research team functions depends not only on
the members of the team but also on how well they in-
teract. For simplicity, we shall refer to these economies as
club economies. Such economies can be modeled as coop-
erative games.

In this entry we discuss and summarize literature
showing that economies with many participants are ap-
proximated by markets where all participants have the
same concave utility function and for which the core of
the game is equivalent to the set of price-taking eco-
nomic equilibrium payoffs. The research presented is pri-
marily from Shubik and Wooders [65], Wooders [92]
and earlier papers due to this author. For the most re-
cent results in this line of research we refer the reader to
Wooders [93,94,95]. We also discuss other related works
throughout the course of the entry. Themodels and results
are set in a broader context in the conclusions.

The importance of the equivalence of markets and
games with many players relates to the hypothesis of per-
fect competition, that large numbers of participants leads
to price-taking behavior, or behavior “as if” participants
took prices as given. Von Neumann andMorgenstern per-
ceived that even though individuals are unable to influence

market prices and cannot benefit from strategic behavior
in large markets, large “coalitions” might form. Von Neu-
mann and Morgenstern write:

It is neither certain nor probable that a mere in-
crease in the number of participants might lead in
fine to the conditions of free competition. The clas-
sical definitions of free competition all involve fur-
ther postulates besides this number. E.g., it is clear
that if certain great groups of individuals will – for
any reason whatsoever– act together, then the great
number of participants may not become effective;
the decisive exchanges may take place directly be-
tween large “coalitions”, few in number and not be-
tween individuals, many in number acting indepen-
dently. . . . Any satisfactory theory . . . will have to
explain when such big coalitions will or will not be
formed –i. e., when the large numbers of partici-
pants will become effective and lead to more or less
free competition.

The assumption that small groups of individuals cannot
affect market aggregates, virtually taken for granted by
von Neumann and Morgenstern, lies behind the answer
to the question they pose. The results presented in this en-
try suggest that the great number of participants will be-
come effective and lead to more or less free competition
when small groups of participants cannot significantly af-
fect market outcomes. Since all or almost all gains to col-
lective activities can be captured by relatively small groups,
large groups gain no market power from size; in other
words, large groups are inessential. That large groups are
inessential is equivalent to small group effectiveness [89].
A remarkable feature of the results discussed in this es-
say is they are independent of any particular economic
structure.

Transferable Utility Games;
Some Standard Definitions

Let (N; �) be a pair consisting of a finite set N, called
a player set, and a function v, called a worth function, from
subsets of N to the real numbers R with v(�) D 0. The
pair (N; �) is a TU game (also called a game with side
payments). Nonempty subsets S of N are called groups (of
players) and the number of members of the group S is
given by jSj. Following is a simple example.

Example 1 A glove game: Suppose that we can partition
a player setN into two groups, sayN1 andN2. In interpre-
tation, a member ofN1 is endowedwith a right-hand (RH)
glove and a member of N2 is endowed with a left-hand
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(LH) glove. The worth of a pair of gloves is $1, and thus
the worth of a group of players consisting of player i 2 N1
and player j 2 N2 is $1. The worth of a single glove and
hence of a one-player group is $0. The worth of a group
S � N is given by v(S) D minfjS \ N1j ; jS \ N2jg. The
pair (N; �) is a game.

A payoff vector for a game (N; �) is a vector u 2 RN . We
regard vectors in finite dimensional Euclidean space RT as
functions from T to R, and write ui for the ith component
of u, etc. If S � T and u 2 RT , we shall write uS :D (ui :
i 2 S) for the restriction of u to S. We write 1S for the
element of RS all of whose coordinates are 1 (or simply 1
if no confusion can arise.) A payoff vector u is feasible for
a group S � N if

u(S) defD
X

i2S

ui �
KX

kD1

v(Sk ) (1)

for some partition fS1; : : : ; SKg of S.
Given " � 0, a payoff vector u 2 RN is in the weak

"-core of the game (N; �) if it is feasible and if there is
a group of players N0 � N such that

ˇ
ˇNnN0

ˇ
ˇ

jNj � " (2)

and, for all groups S � N0,

u(S) � v(S) � "jSj (3)

where jSj is the cardinality of the set S. (It would be pos-
sible to use two different values for epsilon in expressions
(2) and (3). For simplicity, we have chosen to take the same
value for epsilon in both expressions.) A payoff vector u is
in the uniform "-core (or simply in the "-core) if if is fea-
sible and if (3) holds for all groups S � N . When " D 0,
then both notions of "-cores will be called simply the core.

Example 1 (continued) The glove game (N; �) described
in Example 1 has the happy feature that the core is always
nonempty. For the game to be of interest, we will suppose
that there is least one player of each type (that is, there is
at least one player with a RH glove and one player with
a LH glove). If jN1j D jN2j any payoff vector assigning the
same share of a dollar to each player with a LH glove and
the remaining share of a dollar to each player with a RH
glove is in the core. If there are more players of one type,
say jN1j > jN2j for specificity, then any payoff vector in
the core assigns $1 to each player of the scarce type; that is,
players with a RH glove each receive 0 while players with
a LH glove each receive $1.

Not all games have nonempty cores, as the following ex-
ample illustrates.

Example 2 (A simple majority game with an empty core)
Let N D f1; 2; 3g and define the function v as follows:

v(S) D
�

0 if jSj D 1 ;
1 otherwise :

It is easy to see that the core of the game is empty. For if
a payoff vector u were in the core, then it must hold that
for any i 2 N; ui � 0 and for any i; j 2 N , ui C u j � 1.
Moreover, feasibility dictates that u1 C u2 C u3 � 1. This
is impossible; thus, the core is empty.

Before leaving this example, let us ask whether it would
be possible to subsidize the players by increasing the payoff
to the total player set N and, by doing so, ensure that the
core of the game with a subsidy is nonempty. We leave it
to the reader to verify that if v(N) were increased to $3/2
(or more), the new game would have a nonempty core.

Let (N; �) be a game and let i; j 2 N . Then players i and j
are substitutes if, for all groups S � N with i; j … S it holds
that

v(S [ fig) D v(S [ f jg) :

Let (N; �) be a game and let u 2 RN be a payoff vector
for the game. If for all players i and j who are substitutes
it holds that ui D u j then u has the equal treatment prop-
erty. Note that if there is a partition ofN into T subsets, say
N1; : : : ;NT , where all players in each subsetNt are substi-
tutes for each other, then we can represent u by a vector
u 2 RT where, for each t, it holds that ut D ui for all
i 2 Nt .

Essential Superadditivity

Wewish to treat gameswhere the worth of a group of play-
ers is independent of the total player set in which it is em-
bedded and an option open to the members of a group
is to partition themselves into smaller groups; that is, we
treat games that are essentially superadditive. This is built
into our the definition of feasibility above, (1). An alter-
native approach, which would still allow us to treat situa-
tions where it is optimal for players to form groups smaller
than the total player set, would be to assume that v is the
“superadditive cover” of some other worth function v0.
Given a not-necessarily-superadditive function v0, for each
group S define v(S) by:

v(S) D max
X

v0(Sk ) (4)
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where the maximum is taken over all partitions fSkg of S;
the function v is the superadditive cover of v0. Then the no-
tion of feasibility requiring that a payoff vector u is feasible
only if

u(N) � v(N) ; (5)

gives an equivalent set of feasible payoff vectors to those
of the game (N; v0) with the definition of feasibility given
by (1).

The following Proposition may be well known and is
easily proven. This result was already well understood in
Gillies [27] and applications have appeared in a number of
papers in the theoretical literature of game theory; see, for
example (for " D 0) Aumann and Dreze [6] and Kaneko
andWooders [33]. It is also well known in club theory and
the theory of economies with many players and local pub-
lic goods.

Proposition 1 Given " � 0, let (N; v0) be a game. A payoff
vector u 2 RN is in the weak, respectively uniform, " -core of
(N; v0) if and only if it is in the weak, respectively uniform,
"-core of the superadditive cover game, say (N; �), where v
is defined by (4).

AMarket

In this section we introduce the definition, from Shapley
and Shubik [60], of a market. Unlike Shapley and Shubik,
however, we do not assume concavity of utility functions.
Amarket is taken to be an economy where all participants
have continuous utility functions over a finite set of com-
modities that are all linear in one commodity, thought of
as an “idealized” money. Money can be consumed in any
amount, possibly negative. For later convenience we will
consider an economy where there is a finite set of types
of participants in the economy and all participants of the
same type have the same endowments and preferences.

Consider an economy with T C 1 types of commodi-
ties. Denote the set of participants by

N D f(t; q) : t D 1; : : : ; T; and q D 1; : : : ; ntg :

Assume that all participants of the same type, (t; q), q D
1; : : : ; nt have the same utility functions given by

but(y; �) D ut(y) C �

where y 2 RTC and � 2 R. Let atq 2 RTC be the en-
dowment of the (t; q)th player of the first T commodities.
The total endowment is given by

P
(t;q)2N atq . For sim-

plicity and without loss of generality, we can assume that
no participant is endowed with any nonzero amount of

the (T C 1)th good, the “money” or medium of exchange.
One might think of utilities as being measured in money.
It is because of the transferability of money that utilities
are called “transferable”.

Remark 1 Instead of assuming that money can be con-
sumed in negative amounts one might assume that en-
dowments of money are sufficiently large so that no equi-
librium allocates any participant a negative amount of
money. For further discussion of transferable utility see,
for example, Bergstrom and Varian [9] or Kaneko and
Wooders [34] .

Given a group S � N , a S-allocation of commodities is a set
8
<

:
(ytq ; � tq) 2 RTC � R :

X

(t;q)2S

ytq �
X

(t;q)2S

atq and
X

(t;q)2S

� tq � 0

9
=

;
;

that is, a S-allocation is a redistribution of the commodi-
ties owned by the members of S among themselves and
monetary transfers adding up to no more than zero.When
S D N , a S-allocation is called simply an allocation.

With the price of the (T C 1)th commodity � set equal
to 1, a competitive outcome is a price vector p in RT , list-
ing prices for the first T commodities, and an allocation
f(ytq ; � tq) 2 RT � R : (t; q) 2 Ng for which

(a) ut(ytq) � p � (ytq � atq) � ut(by) � p � (by � atq)

for allby 2 RTC, (t; q) 2 N ;

(b)
P

(t;q)2N ytq D P
(t;q) a

tq D y ;

(c) � tq D p � (ytq � atq) for all (t; q) 2 N and

(d)
P

(t;q)2N �
tq D 0 :

(6)

Given a competitive outcome with allocation f(ytq ; � tq) 2
RTC � R : (t; q) 2 Ng and price vector p, the competitive
payoff to the (t; q)th participant is u(ytq) � p � (ytq � atq).
A competitive payoff vector is given by

(u(ytq) � p � (ytq � atq) : (t; q) 2 N) :

In the following we will assume that for each t, all par-
ticipants of type t have the same endowment; that is, for
each t, it holds that atq D atq0 for all q; q0 D 1; : : : ; nt . In
this case, every competitive payoff has the equal treatment
property;

ut(ytq) � p � (ytq � atq) D ut(ytq
0

) � p � (ytq0 � atq
0

)
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for all q; q0 and for each t. It follows that a competitive
payoff vector can be represented by a vector in RT with
one component for each player type.

It is easy to generate a game from the data of an econ-
omy. For each group of participants S � N , define

v(S) D max
X

tq2S

ut(ytq ; � tq)

where the maximum is taken over the set of S-allocations.
Let (N; �) denote a game derived from a market.

Under the assumption of concavity of the utility func-
tions of the participants in an economy, Shapley and Shu-
bik [60] show that a competitive outcome for the market
exists and that the competitive payoff vectors are in the
core of the game. (Since [22], such results have been ob-
tained in substantiallymore generalmodels of economies.)

Market-Game Equivalence

To facilitate exposition of the theory of games with many
players and the equivalence of markets and games, we con-
sider games derived from a common underlying structure
and with a fixed number of types of players, where all play-
ers of the same type are substitutes for each other.

Pregames

Let T be a positive integer, to be interpreted as a number of
player types. A profile s D (s1; : : : ; sT ) 2 ZTC, where ZTC is
the T-fold Cartesian product of the non-negative integers
ZC, describes a group of players by the numbers of players
of each type in the group. Given profile s, define the norm
or size of s by

ksk defD
X

t
st ;

simply the total number of players in a group of players
described by s. A subprofile of a profile n 2 ZTC is a profile s
satisfying s � n. A partition of a profile s is a collection of
subprofiles fskg of n, not all necessarily distinct, satisfying
X

k

sk D s :

A partition of a profile is analogous to a partition of a set
except that all members of a partition of a set are distinct.

Let � be a function from the set of profiles ZTC to RC
with � (0) D 0. The value � (s) is interpreted as the total
payoff a group of players with profile s can achieve from
collective activities of the group membership and is called
the worth of the profile s.

Given� , define a worth function ��, called the super-
additive cover of � , by

��(s) defD max
X

k

� (sk) ;

where the maximum is taken over the set of all partitions
fskg of s . The function � is said to be superadditive if the
worth functions � and �� are equal.

We define a pregame as a pair (T; � ) where � : ZTC !
RC. As we will now discuss, a pregame can be used to gen-
erate multiple games. To generate a game from a pregame,
it is only required to specify a total player set N and the
numbers of players of each of T types in the set. Then
the pregame can be used to assign a worth to every group
of players contained in the total player set, thus creating
a game.

A game determined by the pregame (T; � ), which we
will typically call a game or a game with side payments, is
a pair [n; (T; � )] where n is a profile. A subgame of a game
[n; (T; � )] is a pair [s; (T; � )] where s is a subprofile of n.

With any game[n; (T; � )] we can associate a game
(N; �) in the form introduced earlier as follows: Let

N D f(t; q) : t D 1; : : : ; T and q D 1; : : : ; ntg
be a player set for the game. For each subset S � N define
the profile of S, denoted by prof(S)2 ZTC, by its components

prof(S)t
defD ˇ
ˇfS \ f(t0; q) : t0 D t and q D 1; : : : ; ntg

ˇ
ˇ

and define

v(S) defD � (prof(S)) :

Then the pair (N; �) satisfies the usual definition of a game
with side payments. For any S � N , define

v�(S) defD ��(prof(S)) :

The game (N; ��) is the superadditive cover of (N; �).
A payoff vector for a game (N; �) is a vector u 2 RN .

For each nonempty subset S of N define

u(S) defD
X

(t;q)2S

utq :

A payoff vector u is feasible for S if

u(S) � v�(S) D ��(prof(S)) :

If S D N we simply say that the payoff vector u is feasible
if

u(N) � v�(N) D ��(prof(N)) :
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Note that our definition of feasibility is consistent with es-
sential superadditivity; a group can realize at least as large
a total payoff as it can achieve in any partition of the group
and one way to achieve this payoff is by partitioning into
smaller groups.

A payoff vector u satisfies the equal-treatment property
if utq D utq0

for all q; q0 2 f1; : : : ; ntg and for each t D
1; : : : ; T .

Let [n; (T; � )] be a game and let ˇ be a collection of
subprofiles of n. The collection is a balanced collection of
subprofiles of n if there are positive real numbers �s for
s 2 ˇ such that

P

s2ˇ

�s s D n. The numbers �s are called

balancing weights. Given real number " � 0, the game
[n; (T; � )] is "-balanced if for every balanced collection ˇ
of subprofiles of n it holds that

��(n) �
X

s2ˇ

�s (� (s) � "ksk) (7)

where the balancing weights forˇ are given by �s for s 2 ˇ.
This definition extends that of Bondareva [13] and Shap-
ley [56] to games with player types. Roughly, a game is
(") balanced if allowing “part time” groups does not im-
prove the total payoff (by more than " per player). A game
[n; (T; � )] is totally balanced if every subgame [s; (T; � )]
is balanced.

The balanced cover game generated by a game
[n; (T; � )] is a game [n; (T; � b )] where

1. � b (s) D � (s) for all s ¤ n and
2. � b (n) � � (n) and� b(n) is as small as possible consis-

tent with the nonemptiness of the core of [n; (T; � b )].

From the Bondareva–Shapley Theorem it follows that
� b (n) D ��(n) if and only if the game [n; (T; � )] is bal-
anced ("-balanced, with " D 0).

For later convenience, the notion of the balanced cover
of a pregame is introduced. Let (T; � ) be a pregame. For
each profile s, define

� b(s) defD max
ˇ

X

g2ˇ

�g� (g) ; (8)

where the maximum is taken over all balanced collec-
tions ˇ of subprofiles of s with weights �g for g 2 ˇ. The
pair (T; � b ) is called the balanced cover pregame of (T; � ).
Since a partition of a profile is a balanced collection it is
immediately clear that � b (s) � ��(s) for every profile s.

Premarkets

In this section, we introduce the concept of a premarket
and re-state results from Shapley and Shubik [60] in the
context of pregames and premarkets.

Let L C 1 be a number of types of commodities and
let fbut(y; �) : t D 1; : : : ; Tg denote a finite number of
functions, called utility functions, of the form

but(y; �) D ut(y) C � ;

where y 2 RLC and � 2 R. (Such functions, in the lit-
erature of economics, are commonly called quasi-linear).
Let fat 2 RLC : t D 1; : : : ; Tg be interpreted as a set of
endowments. We assume that ut(at) � 0 for each t. For
t D 1; : : : ; T we define ct defD (ut(�); at) as a participant
type and let C D fct : t D 1; : : : ; Tg be the set of par-
ticipant types. Observe that from the data given by C we
can construct a market by specifying a set of participantsN
and a function from N to C assigning endowments and
utility functions – types – to each participant in N. A pre-
market is a pair (T;C).

Let (T;C) be a premarket and let s D (s1; : : : ; sT ) 2
ZTC. We interpret s as representing a group of economic
participants with st participants having utility functions
and endowments given by ct for t D 1; : : : ; T ; for each t,
that is, there are st participants in the group with type ct .
Observe that the data of a premarket gives us sufficient
data to generate a pregame. In particular, given a profile
s D (s1; : : : ; sT ) listing numbers of participants of each
of T types, define

W(s) defD max
X

t
stut(yt)

where the maximum is taken over the set fyt 2 RLC : t D
1; : : : ; T and

P
t st y

t D P
t a

t ytg. Then the pair (T;W)
is a pregame generated by the premarket.

The following Theorem is an extension to premarkets
or a restatement of a result due to Shapley and Shubik [60].

Theorem 1 Let (T;C) be a premarket derived from eco-
nomic data in which all utility functions are concave. Then
the pregame generated by the premarket is totally balanced.

Direct Markets andMarket-Game Equivalence

Shapley and Shubik [60] introduced the notion of a direct
market derived from a totally balanced game. In the direct
market, each player is endowed with one unit of a com-
modity (himself) and all players in the economy have the
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same utility function. In interpretation, we might think of
this as a labor market or as a market for productive factors,
(as in [50], for example) where each player owns one unit
of a commodity. For games with player types as in this es-
say, we take the player types of the game as the commodity
types of a market and assign all players in the market the
same utility function, derived from the worth function of
the game.

Let (T; � ) be a pregame and let [n; (T; � )] be a derived
game. Let N D f(t; q) : t D 1; : : : ; T and q D 1; : : : ; nt
for each tg denote the set of players in the game where all
participants f(t0; q) : q D 1; : : : ; nt0g are of type t0 for each
t0 D 1; : : : ; T . To construct the direct market generated by
a derived game [n; (T; � )], we take the commodity space
as RTC and suppose that each participant in the market of
type t is endowed with one unit of the tth commodity, and
thus has endowment 1t D (0; : : : ; 0; 1; 0; : : : ; 0) 2 RTC
where “1” is in the tth position. The total endowment of
the economy is then given by

P
nt1t D n.

For any vector y 2 RTC define

u(y) defD max
X

s�n
�s� (s) ; (9)

the maximum running over all f�s � 0 : s 2 ZTC; s � ng
satisfying

X

s�n
�s s D y : (10)

As noted by Shapley and Shubik [60], but for our types
case, it can be verified that the function u is concave and
one-homogeneous. This does not depend on the balanced-
ness of the game [n; (T; � )]. Indeed, one may think of u as
the “balanced cover of [n; (T; � )] extended to RTC”. Note
also that u is superadditive, independent of whether the
pregame (T; � ) is superadditive. We leave it to the inter-
ested reader to verify that if � were not necessarily super-
additive and �� is the superadditive cover of � then it
holds that max

P
s�n �s� (s) D max

P
s�n �s�

�(s).
Taking the utility function u as the utility function of

each player (t; q) 2 N where N is now interpreted as the
set of participants in amarket, we have generated amarket,
called the direct market, denoted by [n; u; (T; � )], from
the game [n; (T; � )].

Again, the following extends a result of Shapley and
Shubik [60] to pregames.

Theorem 2 Let [n; u; (T; � )] denote the direct mar-
ket generated by a game [n; (T; � )] and let [n; (T; u)]
denote the game derived from the direct market. Then,
if [n; (T; � )] is a totally balanced game, it holds that
[n; (T; u)] and [n; (T; � )] are identical.

Remark 2 If the game [n; (T; � )] and every subgame
[s; (T; � )] has a nonempty core – that is, if the game is
‘totally balanced’– then the game [n; (T; u)] generated by
the direct market is the initially given game [n; (T; � )].
If however the game [n; (T; � )] is not totally balanced
then u(s) � � (s) for all profiles s � n. But, whether or
not [n; (T; � )] is totally balanced, the game [n; (T; u)] is
totally balanced and coincides with the totally balanced
cover of [n; (T; � )].

Remark 3 Another approach to the equivalence of mar-
kets and games is taken by Garratt and Qin [26], who de-
fine a class of direct lottery markets. While a player can
participate in only one coalition, both ownership of coali-
tions and participation in coalitions is determined ran-
domly. Each player is endowed with one unit of probabil-
ity, his own participation. Players can trade their endow-
ments at market prices. The core of the game is equivalent
to the equilibrium of the direct market lottery.

Equivalence of Markets and Games
withMany Players

The requirement of Shapley and Shubik [60] that utility
functions be concave is restrictive. It rules out, for example
situations such as economies with indivisible commodi-
ties. It also rules out club economies; for a given club struc-
ture of the set of players – in the simplest case, a partition
of the total player set into groups where collective activi-
ties only occur within these groups – it may be that utility
functions are concave over the set of alternatives available
within each club, but utility functions need not be concave
over all possible club structures. This rules out many ex-
amples; we provide a simple one below.

To obtain the result that with many players, games
derived from pregames are market games, we need some
further assumption on pregames. If there are many sub-
stitutes for each player, then the simple condition that
per capita payoffs are bounded – that is, given a pregame
(T; � ), that there exists some constant K such that � (s)

ksk <

K for all profiles s – suffices. If, however, there may be
‘scarce types’, that is, players of some type(s) become neg-
ligible in the population, then a stronger assumption of
‘small group effectiveness’ is required. We discuss these
two conditions in the next section.

Small Group Effectiveness and Per Capita Boundedness

This section discusses conditions limiting gains to group
size and their relationships. This definition was introduced
in Wooders [83], for NTU, as well as TU, games.
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PCB A pregame (T; � ) satisfies per capita boundedness
(PCB) if

PCB : sup
s2ZT

C

� (s)
ksk is finite (11)

or equivalently,

sup
s2ZT

C

��(s)
ksk is finite :

It is known that under the apparently mild conditions
of PCB and essential superadditivity, in general games
with many players of each of a finite number of player
types and a fixed distribution of player types have non-
empty approximate cores; Wooders [81,83]. (Forms of
these assumptions were subsequently also used in Shu-
bik and Wooders [69,70]; Kaneko and Wooders [35];
and Wooders [89,91] among others.) Moreover, under
the same conditions, approximate cores have the prop-
erty that most players of the same type are treated ap-
proximately equally ([81,94]; see also Shubik and Wood-
ers [69]). These results, however, either require some as-
sumption ruling out ‘scarce types’ of players, for example,
situations where there are only a few players of some par-
ticular type and these players can have great effects on to-
tal feasible payoffs. Following are two examples. The first
illustrates that PCB does not control limiting properties of
the per capita payoff function when some player types are
scarce.

Example 3 ([94]) Let T D 2 and let (T; � ) be the pregame
given by

� (s1; s2) D
(
s1 C s2 when s1 > 0
0 otherwise :

The function � obviously satisfies PCB. But there is
a problem in defining lim� (s1; s2)/s1 C s2 as s1 C s2 tends
to infinity, since the limit depends on how it is approached.
Consider the sequence (s�1 ; s

�
2 ) where (s�1 ; s

�
2 ) D (0; �);

then lim� (s�1 ; s
�
2 )/s

�
1 C s�2 D 0. Now suppose in contrast

that (s�1 ; s
�
2 ) D (1; �); then lim� (s�1 ; s

�
2 )/s

�
1 C s�2 D 1. This

illustrates why, to obtain the result that games with many
players are market games either it must be required that
there are no scarce types or some some assumption limit-
ing the effects of scarce types must be made. We return to
this example in the next section.

The next example illustrates that, with only PCB, uniform
approximate cores of games with many players derived
from pregames may be empty.

Example 4 ([94]) Consider a pregame (T; � ) where T D
f1; 2g and � is the superadditive cover of the function � 0
defined by:

� 0(s) defD
� jsj if s1 D 2 ;

0 otherwise :

Thus, if a profiles D (s1; s2) has s1 D 2 then the worth of
the profile according to � 0 is equal to the total number of
players it represents, s1 C s2, while all other profiles s have
worth of zero. In the superadditive cover game the worth
of a profile s is 0 if s1 < 2 and otherwise is equal to s2 plus
the largest even number less than or equal to s1.

Now consider a sequence of profiles (s�)� where s�1 D
3 and s�2 D � for all �. Given " > 0, for all sufficiently
large player sets the uniform "-core is empty. Take, for ex-
ample, " D 1/4. If the uniform "-core were nonempty, it
would have to contain an equal-treatment payoff vector.1

For the purpose of demonstrating a contradiction, suppose
that u� D (u�

1 ; u
�
2 ) represents an equal treatment payoff

vector in the uniform "-core of [s� ; (T; � )]. The following
inequalities must hold:

3u�
1 C �u�

2 � � C 2 ;

2u�
1 C �u�

2 � � C 2; and

u�
1 � 3

4 :

which is impossible. A payoff vector which assigns each
player zero is, however, in the weak "-core for any " >
1

�C3 . But it is not very appealing, in situations such as this,
to ignore a relatively small group of players (in this case,
the players of type 1) who can have a large effect on per
capita payoffs. This leads us to the next concept.

To treat the scarce types problem, Wooders [88,89,90] in-
troduced the condition of small group effectiveness (SGE).
SGE is appealing technically since it resolves the scarce
types problem. It is also economically intuitive and appeal-
ing; the condition defines a class of economies that, when
there are many players, generate competitive markets. In-
formally, SGE dictates that almost all gains to collective
activities can be realized by relatively small groups of play-
ers. Thus, SGE is exactly the sort of assumption required
to ensure that multiple, relatively small coalitions, firms,
jurisdictions, or clubs, for example, are optimal or near-
optimal in large economies.

1It is well known and easily demonstrated that the uniform "-core
of a TU game is nonempty if and only if it contains an equal treatment
payoff vector. This follows from the fact that the uniform "-core is
a convex set.



558 Market Games and Clubs

A pregame (T; � ) satisfies small group effectiveness,
SGE, if:

SGE :

For each real number " > 0;
there is an integer �0(")

such that for each profile s;
for some partition fskg of s with

kskk � �0(") for each subprofile sk , it holds that
��(s) �P

k � (s
k ) � "ksk ;

(12)

given " > 0 there is a group size �0(") such that the
loss from restricting collective activities within groups to
groups containing fewer that �0(") members is at most "
per capita [88].2

SGE also has the desirable feature that if there are no
‘scarce types’ – types of players that appear in vanishingly
small proportions– then SGE and PCB are equivalent.

Theorem 3 ([91] With ‘thickness,’ SGE = PCB) (1) Let
(T; � ) be a pregame satisfying SGE. Then the pregame sat-
isfies PCB.

(2) Let (T; � ) be a pregame satisfying PCB. Then
given any positive real number �, construct a new pregame
(T; ��) where the domain of �� is restricted to profiles s
where, for each t D 1; : : : ; T, either stksk > � or st D 0.
Then (T; ��) satisfies SGE on its domain.

It can also be shown that small groups are effective for the
attainment of nearly all feasible outcomes, as in the above
definition, if and only if small groups are effective for im-
provement – any payoff vector that can be significantly im-
proved upon can be improved upon by a small group (see
Proposition 3.8 in [89]).

Remark 4 Under a stronger condition of strict small
group effectiveness, which dictates that �(") in the defini-
tion of small group effectiveness can be chosen indepen-
dently of ", stronger results can be obtained than those
presented in this section and the next. We refer to Win-
ter andWooders [80] for a treatment of this case.

Remark 5 (On the importance of taking into account scarce
types) Recall the quotation from von Neumann andMor-
genstern and the discussion following the quotation. The
assumption of per capita boundedness has significant con-
sequences but is quite innocuous – ruling out the possi-
bility of average utilities becoming infinite as economies
grow large does not seem restrictive. But with only per
capita boundedness, even the formation of small coali-
tions can have significant impacts on aggregate outcomes.

2Exactly the same definition applies to situations with a compact
metric space of player types, c.f. Wooders [84,88].

With small group effectiveness, however, there is no prob-
lem of either large or small coalitions acting together –
large coalitions cannot do significantly better then rela-
tively small coalitions.

Roughly, the property of large games we next intro-
duce is that relatively small groups of players make only
“asymptotic negligible” contributions to per-capita payoffs
of large groups. A pregame (˝;� ) satisfies asymptotic neg-
ligibility if, for any sequence of profiles f f �g where

k f �k ! 1 as � ! 1;

�( f �) D �( f �0) for all � and �0 and

lim�!1 � �( f � )
k f �k exists ;

(13)

then for any sequence of profiles f`�g with

lim
�!1

k`�k
k f �k D 0 ; (14)

it holds that

lim�!1 � �k f �C`�k
k f �C`�k exists, and

lim�!1 � �k f �C`�k
k f �C`�k D lim�!1 � �( f � )

k f �k :
(15)

Theorem 4 ([89,95]) A pregame (T; � ) satisfies SGE if
and only if it satisfies PCB and asymptotic negligibility

Intuitively, asymptotic negligibility ensures that vanish-
ingly small percentages of players have vanishingly small
effects on aggregate per-capita worths. It may seem para-
doxical that SGE, which highlights the importance of rela-
tively small groups, is equivalent to asymptotic negligibil-
ity. To gain some intuition, however, think of a marriage
model where only two-person marriages are allowed. Ob-
viously two-person groups are (strictly) effective, but also,
in large player sets, no two persons can have a substantial
affect on aggregate per-capita payoffs.

Remark 6 Without some assumptions ensuring essential
superadditivity, at least as incorporated into our definition
of feasibility, nonemptiness of approximate cores of large
games cannot be expected; superadditivity assumptions
(or the close relative, essential superadditivity) are heavily
relied upon in all papers on large games cited. In the con-
text of economies, superadditivity is a sort of monotonicity
of preferences or production functions assumption, that is,
superadditivity of � implies that for all s; s0 2 ZTC, it holds
that � (s C s0) � � (s) C � (s0). Our assumption of small
group effectiveness, SGE, admits non-monotonicities. For
example, suppose that ‘two is company, three or more is
a crowd,’ by supposing there is only one commodity and
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by setting � (2) D 2, � (n) D 0 for n ¤ 2. The reader can
verify, however, that this example satisfies small group ef-
fectiveness since��(n) D n if n is even and��(n) D n�1
otherwise. Within the context of pregames, requiring the
superadditive cover payoff to be approximately realizable
by partitions of the total player set into relatively small
groups is the weakest form of superadditivity required for
the equivalence of games with many players and concave
markets.

Derivation of Markets from Pregames Satisfying SGE

With SGE and PCB in hand, we can now derive a premar-
ket from a pregame and relate these concepts.

To construct a limiting direct premarket from
a pregame, we first define an appropriate utility function.
Let (T; � ) be a pregame satisfying SGE. For each vector x
in RTC define

U(x) defD kxk lim
�!1

��( f �)
k f �k (16)

where the sequence f f �g satisfies

lim�!1 f �

k f �k D x
kxk

and

k f �k ! 1 :

(17)

Theorem 5 ([84,91]) Assume the pregame (T; � ) satis-
fies small group effectiveness. Then for any x 2 RTC the
limit (16) exists. Moreover, U(�) is well-defined, concave
and 1-homogeneous and the convergence is uniform in the
sense that, given " > 0 there is an integer � such that for all
profiles s with ksk � � it holds that

ˇ
ˇ
ˇ
ˇU
�

s
ksk

�

� ��(s)
ksk

ˇ
ˇ
ˇ
ˇ � " :

From Wooders [91] (Theorem 4), if arbitrarily small per-
centages of players of any type that appears in games gen-
erated by the pregame are ruled out, then the above result
holds under per capita boundedness [91] (Theorem 6). As
noted in the introduction to this paper, for the TU case, the
concavity of the limiting utility function, for the model of
Wooders [83] was first noted by Aumann [5]. The concav-
ity is shown to hold with a compact metric space of player
types in Wooders [84] and is simplified to the finite types
case in Wooders [91].

Theorem 5 follows from the facts that the functionU is
superadditive and 1-homogeneous on its domain. Since U

is concave, it is continuous on the interior of its do-
main; this follows from PCB. Small group effectiveness en-
sures that the function U is continuous on its entire do-
main [91](Lemma 2).

Theorem 6 ([91]) Let (T; � ) be a pregame satisfying small
group effectiveness and let (T;U) denote the derived direct
market pregame. Then (T;U) is a totally balanced market
game. Moreover, U is one-homogeneous, that is, U(�x) D
�U(x) for any non-negative real number �.

In interpretation, T denotes a number of types of play-
ers/commodities and U denotes a utility function on RTC.
Observe that when U is restricted to profiles (in ZTC), the
pair (T;U) is a pregame with the property that every game
[n; (T;U)] has a nonempty core; thus, we will call (T;U)
the premarket generated by the pregame (T; � ). That every
game derived from (T;U) has a nonempty core is a conse-
quence of the Shapley and Shubik [60] result that market
games derived frommarkets with concave utility functions
are totally balanced.

It is interesting to note that, as discussed in Wooders
(Section 6 in [91]), if we restrict the number of commodi-
ties to equal the number of player types, then the utility
function U is uniquely determined. (If one allowed more
commodities then one would effectively have ‘redundant
assets’.) In contrast, for games and markets of fixed, finite
size, as demonstrated in Shapley and Shubik [62], even if
we restrict the number of commodities to equal the num-
ber of player types, given any nonempty, compact, convex
subset of payoff vectors in the core, it is possible to con-
struct utility functions so that this subset coincides with
the set of competitive payoffs. Thus, in the Shapley and
Shubik approach, equivalence of the core and the set of
price-taking competitive outcomes for the direct market is
only an artifact of the method used there of constructing
utility functions from the data of a game and is quite dis-
tinct from the equivalence of the core and the set of com-
petitive payoff vectors as it is usually understood (that is,
in the sense of Debreu and Scarf [22] and Aumann [4]. See
also Kalai and Zemel [31,32] which characterize the core
in multi-commodity flow games.

Cores and Approximate Cores

The concept of the core clearly was important in the work
of Shapley and Shubik [59,60,62] and is also important for
the equivalence of games with many players and market
games. Thus, we discuss the related results of nonempti-
ness of approximate cores and convergence of approxi-
mate cores to the core of the ‘limit’ – the game where all
players have utility functions derived from a pregame and
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large numbers of players. First, some terminology is re-
quired. A vector p is a subgradient at x of the concave
function U if U(y) � U(x) � p � (y � x) for all y. One
might think of a subgradient as a bounding hyperplane.
To avoid any confusion it might be helpful to note that,
as Mas-Colell [46] remarks: “ Strictly speaking, one should
use the term subgradient for convex functions and super-
gradient for concave. But this is cumbersome”, (p. 29–30
in [46]).

For ease of notation, equal-treatment payoff vectors
for a game [n; (T; � )] will typically be represented as vec-
tors in RT . An equal-treatment payoff vector, or simply
a payoff vector when the meaning is clear, is a point x in
RT . The tth component of x, xt , is interpreted as the pay-
off to each player of type t. The feasibility of an equal-treat-
ment payoff vector x 2 RT for the game [n; (T; � )] can be
expressed as:

��(n) � x � n :
Let [n; (T; � )] be a game determined by a pregame

(T; � ), let " be a non-negative real number, and let x 2
RT be a (equal-treatment) payoff vector. Then x is in
the equal-treatment "-core of [n; (T; � )] or simply “in
the "-core” when the meaning is clear, if x is feasible for
[n; (T; � )] and

� (s) � x � s C "ksk for all subprofiles s of n :

Thus, the equal-treatment "-core is the set

C(n; ") defD fx 2 RTC : ��(n) � x � n and

� (s) � x � s C "ksk for all subprofiles s of ng :
(18)

It is well known that the "-core of a game with transfer-
able utility is nonempty if and only if the equal-treatment
"-core is nonempty.

Continuing with the notation above, for any s 2 RTC,
let ˘ (s) denote the set of subgradients to the function U
at the point s;

˘ (s) defD f
 2 RT : 
 � s D U(s) and 
 � s0 � U(s0)
for all s0 2 RTCg : (19)

The elements in ˘ (s) can be interpreted as equal-treat-
ment core payoffs to a limiting game with the mass of
players of type t given by st. The core payoff to a player is
simply the value of the one unit of a commodity (himself
and all his attributes, including endowments of resources)
that he owns in the direct market generated by a game.
Thus˘ (�) is called the limiting core correspondence for the

pregame (T; � ): Of course ˘ (�) is also the limiting core
correspondence for the pregame (T;U).

Let b̆(n)� RT denote equal-treatment core of the
market game [n; (T; u)]:

b̆(n) defD f
 2 RT : 
 � n D u(n)

and 
 � s � u(s) for all s 2 ZTC, s � ng : (20)

Given any player profile n and derived games
[n; (T; � )] and [n; (T;U)] it is interesting to observe the
distinction between the equal-treatment core of the game
[n; (T;U)], denoted by b̆(n); defined by (20), and the
set ˘ (n) (that is, ˘ (x) with x D n). The definitions of
˘ (n) and b̆(n) are the same except that the qualification
“s � n” in the definition of b̆(n) does not appear in the
definition of ˘ (n). Since ˘ (n) is the limiting core cor-
respondence, it takes into account arbitrarily large coali-
tions. For this reason, for any x 2 ˘ (n) andbx 2 b̆(n) it
holds that x � n �bx � n. A simple example may be informa-
tive.

Example 5 Let (T; � ) be a pregame where T D 1 and
� (n) D n � 1

n for each n 2 ZC, and let [n; (T; � )] be
a derived game. Then ˘ (n) D f1g while b̆(n) D f(1 �
1
n2 )g.
The following Theorem extends a result due to Shapley
and Shubik [62] stated for games derived from pregames.

Theorem 7 ([62]) Let [n; (T; � )] be a game derived from
a pregame and let [n; u; (T; � )] be the direct market gen-
erated by [n; (T; � )]. Then the equal-treatment core b̆(n)
of the game [n; (T; u)] is nonempty and coincides with
the set of competitive price vectors for the direct market
[n; u; (T; � )].

Remark 7 Let (T; � ) be a pregame satisfying PCB. In
the development of the theory of large games as models
of competitive economies, the following function on the
space of profiles plays an important role:

lim
r!1

��(r f )
r

;

see, for example, Wooders [81] and Shubik and Wood-
ers [69]. For the purposes of comparison, we introduce an-
other definition of a limiting utility function. For each vec-
tor x inRTC with rational components let r(x) be the small-
est integer such that r(x)x is a vector of integers. There-
fore, for each rational vector x; we can define

Û(x) defD lim
�!1

��(�r(x)x)
�r(x)

:
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Since �� is superadditive and satisfies per capita bound-
edness, the above limit exists and Û(�) is well-defined.
Also, Û(x) has a continuous extension to any closed sub-
set strictly in the interior of RTC: The function Û(x); how-
ever, may be discontinuous at the boundaries of RTC. For
example, suppose that T D 2 and

��(k; n) D
(
k C n when k > 0
0 otherwise :

The function �� obviously satisfies PCB but does not
satisfy SGE. To see the continuity problem, consider
the sequences fx�g and fy�g of vectors in R2C where
x� D ( 1

�
; ��1

�
) and y� D (0; �). Then lim�!1 x� D

lim�!1 y� D (0; 1) but lim�!1 Û(x�) D 1 while
lim�!1 Û(y�) D 0. SGE is precisely the condition re-
quired to avoid this sort of discontinuity, ensuring that the
function U is continuous on the boundaries of RTC.

Before turning to the next section, let us provide some
additional interpretation for b̆(n). Suppose a game
[n; (T; � )] is one generated by an economy, as in Shap-
ley and Shubik [59] or Owen [50], for example. Players of
different types may have different endowments of private
goods. An element 
 in b̆(n) is an equal-treatment payoff
vector in the core of the balanced cover game generated
by [n; (T; � )] and can be interpreted as listing prices for
player types where 
t is the price of a player of type t; this
price is a price for the player himself, including his en-
dowment of private goods.

Nonemptiness and Convergence
of Approximate Cores of Large Games

The next Proposition is an immediate consequence of
the convergence of games to markets shown in Wood-
ers [89,91] and can also be obtained as a consequence of
Theorem 5 above.

Proposition 2 (Nonemptiness of approximate cores)
Let (T; � ) be a pregame satisfying SGE. Let " be a posi-
tive real number. Then there is an integer �1(") such that
any game [n; (T; � )] with knk � �1(") has a nonempty
uniform "-core.

(Note that no assumption of superadditivity is required
but only because our definition of feasibility is equivalent
to feasibility for superadditive covers.)

The following result was stated in Wooders [89]. For
more recent results see Wooders [94].

Theorem 8 ([89] Uniform closeness of (equal-treat-
ment) approximate cores to the core of the limit game)
Let (T; � ) be a pregame satisfying SGE and let ˘ (�) be
as defined above. Let ı > 0 and � > 0 be positive real
numbers. Then there is a real number "� with 0 < "�
and an integer �0(ı; �; "�) with the following property: for
each positive " 2 (0; "�] and each game [ f ; (T; � )] with
k f k > �0(ı; �; "�) and ft/k f k � � for each t D 1; : : : , T,
if C( f ; ") is nonempty then both

dist[C( f ; ");˘ ( f )] < ı and dist[C( f ; "); b̆( f )] < ı ;

where ‘dist’ is the Hausdorff distance with respect to the sum
norm on RT .

Note that this result applies to games derived from diverse
economies, including economies with indivisibilities, non-
monotonicities, local public goods, clubs, and so on.

Theorem 8 motivates the question of whether approx-
imate cores of games derived from pregames satisfying
small group effectiveness treat players most of the same
type nearly equally. The following result, from Wood-
ers [81,89,93] answers this question.

Theorem 9 Let (T; � ) be a pregame satisfying SGE. Then
given any real numbers � > 0 and � > 0 there is a positive
real number "� and an integer � such that for each " 2 [0,
"�] and for every profile n 2 ZTC with knk1 > �, if x 2 RN

is in the uniform "-core of the game [n; � ] with player set

N D f(t; q) : t D 1; : : : ; T
and, for each t; q D 1; : : : ; ntg

then, for each t 2 f1; : : : ; Tg with ntknk1 � 

2 it holds that

jf(t; q) : jxtq � zt j > �gj < �ntg ;
where, for each t D 1; : : : ; T,

zt D 1
nt

ntX

qD1

xtq ;

the average payoff received by players of type t.

Shapley Values of GameswithMany Players

Let (N; �) be a game. The Shapley value of a superadditive
game is the payoff vector whose ith component is given by

SH(v; i)

D 1
jNj

jNj�1X

JD0

1
�jNj � 1

J

�
X

S	Nnfig
jSjDJ

�
v(S [ fig) � v(S)

�
:
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To state the next Theorem, we require one additional
definition. Let (T; � ) be a pregame. The pregame satisfies
boundedness of marginal contributions (BMC) if there is
a constantM such that

j� (s C 1t) � � (s)j � M

for all vectors 1t D (0; : : : ; 0; 1t th place; 0; : : : 0) for each
t D 1; : : : ; T . Informally, this condition bounds marginal
contributions while SGE bounds average contributions.
That BMC implies SGE is shown inWooders [89]. The fol-
lowing result restricts the main Theorem of Wooders and
Zame [96] to the case of a finite number of types of players.

Theorem 10 ([96]) Let (T; � ) be a superadditive pregame
satisfying boundedness of marginal contributions. For each
" > 0 there is a number ı(") > 0 and an integer �(") with
the following property:

If [n; (T; � )] is a game derived from the pregame, for
which nt > �(") for each t, then the Shapley value of
the game is in the (weak) "-core.

Similar results hold within the context of private goods
exchange economies (cf., Shapley [55], Shapley and Shu-
bik [60], Champsaur [17], Mas-Colell [43], Cheng [18]
and others). Some of these results are for economies with-
out money but all treat private goods exchange economies
with divisible goods and concave, monotone utility func-
tions. Moreover, they all treat either replicated sequences
of economies or convergent sequences of economies. That
games satisfying SGE are asymptotically equivalent to bal-
ancedmarket games clarifies the contribution of the above
result. In the context of the prior results developed in this
paper, the major shortcoming of the Theorem is that it re-
quires BMC. This author conjectures that the above result,
or a close analogue, could be obtained with themilder con-
dition of SGE, but this has not been demonstrated.

Economieswith Clubs

By a club economy we mean an economy where partic-
ipants in the economy form groups – called clubs – for
the purposes of collective consumption and/or production
collectively with the groupmembers. The groups may pos-
sibly overlap. A club structure of the participants in the
economy is a covering of the set of players by clubs. Pro-
viding utility functions are quasi-linear, such an economy
generates a game of the sort discussed in this essay. The
worth of a group of players is the maximum total worth
that the group can achieve by forming clubs. The most
general model of clubs in the literature at this point is Al-
louch and Wooders [1]. Yet, if one were to assume that

utility functions were all quasi-linear and the set of possi-
ble types of participants were finite. the results of this pa-
per would apply.

In the simplest case, the utility of an individual de-
pends on the club profile (the numbers of participants of
each type) in his club. The total worth of a group of players
is the maximum that it can achieve by splitting into clubs.
The results presented in this section immediately apply.
When there are many participants, club economies can be
represented as markets and the competitive payoff vectors
for the market are approximated by equal-treatment pay-
off vectors in approximate cores. Approximate cores con-
verge to equal treatment and competitive equilibrium pay-
offs. A more general model making these points is treated
in Shubik and Wooders [65]. For recent reviews of the lit-
erature, see Conley and Smith [19] and Kovalenkov and
Wooders [38].3

Coalition production economies may also be viewed
as club economies. We refer the reader to Böhm [12], Son-
dermann [73], Shubik and Wooders [70], and for a more
recent treatment and further references, Sun, Trockel and
Yang [74]).

Let us conclude this section with some historical notes.
Club economies came to the attention of the economics
profession with the publication of Buchanan [14]. The au-
thor pointed out that people care about the numbers of
other people with whom they share facilities such as swim-
ming pool clubs. Thus, there may be congestion, lead-
ing people to form multiple clubs. Interestingly, much of
the recent literature on club economies with many par-
ticipants and their competitive properties has roots in an
older paper, Tiebout [77]. Tiebout conjectured that if pub-
lic goods are ‘local’ – that is, subject to exclusion and pos-
sibly congestion – then large economies are ‘market-like’.
A first paper treating club economies with many partici-
pants was Pauly [51], who showed that, when all players
have the same preferred club size, then the core of econ-
omy is nonempty if and only if all participants in the econ-
omy can be partitioned into groups of the preferred size.
Wooders [82] modeled a club economy as one with lo-
cal public goods and demonstrated that, when individuals
within a club (jurisdiction) are required to pay the same
share of the costs of public good provision, then outcomes
in the core permit heterogeneous clubs if and only if all
types of participants in the same club have the same de-
mands for local public goods and for congestion. Since

3Other approaches to economies with clubs/local public goods in-
clude Casella and Feinstein [15], Demange [23], Haimanko, O., M. Le
Breton and S. Weber [28], and Konishi, Le Breton and Weber [37].
Recent research has treated clubs as networks.
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these early results, the literature on clubs has grown sub-
stantially.

With a Continuumof Players

Since Aumann [4] much work has been done on econo-
mies with a continuum of players. It is natural to question
whether the asymptotic equivalence of markets and games
reported in this article holds in a continuum setting. Some
such results have been obtained.

First, let N D [01] be the 0,1 interval with Lesbegue
measure and suppose there is a partition of N into a finite
set of subsets N1, . . . , NT where, in interpretation, a point
in Nt represents a player of type t. Let� be given. Observe
that � determines a payoff for any finite group of players,
depending on the numbers of players of each type. If we
can aggregate partitions of the total player set into finite
coalitions then we have defined a game with a continuum
of players and finite coalitions.

For a partition of the continuum into finite groups to
‘make sense’ economically, it must preserve the relative
scarcities given by the measure. This was done in Kaneko
andWooders [35]. To illustrate their idea of measurement
consistent partitions of the continuum into finite groups,
think of a census form that requires each three-person
household to label the players in the household, #1, #2,
or #3. When checking the consistency of its figures, the
census taker would expect the numbers of people labeled
#1 in three-person households to equal the numbers la-
beled #2 and #3. For consistency, the census taker may
also check that the number of first persons in three-person
households in a particular region is equal to the number of
second persons and third persons in three person house-
holds in that region. It is simple arithmetic. This consis-
tency should also hold for k-person households for any k.
Measurement consistency is the same idea with the work
“number” replaced by “proportion” or “measure”.

One can immediately apply results reported above to
the special case of TU games of Kaneko–Wooders [35] and
conclude that games satisfying small group effectiveness
and with a continuum of players have nonempty cores and
that the payoff function for the game is one-homogeneous.
(We note that there have been a number of papers inves-
tigating cores of games with a continuum of players that
have came to the conclusion that non-emptiness of exact
cores does not hold, even with balancedness assumptions,
cf., Weber [78,79]). The results of Wooders [91], show
that the continuum economymust be representable by one
where all players have the same concave, continuous one-
homogeneous utility functions. Market games with a con-
tinuum of players and a finite set of types are also investi-

gated in Azriel and Lehrer [3], who confirm these conclu-
sions.)

Other Related Concepts and Results

In an unpublished 1972 paper due to Edward Zajac [97],
which has motivated a large amount of literature on ‘sub-
sidy-free pricing’, cost sharing, and related concepts, the
author writes:

“A fundamental idea of equity in pricing is that ‘no
consumer group should pay higher prices than it
would pay by itself. . . ’. If a particular group is pay-
ing a higher price than it would pay if it were sev-
ered from the total consumer population, the group
feels that it is subsidizing the total population and
demands a price reduction”.

The “dual” of the cost allocation problem is the prob-
lem of surplus sharing and subsidy-free pricing.4 Tau-
man [75] provides a excellent survey. Some recent works
treating cost allocation and subsidy free-pricing include
Moulin [47,48]. See also the recent notion of “Walras’
core” in Qin, Shapley and Shimomura [52].

Another related area of research has been into whether
games with many players satisfy some notion of the Law
of Demand of consumer theory (or the Law of Supply of
producer theory). Since games with many players resem-
ble market games, which have the property that an in-
crease in the endowment of a commodity leads to a de-
crease in its price, such a result should be expected. Indeed,
for games with many players, a Law of Scarcity holds – if
the numbers of players of a particular type is increased,
then core payoffs to players of that type do not increase
and may decrease. (This result was observed by Scotchmer
and Wooders [54]). See Kovalenkov and Wooders [38,41]
for the most recent version of such results and a discussion
of the literature. Laws of scarcity in economies with clubs
are examined in Cartwright, Conley andWooders [16].

Some Remarks onMarkets
andMore General Classes of Economies

Forms of the equivalence of outcomes of economies where
individuals have concave utility functions but not neces-
sarily linear in money. These include Billera [10], Billera
and Bixby [11] and Mas-Colell [42]. A natural question is
whether the results reported in this paper can extend to
nontransferable utility games and economies where indi-
viduals have utility functions that are not necessarily liner

4See, for example Moulin [47,48] for excellent discussions of these
two problems.
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in money. So far the results obtained are not entirely satis-
factory. Nonemptiness of approximate cores of gameswith
many players, however, holds in substantial generality; see
Kovalenkov andWooders [40] andWooders [95].

Conclusions and Future Directions

The results of Shapley and Shubik [60], showing equiva-
lence of structures, rather than equivalence of outcomes of
solution concepts in a fixed structure (as in [4], for exam-
ple) are remarkable. So far, this line of research has been
relatively little explored. The results for games with many
players have also not been fully explored, except for in the
context of games, such as those derived from economies
with clubs, and with utility functions that are linear in
money.

Per capita boundedness seems to be about the mildest
condition that one can impose on an economic structure
and still have scarcity of per capita resources in economies
with many participants. In economies with quasi-linear
utilities (and here, I mean economies in a general sense,
as in the glossary) satisfying per capita boundedness and
where there are many substitutes for each type of par-
ticipant, then as the number of participants grows, these
economies resemble or (as if they) are market economies
where individuals have continuous, and monotonic in-
creasing utility functions. Large groups cannot influence
outcomes away from outcomes in the core (and out-
comes of free competition) since large groups are not sig-
nificantly more effective than many small groups (from
the equivalence, when each player has many close sub-
stitutes, between per capita boundedness and small group
effectiveness).

But if there are not many substitutes for each partic-
ipant, then, as we have seen, per capita boundedness al-
lows small groups of participants to have large effects and
free competition need not prevail (cores may be empty and
price-taking equilibriummay not exist). The condition re-
quired to ensure free competition in economies withmany
participants, without assumptions of “thickness”, is pre-
cisely small group effectiveness.

But the most complete results relating markets and
games, outlined in this paper, deal with economies in
which all participants have utility functions that are lin-
ear in money and in games with side payments, where the
worth of a group can be divided in any way among the
members of the group without any loss of total utility or
worth. Nonemptiness of approximate cores of large games
without side payments has been demonstrated; seeWood-
ers [83,95] and Kovalenkov and Wooders [40]. Moreover,
it has been shown that when side payments are ‘limited’

then approximate cores of games without side payments
treat similar players similarly [39].

Results for specific economic structures, relating cores
to price taking equilibrium treat can treat situations that
are, in some respects, more general. A substantial body
of literature shows that certain classes of club economies
have nonempty cores and also investigates price-taking
equilibrium in these situations. Fundamental results are
provided by Gale and Shapley [25], Shapley and Shu-
bik [61], and Crawford and Kelso [21] and many more
recent papers. We refer the reader to Roth and So-
tomayor [53] and to � Two-Sided Matching Models, by
Ömer and Sotomayor in this encyclopedia. A special fea-
ture of themodels of these papers is that there are two sorts
of players or two sides to the market; examples are (1) men
and women, (2) workers and firms, (3) interns and hospi-
tals and so on.

Going beyond two-sided markets to clubs in gen-
eral, however, one observes that the positive results on
nonemptiness of cores and existence of price-taking equi-
libria only holds under restrictive conditions. A number of
recent contributions however, provide specific economic
models for which, when there are many participants in the
economy, as in exchange economies it holds that price-
taking equilibrium exists, cores are non-empty, and the set
of outcomes of price-taking equilibrium are equivalent to
the core. (see, for example, [1,2,24,85,92]).
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Glossary

Ask price Price at which a trader is willing to sell an asset.
The most competitive ask price in a financial market
or best ask is the lowest price offered by a seller.

Bid price Price at which a trader is willing to buy an asset.
The most competitive bid price or best bid in a finan-
cial market is the highest price offered by a buyer.

Limit order Orders placed bymarket participants contin-
gent upon the realization of a certain price in the mar-
ket. In other words, traders will identify a maximumor
minimum price at which they are willing to buy or sell
a specific quantity of a particular asset.

Market order Order to buy or sell a particular asset im-
mediately at current market prices.

Market structure The way in which trade occurs within
a particular market. Institutions have constructed id-
iosyncratic guidelines to dictate how transactions can
take place, so generalizing one trading structure to
model all markets is quite difficult, if impossible.

Order flow is the cumulative flow of signed transactions
over a time period, where each transaction is signed
positively or negatively depending on whether the ini-
tiator of the transaction (the non-quoting counter-
party) is buying or selling, respectively. By definition,
in any market, the quantity purchased of an asset
equals the quantity sold of the same asset. The key is

1The concepts in this paper in this paper are solely the responsi-
bility of the authors and should not be interpreted as reflecting the
views of the Board of Governors of the Federal Reserve System or of
any other person associated with the Federal Reserve System.

to sign the transaction volume from the perspective of
the initiator of the transaction.

Bid-ask spread The difference between the highest bid
price and the lowest ask price. This difference, or
spread, constitutes part of the cost of trading.

Definition of the Subject

Market microstructure is a field of study in economics
that examines the way in which assets are traded and
priced under different trading mechanisms, e. g., single-
price call auction, dealer markets, limit-order book mar-
kets, hybrid markets, etc., and under different trading en-
vironments, e. g., perfect information environments (com-
plete markets) compared to asymmetric information en-
vironments (incomplete markets). While much of eco-
nomics abstracts from the market structure and market
frictions the microstructure literature specializes in un-
derstanding them and the effects they may have on asset
prices and quantities traded. Even though economic theo-
rists assume a frictionless economy to prove powerful the-
orems about the efficiency of a decentralized market sys-
tem, the market structure and market frictions can be very
important. Ignoring them may lead researchers and pol-
icy makers to wrong conclusions. For example, in a Wal-
rasian world with perfect information and no transaction
costs, prices efficiently aggregate information when trad-
ing is organized as a single-price call auction with large
numbers of traders. However, most securities markets are
not single-price call auctions as several studies show that
this trading mechanism may be optimal when uncertainty
about the fundamental value of the asset is high, but it
is not optimal at other times. Furthermore, in the 1970’s
the economics of information literature argued that al-
lowing for imperfect information could overturn the cen-
tral implication of the complete-markets model, that com-
petitive, decentralizedmarkets yield economically efficient
results.

Market Structures

A large part of the market microstructure field consists of
developing models to describe the behavior of individuals
acting according to the guidelines of various trading insti-
tutions, and to study how trading quantities and prices in
variousmarkets arise given a particular set of assumptions.
Thus, we start with a short description of the common
market structures. It is outside the scope of this article to
detail the myriad rules that govern various financial mar-
kets. It is also counter-productive because trading systems
are in a continuous process of structural changes gener-
ated by research, competition, and technological innova-
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tions. Insteadwe present a general outline of the guidelines
that dictate the way in which assets trade and the effects
these rules may have on asset prices and quantities traded.

Auctions

Auctions are order-driven trading mechanism, i. e., in-
vestors submit their orders before observing the transac-
tion price. In contrast, investors in a quote-driven trad-
ing mechanism obtain firm price quotations from dealers
prior to order submission (these price quotations usually
depend on the size of the order). Auctions can be continu-
ous or periodic. An example of a continuous auction is the
automated limit order book, which consists of a sequence
of bilateral transactions at possibly different prices (we de-
scribe limit-order books inmore detail below). In contrast,
a periodic or call auction is characterized by multilateral
transactions. Periodic or batch systems, such as the single-
price call auction, are used to set opening prices in sev-
eral exchanges, e. g., NYSE, Tokyo Stock Exchange, etc.
In these markets limit orders and market-on-open orders
are collected overnight. At the beginning of the trading
day the specialist chooses the price that enables the largest
number of orders to be executed. Stock exchanges use call
auctions to fix opening prices because uncertainty about
fundamentals is larger at the opening than during regu-
lar trading hours. Indeed, Madhavan [36] provides a the-
oretical argument for batch markets as a way to reduce
market failures caused by information asymmetries. An-
other example of a periodic auction market is the primary
market for US Treasury securities. These securities are
sold through sealed-bid single-price auctions at pre-deter-
mined dates announced by the US Treasury Department
(before November 1998 the Treasury auctioned securities
through multiple-price or discriminatory auctions).

Limit Order Markets

Limit order books are the most widespread conduit to fa-
cilitate trade in financial markets; at least one limit order
book exists in most continuous (liquid) security markets
(see p. 10 in [29]). In such markets, traders submit their
bid and ask orders, and the order book(s) process these or-
ders, comparing them to already existing orders to estab-
lish whether any matches can be made. These pre-existing,
unfilled limit orders comprise the limit order book. Vari-
ous rules dictate how andwhen limit orders are acted upon
Parlour and Seppi [42]. Generally price and then time de-
termine priority of execution. For instance, a limit order
to sell an asset for $50 will take precedence over an order
to sell at $52. If two limit orders are priced the same, then
the first limit order submitted is the first order executed.

Sometimes tradersmay request the execution of amar-
ket order; this order is immediately executed at the best
price available. A problem can arise if the quantity desig-
nated in the market order is larger than the quantity avail-
able at the best price available on the limit book. Differ-
ent exchanges have different rules to deal with the left-
over quantity. In the NYSE, the excess quantity “walks
the book”, meaning that the market order achieves par-
tial executions at progressively worse prices until the or-
der is filled. This process results in the partial execution of
market orders at less than desirable prices for the order-
issuing trader. In contrast, in the Euronext system and the
Paris Bourse, if the quantity in the market order exceeds
the quantity at the best price, the unfilled part of the mar-
ket order is transformed into a limit order, requesting ex-
ecution on the remaining quantity at the same execution
price.

Various other rules regarding the execution of limit or-
ders exist. For example, traders can post orders with an
expiration time, i. e., the limit order is canceled if it is not
executed within a given time frame. This prevents limit or-
ders to be “picked off” by investors who receive updated
public or private information. Traders can also hide part
of the order they submit to the limit order book, these are
called “iceberg” orders.

Exchanges vary in the degree of transparency of the
limit order books. The automated limit-order-book sys-
tem used by the Toronto Stock Exchange and the Paris
Bourse are among the most transparent systems. They of-
fer continuous trading and the public display of current
and away limit orders (an open book limit-order system).
The NYSE has shifted from a close limit order book policy
(although specialists made the book available to traders on
the floor at their own discretion) to making the content
of the limit-order book public. In January 24, 2002 the
service OpenBook was introduced. This service provides
information about depth in the book in real time at each
price level for all securities to subscribers either directly
from the NYSE or through data vendors such as Reuters
and Bloomberg. Boehmer et al. [10] empirically examine
the effect of increased transparency in the NYSE andGoet-
tler et al. [24] numerically solves a dynamic model of limit
orders in which agents arrive randomly andmay trade one
share in an open electronic limit order market.

Single Dealer Markets

It is a market where one dealer (market maker or special-
ist) stands ready to buy at his bid quote and sell at his of-
fer quote. In this environment, incoming orders are nec-
essarily market orders (in contrast to limit orders). The
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Market Microstructure, Figure 1
Single dealer market

customer either buys (sells) at the dealer’s offer (bid) or
chooses not to trade. Dealer markets are less transparent
than open book limit order markets (only the best-bid and
best-ask price are known to the customer in a dealer mar-
ket, while the entire depth of the market is visible in an
open limit-order book). In reality there are very few pure
single-dealer markets. The NYSE is sometimes mistakenly
labeled as a single-dealer market, but it is a hybrid sys-
tem with both limit-order and single-dealer features. Eq-
uity trading is centered on the stock specialist, who is as-
signed particular stocks in which to make a market. Each
listed security has a single specialist, and all trading on
the exchange must go through the specialist. The specialist
receives market orders (orders for immediate execution)
and limit orders (orders contingent on price, quantity and
time), so that specialists do not enjoy monopoly power be-
cause they compete against the limit order book. If a mar-
ket order comes to buy, the specialist can either match it
with the best sell limit order or if he offers a lower price,
he can take the other side. Examples of pure single-dealer
markets are foreign exchangemarkets in developing coun-
tries with fixed exchange rates, where all orders must be
routed through a single dealer – the central bank.

Multiple Dealer Markets

Competition in this environment is brought through mul-
tiple dealers. In a centralized market, quotes from many
dealers are available on a screen (NASDAQ) or on the
floor of an exchange (like a futures trading pit: the Chicago
Board of Trade, the New York Mercantile Exchange,
and the Chicago Mercantile Exchange). In a decentral-
ized market trading occurs over-the-counter rather than
through an organized exchange. The foreign exchange

Market Microstructure, Figure 2
Multiple dealer market

market, government bond’s secondary market and cor-
porate bond markets are good examples of decentral-
ized multiple-dealer markets. There is less transparency
in these markets than in a centralized multiple-dealer one
because not all dealer quotes are observable. As a re-
sult, there can be simultaneous transactions that occur
at different prices. The main mechanism that mitigates
the dealer’s monopoly power is the fact that the inter-
action between a dealer and a customer is repeated over
time. Dealers have an incentive to keep their reputation
in quoting reasonable bid and ask prices so that the cus-
tomer does not go to another dealer. In particular, deal-
ers are concerned about losing large customers, so that
small customers have less bargaining power. Competition
in these markets and pressure from regulators has also
forced a shift from voice-based brokers to electronic bro-
kers, who provide a higher level of transparency. For ex-
ample, recently the Bond Market Association responded
to SEC pressure for more transparency in the corporate
bond market by setting up a single reporting system for
investment grade bonds Viswanathan andWang [47]. For
a detailed description of how the foreign exchange market
and the government bond market operate please refer to
Lyons [35] and Fabozzi and Fleming [21], respectively.

Inter-Dealer Markets

In addition to dealer-customer interactions, inter-dealer
trading is very important. Ho and Stoll [31] suggest that
risk-sharing is the main reason for inter-dealer trading.
The incoming orders that a particular dealer receives are
rarely balanced, so that the dealer is left with an unde-
sired short or long position. To balance their inventory
the dealer can sell to or buy from other dealers. The dealer
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can do so by either contacting another dealer directly or
through a broker. The benefit of going through a broker
is that they provide anonymity and the cost is the bro-
ker fee. In addition, brokers offer dealers electronic trad-
ing platforms that help the flow of information. These
screens typically post: (i) the best bid and offer prices of
several dealers, (ii) the associated quantities bid or offered,
(iii) transaction prices, and (iv) transaction size. Common
brokers in the secondary government bond market are
ICAP’s BrokerTec, Cantor Fitzgerald/eSpeed, Garban-In-
tercapital, Hilliard Farber, and Tullett Liberty. The main
electronic brokers in the major spot markets (JPY/USD,
Euro/USD, CHF/USD and GBP/USD currency pairs) are
EBS and Dealing 2000-2, a dealer-broker Reuter prod-
uct (Dealing 2000-1 is the Reuter product for direct in-
ter-dealer trading). It is worth noting that EBS and Deal-
ing 2000-2 typically conduct trades via a limit order book,
while Reuters D2000-1 is a sequential trading system (an
outside customer trades with dealer 1 who trades with
dealer 2 who trades with dealer 3 and so on; hence it is
often referred to as “hot potato” trading). In the equity
markets inter-dealer trading is also common. On the NAS-
DAQ market, dealers can trade with each other on the
SuperSoes system, the SelectNet system and on electronic
crossing networks (ECNs) like Instinet. In equity mar-
kets like the London Stock Exchange, inter-dealer trading
constitutes about 40% of the total volume Viswanathan
and Wang [47], while in the foreign exchange market and
the US government bond market inter-dealer trading far
exceeds public trades. Inter-dealer trading accounts for
about 85% Lyons [35] of the trading volume in the for-
eign exchange market and about 99% Viswanathan and
Wang [47] in the US government bond market. Two-
thirds of the transactions in the US government bondmar-
ket are handled by inter-dealer brokerage firms and the re-
maining one-third is done via direct interactions between
the primary dealers listed in Table 1. For more details
on inter-dealer trading please refer to Viswanathan and
Wang [47].

In the next section we present a few of the basic models
that are employed in the market microstructure literature.

InventoryModels

The first theoretical models in the market microstructure
field were inventory models; however information-based
models have come to dominate the field because the for-
mer describe temporary price deviations around the equi-
librium price, while the later describe permanent price
changes. The main idea of inventory models is captured
by Smidt [44] who argued that dealers, or market makers

Market Microstructure, Table 1
Primary Government Securities Dealers as of Nov. 30, 2007.
Source: Federal Reserve Bank of New York
http://www.newyorkfed.org/markets/pridealers_listing.html

BNP Paribas Securities Corp.
Banc of America Securities LLC
Barclays Capital Inc.
Bear, Stearns & Co., Inc.
Cantor Fitzgerald & Co.
Citigroup Global Markets Inc.
Countrywide Securities Corporation
Credit Suisse Securities (USA) LLC
Daiwa Securities America Inc.
Deutsche Bank Securities Inc.
Dresdner Kleinwort Wasserstein Securities LLC.
Goldman, Sachs & Co.
Greenwich Capital Markets, Inc.
HSBC Securities (USA) Inc.
J.P. Morgan Securities Inc.
Lehman Brothers Inc.
Merrill Lynch Government Securities Inc.
Mizuho Securities USA Inc.
Morgan Stanley & Co. Incorporated
UBS Securities LLC.

in general, are not simply passive providers of immediacy,
but actively adjust the bid-ask spread in response to fluc-
tuation in their inventory levels. Though dealers’ main re-
sponsibility is to facilitate trade in an asset market, they set
prices to realize rapid inventory turnover and to prevent
the accumulation of significant positions on one side of
the market. The consequence of this paradigm is a price
that may diverge from the expected value of an asset if
a dealer is long or short relative to a desired (target) inven-
tory, which would result in temporary price movements
over various (short-term) periods of time. How “short-
term” these deviations are differs across studies. Data on
specialists’ inventories is scarce, but studies have been suc-
cessful in showing that inventories play an important role
in intraday trading and a recently published paper by Hen-
dershot and Seasholes [30] shows that inventory consider-
ations affect prices beyond intraday trading. Hendershott
and Seasholes argument is that market makers are will-
ing to provide liquidity as long as they are able to buy
(sell) at a discount (premium) relative to future prices.
Hence, large inventories of the market maker should co-
incide with large buying or selling pressure, which cause
prices to subsequently reverse (e. g., Amihud and Mendel-
son [2] and Grossman and Miller [26] provide inventory
models that lead to reversals). But the reversal of prices

http://www.newyorkfed.org/markets/pridealers_listing.html
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does not have to be immediate, in fact, they document that
reversals can take as long as 12-days.

Inventory models assume that there is no asymmet-
ric information. Fluctuations in market prices, therefore,
results solely from dealers’ decisions about the positions
of their inventory. Dealers’ hold sub-optimal portfolios,
bare a cost for maintaining inventories – holding assets for
the purpose of providing liquidity to the market exposes
them to risk. Consequently, market makers receive com-
pensation (i. e., bid-ask spread) for incurring the transac-
tion costs entailed in managing their inventories.

Various texts, including O’Hara [41], present different
inventory models. The discussion below will focus on one
suchmodel—themodel presented by Garman [22] that in-
augurated the field of marketmicrostructure and builds on
Smidt [44] idea. As O’Hara notes, aspects of basic inven-
tory models, such as the assumption of perfect informa-
tion, are not realistic; however, it is still useful to review
basic models’ assumptions about the functioning of asset
markets to isolate the various ways in which the behavior
of market makers can influence asset prices.

Garman’s Model

The expected value of the asset or the equilibrium price
is equal to the price at which quantity demanded equals
quantity supplied at a particular period in time. Let’s la-
bel this price p�. Garman (16) shows that it is optimal
for the market maker to charge two different prices. One
price, pa, the ask price, at which he will fill orders wish-
ing to buy the stock, and another price, pb, the bid price,
at which he will fill order wishing to sell the stock. These
prices will not necessarily straddle the equilibrium price,
p�, i. e., pb > p� > pa. By being willing to take profits
in the form of stock inventory increases, the market maker
can artificially inflate prices by maintaining the inequality
pb > pa > p�. In no case, however, will the market maker
be able to set both prices below p� without ultimately run-
ning out of inventory. Furthermore, if the market maker
sets both prices equal to each other, equal to the equilib-
rium price, i. e., pb D p� D pa, then the market maker
will fail with certainty (i. e., the market maker will either
run out of inventory or cash with probability equal to 1). In
what follows we describe briefly how the model works and
we ask the reader to refer to the original paper for more
details. Garman considered two market clearing mecha-
nisms: a dealer structure and a double auction mechanism;
however, we will focus on the dealer structure only.

Garman conceived the dealer as amonopolist; he alone
receives orders from traders, determines asset prices, and
facilitates trade. In making the market, the dealer engages

in optimizing behavior by maximizing his expected profit
per unit of time while avoiding bankruptcy or failure,
which is defined as depleting his inventory or losing all of
his money. The dealer sets an ask price and a bid price at
the beginning of trading, and investors submit their orders
after observing the dealer’s bid and ask quote. The arrivals
of orders to buy and sell the asset are independent stochas-
tic processes that are distributed according to a Poisson
distribution. The dealer, therefore, runs a chance of fail-
ing since he must ensure liquidity—selling part of his in-
ventory or buying a particular asset as determined by the
arrival rate of buyers and sellers.

Assuming a Poisson arrival rate necessitates that
(i) many agents are interacting in the market, (ii) these
agents issue orders independently without consideration
of others’ behavior, (iii) no one agent can issue an infi-
nite number of orders in a finite period, and (iv) no subset
of agents can dominate order generation, which precludes
the existence of private information. It requires that the
order flow be stochastic without being informative about
future market or price movements.

Garman’s model is based on two equations—one that
determines the dealer’s cash, Ic(t), at time t and one that
determines the dealer’s inventory of the asset, Is(t), at
time t. At time 0, the dealer holds Ic(0) units of cash and
Is(0) of stock. Inventories at any point in time can be rep-
resented as follows:

Ic(t) D Ic(0) C paNa(t) � pbNb(t) ;

Is(t) D Is(0) C Nb(t) � Na(t) ;

where Na(t) is the number of executed buy orders at time
t, Nb(t) is the number of executed sell orders at time t,
pa is the ask price and pb is the bid price for a stock. Us-
ing these equations, Garman sets forth to determine how
a dealer can avoid market failure or bankruptcy (i. e., Ic(t)
or Is(t) D 0). Preventing this situation from occurring
is the main goal of dealers in setting asset prices. Gar-
man [22] provides a detailed explanation for determining
when failure will occur, but for the purpose of this article it
is enough to skip to the main conclusion. In order to avoid
market failure, dealers must set pa and pb to satisfy both
equations:

pa�a(pa) > pb�b(pb) and

�b(pb) > �a(pa)

where �a(pa) is the probability of stock leaving the dealer’s
inventory and �b(pb) is the probability of stock being
added to the dealers inventory. Simultaneously satisfying
these equations requires that the dealer set pa above pb.
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In other words, a spread must be in place in order for the
dealer to avoid bankruptcy or market failure, though the
market maker still faces a positive probability of failure.

Various inventory models exist that explain the pres-
ence of the bid-ask spread. Although Garman’s approach
focuses on the threat of market failure to explain the dis-
parity in bid and ask prices, other explanations such as
dealers’ market power or risk aversion have also been pro-
posed by theorists (see p. 51 in O’Hara [41]). Though
the dissimilarities among inventory models are many, the
common theme that links these models together is the
complex balancing problem faced by the dealer who must
moderate random deviations in inflows and outflows of
cash and assets. Over the long run the flow of orders had
no effect on asset prices, but the dealers’ attempt to recali-
brate their positions in response to the random stochastic
order flows causes price fluctuation in the short run.

Information-BasedModels

One implication of the inventory approach discussed in
the previous section is that inventory costs determine
the bid-ask spread. Beginning with an insightful paper
by Bagehot [9], a new theory emerged to explain bid-
ask spreads that did not rely on inventory costs, but
rather posited an important role for information. These
information-based models used insights from the theory
of adverse selection to demonstrate how, even in com-
petitive markets without explicit inventory costs, spreads
would exist. In what follow we describe three information-
based models to illustrate the insights gained from adopt-
ing an information-based approach to studyingmarket in-
teractions.

Copeland and Galai’s Model

Copeland and Galai [14] were first to construct a for-
malized model incorporating information costs. Similar
to Garman’s inventory model the agents in the model
are dealers and traders. In contrast to Garman’s model,
there is more than one dealer and there are two types
of traders: informed and uninformed. Informed traders
know the true value of the asset, P, and uninformed or liq-
uidity traders trade for exogenous reasons to the value of
the asset (e. g., immediate consumption needs). The exis-
tence of uninformed traders that trade for non-speculative
reasons is ubiquitous in the literature. This assumption is
necessary because for information to be valuable informed
traders need to be anonymous. If traders known to possess
superior knowledge could easily be identified, then no one
would agree to trade with them. This is the so called no-
trade equilibrium described in Milgrom and Stokey [39].

The trader arrival process is exogeneously determined
and is independent of the price change process. This is the
same assumption as in Garman’s model, but this assump-
tion is not harmless in the presence of informed traders
as it appears likely that informed trader behavior would
depend on what they know about the true value of the as-
set relative to what the market thinks. This aspect of the
problem is not resolved in Copeland andGalai’s paper, but
other authors relax this assumption and allow the num-
ber of informed traders in the market to be endogenously
determined. However, the main contribution of Copeland
and Galai’s paper is to show that even in the presence of
competitive dealers, themere presence of informed traders
implies that the bid-ask spread will be positive. The dealer
knows the stochastic process that generates prices, f (P),
knows the probability that the next trader is informed,

1, and knows the elasticity of demand of uninformed
and informed traders. With this information the objec-
tive of the dealer is to choose a bid-ask spread that max-
imizes his profits. If the dealer sets the bid-ask spread too
wide, he loses expected revenues from uninformed traders,
but reduces potential losses to informed traders. On the
other hand, if he establishes a spread which is too nar-
row, the probability of losses incurring to informed traders
increases, but is offset by potential revenues from liquid-
ity traders. His optimal bid-ask spread is determinted by
a tradeoff between expected gains from liquidity trading
and expected losses to informed trading.

The timing of the model is as follows. A trader arrives
to the trading post, the dealer offers a quote, and the “true”
price, P, is revealed immediately after the trade. An unin-
formed trader will buy an asset with probability 
BL, sell
an asset with probability 
SL, and decide not to trade with
probability 
NL. (The “L” in this notation reflects the fact
that Copeland and Galai refer to uninformed traders as
liquidity traders.) Because informed traders know the true
value of P, their decisions to buy, sell, or refrain from trade
are based on strategies that maximize their profit.

Dealers at any instant will trade with informed traders
with probability 
1 and can expect to lose:
Z 1

PA
(P � PA) f (P)dP C

Z PB

0
(PB � P) f (P)dP ;

where PA and PB are the ask and bid prices quoted by the
dealer, and P is the “true” value of the asset. Dealers at any
instant will trade with uninformed traders with probability
1 � 
1 and can expect to gain:


BL(PA � P) C 
SL(P � PB) C 
NL(0)

Because the dealer does not know whether individual
trades are with informed or uninformed traders, the deal-
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ers’ objective function is the product of 
1 and the first
equation added to the product of 1 � 
1 and the second
equation. The dealers’ optimal bid and ask prices result
from this maximization problem. If the prices are nega-
tive, however, the market closes.

Not all informed traders who arrive at the marketplace
will trade. Informed traders who believe the quoted price
by the dealer will fall between PA and PB will not trade.
Hence, the elasticity of demand by informed traders with
respect to the bid-ask spread interval is implicit in the lim-
its of integration in the equation above. The dealers rev-
enue comes from those liquidity traders who are willing to
pay PA �P or P�PB as a price for immediacy. The authors
assume that the likelihood that a liquidity trader will con-
summate trade declines as the bid-ask spread increases, in
other words, the liquidity traders elasticity of demand is
implicit in the probabilities that liquidity traders will ei-
ther buy the asset, sell it or not trade.

The framework described above can include compe-
tition by incorporating a zero-profit constraint into the
dealers problem. The most important result is that even
with risk neutral, competitive dealers, the bid-ask spread is
positive. The size of the spread will depend on the particu-
lar elasticities of the traders’ demand functions, and the ar-
rival rate of informed and uninformed traders. As long as
there is a positive probability that some trader is informed,
the spread will not be zero.

This model, however, is a static one-trade framework
and as such it does not allow trade itself to convey infor-
mation. The model we describe in the next section cap-
tures the dynamic aspect of trading and introduces the
concept of trade as signals of information.

Easley and O’Hara’sModel

What follows is a brief summary of the model; for an ex-
tensive discussion of the structure of themodel please refer
to Easley and O’Hara [16].

The game consists of three players, liquidity traders,
informed traders and a market maker. All players are risk
neutral, there are no transactions costs, and there is no
discounting by traders. The no-discounting assumption is
reasonable since agents are optimizing their behavior over
one day. Liquidity traders buy or sell shares of the asset
for reasons that are exogenous to the model and each buy
and sell order arrives to the market according to an inde-
pendent Poisson distribution with a daily arrival rate equal
to ". The probability that an information event occurs is ˛,
in which case the probability of bad news is ı and the prob-
ability of good news is (1 � ı). If an information event oc-
curs, the arrival rate of informed traders is �. Informed

traders trade for speculative reasons; if they receive good
news (the current asset price is below the liquidation value
of the asset) they buy one share of the asset, if they receive
bad news they sell one share of the asset.

On days with no information events, which occur with
probability (1 � ˛), the arrival rate of buy orders is " and
the arrival rate of sell orders is " as well. The model can
be parametrized so that the arrival rate of liquidity buyers
and sellers is different. However, the numbers of trades for
certain stocks from 2000 on are very large, particularly for
Nasdaq stocks, and as a result the parameter estimates suf-
fer from a truncation error. To minimize this problem, it
is useful to set the arrival rates of liquidity sellers and buy-
ers equal to each other, so that one can factor out a com-
mon factor in the likelihood function as in Easley, Engle,
O’Hara, and Wu [19]. Figure 3, represents a diagram of
how the model works.

Thus, the total amount of transactions on non-infor-
mation days is 2" with the number of buys approximately
equal to the number of sells. On a bad information event
day, which occurs with probability ˛ı, we observe more
sells than buys. To be precise, the arrival rate of buy orders
is " and the arrival rate of sell orders is "C �. In contrast,
on a good information event day, which occurs with prob-
ability ˛(1 � ı), we observe more buys than sells, i. e., the
arrival rate of buy orders is " C � and the arrival rate of
sell orders is ".

Easley and O’Hara [16] define PIN as the estimated ar-
rival rate of informed trades divided by the estimated ar-
rival rate of all trades during a pre-specified period of time.
Formally,

PIN D ˆ̨�̂
ˆ̨�̂C 2"̂

:

One can estimate all four parameters, � D f"; �; ˛; ıg, by
maximizing the likelihood function

L (� jM) D
TY

tD1

L (� jBt; St)

whereBt is the number of buys and St is the number of sells
on day t. Assuming days are independent, the likelihood of
observing the history of buys and sells fM D (Bt; St)gTtD1
over T days is just the product of the daily likelihoods,

L (� jM) D ˛ıe�(2"C�) "
B ("C �)S

B!S!

C ˛(1 � ı)e�(2"C�) ("C �)B "S

B!S!

C (1 � ˛)ıe�(2") "
BCS

B!S!
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Market Microstructure, Figure 3
The tree diagram of the trading process [16]

where T is equal to the time frame the researcher is inter-
ested in, e. g., Vega [46] choses 40 trading days before an
earnings announcement is released, Easley, O’Hara, and
Paperman [17] also use 40 trading days to estimate PIN,
while Easley, Hvidkjaer, and O’Hara [18] use one calen-
dar year to estimate PIN. The more trading days one uses
to estimate PIN the more accurately one will measure in-
formation-based trading. Hence, one should check for ro-
bustness different estimation windows.

While all the parameters are identified and the likeli-
hood function is differentiable, there is no closed-form so-
lution to the four ("; �; ˛; ı) first-order conditions. Nev-
ertheless, the arrival rate of liquidity traders " can be inter-
preted as the daily average number of transactions during
the estimation window. The parameter � reflects the ab-
normal or unusual number of transactions. The parame-
ter ˛ is equal to the proportion of days characterized by an
abnormal level of transactions. The parameter ı is equal
to the number of days with an abnormal number of sells
divided by the number of days with an abnormal level of
transactions.

To calculate the daily number of buys and sells
most authors use the Lee and Ready [33] algorithm for

NYSE- and AMEX-listed stocks and Ellis, Michaely, and
O’Hara’s [20] suggested variation of the Lee and Ready
algorithm for Nasdaq-listed stocks. Odders–White [40],
Lee and Radhakrishna [34], and Ellis, Michaely, and
O’Hara [20] evaluate how well the Lee and Ready algo-
rithm performs and they find that the algorithm is from
81% to 93% accurate, depending on the sample period and
stocks studied. Thus the measurement error is relatively
small.

To estimate the model using US stock market data
most researchers use bid quotes, ask quotes, and trans-
action prices from the Institute for the Study of Securi-
ties Markets (ISSM) and the Trade and Quotes (TAQ)
database. ISSM data contains tick-by-tick data covering
the NYSE and AMEX trades between 1983 to 1992 and
NASDAQ trades from 1987 to 1992, while TAQ data cov-
ers the sample period from 1993 to the present.

Vega [46] plots the time series of the parameter esti-
mates in addition to the PIN measure averaged across all
stocks in the sample. It is evident in that plot that the pa-
rameters " and � are not stationary. These parameters are
related to the trading frequency, hence they are upwards-
trending as the number of transactions has increased over
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the years. In contrast, the estimates of ı, ˛, and PIN are
stationary over the years.

Vega [46] also shows average quarterly bivariate corre-
lations of firm characteristics and PIN. PIN is most highly
correlated with log market value with a bivariate correla-
tion coefficient equal to �0.481. The cross-sectional range
of �0.70 to �0.32 over the 64 periods implies that across
stocks within the same quarter, PIN is negatively corre-
lated with the firm capital size. To test this hypothesis for-
mally Vega [46] first calculate Mann–Whitney test statis-
tics for all periods. Then she tests the hypothesis that the
sample of large firms has the same median PIN as the
sample of small firms against the alternative hypothesis
that they have different medians. In untabulated results
she finds that she can soundly reject the null hypothesis
in favor of the alternative for 60 out of the 64 periods she
analyzes.

The negative relation between private information and
firm size is consistent with both previous empirical stud-
ies that use PIN as an informed trading measure and Dia-
mond and Verrecchia [15] who assert that asymmetric in-
formation is largest for small firms.

Next we present the Kyle Model, which is a workhorse
within the market microstructure literature.

Kyle Model

In this information model, an auctioneer determines
a price after all traders, uninformed and informed, sub-
mit their orders. Besides the risk-neutral market-maker,
there is also one risk-neutral informed trader and multi-
ple uninformed traders, who do not issue strategic orders.
The market makers are unable to distinguish orders ema-
nating from informed traders from those issued by unin-
formed traders. Informed traders understand this lack of
transparency and can use it for their own advantage.

In the Kyle model there is just one risky asset that is
traded over one period. This period of time consists of four
distinct phases. First, the informed trader (and only the
informed trader) observes the value V of the risky asset’s
payoff at the end of the period. V is a normally distributed
random variable with mean zero and variance equal to �2v .
Second, market orders from the informed trader as well
as the uninformed traders are submitted to the auction-
eer, who is unaware of the end-of-period payoff of the as-
set, V . The market orders from the informed trader can be
represented by DI , and the market orders from the unin-
formed traders collectively can be referred to asDU , which
is a normally distributed random variable independent
of V with mean zero and variance �2u . If DU is positive,
then uninformed traders are buying on net. Conversely,

uninformed traders are selling the asset on net, if DU is
negative. Though the informed trader knows V , he does
not know DU prior to submitting his orders. Effectively
this precludes the informed trader from conditioning on
the market-clearing price, as it is usual in a rational expec-
tations model.

Once receiving these orders, the auctioneer deter-
mines P, themarket clearing price. Kyle assumes free entry
into the auctioneeringmarket and therefore the auctioneer
has nomonopoly power, so that he earns zero profits and P
is determined by the following equation:

P D E[V jDI C DU ] :

To arrive at a value for P, the auctioneer only takes into ac-
count the sum of the orders issued by the informed trader
and the uninformed traders: DI C DU . P depends on the
sum of the orders because he cannot differentiate between
the orders issued by the informed trader from the rest.
Note that DU is an exogenous variable, but DI depends
on the informed trader’s trading strategy. The informed
trader knows that his order has some effect on the price
created by the auctioneer. Since he is risk neutral, the in-
formed trader will seek to maximize his expected profit.
He accomplishes this goal by considering each possible
value of V and choosing the value of DI that maximizes:

E[DI(V � P)jV ] :

These two equations illustrate that the auctioneer’s strat-
egy for setting the asset’s price depends on DI while the
informed trader’s strategy for setting DI depends on his
perceived effect of DI on P.

Kyle first conjectures general functions for the pricing
rule and the informed trader’s demand, then he solves for
the parameters assuming the informed trader maximizes
his profits conditioning on his information set, i. e. DI D
argmax E[DI(V � P)jV] and the market maker sets prices
equal to P D E[V jDI C DU ].

Although the proof is not shown here, in equilibrium
the market maker will choose a price such that

P D �(DI C DU )

and the informed trader will choose DI such that

DI D ˇV

where � and ˇ are positive coefficients that solely depend
on �2v , the variance of V , the normally distributed ran-
dom variable for the asset’s payoff, and �2u the variance of
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DU , the normally distributed random variable for the un-
informed traders’ orders. The exact expressions (not de-
rived here) for � and ˇ are:

� D 1
2

s
�2v
�2u

ˇ D
s
�2u
�2v
:

If � has a high value, then order flow has a high impact
on prices, and we say that the particular asset is not very
liquid. B, on the other hand, is rather low, which is inter-
preted as informed traders issuing less aggressive orders
in an effort to minimize the impact of their own trades on
price.

EmpiricalMarketMicrostructure

As transaction-by-transaction or high frequency data from
a variety of sources has become available, empirical mar-
ket microstructure has grown extensively. Most papers
use high frequency data to predict transaction costs, esti-
mate limit-order book models for intraday trading strate-
gies, and estimate the liquidity of the market. There are
a few papers, though, that do not estimate market mi-
crostructure models per se, but use high frequency data
to answer questions relevant to the asset pricing field, cor-
porate finance field, and economics in general. For exam-
ple, Andersen et al. [6] use intraday data to obtain bet-
ter measures of the volatility of asset prices, Chen, Gold-
stein and Jiang [13] estimate the PIN measure to answer
questions relevant to corporate finance, and Andersen et
al. [8] and [7] use intraday data to better identify the ef-
fect macroeconomic news announcements have on asset
prices.

In what follows we describe the most commonly used
empirical estimations of liquidity or adverse selection
costs. The most general measure of adverse selection costs
that does not assume a particular economic model is Has-
brouck [27]. He assumes the quote midpoint is the sum of
two unobservable components,

qt D mt C st

where mt is the efficient price, i. e., the expected security
value conditional on all time-t public information, and
st is a residual term that is assumed to incorporate tran-
sient microstructure effects such as inventory control ef-
fects, price discreteness, and other influences that cause
the observed midquote to temporarily deviate from the ef-
ficient price. As such Hasbrouck [27] further assumes that

E[st] D 0 and that it is covariance stationary which im-
plies that microstructure imperfections do not cumulate
over time, i. e., Et[stCk] ! E[stCk] D 0 as ! 1. The
efficient price evolves as a random walk,

mt D mt�1 C wt (1)

where E[wt] D 0, E[w2
t ] D �2w , E[wtw� ] D 0 for

t ¤ � and wt is also covariance stationary. The innova-
tions, wt , reflect updates to the public information set in-
cluding the most recent trade. The market’s signal of pri-
vate information is the current trade innovation defined as
xt � E[xt j˚t�1], where ˚t�1 is the public information set
at time t � 1. The impact of the trade innovation on the
efficient price innovation is E[wt jxt �E[xt j˚t�1]]. Hence,
two measures of information asymmetry, or trade infor-
mativeness, that Hasbrouck [27] proposes are:

Var(E[wt jxt � E[xt j˚t�1]]) D �2w;x

an absolute measure of trade informativeness and

R2
w D Var(E[wt jxt � E[xt j˚t�1]])

Var(wt)
D �2w;x

�2w

a relative measure of trade informativeness. The random
walk decomposition, Eq. (1), on which these measures are
based is unobservable. However, we can estimate �2w;x and
�2w using a vector autoregressive (VAR) model,

rt D
1X

iD1

ai rt�i C
1X

iD0

bi xt�i C v1;t

xt D
1X

iD1

ci rt�i C
1X

iD0

di xt�i C v2;t

where rt D qt � qt�1 is the change in the quote midpoint,
and xt is an indicator variable that takes values f �1;C1g
whether the trade was seller-initiated or buyer-initiated
according to the Lee and Ready [33] algorithm. Some pa-
pers also consider taking signed volume (number of trans-
actions times shares traded) rather than signed transac-
tions, but empirical evidence shows that what is important
is the number of transactions not the number of shares
traded.

Hasbrouck [27] estimates the VAR system using OLS.
Wold’s representation theorem states that any covari-
ance-stationary process possesses a vector moving aver-
age (VMA) representation of infinite order, i. e. frt ; xtg
can be written as an infinite distributed lag of white noise,
called the Wold representation or VMA. The minimum
and maximum daily number of transactions among all the
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equities varies greatly, so the researcher has to set trun-
cation points for each individual stock separately. Rather
than use the Akaike and SIC information criteria to deter-
mine the optimal lag length, the purpose of the VAR es-
timation above is to get rid off all serial correlation. Once
the lag lengths are set we can estimate the following VMA
representation:

rt D
NX

tD1

a�
i v1;t�1 C

NX

tD0

b�
i v2;t�1

xt D
NX

tD1

c�
i v1;t�1 C

NX

tD0

d�
i v2;t�1 :

Hence the trade-correlated component of the variance is
equal to

�̂2w;x D
 NX

tD0

b�
i

!

˝

 NX

tD0

b�0
i

!

C
 

1 C
NX

tD1

a�
i

!2

�21 ;

where ˝ D Var(v1;t ; v2;t) and �21 D Var(v1;t) the vari-
ance of the random-walk component is

�̂2w D
 NX

tD0

b�
i

!

˝

 NX

tD0

b�0
i

!

:

Some Estimation Considerations

The VAR and VMA systems described above are not stan-
dard autoregressive models, in the sense that the index t is
not a wall-clock index, but an event index, i. e., it is incre-
mented whenever a trade occurs or a quote is revised. The
choice between an event index and a wall-clock index de-
pends on the goals of the analysis. If the analysis involves
a single security, an event index is better than a wall-clock
index because the process is more likely to be covariance
stationary in event time than in wall-clock Hasbrouck (see
p. 90 in [29]). However, when conducting a cross-sectional
analysis or estimating a pooled regression, comparability
across securities becomes the dominant consideration and
one may want to adopt a wall-clock time in estimating the
above equations.

Hasbrouck (see p. 39 in [29]) also points out that the
overnight return will almost certainly have different prop-
erties than the intraday return and he suggests that one
should drop the overnight return.

All told, researchers that use Hasbrouck’s measure of
adverse selection costs to test important economic hy-
pothesis should feel very uncomfortable if their results de-
pended on the way they estimate the VAR equations. As
a robustness check researchers should estimate the VAR
using different specifications, i. e., wall-clock time as op-

posed to event-time indexes, and researchers should sam-
ple quotes at different frequencies.

Madhavan, Richardson and Roomans Model

Similar to Hasbrouck [27], Madhavan, Richardson and
Roomans [38] model the efficient price, m, as a random
walk, in contrast they include an order flow innovation
term,

mt D mt�1 C �(xt � E[xt jxt�1]) C "t (2)

where � measures the permanent price impact of order
flow and "t is the public information innovation. The
transaction price, p, is equal to the efficient price plus
a stochastic rounding error term, � , and a market makers’
cost per share of supplying liquidity, � , i. e. compensation
for order processing costs, inventory costs etc.

pt D mt C �xt C �t (3)

Combining Eq. (2) and Eq. (3) we obtain,

mt D pt � pt�1 � (� C �)xt C (� C ��)xt�1

where � is the first-order autocorrelation of the signed
trade variable, xt . Then, the measure of permanent price
impact, � , alongside the temporary price impact of order
flow, � , the autocorrelation of signed trades, �, the uncon-
ditional probability that a transaction occurs within the
quoted spread �, and a constant, ˇ, can be estimated us-
ing GMM applied to the following moment conditions:

E

0

B
B
B
B
B
B
@

xtxt�1 � x2t�1�

jxtj � (1 � �)
mt � ˇ

(mt � ˇ)xt
(mt � ˇ)xt�1

1

C
C
C
C
C
C
A

D 0

Future Directions

Hasbrouck [29] on page 7 lists a few outstanding signif-
icant questions in market microstructure. To this list we
add two particularly important issues. First, the recent
availability of good quality high frequency data has made
it possible for researchers to answer a wide range of ques-
tions. This new data, though, also raises questions. In our
opinion, it is imperative for researchers to determine un-
der what circumstances more data is better. Some papers
in the realized volatility literature have made headway in
this direction by determining optimal sampling frequen-
cies to estimate the volatility of assets with different liq-
uidity. Future research should investigate what is the op-
timal frequency in estimating adverse selection costs and



578 Market Microstructure

in event studies – studies that investigate the impact of
public announcements on prices and trading in the hours
surrounding its release. Second, most empirical and theo-
retical studies assume that trades affect prices, but prices
do not affect trades (see, for example, Hasbrouck’s VAR
specification). Theory provides means of understanding
why causality runs from trades to prices – trades are cor-
related with private information, so that trades cause asset
price changes, with the underlying private information be-
ing the primitive cause. However, a more realistic setting
is that in which there are heterogeneous beliefs and prices
partially reveal other agent’s information so that there is
a learning process. Future research should relax the as-
sumed exogeneity of trades. Finally, two productive areas
of research are (i) the investigation of microstructure is-
sues in fixed income markets, and (ii) studies that link mi-
crostructure to other areas in finance such as asset pricing
and corporate finance.

Readings

Various economists have written books and articles about
the field of market microstructure. This article is a short
survey and here we compile an non-exhaustive list of pub-
lications that provide more comprehensive reviews of the
literature: [12,25,29,35,37,41], and [42]. Martin Evans and
Richard K Lyons have also written a useful manuscript en-
titled “Frequently Asked Questions About the Micro Ap-
proach to FX,” even though its main focus is on foreign
exchange markets it is also applicable to the market mi-
crostructure literature in general.
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Glossary

Barrier options Options that either come into existence
or disappear when exchange rates cross pre-specified
levels. Barriers can be triggered by price rises or de-
clines and reaching a barrier can either extinguish or
create an option. An “up-and-out call,” for example, is
a call option that disappears if the exchange rate rises
above a certain level. A “down-and-in put,” by con-
trast, is created if the exchange rate falls to a certain
level.

Bid-ask spread The difference between the best (lowest)
price at which one can buy an asset (the ask) and the
best (highest) price at which one can sell it (the bid).
In quote-driven markets both sides of the spread are
set by one dealer. In order-driven markets, the “best
bid and the best offer” (BBO) are likely to be set by
different dealers at any point in time.

Brokers Intermediaries in the interbank foreign exchange
market that match banks willing to buy with banks
willing to sell at a given price. Two electronic broker-
ages – EBS (Electronic Broking Service) and Reuters –
now dominate interbank trading in the major curren-
cies. In other currencies voice brokers still play an im-
portant role.

Call markets Financial markets that clear periodically
rather than continuously. During a specified time in-
terval, agents submit orders listing how much they are
willing to buy or sell at various prices. At the end of the

interval a single price is chosen at which all trades will
take place. The price is chosen tomaximize the amount
traded and is essentially the intersection of the supply
and demand curves revealed by the submitted orders.

Clearing The administration process that ensures an in-
dividual trade actually takes place. The amounts and
direction are confirmed by both parties and bank ac-
count information is exchanged.

Corporate (or commercial) customers One of the two
main groups of end-users in the foreign exchangemar-
ket. Includes largemultinational corporations, middle-
market corporations, and small corporations. Their
demand is driven almost entirely by international
trade in goods and services, since traders at these firms
are typically not permitted to speculate spot and for-
ward markets.

Covered interest arbitrage A form of riskless arbitrage
involving the spot market, the forwardmarket, and do-
mestic and foreign deposits.

Dealership market See Quote-driven markets.
Delta-hedge A delta-hedge is designed to minimize first-

order price risk in a given position. That is, small price
changes should change the agent’s overall position by
only a minimal amount (ideally zero). A delta-hedge
gets its name from an option’s “delta,” which is the first
derivative of the option’s price with respect to the price
of the underlying asset. To delta-hedge a long call (put)
option position, the agent takes a short (long) posi-
tion in the underlying asset equal in size to the option’s
delta times the notional value of the option.

Expandable limit order An order whose quantity can be
expanded if it is crossed with a market order for
a larger quantity.

Financial customers One of the two main groups of end-
users in the foreign exchange market. Includes hedge
funds and other highly-leveraged investors, institu-
tional investors such as mutual funds, pension funds,
and endowments, multilateral financial institutions
such as the World Bank or the IMF, broker-dealers,
and regional banks.

Feedback trading The practice of trading in response to
past returns. Positive-feedback trading refers to buy-
ing (selling) after positive (negative) returns. Negative-
feedback trading refers to selling (buying) after posi-
tive (negative) returns.

Foreign exchange dealers Intermediaries in the foreign
exchange market who stand ready, during trading
hours, to provide liquidity to customers and other
dealers by buying or selling currency. Salespeople
manage relationships with clients; interbank traders
manage the inventory generated by customer sales,
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and also speculate on an extremely high-frequency ba-
sis, by trading with other banks; proprietary traders
speculate on a lower-frequency basis in currency and
other markets.

Forward market Currencies traded in forward markets
settle after more than two trading days (and infre-
quently after less than two trading days).

FX Foreign Exchange.
Limit order See “Order-driven markets.”
Long position A long position arises when an agent owns

an asset outright.
Market order See “Order-driven markets.”
Order flow Buy-initiated transactions minus sell-initi-

ated transactions over a given period. Since customers
are always the initiators, their order flow is just cus-
tomer purchases minus customer sales. In the inter-
dealer market, a dealer initiates a trade if s/he places
a market order with a broker or if the dealer calls out
to another dealer.

Order-driven markets Also known as “limit-order mar-
kets.” Asset markets in which participants can both
supply liquidity or demand it, as they choose. Liq-
uidity suppliers place limit orders, which specify an
amount the agent is willing to trade, the direction, and
the worst acceptable price. A limit buy order in the
euro-dollar market, for example, might specify that the
agent is willing to buy up to $2 million at $1.2345
or less. These limit orders are placed into a “limit-
order book,” where they remain until executed or can-
celed. Agents demanding liquidity place “market” or-
ders, which state that the agent wishes to trade a speci-
fied amount immediately at whatever price is required
to fulfill the trade. Market orders are executed against
limit orders in the book, beginning with the best-
priced limit order and, if necessary, moving to limit or-
ders with successively less attractive prices. The foreign
exchange interdealer markets for major currencies are
dominated by two electronic limit-order markets, one
run by EBS and the other run by Reuters.

Overconfidence A human tendency to have more confi-
dence in oneself than is justified. Humans tend to over-
estimate their own personal and professional success
(“hubris”) and that they overestimate the accuracy of
their judgments (“miscalibration”).

Over-the-counter market See quote-driven market.
Picking-off risk The risk that a limit order will be ex-

ecuted against a better informed trader, leaving the
limit-order trade with a loss.

Price-contingent orders Orders that instruct a dealer to
transact a specified amount at market prices once
a currency has traded at a pre-specified price. There

are two types: stop-loss orders and take-profit orders.
Stop-loss orders instruct the dealer to sell (buy) if the
rate falls (rises) to the trigger rate. Take-profit orders
instruct the dealer to sell (buy) if the price rises (falls)
to the trigger rate.

Quote-driven markets Also known as “dealership mar-
kets” or “over-the-counter markets.” An asset market
in which dealers provide immediate liquidity to those
needing it. During trading hours the dealers commit to
trade at any time but at prices they quote. The price at
which they are willing to buy, the “bid,” is always no
greater – and usually lower – than the price at which
they are willing to sell, the “ask.” Foreign exchange
dealers transact with end-users in a quote-driven mar-
ket.

Settlement The process by which funds actually change
hands in the amounts and direction indicated by
a trade.

Short position A short position arises when an agent sells
an asset, possibly before actually owning the asset.
A “short position in euros” could arise if a dealer starts
with zero inventory and then sells euros. The dealer
could keep the short euro inventory overnight, but will
typically close the position out at the end of the trading
day by buying the equivalent amount of euros. Note
that the overall bank will not have a negative inven-
tory position, since the bank maintains balances in ev-
ery currency it trades. Someone “short euros in the for-
ward market” would have entered into a forward con-
tract to sell euros in the future.

Slippage The concurrent effect of a given trade on price.
Stop-loss orders See “Price-contingent orders.”
Spot market Currencies traded in the spot market settle

after two trading days (except for transactions between
the US and Canadian dollars).

Swaps A swap in the foreign exchange market is analo-
gous to a repo in the money market. One counter-
party agrees to buy currency A in exchange for cur-
rency B from another counterparty in the spot mar-
ket, and simultaneously agrees to sell currency A back
to the same counterparty, and buy back currency B, at
a future date. The spot transaction is at the spot rate,
the forward transaction is at the forward rate.

Take-profit orders See “Price-contingent orders.”
Technical Trading Trading based on technical analysis,

an approach to forecasting asset-price movements that
relies exclusively on historical prices and trading vol-
ume. In foreign exchange, the absence of frequent vol-
ume figures limits the information basis to past prices.
Notably, technical forecasts do not rely on economic
analysis. Nonetheless, many technical trading strate-
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gies have been demonstrated to be profitable in cur-
rency markets, even after considering transaction costs
and risk.

Trading volume The value of transactions during a given
time period.

Triangular arbitrage Between every three currencies A,
B, and C there are three bilateral exchange rates. Tri-
angular arbitrage is a way to make riskless profits if the
A-per-B exchange rate does not equal the C-per-B ex-
change rate multiplied by the A-per-C exchange rate.

Definition of the Subject

“Foreign exchange microstructure” is the study of the cur-
rency trading process and high-frequency exchange-rate
determination. The field is also called “the new microe-
conomics of exchange rates.” Research in this area began
in the late-1980s, when it became clear after many years
of floating rates that traditional, macro-based exchange-
rate models were not able to explain short-run dynamics.
Research accelerated in the mid-1990s as currency trading
systems became sufficiently automated to provide useful
data.

Introduction

Foreign exchange microstructure research, or the study of
the currency trading process, is primarily motivated by
the need to understand exchange-rate dynamics at short
horizons. Exchange rates are central to almost all inter-
national economic interactions – everything from inter-
national trade to speculation to exchange-rate policy. The
dominant exchange-rate models of recent decades, mean-
ing specifically the monetary model and the intertemporal
optimizing models based on Obstfeld and Rogoff [149],
come from macro tradition. These have some value rela-
tive to horizons of several years, but they have made little
headway in explaining exchange rate dynamics at shorter
horizons [69,116,134]. Shorter horizons are arguably of
greater practical relevance.

As elucidated by Kuhn in his seminal analysis of sci-
entific progress (1970), the emergence of major anomalies
typically leads researchers to seek an alternative paradigm.
Currency microstructure research embodies the search for
a new paradigm for short-run exchange-rate dynamics.

The search for an alternative paradigm has focused
on the currency trading process for a number of reasons.
First, it is widely held that macroeconomic models are en-
hanced by rigorous “microfoundations” in which agent
behavior is carefully and accurately represented. A rig-
orous microfoundation for exchange rates will require
a thorough understanding of the currency trading process.

Researchers are also motivated to study currency trad-
ing by evident contradictions between the way currency
markets actually work and the way exchange-rate determi-
nation is represented in macro-based models. As Charles
Goodhart remarked of his time as adviser at the Bank of
England, “I could not help but observe that some of the
features of the foreign exchange . . . market did not seem
to tally closely with current theory . . . ” (p. 437 in [81]). To
others with first-hand experience of the trading world, it
seemed natural “to ask whether [the] empirical problems
of the standard exchange-rate models . . . might be solved
if the structure of foreign exchangemarkets was to be spec-
ified in a more realistic fashion” (p. 3 in [72]).

The emergence of currency-market research in re-
cent years also reflects a confluence of forces within
microstructure. By the mid-1990s, microstructure re-
searchers had studied equity trading for over a decade,
thereby creating a foundation of theory and a tradition
of rigorous analysis. Meanwhile, technological advances
at foreign-exchange dealing banks made it possible to ac-
cess high-frequency transactions data. Currency markets –
huge and hugely influential – were a logical new frontier
for microstructure research.

Currency microstructure research – like all mi-
crostructure research – embodies the conviction that eco-
nomic analysis should be based solidly on evidence. As
articulated by Charles Goodhart, arguably the founder of
this discipline, “economists cannot just rely on assump-
tion and hypotheses about how speculators and other mar-
ket agents may operate in theory, but should examine how
they work in practice, by first-hand study of such mar-
kets” (p. 437 in [81]). Most papers in this area are em-
pirical, and those that include theory almost always con-
front the theory with the data. The literature includes quite
a few dealer surveys, reflecting a widespread appreciation
of practitioner input. This survey, like the literature, em-
phasizes evidence.

Institutional Structure

This section describes the institutional structure of the for-
eign exchange market.

Basics

Foreign exchange trading is dispersed throughout the day
and around the world. Active trading begins early in Asia,
continues in Europe, peaks when both London and New
York are open, and finally tapers off after London traders
leave for the day. There is an “overnight” period during
which trading is relatively thin, but it lasts only the few
hours between the end of trading in London (around 19
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GMT) and early trading in Sydney (around 22 GMT). In
terms of geography, currency trading takes place in almost
every big major city around the world, though there are
major trading centers. These major centers are Singapore,
Sydney, and Tokyo in Asia, London in Europe, and New
York in North America.

Foreign exchange trading is an intensely competitive
business. Price is one dimension of competition, but there
are many others. When it evaluates trading institutions
each year, Euromoney considers their pricing consistency,
strategies and ideas for trading in options, and innovative
hedging solutions [55]. Customer relations are also criti-
cally important. As in many industries, good customer re-
lations are fostered by personal attention from salespeople
and by perks for good customers, such as sports tickets and
elegant feasts.

Unlike trading in stocks, bonds, and derivatives, trad-
ing in currency markets is essentially unregulated. There
is no government-backed authority to define acceptable
trading practices, nor is there a self-regulating body. Local
banking authorities are limited to regulating the structure
of trading operations: they typically require, for example,
that clearing and settlement are administratively separate
from trading. Any attempt to regulate trading itself, how-
ever, would encourage dealers to move elsewhere, an un-
desirable outcome since foreign exchange is an attractive
industry – it pays high salaries and generates little pollu-
tion. In the absence of regulation, certain practices that are
explicitly illegal in other markets, such as front-running,
are not only legal but common in foreign exchange.

Market Size Spot and forward trading volume in all cur-
rencies is worth around $1.4 trillion per day [9]. If for-
eign exchange swap contracts are included, daily trading is
roughly twice as large, at $3.2 trillion. By either figure, for-
eign exchange is the largest market in the world. Trading
on the New York Stock Exchange (NYSE), for example, is
on the order of $0.050 trillion per day [145], while daily
trading in the US Treasury market, possibly the world’s
second-largestmarket, is on the order of $0.20 trillion [67].
Spot and forward trading, on which FX microstructure
research has consistently focused, has grown rapidly for
many years – average yearly growth since 1992 has been
nine percent, and since 2004 has been 18 percent.

The vast bulk of foreign exchange trading involves
fewer than ten currencies. The US dollar is traded most
actively [9] due to its role as the market’s “vehicle cur-
rency”: to exchange almost any non-dollar currency for
any other requires one to convert the first currency into
dollars and then trade out of dollars into the second cur-
rency. The value of US dollars traded in spot and forward

markets is roughly $1.2 trillion per day, over 86 percent of
total traded value. Of course, two currencies are involved
in every transaction so the total traded value every day is
twice the day’s trading volume. The euro accounts for 37
percent of all trading, a staggering $518 billion per day.
The yen and the UK pound each account for a further six-
teen percent of traded value. The next tier of currencies,
comprising the Swiss franc, the Australian dollar and the
Canadian dollar, accounts for eighteen percent of traded
value. The remaining 150 or so of the world’s convert-
ible currencies account for merely thirty percent of traded
value.

Only the dollar, the euro, and the yen are liquid
throughout the trading day. Liquidity in most other cur-
rencies is concentrated during locally-relevant segments
of the day. The Swedish krone, for example, is liquid only
during European trading hours.

Quotation Conventions Each exchange rate is quoted
according to market convention: dollar-yen is quoted as
yen per dollar, euro-dollar is quoted as dollars per euro,
etc. Trade sizes are always measured in units of the base
(denominator) currency and the price is set in terms of the
numerator currency. In euro-dollar, for example, where
the euro is the base currency, a customer asking to trade
“ten million” would be understood to mean ten million
euros and the dealer’s quotes would be understood to be
dollars per euro. The minimum tick size is usually on the
order of one basis point, though it is technically one “pip,”
meaning one unit of the fifth significant digit for the ex-
change rate as conventionally quoted. Examples will be
more helpful: in euro-dollar, where the exchange rate is
currently around $1.5000, one tick is $0.0001; for dollar-
yen, where current exchange rates are roughly ¥ 110.00/$,
one tick is ¥ 0.01.

The average trade size is on the order of $3 million
[18]; trades of $50,000 or less are considered “tiny.” Thus
the average foreign exchange trade is roughly the same size
as normal “block” (large) trades on the NYSE [125], which
makes it large relative to the overall average NYSE trade.
The average foreign exchange trade is smaller, however,
than the average trade in the US Treasury market, where
average interdealer trades vary from $6 to $22 million de-
pending on maturity [67].

A Two-Tiered Market

The foreign exchange market has two segments or “tiers.”
In the first tier, dealers trade exclusively with customers.
In the second tier, dealers trade primarily with each other.
The interdealer market forms the market’s core in the
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sense that customer prices are all based on the best avail-
able interdealer prices.

Interdealer trading in spot and forward markets now
accounts for 38 percent of all trading [9]. This is down
sharply from its 57 percent share in 1998, a change often
ascribed to rapid consolidation in the industry. The cur-
rent share is comparable to the share of interdealer trad-
ing on the London Stock Exchange, which was most re-
cently estimated to be between 25 and 35 percent [163]. It
is lower, however, than the share of interdealer trading in
the US Treasury market, which was 68 percent in October
2007 [66].

The Customer Market The customer foreign exchange
market is quote-driven, meaning that liquidity is provided
by professional market makers. As in most such markets,
currency dealers are under no formal obligation to provide
liquidity, unlike specialists on the NYSE. Failing to provide
liquidity on demand, however, could be costly to a dealer’s
reputation so dealers are extremely reliable. The market
functioned smoothly even during the crisis of September
11, 2001. Spreads widened, as would be expected given the
heightened uncertainty, but market makers stayed at their
desks and trading continued uninterrupted [135].

The customer market is fairly opaque. Quotes and
transactions are the private information of the two par-
ties involved, the customer and the dealer. Unlike stock
and bond markets, which publish trading volume daily,
aggregate figures for customer trading volume are pub-
lished only once every three years e. g.[9]. The lack of
transparency is intensified by the tendency for large cus-
tomer trades, meaning those over around $25 million,
to be split into multiple smaller trades. Splitting trades,
which is a way to minimize market impact and thus exe-
cution costs [16], also characterizes the London Stock Ex-
change [165], among othermarkets. Trade-splittingmakes
it more difficult for a dealer to know howmuch a customer
actually intends to trade. Dealers like to know when cus-
tomers are trading large amounts, since large trades move
the market.

Dealers divide their customers into two main groups,
and structure their sales force accordingly. The first group,
financial customers, is dominated by asset managers but
also includes non-dealing banks, central banks, and mul-
tilateral financial institutions. The asset managers, in turn,
are divided into “leveraged investors,” such as hedge funds
and commodity trading associations (CTAs), and “real
money funds,” such as mutual funds, pension funds, and
endowments. Financial customers account for 40 percent
of foreign exchange trading [9], sharply higher than their
22 percent share in 1998 [9].

The second group of customers, referred to as “cor-
porates,” are commercial firms that purchase currency as
part of ongoing real production activities or for financial
purposes such as dividend payments or foreign direct in-
vestment. The share of such commercial trading has been
steady at roughly twenty-percent for a decade [9]. Com-
mercial customers tend to be the mainstay of profitability
for smaller banks [136]. Financial customers, by contrast,
tend to make bigger transactions and thus gravitate to big-
ger banks [154].

The customers listed above are all institutions. Unlike
equity markets, where the trading of individuals for their
own account can account for half of all trading, retail trad-
ing has historically been tiny in foreign exchange. The par-
ticipation of individuals has been discouraged by large av-
erage trade sizes and by the need to establish lines of credit
with dealing banks.

Though customer trading has historically been car-
ried out over the telephone, trading over electronic com-
munication networks is growing rapidly, spurred by the
advent of new technologies [11]. Formal figures are not
available, but dealers estimate informally that these new
networks now account for over one fifth of all customer
transactions. Major dealers run single-bank proprietary
networks through which they are connected to individ-
ual customers. The biggest networks, however, are man-
aged independently. Some of these multi-bank e-portals,
such as FXAll, permit customers to get multiple quotes si-
multaneously. FXAll has appealed primarily to commer-
cial customers, which have historically paid relatively wide
spreads on average (as discussed later), since it has brought
them enhanced pre-trade transparency, intensified com-
petition among dealers and, according to dealers, smaller
spreads. Other multi-bank e-portals, such as FXConnect
or Hotspot FXi, focus on financial customers and are
valued because they permit “straight-through processing”
(STP), meaning fully automated clearing and settlement.
STP handles back office functions far more efficiently than
the traditional manual approach in part because it reduces
the opportunity for human error. Another type of net-
work, such as Oanda.com, target individuals trading for
their own account, permitting them to trade with no more
than a Paypal account. Though such retail trading has
grown rapidly in the current century, dealers report that
it does not yet affect market dynamics.

The Interdealer Market In the foreign exchange inter-
bank market there are no designated liquidity providers.
At every moment a dealing bank can choose whether to
supply liquidity or demand it. A dealer needing liquidity
can, of course, call another dealer and request a quote.
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Until the mid-1990s such “direct dealing” accounted for
roughly half of all interdealer trading [36], while the other
half of interdealer trading was handled by voice brokers –
essentially limit-order markets in which people match the
orders. During this period the best indication of the mar-
ket price was often indicative quotes posted on Reuters’
“FXFX” screen.

The structure of interdealer trading changed dramat-
ically after the introduction of electronic brokerages in
1992. In the major currencies, electronic brokerages not
only took over from the voice brokers but also gainedmar-
ket share relative to direct dealing. Electronic Broking Ser-
vice (EBS) now dominates in euro and yen while Reuters,
the other major electronic brokerage, dominates in ster-
ling. As the electronic brokerages took over, their best
posted bid and offer quotes became the benchmark for
market prices. By the end of the 1990s, voice brokers were
important only in the “exotic” (relatively illiquid) cur-
rencies for which electronic brokers are unavailable. The
speed of this transition reflects the intensity of competi-
tion in this market.

EBS and Reuters share a common, uncomplicated
structure. Standard price-time priority applies. Hidden or-
ders are not permitted. Limit orders are not expandable.
Orders must be for integer amounts (in millions). Trading
is anonymous in the sense that a counterparty’s identity is
revealed only when a trade is concluded. Dealers pay com-
missions on limit orders as well as market orders, though
the commission on limit orders is smaller.

These markets have moderate pre- and post-trade
transparency relative to most other limit-order markets.
With respect to pre-trade information, price information
is limited to the five best bid and offer quotes, and depth
information is limited to total depth at the quotes unless
it exceeds $20 million (which it usually does during active
trading hours). The only post-trade information is a listing
of transaction prices. The exchanges do not publish any
trading volume figures.

Automated (program) trading on the electronic bro-
kerages was introduced in 2004. Trading was restricted to
dealers until 2006, but now certain hedge funds are per-
mitted to trade on EBS. These shifts are reported to be
a major source of the surge in trading between dealers and
their financial customers since 2004 [9].

Objectives and Constraints

To construct exchange-ratemodels with well-specifiedmi-
crofoundations it is critical to know the objectives and
constraints of major market participants. It is also critical
to know the constraints that determine equilibrium.

Dealers’ Objectives and Constraints Dealers are moti-
vated by profits according to the conscious intent of their
employers. Half or more of their annual compensation
comes in the form of a bonus which depends heavily on
their individual profits [153]. Profits are calculated daily
and reviewed monthly by traders and their managers.

Dealers are constrained by position and loss limits
which are, in turn, management’s response to rogue trader
risk, meaning the risk that traders will incur immense
losses [43,81]. A single rogue trader can bring down an en-
tire institution: Nick Leeson brought down Barings Bank
in the early 1990s by losing $1.4 billion; John Rusnack
brought down Allfirst Bank by losing $700 million. Such
catastrophes could not occur in the absence of an infor-
mation asymmetry that plagues every trading floor: man-
agement cannot know each trader’s position at all times.
Traders are technically required to record their profits
and losses faithfully and in a timely manner, but as losses
mount they sometimes resort to falsifying the trading
record. Position- and loss-limits are intended to minimize
the risk that losses mushroom to that point. Intraday po-
sition limits begin at around $5 million for junior traders,
progress to around $50million for proprietary traders, and
can be far higher for executive managers. Data presented
in Oberlechner and Osler [148] suggests that intraday lim-
its average roughly $50 million. Overnight position limits
are a fraction of intraday limits, and loss limits are a few
percent of position limits.

Profit-maximization for dealers involves inventory
management, speculation, and arbitrage. We review these
activities in turn.

Inventory management Foreign exchange dealers man-
age their own individual inventory positions [18,81],
tracking them in a “deal blotter” or on “position cards”
[120]. Large dealers as well as small dealers typically
choose to end the day “flat,” meaning with zero inventory,
and generally keep their inventory close to zero intraday
as well. Average intraday inventory levels are $1 to $4 mil-
lion in absolute value and account for less than five percent
of daily trading activity [18,154]. Though these absolute
levels far exceed the $0.1 million median inventory level
of NYSE specialists [98], the NYSE inventories are much
larger relative to daily trading (24 percent).

Dealers generally eliminate inventory positions
quickly. The half-life of an inventory position is below
five minutes for highly active dealers and below half an
hour for less active dealers [18,155]. Fast inventory mean-
reversion has also been documented for futures traders
[130], but standard practice in other markets often differs
markedly. On the NYSE, for example, the half-life of in-
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ventory averages over a week [127]. Even on the London
Stock Exchange, which has an active interdealer market
like foreign exchange, inventory half-lives average 2.5
trading days [85].

Foreign exchange dealers in the major currencies gen-
erally prefer to manage their inventory via interdealer
trades, rather than waiting for customer calls. In conse-
quence, recent studies of dealer practices find no evidence
of inventory-based price shading to customers, e. g.[154].
This distinguishes currency dealers from those in some eq-
uity markets [127] and bond markets [51]. Currency deal-
ers also do not shade prices to other dealers in response to
inventory accumulation [18]. Instead, dealers wishing to
eliminate inventory quickly choose more aggressive order
strategies [18,154].

Speculation Foreign exchange dealers speculate actively
in the interdealer market [81]. Indeed, according to
a dealer cited in Cheung and Chinn [36], “[d]ealers make
the majority of their profit on rate movement, not spread”
(p. 447). Consistent with this, Bjønnes and Rime [18] find
that speculative profits are the dominant source of dealer
profitability at the good-sized bank they analyze. Deal-
ers’ speculative positions are based on information gath-
ered from customers, from professional colleagues at other
banks, and from real-time news services.

Arbitrage Some dealers also engage in arbitrage across
markets, such as triangular arbitrage or covered interest
arbitrage. The associated software originally just identi-
fied the arbitrage opportunities, but by now it can actually
carry out the trades. Arbitrage opportunities, though typi-
cally short-lived, arise frequently and occasionally provide
sizeable profits (2).

Customers’ Objectives and Constraints The three
main types of customers are active traders, meaning lev-
ered funds and proprietary traders; real-money funds; and
commercial firms.

Active Currency Traders The objectives and constraints
of active currency traders are in some ways consistent
with those assigned to international investors in standard
academic models. These groups are motivated by prof-
its: proprietary traders are motivated by an annual bonus;
hedge fund managers receive a share of the firm’s net as-
set value growth in [169]. Further, their risk-taking is con-
strained since active currency traders, like dealers, face po-
sition limits. Notice, however, that active currency traders
are not motivated by consumption and they do not care
about consumption risk. Indeed, there is no reason to ex-

pect the objectives of financial market participants to be
aligned with those of consumers. It is agency problems
that drive a wedge between the objectives of consumers
and traders in foreign exchange: the institutions that em-
ploy the traders have to align the traders’ incentives with
those of shareholders under conditions of asymmetric in-
formation, with the result that consumption is irrelevant.
Agency problems have been shown to be of overwhelm-
ing importance in understanding financial management at
corporations. It would appear risky to assume that agency
problems do not exist at currency-management firms.

Active currency traders also differ, however, from the
academic image of the international investor. The specu-
lative horizons of active currency traders typically range
from a day to a month – longer than a dealer’s intraday
horizon but still short by macro standards. Further, these
traders rarely take positions in assets with fixed supplies,
such as bonds or equities. Instead, they rely on forwards,
other derivatives, or possibly deposits, which are in flexi-
ble supply. This seemingly simple observation may unlock
a longstanding puzzle in international macro, the appar-
ent irrelevance of bond supplies for exchange rates. Under
the standard assumption that speculative agents invest in
bonds (an asset with fixed supply) bond supplies should
influence exchange rates. Since bonds are not widely used
by active currency speculators, however, the irrelevance of
bond supplies seems natural.

Common speculative strategies among active currency
traders are based on (i) forward bias, (ii) anticipated trends
or trend reversals, and (iii) anticipated macro news.

Real-Money Managers Most managers of real money
funds do conform to the academic image of an interna-
tional investor in terms of their investment horizon and
their assets of choice: they take positions for a month
or more and generally invest in bonds or equities. These
managers do not, however, conform to that image in a sep-
arate, critical dimension: real-world real money managers
generally ignore the currency component of their return.
According to Taylor and Farstrup [178], who survey the
currency management business,

there are key participants in foreign exchange mar-
kets . . . that are not always seeking profit derived
from their currency positions. . . . [I]n this cate-
gory are international equity managers.While some
managers factor in currency considerations as they
go about picking foreign stocks, most are attempt-
ing to add value through stock, sector, and region
bets rather than currency plays (p. 10, italics in orig-
inal).
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The decision not to forecast the currency component of re-
turns is sometimes justified by pointing to the well-known
inability of macro-based exchange-rate models to forecast
more accurately than a random walk [134]. Further infor-
mation about financial customers is presented in Sager and
Taylor [169].

Note that all speculative positions are constrained in
currency markets. In exchange-rate models this would be
consistent with the assumption that speculators are risk
averse. It would not, however, be consistent with the as-
sumption that deviations from purchasing power parity or
uncovered interest parity are instantaneously eliminated
by infinite trading. This may help explain why macroeco-
nomic evidence of long standing shows that these parity
conditions do not hold over short-to-medium horizons.

Commercial Customers With only rare exceptions, com-
mercial firms do not take overtly speculative positions
in spot and forward foreign exchange markets. Good-
hart [81] estimates that less than five percent of large cor-
porate customers will speculate in the forwardmarket, and
dealers report that zero middle-market or small corpo-
rations speculate in that way. Indeed, many firms explic-
itly prohibit their trading staff – often administrators with
other responsibilities besides trading – from engaging in
such transactions. Rogue trader risk is one key motiva-
tion for this choice. To impede the deception that enables
rogue trading, firms that permit speculation must “sepa-
rate the front office from the back office,” meaning they
must prohibit traders from confirming or settling their
own trades. This requires a separate staff to handle these
functions [65]. The firms must also hire “compliance of-
ficers” to ensure that controls on the trading process are
being observed faithfully (Federal Reserve Bank of New
York, Best Practice 48). Since the vast majority of com-
mercial firms need to trade only infrequently to carry out
their real-side business, these heavy staffing requirements
make speculative trading prohibitively expensive.

Another powerful reason why corporate customers
avoid overt speculation is that it can raise corporate tax
burdens. In the US, at least, profits from overtly specula-
tive positions are accounted for differently from gains de-
signed to offset losses on existing business exposures, with
the result that speculative profits are taxed more heav-
ily. If a treasurer wishes to speculate, s/he can do so at
a lower cost by redistributing the firm’s assets and liabil-
ities around the world. Goodhart [81] lists additional rea-
sons why corporate customers generally do not speculate
in spot and forward markets.

The presence of non-financial customers provides
a natural source of heterogeneity in the motivations for

currency trading. Such heterogeneity is critical for mod-
eling asset prices, and may thus be critical for the func-
tioning of asset markets [142,143]. When all agents are ra-
tional speculators it is hard to find reasons why specula-
tors would trade with each other. If the price is away from
its fundamental value both agents should insist on taking
the profitable side of any trade, which is impossible. If the
price is at its equilibrium, however, there is no profit to be
gained from trading.

In the foreign exchangemarket, commercial firms nec-
essarily have different trading motivations from specula-
tors. Speculative agents primarily care about currencies
as a store of value and commercial traders primarily care
about currencies as a medium of exchange. Thus the ex-
istence of high trading volumes is less difficult to explain
in foreign exchange than in, say, equity markets. (In bond
markets, an alternative trading motivation may be pro-
vided by insurers and others engaged in duration match-
ing.)

To generate trading volume in models of equity
markets, financial modelers typically introduce “liquidity
traders” or “noise traders” [22,115], typically modeled as
a pure random variable and verbally assigned some moti-
vation for trading. For liquidity traders the motivation is
exogenous portfolio rebalancing; for noise traders the mo-
tivation is often speculation based onmisinformation [22].
Neither motivation is fully satisfactory to the profession,
however. Portfolio rebalancing is not sufficient to account
for observed trading volumes and the professional pref-
erence for assuming rationality is not well-served by the
noise trader concept. In foreign exchange markets, com-
mercial traders provide rational trading partners for ratio-
nal speculators.

Constraints on Exchange Rates The institutional fea-
tures outlined in this section reveal a key constraint on
exchange rates. Onmost days the amount of currency pur-
chased by end-usersmust (roughly) equal the amount sold
by end-users. Though dealers stand ready to provide liq-
uidity intraday, the fact that they generally go home flat
means that the dealing community, as a whole, does not
provide overnight liquidity. Within a day, the net pur-
chases of any end-user group must ultimately be absorbed
by the net sales of some other end-user group. The ex-
change rate is presumably the mechanism that adjusts to
induce end-users to supply the required liquidity.

This same explicit constraint can be found in finan-
cial markets known as “call markets” (see glossary), where
a single price is chosen to match the amount bought to the
amount sold. Prominent call markets include the opening
markets on the NYSE and the Paris Bourse.
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The very real constraint that end-user purchases equal
end-user sales over a trading day differs dramatically
from the exchange-rate equilibrium condition common
to standard macroeconomic models. That condition is,
in essence, that money demand equals money supply.
The evidence does not support the relevance of aggregate
money demand/supply to day-to-day exchange-rate deter-
mination [153].

Intraday Dynamics

This section provides descriptive information about trad-
ing volume, volatility, and spreads on an intraday basis.

Intraday Patterns in Volume, Volatility, and Spreads

Trading volume, volatility, and interdealer spreads all vary
according to strong intraday patterns that differ in cer-
tain key respects from corresponding patterns in bond and
equity markets. Figure 1a and b shows these patterns for
euro-dollar and dollar-yen, based on EBS trade and quote
data over the period 1999–2001 [103].

As in other markets, trading volume (measured here
by the number of interbank deals) and volatility move to-
gether. As Asian trading opens (around hour 22) they both
rise modestly from overnight lows, after which they fol-
low a crude U-shape pattern during Asian trading hours
and then another U-shape during the London hours. They
both peak for the day as London is closing and New York
traders are having lunch and then decline almost mono-
tonically, reaching their intraday low as Asian trading
opens early in the New York evening.

Some back-of-the envelope figures may help make
these trading-volume patterns concrete. In Ito and Hashi-
moto’s 1999–2001 EBS database there were roughly eight
trades per minute in euro-dollar and six trades in dollar-
yen [103]. Together with the seasonal patterns, this sug-
gests that overnight interdealer trading was on the order
of one or fewer trades per minute while peak trading (out-
side of news events) was on the order of 10 (JPY) to 25
(EUR) trades per minute. Current interdealer trading ac-
tivity would be substantially larger, reflecting subsequent
market growth.

Bid-ask spreads almost perfectly mirror the pattern
of volume and volatility. They are highest during the
overnight period, and then decline as trading surges at the
Asian open. As trading and volatility follow their double-U
pattern during Asian and London trading hours, spreads
follow the inverse pattern: they rise-then-fall during Asian
trading and then rise-then-fall once again during the Lon-
don morning. After London closes, spreads rise roughly
monotonically to their overnight peaks.

Conventional interdealer spreads, as reported in Che-
ung and Chinn [36], average three basis points in euro-
dollar and dollar-yen, the two most active currency pairs.
In sterling-dollar and dollar-swiss, the next two most ac-
tive pairs, these averaged five basis points. Dealers in
both the US [36] and the UK [37] report that the domi-
nant determinant of spreads is the market norm. One im-
portant reason spreads widen is thin trading and a hec-
tic market. Another important reason is market uncer-
tainty [36], which is often associated with volatility. Since
volatility also increases inventory risk, it makes sense that
volatility and spreads have been shown to be positively re-
lated [23,92,105].

This tendency for interdealer spreads to move in-
versely from volume and volatility is consistent with pre-
dictions from two conceptual frameworks. Hartmann [92]
explains the relationship in terms of fixed operating costs,
such as the costs of maintaining a trading floor and of
acquiring real-time information. When trading volume is
high these costs can easily be covered with small spread,
and vice versa, so long as the extra volume is dominated
by uninformed traders. The same explanation could also
apply at the intraday horizon.

Admati and Pfleiderer [1] develop an asymmetric in-
formation model consistent with some of the key proper-
ties just noted. In their model, discretionary uninformed
traders (who can time their trades) choose to trade at one
time since this brings low adverse selection costs to deal-
ers and thus low spreads. The low spreads encourage in-
formed traders to trade at the same time and the infor-
mation they bring generates volatility. Overall, this model
predicts that trading volume and volatility move in paral-
lel and both move inversely with spreads, consistent with
the patterns in major foreign exchange markets.

In most equity and bond markets, spreads move in
parallel with trading volume and volatility, rather than
inversely, with all three following an intraday (single)
U-shape. Notably, a similar U-shape characterizes inter-
dealer foreign exchange markets in smaller markets, such
as Russia’s electronic interdealer market for rubles, which
only operate for a few hours every day [141]. In Taipei’s
interdealer market, which not only has fixed opening and
closing times but also closes down for lunch, spreads fol-
low a double-U-shape: they begin the day high, tumble
quickly, and then rise somewhat just before lunch; after
lunch they follow roughly the same pattern [76]. This con-
trast suggests that there is a connection between fixed trad-
ing hours and this U-shape for spreads.

Madhavan et al. [128] provide evidence that high
spreads at the NYSE open reflect high adverse-selection
risk, since information has accumulated overnight. High
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Market Microstructure, Foreign Exchange, Figure 1
IntradayPatterns for Volume, Volatility, Spreads, and theNumber of Price Changes. Figures are calculated from tick-by-tick EBS trade
and quote data during winter months during 1999–2001. Seasonal patterns are only slightly different in summer. (Source: [103]).
Greenwich Mean Time

spreads at the close, by contrast, reflect high inventory risk,
according to their evidence, since dealers cannot trade un-
til the market re-opens the next morning. In less-liquid
foreign exchangemarkets, such as those for emergingmar-
ket currencies, the overnight period is relatively long and
there is little overnight liquidity, so similar patterns may
arise. The failure of interdealer spreads in major curren-
cies to follow the pattern observed in equity and bond
markets need not imply, however, that adverse selection

is irrelevant in the interdealer markets. In the major cur-
rencies, the overnight period is short and liquid (relative
to other assets), so adverse-selection risk may not rise as
sharply as the market opens and inventory risk may not
rise as sharply as the overnight period approaches. In this
case adverse selection could be relevant but subordinate to
other factors, such as Hartmann’s fixed operating costs.

Weekends are a different story, since foreign exchange
trading largely ceases from about 21 GMT on Fridays until
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21 GMT on Sundays. The previous analysis suggests that
foreign exchange spreads might be particularly wide on
Mondaymornings in Tokyo and Friday afternoons in New
York. There is support for the first of these implications:
Ito and Hashimoto [103] provide tentative evidence that
spreads are indeed exceptionally wide on Monday morn-
ings in Tokyo.

Minute-by-minute data show that volume and volatil-
ity spike sharply at certain specific times of day [12]. In the
NewYork morning there are spikes at 8:20, 8:30, 10 and 11
am, reflecting the opening of derivatives exchanges, the re-
lease of US macro news, standard option expiration times,
and the WM/Reuters fixing (at 4 pm London time; this is
a price at which many banks guarantee to trade with cus-
tomers), respectively. Further spikes occur at 2 pm, and 8
pmNewYork time, reflecting the closing of derivatives ex-
changes and Japanese news releases, respectively. The tim-
ing of these spikes differs slightly in summerwhen daylight
saving time is adopted in the UK and the US but not Japan.

The high trading that typically accompanies macro
news releases represents a further dimension on which
the markets differ from the features assumed in macro-
based exchange-rate models. In macro-based models all
agents have rational expectations and all information is
public. The release of macro news causes everyone’s ex-
pectations to be revised identically so the price moves in-
stantly to reflect the new expectation without associated
trading volume.

Feedback Trading

The data provide substantial evidence of both positive and
negative feedback trading in foreign exchange. Sager and
Taylor [169] find evidence for positive feedback trading
in interdealer order flow using Granger-causality tests ap-
plied to the Evans and Lyons [58] daily data. Marsh and
O’Rourke [131] and Bjønnes et al. [18] find evidence for
negative feedback trading in semi-daily commercial-cus-
tomer order flow but not in corresponding financial-cus-
tomer order flow. Daniélsson and Love [44] find evidence
of feedback trading in transaction-level interdealer trading
data.

Feedback trading can greatly influence asset-price dy-
namics. For example, Delong et al. [45] show that in the
presence of positive-feedback traders, the common pre-
sumption that rational speculators stabilize markets is
turned on its head, and rational speculators intensify mar-
ket booms and busts instead. Negative-feedback traders,
by contrast, tend to dampen volatility.

There are at least three important sources of feedback
trading in currency markets: technical trading, options

hedging, and price-contingent orders. We discuss each in
turn.

Technical Trading Technical trading is widespread in
foreign exchange markets. Taylor and Allen [180] show
that 90 percent of chief dealers in London rely on technical
signals. Cheung and Chinn [36] find that technical trad-
ing best characterizes thirty percent of trading behavior
among US dealers and the fraction has been rising. Sim-
ilar evidence has emerged for Germany [137] and Hong
Kong (Lui and Mole 1998).

Trend-following technical strategies generate positive-
feedback trading. Froot and Ramadorai [74] present ev-
idence for positive-feedback trading among institutional
investors: their results indicate that, for major currencies
vs. the dollar, a one standard deviation shock to current re-
turns is associated with an 0.29-standard-deviation rise in
institutional-investor order flow over the next thirty days.

Contrarian technical strategies generate negative feed-
back. For example, technical analysts claim that “support
and resistance” levels are points at which trends are likely
to stop or reverse, so one should sell (buy) after rates rise
(fall) to a resistance (support) level. Support and resistance
levels are a day-to-day topic of conversation among mar-
ket participants, and most major dealing banks provide
active customers with daily lists of support and resistance
levels.

Option Hedging Option hedging also generates both
positive- and negative-feedback trading. To illustrate, con-
sider an agent who buys a call option on euros. If the in-
tent is to speculate on volatility, the agent will minimize
first-order price risk (delta-hedge) by opening a short euro
position. Due to convexity in the relationship between op-
tion prices and exchange rates, the short hedge position
must be modestly expanded (contracted) when the euro
appreciates (depreciates). The dynamic adjustments there-
fore bring negative-feedback trading for the option holder
and, by symmetry, positive-feedback trading for the op-
tion writer.

Barrier options – which either come into existence
or disappear when exchange rates cross pre-specified lev-
els – can trigger either positive- or negative-feedback trad-
ing and the trades can be huge. Consider an “up-and-out
call,” a call that disappears if the exchange rate rises above
a certain level. If the option is delta-hedged it can trigger
substantial positive-feedback trading when the barrier is
crossed: since the short hedge position must be eliminated,
the rising exchange rate brings purchases of the underly-
ing asset. The entire hedge is eliminated all at once, how-
ever, so the hedge-elimination trade is far larger than the
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modest hedge adjustments associated with plain-vanilla
options. Many market participants pay close attention to
the levels at which barrier options have been written, and
make efforts to find out what those levels are. Related op-
tion types, such as Target Resumption Notes (TARNs),
also trigger substantial feedback trading but tend to spread
it out.

Price-Contingent Orders Price-contingent customer
orders are the third important source of feedback trad-
ing in foreign exchange. These are conditional market or-
ders, in which the dealer is instructed to transact a spec-
ified amount at market prices once a trade takes place at
a pre-specified exchange-rate level. There are two types:
stop-loss orders and take-profit orders. Stop-loss orders
instruct the dealer to sell (buy) if the rate falls (rises) to the
trigger rate, thereby generating positive-feedback trading.
By contrast, take-profit orders instruct the dealer to sell
(buy) if the price rises (falls) to the trigger rate, thereby
generating negative-feedback trading.

Take-profit orders are often used by non-financial
customers that need to purchase or sell currency within
a given period of time. Their option to wait is valuable due
to the volatility of exchange rates. They can avoid costly
monitoring of the market and still exploit their option by
placing a take-profit order with a dealer. Financial cus-
tomers also use take-profit orders in this way. Stop-loss
orders, as their name implies, are sometimes used to en-
sure that losses on a given position do not exceed a cer-
tain limit. The limits are frequently set by traders’ employ-
ers but can also be self-imposed to provide “discipline.”
Stop-loss orders can also be used to ensure that a position
is opened in a timely manner if a trend develops quickly.
Savaser [171] finds that stop-loss order placement intensi-
fies prior to major macro news releases in the US.

One might imagine that these orders would tend to
offset each other, since rising rates trigger stop-loss buys
and take-profit sales, and vice versa. However, as discussed
in Osler [151,152], differences between the clustering pat-
terns of stop-loss and take-profit orders reduce the fre-
quency of such offsets. Take-profit orders tend to cluster
just on big round numbers: Stop-loss orders are less con-
centrated on the round numbers and more concentrated
just beyond them (meaning above (below) the round num-
ber for stop-loss buy (sell) orders).

Since stop-loss and take-profit orders cluster at dif-
ferent points, offsets are limited and these orders cre-
ate noticeable non-linearities in exchange-rate dynam-
ics [151,152]. The presence of stop-loss orders, for exam-
ple, substantially intensifies the exchange-rate’s reaction to
macro news releases [171]. Likewise, the tendency of take-

profit orders to cluster at the round numbers increases the
likelihood that trends reverse at such levels. This is con-
sistent with the technical prediction, introduced earlier,
that rates tend to reverse course at support; and resistance
levels. Finally, the tendency of stop-loss orders to cluster
just beyond the round numbers brings a tendency for ex-
change rates to trend rapidly once they cross round num-
bers. This is consistent with another technical prediction,
that rates trend rapidly after a trading-range break out.

Market participants often report that stop-loss or-
ders are responsible for fast intraday exchange-rate trends
called “price cascades.” In a downward cascade, for exam-
ple, an initial price decline triggers stop-loss sell orders
that in turn trigger further declines, which in turn trig-
ger further stop-loss sell orders, etc. Upward cascades are
equally possible: since every sale of one currency is the
purchase of another, there are no short-sale constraints
and market dynamics tend to be fairly symmetric in terms
of direction (most notably, there is no equivalent to the
leverage effect). Dealers report that price cascades happen
relatively frequently – anywhere from once per week to
many times per week. Osler [152] provides evidence con-
sistent with the existence of such cascades.

News Announcements

Macro news announcements typically generate a quick
surge in currency trading volume and volatility. As shown
in Fig. 2a and b, which are taken from Chaboud et al. [31],
volume initially surges within the first minute by an order
of magnitude or more. Dealers assert that the bulk of the
exchange-rate response to news is often complete within
ten seconds [36].

Carlson and Lo [29] closely examines one macro an-
nouncement, the timing of which was unanticipated. They
show that in the first half-minute spreads widened and
in the second half-minute trading surged and the price
moved rapidly. Chaboud et al. [31] shows that after the
first minute volume drops back substantially, but not com-
pletely, in the next few minutes. The remaining extra
volume then disappears slowly over the next hour. The
response of returns to news is particularly intense after
a period of high volatility or a series of big news sur-
prises [48,54], conditions typically interpreted as height-
ened uncertainty.

The US macro statistical releases of greatest impor-
tance are the GDP, the unemployment rate, payroll em-
ployment, initial unemployment claims, durable goods or-
ders, retail sales, the NAPM index, consumer confidence,
and the trade balance [3]. Strikingly, money supply re-
leases have little or no effect on exchange rates [3,25,
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Market Microstructure, Foreign Exchange, Figure 2
Minute-by-minute trading volume, euro-dollar, around US scheduled macro news announcements. Based on tick-by-tick EBS trade
data over 1999–2004. Trading volume relative to the intraday average. Source: [31]. Eastern Standard Time

36,62], consistent with the observation above that aggre-
gate money supply and demand seem unimportant for
short run exchange-rate dynamics.

Statistical releases bring a home-currency appreciation
when they imply a strong home economy. A positive one-
standard deviation surprise to US employment, which is
released quite soon after the actual employment is realized,
appreciates the dollar by 0.98 percent. For GDP, which is
released with a greater lag, a positive one-standard devi-
ation surprise tends to appreciate the dollar by 0.54 per-

cent [3]. Responses are driven by associated anticipations
of monetary policy: anything that implies a stronger econ-
omy or higher inflation leads investors to expect higher
short-term interest rates [13] and thus triggers a dollar ap-
preciation, and vice versa.

Federal Reserve announcements following FOMC
meetings do not typically elicit sharp increases in trad-
ing volume and volatility [13]. Instead, FOMC announce-
ments bring only a small rise in trading volume (Fig 2c)
and tend to reduce exchange-rate volatility [33]. This sug-
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gests that Federal Reserve policy shifts are generally antic-
ipated, which is encouraging since that institution prefers
not to surprise markets.

Unanticipated changes in monetary policy do affect
exchange rates. Fratscher [133] finds that an unanticipated
25 basis-point rise in US interest rates tends to appreci-
ate the dollar by 4.2 percent. Kearns and Manners [108],
who analyze other Anglophone countries, find that a sur-
prise 25 basis-point interest-rate rise tends to appreciate
the home currency by only 38 basis points. Kearns and
Manners also note a more subtle dimension of response:
If the policy shift is expected merely to accelerate an al-
ready-anticipated interest-rate hike, the exchange-rate ef-
fect is smaller (only 23 basis points, on average) than if the
shift is expected to bring consistently higher interest rates
over the next few months (43 basis points on average).

Evidence presented in Evans and Lyons [59] suggests
that exchange rates overshoot in responses to news an-
nouncements. For some types of news, between a tenth
and a quarter of the initial response is typically reversed
over the four consecutive days. The reversals are most
pronounced for US unemployment claims and the US
trade balance. This contrasts strikingly with the well-doc-
umented tendency for the initial stock-price response to
earnings announcements to be amplified after the first
day, a phenomenon known as “post-earnings announce-
ment drift” (Kothari [113] provides a survey). Nonethe-
less, over-reaction to fundamentals has been documented
repeatedly for other financial assets [10,26,173].

Exchange-rate responses to a given macro news statis-
tic can vary over time, as dealers are well aware [36]. Dur-
ing the early 1980s, for example, the dollar responded
fairly strongly to money supply announcements which, as
noted above, is no longer the case. This shift appears to
have been rational since it reflected public changes in Fed-
eral Reserve behavior: in the early 1980s the Fed claimed
to be targeting money supply growth, a policy it has since
dropped. The possibility that such shifts are not entirely
rational is explored in Bachetta and vanWincoop [7]. Che-
ung and Chinn [36] provide further discussion of how and
why the market’s focus shifts over time. Using daily data,
Evans and Lyons [60] find little evidence of such shifting
during the period 1993–1999. This could reflect the mask-
ing of such effects in their daily data or it could indicate
that such shifting was modest during those years of consis-
tent economic expansion and consistent monetary policy
structure.

Information relevant to exchange rates comes from
many more sources than macroeconomic statistical re-
leases. Trading volume and volatility are triggered by of-
ficial statements, changes in staffing for key government

positions, news that demand for barrier options is rising or
falling, reports of stop-loss trading, even rumors [48,147].
As documented in Dominguez and Panthaki [48], much
of the news that affects the market is non-fundamental.

Numerous asymmetries have been documented in
the responses to news. The effects of US macro an-
nouncements tend to be larger than the effect of non-
US news [59,82]. Ehrmann and Fratzscher [54] attribute
this asymmetry, at least in part, to the tendency for non-
US macroeconomic statistical figures to be released at un-
scheduled times and with a greater lag. Ehrmann and
Fratzscher also shows that exchange rates respond more to
weak than strong European news, and Andersen et al. [3]
report a similar pattern with respect to US announce-
ments. This asymmetry is not well understood.

Carlson and Lo [29] shows that many interdealer limit
orders are not withdrawn upon the advent of unexpected
macro news. This might seem surprising, since by leaving
the orders dealers seem to expose themselves to picking-
off risk. It may not be the dealers themselves, however, that
are thus exposed. The limit orders left in place may be in-
tended to cover take-profit orders placed by customers, so
the customer may be the one exposed to risk.

To be concrete: suppose a customer places a take-profit
order to buy 5 at 140.50 when the market is at 140.60. The
dealer can ensure that he fills the order at exactly the re-
quested price by placing a limit order to buy 5 at 140.50 in
the interdealer market. Suppose news is then released im-
plying that the exchange rate should be 140.30. The dealer
loses nothing by leaving the limit order in place: the cus-
tomer still gets filled at the requested rate of 140.50.

This interpretation may appear to push the mystery
back one step, because now the customer is buying cur-
rency at 140.50 when the market price of 140.30 would
be more advantageous. Why wouldn’t customers change
their orders upon the news release, or withdraw them be-
forehand? This could reflect a rational response of cus-
tomers to the high costs of monitoring the market intra-
day. Indeed, as noted earlier it is to avoid those costs that
customers place orders in the first place. The Customers
that choose not to monitor the market may not even be
aware of the news.

Returns and Volatility

This section describes the basic statistical properties of re-
turns and order flow.

Returns

Major exchange rates are often described as following
a random walk, since it has long been well-documented
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Market Microstructure, Foreign Exchange, Table 1
Autocorrelation of high-frequency returns. High-frequency au-
tocorrelation of DEM returns, using Reuters indicative quotes
over the period 1 October, 1992 through 30 September, 1993.
Source: [33]

5 min 10 min 15 min 30 min Hourly
�(1) –0.108 –0.093 –0.085 –0.066 –0.018
�(2) –0.019 –0.030 –0.018 0.008 0.006
�(3) –0.011 –0.002 0.006 0.024 –0.018

that daily returns tomajor exchange rates vis-à-vis the dol-
lar are not autocorrelated and are almost entirely unpre-
dictable. The random walk description is technically inac-
curate, of course, since the variance of returns can indeed
be forecast: it is statistically more accurate to describe the
exchange rate as a martingale. (Further, at the highest fre-
quencies returns are slightly negatively autocorrelated, as
shown in Table 1 [33]). Whatever the nomenclature, the
fact that current exchange rates provide better forecasts
than standard fundamentals-based models [134] has long
been a source of pessimism about exchange-rate theory in
general.

Though the unconditional autocorrelation of daily re-
turns is approximately zero, the conditional autocorrela-
tion is not. Research has long shown that trend-following
technical trading rules are profitable in major exchange
rates [140]. Though returns to these rules seems to have
declined in recent years, more subtle strategies remain
profitable on a risk-adjusted basis [35]. Markov switching
models also have predictive power for exchange rate re-
turns [46,50], though the switching variables must include
more than mean returns [117].

Daily returns are correlated across currencies, as one
might expect given exchange-rate responses to news. The
correlation between daily euro-dollar and sterling-dollar
returns, for example, is 70 percent, while correlations be-
tween these European exchange rates and dollar-yen are
smaller: both are 46 percent [12].

It has long been recognized that short-horizon ex-
change-rate returns are leptokurtotic. Kurtosis in euro-
dollar returns, for example, is 24, 19, and 14 at the fifteen-
minute, half-hour, and one hour horizons, respectively, all
significantly higher than the level of three associated with
the normal distribution [154]. Even at the two-day hori-
zon kurtosis is still statistically significantly above three,
though it has declined to five. These figures need not be
constant. Osler and Savaser [154] demonstrate that a num-
ber of properties of price contingent orders impart high
kurtosis to the distribution of returns. These properties in-
clude: high kurtosis in the orders’ own size distribution,
intraday seasonals in the execution of these orders; and

the clustering patterns in their trigger rates described ear-
lier. Stop-loss orders can also contribute to high kurtosis
by contributing to price cascades. This analysis suggests
that changes inmarket reliance on price-contingent orders
could bring changes in the distribution of returns.

Within the overall distribution of returns there seems
to have been a shift during the 1990s from the smallest re-
turns, meaning those within one standard deviation of the
mean, towards returns between one and five standard de-
viations [34]. The frequency of the most extreme returns,
however, showed no trend.

Volatility

Unlike returns, volatility exhibits strong autocorrelation.
As shown in Table 2, the first-order autocorrelation for
daily volatility is typically above 0.50 and remains above
0.40 for at least a week. Evidence suggests that volatility is
so persistent as to be fractionally integrated [12].

As recommended by Baillie and Bollerslev [8], volatil-
ity is typically captured with a GARCH(1,1) model or
a close variant. Table 2b gives illustrative results from
Chang and Taylor [33] showing that the AR component of
the volatility process dominates (coefficients above 0.90)
but the MA component is still significant. The MA com-
ponent becomes increasingly important as the time hori-
zon is shortened, though it remains subordinate. Table 2b
also provides results suggesting that the double exponen-
tial distribution may fit return volatility better than the
normal distribution. The thickness-of-tails parameter, “v,”
is two for the normal distribution but lower for the double
exponential: estimates place it closer to unity than two.

Ederington and Lee [53] show, using 10-minute fu-
tures data for the DEM over July 3, 1989 through Septem-
ber 28, 1993, that the GARCH(1,1) model tends to under-
estimate the influence of the most recent shock and also
shocks at long lags. These effects are captured better with
an ARCH formulation that includes the lagged one-hour,
one-day, and one-week return shock:
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X
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where ht is estimated conditional volatility and "t is the
shock to returns. These authors also find that daily and in-
traday seasonal patterns in volatility become fairly unim-
portant after controlling for announcements and ARCH
effects. They conclude that “much of the time-of-day pat-
terns and day-of-the-week patterns are due to announce-
ment patterns” (p. 536).

Volatility usually rises upon news announcements,
consistent with the analysis presented in III.C [53], but it
can fall: Chang and Taylor [33] find that US Federal Re-
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Market Microstructure, Foreign Exchange, Table 2
Strong autocorrelation in return volatility. a Daily realized
volatilities constructed from five-minute returns based on
Reuters indicative quote, July 1, 1987-December 31, 1993.
Source: [160]. b Illustrative GARCH results assuming the nor-
mal distribution or the double-exponential distribution. Com-
plete Reuters indicative quote for DEM, October 1992 through
September 1993. Source: [33]

a USD/DEM USD/JPY USD/GBP
�(1) 0.62 0.64 0.63
�(2) 0.52 0.53 0.54
�(3) 0.48 0.47 0.50
�(4) 0.45 0.44 0.47
�(5) 0.46 0.43 0.48

b Hourly 30 Minutes 15 Minutes 5 Minutes
Normal Dist.

˛
0.045 0.035 0.098 0.100
(3.83) (4.36) (8.32) (13.82)

ˇ
0.932 0.953 0.853 0.864
(48.33) (79.74) (38.53) (75.89)

Double-Exponential Dist.

˛
0.053 0.054 0.106
(5.07) (4.86) (4.97)

ˇ
0.930 0.936 0.878
(59.91) (66.01) (26.64)

v
1.173 1.123 1.128
(41.71) (52.14) (58.82)

serve news reduces volatility. This is consistent with the
earlier finding that Fed news does not induce much ex-
tra trading. Volatility, like returns, can behave asymmetri-
cally. Chang and Taylor [33] show that, during 1992, the
volatility of dollar-mark was sensitive to US macro news
but insensitive to German macro news. Such asymmetries
need not be stable over time: Hashimoto [94] shows that
asymmetries in the behavior of volatility changed dramat-
ically around the Japanese bank failures of late 1997.

It is often hypothesized that volatility persistence de-
rives from persistence in the flow of information, based
on two premises: (i) volatility moves in parallel with trad-
ing volume, and (ii) trading volume is persistent because
the advent of news is persistent. There is evidence to sup-
port both of these premises. Volatility and volume move
together in most financial markets and foreign exchange is
no exception, as shown in Fig. 1. Foreign exchange trading
volume and volatility also move together at longer hori-
zons [18,75]. Evidence also indicates persistence in the
news process. Chang and Taylor [33], who count news re-
leases on the Reuters real-time information system, find
that autocorrelation in the number of news items is 0.29 at
the one-hour horizon.

There is, however, little empirical evidence that di-
rectly traces volatility persistence in foreign exchange to
news persistence. In fact, the only direct evidence on this
point suggests that other factors are more important than
news. Berger et al. [12] finds that persistence in news is pri-
marily relevant to shorter-term volatility dynamics while
long-run persistence in volatility is captured primarily by
the low-frequency persistence in price impact, meaning
the impact on exchange-rates of order flow. Figure 6, taken
from Berger et al. [12], shows that daily price-impact co-
efficients for euro-dollar varied quite a bit during 1999–
2004, and the series displays strong persistence at low
frequencies. Further tests show that trading volume has
modest explanatory power even after controlling for order
flow.

Implied volatilities from exchange-traded options con-
tracts have also been studied. Kim and Kim [111] find
that implied volatilities in futures options are heavily in-
fluenced by volatility in the underlying futures price it-
self. They are not strongly influenced by news, and the
few macro news releases that matter tend to reduce im-
plied volatilities. Their analysis also indicates that implied
volatilities tend to be lower on Mondays and higher on
Wednesdays, though the pattern is not strong enough to
generate arbitrage trading profits after transaction costs.
Two studies show that daily volatility forecasts can be im-
proved by using intraday returns information in addition
to, or instead of, implied volatilities [132,160].

Order Flow and Exchange Rates,
Part I: Liquidity and Inventories

Customer currency demand usually must net to around
zero on trading days, as discussed earlier, and exchange-
rate adjustment seems likely to be the mechanism that in-
duces this outcome. If one group of customers decides to
purchase foreign currency over the day, on net, the cur-
rency’s value must rise to bring in the required liquid-
ity supply from another group of customers. This implies,
crudely, a relationship between net liquidity demand and
exchange-rate returns.

To identify this relationship empirically one must dis-
tinguish liquidity-demand trades from liquidity-supply
trades on a given day. We cannot simply look at trading
volume or, equivalently, total buys or total sells, since it is
the motivation behind the trades that matters. Instead we
need to compare the purchases and sales of liquidity con-
sumers. If they buy more than they sell then rates should
rise to induce overnight liquidity supply and vice versa.
The concept of “order flow” or, equivalently, “order im-
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Market Microstructure, Foreign Exchange, Figure 3
Stop-loss and take-profit orders tend to be placed at round numbers. Data comprise the complete order book of the Royal Bank of
Scotland in euro- dollar, sterling-dollar, and dollar-yen during the period September 1, 1999 through April 11, 2000. Chart shows the
frequency with trigger rates ended in the 100 two-digit combinations from 00 to 99. Source: [151]

balances,” which we examine next, can be viewed as amea-
sure of net liquidity demand.

Interdealer Order Flow

In the interdealer market we identify liquidity demanders
with either (i) those placing market orders or (ii) those
calling other dealers to trade directly. When using trans-
action data from a broker, order flow is calculated as mar-
ket buy orders minus market sell orders; when using di-
rect dealing data, order flow is calculated as dealer-initi-
ated buy trades minus dealer-initiated sell trades.

Evans and Lyons [58] were the first to show that in-
terdealer order flow has substantial explanatory power for
concurrent daily exchange-rate returns, a result that has
been replicated in numerous studies [56,97]. Benchmark
results are provided in Berger et al. [12], which has the ad-
vantage of a relatively long dataset. That paper shows that
the raw correlation between daily returns and interdealer
order flow is 65 percent for euro-dollar, 42 percent for ster-
ling-dollar, and 49 percent for dollar-yen. Berger et al. es-
timates that an extra $1 billion in order flow in a given day
appreciates the euro, the pound, and the yen by roughly
0.40 percent, with R2s in the vicinity of 0.50. By contrast,
it is well known that the explanatory power of standard
fundamental variables is typically well below 0.10 [58].

Evans and Lyons [58] and Rime, Sarno, and Sojli [166]
find that the overall explanatory power of interdealer order
flow for returns can be substantially increased by including
order flow from other currencies. In Evans and Lyons [58],
which uses daily interbank order flows for seven curren-
cies against the dollar over four months in 1996, the joint
explanatory power averages 65 percent and ranges as high
as 78 percent.

Since feedback trading is ubiquitous in foreign ex-
change, one must consider the possibility that these corre-
lations represent reverse causality – that returns are in fact
driving order flow. Two studies investigate this possibility.
Using daily data, Evans and Lyons [63] find that the influ-
ence of order flow on price survives intact after controlling
for feedback effects; using transactions data, Daniélsson
and Love [44] find that the estimated influence becomes
even stronger after controlling for feedback trading.

Dealers have long recognized the importance of cur-
rency flows in driving exchange rates, and have said as
much in surveys. In Gehrig and Menkhoff’s survey [77],
for example, over 86 percent of dealers said they rely on
analysis of flows in carrying out their responsibilities. In-
deed, the influence of order flow on exchange rates is
a critical assumption in their trading strategies, as illus-
trated in the following debate over optimal management
of stop-loss orders.

A dealer with a large stop-loss buy order could begin
filling the order after the exchange-rate rises to the trigger
price. Since the order-filling trades themselves will drive
the price up, however, the average price paid will exceed
the trigger rate, to the customer’s disadvantage. The dealer
could, alternatively, begin filling the order before the rate
hits the trigger price. The buy trades will push the price
up through the trigger rate and the average fill price will
be closer to the trigger rate. The risk here is that the ex-
change rate bounces back down below the trigger rate, in
which case the customer could justly complain of getting
inappropriately “stopped out.”

The key observation here is that the pros and cons of
both strategy options are driven by the impact of order
flow. Dealers do not view this as an hypothesis or as an as-
sumption. To them it is something they know, in the same
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Market Microstructure, Foreign Exchange, Figure 4
Frequency distribution of returns has shifted. Data comprise tick-by-tick Reuters indicative quotes over 1987–2001. Source: [34]

sense that one “knows” that the sun will disappear below
the horizon at the end of the day (pace Hume). Dealers see
order flow influence price too often and too consistently to
question it.

The estimated price impact of interdealer order flow
varies according to order size, time of day, and time hori-
zon. Price impact has a concave relationship to size [155],
consistent with evidence from equity markets [93,104].
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Market Microstructure, Foreign Exchange, Table 4
Autocorrelation coefficients for the number of exchange-rate
relevant news items, 1 October 1992 through 30 September,
1993. Reuters News data. Source: [33]

Hourly 30 Min 15 Min 10 Min 5 Min
�(1) 0.27 0.22 0.34 0.09 0.06
�(2) 0.29 0.16 0.12 0.09 0.04
�(3) 0.22 0.15 0.11 0.08 0.05

This may reflect order splitting and other dealer strategies
for minimizing the impact of large trades [17]. At the daily
horizon, the price impact is linearly related to order flow,
which makes sense since splitting a large trade into smaller
individual transactions rarely takes more than a few hours.
On an intraday basis, the price impact of interdealer or-
der flow is inversely related to trading volume and volatil-
ity, as shown for dollar-yen in Fig. 7 [12]. As discussed
earlier, spreads have a similarly inverse relation to trad-

Market Microstructure, Foreign Exchange, Figure 5
Responseof returns toorder flowat varioushorizons. Charts on the left showbeta coefficients fromregressions of returns on contem-
poraneous interdealer order flow for time horizons ranging from one minute to three months. Charts on the right show coefficients
of determination from those same regressions. Underlying data compriseminute-by-minute EBS transaction and quote records from
1999–2004. [12]

ing volume and volatility (Fig. 1). This suggests, logically
enough, that price impact is heavily influenced by spreads:
when spreads widen, a given-sized transaction has a bigger
price impact. Alternatively, however a third factor could
be at work: depth. Depth presumably varies inversely with
spreads and positively with trading volume intraday. Un-
fortunanely, information on depth is as yet almost nonex-
istent.

As time horizons lengthen the price impact of inter-
dealer order flow declines monotonically [12]. For the
euro, an extra $1 billion in order flow is estimated to
bring an appreciation of 0.55 at the one-minute horizon
but only 0.20 percent at the three-month horizon (Fig. 5,
left). The explanatory power of interdealer order flow also
varies with horizon but in a rising-falling pattern. The R2

is 0.36 at the one-minute horizon, reaches 0.50 at the 30-
minute horizon, stays fairly constant to the one-week hori-
zon, and then falls sharply to about 0.17 percent at the two-
month horizon (Fig. 5, right). Even at 17 percent, how-
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Market Microstructure, Foreign Exchange, Figure 6
Daily price impact coefficients for euro-dollar, 1999–2004. Un-
derlying data comprise minute-by-minute EBS transaction and
quote records from 1999–2004. Source: [12]

ever, the explanatory power of order flow at three months
is substantially higher than has been achieved with other
approaches. A similar pattern is found in Froot and Ra-
madorai, using institutional investor order flow, though
they find a peak at roughly one month rather than one
week [74]. They attribute the initial rise to positive-feed-
back trading.

The positive relation between interdealer order flow
and exchange rates could be influenced by inventory ef-
fects as well as the liquidity effects described above. Inven-
tory effects were, in fact, the first connection between or-
der flow and asset prices to be analyzed in the broader mi-

Market Microstructure, Foreign Exchange, Figure 7
Intraday Regression Betas and Average Trading Volume. Figure is based on the following regression: �st D ˛ C ˇOFt C �t , where
�st is the return and OFt is contemporaneous order flow. Regressions based on one-minute EBS trade data from 1999–2004 are run
separately for each half hour of the trading day. Line shows estimated coefficients with standard error bands. Bars show order flow
measured relative to the days’ average (day’s average set at 100). Source: [12]

crostructure literature, e. g. [177]. Dealers that provide liq-
uidity to other dealers are left with an inventory position
and thus inventory risk. Dealers charge a spread which
compensates them for this risk. The spread, in itself, gen-
erates a positive relationship between order flow and re-
turns: prices typically rise to the ask price upon buy orders
and fall to the bid price upon sell orders.

Customer Order Flow

Order flow in the customer market is measured as cus-
tomer-initiated buy trades minus customer-initiated sell
trades. This is consistent with a liquidity interpretation
on a trade-by-trade basis, since each customer effectively
demands instantaneous liquidity from their dealer. Cus-
tomer order flow, however, is not ideally suited to measur-
ing customer net liquidity demand at daily or longer hori-
zons. If a customer is coming to the market in response
to an exchange-rate change, then the customer may be de-
manding liquidity from its own dealer at that instant while
effectively supplying liquidity to the overall market.

This distinction proves critical when interpreting the
empirical relation between daily customer order flow and
exchange rates. There should be a positive relation be-
tween daily order flow and returns for customer groups
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that typically demand overnight liquidity. An increase in
their demand for foreign currency, for example, should in-
duce a rise in the value of foreign currency to elicit the
required overnight supply. Implicit in that story, how-
ever, is a negative relation between order flow and re-
turns for customer groups that typically supply overnight
liquidity.

Researchers have documented repeatedly that, at the
daily horizon, financial-customer order flow is positively
related to returns while commercial-customer order flow
is negatively related to returns. Confirming evidence is
found in Lyons’ [122] study of monthly customer order
flows at Citibank; in Evans and Lyons [61] study of daily
and weekly customer flows at the same bank; inMarsh and
O’Rourke’s [131] analysis of daily customer data from the
Royal Bank of Scotland, another large dealing bank; and
in Bjønnes et al. [18] comprehensive study of trading in
Swedish kroner, and in Osler et al.’s [154] study of a sin-
gle dealer at a medium-sized bank. The pattern is typically
examined using cointegration analysis where the key re-
lationship is between exchange-rate levels and cumulative
order flow.

This pattern suggests that financial customers are typ-
ically net consumers of overnight liquidity while com-
mercial customers are typically net suppliers. More di-
rect evidence that commercial customers effectively sup-
ply overnight liquidity, on average, comes from evidence
that commercial-customer order flow responds to lagged
returns, rising in response to lower prices and vice versa.
Marsh and O’Rourke [131] show this with daily data from
the Royal Bank of Scotland. Bjønnes et al. [18] show this
using comprehensive trading data on the Swedish krone
sampled twice daily.

It is easy to understand why financial customers would
demand liquidity: presumably they are speculating on fu-
ture returns based on some information that is indepen-
dent of past returns. Indeed, the identification of finan-
cial customers with speculation is explicit in Klitgaard and
Weir’s [112] study of currency futures markets. The IMM
requires the agents they deem large speculators to report
their positions on a weekly basis. Klitgaard andWeir show
that their weekly position-changes are strongly correlated
with concurrent exchange-rate returns. “[B]y knowing the
actions of futures market speculators over a given week,
an observer would have a 75 percent likelihood of cor-
rectly guessing an exchange-rate’s direction over that same
week” (p. 17).

It is not so immediately obvious why commercial cus-
tomers would supply overnight liquidity, since our first
image of a liquidity supplier is a dealer. Dealers supply
intraday liquidity knowingly and are effectively passive in

their trades with customers. By contrast, commercial cus-
tomers are not supplying liquidity either knowingly or
passively.

Commercial customers are, instead, just responding
to changes in relative prices in order to maximize profits
from their core real-side businesses. Suppose the foreign
currency depreciates. Domestic firms note that their for-
eign inputs are less expensive relative to domestic inputs
and respond by importing more, raising their demand for
the foreign currency. This effect, a staple of all interna-
tional economic analysis, has been well-documented em-
pirically at horizons of a quarter or longer, e. g. [5]. On
an intraday basis this effect is often evident in the behav-
ior of Japanese exporting firms, which hire professional
traders to manage their vast dollar revenues. These traders
monitor the market intraday, selling dollars whenever the
price is attractive. The vast majority of commercial cus-
tomers need to buy or sell currency only occasionally so
they can’t justify hiring professional traders. They can use
take-profit orders, however, to achieve the same goal, since
this effectively enlists their dealers to monitor the market
for them. At the Royal Bank of Scotland take-profit or-
ders are 75 (83) percent of price-contingent orders placed
by large corporations (middle-market) corporations [155],
but only 53 percent of price-contingent orders overall.

The evidence to date suggests the following crude por-
trait of day-to-day liquidity provision in foreign exchange
(a portrait first articulated in [18]). Financial customers
tend to demand liquidity from their dealers, who supply it
on an intraday basis. The dealing community as a whole,
however, does not provide overnight liquidity. Instead,
commercial customers supply the required overnight liq-
uidity, drawn to the market by new, more attractive prices.
Sager and Taylor [169] distinguish between “push” cus-
tomers, who demand liquidity, and “pull” customers, who
respond to price changes by providing liquidity. The mar-
ket structure just outlined effectively identifies financial
customers as short-run push customers and commercial
customers as short-run pull customers.

This picture is extremely preliminary and will doubt-
less change as new evidence arrives. There is, for exam-
ple, no theoretical or institutional reason why commer-
cial customers must exclusively supply overnight liquid-
ity or financial customers exclusively demand it. To the
contrary, there are good theoretical reasons why the roles
could sometimes be reversed. A change in commercial
currency demand could result from forces outside the
currency market, such as a war-induced rise in domes-
tic economic activity, rather than a response to previous
exchange-rate changes. In this case commercial end-users
would consume liquidity rather than supplying it.
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Market Microstructure, Foreign Exchange, Table 5
Order flow carries information about exchange-rate fundamentals. The table shows the R2 statistics and associatedmarginal signifi-
cance levels for the ability of daily customer order flow at Citibank during the period 1994 to 2001 to forecast upcoming announce-
ments of key macro variables. Source: [57]

US Output Growth German Output Growth
Forecasting Variables 1 Mo. 2 Mo. 1 Qtr. 2 Qtrs. 1 Mo. 2 Mo. 1 Qtr. 2 Qtrs.

Output
0.002 0.003 0.022 0.092 0.004 0.063 0.069 0.006
(0.607) (0.555) (0.130) (0.087) (0.295) (0.006) (0.009) (0.614)

Spot Rate
0.001 0.005 0.005 0.007 0.058 0.029 0.003 0.024
(0.730) (0.508) (0.644) (0.650) (0.002) (0.081) (0.625) (0.536)

Order Flows
0.032 0.080 0.189 0.246 0.012 0.085 0.075 0.306
(0.357) (0.145) (0.002) (0.000) (0.806) (0.227) (0.299) (0.000)

All
0.052 0.086 0.199 0.420 0.087 0.165 0.156 0.324
(0.383) (0.195) (0.011) (0.000) (0.021) (0.037) (0.130) (0.000)

Speculative demand could also respond to changes in
exchange-rate levels. Indeed, rational speculators are the
only overnight liquidity suppliers in the widely-respected
Evans and Lyons [58] model. In these models the trad-
ing day begins when agents arrive with arbitrary liquid-
ity demands. The agents trade with their dealers, leaving
the dealers with unwanted inventory. Dealers then trade
with each other, redistributing their aggregate inventory
but not reducing it. At the end of the trading day dealers
sell the unwanted inventory to rational investors who are
induced to supply the required liquidity by a change in the
exchange rate. If the initial liquidity demanders have sold
foreign currency, for example, the currency’s value de-
clines thus raising the risk premium associated with hold-
ing the currency. This encourages the risk-averse investors
to take bigger positions in foreign assets, and as they enact
the portfolio shift financial order flow is positive.

The Evans–Lyons scenario is necessarily simple. In
a model with many assets, negative-feedback trading
among financial customers requires that the currency has
no perfect substitutes [88]. This condition holds in foreign
exchange since exchange rates generally have low corre-
lation with each other and with equities. For the negative
feedback trading to be finite it is also required that specu-
lators are risk-averse and/or face constraints on their trad-
ing. Though currency speculators appear to have a fairly
high risk tolerance, their trading is always administratively
constrained, as discussed earlier. The prevalence of con-
trarian technical trading strategies, such as those based on
support and resistance levels, provides a further reason
to expect negative-feedback trading among financial cus-
tomers.

Despite these reasons to expect negative-feedback
trading among financial customers, the evidence for it is
thin and mixed. Financial agents do place a hefty share of
take-profit orders [155], so a liquidity response from them

is a fact. But their liquidity responsemay not be substantial
relative to the overall market. Bjønnes et al. [18] study of
trade in Swedish kroner and Marsh and O’Rourke’s [131]
study of customer trades at the Royal Bank of Scotland
both find no sensitivity of financial order flow to lagged
returns.

The influence of order flow on exchange rates de-
scribed in this section works through liquidity effects.
The broader microstructure literature refers to this influ-
ence in terms of “downward-sloping demand,” highlight-
ing that the demand for the asset has finite, rather than
infinite, elasticity. Downward-sloping demand could ex-
plain why Froot and Ramadorai [74] find that the initial
influence of institutional investor order flow disappears
after roughly a year. Institutional investors – indeed, all
speculative agents – have to liquidate positions to realize
profits. When the positions are initially opened, the as-
sociated order flow could move the exchange rate in one
direction; when the positions are liquidated the reverse
order flow could move the exchange rate in the reverse
direction.

Finite elasticity of demand is the underlying reason for
exchange-rate movements in Hau and Rey’s [96] model of
equity and currency markets. Carlson et al. [30] develop
a related exchange-rate model in which financial and com-
mercial traders can be both liquidity suppliers and liquid-
ity demanders. This model, which takes its critical struc-
tural assumptions directly from the microstructure evi-
dence, predicts that financial (commercial) order flow is
positively (negatively) related to concurrent returns, con-
sistent with the evidence. It also predicts that these re-
lations are reversed in the long run, consistent with ev-
idence in Fan and Lyons [64] and Froot and Ramado-
rai [74]. Investors in the model have no long-run effect on
exchange rates because they ultimately liquidate all their
positions. Since commercial agents dominate long-run ex-



602 Market Microstructure, Foreign Exchange

change rates, fundamentals such as prices and economic
activity are important in the long run even though themay
not dominate in the short run. In addition to being consis-
tent with the microstructure evidence, this model is also
consistent with most of the major puzzles in international
macroeconomics, including: the apparent disconnect be-
tween exchange-rates and fundamentals, the increase in
real-exchange-rate volatility upon the advent of floating
rates, the short-run failure and long-run relevance of pur-
chasing power parity, and the short-run failure of uncov-
ered interest parity.

Order Flow and Exchange Rates

The influence of order flow on exchange rates is another
aspect of the foreign exchange market that “does not seem
to tally closely with current theory . . . ” [81]. The equi-
librium exchange rate in standard models adjusts to en-
sure that domestic and foreign money supplies equal cor-
responding money demands. The currency purchases or
sales that accompany portfolio adjustments are not mod-
eled and are considered unimportant. Indeed, order flow
per se cannot be calculated in these models since they as-
sume continuous purchasing power parity and/or contin-
uous uncovered interest parity.

The contrast betweenmicrostructural reality and stan-
dard models is especially clear when we examine the
mechanism through which news affects exchange rates.
In macro-based models, the public release of information
generates an immediate revision of shared expectations of
future exchange rates, which in turn brings an immediate
exchange-rate adjustment that requires no trading. Trad-
ing is unlikely, in fact, since no rational speculator would
trade at any other price. Thus order flow in these models
has no role in the exchange-rate adjustment to news.

The evidence shows, however, that order flow is the
main conduit through which news influences exchange
rates. Roughly two thirds of the influence of news on ex-
change-rate levels and volatility comes from the associated
order flow [63,118]. During the “once-in-a-generation yen
volatility” of 1998, “order flow [was the] most important
. . . source of volatility,” according to the investigation of
Cai et al. [25], even more important than news and central
bank intervention.

Reassuringly, the idea that order flow affects exchange
rates is a natural extension of an important lesson learned
after the advent of floating rates in the 1970s.

[E]xchange rates should be viewed as prices of
durable assets determined in organized markets
(like stock and commodity exchanges) in which cur-
rent prices reflect the market’s expectations con-

cerning present and future economic conditions
relevant for determining the appropriate values of
these durable assets, and in which price changes are
largely unpredictable and reflect primarily new in-
formation that alters expectations concerning these
present and future economic conditions (p. 726
in [73]).

There has long been extensive evidence that order flow
influences price in stock markets [38,101,174]. In bond
markets the evidence emerged later, due to constraints
on data availability, but is nonetheless substantial [24,67,
106,156,175,176]. Since exchange rates are asset prices
they should be determined like other asset prices and thus
order flow should be influential.

Order Flow and Exchange Rates, Part II: Information

So far we have considered two reasons why order flow
could affect exchange rates: liquidity effects and inventory
risk. This section considers a third and critically important
reason: order flow carries private information.

The information hypothesis is suggested by evidence
showing that much of the exchange-rate response to or-
der flow is permanent. Payne [157], who decomposes re-
turns into permanent and transitory components consis-
tent with Hasbrouck [93], finds that “the permanent com-
ponent accounts for . . . one quarter of all return varia-
tion” (p. 324). A permanent effect is implicit in Evans and
Lyons’ [58] evidence that order flow has strong explana-
tory power for daily exchange-rate returns, since daily re-
turns are well described as a random walk. A permanent
relation is also suggested by the finding, noted earlier,
that cumulative order flow is cointegrated with exchange
rates [18,110]. A permanent relation between order flow
and price is not consistent with the inventory analysis pre-
sented earlier. A permanent relation is consistent with liq-
uidity effects if the shifts in liquidity demand or supply are
permanent. A permanent relation is inevitable, however, if
order flow carries private fundamental information.

The influence of private fundamental information
on asset prices was originally analyzed in equity-in-
spired models [79,115], which begin with the observa-
tion that sometimes customers often have private infor-
mation about an asset’s true value that dealers do not
share. Since an informed customer only buys (sells) when
the dealer’s price is too low (high), dealers typically lose
when they trade with such customers. To protect them-
selves from this adverse selection, dealers charge a bid-
ask spread, ensuring that profits gained from trading with
uninformed customers balance the inevitable losses from
trading with informed customers [39]. Rational dealers en-
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sure that their prices reflect the information communi-
cated by a customer’s choice to buy or sell [52,79]. Prices
are “regret-free” in the sense that a dealer would not wish
s/he had charged a higher (lower) price after learning that
the customer wishes to buy (sell). Due to the spread, prices
rise when informed customers buy and fall when informed
customers sell. Meanwhile, others update their conditional
expectation of the asset’s true value and adjust their trades
and quotes accordingly. Ultimately the information be-
comes fully impounded in price. Since the information is
fundamental, the effect is permanent.

Types of Information

Private fundamental information in the foreign exchange
market is likely to be structurally different from private
fundamental information in a stock market. The funda-
mental determinants of a firm’s value includemany factors
about which there can naturally be private information,
such as management quality, product quality, and a com-
petitor’s strength. The fundamental determinants of a cur-
rency’s value, by contrast are macroeconomic factors such
as economic activity, interest rates, and aggregate price
levels, most of which are revealed publicly.

The foreign exchange literature implicitly elaborates
multiple different interpretations of the private infor-
mation customers might bring to the market. These
vary along three dimensions: (i) whether the information
comes from commercial customers, real-money funds, or
leveraged investors; (ii) whether the information is fun-
damental; and (iii) whether the information is passively
or actively acquired. Though these three dimensions pro-
vide eight conceivable information categories, only some
of these appear to be relevant for research. For example,
only a small minority of the thousands of non-financial
firms around the world would ever attempt to acquire
either fundamental or non-fundamental information be-
fore trading. The four categories that seem likely to be
important, based on the current literature, are discussed
below.

Fundamental Information Passively Acquired by Com-
mercial Customers Information about exchange-rate
fundamentals may be “dispersed” among customers with-
out being under their control. This hypothesis is most
closely associated with Evans and Lyons:

The dispersed information we have in mind in fact
characterizes most variables at the center of ex-
change rate modeling, such as output, money de-
mand, inflation, [and] consumption preferences . . .
These variables are not realized at the macro level,

but rather first as dispersed micro realizations, and
only later aggregated by markets and/or govern-
ments. For some of these measures, such as risk
preferences and money demands, government ag-
gregations of the underlying micro-level shocks do
not exist, leaving the full task of aggregation to mar-
kets. For other variables, government aggregations
exist, but publication lags underlying realizations by
1–4 months, leaving room for market-based aggre-
gation in advance of publication ([61], p. 3).

For concreteness, suppose the economy is expanding
rapidly and in consequence commercial firms are all trad-
ing actively. Each individual firm might not recognize the
generality of its experience but a dealer could potentially
see the high economic activity reflected in his commercial-
customer order flow. This information would provide the
dealer with a signal of GDP concurrent with its realization
and thus prior to the associated statistical release.

Fundamental Information Passively Acquired by Finan-
cial Customers A variant of the dispersed information
hypothesis postulates that the relevant fundamentals con-
cern capital markets as well as the real economy. For ex-
ample, high demand from institutional investors might in-
dicate that risk aversion is low [58,61,122]. It is not clear
whether structural features of financial markets should be
considered fundamental, in part because the definition of
the term fundamental is not entirely clear. It is clear, how-
ever, that any fundamental factor should be relevant to
long run equilibrium. Certain structural features of finan-
cial markets, like risk appetite, seem likely to influence
long-run international macro variables such as interna-
tional net asset positions (the US net asset position has
changed sign but once since 1970), and these in turn seem
likely to influence exchange rates. So it seems that some
deep financial-market parameters are fundamental, or at
least represent some intermediate category between fun-
damental and non-fundamental.

Fundamental Information Actively Sought by Cus-
tomers Certain financial customers – typically leveraged
investors – forecast exchange rates by combining exist-
ing public information with their own economic insights.
For example, many such agents attempt to profit from the
big returns associated with macro statistical releases by
generating private forecasts of upcoming announcements.
These customers thus actively generate private fundamen-
tal information, rather than passively reflecting informa-
tion that arises as a normal part of their business. This ac-
tively-acquired information could also be reflected in cus-
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tomer order flow, so dealers could still generate their own
private signals by observing it. Dealers often report that
currency demand is highly correlated within certain types
of leveraged investors, permitting them to infer informa-
tion from observing the trades of just one or a few of these
investors.

Indirect evidence for the existence of actively-acquired
information comes from Marsh and MacDonald [124].
They find, in a sample of exchange-rate forecasts, that
a major cause of forecast heterogeneity “is the idiosyn-
cratic interpretation of widely available information, and
that this heterogeneity translates into economically mean-
ingful differences in forecast accuracy” (p. 665). They
also find that heterogeneity is a significant determinant
of trading volume, consistent with predictions in the lit-
erature that diversity of price forecasts generates trad-
ing [91,107,181,182].

Non-fundamental Information Some speculative tra-
ders may respond to non-fundamental information, like
noise traders. Others could respond to non-fundamental
hedging needs, as suggested in Bacchetta and van Win-
coop [7]. Evidence for the relevance of non-fundamental
information is provided in Osler [152], Dominguez and
Panthaki [48], and Cao, Evans and Lyons [27]. If the in-
formation in order flow is not fundamental it is likely to
have only a transitory influence on rates.

Trades based on non-fundamental information may
be informative to dealers even if they have only a tran-
sitory impact on the market, since dealers speculate at
such high frequencies. Indeed, Goodhart [81] insists that
dealers rely on nothing but non-fundamental information:
dealers’ “speculative activities are not based on any con-
sideration of longer-term fundamentals. . . . And to repeat,
. . . the extremely large-scale, very short-term speculative
activity in this market by the individual traders . . . is not
based on a long-term future view of economic fundamen-
tals” (pp. 456–457, italics in the original) Consistent with
this, US dealers assert that the high-frequency returns on
which they focus are unrelated to fundamentals [36]. For
example, “at the intraday horizon, PPP has no role accord-
ing to 93 percent of respondents” (p. 465).

The Evidence: Order Flow Does Carry Information

The evidence indicates fairly clearly that some foreign ex-
change order flow carries private information. For exam-
ple, Bjønnes, Osler, and Rime [21] show statistically that
banks with the most customer business have an informa-
tion advantage in the interdealer market, a proposition
that dealers themselves certainly support [36,81].

The broader microstructure literature identifies loca-
tion, specifically proximity to relevant decision-makers, as
another potential source of information advantage in fi-
nancial markets [40,95,129]. Location also appears to be
relevant in foreign exchange. Covrig and Melvin [41] find
that order flow from Japan tends to lead movements in
dollar-yen. Menkhoff and Schmeling [141] find that loca-
tion affects the information content of interbank trades
in the market for rubles. Their analysis indicates that
trades originating from the two major financial centers,
Moscow and St. Petersburg, have a permanent price im-
pact while trades originating from six peripheral cities do
not. D’Souza [49] shows that “trades are most informative
when they are initiated in a local country or in major for-
eign exchange centers of London and New York.”

If order flow carries exchange-rate relevant informa-
tion then one should be able to use it to forecast ex-
change rates. Studies consistently find that customer order
flow has predictive power for exchange rates. Evans and
Lyons [60] find that daily customer order flow at Citibank
has forecasting power for exchange-rate returns at hori-
zons up to one month. Gradojevic and Yang [83] finds that
customer and interbank order flow in the Canadian dollar
market jointly have forecasting power for exchange rates.
They also conclude that a non-linear forecasting structure,
specifically an artificial neural network, is superior to lin-
ear approaches. Both Evans and Lyons [60] and Grado-
jevic and Yang [83] conclude that return forecasts are im-
proved when customer order flow is disaggregated accord-
ing to customer type, which suggests that some partici-
pants are more informed than others. Curiously, Rosen-
berg and Traub [168] provide evidence that futures order
flow has predictive power for near-term spot returns. This
raises the possibility that some informed investors choose
to trade in futures markets.

Studies of the forecasting power of interdealer or-
der flow arrive at mixed conclusions. Sager and Tay-
lor [170] examine the predictive power of daily inter-
dealer order flow series, including two heavily filtered
commercially available order flow series, and the raw in-
terdealer flows examined in Evans and Lyons [58]. They
estimate single-equation regressions including order flow
and interest differentials as independent variables. Mea-
suring performance in terms of root mean squared er-
ror they find that these series do not outperform the ran-
dom walk when information on future fundamentals is
unavailable. In contrast, Rime et al. [166] find that inter-
dealer order flow does outperform the random walk in
predicting exchange rates one day ahead. Using three ex-
change rates (euro-dollar, dollar-yen, sterling-dollar) and
associated Reuters (broker) order flow for one year they
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Market Microstructure, Foreign Exchange, Table 6
Net purchases for banks in four size categories. The table considers net purchases – the number of purchases minus the number of
sales – for four groups of banks vis-à-vis a Scandinavian bank during one week of 1998. Table shows how these net purchases are
correlated with contemporaneous returns and with net purchases for other bank categories. All numbers with absolute value over
0.24, 0.28, or 0.36 are significant at the 10 percent, 5 percent, and 1 percent level, respectively. Source: [21]

Return Biggest (Rank 1–20) Big Rank (21–50) Small (Rank 51–100) Smallest (Rank > 100)
Return 1.00
Biggest 0.55*** 1.00
Big 0.26* 0.29** 1.00
Small –0.43*** –0.66*** –0.28** 1.00
Smallest –0.44*** –0.79*** –0.32*** 0.41*** 1.00

create forecasts based on what is, in essence, a struc-
tural VAR. They use the forecasts to create portfolios of
the currencies. For forecast horizons ranging from 14 to
24 hours, the portfolios’ Sharpe ratios range from 0.44
to 2.24 and average 1.59. Sharpe ratios for the random
walk model and a UIP-based model are generally much
lower.

What kind of information is carried by order flow? Ev-
idence is consistent with the presence of both passively-
acquired and actively-acquired fundamental information.
Evans and Lyons [61] show that Citibank customer or-
der flow has substantial predictive power for US and Ger-
man GDP growth, inflation, and money growth at hori-
zons ranging up to six months. The results are especially
strong at longer horizons, where regressions using only
order flow forecast between 21 percent and 58 percent of
changes in the fundamental variables. (By contrast, regres-
sions using only the lagged dependent variable or the spot
rate generally forecast less than 10 percent.) This suggests
that customer order flow concurrently reflects macro fun-
damentals and that the information may be passively ac-
quired.

Evidence also suggests that order flow carries actively-
acquired information about upcoming macro events and
news releases. Froot and Ramadorai [74] show that State
Street Corporation’s institutional-investor flows have sig-
nificant predictive power for changes in real interest rates
at horizons up to thirty days. This would appear to be ac-
tively-acquired information.

Rime et al. [166] provide evidence that order flow car-
ries information about upcoming macro news releases.
Using thirty different news statistics (fifteen from the US,
six from Europe, nine from the UK), the authors run the
following regression:

AnnkiThursC j � EThursAnnk
ThursC j

D �
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iD1

OrderFlowThursCi C  ThursC j :

On the left is the news “surprise” for announcement-type k
(k D 1; 2; : : : ; 30), meaning the difference between the
announced figure and the median survey forecast for that
announcement. On the right is cumulative interdealer or-
der flow for the period between the survey and the an-
nouncement. The estimated relationships are generally
quite strong: reported coefficients of determination range
up to 0.91 and average 0.45. Since the news releases all
lag the realization of the underlying macro aggregate by
a month or more, the order flow would not reflect concur-
rent macro developments but instead appears to have been
actively acquired.

This evidence suggests a strong focus on upcoming
announcements among speculative agents, a focus that is
quite evident in the market. Dealer communication with
active customers includes regular – often daily – informa-
tion on upcoming releases and extensive discussion of the
macro context relevant for interpreting these releases. The
agents that speculate on such announcements are typically
leveraged investors.

Further support for the view that some private in-
formation is actively acquired in foreign exchange comes
from Osler and Vandrovych [155]. They consider the in-
formation in price-contingent orders at the Royal Bank
of Scotland with the agents placing those orders disag-
gregated into eight groups: leveraged investors, institu-
tional investors, large corporations, middle-market corpo-
rations, broker-dealers, other banks, the bank’s own spot
dealers, and the bank’s own exotic options desk. The price
impact of executed orders, measured as the post-execu-
tion return over horizons ranging from five minutes to
one week, is evaluated for the three major currency pairs.
Results show that orders from leveraged investors have
a strong and lasting impact while orders from institu-
tional investors have little or no impact. Consistent with
the possible dominance of levered investors, further ev-
idence indicates financial order flow carries more infor-
mation than commercial order flow, at least at short hori-
zons [28,64,[154].
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In short, the evidence is consistent with the hypothesis
that customer order flow carries information about macro
aggregates that is aggregated by dealers and then reflected
in interdealer order flow. The evidence suggests that the
customers acquire their information actively and perhaps
passively as well.

The Evidence: Is the Information Really Fundamental?

Not all researchers are convinced that the information
in foreign exchange order flow is fundamental. Berger et
al. [12] highlight their findings (reported earlier) that the
long-run price impact of interdealer order flow is smaller
than the initial impact, and that explanatory power also
declines at longer time horizons. They comment:

The findings . . . are consistent with an interpreta-
tion of the association between exchange rate re-
turns and order flow as reflecting principally a tem-
porary – although relatively long-lasting – liquidity
effect. They are also perhaps consistent with a be-
havioral interpretation . . . But our results appear to
offer little support to the idea that order flow has
a central role in driving long-run fundamental cur-
rency values – the ‘strong flow-centric’ view (p. 9).

Bacchetta and van Wincoop [7] suggest that this interpre-
tation of the result may bemore pessimistic than necessary
regarding the relevance of fundamental information in or-
der flow. Their model indicates that this pattern would be
predicted when order flow reflects both fundamental and
non-fundamental information. “In the short run, rational
confusion plays an important role in disconnecting the ex-
change rate from observed fundamentals. Investors do not
know whether an increase in the exchange rate is driven
by an improvement in average private signals about future
fundamentals or an increase in [non-fundamentals]. This
implies that [non-fundamentals] have an amplified effect
on the exchange rate . . . ” (p. 554)

Evidence presented in Froot and Ramadorai [74] also
suggests that the connection from order flow to exchange
rates is transitory though long-lasting. Their institutional-
flows dataset is large enough to permit a rigorous analysis
of order flow and returns at horizons of a year or more
(it extends from mid-1994 through early 2001 and cov-
ers 18 different currencies vs. the dollar), far longer than
horizons considered in most other papers. Like Berger et
al. [12], they find that the positive short-run correlation
between order flow and returns peaks and then declines.
Their correlation estimates reach zero at about 300 trading
days and then become statistically negative. The authors
note: “[O]ne can interpret the facts as suggesting that any

impact of flows on currencies is transitory . . . [and] any
information contained in flows is not about intrinsic value
per se (p. 1550).” Since this conclusion is based initially on
crude correlations, the authors also undertake a sophisti-
cated VAR decomposition of returns into permanent and
transitory components, the results of which lead to the
same overall conclusion. This finding cannot be explained
in terms of the Bacchetta and van Wincoop [7] insights,
since these do not imply the ultimate disappearance of the
effect.

Could institutional-investor order flow carry informa-
tion about macro fundamentals and yet have zero price
impact after a year? It was suggested earlier that these ob-
servations are consistent when liquidity effects drive the
connection from order flow to exchange rates. If real-
money funds have roughly a one-year average investment
horizon, then the initial upward impact of any, say, pur-
chases – whether or not motivated by fundamental infor-
mation – would ultimately be offset by a downward im-
pact when the positions are unwound, leaving a zero im-
pact at the one-year horizon. It is also worth noting that
Froot and Ramadorai [74] analyze only institutional or-
der flow. As noted earlier, institutional investors typically
ignore the currency component of returns when making
portfolio allocations, so one would not expect their order
flow to have a permanent relation with exchange rates. The
trades of other customers might still carry information.

Order flow could also have a transitory influence
if exchange-rate expectations are not fully rational, as
noted by both Berger et al. [12] and Froot and Ramado-
rai [74]. A tendency for professional exchange-rate fore-
casts to be biased and inefficient has been frequently doc-
umented [123]. This could explain why exchange rates ap-
parently overreact to certain macro announcements [60].
As in Keynes’s beauty contest, short-term traders could
profit by correctly anticipating news and how other mar-
ket participants will react to it, whether or not the reaction
to news is rational.

The potential relevance of the behavioral perspective
is underscored by extensive evidence for imperfect ra-
tionality among currency dealers presented in Oberlech-
ner [147]. Indeed, dealers themselves typically claim that
short-run dynamics are driven in part by “excess specula-
tion” [36]. One potential source of excess speculative trad-
ing is overconfidence, a human tendency towards which
has been extensively documented by psychologists [159].
Odean [150] shows that when agents overestimate the ac-
curacy of their information – a common manifestation of
overconfidence – they trade excessively and thereby gen-
erate excess volatility. Oberlechner and Osler [148] show,
based on a sample of over 400 North American dealers,
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that currency dealers do not escape the tendency towards
overconfidence. Further, they find that overconfident deal-
ers are not driven out of the market: overconfidence is un-
related to a dealer’s rank or trading longevity. This sug-
gests that overconfidence may be a permanent structural
feature of currency markets.

Information as an Incomplete Explanation

It is important to recognize that “information” is at best
a partial explanation for the influence of order flow on ex-
change rates. An appeal to “information” quickly becomes
circular in the absence of a successful economic model of
the underlying connections between fundamentals and ex-
change rates.

This point is best clarified by illustration. Suppose
a speculator expects a soon-to-be-released trade balance
statistic to be higher than generally expected. According
to the information hypothesis, three things happen: (i) the
speculator evaluates whether a higher trade balance im-
plies a stronger or weaker home currency and then trades
accordingly; (ii) the associated order flow reveals to deal-
ers whether the currency is over- or undervalued; (iii) as
more dealers learn the information, it becomes progres-
sively impounded in the exchange rate.

The information research just summarized concen-
trate on parts (ii) and (iii) of this story. But part (i) is
also critical: Speculators must somehow evaluate the im-
plications of the trade balance for the exchange rate in
order to choose a position. To accomplish this, the spec-
ulator might rely on a model of how fundamentals and
exchange rates are connected. But that model cannot it-
self rely on the information hypothesis without becoming
circular: The information hypothesis asserts that exchange
rates are determined by order flow because order flow car-
ries information; circularity arises if the information in the
order flow is that order flow determines exchange rates,
which are determined by information. The speculator
might alternatively ignore fundamentals and rely instead
on a model of how other people think about fundamen-
tals influence exchange rates. But of course this version of
Keynes’ beauty contest is equally prone to circularity.

The good news is that models intended to analyze
the deep connections between fundamentals and exchange
rates can now be based on more than just “assumption
and hypotheses” [81]. Instead, they can have well-specified
microfoundations based on our new understanding of the
structure of currency markets and the exchange-rate de-
termination process. Indeed, in the philosophical outlook
of Karl Popper [161], reliance on the best available infor-
mation is a key test of a model’s scientific validity.

Price Discovery in Foreign Exchange

Research so far indicates that order flow influences ex-
change rates at least in part because it carries information
brought to the market by customers. Research has also be-
gun to clarify the exact mechanism through which the in-
formation becomes embodied in exchange rates.

Adverse Selection and Customer Spreads

Researchers have tended to assume that the price discovery
process in foreign exchange conforms to the process dis-
cussed earlier in which adverse selection is key. This view
of price discovery has been extensively elaborated in the-
oretical work, e. g., [100], and many of its predictions are
fulfilled in the NYSE [14,89,158].

For structural reasons, this price discovery mechanism
cannot apply directly to the foreign exchange market. The
mechanism assumes a one-tier market, in which dealers
interact only with customers, while foreign exchange is
a two-tier market, in which dealers trade with customers
in the first tier and trade with each other in the second
tier. While this need not imply that adverse selection is
entirely irrelevant, it does mean, at a minimum, that the
framework needs adjustment before it can be relevant.

Empirical evidence shows that some of the key pre-
dictions of adverse selection do not hold in foreign ex-
change. The framework predicts, for example, that cus-
tomer spreads are widest for the trades most likely to carry
information, which would be large trades and trades with
financial customers. The reverse is true, however. Osler et
al. [154] analyzes the euro-dollar transactions of a single
dealer over four months in 2001 and finds that customer
spreads are smaller for large trades and for financial cus-
tomers. The authors test three other implications of ad-
verse selection, none of which gain support.

Further evidence for an inverse relationship between
customer spreads and trade size is provided in Ding [47],
which analyzes customer trading on a small electronic
communication network. Direct evidence that spreads are
narrowest for customer trades that carry the most infor-
mation comes fromRamadorai [162], which analyzes daily
flows through State Street’s global custody operations. He
finds that asset managers with the greatest skill in predict-
ing (risk-adjusted) returns pay the smallest spreads. Over-
all it appears that adverse selection does not drive spreads
in the customer foreign exchange market.

Adverse selection could, nonetheless, be an important
determinant of spreads in the interdealer market. Infor-
mation definitely appears to be asymmetric in that mar-
ket [21], and the evidence is consistent with the hypoth-
esis that spreads include a significant adverse selection
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component. Adverse-selection models predict two pos-
sible relations between trades and spreads. First, quoted
spreads could widen with trade size if trade size is con-
sidered informative [52,78,126]. Evidence consistent with
this prediction is presented in Lyons [120], but he ex-
amined a dealer who exclusively traded in the inter-
dealer market, a form of trading that may no longer
exist; later dealer studies fail to confirm this predic-
tion [18,185]. It is possible, however, that trade direc-
tion is considered informative even while trade size is
not, in which case spreads could still include a signif-
icant adverse selection component [99]. This is espe-
cially likely in limit-order markets, where the liquidity
supplier (limit-order trader) often determines trade size,
rather than the liquidity demander (market-order trader).
Bjønnes and Rime [18] find strong evidence that trade di-
rection is considered informative in the interdealermarket
and that adverse selection thereby influences interdealer
spreads.

What Drives Customer Spreads?

The apparent irrelevance of adverse selection in the for-
eign exchange customer market raises an important ques-
tion: What does drive customer spreads? It appears that
structural factors may be at play, since spreads are also
widest for the least informed trades in other two-tier mar-
kets, including the London Stock Exchange [86], the US
corporate bond market [80], and the US municipal bond
markets [84,90].

Osler et al. [154] reviews three hypotheses suggested
in the broader microstructure literature that could explain
this pattern in foreign exchange markets. First, the pattern
could reflect the existence of fixed operating costs, which
can be covered by a small spread on a large trade or a large
spread on a small trade.

Fixed operating costs cannot, however, explain why
commercial customers pay higher spreads than finan-
cial customers. The “strategic dealing” hypothesis sug-
gests that dealers are strategically subsidizing informed-
customer trades in order to gather information they can
exploit during later interdealer trading [144,154].

Commercial customers could also pay higher spreads
under the “market power” hypothesis of Green et al. [84].
This suggests that dealers have transitory market power
relative to customers that do not carefully evaluate their
execution quality or who do not know market conditions
at the time they trade. Commercial customers in the for-
eign exchange market tend to be relatively unsophisti-
cated: they are less familiar with standard market practice
and typically do notmonitor themarket on an intraday ba-

sis. Thismay give dealers greater flexibility to extract wider
spreads.

Price Discovery in Foreign Exchange

If adverse selection does not describe the price discovery
process in foreign exchange, what does? Osler et al. [154]
propose an alternative price discovery mechanism con-
sistent with the foreign exchange market’s two-tier struc-
ture. The mechanism focuses on how dealers choose to of-
fload the inventory accumulated in customer trades. Deal-
ers typically use limit orders to control inventory [18], but
not always. Existing theory highlights important determi-
nants of this choice [71,87]: market orders provide speedy
execution at the cost of the bid-ask spread, while limit
orders provide uncertain execution at an uncertain time
but earn the bid-ask spread if execution does take place.
This trade-off creates incentives such that market orders
are more likely when a dealer’s inventory is high, consis-
tent with evidence in Bjønnes and Rime [18] and Osler et
al. [154]. It also implies that a dealer should be more likely
to place amarket order after trading with an informed cus-
tomer than after trading with an uninformed customer.

To clarify the logic of this second inference, suppose
that an informed customer buys from a dealer that pre-
viously had zero inventory. That dealer will have three
reasons to place a market order in the interdealer mar-
ket: (i) information that exchange-rate is likely to rise;
(ii) a non-zero (and therefore risky) inventory position;
and (iii) information that his (short) inventory position is
likely to lose value because prices are likely to rise. In con-
sequence, after an informed customer buy transaction the
dealer is relatively likely to place a market buy order. This
raises the traded price, consistent with the customer’s in-
formation.

After an uninformed customer purchase, by contrast,
a dealer has only one reason to place a market order: risky
inventory. If the dealer places a limit order rather than
a market order then the uninformed-customer purchase
would tend to be associated with negative downward re-
turns, as the limit buy order is executed against a market
sell.

One key testable implication of this proposed price
discovery mechanism is that the likelihood of an inter-
bank market order is higher after trades that are rela-
tively likely to carry information, specifically financial-cus-
tomer trades and large trades. Osler et al. [154] finds sup-
port for this implication using a probit analysis of their
dealer’s own trading choices. This indicates that the condi-
tional probability that the dealer places an interbank mar-
ket order is 9.5 percent for small commercial-customer
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trades and almost twice as high, at 18.5 percent, after small
financial-customer trades. After large financial-customer
trades – the most informed of all – the corresponding like-
lihood is 40.2 percent.

This proposed price discovery mechanism is consis-
tent with much of the empirical evidence discussed so far.
For example, it is consistent with the signs of the cointe-
grating relationships between returns and order flow: pos-
itive for financial customers, negative for commercial cus-
tomers, positive for dealers. The positive cointegration be-
tween financial order flow and returns indicates that finan-
cial order flow carries fundamental information. The pos-
itive cointegration between interdealer order flow and re-
turns suggests that dealers’ market orders reflect the infor-
mation in their customer order flow. The negative cointe-
gration between commercial order flow and returns could
also be an outcome of the price discovery hypothesis: if
dealers place limit orders after trades with commercial
customers (and if commercial customers are indeed rel-
atively uninformed) then a commercial-customer buy will
be reflected in an interdealer market sell order, with an as-
sociated price decline.

The mechanism is also consistent with Rime et
al.’s [166] demonstration that interdealer order flow has
strong predictive power for upcoming macro statistical re-
leases, together with other evidence suggesting that lever-
aged investors bring themost information to themarket. If
leveraged investors are the most informed customers, then
under this price discovery hypothesis interdealer order
flow will reflect that group’s trades. Since interdealer or-
der flow has strong predictive power for upcoming macro
releases, the implication is that leveraged investors devote
much effort to forecasting those releases.

Summary and Future Directions

The currency microstructure evidence summarized here
provides many new insights about the economics of the
currency market and thus the economics of exchange-
rate determination. The field thus merits its alternative
moniker, “the new microeconomics of exchange rates.”

The new evidence reveals that the proximate cause of
most exchange-rate dynamics is order flow, which can be
interpreted as net liquidity demand. The critical role of or-
der flow is not, of course, in itself an economic explanation
for exchange-rate dynamics. Recognizing this, the new lit-
erature provides evidence for three economic mechanisms
through which order flow could influence exchange rates:
inventory effects, liquidity effects, and information.

The information mechanism raises a critical question:
What information is carried by order flow? The informa-

tion apparently originates with customers; dealers then see
it reflected in their customer order flow. Some of the infor-
mation may be dispersed, passively-acquired information
about concurrent fundamentals. Some of the information
appears to be actively-acquired information about upcom-
ing macro news releases, with the most informative order
flow coming from leveraged investors. Some of the infor-
mation may be non-fundamental.

The literature also investigates the precise mechanism
through which a customer’s private information becomes
reflected in exchange rates. This price discovery mecha-
nism appears to differ strikingly from price discovery on
the NYSE, a difference that could reflect a key structural
difference across markets: foreign exchange dealers can
trade with each other as well as with customers, but the
NYSE has no interdealer market.

The literature addresses many questions of impor-
tance to researchers in microstructure per se. For example,
what determines spreads in foreign exchange? Customer
spreads in foreign exchange behave entirely differently
from those on, say, the NYSE. On the NYSE, market mak-
ers try to protect themselves from informed traders and, if
possible, they charge informed traders wider spreads. By
contrast, foreign exchange dealers actively court the busi-
ness of informed traders by quoting them narrow spreads.
This could reflect the ability of currency dealers to trade
with each other. Currency dealers seek trades with in-
formed customers because the customers’ order flow pro-
vides information the dealers can exploit in subsequent in-
terdealer trades.

Our knowledge of this market still has big gaps, of
course, which provide many fascinating questions for fu-
ture research. A partial list includes the following:

1. Why do interdealer spreads vary inversely with trad-
ing volume and volatility? Does this pattern reflect
fixed operating costs, the optimal bunching of liquid-
ity traders, or something else?

2. What determines intraday variations in the price im-
pact of order flow?While it looks like this is strongly in-
fluenced by the intraday pattern in interdealer spreads,
there is little hard evidence on this point. What other
factors might matter?

3. What determines longer-horizon variation in the price
impact of order flow? The relevance of this question is
enhanced, of course, by the evidence that variation in
price impact contributes importantly to the persistence
of volatility.

4. There is bound to be substantiallymore variation across
types of financial customers, and across types of cor-
porate customers, than has yet been identified. How
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much technical trading is there?What fraction of inter-
national investors disregard the currency component
of returns when choosing portfolio allocations? Is this
fraction changing?

5. There is still much to learn about the nature of the in-
formation provided by order flow, how dealers perceive
that information, and how dealers use that information.
Dealers claim they don’t seek and don’t use fundamen-
tal information but the evidence reveals that much of
the information moving through the market is, in fact,
related to fundamentals.

6. How strong are inventory, liquidity effects, and infor-
mation effects in determining the connection between
order flow and exchange rates?

Even when these questions have been addressed, how-
ever, the larger question – the question that originally
motivated foreign exchange microstructure research –
will still remain. In dealing with this question the for-
eign exchange microstructure researchers have followed
Karl Popper’s [161] agenda for scientific inquiry in its
purest form. According to his philosophical perspective,
good scientists produce evidence that “falsifies” existing
paradigms and then create new paradigms consistent with
all the evidence, old and new. The new evidence revealed
by currency microstructure has falsified many aspects of
traditional macro-based models while shedding new light
on the economics of exchange-rate determination.

To develop the next generation of exchange-rate mod-
els, researchers now have at their disposal an extensive
body of knowledge about how exchange rates are actually
determined. This information brings with it the ability –
and the responsibility – to construct models with well-
specified microfoundations. A rigorous, empirically-rele-
vant paradigm for short-run exchange-rate dynamics is
much closer than it was a decade ago.
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Glossary

Cowles commission approach An approach to structural
econometric modeling identified with the pioneering
work of the Cowles Foundation during the 1940s and
1950s.

Endogenous variable A variable whose value is deter-
mined within a specified model.

Exogenous A variable that is assumed given for the pur-
poses of analysis because its value is determined out-
side the model of interest.

Reduced formmodels A stochastic model with relation-
ships between endogenous variables on the one hand
and all exogenous variables on the other.

Structural model A stochastic model with interdepen-
dent endogenous and exogenous variables.

Treatment effects An effect attributed to a change in the
value of some policy variable analogous to a treatment
in a clinical trial.

Definition of the Subject

Microeconometrics deals with model-based analysis of in-
dividual-level or grouped data on the economic behavior
of individuals, households, establishments or firms. Re-
gression methods applied to cross-section or panel (lon-
gitudinal) data constitute the core subject matter. Mi-
croeconometric methods are also broadly applicable to
social and mathematical sciences that use statistical mod-
eling. The data used in microeconometric modeling usu-
ally come from cross section and panel surveys, censuses,
or social experiments. A major goal of microeconometric
analysis is to informmatters of public policy. The methods

of microeconometrics have also proved useful in provid-
ing model-based data summaries and prediction of hypo-
thetical outcomes.

Introduction

Microeconometrics takes as its subject matter the regres-
sion-based modeling of economic relationships using data
at the levels of individuals, households, and firms. A dis-
tinctive feature microeconometrics derives from the low
level of aggregation in the data. This has immediate impli-
cations for the functional forms used to model analyze the
relationships of interest. Disaggregation of data brings to
the forefront heterogeneity of individuals, firms, and or-
ganizations. Modeling such heterogeneity is often essen-
tial for making valid inferences about the underlying re-
lationships. Typically aggregation reduces noise and leads
to smoothing due to averaging of movements in opposite
directions whereas disaggregation leads to loss of conti-
nuity and smoothness. The range of variation in micro
data is also typically greater. For example, household’s av-
erage weekly consumption of (say) meat is likely to vary
smoothly, while that of an individual household in a given
week may be frequently zero, and may also switch to pos-
itive values from time to time. Thus, micro data exhibit
“holes, kinks and corners” [80]. The holes correspond to
nonparticipation in the activity of interest, kinks corre-
spond to the switching behavior, and corners correspond
to the incidence of nonconsumption or nonparticipation
at specific points of time. Consequently, discreteness and
nonlinearity of response are intrinsic to microeconomet-
rics.

Another distinctive feature of microeconometrics de-
rives from the close integration of data and statistical mod-
eling assumptions employed in analyzing them. Sample
survey data, the raw material of microeconometrics, are
subject to problems of complex survey methodology, de-
partures from simple random sampling assumptions, and
problems of sample selection, measurement errors, in-
complete and/or missing data – problems that in princi-
ple impede the generalization from sample to population.
Handling such issues is an essential component of microe-
conometric methodology.

An important application of microeconometrics is to
tests predictions of microeconomic theory. Tests based on
micro data are more attractive and relatively more persua-
sive because (a) the variables involved in such hypotheses
can be measured more directly, (b) the hypotheses under
test are likely to be developed from theories of individual
behavior, and (c) a realistic portrayal of economic activity
should accommodate a broad range of outcomes and re-
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sponses that are a consequence of individual heterogene-
ity and that are predicted by underlying theory. In many
public policy issues one is interested in the behavioral re-
sponses of a specific group of economic agents under some
specified economic environment. One example is the im-
pact of unemployment insurance on the job search behav-
ior of young unemployed persons. To address these issues
directly it is essential to use micro data.

The remainder of this article is organized as follows.
In the next section I provide a historical perspective of the
development of microeconometrics and sketch the topics
in which important advances have occurred. In Sect. “His-
torical Background” we detail two models – the discrete
choice model and the selection model – that are land-
mark developments in microeconometrics and provide
important reference points for the remainder of the article.
Sect. “Two Leading Examples” outlines three dominant
modeling methodologies for structural modeling in mi-
croeconometrics. The final Sect. “Causal Modeling” sur-
veys some of the major challenges in microeconometrics
and the available modeling tools for dealing with these
challenges. To stay within space constraints, I empha-
size developments that have influenced microeconomic
data analysis, and pay less attention to general theoretical
analyzes.

Historical Background

Analysis of individual data has a long history. Engel [23],
Allen and Bowley [2], Houthakker [43], and Prais and
Houthakker [79] all made pioneering contributions to the
research on consumer behavior using household budget
data. Other seminal studies include Marschak and An-
drews [77] in production theory, and Stone [86], and To-
bin [88] in consumer demand. Nevertheless, the path-
breaking econometric developments initiated by the Cow-
les Foundation during the 1940s and 1950sweremotivated
by concerns of macroeconomic modeling. The initial im-
pact of this research was therefore largely on the devel-
opment of large-scale multi-equation aggregate models of
sectors and the economy. Although the Cowles Commis-
sion work was centered on the linear simultaneous equa-
tions model (SEM), while modernmicroeconometrics em-
phasizes nonlineairties and discreteness, the SEM concep-
tual framework has proved to be a crucial and formative
influence in structural microeconometric modeling.

The early microeconometric work, with the important
exception of Tobin [88], relied mainly on linear models,
with little accommodation of discreteness, kinks, and cor-
ners. Daniel McFadden’s [68] work on analysis of discrete
choice and James Heckman’s [30,31,32,33] work on mod-

els of truncation, censoring and sample selection, which
combined discrete and continuous outcomes, were path-
breaking developments that pioneered the development
of modern microeconometrics. These developments over-
lapped with the availability of large micro data sets begin-
ning in the 1950s and 1960s.

These works were a major departure from the over-
whelming reliance on linearmodels that characterized ear-
lier work. Subsequently, they have led to major method-
ological innovations in econometrics. Among the earlier
textbook level treatment of this material (and more) are
Maddala [76] and Amemiya [3]. As emphasized by Heck-
man [35], McFadden [73] and others, many of the fun-
damental issues that dominated earlier work based on
market data remain important, especially concerning the
conditions necessary for identifiability of causal economic
relations. But the style of microeconometrics is sufficiently
distinct to justify writing a text that is exclusively devoted
to it.

Modern microeconometrics based on individual,
household, and establishment level data owes a great deal
to the greater availability of data from cross section and
longitudinal sample surveys and census data. In the last
two decades, with the expansion of electronic recording
and collection of data at the individual level, data vol-
ume has grown explosively. So too has the available com-
puting power for analyzing large and complex data sets.
In many cases event level data are available; for exam-
ple, marketing science often deals with purchase data col-
lected by electronic scanners in supermarkets, and indus-
trial organization literature contains econometric analyzes
of airline travel data collected by online booking systems.
New branches of economics, such as social experimenta-
tion and experimental economics, have opened up that
generate “experimental” data. These developments have
created many new modeling opportunities that are absent
when only aggregated market level data are available. At
the same time the explosive growth in the volume and
types of data has also given rise to numerous methodolog-
ical issues. Processing and econometric analysis of such
large micro data bases, with the objective of uncovering
patterns of economic behavior, constitutes the core of mi-
croeconometrics. Econometric analysis of such data is the
subject matter of this book.

Areas of Advances

Both historically and currently, microeconometrics con-
centrates on the so-called limited dependent variable
(LDV) models. The LDV class deals with models in which
the outcome of interest has a limited range of varia-
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tion, in contrast to the case where variation is continuous
and on the entire real line. Examples are binary valued
outcomes, polychotomous outcomes, non-negative inte-
ger-valued outcomes, and truncated or censored variables
where values outside a certain range are not observed. An
example of censoring arises in modeling the labor sup-
ply of working women. Here the data refers to the num-
ber of hours of work of the employed women even though
from an empirical perspective the economist is interested
in both the decision to participate in the labor force (ex-
tensive margin) and also in the choice of hours of work
(intensive margin) conditional on participation. From this
perspective the sample on hours of work is censored and
the analysis of hours of work of only those who participate
potentially suffers from “selection bias”. Analysis of tran-
sitions between states and of time spent in a state, e. g. un-
employment, using the methods of hazard (survival) anal-
ysis also confronted the issue of truncation and censoring,
since in many cases the spells of unemployment (dura-
tions) were only partially observed. Many economic out-
comes such as choice of occupation or travel model, and
event counts are inherently discrete and hence fall in the
LDV class. Many others involve interdependent discrete
and continuous outcomes, e. g. participation and hours of
work.

� LDV topics have maintained their core status in the
area. But their scope has expanded to include count
data models [12] and a much wider variety of selection
models. Whereas in 1975 virtually all of the models of
discrete choice were static and cross sectional, now dis-
crete choice analysis has developed in many directions,
including dynamic aspects which permit dependence
between past, current and future discrete choices. Dy-
namic discrete choice modeling is now embedded in
dynamic programming models [22,83]. Individuals of-
ten state their preferences over hypothetical choices (as
when they are asked to reveal preferences over goods
and services not yet in the market place), and they also
reveal their preferences in the market place. Modern
discrete choice analysis integrates stated preferences
and revealed preferences [89,90].

� In 1975 the subject of multivariate and structural es-
timation of discrete response models required further
work in almost every respect. In modern microecono-
metric models generally, and discrete choice models
specifically, there is greater emphasis on modeling data
using flexible functional forms and allowing for hetero-
geneity. This often leads to mixture versions of these
models. Advances in computer hardware and software
technologies have made simulation-based methods of

all types, including Bayesian Markov chain Monte
Carlo methods, more accessible to practitioners. Vari-
eties of LDV models that were previously outside the
reach of practitioners are now widely used. Inference
based on resampling methods such as bootstrap that
do not require closed form expressions for asymptotic
variances are now quite common in microeconomet-
rics.

� Extensions of many, if not most, LDV models to allow
for panel data are now available [44]. Random effects
panel models are especially amenable to simulation-
based estimation. There have been important advances
in handling advanced linear panel data models (includ-
ing dynamic panels) and nonlinear panel data mod-
els – especially models for binary and multinomial out-
comes, censored variables, count variables, all of which
are now more accessible to practitioners.

� Bayesian approaches are well-suited for analyzing com-
plex LDV because they efficiently exploit the underly-
ing latent variable structure. Bayesian analysis of LDV
models is well-developed in the literature, but its incor-
poration into mainstream texts still lags [53]. Special-
ized monographs and texts, however, fill this gap.

� Treatment evaluation, which deals with measurement
of policy impact at micro level, is now conspicuous and
major new topic. The impact of the topic is broad be-
cause treatment evaluation is discussed in the context
of many different LDV models, using a variety of para-
metric and semi- or nonparametric approaches, under
a variety of different assumptions about the impact of
treatment. The literature on this topic is now very ex-
tensive, see Heckman and Robb [36], Imbens and An-
grist [45], Heckman and Vytlacil [39], and Lee [58] for
a monograph-length treatment.

� Topic related to data structures now receive more at-
tention. This includes the pros and cons of observa-
tional data and those from social and natural exper-
iments. These topics arise naturally in the context of
treatment evaluation. Other data related topics such
as survey design and methodology, cross sectional and
spatial dependence, clustered observations, and miss-
ing data also get greater attention.

� As regards estimation and inference, the classical meth-
ods of maximum likelihood, least squares and method
of moments were previously dominant, with some ex-
ceptions. These methods typically make strong distri-
butional and functional form assumptions that are of-
ten viewed with skepticism because of their potential
impact on policy conclusions. By contrast, there is now
a greater variety of semiparametric estimators in use,
of which quantile regression is a leading example [51].
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Nonparametric regression is another new topic. There
is now a large literature dealing with most standard
models and issues from a semi-parametric viewpoint.

Two Leading Examples

To illustrate some salient features of microeconometrics,
the structure of two leading models, the first one for dis-
crete choice and the second for sample selection, will be
described and explained. Latent variables play a key role
in the specification of bothmodels, and in the specification
of LDV models more generally. Distributional and struc-
tural restrictions are usually imposed through the latent
variable specifications. Estimation of the models can also
exploit the latent variable structure of such models.

Example 1: RandomUtility Model

McFadden played a major role in the development of the
random utility model (RUM) that provides the basis of
discrete choice analysis; see McFadden [68,70,71,72]. Dis-
crete choice models, firmly established in the analysis of
transport mode choice, are now used extensively to model
choice of occupations, purchase of consumer durables and
brand choice.

The RUM framework is an extension of Thur-
stone [87]. In the binary RUM framework the agent
chooses between alternatives 0 and 1 according to which
leads to higher satisfaction or utility which is treated as
a latent variable. The observed discrete variable y then
takes value 1 if alternative 1 has higher utility, and takes
value 0 otherwise. The additive random utility model
(ARUM) specifies the utilities of alternatives 0 and 1 to be

U0 D V0 C "0
U1 D V1 C "1 ;

(1)

where V0 and V1 are deterministic components of utility
and "0 and "1 are random components of utility. The al-
ternative with higher utility is chosen. We observe y D 1,
say, if U1 > U0. Due to the presence of the random com-
ponents of utility this is a random event with

Pr
�
y D 1jV0;V1

� D Pr [U1 > U0]
D Pr [V1 C "1 > V0 C "0]
D Pr ["0 � "1 < V1 � V0]
D F (V1 � V0) ; (2)

where F is the c.d.f. of ("0 � "1). This yields Pr[y D 1] D
F(x0ˇ) if V1 � V0 D x0ˇ. Different choices of the func-
tional form F generate different parametric models of bi-
nary choice (outcome).

The additive RUM model has multivariate extensions.
In the general m-choice multinomial model the utility of
the jth choice is specified to be given by

Uj D Vj C " j ; j D 1; 2; : : : ;m ; (3)

where Vj, the deterministic component of utility may be
specified to be a linear index function, e. g. Vi j D x0

i jˇ

or Vi j D x0
iˇ j , and " j denotes the random component of

utility. Suppressing the individual subscript i for simplic-
ity, using algebraic manipulations similar to those for the
binary case, we obtain

Pr[y D j] D Pr
�
Uj � Uk ; all k ¤ j

�

D Pr
�
e"k j � �eVk j ; all k ¤ j

�
; (4)

where the tilda and second subscript j denotes differencing
with respect to reference alternative j.

Consider an individual choosing a mode of transport
to work where the choice set consists of train, bus, or pri-
avte car. Each mode has associated with it a determinis-
tic utility that depends upon attributes (e. g. money cost,
time cost) of the mode and a random idiosyncratic com-
ponent (“error”). Empirically the goal is to model condi-
tional choice probabilities in terms of the mode attributes.
Different multinomial models can be generated by dif-
ferent assumptions about the joint distribution of the er-
ror terms. These models are valid statistically, with prob-
abilities summing to one. Additionally they are consistent
with standard economic theory of rational decision-mak-
ing. The idiosyncratic components of choice should ex-
hibit correlation across choices if the alternatives are simi-
lar. For example, if the random components have indepen-
dent type I extreme value distributions (a strong assump-
tion!), then

Pr[y D j] D eVj

eV1 C eV2 C � � � eVm
: (5)

This is the conditional logit (CL) model when Vj D x0
jˇ,

which means that attributes vary across choices only, and
the multinomial legit (MNL) when Vj D x0ˇ j , which
means that attributes are individual- but not choice-spe-
cific. Assuming that the random components have a joint
multivariate normal distribution, which permits idiosyn-
cratic components of utility to be correlated, generates
the multinomial probit (MNP) model. The MNL is a spe-
cial case of the Luce [59] model; it embodies an im-
portant structural restriction that the odds ratio for pair
(i; j), Pr[y D i]/ Pr[y D j], is independent of all other
available alternatives IIA). The MNP is the less restrictive
Thurstone model, which allows for dependence between
choices.
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Multinomial Logit and Extensions The MNL model is
much easier to compute than the MNP, but there is moti-
vation for extending the MNL to allow for dependence in
choices. One popular alternative is based on the general-
ized extreme value (GEV) model proposed by McFadden
et al. [70], which leads to the nested logit (NL) model.

The GEV distribution is

F ("1; "2; : : : ; "m) D exp
��G



e�"1 ; e�"2 ; : : : ; e�"m

��

where the function G(Y1;Y2; : : : ;Ym)is chosen to satisfy
several assumptions that ensure the joint distribution and
resulting marginal distributions are well-defined.

If the errors are GEV distributed then an explicit solu-
tion for the probabilities in the RUM can be obtained, with

p j D Pr[y D j] D eVj
G j


e�V1 ; e�V2 ; : : : ; e�Vm

�

G


e�V1 ; e�V2 ; : : : ; e�Vm

� ; (6)

where Gj(Y1;Y2; : : : ;Ym) D @G(Y1;Y2; : : : ;Ym)/@Yj , see
McFadden (p. 81 in [70]). A wide range of models can be
obtained by different choices of G(Y1;Y2; : : : ;Ym ).

The nested logit model of McFadden [70] arises when
the error terms " jk have the GEV joint cumulative distri-
bution function

F(") D exp
��G



e�"11 ; : : : ; e�"1K1 ; : : :

; e�"J1 ; : : : ; e�"JKJ
��

(7)

for the following particular specification of the function
G(�),

G(Y) D G


Y11; : : : ;Y1K1 ; : : : ;YJ1; : : : ;YJKJ

�

D
JX

jD1

0

@
K jX

kD1

Y1/� j
jk

1

A

1�� j

: (8)

The parameter � j is a function of the correlation between
" jk and " j l (see [13], p. 509).

The nested logit model specifies choice-making as a hi-
erarchical process. A simple example is to consider choice
of a television, where one first decides whether to buy
a LCD screen or a plasma screen, and then conditional on
that first choice which brand.

TV
� Ÿ

LCD Plasma
� Ÿ � Ÿ

Brand A Brand B Brand 1 Brand 2

The random components in an RUM are permitted to be
correlated for each option within the LCD and plasma
groups, but are uncorrelated across these two groups. The
GEV model can be estimated recursively by fitting a se-
quence of MNL models.

Multinomial Probit Another way to remove the IIA re-
striction is to assume that the unobserved components
have a joint multivariate normal distribution. Beginning
with m-choice multinomial model, with utility of the jth
choice given by Uj D Vj C " j; j D 1; 2; : : : ;m, where
" 
 N [0;˙ ], where the m � 1 vector " D ["1 : : : "m]0.

If the maximum likelihood equations have a unique
solution for the parameters of interest, the model is said
to be identified. In case that the number of equations is in-
sufficient to yield unique estimates, restrictions on ˙ are
needed to ensure identification. Bunch [11] demonstrated
that all but one of the parameters of the covariance matrix
of the errors " j � "1 is identified. This can be achieved if
we normalize "1 D 0, say, and then restrict one covariance
element. Additional restrictions on ˙ or ˇ may be needed
for successful application, especially inmodels where there
are no alternative-specific covariates [47]. That is, even
when aMNPmodel is technically identified, the identifica-
tion may be fragile in some circumstances, thus requiring
further restrictions.

A natural estimator for this model is maximum likeli-
hood. But, asmentioned in Sect. “Introduction”, this poses
a computational challenge as there is no analytical ex-
pression for the choice probabilities. For example, when
m D 3,

p1 D Pr[y D 1] D
Z �eV 31

�1

Z �eV 21

�1
f (e"21;e"31) de"21 de"31 ;

where f (e"21;e"31) is a bivariate normal with as many as two
free covariance parameters andeV 21 andeV31 depend on re-
gressors and parameters ˇ. This bivariate normal integral
can be quickly evaluated numerically, but a trivariate nor-
mal integral is the limit for numerical methods. In practice
it is rare to see MNP applied when there are more than 4
choices.

Simulation methods are a potential solution for higher
dimensional models [89]. For Monte Carlo integration
over a region of the multivariate normal, a very popu-
lar smooth GHK simulator simulator is the GHK simu-
lator, due to Geweke [25], Hajivassiliou et al. [29] and
Keane [48]; see Train [89] for details. This discussion takes
ˇ and ˙ as given but in practice these are estimated. The
maximum simulated likelihood estimator (MSL) maxi-
mizes

bLN (ˇ; ˙ ) D
NX

iD1

mX

jD1

yi j lnbpi j ;

where thebpi j are obtained using the GHK or other sim-
ulator. Consistency requires the number of draws in the
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simulator S ! 1 as well as N ! 1. The method is very
burdensome, especially in high dimensions. This increases
the appeal of alternative estimation procedures such as the
method of simulated moments (MSM). The MSM estima-
tor of ˇ and ˙ solves the estimating equations

NX

iD1

mX

jD1

(yi j �bpi j)zi D 0 ;

where the bpi j are obtained using an unbiased simulator.
Because, consistent estimation is possible even if S D 1,
MSM is computationally less burdensome.

Finally, Bayesian methods that exploit the latent vari-
able structure using data augmentation approach and
Markov chain Monte Carlo methods have been used suc-
cessfully; see Albert and Chib [1] and McCulloch and
Rossi [67].

Choice probability models are of interest on their own.
More usually, however, they are of interest when linked to
models of other outcomes. In observational data it is com-
mon to study outcomes that are jointly determined with
the choices, often through the common dependence of the
two on idiosyncratic elements. Even when the main inter-
est is in the outcome variable,modeling of the choice com-
ponent is integral to the analysis. Selection models are an
example of such joint models.

Example 2: Sample Selection Models

One of the most important classes of microeconometric
models is the sample selection model. Goal of modeling is
usually valid inference about a target population. Sample
selection problem refers to the problem of making valid
inference because the sample used is not representative of
the target population. Observational studies are generally
based on pure random samples. A sample is broadly de-
fined to be a selected sample if, for example, it is based
in part on values taken by a dependent variable. A vari-
ety of selection models arise from the many ways in which
a sample may be selected, and some of these may easily go
undetected.

There is a distinction between self-selection, in which
the outcome of interest is determined in part by individ-
ual choice of whether or not to participate in the activity
of interest, and sample-selection, in which the participants
in the activity of interest are over- or under-sampled. Se-
lection models involve modeling the participation into the
activity of interest, e. g., the labor force. The outcomes of
those who participate can be compared with those of non-
participants, which generates the counterfactual of inter-
est. Generating and comparing counterfactuals is a fun-

damental aspect of selection models. Elsewhere this topic
of counterfactual analysis is called treatment evaluation.
When treatment evaluation is based on observational data,
issues of sample selection and self-selection almost always
arise.

In the example given below, consistent estimation
relies on relatively strong distributional assumptions,
whereas the modern trend is to do so under weaker as-
sumptions. The example illustrates several features of mi-
croeconometric models; specifically, the model is mixed
discrete-continuous and involves truncation and latent
variables.

Let y�
2 denote the outcome of interest that is observed

if y�
1 > 0. For example, y�

1 determines whether or not to
work (participation) and y�

2 determines how many hours
to work (outcome). The bivariate sample selection model
has a participation equation,

y1 D
�

1 if y�
1 > 0

0 if y�
1 � 0 ; (9)

and an outcome equation,

y2 D
�

y�
2 if y�

1 > 0
� if y�

1 � 0 : (10)

This model specifies that y2 is observed when y�
1 > 0, pos-

sibly taking a negative value, while y2 need not take on any
meaningful value when y�

1 � 0.
The standard specification of the model is a linear

model with additive errors for the latent variables, so

y�
1 D x0

1ˇ1 C "1

y�
2 D x0

2ˇ2 C "2 ;
(11)

where problems arise in estimating ˇ2 if "1 and "2 are cor-
related. If ˇ2 were estimated using a regression of y2 on
x2 using only the part of the sample for which y2 D y�

2 ,
the resulting estimates would suffer from sample selec-
tion bias. The classic early application of this model was
to labor supply, where y�

1 is the unobserved desire or
propensity to work, while y2 is actual hours worked. Heck-
man [33] used this model to illustrate estimation given
sample selection. A popular parametric specification as-
sumes that the correlated errors are joint normally dis-
tributed and homoskedastic, with

�
"1
"2

	


 N
��

0
0

	

;

�
1 �12
�12 �22

		

: (12)

which uses the normalization �21 D 1 because y�
1 is a latent

variable that needs ameasurement scale. Under general as-
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sumptions, and not just bivariate normality, the bivariate
sample selection model therefore has likelihood function

L D
nY

iD1

˚
Pr
�
y�
1i � 0

��1�y1i

˚
f


y2i j y�

1i > 0
� � Pr

�
y1i� > 0

��y1i ; (13)

where the first term is the contribution when y�
1i � 0,

since then y1i D 0, and the second term is the contri-
bution when y�

1i > 0. The model is easily estimated if it
is specialized to the linear models with joint normal er-
rors, see Amemiya [3]. An important component of the
identification strategy is the use of exclusion restriction(s).
This refers to the restriction that some component(s) of
x1 affects the choice variable y1 only, and not the outcome
variable. The intuition is that this provides a source of in-
dependent variation in y1 that can robustly identify the pa-
rameters in the y2-equation.

The maximum likelihood approach to the estimation
of self-selection models can be extended to the polychoto-
mous choice withm-alternatives by first specifying a para-
metric model for choice probability that takes the form
of a multinomial or nested logit, or multinomial probit,
and then specifying a joint distribution between the out-
come of interest and the choice probabilities; see, for ex-
ample, Dubin andMcFadden [20].While straight-forward
in principle, this approach does pose computational chal-
lenges. This is because analytic expressions for such joint
distributions are in general not available. The problem can
be addressed either by using simulation-based methods or
by taking a semi-parametric formulation that permits two-
step estimation of the model parameters. This topic is dis-
cussed further in Sect. “Causal Modeling”.

Manski [61] andHeckman [31] were early advocates of
flexible semi-parametric estimationmethods, of which the
“two-step Heckman procedure” is a leading example. This
influential modern approach seeks to avoid strong distri-
butional and functional form assumptions and yet obtain
consistent estimates with high efficiency within this class
of estimators. Following in that tradition, there is a large
literature, surveyed in Lee [56], that follows the semi-para-
metric approach. As the dependence between choices and
outcomes are central to the issue, semi-parametric IV es-
timators are a natural choice. One strand of the literature,
represented by Blundell and Powell [9], approaches this is-
sue form a general semiparametric IV viewpoint, whereas
another, represented by Lee [58] approaches this from the
perspective of linear simultaneous equations viewpoint.
Whereas the latent variable approach dominates discrete
choice and selection models, some econometricians, e. g.
Manski [62], espouse a less restrictive model that uses the

basic probability formulation of the problem, with little
other structure, that can still deliver informative bounds
on some counterfactual outcomes. (There are also other
econometric contexts in which the bounds approach can
be applied; see [63].)

Causal Modeling

An important motivation for microeconometrics stems
from issues of public policies that address social and eco-
nomic problems of specific groups whose members react
to policies in diverse ways. Then microeconometric mod-
els are used to evaluate the impact of policy. A leading ex-
ample is the effect of training on jobless workers as defined
in terms of their post-training wage. Accordingly, an im-
portant topic in microeconometrics is treatment evalua-
tion. The term treatment refers to a policy and the analogy
is with the model of a clinical trial with randomized as-
signment to treatment. The goal is to estimate the average
effect of the treatment.

Heckman [35] has pointed out that there are two types
of policy evaluation questions. The first type seeks to eval-
uate the effect of an existing program or policy on partic-
ipants relative to an alternative program or no program
at all, i. e. a treatment effect. The second formulation ad-
dresses a more difficult and ambitious task of evaluating
the effect of a new program or policy for which there are
no historical antecedents, or of an existing program in
a new economic environment. A basic tenet of economet-
ric modeling for policy analysis is that a structural model
is required to address such policy issues.

As to how exactly to define a structural model is
a difficult and unsettled issue. Indeed it is easier to say
what structural models are not than to define what they
are. Some modelers define structural models as those
that identify parameters that are invariant with respect
to policies themselves; others define structural models as
those that involve mathematical-statistical relationships
between jointly dependent variables, and yet others de-
fine them as relationships based on dynamic optimizing
models of economic behavior that embody “fundamental”
taste, technology and preference parameters.

In the next section I shall provide an overview of three
major approaches to causal modeling in microeconomet-
rics. Three dominant approaches are based on, respec-
tively, moment conditions, the potential outcome model,
and the dynamic discrete choice approach.

Structural Modeling

Broadly, structural model refers to causal rather than as-
sociative modeling. Cameron and Trivedi [13] provide
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a definition of a structure that is based on the distinction
between exogenous variablesZ, that are taken by the mod-
eler as given, and endogenous variables Y, that the mod-
eler attempts to explain within the model; this distinction
derives from the classic Cowles Commission approach
for the dynamic linear SEM mentioned earlier. The dy-
namic linear structural SEM specifies a complete model
for G endogenous variables, specified to be related to K
exogenous a pre-determined variables (e. g. lagged values
of Y).

Accordingly, a structure consists of

1. a set of variables W (“data”) partitioned for conve-
nience as [Y~Z];

2. a joint probability distribution ofW, F(W);
3. an a priori ordering of W according to hypothetical

cause and effect relationships and specification of a pri-
ori restrictions on the hypothesized model;

4. a parametric, semiparametric or nonparametric speci-
fication of functional forms and the restrictions on the
parameters of the model.

Suppose that the modeling objective is to explain the val-
ues of observable vector-valued variable y, y0 D (y1;
: : : ; yG ), whose elements are functions of some other el-
ements of y, and of explanatory variables z and a purely
random disturbance u. Under the exogeneity assump-
tion interdependence between elements of z is not mod-
eled. The ith observation satisfies the set of implicit equa-
tions

g (wi ;ui j�0) D 0 ; (14)

where g is a known function. By the Cameron–Trivedi def-
inition this is a structural model, and to �0 is the vector of
structural parameters. This corresponds to point 4 given
earlier in this section. If there is a unique solution for yi
for every (zi ;ui), i. e.

yi D f (zi ;ui j	) ; (15)

then this is referred to as the reduced form of the struc-
tural model, where 	 is a vector of reduced form parame-
ters that are functions of � . The reduced form is obtained
by solving the structural model for the endogenous vari-
ables yi , given (zi ;ui). The reduced form parameters 	

are functions of � . If the objective of modeling is infer-
ence about elements of � , then (14) provides a direct route.
Estimation of systems of equations like (14) is referred to
as structural estimation in the classic Cowles Commission
approach; see Heckman [34]. When the object of model-
ing is conditional prediction, the reduced form model is
relevant.

Moment Condition Models

The classic causal model is a moment-condition model,
derived from such a framework, consists of a set of r mo-
ment conditions of the form

E[g(wi ;�0)] D 0 ; (16)

where � is a q�1 vector, g(�) is an r�1 vector function with
r � q and �0 denotes the value of � in the data generating
process (d.g.p). The vector w includes all observables in-
cluding, where relevant, a dependent (possibly vector-val-
ued) variable y, potentially endogenous regressors x and
exogenous variables z. The expectation is with respect to
all stochastic components of w and hence y, x and z.

Estimation methods for moment condition models in-
clude fully parametric approaches such as maximum like-
lihood as well as semi-parametric methods such as the
generalized method of moments (GMM) and instrumen-
tal variables (IV).

To make valid econometric inference on � , it must
be assumed or established that this parameter is identifi-
able; see Heckman [34] and Manski [62]. In other words,
it is assumed that there is no set of observationally equiva-
lent moment conditions. Identification may be established
using (strong) parametric restrictions or using (weaker)
semiparametric restrictions. The latter approach is cur-
rently favored in theoretical work. Point identification was
emphasized in the classic Cowles Foundation but par-
tial identification in many situations may be more attain-
able, especially if weaker restrictions on probability distri-
butions of data are used; see Manski [63]. However, as-
suming point identification and given sufficient data, in
principle these moment conditions lead to a unique esti-
mate of the parameter � . Potentially there are many rea-
sons for loss of identifiability. Some of these are discussed
in the next section where we also consider identification
strategies.

The above approach has limitations. First, the defini-
tion of structure is not absolute because the distinction be-
tween endogenous Y and exogenous Z may be arbitrary.
Second, the parameters � need not be tied to fundamental
(or “deep”) parameters; indeed it includes both the policy
parameters that are of intrinsic interest and others that are
not. If, however, the moment conditions are derived either
from a model of optimization, or from some fundamen-
tal postulates of economic behavior such as the efficient
market hypothesis, then at least some subset of parame-
ters � can have a “structural” interpretation that is based
on preference or technology parameters. Some econome-
tricians prefer a narrower definition of a causal parameter
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which focuses only on the impact of the policy on the out-
come of interest; the remaining parameters are treated as
non-causal. Third, the approach is often difficult to imple-
ment in a way that provides information about either of
the types of policy issues mentioned at the beginning of
this section.

In response to these difficulties of the conventional ap-
proach two alternative approaches have emerged. The first
is the potential outcome model (POM) that can be histor-
ically traced back to Neyman and Fisher. The second (and
more modern) approach is based on dynamic stochastic
Markov models. The first is easier to implement and hence
currently dominates the applied literature. Next I will pro-
vide a brief overview of each approach.

Treatment Effect Models

This section deals with two closely related approaches in
the treatment evaluation literature which targets an im-
portant structural parameter and its variants. Treatment
effect models have been used extensively to study, to give
just a few examples, the effect of: schooling on earn-
ings, the class size on scholastic performance, unions on
wages, and health insurance on health care use. Although
in many cases the treatment variable is dichotomous,
the framework can handle polychotomous treatment vari-
ables also. Treatment need not be discrete; the framework
can handle ordered as well as continuously varying treat-
ments.

Potential Outcome Models Much econometric estima-
tion and inference are based on observational data. Identi-
fication of and inference on causal parameters is very chal-
lenging in such a modeling environment. Great simplifi-
cation in estimating causal parameters arise if one can use
data from properly designed and implemented controlled
social experiments. Although such experiments have been
implemented in the past they are generally expensive to or-
ganize and run. Econometricians therefore seek out data
generated by quasi- or natural experiments which may
be thought of as settings in which some causal variable
changes exogenously and independently of other expla-
natory variables. This is an approximation to a controlled
trial.

Random assignment implies that individuals exposed
to treatment are chosen randomly, and hence the treat-
ment assignment does not depend upon the outcome and
is uncorrelated with the attributes of treated subjects. The
great resulting simplification in relating outcomes to pol-
icy changes is unfortunately rarely achievable because ran-
dom assignment of treatment is generally not feasible in

economics. Most analyzes have to depend upon observa-
tional data.

As an example, suppose one wants to study the ef-
fect of unions on wages using data from unionized
and nonunionized workers. Here being a unionized
worker is the treatment. For the unionized worker, be-
ing a nonunion worker is the counterfactual. The purpose
of the causal model is to estimate the mean difference in
wages of unionized and nonunionized workers, the differ-
ence being attributed to being in the union.

A major obstacle for causality modeling stems from
the so-called fundamental problem of causal infer-
ence [40]. Accordingly, in an observational setting one can
only observe an individual in either the treated or the un-
treated state, and not both. Hence one cannot directly ob-
serve the effect of the treatment. Consequently, nothing
more can be said about causal impact without some hy-
pothesis about the counterfactual, i. e. what value of the
outcome would have been observed in the absence of the
change in policy variable.

The POM, also known as the Rubin causal model
(RCM), provides a solution to the problem of establish-
ing a counterfactual for policy evaluation. Causal param-
eters based on counterfactuals provide statistically mean-
ingful and operational definitions of causality. In the POM
framework the term “treatment” is used interchangeably
with “cause”. All policy changes and changes in the policy
environment are broadly covered by the term treatment.
Given a group impacted by policy, and another one that is
not, a measure of causal impact is the average difference in
the outcomes of the treated and the nontreated groups. Ex-
amples of treatment-outcome pairs are: health insurance
and health care utilization; schooling and wages; class size
and scholastic performance. Of course, the fact that with
observational data a treatment is often chosen, not ran-
domly assigned, is a significant complication.

In the POM framework, assuming that every element
of the target population is potentially exposed to the treat-
ment, the variables (y1i ; y0i ;Di ; xi ), i D 1; : : : ;N , forms
the basis of treatment evaluation. The categorical vari-
able D takes the values 1 and 0, respectively when treat-
ment is or is not received; y1i measures the response for in-
dividual i receiving treatment, and y0i when not receiving
treatment, xi is the vector of exogenous covariates. That
is, yi D y1i if Di D 1 and yi D y0i if Di D 0. Re-
ceiving and not receiving treatment are mutually exclusive
states so only one of the two measures is available for any
given i; the unavailable measure is the counterfactual. The
effect of the causeD on outcome if individual i is measured
by (y1i � y0i). The average causal effect of Di D 1, rela-
tive to Di D 0, is measured by the average treatment effect
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(ATE):

ATE D E[yjD D 1; x] � E[yjD D 0; x] ; (17)

where expectations are with respect to the probability dis-
tribution over the target population. Unlike the conven-
tional structural model that emphasizes marginal effects
the POM framework emphasizes ATE and parameters re-
lated to it.

POM can lead to causal statements if the counterfac-
tual can be clearly stated and made operational. In ob-
servational data, however, a clear distinction between ob-
served and counterfactual quantities may not be possi-
ble. Then ATE will estimate a weighted function of the
marginal responses of specific subpopulations. Despite
these difficulties, the identifiability of the ATE parameter
may be an easier research target.

Matching Methods In the POM framework a causal pa-
rameter may be unidentified because there is no suitable
comparison or control group that provides the benchmark
for estimation. In observational studies, by definition there
are no experimental controls. Therefore, there is no direct
counterpart of the ATE calculated as a mean difference be-
tween the outcomes of the treated and nontreated groups.
In other words, the counterfactual is not identified.

Matching methods provide a potential solution by cre-
ating a synthetic sample which includes a comparison
group that mimics the control group. Such a sample is
created by matching. Potential comparison units, that are
not necessarily drawn from the same population as the
treated units, are those for whom the observable charac-
teristics, x, match those of the treated units up to some
selected degree of closeness. In the context of the union-
ization example, one would match, as closely as possible,
unionized with nonunionized workers in terms of a vector
of observable characteristics. Of course, if there are signifi-
cant unobserved sources of differences that cannot be con-
trolled, then this could lead to omitted variable bias. Given
a treated sample plus well matched controls, under certain
assumptions it becomes possible to identify parameters re-
lated to the ATE.

Matching may produce good estimates of the aver-
age effect of the treatment on the treated, i. e. the ATET
parameter if (1) we can control for a rich set of x vari-
ables, (2) there aremany potential controls. It also requires
that treatment does not indirectly affect untreated obser-
vations. The initial step of establishing the nearest matches
for each observation will also clarify whether comparable
control observations are available.

Suppose the treated cases are matched in terms of all
observable covariates. In a restricted sense all differences

between the treated and untreated groups are controlled.
Given the outcomes y1i and y0i , for the treatment and
control, respectively, the average treatment effect is

E
�
y1i jDi D 1

�� E
�
y0i jDi D 0

�

D E[y1i � y0i jDi D 1] C ˚
E
�
y0i jDi D 1

�

�E
�
y0i jDi D 0

��
: (18)

The first term in the second line is the ATET, and the sec-
ond bracketed term is a “bias” term which will be zero if
the assignment to the treatment and control is random.
The sample estimate of ATET is a simple average of the
differential due to treatment.

There is an extensive literature on matching estima-
tors covering both parametric and nonparametric match-
ing estimators; see Lee [58] for a survey. Like the POM
framework, the approach is valid for evaluating policy that
is already in operation and one that does not have general
equilibrium effects. An important limitation is that the ap-
proach is vague and uninformative about the mechanism
through which the treatment effects occur.

Dynamic Programming Models

Dynamic programming (DP) models represent a relatively
new approach to microeconometric modeling. It empha-
sizes structural estimation and is often contrasted with
“atheoretical” models that are loosely connected to the un-
derlying economic theory. The distinctive characteristics
of this approach include: a close integration with underly-
ing theory; adherence to the assumption of rational opti-
mizing agents; generous use of assumptions and restric-
tions necessary to support that close integration; a high
level of parametrization of the model; concentration on
causal parameters that play a key role in policy simulation
and evaluation; and an approach to estimation of model
parameters that is substantially different from the standard
approaches used in estimating moment condition models.
The special appeal of the approach comes from the poten-
tial of this class of models to address issues relating to new
policies or old policies in a new environment. Further, the
models are dynamic in the sense that they can incorpo-
rate expectational factors and inter-temporal dependence
between decisions.

There are many studies that follow the dynamic
programming approach. Representative examples are
Rust [81]; Hotz and Miller [42]; Keane and Wolpin [50].
Some key features of DP models can be exposited using
a model due to Rust and Phelan [85] which provides an
empirical analysis of how the incentives and constraints
of the US social security and Medicare insurance system
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affects the labor supply of old workers. Some of the key
constraints arise due to incomplete markets, while individ-
ual behavior is based in part on expectations about future
income streams. Explaining transitions from work to re-
tirement is a challenging task not only because it involves
forward-looking behavior in a complex institutional envi-
ronment but also because a model of retirement behavior
must also capture considerable heterogeneity in individual
labor supply, discontinuities in transitions from full time
work to not working, and presence of part-time workers
in the population, and coordination between labor supply
decisions and retirement benefits decisions.

The main components of the DP model are as follows.
State variable is denoted by st , control variable by dt . ˇ is
the intertemporal discount factor. In implementation all
continuous state variables are discretized – a step which
greatly expands the dimension of the problem. Hence all
continuous choices become discrete choices, dt is a dis-
crete choice sequence, and the choice set is finite. For ex-
ample, in Rust and Phelan [85] total family income is dis-
cretized into 25 intervals, social security state into 3 states,
and employment state (hours worked annually) into 3 dis-
crete intervals, and so forth. There is a single period utility
function ut(s; d; �u) and pt(stC1jst ; dt ; �p; ˛) denotes the
probability density of transitions from st to stC1. The op-
timal decision sequence is denoted by ı D (ı0; : : : ; ıT )
where dt D ıt(st) and is the optimal solution that maxi-
mizes the expected discounted utility:

Vt(s) D max
ı

Eı

8
<

:

TX

jDt

ˇ j�tu j(s j ; dj; �u)jst D s

9
=

;
: (19)

The model takes Social Security and Medicare policy
parameters, ˛, as known. The structural parameters � D
(ˇ; �u ; �p) are to be estimated. To specify the stochastic
structure of the model the state variables are partitioned
as s D (x; �), where x is observable and � is unobservable
(for the econometrician); �t(d) can be thought of as the
net utility or disutility impact due to factors unobserved
by the econometrician at time t.

An important assumption, due to Rust [81], which re-
stricts the role of � permits the following decomposition
of the joint probability distribution of (xtC1; �tC1):

Pr
�
xtC1; �tC1jxt; �t ; dt

�

D Pr
�
�tC1jxtC1

�
Pr
�
xtC1jxt; dt

�
:

Note that the first term on the right-hand side implies se-
rial independence of unobservables; the second term has
a Markov structure and implies that �t affects xt only

through dt.

vt(xt; dt ; �; ˛) D ut(xt ; dt ; �u)

Cˇ

Z
log

2

4
X

dtC12D(xtC1)

expfvtC1(xtC1; dtC1; �; ˛)g
3

5

pt(xtC1jxt; dt ; �p; ˛) ; (20)

Estimation of the model, based on panel data fxit ; di
t g,

uses the likelihood function

L(�) D L(ˇ; �u ; �p)

D
IY

iD1

TiY

tD1

Pt(di
t jxit ; �u)pt(xit jxit�1; d

i
t�1; �p) : (21)

This is a high dimensional model because a large num-
ber of state variables and associated parameters are needed
to specify the future expectations. (This complexity is
highlighted to emphasize that DP models run into dimen-
sionality problems very fast.) First, strong assumptions are
needed to address the unobservable and subjective aspects
of decision-making because there are a huge number of
possible future contingencies to take into account. Second,
restrictions are needed to estimate the belief arrays. Con-
sistent with tenets of rational agents the model assumes
rational expectations. To impose exclusion restrictions pt
is decomposed into a product of marginal and conditional
densities.

As a simplification a two-stage estimation procedure
is used: (1) estimate �p using first stage partial likelihood
function involving only products of the pt terms; (2) esti-
mate �p by solving the DP problem numerically, and esti-
mate (ˇ; �u) using a second stage partial likelihood func-
tion consisting of only products of Pt . The two-stage esti-
mation procedure is not as efficient as the full maximum
likelihood estimation since the error in �̂p contaminates
the estimated covariance matrix for �u .

Space limitations do not permit us to provide the de-
tails of the computational procedure, for which we refer
the reader to Rust [81]. In outline, at the first step the
procedure estimates the transition probability parameters
�p using the partial likelihood function and at the second
stage a Nested Fixed Point (NFP) algorithm is used to es-
timate the remaining parameters.

NewDirections in StructuralModeling

The motivation for many of the recent developments lies
in the difficulties and challenges of identifying causal pa-
rameters under fewer distributional and functional form
restrictions. Indeed an easily discernible trend in modern
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research is steadymovement away from strong parametric
models and towards semi-parametricmodels. Increasingly
semiparametric identification is the stated goal of theo-
retic research [41]. Semiparametric identification means
that unique estimates of the relevant parameters can be ob-
tained without making assumptions about distribution of
data, and some times it also means that assumptions about
functional forms can also be avoided. Potentially there are
numerous ways in which the identification of key model
parameters can be compromised. The solution strategy in
such cases is often model specific. This section provides
a selective overview of recent developments in microe-
conometrics that address such issues.

Endogeneity and Multivariate Modeling

Structural nonlinear models involving LDVs arise com-
monly in microeconometrics. A leading example of
a causal model involves modeling the conditional distri-
bution (or moments) of a continuous outcome (y) which
depends on variables (x;D) where D is an endogenous bi-
nary treatment variable. For example, y is medical expen-
diture and D is a binary indicator of health insurance sta-
tus. The causal parameter of interest is the marginal effect
of D on y. More generally y could be binary, count, an or-
dered discrete variable, or a truncated/censored continu-
ous variable. More generally the issue is that multivariate
modeling. Currently there is no consensus on econometric
methodology for handling this class of problems. Some of
the currently available approaches are now summarized.

Control Functions A fully parametric (“full informa-
tion”) estimation strategy requires the specification of the
joint distribution of (y;D), which is often difficult be-
cause such a joint distribution is rarely available. Another
(“limited information”) strategy is to estimate only the
conditional model, quite often only the conditional mean
E[yjx;D], controlling for endogeneity of treatment. If the
model is additively separable in E[yjx;D] and the stochas-
tic error " which is correlated with d so that E("D) ¤ 0,
then a two-step procedure may be used. This involves re-
placing D by its projection on a set of exogenous instru-
mental variables z (usually including x), denotedbD(z), and
estimating the conditional expectation E[yjx;bD(z)]. Un-
fortunately, this approach does not always yield a consis-
tent estimate of the causal parameter; for example, if the
conditional mean is nonlinear in (x;D). Therefore this ap-
proach is somewhat ad hoc.

Another similar strategy, called the control function
approach, involves replacing E[yjx;D] by E[yjx;w;D].
Here w is a set of additional variables in the conditional

mean function such that the assumption E("Djw) D 0;
that is D can be treated as exogenous, given the presence
of w in the conditional mean function. Again such an ap-
proach does not in general identify the causal parameter
of interest. Additional restrictions are often necessary for
structural identification. In a number of cases where the
approach has been shown to work some functional form
and structural restrictions are invoked, such as additive
separability and a triangular error structure.

Consider the following example of an additively sep-
arable model with a triangular structure. Let y1 be the de-
pendent variable in the outcome equation, which is written
as

y1 D E
�
y1jD; x

�C u1 C �u2 ;

where (u1 C �u2) is the composite error. Let D denote the
treatment indicator for which the model is

D D E
�
Djz�C u2 :

A simple assumption on the distribution of the error terms
takes them to be zero-mean and mutually uncorrelated.
In this case the control function approach can be used.
Specifically a consistent estimate of u2, say bu2, can be
included as an additional regressor to the y1 equation.
This type of argument has been used for handling en-
dogeneity in regression models that are specified for, in-
stead of the conditional mean, the conditional median or
conditional quantile regression; see Chesher [14], Ma and
Koenker [60]. The control function approach has been
adapted for treating endogeneity problems in semipara-
metric and nonparametric framework [9].

Latent Factor Models Another “full information” ap-
proach that simultaneously handles discrete variation and
endogeneity also imposes a restriction on the structure of
dependence using latent factors and resorts to simulation-
assisted estimation. An example is Deb and Trivedi [18]
who develop a joint model of counts, with a binary in-
surance plan variable (D) as a regressor, and a model for
the choice of insurance plan. Endogeneity in their model
arises from the presence of correlated unobserved hetero-
geneity in the outcome (count) equation and the binary
choice equation. Their model has the following structure:

Pr
�
Yi D yi jxi ;Di ; l ji

� D f


x0
iˇ C �1Di C �li

�
:

Pr
�
Di D 1jzi ; l ji

� D g


z0
i˛ C ı li

�
:

Here li is latent factor reflecting unobserved hetero-
geneity and ı is an associated factor loading. The joint dis-
tribution of selection and outcome variables, conditional
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on the common latent factor, can be written as

Pr
�
Yi D yi ;Di D 1jxi ; zi ; li

�

D f


x0
iˇ C �1Di C �li

� � g


z0
i˛ j C ı li

�
; (22)

because


y;D

�
are conditionally independent.

The problem in estimation arises because the li are un-
known. Although the li are unknown, assume that the dis-
tribution of li, h, is known and can therefore be integrated
out of the joint density, i. e.,

Pr
�
Yi D yi ;Di D 1jxi ; zi

�

D
Z
�
f


x0
iˇ C �1Di C �li

� � g


z0
i˛ j C ı li

��

h (li) dli :

Cast in this form, the unknown parameters of the model
may be estimated by maximum likelihood.

The maximum likelihood estimator maximizes the
joint likelihood function L(�1;�2jyi ;Di ; xi ; zi ), where
�1 D (ˇ; �1; �) and �2 D (˛; ı), refer to parameters in
the outcome and plan choice equations respectively, and L
refers to the joint likelihood.

The main problem of estimation, given suitable speci-
fications for f , g and h, is the fact that the integral does not
have, in general, a closed form solution. The maximum
simulated likelihood (MSL) estimator involves replacing
the expectation by a simulated sample average, i. e.,

ePr[Yi D yi ;Di D 1jxi ; zi ]

D 1
S

SX

sD1

�

f
�

x0
iˇ C �1Di C

X

j
�el i s

�

�g
�
z0
i˛ C ıel i s

�i
; (23)

where el i s is the sth draw (from a total of S draws) of
a pseudo-random number from the density h and ePr de-
notes the simulated probability.

The above approach, developed for an endogenous
dummy regressor in a count regression model, can be ex-
tended to multiple dummies (e. g. several types of health
insurance), and multiple outcomes, discrete or continu-
ous (e. g. several measures of health care utilization such as
number of doctor visits, prescribed medications). The lim-
itation comes from the heavy burden of estimation com-
pared with an IV type estimator. Further, as in any simul-
taneous equation model, identifiability is an issue. Applied
work typically includes some nontrivial explanatory vari-
ables in the z vector that are excluded from the x vector. As
an example, consider insurance premium which would be
a good predictor of insurance status but will not directly
affect health care use.

Instrumental Variables and Natural Experiments

If identification is jeopardized because the treatment vari-
able is endogenous, then a standard solution is to use valid
instrumental variables. To identify the treatment effect pa-
rameter we need exogenous sources of variation in the
treatment. Usually this means that the modelmust include
at least the minimum number of exogenous variables (in-
struments) that affect the outcome only through the treat-
ment – an assumption usually called an exclusion or iden-
tification restriction. This requirement may be difficult to
satisfy. Keane [49] gives an example where there are no
possible instruments. Even this extreme possibility is dis-
counted, agreement on valid instruments is often difficult,
and when such agreement can be established the instru-
ments may be “weak” in the sense that they do not ac-
count for substantial variation in the endogenous variables
they are assumed to affect directly. The choice of the in-
strumental variable as well as the interpretation of the re-
sults obtained must be done carefully because the results
may be sensitive to the choice of instruments. In prac-
tice, such instrumental variables are either hard to find,
or they may generate only a limited degree of variation
in the treatment by impacting only a part of the relevant
population.

A natural experiment may provide a valid instrument.
The idea here is simply that a policy variable may exoge-
nously change for some subpopulation while remaining
unchanged for other subpopulations. For example, min-
imum wage laws in one state may change while they re-
main unchanged in a neighboring state. Such events create
natural treatment and control groups. Data on twins of-
ten provide data with both natural treatment and control,
as has been argued in many studies that estimate the re-
turns to schooling; see Angrist and Krueger [5]. If the nat-
ural experiment approximates randomized treatment as-
signment, then exploiting such data to estimate structural
parameters can be simpler than estimation of a larger si-
multaneous equations model with endogenous treatment
variables. However, relying on data from natural experi-
ments is often not advisable because of such events are rare
and because the results from them may not generalize to
a broader population.

Limitations of the IVApproach Some limitations of the
IV approach, e. g. the weak IV problem, are general but
certain others are of special relevance to microeconomet-
rics. One of these is a consequence of heterogeneity in the
impact of the policy on the outcome. Consideration of this
complication has led to significant refinements in the in-
terpretation of results obtained using the IV method.
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In many applications of the POM framework, the un-
derlying assumption is that there exists a comparison
group and a treatment that is homogeneous in its response
to the treatment. In the heterogeneous case, the change in
the participation in treatment generated by the variation in
the instrument may depend both upon which instrument
varies, and on the economic mechanism that links the par-
ticipation to the instrument. As emphasized by Heckman
and Vytlacil [38], Keane [49] and others, a mechanical ap-
plication of the IV approach has a certain black box char-
acter because it fails to articulate the details of the mecha-
nism of impact. Use of different instruments identify dif-
ferent policy impact parameters because they may impact
differently on different members of the population. Heck-
man and Vytlacil [38] emphasize that the presence of un-
observed heterogeneity and selection into treatment may
be based on unobserved gains, a condition they call essen-
tial heterogeneity. The implication for the choice of IVs is
that these may be independent of the idiosyncratic gains
in the overall population, but conditional on those who
self-select into treatment, they may no longer be indepen-
dent of the idiosyncratic gains in this subgroup. Further,
as a consequence of the dependence between treatment
choice and IV estimates different IVs identify different pa-
rameters. In this context, an a priori specification of the
choice model for treatment is necessary for the interpreta-
tion of IV estimators.

The concept of local instrumental variables is related to
the local average treatment (LATE) parameter introduced
by Imbens and Angrist [45]. To illustrate this we consider
the following canonical linear model.

The outcome equation is a linear function of observ-
able variables x and a participation indicator D:

yi D x0
iˇ C ˛Di C ui ; (24)

and the participation decision depends upon a single vari-
able z, referred to as an instrument,

D�
i D �0 C �1zi C vi ; (25)

where D�
i is a latent variable with its observable counter-

part generated by

Di D
�

0 if D�
i � 0

1 if D�
i > 0 : (26)

There are two assumptions: (1) There is an exclusion re-
striction as the variable z that appears in the equation forD
that does not appear in the equation for x. (2) Conditional
on (x; z) Cov [z; v] D Cov [u; z] D Cov [x; u] D 0, but
Cov [D; z] ¤ 0. It is straightforward to show that the IV

estimator of the treatment effect parameter ˛ is

˛IV D E
�
yjz0� � E

�
yjz�

Pr [D (z0) D 1] � Pr [D (z) D 1]
; (27)

which is well-defined if Pr
�
D


z0� D 1

��Pr [D (z) D 1] ¤
0. The sample analog of ˛IV is the ratio of the mean differ-
ence between the treated and the nontreated divided by the
change in the proportion treated due to the change in z.

Why does this measure a “local” effect? This is because
the treatment effect applies to the “compliers” only, that
is those who are induced to participate in the treatment
as a result of the change in z; see Angrist et al. [6]. Thus
LATE depends upon the particular values of z used to
evaluate the treatment and on the particular instrument
chosen. Those who are impacted may not be representa-
tive of those treated, let alone the whole population. Con-
sequently the LATE parameter may not be informative
about the consequences of large policy changes brought
about by changes in instruments different from those his-
torically observed.

If more than one instrument appears in the participa-
tion equation, as when there exist overidentifying restric-
tions, the LATE parameter estimated for each instrument
will in general differ. However, a weighted average may be
constructed.

Omitted Variables, Fixed and Random Effects

Identification may be threatened by the presence of a large
number of nuisance or incidental parameter. For exam-
ple, in a cross section or panel data regression model the
conditional mean function may involve an individual spe-
cific effect ˛i , i. e. E[yi jxi ; ˛i ] or E[yi tjxi t; ˛i ] where i D
1; : : : ;N , t D 1; : : : ; T . The parameters ˛i may be inter-
preted as omitted unobserved factors. Two standard sta-
tistical models for handling them are fixed and random ef-
fect formulations. In a fixed-effect (FE) model the ˛i are
assumed to be correlated with the observed covariates xi ,
i. e. E[jxi tj˛i] ¤ 0, whereas in the random effects (RE)
model E[jxi tj˛i ] D 0 is assumed. Because the FE model is
less restrictive, it has considerable appeal in microecono-
metrics.

FE Models In FE models this effect cannot be identi-
fied without multiple observations on each individual, i. e..
panel data. Identification is tenuous even with panel data
if the panel is short, i. e.T is small; see Lancaster [54] about
the incidental parameters problem. The presence of these
incidental parameters in the model also hinders the iden-
tification of other parameters of direct interest. A feasible
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solution in the case where both N and T are large, is to in-
troduce dummy variables for each individual and estimate
all the parameters. The resulting computational problem
has a large dimension but has been found to be feasible
not only in the standard case of linear regression but also
for some leading nonlinear regressions such as the Probit,
Tobit and Poisson regressions [26,27].

If the panel is short, the ˛i (i D 1; : : : ;N) cannot be
identified and no consistent estimator is available. Then
the identification strategy focuses on the remaining pa-
rameters that are estimated after eliminating ˛i by a trans-
formation of the model. Consider, as an example, the lin-
ear model with both time-varying and time-invariant ex-
ogenous regressors (x0

i t ; z
0
i )

yi t D ˛i C x0
i tˇ C z0

i� C "i t ; (28)

where ˇ and � are common parameters, while ˛1; : : : ; ˛N
are incidental parameters if the panel is short as then each
˛i depends on fixed T observations and there are infinitely
many ˛i since N ! 1. Averaging over T observations
yields

ȳ i D ˛i C x̄0
iˇ C z0

i� C "̄i : (29)

On subtracting we get the “within model”

yi t � ȳ i D (xi t � x̄i )0ˇ C ("i t � "̄i ) ;
i D 1; : : : ;N ; t D 1; : : : ; T ; (30)

where the ˛i term and the time-invariant variables zi dis-
appear. A first difference transformation yi t � yi;t�1 can
also eliminate the ˛i . The remaining parameters can be
consistently estimated, though the disappearance of vari-
ables from the model means that prediction is no longer
feasible.

Unfortunately this elimination “trick” does not gener-
alize straight-forwardly to other models, especially non-
linear nonnormal models with fully specified distribution.
There is no unified solution to the incidental parameters
problem, only model-specific approaches. In some special
cases the conditional likelihood approach does solve the
incidental parameter problem, e. g. linear models under
normality, logit models (though not probit models) for bi-
nary data, and some parametrizations of the Poisson and
negative binomial models for count data. The RE model,
by contrast, can be applied in more widely.

RE Panel Models If the unobservable individual effects
˛i , ˛i > 0, are random variables that are distributed in-
dependently of the regressors, the model is called the ran-
dom effects (RE) model. Usually the additional assump-
tions that both the random effects and the error term are

also employed, i. e., ˛i 
 [˛; �2˛], and "i t 
 [0; �2" ] are
also employed. More accurately this is simply the random
intercept model. As a specific example consider the Poisson
individual-specific effects model which specifies

yi t 
 Poisson[˛i exp(x0
i tˇ)] :

If we assume gamma distributed random effects dis-
tributed with mean 1, variance 1/� D � and density
g(˛i j�) D �	˛

	�1
i e�˛i	/
 (�), there is a tractable analyti-

cal solution for the unconditional joint density for the ith
observation

R hQT
tD1 f (yi tjxi t; ˛i ;ˇ; �)

i
g(˛i j�)d˛i (see

Cameron and Trivedi ([13]: chapter 23.7 for algebraic de-
tails). However, under other assumptions about the distri-
bution (e. g. log-normal) a closed form unconditional den-
sity usually does not arise, and estimation is then based on
numerical integration – an outcome that is fairly common
for nonlinear random effect models.

Modeling Heterogeneity

To accommodate the diversity and complexity of re-
sponses to economic factors, it is often necessary to al-
low for variation in the model parameters. There are many
specification strategies to accomplish such a goal. One of
the most popular and well-established strategy is to model
heterogeneity using some type of mixturemodel. Typically
the specification of a mixture model involves two steps. In
the first step a conditional distribution function F(yjx; 
)
is specified where x is an observed vector of covariates
and � is an unobserved heterogeneity term, referred to
as frailty in biostatistics. In the second step a distribution
G(�) is specified for � and a mixture model is derived. The
distribution of � may be continuous or discrete. Poisson-
gamma mixture for count data and Weibull–gamma mix-
tures for survival data are two leading examples based on
continuous heterogeneity assumption. The mixed multi-
nomial logit model (MMNL) is another example [75].

The mixture class of models is very broad and includes
two popular subclasses, the random coefficient approach
and the latent class approach. While relatively simple in
formulation, such mixture approaches often generate ma-
jor identification and computational challenges [24]. Here
I provide two examples that illustrate the issues associated
with their use.

Latent Class Models Consider the following two-com-
ponent finitemixturemodel. If the sample is a probabilistic
mixture from two subpopulations with p.d.f. f1(yj�1(x))
and f2(yj�2 (x)), then 
 f1(:) C (1 � 
) f2(:), where 0 �

 � 1, defines a two-component finite mixture. That is,
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observations are draws from f 1 and f 2, with probabilities

 and 1 � 
 respectively. The parameters to be estimated
are (
;�1; �2). The parameter 
 may be further parame-
terized.

At the simplest level we think of each subpopulation as
a “type”, but in many situations a more informative inter-
pretation may be possible. There may be an a priori case
for such an interpretation if there is some characteristic
that partitions the sampled population in this way. An al-
ternative interpretation is simply that the linear combina-
tion of densities is a good approximation to the observed
distribution of y. Generalization to additive mixtures with
three or more components is in principle straight-forward
but subject to potential problems of the identifiability of
the components.

Formally the marginal (mixture) distribution is

h


ti jxi ; 
 j;ˇ

� D
mX

jD1

f


ti jxi ; � j ;ˇ

�

 j


� j
�
; (31)

where � j is an estimated support point and 
 j is the asso-
ciated probability. This representation of unobserved het-
erogeneity is thought of as semiparametric because it uses
a discrete mass point distribution. The specification has
been found to be very versatile. It has been used to model
duration data where the variable of interest is the length
of time spent in some state, e. g. unemployment, and indi-
viduals are thought to differ both interms of their observ-
able and unobservable characteristics; see Heckman and
Singer [37].

The estimation of the finite mixture model may
be carried out either under the assumption of known
or unknown number of components. More usually the
proportions 
 j; j D 1; : : : ;m are unknown and the esti-
mation involves both the 
 j and the component param-
eters. The maximum likelihood estimator for the latter
case is called Nonparametric Maximum Likelihood Esti-
mator (NPMLE), where the nonparametric component is
the number of classes. Estimation is challenging, especially
if m is large because the likelihood function is generally
multi-modal and gradient-based methods have to be used
with care. If the number of components is unknown, as
is usually the case, then some delicate issues of inference
arise. In practice, onemay consider model comparison cri-
teria to select the “best” value of m. Baker and Melino [8]
provide valuable practical advice for choosing this param-
eter using an information criterion.

LC models are very useful for generating flexible func-
tional forms and for approximating the properties of non-
parametricmodels. For this reason it has been usedwidely.
Deb and Trivedi [16,17] use the approach for modeling

mixtures of Poisson and negative binomial regressions.
McFadden and Train [75] show that latent class multino-
mial logit model provides an arbitrarily good approxima-
tion to any multinomial choice model based on the RUM.
This means that it provides one way of handling the IIA
problem confronting the users of the MNL model. Dy-
namic discrete choice models also use the approach.

LC models generate a computational challenge arising
from having to choose m and to estimate corresponding
model parameters for a givenm, and there is the model se-
lection problem. Often there is no prior theory to guide
this choice which in the end may be made largely on
grounds of model goodness-of-fit. Akaike’s or Bayes pe-
nalized likelihood (or information) criterion (AIC or BIC)
is used in preference to the likelihood ratio test which is
not appropriate because of the parameter boundary hy-
pothesis problem. The dimension of parameters to be es-
timated is linear in m, the number of parameters can be
quite large in many microeconometric applications that
usually control for many socio-demographic factors. This
number can be decreased somewhat if some elements are
restricted to be equal, for example by allowing the inter-
cept but not the slope parameters to vary across the latent
classes; see, for example, Heckman and Singer [37].

When the model is overparametrized, perhaps because
the intergroup differences are small, the parameters can-
not be identified. The problem is reflected in slow conver-
gence in computation due to the presence of multiple op-
tima, or a flat likelihood surface. The computational algo-
rithm may converge to different points depending on the
starting values.

Interpretation of the LC model can be insightful be-
cause it has the potential to capture diverse responses to
different stimuli. However, a potential limitation is due to
the possibility that additional components may simply re-
flect the presence of outliers. Though this is not necessarily
a bad thing, it is useful to be able to identify the outlying
observations which are responsible for one or more com-
ponents.

Random Coefficient Models Random coefficient (RC)
models provide another approach to modeling hetero-
geneity. The approach has gained increasing popularity
especially in the applications of discrete choice modeling
to marketing data. In this section I provide an exposition
of the random coefficient logit model based on Train [89]
where a more comprehensive treatment is available. The
random coefficient models extend the RUM model of
Sect. “Introduction” which restricts the coefficients of pa-
rameters to be constant across individuals. If individuals
have different utility functions then that is a misspecifica-
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tion. The RC framework is one of a number of possible
ways of relaxing that restriction.

The starting point is the RUM framework pre-
sented in Sect. “Introduction”. Assume individual i(i D
1; 2; : : : ;N) maximizes utilityUij by choosing alternative j
from her choice set Mn D (0; 1). The utility Unj has ob-
served (systematic) part V (Xi j ;ˇ i) and random part "i j ;

Ui j D V (Xi j ;ˇ i) C "i j ;

j D 0; 1 ; i D 1; 2; : : : ;N : (32)

Vector Xn j in V(:; :) represents observed attributes of al-
ternatives, characteristics of the individual i as well as al-
ternative-specific constants. ˇ i is the vector of coefficients
associated with Xi j . Error term "i j captures unobserved
individual characteristics/unobserved attributes of the al-
ternative j and follows some distribution D(�"), where
�" is the unknown parameter vector to be estimated. Of
course, Uij is latent, so we use an indicator function, yij,
such that yi j D 1 if Ui j � Uik8k ¤ j and yi j D 0 other-
wise. Probability that individual i chooses alternative j is

Pi j D P( jjXi ;ˇ i ;�") D P(yi j D 1)
D P(Ui j � Uii8i ¤ j) ;

and the probability that alternative j is chosen is
P(yi jjXi ;ˇ i ;�") D Pyi j

i j , which, under the independence
assumption, leads to the likelihood

L(ˇ;�") D
NY

iD1

Y

j2Mi

Pyi j
i j : (33)

Different assumptions on the error structure lead to
different discrete choice models. The kth component of
the vector ˇ i , which represents the coefficient of some at-
tribute k, can be decomposed asˇi k D bCı0!i C�k�i k , if
the coefficient is random and simply ˇnk D b, if the coef-
ficient is non-random. Here b represents the average taste
in the population for provider attribute k, !i is a vector
of choice-invariant characteristics that generates individ-
ual heterogeneity in the means of random coefficients ˇ i ,
and ı is the relevant parameter vector. Finally, �i k is the
source of random taste variation, which is be assumed to
have a known distribution, e. g. normal.

If random parameters are not correlated then � D
diag(�1; �2; : : : ; �K) is a diagonal matrix. To allow for cor-
related parameters,� is specified as a lower triangularma-
trix so that the variance-covariance matrix of the random
coefficients becomes � � 0 D ˙ . Non-random parameters
in the model can be easily incorporated in this formula-
tion by specifying the corresponding rows in D and � to

be zero. The conditional choice probability that individ-
ual i chooses alternative j, conditional on the realization of
�i , is

P


jj�i ;�

� D exp


� j C ˇ0

iX̃i j
�

1 C exp


�i C ˇ0

iX̃i j
� ; (34)

where � D (b;D;� ) and �i has distribution G with mean
vector 0 and variance-covariance matrix I.

Unconditional choice probability Pij for alternative j is
given by

Pi j D
Z

�i

P


jj�i ;�

�
dF�(�i) ; (35)

where F�(:) is the joint c.d.f. of �i . The choice probability
can be interpreted as a weighted average of logit probabili-
ties with weights given by themixing c.d.f. F�(:). Following
(10), the log-likelihood for � is given by:

L(�) D
NX

iD1

1X

jD0

yi j log Pi j : (36)

The unconditional choice probability Pnj involves an
integral over the mixing distribution, but the log-like-
lihood function does not generally have a closed form.
Hence one cannot differentiate the log-likelihood function
with respect to the parameter vector � D (b;D;� ) and
solve the first order conditions in order to obtain the pa-
rameter estimates. Instead, one estimates the choice prob-
ability Pij through simulation and then maximize the re-
sulting simulatedmaximum likelihood (SML) with respect
to the parameter vector.

Train [89] shows that this mixed logit framework leads
to a tractable, unbiased and smooth simulator for the
choice probability defined by:

P̂i j D P̂( jjXi ;�) D 1
S

SX

sD1

P( jjXi ;ˇ
s
i ;�) ; (37)

where ˇs
i D b C D!i C � �s

i and �s
i is the sth (s D 1;

2; : : : ; S) draw from the joint distribution of �s
i , i. e., from

f (�i).
The log-likelihood function can be approximated by

maximum simulated log-likelihood (MSL) given by

SL(�ˇ ) D
NX

iD1

1X

jD0

yi j log P̂i j

D
NX

iD1

1X

jD0

yi j log

"
1
S

SX

sD1

P( jjXi ;ˇ
s
i ;�)

#

: (38)
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Note that although P̂j is unbiased for Pj, ln(P̂j) is not un-
biased for ln(Pj), therefore the simulator generates some
bias. To avoid bias, the simulation approximation should
be improved. That means one must choose S to be suffi-
ciently large. How large is “sufficiently large”? There is no
fixed answer. But a result due to Gourieroux and Mon-
fort [28] states indicates that the number should increase
with the sample sizeN. Specifically, if the number of simu-
lations, S, increases faster than the square root of the num-
ber of observations, this bias disappears in large samples.
More pragmatically, the user should check that the results
do not change much if S is increased.

To simulate the choice probability Pij, one generally re-
quires a large number of pseudo-random draws from the
mixing distribution so that resulting simulation errors in
the parameter estimates are kept at a reasonable level. For-
tunately, advances in simulation methodology, such as the
use of quasi-random numbers, in place of pseudo-random
numbers, makes this feasible; see Train [89].

The preceding examples illustrate the point that ac-
commodating heterogeneity in a flexible manner comes
at a considerable computational cost. In many cases they
lead to simulation-assisted estimation, this being an area
of microeconometrics that has developedmainly since the
1990s.

Nonrepresentative Samples

Microeconometric methods often invoke the assumption
that analysis is based on simple random samples (SRS).
This assumption is hardly ever literally true for survey
data. More commonly a household survey may first strati-
fies the population geographically into subgroups and ap-
plies differing sampling rates for different subgroups. An
important strand in microeconometrics addresses issues
of estimation and inference when the i.i.d. assumption no
longer applies because the data are obtained from strati-
fied and/or weighted samples. Stratified samplingmethods
also lead to dependence or clustering of cross section and
panel observations. Clusters may have spatial, geographi-
cal, or economic dimension. In these cases the usual meth-
ods of establishing distribution of estimators based on the
SRS assumption need to be adapted.

Stratified Samples For specificity it is helpful to men-
tion some common survey stratification schemes. Table 1
based on Imbens and Lancaster [46] and Cameron and
Trivedi [13], provides a summary.

Econometricians have paid special attention to en-
dogenous stratification because this often leads to incon-
sistency of some standard estimation procedures such as

Microeconometrics, Table 1
Alternative sample stratification schemes

Stratification
Scheme

Description

Simple random One strata covers entire sample space.
Pure exogenous Stratify on regressors only, not on

dependent variable.
Pure endogenous Stratify on dependent variable only, not on

regressors.
Augmented
sample

Random sample augmented by extra
observations from part of the sample space.

Partitioned Sample space split into mutually exclusive
strata that fill the entire sample space.

ML; see Manski and Lerman [64], Cosslett [15], Manski
and McFadden [65]. One example is choice-based sam-
pling for binary or multinomial data where samples are
chosen based on the discrete outcome y. For example, if
choice is between travel to work by bus or travel by car we
may over-sample bus riders if relatively few people com-
mute by bus. A related example is count data on number of
visits collected by on-site sampling of users, such as sam-
pling at recreational sites or shopping centers or doctors
offices. Then data are truncated, since those with y D 0
are not sampled, and additionally high frequency visitors
are over-sampled.

Endogenously stratified sampling leads to the den-
sity in the sample differing from that in the population
(Cameron and Trivedi, pp. 822–827 in [13]). If the sam-
ple and population strata probabilities are known, then the
standard ML and GMM estimation can be adapted to re-
flect the divergence. Typically this leads to weightedML or
weighted GMM estimation [46].

Clustered andDependent Samples Survey data are usu-
ally dependent. This may reflect a feature of the sur-
vey sampling methodology, such as interviewing several
households in a neighborhood. Consequently, the data
may be correlated within cluster due to presence of a com-
mon unobserved cluster-specific term. Potentially, such
dependence could also arise with SRS.

There are several different methods for controlling
for dependence on unobservables within cluster. If the
within cluster unobservables are uncorrelated with regres-
sors then only the variances of the regression parameters
need to be adjusted. This leads to cluster-correction-of-
variances methods that are now well-embedded in popu-
lar software packages such as Stata. If, instead, the within
cluster unobservables are correlated with regressors then
the regression parameters are inconsistent and fixed ef-
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fects type methods are called for. The issues and available
methods closely parallel those for fixed and random effects
panels models. Further, methods may also vary according
to whether there are many small clusters or few large clus-
ters. Examples and additional detail are given in Cameron
and Trivedi [13].

An important new topic concerns dependence in cross
section and panel data samples between independently
obtained measures. Several alternative models are avail-
able to motivate such dependence. Social interactions [21]
between individuals or households, and spatial depen-
dence [7] where the observational unit is region, such
as state, and observations in regions close to each other
are likely to be interdependent, are examples. Models of
social interaction analyze interdependence between indi-
vidual choices (e. g. teenage smoking behavior) due to,
for example, peer group effects. Such dependence vio-
lates the commonly deployed i.i.d. assumption, and in
some cases the endogeneity assumption. Lee [57] and An-
drews [4] examine the econometric implications of such
dependence.

Major Insights

A major role of microeconometrics is inform public pol-
icy. But public policy issues arise not only in the context of
existing policies whose effectiveness needs evaluation but
also for new policies that have never been tried and old
policies that are candidates for adoption in new economic
environments. No single approach to microeconometrics
is appropriate for all these policy settings. All policy evalu-
ation involves comparison with counterfactuals. The com-
plexity associated with generating counterfactuals varies
according to the type of policy under consideration as well
as the type of data on which models are based. A deeper
understanding of this fundamental insight is a major con-
tribution of modern microeconometrics.

A second major insight is the inherent difficulty of
making causal inferences in econometrics. Many differ-
ent modeling strategies are employed to overcome these
challenges. At one end of the spectrum are highly struc-
tured models that make heavy use of behavioral, distribu-
tional and functional form assumptions. Such models ad-
dress more detailed questions and provide, conditional on
the framework, more detailed estimates of the policy im-
pact. At the other end of the spectrum are methods that
minimize on assumptions and aim to provide informative
bounds for measures of policy impact. While the literature
remains unsettled on the relative merits and feasibility of
these approaches, the trend in microeconometrics is to-
wards fewer and less restrictive assumptions.

There is now a greater recognition of the challenges as-
sociated with analyzes of large complex data sets generated
by traditional sample surveys as well as other automated
and administrative methods. In so far as such challenges
are computational, advances in computer hardware and
software technologies have made a major contribution to
their solution.
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Glossary

Hypothesis A hypothesis is a statement concerning the
(joint) distribution underlying the observed data.

Nonparametric test In contrast to a parametric test,
a nonparametric test does not presume a particular
parametric structure concerning the data generating
process.

Serial dependence Statistical dependence among time se-
ries observations.

Time series A sequence of observed values of some vari-
able over time, such as a historical temperature record,
a sequence of closing prices of a stock, etc.

Definition of the Subject

One of the central goals of data analysis is to measure and
model the statistical dependence among random variables.
Not surprisingly, therefore, the question whether two or
more random variables are statistically independent can
be encountered in a wide range of contexts. Although this
article will focus on tests for independence among time se-
ries data, its relevance is not limited to the time series con-
text only. In fact many of the dependence measures dis-
cussed could be utilized for testing independence between
random variables in other statistical settings (e. g. cross-
sectional dependence in spatial statistics).

When working with time series data that are noisy by
nature, such as financial returns data, testing for serial in-
dependence is often a preliminary step carried out before
modeling the data generating process or implementing
a prediction algorithm for future observations. A straight-
forward application in finance consists of testing the ran-

dom walk hypothesis by checking whether increments of,
for instance, log prices or exchange rates, are independent
and identically distributed [8,12,80]. Another important
application consists of checking for remaining dependence
structure among the residuals of an estimated time series
model.

Introduction

Throughout this article it will be assumed that fXtg, t 2 Z,
represents a strictly stationary time series process, and
tests for serial independence are to be based on an ob-
served finite sequence fXtgntD1. Unless stated otherwise, it
will be assumed that the observations Xt take values in the
real line R. Admittedly, this is a limitation, since there are
also time series processes that do not take values in the real
line. For instance, the natural space in which wind direc-
tion data take values is the space of planar angles, which
are naturally represented by the interval [0; 2
] with the
endpoints identified. However, most of the tests developed
to date are designed for the real-valued case. The problem
under consideration is that of testing the null hypothesis
that the time series process fXtg consists of independent,
identically distributed (i.i.d.) random variables. In prac-
tice this is tested by looking for dependence among of m
consecutive observations Xt�mC1; : : : ; Xt for a finite value
m � 2.

Traditionally, tests for serial independence have fo-
cused on detecting serial dependence structure in station-
ary time series data by estimating the autocorrelation func-
tion (acf), �k D Cov(Xt�k ; Xt)/Var(Xt), or the normal-
ized spectral density, which is one-to-one related to the acf
by Fourier transformation:

h(!) D (2
)�1
1X

kD�1
�ke�i!k

and �k D
Z �

��

h(!)ei k!d! :

Because the acf is real and symmetric (�k D ��k) the nor-
malized spectral density is real and symmetric also. Since
the acf and the normalized spectral density are related by
an invertible transformation, they carry the same informa-
tion regarding the dependence of a process. For i.i.d. pro-
cesses with finite variance, �k D 0 for k � 1 under the null
hypothesis. The spectral density is flat (equal to 1 for all!)
in that case.

Tests based on the acf date back to VonNeumann [83].
Motivated by the aim to test for serial independence
against the presence of trends, he introduced the ratio of
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the mean square first difference to the sample variance,

Sn :D
1

n�1
Pn

tD2(Xt � Xt�1)2
1
n
Pn

tD1(Xt � X̄)2
;

which may be considered a rescaled (and shifted) estima-
tor of �1. Von Neumann studied the distributional prop-
erties of this statistic in detail under the assumption of
normality. Durbin and Watson [38,39] used an analogue
of Von Neumann’s ratio to check for first order auto-
correlation among the error terms f"tgntD1 in a linear re-
gression model, based on observed residuals fb"tgntD1. As
for the original statistic of Von Neumann, the null dis-
tribution (which is no longer unique in this case, but de-
pends on the parameters of the data generating process)
has been studied in detail for the normal case [40,56,101].
For the class of autoregressive integrated moving average
(ARIMA) processes, acf-based tests for residual autocor-
relation beyond lag 1 were proposed by Box and Jenk-
ins [13] and Ljung and Box [79], and for autocorrelation
in squared residuals byMcLeod and Li [82]. Beran [9] pro-
posed adapted tests for serial independence for processes
with long-range dependence.

Although the autocovariance structure of a time se-
ries process fully characterizes the dependence structure
within classes of linear Gaussian random processes, tests
based solely on the acf may clearly fail to be consistent
against dependence that does not show up in the acf. It
is not hard to construct examples of processes for which
this is the case. For instance, the bilinear process

Xt D aXt�2"t�1 C "t ; (jaj < 1)

where f"tg is a sequence of independent standard normal
random variables, clearly exhibits dependence, but has no
autocorrelation structure beyond lag zero. Other examples
include the ARCH(1) process [42],

Xt D
p
ht"t ; ht D c C �X2

t�1; (c > 0; 0 � � < 1)

and the GARCH(1,1) process [11],

Xt D
p
ht"t ; ht D c C ˛ht�1 C ˇX2

t�1;

(c > 0; ˛; ˇ > 0; ˛ C ˇ < 1)

which have become popular for modeling financial returns
data.

The desire to avoid specific assumptions about the pro-
cess under the null hypothesis or under the possible alter-
natives motivates a nonparametric statistical approach to
the problem of testing for serial independence. One pos-
sibility is to develop rank-based tests for serial indepen-
dence against particular types of structure such autore-
gressive moving average (ARMA) structure. Compared

to the linear Gaussian paradigm, this approach explicitly
drops the assumption that the marginal distribution is
normal, which in a natural way leads to tests formulated
in terms of ranks. This has the advantage that the tests are
distribution free (the null distributions of test statistics do
not depend on the actual marginal distribution). The de-
velopments around invariant tests for serial independence
are reviewed briefly in Sect. “Invariant Tests”.

Another nonparametric approach consists of using
nonparametric estimators of divergence measures be-
tween distributions to construct tests against unspecified
alternatives. The idea is to measure the discrepancy be-
tween the joint distribution of (Xt�mC1; : : : ; Xt) and the
product of marginals with a measure of divergence be-
tweenmultivariate probability measures. This typically in-
volves estimating a suitable measure of dependence, and
determining the statistical significance of the observed
value of the statistic for the sample at hand. In Sect. “Tests
Based on Divergence Measures” several tests for serial in-
dependence based on divergence measures are reviewed.
For further details on some of the earlier methods, the
interested reader is referred to the overview by Tjøs-
theim [103].

Section “Tests Based on Other Measures of Depen-
dence” describes tests for independence based on some
other measures of serial dependence in the observed time
series, such as partial sums of observations and the bispec-
trum.

For particular statistics of interest critical values can
be obtained in different ways. The traditional way is to
use critical values based on asymptotic theory, which is
concerned with the large sample limiting distributions of
test statistics.With the increasing computer power that be-
came available to most researchers in the recent decades,
it has become more and more popular to obtain critical
values of test statistics by resampling and other computer
simulation techniques. I will discuss the advantages and
disadvantages of several of these numerical procedures in
Sect. “Bootstrap and Permutation Tests”.

Note that pairs of delay vectors such as (Xt�1; Xt) and
(Xs�1; Xs)0 for s ¤ t may have elements in common,
and hence are not independent even under the null; a fact
which has to be taken into account when critical values
of test statistics are determined. Tests for independence
among m random variables, (Y1; : : : ;Ym), say, based on
a random sample therefore typically need to be adapted for
applications in a time series setting. For most asymptotic
results that depend on the distribution of the test statis-
tic under the alternative (such as consistency) additional
assumptions are required on the rate of decay of the de-
pendence in the data, known as mixing conditions [14].
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Notation

Let Xm
t be short-hand notation for the delay vector

(Xt�mC1; : : : ; Xt), m � 3. For the case m D 2, Xm
t refers

to a bivariate vector (Xt�k ; Xt), k � 1, where the value
of k will be clear from the context. Under the assumption
that Xt takes values in the real line R (or a subset thereof)
one may state the null hypothesis in terms of the joint and
marginal cumulative distribution functions (CDFs):

H0 : Fm(x) D F1(x1) � � � � � F1(xm) ;

where x D (x1; : : : ; xm)0, and Fm(x) D P(X1 � x1; : : : ;
Xm � xm) is the joint cumulative distribution function
(CDF) of Xm

t , and F1(x) D P(X � x) the marginal CDF
of fXtg. If Xm

t is a continuous random variable, one can
denote its probability density function by fm(x), and the
independence of the elements of Xm

t can be written as

H0 : fm(x) D f1(x1) � � � � � f1(xm) ;

where f1(x) is the marginal probability density function of
fXtg. For convenience I will drop the subscriptm in fm(x),
and introduce g(x) :D f1(x1) � � � � � f1(xm), so that the
null hypothesis can be rephrased simply as

H0 : f (x) D g(x) :

Some Practical Considerations

Which of the tests described below should one choose for
practical applications? The alternative against which the
null hypothesis is to be tested is any deviation from the
above factorizations for some m � 2. Ideally, one would
like a nonparametric test to have large power against all
types of dependence. However, since no uniformly most
powerful test against all possible alternatives exists, among
the tests proposed in the literature one typically finds that
some perform better against certain alternatives and some
against others, and it is often hard to identify exactly why.
Although power against the alternative at hand is obvi-
ously important in applications, usually these alternatives
are not known in a simple parametric form. This is pre-
cisely what motivatedmany of the recently developed tests
tests for independence; they are designed to have power
against large classes of alternatives. When a practitioner
has to choose among the large number of the omnibus
tests available, besides power also some other properties
can be taken into consideration. For instance, some tests
are invariant (immune to invertible transformations of
the data, see Sect. “Invariant Tests”) while others, such
as those based on true divergence measures discussed in
Sect. “Tests Based on Divergence Measures”, are consis-
tent against any fixed alternative, which means that they

will asymptotically (with increasing sample size) detect
any given alternative with probability one.

Although invariance is a pleasant property, because it
allows one to tabulate the null distribution, I would gener-
ally rank consistency against any fixed alternative as more
important, since invariance can usually be achieved easily
by a simple trick, such as transforming the data to ranks
before applying any given independence test. At the same
time I should add that if one is willing to settle for power
against particular classes of alternatives only, it is some-
times possible to construct an ideal hybrid between invari-
ance and consistency in the form of an optimal invariant
test. An example is the optimal rank test of Benghabrit and
Hallin [7] discussed in the next section.

A clear disadvantage of omnibus tests is that after a re-
jection of the null hypothesis it leaves the practitioner with
the problem of having to identify the type of dependence
separately. If one is confident enough to assume (or lucky
enough to know) a specific parametric form for the data
generating process it is arguably more efficient to rely on
traditional parametric methods. However, I think that in
most cases the potential efficiency gains are not worth the
risk of biased test results due to a misspecification of an
unknown type.

Invariant Tests

When developing nonparametric tests for serial indepen-
dence it is typically assumed that the marginal distribu-
tion of the observed time series process is unknown. Be-
cause in general the distribution of the test statistic will
depend on this unknown distribution, the latter plays the
role of an infinite dimensional nuisance parameter. There
are various ways of dealing with this problem, such as fo-
cusing on particular classes of test statistics and appealing
to asymptotic theory, or using bootstrap or permutation
techniques. These methods are rather common and are
used in most of the tests discussed in the subsequent sec-
tions. This section is concerned with a more direct way to
deal with the nuisance parameter problem. The main idea
is to focus on dependence measures that are invariant un-
der one-to-one transformations of the space in which Xt
takes values (so-called static transformations X 0

t D �(Xt),
where � is a strictly monotonous map from R to itself).
This naturally leads to the study of statistics based on
ranks.

Rank Tests

Various analogues of the correlation coefficient have been
proposed based on ranks. For the pairs f(Xt ;Yt)g, Spear-
man’s rank correlation [97] is the sample correlation of Rt
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and St , the ranks of Xt and Yt among the observed X’s
and the Y ’s, respectively. In a univariate time series con-
text one can easily define a serial version of this rank cor-
relation (e. g. the sample autocorrelation function of the
sequence of ranks fRtg of the X’s). Kendall’s tau [73] for
pairs f(Xt;Yt)g is another rank-based measure of depen-
dence, quantifying the concordance of the signs of Xi �Xj
and Yi � Yj . The serial version of tau can be defined as

�k D
 
n � k
2

! n�kX

iD1

i�1X

jD1

sgn(Xi �Xj)sgn(XiCk �XjCk ) :

The multivariate versions of these concordance orderings
have been described by Joe [69]. Genest et al. [45] consid-
ered tests for serial independence, building on asymptotic
results derived by Ferguson et al. [43] for a serialized ver-
sion of Kendall’s tau in a time series setting.

Many other rank-based tests for independence have
been developed meanwhile. The earlier work in this direc-
tion is covered in the review paper by Dufour [36]. Later
work includes that by Bartels [6], who developed a rank-
based version of Von Neumann’s statistic, Hallin et al. [54]
who proposed rank-based tests for serial independence
against ARMA structure, and Hallin and Mélard [55] who
study the finite sample behavior and robustness against
outliers of their proposed procedures. Kallenberg and Led-
wina [72] developed a nonparametric test for the depen-
dence of two variables by testing for dependence of the
joint distribution of ranks in a parametric model for the
rank dependence.

Optimal rank tests are tests based on ranks that have
maximal power. Naturally such a test depends on the al-
ternative against which the power is designed to be large.
For instance, Benghabrit andHallin [7] derived an optimal
rank test for serial independence against superdiagonal bi-
linear dependence.

As a way to deal with the problem that the marginal
distribution is unknown under the null hypothesis (the
nuisance parameter problem) Genest, Ghoudi and Rémil-
lard [48] consider rank-based versions of the BDS test
statistic (see Sect. “Correlation Integrals”), as well as sev-
eral other rank-based statistics.

Empirical Copulae

As noted by Genest and Rémillard [46], a rank test for
serial independence can alternatively be considered a test
based on the empirical copula. The reason is that the em-
pirical copula determines the sequence of ranks and vice
versa. I therefore briefly review the notion of a copula.

If Xm
t is a continuous random variable, its copula C is

defined as

F(x1; : : : ; xm) D C(F(x1); : : : ; F(xm)) ;

where F(x) denotes the marginal CDF. Note that C(u1;
: : : ; um) is defined on the unit (hyper-)cube [0; 1]m (unit
square for m D 2), and has the properties of a CDF of
some distribution on that space. This allows one to define
the associated copula density on the unit cube as

c(u1; : : : ; um ) D @m

@u1 � � � @um C(u1; : : : ; um ) :

The copula density c is obtained by taking partial deriva-
tives with respect to each of the Xi’s:

f (x1; : : : ; xm) D c(F(x1); : : : ; F(xm))� f (x1)�� � �� f (xm):

The null hypothesis of serial independence states f (x) D
g(x) D f (x1) � � � � � f (xm), which is equivalent to
c(u1; : : : ; um) D 1. This shows that the factorization of
the joint distribution in the product of marginals really
is a property of the copula. In this sense the copula can
be viewed as containing all relevant information regard-
ing the dependence structure of Xm

t . Figure 1 shows the
Gaussian copula for a bivariate distribution with correla-
tion coefficient 0.5 and the local ARCH(1) copula (essen-
tially a rescaled version of the copula obtained for an in-
finitesimal positive ARCH parameter).

The empirical copula obtained from time series data is
the empirical distribution of (bUt�mC1; : : : ;bUt) where bUt
is the normalized rank of Xt, defined as bUt D #fXs �
Xtg/n. Assuming that ties (identical values of Xt and Xs
for t ¤ s) are absent, each rank only occurs once, and
hence the empirical copula is one-to-one connected to the
sequence of ranks. This shows that test based on ranks can
be considered as tests based on the empirical copula and
vice versa. It also shows that the concept of an optimal

Nonparametric Tests for Independence, Figure 1
The Gaussian copula density for � D 0:5 (left) and local ARCH(1)
copula density (right)
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rank test against a particular copula alternative is mean-
ingful.

The connection between sequences of ranks and em-
pirical copulae makes it rather intuitive to design tests that
have high power against serial dependence described by
particular (families of) copulae. Genest and Verret [47]
consider rank-based tests for independence of two random
variables that are locally most powerful against a number
of parametric copulae. Scaillet [92] used the copula rep-
resentation to test for serial independence against posi-
tive quadrant dependence between two random variables,
which holds if P[X � x;Y � Y] � P[X � x]P[Y � y],
or equivalently P[X > x;Y > y] � P[X > x]P[Y > y].
In a similar vein Panchenko and I [33] derived a rank test
for serial independence against the local ARCH(1) copula.

Tests Based on DivergenceMeasures

In this section I consider tests for serial independence
based on various dependencemeasures. Typically the tests
obtained with this approach are not invariant. However,
critical values of test statistics can still be obtained using
asymptotic theory or bootstrap methods (see Sect. “Boot-
strap and Permutation Tests” for more details), and the
tests are consistent against a wide range of alternatives.

Many popular dependence measures are based on di-
vergences between the m-dimensional density f and its
counterpart under the null hypothesis, g. Divergences are
functionals of pairs of densities, which, like distances, are
equal to zero whenever f (x) D g(x) and strictly positive
otherwise. To qualify as a true distance notion between
distributions a divergence measure must also be symmet-
ric and satisfy the triangle inequality. Not all divergence
measures discussed below are true distances in this sense.
This is no problem for testing purposes, but if one is in-
terested in comparing distances with other distances (e. g.
for cluster analysis) then the triangle inequality is essen-
tial [81]. In general, a divergence measure might serve just
as well as a distance as a basis for constructing a test for
serial independence.

Tests for serial independence can roughly be divided
into two groups: tests against specific types of dependence
and omnibus tests, with power against general types of
dependence. For instance, the test of Von Neumann [83]
mentioned above is sensitive to linear correlation between
Xt�1 and Xt, but is completely insensitive to some other
types of dependence between these two variables. One of
the great advantages of tests based on divergencemeasures
is their omnibus nature. Typically these tests are consis-
tent against any type of dependence among the m compo-
nents of Xm

t . Unfortunately, however, as noted in the In-

troduction, no uniformly most powerful test against serial
independence exists, so different tests will be more power-
ful against different alternatives. Therefore, which test per-
forms best in practice depends on the type of dependence
structure present in the data.

Below I describe tests based on empirical distribution
functions (empirical CDFs) as well as on densities. One
can roughly state that tests based on the empirical CDFs
are better suited to detecting large-scale deviations from
the null distribution than small-scale deviations. In order
for these tests to pick up deviations from independence
theremust be relatively large regions inRm where the den-
sity of Xm

t is lower or higher than the hypothetical product
density; the cumulative nature of the test statistics is rel-
atively insensitive to small-scale deviations from the null
distribution. If one wants to be able to detect subtle small-
scale deviations between densities locally in the sample
space, it seems more natural to use a test divergence mea-
sures based on density ratios or density differences, such
as information theoretic divergences or correlation inte-
grals. Note, however, that even among those tests perfor-
mance may be hard to predict beforehand. For instance,
in Subsect. “Information Theoretic Divergence Measures”
I consider a family of closely related information theoret-
ical divergence measures, but even within this family the
relative powers of the tests depend strongly on the alterna-
tive at hand.

Empirical Distribution Functions

Empirical distribution functions have been used for study-
ing the independence of random variables at least since
Hoeffding [62], who proposed dependence measures
based on the difference between the joint distribution
function and the product of marginals, F(x)�G(x), where
G(x) D Qm

iD1 F1(xi ) is the joint CDF under the null hy-
pothesis.

There are various ways to define divergences in terms
of distribution functions. A popular class of statistics is ob-
tained by considering divergence measures of the type

d2w D
Z

Rm
(F(x) � G(x))2 w(F(x)) dF(x) ;

where w(�) is a positive weight function. For w D 1 this
divergence is known as the Cramér–von Mises criterion,
which has become a well-known criterion in univariate
one- and two-sample problems. The Cramér–von Mises
criterion suggests testing the independence of the elements
of Xm

t based on its sample version

ñd2n D
nX

iDm

�
bF(Xm

i ) � bG(Xm
i )
�2
;
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where ñ D n � m C 1 is the number of m-dimensional
delay vectors, bF is the empirical joint CDF and bG(x) DQm

iD1
bF1(xi) is the product of marginal empirical CDFs.

This statistic, referred to as the Cramér–von Mises statis-
tic, was proposed by Hoeffding [62] for testing indepen-
dence in the bivariate case, based on a random sample of
variables (Xi ;Yi ) from a bivariate distribution (i. e. out-
side the time series scope). Since the statistic is invariant
under one-to-one transformations of marginals, the tests
based on it are automatically distribution-free. Although
the null distribution for a random sample was known to
converge in distribution to a mixture of scaled �2(1) ran-
dom variables,

ñd2n
d�! 1

4

1X

j;kD1

1
j2k2

Z2
jk ;

where the Zjk are independent standard normal random
variables, it was initially not available in a form suitable
to practical applications. The distribution was tabulated
eventually by Blum et al. [10], who also considered higher-
variate versions of the test.

By generalizing results of Carlstein [23], Skaug and
Tjøstheim [95] extended the test of Hoeffding, Blum,
Kiefer and Rosenblatt to a time series context and derived
the null distribution of the test statistic for first-order de-
pendence (m D 2) under continuous as well as discrete
marginals. In the continuous case it turns out that the first
order test statistic has the same limiting null distribution
as for a random sample from a bivariate distribution with
independent marginals. Skaug and Tjøstheim [95] also
showed that the statistic nGK;n D n

PK
kD1 d

2
k;n , where

d2k;n is the Cramér–von Mises statistic for (Xt�k ; Xt), has
a mixture of scaled �2(K) distributions as its limiting dis-
tribution. For high lags and moderate sample sizes Skaug
and Tjøstheim [95] report that the asymptotic approxi-
mation to the finite sample null distribution is poor, and
suggest the use of bootstrap methods to obtain critical
values.

Delgado [29] considered the analogue test for higher-
variate dependence in time series. In that case differences
with the Hoeffding–Blum–Kiefer–Rosenblatt asymptotics
arise due to the presence of dependence across the de-
lay vectors constructed from the time series. Delgado and
Mora [28] investigated the test for first order indepen-
dence when applied to regression residuals, and found that
the test statistic in that case has the same limiting null dis-
tribution as for serially independent data.

The Kolmogorov–Smirnov statistic
p
n sup

x
jbF(x) �bG(x)j :

is another popular test statistic for comparing empirical
cumulative distribution functions. Ghoudi et al. [49] de-
veloped asymptotic theory for this test statistic in rather
general settings, which include the time series context. In
their power simulations against several alternatives, in-
cluding AR(1) and nonlinear moving average processes,
the Cramér–von Mises statistic displayed a better overall
performance than the Kolmogorov–Smirnov statistic.

This suggests that the Cramér–von Mises statistic
might be a good choice for practical applications, provided
that one wishes to compare empirical distribution func-
tions. As noted above, for detecting subtle density varia-
tions it might be more suitable to use a dependence mea-
sure based on integrated functions of densities, described
in the next subsections.

Integrated Functions of Density Differences

For the bivariate case, Rosenblatt [89] and Rosenblatt and
Wahlen [90] considered a class of measures of dependence
based on integrated squared differences of densities

d( f ; g) D
Z

R2
w(x)( f (x) � g(x))2dx ;

for some positive weight function w(x). The integral can
be estimated nonparametrically by plugging in kernel den-
sity estimators for the unknown densities, and performing
the integration, either numerically or, if possible, analyti-
cally. Alternatively one may estimate the integral by tak-
ing sample averages of estimated densities. For instance, if
w D 1 onemay estimate

R
R2 f 2(x)dx D R

R2 f (x)dF(x) D
E[ f (X t)] as ñ�1P

t
bf (X t), where bf (x) represents a con-

sistent kernel density estimate of f (x).
Chan and Tran [24] proposed a test for serial indepen-

dence based on the integrated absolute difference

d̃( f ; g) D
Z

R2
j f (x) � g(x)jdx ; p > 0 ;

for which they developed a histogram estimator [94]. They
obtained critical values of the test statistic using a boot-
strap method.

Skaug and Tjøstheim [96] explored tests for serial in-
dependence based on several dependence measures which
are weighted integrals of f (x) � g(x) in the bivariate case
(m D 2) including the above two measures, which they
refer to as I3 and I2, respectively. In addition they con-
sider the Kullback–Leibler divergence (I1 in their notation,
discussed in Subsect. “Information Theoretic Divergence
Measures”) and

I4 D
Z

R2
( f (x) � g(x)) f (x)dx :
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The latter measure is not a true divergence between f
and g, but if f is a bivariate normal pdf, I4 � 0 with equal-
ity if and only if f D g. Skaug and Tjøstheim [96] per-
formed a simulation study in which the corresponding es-
timatorsbI i were compared, andbI4 was found to perform
well relative to the other statistics. They subsequently in-
vestigated some of the asymptotic properties of this es-
timator, establishing, among other results, its asymptotic
normality. Despite these encouraging simulation results
one should beware that there are theoretical cases with de-
pendence where I4 is zero, meaning that there are also pro-
cesses with dependence against which the test has little or
no power.

Information Theoretic Divergence Measures

By using test statistics based on true divergences, tests can
be obtained that are consistent against all deviations of f
from the product measure g. Although this does not guar-
antee high finite sample power for specific alternatives, it
obviously is a desirable property if the nature of the alter-
native is unknown.

Joe [68] described several information theoretic di-
vergence measures, including the Kullback–Leibler diver-
gence between two densities f and g, defined as

I( f ; g) D
Z

Rm
f (x) log

�
f (x)
g(x)

�

dx :

In the case where f is a bivariate density, of Xt�k and
Xt , say, and g is the product of marginal densities, I( f ; g)
is also known as the mutual information between Xt�k
and Xt.

Robinson [88] took the Kullback–Leibler divergence as
a starting point for testing the equivalence of f and g. The
Kullback–Leibler divergence is invariant under transfor-
mations of marginal distributions, and satisfies I( f ; g) � 0
with equality if and only if f D g. To see why, consider
the random variable W D g(X)/ f (X): By construction
E[W] D 1, and because log(W) is a concave function ofW
it follows from Jensen’s inequality that E[� logW] � 0,
with equality if and only if g(X) D f (X) with probability
one. The reason is that log x � 1�x for positive x, as illus-
trated in Fig 2. Application of this inequality to W shows
that E[log(W)] � log E[W] D 0 with equality if and only
ifW D 1 with probability 1.

The fact that the Kullback–Leibler divergence is posi-
tive for any difference between the true pdf f and the hypo-
thetical pdf g makes it a suitable quantity for testing f D g
against unspecified alternatives. A consistent estimator for
I( f ; g) may serve to construct a test that is consistent (i. e.
asymptotically rejects with probability one) against any

Nonparametric Tests for Independence, Figure 2
Illustration of Jensen’s inequality. Since the function y D logw is
concave, it is bounded from above by the tangent line atw D 1,
given by y D w � 1. It follows that if E[W] D 1 and Y D logW,
E[Y] D E[logW] � E[W � 1] D E[W]� 1 D 0 with equality if and
only ifW D 1 with probability 1

fixed alternative. Robinson [88] proceeded by construct-
ing such an estimator for I( f ; g) using plug-in density es-
timates of the unknown bivariate densities f (x) and g(x).
For instance, one may use the Nadaraya–Watson density
estimator

bf (x) D 1
ñhm

X

t
K((x � X t)/h) ;

where K(x) is a probability kernel, such as the pdf of
a multivariate normal random variable with independent
elements, (2
)�m/2 exp(�x0x/2), h is a smoothing param-
eter, and ñ the number of delay vectors X t occurring in
the summation. The resulting estimator of the Kullback–
Leibler divergence is

bI(bf ;bg) D 1
jSj

X

t2S

log

 
bf Xt�k ;Xt (Xt�k ; Xt)
bf X(Xt�k)bf X(Xt)

!

; (1)

where S is a subset of k C 1; : : : ; n, introduced to allow
for “trimming out” some terms of the summation if de-
sired, for instance terms in the summation for which one
or more of the local density estimates are negative or zero,
as may happen depending on the type of density estima-
tors used. The number of elements of S is denoted by jSj.
Robinson [88] showed that although the test statistic is
a consistent estimator of the Kullback–Leibler divergence,
no scaled version of it has a standard normal limit dis-
tribution, preventing the development of asymptotic dis-
tribution theory in a standard fashion. To overcome this
problem, instead of deriving the asymptotic distribution of
bI(bf ;bg), Robinson showed asymptotic normality of a mod-
ified test statistic, obtained by attaching weights to each of
the terms in the sum in (1).
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Hong and White [65] argued that this modification
leads to the loss of asymptotic local (i. e. close to the
null) power, and developed asymptotic distribution theory
for the estimatorbI(bf ;bg) directly. After adjusting for the
asymptotic mean they found that an appropriately scaled
version of the test statistic actually does have an asymptot-
ically standard normal distribution under the null hypoth-
esis.

Alternatively one may obtain critical values by calcu-
lating the test statistic for a large number of simulated
replications of an i.i.d. process, as done by Granger and
Lin [50]. Note, however, that the critical values thus ob-
tained will depend on the marginal distribution assumed
for the process. This approach was followed by Dioní-
sio et al. [35], who used the mutual information between
Xt�k and Xt for a range of k-values to test for serial in-
dependence in stock index returns. Critical values of the
test statistic were determined by constructing a reference
distribution of the test statistic under the null hypothe-
sis by simulation, repeatedly calculating the value of the
test statistic for a large number of independently generated
i.i.d. normal time series. The results suggest the presence
of residual dependence at several lags for log-returns on
stock indices that were filtered to account for ARMA and
GARCH structure.

A closely related information theoretic approach has
been described by Granger et al. [51] and Racine andMaa-
soumi [86], who start by considering the class of diver-
gences based on the asymmetric q-class entropy diver-
gence measure defined as

Iq( f ; g) D 1
1 � q

�

1 �
Z

Rm

�
f (x)
g(x)

�q
g(x)dx

	

:

This is a generalization of the Kullback–Leibler diver-
gence, which is recovered in the limit as q ! 1. The au-
thors subsequently focused on the symmetric q D 1

2 case,

I 1
2
( f ; g) D 2 � 2

Z

Rm

p
g(x)

p
f (x)dx

D
Z

Rm

�p
g(x) �p

f (x)
�2

dx ;

known as the Hellinger distance, and used this to develop
tests for various hypotheses involving the equality of two
densities, including serial independence.

Fernandes and Neri [44] proposed using an estima-
tor of the Tsallis entropy [105] to test for serial indepen-
dence in a time series setting. As it turns out, the Tsallis
entropy is identical to Iq( f ; g). In numerical simulation
studies Fernandes and Neri [44] found that, depending on
the time series processes under consideration and on the

value of q, these tests can have higher power than the en-
tropy-based test of Hong and White [65]. In comparison
with the BDS test of Brock et al. [16] (see Sect. “Correlation
Integrals”) they found that the entropy-based tests per-
form worse in most cases, although the latter have more
power for specific processes, including fractional AR(1)
and threshold AR(1) processes.

Aparicio and Escribano [1] developed further tests
based on information theoretic dependence measures.
Their framework allows testing for short memory against
long memory, as well as for the absence of cointegration
against linear or nonlinear cointegration. In empirical ap-
plications they found that although the rates of the Peseta
against the Yen and the US dollar do not appear to be lin-
early cointegrated, there is evidence supporting a nonlin-
ear cointegrating relation between the two rates.

Characteristic Functions

Csörgő [26] noted that instead of investigating empirical
distribution functions for testing independence, as Ho-
effding [62] and Blum, Kiefer and Rosenblatt [10] did,
a parallel approach can be based on empirical character-
istic functions. Several tests for independence have been
developed on the basis of this principle. I will be concerned
here only with serial independence tests. As with the em-
pirical distribution function one might consider various
measures of deviations from independence, e. g. based on
a maximum difference or on weighted integrals.

The test of Pinkse [84] is based on the observation
that the random variables X1 and X2 are independent if
and only if their joint characteristic function factorizes. He
proposed to test the relation

� (u; v) D Eei(uX1CvX2) � EeiuX1Eeiv X2 D 0

through a quantity of the form � D ’
g(u)g(v)j� (u; v)j2

dudv; where g(�) is a positive function. In fact Pinkse in-
troduced an estimator of a related but different functional,
as detailed in Sect. “Quadratic Forms” where it is also ex-
plained why the test statistic can be estimated directly us-
ing U-statistics [93], without the need to actually perform
the transformation to characteristic functions.

Hong [63,64] proposed a test for independence based
on the difference between the joint characteristic function
of Xt� j and Xt and the product of their marginal charac-
teristic functions. The main idea is to weigh the discrep-
ancy between F and G across all lags by considering the
Fourier transforms

h(!; x) :D (2
)�1
1X

jD�1
� j(x) exp(�i j!)
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of � j(x) D Fj(x) � G(x) where Fj denotes the joint CDF
of Xt� j and Xt. An application [63] to a series of weekly
Deutschmark US dollar exchange rates from 1976 until
1995 showed that although the log returns are serially un-
correlated, there is evidence of nonlinear dependence of
the conditional mean return given past returns.

Correlation Integrals

Correlation integrals have been used extensively in the
chaos literature, where they were introduced to character-
ize deterministic dynamics reconstructed from time series.
The interested reader is referred to Takens [99] for de-
tails of the reconstruction theorem, and to Grassberger et
al. [52,53] and the book by Tong [104] for a snapshot of the
early developments around correlation integrals. Correla-
tion integrals turn out to be very suitable also in stochastic
contexts. They are well adapted to testing for serial inde-
pendence against unspecified alternatives, as shown below.
Moreover, since they are U-statistics asymptotic theory is
readily available for them [30,31].

Brock et al. [15,16] based their test for serial indepen-
dence on the correlation integral of Xm

t , defined as

Cm(") D P[jZ1 � Z2j � "]
with Zi 
 Xm

t , independent for i D 1; 2 ;

where j � j denotes the supremum norm defined by jxj D
supiD1;:::;m jxi j. Under the null hypothesis of serial inde-
pendence the correlation integral factorizes:

Cm(") D (C1("))m : (2)

This can be seen by expressing Cm(") as a double integral

Cm(") D
Z

Rm

Z

Rm
I[0;"](jx � yj)�m(dx)�m (dy)

D
Z

R

Z

R
I[0;"](jx1 � y1j)�1(dx1)�1(dy1) � � � �

�
Z

R

Z

R
I[0;"](jx1 � y1j)�1(dxm)�1(dym)

D (C1("))m :

In the first step the independence of jXi � Yi j and jXj �
Yj j (1 � i ¤ j � m) was used, for two vectors
X and Y drawn independently from the distribution of
Xm

t under the null hypothesis (in that case all elements
X1; : : : ; Xm;Y1; : : : ;Ym are independent and identically
distributed). Note that strictly speaking Cm (") � (C1("))m

is not a divergence. Although it will typically be nonzero
for most alternatives with serial dependence, it is possible
to construct examples where Cm (")�(C1("))m is zero even

under serial dependence. Formally this means that testing
if Cm(") � (C1("))m is zero, amounts to testing an impli-
cation of the null hypothesis of serial independence.

For a given kernel function K(x1; : : : ; xk) that is sym-
metric in its arguments, theU-statistic based on a (possibly
dependent) sample fXm

t gñtD1, consists of the sample aver-
age of the kernel function with all elements different:

(ñ � k)!
ñ!

X

i1

: : :
X

ik
i j all different

K(X i1 ; : : : ; X ik ) :

The corresponding V-statistic is the sample average if the
elements are allowed to be identical:

1
ñk
X

i1

: : :
X

ik

K(X i1 ; : : : ; X ik ) :

The BDS test is based on the scaled difference between
the U-statistic estimators of the left- and right-hand sides
of (2):

Wn D p
n
Cm;n(") � (C1;n("))m

�m;n
;

where the U-statistic

Cm;n(") D 2
(n � m C 1)(n � m)

�
n�mC1X

iD2

iX

jD1

I[0;"](jXm
i � Xm

j j) ; (3)

is known as the sample correlation integral at embedding
dimension m and �2m;n is a consistent estimator of the
asymptotic variance of the scaled difference. The asymp-
totic distribution of the test statistic can be derived using
the results for U-statistics for weakly dependent processes,
described byDenker andKeller [30,31]. Under the null hy-
pothesis of serial independence,

Wn
d! N(0; 1) :

In fact the asymptotic distribution of Cm;n(")�(C1;n("))m

is obtained from that of (Cm;n(");C1;n(")). Since this is
a pair of U-statistics, it follows from the results of Denker
and Keller [30] that it is asymptotically bivariate normally
distributed for strongly mixing stationary processes [14].
After deriving the asymptotic means and covariance ma-
trix one can apply the functional delta method to ob-
tain the asymptotic normal distribution of Cm;n(") �
(C1;n("))m .

To apply the BDS test the user should specify a value
for the bandwidth parameter ". In numerical studies as
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well as applied studies, "-values are typically taken in the
range 0.5–1.5 times the sample standard deviation of the
observed time series. Note that the null hypothesis tested is
independence among all elements of Xm

t rather than pair-
wise independence of Xt�mC1 and Xt . Because this results
in a relative error of the estimated correlation integral that
increases rapidly with m, for applications with moderate
sample sizes (n � 1000, say) small values of m are recom-
mendable (e. g. m D 2 or m D 3).

Brock et al. [16] derived a ‘nuisance parameter theo-
rem’ for the BDS test, showing that the limiting distribu-
tion of the test statistic is asymptotically free of estimation
uncertainty of an unknown parameter � (e. g. a vector of
AR(p) model parameters) provided that a root-n consis-
tent estimator is available for � . The nuisance parameter
theorem, which covers the parameters of AR models, but
not, for instance of ARCH models, states that the asymp-
totic distribution of the test statistic for residuals is the
same as that for the true innovations. This justifies the use
of residuals in place of true innovations asymptotically,
which is convenient since it allows using the BDS test on
residuals as a model specification test, provided that the
estimated parameters are root-n consistent.

De Lima [78] formulated five conditions under which
the BDS test is asymptotically nuisance parameter free (i. e.
can be used as a model specification test). These involve,
among others, mixing conditions and conditions ensur-
ing the consistency of parameter estimates. Interestingly,
the test is not asymptotically nuisance parameter free for
GARCH residuals, but it is when applied to logarithms of
the squared residuals. Caporale et al. [21] have performed
a simulation study to evaluate the behavior of the test
statistic under violations of these conditions, and found
the BDS test to be very robust.

Note that filtering time series data by replacing them
with the (standardized) residuals of a time series model
typically has the effect of whitening the data, which makes
the detection of dependence more difficult. Brooks and
Heravi [18] found that upon filtering data through a com-
pletely misspecified GARCH model, the frequency of re-
jection of the i.i.d. null hypothesis can fall dramatically.
Therefore, a failure to reject the null hypothesis on the
basis of GARCH residuals does not imply that a GARCH
model is consistent with the data.

Wolff [106] observed that the unnormalized correla-
tion integral, i. e. the double sum in (3) without the nor-
malizing factor, converges to a Poisson law under some
moderate assumptions regarding the marginal distribu-
tion. This motivates a nonparametric test procedure based
on the correlation integral, which Wolff found to have re-
duced size distortion compared to the usual BDS test.

Instead of the sample correlation integral, Kočenda
and Briatka [74] suggest using an estimator of the slope

Dm(") D d lnCm (")
d ln "

;

also known as the course-grained correlation dimension
at embedding dimension m and distance ", for testing the
null hypothesis of serial independence. The intuition is
that the theoretically Cm(") 
 "m for small " under the
i.i.d. null, while Cm(") 
 "˛ for some ˛ < m, providedm
is sufficiently large, in the case of a low-dimensional attrac-
tor with correlation dimension ˛. The coarse-grained cor-
relation dimension is a measure for complexity, and devi-
ations from the null other than chaos typically also reduce
the coarse-grained correlation dimension. This makes the
coarse-grained correlation dimension a promising quan-
tity for testing the i.i.d. null hypothesis. Rather than us-
ing the slope for a single bandwidth ", Kočenda and Bri-
atka [74] proposed to use an estimator of the average slope
across a range of "-values, consisting of the least squares
estimator of the slope parameter ˇm in the regression

ln(Cm;n("i )) D ˛m C ˇm ln("i ) C ui ; i D 1; : : : ; b ;

where ˛m is an intercept, ui represents an error term, and b
is the number of bandwidths "i taken into consideration.
They then determined the optimal range of "-values by
simulation. The test based on the resulting least squares
estimator b̌m for ˇm was found to have high power com-
pared to some other tests for serial independence, and to
behave well when used as a specification test.

Although it is clear that the correlation integrals from
more than one bandwidth value "i contain more infor-
mation than that from a single bandwidth, it is not clear
why it would be a good idea to base a test on the estima-
tor b̌m . Since the correlation integral is an empirical CDF
(of inter-point distances) the error terms ui will be corre-
lated, which typically leads to a loss of efficiency. In Sub-
sect. “Multiple Bandwidth Permutation Tests” I discuss
an alternative way to combine information from different
bandwidths into a single test statistic, inspired by the rate-
optimal adaptive tests of Horowitz and Spokoiny [67].

Johnson and McLelland [70,71] proposed a variation
on the BDS test for testing the independence of a variable
and a vector based on correlation integrals. The main idea
is to test for remaining dependence between residuals and
regressors, in addition to mere dependence among residu-
als. This might be an advisable approach in many cases,
because even though theoretically a model misspecifica-
tion should lead to residuals with serial dependence, it is
often very hard to detect this dependence with tests on the
residuals only, due to the whitening effect of the filtering.
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Quadratic Forms

Quadratic forms are convenient for defining squared dis-
tances between probability distributions, which provide
tests that are consistent against any type of dependence
(hence including, for instance, ARCH and GARCH struc-
ture). A comparative advantage relative to the informa-
tion theoretical divergences discussed in Subsect. “Infor-
mation Theoretic Divergence Measures” is that they can,
like correlation integrals, be estimated straightforwardly
by U- and V-statistics.

The starting point for the construction of a quadratic
form is a bilinear form, which may be interpreted as
an inner product on the space of measures on Rm . The
quadratic forms discussed here were first applied in the
context of testing for symmetries of multivariate distribu-
tions [34], and later extended to a time series context [32].

Consider, for a kernel function K(�; �) on Rm � Rm the
form

(�; �) D
Z

Rm

Z

Rm
K(x; y)d�(x)d�(y)

for measures� and �. Note that this form is bilinear (linear
in� as well as �). If this form happens to satisfy (�;�) � 0
for any (possibly signed) measure � with (�;�) D 0 if
and only if �(A) D 0 for all Borel subsets A of Rm , then K
is called positive definite. In the terminology introduced
above, this means that (� � �; � � �) is a divergence be-
tween the measures � and �. Note that a positive definite
form defines an inner product on the space of measures on
Rm with the usual properties:

(i) (�; �) D (�; �).
(ii) (a�C b�; �) D a(�; �) C b(�; �) for scalars a, b.
(iii) (�;�) � 0 with equality iff �(A) D 0 for any Borel

subset A 2 A.

The inner product can therefore be used to define a norm
of � � � as k� � �k D p

(� � �; � � �), which satisfies
all the usual properties of a distance, such as Schwarz’s in-
equality, the triangle inequality and the parallelogram law
(See e. g. Debnath and Mikusiński [27]).

In short: any positive definite kernelK defines an inner
product on the space of measures on Rm , which in turn
defines a squared distance between � and �, given by

� D k� � �k2 D (� � �; � � �) :
(For simplicity the dependence of the squared distance on
the kernel function K has been suppressed in the nota-
tion.)

To pinpoint some classes of kernel functions that are
suitable for our purposes (i. e. that are positive definite) let

us assume that the kernel function K depends on x and
y only through the difference x � y, and that the kernel
function factorizes, i. e.

K(x; y) D
mY

iD1

�(xi � yi) :

In that case the Fourier transform K̃ of the kernel function
also factorizes, into K̃(u) D Qm

iD1 �̃(ui ), where �̃(u) DR
�(t)e�iutdt, the Fourier transform of �. The squarel dis-

tance � D k���k2 can then be expressed directly in terms
of characteristic functions �̃ and �̃ of� and � respectively:

� D 1
2


Z
K̃(u)j �̃(u) � �̃(u)j2du :

This follows from applying Parseval’s theorem to � D’
K(x; y)(� � �)(dx)(� � �)(dy). It follows that if the

kernel function is bounded and has a Fourier transform
which does not vanish on any interval, its associated bilin-
ear form is positive definite.

To illustrate this, Fig. 3 shows three kernel functions
and their Fourier transforms. The Gaussian kernel (top
panels) has a Gaussian as its Fourier transform, which
is everywhere positive. Therefore, the Gaussian product

Nonparametric Tests for Independence, Figure 3
Kernel functions (left) and their Fourier transforms (right) for the
Gaussian kernel (top), double exponential kernel (middle) and
the naive kernel (bottom)
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kernel is positive definite and defines a quadratic form
suitable for detecting any differences between a pair of
distributions on Rm . A similar conclusion holds for the
double exponential kernel exp(�jxj/a) (middle panels).
The ‘naive’ kernel function I[�a;a](x) (bottom panels) has
a Fourier transform which is negative for certain ranges of
the frequency !, and hence is not a positive definite kernel
function.

Given the kernel function K (e. g. a multivariate Gaus-
sian product kernel) the estimation of the associated
quadratic form (�� �; �� �) D (�;�) � 2(�; �)C (�; �)
is straightforward. Empirical versions of (�;�), (�; �) and
(�; �) can be obtained easily as sample averages. For in-
stance, if Xm

t is a sample from �, the sample version of
(�;�) D ’

K(s1; s2)d�(s1)d�(s2) is the V-statistic

1(�;�) D 1
ñ2
X

i

X

j

K(Xm
i ;X

m
j ) :

As before, ñ D n � m C 1 denotes the number of m-vec-
tors available. It follows from the results of Denker and
Keller [30,31] for U- and V-statistics of dependent pro-
cesses that the estimator is consistent under strong mixing
conditions and asymptotically normally distributed with
a variance that can be estimated consistently from the data.
Note that the estimator of (�;�) is in fact a sample corre-
lation integral, but with the kernel K instead of the usual
naive kernel.

As shown in [32], similar consistent estimators for the
other terms can be constructed easily:

1(�; �) D 1
ñ

ñX

tD1

m�1Y

kD0

bC(XtCk) ;

1(�; �) D 1
ñm

m�1Y

kD0

 nX

tD1

bC(XtCk)

!

;

where bC(x) D 1
n
Pn

iD1 �(x � Xi ) is the one-dimensional
correlation integral associated with the marginal distri-
bution. For some results concerning size and power and
comparisons of those with the BDS test and the test of
Granger, Maasoumi and Racine [51] see section “Multiple
Bandwidth Permutation Tests”.

In fact the divergence measure � D ’
g(u)g(v)

j� (u; v)j2dudv, on which Pinkse [84] based his test for se-
rial independence (see Sect. “Characteristic Functions”) is
also a quadratic form (for bivariate random variables). In-
stead of using a U-statistics estimator of � , Pinkse used an
estimator of a related quantity # , which in terms of the as-
sociated inner product can be expressed as:

# D ˚
[(�;�) � (�; �)]2 C [(�; �) � (�; �)]2

�
/2 :

It can be verified that also # � 0 with equality if and only
if # D 0. Indeed, evidently # D 0 if � D �, while under
any alternative one cannot have both (�; �) D (�;�) and
(�; �) D (�; �), since in that case (���; ���) D (�;�)�
2(�; �) C (�; �) > 0.

Tests Based on OtherMeasures of Dependence

Partial Sums of Data

Ashley and Patterson [2] proposed a test for indepen-
dence in stock returns based on the cumulative sum Zt DPt

jD1 Xj where Xj represents the residuals obtained after
estimating an AR(p) model on returns. The idea is that
if the model is appropriate, the residuals are expected to
be close to i.i.d. and Zt corresponds to the deviation of
a Brownian motion on the line after t time steps. The
authors proposed to test this property using the statistic
Zmax D maxfjZ1j; : : : ; jZT jg, assessing the statistical sig-
nificance using a bootstrap method.

It was later pointed out by Corrado and Schatz-
berg [25] that since fXtg has a zero sample mean, fZtg
is ‘tied to zero’ at the endpoints (Zt D Z0 D 0), and
hence the reference paths used in the bootstrap should
have been constructed to satisfy the same constraints.
This can, for instance, be achieved by mean adjusting the
bootstrap sample, or alternatively by employing a permu-
tation method (resampling without replacement). More-
over, Corrado and Schatzberg [25] showed that after
rescaling via

Wt D Zt/(
p
Tb�T)

whereb�T is the sample standard deviation of Xj, the sam-
ple path of Wt for large T forms a Brownian bridge un-
der the null hypothesis, which implies that the maximum
absolute value has the same null distribution as the Kol-
mogorov–Smirnov (KS) test statistic.

Scaled versions of partial sums were also considered
by Kulperger and Lockhart [75]. They focus on examin-
ing the conditional mean of Yj :D XjC1 given Xj, by
studying the dependence among successive Y-values when
ordered according to the ranks of the correspond-
ingX-values. Put simply, this replaces the ordering of pairs
(Xt ;Yt) in such a way that X-values are ordered increas-
ingly, enabling the partial sums to grasp the common de-
pendence between Y-values on X-values, rather than on
time. Motivated by this, the authors propose to study the
sample path of the partial sums

Si D 1p
n

iX

jD1

(Y( j) � Ȳ) ;
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where Y( j) denotes X( j)C1 (the successor of the observa-
tion among whose rank among the original observations
is j), and Ȳ is the sample mean of fYjg. The authors then
propose and compare various statistics to test if the real-
ized process fSig is a realization of a Brownian bridge, as
predicted under the null hypothesis. Straightforward ex-
tensions can be obtained by taking Y( j) D ˚(X( j)Ck ) for
some fixed lag k.

The Spectral Density

Besides being able to test the strict random walk hypoth-
esis (i.i.d. increments) for a financial time series such as
a log-price, it is also of interest to be able to test the weaker
hypothesis that increments have a constant conditional
mean. A test based on the spectral density for this so-called
martingale hypothesis was developed by Durlauf [41].

The Bispectrum

As already noted by Robinson [88], one can test for serial
independence against nonlinear dependence with a test
for linearity rather than independence. Here and in the
next subsection I briefly discuss a few examples of linearity
tests.

Extending results of Subba-Rao [98], Hinich [58] used
the bispectrum to detect ‘interactions between Fourier
components’. The motivation behind the approach is that
the bicorrelation, defined as

c(k; `) D E[XtXtCkXtC`] ;

should be zero for a stationary linear Gaussian random
process fXtg with mean zero.

As an illustration of the structure that the bicovariance
of a nonlinear time series may exhibit, Fig. 4 shows the
bicovariance for the time series fXtg generated by the bi-
linear process

Xt D 0:9"t�1Xt�2 C "t

where f"tg is a sequence of independent standard normal
random variables. For the simulated data I initialized the
state variables at X�1 D X0 D 0 and discarded the first
1000 iterations.

Examining the behavior of the bicorrelation c(k; `) for
many values of k and ` simultaneously can be achieved in
various ways, for instance by examining the bispectrum

B(!1; !2) D
1X

kD�1

1X

`D�1
c(k; `) exp

��i(!1k C !2`)
�
:

Hinich [58] introduced two functionals of the bispectrum
that are suitable for testing Gaussianity and linearity, re-

Nonparametric Tests for Independence, Figure 4
Bicovariance c(k; `) for a bilinear process. Lighter regions cor-
respond with larger values of the bicovariance. Series length
n D 4000

spectively. For applications to both model generated data
and real data see, among others, [3,4,17,57]. Overall, these
applications indicate that nonlinearity and non-Gaussian-
ity play an important role in economic time series.

More recently Hinich [59] proposed a related test for
serial independence of the innovations acting on a (un-
specified) linear filter. This test is also based on the bis-
pectrum, but the test statistic can be evaluated in the time
domain since it is a function of the sample bicovariance
function of the residuals. Lim et al. [77] applied the test
of Hinich [59] to returns of Asian market indices. If the
returns would follow a GARCH process with symmetric
innovations the sequence of signs thus obtained should
be i.i.d. Since the results indicate nonlinear structure in
the signs of Asian stock returns, the conclusion is that
GARCH models with symmetric innovations are inappro-
priate for the returns.

Note that although this example shows how the bis-
pectrum can be used to detect evidence against the null of
(G)ARCH, the bispectrum cannot be used to test for serial
independence against (G)ARCH alternatives. The reason
is that the bicovariance is not able to pick up dependence
in time series processes in which the conditional mean
of Xt given past observations is zero, such as ARCH and
GARCH processes.

If the probabilistic structure of a stationary time se-
ries process is preserved under time-reversal (i. e. when
reading the series backward in time), the time series pro-
cess is called time reversible. Clearly, time reversibility
should hold under serial independence. Ramsey and Roth-
man [87,91] developed a test for time reversibility based
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on a sample version of the difference of bicovariances
c(k; k) � c(0; k) D E[X2

t Xt�k] � E[XtX2
t�k]. This test is

consistent against some forms of serial dependence, but
not against all. For instance, it is not consistent against
ARCH and GARCH alternatives, since these have zero bi-
covariance at any lag k.

Terdik and Máth [100] use the information contained
in the bispectrum to test whether the best predictor is lin-
ear against quadratic alternatives. The null hypothesis be-
ing tested is linearity in mean, as opposed to a linear Gaus-
sian random processes.

Brooks and Hinich [19,20] generalized the bispectrum
approach to multivariate time series settings, in order to
study nonlinear lead-lag relationships. These authors in-
deed found evidence for nonlinear dependence structure
between various exchange rates. As noted by the authors
these findings have important implications for investors
who try to diversify their portfolios internationally.

Nonlinearity in the Conditional Mean

Hjellvik and Tjøstheim [60] developed a nonparametric
test for linearity based on the difference between the best
linear predictor and a kernel-based nonparametric predic-
tor. Hjellvik et al. [61] explored a variant of this approach
where local polynomial predictors were used instead of
kernel-based predictors.

Bootstrap and Permutation Tests

As shown above, in many cases it is possible to use asymp-
totic distribution theory for test statistics in the time series
context. Notable cases are those where the test statistics are
U-statistics or a function thereof, as is the case for the BDS
test. In some cases, however, the resulting asymptotic ap-
proximation to the finite sample null distribution may be
poor. In particular this can happen when the test statis-
tic is a degenerate or near-degenerate U-statistic under the
null hypothesis. For instance, the BDS test statistic is near-
degenerate under the null hypothesis if the marginal dis-
tribution is uniform.1

For practical purposes, near-degeneracymeans that al-
though the test statistic is asymptotically standard normal,
it may be far from asymptotic normality even for large
sample sizes. Whether a particular test statistic is (near)
degenerate under the null is often not known, as it depends

1It is exactly degenerate for i.i.d. data from the uniform distribu-
tion on the circle, i. e. the interval [0; a] with the endpoints iden-
tified [16]. Theiler [102] simulated variance of S D Cm;n(") �
(Ci;n("))m in the degenerate case, and found that it converges to 0
at the rate n�2 instead of the usual rate n�1.

on the marginal distribution of the data generating pro-
cess. To avoid such problems with the asymptotic approx-
imation one can use critical values obtained by simulating
a fully specified model that satisfies the i.i.d. null hypothe-
sis. However, since the distribution of the test statistic de-
pends on the marginal distribution, it is better to reflect
this in the simulated data as well. This can be done by using
bootstrap or Monte Carlo methods for assessing the statis-
tical significance of the observed value of the test statistic
of interest. The Monte Carlo procedure has the additional
advantage that it produces an exact randomization test.

Simulation

Although I do not recommend this procedure in practice,
I include it for completeness. For simplicity I describe the
approach here only for the one-sided case where large val-
ues of the test statistic provide evidence against the null
hypothesis. The approach for two-sided tests is similar.

Suppose we wish to obtain critical values of a test
statistic, Qn, say, then this can be obtained by simulating
a large number of i.i.d. time series of length n. The idea
is to simulate time series satisfying the null hypothesis us-
ing a fully specified model. For instance one can simulate
a large number B of i.i.d. normal time series data of the
same length as the original time series, and then calcu-
late the value of the test statistic for each of these artificial
time series. The sample distribution of the B simulated test
statistics subsequently represents the null distribution, and
a p-value can be obtained asbp D #fQi

n � Qng/(B C 1).
This approach is suitable if one is willing to assume a cer-
tain marginal (normality in this case) under the null, or if
the distribution of the test statistic is (at least asymptot-
ically) independent of the (unknown) marginal distribu-
tion.

Dionísio [35] implemented a test for serial indepen-
dence based on the mutual information between Xt and
XtC� . Critical values of the test statistic were obtained for
individual lags � by simulating a large number of N(0; 1)
i.i.d. time series of the appropriate length. This should pro-
vide a good approximation to the true critical values if the
data are approximately normally distributed, or if the the
(asymptotic) distribution of the test statistic is indepen-
dent of the (unknown) marginal distribution. If not, this
may lead to size distortions if the data are skewed or oth-
erwise deviating from normality. A bootstrap or a permu-
tation test may be more appropriate in those cases.

Bootstrap Tests

The bootstrap approach consists of resampling from the
observed data with replacement. The idea is that under the
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null the best representation of the data generating process
that we have is given by an i.i.d. process with the empir-
ical distribution of the observed data. One of the moti-
vating advantages of the bootstrap is that it yields an im-
proved approximation to the finite sample distribution of
test statistics relative to first-order asymptotic theory, pro-
vided that the statistics are asymptotically pivotal. For an
overview of the use of the bootstrap in econometrics, I re-
fer the interested reader to [66].

Although there are sophisticated bootstrap methods
that are particularly designed for time series, for instance
the block bootstrap [22,76,85], in the case of testing for se-
rial independence the data are i.i.d. under the null, so un-
der the null hypothesis we can bootstrap by simply draw-
ing n values from the original time series independently
with replacement. This procedure is often referred to as
the naive bootstrap.

Hong and White [65] noted that the naive bootstrap
does not produce a consistent procedure for their test
statistic (essentially the estimator of the Kullback–Leibler
divergence given in (1)) as it is degenerate under the null
hypothesis of serial independence. They propose the use
of a smoothed bootstrap procedure to overcome this. In
the degenerate case also a permutation test may be used,
as described next.

Permutation Tests

Under the null hypothesis of serial independence the
data generating process is typically known only up to an
infinite dimensional nuisance parameter (the unknown
marginal distribution). This prevents one from generat-
ing time series data that have the exact same distribu-
tion as the data generating process under the null hypoth-
esis, as Barnard [5] suggested for simple null hypothe-
ses (i. e. null hypotheses under which the distribution of
the data is fully specified). Hence the problem is that the
null hypothesis of serial independence is not simple but
composite, with each possible marginal distribution repre-
senting another i.i.d. process. This limitation can be over-
come by considering all the possible processes under the
null, conditional on an observed value of a minimal suf-
ficient statistic for the nuisance parameter. The resulting
(conditional) null distribution of the test statistic can then
be shown to be free of unknown parameters. The simu-
lated data should be drawn from the same conditional dis-
tribution as the data generating process under the null,
given the sufficient statistic. This procedure can be used
for constructing a randomization test procedure which is
exact, i. e. the type I error rate is equal to nominal level,
at least in the absence of parameter estimation uncer-

tainty. The resulting tests are referred to as Monte Carlo
tests.

Since under the null hypothesis the empirical marginal
distribution is a minimal sufficient statistic for the un-
knownmarginal distribution. The conditional distribution
of the observations given their empirical marginal, assigns
equal probability to each of the n! possible permutations
of the data. This means that every permutation of the orig-
inally observed values is equally likely. Hence an inde-
pendent draw from the time series process conditional on
the sufficient statistic can be obtained straightforwardly by
randomly permuting the original data. The value of the
test statistic for such a permuted time series is an indepen-
dent draw from the conditional null distribution of the test
statistic given the sufficient statistic. Although the Monte
Carlo method is exact for data generated under the null
hypothesis, not many investigators have studied its behav-
ior when applied to residuals of an estimated time series
model. For a general treatment of Monte Carlo testing in
the presence of model parameter uncertainty, see the re-
cent work by Dufour [37].

Multiple Bandwidth Permutation Tests

Most of the nonparametric tests described above, such
as the BDS test, require a user-specified value for the
bandwidth parameter. I mentioned that the BDS test is
usually applied with bandwidth values in the range 0.5
to 1.5 standard deviations. Although these values ap-
pear to work reasonably well in numerical simulation
studies with computer-generated data from known pro-
cesses, there is no guarantee that this is an optimal
range for the (usually unknown) alternative of most in-
terest to the user (i. e. the possibly non-i.i.d. true process
that generated the data at hand). In the different con-
text of testing a parametric regression function against
an unknown nonparametric alternative, Horowitz and
Spokoiny [66] proposed tests with an adaptive band-
width, that they showed to be rate-optimal. Although the
present context is slightly different, and the details of
their theorems most likely require some adaptation be-
fore they apply here, test statistics similar to the adap-
tive bandwidth statistics that they proposed can be easily
implemented.

The idea is to calculate test statistics for many val-
ues of the bandwidth parameter, ", say, and reject the
null hypothesis if there is evidence against independence
from one or more of the statistics calculated for the var-
ious bandwidths. To achieve this, an overall test statis-
tic is required that will pick up evidence of dependence
from any of the bandwidths. In Ref. [32] we proposed us-
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Nonparametric Tests for Independence, Table 1
Observed rejection rates at nominal size 0.05 of the test of Granger,Maasoumi andRacine [51] (GMR) test and themultiple bandwidth
permutation procedure for the BDS test statistic [16] and thequadratic form-based test of Diks and Panchenko [32] (DP). In themodel
specifications futg represents a sequence of independent standard normal random variables. Embedding dimensionm D 3, sample
size 100, except for the sign process (sample size 50) and the logistic and the Hénonmaps (sample size 20). Monte Carlo parameters
B D 100 permutations and 1000 independently realized time series from each process

Model Specification GMR BDS DP
1 Xt D ut 0.05 0.05 0.05
2 Xt D ut C 0:8u2t�1 0.57 0.68 0.71
3 Xt D ut C 0:6u2t�1 C 0:6u2t�2 0.78 0.84 0.96
4 Xt D ut C 0:8ut�1ut�2 0.22 0.46 0.29
5 Xt D 0:3Xt�1 C ut 0.31 0.16 0.68
6 Xt D 0:8jXt�1j0:5 C ut 0.25 0.11 0.53
7 Xt D sign(Xt�1) C ut 0.86 0.75 0.98
8 Xt D 0:6"t�1Xt�2 C "t 0.26 0.50 0.39
9 Xt D p

htut; ht D 1 C 0:4X2
t�1 0.26 0.51 0.24

10 Xt D p
htut; ht D 0:01 C 0:80ht�1 C 0:15X2

t�1 0.15 0.35 0.18
11 Yt D (�0:5 C 0:9I[0;1) (Yt�1))Yt�1 C "t 0.34 0.06 0.87
12 Xt D 4Xt�1(1 � Xt�1); (0 < Xt < 1) 0.95 0.71 0.90
13 Xt D 1 C 0:3Xt�2 � 1:4X2

t�1 0.96 0.46 0.97
14 Xt D Zt C �ut; Zt D 1 C 0:3Zt�2 � 1:4Z2t�1 0.41 0.22 0.83

ing the smallest p-value,bp("i), across a set of d different
bandwidths "1 < � � � < "d as an overall test statistic:
T D infibp("i ). To establish if the value of T obtained is
significant, a permutation test can be performed. I refer
to this procedure as the multiple bandwidth permutation
test.

Suppose that we wish to base the p-valuesbp("i) on the
permutation procedure described above, then this setup
seems to require two nested permutation procedures; one
global loop for replicating B values of T, Ti, i D 1; : : : ; B,
for the B different permutations of the original data, and
for each of those another loop to obtain a p-valuesbp("i)
of the observed (BDS) test statistic for each bandwidth. It
turns out, however, that this can be achieved much more
efficiently, in a single loop across B permutations of the
original data, as follows.

Let Q1("i), i D 1; : : : ; b, denote the value of the (BDS)
test statistic for the original data at the ith bandwidth, "i ,
and Qk("i), k D 2; : : : ; B, that of the kth randomly per-
muted time series, then a p-value can be obtained for each
bandwidth as before:bp1("i) D #fQs("i) � Q1("i )g/B:The
superscript 1 denotes that these p-values are obtained for
the original time series, b D 1. Subsequently one can ob-
tain similar p-values for each of the permuted time series
asbpb("i) D #fQs ("i) � Qb("i )g/B: Now we are in a po-
sition to calculate the global test statistic Tb D infibpb("i)
for each of the B permuted time series, including the orig-
inal time series (the case b D 1). Finally, we can estab-

lish the significance of the test statistic T1 obtained for
the original time series by comparing it with the refer-
ence values T2; : : : ; TB . Although these values need not
be independent, even under the null hypothesis, they do
satisfy permutation symmetry under the null hypothe-
sis, so that each of the possible permutations of the ob-
served values of Tb is equally likely. By the permutation
symmetry of all the time series (the original and the per-
muted series) under the null hypothesis, and hence of
the values Tb, b D 1; : : : ; B, the overall p-value can still
be calculated as if the values Tb were independent, i. e.
bp D #fTs � T1g/B: In other words, only the fact that
all possible orderings of the values T1; : : : ; TB are equally
likely under the null hypothesis is needed, and not their
independence.

So far I haven’t discussed the possibility that ties may
occur. In fact they occur with nonzero probability since
bpb("i) is a discrete random variable for finite B. If ties
are dealt with appropriately, however, then the above pro-
cedure leads to a test with a rejection rate under the
null hypothesis equal to the nominal size (for details
see [32]).

Table 1 shows the power of the multiple bandwidth
procedure for the BDS test [16] and the test developed
by Valentyn Panchenko and me [32] based on quadratic
forms for various processes (referred to henceforth as
the DP test). For comparison the power of the test of
Granger Maasoumi and Racine [51] (GMR test) based on
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the Hellinger distance, discussed in Subsect. “Information
Theoretic Divergence Measures”, are also provided. The
GMR test was performed with the R software provided by
the authors, which uses a bandwidth based on cross-vali-
dation.

The processes are, in order, models of type: i.i.d. nor-
mal (1), nonlinear moving average (2–4), linear autore-
gressive (5), nonlinear autoregressive (6), sign autoregres-
sive (7), bilinear (8), ARCH(1) (9), GARCH(1,1) (10),
threshold autoregressive (11), logistic map (12), Hénon
map (13) and the Hénon map with dynamic noise (14).
The multiple bandwidth permutation test was performed
with 5 bandwidth values "i between " D 0:5 and 2.0, with
a constant ratio "iC1/"i , i D 2; : : : ; 4 (hence the band-
widths are equally spaced on a logarithmic scale).

The table shows rejection rates for the i.i.d. process
which are all close to the nominal size 0.05, hence there
is no evidence for size distortion for any of the three tests.
In terms of power (remaining processes) none of the tests
does uniformly outperform the others, even within model
classes such as the nonlinear moving average processes
considered (process 2–4). This emphasizes again how hard
it is to tell beforehand which test will perform best for an
unknown alternative.

For applications I would have a slight preference for
using a test that is consistent against any fixed alternative
(such as the DP test), if only to hedge against the possi-
bility of having no asymptotic power. However, as Table 1
shows, this does not guarantee a good finite sample per-
formance in all cases.

Future Directions

Although permutation tests have been shown to have the
advantage of providing exact tests in the ideal case of data
that are truly i.i.d. under the null hypothesis, more work
is required to establish the properties of these (or adapted)
tests in the presence of residuals of an estimated paramet-
ric model. This requires either adaptation of the permu-
tation procedure in that setting, or analogues of the ‘nui-
sance parameter theorem’ for the BDS test.

Another remaining challenge is the detection of de-
pendence within observed high-variate vector-valued time
series. Estimating (functionals of) probability densities in
high-dimensional spaces is notoriously difficult, since the
number of observations typically required grows very fast
with the number of dimensions. Due to this so-called
curse of dimensionality, the kernel-based methods dis-
cussed here in practice cannot be meaningfully applied to
data sets withmoderate sample sizes (several thousand ob-
servations) if the dimensionm exceeds 5 or 6.

Additional work is also required for the development
of statistical tests for time series that do not take values
in the real line, but in more general manifolds. As men-
tioned in the introduction, an example consists of wind
direction data taking values in the interval [0; 2
] with
the endpoints identified (i. e. on the circle). This touches
upon the general problem of defining divergencemeasures
between distributions on less familiar measurable spaces,
and constructing and studying the statistical properties of
their estimators.
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Glossary

Causal loop diagram A diagrammatic artifact that cap-
tures the causal model and feedback structure underly-
ing a problem situation. Commonly used as a first-cut
tool to identify major stakeholder concerns and inter-
actions. These diagrams are often precursors to formal
models.

Dynamic modeling Formal examination of the behavior
of a system over time. Contrast with point-estimation,
which attempts to predict an average outcome.

Feedback A relationship where two or more variables are
linked over time so that the influence of one variable
on a second will later affect the state of the first. If the
influence is such as to increase the state of the first over
time, the feedback is termed reinforcing. If the influ-

ence is such as to decrease the state of the first, it is
termed balancing.

Formal model The representation of a system structure
in mathematical form. Contrast with causal model,
which represents structure without the underlying
mathematics.

Mental model The representation of a problem’s struc-
ture as possessed by an expert in a particular domain.
Mental models are often intangible until explicated by
the expert.

Public policy Any and all actions or non-actions, deci-
sions or non-decisions taken by government, at all lev-
els, to address problems. These actions, non-actions,
decisions or non-decisions are implemented through
laws, regulations and the allocation of resources.

Group model building (GMB) An approach to problem
definition that asks multiple experts and major stake-
holders to provide collective insights into the structure
and behavior of a system through facilitated exercises
and artifacts. GMB is often used to explicate the con-
trasting mental models of stakeholders.

Stakeholder An individual or group that has significant
interest or influence over a policy problem.

System dynamics An analytic approach to problem defi-
nition and solution that focuses on endogenous vari-
ables linked through feedback, information and mate-
rial delays, and non-linear relationships. The structure
of these linkages determines the behavior of the mod-
eled system.

Definition of the Subject

System dynamics is an approach to problem understand-
ing and solution. It captures the complexity of real-world
problems through the explication of feedback among en-
dogenous variables. This feedback, and the delays that ac-
company it, often drive public sector programs towards
unanticipated or unsatisfactory results. Through formal
and informal modeling, System Dynamics-based analysis
explicates and opens these feedback structures to discus-
sion, debate and consensus building necessary for success-
ful public sector policymaking.

Introduction

In the 50 years since its founding, System Dynamics has
contributed to public policy thought in a number of areas.
Major works, such as Urban Dynamics [35] and Limits to
Growth [61] have sparked controversy and debate. Other
works in the domains of military policy, illegal drugs, wel-
fare reform, health care, international development, and
education have provided deep insight into complex social
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problems. The perspective of System Dynamics, with its
emphasis on feedback, changes over time, and the role of
information delays, helps inform policy makers about the
intended and unintended consequences of their choices.
The System Dynamics method includes a problem-ori-
ented focus and the accommodation of multiple stake-
holders, both crucial to the development of sound policy.
Through the use of formal simulation, decision makers
may also use System Dynamics models to consider the ef-
fects of their choices on short- and long-term outcomes.
We illustrate this process with real life examples, followed
by a review of the features of System Dynamics as they re-
late to public policy issues. We then describe the conjunc-
tion of System Dynamics and Group Model Building as
a mechanism for policy ideation and review. We identify
some of the historical and current uses of System Dynam-
ics in the public sector, and discuss techniques for evaluat-
ing its effects on policy and organizations.

MedicalMalpractice: A System Dynamics
and Public Policy Vignette

The year was 1987 and New York’s medical malpractice in-
surance system was in a state of crisis. Fueled by unprece-
dented levels of litigation, total settlements were soaring as
were the malpractice insurance rates charged to hospitals
and physicians. Obstetricians stopped taking on new pa-
tients. Doctors threatened to or actually did leave the state.
Commercial insurance carriers had stopped underwriting
malpractice insurance policies, leaving state-sponsored risk
pools as the only option. The Governor and the Legislature
were under pressure to find a solution and to find it soon.
At the center of this quandary was the state’s Insurance
Department, the agency responsible for regulating and set-
ting rates for the state’s insurance pools. The agency’s head
found himself in just the kind of media hot seat one seeks to
avoid in the public service.

An in-house SWAT team of actuaries, lawyers, and an-
alysts had been working to present a fiscally sound and po-
litically viable set of options for the Agency to consider and
recommend to the legislature. They had been working with
a team of System Dynamics modelers to gain better under-
standing of the root causes of the crisis.Working as a group,
they had laid out a whole-system view of the key forces driv-
ing malpractice premiums in New York State. Their simu-
lation model, forged in the crucible of group consensus, por-
trayed the various options on a “level playing field,” each
option being analyzed using a consistent set of operating as-
sumptions. One option stood out for its ability to offer im-
mediate malpractice insurance premium relief, virtually in-
suring a rapid resolution to the current crisis. An actuar-

ial restructuring of future liabilities arising from future pos-
sible lawsuits relieved immediate pressure on available re-
serve funds. Upward pressure on premiums would vanish;
a showdown in the legislature would be averted. Obviously,
the Commissioner was interested in this option–who would
not be?

“But what happens in the later years, after our crisis is
solved?” he asked. As the team pored over the simulation
model, they found that today’s solution sowed the seeds for
tomorrow’s problems. Ten, fifteen, or maybemore years into
the future, the deferred liabilities piled up in the system cre-
ating a secondary crisis, quite literally a second crisis caused
by the resolution of the first crisis.

“Take that option off the table – it creates an unaccept-
able future,” was the Commissioner’s snap judgment. At
that moment a politically appointed official had summar-
ily dismissed a viable and politically astute “silver bullet”
cure to a current quandary because he was thinking dynam-
ically, considering both short-term and long-term effects of
policy.

The fascinating point of the medical malpractice vi-
gnette is that the option taken off the table was indeed,
in the short run, a “silver bullet” to the immediate crisis.
The System Dynamics model projected that the solution’s
unraveling would occur long after the present Commis-
sioner’s career was over, as well as after the elected life span
of the Governor who had appointed him and the legisla-
tors whose votes would be needed to implement the so-
lution. His decision did not define the current problem
solely in terms of the current constellation of stakehold-
ers at the negotiations, each with their particular interests
and points of view. His dynamic thinking posed the cur-
rent problem as the result of a system of forces that had ac-
cumulated in the past. Symmetrically, his dynamic think-
ing looked ahead in an attempt to forecast what would be
the future dynamic consequences of each option. Might
today’s solution become tomorrow’s problem?

This way of thinking supported by System Dynamics
modeling invites speculation about long-run versus short-
run effects. It sensitizes policy makers to the pressure of
future possible stakeholders, especially future generations
whomay come to bear the burden of our current decisions.
It draws attention into the past seeking causes that may
be buried at far spatial and temporal distances from cur-
rent symptoms within the system. It seeks to understand
the natural reaction time of the system, the period during
which problems emerge and hence over which they need
to be solved. System Dynamics-based analysis in the pub-
lic sector draws analytic attention away from the riveting
logic of the annual or biannual budget cycle, often focusing
on options that will play themselves out years after current
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elected officials have left office. Such work is hard to do,
but critical if one wants to think in systems terms.

What Is System DynamicsModeling?

While other papers in this series may provide a more ex-
panded answer to this basic question, it may be useful to
begin this discussion of System Dynamics and public pol-
icy with a brief description of what System Dynamics is.

SystemDynamics is an approach to policy analysis and
design that applies to problems arising in complex social,
managerial, economic, or ecological systems [31,33,74,95].
System Dynamics models are built around a particular
problem. The problem defines the relevant factors and key
variables to be included in the analysis. This represents the
model’s boundary, which may cross departmental or orga-
nizational boundaries. One of the unique advantages of us-
ing System Dynamics models to study public policy prob-
lems is that assumptions from a variety of stakeholders are
explicitly stated, can be tested through simulation, and can
be examined in context.

System Dynamics models rely on three sources of in-
formation: numerical data, the written database (reports,
operations manuals, published works, etc.), and the ex-
pert knowledge of key participants in the system [36]. The
numerical database of most organizations is very small,
the written database is larger, and the expert knowledge
of key participants is vast. System Dynamicists rely on all
three sources, with particular attention paid to the expert
knowledge of key participants because it is only through
such expert knowledge that we have any knowledge of the
structure of the system. The explicit capturing of accumu-
lated experience from multiple stakeholders in the model
is one of the major differences between System Dynamics
models and other simulation paradigms. An understand-
ing of the long term effects of increased vigilance on the
crime rate in a community needs to account for the reac-
tion of courts, prisons, and rehabilitation agencies pressed
to manage a larger population. This knowledge is spread
across experts in several fields, and is not likely to be found
in any single computer database. Rather, insight requires
a process that makes these factors visible and explicit. For
public sector problems, in particular, this approach helps
move conflict out of the realm of inter-organizational con-
flict and towards a problem-solving focus.

Through the use of available data and by using the
verbal descriptions of experts to develop mathematical
relationships between variables, we expose new concepts
and/or previously unknown but significant variables. Sys-
tem Dynamics models are appropriate to problems that
arise in closed-loop systems, in which conditions are con-
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Closed loop diagramof fathers and daughters

verted into information that is observed and acted upon,
changing conditions that influence future decisions [69].

This idea of a “closed loop” or “endogenous” point of
view on a system is really important to all good System
Dynamics models. A simple example drawn from every-
day life may help better to understand what an endoge-
nous (versus exogenous) point of view means. If a father
believes that his teenage daughter is always doing things
to annoy him and put him in a bad mood, then he has an
exogenous or “open loop” view of his own mood because
he is seeing his mood as being controlled by forces out-
side of or exogenous to his own actions. However, if the
father sees that his daughter and her moods are reacting
to his own actions and moods while in turn his daughter’s
actions shape and define his moods, then this father has
an endogenous point of view on his ownmood. He under-
stands how his mood is linked in a closed loop with an-
other member of his family. Of course, the father with an
endogenous view will be in a better position to more fully
understand family dynamics and take actions that can pre-
vent bad moods from spreading within the family.

Using an SDModel to Develop a Theory

A System Dynamics model represents a theory about
a particular problem. Since models in the social sciences
represent a theory, the most we can hope for from all these
models, mental or formal, is that they be useful [94]. Sys-
temDynamicsmodels are useful because themathematical
underpinning needed for computer simulation requires
that the theory be precise. The process of combining nu-
merical data, written data, and the knowledge of experts in
mathematical form can identify inconsistencies about how
we think the system is structured and how it behaves over
time [38].
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In policymaking it is often easy and convenient to
blame other stakeholders for the problem state. Often,
though, the structure of the system creates the problem by,
for example, shifting resources to the wrong recipient or
by inclusion of policies that intervene in politically visible
but ineffective ways. The use of inclusive SD models ed-
ucates us by identifying these inconsistencies through an
iterative process involving hypotheses about system struc-
ture and tests of system behavior. Simulation allows us to
see how the complex interactions we have identified work
when they are all active at the same time. Furthermore, we
can test a variety of policies quickly to see how they play
out in the long run. The final result is a model that repre-
sents our most insightful and tested theory about the en-
dogenous sources of problem behavior.

Behavior over Time Versus Forecasts

People who take a systems view of policy problems know
that behavior generated by complex organizations cannot
be well understood by examining the parts. By taking this
holistic view, SystemDynamicists capture time delays, am-
plification, and information distortion as they exist in or-
ganizations. By developing computer simulation models
that incorporate information feedback, systems modelers
seek to understand the internal policies and decisions, and
the external dynamic phenomena that combine to gener-
ate the problems observed. They seek to predict dynamic
implications of policy, not forecast the values of quantities
at a given time in the future.

System Dynamics models are tools that examine
the behavior of key variables over time. Historical data
and performance goals provide baselines for determining
whether a particular policy generates behavior of key vari-
ables that is better or worse, when compared to the base-
line or other policies. Furthermore, models incorporat-
ing rich feedback structure often highlight circumstances
where the forces governing a system may change in a rad-
ical fashion. For example, in early phases of its growth
a town in an arid region may be driven by a need to at-
tract new jobs to support its population. At some future
point in time, the very fact of successful growthmay lead to
a water shortage. Now the search for more water, not more
jobs, may be what controls growth in the system. Richard-
son [69] has identified such phenomena as shifts in loop
dominance that provide endogenous explanations for spe-
cific outcomes. Simulation allows us to compress time [95]
so that many different policies can be tested, the outcomes
explained, and the causes that generate a specific outcome
can be examined by knowledgeable people working in the
system, before policies are actually implemented.

Excellent short descriptions of System Dynamics
methodology are found in Richardson [69,70] and Bar-
las [9]. Furthermore, Forrester’s [33] detailed explanation
of the field in Industrial Dynamics is still relevant, and
Richardson and Pugh [74], Roberts et al. [78], Coyle [22],
Ford [31], Maani and Cavana [53], Morecroft [65] and
Sterman [95] are books that describe the field and pro-
vide tools, techniques and modeling examples suitable for
the novice as well as for experienced System Dynamics
modelers.

An Application of System Dynamics – The Governor’s
Office of Regulatory Assistance (GORA) Example

When applied to public policy problems, the “nuts and
bolts” of this System Dynamics process consist of identify-
ing the problem, examining the behavior of key variables
over time, creating a visualization of the feedback struc-
ture of the causes of the problem, and developing a formal
simulation model. A second case illustration may assist in
understanding the process. The New York State Gover-
nor’s Office of Regulatory Assistance (GORA) is a govern-
mental agency whose mission it is to provide information
about government rules and regulations to entrepreneurs
who seek to start up new businesses in the state. The case
was described by Andersen et al. [7] and is often used as
a teaching case introducing System Dynamics to public
managers.

Figure 2 below illustrates three key feedback loops that
contribute both to the growth and eventual collapse of cit-
izen service requests at GORA. The reinforcing feedback
loop labeled “R1” illustrates how successful completion of
citizen orders creates new contacts from word-of-mouth
by satisfied citizens which in turn leads to more requests
for service coming into the agency. If only this loop were
working, a self-reinforcing process would lead to contin-
uing expansion of citizen requests for services at GORA.
The balancing loop labeled “B2” provides a balancing ef-
fect. As workers within the agency get more and more
work to complete, the workload within the agency goes
up with one effect being a possible drop in the quality in
the work completed. Over time, loop B2 tells a story of
how an increased workload can lead to a lower quality
of work, with the effect of that lower quality being fewer
incoming requests in the future. So over time, too many
incoming requests set off a process that limits future re-
quests by driving down quality. Many public managers
who have worked with the GORA model find these two
simple feedback loops to be realistic and powerful expla-
nations of many of the problems that their agencies face on
a day-to-day basis. The full GORA model has many other
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Key feedback loops in a simulation of workflow in the Governor’s Office of Regulatory Administration (GORA)

feedback loops and active variables not shown in the ag-
gregated Fig. 2.

Once all of the variables have been represented by
mathematical equations, a computer simulation is able to
recreate an over time trajectory possible future values for
all of the variables in the model. Figure 3 shows a graph
over time of simulated data for key indicators in the GORA
case study. The simulation begins when GORA comes into
existence to provide services to the public and runs for
48months. Initially, there is adequate staff and the amount
of work to do is low, so theWorkload Ratio, shown as part
of loops B1 and B2 in the previous figure, is very low.With
a lowWorkload Ratio GORA employees are able to devote
additional time to each task they perform and the Quality
of Work1 is thus relatively high. The Backlog of Requests
and the Average Completions Per Year begin at 0 and then
increase and level off over time to approximately 4,500 and

1The Workload Ratio and Quality of Work are normalized vari-
ables. This means that they aremeasured against some predetermined
standard. Therefore, when these two variables are equal to 1 they are
operating in the desired state. Depending on the definition of the
variable, values below or above 1 indicate when they are operating
in a desired or undesired state. For example, Quality of Work above
1 indicates that quality is high, relative to the predetermined normal.
However, Quality of Work below 1 indicates an undesirable state.

41,000 respectively. The Fraction Experienced Staff mea-
sures what portion of the overall workers are experienced
and hence more efficient at doing their jobs. As shown in
Fig. 3, the Fraction Experienced begins at 1 and then falls
and increases slightly to .75 indicating that GORA is hav-
ing a harder time retaining experienced staff and is experi-
encing higher employee turnover. (The full GORA model
has a theory of employee burnout and turnover not shown
in Fig. 2.)

The combination of the visualization in Fig. 2 with
a formal model capable of generating the dynamic out-
put shown in Fig. 3 illustrates the power of System Dy-
namics modeling for public policy issues. Linking behav-
ior and structure helps stakeholders understand why the
behavior of key variables unfolds over time as it does. In
the GORA case, the program is initially successful as staff
are experienced, are not overworked, and the quality of the
services they provide is high. As clients receive services
the R1 feedback loop is dominant and this attracts new
clients to GORA. However, at the end of the first year the
number of clients requesting services begins to exceed the
ability of GORA staff to provide the requested services in
a timely manner. The Workload Ratio increases, employ-
ees are very busy, the Quality of Work falls, and the B2
feedback loop works to limit the number of people seek-
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Simulated performance of key variables in the GORA case study

ing services. Furthermore, people are waiting longer to re-
ceive services and some are discouraged from seeking ser-
vices due to the delay. The initial success of the program
cannot be sustained and the program settles down into an
unsatisfactory situation where theWorkload Ratio is high,
Quality of Work is low, clients are waiting longer for ser-
vices and staff turnover is high as indicated by the Fraction
Experienced.

The model tells a story of high performance expecta-
tions, initial success and later reversal, all explained en-
dogenously. Creating and examining the simulation helps
managers consider possible problems before they occur –
before staff are overtaxed, before turnover climbs, and be-
fore the agency has fallen behind. Having a model to con-
sider compresses time and provides the opportunity for
a priori analysis. Finally, having a good model can provide
managers with a test bed for asking “what if ” questions,
allowing public managers to spend simulated dollars and
make simulated errors all the while learning how to design
better public policies at relatively low cost and without real
(only simulated) risk.

How Is System Dynamics Used
to Support Public Policy andManagement?

TheMedical Malpractice vignette that opened this chapter
involving the New York State Commissioner of Insurance
is more fully documented by Reagan-Cirincione et al. [68]

and is one of the first published examples of the results
of a team of government executives working in a face-to-
face group model building session to create a System Dy-
namics model to support critical policy decisions facing
the group. The combined group modeling and simulation
approach had a number of positive effects on the policy
process. Those positive effects are:

Make Mental Models of Key Players Explicit

When the Commissioner drew together his team, the
members of this group held different pieces of information
and expertise. Much of the most important information
was held in the minds, in the mental models, of the Com-
missioner’s staff, and not in data tabulations. The System
Dynamics modeling process made it possible for managers
to explicitly represent and manipulate their shared men-
tal models in the form of a System Dynamics simulation
model. This process of sharing and aligning mental mod-
els, as done during a SystemDynamics modeling interven-
tion, is an important aspect of a “learning organization” as
emphasized by Senge [87].

Create a Formal and Explicit Theory
of the Public Policy Situation Under Discussion

The formal model of malpractice insurance contained an
explicit and unambiguous theory of how the medical mal-
practice system in New York State functions. The shared
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mental models of the client team implied such a formal
and model-based theory, but the requirements of creating
a running simulation forced the group to be much more
explicit and clear about their joint thinking. As the model-
ing teamworked with the group, a shared consensus about
how the whole medical malpractice system worked was
cast, first into a causal-loop diagram, and later into the
equations of the formal simulation model [74,95].

Document all Key Parameters
and Numbers Supporting the Policy Debate

In addition to creating a formal and explicit theory, the
System Dynamics model was able to integrate explicit data
and professional experience available to the Department
of Insurance. Recording the assumptions of the model in
a clear and concise way makes possible review and exami-
nation by those not part of the model’s development. Cap-
turing these insights and their derivation provides face va-
lidity to the model’s constructs.

Building confidence in the utility of a System Dynam-
ics model for use in solving a public policy problem in-
volves a series of rigorous tests that probe how the model
behaves over time as well as how available data, both nu-
merical and tacit structural knowledge, have been inte-
grated and used in the model. Forrester and Senge [39] de-
tail 17 tests for building confidence in a System Dynamics
model. Sterman [95] identifies 12 model tests, the purpose
or goal of each test, and the steps that modelers should fol-
low in undertaking those tests. Furthermore, Sterman [95]
also lists questions that model consumers should ask in
order to generate confidence in a model. This is particu-
larly important for public policy issues where the ultimate
goal or outcome for different stakeholders may be shared,
but underlying assumptions of the stakeholders may be
different.

Create a Formal Model that Stimulates
and Answers Key “what if ” Questions

Once the formal model was constructed, the Commis-
sioner and his policy team were able to explore “what if ”
scenarios in a cost-free and risk-free manner. Significant
cost overruns in a simulated environment do not drive up
real tax rates, nor do they lead to an elected official be-
ing voted out of office, nor to an appointed official los-
ing her job. Quite the contrary, a simulated cost overrun
or a simulated failed program provides an opportunity to
learn how better to implement or manage the program or
policy (or to avoid trying to implement the policy). Pub-
lic managers get to experiment quickly with new policies
or programs in a risk-free simulated environment until

they“get it right” in the simulated world. Only then should
they take the risk of implementation in a high stakes policy
environment.

Bringing a complex model to large groups sometimes
requires the development of a more elaborate simulation,
so that those who were not part of the initial analysis
can also derive insight from its results. Iterative develop-
ment and discussion provides an additional validation of
the constructs and conclusions of the model, Zagonel et
al. [108] have described a case where local managers re-
sponsible for implementing the 1996 federal welfare re-
form legislation used a simulation model to explore such
“what if ” futures before taking risks of actual implemen-
tation.

Public policy problems are complex, cross organiza-
tional boundaries, involve stakeholders with widely differ-
ent perspectives, and evolve over time. Changes in police
procedures and/or resources may have an effect on prison
and parole populations many years into the future. Health
care policies will determine how resources are allocated
at local hospitals and the types of treatments that can be
obtained. Immigration policies in one country may influ-
ence the incomes and jobs of people in a second country.
Miyakawa [64] has pointed out that public policies are sys-
temically interdependent. Solutions to one problem often
create other problems. Increased enforcement of immi-
gration along the U.S. borders has increased the workload
of courts [26]. Besides being complex these examples also
contain stakeholders with different sets of goals. In solv-
ing public policy problems, how diverse stakeholders work
out their differences is a key component of successful pol-
icy solutions. System Dynamics modeling interventions,
and in particular the techniques of group model build-
ing [2,6,72,98], provide a unique combination of tools and
methods to promote shared understanding by key stake-
holders within the system.

System Dynamics andModels:
A Range of Analytic Scope and Products

In the malpractice insurance example, the Commissioner
called his advisors into a room to explicitly engage in
a group model building session. These formal group
model-building sessions involve a specialized blend of
projected computer support plus professional facilitation
in a face-to-face meeting of public managers and policy
analysts. Figure 4 is an illustration of a team of public man-
agers working together in a group model building project.
In this photograph, a facilitator is working on a hand
drawn view of a simulation model’s structure while pro-
jected views of computer output can be used to look at
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A team of public managers working together to build a System Dynamics model of welfare reform policies

first cut simulation runs or refined images of the model
being built by the group. Of course, the key feature of this
whole process is facilitated face-to-face conversations be-
tween the key stakeholders responsible for the policy deci-
sions being made.

Richardson and Andersen [72], Andersen and Rich-
ardson [6], Vennix [98], and Luna-Reyes et al. [52] have
provided detailed descriptions of how this kind of group
model building process actually takes place. In addition
to these group model building approaches, the System
Dynamics literature describes five other ways that teams
of modelers work with client groups. They are (1) the
Reference Group approach [91], (2) the Strategic Fo-
rum [75], (3) The stepwise approach [104], (4) strategy
dynamics [100,101,102], and (5) the “standard method” of
Hines [67].

Some System Dynamics-oriented analyzes of public
policies completed by groups of public managers and
policy analysts stop short of building a formal simula-
tion model. The models produced by Wolstenholme and
Coyle [107], Cavana, Boyd and Taylor [14] and the system
archetypes promoted by Senge [87] have described how
these qualitative system mapping exercises, absent a for-
mal running simulation model, can add significant value
to a client group struggling with an important public pol-
icy problem. The absence of a formal simulation limits the
results to a conceptual model, rather than a tool for sys-
tematic experimentation.

Finally, a number of public agencies and Non Gov-
ernmental Organizations are joining their counterparts
in the private sector by providing broad-based systems
thinking training to their top leaders and administra-

tive staff. A number of simulation-based management ex-
ercises such as the production-distribution game (also
known as the “beer game”) [93] and the People’s Express
Flight Simulator [92] have been developed and refined
over time to support such training and professional devel-
opment efforts. In addition, Cavana and Clifford [11] have
used GMB to develop a formal model and flight simulator
to examine the policy implications of an excise tax policy
on tobacco smoking.

What Are the Arenas inWhich System
Dynamics Models Are Used?

The malpractice insurance vignette and the GORA exam-
ple represented cases where a model was developed for
a single problem within one agency. Naill [66] provides
an example of how a sustained modeling capability can
be installed within an agency to support a range of on-
going policy decisions (in this case the model was look-
ing at transitional energy policies at the federal level). Bar-
ney [10] developed a class of System Dynamics simulation
models to support economic development and planning in
developing nations. Wolstenholme [105] reported on ef-
forts to support health planning within the British Health
Service.

Addressing a tactical problem within a single public
sector agency, while quite common, is only one of the
many types of decision arenas in which System Dynam-
ics models can be and are used to support public policy.
Indeed, how a model is used in a public policy debate is
largely determinedby the unique characteristics of the spe-
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cific decision-making arena in which the model is to be
used. Some of the more common examples follow.

Models Used to Support Inter-Agency
and Inter-Governmental Collaborative Efforts

A quite different arena for the application of System Dy-
namics models to support the policy process occurs when
an interagency or inter-governmental network of program
managers must cooperate to meet a common mission.
For example, Rohrbaugh [79] and Zagonel et al. [108] re-
port a case where state and local officials from social ser-
vices, labor, and health agencies combined their efforts
with private and non-profit managers of day care services,
health care services, and worker training and education
services to plan for comprehensive reform of welfare poli-
cies in the late 1990s. These teams were seeking strategies
to blend financial and program resources across a myr-
iad of stovepipe regulations and reimbursement schemes
to provide a seamless system of service to clients at the lo-
cal level. To complete this task, they created a simulation
model containing a wide range of system-level interactions
and tested policies in that model to find out what blend of
policies might work. Policy implementation followed this
model-based and simulation-supported policy design.

Models Used to Support Expert Testimony
in Courtroom Litigation

Cooper [20] presented one of the first published accounts
of a System Dynamics model being used as a sort of expert
witness in courtroom litigation. In the case he reported,
Litton Industries was involved in a protracted lawsuit with
the U. S. Navy concerning cost and time overruns in the
construction of several naval warships. In a nutshell, the
Navy contended that the cost overruns were due to actions
taken (or not taken) by Litton Industries as primary con-
tractor on the project and as such the Navy should not be
responsible for covering cost overruns. Litton maintained
that a significant number of change orders made by the
Navy were the primary drivers of cost overruns and time
delays. A simulation model was constructed of the ship-
building process and the simulation model then built two
simulated ships without any change orders. A second set
of “what if ” runs subsequently built the same ships except
that the change orders from the Navy were included in
the construction process. By running and re-running the
model, the analysts were able to tease out what fractions of
the cost overrun could reasonably be attributed to Litton
and what fraction should be attributed to naval change or-
ders. Managers at Litton Industries attribute their receipt
of hundreds of millions dollars of court-sanctioned pay-

ments to the analysis supported by this System Dynam-
ics simulation model. Ackermann, Eden and Williams [1]
have used a similar approach involving soft systems ap-
proaches combined with a System Dynamics model in lit-
igation over cost overruns in the channel tunnel project.

Models Used as Part of the Legislative Process

While System Dynamics models have been actively used
to support agency-level decision making, inter-agency and
inter-governmental task forces and planning, and even
courtroom litigation, their use in direct support of legisla-
tive processes has a more uneven track record. For exam-
ple, Ford [30] reports successes in using System Dynamics
modeling to support regulatory rule making in the electric
power industry, and Richardson and Lamitie [73] report
on how System Dynamics modeling helped redefine a leg-
islative agenda relating to the school aid formula in the
U.S. state of Connecticut. However, Andersen [4] remains
more pessimistic about the ability of System Dynamics
models to directly support legislative decision making, es-
pecially when the decisions involve zero-sum tradeoffs in
the allocation of resources (such as formula-driven aid in-
volving local municipal or education formulas). This class
of decisions appears to be dominated by short-term special
interests. A longer-term dynamic view of such immediate
resource allocation problems is less welcome. The path-
way to affecting legislative decision making appears to be
by working through and with public agencies, networks of
providers, the courts, or even in some opinions, by directly
influencing public opinion.

Models Used to Inform the Public
and Support Public Debate

In addition to using System Dynamics modeling to sup-
port decision making in the executive, judicial, and leg-
islative branches of government (often involving Non-
Governmental Organizations and private sector support),
a number of System Dynamics studies appeal directly to
the public. These studies intend to affect public policy by
shaping public opinion in the popular press and the policy
debate. In the 1960s, Jay Forrester’s Urban Dynamics [34]
presented a System Dynamics model that looked at many
of the problems facing urban America in the latter half
of the 20th century. Several years later in response to an
invitation from the Club of Rome, Forrester put together
a study that led to the publication ofWorld Dynamics [35],
a highly aggregate System Dynamics model that laid out
a feedback-oriented view of a hypothesized set of relation-
ships between human activity on the planet, industrializa-
tion, and environmental degradation. Meadows et al. [61]
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followed on this study with a widely hailed (and critiqued)
System Dynamics simulation study embodied in the best-
selling book, Limits to Growth. Translated into over 26 lan-
guages, this volume coalesced a wide range of public opin-
ion leading to a number of pieces of environmental re-
form in the decade of the 1970s. The debate engendered
by that volume continues even 30 years later [63]. Donella
Meadows continued in this tradition of appealing directly
to public opinion through her syndicated column, The
Global Citizen, which was nominated for the Pulitzer Prize
in 1991. The column presented a System Dynamics-based
view of environment matters for many years (http://www.
pcdf.org/meadows/).

What Are some of the Substantive Areas
Where SystemDynamics Has Been Applied?

The International System Dynamics Society (http://www.
systemdynamics.org) maintains a comprehensive bibliog-
raphy of over 8,000 scholarly books and articles docu-
menting a wide variety of applications of System Dynam-
ics modeling to applied problems in all sectors. MacDon-
ald et al. [54] have created a bibliography extracted from
this larger database that summarizes some of the major ar-
eas where System Dynamics modeling has been applied to
public policy. Below, we summarize some of the substan-
tive areas where SystemDynamics has been applied, giving
one or two sample illustrations for each area.

Health Care

System Dynamicists have been applying their tools to an-
alyze health care issues at both the academic and prac-
titioner level for many years. The System Dynamics Re-
view, the official journal of the System Dynamics Society,
devoted a special issue to health care in 1999 due to the
importance of health care as a critical public policy issue
high on the political agenda of many countries and as an
area where much System Dynamics work has been per-
formed. The extensive System Dynamics work performed
in the health care area fell into three general categories: pa-
tient flow management, general health policy, and specific
health problems.

The patient flow management category is exemplified
by the work of Wolstenholme [106], Lane and Rosen-
head [48], and Van Ackere and Smith [97]. The articles
written by these authors focused on issues and policies re-
lating to patient flows in countries where health care ser-
vice is universal.

The general health policy category is rather broad in
that these articles covered policy and decision making
from the micro level [96] to the macro level [88]. There

were also many articles that showed how the process of
modeling resulted in better understanding of the problem
and issues facing health care providers and policy mak-
ers [12].

The last category dealt with specific health-related
problems such as the spread of AIDS [43,76], smok-
ing [42], and malaria control [29], as well as many other
health-related conditions.

Education

The education articles touched on various topics relating
to education ranging from using System Dynamics in the
classroom as a student-centered teaching method to mod-
els that dealt with resource allocations in higher educa-
tion. Nevertheless, many of the articles fell into five cat-
egories that could be labeled management case studies or
flight simulators, teaching technology, research, teaching,
and education policy.

The management case study and flight simulator ar-
ticles are best exemplified by Sterman’s [93] article de-
scribing the Beer Game and Graham, Morecroft et al. [41]
article on “Model Supported Case Studies for Manage-
ment Education.” The emphasis of these works is on the
use of case studies in higher education, with the addi-
tion of games or computer simulations. This is related to
the teaching technology category in that both emphasize
using System Dynamics models/tools to promote learn-
ing. However, the teaching technology category of articles
stresses the introduction of computer technology, specif-
ically System Dynamics computer technology, into the
classroom. Steed [90] has written an article that discusses
the cognitive processes involved while using Stella to build
models, while Waggoner [99] examined new technologies
versus traditional teaching approaches.

In addition to teaching technology are articles that fo-
cus on teaching. The teaching category is very broad in
that it encompasses teaching System Dynamics in K-12
and higher education as subject matter [37,77] as well
as ways to integrate research into the higher-education
classroom [71]. System Dynamics models are also used
to introduce advanced mathematical concepts through
simulation and visualization, rather than through equa-
tions [27,28]. In addition, lesson plans for the classroom
are also part of this thread [44]. The Creative Learning
Exchange (http://www.clexchange.com) provides a central
repository of lessons and models useful for pre-college
study of System Dynamics, including a selfstudy roadmap
to System Dynamics principles [23].

There are also a number of articles that pertain
to resource allocation [15] at the state level for K-12

http://www.pcdf.org/meadows/
http://www.pcdf.org/meadows/
http://www.systemdynamics.org
http://www.systemdynamics.org
http://www.clexchange.com
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schools along with articles that deal with resource-alloca-
tion decisions in higher education [32,40]. Saeed [83] and
Mashayekhi [56] cover issues relating to higher education
policy in developing countries.

The last education category involved research issues
around education. These articles examined whether the
System Dynamics methodology and simulation-based ed-
ucation approaches improved learning [24,47,55].

Defense

System Dynamics modeling work around the military has
focused on manpower issues, resource allocation deci-
sions, decision making and conflict. Coyle [21] developed
a System Dynamics model to examine policies and sce-
narios involved in sending aircraft carriers against land-
based targets. Wils, Kamiya et al. [103] have modeled in-
ternal conflicts as a result of outbreaks of conflict over
allocation and competition of scarce resources. The man-
power articles focused on recruitment and retention poli-
cies in the armed forces and are represented in articles
by Lopez and Watson [51], Andersen and Emmerichs [5],
Clark [18], Clark, McCullough et al. [19] and Cavana et
al. [14]. The resource allocation category deals with issues
of money and materials, as opposed to manpower, and is
represented by Clark [16,17]. Decision making in military
affairs from a System Dynamics perspective is represented
in the article by Bakken and Gilljam [8].

Environment

The System Dynamics applications dealing with environ-
mental resource issues can be traced back to when the
techniques developed in Industrial Dynamics were be-
ginning to be applied to other fields. The publication of
Forrester’s World Dynamics in 1971 and the follow-up
study Limits to Growth [61,62,63] used System Dynamics
methodology to address the problem of continued popu-
lation increases on industrial capital, food production, re-
source consumption and pollution. Furthermore, specific
studies dealing with DDT, mercury and eutrophication of
lakes were part of the Meadows et al. [59] project and ap-
peared as stand-alone journal articles prior to being pub-
lished as a collection in Meadows and Meadows [60].

The environmental applications of System Dynamics
have moved on since that time. Recent work has com-
bined environmental and climate issues with economic
concerns thorough simulation experiments [25] as well as
stakeholder participation in environmental issues [89]. In
2004, the SystemDynamics Review ran a special issue dedi-
cated to environmental issues. Cavana and Ford [13] were
the editors and did a review of the System Dynamics bib-

liography in 2004, identifying 635 citations with the key
words “environmental” or “resource.” Cavana and Ford
broke the 635 citations into 11 categories they identified
as resources, energy, environmental, population, water,
sustainable, natural resources, forest, ecology, agriculture,
pollution, fish, waste, earth, climate and wildlife.

General Public Policy

The System Dynamics field first addressed the issue of
public policy with Forrester’s Urban Dynamics [34] and
the follow-up work contained in Readings in Urban Dy-
namics [58] and Alfeld and Graham’s Introduction to Ur-
ban Dynamics [3]. The field then branched out into the
previously mentioned World Dynamics and the follow-
up studies related to that work. Moreover, the applica-
tion of System Dynamics to general public policy issues
began to spread into areas as diverse as drug policy [50],
and the causes of patient dropout from mental health pro-
grams [49], to ongoing work by Saeed [82,84,85] on de-
velopment issues in emerging economies. More recently,
Saysel et al. [86] have examined water scarcity issues in
agricultural areas, Mashayekhi [57] reports on the impact
on public finance of oil exports in countries that export oil
and Jones et al. [46] cover the issues of sustainability of
forests when no single entity has direct control.

This brief review of the literature where System Dy-
namics modeling has been used to address public policy
issues indicates that the field is making inroads at the mi-
cro level (within government agencies) and at the macro
level (between government agencies). Furthermore, work
has been performed at the international level and at what
could truly be termed the global level withmodels address-
ing public policy issues aimed at climate change.

Evaluating the Effectiveness of System Dynamics
Models in Supporting the Public Policy Process

System Dynamics modeling is a promising technology for
policy development. But does it really work? Over the past
several decades, a minor cottage industry has emerged that
purports to document the successes (and a few failures)
of System Dynamics models by reporting on case studies.
These case studies report on successful applications and
sometimes analyze weaknesses, making suggestions for
improvement in future practice. Rouwette et al. [81] have
compiled a meta-analysis of 107 such case-based stories.

However, as compelling as such case stories may be,
case studies are a famously biased and unsystematic way
to evaluate effectiveness. Presumably, failed cases will not
be commonly reported in the literature. In addition, such
a research approach illustrates in almost textbook fash-
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ion the full litany of both internal and external threats
to validity, making such cases an interesting but unsci-
entific compilation of war stories. Attempts to study live
management teams in naturally occurring decision situa-
tions can have high external validity but almost always lack
internal controls necessary to create scientifically sound
insights.

Huz et al. [45] created an experimental design to
test for the effectiveness of a controlled series of group-
based System Dynamics cases in the public sector. They
used a wide battery of pre- and post survey, interview,
archival, administrative data, and qualitative observation
techniques to evaluate eight carefully matched interven-
tions. All eight interventions dealt with the integration
of mental health and vocational rehabilitation services at
the county level. Four of the eight interventions contained
System Dynamics modeling sessions and four did not.
These controlled interventions were designed to get at the
impact of System Dynamics modeling on the public policy
process.

Overall, Huz et al. [45] envisioned that change could
take place in nine domains measured across three separate
levels of analysis as illustrated in Table 1 below.

Using the battery of pre- and post test instruments,
Huz found important and statistically significant results
in eight of the nine domains measured. The exceptions
were in domain 9 where they did not measure client out-
comes, in domain 5 where “participants were not signifi-
cantly more aligned in their perceptions on strategies for
changes” (but were more aligned in goals), and in do-
main 7 where “no significant change was found with re-

Public Policy, System Dynamics Applications to, Table 1
Domains of measurement and evaluation used to assess impact
of systems-dynamics interventions (see p. 151 in [45])

Level I Reflections of the modeling team
Domain 1 Modeling team’s assessment of the intervention
Level II Participant self-reports of the intervention
Domain 2 Participants’ perceptions of the intervention
Domain 3 Shifts in participants’ goal structures
Domain 4 Shifts in participants’ change strategies
Domain 5 Alignment of participantmental models
Domain 6 Shifts in understanding how the system functions
Level III Measurable system change

and “bottom line” results
Domain 7 Shifts in network of agencies

that support services integration
Domain 8 Changes in system-wide policies

and procedures
Domain 9 Changes in outcomes for clients

spect to structural conditions within the network” (but
two other dimensions of organizational relationships did
change).

In their meta-analysis of 107 case studies of System
Dynamics applications, Rouwette et al. [81] coded case
studies with respect to eleven classes of outcomes, sorted
into individual level, group level, and organizational level.
The 107 cases were dominated by for-profit examples
with 65 such cases appearing in the literature followed
by 21 cases in the non-profit sector, 18 cases in govern-
mental settings, and three cases in mixed settings. While
recognizing possible high levels of bias in reported cases
as well as difficulties in coding across cases and a high
number of missing categories, they found high percent-
ages of positive outcomes along all 11 dimensions of anal-
ysis. For each separate dimension, they analyzed between
13 and 101 cases with the fraction of positive outcomes for
each dimension ranging from a low of 83% to several di-
mensions where 100% of the cases reporting on a dimen-
sion found positive results. At the individual level, they
coded for overall positive reactions to the work, insight
gained from the work, and some level of individual com-
mitment to the results emerging from the study. At the
group level, they coded for increased levels of communi-
cation, the emergence of shared language, and increases
in consensus or mental model alignment. Organizational
level outcomes included implementation of system level
change. With respect to this important overall indicator
they “found 84 projects focused on implementation, which
suggests that in half (42) of the relevant cases changes are
implemented. More than half (24) of these changes led to
positive results”(see p. 20 in [81]).

Rouwette [80] followed this meta-analysis with a de-
tailed statistical analysis of a series of System Dynam-
ics-based interventions held mostly in governmental set-
tings in the Netherlands. He was able to estimate a sta-
tistical model that demonstrated how System Dynamics
group model building sessions moved both individuals
and groups from beliefs to intentions to act, and ultimately
on to behavioral change.

In sum, attempts to evaluate System Dynamics inter-
ventions in live settings continue to be plagued bymethod-
ological problems that researchers have struggled to over-
come with a number of innovative designs.What is emerg-
ing from this body of study is a mixed, “good news and
bad news” picture. All studies that take into account a rea-
sonable sample of field studies show some successes and
some failures. About one-quarter to one-half of the Sys-
tem Dynamics studies investigated showed low impact on
decision making. On the other hand, roughly half of the
studies have led to system-level implemented change with
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approximately half of the implemented studies being asso-
ciated with positive measures of success.

Summary: System Dynamics – A Powerful Tool
to Support Public Policy

While recognizing and respecting the difficulties of scien-
tific evaluation of System Dynamics studies in the pub-
lic sector, we remain relentlessly optimistic about the
method’s utility as a policy design and problem-solv-
ing tool. Our glass is half (or even three-quarters) full.
A method that can deliver high decision impact up to
three-quarters of the time and implement results in up
to half of the cases examined (and in a compressed time
frame) is a dramatic improvement over alternative ap-
proaches that can struggle for months or even years with-
out coming to closure on important policy directions.

System Dynamics-based modeling efforts are effective
because they join the minds of public managers and pol-
icy makers in an emergent dialog that relies on formal
modeling to integrate data, other empirical insights, and
mental models into the policy process. Policy making be-
gins with the pre-existing mental models and policy sto-
ries that managers bring with them into the room. Policy
consensus and direction emerge from a process that com-
bines social facilitation with technical modeling and anal-
ysis. The method blends dialog with data. It begins with an
emergent discussion and ends with an analytic framework
that moves from “what is” baseline knowledge to informed
“what if ” insights about future policy directions.

In sum, we believe that a number of the process fea-
tures related to building System Dynamics models to solve
public policy problems contribute to their appeal for front-
line managers:

� Engagement Key managers can be in the room as the
model is evolving, and their own expertise and insights
drive all aspect of the analysis.

� Mental models The model-building process uses the
language and concepts thatmanagers bring to the room
with them, making explicit the assumptions and causal
mental models managers use to make their decisions.

� Complexity The resulting nonlinear simulation mod-
els lead to insights about how system structure influ-
ences system behavior, revealing understandable but
initially counterintuitive tendencies like policy resis-
tance or “worse before better” behavior.

� Alignment The modeling process benefits from di-
verse, sometimes competing points of view as stake-
holders can have a chance to wrestle with causal as-
sumptions in a group context. Often these discussions

realign thinking and are among the most valuable por-
tions of the overall modeling effort.

� Refutability The resulting formal model yields testable
propositions, enabling managers to see how well their
implicit theoriesmatch available data about overall sys-
tem performance.

� EmpowermentUsing the modelmanagers can see how
actions under their control can change the future of the
system.

System Dynamics modeling projects merge managers’
causal and structural thinking with the available data,
drawing upon expert judgment to fill in the gaps concern-
ing possible futures. The resulting simulation models pro-
vide powerful tools to develop a shared understanding and
to ground what-if thinking.

Future Directions

While the field of System Dynamics has reached its half-
centenary in 2007, its influence on public policy continues
to grow. Many of the problems defined by the earliest writ-
ers in the field continue to challenge us today. The grow-
ing literature base of environmental, social, and education
policy is evidence of continued interest in the systems per-
spective. In addition, System Dynamics modeling is grow-
ing in popularity for defense analysis, computer security
and infrastructure planning, and emergencymanagement.
These areas have the characteristic problems of complex-
ity and uncertainty that require the integration of multi-
ple perspectives and tacit knowledge that this method sup-
ports. Researchers and practitioners will continue to be at-
tracted to the open nature of System Dynamics models as
a vehicle for consensus and experimentation.

We anticipate that the tool base for developing and dis-
tributing System Dynamics models and insights will also
grow. Graphical and multimedia-based simulations are
growing in popularity, making it possible to build clearer
models and disseminate insights easily. In addition, the de-
velopment of materials for school-age learners to consider
a systems perspective to social problems gives us optimism
for the future of the field, as well as for future policy.
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Glossary

Mental model how one perceives cause and effect rela-
tions in a system, along with its boundary, i. e., exoge-
nous variables, and the time horizon needed to articu-
late, formulate or frame a decision situation; one’s im-
plicit causal map of a system, sometimes linked to the
reference performance scenarios it might produce.

Product either a physical good or an intangible service
a firm delivers to its clients or customers.

Real option right and obligation to make a business de-
cision, typically a tangible investment. The option to
invest, for example, in a firm’s store expansion. In con-
trast to financial ‘call’ and ‘put’ options, a strategic
real option is not tradable. Any time it invests, a firm
might be at once acquiring the strategic real options of
expanding, downsizing or abandoning projects in fu-
ture. Examples include research and development (ab-
breviated R&D), merger and acquisition (abbreviated
M&A), licensing abroad and media options.

Scenario a postulated sequence or development of events
trough time; via Latin scena ‘scene’, from Greek
�����́, skēnē ‘tent, stage’. In contrast to a forecast
of what will happen in the future, a scenario shows
what might happen. The term scenario must not be
used loosely to mean situation. Macro-environmental
as well as industry-, task- or transactional-environmen-
tal scenarios are merely inputs to the strategic objec-
tives and real options a firm must subsequently ex-
plore through strategic scenarios, computed or simu-
lated with an explicit, formal system dynamics (abbre-
viated SD) model of its strategic situation. Computed

strategic scenarios create the multiple perspectives that
strategic thinkers need to defeat the tyranny of dog-
matism that often assails firms, governments and other
social entities or organizations.

Scenario-driven planning (abbreviated SdP) to attain
high performance through strategic flexibility, firms
use the SdP management technology to create fore-
sight and to anticipate the future with strategic real
options, in situations where the business environment
accelerates frequently and is highly complex or inter-
dependent, thereby causing uncertainty.

Situation the set of circumstances in which a firm finds
itself; its (strategic) state of affairs.

Strategic management process (abbreviated SMP)
geared at detecting environmental threats and turning
them into opportunities, it proceeds from a firm’s mis-
sion, vision and environmental constraints to strategic
goals and objectives to strategy design or formula-
tion to strategy implementation or strategic action to
evaluation and control to learning through feedback
(background, Fig. 2).

SMP-1 environmental scanning monitors, evaluates and
disseminates knowledge about a firm’s internal and
external environments to its people. The internal en-
vironment contains strengths and weaknesses within
the firm; the external shows future opportunities and
threats (abbreviated SWOT).

SMP-2 mission a firm’s purpose, raison d’être or reason
for being.

SMP-3 objectives performance (P) goals that SMP often
quantifies for some Pmetrics.

SMP-4 policy decision-making guidelines that link strat-
egy design or formulation to action or implementation
tactics.

SMP-5 strategy a comprehensive plan that shows how
a firm might achieve its mission and objectives. The
three strategy levels are: corporate, business and pro-
cess or functional.

SMP-6 strategy design or formulation the interactive, as
opposed to antagonistic, interplay of strategic content
and process that creates flexible long-range plans to
turn future environmental threats into opportunities;
includes internal strengths and weaknesses as well as
strategic mission and objectives, and policy guidelines.

SMP-7 strategic action or implementation the process
by which strategies and policies are put into action
through the development of programs, processes, bud-
gets and procedures.

SMP-8 evaluation and control sub-process that moni-
tors activities and performance, comparing actual re-
sults with desired performance.
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SMP-9 learning through feedback occurs as knowledge
about each SMP element enables improving previous
SMP elements (background, Fig. 2).

System an organized group of interrelated components,
elements or parts working together for a purpose; parts
might be either goal seeking or purposeful.

System dynamics (abbreviated SD) a lucid modeling
method born from the need to manage business per-
formance through time. Thanks to Forrester [23], who
discovered that all change propagates itself through
stock and flow sequences, and user-friendly SD soft-
ware (iThink®, Vensim®, etc.), SD models let man-
agers see exactly how and why, like other biological
and social organizations, business firms perform the
way they do. Unlike other social sciences, SD shows ex-
actly how feedback loops, i. e., circular cause and effect
chains, each containing at least one time lag or delay,
interact within a system to determine its performance
through time.

Variable or metric something that changes either though
time or among different entities at the same time. An
internal change lever is a decision or policy variable
that a strategy-design modeling, or client, team con-
trols. An external change trigger is an environmental
or policy variable that a strategy-designmodeling team
does not control. Both trigger and lever variables can
initiate change and be either endogenous or exogenous
to a model of a system.

However certain our expectation, the moment foreseen
may be unexpected when it arrives

—T.S. Eliot

Definition of the Subject

Many of us live and work in and about business ecosys-
tems with complex structures and behaviors. Some real-
ize that poor performance often results from our very own
past actions or decisions, which come back to haunt us.
So business leaders in diverse industries and firms, such as
Airbus, GeneralMotors, Hewlett-Packard, Intel andMerck,
use scenario-driven planning (SdP) with system dynamics
(SD) to help them identify, design and apply high-lever-
age, sustainable solutions to dynamically complex strate-
gic-decision situations. Onemust know, for example, if the
effect of an environmental change or strategic action gets
magnified through time or is dampened and smoothed
away. What may seem insignificant at first might cause
major disruption in performance. SdP with SD shows the
causal processes behind such dynamics, so firms can re-
spond to mitigate impacts on performance.

Accelerating change and complexity in the global
business environment make firms and other social orga-
nizations abandon their inactive, reactive and preactive
modes [2]. SdP with SD turns them proactive, so they
can translate anticipation into action. To properly trans-
form anticipation into action, computed with SD mod-
els, ‘strategic scenarios’ must meet four conditions: con-
sistency, likelihood, relevance and transparency [37]. Com-
bining SdP with SD for that purpose, with other tools, like
actor and stakeholder purposes, morphological methods
or probability might help avoid entertainment and explore
all possible scenarios. Indeed, SdP with SD

“does not stand alone. . . modeling projects are part
of a larger effort. . . modeling works best as a com-
plement to other tools, not as a substitute” (see p. 80
in [75]).

SdP with SD is a systematic approach to a vital
top-management job: leading today’s firm in the rapidly
changing and highly complex global environment. Antici-
pating a world where product life cycles, technology and
the mix of collective- and competitive-strategy patterns
change at an unprecedented rate is hard enough. Moving
ahead of it might prove larger than the talent and resources
now available in leading firms. SdP with SD leads to a de-
cisive integration of strategy design and operations, with
the dividing line much lower than at present. As mid-level
managers take on more responsibility, senior executives
become free to give more time and attention to economic
conditions, product innovation and the changes needed to
enhance creativity toward strategic flexibility [23].

It is perhaps its capacity to reintegrate strategy content
and process that turns SdP with SD into a new paradigm
for competitive advantage [42], and simulation modeling
in general [28], into a critical fifth tool, in addition to the
four tools used in science: observation, logical-mathemat-
ical analysis, hypothesis testing and experiment [77]. But
full-fledged SD models also allow computing scenarios to
assess possible implications of strategic situations. Strate-
gic scenarios are not merely hypothesized plausible fu-
tures, but computed by simulating combined changes in
strategy and in the business environment [32].

Computed scenarios help managers understand what
they do not know, enabling strategy design and imple-
mentation through the coalignment of timely tactics to
improve long-term performance. Through its judicious
use of resources, scenario-driven planning with system
dynamics makes the tactics required for implementation
clear [27]. And because computed scenarios reveal the re-
quired coalignment of tactics through time, SdP with SD
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helps firms become flexible, dependable and efficient, and
save time!

Everyone’s mind sees differently, but if there is truth in
the adage ‘a picture is worth a thousand words’, then the
complex interrelations that SdP with SD unearth and show
must be worth billions. In a world where strategic chitchat
dominates, one can only hope that SdP with SD will play
a central role in public and private dialogues about dynam-
ically complex opportunities and threats.

We shape our buildings; thereafter,
our buildings shape us
—Winston Churchill

Introduction

Following on the heels of Ackoff and Emery [3] and
Christensen [10], respectively, Gharajedaghi [35] and
Raynor [64] show how strategies with the best chances for
brilliant success expose firms to debilitating uncertainty.
Firms fail as their recipes for success turn bad through
time. Gharajedaghi [35] shows, for example, five strategy
scenarios that convert success to failure. Each scenario
plays a critically different role. Together, however, these
scenarios form a dynamically complex system. Through
time, as each scenario plays, it enables the context for the
next:

1. Noble ape or copycat strategy imitates and replicates ad-
vantage. Also called ‘shadowmarketing’, it lets shadowy
copycats instantly shadow market product technology,
often disruptively.

2. Patchy or sluggish strategy delays responses to new
technology. When this second scenario plays, then
patching up wastes time, enabling competitors to de-
liver new technology and to dominate markets. Worse,
it causes costs to rise as it drives down product quality.

3. Satisficing or suboptimal strategy scenarios take many
forms. One entails a false assumption: if a policy lever
helps produce desired performance, then pulling or
pushing on that lever will push performance further.

4. Gambling or changing the game strategy scenario trans-
forms a strategic situation by playing the game success-
fully. While dealing with a challenge, firms gradually
transform their strategic situation and change the basis
for competition, so a whole new game and set of issues
emerge. Success marked, for example, the beginning of
the information era. But competitive advantage has al-
ready moved away from having access to information.
In our systems era [2], creating new knowledge and gen-
erating insight is the new game [81].

Lastly, the cumulative effects from these four strategy sce-
narios trickle down to the:

5. Archetypal swing or paradigm shift scenario. Both
learning and unlearning can cause archetypal swings
and paradigm shifts to unfold through time intention-
ally [76]. These also occur unintentionally when con-
ventional wisdom fails to explain patterns of events that
challenge prevailing mental models. The lack of a con-
vincing explanation creates a twilight zone where ac-
ceptable ideas are not competent and competent ideas
are not acceptable.

Beliefs about the future drive strategies. But the future
is unpredictable. Worse, success demands commitments
that make it impossible to adapt to a future that turns out
surprising. So, strategies with great success potential also
bear high failure probabilities. Raynor [64] calls this the
strategy paradox. Dissolving it requires turning environ-
mental uncertainty into strategic flexibility. To make it so,
Raynor urgesmanagers to: anticipate multiple futures with
scenarios, formulate optimal strategies for each future, ac-
cumulate strategic real options [5] and manage the select
options portfolio.

SdP with SD helps managers who operate in an un-
certain world question their assumptions about how the
world works, so they can see it more clearly. To survive,
the human mind overestimates small risks and underes-
timates large risks. Likewise, it is much more sensitive to
losses than to gains. So the capability to leverage opportu-
nities and tomitigate risk might have become an economic
value driver.

The purpose of computing scenarios is to help man-
agers alter their view of reality, to match it up more closely
with reality as is and as it might become. To become
a leader, a manager must define reality. The SdP with SD
purpose is not, however, to paint a more accurate picture
of tomorrow, but to improve the quality of decisions about
the future. Raynor says that the requisite strategic flexibil-
ity, which SdP with SD creates:

“is not a pastiche of existing approaches. Integrating
these tools and grounding them in a validated the-
ory of organizational hierarchy creates something
that is quite different from any of these tools on its
own, or in mere combination with the others” (see
p. 13 in [64]).

Indeed, knowledge of common purposes and the ac-
ceptable means of achieving them form and hold together
a purposeful hierarchical system. Its members know and
share values embedded in their culture, which knits parts
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into a cohesive whole. And because each part has a lot to
say about the whole, consensus is essential to SdP with SD
for the co-alignment of diverse interests and purposes.

Ackoff and Emery [3], Gharajedaghi [35] and Nico-
lis [55] concur that purpose offers the lens one needs to see
a firm as amulti-minded social net. A purposeful firm pro-
duces either the same result differently in the same envi-
ronment or different results in the same or different envi-
ronments. Choosing among strategic real options is neces-
sary but insufficient for purposefulness. Firms that behave
differently but show only one result per environment are
goal seeking, not purposeful. Servomechanisms are goal
seeking but people are purposeful. As a purposeful sys-
tem, the firm is part of purposeful sub-systems, such as its
industry value chain [61] and the society. And firms have
purposeful people as members. The result is a dynamically
interdependent, i. e., complex, hierarchical purposeful sys-
tem.

A firm’s value chain is, along with its primary and sup-
port activities, at once a member of at least one industry
value chain and of the society or macro-environment. In-
dustry analysis requires looking at value chains indepen-
dently from the society [61]. But people, the society and
firm and industry value chains are so interdependent, so
interconnected, that an optimal solution might not exist
for any of them independently of the others. SdP with SD
helps firms co-align the ‘plural rationality’ of purposeful
stakeholder groups with each other and that of the system
as a whole.

Seeing strategic management as a strategies and tac-
tics net [27] is in perfect syzygy with the plural rationality
that SdP with SD accounts for among individuals, groups
and organizations. Singer [73,74] contrasts monothematic
conventional universes of traditional rationality with the
multiverse-directed view of plural rationality. In counter-
point, Morecroft’s [52] computed scenarios trace the dys-
functional interactions among sales objectives, overtime
and sales force motivation to the intended, i. e., stated, sin-
gular rationality that drove action in a large sales organi-
zation.

Because their superordinate purpose is neither to com-
pete nor to collaborate, but to develop new wealth-cre-
ating capabilities, in unique ways that serve both current
and future stakeholder interests, customers and clients in-
cluded [51], firms can benefit from themultiverse-directed
view of strategic management as a net of strategies and tac-
tics. SdP with SD helps firms break free from the tradeoffs
tyranny of the mass-production era. Evidently, adherents
to tradeoffs-free strategy like Bell Atlantic, Daimler-Benz,
Hallmark andMotorola “can have it all” [60].

A firm must serve the purposes of its people as well as

those of its environment, not as amindlessmechanical sys-
tem, but as a living, purposeful, knowledge-bonded hierar-
chical system [3,35,55,81]. To clarify, a bike always yields
to its rider, for example, regardless of the rider’s desire;
even if that entails running into a solid brick wall. Ouch!
But riding a horse is an entirely different story. Horse and
rider form a knowledge-bonded system: the horse must
know the rider and the rider must know exactly how to
lead the horse.

SdP with SD History:
Always Back, Always in Style, Always Practical

Herman Kahn introduced scenarios to planning while at
RAND Corporation in the 1950s [45]. Scenarios entered
military strategy studies conducted for the US govern-
ment. In the 1960s, Ozbekhan [58] used urban planning
scenarios in Paris, France. Organization theorists and even
novelists were quick to catch on. The meaning of scenar-
ios became literary. Imaginative improvisation produced
flickering apocalyptic predictions of strikingly optimistic
and pessimistic futures. Political and marketing experts
use scenarios today to jazz up visions of favorable and un-
favorable futures.

Wack [78,79] asserts it was Royal Dutch Shell that
came up with the idea of scenarios in the early 1970s.
Godet [36] points to the French OTAM team as the first
to use scenarios in a futures study by DATAR in 1971.
Brauers and Weber [8] claim that Battelle’s scenarios
method [49] was originally a German approach. In con-
nection with planning, however, most authors see scenario
methods as typically American.

Indeed, during the 1970s, US researchers Olaf Helmer
and Norman Dalkey developed scenario methods at
RAND for eliciting and aggregating group judgments via
Delphi and cross-impact matrices [4]. They extended cross
impact analysis within statistical decision theory [39].
A synthesis of scenario methods began in the 1970s that
draws together multiple views, including those of profes-
sional planners, analysts and line managers.

Ansoff [6] and other strategy theorists state that the
1970s witnessed the transformation of global markets. To-
day, changes in the external sociopolitical environment
become pivotal in strategymaking. Combined with the ge-
ographical expansion of markets, they increase the com-
plexity of managerial work. As environmental challenges
move progressively faster, they increase the likelihood of
strategic surprises. So, strategic thinkers use scenarios to
capture the nonlinearity of turbulent environments. Ex-
amples are Hax and Majluf [38] and, more clearly so,
Porter [61] and Raynor [64]. They consider scenarios in-
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strumental both in defining uncertainty and in anticipat-
ing environmental trends.

Huss and Honton [41] see scenarios emerge as a dis-
tinct field of study, a hybrid of a few disciplines. They iden-
tify multiple scenarios methods that fall into three major
categories:

1. Intuitive logics [78,79], now practiced by SRI Interna-
tional,

2. Trend-impact analysis, practiced by the Futures Group
and

3. Cross-impact analysis, practiced by the Center for Fu-
tures Research using INTERAX (Interactive Cross-Im-
pact Simulation) and by Battelle using BASICS (BAt-
telle Scenario Inputs to Corporate Strategies).

Similarly, after joining Ozbekhan to advocate reference
scenarios, Ackoff [2] distinguishes between:

1. Reference projections as piecemeal extrapolations of
past trends and

2. The overall reference scenario that results from putting
them together.

Based on Acar’s [1] work under Ackoff, Georgantzas
and Acar [32] explore these distinctions with a practi-
cal managerial technology: comprehensive situation map-
ping (CSM). CSM is simple enough for MBA students to
master in their capstone Business Policy course. With the
help of Vensim® PLE [18], CSM computes scenarios to-
ward achieving a well-structured process of managing ill-
structured strategic situations. In their introduction to SD,
Georgantzas and Acar (see Chap. 10 in [32]) draw from
the banquet talk that Jay Wright Forrester, Germeshausen
Professor Emeritus, MIT, gave at the 1989 International
Conference of the SystemDynamics Society, in Germany, at
the University of Stuttgart:

After attending the Engineering College, University of
Nebraska, which included control dynamics at its core,
Forrester went to MIT. There he worked for Gordon
S. Brown, a pioneer in feedback control systems. Dur-
ing World War II, Brown and Forrester worked on ser-
vomechanisms for the control of radar antennas and gun
mounts. This was research toward an extremely practical
end, during which Forrester run literally from mathemat-
ical theory to the battlefield, aboard the US carrier Lexing-
ton.

After the war, Forrester worked on an analog aircraft
flight simulator that could do little more than solve its
own internal idiosyncrasies. So, Forrester invented ran-
dom-access magnetic storage or core memory. His inven-
tion went into the heart of Whirlwind, a digital computer
used for experimental development of military combat

systems that eventually became the semiautomatic ground
environment (SAGE) air defense system for North Amer-
ica.

Alfred P. Sloan, the man who built General Motors,
founded the Sloan School of Management in 1952. For-
rester joined the school in 1956. Having spent fifteen years
in the science and engineering side of MIT, he took the
challenge of exploring what engineering could do for man-
agement.

One day, he found himself among students from Gen-
eral Electric. Their household appliance plants in Ken-
tucky puzzled them: they would work with three or four
shifts for some time and then, a few years later, with half
the people laid off. Even if business cycles would explain
fluctuating demand, that did not seem to be the entire rea-
son. GE’s managers felt something was wrong.

After talking with them about hiring, firing and in-
ventory policies, Forrester did some simulation on a pa-
per pad. He started with columns for inventories, em-
ployees and customer orders. Given these metrics and
GE’s policies, he could tell how many people would be
hired or fired a week later. Each decision gave new condi-
tions for employment, inventories and production. It be-
came clear that wholly determined internally, the system
had potential for oscillatory dynamics. Even with constant
incoming orders, the policies caused employment insta-
bility. That longform simulation of GE’s inventory and
workforce systemmarked the beginning of system dynam-
ics [23,24,25,26].

SdP with SD Use and Roadmap

Scenarios mostly help forecast alternative futures but, as
firms abandon traditional forecasting methods for inter-
active planning systems, line managers in diverse busi-
ness areas adopt scenario-driven planning with system dy-
namics. Realizing that a tradeoffs-free strategy design re-
quires insight about a firm’s environment, both business
and sociopolitical, to provide intelligence at all strategy
levels, firms use SdP with SD to design corporate, busi-
ness and process or functional strategies. SdP with SD is not
a panacea and requires discipline, but has been successful
in many settings. Its transdisciplinary nature helps mul-
tiple applications, namely capital budgeting, career plan-
ning, civil litigation [31], competitive analysis, crisis man-
agement, decision support systems (DSS), macroeconomic
analysis, marketing, portfolio management and product
development [65]. SdP with SD is a quest for managers
who wish to be leaders, not just conciliators. They rec-
ognize that logical incrementalism, a piecemeal approach,
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is inadequate when the environment and their strategy
change together.

Top management might see both divisional, i. e., busi-
ness, and process or functional strategies as ways of imple-
menting corporate strategy. But active subsidiaries [43,44]
provide both strategic ideas and results to their parent en-
terprise. Drawing too stiff a line between the corporate of-
fice and its divisions might be

“an unhealthy side effect of our collective obses-
sion with generating returns. The frameworks for
developing competitive strategy that have emerged
over the last thirty years have given us unparal-
leled insight into how companies can succeed. And
competitive strategy remains enormously impor-
tant, but it should be the preserve of divisional man-
agement. . . corporate strategy should be focused on
the management of strategic uncertainty” (see p. 11
in [64]).

Roadmap It is material to disconnect scenarios from
unproductive guesswork and to anchor them to sound
practices for strategy design. This guided tour through
the fascinating but possibly intimidating jungle of sce-
nario definitions shows what the futuremight hold for SdP
with SD. Extensive literature, examples, practical guide-
lines and two real-life cases show how computed scenar-
ios help manage uncertainty, that necessary disciple of our
open market system. Unlike extrapolation techniques, SdP
with SD encourages managers to think broadly about the
future.

The above sections clarify the required context and
provide a glossary. Conceptual confusion leads to lan-
guage games at best and to operational confusion at
worst [15]. SdP with SD helps firms avert both types of
confusion. Instead of shifting their focus away from actu-
ality and rationality, managers improve their insight about
fundamental assumptions underlying changes in strategy.
The mind-set of SdP with SD makes it specific enough
to give practical guidance to those managing in the real
world, both now and in the future.

The sections below look at three SdP with SD facets
linked to strategy design and implementation. The first
facet involves the business environment, the forces behind
its texture and future’s requisite uncertainty (Sect. “En-
vironmental Turbulence and Future Uncertainty”). The
second entails unearthing unstated assumptions about
changes in the environment and in strategy, and about
their potential combined effects on performance. The SdP
with SD framework (Sect. “SdP with SD: The Modeling
Process � Strategic Situation Formulation”) builds on ex-

isting scenario methods. Its integrative view delineates
processes that enhance institutional learning, bolster pro-
ductivity and improve performance through strategic flex-
ibility. It shows why interest in computed scenarios is
growing.

The third facet entails computing the combined or
mixed effects on performance of changes both in the en-
vironment and in strategy. Even in mature economies, no
matter how and how frequently said, decision makers of-
ten forget how the same action yields different results as
the environment changes. The result is often disastrous.
Conversely, the tight coupling between computed scenar-
ios and strategic results can create new knowledge. Linking
a mixed environmental and decision scenario in a one-to-
one correspondence to a strategic result suits the norma-
tive inclination of strategic management, placing rational-
istic inquiry at par with purely descriptive approaches in
strategy research.

The unified treatment of SdP with SD and the strat-
egy-making process grants a practical bonus, accounting
for the entry’s peculiar nature. It is not only a concep-
tual or idea contribution, but also an application-oriented
entry. Sections “Case 1: Cyprus’ Environment and Hotel
Profitability” and “Case 2: A Japanese Chemicals Keiretsu
(JCK) present two real-life cases of scenario-driven plan-
ning with system dynamics. Written with both the con-
crete and the abstract thinker in mind, the two cases show
how firms and organizations build scenarios with a mod-
est investment. SdP with SD provides an effective man-
agement technology that serves well those who adopt it.
It saves them both time and energy.

Improvements in causal mapping [19,20], and SD
modeling and analysis [50,57] contribute to the SdP with
SD trend (Sect. “Future Directions”). Behavioral decision
theory and cognitive science also help translate the knowl-
edge of managers into SD models. The emphasis remains
on small, transparent models of strategic situations and on
dialogue between the managers’ mental models and the
computed scenarios [53].

All prognosticators are bloody fools
—Winston Churchill

Environmental Turbulence and Future Uncertainty

Environmental Turbulence

Abundant frameworks describe the business environment,
but the one by Emery and Trist [22], which Duncan [17]
abridged, has been guiding many a strategic thinker. It
shows four business environments, each more complex
and troublesome for the firm than the preceding one
(Fig. 1a).
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1. Placid or independent-static environment: infrequent
changes are independent and randomly distributed,
i. e., IID. Surprises are rare, but no new major oppor-
tunities to exploit either (cell 1, Fig. 1a).

2. Placid-clustered or complex-static environment: pat-
terned changes make forecasting crucial. Comparable
to the economist’s idea of imperfect competition, this
environment lets firms develop distinctive competen-
cies to fit limited opportunities that lead to growth and
bureaucracy (cell 2, Fig. 1a).

3. Disturbed-reactive or independent-dynamic environ-
ment: firms might influence patterned changes. Com-
parable to oligopoly in economics, this environment
makes changes difficult to predict, so firms increase
their operational flexibility through decentralization
(cell 3, Fig. 1a).

4. Turbulent field or complex-dynamic environment: most
frequent, changes are also complex, i. e., interdepen-
dent, originating both from autonomous shifts in the
environment and from interdependence among firms
and conglomerates. Social values accepted by members
guide strategic response (cell 4, Fig. 1a).

Ansoff and McDonnell [7] extend the dichotomous envi-
ronmental uncertainty perceptions by breaking turbulent
environments (cell 4, Fig. 1a) into discontinuous and sur-
prising. This is a step in the right direction, but not as help-
ful as a causal model specific to the system structure of
a firm’s strategic situation. Assuredly, 2�2 typologies help
clarify exposition and are most frequent in the organiza-
tion theory and strategy literatures. The mystical signifi-
cance of duality affected even Leibniz, who associated one
with God and zero with nothingness in the binary system.
The generic solutions that dichotomies provide leave out
the specifics that decision makers need. No matter what
business they are in (Fig. 1b), managers cannot wait until
a better theory comes along; they must act now.

It is worth noting that people often confuse the term
‘complex’ with ‘complicated’. Etymology shows that com-
plicated uses the Latin ending -plic: to fold, but complex
contains the Greek root 
�"́�- ‘plēx-’: to weave. A compli-
cated structure is thereby folded, with hidden facets stuffed
into a small space (Fig. 1c). But a complex structure has in-
terwoven parts with mutual interdependencies that cause
dynamic complexity [46]. Remember: complex is the op-
posite of independent or untwined (Fig. 1a) and compli-
cated is the opposite of simple (Fig. 1c).

Daft and Weick’s [12] vista on firm intrusiveness
and environmental equivocality is pertinent here. They
see many events and trends in the environment as be-
ing inherently unclear. Managers discuss such events and

trends, and form mental models and visions expressed in
a fuzzy language and label system [80]. Within an enact-
ment process, equivocality relates to managerial assump-
tions underlying the analyzability of the environment.
A firm’s intrusiveness determines how active or passive the
firm is about environmental scanning. In this context, as
the global environment gets turbulent, active firms and
their subsidiaries construct SdP with SD models and com-
pute scenarios to improve performance.

Managers of active firms combine knowledge acquisi-
tion with interpretations about the environment and their
strategic situation. They reduce equivocality by assessing
alternative futures through computed scenarios. In fre-
quent meetings and debates, some by videoconferencing,
managers use the dialectical inquiry process for strategic
assumption surfacing and testing (SAST), a vital strate-
gic loop. Often ignored, the SAST loop gives active firms
a strategic compass [47].

Conversely, passive firms do not actively seek knowl-
edge but reduce equivocality through rules, procedures
and regular reports: reams of laser-printed paper with little
or no pertinent information. Managers in passive firms use
the media to interpret environmental events and trends.
They obtain insight from personal contacts with signifi-
cant others in their environment. Data are personal and
informal, obtained as the opportunity arises.

Future Uncertainty

“If we were omnipotent”, says Ackoff, then we could get
“perfectly accurate forecasts” (see p. 60 in [2]). Thank God
the future is unpredictable and we must yet create it. If it
were not, then life would have been so boring! Here are
some facts about straight forecasting:

1. Forecasts are seldom perfect, in fact, they are always
wrong, so a useful forecasting model is one that min-
imizes error.

2. Forecasts always assume underlying stability in sys-
tems.

3. Product family and aggregated forecasts are always
more accurate than single product forecasts, so the
large numbers law applies.

4. In the short-term, managers can forecast but cannot act
because time is too short; in the long term, they can act
but cannot forecast.

To offset conundrum #4, SdP with SD juxtaposes the de-
composition of performance dynamics into the growth
and decline archetypes caused by balancing (–) and re-
inforcing (+) recursive causal-link chains or feedback
loops [33,50]. A thermostat is a typical example of a goal-
seeking feedback loop that causes either balancing growth
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Scenario-Driven Planning with System Dynamics, Figure 1
a Environmental complexity and change celerity dimensions that cause perceived environmental uncertainty (adapted from [32]).
b Scenario-driven planning with system dynamics helps with strategy-design fundamentals, such as, for example, defining a busi-
ness along the requisite client-job-technology three-dimensional grid. c The simple-complicated dimension must not be confused
with the environmental complexity dimension (adapted from [46])

or decline. The gap between desired and room tempera-
ture causes action, which alters temperature with a time
lag or delay. Temperature changes in turn close the gap
between desired and room temperature.

Conversely, a typical loop that feeds on itself to cause
either exponential growth or decline is that of an arms
race. One side increases its arms. The other sides increase
theirs. The first side then reacts by increasing its arms, and
so on. Price wars between stores, promotional competi-
tion, shouting matches, one-upmanship and the wildcard
interest rates of the late 1970s are good examples too. Es-
calation might persist until the system explodes or outside
intervention occurs or one side quits, surrenders or goes
out of business. In the case of wildcard interest rates, out-
side intervention by a regulatory agency can bring an end
to irrationally escalating rates.

We’ve never been here before
—Peter Senge

SdP with SD: The Modeling Process� Strategic
Situation Formulation

The strategic management process (SMP, Fig. 2) starts
with environmental scanning, in order to gauge environ-
mental trends, opportunities and threats. Examples in-
clude increasing rivalry among existing competitors and
Porter’s [62] emphasis on the bargaining power of buy-
ers and suppliers as well as on the threats of new entrants
and substitutes. Even if some firms reduce environmen-
tal scanning to industry analysis in practice, changes in
the environment beyond an industry’s boundaries can de-
termine what happens within the industry and its entry,
exit and inertia barriers. Internal capability analysis comes
next. It examines a firm’s past actions and internal pol-
icy levers that can both propel and limit future actions.
The integrative perspective of the SdP with SD framework
on Fig. 2 delineates processes that enhance institutional
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Scenario-Driven Planning with System Dynamics, Figure 2
Cones of resolution show how scenario-driven planning with system dynamics enhances the strategy design component of the
strategic management process (SMP; adapted from [32])

learning, bolster productivity and improve performance
through strategic flexibility.

Strategy design begins by identifying variables perti-
nent to a firm’s strategic situation, along with their inter-
related causal links. Changes in these variables can have
profound effects on performance. Some of the variables
belong to a firm’s external environment. Examples are
emerging new markets, processes and products, govern-
ment regulations and international interest and currency
rates. Changes either in these or their interrelated causal
links determine a firm’s performance through time.

It is a manager’s job to understand the causal links un-
derlying a strategic situation. SdP with SD helps antici-
pate the effects of future changes triggered in the external
environment. Other variables are within a firm’s control.
Pulling or pushing on these internal levers also affects per-
formance. To evaluate a change in strategy, one must look
at potential results along with changes in the environment,
matching resource capabilities, stakeholder purposes, and
organizational goals and objectives (Fig. 2).

Most variables interact. Often, the entire set of possible
outcomes is obscure, difficult to imagine. But if managers

oversimplify, then they end up ignoring the combined
effects of chain reactions. Even well-intended rational-
ity often leads to oversimplification, which causes cogni-
tive biases (CBs) that mislead decision makers [21,70,72].
Conversely, computing mixed environmental and deci-
sion scenarios that link internal and external metrics can
reveal unwarranted simplification.

SdP with SD integrates business intelligence with strat-
egy design, not as a narrow specialty, but as an admis-
sion of limitations and environmental complexity. It also
uses multiperspective dialectics, crucial for strategic as-
sumption surfacing and testing (SAST). Crucial because
the language and labels managers use to coordinate strate-
gic real options are imprecise and fuzzy. Fuzzy language
is not only adequate initially for managing interdepen-
dence-induced uncertainty but required [80]. Decision
makers rely on it to overcome psychological barriers and
Schwenk’s [70] groups of CBs.

The best-case scenario for a passive firm is to acti-
vate modeling on Fig. 2, sometimes unknowingly. When
its managers boot up, for example, electronic spreadsheets
that contain inside-out causal models, with assumptions
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hidden deeply within many a formula. At bootup, only the
numbers show. So passive-firm managers use electronic
spreadsheets to laser-print matrices with comforting num-
bers. They

“twiddle a few numbers and diligently sucker them-
selves into thinking that they’re forecasting the fu-
ture” [69].

And that is only when rapid changes in the environ-
ment force them to stop playing blame the stakeholder.
They stop fighting the last war for a while, artfully name
the situation a crisis, roll up their sleeves, and chat about
and argue, but quickly agree on some arbitrary interpreta-
tion of the situation to generate strategic face-saving op-
tions. Miller and Friesen (see pp. 225–227 in [48]) show
how for futile firms, rapid environmental changes lead
to crisis-oriented decisions. Conversely, successful firms
look far into the future as they counter environmental dy-
namism through strategy design with real options. To-
gether, their options and interpretation of the environ-
ment, through the consensus that SdP with SD facilitates,
enable a shared logic to emerge: a shared mental model
that filters hidden spreadsheet patterns and heroic as-
sumptions clean and clear.

Managers of active firms enter the SdP with SD loop of
Fig. 2 both consciously and conscientiously. They activate
strategic intelligence via computed scenarios and the SAST
loop. Instead of twiddling spreadsheet numbers, proactive
firm managers twiddle model assumptions. They stake,
through SD model diagrams, their intuition about how
they perceive the nature and structure of a strategic situ-
ation. Computed scenarios quantitatively assess their per-
ceived implications. Having quantified the implications of
shared visions and claims about the structure of the strate-
gic situation, managers of active firms are likely to reduce
uncertainty and equivocality. Now they canmanage strate-
gic interdependence. Because articulated perception is the
starting point of all scenarios, computed scenarios give ac-
tive firms a fair chance at becoming fast strategic learners.

The design of action or implementation tactics re-
quires detailing how, when and where a strategy goes into
action. In addition to assuming the form of pure commu-
nication (III: 1 and 2, Fig. 2) or pure action (III: 3 and 4,
Fig. 2), in a pragmatic sense, tactics can be either coop-
erative or competitive and defensive or offensive. Market
location tactics, for example, can be either offensive, trying
to rob market share from established competitors, or de-
fensive, preventing competitors from stealing one’s mar-
ket share. An offensive tactic takes the form of frontal as-
sault, flanking maneuver, encirclement, bypass attack or

guerilla warfare. A defensive tactic might entail raising
structural barriers, increasing expected retaliation or low-
ering the inducement for future attack. Conversely, coop-
erative tactics try to gain mutual advantage by working
with rather than against others. Cooperative tactics take
the form of alliances, joint ventures, licensing agreements,
mutual service consortia and value-chain partnerships, the
co-location of which often creates industrial districts [29].

The usual copycat strategy retort shows linear think-
ing at best and clumsy benchmarking, also known as
shadow marketing, at worst. Its proponents assume per-
formance can improve incrementally, with disconnected
tactics alone, when strategy design is of primary concern.
Piecemeal tactics can undermine strategy, but they are
secondary. It might be possible to improve performance
through efficient tactics, but is best to design strategies
that expel counterproductive tactics. Counterproductive
tactics examples are coercive moves that increase rivalry,
without a real payoff, either direct or indirect, for the in-
dustry incumbent who initiates them. It is atypical of an
industry or market leader to initiate such moves.

In strategy, superb action demands superior design.
According to the design school, which Ansoff, Channon,
McMillan, Porter, Thomas and others lead, logical incre-
mentalismmay help implementation, but becomes just an-
other prescription for failure when the environment shifts.
Through its judicious use of corporate resources, SdP with
SD makes the tactics required for action clear. Also, it re-
veals their proper coalignment through time, so a firm can
build strategic flexibility and save time!

The Modeling Process � Strategic Situation
Formulation

SdP with SD (Fig. 2) begins by modeling a business or ‘so-
cial process’ than a business or ‘social system’. It is more
productive to identify a social process first and then seek
its causes than to slice a chunk of the real world and ask
what dynamics it might generate. Distinguishing between
a social system and a social process is roughly equivalent to
distinguishing between a system’s underlying causal struc-
ture and its dynamics. Randers (see p. 120 in [63]) defines
a social system as a set of cause and effect relations. Its
structure is a causal diagram ormap of a real-world chunk.
A social process is a behavior pattern of events evolving
through time. The simulation results of SdP with SD mod-
els show such chains of events as they might occur in the
real world. An example of a social system (structure) is
the set of rules and practices that a firm might enact when
dealingwith changes in demand, along with the communi-
cation channels used for transmitting information and de-
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Scenario-Driven Planning with System Dynamics, Figure 3
The recursive nature of the modeling process that scenario-driven planning with system dynamics entails a creates a sustainable,
ever-expanding vortex of insight and wisdom, needed in strategic real-options valuation, and b saves both time and money as it
renders negligible the cost of resistance (R) to change

cisions. A corresponding social process (dynamics) might
be the stop-and-go pattern of capital investment caused by
a conservative bias in a firm’s culture.

In his model of a new, fast-growing product line, for
example, Forrester [24] incorporates such a facet of corpo-
rate culture. Causing sales to stagnate, considerable back
orders had to accumulate to justify expansion because the
firm’s president insisted on personally controlling all cap-
ital expenditures.

People often jump into describing system structure,
perhaps because of its tangible nature as opposed to the
elusive character of dynamics or social process fragments.
Also, modelers present model structure first and then be-
havior. Ultimately, the goal in modeling a strategic situa-
tion is to link system structure and behavior. Yet, in the
early stages of modeling is best to start with system dy-
namics and then seek underlying causes. Indeed, SD is par-
ticularly keen in understanding system performance, “not
structure per se” (see p. 331 in [56]), in lieu of SD’s core
tenet that structure causes performance.

The modeling process itself is recursive in nature. The
path from real-world events, trends and negligible exter-
nalities to an effective formal model usually resembles an
expanding spiral (Fig. 3a). A useful model requires con-
ceptualization; also focusing the modeling effort by estab-
lishing both the time horizon and the perspective from
which to frame a decision situation. Typically, strategy-de-
signmodels require a long-term horizon, over which com-

puted scenarios assess the likely effects of changes both in
strategy and in the environment.

Computer simulation is what makes SdP with SD
models most useful. Qualitative cause and effect dia-
grams are too vague, tricky to simulatementally. Produced
through knowledge elicitation, their complexity vastly ex-
ceeds the human capacity to see their implications. Cast-
ing a chosen perspective into a formal SdP with SD model
entails postulating a detailed structure; a diagramming de-
scription precise enough to propagate images of alterna-
tive futures, i. e., computed scenarios, “though not neces-
sarily accurate” (see p. 118 in [63]). But the modeling pro-
cess must never downplay the managers’ mental database
and its knowledge content. Useful models always draw on
that mental database [24].

FollowingMorecroft [53], SdPwith SD adoptersmight
strive to replace the notion of modeling an objectively
singular world out there, with the much softer approach
of building formal models to improve managers’ mental
models. The expanding spiral of Fig. 3a shows that the in-
sight required for decisive action increases as the quantity
of information decreases, by orders of magnitude. The re-
quired quantification of the relations among variables per-
tinent to a strategic situation changes the character of the
information content as one moves from mental to writ-
ten to numerical data. Perceptibly, a few data remain, but
much more pertinent to the nature and structure of the
situation. Thanks to computed scenarios, clarity rules in
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the end. And, if the modeling process stays interactive (i),
as opposed to antagonistic (a), then clarity means low re-
sistance to change (Ri < Ra, Fig. 3b), which helps reach
a firm’s action/implementation threshold quickly (ti < ta,
Fig. 3b). This is how SdP with SD users build strategic flex-
ibility while they save both time and money!

Case 1: Cyprus’ Environment and Hotel Profitability

Cyprus’ Hotel Association wished to test how Cyprus’ year
2010 official tourism strategy might affect tourist arrivals,
hotel bed capacity and profitability, and the island’s en-
vironment [30]. Computed with a system dynamics sim-
ulation model, four tourism growth scenarios show what
might happen to Cyprus’ tourism over the next 40 years,
along with its potential effects on the sustainability of
Cyprus’ environment and hotel profitability. Following is
a partial description of the system dynamics model that
precedes its dynamics.

Model Description (Case 1)

The SD model highlights member interactions along
Cyprus’ hotel value chain. The model incorporates
a generic value-chain management structure that allows

Scenario-Driven Planning with System Dynamics, Figure 4
Cyprus’ a environment and population, and b annual andmonthly tourismmodel sectors (adapted from and extending [30])

modeling customer-supplier value chains in business as
well as in physical, biological and other social systems. Al-
though the structure is generic, its situation specific pa-
rameters faithfully reproduce the dynamic behavior pat-
terns seen in Cyprus’ hotel value-chain processes, business
rules and resources.

Cyprus’ Environment, Population and Tourism Model
Sectors Within Cyprus’ environment and population
sector (Fig. 4a), the carbon dioxide (CO2) pollution stock
is the accumulation of Cyprus’ anthropogenic emissions
less the Mediterranean Sea region’s self clean-up rate.
The clean-up rate that drains Cyprus’ CO2 pollution de-
pends on the level of anthropogenic pollution itself as well
as on the average clean-up time and its standard devia-
tion (sd). Emissions that feed CO2 pollution depend on
Cyprus’ population and tourism and on emissions per
person [9].

In SD models, rectangles represent stocks, i. e., level
or state variables that accumulate through time, e. g.,
the Tourism stock on Fig. 4b. The double-line, pipe-
and-valve-like icons that fill and drain the stocks, of-
ten emanating from cloud-like sources and ebbing into
cloud-like sinks, represent material flows that cause the
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Scenario-Driven Planning with System Dynamics, Table 1
Cyprus’ environment and population (and local tourism)model sector (Fig. 4a) equations, with variable, constant parameter and unit
definitions

Level or state variables (stocks) Eq. #
CO2Pollution(t) D CO2Pollution(t � dt) C (emissions � clean up) � dt (1.1)
INIT CO2 Pollution = emissions (Based on 1995 gridded carbon dioxide anthropogenic emission data; unit: 1000 metric ton C
per one degree latitude by one degree longitude grid cell)

(1.1.1)

Rate variables (flows)
Emissions D emissions per person � population and tourism (unit: 1000 metric tons C/month) (1.2)
Cleanup D max(0; CO2Pollution/average clean � up time) (unit: 1000 metric tons C/month) (1.3)
Auxiliary variables and constants (converters)
Average clean � up time D 1200 (Med Sea region average self clean-up time = 100 years; unit: months) (1.4)
Cyprus’ land = If (time � 168) then (9251� 247:1052) else ((9251� 3355)� 247:1052) (Cyprus’ free land area; unit: acres; 1 km2

= 247.1052 acres)
(1.5)

EF ratio D smooth EF/world EF (unit: unitless) (1.6)
EF : environmental footprint D Cyprus’ land/population and tourism (unit: acres/person) (1.7)
Emissions per person D 1413:4/702000/12 (unit: anthropogenic emissions/person/month) (1.8)
Local tourism D local tourism fraction � Cyprus’ population (unit: persons/month) (1.9)
Local tourism fraction D 0:46 � (0:61 C 0:08) (Percentages based on a 1995 study on domestic tourism; unit: unitless) (1.10)
Population and tourism D Cyprus’ population C Tourism � local tourism (Subtracts local tourists already included in Cyprus’
population; unit: persons)

(1.11)

Sd clean � up time D 240 (clean-up time standard deviation = 20 years; unit: months) (1.12)
Smooth EF D SMTH3 (EF: environmental footprint, 36) (Third-order exponential smooth of EF) (1.13)
World EF D (world land � Cyprus’ land)/(world population � population and tourism) (unit: acres/person) (1.14)
World land D 36677577730:80 (unit: acres) (1.15)
Cyprus’ population D GRAPH(time/12) (Divided by 12 since these are annual data; unit: persons) (0.00, 493984), (1.00, 498898),
(2.00, 496570), (3.00, 502001), (4.00, 505622), (5.00, 509329), (6.00, 512950), (7.00, 516743), (8.00, 520968), (9.00, 525364),
(10.0, 529847), (11.0, 534330), (12.0, 539934), (13.0, 546486), (14.0, 552348), (15.0, 526313), (16.0, 516054), (17.0, 515881),
(18.0, 518123), (19.0, 521657), (20.0, 526744), (21.0, 532692), (22.0, 538210), (23.0, 544675), (24.0, 551659), (25.0, 558038),
(26.0, 560366), (27.0, 568469), (28.0, 572622), (29.0, 578394), (30.0, 587392), (31.0, 598217), (32.0, 609751), (33.0, 619658),
(34.0, 626534), (35.0, 632082), (36.0, 636790), (37.0, 641169), (38.0, 645560), (39.0, 649759), (40.0, 653786), (41.0, 657686),
(42.0, 661502), (43.0, 665246), (44.0, 668928), (45.0, 672554), (46.0, 676147), (47.0, 679730), (48.0, 683305), (49.0, 686870),
(50.0, 690425), (51.0, 693975), (52.0, 697524), (53.0, 701056), (54.0, 704547), (55.0, 707970), (56.0, 711305), (57.0, 714535),
(58.0, 717646), (59.0, 720613), (60.0, 723415), (61.0, 726032), (62.0, 728442), (63.0, 730629), (64.0, 732578), (65.0, 734280),
(66.0, 735730), (67.0, 736928), (68.0, 737887), (69.0, 738627), (70.0, 739172), (71.0, 739540), (72.0, 739743), (73.0, 739792), (74.0,
739697), (75.0, 739472), (76.0, 739123), (77.0, 738658), (78.0, 738083), (79.0, 737406), (80.0, 737406)

(1.16)

World population D GRAPH(time/12) (Divided by 12 since these are annual data; unit: persons) (0.00, 3e+09), (1.00, 3.1e+09),
(2.00, 3.1e+09), (3.00, 3.2e+09), (4.00, 3.3e+09), (5.00, 3.3e+09), (6.00, 3.4e+09), (7.00, 3.5e+09), (8.00, 3.6e+09), (9.00, 3.6e+09),
(10.0, 3.7e+09), (11.0, 3.8e+09), (12.0, 3.9e+09), (13.0, 3.9e+09), (14.0, 4e+09), (15.0, 4.1e+09), (16.0, 4.2e+09), (17.0, 4.2e+09),
(18.0, 4.3e+09), (19.0, 4.4e+09), (20.0, 4.5e+09), (21.0, 4.5e+09), (22.0, 4.6e+09), (23.0, 4.7e+09), (24.0, 4.8e+09), (25.0, 4.9e+09),
(26.0, 4.9e+09), (27.0, 5e+09), (28.0, 5.1e+09), (29.0, 5.2e+09), (30.0, 5.3e+09), (31.0, 5.4e+09), (32.0, 5.4e+09), (33.0, 5.5e+09),
(34.0, 5.6e+09), (35.0, 5.7e+09), (36.0, 5.8e+09), (37.0, 5.8e+09), (38.0, 5.9e+09), (39.0, 6e+09), (40.0, 6.1e+09), (41.0, 6.2e+09),
(42.0, 6.2e+09), (43.0, 6.3e+09), (44.0, 6.4e+09), (45.0, 6.5e+09), (46.0, 6.5e+09), (47.0, 6.6e+09), (48.0, 6.7e+09), (49.0, 6.8e+09),
(50.0, 6.8e+09), (51.0, 6.9e+09), (52.0, 7e+09), (53.0, 7e+09), (54.0, 7.1e+09), (55.0, 7.2e+09), (56.0, 7.2e+09), (57.0, 7.3e+09),
(58.0, 7.4e+09), (59.0, 7.5e+09), (60.0, 7.5e+09), (61.0, 7.6e+09), (62.0, 7.6e+09), (63.0, 7.7e+09), (64.0, 7.8e+09), (65.0, 7.8e+09),
(66.0, 7.9e+09), (67.0, 8e+09), (68.0, 8e+09), (69.0, 8.1e+09), (70.0, 8.1e+09), (71.0, 8.2e+09), (72.0, 8.3e+09), (73.0, 8.3e+09), (74.0,
8.4e+09), (75.0, 8.4e+09), (76.0, 8.5e+09), (77.0, 8.5e+09), (78.0, 8.6e+09), (79.0, 8.6e+09), (80.0, 8.7e+09)

(1.17)

stocks to change. The arrive rate of Fig. 4b, for exam-
ple, shows tourists who flow into the tourism stock per
month. Single-line arrows represent information flows,
while plain text or circular icons depict auxiliary con-
stant or converter variables, i. e., behavioral relations or
decision points that convert information into decisions.

Changes in the tourism stock, for example, depend on an-
nual tourism, adjusted by tourism seasonality. Both the di-
agram on Fig. 4a and Table 1 are reproduced from the ac-
tual simulationmodel, first built on the glass of a computer
screen using the diagramming interface of iThink® [67],
and then specifying simple algebraic equations and pa-
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rameter values. Built-in functions help quantify policy
parameters and variables pertinent to Cyprus’ tourism
situation.

There is a one-to-one correspondence between the
model diagram on Fig. 4a and its equations (Table 1).
Like the diagram, the equations are the actual output
from iThink® too. The equations corresponding to Fig. 8b
are archived in [30]. Together, Cyprus’ population, lo-
cal tourism and monthly tourism determine the popula-
tion and tourism sum (Eq. 1.11, Table 1). According to
CYSTAT [11], both Cyprus’ Tourism Organization and
its government attach great importance to local tourism.
A study on domestic tourism conducted in 1995 revealed
that about 46 percent of Cypriots take long holidays. Of
these, 61 percent take long holidays exclusively in Cyprus
and eight percent in Cyprus and abroad, while 31 percent
chose to travel abroad only. These are precisely the per-
centages in the model (Eq. 1.10, Table 1).

On Fig. 4a, the world land and population data, mi-
nus Cyprus’ land, population and tourism co-determine
the world EF (environmental footprint, Eq. 1.14, Table 1).
Compared to Cyprus’ smooth EF, i. e., the smooth ratio of
the island’s free land divided by its total population and
tourism, the world EF gives a dynamic measure of Cyprus’
relative attractiveness to the rest of the world. The EF ra-
tio (Eq. 1.6, Table 1), i. e., the ratio of Cyprus’ smooth EF
(Eq. 1.13, Table 1) divided by the world EF (Eq. 1.14, Ta-
ble 1), assumes that the higher this ratio is, themore attrac-
tive the island is to potential tourists, and vice versa. The
EF ratio, which depends on Cyprus’ total population and
tourism, feeds back to the island’s annual tourism via the
inflow of foreign visitors who come to visit Cyprus every
year (Fig. 4b).

The logistic or Verhulst growth model, after François
Verhulst who published it in 1838 [66], helps explain
Cyprus’ actual annual tourism, a quantity that cannot
grow forever (Fig. 4b). Every system that initially grows ex-
ponentially eventually approaches the carrying capacity of
its environment, whether it is food supply for moose, the
number of people susceptible to infection or the potential
market for a good or a service. As an ‘autopoietic’ system
approaches its limits to growth, it goes through a non-lin-
ear transition from a region where positive feedback dom-
inates to a negative feedback dominated regime. S-shaped
growth often results: a smooth transition from exponential
growth to equilibrium.

The logistic model conforms to the requirements for
S-shaped growth and the ecological idea of carrying ca-
pacity. The population it models typically grows in a fixed
environment, such as Cyprus’ foreign annual tourism has
done since 1960 up to 2000. Initially dominated by positive

feedback, Cyprus’ annual tourismmight soon reach the is-
land’s carrying capacity, with a nonlinear shift to domi-
nance by negative feedback. While accounting for Cyprus’
tourism lost to the summer of 1974 Turkish invasion, of-
ficially a very long ‘military intervention’, further deplet-
ing annual tourism is the outflow of Cyprus’ visitors (not
shown here) who might go as the island’s free area reaches
its Carrying Capacity, estimated at seventy times the num-
ber of Cyprus’ visitors in 1960 [30].

Cyprus’ Hotel Association listed Cyprus tourism sea-
sonality as one of its major concerns. At the time of this in-
vestigation, CYSTAT [11] had compiled monthly tourism
data for only 30 months. These were used for comput-
ing Cyprus’ tourism seasonality (Fig. 4b). Incorporating
both the foreign annual tourism and the monthly tourism
stocks in the model allows both looking at the big picture
of annual tourism growth and assessing the potential long-
term effects of tourism seasonality on the sustainability
of Cyprus’ environment and hotel EBITDA, i. e., earnings
before interest, taxes, depreciation and amortization. The
publicly available actual annual tourism data allow testing
the model’s usefulness, i. e., how faithfully it reproduces
actual data between 1960 and 2000 [30].

Cyprus’ foreign visitors and local tourists arrive at the
island’s hotels and resorts according to Cyprus’ tourism
seasonality, thereby feeding Cyprus’ monthly tourism
stock. About 11.3 days later, according to CYSTAT’s [11]
estimated average stay days, both foreign visitors and lo-
cal tourists depart, thereby depleting the monthly tourism
stock. By letting tourism growth = 0 and Cyprus’ tourism
seasonality continue repeating its established pattern, the
model computes a zero-growth or base-run scenario. Sub-
sequently, however, tourism growth values other than zero
initiate different scenarios.

Cyprus’ Tourism Growth Scenarios (Case 1)

What can Cyprus’ hoteliers expect to see in terms of bot-
tom-line dynamics? According to the four tourism-growth
scenarios computed on Fig. 5, seasonal variations notwith-
standing, the higher Cyprus’ tourism growth is, the lower
hotel EBITDA (smooth hE) is, in the short term. In the
long term, however, higher tourism growth yields higher
profitability in constant year 2000 prices.

High tourism growth implies accommodating over-
booked hotel reservations for tourists who actually show
up. Free cruises erode Cyprus’ hotel EBITDA. The alter-
native is, however, angry tourists going off in hotel lobbies.
Tourists have gotten angry at hotels before, but hotels have
made the problem worse in recent years worldwide [16].
They have tightened check-in rules, doubled their reno-
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Scenario-Driven Planning with System Dynamics, Figure 5
Four computed scenarios show how tourism growth might affect Cyprus’ hotel EBITDA (smooth hE) and the island’s environment,
with carbon-dioxide (CO2) pollution (adapted from and extending [30])

vations and increased the rate of overbooking by about 30
percent. The results can be explosive if one adds the record
flight delays that travelers endure. Anyhow, free cruises to
nearby Egypt and Israel sound much better than simply
training employees to handle unhappy guests that scream
in hotel lobbies.

Eventually, as Cyprus’ bed capacity increases and
thereby catches up with tourism demand, there will be
less overbooking and a few free cruises to erode Cyprus’
hotel EBITDA. Given enough time for an initial bed ca-
pacity disequilibrium adjustment, in the long term, high
tourism growth increases both hotel EBITDA (Fig. 5a)
and cash [30].

In addition to their profound consequences for its
hotel value-chain participants, Cyprus’ tourism growth
might also determine the fate of the island’s environment.
Depending on the island’s population and emissions per
person, high tourism growth implies high anthropogenic
emissions feeding Cyprus’ CO2 Pollution. Anthropogenic
CO2 emissions attributed to the upward and downward
movements of recurring tourist arrivals create much more
stress and strain for the island’s natural environment than
a consistent stream of tourism with low seasonality would.
High tourism growth lowers Cyprus’ environmental foot-
print (EF). The summer 1974 Turkish military interven-
tion has had a drastic negative effect on Cyprus’ relative
attractiveness because it reduced the island’s free land by
41 percent.

Although qualitatively similar to the world’s average
EF after the invasion, Cyprus’ environmental footprint is
lower than the world’s average EF (Fig. 5c), rendering the
island’s free area relatively less attractive as more foreign
tourists visit. Manifested in the EF ratio (Fig. 5d), Cyprus
becomes relatively less attractive as more visitors choose
to vacation on the island’s free area.

Qualitatively, Cyprus’ CO2 pollution scenarios
(Fig. 5b) look exactly like the A2 scenario family of har-
monized anthropogenic CO2 emissions, which the Inter-
governmental Panel on Climate Change (IPCC) computed
to access the risks of human-induced climate change [54].
Like in the rest of the world, unless drastic changes in pol-
icy or technology alter the emissions per person ratio in
the next 40 years, CO2 pollution is expected to grow pro-
portionally with Cyprus’ tourism, degrading the island’s
environment.

Case 2: A Japanese Chemicals Keiretsu (JCK)

Home of NASA’s Johnson Space Center, the Clear Lake re-
gion in Texas boasts strong high technology, biotechnol-
ogy and specialty chemicals firms. Among them is JCK,
whose recent investment helps the Clear Lake region con-
tinue its stalwart role in Houston’s regional economic ex-
pansion [40].

An active member of a famous Japanese giant con-
glomerate, JCK’s history begun in the late 1800s. Despite
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its long history, however, it has not been easy for JCK to
evade the feedback loop that drives Japanese firms toman-
ufacture outside Japan. Since the 1950s, with Japan still re-
covering from WWII, the better Japanese companies per-
formed, the better their national currency did. But the bet-
ter Japan’s currency did, the harder it became for its firms
to export. The higher the yen, the more expensive and,
therefore, less competitive Japan’s exports become. This
simple loop explains JCK’s manufacturing lineage from
Japan to USA [34].

But the transition process behind this lineage is not
that simple. JCK’s use of SdP with SD reveals a lot about
its strategy design and implementation tactics. The model
below shows a tiny fragment of JCK’s gigantic effort to re-
perceive itself. The firm wants to see its keiretsu transform
into an agile, virtual enterprise network (VEN) of active
agents that collaborate to achieve its transnational busi-
ness goals. Although still flying low under the media’s col-
lective radar screen, VENs receive increased attention by
strategic managers [29].

Sterman (see Chap. 17 and 18 in [75]) presents
a generic value-chain management structure that can un-
earth what VENs are about. By becoming a VEN, JCK
is poised to bring the necessary people and production
processes together to form autopoietic, i. e., self-organiz-
ing, customer-centric value chains in the specialty chem-
icals industry. JCK decided to build its own plant in
USA because the net present value (NPV) of the an-
ticipated combined cash flow resulting from a merger
with other specialty chemicals manufacturers in USA
would have been less then the sum of the NPVs of the
projected cash flows of the firms acting independently.
Moreover, JCK’s own technology transfer cost is so low
that the internalization cost associated with a merger
would far exceed supplier charges plus market transac-
tion costs. To remain competitive [62], JCK will not in-
tegrate the activity but offshoot it as a branch of its
VEN-becoming keiretsu. The plant will be fully opera-
tional in January 2008. In order to maximize the com-
bined net present value of earnings before interest, taxes,
depreciation and amortization, i. e., NPV(EBITDA), of its
new USA plant and the existing one in Asia, JCK wishes to
improve its USA sales revenue before production starts in
USA.

JCK’s pre-production marketing tactics aim at build-
ing a sales force to increase sales in USA. Until the comple-
tion of the new plant (Dec. 2007), JCK will keep importing
chemicals from its plant in Asia. Once production starts in
USA (Jan. 2008), then the flow of goods from Asia to USA
stops, the plant in USA supplies the USA market and the
flow of goods from USA to Asia begins.

Strategic scenarios are not new to the chemical indus-
try [82]. SdP with SD helps this specialty chemicals pro-
ducer integrate its business intelligence efforts with strat-
egy design in anticipation of environmental change. Mod-
eling JCK’s strategic situation requires a comprehensive
inquiry into the environmental causalities and equivocali-
ties that dictate its actions. Computed strategic and tactical
scenarios probe the combined consequences of environ-
mental trends, changes in JCK’s own strategy, as well as
the moves of its current and future competitors. The sec-
tion below describes briefly how JCK plans to implement
its transnational strategy of balanced marketing and pro-
duction. This takes the form of a system dynamics simula-
tion model, which precedes the interpretation of its com-
puted scenarios.

Model Description (Case 2)

The entire model has multiple sectors, four of which com-
pute financial accounting data. Figure 6a shows the pro-
duction and sales, and Fig. 6b the total NPV(EBITDA)
model sectors. The corresponding algebra is in [34]. While
JCK is building its USA factory, its factory in Asia makes
and sells all specialty chemicals the USA market cannot
yet absorb. This is what the feed-forward link from the
production in Asia flow to the sales in Asia rate shows.
The surplus demand JCK faces in Asia for its fine chem-
icals accounts for this rather unorthodox model structure.
The surplus demand in Asia is the model’s enabling safety
valve, i. e., a major strategic assumption that renders tacti-
cal implementation feasible.

With the plant in Asia producing at full capacity before
the switch, sales in the USA both depletes the tank in Asian
stock and reduces sales in Asia. USA sales depend on JCK’s
USA sales force. But the size of this decision variable is just
one determinant of sales in USA.

Sales productivity depends on many parameters, such
as the annual growth before the switch rate of specialty
chemicals in USA, the average expected volume a sales-
person can sell per month as well as on the diminishing re-
turns that sales people experience after the successful calls
they initially make on their industrial customers. B2B or
business to business, i. e., industrial marketing, can some-
times be as tough as B2C or business to customer, i. e., sell-
ing retail.

Time t D 30 months corresponds to January 2008,
when the switch time converter cuts off the supply of
JCK’s chemicals from its plant in Asia. Ready by Decem-
ber 2007, the factory in the USA can supply the entire
customer base its USA sales force will have been build-
ing for 30 months. As production in the USA begins, the
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Scenario-Driven Planning with System Dynamics, Figure 6
JCK’s a production and sales, and b total NPV(EBITDA) model sectors (adapted from [34]; NPV = net present value, and EBITDA =
earnings before interest, taxes, depreciation and amortization)

sales in the USA before flow stops draining the tank in
Asia and sales in Asia resume to match JCK’s surplus
demand there. Acting both as a production flow and as
a continuous-review inventory order point, after January
2008, production in USA feeds the tank in USA stock
of the rudimentary value-chain management structure on
Fig. 6a.

Value chains entail stock and flow structures for the
acquisition, storage and conversion of inputs into outputs,
and the decision rules that govern the flows. The jet ski
value chain includes, for example, hulls and bows that
travel down monorail assembly paths. At each stage in the
process, a stock of parts buffers production. This includes
the inventory of fiberglass laminate between hull and bow
acquisition and usage, the inventory of hulls and bows for
the jet ski lower and upper structures, and the inventory of
jet skis between dealer acquisition and sales. The decision
rules governing the flows entail policies for ordering fiber-
glass laminate from suppliers, scheduling the spraying of
preformed molds with layers of fiberglass laminate before
assembly, shipping new jet skis to dealers and customer
demand.

A typical firm’s or VEN’s value chain consists of cas-
cades of supply chains, which often extend beyond a firm’s
boundaries. Effective value chainmodels must incorporate
different agents and firms, including suppliers, the firm,
distribution channels and customers. Scenario-driven
planning with system dynamics is well suited for value
chain modeling and policy design because value chains in-
volve multiple stock and flow chains, with time lags or de-
lays, and the decision rules governing the flows createmul-
tiple feedback loops among VEN members or value- and
supply-chain partners (see Chap. 17 and 18 in [75]).

Back to JCK, its tank in the USA feeds information
about its level back to production in the USA. Acting first
as a decision point, production in the USA compares the
tank in the USA level to the tank’s capacity. If the tank is
not full, then production in the USA places an order to
itself and, once the USA factory has the requisite capac-
ity, production in the USA refills the tank in the USA, but
only until sales in the USA after the switch drains the tank.
Then the cycle begins all over again.

Meanwhile, the profit in Asia, profit in the USA before
and profit in the USA after sectors [34] perform all the fi-
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Scenario-Driven Planning with System Dynamics, Figure 7
Thirty computed scenarios show JCK’s dual, smooth-switch and profitable purpose in production (adapted from [34])

nancial accounting necessary to keep track of the trans-
actions that take place in the value chain production and
sales sector (Fig. 6a). As each scenario runs, the profit in
Asia, the USA before and the USA after sectors feed the
corresponding change in net present value (NPV) flows of
the model’s total NPV(EBITDA) sector (Fig. 6b). By ad-
justing each profit sector’s EBITDA according to the dis-
count rate, the change in NPV flows compute the total
NPV(EBITDA) both in Asia and in the USA, both before
and after JCK’s January 2008 supply switch.

JCK’s Computed Scenarios (Case 2)

Recall that the SdP with SD modeling-process spiral en-
abled our modeling team to crystallize JCK’s strategic situ-
ation into the cyclical pattern that Fig. 3a shows. Although
heavily disguised, the JCK measurement data and econo-
metric sales functions let the system dynamicsmodel com-
pute scenarios to answer that razor-sharp optimization
question the JCK executives asked:

What size a USA sales force must we build in order
to get a smooth switch in both sales and production
in January 2008, and also tomaximize the combined

NPV(EBITDA) at our two plants in Asia and USA
from now through 2012?

Treating the USA sales force policy parameter in the
‘Sensi Specs. . . ’ menu item of iThink® allowed computing
a set of 30 strategic scenarios. The 30 scenarios correspond
to JCK’s hiring from one to 30 sales people, respectively, to
sell specialty chemicals tomanufacturing firms in theUSA,
both before and after the January 2008 switch. Figures 7
and 8 show the 30 computed scenarios.

Figure 7c shows the response surfaces the production
in USA rate and tank in the USA stock form after January
2008, in response to the 30 computed scenarios. The com-
puted scenario that corresponds to JCK’s building a USA
sales force of 19 people achieves a smooth balance between
sales in Asia and in the USA. Under this scenario, after
January 2008, on the line where the two surfaces cross each
other, not only the number of pounds of chemicals made
and sold in Asia equals the number of pounds of chemi-
cals made and sold in the USA, but as Fig. 7c shows, pro-
duction in the USA also equals the tank in USA stock. So
hiring 19 sales people now meets JCK’s smooth switch in
sales and production objective. But how?
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Scenario-Driven Planning with System Dynamics, Figure 8
Thirty computed scenarios show how hiring a sales force of 19 people in the USA might maximize JCK’s NPV(EBITDA), and thereby
fulfill its dual, smooth-switch and profitable purpose (adapted from [34])

How does producing and selling in the USA at rates
equal to the corresponding rates in Asia constitute a fair
response to JCK’s smooth switch objective? The JCK exec-
utives seemed to accept this at face value. But our team
had to clearly explain the dynamics of JCK’s rudimen-
tary USA value chain (Fig. 6a), in order to unearth what
the USA member of this transnational VEN-becoming
keiretsu might be up to.

It looks simple, but the value chain of the production
and sales sector on Fig. 6a can show the same amplifi-
cation symptoms that much more elaborate value chains
show when they fall pray to bullwhip effects. Locally ra-
tional policies that create smooth and stable adjustment
of individual business units can, through their interaction
with other functions and firms, cause oscillation and in-
stability. Figure 8a shows the profound consequences of
JCK’s switch for its value chain in the USA. Because of
the sudden switch in January 2008, the computed scenar-
ios cause 30 sudden step changes. Both variables’ adjust-
ment rates increase, but the tank in the USA stock’s am-
plification remains almost constant below 50 percent. As
customer demand steps up, so do both metrics’ new equi-
librium points, but in direct proportion to the step increase
in customer demand in the USA.

The 30 computed scenarios confirm Sterman’s argu-
ment that, while the magnitude of amplification depends
on stock adjustment times and delivery lags, its existence

does not. No matter how drastically customers and firms
downstream in a value chain change an orders’ magni-
tude, they cannot affect supply chain amplification. Value
chain managers must never blame customers and down-
stream firms or their forecasts for bullwhip effects. The
production in USA amplification is almost double the tank
in USA for a small USA sales force, suggesting that JCK’s
USA factory faces much larger changes in demand than its
sales people do. Although temporary, during its disequilib-
rium adjustment, the tank in the USA consistently over-
shoots the new equilibrium points that it seeks after the
switch (Fig. 7b), an inevitable consequence of stock and
flow structure. Customers are innocent, but JCK’s value
chain structure is not:

First, the tank in the USA stock adjustment process
creates significant amplification of the production in the
USA rate. Though the tank in the USA relative amplifica-
tion is 36.18 percent under the USA sales force = 1 sce-
nario, for example, the relative amplification of produc-
tion in the USA (Fig. 8a) increases by a maximum of more
than 90 percent (the peak production in the USA rate, after
t = 30 months, divided by the minimum production in the
USA rate D 11; 766; 430:01/1; 026; 107:64 D 91:28 per-
cent). The amplification ratio, i. e., the ratio of maximum
change in output to maximum change in input, therefore
is 91:28%/36:18% D 2:52. A one-percent increase in de-
mand for JCK’s chemicals causes a 2.52 percent surge in
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demand at JCK’s USA plant. While the amplification ra-
tio magnitude depends on the stock adjustment times and
delivery lags, its existence does not (see p. 673 in [75]).

Second, amplification is temporary. In the long run,
a one-percent increase in sales in the USA after leads to
a one-percent increase in production in the USA. After
two-adjustment times, i. e., two months, production in the
USA gradually drops (Fig. 7a). During the disequilibrium
adjustment, however, production in the USA overshoots
its new equilibrium, an inevitable consequence of the stock
and flow structure of customer-supplier value chains, no
matter how tiny or simple they are. The only way the tank
in the USA stock can increase is for its inflow production
in the USA rate (order rate) to exceed its outflow rate sales
in the USA after (Fig. 6a). Within a VEN’s or keiretsu’s
customer-supplier value chain, supply agents face much
larger changes in demand than finished-goods inventory,
and the surge in demand is temporary.

The computed scenarios show that as the USA sales
force increases, the production in the USA’s rate of am-
plification declines because its new long-term equilibrium
point is closer to its initial jump in January 2008. Con-
versely, as the tank in the USA stock’s long-term equilib-
rium point remains consistently high because of the larger
USA sales force, its relative amplification begins to rise.
Since the two variables’ relative amplification moves in
opposite directions, eventually, they meet. What a coin-
cidence! They meet above the USA sales force = 19 people.
Now, is this not a much better interpretation of the word
‘smooth’ in fair response to JCK’s smooth-switch perfor-
mance purpose? The answer to JCK is now pertinent to its
balancing its value chain in USA. With a USA sales force =
19, JCK’s value chain components show equal relative am-
plification to sudden changes in demand, attaining noth-
ing less than a magnificent amplification ratio = 1. Now
that is smooth!

But what of profitability? JCK’s polite executives said:
“maximize. . . combined. . . NPV”. In the time domain
(Fig. 8b), total NPV(EBITDA) creates intricate dynamics
that obscures the USA sales force effect. But the phase plot
on Fig. 8c clearly shows a concave down behavior along
the USA sales force: USA sales force = 19 maximizes the
two plants’ combined total NPV(EBITDA).

Future Directions

The above cases show how scenario-driven planning with
system dynamics helps control performance by enabling
organizational learning and the management of uncer-
tainty. The strategic intelligence system that SdP with SD
provides rests on the idea of a collective inquiry, which

translates the environmental ‘macrocosm’ and a firm’s
‘microcosm’ into a shared causal map with computed sce-
narios. Informed discussion then takes place. Seeing SdP
with SD as an inquiry system might help the outcomes
of the situation formulation-solution-implementation se-
quence, each stage built on successive learning.

Strategic situations are complex and uncertain. Be-
cause planning is directed toward the future, predictions
of changes in the environment are indispensable compo-
nents of it. Conventional forecasting by itself provides no
cohesive way of understanding the effect of changes that
might occur in the future. Conversely, SdP with SD and
its computed scenarios provide strategic intelligence and
a link from traditional forecasting to modern interactive
planning systems. In today’s quest for managers who are
more leaders than conciliators, the strategists’ or execu-
tives’ interest in scenariosmust be welcomed. A clearer de-
lineation of SdP with SD might make it a very rich field of
application and research.

The SdP with SD inquiry system on Fig. 2 includes sev-
eral contributions. First, by translating the environmental
macrocosm and the firm microcosm into a common con-
text for conceptualization, the requisites of theory build-
ing can be addressed. Planning analysts no longer have to
operate piecemeal. A theory and a dominant logic typically
emerge from shared perceptions about a firm, its environ-
ment and stakeholder purposes through model construc-
tion.

Second, the outputs of the strategic management pro-
cess activities build on each other as successive layers. The
SAST loop on Fig. 2 follows the counterclockwise direc-
tion ofmultiperspective dialectics [47]. This process allows
adjustment of individual and organizational theories and
logic, leading to an evolutionary interpretation of the real
system that strategic decisions target.

Third, the inquiry system of Fig. 2 enables flexible sup-
port for all phases of strategy design. Problem finding or
forming, or situation formulation receives equal attention
as problem solving.

SdP with SD helps open up the black box of decision
makers’ mental models, so they can specify the ideas and
rules they apply. That in turn helps enrich their language
and label system, organizational capability and knowledge,
and strategic decision processing system. Computed sce-
narios bring about transformation rules not previously
thought of as well as new variables and interaction paths.

As an entity, each decision maker has a local scope and
deals only with specific variables and access paths to other
entities. But success factors are not etched in stone. Of-
ten, we only observe a representative state of each entity,
namely, locally meaningful variables and parts of a sce-
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nario. This representativeness changes dynamically in the
process of computing scenarios. Beyond the purely techni-
cal advantages of computed scenarios, planning becomes
interactive, and language and label systems render them-
selves more adequate, effective and precise. Their associ-
ated organizational capability develops even more. In ad-
dition, the minor andmajor assumptions in decisionmak-
ers’ mental models surface as computed scenarios specify
the conditions under which performance changes.

A line of great immediate concern requires researchers
and practitioners alike to explore the modeling process
behind SdP with SD. For the sake of realism, to make
negotiated perceptions of reality explicit, we need repre-
sentations where strategic real options and self-interest
projections mold the way in which managers incorporate
their observations and interpretations into strategy mod-
els. This is an unavoidable, most challenging path to tread,
if we want to build a dialectical debate into the strategy de-
sign process.

Do we really want to? Yes because:

1. The traditional hierarchical organization dogma has
been planning, managing and controlling, whereas the
new reality of the learning organization incorporates vi-
sion, values andmental models. It entails training man-
agers and teams in the IPRD learning cycle conceived
by Dewey [14] (cf. Senge and Sterman [71]):

2. In the strategic management process (SMP) evolution,
planning is evolving too, from objective-driven to bud-
get-driven to strategy-driven to scenario-driven plan-
ning with system dynamics (SdP with SD, see pp. 271–
272 in [32]).

3. The inquiry system that mediates the restructuring of
organizational theory in use [68] determines the quality
of organizational learning.

By looking into the dynamics of strategy design and the
resulting performance of firms, the SdP with SD frame-
work on Fig. 2 might let managers, planners and busi-
ness researchers see the tremendous potential of computed
strategic scenarios. They might choose to build intelli-
gence systems around SdP with SD to create insight for
strategy design. They will be building real knowledge in
the process, while developing capability for institutional
learning. Both Pascale [59] and de Geus [13] see the ca-

pability to speed up institutional learning as a truly sus-
tainable competitive advantage.
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Glossary

Implied volatility The value of asset return volatility
which equates a model-implied derivative price to the
observed market price. Most notably, the term is used
to identify the volatility implied by the Black and Sc-
holes [63] option pricing formula.

Quadratic return variation The ex-post sample-path re-
turn variation over a fixed time interval.

Realized volatility The sum of finely sampled squared as-
set return realizations over a fixed time interval. It is
an estimate of the quadratic return variation over such
time interval.

Stochastic volatility A process in which the return vari-
ation dynamics include an unobservable shock which
cannot be predicted using current available informa-
tion.

Definition of the Subject

Given the importance of return volatility on a number
of practical financial management decisions, the efforts
to provide good real-time estimates and forecasts of cur-
rent and future volatility have been extensive. The main
framework used in this context involves stochastic volatil-
ity models. In a broad sense, this model class includes
GARCH, but we focus on a narrower set of specifica-
tions in which volatility follows its own random process,
as is common in models originating within financial eco-
nomics. The distinguishing feature of these specifications

is that volatility, being inherently unobservable and sub-
ject to independent random shocks, is not measurable
with respect to observable information. In what follows,
we refer to these models as genuine stochastic volatility
models.

Much modern asset pricing theory is built on continu-
ous-time models. The natural concept of volatility within
this setting is that of genuine stochastic volatility. For ex-
ample, stochastic volatility (jump-)diffusions have pro-
vided a useful tool for a wide range of applications, includ-
ing the pricing of options and other derivatives, themodel-
ing of the term structure of risk-free interest rates, and the
pricing of foreign currencies and defaultable bonds. The
increased use of intraday transaction data for construc-
tion of so-called realized volatilitymeasures provides addi-
tional impetus for considering genuine stochastic volatil-
ity models. As we demonstrate below, the realized volatil-
ity approach is closely associatedwith the continuous-time
stochastic volatility framework of financial economics.

There are some unique challenges in dealing with gen-
uine stochastic volatility models. For example, volatility is
truly latent and this feature complicates estimation and in-
ference. Further, the presence of an additional state vari-
able – volatility – renders the model less tractable from an
analytic perspective. We review how such challenges have
been addressed through development of new estimation
methods and imposition of model restrictions allowing for
closed-form solutions while remaining consistent with the
dominant empirical features of the data.

Introduction

The label Stochastic Volatility is applied in two distinct
ways in the literature. For one, it is used to signify that
the (absolute) size of the innovations of a time series dis-
plays random fluctuations over time. Descriptive models
of financial time series almost invariably embed this fea-
ture nowadays as asset return series tend to display al-
ternating quiet and turbulent periods of varying length
and intensity. To distinguish this feature from models
that operate with an a priori known or deterministic path
for the volatility process, the random evolution of the
conditional return variance is termed stochastic volatil-
ity. The simplest case of deterministic volatility is the con-
stant variance assumption invoked in, e. g., the Black and
Scholes [63] framework. Another example is modeling the
variance purely as a given function of calendar time, allow-
ing only for effects such as time-of-year (seasonals), day-
of-week (institutional and announcement driven) or time-
of-day (diurnal effects due to, e. g., market microstructure
features). Any model not falling within this class is then
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a stochastic volatility model. For example, in the one-fac-
tor continuous-time Cox, Ingersoll, and Ross [113] (CIR)
model the (stochastic) level of the short term interest rate
governs the dynamics of the (instantaneous) drift and dif-
fusion term of all zero-coupon yields. Likewise, in GARCH
models the past return innovations govern the one-period
ahead conditional mean and variance. In both models, the
volatility is known, or deterministic, at a given point in
time, but the random evolution of the processes renders
volatility stochastic for any horizon beyond the present
period.

The second notion of stochastic volatility, which we
adopt henceforth, refers to models in which the return
variation dynamics is subject to an unobserved random
shock so that the volatility is inherently latent. That is, the
current volatility state is not known for sure, conditional
on the true data generating process and the past history
of all available discretely sampled data. Since the CIR and
GARCH models described above render the current (con-
ditional) volatility known, they are not stochastic volatility
models in this sense. In order to make the distinction clear
cut, we follow Andersen [10] and label this second, more
restrictive, set genuine stochastic volatility (SV) models.

There are two main advantages to focusing on SV
models. First, much asset pricing theory is built on contin-
uous-time models. Within this class, SV models tend to fit
more naturally with a wide array of applications, includ-
ing the pricing of currencies, options, and other deriva-
tives, as well as the modeling of the term structure of in-
terest rates. Second, the increasing use of high-frequency
intraday data for construction of so-called realized volatil-
ity measures is also starting to push the GARCH models
out of the limelight as the realized volatility approach is
naturally linked to the continuous-time SV framework of
financial economics.

One drawback is that volatility is not measurable with
respect to observable (past) information in the SV setting.
As such, an estimate of the current volatility state must
be filtered out from a noisy environment and the esti-
mate will change as future observations become available.
Hence, in-sample estimation typically involves smoothing
techniques, not just filtering. In contrast, the conditional
variance in GARCH is observable given past information,
which renders (quasi-)maximum likelihood techniques
for inference quite straightforward while smoothing tech-
niques have no role. As such, GARCH models are easier
to estimate and practitioners often rely on them for time-
series forecasts of volatility. However, the development of
powerful method of simulated moments, Markov Chain
Monte Carlo (MCMC) and other simulation based pro-
cedures for estimation and forecasting of SV models may

well render them competitive with ARCH over time on
that dimension.

Direct indications of the relations between SV and
GARCH models are evident in the sequence of papers by
Dan Nelson and Dean Foster exploring the SV diffusion
limits of ARCH models as the case of continuous sam-
pling is approached, see, e. g., Nelson and Foster [219].
Moreover, as explained in further detail in the estima-
tion section below, it can be useful to summarize the dy-
namic features of asset returns by tractable pseudo-like-
lihood scores obtained from GARCH-style models when
performing simulation based inference for SV models. As
such, the SV and GARCH frameworks are closely related
and should be viewed as complements. Despite these con-
nections we focus, for the sake of brevity, almost exclu-
sively on SV models and refer the interested reader to the
GARCH chapter for further information.

The literature on SV models is vast and rapidly grow-
ing, and excellent surveys are available, e. g., Ghysels
et al. [158] and Shephard [239,240]. Consequently, we fo-
cus on providing an overview of the main approaches with
illustrations of the scope for applications of these models
to practical finance problems.

Model Specification

The original econometric studies of SV models were in-
variably cast in discrete time and they were quite simi-
lar in structure to ARCH models, although endowed with
a more explicit structural interpretation. Recent work in
the area has been mostly directly towards a continuous
time setting and motivated by the typical specifications in
financial economics. This section briefly reviews the two
alternative approaches to specification of SV models.

Discrete-Time SVModels
and the Mixture-of-Distributions Hypothesis

Asset pricing theory contends that financial asset prices re-
flect the discounted value of future expected cash flows,
implying that all news relevant for either discount rates or
cash flows should induce a shift in market prices. Since
economic news items appear almost continuously in real
time, this perspective rationalizes the ever-changing na-
ture of prices observed in financial markets. The process
linking news arrivals to price changes may be complex,
but if it is stationary in the statistical sense it will nonethe-
less produce a robust theoretical association between news
arrivals, market activity and return volatility. In fact, if
the number of news arrival is very large, standard central
limit theory will tend to imply that asset returns are ap-
proximately normally distributed conditional on the news
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count. More generally, variables such as the trading vol-
ume, the number of transactions or the number of price
quotes are also naturally related to the intensity of the in-
formation flow. This line of reasoning has motivated spec-
ifications such as

yt jst Ý N(�y st ; �2y st) ; (1)

where yt is an “activity” variable related to the information
flow, st is a positive intensity process reflecting the rate of
news arrivals, �y represents the mean response to an in-
formation event, and � y is a pure scaling parameter.

This is a normal mixture model, where the st process
governs or “mixes” the scale of the distribution across the
periods. If st is constant, this is simply an i.i.d. Gaussian
process for returns and possible other related variables.
However, this is clearly at oddswith the empirical evidence
for, e. g., return volatility and trading volume. Therefore,
st is typically stipulated to follow a separate stochastic pro-
cess with random innovations. Hence, each period the re-
turn series is subject to two separate shocks, namely the
usual idiosyncratic error term associated with the (nor-
mal) return distribution, but also a shock to the variance or
volatility process, st . This endows the return process with
genuine stochastic volatility, reflecting the random inten-
sity of news arrivals. Moreover, it is typically assumed that
only returns, transactions and quotes are observable, but
not the actual value of st itself, implying that � y cannot be
separately identified. Hence, we simply fix this parameter
at unity.

The time variation in the information flow series in-
duces a fat-tailed unconditional distribution, consistent
with stylized facts for financial return and, e. g., trading
volume series. Intuitively, days with a lot of news display
more rapid price fluctuations and trading activity than
days with a low news count. In addition, if the st process is
positively correlated, then shocks to the conditional mean
and variance processes for yt will be persistent. This is con-
sistent with the observed clustering in financial markets,
where return volatility and trading activity are contempo-
raneously correlated and each display pronounced positive
serial dependence.

The inherent randomness and unobserved nature of
the news arrival process, even during period t, renders
the true mean and variance series latent. This property
is the major difference with the GARCH model class, in
which the one-step-ahead conditional mean and variance
are a known function of observed variables at time t � 1.
As such, for genuine SV models, we must distinguish the
full, but infeasible, information set (st 2 Ft) and the ob-
servable information set (st … It). This basic latency of the

mixing variable (state vector) of the SV model complicates
inference and forecasting procedures as discussed below.

For short horizon returns, �y is nearly negligible and
can reasonably be ignored or simply fixed at a small con-
stant value, and the series can then be demeaned. This
simplification produces the following return (innovation)
model,

rt D p
st zt ; (2)

where zt is an i.i.d. standard normal variable, implying
a simple normal-mixture representation,

rt jst Ý N(0; st) : (3)

Univariate return models of the form (3) as well as mul-
tivariate systems including a return variable along with
other related market activity variables, such as the trans-
actions count, the quote intensity or the aggregate trading
volume, stem from the Mixture-of-Distributions Hypoth-
esis (MDH).

Actual implementation of the MDH hinges on a par-
ticular representation of the information-arrival process
st . Clark [102] uses trading volume as a proxy for the ac-
tivity variable, a choice motivated by the high contem-
poraneous correlation between return volatility and vol-
ume. Tauchen and Pitts [247] follow a structural approach
to characterize the joint distribution of the daily return
and volume relation governed by the underlying latent
information flow st. However, both these models assume
temporal independence of the information flow, thus fail-
ing to capture the clustering in these series. Partly in re-
sponse, Gallant et al. [153] examine the joint conditional
return-volume distribution without imposing any struc-
tural MDH restrictions. Nonetheless, many of the origi-
nal discrete-time SV specifications are compatible with the
MDH framework, including Taylor [249]1, who proposes
an autoregressive parametrization of the latent log-volatil-
ity (or information flow) variable

log(stC1) D �0 C �1 log(st)C ut ; ut Ý i.i.d(0; �2u) ; (4)

where the error term, ut , may be correlated with the dis-
turbance term, zt, in the return Eq. (2) so that � D
corr(ut ; zt) ¤ 0. If � < 0, downward movements in asset
prices result in higher future volatility as also predicted by
the so-called ‘leverage effect’ in the exponential GARCH,
or EGARCH, form of Nelson [218] and the asymmetric
GARCH model of Glosten et al. [160].

1Discrete-time SV models go father back in time, at least to the
easly paper by Rosenberg [232] recently reprinted in Shephard [240].
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Early tests of the MDH include Lamoureux and Las-
trapes [194] and Richardson and Smith [231]. Subse-
quently, Andersen [11] studies a modified version of the
MDH that provides a much improved fit to the data.
Further refinements of the MDH specification have been
pursued by, e. g., Liesenfeld [198,199] and Bollerslev and
Jubinsky [67]. Among the first empirical studies of the
related approach of stochastic time changes are Ané and
Geman [29], who focus on stock returns, and Conley
et al. [109], who focus on the short-term risk-free interest
rate.

Continuous-Time Stochastic Volatility Models

Asset returns typically contain a predictable component,
which compensates the investor for the risk of holding
the security, and an unobservable shock term, which can-
not be predicted using current available information. The
conditional asset return variance pertains to the variability
of the unobservable shock term. As such, over a non-in-
finitesimal horizon it is necessary to first specify the condi-
tional mean return (e. g., through an asset pricing model)
in order to identify the conditional return variation. In
contrast, over an infinitesimal time interval this is not nec-
essary because the requirement that market prices do not
admit arbitrage opportunities implies that return innova-
tions are an order of magnitude larger than the mean re-
turn. This result has important implications for the ap-
proach we use to model and measure volatility in continu-
ous time.

Consider an asset with log-price process fp(t) ; t 2
[0; T]g defined on a probability space (˝;F ; P). Follow-
ing Andersen et al. [19] we define the continuously com-
pounded asset return over a time interval from t � h to t,
0 � h � t � T , to be

r(t; h) D p(t) � p(t � h) : (5)

A special case of (5) is the cumulative return up to time t,
which we denote r(t) � r(t; t) D p(t) � p(0), 0 � t � T .
Assume the asset trades in a frictionless market void of
arbitrage opportunities and the number of potential dis-
continuities (jumps) in the price process per unit time is
finite. Then the log-price process p is a semi-martingale
(e. g., Back [33]) and therefore the cumulative return r(t)
admits the decomposition (e. g., Protter [229])

r(t) D �(t) C MC(t) C MJ(t) ; (6)

where �(t) is a predictable and finite variation process,
MC(t) a continuous-path infinite-variation martingale,
and MJ(t) is a compensated finite activity jump martin-
gale. Over a discrete time interval the decomposition (6)

becomes

r(t; h) D �(t; h) C MC(t; h) C MJ(t; h) ; (7)

where �(t; h) D �(t) � �(t � h);MC(t; h) D MC(t) �
MC(t � h), and MJ(t; h) D MJ(t) � MJ(t � h).

Denote now with [r; r] the quadratic variation of the
semi-martingale process r, where (Protter [229])

[r; r]t D r(t)2 � 2
Z

r(s�)dr(s) ; (8)

and r(t�) D lims"t r(s). If the finite variation process �
is continuous, then its quadratic variation is identically
zero and the predictable component � in decomposition
(7) does not affect the quadratic variation of the return r.
Thus, we obtain an expression for the quadratic return
variation over the time interval from t � h to t, 0 � h �
t � T (e. g., Andersen et al. [21] and Barndorff-Nielsen
and Shephard [51,52]):

QV(t; h) D [r; r]t � [r; r]t�h

D [MC;MC]t � [MC;MC]t�h

C
X

t�h<s�t

�M2(s)

D [MC;MC]t � [MC;MC]t�h

C
X

t�h<s�t

�r2(s) : (9)

Most continuous-time models for asset returns can be cast
within the general setting of Eq. (7), and Eq. (9) provides
a framework to study the model-implied return variance.
For instance, the Black and Scholes [63] model is a special
case of the setting described by Eq. (7) in which the condi-
tional mean process � is constant, the continuous martin-
gale MC is a standard Brownian motion process, and the
jump martingaleMJ is identically zero:

dp(t) D �dt C �dW(t) : (10)

In this case, the quadratic return variation over the time
interval from t � h to t; 0 � h � t � T , simplifies to

QV(t; h) D
Z t

t�h
�2ds D �2h ; (11)

that is, return volatility is constant over any time interval
of length h.

A second notable example is the jump-diffusion model
of Merton [214],

dp(t) D (� � ��)dt C �dW(t) C �(t)dqt ; (12)
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where q is a Poisson process uncorrelated withW and gov-
erned by the constant jump intensity �, i. e., Prob(dqt D
1) D �dt. The scaling factor �(t) denotes the magnitude
of the jump in the return process if a jump occurs at time t.
It is assumed to be normally distributed,

�(t) Ý N(�; �2� ) : (13)

In this case, the quadratic return variation process over the
time interval from t � h to t, 0 � h � t � T becomes

QV(t; h) D
Z t

t�h
�2ds C

X

t�h�s�t

J(s)2

D �2h C
X

t�h�s�t

J(s)2 ; (14)

where J(t) � �(t)dq(t) is non-zero only if a jump actually
occurs.

Finally, a broad class of stochastic volatility models is
defined by

dp(t) D �(t)dt C �(t)dW(t) C �(t)dqt ; (15)

where q is a constant-intensity Poisson process with log-
normal jump amplitude (13). Equation (15) is also a spe-
cial case of (7) and the associated quadratic return varia-
tion over the time interval from t � h to t, 0 � h � t � T ,
is

QV(t; h) D
Z t

t�h
�(s)2ds C

X

t�h�s�t

J(s)2

� IV(t; h) C
X

t�h�s�t

J(s)2 : (16)

As in the general case of Eq. (9), Eq. (16) identifies the
contribution of diffusive volatility, termed ‘integrated vari-
ance’ (IV), and cumulative squared jumps to the total
quadratic variation.

Early applications typically ignored jumps and focused
exclusively on the integrated variance component. For in-
stance, IV plays a key role in Hull and White’s [174] SV
option pricing model, which we discuss in Sect. “Options”
below along with other option pricing applications. For il-
lustration, we focus here on the SV model specification by
Wiggins [256]:

dp(t) D �dt C �(t)dWp(t) (17)

d�(t) D f (�(t))dt C ��(t)dW� (t) ; (18)

where the innovations to the return dp and volatility � ,
Wp andW� , are standard Brownian motions. If we define

y D log(�) and apply Itô’s formula we obtain

dy(t) D d log(�(t))

D
�

�1
2
�2 C f (�(t))

�(t)

	

dt C �dW� (t) : (19)

Wiggins approximates the drift term f (�(t)) � f˛ C
�[log(� ) � log(�(t))]g�(t). Substitution in Eq. (19) yields

d log(�(t)) D [˛ � � log(�(t))]dt C �dW� (t) ; (20)

where ˛ D ˛ C � log(�) � 1
2�

2. As such, the logarith-
mic standard deviation process in Wiggins has diffusion
dynamics similar in spirit to Taylor’s discrete time AR(1)
model for the logarithmic information process, Eq. (4). As
in Taylor’smodel, negative correlation between return and
volatility innovations, � D corr(Wp ;W� ) < 0, generates
an asymmetric response of volatility to return shocks simi-
lar to the leverage effect in discrete-time EGARCHmodels.

More recently, several authors have imposed restric-
tions on the continuous-time SV jump-diffusion (15) that
render the model more tractable while remaining consis-
tent with the empirical features of the data. We return to
these models in Sect. “Options” below.

Realized Volatility

Model-free measures of return variation constructed only
from concurrent return realizations have been considered
at least since Merton [215]. French et al. [148] construct
monthly historical volatility estimates from daily return
observations. More recently, the increased availability of
transaction data has made it possible to refine early mea-
sures of historical volatility into the notion of ‘realized
volatility’, which is endowed with a formal theoretical jus-
tification as an estimator of the quadratic return variation
as first noted in Andersen and Bollerslev [18]. The realized
volatility of an asset return r over the time interval from
t � h to t is

RV(t; h; n) D
nX

iD1

r
�

t � h C ih
n
;
h
n

�2
: (21)

Semi-martingale theory ensures that the realized volatility
measure RV converges to the return quadratic variation
QV, previously defined in Eq. (9), when the sampling fre-
quency n increases.We point the interested reader to, e. g.,
Andersen et al. [19] to find formal arguments in support of
this claim. Here we convey intuition for this result by con-
sidering the special case in which the asset return follows
a continuous-time diffusion without jumps,

dp(t) D �(t)dt C �(t)dW(t) : (22)
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As in Eq. (21), consider a partition of the [t � h; t]
interval with mesh h/n. A discretization of the diffu-
sion (22) over a sub-interval from (t � h C (i � 1)h/n) to
(t � h C ih/n) ; i D 1; : : : ; n, yields

r
�

t � h C ih
n
;
h
n

�

� �

�

t � h C (i � 1)h
n

�
h
n

C �

�

t � h C (i � 1)h
n

�

�W
�

t � h C ih
n

�

; (23)

where �W (t � h C ih/n) D W (t � h C ih/n) � W(t �
h C (i � 1)h/n).

Suppressing time indices, the squared return r2 over
the time interval of length h/n is therefore:

r2 D �2
�
h
n

�2
C 2���W

�
h
n

�

C �2(�W)2 : (24)

As n ! 1 the first two terms vanish at a rate higher than
the last one. In particular, to a first order approximation
the squared return equals the squared return innovation
and therefore the squared return conditional mean and
variance are

E
�
r2jFt

� � �2
h
n

(25)

Var
�
r2jFt

� � 2�4
�
h
n

�2
: (26)

The no-arbitrage condition implies that return inno-
vations are serially uncorrelated. Thus, summing over i D
1; : : : ; n we obtain

E
�
RV(t; h; n)jFt

�

D
nX

iD1

E

"

r
�

t � h C ih
n
;
h
n

�2
jFt

#

�
nX

iD1

�

�

t � h C (i � 1)h
n

�2 h
n

�
Z t

t�h
�(s)2ds (27)

Var
�
RV(t; h; n)jFt

�

D
nX

iD1

Var

"

r
�

t � h C ih
n
;
h
n

�2
jFt

#

�
nX

iD1

2�
�

t � h C (i � 1)h
n

�4 � h
n

�2

� 2
�
h
n

�Z t

t�h
�(s)4ds : (28)

Equation (27) illustrates that realized volatility is an un-
biased estimator of the return quadratic variation, while

Eq. (28) shows that the estimator is consistent as its vari-
ance shrinks to zero when we increase the sampling fre-
quency n and keep the time interval h fixed. Taken to-
gether, these results suggest that RV is a powerful and
model-free measure of the return quadratic variation. Ef-
fectively, RV gives practical empirical content to the latent
volatility state variable underlying the models previously
discussed in Sect. “Continuous-Time Stochastic Volatility
Models”.

Two issues complicate the practical application of the
convergence results illustrated in Eqs. (27) and (28). First,
a continuum of instantaneous return observations must
be used for the conditional variance in Eq. (28) to van-
ish. In practice, only a discrete price record is observed,
and thus an inevitable discretization error is present. Barn-
dorff-Nielsen and Shephard [52] develop an asymptotic
theory to assess the effect of this error on the RV esti-
mate (see also [209]). Second, market microstructure ef-
fects (e. g., price discreteness, bid-ask spread positioning
due to dealer inventory control, and bid-ask bounce) con-
taminate the return observations, especially at the ultra-
high frequency. These effects tend to generate spurious
correlations in the return series which can be partially
eliminated by filtering the data prior to forming the RV es-
timates. However, this strategy is not a panacea and much
current work studies the optimal sampling scheme and the
construction of improved realized volatility in the pres-
ence of microstructure noise. This growing literature is
surveyed by Hansen and Lunde [165], Bandi and Rus-
sell [46], McAleer and Medeiros [205], and Andersen and
Benzoni [14]. Recent notable contributions to this liter-
ature include Bandi and Russell [45], Barndorff-Nielsen
et al. [49], Diebold and Strasser [121], and Zhang, Myk-
land, and Aï t-Sahalia [262]. Related, there is the issue
of how to construct RV measures when the market is
rather illiquid. One approach is to use a lower sampling
frequency and focus on longer-horizon RV measure. Al-
ternatively the literature has explored volatility measures
that are more robust to situations in which the noise-to-
signal ratio is high, e. g., Alizadeh et al. [8], Brandt and
Diebold [72], Brandt and Jones [73], Gallant et al. [151],
Garman and Klass [157], Parkinson [221], Schwert [237],
and Yang and Zhang [259] consider the high-low price
range measure. Dobrev [122] generalizes the range esti-
mator to high-frequency data and shows its link with RV
measures.

Equations (27) and (28) also underscore an important
difference between RV and other volatility measures. RV
is an ex-post model-free estimate of the quadratic varia-
tion process. This is in contrast to ex-ante measures which
attempt to forecast future quadratic variation using infor-
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mation up to current time. The latter class includes para-
metric GARCH-type volatility forecasts as well as fore-
casts built from stochastic volatility models through, e. g.,
the Kalman filter (e. g., [167,168]), the particle filter (e. g.,
[186,187]) or the reprojection method (e. g., [152,155]).

More recently, other studies have pursued more direct
time-series modeling of volatility to obtain alternative ex-
ante forecasts. For instance, Andersen et al. [21] follow an
ARMA-style approach, extended to allow for long mem-
ory features, to model the logarithmic foreign exchange
rate realized volatility. They find the fit to dominate that
of traditional GARCH-type models estimated from daily
data. In a related development, Andersen, Bollerslev, and
Meddahi [24,25] exploit the general class of Eigenfunction
Stochastic Volatility (ESV) models introduced by Med-
dahi [208] to provide optimal analytic forecast formulas
for realized volatility as a function of past realized volatil-
ity. Other scholars have pursuedmore generalmodel spec-
ifications to improve forecasting performance. Ghysels
et al. [159] consider Mixed Data Sampling (MIDAS) re-
gressions that use a combination of volatility measures es-
timates at different frequencies and horizons. Related, En-
gle and Gallo [137] exploit the information in different
volatility measures, captured by a multivariate extension
of the multiplicative error model suggested by Engle [136],
to predict multi-step volatility. Finally, Andersen et al. [20]
build on the Heterogeneous AutoRegressive (HAR) model
by Barndorff-Nielsen and Shephard [50] and Corsi [110]
and propose a HAR-RV component-based regression to
forecast the h-steps ahead quadratic variation:

RV(t C h; h) D ˇ0 C ˇDRV(t; 1) C ˇWRV(t; 5)
C ˇMRV(t; 21) C "(t C h) : (29)

Here the lagged volatility components RV(t; 1), RV(t; 5),
and RV(t; 21) combine to provide a parsimonious approx-
imation to the long-memory type behavior of the real-
ized volatility series, which has been documented in sev-
eral studies (e. g., Andersen et al. [19]). Simple OLS esti-
mation yields consistent estimates for the coefficients in
the regression (29), which can be used to forecast volatility
out of sample.

As mentioned previously, the convergence results il-
lustrated in Eqs. (27) and (28) stem from the the-
ory of semi-martingales under conditions more general
than those underlying the continuous-time diffusion in
Eq. (22). For instance, these results are robust to the pres-
ence of discontinuities in the return path as in the jump-
diffusion SV model (15). In this case the realized volatility
measure (21) still converges to the return quadratic vari-
ation, which is now the sum of the diffusive integrated

volatility IV and the cumulative squared jump component:

QV(t; h) D IV(t; h) C
X

t�h�s�t

J(s)2 : (30)

The decomposition in Eq. (30) motivates the quest for
separate estimates of the two quadratic variation compo-
nents, IV and squared jumps. This is a fruitful exercise
in forecasting applications, since separate estimation of
the two components increases predictive accuracy (e. g.,
[20]). Further, this decomposition is relevant for deriva-
tives pricing, e. g., options are highly sensitive to jumps as
well as large moves in volatility (e. g., [141,220]).

A consistent estimate of integrated volatility is the k-
skip bipower variation, BV (e. g., Barndorff-Nielsen and
Shephard [53]),

BV(t; h; k; n) D 
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Liu and Maheu [202] and Forsberg and Ghysels [147]
show that realized power variation, which is robust to the
presence of jumps, can improve volatility forecasts. A well-
known special case of (31) is the ‘realized bipower vari-
ation’, which has k D 1 and is denoted BV(t; h; n) �
BV(t; h; 1; n). We can combine bipower variation with the
realized volatility RV to obtain a consistent estimate of the
squared jump component, i. e.,

RV(t; h; n) � BV(t; h; n) �!
n!1 QV(t; h) � IV(t; h)

D
X

t�h�s�t

J(s)2 : (32)

The result in Eq. (32) are useful to design tests for the
presence of jumps in volatility, e. g., Andersen et al. [20],
Barndorff-Nielsen and Shephard [53,54], Huang and
Tauchen [172], and Mizrach [217]. More recently, alter-
native approaches to test for jumps have been developed
by Aït-Sahalia and Jacod [6], Andersen et al. [23], Lee and
Mykland [195], and Zhang [261].

Applications

The power of the continuous-time paradigm has been evi-
dent ever since the work byMerton [212] on intertemporal
portfolio choice, Black and Scholes [63] on option pricing,
and Vasicek [255] on bond valuation. However, the idea
of casting these problems in a continuous-time diffusion
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Stochastic Volatility, Figure 1
Pre- and post-1987 crash implied volatilities. The plots depict Black-Scholes implied volatilities computed from near-maturity op-
tions on the S&P 500 futures on October 14, 1987 (the week before the 1987market crash) and a year later

context goes back all the way to the work in 1900 by Bache-
lier [32].

Merton [213] develops a continuous-time general-
equilibrium intertemporal asset pricing model which is
later extended by Cox et al. [112] to a production econ-
omy. Because of its flexibility and analytical tractability,
the Cox et al. [112] framework has become a key tool used
in several financial applications, including the valuation of
options and other derivative securities, themodeling of the
term structure of risk-free interest rates, the pricing of for-
eign currencies and defaultable bonds.

Volatility has played a central role in these applica-
tions. For instance, an option’s payoff is non-linear in the
price of the underlying asset and this feature renders the
option value highly sensitive to the volatility of underlying

returns. Further, derivatives markets have grown rapidly
in size and complexity and financial institutions have been
facing the challenge tomanage intricate portfolios exposed
to multiple risk sources. Risk management of these so-
phisticated positions hinges on volatility modeling. More
recently, the markets have responded to the increasing
hedging demands of investors by offering a menu of
new products including, e. g., volatility swaps and deriva-
tives on implied volatility indices like the VIX. These
innovations have spurred an even more pressing need
to accurately measure and forecast volatility in financial
markets.

Research has responded to these market develop-
ments. We next provide a brief illustrative overview of
the recent literature dealing with option pricing and term



702 Stochastic Volatility

structure modeling, with an emphasis on the role that
volatility modeling has played in these two key applica-
tions.

Options

Rubinstein [233] and Bates [55], among others, note that
prior to the 1987 market crash the Black and Scholes [63]
(BS) formula priced option contracts quite accurately
whereas after the crash it has been systematically un-
derpricing out-of-the-money equity-index put contracts.
This feature is evident from Fig. 1, which is constructed
from options on the S&P 500 futures. It shows the im-
plied volatility function for near-maturity contracts traded
both before and after October 19, 1987 (‘Black Monday’).
The mild u-shaped pattern prevailing in the pre-crash
implied volatilities is labeled a ‘volatility smile,’ in con-
trast to the asymmetric post-1987 ‘volatility smirk’. Impor-
tantly, while the steepness and level of the implied volatil-
ity curve fluctuate day to day depending on market con-
ditions, the curve has been asymmetric and upward slop-
ing ever since 1987, so the smirk remains in place to the
current date, e. g., Benzoni et al. [60]. In contrast, before
the crash the implied volatility curve was invariably flat or
mildly u-shaped as documented in, e. g., [57]. Finally, we
note that the post-1987 asymmetric smirk for index op-
tions contrasts sharply with the pattern for individual eq-
uity options, which possess flat or mildly u-shaped implied
volatility curves (e. g., [37,65]).

Given the failures of the BS formula, much research
has gone into relaxing the underlying assumptions. A nat-
ural starting point is to allow volatility to evolve randomly,
inspiring numerous studies that examine the option pric-
ing implications of SV models. The list of early contribu-
tions includes [174,188,211,238,244,245,256]. Here we fo-
cus in particular on the Hull andWhite [174] model,

dp(t) D �pdt C
p
V (t)dWp(t) (33)

dV (t)
V(t)

D �Vdt C �VdWV (t) ; (34)

where Wp and WV are standard Brownian motions. In
general, shocks to returns and volatility may be (nega-
tively) correlated, however for tractability Hull and White
assume � D corr(dWp ; dWV ) D 0. Under this assump-
tion they show that, in a risk-neutral world, the premium
CHW on a European call option is the Black and Scholes
price CBS evaluated at the average integrated variance V ,

V D 1
T � t

Z T

t
V(s)ds ; (35)

integrated over the distribution h(V jV(t)) of V :

CHW(p(t);V (t)) D
Z

CBS(V)h(V jV(t))dV : (36)

The early efforts to identify a more realistic probabilis-
tic model for the underlying return were slowed by the
analytical and computational complexity of the option
pricing problem. Unlike the BS setting, the early SV spec-
ifications do not admit closed-form solutions. Thus, the
evaluation of the option price requires time-consuming
computations through, e. g., simulation methods or nu-
merical solution of the pricing partial differential equation
by finite difference methods. Further, the presence of a la-
tent factor, volatility, and the lack of closed-form expres-
sions for the likelihood function complicate the estimation
problem.

Consequently, much effort has gone into developing
restrictions for the distribution of the underlying return
process that allow for (semi) closed-form solutions and
are consistent with the empirical properties of the data.
The ‘affine’ class of continuous-time models has proven
particularly useful in providing a flexible, yet analytically
tractable, setting. Roughly speaking, the defining feature
of affine jump-diffusions is that the drift term, the con-
ditional covariance term, and the jump intensity are all
a linear-plus-constant (affine) function of the state vec-
tor. The Vasicek [255] bond valuation model and the Cox
et al. [112] intertemporal asset pricing model provide pow-
erful examples of the advantages of the affine paradigm.

To illustrate the progress in option pricing applica-
tions built on affine models, consider the return dynamics

dp(t) D �dt C
p
V (t)dWp(t) C �p(t)dq(t) (37)

dV(t) D �(V � V(t))dt C �V
p
V(t)dWV (t)
C �V (t)dq(t) ; (38)

where Wp and WV are standard Brownian motions with
non-zero correlation � D corr(dWp; dWV ), q is a Poisson
process, uncorrelated with Wp andWV , with jump inten-
sity

�(t) D �0 C �1V(t) ; (39)

that is, Prob(dqt D 1) D �(t)dt. The jump amplitudes
variables �p and �V have distributions

�V (t) Ý exp(�V ) (40)

�p(t)j�V (t) Ý N
�
� p C ���V (t); �2p

�
: (41)
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Here volatility is not only stochastic but also sub-
ject to jumps which occur simultaneously with jumps
in the underlying return process. The Black and Sc-
holes model is a special case of (37)–(41) for constant
volatility, V(t) D �2; 0 � t � T , and no jumps,
�(t) D 0; 0 � t � T . The Merton [214] model arises
from (37)–(41) if volatility is constant but we allow for
jumps in returns.

More recently, Heston [170] has considered a spe-
cial case of (37)–(41) with stochastic volatility but with-
out jumps. Using transform methods he derives a Euro-
pean option pricing formula which may be evaluated read-
ily through simple numerical integration. His SV model
has GARCH-type features, in that the variance is persis-
tent and mean reverts at a rate � to the long-run mean
V . Compared to Hull and White’s [174] setting, Heston’s
model allows for shocks to returns and volatility to be neg-
atively correlated, i. e., � < 0, which creates a leverage-
type effect and skews the return distribution. This feature
is consistent with the properties of equity index returns.
Further, a fatter left tail in the return distribution results in
a higher cost for crash insurance and therefore makes out-
of-the-money put options more expensive. This is qual-
itatively consistent with the patterns in implied volatili-
ties observed after the 1987 market crash and discussed
above.

Bates [56] has subsequently extended Heston’s ap-
proach to allow for jumps in returns and using similar
transformmethods he has obtained a semi-closed form so-
lution for the option price. The addition of jumps provides
a more realistic description of equity returns and has im-
portant option pricing implications. With diffusive shocks
(e. g., stochastic volatility) alone a large drop in the value
of the underlying asset over a short time span is very un-
likely whereas a market crash is always possible as long as
large negative jumps can occur. This feature increases the
value of a short-dated put option, which offers downside
protection to a long position in the underlying asset.

Finally, Duffie et al. [130] have introduced a general
model with jumps to volatility which embeds the dynamics
(37)–(41). In model (37)–(41), the likelihood of a jump to
occur increases when volatility is high (�1 > 0) and a jump
in returns is accompanied by an outburst of volatility. This
is consistent with what is typically observed during times
of market stress. As in the Heston case, variance is persis-
tent with a mean reversion coefficient � towards its diffu-
sive long-run mean V , while the total long-run variance
mean is the sum of the diffusive and jump components. In
the special case of constant jump intensity, i. e., �1 D 0,
the total long-run mean is V C �V�0/�. The jump term
(�V (t)dq(t)) fattens the right tail of the variance distribu-

tion, which induces leptokurtosis in the return distribu-
tion. Two effects generate asymmetrically distributed re-
turns. The first channel is the diffusive leverage effect, i. e.,
� < 0, the second is the correlation between the volatil-
ity and the jump amplitude of returns generated through
the coefficient �� . Taken together, these effects increase
model-implied option prices and help produce a realistic
volatility smirk.

Several empirical studies rely on models of the form
(37)–(41) in option-pricing applications. For instance,
Bates [56] uses DeutscheMark options to estimate amodel
with stochastic volatility and constant-intensity jumps to
returns, while Bates [57] fits a jump-diffusion model with
two SV factors to options on S&P 500 futures. In the latter
case, the two SV factors combine to help capture features
of the long-run memory in volatility while retaining the
analytical tractability of the affine setting (see, e. g., [101]
for another model with similar features). Alternative ap-
proaches to model long memory in continuous-time SV
models rely on the fractional Brownian motion process,
e. g., Comte and Renault [108] and Comte et al. [107],
while Breidt et al. [76], Harvey [166] and Deo et al. [118]
consider discrete-time SV models (see [175] for a review).
Bakshi et al. [34,37] estimate a model similar to the one
introduced by Bates [56] using S&P 500 options.

Other scholars rely on underlying asset return data
alone for estimation. For instance, Andersen et al. [15] and
Chernov et al. [95] use equity-index returns to estimate
jump-diffusion SV models within and outside the affine
(37)–(41) class. Eraker et al. [142] extend this analysis and
fit a model that includes constant-intensity jumps to re-
turns and volatility.

Finally, another stream of work examines the empiri-
cal implications of SV jump-diffusions using a joint sam-
ple of S&P 500 options and index returns. For example,
Benzoni [59], Chernov and Ghysels [93], and Jones [190]
estimate different flavors of the SV model without jumps.
Pan [220] fits a model that has jumps in returns with time-
varying intensity, while Eraker [141] extends Pan’s work
by adding jumps in volatility.

Overall, this literature has established that the SV
jump-diffusion model dramatically improves the fit of un-
derlying index returns and options prices compared to the
Black and Scholes model. Stochastic volatility alone has
a first-order effect and jumps further enhance model per-
formance by generating fatter tails in the return distribu-
tion and reducing the pricing error for short-dated op-
tions. The benefits of the SV setting are also significant in
hedging applications.

Another aspect related to the specification of SV mod-
els concerns the pricing of volatility and jump risks.
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Stochastic volatility and jumps are sources of uncertainty.
It is an empirical issue to determine whether investors de-
mand to be compensated for bearing such risks and, if so,
what the magnitude of the risk premium is. To examine
this issue it is useful to write model (37)–(41) in so-called
risk-neutral form. It is common to assume that the volatil-
ity risk premium is proportional to the instantaneous vari-
ance, �(t) D �VV (t). Further, the adjustment for jump
risk is accomplished by assuming that the amplitude �̃p(t)
of jumps to returns has mean �̃ p D � p C �p . These spec-
ifications are consistent with an arbitrage-free economy.
More general specifications can also be supported in a gen-
eral equilibrium setting, e. g., a risk adjustment may apply
to the jump intensity �(t). However, the coefficients as-
sociated to these risk adjustments are difficult to estimate
and to facilitate identification they typically are fixed at
zero. Incorporating such risk premia in model (37)–(41)
yields the following risk-neutral return dynamics (e. g.,
Pan [220] and Eraker [141]):

dp(t) D (r ���)dtC
p
V(t)deWp(t)C �̃p(t)dq(t) (42)

dV (t) D [�(V � V(t)) C �VV (t)]dt

C �V
p
V(t)deWV (t) C �V (t)dq(t) ; (43)

where r is the risk-free rate,�� a jump compensator term,
eWp and eWV are standard Brownian motions under this
so-called Q measure, and the risk-adjusted jump ampli-
tude variable �̃p is assumed to follow the distribution,

�̃p(t)j�V (t) Ý N
�
�̃ p C ���V (t); �2p

�
: (44)

Several studies estimate the risk-adjustment coefficients
�V and �p for different specifications of model (37)–(44);
see, e. g., Benzoni [59], Broadie et al. [78], Chernov and
Ghysels [93], Eraker [141], Jones [190], and Pan [220]. It
is found that investors demand compensation for volatil-
ity and jump risks and these risk premia are important for
the pricing of index options. This evidence is reinforced
by other studies examining the pricing of volatility risk us-
ing less structured but equally compelling procedures. For
instance, Coval and Shumway [111] find that the returns
on zero-beta index option straddles (i. e., combinations of
calls and puts that have offsetting covariances with the in-
dex) are significantly lower than the risk-free return. This
evidence suggests that in addition to market risk at least
a second factor (likely, volatility) is priced in the index
option market. Similar conclusions are obtained by Bak-
shi and Kapadia [36], Buraschi and Jackwerth [79], and
Broadie et al. [78].

Risk-Free Bonds and Their Derivatives

The market for (essentially) risk-free Treasury bonds is
liquid across a wide maturity spectrum. No-arbitrage re-
strictions constrain the allowable dynamics in the cross-
section of bond yields. Much work has gone into the de-
velopment of tractable dynamic term structure models ca-
pable of capturing the salient time-series properties of in-
terest rates while respecting such cross-sectional no-arbi-
trage conditions. The class of so-called ‘affine’ dynamic
term structure models provides a flexible and arbitrage-
free, yet analytically tractable, setting for capturing the dy-
namics of the term structure of interest rates. Following
Duffie and Kan [129], Dai and Singleton [114,115], and
Piazzesi [226], the short term interest rate, y0(t), is an
affine (i. e., linear-plus-constant) function of a vector of
state variables, X(t) D fxi(t); i D 1; : : : ;Ng:

y0(t) D ı0 C
NX

iD1

ıi xi (t) D ı0 C ı0
XX(t) ; (45)

where the state-vector X has risk-neutral dynamics

dX(t) D K̃(�̃ � X(t))dt C˙
p
S(t)deW(t) : (46)

In Eq. (46), eW is an N-dimensional Brownian motion un-
der the so-called Q-measure, K̃ and �̃ are N � N ma-
trices, and S(t) is a diagonal matrix with the ith diagonal
element given by [S(t)]i i D ˛i C ˇ0

i X(t). Within this set-
ting, the time-t price of a zero-coupon bond with time-to-
maturity � is given by

P(t; �) D eA(�)�B(�)0 X(t) ; (47)

where the functions A(�) and B(�) solve a system of or-
dinary differential equations (ODEs); see, e. g., Duffie and
Kan [129]. Semi-closed form solutions are also available
for bond derivatives, e. g., bond options as well as caps and
floors (e. g., Duffie et al. [130]).

In empirical applications it is important to also estab-
lish the evolution of the state vector X under the physical
probability measure P, which is linked to theQ-dynamics
(46) through a market price of risk, �(t). Following Dai
and Singleton [114] the market price of risk is often given
by

�(t) D
p
S(t)� ; (48)

where � is an N � 1 vector of constants. More recently,
Duffee [127] proposed a broader ‘essentially affine’ class,
which retains the tractability of standard models but, in
contrast to the specification in Eq. (48), allows compensa-
tion for interest rate risk to vary independently of interest
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rate volatility. This additional flexibility proves useful in
forecasting future yields. Subsequent generalization are in
Duarte [124] and Cheridito et al. [92].

Litterman and Scheinkman [201] demonstrate that
virtually all variation in US Treasury rates is captured by
three factors, interpreted as changes in ‘level’, ‘steepness’,
and ‘curvature’. Consistent with this evidence,much of the
term-structure literature has focused on three-factor mod-
els. One problem with these models, however, is that the
factors are latent variables void of immediate economic in-
terpretation. As such, it is challenging to impose appropri-
ate identifying conditions for the model coefficients and
in particular to find the ideal representation for the ‘most
flexible’ model, i. e., the model with the highest number of
identifiable coefficients. Dai and Singleton [114] conduct
an extensive specification analysis of multi-factor affine
term structure models. They classify these models into
subfamilies according to the number of (independent lin-
ear combination of) state variables that determine the con-
ditional variance matrix of the state vector. Within each
subfamily, they proceed to identify the models that lead
to well-defined bond prices (a condition they label ‘ad-
missibility’) and among the admissible specifications they
identify a ‘maximal’ model that nests econometrically all
others in the subfamily. Joslin [191] builds on Dai and
Singleton’s [114] work by pursuing identification through
a normalization of the drift term in the state vector dy-
namics (instead of the diffusion term, as in Dai and Sin-
gleton [114]). Duffie and Kan [129] follow an alternative
approach to obtain an identifiable model by rotating from
a set of latent state variables to a set of observable zero-
coupon yields. Collin-Dufresne et al. [104] build on the
insights of both Dai and Singleton [114] and Duffie and
Kan [129]. They perform a rotation of the state vector into
a vector that contains the first few components in the Tay-
lor series expansion of the yield curve around amaturity of
zero and their quadratic variation. One advantage is that
the elements of the rotated state vector have an intuitive
and unique economic interpretation (such as level, slope,
and curvature of the yield curve) and therefore the model
coefficients in this representation are identifiable. Further,
it is easy to construct a model-independent proxy for the
rotated state vector, which facilitates model estimation as
well as interpretation of the estimated coefficients across
models and sample periods.

This discussion underscores an important feature of
affine term structure models. The dependence of the con-
ditional factor variance S(t) on one or more of the ele-
ments in X introduces stochastic volatility in the yields.
However, when a square-root factor is present paramet-
ric restrictions (admissibility conditions) need to be im-

posed so that the conditional variance S(t) is positive over
the range of X. These restrictions affect the correlations
among the factors which, in turn, tend to worsen the
cross-sectional fit of the model. Specifically, CIR models
in which S(t) depends on all the elements of X require
the conditional correlation among the factors to be zero,
while the admissibility conditions imposed on the matrix
K renders the unconditional correlations non-negative.
These restrictions are not supported by the data. In con-
trast, constant-volatility Gaussian models with no square-
root factors do not restrict the signs and magnitude of
the conditional and unconditional correlations among the
factors but they do, of course, not accommodate the pro-
nounced and persistent volatility fluctuations observed in
bond yields. The class of models introduced by Dai and
Singleton [114] falls between these two extremes. By in-
cluding both Gaussian and square-root factors they allow
for time-varying conditional volatilities of the state vari-
ables and yet they do not constrain the signs of some of
their correlations. This flexibility helps to address the trade
off between generating realistic correlations among the
factors while capturing the time-series properties of the
yields’ volatility.

A related aspect of (unconstrained) affine models con-
cerns the dual role that square-root factors play in driving
the time-series properties of yields’ volatility and the term
structure of yields. Specifically, the time-t yield y� (t) on
a zero-coupon bond with time-to-maturity � is given by

P(t; �) D e�� y� (t) : (49)

Thus, we have

y� (t) D �A(�)
�

C B(�)0
�

X(t) : (50)

It is typically assumed that the B matrix has full rank and
therefore Eq. (50) provides a direct link between the state-
vector X(t) and the term-structure of bond yields. Further,
Itô’s Lemma implies that the yield y� also follows a diffu-
sion process:

dy� (t) D �y�
(X(t); t)dt C B(�)0

�
˙
p
S(t)deW(t) : (51)

Consequently, the (instantaneous) quadratic variation of
the yield given as the squared yield volatility coefficient for
y� is

Vy�
(t) D B(�)0

�
˙S(t)˙ 0 B(�)

�
: (52)

The elements of the S(t) matrix are affine in the state vector
X(t), i. e., [S(t)]i i D ˛i C ˇ0

i X(t). Further, invoking the
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full rank condition on B(�), Eq. (50) implies that each state
variable in the vector X(t) is an affine function of the bond
yields Y(t) D fy� j (t); j D 1; : : : ; Jg. Thus, for any � there
is a set of constants a�; j; j D 0; : : : ; J, so that

Vy�
(t) D a�;0 C

JX

jD1

a�; j y� j (t) : (53)

Hence, the current quadratic yield variation for bonds at
any maturity is a linear combination of the term structure
of yields. As such, the market is complete, i. e., volatility is
perfectly spanned by a portfolio of bonds.

Collin-Dufresne and Goldstein [103] note that this
spanning condition is unnecessarily restrictive and pro-
pose conditions which ensures that volatility no longer
directly enters the main bond pricing Eq. (47). This re-
striction, which they term ‘unspanned stochastic volatil-
ity’ (USV), effectively breaks the link between the yields’
quadratic variation and the level of the term structure by
imposing a reduced rank condition on the B(�) matrix.
Further, since their model is a special (nested) case of the
affine class it retains the analytical tractability of the affine
model class. Recently Joslin [191] has derived more gen-
eral conditions for affine term structure models to exhibit
USV. His restrictions also produce a market incomplete-
ness (i. e., volatility cannot be hedged using a portfolio of
bonds) but do not constrain the degree of mean reversion
of the other state variables so that his specification allows
for more flexibility in capturing the persistence in interest
rate series. (See also the USV conditions in the work by
Trolle and Schwartz [253]).

There is conflicting evidence on the volatility span-
ning condition in fixed income markets. Collin-Dufresne
and Goldstein [103] find that swap rates have limited ex-
planatory power for returns on at-the-money ‘straddles’,
i. e., portfolios mainly exposed to volatility risk. Similar
findings are in Heidari and Wu [169], who show that the
common factors in LIBOR and swap rates explain only
a limited part of the variation in the swaption implied
volatilities. Moreover, Li and Zhao [197] conclude that
some of the most sophisticated multi-factor dynamic term
structure models have serious difficulties in hedging caps
and cap straddles, even though they capture bond yields
well. In contrast, Fan et al. [143] argue that swaptions and
even swaption straddles can be well hedged with LIBOR
bonds alone, supporting the notion that bond markets are
complete.

More recently other studies have examined several ver-
sions of the USV restriction, again coming to different
conclusions. A direct comparison of these results, how-
ever, is complicated by differences in the model specifi-

cation, the estimation method, and the data and sample
period used in the estimation. Collin-Dufresne et al. [105]
consider swap rates data and fit the model using a Bayesian
Markov ChainMonte Carlo method. They find that a stan-
dard three-factor model generates a time series for the
variance state variable that is essentially unrelated to
GARCH estimates of the quadratic variation of the spot
rate process or to implied variances from options, while
a four-factor USV model generates both realistic volatil-
ity estimates and a good cross-sectional fit. In contrast,
Jacobs and Karoui [178] consider a longer data set of US
Treasury yields and pursue quasi-maximum likelihood es-
timation. They find the correlation between model-im-
plied and GARCH volatility estimates to be high. How-
ever, when estimating the model with a shorter sample of
swap rates, they find such correlations to be small or neg-
ative. Thompson [250] explicitly tests the Collin-Dufresne
and Goldstein [103] USV restriction and rejects it using
swap rates data. Bikbov and Chernov [62], Han [164], Jar-
row et al. [183], Joslin [192], and Trolle and Schwartz [254]
rely on data sets of derivatives prices and underlying inter-
est rates to better identify the volatility dynamics.

Andersen and Benzoni [12] directly relate model-free
realized volatility measures (constructed from high-fre-
quency US Treasury data) to the cross-section of con-
temporaneous bond yields. They find that the explana-
tory power of such regressions is very limited, which indi-
cates that volatility is not spanned by a portfolio of bonds.
The evidence in Andersen and Benzoni [12] is consis-
tent with the USV models of Collin-Dufresne et al. [105]
and Joslin [191], as well as with a model that embeds
weak dependence between the yields and volatility as in
Joslin [192]. Moreover, Duarte [125] argues that the effects
of mortgage-backed security hedging activity affects both
the interest rate volatility implied by options and the actual
interest rate volatility. This evidence suggests that vari-
ables that are not in the span of the term structure of yields
and forward rates contribute to explain volatility in fixed
income markets. Also related,Wright and Zhou [258] find
that adding a measure of market jump volatility risk to
a regression of excess bond returns on the term structure
of forward rates nearly doubles the R2 of the regression.
Taken together, these findings suggest more generally that
genuine SV models are critical for appropriately capturing
the dynamic evolution of the term structure.

EstimationMethods

There are a very large number of alternative approaches
to estimation and inference for parametric SV models and
we abstain from a thorough review. Instead, we point to
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the basic challenges that exist for different types of specifi-
cations, how some of these were addressed in the early lit-
erature and finally provide examples of methods that have
been used extensively in recent years. Our exposition con-
tinues to focus on applications to equity returns, interest
rates, and associated derivatives.

Many of the original SV models were cast in discrete
time, inspired by the popular GARCH paradigm. In that
case, the distinct challenge for SV models is the pres-
ence of a strongly persistent latent state variable. However,
more theoretically oriented models, focusing on deriva-
tives applications, were often formulated in continuous
time.Hence, it is natural that the econometrically-oriented
literature has moved in this direction in recent years as
well. This development provides an added complication as
the continuous-time parameters must be estimated from
discrete return data and without direct observations on
volatility. For illustration, consider a fully parametric con-
tinuous-time SV model for the asset return r with condi-
tional variance V and coefficient vector � . Most methods
to estimate� rely on the conditional density f for the data
generating process,

f (r(t);V(t)jI(t � 1); � ) D frjV (r(t)jV (t); I(t � 1); � )
� fV (V(t)jI(t � 1); � ) ; (54)

where I(t�1) is the available information set at time t�1.
The main complications are readily identified. First, an-
alytic expressions for the discrete-time transition (condi-
tional) density, f , or the discrete-time moments implied
by the data generating process operating in continuous
time, are often unavailable. Second, volatility is latent in
SV models, so that even if a closed-form expression for f
is known, direct evaluation of the above expression is in-
feasible due to the absence of explicit volatility measures.
The marginal likelihood with respect to the observable re-
turn process alone is obtained by integrating over all pos-
sible paths for the volatility process, but this integral has
a dimension corresponding to sample size, rendering the
approach infeasible in general.

Similar issues are present when estimating continu-
ous-time dynamic term structure models. Following Pi-
azzesi [227], a change of variable gives the conditional den-
sity for a zero-coupon yield y on a bond with time to ma-
turity � :

f (y� (t)jI(t � 1); � ) D fX(g(y� (t); � )jI(t � 1); � )
� jry g(y� (t); � )j : (55)

Here the latent state vector X has conditional density f X ,
the function g(�; � ) maps the observable yield y into X,

X(t) D g(y� (t); � ), and ry g(y� (t); � ) is the Jacobian
determinant of the transformation. Unfortunately, ana-
lytic expressions for the conditional density f X are known
only in some special cases. Further, the mapping X(t) D
g(y� (t); � ) holds only if the model provides an exact fit to
the yields, while in practice different sources of error (e. g.,
model mis-specification, microstructure effects, measure-
ment errors) inject a considerable degree of noise into this
otherwise deterministic linkage (for correct model speci-
fication) between the state vector and the yields. As such,
a good measure of X might not be available to evaluate the
conditional density (55).

Estimation via Discrete-Time Model Specification
or Approximation

The first empirical studies have estimated discrete-time
SV models via a (Generalized) Method of Moments pro-
cedure by matching a number of theoretical and sample
moments, e. g., Chan et al. [89], Ho et al. [171], Longstaff
and Schwartz [204], andMelino andTurnbull [211]. These
models were either explicitly cast in discrete time or were
seen as approximate versions of the continuous-time pro-
cess of interest. Similarly, several authors estimate diffu-
sive affine dynamic term structure models by approximat-
ing the continuous-time dynamics with a discrete-time
process. If the error terms are stipulated to be normally
distributed, the transition density of the discretized pro-
cess is multivariate normal and computation of uncon-
ditional moments then only requires knowledge of the
first two moments of the state vector. This result facili-
tates quasi-maximum likelihood estimation. In evaluating
the likelihood function, some studies suggest using closed-
form expressions for the first two moments of the con-
tinuous-time process instead of the moments of the dis-
cretized process (e. g., Fisher and Gilles [145] and Duf-
fee [127]), thus avoiding the associated discretization bias.
This approach typically requires some knowledge of the
state of the system which may be obtained, imperfectly,
through matching the system, given the estimated param-
eter vector, to a set of observed zero-coupon yields to infer
the state vector X. A modern alternative is to use the so-
called particle filter as an efficient filtering procedure for
the unobserved state variables given the estimated param-
eter vector. We provide more detailed accounts of both of
these procedures later in this section.

Finally, a number of authors develop a simulatedmax-
imum likelihood method that exploit the specific structure
of the discrete-time SVmodel. Early examples areDaniels-
son and Richard [117] and Danielsson [116] who exploit
the Accelerated Gaussian Importance Sampler for efficient
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Monte Carlo evaluation of the likelihood. Subsequent im-
provements were provided by Fridman and Harris [149]
and Liesenfeld andRichard [200], with the latter relying on
Efficient Importance Sampling (EIS). In a second step, EIS
can also be used for filtering the latent volatility state vec-
tor. In general, these inference techniques provide quite
impressive efficiency but the methodology is not always
easy to generalize beyond the structure of the basic dis-
crete-time SV asset return model. We discuss the gen-
eral inference problem for continuous-time SVmodels for
which the lack of a closed-form expression for the transi-
tion density is an additional complicating factor in a later
section.

Filtering the Latent State Variable
Directly During Estimation

Some early studies focused on direct ways to extract esti-
mates of the latent volatility state variable in discrete-time
SV asset return models. The initial approach was based on
quasi-maximum likelihood (QML)methods exploiting the
Kalman filter. This method requires a transformation of
the SV model to a linear state-space form. For instance,
Harvey and Shephard [168] consider a version of the Tay-
lor’s [249] discrete-time SV model,

p(t) D p(t � 1) C ˇ C
p
V(t)"(t) (56)

log(V (t)) D ˛ C � log(V(t � 1)) C �(t) ; (57)

where p is the logarithmic price, " is a zero-mean error
term with unit variance, and � is an independently-dis-
tributed error term with zero mean and variance �2	 .

Define y(t) D p(t) � p(t � 1) � ˇ, square the ob-
servations in Eq. (56), and take logarithms to obtain the
measurement equation,

`(t) D ! C h(t) C �(t) ; (58)

where `(t) � log y(t)2; h(t) � log(V(t)). Further, � is
a zero-mean disturbance term given by �(t) D log("(t)2)�
E[log("(t)2)], ! D log(�2)CE[log("(t)2)], and � is a scale
constant which subsumes the effect of the drift term ˛

in Eq. (57). The autoregression (57) yields the transition
equation,

h(t) D �h(t � 1) C �(t) ; (59)

Taken together, Eqs. (58) and (59) are the linear state-
space transformation of the SV model (56)–(57). If the
joint distribution of " and � is symmetric, i. e., f ("; �) D
f (�";��), then the disturbance terms in the state-space

form are uncorrelated even if � and " are not. A pos-
sible dependence between " and � allows the model to
pick up some of the asymmetric behavior often observed
in stock returns. Projection of [h(t) � Et�1 h(t)] over
[ `(t) � Et�1 `(t) ] yields the Kalman filter estimate of the
latent (logarithmic) variance process:

Et h(t) D Et�1 h(t)

C Ef[h(t) � Et�1 h(t)] � [`(t) � Et�1 `(t)]g
Ef[`(t) � Et�1 `(t)]2g

� [`(t) � Et�1 `(t)] ;
(60)

where the conditional expectations Et�1 `(t) and Et�1 h(t)
are given by:

Et�1 `(t) D ! C Et�1 h(t) (61)

Et�1 h(t) D � Et�1 h(t � 1) : (62)

To start the recursion (60)–(62), the initial value E0 h(0) is
fixed at the long-run mean log(V ).

Harvey and Shephard [168] estimate the model coeffi-
cients via quasi-maximum likelihood, i. e. by treating the
errors � and � as though they were normal and maximiz-
ing the prediction-error decomposition form of the like-
lihood function obtained via the Kalman filter. Inference
is valid as long as the standard errors are appropriately
adjusted. In their application they rely on daily returns
on the value-weighted US market index over 1967–1987
and daily returns for 30 individual stocks over 1974–1983.
Harvey et al. [167] pursue a similar approach to fit a mul-
tivariate SV model to a sample of four exchange rate series
from 1981 to 1985. One major drawback of the Kalman
filter approach is that the finite sample properties can be
quite poor because the error term, � , is highly non-Gaus-
sian, see, e. g., Andersen, Chung, and Sørensen [27]. The
method may be extended to accommodate various gener-
alizations including long memory persistence in volatility
as detailed in Ghysels, Harvey, and Renault [158].

A related literature, often exploited in multivariate set-
tings, specifies latent GARCH-style dynamics for a state
vector which governs the systematic evolution of a higher
dimensional set of asset returns. An early representative of
these specifications is in Diebold and Nerlove [120], who
exploit the Kalman filter for estimation, while Fiorentina
et al. [144] provide a likelihood-based estimation pro-
cedure using MCMC techniques. We later review the
MCMC approach and the associated filtering application,
e. g, the ‘particle filter’, in some detail.

The state-space form is also useful to characterize the
dynamics of interest rates. Following, e. g., Piazzesi [226],
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for a discrete-time dynamic term structure model themea-
surement and transition equations are

y� (t) D �A(�)
�

C B(�)0
�

X(t) C �� (t) (63)

X(t) D �C ˚X(t � 1) C˙
p
S(t) "(t) ; (64)

where S(t) is a matrix whose elements are affine functions
of the state vector X, and A and B solve a system of dif-
ference equations. When all the yields are observed with
error (i. e., �� ¤ 08�; 0 � � � T), QML estimation of the
system (63)–(64) via the extended Kalman filter method
yields an estimate of the coefficient vector. Applications
of this approach for the US term structure data include
Campbell and Viceira [81], Gong and Remolona [161],
and Pennacchi [225]. The extended Kalman filter involves
a linear approximation of the relation between the ob-
served data and the state variables, and the associated ap-
proximation error will produce biased estimates. Christof-
fersen et al. [99] raise this concern and recommend the use
of the so-called unscented Kalman filter for estimation of
systems in which the relation between data and state vari-
ables is highly non-linear, e. g., options data.

Methods Accommodating the Lack
of a Closed-Form Transition Density

We have so far mostly discussed estimation techniques for
models with either a known transition density or one that
is approximated by a discrete-time system. However, the
majority of empirically-relevant continuous-time models
do not possess explicit transition densities and alterna-
tive approaches are necessary. This problem leads us nat-
urally towards the large statistics and econometric litera-
ture on estimation of diffusions from discretely-observed
data. The vast majority of these studies assume that all rel-
evant variables are observed so the latent volatility or yield
curve state variables, integral to SV models, are not ac-
counted for. Nonetheless, it may be feasible to extract the
requisite estimates of the state variable by alternate means,
thus restoring the feasibility, albeit not efficiency, of the ba-
sic approach. Since the literature is large and not directly
geared towards genuine SV models, we focus on methods
that have seen use in applications involving latent state
variables.

A popular approach is to invert the map between the
state vector and a subset of the observables assuming that
the model prices specific securities exactly. In applica-
tions to equity markets this is done, e. g., by assuming that
one option contract is priced without error, which implies
a specific value (estimate) of the variance process given the

model parameters � . For instance, Pan [220] follows this
approach in her study of S&P 500 options and returns,
which we review in more detail in Sect. “Estimation from
Option Data”. In applications to fixed income markets it
is likewise stipulated that certain bonds are priced with-
out error, i. e., in Eq. (63) the error term ��i (t) is fixed at
zero for a set of maturities �1; : : : ; �N , where N matches
the dimension of the state vector X. This approach yields
an estimate for the latent variables through the inverse-
map X(t) D g(y� (t); � ).

One criticism of the state vector inversion procedure
is that it requires ad hoc assumptions regarding the choice
of the securities that are error-free (those used to com-
pute model-implied measures of the state vector) vis-a-vis
those observed with error (used either for estimation or
to assess model performance in an ‘out-of-sample’ cross-
sectional check). In fact, the extracted state vector can be
quite sensitive to the choice of derivatives (or yields) used.
Nevertheless, this approach has intuitive appeal. Model-
implied measures of the state vector, in combination with
a closed-form expression for the conditional density (55),
allow for efficient estimation of the coefficient vector� via
maximum likelihood. Analytic expressions for f X in Eq.
(55) exist in a limited number of cases. For instance, if X is
Gaussian then f X is multivariate normal, while if X follows
a square-root process then f X can be expressed in terms
of the modified Bessel function (e. g., [113]). Different fla-
vors of these continuous-time models are estimated in,
e. g., [91,106,132,182,223]. In more general cases, includ-
ing affine processes that combine Gaussian and square-
root state variables, closed-form expressions for f X are no
longer available. In the rest of this section we briefly re-
view different methods to overcome this problem. The in-
terested reader may consult, e. g., [226] for more details.

Lo [203] warns that the common approach of estimat-
ing parameters of an Itô process by applying maximum
likelihood to a discretization of the stochastic differen-
tial equation yields inconsistent estimators. In contrast,
he characterizes the likelihood function as a solution to
a partial differential equation. The method is very general,
e. g., it applies not only to continuous-time diffusions but
also to jump processes. In practice, however, analytic solu-
tions to the partial differential equations (via, e. g., Fourier
transforms) are available only for a small class of models
so computationally-intensive methods (e. g., finite differ-
encing or simulations) are generally required to solve the
problem. This is a severe limitation in the case of multi-
variate systems like SV models.

For general Markov processes, where the above solu-
tion is infeasible, a variety of procedures have been advo-
cated in recent years. Three excellent surveys provide dif-
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ferent perspectives on the issue. Aït-Sahalia, Hansen, and
Scheinkman [5] discuss operator methods and mention
the potential of applying a time deformation technique
to account for genuine SV features of the process, as in
Conley, Hansen, Luttmer, and Scheinkman [109]. In addi-
tion, the Aït-Sahalia [3,4] closed-form polynomial expan-
sions for discretely-sampled diffusions are reviewed along
with the Schaumburg [235] extension to a general class of
Markov processes with Lévy-type generators. Meanwhile,
Bibby, Jacobsen, and Sørensen [61] survey the extensive
statistics literature on estimating functions for diffusion-
type models and Bandi and Phillips [42] explicitly con-
sider dealing with nonstationary processes (see also the
work of Bandi [39], Bandi andNguyen [41], and Bandi and
Phillips [43,44]).

The characteristic function based inference technique
has been particularly widely adopted due to the natural fit
with the exponentially affine model class which provides
essentially closed-form solutions for many pricing appli-
cations. Consequently, we dedicate a separate section to
this approach.

Characteristic Functions Singleton [242] proposes to
exploit the information contained in the conditional char-
acteristic function of the state vector X,

�(iu; X(t); � ) D E
�
eiu

0X(tC1)ˇˇX(t)
�
; (65)

to pursue maximum likelihood estimation of affine term
structure models. In Equation (65) we highlight the de-
pendence of the characteristic function on the unknown
parameter vector � . When X is an affine (jump-)diffusion
process, � has the exponential affine form,

�(iu; X(t); � ) D e˛t (u)Cˇt(u)0X(t) ; (66)

where the functions ˛ and ˇ solve a system of ODEs. As
such, the transition density f X is known explicitly up to an
inverse-Fourier transformation of the characteristic func-
tion (65),

fX(X(t C 1)
ˇ
ˇX(t);� )

D 1

N

Z

RN
C

Re
�
e�iu0X(tC1)�(iu; X(t); � )

�
du : (67)

Singleton shows that Gauss–Legendre quadrature with
a relatively small number of quadrature points allows to
accurately evaluate the integral in Eq. (67) when X is uni-
variate. As such, the method readily delivers efficient esti-
mates of the parameter vector, � , subject to an auxiliary
assumption, namely that the state vector may be extracted
by assuming that a pre-specified set of security prices is ob-

served without error while the remainder have non-trivial
error terms.

When X is multivariate the Fourier inversion in
Eq. (67) is computationally more demanding. Thus, when
estimating multi-dimensional systems Singleton suggests
focusing on the conditional density function of the indi-
vidual elements of X, but conditioned on the full state vec-
tor,

fX j (Xj(t C 1)jX(t);� )
D 1

2


Z

R
e�i!I0j X(tC1)

�(i!I j; X(t); � )d! ; (68)

where the vector I j has 1 in the jth element and zero else-
where so that the jth element ofX is Xj(tC1) D I0jX(tC1).
Maximization of the likelihood function obtained from
fX j , for a fixed j, will often suffice to obtain a consistent es-
timate of � . Exploiting more than one of the conditional
densities (68) will result in more efficient � estimate. For
instance, the scores of multiple univariate log-likelihood
functions, stacked in a vector, yield moment conditions
that allow for generalizedmethod of moment (GMM) esti-
mation of the system. Alternatively, Joslin [192] proposes
a change-of-measure transformation which reduces the
oscillatory behavior of the integrand in Eq. (67). When us-
ing this transformation, Gauss-Hermite quadrature more
readily provides a solution to the integral in (67) even if the
state vector X is multi-dimensional, thus facilitating full
ML estimation of the system.

Related, several studies have pursued GMM estimation
of affine processes using characteristic functions. Defini-
tion (65) yields the moment condition

E
�
(�(iu; X(t); � ) � eiu

0X(tC1))z(u; X(t))
� D 0 ; (69)

where X is an N-dimensional (jump-)diffusion, u 2 RN ,
and z is an instrument function. When X is affine, the
characteristic function takes the exponential form (66).
Different choices of u and z yield a set of moment condi-
tions that can be used for GMM estimation and inference.
Singleton [242] derives the optimal instrument in terms
of delivering efficient estimates. Carrasco et al. [86] ap-
proximate the optimal instrument with a set of basis func-
tions that do not require the knowledge of the conditional
likelihood function, thus avoiding one of the assumptions
invoked by Singleton. Further, they build on Carrasco
and Florens [87] to implement estimation using a contin-
uum of moment conditions, which yields maximum-like-
lihood efficiency. Other applications of GMM-characteris-
tic function methods to affine (jump-) diffusions for equity
index returns are in Chacko andViceira [88] and Jiang and
Knight [184].
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In some cases the lack of closed-form expressions for
the moment condition in Eq. (69) can hinder GMM es-
timation. In these cases the expectation in Eq. (69) can
be evaluated by Monte Carlo integration. This is accom-
plished by simulating a long sample from the discretized
process for a given value of the coefficient vector � . The
parameter � is then estimated via the simulated method
of moments (SMM) of McFadden [206] and Duffie and
Singleton [131]. Singleton [242] proposes SMM character-
istic function estimators that exploit the special structure
of affine term structure models.

Efficient Estimation
of General Continuous-Time Processes

Anumber of recent approaches offer excellent flexibility in
terms of avoiding approximations to the continuous-time
model-implied transition density while still facilitating ef-
ficient estimation of the evolution of the latent state vector
for the system.

Maximum Likelihood with Characteristic Functions
Bates [58] develops a filtration-basedmaximum likelihood
estimation method for affine processes. His approach re-
lies on Bayes’ rule to recursively update the joint charac-
teristic function of latent variables and data conditional on
past data. He then obtains the transition density by Fourier
inversion of the updated characteristic function.

Denote with y(t) and X(t) the time-t values of the ob-
servable variable and the state vector, respectively, and
let Y(t) � fy(1); : : : ; y(t)g be the data observed up to
time t. Consider the case in which the characteristic func-
tion of z(t C 1) � (y(t C 1); X(t C 1)) conditional on
z(t) � (y(t); X(t)), is an exponential affine function of
X(t):

�(is; iu; z(t); � ) D E
�
ei s

0 y(tC1)Ciu0X(tC1)ˇˇz(t)
�

D e˛(i s;iu;y(t))Cˇ (i s;iu;y(t))0X(t) : (70)

Next, determine the value of the characteristic function
conditional on the observed data Y(t):

�(is; iu;Y(t); � )

D E
h
E
h
ei s

0 y(tC1)Ciu0X(tC1)ˇˇz(t)
i ˇ
ˇ
ˇY(t)

i

D E
h
e˛(i s;iu;y(t))Cˇ (i s;iu;y(t))0X(t)ˇˇY(t)

i

D e˛(i s;iu;y(t)) (ˇ(is; iu; y(t));Y(t); � ) ; (71)

where  (iu;Y(t); � ) � E
h
eiu0X(t)

ˇ
ˇY(t)

i
denotes the

(marginal) characteristic function for the state vector con-
ditional on the observed data. Fourier inversion then

yields the conditional density for the observation y(t C 1)
conditional on Y(t):

fy(y(t C 1)jY(t);� )
D 1

2


Z

R
e�i s0 y(tC1)�(is; 0;Y(t); � )ds : (72)

The next step updates the characteristic function  

(Bartlett [48]):

 (iu;Y(t C 1); � ) D 1
2
 fy(y(t C 1)jY(t);� )

�
Z

R
e�i s0 y(tC1)�(is; iu;Y(t); � )ds : (73)

To start the recursion, Bates initializes  at the uncondi-
tional characteristic function of the latent variable X. The
log-likelihood function is then given by

logL(Y(T);� ) D log( fy(y(1);� )

C
TX

tD2

log( fy(y(t)jY(t � 1);� )) : (74)

A nice feature is that the method provides a natural solu-
tion to the filtering problem. The filtered estimate of the
latent state X and its variance are computed from the first
and second derivatives of the moment generating function
 (u;Y(t);� ) in Eq. (73), evaluated at u D 0:

E[X(t C 1)jY(t C 1);� ] D 1
2
 fy(y(t C 1)jY(t);� )

�
Z

R
e�i s0 y(tC1)�u(is; 0;Y(t);� )ds (75)

Var[X(t C 1)jY(t C 1);� ] D 1
2
 fy(y(t C 1)jY(t);� )

�
Z

R
e�i s0 y(tC1)�uu(is; 0;Y(t);� )ds

� fE[X(t C 1)jY(t C 1)]g2 : (76)

A drawback is that at each step t of the iteration the
method requires storage of the entire characteristic func-
tion  (iu;Y(t);� ). To deal with this issue Bates recom-
mends to approximate the true  with the characteristic
function of a variable with a two-parameter distribution.
The choice of the distribution depends on the X-dynam-
ics while the two parameters of the distribution are deter-
mined by the conditional mean E[X(t C 1)jY(t C 1);� ]
and variance Var[X(tC1)jY(tC1);� ] given in Equations
(75)–(76).
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In his application Bates finds that the method is suc-
cessful in estimating different flavors of the SV jump-
diffusion for a univariate series of daily 1953–1996 S&P
500 returns. In particular, he shows that the method ob-
tains estimates that are equally, if not more, efficient com-
pared to the efficient method of moments and Markov
Chain Monte Carlo methods described below. Exten-
sions of the method to multivariate processes are theo-
retically possible, but they require numerical integration
of multi-dimensional functions, which is computationally
demanding.

Simulated Maximum Likelihood In Sect. “Filtering the
Latent State Variable Directly During Estimation” we dis-
cussed methods for simulated ML estimation and in-
ference in discrete-time SV models. Pedersen [224] and
Santa-Clara [234] independently develop a simulated
maximum likelihood (SML) method to estimate contin-
uous-time diffusion models. They divide each interval in
between two consecutive data points XtC1 and Xt into M
sub-intervals of length� D 1/M and they discretize the X
process using the Euler scheme,

XtC(iC1)� D XtCi� C �(XtCi�)�

C˙(XtCi�)
p
�"tC(iC1)� ;

i D 0; : : : ;M � 1 ; (77)

where � and ˙ are the drift and diffusion terms of the X
process and " is multivariate normal with mean zero and
identity variance matrix. The transition density of the dis-
cretized process is multivariate normal with mean � and
variance matrix˙˙ 0. As� goes to zero, this density con-
verges to that of the continuous-time process X. As such,
the transition density from Xt to XtC1 is given by

fX(XtC1jXt ;� ) D
Z

fX(XtC1jXtC1��;� )

� fX(XtC1��jXt ;� )dXtC1�� :

(78)

For sufficiently small values of� the first term in the inte-
grand, fX(XtC1jXtC1��;� ), is approximated by the tran-
sition density of the discretized process, while the second
term, fX(XtC1��jXt ;� ), is a multi-step-ahead transition
density that can be computed from the recursion from
Xt to XtC1��. Writing the right-hand side of Eq. (78) as
a conditional expectation yields

fX(XtC1jXt ;� ) D EXtC1�� jXt

�
fX(XtC1jXtC1��;� )

�
:

(79)

The expectation in Eq. (79) can be computed by Monte
Carlo integration over a large number of paths for the pro-
cessX, simulated via the Euler scheme (77). As� vanishes,
the Euler scheme is consistent. Thus, when the size of the
simulated sample increases the sample average of the func-
tion f X , evaluated at the random draws of XtC1��, con-
verges to the true transition density. Application of the
principles in Bladt and Sørensen [64] may well be useful
in enhancing the efficiency of the simulation scheme and
hence the actual efficiency of the inference procedure in
practice.

Brandt and Santa-Clara [75] apply the SML method to
estimate a continuous-time model of the joint dynamics
of interest rates in two countries and the exchange rate be-
tween the two currencies. Piazzesi [227] extends the SML
approach for jump-diffusion processes with time-varying
jump intensity. She considers a high-frequency policy rule
based on yield curve information and an arbitrage-free
bond market and estimates the model using 1994–1998
data on the Federal Reserve target rate, the six-month
LIBOR rate, and swap yields.

An important issue is how to initialize any unobserved
component of the state vector, X(t), such as the volatility
state at each observation to provide a starting point for the
next Monte Carlo integration step. This may be remedied
through application of the particle filter, as mentioned ear-
lier and discussed below in connection with MCMC esti-
mation. Another possibility is, as also indicated previously,
to extract the state variable through inversion from deriva-
tives prices or yields assumed observed without pricing
errors.

Indirect Inference There are also other method-of-mo-
ments strategies to estimate finitely-sampled continuous-
time processes of a general type. One prominent approach
approximates the unknown transition density for the con-
tinuous-time process with the density of a semi-nonpara-
metric (SNP) auxiliary model. Then one can use the score
function of the auxiliary model to form moment condi-
tions for the parameter vector � of the continuous-time
model. This approach yields the efficient method of mo-
ments estimator (EMM) of Gallant and Tauchen [154],
Gallant et al. [150], and Gallant and Long [152], and the
indirect inference estimator of Gouriéroux et al. [162] and
Smith [243].

To fix ideas, suppose that the conditional density for
a continuous-time return process r (the ‘structural’ model)
is unknown.We intend to approximate the unknown den-
sity with a discrete-time model (the ‘auxiliary’ model)
that is tractable and yet sufficiently flexible to accom-
modate the systematic features of the actual data sam-
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ple well. A parsimonious auxiliary density for r embeds
ARMA and EGARCH leading terms to capture the condi-
tional mean and variance dynamics. There may be resid-
ual excess skewness and kurtosis that elude the ARMA and
EGARCH forms. As such, the auxiliary density is rescaled
using a nonparametric polynomial expansion of order K ,
which yields

gK(r(t)jx(t); �) D
 

� C (1 � �)

� [PK (z(t); x(t))]2R
R[PK(z(t); x(t))]2�(u)du

!
�(z(t))p

h(t)
; (80)

where � is a small constant, �(:) is the standard normal
density, x(t) contains lagged return observations, and

z(t) D r(t) � �(t)p
h(t)

; (81)

�(t) D �0 C ch(t) C
sX

iD1

�i r(t � 1)

C
uX

iD1

ıi"(t � 1) ; (82)

log h(t) D ! C
pX

iD1

ˇi log h(t � 1)

C (1 C ˛1L C � � � C ˛qLq)

�
h
�1z(t � 1) C �2(b(z(t � 1)) � p

2/
)
i
;

(83)

PK(z; x) D
KzX

iD0

ai (x)zi D
KzX

iD0

0

@
KxX

j jjD0

ai jx j

1

A zi ;

a00 D 1 :

(84)

Here j is a multi-index vector, x j � (x j1
1 ; : : : ; x

jM
M ), and

j jj � PM
mD1 jm . The term b(z) is a smooth (twice-differ-

entiable) function that closely approximates the absolute
value operator in the EGARCH variance equation.

In practice, the representation of PK is given by Her-
mite orthogonal polynomials. When the orderK of the ex-
pansion increases, the auxiliary density will approximate
the data arbitrarily well. If the structural model is indeed
the true data generating process, then the auxiliary density
will converge to that of the structural model. For a givenK ,
the QML estimator �̂ for the auxiliary model coefficient
satisfies the score condition

1
T

TX

tD1

@ log gK(r(t)jx(t); �̂)
@�

D 0 : (85)

Suppose now that the structural model is correct and
� 0 is the true value of its coefficient vector. Consider a se-
ries fr(t;� ); x(t;� )g, t D 1; : : : ;T (T), simulated from
the structural model. Then we expect that the score condi-
tion (85) holds when evaluated by averaging over the sim-
ulated returns rather than over the actual data:

mT (T)(�0; �̂) D 1
T (T)

T (T)X

tD1

@ log gK(r(t; �0)jx(t; �0); �̂)
@�

� 0 :
(86)

When T and T (T) tend to infinity, condition (86) holds
exactly.

Gallant and Tauchen [154] propose the EMM estima-
tor �̂ defined via

�̂ D argmin
�

mT (T)(�; �̂)0 ŴTmT (T)(�; �̂) ; (87)

where the weighting matrix ŴT is a consistent estimate of
the inverse asymptotic covariance matrix of the auxiliary
score function, e. g., the inverse outer product of the SNP
gradient:

Ŵ�1
T D 1

T

TX

tD1

"
@ log gK(r(t)jx(t); �̂)

@�

#

�
"
@ log gK(r(t)jx(t); �̂)

@�

#0
: (88)

An important advantages of the technique is that EMM
estimates achieve the same degree of efficiency as the ML
procedure, when the score of the auxiliary model asymp-
totically spans the score of the true model. It also deliv-
ers powerful specification diagnostics that provide guid-
ance in the model selection. Gallant and Tauchen [154]
show that the EMM estimator is asymptotically normal.
Further, under the assumption that the structural model is
correctly specified, they derive a �2 statistic for the test of
over-identifying restrictions. Gallant et al. [150] normal-
ize the vector mT (T)(�̂ ; �̂) by its standard error to obtain
a vector of score t-ratios. The significance of the individ-
ual score elements is often informative of the source of
model mis-specification, with the usual caveat that failure
to capture one characteristic of the data may result in the
significance of a moment condition that pertains to a co-
efficient not directly related to that characteristic (due to
correlation in the moment conditions). Finally, EMM pro-
vides a straightforward solution to the problem of filter-
ing and forecasting the latent return variance process V ,
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i. e., determining the conditional densities f (V(t)jx(t); � )
and f (V(t C j)jx(t); � ); j � 0. This is accomplished
through the reprojection method discussed in, e. g., Gal-
lant and Long [152] and Gallant and Tauchen [155]. In
applications to dynamic term structure models, the same
method yields filtered and forecasted values for the latent
state variables.

The reprojection method assumes that the coefficient
vector � is known. In practice, � is fixed at the EMM es-
timate �̂ . Then one simulates a sample of returns and la-
tent variables from the structural model and fits the aux-
iliary model on the simulated data. This is equivalent to
the first step of the EMM procedure except that, in the
reprojection step, we fit the auxiliary model assuming the
structural model is correct, rather than using actual data.
The conditional density of the auxiliary model, estimated
under the null, approximates the unknown density of the
structural model:

gK(r(t C j)jx(t); �̃) � f (r(t C j)jx(t); �̂ ); j � 0 ; (89)

where �̃ is the QML estimate of the auxiliary model coef-
ficients obtained by fitting the model on simulated data.
This approach yields filtered estimates and forecasts for
the conditional mean and variance of the return via

E
�
r(t C j)jx(t); �̂ � D

Z
ygK(yjx(t); �̃)dy ; (90)

Var
�
r(tC j)jx(t); �̂ � D

Z �
y � E

�
r(t C j)jx(t); �̂ �

�2

� gK (yjx(t); �̃)dy : (91)

An alternative approach consists in fitting an auxiliary
model for the latent variable (e. g., the return conditional
variance) as a function of current and lagged returns. It is
straightforward to estimate such model using data on the
latent variable and the associated returns simulated from
the structural model with the EMM coefficient �̂ . Also in
this case the auxiliary model density approximates the true
one, i. e.,

gVK (V (tC j)jx(t); �̃) � f V (V (tC j)jx(t);  ̂) ; j � 0: (92)

This approach yields a forecast for the conditional vari-
ance process,

E
�
V(t C j)jx(t); �̂ � D

Z
vgVK (vjx(t); �̃)dv : (93)

In sum, reprojection is a simulation approach to imple-
ment a non-linear Kalman-filter-type technique, which
yields effective forecasts for the unobservable state vector.

The indirect inference estimator by Gouriéroux
et al. [162] and Smith [243] is closely related to the EMM
estimator. Indirect inference exploits that the following
two quantities should be close when the structural model
is correct and the data are simulated at the true parameter
� 0: (i) the QML estimator �̂ for the auxiliary model com-
puted from actual data; (ii) the QML estimator �̂(� ) for
the auxiliary model fitted on simulations from the struc-
tural model. Minimizing the distance between �̂ and �̂(� )
in an appropriate metric yields the indirect inference esti-
mator for � . Similar to EMM, asymptotic normality holds
and a �2 test for over-identifying restrictions is available.
However, the indirect inference approach is computation-
ally more demanding, because finding the value of � that
minimizes the distance function requires re-estimating the
auxiliary model on a different simulated sample for each
iteration of the optimization routine. EMM does not have
this drawback, since the EMM objective function is evalu-
ated at the same fitted score at each iteration. Nonetheless,
there may well be circumstances where particular auxil-
iary models are of primary economic interest and estima-
tion based on the corresponding moment conditions may
serve as a useful diagnostic tool for model performance in
such directions.

Several studies have used EMM to fit continuous-
time SV jump-diffusion models for equity index returns,
e. g., Andersen et al. [15], Benzoni [59], Chernov and
Ghysels [93], and Chernov et al. [94,95]. Andersen and
Lund [28] and Andersen et al. [16] use EMM to esti-
mate SV jump-diffusion models for the short-term inter-
est rate. Ahn et al. [1,2], Brandt and Chapman [71], and
Dai and Singleton [114] fit different flavors of multi-factor
dynamic term structure models. Andersen et al. [27] doc-
ument the small-sample properties of the efficient method
of moments estimator for stationary processes, while Duf-
fee and Stanton [128] study its properties for near unit-
root processes. A. Ronald Gallant and George E. Tauchen
at Duke University have prepared well-documented gen-
eral-purpose EMM and SNP packages, available for down-
load at the web address ftp.econ.duke.edu in the directo-
ries pub/get/emm and pub/get/snp. In applications it is of-
ten useful to customize the SNP density to allow for a more
parsimonious fit of the data under investigation. For in-
stance, Andersen et al. [15,16], Andersen and Lund [28],
and Benzoni [59] rely on the SNP density (80)–(84).

Markov Chain Monte Carlo The MCMC method pro-
vides a Bayesian solution to the inference problem for
a dynamic asset pricing model. The approach treats the
model coefficient� as well as the vector of latent state vari-
ables X as random variables and computes the posterior

ftp://ftp.econ.duke.edu
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distribution f (�; XjY), conditional on certain observable
variables Y , predicted by the model. The setting is suffi-
ciently general to deal with a wide range of situations. For
instance, X and Y can be the (latent) volatility and (ob-
servable) return processes as is the case of an SVmodel for
asset returns. Or X and Y can be the latent state vector and
observable yields in a dynamic term structure model.

The posterior distribution f (�; XjY) is the main tool
to draw inference not only on the coefficient � but also on
the latent vector X. Since f (�; XjY) is unknown in closed-
form in relevant applications, MCMC relies on a sim-
ulation (a Markov Chain) from the conditional density
f (�; XjY) to compute mode, mean, and standard devia-
tions for the model coefficients and state variables via the
Monte Carlo method.

The posterior f (�; XjY) is analytically untractable
and extremely high-dimensional, so that simulation di-
rectly from f (�; XjY) is typically infeasible. The MCMC
approach hinges on the Clifford–Hammersley theorem,
which determines conditions under which the posterior
f (�; XjY) is uniquely determined by the marginal pos-
terior distributions f (� jX;Y) and f (Xj�;Y). In turn,
the posteriors f (� jX;Y) and f (Xj�;Y) are determined
by a set or univariate posterior distributions. Specifically,
denote with � (i) the ith element of the coefficient � ,
i D 1; : : : ;K, and with � (�i) the vector consisting of
all elements in � except for the ith one. Similarly denote
with X(t) the tth row of the state vector, t D 1; : : : ; T ,
and with X(�t) the rest of the vector. Then the Clifford–
Hammersley theorem allows to characterize the posterior
f (�; XjY) via K C T univariate posteriors,

f (� (i)j� (�i); X;Y) ; i D 1; : : : ;K (94)

f (X(t)jX(�t); �;Y) ; t D 1; : : : ; T : (95)

The construction of the Markov Chain relies on the so-
called Gibbs sampler. The first step of the algorithm con-
sists in choosing initial values for the coefficient and the
state,� 0 and X0. When (one of or both) the multi-dimen-
sional posteriors are tractable, the Gibbs sampler generates
values� 1 and X1 directly from f (� jX;Y) and f (Xj�;Y).
Alternatively, each element of � 1 and X1 is drawn from
the univariate posteriors (94)–(95). Some of these poste-
riors may also be analytically intractable or efficient al-
gorithms to draw from these posteriors may not exist. In
such cases theMetropolis-Hastings algorithm ensures that
the simulated sample is consistent with the posterior tar-
get distribution. Metropolis-Hastings sampling consists of
an accept-reject procedure of the draws from a ‘proposal’
or ‘candidate’ tractable density, which is used to approxi-

mate the unknown posterior (see, e. g., Johannes and Pol-
son [187]).

Subsequent iterations of Gibbs sampling, possibly
in combination with the Metropolis-Hastings sampling,
yield a series of ‘sweeps’ f�s ; Xsg; s D 1; : : : ; S, with limit-
ing distribution f (�; XjY). A long number of sweeps may
be necessary to ‘span’ the whole posterior distribution and
obtain convergence due to the serial dependence of subse-
quent draws of coefficients and state variables. When the
algorithm has converged, additional simulations provide
a sample from the joint posterior distribution.

The MCMC approach has several advantages. First,
the inference automatically accounts for parameter un-
certainty. Further, the Markov Chain provides a direct
and elegant solution to the smoothing problem, i. e., the
problem of determining the posterior distribution for the
state vector X conditional on the entire data sample,
f (X(t)jY(1); : : : ;Y(T); � ); t D 1; : : : ; T . The limitation
on the approach is largely that efficient sampling schemes
for the posterior distribution must be constructed for each
specific problem at hand which by nature is case specific
and potentially cumbersome or inefficient. Nonetheless,
following the development of more general simulation al-
gorithms, the method has proven flexible for efficient esti-
mation of a broad class of important models.

One drawback is that MCMC does not deliver an im-
mediate solution to the filtering problem, i. e., determin-
ing f (X(t)jY(1); : : : ;Y(t); � ), and the forecasting prob-
lem, i. e., determining f (X(t C j)jY(1); : : : ;Y(t); � ); j >
0. However, recent research is overcoming this limitation
through the use of the ‘particle filter’. Bayes rule implies

f (X(t C 1)jY(1); : : : ;Y(t C 1); � ) / f (Y(t C 1)j
X(t C 1); � ) f (X(t C 1)jY(1); : : : ;Y(t); � ) ; (96)

where the symbol / denotes ‘proportional to’. The first
density on the right-hand side of Eq. (96) is deter-
mined by the SV model and it is often known in closed
form. In contrast, the second density at the far-right
end of the equation is given by an integral that in-
volves the unknown filtering density at the prior period,
f (X(t)jY(1); : : : ;Y(t); � ):

f (X(tC1)jY(1); : : : ;Y(t); � ) D
Z

f (X(tC1)jX(t); � )
� f (X(t)jY(1); : : : ;Y(t); � )dX(t) : (97)

The particle method relies on simulations to construct a fi-
nite set of weights wi (t) and particles Xi(t), i D 1; : : : ;N ,
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that approximate the unknown density with a finite
sum,

f (X(t)jY(1); : : : ;Y(t); � ) �
NX

iD1

wi (t)ıXi (t) ; (98)

where the Dirac function ıXi (t) assigns mass one to the
particle Xi(t). Once the set of weights and particles are
determined, it is possible to re-sample from the dis-
cretized distribution. This step yields a simulated sample
fXs(t)gSsD1 which can be used to evaluate the density in
Eq. (97) via Monte Carlo integration:

f (X(t C 1)jY(1); : : : ;Y(t); � )

� 1
S

SX

sD1

f (X(t C 1)jXs(t); � ) : (99)

Equation (99) solves the forecasting problem while com-
bining formulas (96) and (99) solves the filtering problem.
The challenge in practical application of the particle filter
is to identify an accurate and efficient algorithm to con-
struct the set of particles and weights. We point the inter-
ested reader to Kim et al. [193], Pitt and Shephard [228]
and Johannes and Polson [187] for a discussion on how to
approach this problem.

The usefulness of the MCMC method to solve the in-
ference problem for SV models has been evident since
the early work by Jacquier et al. [180], who develop an
MCMC algorithm for the logarithmic SV model. Jacquier
et al. [181] provide extensions to correlated and non-nor-
mal error distributions. Kim et al. [193], Pitt and Shep-
hard [228] and Chib et al. [96] develop simulation-based
methods to solve the filtering problem, while Chib et
al. [97] use the MCMC approach to estimate a multi-
variate SV model. Elerian et al. [135] and Eraker [140]
discuss how to extend the MCMC inference method to
a continuous-time setting. Eraker [140] uses the MCMC
approach to estimate an SV diffusion process for inter-
est rates, while Jones [189] estimates a continuous-time
model for the spot rate with non-linear drift function. Er-
aker et al. [142] estimate an SV jump-diffusion process us-
ing data on S&P 500 return while Eraker [141] estimates
a similar model using joint data on options and under-
lying S&P 500 returns. Li et al. [196] allow for Lévy-type
jumps in their model. Collin-Dufresne et al. [104] use the
MCMC approach to estimate multi-factor affine dynamic
term structure model using swap rates data. Johannes and
Polson [186] give a comprehensive survey of the still on-
going research on the use of the MCMC approach in the
general nonlinear jump-diffusion SV setting.

Estimation from Option Data

Options’ payoffs are non-linear functions of the under-
lying security price. This feature renders options highly
sensitive to jumps in the underlying price and to return
volatility, which makes option data particularly useful to
identify return dynamics. As such, several studies have
taken advantage of the information contained in option
prices, possibly in combination with underlying return
data, to estimate SV models with or without discontinu-
ities in returns and volatility.

Applications to derivatives data typically require
a model for the pricing errors. A common approach is to
posit that the market price of an option, O�, normalized
by the underlying observed security price S�, is the sum
of the normalized model-implied option price, O/S�, and
a disturbance term " (e. g., Renault [230]):

O�
S� D O(S�;V ;K; �; � )

S� C " ; (100)

where V is the latent volatility state, K is the option strike
price, � is time to maturity, and � is the vector with
the model coefficients. A pricing error " could arise for
several reasons, including measurement error (e. g., price
discreteness), asynchroneity between the derivatives and
underlying price observations, microstructure effects, and
perhaps most importantly specification error. The struc-
ture imposed on " depends on the choice of a specific ‘loss
function’ used for estimation (e. g., Christoffersen and Ja-
cobs [98]). Several studies have estimated the coefficient
vector � by minimizing the sum of the squared option
pricing errors normalized by the underlying price S�, as
in Eq. (100). Others have focused on either squared dollar
pricing errors, or squared errors normalized by the options
market price (instead of S�). The latter approach has the
advantage that a $1 error on an expensive in-the-money
option carries less weight than the same error on a cheaper
out-of-the-money contract. The drawback is that giving
a lot of weight to the pricing errors on short-maturity
deep-out-of-the-money options could bias the estimation
results. Finally, the common practice of expressing op-
tion prices in terms of their Black-Scholes implied volatili-
ties has inspired other scholars to minimize the deviations
between Black-Scholes implied volatilities inferred from
model and market prices (e. g., Mizrach [216]). An alter-
native course is to form amoment-based loss function and
follow a GMM- or SMM-type approach to estimate � . To
this end moment conditions stem from distributional as-
sumptions on the pricing error " (e. g., E["] D 0) or from
the scores of a reduced-form model that approximates the
data.



Stochastic Volatility 717

In estimating the model, some researchers have opted
to use a panel of options consisting of contracts with mul-
tiple strikes and maturities across dates in the sample pe-
riod. This choice brings a wealth of information on the
cross-sectional and term-structure properties of the im-
plied volatility smirk into the analysis. Others rely on only
one option price observation per time period, which shifts
the focus to the time-series dimension of the data. Some
studies re-estimate the model on a daily basis rather than
seeking a single point estimate for the coefficient � across
the entire sample period. This ad hoc approach produces
smaller in-sample pricing errors, which can be useful to
practitioners, but at the cost of concealing specification
flaws by over-fitting the model, which tends to hurt out-
of-sample performance. The different approaches are in
part dictated by the intended use of the estimated sys-
tem as practitioners often are concerned withmarketmak-
ing and short-term hedging while academics tend to value
stable relations that may form the basis for consistent
modeling of the dominant features of the system over
time.

Early contributions focus on loss functions based on
the sum of squared option pricing errors and rely en-
tirely on option data for estimation. This approach typ-
ically yields an estimate of the model coefficient � that
embeds an adjustment for risk, i. e., return and volatility
dynamics are identified under the risk-neutral rather than
the physical probability measure. For instance, Bates [56]
considers an SV jump-diffusion model for Deutsche Mark
foreign currency options and estimates its coefficient vec-
tor � via nonlinear generalized least squares of the nor-
malized pricing errors with daily option data from Jan-
uary 1984 to June 1991. A similar approach is followed by
Bates [57] who fits an SV model with two latent volatility
factors and jumps using daily data on options on the S&P
500 futures from January 1988 to December 1993. Bakshi
et al. [34] focus on the pricing and hedging of daily S&P
500 index options from June 1988 to May 1991. In their
application they re-calibrate the model on a daily basis by
minimizing the sum of the squared dollar pricing errors
across options with differentmaturities and strikes. Huang
andWu [173] explore the pricing implications of the time-
changed Lévy process by Carr and Wu [84] for daily S&P
500 index options from April 1999 to May 2000. Their
Lévy return process allows for discontinuities that exhibit
higher jump frequencies compared to the finite-intensity
Poisson jump processes in Equations (37)–(41). Further,
theirmodel allows for a random time change, i. e., a mono-
tonic transformation of the time variable which generates
SV in the diffusion and jump components of returns. In
contrast, Bakshi et al. [35] fit an SV jump-diffusion model

by SMM using daily data on long-maturity S&P 500 op-
tions (LEAPS).

More recent studies have relied on joint data on S&P
500 option prices and underlying index returns, spanning
different periods, to estimate the model. This approach
forces the same model to price securities in two differ-
ent markets and relies on information from the deriva-
tives and underlying securities to better pin down model
coefficients and risk premia. For instance, Eraker [141]
and Jones [190] fit different flavors of the SV model (with
and without jumps, respectively) by MCMC. Pan [220]
follows a GMM approach to estimate an SV jump-diffu-
sion model using weekly data. She relies on a single at-the-
money option price observation each week, which iden-
tifies the level of the latent volatility state variable (i. e.,
at each date she fixes the error term " at zero and solves
Eq. (100) forV). Aït-Sahalia and Kimmel [7] apply Aït-Sa-
halia’s [4] method to approximate the likelihood func-
tion for a joint sample of options and underlying prices.
Chernov and Ghysels [93] and Benzoni [59] obtain mo-
ment conditions from the scores of a SNP auxiliary model.
Similarly, other recent studies have found it useful to use
joint derivatives and interest rate data to fit dynamic term
structure models, e. g., Almeida et al. [9], and Bikbov and
Chernov [62].

Finally, a different literature has studied the option
pricing implications of a model in which asset return
volatility is a deterministic function of the asset price and
time, e. g., Derman and Kani [119], Dupire [134], Rubin-
stein [233], and Jackwerth and Rubinstein [177]. Since
volatility is not stochastic in this setting, we do not review
these models here and point the interested reader to, e. g.,
[133] for an empirical analysis of their performance.

Future Directions

In spite of much progress in our understanding of volatil-
ity new challenges lie ahead. In recent years a wide ar-
ray of volatility-sensitive products has been introduced.
The market for these derivatives has rapidly grown in
size and complexity. Research faces the challenge to price
and hedge these new products. Moreover, the recent de-
velopments in model-free volatility modeling have ef-
fectively given empirical content to the latent volatil-
ity variable, which opens the way for a new class of
estimation methods and specification tests for SV sys-
tems. Related, improved volatility measures enable us
to shed new light on the properties and implications
of the volatility risk premium. Finally, more work is
needed to better understand the linkage between fluctu-
ations in economic fundamentals and low- and high-fre-
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quency volatility movements.We conclude this chapter by
briefly reviewing some open issues in these four areas of
research.

Volatility and Financial Markets Innovation

Volatility is a fundamental input to any financial and real
investment decision. Markets have responded to investors’
needs by offering an array of volatility-linked instruments.
In 1993 the Chicago Board Option Exchange (CBOE) has
introduced the VIX index, which measures the market ex-
pectations of near-term volatility conveyed by equity-in-
dex options. The index was originally computed using the
Black-Scholes implied volatilities of eight different S&P
100 option (OEX) series so that, at any given time, it rep-
resented the implied volatility of a hypothetical at-the-
money OEX option with exactly 30 days to expiration
(see [257]). On September 22, 2003, the CBOE began dis-
seminating price level information using a revised ‘model-
free’ method for the VIX index. The new VIX is given by
the price of a portfolio of S&P 500 index options and in-
corporates information from the volatility smirk by using
a wider range of strike prices rather than just at-the-money
series (see [77]). On March 26, 2004, trading in futures
on the VIX Index started on the CBOE Futures Exchange
(CFE) while on February 24, 2006, options on the VIX
began trading on the Chicago Board Options Exchange.
These developments have opened the way for investors to
trade on option-impliedmeasures ofmarket volatility. The
popularity of the VIX prompted the CBOE to introduce
similar indices for other markets, e. g., the VXNNASDAQ
100 Volatility Index.

Along the way, a new over-the-counter market for
volatility derivatives has also rapidly grown in size and liq-
uidity. Volatility derivatives are contracts whose payments
are expressed as functions of realized variance. Popular ex-
amples are variance swaps, which at maturity pay the dif-
ference between realized variance and a fixed strike price.
According to estimates by BNP Paribas reported by the
Risk [176] magazine, the daily trading volume for vari-
ance swaps on indices reached $4–5 million in vega no-
tional (measured in dollars per volatility point) in 2006,
which corresponds to payments in excess of $1 billion per
percentage point of volatility on an annual basis (Carr and
Lee [82]). Using variance swaps hedge fund managers and
proprietary traders can easily place huge bets on market
volatility.

Finally, in recent years credit derivatives markets have
evolved in complexity and grown in size. Among the most
popular credit derivatives are the credit default swaps
(CDS), which provide insurance against the risk of de-

fault by a particular company. The buyer of a single-name
CDS acquires the right to sell bonds issued by the com-
pany at face value when a credit event occurs. Multiple-
name contracts can be purchased simultaneously through
credit indices. For instance, the CDX indices track the
credit spreads for different portfolios of North Ameri-
can companies while the iTraxx Europe indices track the
spreads for portfolios of European companies. At the end
of 2006 the notional amount of outstanding over-the-
counter single- and multi-name CDS contracts stood at
$19 and $10 trillion, respectively, according to the Septem-
ber 2007 Bank for International Settlements Quarterly
Review.

These market developments have raised new interest-
ing issues for research to tackle. The VIX computations
based on the new model-free definition of implied volatil-
ity used by the CBOE requires the use of options with
strike prices that cover the entire support of the return
distribution. In practice, liquid options satisfying this re-
quirement often do not exist and the CBOE implementa-
tion introduces random noise and systematic error into
the index (Jiang and Tian [185]). Related, the VIX im-
plementation entails a truncation, i. e., the CBOE discards
illiquid option prices with strikes lying in the tails of the
return distribution. As such, the notion of the VIX is more
directly linked to that of corridor volatility [26]. In sum,
robust implementation of a model free measure of implied
volatility is still an open area of research. Future devel-
opments in this direction will also have important reper-
cussions on the hedging practices for implied-volatility
derivatives.

Pricing and hedging of variance derivatives is another
active area of research. Variance swaps admit a simple
replication strategy via static positions in call and put op-
tions on the underlying asset, similar to model-free im-
plied volatility measures (e. g., [77,83]). In contrast, it is
still an open area of research to determine the replication
strategy for derivatives whose payoffs are non-linear func-
tion of realized variance, e. g., volatility swaps, which pay
the square-root of realized variance, or call and put op-
tions on realized variance. [82] is an interesting paper in
this direction.

Limited liability gives shareholders the option to de-
fault on the firm’s debt obligation. As such, a debt claim
has features similar to a short position in a put option.
The pricing of corporate debt is therefore sensitive to the
volatility of the firms’ assets: higher volatility increases the
probability of default and therefore reduces the price of
debt and increases credit spreads. The insights and tech-
niques developed in the SV literature could prove useful in
credit risk modeling and applications (e. g., [179,248,260]).
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The Use of Realized Volatility for Estimation
of SVModels

Another promising line of research aims at extracting the
information in RV measures for the estimation of dy-
namic asset pricing models. Early work along these lines
includes Barndorff-Nielson and Shephard [51], who de-
compose RV into actual volatility and realized volatility
error. They consider a state-space representation for the
decomposition and apply the Kalmann filter to estimate
different flavors of the SVmodel.Moreover, Bollerslev and
Zhou [68] and Garcia et al. [156], build on the insights of
Meddahi [210] to estimate SV diffusion models using con-
ditional moments of integrated volatility. More recently,
Todorov [252] generalizes the analysis for the presence of
jumps.

Related, recent studies have started to use RV mea-
sures to test the implications of models previously esti-
mated with lower-frequency data. Since RV gives empir-
ical content to the latent quadratic variation process, this
approach allows for a direct test of the model-implied re-
strictions on the latent volatility factor. Recent work along
these lines includes Andersen and Benzoni [12], who use
model-free RV measures to show that the volatility span-
ning condition embedded in some affine term structure
models is violated in the US Treasury market. Christof-
fersen et al. [100] note that the Heston square-root SV
model implies that the dynamics for the standard devia-
tion process are conditionally Gaussian. They reject this
condition by examining the distribution of the changes in
the square-root RV measure for S&P 500 returns.

Volatility Risk Premium

More work is needed to better understand the link be-
tween asset return volatility andmodel risk premia. Also in
this case, RVmeasures are a fruitful source of information
to shed new light on the issue. Among the recent studies
that pursue this venue is Bollerslev et al. [66], who exploit
the moments of RV and option-implied volatility to gauge
a measure of the volatility risk premium. Todorov [251]
explores the variance risk premium dynamics using high-
frequency S&P 500 index futures data and data on the VIX
index. He finds the variance risk premium to vary signif-
icantly over time and to increase during periods of high
volatility and immediately after big jumps in underlying
returns. Carr and Wu [85] provide a broader analysis of
the variance risk premium for five equity indices and 35
individual stocks. They find the premium to be large and
negative for the indices while it is much smaller for the
individual stocks. Further, they also find the premium to
increase (in absolute value) with the level of volatility. Ad-

ditional work on the volatility risk premium embedded in
individual stock options is in Bakshi and Kapadia [36],
Driessen et al. [123], and Duarte and Jones [126]. Other
studies have examined the linkage between volatility risk
premia and equity returns (e. g., [69]) and hedge-fund per-
formance (e. g., [70]). New research is also examining the
pricing of aggregate volatility risk in the cross-section of
stock returns. For instance, Ang et al. [30] find that av-
erage returns are lower on stocks that have high sensitivi-
ties to innovations in aggregate volatility and high idiosyn-
cratic volatility (see also the related work by Chen [90]
Ang et al. [32], Bandi et al, Guo et al. [42]). This evi-
dence is consistent with the findings of the empirical op-
tion pricing literature, which suggests that there is a neg-
ative risk premium for volatility risk. Intuitively, periods
of high market volatility are associated to worsened in-
vestment opportunities and tend to coincide with nega-
tive stock market returns (the so-called leverage effect). As
such, investors are willing to pay higher prices (i. e., accept
lower expected returns) to hold stocks that dowell in high-
volatility conditions.

Determinants of Volatility

Finally, an important area of future research concerns the
linkage between asset return volatility and economic un-
certainty. Recent studies have proposed general equilib-
rium models that produce low-frequency fluctuations in
conditional volatility, e. g., Campbell and Cochrane [80],
Bansal and Yaron [47], McQueen and Vorkink [207], and
Tauchen [246]. Related, Engle and Rangel [139] and En-
gle et al. [138] link macroeconomic variables and long-
run volatility movements. It is still an open issue, how-
ever, to determine the process through which news about
economic fundamentals are embedded into prices to gen-
erate high-frequency volatility fluctuations. Early research
by Schwert [236] and Shiller [241] has concluded that the
amplitude of the fluctuations in aggregate stock volatility is
difficult to explain using simple models of stock valuation.
Further, Schwert [236] notes that while aggregate lever-
age is significantly correlated with volatility, it explains
a relatively small part of the movements in stock volatil-
ity. Moreover, he finds little evidence that macroeconomic
volatility (measured by inflation and industrial produc-
tion volatility) helps predict future asset return volatility.
Model-free realized volatility measures are a useful tool
to further investigate this issue. Recent work in this di-
rection includes Andersen et al. [22] and Andersen and
Bollerslev [17], who explore the linkage between news
arrivals and exchange rates volatility, and Andersen and
Benzoni [13], who investigate the determinants of bond
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yields volatility in the US Treasury market. Related, Bal-
duzzi et al. [38] and Fleming and Remolona [146] study
the reaction of trading volume, bid-ask spread, and price
volatility to macroeconomic surprises in the US Treasury
market, while Brandt and Kavajecz [74] and Pasquariello
and Vega [222] focus instead on the price discovery pro-
cess and explore the implications of order flow imbalances
(excess buying or selling pressure) on day-to-day variation
in yields.
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Glossary

Stock Stocks, which are sometimes referred to as “levels”
or “states”, accumulate (i. e., sum up) the information
or material that flows into and out of them. Stocks
are thus responsible for decoupling flows, creating de-
lays, preserving system memory, and altering the time
shape of flows.

Flow Flows of information or material enter and exit
a system’s stocks and, in so doing, create a system’s
dynamics. Stated differently, the net flow into or out
of a stock is the stock’s rate of change. When hu-
man decision making is represented in a system dy-
namics model, it appears in the system’s flow equa-
tions. Mathematically, a system’s flow equations are
ordinary differential equations and their format deter-
mines whether or not a system is linear or nonlinear.

Feedback Feedback is the transmission and return of in-
formation about the amount of information or mate-
rial that has accumulated in a system’s stocks. When
the return of this information reinforces a system’s be-
havior, the loop is said to be positive. Positive loops
are responsible for the exponential growth of a sys-
tem over time. Negative feedback loops represent goal
seeking behavior in complex systems. When a nega-
tive loop detects a gap between the amount of infor-
mation or material in a system’s stock and the desired
amount of information or material, it initiates correc-

tive action. If this corrective action is not significantly
delayed, the system will smoothly adjust to its goal. If
the corrective action is delayed, however, the system
can overshoot or undershoot its goal and the system
can oscillate.

Full information maximum likelihood with opti-
mal filtering FIMLOF is a sophisticated technique for es-

timating the parameters of a system dynamics model,
while simultaneously fitting its output to numerical
data. Its intellectual origins can be traced to control
engineering and the work of Fred Schwepe. David Pe-
terson pioneered a method for adapting FIMLOF for
use in system dynamics modeling.

Definition of the Subject

System dynamics is a computer modeling method that has
its intellectual origins in control engineering, management
science, and digital computing. It was originally created as
a tool to help managers better understand and control cor-
porate systems. Today it is applied to problems in a wide
variety of academic disciplines, including economics. Of
note is that system dynamics models often generate be-
havior that is both counterintuitive and at odds with tradi-
tional economic theory. Historically, this has caused many
system dynamics models to be evaluated critically, espe-
cially by some economists. However, today economists
from several schools of economic thought are beginning to
use system dynamics, as they have found it useful for in-
corporating their nontraditional ideas into formal models.

Introduction

System dynamics is a computer simulation modeling
methodology that is used to analyze complex nonlinear
dynamic feedback systems for the purposes of generat-
ing insight and designing policies that will improve sys-
tem performance. It was originally created in 1957 by Jay
W. Forrester of the Massachusetts Institute of Technol-
ogy as a method for building computer simulation mod-
els of problematic behaviorwithin corporations. Themod-
els were used to design and test policies aimed at altering
a corporation’s structure so that its behavior would im-
prove and become more robust. Today, system dynamics
is applied to a large variety of problems in a multitude of
academic disciplines, including economics.

System dynamics models are created by identifying
and linking the relevant pieces of a system’s structure
and simulating the behavior generated by that structure.
Through an iterative process of structure identification,
mapping, and simulation a model emerges that can ex-
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plain (mimic) a system’s problematic behavior and serve
as a vehicle for policy design and testing.

From a system dynamics perspective a system’s struc-
ture consists of stocks, flows, feedback loops, and limit-
ing factors. Stocks can be thought of as bathtubs that ac-
cumulate/de-cumulate a system’s flows over time. Flows
can be thought of as pipe and faucet assemblies that fill or
drain the stocks. Mathematically, the process of flows ac-
cumulating/de-cumulating in stocks is called integration.
The integration process creates all dynamic behavior in
the world be it in a physical system, a biological system,
or a socioeconomic system. Examples of stocks and flows
in economic systems include a stock of inventory and its
inflow of production and its outflow of sales, a stock of the
book value of a firm’s capital and its inflow of investment
spending and its outflow of depreciation, and a stock of
employed labor and its inflow of hiring and its outflow of
labor separations.

Feedback is the transmission and return of informa-
tion about the amount of information or material that has
accumulated in a system’s stocks. Information travels from
a stock back to its flow(s) either directly or indirectly, and
this movement of information causes the system’s faucets
to open more, close a bit, close all the way, or stay in the
same place. Every feedback loop has to contain at least
one stock so that a simultaneous equation situation can
be avoided and a model’s behavior can be revealed recur-
sively. Loops with a single stock are termed minor, while
loops containing more than one stock are termed major.

Two types of feedback loops exist in system dynam-
ics modeling: positive loops and negative loops. Generally
speaking, positive loops generate self-reinforcing behavior
and are responsible for the growth or decline of a system.
Any relationship that can be termed a virtuous or vicious
circle is thus a positive feedback loop. Examples of positive
loops in economic systems include path dependent pro-
cesses, increasing returns, speculative bubbles, learning-
by-doing, and many of the relationships found in macroe-
conomic growth theory. Forrester [12], Radzicki and Ster-
man [46], Moxnes [32], Sterman (Chap. 10 in [55]), Radz-
icki [44], Ryzhenkov [49], andWeber [58] describe system
dynamics models of economic systems that possess domi-
nant positive feedback processes.

Negative feedback loops generate goal-seeking behav-
ior and are responsible for both stabilizing systems and
causing them to oscillate. When a negative loop detects
a gap between a stock and its goal it initiates corrective
action aimed at closing the gap. When this is accom-
plished without a significant time delay, a system will ad-
just smoothly to its goal. On the other hand, if there are
significant time lags in the corrective actions of a neg-

ative loop, it can overshoot or undershoot its goal and
cause the system to oscillate. Examples of negative feed-
back processes in economic systems include equilibrating
mechanisms (“auto-pilots”) such as simple supply and de-
mand relationships, stock adjustment models for inven-
tory control, any purposeful behavior, and many of the re-
lationships found in macroeconomic business cycle the-
ory. Meadows [27], Mass [26], Low [23], Forrester [12],
and Sterman [54] provide examples of system dynamics
models that generate cyclical behavior at the macro-eco-
nomic and micro-economic levels.

From a system dynamics point of view, positive and
negative feedback loops fight for control of a system’s be-
havior. The loops that are dominant at any given time de-
termine a system’s time path and, if the system is nonlin-
ear, the dominance of the loops can change over time as
the system’s stocks fill and drain. From this perspective,
the dynamic behavior of any economy – that is, the in-
teractions between the trend and the cycle in an economy
over time – can be explained as a fight for dominance be-
tween the economy’s most significant positive and nega-
tive feedback loops.

In system dynamics modeling, stocks are usually con-
ceptualized as having limits. That is, stocks are usually seen
as being unable to exceed or fall below certain maximum
and minimum levels. Indeed, an economic model that can
generate, say, either an infinite and/or a negative work-
force would be seen as severely flawed by a system dy-
namicist. As such, when building a model system dynam-
icists search for factors that may limit the amount of ma-
terial or information that the model’s stocks can accumu-
late. Actual socioeconomic systems possess many limiting
factors including physical limits (e. g., the number of wid-
gets a machine can produce per unit of time), cognitive
limits (e. g., the amount of information an economic agent
can remember and act upon), and financial limits (e. g., the
maximum balance allowed on a credit card). When limit-
ing factors are included in a system dynamics model, the
system’s approach to these factors must be described. Gen-
erally speaking, this is accomplished with nonlinear re-
lationships. Figure 1 presents a simple system dynamics
model that contains examples of all of the components of
system structure described above.

Types of Dynamic Simulation

From a system dynamics point of view, solving a dynamic
model – any dynamic model – means determining how
much material or information has accumulated in each of
a system’s stocks at every point in time. This can be ac-
complished in one of two ways – analytically or via sim-
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System Dynamics and Its Contribution to Economics and Economic Modeling, Figure 1
Simple system dynamics model containing examples of all components of system structure

ulation. Linear dynamic models can be solved either way.
Nonlinear models, except for a few special cases, can only
be solved via simulation.

Simulated solutions to dynamic systems can be at-
tained from either a continuous (analog) computer or
a discrete (digital) computer. Understanding the basic
ideas behind the two approaches is necessary for under-
standing how economic modeling is undertaken with sys-
tem dynamics.

In the real world, of course, time unfolds continuously.
Yet, devising a way to mimic this process on a machine is
a bit tricky. On an analog computer, the continuous flow of
economic variables in and out of stocks over time is mim-
icked by the continuous flow of some physical substance
such as electricity or water. A wonderful example of the
later case is the Phillips Machine, which simulates an or-
thodox Keynesian economy (essentially the IS-LM model)
with flows of colored water moving through pipes and ac-
cumulating in tanks. Barr [2] provides a vivid description
of the history and restoration of the Phillips Machine.

On a digital computer, the continuous flow of eco-
nomic variables in and out of stocks over time is approxi-
mated by specifying the initial amount ofmaterial or infor-
mation in a system’s stocks, breaking simulated time into
small increments, inching simulated time forward by one
of these small increments, calculating the amount of mate-
rial or information that flowed into and out of the system’s
stocks during this small interval, and then repeating. The
solution to the system will always be approximate because
the increment of time cannot bemade infinitesimally small
and thus simulated time cannot be made perfectly contin-
uous. In fact, on a digital computer a trade-off exists be-
tween round-off error and integration error. If the incre-
ment of time is made too large, the approximate solution
can be poor due to integration error. If the increment of
time is made too small, the approximate solution can be
ruined due to round-off error.

In system dynamics modeling the “true” behavior of
the underlying system is conceptualized to unfold over
continuous time. As such, mathematically, a system dy-
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namics model is an ordinary differential equation model.
To approximate the solution to a continuous time ordi-
nary differential equation model on a digital (discrete)
computer, however, difference equations are used. Unlike
traditional difference equation modeling in economics, in
which the increment of time is chosen to match economic
data (typically a quarter or a year), the increment of time
in system dynamics modeling is chosen to yield a solution
that is accurate enough for the problem at hand, yet avoids
the problems associated with significant round-off and in-
tegration error.

The use of difference equations to approximate the un-
derlying differential equations represented by a system dy-
namics model provides another interesting option when it
comes to economic modeling. Since many well known dy-
namic economic models have been created with difference
equations, they can be recast in a system dynamics format
by using the difference equations in the system dynamics
software literally as difference equations, and not as a tool
to approximate the underlying continuous time system.
Although doing this deviates from the original ideas em-
bodied in the system dynamics paradigm, it is occasion-
ally done when a modeler feels that analyzing a difference
equation model in a system dynamics format will yield
some additional insight.

Translating Existing EconomicModels
into a SystemDynamics Format

There are three principle ways that system dynamics is
used for economic modeling. The first involves translat-
ing an existing economic model into a system dynamics

System Dynamics and Its Contribution to Economics and Economic Modeling, Figure 2
System dynamics representation of John Hicks’ multiplier-accelerator difference equation model

format, while the second involves creating an economic
model from scratch by following the rules and guidelines
of the system dynamics paradigm. Forrester [7], Richard-
son and Pugh [47], Radzicki [42], and Sterman [55] pro-
vide extensive details about these rules and guidelines. The
former approach is valuable because it enables well-known
economic models to be represented in a common format,
which makes comparing and contrasting their assump-
tions, concepts, structures, behaviors, etc., fairly easy. The
latter approach is valuable because it usually yields mod-
els that are more realistic and that produce results that are
“counterintuitive” [11] and thus thought-provoking.

The third way that system dynamics can be used for
economic modeling is a “hybrid” approach in which a well
known economicmodel is translated into a system dynam-
ics format, critiqued, and then improved by modifying it
so that it more closely adheres to the principles of system
dynamics modeling. This approach attempts to blend the
advantages of the first two approaches, although it is more
closely related to the former.

Generally speaking, existing economic models that
can be translated into a system dynamics format can be
divided into four categories: written, static (mathemati-
cal), difference equation, and ordinary differential equa-
tion. Existing economic models that have been created
in either a difference equation or an ordinary differential
equation format can be translated into system dynamics
in a fairly straight-forward manner. For example, Fig. 2
presents Sir John Hicks’ [21] Multiplier-Accelerator dif-
ference equation model in a system dynamics format and
Fig. 3 presents the Robert Solow’s [52] ordinary differen-
tial equation growth model in a system dynamics format.
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System Dynamics and Its Contribution to Economics and Economic Modeling, Figure 3
System dynamics representation of Robert Solow’s ordinary differential equation growth model

Translating existing static and written economic mod-
els and theories into a system dynamics format is a more
formidable task.Writtenmodels and theories are often dy-
namic, yet are described without mathematics. Static mod-
els and theories are often presented with mathematics, but
lack equations that describe the dynamics of any adjust-
ment processes they may undergo. As such, system dy-
namicists must devise equations that capture the dynam-
ics being described by the written word or that reveal the
adjustment processes that take place when a static system
moves from one equilibrium point to another.

An interesting example of a system dynamics model
that was created from a written economic model is Barry
Richmond’s [48] model of Adam Smith’s Wealth of Na-
tions. This model was created principally from Robert
Heilbronner’s [20] written description of Smith’s eco-
nomic system. A classic example of a static model that has
been translated into a system dynamics format is a simple
two sector Keynesian cross model, as is shown in Fig. 4.

Improving Existing EconomicModels
with SystemDynamics

The simple two sector Keynesian cross model presented
in Fig. 4 is an example of a well known economic model
that can be improved after it has been translated into
a system dynamics format. More specifically, in this ex-
ample the flow of investment spending in the model
does not accumulate anywhere. This violates good sys-
tem dynamics modeling practice and can be fixed. Fig-
ure 5 presents the improved version of the Keynesian
Cross model, which now more closely adheres to the sys-
tem dynamics paradigm. Other well known examples of
classic economics models that have been improved after

they have been translated into a system dynamics format
and made to conform more closely with good system dy-
namics modeling practice include the cobweb model [27],
Sir John Hicks’ multiplier-accelerator model [23], the
IS-LM/AD-AS model [13,59], Dale Jorgenson’s invest-
ment model [51], William Nordhaus’ [34] DICE climate
change model [4,5], and basic micro economic supply
and demand mechanisms [24]. Low’s improvement of
Hicks’ model is particularly interesting because it results
in a model that closely resembles Bill Phillips’ [40] multi-
plier-accelerator model. Senge and Fiddaman’s contribu-
tions are also very interesting because they demonstrate
how the original economicmodels are special cases of their
more general system dynamics formulations.

Creating Economic DynamicsModels from Scratch

Although translating well known economic models into
a system dynamics format can arguably make them easier
to understand and use, system dynamicists believe that the
“proper” way to model an economic system that is experi-
encing a problem is to do so from scratch while following
good system dynamics modeling practice. Unlike ortho-
dox economists who generally follow a deductive, logical
positivist approach to modeling, system dynamicists fol-
low an inductive pattern modeling or case study process.
More specifically, a system dynamicist approaches an eco-
nomic problem like a detective who is iteratively piecing
together an explanation at a crime scene. All types of data
that are deemed relevant to the problem are considered in-
cluding numerical, written, and mental information. The
system dynamicist is guided in the pattern modeling pro-
cess by the perceived facts of the case, as well as by real ty-
pologies (termed “generic structures” in system dynamics)
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System Dynamics and Its Contribution to Economics and Economic Modeling, Figure 4
Simple two sector Keynesian cross model in a system dynamics format

System Dynamics and Its Contribution to Economics and Economic Modeling, Figure 5
Improved simple two sector Keynesian cross model

and principles of systems. Real typologies are commonali-
ties that have been found to exist in different pattern mod-
els and principles of systems are commonalities that have
been found to exist in different real typologies. Paich [36]

discusses generic structures at length and Forrester [8] lays
out a set of principles of systems.

Examples of a real typologies in economics include
Forrester’s [9] Urban Dynamics model, which can repro-
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duce the behavior of many different cities when properly
parametrized for those cities, and Homer’s [22] model of
the diffusion of new medical technologies into the mar-
ket place, which can explain the behavior of a wide variety
of medical technologies when properly parametrized for
those technologies. Examples of fundamental principles
of systems include the principle of accumulation, which
states that the dynamic behavior of any system is due to
flows accumulating in stocks, and the notion of stocks and
flows being components of feedback loops. The parallels
for these principles in economics can be found in modern
Post Keynesian economics, in which modelers try to build
“stock-flow consistent models,” and in institutional eco-
nomics, in which the principle of “circular and cumulative
causation” is deemed to be a fundamental cause of eco-
nomic dynamics. Radzicki [41,43,45] lays out the case for
the parallels that exist betweenmethodological concepts in
system dynamics and methodological concepts in various
schools of economic thought.

The economic models that have been historically cre-
ated from scratch by following the system dynamics
paradigm have tended to be fairly large in scale. For-
rester’s [12] national economic model is a classic exam-
ple, as are the macroeconomic models created by Ster-
man [53], the Millennium Institute [31], Radzicki [45],
Wheat [59], and Yamaguchi [60]. Dangerfield [3] has de-
veloped a model of Sarawak (E. Malaysia) to analyze and
plan for economic transition from a production economy
to a knowledge-based one. With the exception of Radz-
icki [45], whose model is based on ideas from Post Key-
nesian and institutional economics, these models, by and
large, embody orthodox economic relationships.

Model Validity

When a system dynamics model of an economic system
that is experiencing a problem is built from scratch, the
modeling process is typically quite different from that
which is undertaken in traditional economics. As such, the
question is raised as to whether or not an original system
dynamics model is in any sense “valid”.

System dynamicists follow a “pattern modeling” ap-
proach [41] and do not believe that models should be
judged in a binary fashion as either “valid” or “invalid”.
Rather, they argue that confidence in models can be gen-
erated along multiple dimensions. More specifically, sys-
tem dynamicists such as Peterson [38], Forrester and
Senge [16] and Barlas [1] have developed a comprehen-
sive series of tests that can be applied to a model’s struc-
ture and behavior and they argue that the more tests
a model can pass, the more confidence a model builder

or user should place in its results. Even more funda-
mentally, however, Forrester [13] has argued that the
real value generated through the use of system dynam-
ics comes, not from any particular model, but from the
modeling process itself. In other words, it is through the
iterative process of model conceptualization, creation, sim-
ulation, and revision that true learning and insight are
generated, and not through interaction with the resulting
model.

Another issue that lies under the umbrella of model va-
lidity involves fitting models to time series data so that pa-
rameters can be estimated and confidence in model results
can be raised. In orthodox economics, of course, econo-
metric modeling is almost universally employed when do-
ing empirical research. Orthodox economic theory dic-
tates the structure of the econometric model and powerful
statistical techniques are used to tease out parameter val-
ues from numerical data.

System dynamicists, on the other hand, have tradition-
ally argued that it is not necessary to tightly fit models to
time series data for the purposes of parameter estimation
and confidence building. This is because:

1. the battery of tests that are used to build confidence in
system dynamics models go well beyond basic econo-
metric analysis;

2. the particular (measured) time path that an actual eco-
nomic system happened to take is merely one of an in-
finite number of paths that it could have taken and is
a result of the particular stream of random shocks that
happened to be historically processed by its structure.
As such, it is more important for a model to mimic the
basic character of the data, rather than fit it point-by-
point [14];

3. utilizing the pattern modeling/case study approach en-
ables the modeler to obtain parameter values via ob-
servation below the level of aggregation in the model,
rather than via statistical analysis [18];

4. the result of a system dynamics modeling intervention
is typically a set of policies that improve system per-
formance and increase system robustness. Such poli-
cies are usually feedback-based rules (i. e., changes to
institutional structure) that do not require the accurate
point prediction of system variables.

Although the arguments against the need to fit mod-
els to time series data are well known in system dynamics,
many system dynamicists feel that it is still a worthwhile
activity because it adds credibility to a modeling study.
Moreover, in modern times, advances in software technol-
ogy have made this process relatively easy and inexpen-
sive. Although several techniques for estimating the pa-
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System Dynamics and Its Contribution to Economics and Economic Modeling, Figure 6
Fit of the Harrod growth model to US macroeconomic data for the years 1929–2002

rameters of a system dynamics model from numerical data
have been devised, perhaps the most interesting is David
Peterson’s [38,39] Full Information Maximum Likelihood
with Optimal Filtering (FIMLOF). Figure 5 presents a run
from the Harrod growth model, to which an adaptive ex-
pectations structure has been added, after it has been fit
via FIMLOF to real GDP and labor supply data for the
United States economy for the years 1929–2002. The fit
is excellent and the estimated parameter values are consis-
tent with those frommore traditional econometric studies.
See Radzicki [44] for a detailed description of the model
and its parameter estimates.

Controversies

Since system dynamics modeling is undertaken in a way
that is significantly different from traditional economic
modeling, it should come as no surprise that many
economists have been extremely critical of some system
dynamics models of economic systems. For example, For-
rester’s [9] Urban Dynamics and [10] World Dynamics
models have come under severe attack by economists, as
has (to a lesser degree) his national economic model. On
the other hand, the first paper in the field of system dy-
namics is Forrester [6], which is essentially a critique of
traditional economic modeling.

Greenberger et al. [19] present a nice overview of
the controversies surrounding the Urban Dynamics and
World Dynamics models. Forrester and his colleagues’
replies to criticisms of theUrbanDynamicsmodel are con-
tained in Mass [25] and Schroeder et al. [50].

One of the harshest critics of the World Dynam-
ics (WORLD2) model has been Nordhaus [33]. Nord-
haus [35] has also very critical of the well known follow-

up study to World Dynamics known as The Limits to
Growth [28]. Meadows et al. [29,30] contain updates to
the original Limits to Growth (WORLD3) model, as well
as replies to the world modeling critics.

Forrester [12] presents a nice overview of his national
economic model, and the critiques by Stolwijk [57] and
Zellner [61] are typical of the attitude of the professional
economists toward macroeconomic modeling that is un-
dertaken by following the traditional system dynamics
paradigm. The criticism of Forrester’s national economic
model by the economics profession has probably been
less severe, relative to the criticisms of the Urban Dynam-
ics and world models, because most of its details are still
largely unpublished at the time of this writing.

Another interesting and timely example of the sort
of controversy surrounding system dynamics model-
ing in economics is provided by Sterman and Richard-
son [56]. In this paper they present a technique for testing
whether Hubbert’s lifecycle method or the geologic anal-
ogy method yields superior estimates of the ultimately re-
coverable amount of petroleum resources. This study was
motivated by a disagreement with a traditionally trained
economist over the proper way to conceptualize this is-
sue. Sterman and Richardson devised a clever synthetic
data experiment in which a system dynamics model serves
as the “real world” with a known ultimately recoverable
amount of oil. Hubbert’s method and the geologic anal-
ogy method are then programmed into the model so
they can “watch” the data being generated by the “real
world” and provide dynamic estimates of the “known”
ultimately recoverable stock of oil. The results showed
that Hubbert’s method was quite accurate, although it
had a tendency to somewhat underestimate the ulti-
mately recoverable amount of oil, while the geologic anal-
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ogy method tended to overshoot the resource base quite
substantially.

Future Directions

Historically, system dynamicists who have engaged in eco-
nomic modeling have almost never been trained as pro-
fessional economists. As such, they have had the advan-
tage of being able to think about economic problems dif-
ferently from those who have been trained along tradi-
tional lines, but have also suffered the cost of being seen
as “amateurs” or “boy economists” [41] by members of
the economics profession. The good news is that there
are currently several schools of economic thought, popu-
lated by professional economists, in which system dynam-
ics fits quite harmoniously. These include Post Keynesian
economics, institutional economics, ecological economics,
and behavioral economics. Historically, the economists in
these schools have rejected many of the tenets of tradi-
tional economics, including most of its formal modeling
methods, yet have failed to embrace alternative modeling
techniques because they were all seen as inadequate for
representing the concepts they felt were important. How-
ever in the modern era, with computers having become
ubiquitous and simulation having become in some sense
routine, system dynamics is increasingly being accepted as
an appropriate tool for use in these schools of economic
thought. The future of economics and system dynamics
will most probably be defined by the economists who work
within these schools of thought, as well as by their stu-
dents. The diffusion of system dynamics models of eco-
nomic systems through their translation into user-friendly
interactive “learning environments” that are available over
the world wide web will most likely also be of great impor-
tance (see [24,59]).
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Glossary

Stock In system dynamics stock is a concept representing
accumulation and the state of a variable, such as, as-
sets, inventory, capacity, reputation, morale etc. Stock
can be measured at any point of time. In mathematical
terms, stock is the sum over time (integral) of one or
more flows.

Flow Flow or rate represents change or movement in
a stock such as, buying assets, building inventories,
adding capacity, losing reputation or morale, etc. Flow
is measured as “per unit of time” like hiring rate (em-
ployees hired per year, production rate (units made per
day), or rainfall (inches of rain per month).

Causal loops Causal loops (model) are visual maps that
connect a group of variables with known or hypoth-
esized cause and effect relationships. A causal loop
can be open or closed. Causal loops can be used for
complex problem solving/decision making, consensus
building, conflict resolution, priority setting and group
learning.

Feedback In a cause and effect chain (system), feedback
is a signal from the effect/s to cause/s as to its/their
influence on downstream effect/s. Feedback can be in-
formation, decision or action. For example, if X causes
or changes Y , Y in turn could influence or change X
directly or through other intervening variables. This
creates a closed “causal loop” with either a positive or
amplifying feedback (Reinforcing – R) or a negative
feedback with damping, counteracting or (Balancing –
B) effect.

Delay Cause and effect relationships are often not close in
time or space. The lapse time between a cause and its

effect is called a systems delay or simply delay. Because
some delays in physical, natural and social systems are
rather long they mask the underlying or earlier causes
when effects become evident. This provides confusion
and unintended consequences, especially in social sys-
tems, such as economics, education, immigration, ju-
dicial systems, etc.

Reference Mode Reference mode is the actual/observed
pattern of a key variable of interest to decision mak-
ers or policy analysts. It represents the actual behavior
of a variable over time which is used to compare with
the simulated pattern of the same variable generated
by a simulation model to validate the accuracy of the
model.

Simulation A computer tool and methodology for mod-
eling complex situations and challenging problems
where mathematical tools fail to operate.

Microworld Microworlds are simulation models of real
systems such as a firm, a hospital, a market, or a pro-
duction system. They provide a “virtual” world where
decision makers can test and experiment their policies
and strategies in a laboratory environment before im-
plementation. Microworlds are constructed using sys-
tem dynamic software with user friendly interfaces.

Leverage Leverage refers to decisions and actions for
change and intervention which have the highest like-
lihood of lasting and sustainable outcomes. Leverage
decisions are best reached by open discussion after the
group develops a deep understanding of system dy-
namics through a causal loop or stock & flowmodeling
process.

Systems thinking Systems thinking is a paradigm for
viewing reality based on the primacy of the whole
and relationships. It is one of the key capabilities
(disciplines) for organizational learning [30]. Systems
Thinking consists of a series of conceptual and mod-
eling tools such as behavior over time, causal loop
diagrams and systems archetypes. These tools reveal
cause and effect dynamics over time and assist un-
derstanding of complex, non-linear, and counter-in-
tuitive behaviors in all systems – physical, natural and
social.

Definition of the Subject

System dynamics (SD) is “a methodology for studying and
managing complex feedback systems. . . While the word
system has been applied to all sorts of situations, feedback
is the differentiating descriptor here. Feedback refers to the
situation ofX affectingY andY in turn affectingX perhaps
through a chain of causes and effects. . . Only the study of
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the whole system as a feedback system will lead to correct
results.” [36]

Sterman ([35], p 4) defines System Dynamics as
“a method to enhance learning in complex systems”. “Sys-
tem dynamics is fundamentally interdisciplinary. . . It is
grounded in the theory of nonlinear dynamics and feed-
back control developed in mathematics, physics, and en-
gineering. Because we apply these tools to the behavior of
human as well as physical and technical systems, system
dynamics draws on cognitive and social psychology, eco-
nomics, and other social sciences.”

Wolstenholme’s [40] offers the following description
for system dynamics and its scope:

A rigorous way to help thinking, visualizing, shar-
ing, and communication of the future evolution of
complex organizations and issues over time; for the
purpose of solving problems and creating more ro-
bust designs, which minimize the likelihood of un-
pleasant surprises and unintended consequences; by
creating operational maps and simulation models
which externalize mental models and capture the
interrelationships of physical and behavioral pro-
cesses, organizational boundaries, policies, informa-
tion feedback and time delays; and by using these
architectures to test the holistic outcomes of alter-
native plans and ideas; within a framework which
respects and fosters the needs and values of aware-
ness, openness, responsibility and equality of indi-
viduals and teams.

Organizational Learning

Organizational learning is the ability of organizations to
enhance their collective capacity to learn and to act, har-
moniously. According to Senge [30] “Real learning gets to
the heart of what it means to be human. Through learn-
ing we re-create ourselves. Through learning we become
able to do something we never were able to do. Through
learning we re-perceive the world and our relationship to
it. Through learning we extend our capacity to create, to be
part of the generative process of life. There is within each
of us a deep hunger for this type of learning.” Organiza-
tional learning extends this learning to the organization
and its members.

Introduction

History of System Dynamics

(This section is due to US Department of Energy website)
“System dynamics was created during the mid-1950s by
Professor Jay W. Forrester of the Massachusetts Institute

of Technology. Forrester arrived at MIT in 1939 for grad-
uate study in electrical engineering.His first research assis-
tantship put him under the tutelage of Professor Gordon
Brown, the founder of MIT’s Servomechanism Labora-
tory. Members of theMIT ServomechanismLaboratory, at
the time, conducted pioneering research in feedback con-
trol mechanisms for military equipment. Forrester’s work
for the Laboratory included traveling to the Pacific Theatre
during World War II to repair a hydraulically controlled
radar system installed aboard the aircraft carrier Lexing-
ton. The Lexington was torpedoed while Forrester was on
board, but not sunk.

At the end of World War II, Jay Forrester turned his
attention to the creation of an aircraft flight simulator for
the US Navy. The design of the simulator was cast around
the idea, untested at the time, of a digital computer. As
the brainstorming surrounding the digital aircraft simu-
lator proceeded, however, it became apparent that a bet-
ter application of the emerging technology was the test-
ing of computerized combat information systems. In 1947,
the MIT Digital Computer Laboratory was founded and
placed under the direction of Jay Forrester. The Labora-
tory’s first task was the creation of WHIRLWIND I, MIT’s
first general-purpose digital computer, and an environ-
ment for testing whether digital computers could be effec-
tively used for the control of combat information systems.
As part of the WHIRLWIND I project, Forrester invented
and patented coincident-current random-access magnetic
computer memory. This became the industry standard for
computer memory for approximately twenty years. The
WHIRLWIND I project also motivated Forrester to cre-
ate the technology that first facilitated the practical digital
control of machine tools.

After the WHIRLWIND I project, Forrester agreed to
lead a division of MIT’s Lincoln Laboratory in its efforts
to create computers for the North American SAGE (Semi-
Automatic Ground Environment) air defense system. The
computers created by Forrester’s team during the SAGE
project were installed in the late 1950s, remained in service
for approximately twenty-five years, and had a remarkable
“up time” of 99.8%.

Forrester’s seminal book Industrial Dynamics [11] “is
still a significant statement of philosophy and methodol-
ogy in the field. Since its publication, the span of applica-
tions has grown extensively and now encompasses work
in

� corporate planning and policy design
� public management and policy
� biological and medical modeling
� energy and the environment
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System Dynamics and Organizational Learning, Table 1
The five phase process of systems thinking andmodeling (Source: [6])

Phases Steps
1 Problem structuring Identify problems or issues of concern to management,

Collect preliminary information and data
2 Causal loop modeling Identify main variables,

Prepare behavior over time graphs (reference mode),
Develop causal loop diagram (influence diagram),
Analyze loop behavior over time and identify loop types,
Identify system archetypes,
Identify key leverage points,
Develop intervention strategies

3 System dynamicmodeling Develop a systems map or rich picture,
Define variable types and construct stock-flow diagrams,
Collect detailed information and data,
Develop a simulation model,
Simulate steady -state/stability conditions,
Reproduce reference mode behavior (base case),
Validate the model,
Perform sensitivity analysis,
Design and analyze policies,
Develop and test strategies

4 Scenario planning andmodeling Plan general scope of scenarios,
Identify key drivers of change and keynote uncertainties,
Construct forced and learning scenarios,
Simulate scenarios with the model,
Evaluate robustness of the policies and strategies

5 Implementation and organizational learning Prepare a report and presentation to management team,
Communicate results and insights of proposed intervention to stakeholders,
Develop a microworld and learning lab based on the simulation model,
Use learning lab to examine mental models and facilitate

� theory development in the natural and social sciences
� dynamic decision making
� complex nonlinear dynamics” [36]

Systems Thinking andModelingMethodology

System Dynamics is one of the five phases of systems
thinking and modeling intervention methodology [6,21].
These distinct but related phases are as follows:

1. Problem structuring;
2. Causal loop modeling;
3. System dynamics modeling;
4. Scenario planning and modeling;
5. Implementation and organizational learning (learning

lab).

These phases follow a process, each involving a number of
steps, as outlined in Table 1. This process does not require
all phases to be undertaken, nor does each phase require
all the steps listed. Which phases and steps are included
in a particular project or intervention depends on the is-
sues or problems that have generated the systems enquiry

and the degree of effort that the organization is prepared
to commit to.

System Dynamics Modeling

This phase follows the causal modeling phase. Although
it is possible to go into this phase directly after problem
structuring, performing the causal modeling phase first
will enhance the conceptual rigor and learning power of
the systems approach. The completeness and wider in-
sights of systems thinking is generally absent from other
simulation modeling approaches, where causal modeling
does not play a part. The following steps are generally fol-
lowed in the system dynamics modeling phase.

1. Develop a high-level map or systems diagram show-
ing the main sectors of a potential simulation model,
or a ‘rich picture’ of the main variables and issues in-
volved in the system of interest.

2. Define variable types (e. g. stocks, flows, converters,
etc.) and construct stock flow diagrams for different
sectors of the model.
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3. Collect detailed, relevant data including media re-
ports, historical and statistical records, policy docu-
ments, previous studies, and stakeholder interviews.

4. Construct a computer simulation model based on the
causal loop diagrams or stock-flow diagrams. Identify
the initial values for the stocks (levels), parameter val-
ues for the relationships, and the structural relation-
ships between the variables using constants, graphical
relationships and mathematical functions where ap-
propriate. This stage involves using specialized com-
puter packages like STELLA, ithink, VENSIM, POW-
ERSIM, DYSMAP, COSMIC and Consideo.

5. Simulate the model over time. Select the initial value
for the beginning of the simulation run, specify the
unit of time for the simulation (e. g. hour, day, week,
month, year, etc.). Select the simulation interval (DT)
(e. g. 0.25, 0.5, 1.0) and the time horizon for the sim-
ulation run (i. e. the length of the simulation). Simu-
late model stability by generating steady state condi-
tions.

6. Produce graphical and tabular output for the base
case of the model. This can be produced using any
of the computer packages mentioned above. Compare
model behavior with historical trends or hypothesized
reference modes (behavior over time charts).

7. Verify model equations, parameters and boundaries,
and validate the model’s behavior over time. Carefully
inspect the graphical and tabular output generated by
the model.

8. Perform sensitivity tests to gauge the sensitivity of
model parameters and initial values. Identify areas of
greatest improvement (key leverage points) in the sys-
tem.

9. Design and test policies with the model to address the
issues of concern to management and to look for sys-
tem improvement.

10. Develop and test strategies (i. e. combinations of func-
tional policies, for example operations, marketing, fi-
nance, human resources, etc.).

Organizational Learning

(This section is adapted from [21])
Peter Senge, who popularized the concept through his
seminal book: The Fifth Discipline [30], describes a learn-
ing organization as one ‘which is continually expanding
its ability to create its future’. He identifies five core capa-
bilities (disciplines) of the learning organization that are
derived from three “higher orientations”: creative orien-
tation; generative conversation; and systems perspective.
“The reality each of us sees and understands depend on

what we believe is there. By learning the principles of the
five disciplines, teams begin to understand how they can
think and inquire that reality, so that they can collaborate
in discussions and in working together create the results
that matter [to them].”

As Fig. 1 shows the learning organization capabilities
are dynamically interrelated, and collectively they lead to
organizational learning.

Senge maintains that Creative orientation is the source
of a genuine desire to excel. It is the source of an intrin-
sic motivation and drive to achieve. It relinquishes per-
sonal gains in favor of the common good. Generative con-
versation refers to a deep and meaningful dialog to cre-
ate unity of thought and action. Systems perspective is the
ability to see things holistically by understanding the in-
terconnectedness of the parts. The foregoing elements give
rise to the five core capabilities of learning organizations,
namely: personal mastery; shared vision; mental models;
team learning and dialog; and systems thinking. These five
disciplines are described below. Figure 1 below shows the
core capabilities and their relationships.

Personal Mastery

Senge [30] describes that personal mastery is the corner-
stone and ‘spiritual’ foundation of the learning organiza-
tion. It is born out of a creative orientation and systemic
perspective. Personal mastery instils a genuine desire to do
well and to serve a noble purpose. People exhibiting high
levels of personal mastery focus “on the desired result it-
self, not the process or the means they assume necessary
to achieve that result” [30]. These people can “successfully
focus on their ultimate intrinsic desires, not on secondary
goals. This is a cornerstone of Personal Mastery”. Per-
sonal mastery also requires a commitment to truth, which
means to continually challenge “theories of why things are
the way they are”. Without committing to the truth, peo-
ple all too quickly revert to old communication routines
which can distort reality and prevent them from knowing
where they really stand.

Shared Vision

It is commonly assumed that in contemporary organiza-
tions senior management can develop a vision which em-
ployees will follow with genuine commitment. This is a fal-
lacy. Simply promoting a ‘vision statement’ could result in
a sense of apathy, complacency and resentment. Instead,
there needs to be a genuine endeavor to understand what
people will commit to. The overriding vision of the group
must build on the personal visions of its members. Shared
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System Dynamics and Organizational Learning, Figure 1
The core capabilities of a learning organization (Source: [19])

vision should align diverse views and feelings into a uni-
fied focus.

This is emphasized by Arie de Geus [9] when he de-
scribes what makes a truly extraordinary organization.
“The feeling of belonging to an organization and iden-
tifying with its achievements is often dismissed as soft.
But case histories repeatedly show that a sense of com-
munity is essential for long term survival”. For exam-
ple, when Apple Corporation challenged IBM, it was in
its ‘adolescent’ years, characterized by creativity, confi-
dence and even defiance. This is similar to the spirit in
Team New Zealand when it competed against the big-
ger-budget syndicates! Within these organizations there is
a real passion for the outcome; a common vision for suc-
cess [19].

Creating a shared vision is the most fundamental job
of a leader [26]. By creating a vision, the leader provides
a vehicle for people to develop commitment, a common
goal around which people can rally, and a way for peo-
ple to feel successful. The leader must appeal to people’s
emotions if they are to be energized towards achieving the
goal. Emotional acceptance of, and belief in, a vision is far
more powerful in energizing team members than is intel-
lectual recognition that the vision is simply a ‘good idea’.
One of the most powerful ways of communicating a vi-
sion is through a leader’s personal example and actions,
demonstrating behavior that symbolizes and furthers that
vision.

Mental Model and Leadership

Mental models reflect beliefs, assumptions and feelings
that shape one’s world views and actions. They are formed
through family, education, professional and social learn-
ing based, on the most part, on cultural and social norms.
Mental models, however, can be altered and aligned.

Organizations are often constrained by deep-seated
belief systems, resulting in preconceived ideas on how
things ought to perform. Goodstein and Burke ([14] p. 10),
pioneers in the field of social psychology of organizations,
observed that ‘the first step in any change process is to un-
freeze the present patterns of behavior as a way of man-
aging resistance to change’. The leader has a pivotal role
in dismantling negative mental models and shaping new
ones.

In order to get people to engage in open discussions of
issues that affect the organization, a leader must appeal to
their emotions and must get beyond the superficial level of
communication. In the 1970s Shell Oil undertook major
changes in its leadership approach and communications
style. According to a manager at Shell, “When I tried to
talk personally about an issue rather than say ‘here’s the
answer’, it was powerful. It caused me to engage in di-
alog with others that resulted in mutual learning on all
sides” ([7] p. 71).

The leader is a ‘designer’, and part of that role is
designing the governing ideas of purpose and core val-
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ues by which people will live [30,31]. In this role, the
leader must propose and model the manner in which the
group has to operate internally. This provides ample op-
portunities for leaders to examine their deeply held as-
sumptions about the task, the means to accomplish it, the
uniqueness of the people and the kinds of relationship
that should be fostered among the people. Only after peo-
ple have observed and experienced the organizational val-
ues in practice would these values become the basis for
prolonged group behavior. These values should be man-
ifested first and should be most visible in the leader’s own
behavior.

Leadership, especially in knowledge-based organiza-
tions, must be distributed and shared to a far greater ex-
tent than it was in the past. For example, in the Chicago
Bulls basketball team, Michael Jordan changed his role: it
became not only that of an individually brilliant player but
also that of a leader whose job it was to raise the level of
play of other teammembers. After this transition, the Bulls
began their record run of championship seasons [7].

Team Learning and Dialog

The word ‘dialog’ comes from the Greek words dia and
logos. It implies that when people engage in dialog, the
meaning moves through them – Thus, it enables them to
‘see through words’ [16]. Dialog is an essential require-
ment for organizational learning. It results from genera-
tive conversation, shared vision, and transparent mental
models. Dialog creates a deep sense of listening and sus-
pending one’s own views. Feedback is an integral aspect of
dialog.

Communication routines in organizations are gener-
ally anti-learning and promote mediocrity. They include
‘defensive routines’ [2] – statement that can stifle dialog
and innovative thinking. Exposing and unlearning such
routines, and understanding the powerful detrimental im-
pact they have on learning, are serious challenges many
organizations face if they are to create effective learning
environments.

Many leaders are charismatic and are highly eloquent
when it comes to presenting their ideas; that’s often why
they get to the top of the organization. However, many ap-
pear to lack the ability to extract the very best from em-
ployees in a non-threatening manner.Without this ability,
leaders may miss many good ideas, or might act on many
bad ones.

In a group context, encouragement from the leader
and mutual encouragement among group members is es-
sential. Furthermore, personal differences must be put
aside in order for effective dialog to ensue.

How Organizations Learn

(This section is edited from Wikipedia: http://en.
wikipedia.org/wiki/Organizational_learning)
“Argyris and Schon were the first to propose concepts and
models that facilitate organizational learning, the follow-
ing literatures have followed in the tradition of their work:

� March andOlsen [23] attempt to link up individual and
organizational learning. In their model, individual be-
liefs lead to individual action, which in turn may lead
to an organizational action and a response from the en-
vironment which may induce improved individual be-
liefs and the cycle then repeats over and over. Learning
occurs as better beliefs produce better actions.

� Argyris and Schon [3] distinguish between single-loop
and double-loop learning, related to Gregory Bateson’s
concepts of first and second order learning. In sin-
gle-loop learning, individuals, groups, or organizations
modify their actions according to the difference be-
tween expected and obtained outcomes. In double-loop
learning, the entities (individuals, groups or organiza-
tion) question the values, assumptions and policies that
led to the actions in the first place; if they are able to
view and modify those, then second-order or double-
loop learning has taken place. Double loop learning is
the learning about single-loop learning.

� Kim [17], as well, in an article titled “The link between
individual and organizational learning”, integrates Ar-
gyris, March and Olsen and another model by Kofman
into a single comprehensive model; Further, he ana-
lyzes all the possible breakdowns in the information
flows in the model, leading to failures in organizational
learning; For instance, what happens if an individual
action is rejected by the organization for political or
other reasons and therefore no organizational action
takes place?

� Nonaka and Takeuchi [27] developed a four stage spi-
ral model of organizational learning. They started by
differentiating Polanyi’s concept of “tacit knowledge”
from “explicit knowledge” and describe a process of
alternating between the two. Tacit knowledge is per-
sonal, context specific, subjective knowledge, whereas
explicit knowledge is codified, systematic, formal, and
easy to communicate. The tacit knowledge of key per-
sonnel within the organization can be made explicit,
codified in manuals, and incorporated into new prod-
ucts and processes. This process they called “external-
ization”. The reverse process (from explicit to implicit)
they call “internalization” because it involves employ-
ees internalizing an organization’s formal rules, pro-
cedures, and other forms of explicit knowledge. They

http://en.wikipedia.org/wiki/Organizational_learning
http://en.wikipedia.org/wiki/Organizational_learning
http://en.wikipedia.org/wiki/Chris_Argyris
http://en.wikipedia.org/wiki/Donald_Schon
http://en.wikipedia.org/wiki/Chris_Argyris
http://en.wikipedia.org/wiki/Donald_Schon
http://en.wikipedia.org/wiki/Gregory_Bateson
http://en.wikipedia.org/wiki/Gregory_Bateson
http://en.wikipedia.org/wiki/Tacit_knowledge
http://en.wikipedia.org/wiki/Tacit_knowledge
http://en.wikipedia.org/wiki/Explicit_knowledge
http://en.wikipedia.org/wiki/Explicit_knowledge
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also use the term “socialization” to denote the sharing
of tacit knowledge, and the term “combination” to de-
note the dissemination of codified knowledge. Accord-
ing to this model, knowledge creation and organiza-
tional learning take a path of socialization, externaliza-
tion, combination, internalization, socialization, exter-
nalization, combination. . . etc. in an infinite spiral.

� Flood [10] discusses the concept of organizational
learning from Peter Senge and the origins of the theory
from Argyris and Schon. The author aims to “re-think”
Senge’s The Fifth Discipline through systems theory.
The author develops the concepts by integrating them
with key theorists such as Bertalanffy, Churchman,
Beer, Checkland and Ackoff. Conceptualizing organi-
zational learning in terms of structure, process, mean-
ing, ideology and knowledge, the author provides in-
sights into Senge within the context of the philosophy
of science and the way in which systems theorists
were influenced by twentieth-century advances from
the classical assumptions of science.

� Nick Bontis et al. [4] empirically tested amodel of orga-
nizational learning that encompassed both stocks and
flows of knowledge across three levels of analysis: indi-
vidual, team and organization. Results showed a neg-
ative and statistically significant relationship between
the misalignment of stocks and flows and organiza-
tional performance.

� Imants [15] provides theory development for or-
ganizational learning in schools within the context
of teachers’ professional communities as learning
communities, which is compared and contrasted to
teaching communities of practice. Detailed with an
analysis of the paradoxes for organizational learning in
schools, twomechanisms for professional development
and organizational learning, (1) steering information
about teaching and learning and (2) encouraging in-
teraction among teachers and workers, are defined as
critical for effective organizational learning.

� Common [8] discusses the concept of organizational
learning in a political environment to improve public
policy-making. The author details the initial uncon-
troversial reception of organizational learning in the
public sector and the development of the concept with
the learning organization. Definitional problems in ap-
plying the concept to public policy are addressed, not-
ing research in UK local government that concludes
on the obstacles for organizational learning in the pub-
lic sector: (1) overemphasis of the individual, (2) resis-
tance to change and politics, (3) social learning is self-
limiting, i. e. individualism, and (4) political“blame cul-
ture”. The concepts of policy learning and policy trans-

fer are then defined with detail on the conditions for
realizing organizational learning in the public sector.”

Modeling for Organizational Learning

In general, the process ofmodel building can be an effective
conduit for collective learning. System Dynamics model-
ing, in particular, can be used to enhance organizational
learning [35] through rapid feedback and experimentation
and its facility to test assumptions and mental models. As
we have discussed, dealing effectively with mental models
is one of the core competencies for organizational learning

Ackoff [1] likens complex problems to “messes”.
“Messy problems are defined as situations in which there
are large differences of opinion about the problem or even
on the question of whether there is a problem. Messy
situations make it difficult for a management team to
reach agreement. System Dynamics modeling with groups
known as GroupModel Building (GMB) is a powerful tool
for dealing with these. SD andGMB are especially effective
in dealing with semi-structured and ill-structured decision
situations.”

GMB offers an opportunity to align and share piece-
meal mental models and create the possibility of assimi-
lating and integrating partial mental models into a holistic
system description [38,39]. GMB and SD can help uncover
‘illusions’ that may occur due to the fact that the definition
of a problem may be a socially constructed phenomenon
that has not been put to test ([18] p. 84).

Learning Laboratory

(This section is adapted from [21], Chapter 6)
Learning laboratory is a setting as well as a process in
which a group can learn together. The purpose of the
learning lab is to enable managers to test their long held
assumptions and to experiment and ‘see’ the consequences
of their actions, policies and strategies. This often re-
sults in finding inconsistencies and the discovery of un-
intended consequences of actions and decisions, before
they are implemented. System Dynamics models known
as Microworlds or Management Flight Simulators (MFS)
are the ‘engine’ behind the learning lab. “Just as an air-
line uses flight simulators to help pilots learn, system dy-
namics is, partly, a method for developing management
flight simulators, often computer simulation models, to
help us learn about dynamic complexity, understand the
sources of policy resistance, and design more effective
policies.” ([35], p. 4)

A learning lab is distinct from so-called management
games. In management games, the players are required to
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compete – design the ‘best’ strategy and ‘beat’ other players
or teams. The competitive nature of management games
often encourages aggressive and individualistic behavior
with scant regard for group learning and gaining deep in-
sights. The learning lab, in contrast, aims to enhance learn-
ing: To test individual and group mental models and to
provide deeper understanding and insights into why sys-
tems behave the way they do. This will help the partic-
ipants to test their theories and discover inconsistencies
and ‘blind spots’ in policies and strategies before they are
implemented.

A significant benefit of the learning lab stems from
the process in which participants examine, reveal and test
their mental models and those of their organization. The
learning lab can also help participants

� To align strategic thinking with operational decisions;
� To connect short-term and long-term measures;
� To facilitate integration within and outside the organi-

zation;
� To undertake experimentation and learning;
� To balance competition with collaboration.

Managerial Practice Field

Team and teamwork are parts of the lexicons of numer-
ous organizations today. Company after company has re-
organized work around a variety of team concepts. From
factories to hospitals, titles like ‘manager’ and ‘supervisor’
have been replaced by roles such as ‘facilitator’ and ‘team
leader’. Despite this level of attention to team and team-
work the expected benefits have been marginal at best.

But when we examine real teams, such as sporting
teams, orchestras or ballet companies more closely, they
all share one key characteristic. That is they practice a lot
more than they ‘perform’. Practice involves allowing time
and space to experiment with new ways, try different ap-
proaches and most importantly, make mistakes without
the fear of failure. In fact, making mistakes is indispens-
able to learning. One cannot learn from doing things right
all the time! Yet a great deal of organizational energy and
attention is devoted to the prevention and masking of
mistakes.

But, what is the practice field for management teams?
The fact is that the practice field is, by and large, absent
from the managerial world. In other words, there is no
time and no space for management to ‘practice’ in the true
sense of the word – to experiment, make mistakes and
learn together. In this era of restructuring and downsizing,
lack of time is the greatest impediment to managerial and
organizational learning. As a recent advertisement by IBM
reads, “Innovative Thinking! We don’t even have time for

bad thinking”. The pace in the modern work environment
is so unrelenting that there is virtually no room for man-
agers to slow down, to practice, to reflect and learn. The
consequence of this lack of practice and learning space is
grave, in that most organizations only achieve a small frac-
tion of their potential – about 5%, according to Jay For-
rester, the father of System Dynamics [13].

In order to fill this gap, the concept of learning lab-
oratory has been developed to provide practice fields for
managers. The learning lab allows learning to become an
integral part of managerial work and helps learning to be-
come institutionalized [17].

AligningMental Models
Through the Learning Laboratory

Mental models are formed throughout one’s life. Family,
school, culture, religion, profession and social norms play
important roles in this formation. Therefore, modifying
one’s mental model is not a small matter. The most effec-
tive way to check one’s mental models is to experience al-
ternative realities at first hand and see their implications
with a new ‘lens’ [5].

There are rarely any opportunities in the course of
a manager’s daily work for him/her to engage in lengthy,
drawn-out experimentation. Learning in a ‘laboratory’
setting is a viable and powerful alternative. Fortunately,
advanced computers and sophisticated system dynamics
software have enabled the creation of managerial learning
labs where managers can experiment, test their theories
and learn rapidly. Thus, learning labs can play a significant
role in clarifying and changing mental models. Learning
lab deals with mental models at three levels [33], as de-
scribed below.

� Mapping mental models. This step begins at the con-
ceptualization phase. Here, the learning lab partici-
pants articulate and clarify their assumptions, views,
opinions, and biases regarding the issue at hand.

� Challenging mental models. The participants identify
and discuss inconsistencies and contradictions in their
assumptions. This step will begin at the conceptualiza-
tions phase and will continue to the experimentation
phase.

� Improving mental models. Having conducted experi-
mentation and testing, the participants reflect on the
outcomes. This may cause them to alter, adjust, im-
prove and harmonize their mental models.

The laboratory setting provides a neutral and ‘safe’ space
for the participants to create a shared understanding of
complex and endemic issues. The following characteristics
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of the learning lab provide a powerful catalyst for align-
ment of divergent mental models in the organization.

� The laboratory environment is neutral and non-threat-
ening. The emphasis is on learning and theory build-
ing (what we don’t know), not on winning or display of
knowledge.

� Lack of hierarchy. Managers and staff are equal in this
environment. The traditional hierarchy is minimized in
the laboratory setting.

� The response time is fast. Hence, the feedback cycle is
short, which leads to rapid learning.

� There is no cost or ‘loss of face’ attached to failure.
Hence, it is safe to makemistakes. In fact, mistakes pro-
vide opportunities for learning.

� People can see the consequences of their actions first
hand. No one attempts to convince or teach anyone else
or force his or her preconceived views on others. People
learn by themselves and through group interactions.

Implications for Management

The practice field and the learning lab concepts offer fresh
and challenging implications for managers and their role.
They suggest that a leader/manager should think as a sci-
entist, be open to and welcome hard questions, experiment
with new ideas, and be prepared to bewrong. This requires
managers to learn systems thinking skills and use them
not just for ‘solving’ problems but as powerful tools for
communication, team building and organizational learn-
ing. This means that an effective leader should be the ‘de-
signer’ of the ship and not its captain [31]. Once they have
designed a new structure, strategy, policy or procedure
then the managers/leaders should allow (i. e. create a prac-
tice field for) the staff to experience the new design, and
experiment with it and learn for themselves – the desired
outcome is shared understanding leading to alignment of
thoughts and actions. This is the essence of organizational
learning.

Future Directions

Agent-Based Modeling (ABM)

Agent based modeling (ABM) is an emerging model-
ing technology which draws its theories and techniques
from complexity science [29]. While System Dynamics
and Agent-Based Modeling (ABM) use different model-
ing philosophies and approaches, they can be used com-
plementarily and synergistically.

System Dynamics focuses on modeling structures (i. e.
relationships, policies, strategies) that underlie behavior

of systems. This may be viewed as a weakness of sys-
tem dynamics approach in that behavior is assumed to
be solely a function of structure (model relationships de-
fined a priori). In contrast, in ABM, organizations are
modeled as a system of semi-autonomous decision-mak-
ing elements – purposeful individuals called agents. Each
agent individually assesses its situation and makes de-
cisions based upon value hierarchies representing goals,
preferences, and standards for behavior. Thus, macro-be-
havior is not modeled separately but emerges from the mi-
cro-decisions of individual agents. In other words, in agent
based modeling; “emergent” behavior is expected as a re-
sult of agents’ interactions. This is a key difference between
the two approaches.

While system dynamics acknowledges the critical role
of individual and organizational mental models (e. g., mo-
tivations, values, norms, biases, etc.) it does not explicitly
model them. SD utilizes factual data or “cold knowledge”
and does not take into account decision makers ‘mood’.
In contrast, ABM attempts to capture “warm knowledge”,
representing emotional and human context of decision-
making.

Recent advances in video game technology allow the
development of multi-agent, artificial ‘society’ simulators
with capabilities for modeling physiology, stress and emo-
tion in decision-making [34]. At the simplest level, an
agent-based model consists of a system of agents and their
relationships. This new approach enables superior under-
standing of the complexity in organizations and their rel-
evant business environments. This in turn provides an
opportunity for new sophistications in game-play that
enhances decision-making. Experience with agent-based
modeling shows that even a simple agent-basedmodel can
exhibit complex behavior patterns and provide valuable
information about the dynamics of the real world system
that emulates them.

Despite their differences, SD and ABM can be used in
a complementary fashion. Both ABM and SD are power-
ful tools for transforming information into knowledge and
understanding leading to individual and group learning.
However, the transition from knowledge to understand-
ing may not be immediate or transparent. This requires
a deep shift in mental models through experimentation
and group learning.

Systems Thinking and Sustainability

Systems Thinking has a natural affinity with sustainabil-
ity modeling and management. Sustainability issues are
complex; cut across several disciplines; involve multi-
ple stakeholders and require a long term integrated ap-
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proach. Thus, the systems paradigm and tools have di-
rect and powerful applications in sustainability issues and
management.

The applications of system dynamics in sustainability
go back to the early 1970s with Jay Forrester’s “World2
and World3 analyzes against 30 years of history”, fol-
lowed by “World Dynamics” and “Limits to Growth” [24]
and “Beyond the Limits” [25]. “The politics of the envi-
ronment has also evolved dramatically since 1970. Pub-
lic awareness of the reality of the environmental chal-
lenge has risen; Ministries of Environment have become
commonplace” ([28] p. 220). As an example today con-
cern over carbon emissions has already become an inter-
national currency. As a result, sustainability has brought
a fresh challenge for governments, business and industry,
scientists, farmers and all the citizens of the world col-
lectively to find systemic solutions that are mutually and
globally agreeable. Systems Thinking and System dynam-
ics can make real and valuable contributions to addressing
this challenge.
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ing the structure of decisions in feedback models.)

Randers J (ed) (1980) Elements of the system dynamics method.
Productivity Press, Cambridge (Includes Mass on Stock and
Flow Variables and the Dynamics of Supply and Demand; Mass
& Senge onAlternative Tests for SelectingModel Variables; and
Randers’ very useful Guidelines for Model Conceptualization.)

Richardson GP (1986) Problems with causal-loop diagrams. Syst
Dyn Rev 2(2):158–170 (Causal-loop diagrams cannot show
stock-and-flow structure explicitly and can obscure important
dynamics. Offers guidelines for proper use and interpretation
of CLDs.)

Richardson GP, Pugh AL III (1981) Introduction to system dynam-
icsmodelingwithDYNAMO. Productivity Press, Cambridge (In-
troductory text with excellent treatment of conceptualization,
stocks and flows, formulation, and analysis. A good way to
learn the DYNAMO simulation language as well.)

Roberts N, Andersen DF, Deal RM, Grant MS, Shaffer WA (1983) In-
troduction to computer simulation: A system dynamics mod-
eling approach. Addison-Wesley, Reading (Easy-to-understand
introductory text, complete with exercises.)

Sterman JD (1984) Appropriate Summary Statistics for Evaluat-
ing the Historical Fit of System Dynamics Models. Dynamica
10(2):51–66 (Describes the use of rigorous statistical tools for
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establishing model validity. Shows how Theil statistics can be
used to assess goodness-of-fit in dynamic models.)

Wolstenholme EF (1990) System enquiry – A system dynamics ap-
proach. Wiley, Chichester (Describes a research methodology
for building a system dynamics analysis. Emphasizes causal-
loop diagramming, mapping of mental models, and other
tools for qualitative system dynamics.)

Modeling for Learning: Systems Thinking
and Organizational Learning

Kim D (1989) Learning laboratories: Designing a reflective learning
environment. In: Milling PM, Zahn EOK (eds) Computer-based
management of complex systems: International system dy-
namics conference. Springer, Berlin (A case-study of a process
designed to convey dynamic insights to participants in a work-
shop setting designed around a management flight simulator
game.)

Morecroft JDW (1988) System dynamics and microworlds for pol-
icymakers. Europ J Operat Res 35(3):301–320 (Describes the
model-building tools available to managers and policymak-
ers.)

Morecroft JDW, Sterman JD (eds) (1992)Modelling for Learning. Eur
J Operat Res Special Issue 59(1) (17 papers describing models
andmethods to enhance learning, both for individuals and or-
ganizations. Covers elicitation and group process techniques,
management flight simulators, and tools for capturing, repre-
senting, and simulatingmental and formal models.)

Richmond B (1990) Systems thinking: A critical set of critical think-
ing skills for the 90’s and beyond. In: Andersen DF, Richard-
son GP, Sterman JD (eds) International System Dynamics Con-
ference, 1990 (Proposes a process and skill set to teach sys-
tems thinking. The process relies on learner-directed learning.
The skill set includes general scientific reasoning and SD, sup-
ported by simulation.)

Senge PM (1990) Catalyzing systems thinking within organiza-
tions. In: Masarik F (ed) Advances in organization develop-
ment. Ablex, Norwood (Presents a case study in which the use
of system dynamics generated insights into a chronic business
problem. Steps in generating, testing and disseminating a sys-
tem dynamics model are described.)

Senge PM (1990) The fifth discipline: The art and practice of
the learning organization. Doubleday Currency, New York (In-
troduces systems thinking as part of a wider approach to
organizational learning. Conveys basic system structures to
a non-technical business audience bymeans of anecdotes and
archetypes.)

Decision Making
Morecroft JDW (1983) System dynamics: Portraying bounded ra-

tionality. Omega 11(2):131–142 (SDmodels represent decision
making as boundedly rational. Reviews and contrasts the con-
cept of bounded rationality as developed by Herbert Simon.
Uses Forrester’s Market Growth model to show how locally ra-
tional decision rules can interact to yield globally dysfunctional
outcomes.)

Morecroft JDW (1985) Rationality in the Analysis of Behavioral Sim-
ulation Models. Manag Sci 31(7):900–916 (Shows how the in-
tended rationality of decision rules in SD models can be as-
sessed, and how one analyzes a simulation model and output
to understand the assumed bounds on rationality in dynamic
models. A model of salesforce effort allocation is used to illus-
trate.)

Sterman JD (1987) Expectation formation in behavioral simulation

models. Behav Sci 32:190–211 (Proposes and tests a simple
dynamic model of expectation formation in dynamic models
(the TREND function). Shows how the TREND function explains
a forty year history of inflation forecasts and several different
types of long-term energy demand forecasts.)

Sterman JD (1989) Misperceptions of feedback in dynamic deci-
sion making. Organ Behav Hum Decis Process 43(3):301–335
(Describes an experiment with a simple economic system in
which subjects systematically generate costly oscillations. Es-
timates decision rules to characterize subject behavior. Finds
that people systematically ignore feedbacks, time delays, ac-
cumulations, andnonlinearities. Thesemisperceptions of feed-
back lead to poor quality decisions when dynamic complexity
is high.)

Sterman JD (1989) Modeling managerial behavior: Misperceptions
of feedback in a dynamic decision making experiment. Manag
Sci 35(3):321–339 (Analyzes the results of the Beer Distribution
Game. Misperceptions of feedback are found to cause poor
performance in the beer game, as in other experiments. Es-
timates of the subjects’ decision rules show they ignore time
delays, accumulations, feedbacks, and nonlinearities.)

Selected Applications of SD
Abdel-Hamid TK, Madnick SE (1991) Software project dynamics:

An integrated approach. Prentice Hall, Englewood Cliffs (Inte-
grated SD model of the software development process. The
model covers design, coding, reviewing, and quality assur-
ance; these are integrated with resource planning, scheduling,
andmanagement of software projects. Includes full documen-
tation, validation, and policy tests.)

Cooper KG (1980) Naval ship production: A claim settled and
a framework built. Interfaces 10(6) (An SD model was used to
quantify the causes of cost overruns in a large military ship-
building project. One of the first and most successful applica-
tions of system dynamics to large-scale project management;
initiated a long line of related project modeling work.)

Ford A, Bull M (1989) Using system dynamics for conservation pol-
icy analysis in the pacific northwest. Syst Dyn Rev 5(1):1–15
(Describes the use of an extensive SD model of electric power
generation with endogenous demand. The model is used to
evaluate strategies for conservation and new generation ca-
pacity. Includes discussion of implementation and integration
of the SDmodel with other existing planning tools.)

Gardiner LK, Shreckengost RC (1987) A system dynamics model for
estimating heroin imports into the United States. Syst Dyn Rev
3(1):8–27 (Describes how the CIA used SD to estimate the ille-
gal importation of drugs to the US.)

Homer JB (1985) Worker burnout: A dynamic model with impli-
cations for prevention and control. Syst Dyn Rev 1(1):42–62
(Explains how knowledge workers can experience cycles of
burnout through a simple system dynamics model. Avoiding
burnout requires that one work at less than maximum capac-
ity.)

Homer JB (1987) A diffusion model with application to evolving
medical technologies. Technol Forecast Soc Chang 31(3):197–
218 (Presents a generic model of the diffusion of new medical
technologies. Case studies of the cardiac pacemaker and an
antibiotic illustrate how the same model can explain the dif-
ferent diffusion dynamics of successful and unsuccessful tech-
nologies.)

Homer JB (1993) A system dynamics model of national cocaine
prevalence. Syst Dyn Rev 9(1):49–78 (An excellentmodel of the
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interacting dynamics of addiction, policy-setting, and enforce-
ment.)

Jensen KS, Mosekilde E, Holstein-Rathlou N (1985) Self-sustained
oscillations and chaotic behaviour in kidney pressure regula-
tion. In: Prigogine I, Sanglier M (eds) Laws of nature and hu-
man conduct. Taskforce of Research Information and Study on
Science, Brussels (Presents a system dynamicsmodel of the dy-
namics of rat kidneys. Experimental data show previously un-
explained oscillations, sometimes chaotic. The model explains
how these fluctuations arise. Excellent example of SD applied
to physiology.)

Levin G, Hirsch GB, Roberts EB (1975) The persistent poppy: A com-
puter-aided search for heroin policy. Ballinger, Cambridge
(Examines the interactions within a community among drug
users, the police and justice system, treatment agencies, and
the citizens. Analyzes policies designed to restore the commu-
nity’s health.)

Levin G, Roberts EB, Hirsch GB, Kligler DS, Roberts N, Wilder JF
(1976) The Dynamics of Human Service Delivery. Ballinger,
Cambridge (Presents a generic theory of human service deliv-
ery, with case studies and examples drawn frommental health
care, dental planning, elementary education, and outpatient
care.)

Naill RF (1992) A system dynamics model for national energy policy
planning. Syst Dyn Rev 8(1):1–19

Naill RF, Belanger S, Klinger A, Peterson E (1992) An analysis of
the cost effectiveness of US energy policies to mitigate global
warming. Syst Dyn Rev 8(2):111–128 (Reviews the 20 year his-
tory of the SD energy models used by the US Dept. of Energy
to forecast and analyze policy options for national energy se-
curity, including the impact of US policies on global climate
change.)

Sklar Reichelt K (1990) Halter marine: A case study of the dangers
of litigation. (Working Paper No. D-4179). System Dynamics
Group, Sloan School of Management, MIT, Cambridge (A case-
study illustrating the use of system dynamics in litigation. Suit-
able for classroom teaching.)

Sturis J, Polonsky KS, Mosekilde E, Van Cauter E (1991) Com-
puter model for mechanisms underlying ultradian oscillations
of insulin and glucose. Am J Physiol 260(Endocrinol. Metab.
23):E801–E809 (New experimental data show that the human
glucose/insulin system is inherently oscillatory. An SD model
explains these dynamics. The model is validated against de-
tailed physiological data.)

Cross-Fertilization and Comparative Methodology
Allen PM (1988) Dynamic models of evolving systems. Syst Dyn

Rev 4(1–2):109–130 (Reviews approaches to nonlinear dynam-
ics, self-organization, and evolution developed in the Brussels
school by Prigogine, Allen, and others. Provides illustrations
and examples.)

Kim DH (1990) Toward learning organizations: Integrating total
quality control and systems thinking. (Working Paper No. D-
4036). System Dynamics Group, Sloan School of Management,
MIT, Cambridge (Argues that SD and Total Quality Manage-
ment are complementary approaches to improvement and
organizational learning. Systems thinking and modeling are
needed to speed the improvement cycle for processes with
long time delays.)

Meadows DH, Robinson JM (1985) The electronic oracle: Computer
models and social decisions. Wiley (Comparative assessment
of the underlying assumptions, boundary, limitations, anduses

of different models, including optimization, simulation, and
econometrics. Offers guidelines for assessing model assump-
tions, including ways to recognize the implicit biases of each
modeling paradigm.)

Powers WT (1990) Control theory: A model of organisms. Syst Dyn
Rev 6(1):1–20 (An explicit feedback control perspective on per-
ception and decision making in living organisms. Argues the
behaviorist and cognitive paradigms have fundamentally mis-
understood the concept of feedback. For Powers, feedback al-
lows organisms to control perceptions by altering behavior.)

Radzicki MJ (1990) Methodologia oeconomiae et systematis dy-
namis. Syst Dyn Rev 6(2):123–147 (Surveys the institutional-
ist paradigm in economics and argues that system dynamics
is compatible with the institutionalist perspective. The SD ap-
proach offers a means by which institutional theories can be
formalized and tested.)

Sterman JD (1985) The growth of knowledge: Testing a theory of
scientific revolutions with a formal model. Technol Forecast
Soc Chang 28(2):93–122 (Presents a formal dynamic model of
TS Kuhn’s theory of scientific revolutions.)

Sterman JD (1988) A skeptic’s guide to computer models. In: Grant
L, Lanham MD (eds) Foresight and national decisions. Univer-
sity Press of America (Reviews different modeling methods
and their underlying assumptions in nontechnical language.
Provides a list of questions model users should ask to assess
whether a model or method are appropriate to the problem.)

Other Themes: Pulling the Threads Together
Cooper K, Steinhurst W (eds) (1992) The system dynamics society

bibliography. System Dynamics Society. Available from Julie
Pugh, 49 Bedford Rd., Lincoln MA, USA 01773. (Lists over 3,000
system dynamics journal articles, books, conference proceed-
ings and working papers. Available in computer-readable for-
mat and compatible with bibliographic software)

Meadows DH (1989) System dynamics meets the press. Syst Dyn
Rev 5(1):68–80 (Reviews the history of encounters between SD
and the media. Offers guidelines for effective communication
to the public at large. Stresses the importance of communicat-
ing even the simplest system concepts.)

Meadows DH (1991) The global citizen. Island Press, Washington
(A collection of Dana’s syndicated newspaper columns apply-
ing system dynamics principles to problems of everyday life,
from organic farming to the fall of the Soviet Union. Empha-
sizes environmental issues.)

Richardson GP (1991) Feedback thought in social science. Uni-
versity of Pennsylvania Press (Traces the history of the con-
cept of feedback in the social sciences through two threads
of thought – the cybernetic and feedback threads. System dy-
namics is placed in context in a readable and scholarly man-
ner.)

Software
DYNAMO. Pugh-Roberts Associates, Cambridge MA. (The first

widely-used computer language developed to simulate sys-
tem dynamics models, DYNAMO is still in use, available for
mainframes and PCs. Many of the models in the system dy-
namics literature were simulated in DYNAMO)

DYSMAP. University of Salford, UK (PC-based simulation language
with syntax similar to DYNAMO. Includes optimization capabil-
ity based on hill-climbing.)

Microworld Creator and S^4. Microworlds Inc., Cambridge MA
(Easy to use environment for simulation and gaming. S^4, the
‘industrial strength’ version, supports arrays and includes diag-
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nostics for analyzing behavior. Both Creator and S^4 support
user-defined information displays and facilitate rapid develop-
ment of management flight simulators.)

STELLA and ithink. High Performance Systems, Hanover NH. (User-
friendly modeling software with full graphical interface. Mod-
els are entered graphically, at the level of the stock and flow

diagram.Widely used in education from elementary school up;
also used in research and practice.)

Vensim. Ventana Systems, Harvard MA. (Powerful simulation en-
vironment for SD models. Runs on workstations and PCs. In-
cludes array capability and a wide range of features for analyz-
ingmodel behavior.)
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Glossary

Cybernetics The science of communication and control
in complex, dynamical systems. The core objects of
study are information, communication, feedback and
adaptation. In the newer versions of cybernetics, the
emphasis is on observation, self-organization, self-ref-
erence and learning.

Dynamical system The dynamical system concept is
a mathematical formalization of time-dependent pro-
cesses. Examples include themathematicalmodels that
describe the swinging of a clock pendulum, the flow of
water in a river, and the evolution of a population of
fish in a lake.

Law of requisite variety Ashby’s law of requisite variety
says: “Only variety can destroy variety”. It implies that
the varieties of two interacting systems must be in bal-
ance, if stability is to be achieved.

Organizational cybernetics The science which applies
cybernetic principles to organization. Synonyms are
Management Cybernetics andManagerial Cybernetics.

System There are many definitions of system. Two ex-
amples: A portion of the world sufficiently well de-
fined to be the subject of study; something character-
ized by a structure, for example, a social system (Ana-
tol Rapoport). A system is a family of relationships be-
tween its members acting as a whole (International So-
ciety for the Systems Sciences).

System dynamics A methodology and discipline for the
modeling, simulation and control of dynamic sys-
tems. The main emphasis falls on the role of struc-
ture and its relationship with the dynamic behavior of
systems, which are modeled as networks of informa-
tionally closed feedback loops between stock and flow
variables.

Systems approach A perspective of inquiry, education
andmanagement, which is based on system theory and
cybernetics.

System theory A formal science of the structure, behav-
ior, and development of systems. In fact there are
different system theories. General system theory is
a transdisciplinary framework for the description and
analysis of any kind of system. System theories have
been developed in many domains, e. g., mathematics,
computer science, engineering, sociology, psychother-
apy, biology and ecology.

Variety A technical term for complexity which denotes
the number of (potential) states of a system.

Definition of the Subject

The purpose of this chapter is to give an overview of the
role of system dynamics (SD) in the context of the evolu-
tion of the systems movement. This is necessary because
SD is often erroneously taken as the systems approach as
such, not as part of it. It is also requisite to show that the
processes of the evolution of both SD in particular and the
systems movement as a whole are intimately linked and
intertwined. Finally, in view of the purpose of the chapter
the actual and potential relationships between system dy-
namics and the other strands of the systemsmovement are
evaluated. This way, complementarities and synergies are
identified.

Introduction

The purpose of this contribution is to give an overview of
the role of system dynamics in the context of the evolution
of the systemsmovement. “Systemsmovement” – often re-
ferred to briefly as “systemics” – is a broad term, which
takes into account the fact that there is no single system
approach, but a range of different ones. The common de-
nominator of the different system approaches in our day is
that they share a worldview focused on complex dynamic
systems, and an interest in describing, explaining and de-
signing or at least influencing them. Therefore, most of the
system approaches offer not only a theory but also a way
of thinking (“systems thinking” or “systemic thinking”)
and a methodology for dealing with systemic issues or
problems.
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System dynamics (SD) is a discipline and a method-
ology for the modeling, simulation and control of com-
plex, dynamic systems. SD was developed by MIT pro-
fessor Jay W. Forrester (e. g. [20,21]) and has been prop-
agated by his students and associates. SD has grown to
a school of numerous academics and practitioners all over
the world. The particular approach of SD lies in repre-
senting the issues or systems-in-focus as meshes of closed
feedback loops made up of stocks and flows, in continuous
time and subject to delays.

The development of the system dynamics methodol-
ogy and the worldwide community that applies SD to
modeling and simulation in radically different contexts
suggest that it is a “systems approach” on its own. Nev-
ertheless, taking “system dynamics” as the (one and only)
synonym for “systemic thinking” would be going too far,
given the other approaches to systemic thinking as well as
a variety of system theories and methodologies, many of
which are complementary to SD. In any case, however, the
SD community has become the strongest “school” of the
Systems approach, if one takes the numbers of members in
organizations representing the different schools as a mea-
sure (by 2006, the SystemDynamics Society hadmore than
1000 members).

The rationale and structure of this contribution is as
follows. Starting with the emergence of the systems ap-
proach, the multiple roots and theoretical streams of sys-
temics are outlined. Next, the common grounds and dif-
ferences among different strands of the systems approach
are highlighted, and the various systems methodologies
are explored. Then the distinctive features of SD are an-
alyzed. Finally comes a reflection on the relationships of
SD with the rest of the systems movement as well as with
potential complementarities and synergies.

In Table 1, a time-line overview of some milestones in
the evolution of the systems approach in general and Sys-
tem Dynamics in particular is given. Elaborating on each
of the sources quoted therein would reach beyond the pur-
pose of this chapter. However, to convey a synoptic view,
a diagram showing the different systems approaches and
their interrelationships is provided in the Appendix “Sys-
tems Approaches – An Overview”.

Emergence of the Systems Approach

The systems movement has many roots and facets, with
some of its concepts going back as far as ancient Greece.
What we name as “the systems approach” today material-
ized in the first half of the twentieth century. At least two
important components should be mentioned: those pro-
posed by von Bertalanffy and by Wiener.

Ludwig von Bertalanffy, an American biologist of Aus-
trian origin, developed the idea that organized wholes of
any kind should be describable and, to a certain extent,
explainable, by means of the same categories, and ulti-
mately by one and the same formal apparatus. His gen-
eral systems theory triggered a whole movement which
has tried to identify invariant structures and mechanisms
across different kinds of organized wholes (for exam-
ple, hierarchy, teleology, purposefulness, differentiation,
morphogenesis, stability, ultrastability, emergence, and
evolution).

In 1948 Norbert Wiener, an American mathematician
at the Massachusetts Institute of Technology, published
his seminal book on Cybernetics, building upon interdisci-
plinary work carried out in cooperation with Bigelow, an
IBM engineer, and Rosenblueth, a physiologist. Wiener’s
opus became the transdisciplinary foundation for a new
science of capturing as well as designing control and
communication mechanisms in all kinds of dynamic sys-
tems [81]. Cyberneticists have been interested in concepts
such as information, communication, complexity, auton-
omy, interdependence, cooperation and conflict, self-pro-
duction (“autopoiesis”), self-organization, (self-) control,
self-reference and (self-) transformation of complex dy-
namic systems.

Along the genetic line of the tradition which led to
the evolution of General Systems Theory (von Berta-
lanffy, Boulding, Gerard, Miller, Rapoport) and Cyber-
netics (Wiener, McCulloch, Ashby, Powers, Pask, Beer),
a number of roots can be identified, in particular:

� Mathematics (for example, Newton, Poincaré, Lya-
punov, Lotka, Volterra, Rashevsky)

� Logic (for example, Epimenides, Leibniz, Boole, Russell
and Whitehead, Goedel, Spencer-Brown)

� Biology, including general physiology and neurophys-
iology (for example, Hippocrates, Cannon, Rosen-
blueth, McCulloch, Rosen)

� Engineering and computer science, including the re-
spective physical and mathematical foundations (for
example, Heron, Kepler,Watt, Euler, Fourier, Maxwell,
Hertz, Turing, Shannon and Weaver, von Neumann,
Walsh)

� Social and human sciences, including economics (for
example, Hume, Adam Smith, Adam Ferguson, John
Stuart Mill, Dewey, Bateson, Merton, Simon, Piaget).

In this last-mentioned strand of the systems movement,
one focus of inquiry is on the role of feedback in commu-
nication and control in (and between) organizations and
society, as well as in technical systems. The other focus of
interest is on the multidimensional nature and the multi-
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level structures of complex systems. Specific theory build-
ing, methodological developments and pertinent applica-
tions have occurred at the following levels:

� Individual and family levels (for example, systemic psy-
chotherapy, family therapy, holistic medicine, cogni-
tive therapy, reality therapy)

� Organizational and societal levels (for example, man-
agerial cybernetics, organizational cybernetics, socio-
cybernetics, social systems design, social ecology, learn-
ing organizations)

� The level of complex (socio-)technical systems (sys-
tems engineering)

The notion of “socio-technical systems” has become
widely used in the context of the design of organized
wholes involving interactions of people and technol-
ogy (for instance, Linstone’s multi-perspectives-frame-
work, known by way of the mnemonic TOP (Technical,
Organizational, Personal/individual).

As can be noted from these preliminaries, different
kinds of system theory and methodology have evolved
over time. One of these is a theory of dynamic systems by
Jay W. Forrester, which serves as a basis for the method-
ology of system dynamics. Two eminent titles are [20]
and [21]. In SD, the main emphasis falls on the role of
structure and its relationship with the dynamic behavior
of systems, modeled as networks of informationally closed
feedback loops between stock and flow variables. Several
othermathematical systems theories have been elaborated,
for example, mathematical general systems theory (Klir,
Pestel, Mesarovic and Takahara), as well as a whole stream
of theoretical developments which can be subsumed un-
der the terms “dynamic systems theory” or “theories of
non-linear dynamics” (for example, catastrophe theory,
chaos theory and complexity theory). Under the latter,
branches such as the theory of fractals (Mandelbrot), ge-
ometry of behavior (Abraham), self-organized critical-
ity (Bak), and network theory (Barabasi, Watts) are sub-
sumed. In this context, the term “sciences of complexity” is
used.

In addition, a number of mathematical theories, which
can be called “system theories,” have emerged in different
application contexts, examples of which are discernible in
the following fields:

� Engineering, namely information and communica-
tion theory (Shannon and Weaver), technology and
computer-aided systems theory (for example, control
theory, automata, cellular automata, agent-based mod-
eling, artificial intelligence, cybernetic machines, neu-
ral nets)

� Operations research (for example,modeling theory and
simulation methodologies, Markov chains, genetic al-
gorithms, fuzzy control, orthogonal sets, rough sets)

� Social sciences, economics in particular (for example,
game theory, decision theory)

� Biology (for example, Sabelli’s Bios theory of creation)
� Ecology (for example, E. and H. Odum’s systems

ecology).

Most of these theories are transdisciplinary in nature, i. e.,
they can be applied across disciplines. The Bios theory,
for example is applicable to clinical, social, ecological and
personal settings [54]. Examples of essentially non-math-
ematical system theories can be found in many different
areas of study, e. g.:

� Economics, namely its institutional/evolutionist strand
(Veblen, Myrdal, Boulding, Dopfer)

� Sociology (for example, Parsons’ and Luhmann’s social
system theories, Hall’s cultural systems theory)

� Political sciences (for example, Easton, Deutsch,
Wallerstein)

� Anthropology (for example, Levi Strauss’s structural-
ist-functionalist anthropology, Margaret Mead)

� Semiotics (for example, general semantics (Korzybski,
Hayakawa, Rapoport), cybersemiotics (Brier))

� Psychology and psychotherapy (for example, systemic
intervention (Bateson, Watzlawick, F. Simon), and
fractal affect logic (Ciompi))

� Ethics and epistemology (for example, Vickers,
Churchman, von Foerster, van Gigch)

Several system-theoretic contributions have merged the
quantitative and the qualitative in new ways. This is the
case for example in Rapoport’s works in game theory as
well as general systems theory, Pask’s conversation theory,
von Foerster’s cybernetics of cybernetics (second-order
cybernetics), and Stafford Beer’s opus inmanagerial cyber-
netics. In all four cases, mathematical expression is virtu-
ously connected to ethical, philosophical, and epistemo-
logical reflection. Further examples are Prigogine’s the-
ory of dissipative structures, Mandelbrot’s theory of frac-
tals, complex adaptive systems (Holland et al.), Kauffman’s
complexity theory, and Haken’s synergetics, all of which
combine mathematical analysis and a strong component
of qualitative interpretation.

A large number of systems methodologies, with the
pertinent threads of systems practice, have emanated from
these theoretical developments. Many of them are ex-
pounded in detail in specialized encyclopedias (e. g., [27]
and, under a specific theme, named Systems Science and
Cybernetics, of the Encyclopedia of Life Support Sys-
tems [18]). In this chapter, only some of these will be ad-
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dressed explicitly, in order to shed light on the role of SD
as part of the systems movement.

CommonGrounds andDifferences

Even though the spectrum of system theories andmethod-
ologies outlined in the preceding section may seem multi-
farious, all of them have a strong common denominator:
They build on the idea of systems as organized wholes. An
objectivist working definition of a system is that of a whole,
the organization of which is made up by interrelationships.
A subjectivist definition is that of a set of interdependent
variables in the mind of an observer, or, a mental construct
of a whole, an aspect that has been emphasized by the
position of constructivism. Constructivism is a synonym
for second-order cybernetics. While first-order cybernet-
ics concentrates on regulation, information and feedback,
second-order cybernetics focuses on observation, self-or-
ganization and self-reference. Heinz von Foerster estab-
lished the distinction between ‘observed systems’ for the
former and ‘observing systems’ for the latter [74].

From the standpoint of operational philosophy, a sys-
tem is, as Rapoport says, “a part of the world, which is suf-
ficiently well defined to be the object of an inquiry or also
something, which is characterized by a structure, for ex-
ample, a production system” [50].

In recent systems theory, the aspect of relationships
has been emphasized as the main building block of a sys-
tem, as one can see from a definition published by the In-
ternational Society for the Systems Sciences (ISSS): “A sys-
tem is a family of relationships between its members acting
as a whole” [63]. Also, purpose and interaction have played
an important part in reflections on systems: Systems are
conceived, in the words of Forrester [21], as “wholes of el-
ements, which cooperate towards a common goal.” Pur-
poseful behavior is driven by internal goals, while purpo-
sive behavior rests on a function assigned from the out-
side. Finally, the aspects of open and closed functioning
have been emphasized. Open systems are characterized by
the import and export of matter, energy and information.
A variant of particular relevance in the case of social sys-
tems is the operationally closed system, that is, a system
which is self-referential in the sense that its self-produc-
tion (autopoiesis) is a function of production rules and
processes by which order and identity are maintained, and
which cannot be modified directly from outside. As we
shall see, this concept of operational closure is very much
in line with the concept of circularity used in SD.

At this point, it is worth elaborating on the spe-
cific differences between two major threads of the sys-
tems movement, which are of special interest because

they are grounded in “feedback thought” [52]: The cyber-
netic thread, from which organizational cybernetics has
emanated, and the servomechanic thread in which SD
is grounded. As Richardson’s detailed study shows, the
strongest influence on cybernetics came from biologists
and physiologists, while the thinking of economists and
engineers essentially shaped the servomechanic thread.
Consequently, the concepts of the former are more fo-
cused on the adaptation and control of complex systems
for the purpose of maintaining stability under exogenous
disturbances. Servomechanics, on the other hand, and SD
in particular, take an endogenous view, being mainly in-
terested in understanding circular causality as the princi-
pal source of a system’s behavior. Cybernetics is more con-
nected with communication theory, the general concern of
which can be summarized as how to deal with randomly
varying input. SD, on the other hand, shows a stronger
link with engineering control theory, which is primarily
concerned with behavior generated by the control sys-
tem itself, and by the role of nonlinearities. Managerial
cybernetics and SD both share the concern of contribut-
ing to management science, but with different emphases
and with instruments that are different but in principle
complementary. Finally, themathematical foundations are
generally more evident in the basic literature on SD than
in the writings on organizational cybernetics, in which the
formal apparatus underlying model formulation is con-
fined to a small number of publications (e. g., [7,10]),
which are less known than the qualitative treatises. The
termsmanagement cybernetics andmanagerial cybernetics
are used as synonyms for organizational cybernetics.

The Variety of SystemsMethodologies

The methodologies that have evolved as part of the sys-
tems movement cannot be expounded in detail here. The
two epistemological strands in which they are grounded,
however, can be identified – the positivist tradition and the
interpretivist tradition.

Positivist tradition denotes those methodological ap-
proaches that focus on the generation of “positive knowl-
edge,” that is, a knowledge based on “positively” ascer-
tained facts. Interpretivist tradition denotes those method-
ological approaches that emphasize the importance of sub-
jective interpretations of phenomena. This stream goes
back to Greek art and science of the interpretation and un-
derstanding of texts.

Some systems methodologies have been rooted in the
positivist tradition, and others in the interpretivist tradi-
tion. The differences between the two can be described
along the following set of polarities:
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� An objectivist versus a subjectivist position
� A conceptual–instrumental versus a communicational/

cultural/political rationality
� An inclination to quantitative versus qualitative mod-

eling
� A structuralist versus a discursive orientation.

A positivistic methodological position tends toward the
objectivistic, conceptual–instrumental, quantitative and
structuralist–functionalist in its approach. An interpretive
position, on the other hand, tends to emphasize the sub-
jectivist, communicational, cultural, political, ethical and
esthetic—that is, the qualitative and discursive aspects. It
would be too simplistic to classify a specific methodology
in itself as being “positivistic” or “interpretative”. Despite
the traditions they have grown out of, several methodolo-
gies have evolved and been reinterpreted or opened to new
aspects (see below).

In the following, a sample of systems methodologies
will be characterized and positioned in relation to these
two traditions, beginning with those in the positivistic
strand:

� “Hard” OR methods. Operations research (OR) uses
a wide variety of mathematical and statistical methods
and techniques—for example of optimization, queuing,
dynamic programming, graph theory, time series anal-
ysis—to provide solutions for organizational and man-
aperial problems, mainly in the operational domains of
production and logistics, and in finance.

� Living systems theory. In his LST, James Grier
Miller [44] identifies a set of 20 necessary components
that can be discerned in living systems of any kind.
These structural features are specified on the basis of
a huge empirical study and proposed as the “critical
subsystems” that “make up a living system.” LST has
been used as a device for diagnosis and design in the
domains of engineering and the social sciences.

� Viable system model. To date, Stafford Beer’s VSM is
probably the most important product of organizational
cybernetics. It specifies a set of management func-
tions and their interrelationships as the sufficient con-
ditions for the viability of any human or social system
(see [10]). These are applicable in a recursive mode, for
example, to the different levels of an organization. The
VSM has been widely applied in the diagnostic mode,
but also to support the design of all kinds of social sys-
tems. Specific methodologies for these purposes have
been developed, for instance for use in consultancy.
The term viable system diagnosis (VSD) is also used.

The methodologies and models addressed up to this point
have by and large been created in the positivistic tradi-

tion of science. Other strands in this tradition do exist,
e. g., systems analysis and systems engineering, which to-
gether with OR have been called “hard systems thinking”
(p. 127 in [31]). Also, more recent developments such
as mathematical complexity and network theories, agent-
based modeling and most versions of game theory can be
classified as hard systems approaches.

The respective approaches have not altogether been
excluded from fertile contacts with the interpretivist
strand of inquiry. In principle, all of them can be consid-
ered as instruments for supporting discourses about dif-
ferent interpretations of an organizational reality or alter-
native futures studied in concrete cases. In our time, most
applications of the VSM, for example, are constructivist in
nature. To put it in a nutshell, these applications are (usu-
ally collective) constructions of a (new) reality, in which
observation and interpretation play a crucial part. In this
process, the actors involved make sense of the system un-
der study, i. e., the organization in focus, by mapping it on
the VSM. At the same time they bring forth “multiple re-
alities rather than striving for a fit with one reality” (p. 299
in [29]).

The second group of methodologies is part of the in-
terpretive strand:

� Interactive Planning. IP is a methodology, designed by
Russell Ackoff [1], and developed further by Jamshid
Gharajedaghi [28], for the purpose of dealing with
“messes” and enabling actors to design their desired fu-
tures, as well as to bring them about. It is grounded
in theoretical work on purposeful systems, reverts to
the principles of continuous, participative and holis-
tic planning, and centers on the idea of an “idealized
design.”

� Soft Systems Methodology. SSM is a heuristic designed
by Peter Checkland [13,14] for dealing with complex
situations. Checkland suggests a process of inquiry
constituted by two aspects: A conceptual one, which
is logic based, and a sociopolitical one, which is con-
cerned with the cultural feasibility, desirability and im-
plementation of change.

� Critical Systems Heuristics. CSH is a methodology,
which Werner Ulrich [67,68] proposed for the purpose
of scientifically informing planning and design in or-
der to lead to an improvement in the human condi-
tion. The process aims at uncovering the interests that
the system under study serves. The legitimacy and ex-
pertise of actors, and particularly the impacts of deci-
sions and behaviors of the system on others – the “af-
fected” – are elicited by means of a set of boundary
questions. CSH can be seen as part of a wider move-
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ment known as the “Emancipatory Systems Approach”
which embraces, e. g., Freire’s Critical Pedagogy, Inter-
pretive Systemology, and Community OR (see pp. 291ff
in [31]).

All three of these methodologies (IP, SSM, and CSH) are
positioned in the interpretive tradition. Other methodolo-
gies and concepts which can be subsumed under the in-
terpretive systems approach are, e. g., Warfield’s science of
generic design, Churchman’s social system design, Senge’s
soft systems thinking, Mason and Mitroff’s strategic as-
sumptions surfacing and testing (SAST), Eden and Ack-
ermann’s strategic options in development and analysis
(SODA), and other methodologies of soft operational re-
search (for details, see pp. 211ff in [31]). The interpretive
methodologies were designed to deal with qualitative as-
pects in the analysis and design of complex systems, em-
phasizing the communicational, social, political and ethi-
cal dimensions of problem solving. Several authors men-
tion explicitly that they do not preclude the use of quanti-
tative techniques or include such techniques in their reper-
toire (e. g., the biocyberneticist Frederic Vester).

In an advanced understanding of system dynamics
both of these traditions—positivist and interpretivist—are
synthesized. The adherents of SD conceive of model build-
ing and validation as a semi-formal, relativistic, holistic
social process. Validity is understood as usefulness or fit-
ness in relation to the purpose of the model, and validation
as an elaborate set of procedures – including logico-struc-
tural, heuristic, algorithmic, statistical, and also discursive
components – by which the quality of and the confidence
in a model are gradually improved (see [4,5,59]).

System Dynamics –
Its Features, Strengths and Limitations

The features, strengths and limitations of the SD method-
ology are a consequence of its specific characteristics. In
the context of the multiple theories and methodologies of
the systems movement, some of the distinctive features of
SD are (for an overview, see [52], pp. 142ff in [31]):

� Feedback as conceptual basis. SD model systems are
high-order, multiple-loop networks of closed loops of
information. Concomitantly, an interest in non-linear-
ities, long-term patterns and internal structure rather
than external disturbances is characteristic of SD (p. 31
in [40]). However, SD models are not “closed systems”,
as sometimes is claimed, in the sense that (a) flows
can originate from outside the system’s boundaries, (b)
representations of exogenous factors or systems can be
incorporated into any model as parameters or special

modules, and (c) new information can be accommo-
dated via changes to a model. In other words, the SD
view hinges on a view of systems which are closed in
a causal sense but not materially (p. 297 in [52]).

� Focus on internally generated dynamics. SD models are
conceived as closed systems. The interest of users is in
the dynamics generated inside those systems. Given the
nature of closed feedback loops and the fact that delays
occur within them, the dynamic behavior of these sys-
tems is essentially non-linear.

� Emphasis on understanding. For system dynamicists
the understanding of the dynamics of a system is the
first goal to be achieved bymeans of modeling and sim-
ulation. Conceptually, they try to understand events as
embedded in patterns of behavior, which in turn are
generated by underlying structures. Such understand-
ing is enabled by SD as it “shows how present poli-
cies lead to future consequences” (Sect. VIII in [23]).
Thereby, the feedback loops are “a major source of puz-
zling behavior and policy difficulties” (p. 300 in [52]).
SD models purport to test mental models, hone intu-
ition and improve learning (see [65]).

� High degree of operationality. SD relies on formal mod-
eling. This fosters disciplined thinking; assumptions,
underlying equations and quantifications must be clar-
ified. Feedback loops and delays are visualized and for-
malized; therewith the causal logic inherent in a model
is made more transparent and discussable than in most
other methodologies [53]. Also, a high level of realism
in the models can be achieved. SD is therefore apt to
support decision-making processes effectively.

� Far-reaching requirements (and possibilities) for the
combination of qualitative and quantitative aspects of
modeling and simulation. This is a consequence of the
emphasis on understanding. The focus is not on point-
precise prediction, but on the generation of insights
into the patterns generated by the systems under study.

� High level of generality and scale robustness. The rep-
resentation of dynamic systems in terms of stocks and
flows is a generic form, which is adequate for a wide
spectrum of potential applications. This spectrum is
both broad as to the potential subjects under study, and
deep as to the possible degrees of resolution and de-
tail [38]. In addition, the SD methodology enables one
to deal with large numbers of variables within multi-
ple interacting feedback loops (p. 9 in [22]). SD has
been applied to the most diverse subject areas, e. g.,
global modeling, environmental issues, social and eco-
nomic policy, corporate and public management, re-
gional planning, medicine, psychology and education
in mathematics, physics and biology.
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The features of SD just sketched out result in both
strengths and limitations. We start with the strengths.

Strengths of SD

1. Its specific modeling approach makes SD particularly
helpful in gaining insights into the patterns exhibited
by dynamic systems, as well as the structures underly-
ing them. Closed-loop modeling has been found most
useful in fostering understanding of the dynamic func-
tioning of complex systems. Such understanding is es-
pecially facilitated by the principle of modeling the sys-
tems or issues under study in a continuous mode and
at rather high aggregation levels [20,38]. With the help
of relatively small but insightful models, and by means
of sensitivity analyses as well as optimization heuristics
incorporated in the application software packages, de-
cision-spaces can be thoroughly explored. Vulnerabil-
ities and the consequences of different system designs
can be examined with relative ease.

2. The generality of the methodology and its power
to crystallize operational thinking in realistic models
have triggered applications in the most varied con-
texts. Easy-to-use software and the features of screen-
driven modeling via graphic user interfaces provide
a strong lever for collaborative model-building in teams
(cf. [2,69]).

3. Another strong point is themomentum of the SD move-
ment. Due to the strengths commented above this
point, the community of users has grown steadily, be-
ing probably the largest community within the systems
movement. Lane (p. 484 in [36]) has termed SD “one of
the most widely used systems approaches in the world.”

4. Its specific features make SD an exceptionally ef-
fective tool for conveying systemic thinking to any-
body. Therefore, it also has an outstanding track-
record of classroom applications for which “learner-
directed learning” [24] or “learner-centered learning”
is advocated [25,26]. Pertinent audiences range from
schoolchildren at the levels of secondary and primary
schools to managers and scientists.

Given these strengths, the community of users has not
only grown significantly, but has also transcended disci-
plinary boundaries, ranging from the formal and natu-
ral sciences to the humanities, and covering multiple uses
from theory building and education to the tackling of real-
world problems at almost any conceivable level. Applica-
tions to organizational, societal and ecological issues have
seen a particularly strong growth. This feeds back on the
availability and growth of the knowledge upon which the
individual modeler can draw.

The flip side of most of the strengths outlined here
embodies the limitations of SD; we concentrate on those
which can be relevant to a possible complementarity of SD
with other systems methodologies.

Limitations of SD

1. The main point here is that SD does not provide
a framework or methodology for the diagnosis and de-
sign of organizational structures in the sense of inter-
relationships among organizational actors. This makes
SD susceptible to completion from without – a com-
pletion which organizational cybernetics (OC), and the
VSM in particular, but also living system theory (LST),
especially can provide. The choice falls on these two
approaches because of their strong heuristic power
and their complementary strengths in relation to SD
(cf. [57,61]).

2. Another limitation of SD is related to the absorption
of variety (complexity) by an organization. Variety is
a technical term for complexity, which denotes a (high)
number of potential states or behaviors of a system
(based on [3,8]). SD offers an approach to the handling
of variety which allows modeling at different scales of
a problem or system [47]. It focuses on the identifica-
tion, at a certain resolution level or possibly several res-
olution levels, of the main stock variables which will be
affected by the respective flows. These, in turn, will be
influenced by parameters and auxiliary variables. This
approach, even though it enables thinking and model-
ing at different scales, does not provide a formal proce-
dure for an organization to cope with the external com-
plexity it faces, namely, for designing a structure which
can absorb that complexity. In contrast, OC and LST
offer elaborate models to enable the absorption of vari-
ety, in the case of the VSM based explicitly on Ashby’s
Law of Requisite Variety. It says “Only variety can de-
stroy variety”, which implies that the varieties of two in-
teracting systems must be in balance, if stability is to be
achieved [3]. The VSM has two salient features in this
respect. Firstly, it helps design an organizational unit
for viability, by enabling it to attenuate the complex-
ity of its environment, and also to enhance its eigen-
variety, so that the two are in balance. The term variety
engineering has been used in this context [9]. Secondly,
the recursive structure of the VSM ensures that an orga-
nization with several levelswill develop sufficient eigen-
variety along the fronts onwhich the complexity it faces
unfolds. Similarly, LST offers the conditions for social
systems to survive, by maintaining thermodynamically
highly improbable energy states via continuous inter-
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action with their environments. The difference between
the two approaches is that the VSM functions more in
the strategic and informational domains, while the LST
model essentially focuses on the operational domain.
In sum, both can make a strong contribution related
to coping with the external complexity faced by organi-
zations, and therefore can deliver a strong complement
to SD.

3. Finally, the design of modeling processes confronts SD
with specific challenges. The original SD methodology
of modeling and simulation was to a large extent func-
tionally and technically oriented. This made it strong in
the domain of logical analysis, while the socio-cultural
and political dimensions of the modeling process were,
if not completely out of consideration, at least not a sig-
nificant concern in methodological developments. The
SD community – also under the influence of the soft
systems approaches – has become aware of this limita-
tion and has worked on incorporating features of the
social sciences into its repertoire. The following exam-
ples, which document this effort to close the gap, stand
for many. Extensive work on group model building has
been achieved, which explores the potential of collabo-
rative model building [69]. A new schema for the mod-
eling process has been proposed, which complements
logic-based analysis by cultural analysis [37]. The social
dimension of system dynamics-based modeling has be-
come subject to intensive discussion ([77]; and other
contributions to the special issue of Systems Research
and Behavioral Science, Vol. 51, No. 4, 2006). Finally,
in relation to consultancy methodology, modeling has
been framed as a learning process [34] and as second-
order intervention [60].

As has been shown, there is a need to complement classi-
cal SD with other methodologies, when issues are at stake
which it cannot handle by itself. VSM and LST are excel-
lent choices when issues of organizational diagnosis or de-
sign are to be tackled.

The limitations addressed here call attention to other
methodologies which exhibit certain features that tradi-
tionally were not incorporated, or at least not explicit,
in SD methodology. One aspect concerns the features
that explicitly address the subjectivity of purposes and
meanings ascribed to systems. In this context, support
for problem formulation, model construction and strat-
egy design by individuals on the one hand and groups on
the other are relevant issues. Also, techniques for an en-
hancement of creativity (e. g., the generation and the re-
framing of options) in both individuals and groups are
a matter of concern. Two further aspects relate to method-

ological arrangements for coping with the specific issues
of negotiation and alignment in pluralist and coercive
settings.

As far as the modeling processes are concerned, group
model building has proven to be a valuable complement
to pure modeling and simulation. However, there are
other systems methodologies which should be consid-
ered as potentially apt to enrich SD analysis, namely the
soft approaches commented upon earlier, e. g., interac-
tive planning, soft systemmethodology and critical system
heuristics.

On the other hand, SD can be a powerful complement
to other methodologies which are more abstract or more
static in nature. This potential refers essentially to all sys-
tems approaches which stand in the interpretive (“soft”)
tradition, but also to approaches which stand in the posi-
tivist traditions, such as the VSM and LST. These should
revert to the support of SD in the event that tradeoffs be-
tween different goals must be handled, or if implications
of long-term decisions on short-term outcomes (and vice
versa) have to be ascertained, and whenever contingencies
or vulnerabilities must be assessed.

Actual and Potential Relationships

It should be clear by now that the systems movement has
bred a number of theories and methodologies, none of
which can be considered all-embracing or complete. All of
them have their strengths and weaknesses, and their spe-
cific potentials and limitations.

Since Burrell and Morgan [12] adverted to incom-
mensurability between different paradigms of social the-
ory, several authors have acknowledged or even advo-
cated methodological complementarism. They argue that
there is a potential complementarity between different
methods, and, one may add, models, even if they come
from distinct paradigms. Among these authors are, e. g.,
Brocklesby [11], Jackson [30], Midgley [43], Mingers [45],
Schwaninger [55] and Yolles [83]. These authors have
opened up a new perspective in comparison with the non-
complementaristic state-of-the-art.

In the past, the different methodologies have led to
the formation of their own traditions and “schools,” with
boundaries across which not much dialogue has evolved.
The methodologies have kept their protagonists busy test-
ing them and developing them further. Also, the differ-
ences between different language games and epistemolog-
ical traditions have often suggested incommensurability,
and therewith have impaired communication. Prejudices
and a lack of knowledge of the respective other side have
accentuated this problem: Typically, “hard” systems scien-
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tists are suspicious of “soft” systems scientists. For exam-
ple, many members of the OR community, not unlike or-
thodox quantitatively oriented economists, adhere to the
opinion that “SD is too soft.” On the other hand the pro-
tagonists of “soft” systems approaches, even though many
of them have adopted feedback diagrams (causal loop dia-
grams) for the sake of visualization, are all too often con-
vinced that “SD is too hard.” Both of these judgments indi-
cate a lack of knowledge, in particular of the SD validation
and testing methods available, on the one hand, and the
technical advancements achieved in modeling and simu-
lation, on the other (see [5,59,66]).

In principle, both approaches are complementary. The
qualitative view can enrich quantitative models, and it
is connected to their philosophical, ethical and esthetical
foundations. However, qualitative reasoning tends to be
misleading if applied to causal network structures without
being complemented by formalization and quantification
of relationships and variables. Furthermore, the quanti-
tative simulation fosters insights into qualitative patterns
and principles. It is thus a most valuable device for val-
idating and honing the intuition of decision makers, via
corroboration and falsification.

Proposals that advocate mutual learning between the
different “schools” have been formulated inside the SD
community (e. g., [35]). The International SystemDynam-
ics Conference of 1994 in Stirling, held under the banner of
“Transcending the Boundaries,” was dedicated to the dia-
logue between different streams of the systems movement.

Also, from the 1990s onwards, there were vigorous ef-
forts to deal with methodological challenges, which tra-
ditionally had not been an important matter of scientific
interest within the SD community. Some of the progress
made in these areas is documented in a special edi-
tion of Systems Research and Behavioral Science (Vol. 21,
No. 4, July-August 2004). The main point is that much
of the available potential is based on the complementar-
ity, not the mutual exclusiveness, of the different systems
approaches.

In the future, much can be gained from leverag-
ing these complementarities. Here are two examples of
methodological developments in this direction, which ap-
pear to be achievable and potentially fertile: The enhance-
ment of qualitative components in “soft” systemsmethod-
ologies in the process of knowledge elicitation and model
building (cf. [69]), and the combination of cybernetics-
based organizational design with SD-based modeling and
simulation (cf. [61]). Potential complementarities exist not
only across the qualities – quantities boundary, but also
within each one of the domains. For example, with the
help of advanced software, SD modeling (“top-down”)

and agent-based modeling (“bottom-up”) can be used in
combination.

From a meta-methodological stance, generalist frame-
works have been elaborated which contain blueprints for
combining different methodologies where this is indi-
cated. Two examples are:

� Total systems intervention (TSI) is a framework pro-
posed by Flood and Jackson [19], which furnishes
a number of heuristic schemes and principles for the
purpose of selecting and combining systems meth-
ods/methodologies in a customized way, according to
the issue to be tackled. SD is among the recommended
“tools”.

� Integrative systems methodology (ISM) is a heuristic for
providing actors in organizations with requisite vari-
ety, developed by Schwaninger [55,56]. It advocates (a)
dealing with both content– and context-related issues
during the process, and (b) placing a stronger emphasis
on the validation of qualitative and quantitative models
as well as strategies, in both dimensions of the content
of the issue under study and the organizational context
into which that issue is embedded. For this purpose, the
tools of SD (to model content) and organizational cy-
bernetics – the VSM (to model context) – are cogently
integrated.

These are only two examples. In principle, SD could
make an important contribution in the context of most of
the methodological frameworks, far beyond the extent to
which this has been the case. Systems methodologists and
practitioners can potentially benefit enormously from in-
cluding SD methodology in their repertoires.

Outlook

There have recently been calls for an eclectic “mixing and
matching” of methodologies. In light of the epistemologi-
cal tendencies of our time towards radical relativism, it is
necessary to warn against taking a course in which “any-
thing goes”. It is most important to emphasize that the de-
sirable methodological progress can only be achieved on
the grounds of scientific rigor. This postulate of “rigor”
is not to be confused with an encouragement of “rigid-
ity.” The necessary methodological principles advocated
here are disciplined thinking, a permanent quest for bet-
ter models (that is, thorough validation), and the highest
achievable levels of transparency in the formalizations as
well as of the underlying assumptions and sources used.
Scientific rigor, in this context, also implies that combina-
tions of methodologies reach beyond merely eclectic add-
ons from different methodologies, so that genuine inte-
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gration towards better adequacy to the issues at hand is
achieved.

The contribution of system dynamics can come in the
realms of the following:

� Fostering disciplined thinking
� Understanding dynamic behaviors of systems and the

structures that generate them
� Exploring paths into the future and the concrete impli-

cations of decisions
� Assessing strategies as to their robustness and vulner-

abilities, in ways precluded by other, more philosophi-
cal, and generally “soft” systems approaches

These latter streams can contribute to reflecting and tack-
ling the meaning- and value-laden dimensions of com-
plex human, social and ecological systems. Some of their
features should and can be combined synergistically with
system dynamics, particularly by being incorporated into
the repertoires of system dynamicists. From the reverse
perspective, incorporating system dynamics as a standard
tool will be of great benefit for the broad methodologi-
cal frameworks. Model formalization and dynamic simu-
lation may even be considered necessary components for
the study of the concrete dynamics of complex systems.

Finally, there are also many developments in the
“hard”, i. e., mathematics-, statistics-, logic-, and infor-
matics-based methods and technologies, which are apt
to enrich the system dynamics methodology, namely in
terms of modeling and decision support. For example,
the constantly evolving techniques of time-series analy-
sis, filtering, neural networks and control theory can im-
prove the design of system-dynamics-based systems of
(self-)control. Also, a bridge across the divide between the
top-down modeling approach of SD and the bottom-up
approach of agent-based modeling appears to be feasible.
Furthermore, a promising perspective for the design of
genuinely “intelligent organizations” emerges if one com-
bines SD with advanced database-management, coopera-
tive model building software, and the qualitative features
of the “soft” systems methodologies.

The approaches of integrating complementary
methodologies outlined in this contribution definitely
mark a new phase in the history of the systems movement.

Appendix

Milestones in the Evolution of the Systems Approach
in General and System Dynamics in Particular

The table gives an overview of the systems movement’s
evolution, as shown in its main literature; and that
overview is not exhaustive.

Systems Approaches – An Overview

Note: This diagram shows three streams of the systems
approach in the context of their antecedents. The general
systems thread has its origins in philosophical roots from
antiquity: The term system derives from the old Greek
��́����˛ (systēma), while, cybernetics stems from the
Greek ��ˇ"���́��& (kybernētēs). The arrows between the
threads stand for interrelationships and efforts to synthe-
size the connected approaches. For example, integrated
systems methodology is an integrative attempt to lever-
age the complementarities of system dynamics and orga-
nizational cybernetics. Enumerated to the left and right of
the scheme are the fields of application. The big arrows
in the upper region of the diagram indicate that the roots
of the systems approach continue influencing the different
threads and the fields of application even if the path via
general systems theory is not pursued.

The diagram is not a complete representation, but the
result of an attempt to map the major threads of the sys-
tems movement and some of their interrelations. Hence,
the schema does not cover all schools or protagonists of
the movement. Why does the diagram show a dynamic
and evolutionary systems thread and a cybernetics thread,
if cybernetics is about dynamic systems? The latter em-
braces all the approaches that are explicitly grounded in
cybernetics. The former relates to all other approaches
concerned with dynamic or evolutionary systems. The
simplification made it necessary to somewhat curtail log-
ical perfection for the sake of conveying a synoptic view
of the different systems approaches, in a language that
uses the categories common in current scientific and pro-
fessional discourse. Overlaps exist, e. g., between dynamic
systems and chaos theory, cellular automata and agent-
based modeling.
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System Dynamics in the Evolution of the Systems Approach, Table 1
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Glossary

Model/model system A model is a simplified representa-
tion of a real system. Models can be descriptive or pre-
scriptive (normative). Their functions can be to enable
explanation, anticipation or design. A distinction used
in this contribution is between causal and non-causal
models, with System Dynamics models being of the
former type. The term model system is used to stress
the systemic character of a model; this serves to iden-
tify it as an organized whole of variables and relation-
ships on the one hand, and to distinguish it from the
real system which is to be modeled, on the other.

Model validity A model’s property of adequately reflect-
ing the system modeled. Validity is the primary mea-
sure of model quality. It is a matter of degree, not a di-
chotomized property.

Model purpose The goal for which a model is designed
or the function it is intended to fulfill. The model pur-
pose is closely linked to the end-model user or model
owner. Model purpose is the criterion for the choice of
a model’s boundary and design.

Modeling process The process involving phases such as
problem articulation, boundary selection, develop-
ment of a dynamic hypothesis, model formulation,
model testing, policy formulation and policy evalua-
tion [28]. The modeling process is followed by model
use and implementation, i. e., the realization of actions
designed or facilitated by the use of the model.

Validation process Validation is the process by which
model validity is enhanced systematically. It consists

in gradually building confidence in the usefulness of
a model by applying validation tests as outlined in this
chapter. In principle, validation pervades all phases of
the modeling process, and, in addition, extends into
the phases of model use and implementation.

Definition of the Subject

The present chapter addresses the question of building
better models. This is crucial for coping with complex-
ity in general, and in particular for the management
of dynamic systems. Both the epistemological and the
methodological-technological aspects of model validation
for the achievement of high-quality models are discussed.
The focus is on formal models, i. e. those formulated in
a stringent, logical, and mostly mathematical language.

Introduction

The etymological root of valid is the Latin word validus,
which denotes attributes such as strong, powerful and
firm. A valid model, then, is well-founded and difficult to
reject because it accurately represents the perceived real
system which it is supposed to reflect. This system can
be either one that already exists or one that is being con-
structed, or even anticipated, by a modeler or a group of
modelers.

Validation standards in System Dynamics are more
rigorous than those of many other methodologies. Let
us distinguish between two types of mathematical mod-
els, which are fundamentally different: Causal, theory-like
models and non-causal, statistical (correlational) mod-
els [4]. The former are explanatory, i. e., they embody the-
ory about the functioning of a real system. The latter are
descriptive and express observed associations among dif-
ferent elements of a real system. System Dynamics models
are causal models.

Non-causal models are tested globally, in that the sta-
tistical fit between model and data series from the real sys-
tem under study is assessed. If the fit is satisfactory, the
model is considered to be accurate (“valid”, “true”). In
contrast, system dynamicists postulate that models be not
only right, but right for the right reasons. As the models
are made up of causal interdependencies, accuracy is re-
quired for each and every variable and relationship. The
following principle applies: if only one component of the
model is shown to be wrong, the whole model is rejected
even if the overall model output fits the data [4]. This strict
standard is conducive to high-quality modeling practice.

A model is an abstract version of a perceived reality.
Simulation is a way of experimenting with mathematical
models to gain insights and to employ these to improve
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the real system under study. It is often said that System
Dynamics models should portray problems or issues, not
systems. This statement must be interpreted in the sense
that one should not try to set the boundaries of the model
too widely, but rather give the model a focus by concen-
trating on an object in accordance with the specific pur-
pose of the model. In a narrower definition, even an issue
or problem can be conceived of as a “system”, i. e., “a por-
tion of the world sufficiently well defined to be the subject
of study” [21]. Validity then consists in a stringent corre-
spondence between model system and real system.

We will treat the issue of model validation as a means
of assuring high-quality models. We interject that validity
is not the only criterion of model quality, other criteria in-
cluding parsimony, ease-of-use, practicality, importance,
etc. [22].

In the following, the epistemological foundations of
model validity are reviewed (Sect. “Epistemological Foun-
dations”). Then, an overview of the methods for assuring
model validity is given (Sect. “Validation Methods”). Fur-
ther, the survey includes an overview of the validation pro-
cess (Sect. “Validation Process”) and our final conclusions
(Sect. “Synopsis and Outlook”).

The substance of this article will be made more palpa-
ble by means of the following frame of reference. We call
it the Validation Cube. The diagram in Fig. 1 shows three
dimensions of the validation topic:

System Dynamics Modeling: Validation for Quality Assurance,
Figure 1
The Validation Cube – A frame of reference showing three di-
mensions of the validation topic

� Orders of Reflection:We distinguish between an episte-
mological and a methodological layer. These define the
objects of the next two Sects. “Epistemological Founda-
tions” and “Validation Methods”.

� Domains of Validation: The three domains, context,
structure and behavior refer to the groups of validation
methods as described in Sect. “Validation Methods”.

� Degrees of Resolution: We address the different granu-
larities of models.Micro refers to the smallest building
blocks of models (e. g., variables or small sets of vari-
ables), meso to modules which constitute a model, and
macro to the model as a whole.

Epistemological Foundations

Epistemology is the theory that enquires into the nature
and grounds of knowledge: “What can we know and how
do we know it?” [13]. These questions are of utmost im-
portance when dealing with models and their validity, be-
cause a method of validation is only as good as its episte-
mological basis.

We can only briefly refer to the antecedents of the epis-
temological perspective inherent in the idea of model val-
idation as commonly held today in the community of sys-
tem dynamicists. One could go back to Socrates who, in
Plato’s Republic (fourth century BC), addressed the prob-
lematic relationship between reality, image and knowl-
edge. One could also refer to John Locke (seventeenth cen-
tury), the first British empiricist whomaintained that ideas
could come only from experience, while admitting that our
knowledge about external objects is uncertain. We will ad-
dress the philosophical movements of the nineteenth and
twentieth centuries, which are direct sources of the epis-
temology which is important for model validation. The
reader may kindly excuse us for certain massive simplifi-
cations that we are obliged to make.

What will be said here about theories applies equally
to formal models. In System Dynamics, models either em-
body theories or they are considered essential components
of theories. In addition, processes of modeling and theory-
building are of the same nature; a model, like any theory, is
built and improved in a dialectic of propositions and refu-
tations [22].

Positivism and Critique

Positivism is a scientific doctrine founded by Auguste
Comte (nineteenth century) which raises the positive to
the principle of all scientific knowledge. “Positive”, in this
context, is not meant to be the opposite of negative, but
the given, factual, or indubitably existent. The positive is
associated with features such as being real, useful, certain,
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and precise. Positivism confines science to the observable
and manipulable, drawing on the mathematical, empiri-
cal orientation of the natural sciences as its paragon. The
objectivist claim of positivism is that things exist indepen-
dently of the mind and that truths are detached from hu-
man values and beliefs. This stance calls for models that
approximate an objective reality.

A younger development in this vein is the school of
logical positivism, also logical empiricism (with Schlick,
Neurath, Hempel, etc.), which concentrates on the prob-
lem of meaning and has developed the verifiability princi-
ple: Something is meaningful only if verifiable empirically,
i. e., ultimately by observation through the senses. To ver-
ify here means to show to be true [13]. For the logical pos-
itivists, the method of verification is the essence of theory-
building. Tests of theories hinge on their confirmation by
facts. In System Dynamics, testing models on real-world
data is a core component of validation.

Positivism has been criticized for being reductionist,
i. e., for its tendency to reduce concepts to simpler or em-
pirically more accessible ones, and to conceive of learning
as an accumulation of particular details. The critique has
also asserted that there is no theory-independent identifi-
cation of facts, and therefore different theories cannot be
tested by means of the same data [6]. Another objection
maintains that social facts are not merely given, but pro-
duced by human action, and that they are subject to inter-
pretation [23]. These arguments introduce the principle of
relativity, which is of crucial importance for the field of
model validation: A model is a subjective construction by
an observer.

Pragmatism – A Challenge to Positivism

Pragmatism, which arose in the second half of the nine-
teenth century, emphasizes action and the practical conse-
quences of thinking. Its founder, Charles Sanders Peirce,
was interested in the effects that the meaning of scien-
tific concepts could have on human experience and action.
He defined truth as “the opinion which is fated to be ul-
timately agreed to by all who investigate” [13], whereby
truth is linked to consensual validation. For pragmatists,
truth is in what works (Ferdinand Schiller) or satisfies us
(John Dewey), and what we find believable and consistent:
“ ‘The true’ . . . is only the expedient in the way of our
thinking”, and “truth is made . . . in the course of expe-
rience.” (see p. 581 and p. 583 in [11]).

Pragmatism is often erroneously disdained for suppos-
edly being a crass variety of utilitarianism and embodying
a crude instrumentalist rationality. A more accurate view
considers the fact that pragmatists are not satisfied with

a mere ascertainment of truth; instead they ask: “If an idea
or assumption is true, does this make a concrete difference
to the life of people? How can this truth be actualized?”
In other words, pragmatism does not crudely equate truth
and utility. It rather postulates that those truths which are
useful to people ought to be put into practice [23].

Pragmatism introduces the criteria of confidence and
usefulness, which are more operational as guides to the
evaluation of experiments than is the notion of an absolute
truth, which is unattainable in the realm of human affairs.
At the same time, pragmatism triggers a crucial insight for
the context of model-building: The validity of a model de-
pends not only on the absolute quality of that model but
also hinges on its suitability with respect to a purpose [7].
In the context of model validation, then, truth is a relative
property; more exactly, a truth holds for a limited domain
only.

More Challenges to Positivism

We discuss three more challenges to positivism in the
twentieth century. First, Thomas Kuhn’s theory of scien-
tific revolutions [12]: Kuhn shows, by means of histori-
cal cases, that in the sphere of science, generally accepted
ways of looking at the world (“paradigms”) change over
time through fundamental shifts. Therefore, the activities
of a scientist are largely shaped by the dominant scien-
tific worldview. Second, Willard Van Orman Quine and
Wilfrid Sellars argue that knowledge creation and theory-
building is a holistic, conversational process, as opposed to
the reductionist and confrontational views [4].

Both of these movements contribute to our under-
standing of how real systems are to be modeled and val-
idated: as organized wholes, and consciously with respect
to the values and beliefs underlying a given modeling pro-
cess. This approach adheres to the spirit of models them-
selves, by means of which the behavior of whole systems
can be simulated and tested on their inherent assumptions.

A third challenge is presented by the interpretive
streams of epistemology (for an overview, see [9]). Among
them, a main force which expands the possibilities of
scientific methodologies is the strand of hermeneutics.
Derived from the Greek hermeneuein – to interpret or
to explain – the term hermeneutics stands for a school,
mainly associated with Hans-Georg Gadamer, which pur-
sues the ideal of a human science of understanding. The
emphasis is on interpretation in an interplay between
a subject-matter and the interpreter’s position. This em-
phasis introduces the subjective into scientific method-
ology. Hermeneutics denies both that a single “objective
true interpretation” can transcend all individual view-
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points, and that humans are forever confined within their
own ken [13]. This epistemology offers a necessary com-
plement to a scientific stance, which exclusively hinges
on “hard”, quantitative methods in order supposedly to
achieve absolute objectivity. The implication of hermeneu-
tics for model validation is that it recognizes the perti-
nence of subjective judgment. In this connection, interpre-
tive discourses play a crucial role in group model-building
and validation. Such discourses lead beyond the subjective,
entailing the creation of inter-subjective, shared realities.
We will return to this factor in Sect. “Validation Process”.

Critical Rationalism

Critical rationalism is a philosophical position founded by
Karl R. Popper [19,20]. It grew out of positivism but re-
jected its verificationist stance. Critical rationalism posits
that, in the social domain, theories can never be definitely
proved, but can only reach greater or lesser levels of truth.
Scientific proofs are confined to the realm of the formal
sciences, namely logic and mathematics.

As Popper demonstrates, all theories are provisional.
As a consequence, the main criterion for the assessment of
a theory’s truth status is falsification [19]. A theory holds as
long as it is not refuted. Consequently, any theory can be
upheld as long as it passes the test of falsification. In other
words, the fertile approaches to science are not those of
corroboration, but the falsificationist efforts to test if theo-
ries can be upheld. In the context of modeling this means
that validationmust undertake attempts to falsify a model,
thereby testing its robustness.

Even Popper’s theory of science is not unchallenged.
For example, Kuhn has made the point that its principles
are applicable only to normal science, which operates in-
crementally within a given paradigm, but not to anoma-
lous science, which uncovers unsuspected phenomena in
periods of scientific revolution [12]. This observation has
an implication for model validation: Alternative and even
multiple model designs should be assessed for their ability
to account for fundamental change.

On the Meaning of Validity and Validation

One of the predominant convictions about science is the
obsessive idea that proofs are the touchstone of the valid-
ity of both theories and models. We follow a different ra-
tionale, reverting to the philosophy of science as embodied
in critical rationalism.

Popper’s refutationist concept (as opposed to a verifi-
cationist concept) of theory-testing implies both an evo-
lutionist perspective and an empiricist stance. The evo-
lutionist perspective is primary because it welcomes the

challenges posed to a theory, since these attempts at fal-
sification lead to an evolutionary process: successful fal-
sification efforts result in revisions and improvements of
the theory. Correspondingly, empiricism is paramount in
the social sciences, because the main source for the refuta-
tion of a theory is empirical evidence. However, falsifica-
tion can also be grounded in logical arguments where em-
pirical evidence cannot be obtained. In this sense, a struc-
turalist approach as used in System Dynamics validation
transcends the bounds of logical empiricism.

As a consequence of the evolutionist perspective, there
is no such thing as absolute validity. Validity is always im-
perfect, but it can be improved over time. The empiricist
aspect of theory-building implies that theoriesmust be val-
idated by means of empirical data. However, logical assay,
estimation and judgment are complementary to this em-
piricist component (see below).

A validation process is about gradually building con-
fidence in the model under study [2]. This is both analyt-
ical and synthetic. It is directed at the model as a whole
as much as it is at the components of the model. The
touchstone of validity is less whether the model is right or
wrong: as Sterman states, “. . . all models are wrong.” [28].
Some models, however, fulfill the purpose ascribed to
them, i. e., they are useful. Models are inherently incom-
plete; they cannot claim to be true in an absolute sense,
but only to be relatively true [4]. In this sense, validation is
a goal-oriented activity and validity a relative concept.

Finally, the validation process often involves several
people because the necessary knowledge is distributed.
In these cases, the dialectics of propositions and refuta-
tions, as well as the interaction of different subjective view-
points, and consensus-building, are integral. Validation
processes, then, are semiformal, discursive social proce-
dures with a holistic as opposed to a fragmentary orien-
tation [ibidem].

On Objectivity

If subjective views and judgments are as prominent as al-
leged above, does objectivity play a role at all? Operational
philosophy shows a way out of this dilemma: Rapoport
defines objectivity as “invariance with respect to different
observers.” [21]. Popper has a similar stance in proposing
that general statements must be formulated in a way that
they can be criticized and, where applicable, falsified [20].
This concept of objectivity is a challenge to model vali-
dation: When defining concepts and functions, one must
first of all strive for falsifiable statements. In principle, for-
mal models meet this criterion: each variable and every
function or relationship can be challenged. And they must
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be challenged, so that their robustness can be tested. The
duty, then, is in finding the invariances that are inter-sub-
jectively accepted as the best approximations to truth. Fre-
quently this is best achieved in group model-building pro-
cesses [30]. Finally, truth is something we search for but
do not possess [20], i. e., even an accepted model cannot
guarantee truth with final certainty.

ValidationMethods

A considerable set of qualitative and quantitative tests has
been developed for the enhancement of model validity.
The state-of-the-art has been documented in seminal pub-
lications [2,4,7,8,14,17,28]. Our purpose here is to present
and exemplify the different tests to encourage and help
those who strive to develop high-quality System Dynam-
ics models.

In the following, an overview of the types of tests de-
veloped for System Dynamics models is given, without
any claim to completeness. Most of these tests have been
documented extensively in [2,7,8,28]. The descriptions of
the tests adhere closely to the specifications of these au-
thors (mainly Forrester and Senge). In addition, we have
developed a new category for tests that concentrate on
the context in which the model is to be developed. High-
quality models can be created only if the relevant con-
text is taken into consideration. To facilitate orientation,
we have attached an overview of all described tests in the
Appendix.

In this section we describe three groups of tests: those
related to model-related context, tests of model structure
and tests of model behavior. Many of the tests described
in the following can be utilized for explanatory analysis
which aims at an understanding of the problematic behav-
ior of the issue under study. Others are suitable for nor-
mative ends, in analyzes targeted on improvements of sys-
tem performance with regard to a specified objective of
the reference system. Also known as policy tests, or pol-
icy analyses, these “tests of policy implications differ from
other tests in their explicit focus on comparing changes in
a model and in the corresponding reality. Policy . . . tests
attempt to verify that response of a real system to a pol-
icy change would correspond to the response predicted by
the model” [8]. Policy testing can show the risk involved
in adopting the model for policy making.

Tests About the Model-Related Context

These tests deal with aspects related to the situation in
which the model is to be developed and embedded. They
imply metalevel decisions which have to be taken in the
first place, before engaging in model-building. Applied ex-

post-facto, i. e., after modeling, they allow for assessing the
utility of the modeling endeavor as such.

Issue Identification Test. The raison d’être of a System Dy-
namics model is its ability to adequately address an is-
sue and to enhance stakeholders’ understanding, an abil-
ity which may lead to policy insights and system improve-
ments. The issue identification test examines whether or
not the identified issue or problem is indeed meaningful.
Has the “right” problem been identified?Does the problem
statement address the origins of an issue or only super-
ficial symptoms? Whenever complex issues are addressed
by a model, different perspectives (e. g. professional, eco-
nomic, political) must be integrated for accurate problem
identification and modeling. This is not a “one-shot-only”
test; it must be applied recurrently during the modeling
procedure. By reflecting regularly on the correctness of the
identified issue, the modeler can increase the likelihood of
capturing the origins of suboptimal system behavior.

Adequacy of Methodology Test. Simulation models re-
spond to the limitations of humans’ mental ability to com-
prehend complex, dynamic feedback systems [27]. The ad-
equacy of methodology test scrutinizes whether the Sys-
temDynamics methodology is best-suited for dealing with
the issue under study. One needs to clearly ascertain if that
issue is characterized by dynamic complexity, feedback
mechanisms, nonlinear interdependency of structural ele-
ments and delays between causes and effects. One needs to
ask also if the issue under study could be better addressed
by another methodology. For example, in a case where the
question is to understand the difference in numerical out-
comes between two configurations of a production system,
it lets one determine whether discrete event simulation
would fulfill this requirement more accurately than Sys-
tem Dynamics.

System Configuration Test. This test asks the fundamental
question about whether the structural configuration cho-
sen can be accepted. It challenges the assumption that the
model represents the actual working of the system under
study. The applicability of a different design would be sug-
gested by its ability to capture new conditions, such as dif-
ferent system configurations, phenomena or rules of the
game. Even revolutionary changes might be considered.
Such an outlook may require a totally new model, or an
alternative model designed from a different vantage point.
This would at least feasibly approximate the need to take
paradigmatic change into account.

System Improvement Test. The purpose of modeling is
to understand a part of reality and to resolve an issue.
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The system improvement test can be performed only af-
ter the modeling project (an ex-post-facto test), once the
insights derived from the model have already been imple-
mented in the real system. This test reestablishes the con-
nection between the abstract mathematical model and the
real system. The system improvement test helps to evalu-
ate whether or not model development was successful. In
operational terms, any improvements of the real system
under study must be compared with explicit objectives. In
practice, the test might assess the impact of the modeling
process or the model use either on the mental models of
decision makers or on changes in organization structures.
In principle, assessing the impact of a modeling endeavor
is very difficult (one preliminary example is provided by
Snabe and Grössler [25]).

Tests of Model Structure

Tests of model structure refer to the “nuts and bolts” of
System Dynamics modeling, i. e., to the formal concepts
and interrelationships which represent the real system.
Model structure tests aim to increase confidence in the
structure of the created theory about the behavior mode of
interest. The model structure can be assessed by means of
either direct or indirect inspection. Tests of model struc-
ture assess whether the logic of the model is attuned to the
corresponding structure in the real world. They do not yet
compare the model behavior with time series data from
the real system.

Direct Structure Tests Direct structure tests assess
whether or not the model structure conforms to rele-
vant descriptive knowledge about the real system or class
of systems under study. By means of direct comparison,
they qualitatively assess any disparities between the origi-
nal system structure and the model structure.

Structure Examination Test. Examination in this case
means comparison in the sense just outlined. Qualitative
or quantitative information about the real system structure
can be obtained either empirically or theoretically. Empir-
ically based tests include reviews of model assumptions
about system elements and their interdependencies, e. g.,
reviews made by highly knowledgeable experts of the real
system. Theory-based tests compare the model structure
with theoretical knowledge from literature about the type
of system being studied. Thereby, a preference for theoret-
ical knowledge specific to themodeled situation overmore
abstract and general knowledge is usually the case.

To pass the structure examination test, a model must
not contradict either the evidence or knowledge about the

structure of the real system. This test ensures that the
model contains only those structural elements and inter-
connections that are most likely extant in the real system.
In this context, formal inspections of the model’s equa-
tions, reviews of the syntax for the stock and flow diagram,
and walkthroughs along the causal loop diagrams and
their embodied causal explanations may be indicated. The
experienced reader might recommend the use of statisti-
cal tests to identify and validate model structure. As For-
rester and Senge [8] indicate, a long-standing discussion
exists about the application of inferential statistical tests
for structure examination. After a series of experiments,
Forrester and Senge conclude “that conventional statis-
tical tests of model structure are not sufficient grounds
for rejecting the causal hypotheses in a system dynam-
ics model.” [8]. In the future, however, new statistical ap-
proaches might enrich the testing procedures.

Parameter Examination Test. A parameter is a quantity
that characterizes a system and is held constant in a case
under study, but may be varied in different cases (e. g.,
energy consumption per capita per day). The aim of pa-
rameter examination is to evaluate a model’s parameters
against evidence or knowledge about the real system. The
test can utilize both empirical and theoretical information.
Furthermore, the test can be conceptual or numerical. The
conceptual parameter examination test is about construct
validity; it identifies elements in the real system that cor-
respond to the parameters of the model. Conceptual cor-
respondence means that the parametersmatch elements of
the real system’s structure. Numerical parameter examina-
tion checks to see if the quantities of the conceptually con-
firmed parameters are estimated accurately. Techniques
for the estimation of parameters are described in [9].

Direct Extreme Condition Test. Extreme conditions do not
often occur in reality; they are exceptions. The validity of
a model’s equations under extreme conditions is evalu-
ated by assessing the plausibility of the results generated
by the model equations against the knowledge about what
would happen under a similar condition in reality. Direct
extreme condition testing is a mental process and does not
involve computer simulation. Ideally, it is applied to each
equation separately. It consists of assigning extreme val-
ues to the input variables of each equation. The values of
the output variables are then interpreted in terms of what
would happen in the real system under these extreme con-
ditions. For example, if a population is zero, then neither
births, deaths, nor consumption of resources can occur.

Boundary Adequacy Structure Test. Boundary adequacy is
given if themodel contains the relevant structural relation-
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ships that are necessary and sufficient to satisfy a model’s
purpose. Consequently, the boundary adequacy test in-
quires whether the chosen level of aggregation is appropri-
ate and if the model includes all relevant aspects of struc-
ture. It should ensure that the model contains the concepts
that are important for addressing the problem endoge-
nously. For instance, if parameters are likely to change
over time, they should be endogenized [8]. The pertinent
validation question is: “Should this parameter be endoge-
nized or not?” That question must be decided in view of
the model’s purpose.

The boundary adequacy test can be applied in three
ways: as a structural test, as a behavioral test, and as a pol-
icy test. The names are correspondingly: boundary ade-
quacy structure test, boundary adequacy behavior test, and
boundary adequacy policy test.

As a test of model structure, the boundary adequacy
test involves developing a convincing hypothesis relat-
ing the proposed model structure to the particular issue
addressed by the model. The boundary adequacy behav-
ior/policy test (explained in Subsect. “Indirect Structure
Tests”) continues this line of thinking.

Dimensional Consistency Test. This test checks the dimen-
sional consistency of measurement units of the expres-
sions on both sides of an equation. The test is performed
only at the equation level. When all tests of the individual
equations are passed, a large system of dimensionally con-
sistent equations results. This test is passed only if consis-
tency is achieved without the use of parameters that have
no meaning in respect to the real world. The dimensional
consistency test is a powerful test to establish the internal
validity of a model.

Indirect Structure Tests Indirect structure tests assess
the validity of the model structure indirectly by examining
model-generated outcome behaviors. These tests require
computer simulation. The comparative activities in these
tests are based on logical plausibility considerations which
in turn are based on the mental models of the analyst.
Comparisons of model generated data and time series
about the real system are not yet involved. The tests can be
applied to different degrees of model completeness, i. e., to
the smallest “atomic” model components, to sub-models,
as well as to the entire model.

Indirect Extreme Condition Test. For this test, the modeler
assigns extreme values to selected model parameters and
compares the generated model behavior to the observed
or expected behavior of the real system under the same
extreme conditions. This test is the logical continuation

of the direct extreme condition test, i. e., many of the ex-
treme conditions mentally developed in the previous stage
can now be deployed to evaluate the simulated behavioral
consequences. This test can be used for the explanatory
analysis phase of modeling, but also for the normative
phase of policy development. In the first instance, indirect
extreme conditions are used to develop a structure that
can reproduce the system behavior of interest and guard
against developments impossible in reality. In the latter
instance, the introduction of policies aims to improve the
system’s performance. The indirect extreme policy test in-
troduces extreme policies to the model and compares the
simulated consequences to what would be the most likely
outcome of the real system if the same extreme policies
would have been implemented.

Behavior Sensitivity Test. Sensitivity analysis assesses
changes of model outcome behavior given a systematic
variation of input parameters. This test reveals those pa-
rameters to which the model behavior is highly sensitive,
and asks if the real system would exhibit a similar sensi-
tivity to changes in the corresponding parameters. “The
behavior sensitivity test examines whether or not plausi-
ble shifts in model parameters can cause a model to fail
behavior tests previously passed. To the extent that such
alternative parameter values are not found, confidence in
the model is enhanced.” [8]. A model can be numerically
sensitive, i. e., the numerical values of variables change sig-
nificantly, but the behavioral patterns are conserved. It can
also exhibit behavioral sensitivity, i. e., the modes of model
behavior change remarkably based on systematic parame-
ter variations (Barlas [3] defines several distinct patterns
of model behavior).

As the test for indirect extreme conditions, the behav-
ior sensitivity test can also be deployed to assess policy
sensitivity. It can reveal the degree of robustness of model
behavior and hence indicate to what degree model-based
policy recommendations might be influenced by uncer-
tainty in parameter values. If the same policies would
be recommended regardless of parameter changes over
a plausible range, risk in using the model would be lower
than if two plausible sets of parameters lead to distinct
policy recommendations.

Integration Error Test. Integration error is the deviation
between the analytical solution of differential equations
and the numerical solution of difference equations. This
test ascertains whether the model behavior is sensitive to
changes in either the applied integration method or the
chosen integration interval (often referred to as simula-
tion time step). Euler’s method is the simplest numerical
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technique for solving ordinary differential and difference
equations. For models that require more precise integra-
tion processes, the more elaborated Runge–Kutta integra-
tion methods can produce more accurate results, but they
require more computational resources.

Boundary Adequacy Behavior Test/Boundary Adequacy
Policy Test. The logic for testing boundary adequacy has
already been developed under the aspect of direct struc-
ture testing in the preceding section. The indirect structure
version of this test asks whether model behavior would
change significantly if the boundary were extended or re-
duced; i. e., the test involves conceptualizing additional
structure or canceling unnecessary structure with regard
to the purpose of the study. As one example of expand-
ing the model boundary, this version of the test allows one
to detail the treatment of model assumptions considered
as unrealistically simple but still important for the model’s
purpose. On the other hand, simplifying the model is also
a way to reduce the model boundary. The loop-knockout
analysis is a useful method to implement this two-sided
test. Knockout analysis checks behavior changes induced
by the connection and disconnection of a portion of the
model structure, and helps themodeler to evaluate the use-
fulness of those changes with respect to the model’s pur-
pose.

The other version of this test is the boundary adequacy
policy test. It examines whether policy recommendations
would change significantly if the boundary were extended
(or restricted): That is, what would happen if the boundary
assumptions were relaxed (or confined)?

Loop Dominance Test. Loop dominance analysis studies
the internal mechanisms of a dynamic model and their
temporal, relative contribution to the outcome behavior
of the model. The relative contribution of a mechanism is
a complex quantitative statement that explains the fraction
of the analyzed behavior mode caused by the mechanism
considered in� SystemDynamics, Analytical Methods for
Structural Dominance Analysis in. The analysis reveals the
relative strengths of the feedback loops in the model. The
loop dominance test compares these results with the mod-
eler’s or client’s assumption about which are the dominant
feedback loops in the real system. Since the results are ana-
lytical statements, interpretation and comparison with the
real system requires profound knowledge about the system
under study.

Loop dominance analysis reveals insights about
a model on a different level of analysis than the other val-
idation tests discussed so far: It works not on the level of
individual concepts or behaviors of variables but on the

level of causal structure, and compares the temporal sig-
nificance of the different structures to each other. The use
of this test for model validation is a novelty. If the relative
loop dominances of the model map the relative loop dom-
inances of the real system, confidence in the model is en-
hanced. If the relative loop dominances of the real system
are not known, it is still possible to evaluatewhether or not
the loop dominance logic in the model is reasonable.

Tests of Model Behavior

Tests of model behavior are empirical and compare sim-
ulation outcomes with data from the real system under
study. On that basis, inferences about the adequacy of the
model can be made. The empirical data can either be his-
torical or refer to reasonable expectations about possible
future developments.

Behavior Reproduction Tests The family of behavior
reproduction tests examines how well model-generated
behavior matches the observed historical behavior of the
real system. As a principle, models should be tested against
data not only from periods of stability but also from un-
stable phases. Policies should not be designed or tested on
the premise of normality, but rather should be validated
with a view toward robustness and adaptiveness.

Symptom Generation Test. This test indicates whether or
not a model produces the symptom of difficulty that mo-
tivated the construction of the model. To pass the symp-
tom generation test is a prerequisite for considering policy
changes, because “unless one can show how internal poli-
cies and structures cause the symptoms, one is in a poor
position to alter those causes” [8].

Summary statistics, which measure and enable the in-
terpretation of quantitative deviations, provide the means
to operationalize the symptom generation test.

One known example is Theil inequality statistics,
whichmeasures themean square-error (MSE) between the
model-generated behavior and the historical time series
data. It breaks down the deviation into three sources of
error: Bias (Um), unequal variation (Us), and unequal co-
variation (Uc) [26].

An example taken from Schwaninger and Groes-
ser [22] illustrates the interpretation of the error sources.

This example from an industrial firm concerns the
design of a model that replicates the observed, histori-
cal product life-cycle pattern with high accuracy (Fig. 2).
“Product Revenue” is the main variable of interest and
specifies the symptom (growth phase followed by rapid
decay). The mean square-error for revenues is 0.35. The
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System Dynamics Modeling: Validation for Quality Assurance, Figure 2
An example comparison of historical and simulated time series for product revenues. The explained variance is close to 100% (R2 D
0:9967)

individual components of the inequality statistics are:
Um D 0:01;Us D 0:01;Uc D 0:98. The break down of
the statistics shows that the major part of the error is in the
Uc component, while the other two sourees of error are
small. This signifies that the point-by-point values of the
simulated and historical data do not match, even though
the model captures the dominant trend and the average
values in the historical data. Such a situation indicates that
a major part of the error is probably unsystematic, and
therefore the model should not be rejected for failing to
match the noise component of the data. The residuals of
the historic and simulated time series show no significant
trend. This strengthens the assessment that the model
comprises a structure that captures the fundamental dy-
namics of the issue under consideration.

Frequency Generation and Phase Relationship Tests. These
tests focus on the frequencies of time series and phase re-
lationships between variables. An example is the pattern of
investment cycles in an industry. These tests are superior
to point-by-point comparisons between model-generated
and observed behavior (cf. [7]).

Frequency refers to periodicities of fluctuation in
a time series. Phase relationship is the relationship be-
tween the time series of at least two variables. In principle,
three phase relations are possible: Preceding, simultane-
ous, and successive. The frequency generation test evalu-
ates whether or not the periodicity of a variable is in ac-
cordance with the real system. The phase relationship test
assesses the phase shifts of at least two variables by com-
paring their trajectories.

If the phase shift between the selected simulation vari-
ables contradicts the phase shift between the same vari-

ables as observed or expected in the real system, a struc-
tural flaw in the model might be diagnosed. The test can
uncover failures in the model, but offers only little guid-
ance as to where the erroneous part of the model might
be. The autocorrelation function test is one way to oper-
ationalize the frequency generation test [1]. The function
test consists in comparing the autocorrelation functions of
the observed and the model-generated behavior outputs,
and can detect if significant errors between them exist.

Modified Behavior Test. Modified behavior can arise from
a modified model structure or changes in parameter val-
ues. This test concerns changes in the model structure. It
can be performed if data about the behavior of a struc-
turally modified version of the real system are available.
“The model passes this test if it can generate similar mod-
ified behavior, when simulated with structural modifica-
tions that reflect the structure of the “modified” real sys-
tem” [2]. The applicability of this test is rather limited
since it requires specific data about the modified real sys-
tem which must be similar in kind to the original real sys-
tem.Only under this condition can additional insights into
the suitability of the original model structure be obtained.
If themodified real system deviates strongly from the orig-
inal real system, the test does not result in any additional
insights, because no stringent conclusions about the valid-
ity of the original system can be derived from a model that
is dissimilar in its structure.

Multiple Modes Test. A mode is a pattern of observed be-
havior. The multiple mode test considers whether a model
is able to generate more than one mode of observed be-
havior, for instance, if a model about the production sec-
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tor of an economy generates distinct patterns of fluctu-
ations for the short-term (production, employment, in-
ventories, and prices) and for the long term (investment,
capital stock) [15]. “ A model able to generate two dis-
tinct periodicities of fluctuation observed in a real system
provides the possibility for studying possible interaction
of the modes and how policies differentially affect each
mode” [8].

Behavior Characteristic Test. Characteristics of a behavior
are features of historical data that are clearly distinguish-
able, e. g., the peculiar shape of an oscillating time series,
sharp peaks, long troughs, or such unusual events as an
oil crisis. Since System Dynamics modeling is not about
point prediction, the behavior characteristic test evaluates
whether or not the model can generate the circumstances
and behavior leading to the event. The creation of the exact
time of the behavior is not part of the test.

Behavior Anticipation Tests System Dynamics models
do not strive to forecast future states of system variables.
Nevertheless, given that the fundamental system structure
is not subject to rapid and fundamental change, dynamic
models might provide insights about the possible range
of future behaviors. Hence, behavior anticipation tests are
similar to behavior reproduction tests but possess a higher
level of uncertainty.

Pattern Anticipation Test. This test examines whether
a model generates patterns of future behavior which are
assumed to be qualitatively correct. The limits of anticipa-
tion reside in the fact that that the structure of the system
may change over time. The pattern anticipation test entails
evaluation of periods, phase relationships, shape, or other
characteristics of behavior anticipated by the model. One
possibility for implementing this test is to split the histori-
cal time series into two data sets and introduce an artificial
present time at the end of the first data series. The first set
is then used for model development and calibration. The
second data series is employed to perform the behavior an-
ticipation test, i. e., to evaluate whether the model is able to
anticipate possible future behavior.

This test can also be used for policy considerations,
in which case it is called “Changed Behavior Anticipation
Test”. It determines whether the model correctly antici-
pates how the behavior of the real system will change if
a governing policy is altered.

Event Anticipation Test. In respect to System Dynamics,
the anticipation of events does not imply knowing the ex-
act time at which the events occur; it rather means under-
standing the dynamic nature of events and being able to

identify the antecedents leading to them. For instance, the
event anticipation test is passed if a model has the ability
to anticipate a steep peak in food prices based on the de-
velopment of the conditioning factors.

Behavior Anomaly Test In constructing and analyzing
a System Dynamics model, one strives to make it behave
like the real system under study. However, the analyst
may detect anomalous features of the model’s behavior
which conflict with the behavior of the real system. Once
the behavioral anomaly is traced to components of the
model structure responsible for the anomaly, one often
finds flaws in model assumptions. The test for recogniz-
ing behavioral anomalies is sporadically applied through-
out the modeling process.

Family Member Test A System Dynamics model often
represents a family of social systems. Whenever possible,
a model should be a general representation of the class
of that system to which the particular case belongs. One
should ask if the model can generate the behavior in other
instances of the same class. “The family-member test per-
mits a repeat of the other tests of the model in the context
of different special cases that fall within the general theory
covered by the model. The general theory is embodied in
the structure of the model. The special cases are embodied
in the parameters. To perform this test, one uses the par-
ticular member of the general family for picking parameter
values. Then one examines the newly parametrized model
in terms of the various model tests to see if the model
has withstood transplantation to the special case” [8]. The
model should be calibrated so as to be applicable to the
widest range of related systems. For the family member
test, only the parameter values of the model are subject
to alterations; changes in the model structure are part of
the modified behavior test, as discussed in the preceding
section.

Surprise Behavior Test A surprising model behavior is
a behavior that is not expected by the analysts. When such
an unexpected behavior appears, the model analysts must
first understand the causes of the unexpected behavior
within the model. They then compare the behavior and
its causes with those of the real system. In many cases,
the surprising behavior turns out to be due to a formula-
tion flaw in the model. However, if this procedure leads to
the identification of behavior previously unrecognized in
the real system, the confidence in the model’s usefulness is
strongly enhanced. Such a situation may signify a model-
based identification of a counter-intuitive behavior in a so-
cial system.
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Figure 3
Validation in the context of the System Dynamics modeling pro-
cedure

Turing Test The Turing test is a qualitative test which
uses the intuitive knowledge of system experts to evalu-
ate model behavior. Experts are presented with a shuffled
collection of real and simulated output behavior patterns.
They are asked if they can distinguish between these two
types of patterns. If they are unable to discern which pat-
tern belongs to the real system andwhich to the simulation
output, the Turing test is passed. Similar to the phase re-
lationship test, the Turing test is powerful in its ability to
indicate structural flaws, but offers only little guidance for
locating them in the model.

Validation Process

The validation process pervades all phases of model-build-
ing and reaches even beyond, into the phases of model im-
plementation and use. The diagram in Fig. 3 visualizes the
function of validation in the process of model-building.

For the purposes of this contribution, validation is
placed at the center of the scheme. From there it is dis-
persed through all steps of the modeling process, Map
(high-level model creation), Model (build the formal
model), Simulate (explore scenarios, etc.) and Design (ar-
ticulation of policies). We have limited the differentiation
of these steps in order to highlight the structure of the
process – a recursive structure drawn as a nested loop

line. After the initial identification of issues and the ar-
ticulation of model purpose, the simplified diagram de-
notes the four phases, of mapping to modeling to simu-
lation and design. The small loops symbolize micro-pro-
cesses in which, for example, a model is submitted to vali-
dation, e. g., a direct structure test, which may lead to its
modification (two small arrows). The larger loops illus-
trate more comprehensive processes. For example, an in-
direct structure test of the model is carried out, in which
the behavior is tested by means of simulation. Or a policy
test by simulation leads to implications for design (large
loop), and the design is validated in detail thereafter (small
loop).

Now, we should note that the process scheme reminds
us of a further aspect which is quite fundamental. If the re-
sults of the model’s operation, e. g., a “prediction”, diverge
from the results of a test, then either the model is wrong or
the test is inadequate (see p. 168 in [24]). This meta-per-
spective lets us keep an eye on the adequacy of the tests:
is the logic of the test flawless? Are the data sources in or-
der? (see adequacy of methodology test in Sect. “Valida-
tion Methods”).

Model-building is a process of knowledge-creation,
and model validation is an integral part of it. As the model
is validated using the methods described in the former
chapter, insights emerge, and a better understanding of
the system under study keeps growing. But model-build-
ing is also a construction of a reality in the minds of ob-
servers [31,32] concerned with an issue. In this procedure,
validation is supposed to be a “guarantor” for the realism
of the model, a control function for preventing gross aber-
rations in individual and collective perceptions. Valida-
tion should encompass precautions against cognitive lim-
itations and modeler blindness. The set of tests presented
above is a system of heuristic devices for enhancing such
provisions. A question not yet answered is how these tests
should be ordered along the timeline. We have fleshed out
three structural principles, which are illustrated in Fig. 4:

1. Validation is a parallel process: Validation in all three
domains – context, structure and behavior – is carried
out in a synchronized fashion, as shown in Fig. 4. Con-
text validation is continuous, while the other two com-
ponents show alternations.

2. Parts of the validation process have a sequential struc-
ture: This refers to the alternations between the compo-
nents of structure and behavior validation. In principle,
they occur alternately, with structural validation taking
the lead and behavior validation following. After that,
one might revert to structural validation again and so
forth.
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System Dynamics Modeling: Validation for Quality Assurance, Figure 4
The interplay of validation activities

3. Validation processes are polyrhythmic: The length and
accentuation of validation activities vary among the
three levels. This fact is symbolized by the frequency of
the vertical lines in the blocks of the chronogram.

A further important factor affecting the validation pro-
cess is the degree of resolution: micro, meso or macro (as
visualized in Fig. 1). The focus of validation is primarily
on micro-objects, the smallest building blocks of a model,
for example, a stock or a subsystem containing a stock
with its flows. One could call them metaphorically atoms
or molecules. Each building-block should be validated in-
dividually, before it is integrated into the overall model
structure. The reason is that at this atomic level disfunc-
tionalities or errors of thinking are discovered immedi-
ately, while at higher levels of resolution the identifica-
tion of structural flaws is more difficult and cumbersome.
The same holds for the relation between modules (meso)
and the whole model (macro). Before adding a module, it
should be validated in itself. This way, errors at the level of
the whole system can be minimized and, it is very impor-
tant to add, counterintuitive behavior of the model can be
understood with more ease.

Until now we have examined what occurs in a vali-
dation process and how the process is structured. Finally,
we raise the issue of who the actors are and why. In this
context, we will concentrate on group processes in model
validation.

Different observers associate diverse contents with
a system, and they might even conceive the system dis-

tinctly, as far as its boundaries, goals and structures are
concerned. They might also succumb to erroneous infer-
ences and therefore adhere to defective propositions. Con-
sequently, error-correcting devices are needed.A powerful
mechanism for this purpose is the practice of model-build-
ing and validation in groups. We have already referred to
that concept in respect to several of the methods discussed
in Sect. “Validation Methods”, and now we will briefly ex-
pand on it.

Group Model-building (GMB) is a methodology to fa-
cilitate team learning with the help of System Dynam-
ics [30]. The methodology consists of a set of methods
and instruments as well as heuristic principles. These are
meant to facilitate the elicitation of knowledge, the negoti-
ation of meanings, the creation of a shared understanding
of a problem in a team, as well as the joint construction
and validation of models. The process of GMB is essen-
tially a dialog in which different interpretations of the real
system under study are exposed, transformed, aligned and
translated into the concepts and relationships which make
up the model system. This is mainly a matter of structural
validation, of qualitative mapping and the elaboration of
the formal model.

Given its transdisciplinary approach, GMB enables an
integration of different perspectives into one shared image
of the system-in-focus. GMB is an important provision for
attaining higher model quality: it can broaden the avail-
able knowledge base, inhibit errors and show itself to be
a cohesive force in the quest for consensual model valida-
tion. The opportunity for validation inheres in the broad
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knowledge base normally available in a modeling group.
Much of this knowledge can be leveraged for validation
purposes. Most validation tests are carried out in coordi-
nation with model-building activities. Often the tests be-
come a task to be accomplished betweenworkshops. How-
ever, the members of the model-building group can, in
principle, be made available for knowledge input into and
monitoring of validation activities.

A functioning GMB process requires a number of nec-
essary elements [18]: commitment of key players (e. g.,
attendance of workshops), impartial facilitation, on-the-
spot modeling at conversational pace, with continuous
display of the developing model as well as an interactive
and iterative group process.

Let us not forget that there are many situations in
which one single person is in charge of building and vali-
dating amodel. In these cases the modelermust constantly
challenge his or her own position. Normally, it is preferred
that one should also call for external judgment in reviews,
walkthroughs and the like. The same holds for knowledge
supply. One-person modelers can find a lot of material in
the media, libraries, the internet, etc., but it is also usually
beneficial to find experienced persons from whom to elicit
relevant knowledge, or even persons who join the model-
ing and validation venture.

Synopsis andOutlook

Models should be relevant for coping with the complex-
ity of the real world. At the same time, the methods
by which they are constructed must be rigorous; oth-
erwise the quality of the model suffers. Rigor and rele-
vance are not entirely dichotomous, but given resource
constraints they are in competition to a certain extent.
Lack of rigor in building a model is often worse than
limitations to the model’s relevance. One may say, cum
grano salis: incomplete validation entails complete irrel-
evance. Modelers must find a way to ensure both rigor
and relevance, as both are necessary conditions for achiev-
ing the model purpose. Neither alone is sufficient, but
one may assume that, taken together, rigor and relevance
are sufficient conditions. The relative importance of these
two dimensions of model building may vary over time
as a function of the model quality achieved. At the be-
ginning, relevance might be more important, while at
high levels of model accomplishment rigor might become
prevalent.

Investing in high model quality is indeed both worth-
while and imperative. It is impressive to register the fact
that model validation has achieved higher levels of rigor
not only in the academic field but also in the world of af-

fairs: According to Coyle and Exelby, the need for orien-
tating decisions about “real-world” affairs has also fueled
strong efforts among commercial modelers and consul-
tants for ensuring model validity [5].

We have discussed two essential aspects of model vali-
dation, the epistemological foundations andmethodologi-
cal procedures for ensuring model validity. The main con-
clusion we have reached on epistemology is that crude
positivism has been superseded by newer philosophical
orientations that provide guidance for an adequate con-
cept of validation in System Dynamics. Validation has
been defined as a rich and well-defined process by which
the confidence in a model is gradually enhanced. Valid-
ity, then, is always a matter of degree, never an absolute
property.

Well-defined here is not meant in the sense of a rigid
algorithm, but as the rigorous application of a battery of
validation methods which we have described in some de-
tail. We have included a number of new validation tests
by which modelers’ understanding of the relevant con-
text can be scrutinized. These additional tests are rightly
supposed to prevent wrong methodological choices. They
should also trigger innovative approaches to the issues un-
der study and foster the ability to think in terms of contin-
gencies. Finally, they should liberate modelers from tun-
nel vision and open avenues to creativity. The imperative
here is to cultivate a “sense of the possible” (Robert Musil’s
Möglichkeitssinn) and a skepticism against the supposedly
impossible (see also [29]).

Simulation based on formal dynamic models is likely
to become ever more important for both private and pub-
lic organizations. It will continue to support managers
at all levels in decision-making and policy design. The
more that models are relied upon, the greater the impor-
tance of their high quality. Therefore, model validation
is one of the big issues lying ahead in System Dynamics
modeling.

Appendix: Overview of the Tests Described
in This Chapter

1. Tests of the Model-Related Context
1.1 Issue Identification Test
1.2 Adequacy of Methodology Test
1.3 System Configuration Test
1.4 System Improvement Test

2. Tests of Model Structure
2.1 Direct Structure Tests

2.1.1 Structure Examination Test
2.1.2 Parameter Examination Test
2.1.3 Direct Extreme Condition Test
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2.1.4 Boundary Adequacy Structure Test
2.1.5 Dimensional Consistency Test

2.2 Indirect Structure Tests
2.2.1 Indirect Extreme Condition Test
2.2.2 Behavior Sensitivity Test
2.2.3 Integration Error Test
2.2.4 Boundary Adequacy Behavior Test/Boundary

Adequacy Policy Test
2.2.5 Loop Dominance Test

3. Tests of Model Behavior
3.1 Behavior Reproduction Tests

3.1.1 Symptom Generation Test
3.1.2 Frequency Generation and Phase Relationship

Test
3.1.3 Modified Behavior Test
3.1.4 Multiple Modes Test
3.1.5 Behavior Characteristic Test

3.2 Behavior Anticipation Tests
3.2.1 Pattern Anticipation Test
3.2.2 Event Anticipation Test

3.3 Behavior Anomaly Test
3.4 Family Member Test
3.5 Surprise Behavior Test
3.6 Turing Test
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Glossary

CO2 Carbon dioxide is the predominant greenhouse gas.
Anthropogenic CO2 emissions are created largely by
the combustion of fossil fuels.

CGCM Coupled general circulation model, a climate
model which combines the atmospheric and oceanic
systems.

GCM General circulation model, a term commonly used
to describe climate models maintained at large re-
search centers.

GHG GHG is a greenhouse gas such as CO2 andmethane.
These gases contribute to global warming by capturing
some of the outgoing infrared radiation before it leaves
the atmosphere.

GT Gigaton, a common measure of carbon storage in the
global carbon cycle. A GT is a billion metric tons.

IPCC The Intergovernmental Panel on Climate Change
was formed in 1988 by the World Meteorological
Organization and the United Nations Environmental
Program. It reports research on climate change. Their
assessments are closely watched because of the require-
ment for unanimous approval by all participating del-
egates.

Definition of the Subject

System dynamics is a methodology for studying and man-
aging complex systems which change over time. The
method uses computer modeling to focus our attention
on the information feedback loops that give rise to the dy-
namic behavior. Computer simulation is particularly use-
ful when it helps us understand the impact of time de-
lays and nonlinearities in the system. A variety of mod-
eling methods can aid the manager of complex systems.
Coyle (p. 2 in [3]) puts the system dynamics approach in
perspective when he describes it as that “branch of control
theory which deals with socio-economic systems, and that
branch of management science which deals with prob-
lems of controllability.” The emphasis on controllability
can be traced to the early work of Jay Forrester [9] and
his background in control engineering [10]. Coyle high-
lighted controllability again in the following, highly prag-
matic definition:

System dynamics is a method of analyzing problems
in which time is an important factor, and which in-
volve the study of how a system can be defended
against, or made to benefit from, the shocks which fall
upon it from the out-side world.

The emphasis on controllability is important as it directs
our attention to understanding and managing the system,
not to the goal of forecasting the future state of the system.
Making point predictions is the objective of some mod-
eling methods, but system dynamics models are used to
improve our understanding of the general patterns of dy-
namic behavior. System dynamics has been widely used in
business, public policy and energy and environmental pol-
icy making. This article describes applications to energy
and environmental systems.

Introduction

System dynamics has been used extensively in the study of
environmental and energy systems. This article describes
some of these applications, paying particular attention to
the problem of global climate change. The applications
were selected to illustrate the power of the method in
promoting an interdisciplinary understanding of complex
problems.

The applications to environmental and energy systems
are similar to applications to other systems described in
this encyclopedia. They usually begin with the recognition
of a dynamic pattern that represents a problem. System
dynamics is based on the premise that we can improve
our understanding of the dynamic behavior by the con-
struction and testing of computer simulation models. The
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models are especially helpful when they illuminate the key
feedbacks that give rise to the problematic behavior.

System dynamics is explained in the core article in this
volume, in the early texts by Forrester [9], Coyle [3] and
Richardson [18] and in more recent texts on strategy by
Warren [22] and by Morecroft [17]. The most compre-
hensive explanation is provided in the text on business
dynamics by Sterman [19]. Applications to environmen-
tal systems are explained in the text by Ford [7]. The most
widely read application to the environment is undoubtedly
The Limits to Growth [16]. Collections of environmental
applications appear in special issues of the System Dynam-
ics Review [11,20].

The models are normally implemented with visual
software such as Stella (http://www.iseesystems.com),
Vensim (http://www.vensim.com/) or Powersim (http://
www.powersim.com/). These programs use stock and flow
icons to help one see where the accumulations of the sys-
tem take place. They also help one to see the information
feedback in the simulated system. The programs use nu-
merical methods to show the dynamic behavior of the sim-
ulated system. The examples selected for this article make
use of the Stella and Vensim software.

This article begins with textbook examples of environ-
mental resources in the western US. The management of
water levels at Mono Lake in Northern California is the
first example. It shows a hydrological model to simulate
the decline in lake levels due to water exported out of the
basin. The second example involves the declining salmon
population in the Tucannon River in EasternWashington.
These examples demonstrate the clarity of the approach,
and they illustrate the potential for interdisciplinary mod-
eling.

The article then turns to the topic of climate change
and global warming. The focus is on the global carbon
cycle and the growing concentration of carbon dioxide
(CO2) in the atmosphere. A wide variety of models have
been used to improve our understanding of the climate
system and the importance of anthropogenic CO2 emis-
sions. Examples of system dynamics models are presented
to show how they can improve our understanding and
provide a platform for interdisciplinary analysis.

System dynamics has also been widely applied in the
study of energy problems, especially problems in the elec-
tric power industry. The final section describes two appli-
cations to electric power. The first involved the financial
problems of regulated electric utilities in the US during
the 1970s. It demonstrates the usefulness of the method in
promoting an interdisciplinary understanding of the util-
ities’ financial problems. The second study dealt with the
CO2 emissions in the large electricity system in the West-

ern USA and Canada. It demonstrated how the power in-
dustry could lead the way in reducing CO2 emissions in
the decades following the implementation of a market in
carbon allowances.

TheModel of Mono Lake

Mono Lake is an ancient inland sea on the east side of
the Sierra Nevada Mountains in California. Microscopic
algae thrive in its saline waters, and the algae support huge
populations of brine flies and brine shrimp which can,
under the right conditions, provide a virtually limitless
food supply for migratory and nesting birds. Starting in
1941, stream flows toward Mono Lake were diverted into
the aqueduct for export to Los Angeles. The large export
deprived the lake of the historical flows, and the volume
shrunk over the next four decades. By 1980, the lake’s vol-
ume was cut approximately in half, and its salinity nearly
doubled. Higher salinity levels posed risks to the ecosys-
tem, and environmental scientists feared for the future of
the lake ecosystem. Various groups filed suit in the 1970s
to limit exports, and the California Supreme Court ruled
in 1983 that public trust doctrine mandated a reconsider-
ation of the management of the waters of the Mono Basin.
That reconsideration led to a long-term plan to limit ex-
ports until the lake’s elevation would return to safer levels.

Figure 1 shows a system dynamics model to simulate
water flows and storage in the Mono Basin. The goal was
to understand the pattern of decline over four decades and
to study the responsiveness of the lake to a change in ex-
port policy. The model is implementedwith the Stella soft-
ware, and Fig. 1 shows how the model appears when using
the software. A single stock variable is used to represent
the storage in the basin. The main flow into the lake is the
flow from gauged streams that bring runoff from the Sierra
to the lake. The aqueduct system diverts a portion of this
flow south to Los Angeles, and the flow allowed past the
diversion points is the main flow into the lake. The main
outflow is the evaporation. It depends on the surface area
of the lake and the evaporation rate. The surface area de-
pends in a nonlinear way on the volume of water in the
lake. Figure 1 shows that this model follows the standard,
system dynamics practice of using familiar names to con-
vey the meaning of the variables in the model. (These par-
ticular names match the terms used by water managers
and hydrological models of the basin.)

Figure 2 shows the simulated decline in the lake if ex-
ports were allowed to continue at high levels for 50 years.
The lake would decline from 6374 to around 6342 feet
above sea level, a value which is designated as a hypo-
thetical danger level for this simulation. The long, gradual

http://www.iseesystems.com/
http://www.vensim.com/
http://www.powersim.com/
http://www.powersim.com/
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System Dynamics Models of Environment, Energy and Climate Change, Figure 1
Stella diagram of the model of Mono Lake

System Dynamics Models of Environment, Energy and Climate Change, Figure 2
Simulated decline in Mono Lake elevation if historical export were allowed to continue until the year 2040

decline is a match of projections by the other hydrolog-
ical models used in the management plan for the basin.
The lake will continue to fall until the area has been re-
duced sufficiently to create an evaporation which will lead
to a balance of the flows in and out of the basin.

Figure 3 shows the simulated responsiveness of the
lake to a change in export. The export is cut to zero mid-
way through the simulation, and the elevation increases
rapidly in the ensuing decade. The simulation reveals an
immediate and rapid response, indicating that there is
little downward momentum associated with the hydrol-
ogy of the basin. This responsiveness is highly relevant
to the management plan. When the lake falls to a dan-

gerous level, the export could be reduced, and the lake
would climb to higher elevations within a few years af-
ter the change in policy. This rapid response supports the
“wait and see” argument by those who advocated waiting
for full signs of a dangerous salinity before changing ex-
port policy.1 But there is far more than hydrology at work
in this system. The waters of Mono Lake support a com-
plex ecosystem which may or may not recover as quickly
as the lake elevation. To explore the larger system requires

1“Wait and see” may be supported by an analysis of the hydrology
of the basin, but it does not necessarily make sense when consider-
ing the long delays in the political and managerial process to change
water export.
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System Dynamics Models of Environment, Energy and Climate Change, Figure 3
Simulated recovery of Mono Lake elevation if export is set to zero for the second half of the simulation

System Dynamics Models of Environment, Energy and Climate Change, Figure 4
Stella model of the brine shrimp population of Mono Lake

an interdisciplinary model, one that looks at both hydrol-
ogy and population biology.

Figure 4 shows a model of the population of brine
shrimp that live in Mono Lake. The life cycle begins when
the adult females deposit cysts in the summer. A stock is
assigned to the over wintering cysts. The nauplii and ju-
venile phases are combined into a second stock, and the
maturation leads to a new population of adults in the fol-

lowing summer. Themodel operates inmonths and is sim-
ulated over a long time interval to show the population re-
sponse to long-term changes in elevation and in salinity.
The model shows the population’s response to changes in
lake elevation, so one can learn about the delays in the pop-
ulation’s response to the changes in lake elevation. Since
the shrimp life cycle is 12 months, one would expect the
population to rebound rapidly after the increase in ele-
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vation and the reduction in salinity. The model confirms
that the shrimp population would increase rapidly in the
years following the elimination of water export from the
basin.

The Mono Lake models are textbook models [7]. They
demonstrate the clarity that the system dynamics ap-
proach brings to the modeling of environmental systems.
The stock and flow icons help one see the structure of
the system, and the long variable names help one appre-
ciate the individual relationships. The simulation results
help one understand the downwardmomentum in the sys-
tem. In this particular case, there is no significant down-
ward momentum associated with either the hydrological
dynamics or the population dynamics.

The model in Fig. 1 allows for a system dynamics por-
trayal of the type of calculations commonly performed by
hydrologists. Compared to the previous methods in hy-
drology, system dynamics adds clarity and ease of exper-
imentation. The population model in Fig. 4 is a system
dynamics version of the type of modeling commonly per-
formed by population biologists. System dynamics adds
clarity and ease of experimentation in this discipline as
well.

The main theme of this article is that system dynam-
ics offers the opportunity for interdisciplinary modeling
and exploration. The Mono Lake case illustrates this op-
portunity with the combination of the hydrological and
biological models that allows one to simulate management
policies that control export based on the size of the brine
shrimp population. The new model is no longer strictly
hydrology nor strictly population biology; it is an inter-
disciplinary combination of both. And by using stock and
flow symbols that are easily recognized by experts from
many fields of study, the system dynamics enables quick
transfer of knowledge. The ability to combine perspectives
from different disciplines is one of the most useful aspects
of the system dynamics approach to environmental and
energy systems. This point is illustrated further with each
of the remaining examples in the article.

TheModel of the Salmon in the Tucannon River

The next example involves the decline in salmon popula-
tions in the Snake and Columbia River system of the Pa-
cific Northwest. By the end of the 1990s, the salmon had
disappeared from 40% of their historical breeding ranges
despite a public and private investment of more than $1
billion. The annual salmon and steelhead runs had dwin-
dled to less than a quarter of the runs from one hun-
dred years ago. Figure 5 shows a system dynamics model
one of the salmon runs, the population of Spring Chinook

System Dynamics Models of Environment, Energy and Climate
Change, Table 1
Inputs to simulate the salmon population under pre-develop-
ment conditions

Months in each phase Population parameters
Adults ready to spawn 1 fraction female 50%
eggs in redds 6 eggs per redd 3,900
juveniles in Tucannon 12 egg loss fraction 50%
smolts in migration 1 smolt migration loss factor 90%
one yr olds in ocean 12 loss fr for first yr 35%
two yr olds in ocean 12 loss fr for second yr 10%
adults in migration 4 adult migration loss fraction 25%

that spawn in the Tucannon River. The river rises in the
Blue Mountains of Oregon and flows 50 miles toward the
Snake River in Eastern Washington. It is estimated that
the river originally supported runs of 20 thousand adults.
But the number of returning adults has declined substan-
tially due to many changes in the past sixty years. These
changes include agricultural development in the Tucan-
non watershed, hydro-electric development on the Snake
and Columbia, and harvesting in the ocean.

Each of the stocks in Fig. 5 correspond to a different
phase in the salmon life cycle (see Table 1), with a total life-
cycle of 48 months. The parameters represent predevelop-
ment conditions, the conditions prior to agricultural de-
velopment in the Tucannon watershed and hydro-electric
development on the Snake and Columbia. Each of these
parameters is fixed regardless of the size of the salmon
populations. One of the most important variables is the
“juvenile loss fraction depends on density.” It can be as
low as 50% when there are only a few emergent fry each
spring. With higher densities, however, juvenile survival
becomes more difficult due to crowding in the cool and
safe portions of the river.

Figure 6 shows the model results over a 480 month pe-
riod with the population parameters in Table 1. The simu-
lation begins with a small number to see if the population
will grow to the 20 thousand adults that were thought to
have returned to the river in earlier times. The time graph
shows a rapid rise to around 20 thousand adults within the
first 120 months of the simulation. The remainder of the
simulation tests the population response to variability in
environmental conditions, as represented by random vari-
ations in the smolt migration loss fraction. (This loss tends
to be high in years with low runoff and low in years with
high runoff.) Figure 6 confirms that the model simulates
the major swings in returning adults due to environmental
variability. The runs can vary from a low of ten thousand
to a high of thirty thousand.
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System Dynamics Models of Environment, Energy and Climate Change, Figure 5
Stella diagramof the model of the salmon life cycle

System Dynamics Models of Environment, Energy and Climate Change, Figure 6
Test of the salmonmodel with random variations in the smolt migration losses
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System Dynamics Models of Environment, Energy and Climate
Change, Figure 7
Key feedback loops in the salmonmodel

System dynamics models are especially useful when
they help us to understand the key feedbacks in the sys-
tem. Positive feedback loops are essential to our under-
standing of rapid, exponential growth; negative feedbacks
are essential to our understanding of the controllability of
the system. Causal loop diagrams are often used to depict
the feedback loops at work in the simulated system. Fig-
ure 7 shows an example by emphasizing the most impor-
tant feedback loops in the salmon model.

Most readers will immediately recognize the impor-
tance of the outer loop which is highlighted by bold ar-
rows in the diagram. Starting near the top, imagine that
there are more spawning adults and more eggs in redds.
We would then expect to see more emergent fry, more
juveniles, more smolts in migration, more salmon in the
ocean, more adults entering the Columbia, and a subse-
quent increase in the number of spawning adults. This is
the positive feedback loop that gives the salmon popula-
tion the opportunity to grow rapidly under favorable con-
ditions.

An equally important feedback works its way around
the inner loop in the diagram. If we begin at the top with
more spawners, we would expect to see more eggs, more
fry and a greater juvenile loss fraction as the fry compete
for space in the river.With a higher loss fraction, we expect
to see fewer juveniles survive to be smolts, fewer smolts
in migration, and fewer adults in the ocean. This means

we would see fewer returning adults and less egg deposi-
tion. This “density dependent feedback” becomes increas-
ingly strong with larger populations, and it turns out to
be crucial to the eventual size of the population. Simulat-
ing density dependent feedback is also essential to our un-
derstanding of the recovery potential of the salmon pop-
ulation. Suppose, for example, that the salmon experience
high losses during the adult migration, This will mean that
fewer adults reach the spawning grounds. There will be
less egg deposition and fewer emergent fry in the follow-
ing spring. The new cohort of juveniles will then experi-
ence more favorable conditions, and a larger fraction will
survive the juvenile stage and migrate to the ocean. The
density dependent feedback is crucial to the population’s
ability to withstand shocks from external conditions.2

Figure 8 shows a version of the model to encourage
student experimentation with harvesting policies. The in-
formation fields instruct the students to work in groups
of three with one student playing the role of “the harvest
manager”. The harvest manager’s goal is to achieve a large,
sustainable harvest through control of the harvest fraction.
The other students are given control of the parameters that
describe conditions on the Snake and Columbia and in the
Tucannon watershed. These students are encouraged to
makemajor and unpredictable changes to test the instincts
of the harvest manager.

Models designed for highly interactive simulations of
this kind are sometimes called “management flight sim-
ulators” because they serve the same function as actual
flight simulators. With a pilot simulator, the trainee takes
the controls of an electro-mechanical model and tests his
instincts for managing the simulated airplane under dif-
ficult conditions. The Tucannon harvesting model pro-
vides a similar opportunity for environmental students.
They can learn the challenge of managing open access fish-
eries that are vulnerable to over harvesting and the tragedy
of the commons [12]. In this particular exercise, students
learn that they can achieve a sustainable harvest under
a wide variety of difficult and unpredictable conditions.
The key to sustainability is harvest manager’s freedom to
change the harvest fraction in response to recent trends in
number of returning adults. This is an important finding
for fishery management because it reveals that the popula-
tion dynamics are not the main obstacle to sustainability.
Rather, unsustainable harvesting is more likely to occur

2The shocks could take the form of changes in ocean mortalities,
changes in harvesting and changes in the migrationmortalities. These
shocks are external to the boundary of this model, so one is reminded
of Coyle’s definition of system dynamics. That is, the model helps us
understand how the salmon population could withstand the shocks
which fall upon it from the out-side world.
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System Dynamics Models of Environment, Energy and Climate Change, Figure 8
Salmon harvestingmodel to encourage student experimentation

System Dynamics Models of Environment, Energy and Climate Change, Figure 9
Student addition to simulate river restoration

when the managers find it difficult to change the harvest
fraction in response to recent trends. This is the funda-
mental challenge of an open-access fishery.

The salmon model is a system dynamics version of
the type of modeling commonly performed by popula-

tion biologists. System dynamics adds clarity and ease of
experimentation compared to these models. It also pro-
vides a launching point for model expansions that can go
beyond population biology. Figure 9 shows an example.
This is a student expansion to change the carrying capac-
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ity from a user input to a variable that responds to the
user’s river restoration strategy. The student was trained
in geomorphology and was an expert on restoring de-
graded rivers in the west. The Tucannon began the sim-
ulation with 25 miles of river in degraded condition and
the remaining 25 miles in a mature, fully restored river
with a much higher carrying capacity. The newmodel per-
mits one to experiment with the timing of river restoration
spending and to learn the impact on the management of
the salmon fishery.

The student’s model provides another example of in-
terdisciplinary modeling that aids our understanding of
environmental systems. In this particular case, the mod-
eling of river restoration is normally the domain of the ge-
omorphologist. The model of the salmon population is the
domain of the population biologist. Their work is often
conducted separately, and their models are seldom con-
nected. This is unfortunate as the experts working in their
separate domains miss out on the insights that arise when
two perspectives are combined within a single model. In
the student’s case, surprising insights emerged when the
combined model was used to study the economic value of
the harvesting that could be sustained in the decades fol-
lowing the restoration of the river. To the student’s sur-
prise, the new harvesting could “pay back” the entire cost
of the river restoration in less than a decade.

Models of Climate Change

Scientists use a variety of models to keep track of the
greenhouse gasses and their impact on the climate. Some
of the models combine simulations of the atmosphere,
soils, biomass and ocean response to anthropogenic emis-
sions. The more developedmodels include CO2, methane,
nitrous oxides and other greenhouse gas (GHG) emissions
and their changing concentrations in the atmosphere.
Claussen [2] classifies climate models as simple, interme-
diate and comprehensive. The simple models are some-
times called “box models” since they represent the stor-
age in the system by highly aggregated stocks. The param-
eters are usually selected to match the results from more
complicated models. The simple models can be simulated
faster on the computer, and the results are easier to inter-
pret. This makes them valuable for sensitivity studies and
in scenario analysis [13].

The comprehensivemodels aremaintained by large re-
search centers, such as the Hadley Center in the UK. The
term “comprehensive” refers to the goal of capturing all
the important processes and simulating them in a highly
detailed manner. The models are sometimes called GCMs
(general circulation models). They can be used to describe

circulation in the atmosphere or the ocean. Some simu-
late both the ocean and atmospheric circulation in a si-
multaneous, interacting fashion. They are said to be cou-
pled general circulation models (CGCMs) and are consid-
ered to be the “most comprehensive” of the models avail-
able [2]. They are particularly useful when a high spa-
tial resolution is required. However, a disadvantage of the
CGCMs is that only a limited number of multi-decadal
experiments can be performed even when using the most
powerful computers.

Intermediate models help scientists bridge the gap
between the simple and the comprehensive models.
Claussen [2] describes elevenmodels of intermediate com-
plexity. These models aim to “preserve the geographic in-
tegrity of the Earth system” while still providing the op-
portunity for multiple simulations to “explore the param-
eter space with some completeness. Thus, they are more
suitable for assessing uncertainty”. Figure 10 characterizes
the different categories of models based on their relative
emphasis on:

� number of processes (right axis)
� detailed treatment of the each process (left axis), and

the
� extent of integration among the different processes (top

axis).

Regardless of the methodology, climate modeling teams
must make some judgments on where to concentrate their
attention. No model can achieve maximum performance
along all three dimensions. (Figure 10 uses the dashed lines

System Dynamics Models of Environment, Energy and Climate
Change, Figure 10
Classification of climate models
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to draw our attention to the impossible task of doing every
thing within a single model.)

The comprehensive models strive to simulate as many
processes as possible with a high degree of detail. This
approach provides greater realism, but the models often
fail to simulate the key feedback loops the link that at-
mospheric system with the terrestrial and oceanic sys-
tems. (An example is the feedback between CO2 emis-
sions, temperatures and the decomposition of soil carbon.
If higher temperatures lead to accelerated decomposition,
the soils could change from a net sink to a net source of
carbon [15].) The simple models sacrifice detail and the
number of processes in order to focus on the feedback
effects between the processes. Using Claussen’s terminol-
ogy, one would say that such models aim for a high de-
gree of “integration”. However, the increased integration
is achieved by limiting the number of processes and the
degree of detail in representing each of the processes.

System dynamics has been used in a few applications
to climate change. These applications fit in the category of

System Dynamics Models of Environment, Energy and Climate Change, Figure 11
The global carbon cycle. (Source: United Nations Environmental Program (UNEP) http://www.unep.org/)

simple models whose goal is to provide a highly integrated
representation of the system. Two examples are described
here; both deal with the complexities of the global carbon
cycle.

System DynamicsModels of the Carbon Cycle

Figures 11 and 12 depict the global carbon cycle. Figure 11
shows the carbon flows in a visual manner. Figure 12 uses
the Vensim stock and flow icons to summarize carbon
storage and flux in the current system. The storage is mea-
sured in GT, gigatons of carbon, (where carbon is the C
in CO2). The flows are in GT/year of carbon with values
rounded off for clarity.

The left side of Fig. 12 shows the flows to the terrestrial
system. The primary production removes 121GT/yr from
the atmosphere. This outflow exceeds the return flows by
1GT/year. This imbalance suggests that around 1GT of
carbon is added to the stocks of biomass and soil each
year. So the carbon stored in the terrestrial system would

http://www.unep.org/
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System Dynamics Models of Environment, Energy and Climate Change, Figure 12
Diagram of the stocks and flows in the carbon cycle

grow over time (perhaps due to extensive reforestation of
previously cleared land.) The right side of Fig. 12 shows
the flows from the atmosphere to the ocean. The CO2 dis-
solved in the ocean each year exceeds the annual release
back to the atmosphere by 2 GT. The total, net-flow out
of the atmosphere is 3GT/year which means that natu-
ral processes are acting to negate approximately half of the
current anthropogenic load.

As the use of fossil fuels grows over time, the anthro-
pogenic load will increase. But scientists do not think that
natural processes can continue to negate 50% of an ever
increasing anthropogenic load. On the terrestrial side of
the system, there are limits on the net flow associated with
reforestation of previously cleared land. And there are lim-
its to the carbon sequestration in plants and soils due
to nitrogen constraints. On the ocean side of the system,
the current absorption of 2GT/year is already sufficiently
high to disrupt the chemistry of the ocean’s upper layer.
Higher CO2 can reduce the concentration of carbonate,
the ocean’s main buffering agent, thus affecting the ocean’s
ability to absorb CO2 over long time periods.

Almost of the intermediate and comprehensive cli-
mate models may be used to estimate CO2 accumulation
in the atmosphere in the future. For this article, it is use-
ful to draw on the mean estimate published in Climatic
Change by Webster [23]. He used the climate model de-
veloped at the Massachusetts Institute of Technology, one
of the eleven models of “intermediate complexity” in the
review by Claussen [2]. The model began the simulation
in the year 2000 with an atmospheric CO2 concentration
of 350 parts per million (ppm). (This concentration cor-
responds to around 750GT of carbon in the atmosphere.)
The mean projection assumed that anthropogenic emis-
sions would grow to around 19GT/year by 2100. The
mean projection of atmospheric CO2 was around 700 ppm

System Dynamics Models of Environment, Energy and Climate
Change, Figure 13
Simple model to understand accumulation of CO2 in the atmo-
sphere

by 2100. The amount of CO2 in the atmosphere would be
twice as high at the end of the century.

Figure 13 shows the simplest possible model to explain
the doubling of atmospheric CO2. The stock accumulates
the effect of three flows, each of which is specified by the
user. Anthropogenic emissions are set to match Webster’s
assumption. They grow to 19GT/year by the end of the
century. Net removal to oceans is assumed to remain con-
stant at 2GT/year for the reasons given previously. Net re-
moval to biomass and soils is then subject to experimenta-
tion to allow this simple model to matchWebster’s results.
A closematch is provided if the net removal increases from
1 to 2GT/year during the first half of the century and then
remains at 2GT/year for the next fifty years. With these
assumptions, the CO2 in the atmosphere would double
from 750 to 1500GT during the century. This means that
the atmospheric concentration would double from 350 to
700 ppm, the same result published by Webster [23].

The model in Fig. 13 is no more than an accumu-
lator. This is the simplest of possible models to add in-
sight on the dynamics of CO2 accumulation in the atmo-
sphere. It includes a single stock and only three flows, with
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all of the flows specified by the user. There are no feed-
back relationships which are normally at the core of sys-
tem dynamics models. This extreme simplification is in-
tended to make the point that simple models may pro-
vide perspective on the dynamics of a system. In this case,
a simple accumulator can teach one about the sluggish
response of atmospheric CO2 in the wake of reductions
in the anthropogenic emissions. As an example, suppose
carbon policies were to succeed in cutting global emis-
sions dramatically in the year 2050. By this year, emis-
sions would have reached 10GT/yr, so the supposed policy
would reduce emissions to 5GT/yr. What might then hap-
pen to CO2 concentrations in the atmosphere for the re-
mainder of the century? Experiments with highly educated
adults [21] suggest that some subjects would answer this
question with “pattern matching” reasoning. For example,
if emissions are cut in half, it might make sense that CO2
concentrations would be cut in half as well. But pattern
matching leads one astray since the accumulation of CO2
in the atmosphere responds to the total effect of the flows
in Fig. 13. Were anthropogenic emissions to be reduced to
5GT/year and net removals were to remain at 4GT/year,
the CO2 concentration would continue to grow, and at-

System Dynamics Models of Environment, Energy and Climate Change, Figure 14
Representation of the carbon cycle in the model by Fiddaman [6]

mospheric CO2 would reach 470 ppm by the end of the
century.

The model in Fig. 13 is an extreme example to make
a point about the usefulness of simple models. The next
example is by Fiddaman [6]. It was selected as illustrative
of the type of model that would emerge after a system dy-
namics study. Figure 14 shows the view of the carbon cy-
cle, one of 30 views in the model. The model simulates
the climate system within a larger system that includes
growth in human population, growth in the economy, and
changes in the production of energy. The model was orga-
nized conceptually as nine interacting sectors with a high
degree of coupling between the energy, economic and the
climate sectors.

Fiddaman focused on policy making, particularly the
best way to put a price on carbon. In the current debate,
this question comes down to a choice between a carbon tax
and a carbon market. His simulations add support to those
who argue that the carbon tax is the preferred method
of putting a price on carbon. The simulations also pro-
vide another example of the usefulness of system dynamics
models that cross disciplinary boundaries. By representing
the economy, the energy system and the climate system
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within a single, tightly coupled model, he provides another
example of the power of system dynamics to promote in-
terdisciplinary exploration of complex problems.

System dynamics has also been applied to a wide vari-
ety of energy problems [1,7]. Indeed, a key word frequency
count in 2004 revealed nearly 400 energy entries in the
System dynamics bibliography [11]. Many of these appli-
cations deal with the electric power industry, and I have
selected two electric studies to illustrate the usefulness of
the approach. The first involves the regulatory and finan-
cial challenges of the investor owned electric utilities in the
United States.

Lessons from the Regulated Power Industry
in the 1970s

The 1970s was a difficult decade for the regulated power
companies in the United States. The price of oil and gas
was increasing rapidly, and the power companies were fre-
quently calling on their regulators to increase retail rates
to cover the growing cost of fuel. The demand for elec-
tricity had been growing rapidly during previous decades,
often at 7%/year. At this rate, the demand doubled every
decade, and the power companies faced the challenge of

System Dynamics Models of Environment, Energy and Climate Change, Figure 15
a The electric utility’s financial challenge during the 1950s and 1960s. b The electric utility’s financial challenge during the 1970s

doubling the amount of generating capacity to ensure that
demand would be satisfied. The power companies dealt
with this challenge in previous decades by building ever
larger power plants (whose unit construction costs de-
clined due to economies of scale). But the economies of
scale were exhausted by the 1970s, and the power compa-
nies found themselves with less internal funds and poor
financial indicators. Utilities worried that the construction
of new power plants would not keep pace with demand,
and the newspapers warned of curtailments and blackouts.

Figure 15 puts the financial problems in perspective by
showing the forecasting, planning and construction pro-
cesses. The side by side charts allows one to compare the
difficult conditions of the 1970s with conditions in previ-
ous decades. Figure 15a shows the situation in the 1950s
and 1960s. Construction lead times were around 5 years,
so forecasts would extend 5 years into the future. Given
the costs at the time, the power company would need to
finance $3 billion in construction. This was a substantial,
but manageable task for a company with $10 billion in as-
sets.

Figure 15b shows the dramatic change in the 1970s.
Construction lead times had grown to around 10 years,
and construction costs had increased as well. The power
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System Dynamics Models of Environment, Energy and Climate Change, Figure 16
Key feedbacks and delays faced by power companies in the 1970s

company faced the challenge of financing $10 billion in
construction with an asset base of $10 billion. The utility
executives turned to the regulators for help. They asked
for higher electricity rates in order to increase annual rev-
enues and improve their ability to attract external financ-
ing. The regulators responded with substantial rate in-
creases, but they began to wonder whether further rate
increases would pose a problem with consumer demand.
If consumers were to lower electricity consumption, the
utility would have less sales and less revenues. The execu-
tives might then be forced to request another round of rate
increases. Regulators wondered if they were setting loose
a “death spiral” of ever increasing rates, declining sales and
inadequate financing.

Figure 16 puts the problem in perspective by show-
ing the consumer response to higher electricity rates along
side of the other key feedback loops in the system. Higher
electricity rates do pose the problem which came to be
called “the death spiral”. But the death spiral does not act
in isolation. Figure 16 reminds us that higher rates lead
to lower consumption and to a subsequent reduction in
the demand forecast and in construction. After delays for
the new power plants to come on line, the power compa-
nies experiences a reduction in its “rate base” and the “al-
lowed revenues”.When the causal relationships are traced
around the outer loop, one sees a negative feedback loop
that could act to stabilize the situation. The problem, how-

ever, is that the delays around the outer loop are substan-
tially longer than the delay for the death spiral.

The utility companies financial challenge was the sub-
ject of several system dynamics studies in the 1970s and
1980s [7]. The studies revealed that the downward spi-
ral could pose difficult problems, especially if consumers
reacted quickly while utilities were stuck with long-lead
time, capital intensive power plants under construction.
The studies showed that utility executives needed to do
more than rely on regulators to grant rate increases; they
needed to take steps on their own to soften the impact
of the death spiral. The best strategy was to shift the in-
vestments to technologies with shorter lead times. (As an
example, a power company in coal region would do bet-
ter to switch from large to smaller coal plants because of
the small plants’ shorter lead time.) The studies also re-
vealed that the company’s financial situation would im-
prove markedly with slower growth in demand. By the
late 1970s and early 1980s, many power companies began
to provide direct financial incentives to their customers
to slow the growth in demand. System dynamics studies
showed that the company-sponsored efficiency programs
would be beneficial to the both the customers (lower elec-
tric bills) and to the power companies (improved financial
performance).

An essential feature of the utility modeling was the in-
clusion of power operations along side of consumer be-
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havior, company forecasting, power plant construction,
regulatory decision making and company financing. This
interdisciplinary approach is common within the system
dynamics community because practitioners believe that
insights will emerge from simulating the key feedback
loops. (This belief leads one to follow the cause and effect
connections around the key loops regardless of the disci-
plinary boundaries that are crossed along the way.) This
approach contrasts strongly with the customary modeling
framework of large power companies who were not famil-
iar with system dynamics. Their approach was to assign
models to different departments (i. e., operations, account-
ing and forecasting) and string the models together to pro-
vide a view of the entire corporation over the long-term
planning interval.

Figure 17 shows what can happen when models within
separate departments are strung together. A large corpo-
ration might use 30 models, but this diagram makes the
point by describing three models. The analysis would be-
gin with an assumption on future electricity prices over the
20-year interval. These are needed to prepare a forecast of
the growth in electricity load. The forecast is then given to
the planning department which may run a variety of mod-
els to select the number power plants to construct in the
future. The construction results are then handed to the ac-
counting and rate making departments to prepare a fore-
cast of electricity prices. When the company finally com-
pletes the many calculations, the prices that emerge may
not agree with the prices that were assumed at the start.
The company must then choose whether to ignore the
contradiction or to repeat the entire process with a new es-

System Dynamics Models of Environment, Energy and Climate
Change, Figure 17
The iterative approach often used by large power companies in
the 1970s

timate of the prices at the top of the diagram. This was not
an easy choice. Ignoring the price discrepancy was prob-
lematic because it was equivalent to ignoring the “death
spiral,” one of the foremost problems of the 1970s. Repeat-
ing the analysis was also problematic. The new round of
calculations would be time consuming, and there was no
guarantee that consistent results would be obtained at the
end of the next iteration.

The power companies’ dilemma from the 1970s is de-
scribed here to make an important point about the use-
fulness of system dynamics. System dynamics modeling is
ideally suited for the analysis of dynamic problems that re-
quire a feedback perspective. The method allows one to
“close the loop”, as long as one is willing to cross the neces-
sarily disciplinary boundaries. In contrast, other modeling
methods are likely to be extremely time consuming or fall
short in simulating the key feedbacks that tie the system
together.

Simulating the Power Industry Response
to a CarbonMarket

The world is getting warmer, both in the atmosphere and
in the oceans. The clearest and most emphatic description
of global warming was issued by the intergovernmental
panel on climate change (IPCC) in February of 2007. Their
summary for policymakers (p. 4 in [14]) reported that the
“Warming of the climate system is unequivocal, as is now
evident from observations of increases in global average
air and ocean temperatures, widespread melting of snow
and ice and rising global mean sea level”. The IPCC con-
cluded that “most of the observed increase is very likely
due to the observed increase in anthropogenic greenhouse
gas concentrations”. As a consequence of the IPCC and
other warnings, policymakers around the world are call-
ing for massive reductions in CO2 and other greenhouse
gas (GHG) emissions to reduce the risks of global warm-
ing.

Figure 18 summarizes some of the targets for emission
reductions that have been adopted or proposed around the
world. In many cases, the targets are specified relative to
a country’s emissions in the year 1990. So, for ease of com-
parison, the chart uses 100 to denote emissions in the year
1990. Emissions have been growing at around 1.4%/year.
The upward curve shows the future emissions if this trend
continues: emissions would reach 200 by 2040 and 400 by
2090. The chart shows the great differences in the strin-
gency of the targets. Some call for holding emissions con-
stant; others call for dramatic reductions over time. Some
targets apply to the next two decades; many extend to the
year 2050; and some extend to the year 2100. However,
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System Dynamics Models of Environment, Energy and Climate Change, Figure 18
Comparison of goals for emissions (100 on the vertical axis represent emissions in the year 1990)

when compared to the upward trend, all targets require
major reductions relative to business as usual.

The targets from the Kyoto treaty are probably the best
known of the goals in Fig. 18. The treaty became effective
in February of 2005 and called for the Annex I countries to
reduce emissions, on average, by 5% below 1990 emissions
by the year 2008 and to maintain this limit through 2012.
The extension of the Kyoto protocol beyond 2012 is the
subject of ongoing discussions. The solid line from 2010 to
2050 represents the “stabilization path” used in the climate
modeling byWebster [23]. The limit on emissions was im-
posed in modeling calculations designed to stabilize atmo-
spheric CO2 at 550 ppmv or lower. The scenario assumed
that the Kyoto emissions caps are adopted by all countries
by 2010. The policy assumed that the caps would be ex-
tended and then further lowered by 5% every 15 years. By
the end of the century, the emissions would be 35% below
the value in 1990.

This article concentrates on Senate Bill 139, The Cli-
mate Stewardship Act of 2003. Figure 19 shows the S139
targets over the interval from 2010 to 2025. The bill called
for an initial cap on emissions from 2010 to 2016. The

System Dynamics Models of Environment, Energy and Climate
Change, Figure 19
Map of the western electricity system

cap would be reduced to a more challenging level in 2016,
when the goal was to limit emissions to no more than
the emissions from 1990. S139 was introduced by Sen-
ators McCain and Lieberman in January of 2003. It did
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not pass, but it was the subject of several studies includ-
ing a highly detailed study by the Energy Information Ad-
ministration [5]. The EIA used a wide variety of models to
search for the carbon market prices that would induce in-
dustries to lower emissions to come into compliance with
the cap. The carbon prices were estimated at $22 per met-
ric ton of CO2 when the market was to open in 2010. They
were projected to grow to $60 by the year 2025.

The EIA study showed that the electric power sector
would lead the way in reducing emissions. By the year
2025, power sector emissions would be reduced 75% be-
low the reference case. This reduction was far beyond the
reductions to be achieved by other sectors of the economy.
This dramatic response was possible given the large use of
coal in power generation and the power industry’s wide
range of choices for cleaner generation.

A system dynamics study of S139 was conducted at
Washington State University (WSU) to learn if S139 could
lead to similar reductions in the west. Electricity genera-
tion in the western system is provided in a large, inter-
connected power system shown in Fig. 19. This region has
considerably more hydro resources, and it makes less use
of coal-fired generation than the nation as a whole. The
goal was to learn if dramatic reductions in CO2 emissions
could be possible in the west and to learn if they could be
achieved with generating technologies that are commer-
cially available today.

The opening view of the WSU model is shown in
Fig. 20. Themodel dealswith generation, transmission and

System Dynamics Models of Environment, Energy and Climate Change, Figure 20
Opening view of the model of the western electricity system

distribution to end use customers, with price feedback on
the demand for electricity. The model is much larger than
the textbook models described earlier in this article. Fifty
views are required to show the all the diagrams and the
simulation results. The opening view serves as a central
hub to connect with all the other views.

The opening view uses Vensim’s comment icons to
draw attention to the CO2 emissions in the model. The
emissions arise mainly from coal-fired power plants, as
shown in Fig. 21. A smaller, but still significant fraction
of the emissions is caused by burning natural gas in com-
bined cycle power plants. Total emissions vary with the
seasons of the year, with the peak normally appearing in
the summer when almost all of the fossil-fueled plants are
needed to satisfy peak demand. The base case shows an-
nual emissions growing by over 75% by the year 2025.

A major challenge for the system dynamics model is
representing power flows across a transmission grid. Find-
ing the flows on each transmission line and the prices
in each area is difficult with the standard tools of system
dynamics. It simply doesn’t make sense to represent the
power flows with a combination of stocks, flows and feed-
back processes to explain the flows. It makesmore sense to
calculate the flows and prices using traditional power sys-
temsmethods, as explained by Dimitrovski [4]. The power
flows were estimated using an algebraic approach which
power engineers label as a reduced version of a direct-cur-
rent optimal power flow calculation. The solution to the
algebraic constraints were developed with the Matlab soft-
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System Dynamics Models of Environment, Energy and Climate Change, Figure 21
Annual emissions in a base case simulation (annual emissions are inmillion metric tons of carbon)

ware and then transferred to user-defined functions to op-
erate within theVensim software. TheVensim simulations
were set to run over twenty years with time in months.
(A typical simulation required 240 months with changes
during a typical day handled by carrying along separate
calculations for each of 24 h in a typical day.) These are ex-
tensive calculations compared to many system dynamics
models, so there was concern that we would lose the rapid
simulation speed that helps to promote interactive explo-
ration and model testing. The important methodological
accomplishment of this project was the inclusion of net-
work and hourly results within a long-termmodel without
losing the rapid simulation response that encourages users
to experiment with the model.

One of the model experiments called for a new simu-
lation with carbon prices set to follow the $20 to $60 tra-
jectory projected by the EIA for S139. These prices were
specified as a user input, and the model responded with
a change in both short-term operations and long-term in-
vestments. The important result was a 75% reduction in
CO2 emissions by the end of the simulation. This dramatic
reduction corresponds almost exactly to the EIA estimate
of CO2 reduction for the power industry in the entire
US.

Figure 22 helps one understand how CO2 emissions
could be reduced by such a large amount. These diagrams

show the operation of generating units across the Western
US and Canada for a typical day in the summer of the fi-
nal year of the simulation. Figure 22a shows the reference
case; Figure 22b shows the case with S139. The side by side
comparison helps one visualize the change in system op-
eration. A comparison of the peak loads shows that the
demand for electricity would be reduced. The reduction
is 9%, which is due entirely to the consumers’ reaction to
higher retail electric prices over time.

Figure 22b shows large contributions from wind and
biomass generation. Wind generation is carbon free, and
biomass generation is judged to be carbon neutral, so these
generating units make an important contribution by the
end of the simulation. Both of these generating technolo-
gies are competitive with today’s fuel prices and tax cred-
its. The model includes combined cycle gas generation
equipped with carbon capture and storage, a technology
that is not commercially available today. The model as-
sumes that advances in carbon sequestration over the next
two decadeswould allow this technology to capture a small
share of investment near the end of the simulation. By the
year 2025, the combined cycle plants with sequestration
equipment would provide 2% of the generation.

The most important observation from Fig. 22 is the
complete elimination of coal-fired generation in the S139
case. Coal-fired units are shown to operate in a base load
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System Dynamics Models of Environment, Energy and Climate Change, Figure 22
a Projected generation for a peak summer day in 2024 in the reference case. b Projected generation for a peak summer day in 2024
in the S139 case

mode in the reference simulation. They provide around
28% of the annual generation, but they account for around
two/thirds of the CO2 emissions in the western system.
The carbon prices from S139 make investment in new
coal-fired capacity unprofitable at the very start of the sim-
ulated market in 2010. As the carbon prices increase, util-
ities to cut back on coal-fired generation and compensate
with increased generation from gas-fired CC capacity. In
the simulations reported here, this fuel switching would
push the coal units into the difficult position of operat-
ing fewer and fewer hours in a day. Eventually this short
duration operation is no longer feasible, and coal gener-
ation is eliminated completely by the end of the simula-
tion.

The WSU study of the western electric system was
selected as the concluding example because of its novel
treatment of network flows inside a system dynamics
model [4]. The model is also interesting for its treatment
of daily price changes within a long-term model. (Such
changes are important to the simulation of revenues in the
wholesale market.) From a policy perspective, the study
confirms previous modeling of the pivotal role of the elec-
tric power industry in responding to carbon markets. The
study indicated that the western electricity system could
achieve dramatic reductions in CO2 emissions within 15
years after the opening of a carbon market, and it could
do so with technologies that are commercially available to-
day [8].

Conditions for Effective InterdisciplinaryModeling

All of the applications demonstrate the usefulness of sys-
tem dynamics in promoting interdisciplinary modeling.
The article concludes with comments on the level of effort
and the conditions needed for effective, interdisciplinary
modeling.

The examples in this article differ substantially in the
level of effort required, from several weeks for the class-
room examples to several years for the energy studies. The
textbook examples involved student expansions of mod-
els of Mono Lake and the Tucannon salmon. The ex-
pansions were completed by undergraduate students in
projects lasting two or three weeks. The key was the stu-
dents’ previous education (classes frommany different de-
partments) and their receptiveness to an interdisciplinary
approach.

Fiddaman’s model of the climate and energy sys-
tem [6] was a more ambitious exercise, requiring several
years of effort as part of his doctoral research. Bringing
multi-year interdisciplinary modeling projects to a suc-
cessful conclusion requires one to invest the time to mas-
ter several disciplines and to maintain a belief that there
are potential insights at the end of the effort.

The electric power industry examples were also am-
bitious projects that required several years of effort. The
modeling of the western electricity system was a four-year
project with support from the National Science Founda-



System Dynamics Models of Environment, Energy and Climate Change 801

tion. The long research period was crucial for it allowed
the researchers from power systems engineering, system
dynamics and environmental science to take the time to
learn from one another. The modeling of the electric com-
pany problems in the 1970s was also spread over several
years of effort. The success of this modeling was aided by
utility planners, managers and modelers who were look-
ing for a systems view of their agency and its problems.
They saw system dynamics as a way to tie existing ideas to-
gether within an integrated portrayal of their system. Their
existing ideas were implemented in models maintained by
separate functional areas (i. e., forecasting, accounting, op-
erations). The existing models often provided a founda-
tion for the system dynamics models (i. e., in the same
way that the comprehensive climate models in Fig. 11 pro-
vide support for the development of the more integrated
models). The key to effective, interdisciplinary modeling
within such large organizations is support from a client
with a strong interest in learning and with managerial re-
sponsibility for the larger system.

Future Directions

This article concludes with future directions for system
dynamics applications to climate change. People often
talk of mitigation and adaptation. Mitigation refers to the
challenge of lowering greenhouse gas emissions to avoid
dangerous anthropogenic interference with the climate
system. Adaptation refers to the challenge of living in
a changing world.

Mitigation: The challenge of lowering CO2 and other
GHG emissions is the fundamental challenge of the com-
ing century. The next two decades will probably see var-
ious forms of carbon markets, and system dynamics can
aid in learning about market design. It is important that
we learn how to make these markets work well. And if
they don’t work well, it’s important to speed the transition
to a carbon tax policy with better prospects for success.
System dynamics can aid in learning about markets, espe-
cially if it is coupled with simulating gaming to allow mar-
ket participants and regulators to “experience” and better
understand market dynamics.

Adaptation: The world will continue to warm, and sea
levels will continue to rise. These trends will dominate the
first half of this century even with major reductions in
CO2 emissions. These and other climate changes will bring
a wide variety of problems for management of water re-
source, public health planning, control of invasive species,
preservation of endangered species, control of wildfire,
and coastal zone management, just to name a few. Our un-
derstanding of the adaptation challenges can be improved

through system dynamics modeling. The prospects for in-
sight are best if the models provide an interdisciplinary
perspective on adapting to a changing world.
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Glossary

Econometrics A statistical approach to economic model-
ing in which all the parameters in the structural equa-
tions are estimated according to a ‘best fit’ to historical
data.

Maximum likelihood A statistical concept which under-
pins calibration optimization and which generates the
most likely parameter values; it is equivalent to the pa-
rameter set which minimizes the chi-square value.

Objective function See Payoff below.
Optimization The process of improving a model’s results

in terms of either an aspect of its performance or by
calibrating it to fit reported time series data.

Payoff A formula which expresses the objective, say, max-
imization of profits, minimization of costs or mini-
mization of the differences between a model variable
and historical data on that variable.

Zero-one parameter A parameter which is used as a mul-
tiplier in a policy equation and serves the effect of
bringing in or removing a particular influence in de-
termining the optimal policy.

Definition of the Subject

The term ‘optimization’ when related to system dynam-
ics (SD) models has a special significance. It relates to the
mechanism used to improve the model vis-à-vis a crite-
rion. This collapses into two fundamentally different in-
tentions. Firstly one may wish to improve the model in
terms of its performance. For instance, it may be desired
to minimize overall costs of inventory whilst still offer-
ing a satisfactory level of service to the downstream cus-
tomer. So the criterion here is cost, and this would be
minimized after searching the parameter space related

to service level. The direction of need may be reversed
and maximization may be desired as, for instance, if one
had a model of a firm and wished to maximize profit
subject to an acceptable level of payroll and advertising
costs. Here the parameter space being explored would in-
volve both payroll and advertising parameters. This type
of optimization might be described generically as policy
optimization.

Optimization of performance is also the raison d’etre
of other management science tools, most notably math-
ematical programming. But such tools are usually static:
they offer the ‘optimum’ resource allocation given a set
of constraints and a performance function to either maxi-
mize or minimize. These models normally relate to a sin-
gle time point and may then need to be re-run on a weekly
or monthly basis to determine a new optimal resource al-
location. In addition, these models are often linear (cer-
tainly so in the case of linear programming), whereas SD
models are usually non-linear. So the essential differences
are that SD model optimization for performance involves
both a dynamic and a non-linear model.

A separate improvement to the model may be sought
where it is required to fit themodel to past time series data.
Optimization here involves minimizing a statistical func-
tion which expresses how well the model fits a time-series
of data pertaining to an important model variable. In other
words a vector of parameters are explored with a view to
determining the particular parameter combination which
offers the best fit between the chosen important model
variable and a past time series data set of this variable. This
type of optimization might be generically termed model
calibration. If all the parameters in the SD model are de-
termined in this fashion then the process is equivalent to
the technique of econometric modeling. A good compari-
son between system dynamics and econometric modeling
can be found in Meadows and Robinson [12].

Optimization as Calibration

In these circumstances we wish to determine optimal pa-
rameters, those which, following a search of the parameter
space, offer the best fit of a particular model variable to
a time series dataset on that variable taken from real world
reporting.

As an example consider a variation of the one of the
epidemic models which are made available with the Ven-
sim™ software. The stock-flow diagram is presented as
Fig. 1.

In this epidemiological system members of a suscepti-
ble population become infected and join the infected pop-
ulation. Epidemiologists call this an S–I model. It is a sim-
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System Dynamics Models, Optimization of, Figure 1
Stock-flow diagram for a simple epidemic model

System Dynamics Models, Optimization of, Figure 2
Current (base) run of the model and reported data on infections

pler variation of the S–I–R model which includes recov-
ered (R) individuals.

Suppose some data on new infections (at intervals of
five days) are available covering 25 days of a real-world
epidemic. The model is set with a time horizon of 50 days
which is consistent with, say, a flu epidemic or an infec-
tious outbreak of dysentery in a closed population such
as a cruise ship. The ‘current’ run of the model is shown

in Fig. 2, with the real-world data included for compari-
son.

Clearly there is not a very good correspondence be-
tween the actual data and the model variable for the in-
fection rate (infections). We wish to achieve a better cal-
ibration, and so there is a need to select relevant param-
eters through which the calibration optimization can be
performed over. Referring back to Fig. 1, we can see that
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the fraction infected from contact and the rate that people
contact other people are two possible parameters to con-
sider. The initial infected and initial susceptible are also
parameters of the model in the strict sense of the term, but
we will ignore them on this occasion. In this model the ini-
tial infected is 10 persons and initial susceptibles number
750,000 persons.

The chosen value for the fraction infected from contact
is 0.1, while that for the rate that people contact other peo-
ple is 5.0. The former is a dimensionless number while the
latter is measured as a fraction per day (1/day). This is ob-
tained from consideration of the rate of potential infectious
contacts (persons/day) as a proportion of the susceptible
population (persons).

The optimization process for calibration involves read-
ing into the model the time series data, in this case on
new infections, and, secondly, determining the range for
the search in parameter space. There is usually some basic
background knowledge which allows a sensible range to be
entered. For instance, a probability can only be specified
between 0 and 1.0. In this case we have chosen to specify
the ranges as follows:

0:03 � fraction infected from contact � 0:7
2 � rate that people contact other people � 10 :

A word of warning is necessary in respect of optimizing
delay parameters. Because there is a risk of mathematical
instability in themodel if the value of DT (the TIME STEP)
is too large relative to the smallest first-order delay con-
stant, it is important to ensure the TIME STEP employed
in the model is sufficiently small to cope with delay con-
stant values which may be reached during the search of
the delay parameter space. In other words ensure the min-
imum number for the search range on the delay parameter
is at least double the value of the TIME STEP.

Maximum Likelihood Estimation
and the Payoff Function

The optimization process involves a determination of
what are termed statistically as maximum likelihood esti-
mates. In Vensim™ this is achieved by maximizing a pay-
off function. Initially this is negative and the optimization
process should ensure this becomes less negative. An ideal
payoff value, after optimization, would be zero. A weight-
ing is needed in the payoff function too, but for calibration
optimization this is normally 1.0. Driving the payoff value
to be larger by making it less negative has parallels with
the operation with the simplex algorithm common in lin-
ear programming. This algorithm was conceived initially

System Dynamics Models, Optimization of, Table 1
Data used for calibration experiment

Time 5 10 15 20 25
Infections 30 230 1400 9500 51 400

for problems where the objective function was to be min-
imized. Its use on maximization problems is achieved by
minimizing the negative of the objective function.

During the calibration search, Vensim™ takes the dif-
ference between the model variable and the data value,
multiplies it by the weight, squares it and adds it to the er-
ror sum. This error sum is minimized. Usually data points
will not exist at every time point in the model. Here the
model TIME STEP is 0.125 (1/8th), but let us assume that
reported data on new infections have been made available
only at times t D 5, 10, 15, 20 and 25 so the sum of squares
operation is performed only at these five time points.

The data are shown as Table 1.

The Recording Point for Reported Data

System dynamics models differentiate between stock and
flow variables and the software used for simulating such
models advances by a small constant TIME STEP (also
known as DT). This has implications for the task of fitting
real-world reported data to each type of system dynamics
model variable. The following is the issue: at what point
in a continuum of time steps should the reported data be
recorded at? This is important because the reported data
has to be read into the model to be compared with the sim-
ulated data. The answer will be different for stock and flow
variables.

Where the reported data relate to a stock variable the
appropriate time point for recording will be known. If it is
recorded at the end of the day (say a closing bank balance)
then the appropriate point for data entry in the model will
be the beginning of the next day. Thus the first data point
above is at time t D 5 (5.00) and would, if it were a stock,
correspond to a record taken at the very end of time pe-
riod 4.

However, if the data relate to a flow variable, as in the
case of new infections here, the number is the total new
infections which have occurred over the entire time unit
(day, week, month etc.) and so there is a decision to be
reached as to which time point the data are entered at.
This is because the TIME STEP (DT) is hardly ever as large
as the basic time unit which the model is calibrated in.
The use of 5 (10, 15 etc.) above implies that the data on
new infections over the period of time t D 0 to t D 5
are compared with the corresponding model variable at
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time 5 C 1 � DT (and the new infections over the period
t D 5 to t D 10 at time 10 C 1 � DT etc.). A more ap-
propriate selection might be towards the end of the 5-day
time period. Following the example above using a TIME
STEP D 0:125, this might be at time 4 C 7 � DT (that is at
4.875).

Calibration Optimization Results

Based upon the data on new infections shown above and
the chosen ranges for the parameter search, the follow-
ing output is obtained (Table 2). After 114 simulations the
optimized values for our two parameters are shown to be
0.08 and 5.12 and the payoff is over 2500 times larger (less
negative). Replacing the original parameters with the op-
timized values reveals the result shown in Fig. 3. To take
things further we may wish to put confidence intervals on
the estimated parameters. One way of accomplishing this
is by profiling the likelihood and is described in Danger-
field and Roberts [3].

Avoid Cumulated Data

There might be a temptation to optimize parameters
against cumulated data when the data are reported essen-
tially as a flow, as is the case here. Were the data to be cu-
mulated we would obtain as shown in Table 3.

The results from this optimization are shown in Ta-
ble 4. The ranges for the parameter space search are kept
the same but the payoff function now involves a compari-
son of the model variable infected population with the cor-

System Dynamics Models, Optimization of, Table 2
Results from the calibration optimization

Initial point of search
fraction infected from contact D 0:1
rate that people contact other people D 5
Simulations D 1
Pass D 0
Payoff D �2:67655e C 009
Maximum payoff found at:
fraction infected from contact D 0:0794332
*rate that people contact other people D 5:11568
Simulations D 114
Pass D 6
Payoff D �1:06161e C 006

System Dynamics Models, Optimization of, Table 3
Cumulated reported data for the infected population

Time 5 10 15 20 25
Infected population 30 260 1660 11 160 62 560

System Dynamics Models, Optimization of, Table 4
Results from the calibration using cumulated data

Initial point of search
fraction infected from contact D 0:1
rate that people contact other people D 5
Simulations D 1
Pass D 0
Payoff D �2:48206e C 011
Maximum payoff found at:
fraction infected from contact D 0:0726811
*rate that people contact other people D 4:96546
Simulations D 145
Pass D 6
Payoff D �212 645
The final payoff is �212 645

responding cumulated data. Figure 4 shows the resultant
fit to infected population is good, but that is manifestly not
borne out whenwe consider the plot of infections obtained
from the same optimization run (Fig. 5).

The reason for this is rooted in statistics. The maxi-
mum likelihood estimator is equivalent to the chi-squared
statistic. This is turn assumes that each expected data value
is independent. A cumulated data series would not exhibit
this property of independence.

As an aside it is worth pointing out that this model,
with suitable changes to the variable names and the time
constants involved, could equally represent the diffusion
of a new product into a virginmarket. In systems terms the
structures are equivalent. The fraction infected from con-
tact is the same as, say, the fraction reached by word of
mouth or advertising and the rate that people contact other
people is a measure of the potential interactions at which
new products might be mentioned amongst the members
of the relevant market segment. An infected population is
equivalent to a customer base, the number of adopters of
the relevant product. So it is possible to shed light on im-
portant real-world marketing parameters through a cali-
bration optimization of models of this general structure.

Optimization of Performance (PolicyOptimization)

An example model is to be used to illustrate the process of
optimization to improve the performance of the system,
and this is illustrated in Fig. 6. It concerns the service re-
quirements which can arise following the sale of a durable
good. These items are typically sold with a 12-month war-
ranty and during this time the vendor is obliged to offer
service if a customer calls for it. In this particular case the
vendor is not being responsive in terms of staffing the ser-
vice section. The result is that as sales grow the increas-
ing number of service requests is putting pressure on the
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System Dynamics Models, Optimization of, Figure 3
Reported data on infections and optimized (calibrated) model; the base case (current) is reproduced for reference

System Dynamics Models, Optimization of, Figure 4
The cumulative model variable (infected population) together with reported data

service personnel. The delay in responding to service calls
also increases and the effect of this is that future sales are
depressed because of the vendor’s acquired reputation for
poor service response. The basic behavior mode is over-
shoot and collapse.

In the model depicted in Fig. 6, the growth process is
achieved by a RAMP function which causes sales of the
good to increase linearly by 20 units permonth from a base
of 500 units per month.

The payoff function is restricted to the variable Sales.
However, this need not be the case. Where a number
of variables might be options in a payoff function, it is
possible to assign weights to each such that the sum of
the weights is 1.0 (or 100). The optimization process will
then proceed with the software accumulating a weighted
payoff which it will attempt to maximize. Weights are
positive when more is better and negative when less is
better.
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System Dynamics Models, Optimization of, Figure 5
The corresponding fit to infections is poor

System Dynamics Models, Optimization of, Figure 6
Model of service delays for durable goods under warranty

Policy Experiment No. 1

Here it is decided to try to improve the productivity of
the service staff. Currently they manage, on average, to
respond to 120 calls per operative per month. It may be

an option to improve their productivity by, say, providing
them with hand-held devices which direct each operative
from one call to the next – calls which may have arisen
since setting out from their base. In this way their call rout-
ing is improved.
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System Dynamics Models, Optimization of, Table 5
Optimization results for the productivity of the service staff

Initial point of search
Prod Serv Staff D 120
Simulations D 1
Pass D 0
Payoff D 27 743:5
Maximum payoff found at:
*Prod Serv Staff D 122:647
Simulations D 27
Pass D 3
Payoff D 29 915

The optimization parameter is Prod Serv Staff , and
we select an upper limit for the search range of 240 calls
per person per month. The chosen performance variable
is Sales, since we wish to maximize this – or at least not
have it overly depressed by poor response times. The re-
sults are shown in Table 5. We see that the payoff is in-
creased and that the optimum productivity is a modest in-
crease of 2.6 requests per month, on average. This should
be easily achievable and perhaps without expenditure on
high-tech devices. The graphical output for sales is shown
in Fig. 7.

For comparison, the effect of increasing the produc-
tivity to as high as 150 calls per month, on average, is
also shown. This would represent an increase of 25% and
would be much more difficult to accomplish. Here the
benefit of optimization is highlighted. A modest increase
in productivity returns a visibly improved sales perfor-

System Dynamics Models, Optimization of, Figure 7
Plots of sales achieved for differing productivities

mance (although the basic behavior mode is unchanged),
whilst a much greater productivity increase offers little ex-
tra benefit for the effort and cost involved in improving
productivity.

Policy Experiment No. 2

Another approach to policy optimization involves the use
of a zero-one parameter which has the effect of either in-
cluding or excluding an influence on policy. Suppose it
was thought that the quantity of product units in war-
ranty should exert an influence on the numbers of service
personnel hired (or fired). The equation for the desired
number of service staff (Des Serv Staff ) can be expressed
as:

Des Serv Staff D “Av #Serv Req Satis”/Prod Serv Staff
� trigger C (“Av #Serv Req Satis”/Prod Serv Staff)�(Units
Warr/initial units in warranty)�(1-trigger). (Units: Per-
sons).

The trigger variable is initially set to 1.0 and so the
more sophisticated policy is not active. The optimization
run results are shown in Table 6. Clearly there is benefit
from including the more sophisticated policy which takes
into account the current numbers of product units in war-
ranty.

The graphical output is unequivocal (Fig. 8). Sales are
continuously increasing when the recruitment policy for
service personnel takes into account the number of prod-
uct units in warranty. The depressive effect on sales of poor
service performance is non-existent.
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System Dynamics Models, Optimization of, Figure 8
Comparison of sales from two different policy drivers

System Dynamics Models, Optimization of, Table 6
Optimization results from selection of policy drivers

Initial point of search
trigger D 1
Simulations D 1
Pass D 0
Payoff D 27 743:5
Maximum payoff found
at:
�trigger D 0
Simulations D 13
Pass D 3
Payoff D 47 090:9

Whilst this might seem an obvious policy, it is sur-
prising how easily the naïve alternative might be accepted
without question. The number of calls a typical operative
canmanage eachmonth is well known along with the (his-
torical) number of service requests satisfied. Hence, the
desired number of staff is more or less fixed. This comes
undone when there is a growth in the number of prod-
ucts sold. In this different environment such a simplistic
policy can, as shown, lead to overshoot and collapse. No-
tice needs to be taken of the changing number of product
units in warranty in order that amore effective system per-
formance is achieved.

The above experiments are illustrative only, and there
is no intention of over-working a simple teaching model
in order to uncover an ideal policy. In the case of pol-

icy optimization a wide range of possible alternatives ex-
ists. Indeed, a process of learning naturally arises through
carrying out repeated optimization experiments with the
model [1].

Examples of SDOptimization Reported
in the Literature

Amongst the earliest work in this area the writings of Kelo-
harju are worthy of mention. He contributed a number
of papers on the topic in the pages of Dynamica. See, for
example, Keloharju [9]. His work brought the concept to
prominence but he did not employ the method on any-
thing other than problems described in text books or pos-
tulated by himself. For instance, an application of opti-
mization to the project model contained in Richardson
and Pugh’s [13] text is contained in Keloharju and Wol-
stenholme [11]. A statement of the method together with
some textbook examples is also available [10]. Addition-
ally, an overview of the methods and their deployment on
textbook examples has been contributed by the current au-
thor [3]. Finally, there is an example of optimization ap-
plied to defence analysis. Again though it is a standard de-
fence model – the armored advance model – rather than
any real-world study [14].

Retaining the emphasis on textbook problems for the
moment, Duggan [6] employs Coyle’s model [1] of theDo-
mestic Manufacturing Company to illustrate the methods
of multi-objective optimization – an advance over stan-
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dard SD optimization with its single objective function.
The concept of multiple objectives arises from multi-cri-
teria decision-making where a situation can be judged on
more than one performance metric. While a multi-ob-
jective payoff function can be formulated using a set of
weights, it is argued that the selection of the weights is
very individual-specific. The multi-objective approach –
underpinned by the methods of genetic algorithms – rests
upon determining a Pareto-optimal situation, defined as
one where no improvement is possible without making
some other aspect worse. In other words the method
strives for an optimal solution which is not dominated by
any other solution. The author demonstrates the approach
combining two objectives in the model: one for the dif-
ferences between desired stock and actual and another be-
tween desired backlog and actual.

In terms of applications to real-world problems, the
current author has also used the methods of optimiza-
tion in research conducted in connection with modeling
the epidemiology of HIV/AIDS. Fitting a model of AIDS
spread to data was carried out for a number of European
countries [2,4]. The optimized parameters furnished sup-
port for some of the features of AIDS epidemiology which,
at the time, were being uncovered by other branches of
science. For example, the optimized output revealed that
a U-shaped profile of infectiousness in a host was neces-
sary in order to achieve a best fit to data on new AIDS
cases. This infectiousness profile was also evidenced by vi-
rologists who had analyzed patients’ blood and other se-
cretions on a longitudinal basis.

Within this strand of research, a much more com-
plex optimization was performed using American data on
transfusion-associated AIDS cases [5]. The purpose here
was to estimate the parameters for a number of plausi-
ble statistical HIV incubation distributions. Given the na-
ture of the data, the point of infection could be quite ac-
curately determined, but two difficulties were evident: the
data were right-censored and the number receiving in-
fected transfusions in each quarter was unknown. How-
ever, the SD optimization could estimate this number as
part of the process, in addition to estimating parameters
of the incubation distribution. The best fit was found to
be a three stage distribution similar to the gamma and one
which accorded with the high-low-high U-shaped infec-
tiousness profile which was receiving support from a num-
ber of sources.

In the marketing domain Graham and Ariza [8] car-
ried out an optimization on a system dynamics model
which was designed to shed light on the allocations to
make from a marketing budget in a high-tech client firm.
Assuming the budget was fixed, the task was to optimize

the allocations across more than 90 ‘buckets’ – combina-
tions of product lines, marketing channels and types of
marketing. However, these were not discrete: advertising
on one product line might have crossover effects on an-
other and the impacts could propagate over a period of
time. One major conclusion for this firm was that the ad-
vertising allocation should be increased markedly. In gen-
eral intuitive allocations were shown to fall short of the
ideal: they were directionally correct but magnitudes fell
short often by factors of three or four.

Future Directions

A primary aim must be to see more published work
which describes optimization studies carried out on real-
world SD applications. There may be frequent use of opti-
mization in consulting assignments but such activities are
rarely published. The references herein suggest that, thus
far, outside of unpublished work, the numbermay be three
at most. Whilst software requirements may have inhibited
use of SD optimization in the past, there are now no com-
putational barriers to its use and it is to be hoped that in
future this quite powerful analytical tool in SD will feature
in more application studies.

An advance in the methodology itself has been devel-
oped by Duggan [7] and this is a promising pointer for the
future. Based on genetic algorithms, it is best suited to the
class of SD problems that are agent-based and this high-
lights a slight limitation. Traditional optimization takes
the policy equations as given and explores the parame-
ter space to determine an optimal policy. Instead he has
offered an approach which searches over both parameter
space and policy (strategy). Theoretically there is no limit
to the number of strategies which can be evaluated in this
approach, although the user has to define a set in advance
of the runs. Under a conventional optimization approach
a limited tilt at this is possible using the zero-one parame-
ter method suggested above, although this would restrict
the enumerated strategies to two only. Duggan demon-
strates the new approach using a classic SD problem: the
four agent beer-game. We await its use in a real-world
application.
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Glossary

Philosophy The reflection and study of ourmost basic as-
sumptions – or the assumptions themselves.

Mental model A mental image of selected concepts and
relationships of the world around us which we con-
sider relevant for explaining the behavior of a partic-
ular system.

Presentationalism Synonymous of idealism. The view
that material objects or external realities do not exist
apart from our knowledge or consciousness of them.

Definition of the Subject

We all tend to take things for granted. Indeed it is a com-
mon place to judge formal models exclusively based on the
technical grounds and on the logic with which those mod-
els were built without a proper reflection on the assump-
tions underlying thosemodels. This omission is evenmore
pressing in complexity and system science, since these ar-
eas represent a novel challenge for philosophers of sci-
ence – e. g. see an overview in [34].

What is the idea of reality with which we work? What
do we assume about human nature? What kind of knowl-
edge dowe pursue?What kind of knowledge dowe obtain?
What is the scope of rational inquiry? What are the basis
and the implications of our own reasoning methods? The
identification of how philosophy has shaped the work of
scientists – on a conscious or unconscious level – is essen-
tial for comprehending the implications, the limitations,
and the scope of our very scientific practice. The lack of
concern by scientists for these issues may explain many

of their failures which has produced just a sort of iner-
tial blindness that is easy to recognize in current scientific
debates.

One of the strengths of system dynamics (abbreviated,
SD) is that it leads us to make explicit our assumptions
about the systems we deal with. This attitude, i. e. the im-
portance of reflection upon our own assumptions, is also
fundamental for the very development and practice of sys-
tem dynamics. Many of the debates on different issues of
every day scientific practice such as model conceptual-
ization, formal model building, validation, policy design,
etc. are informed and can be enlightened by the reflection
on the philosophical background behind those processes.
There are also various fundamental aspects of SD that are
yet to be demarcated, e. g. the characterization of SD ex-
planations. Furthermore, the ambiguity of the discussions
found in large part of related literature, characterized by
superficiality, confusion of terms, misdirected arguments,
etc. only adds noise and it complicates the advance of a dis-
cipline. This article sketches and overview on some basic
assumptions regarding the development and the practice
of system dynamics. Various suggestions that help to inte-
grate various debates are introduced and important clari-
fications are also indicated.

Introduction

The philosophical background and underpinnings of
a discipline should have to do with its most basic univer-
sal assumptions. Such a discussion becomes difficult if we
bear in mind that those assumptions are not necessarily
shared by practitioners and researchers. Nevertheless, cen-
tral premises can be identified which in turn can be related
to important questions regarding philosophical concerns
such as reality and knowledge.

The article is organized as follows. After this short in-
troduction, the second sections develops an overview of
the origins of system dynamics underlining fundamental
aspects that formed what can be called the core of the dis-
cipline. This historical review highlights the initial inter-
est, purposes and initial assumptions around the founda-
tion of SD. With these elements the following sections in-
troduce various philosophical issues that can be identified
underlying system dynamics. Perhaps the central aspect is
presentationalism, a stance associated with the notion of
“mental models” which is central in SD; this is the topic of
the fourth section. The following section makes a clarifi-
cation on the controversial issue of positivism and relates
presentationalism with knowledge. The sixth section sum-
marizes the position of system dynamics regarding social
theory. The seventh section presents the inquiry of expla-
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nation clarifying that in spite that SD involves causal mod-
els the nature of its kind of explanation can be found in the
notion of mechanism. The eighth section introduces the
implication of the use of computer simulation as a distinc-
tive epistemology which is different from the traditional
discourse in philosophy of science. The ninth section out-
lines future directions.

Before starting, a brief warning should be made: given
the scope of this review and the limited space for cover-
ing very wide subjects then this article should be viewed as
a broad introductory overview of the different topics. The
cited literature has been selected as possible starting points
for further inquiry.

SystemDynamics

In order to address a “philosophical background” the
first question naturally would be: What is system dy-
namics? Already this inquiry can be a matter of debate,
e. g. [102]. Indeed SD has been labeled as a theory [23,49],
a method [18,56,63,98,108], a methodology [81], a field
of study [17,78], a tool [61], a paradigm, among other
nouns. A natural starting point is the work of Jay Forrester,
the founder of system dynamics. A brief historical review
should help to grasp the very core we are looking for since
it can show the initial motivations, assumptions, and pur-
poses behind the development of SD.

Genesis of System Dynamics

Jay W. Forrester, member of the Sloan School of Manage-
ment at MIT, was looking for linkages between engineer-
ing and management education given his background in
feedback control systems and computers [28]. In 1956 he
wrote a “note” to the Faculty Research Seminar, the first
ever MIT “D-memo”; in this communication he sketched
the worldview of what would be known as “system dynam-
ics” [32].

He started with a strong criticism of economic mod-
els. The following were the central aspects: (i) their fail-
ure to reflect adequately the loop structures that make up
economic systems; in particular this neglect leads to ex-
clude inherent properties of closed loops such as resistance
to change, accumulations and delays; (ii) The incapacity
for including flows of goods, money, information, and la-
bor, in one single interrelated model; (iii) The exclusion
of changing mental attitudes that affect and explain eco-
nomic processes; (iv) The use of linear equations for de-
scribing systems; (v) The restriction of building models
constrained by the capacity for manipulating numerical
data and solving the equations; (vi) The overconfidence in
multiple regression analysis for obtaining coefficients for

equations that define economic behavior; (vii) The lack of
reflection and discussion on the very assumptions under-
lying everymodel preferring an emphasis on the logic with
which the model is developed.

After delineating these points, Forrester then pro-
ceeded in the same note to highlight techniques that were
largely underused at that time: servomechanisms, differen-
tial equations, and what he called “the art of simulation”.
Anchored on the mentioned assessment and on these de-
velopments Forrester conceived “a new avenue of attack
for understanding the firm and the economy” ([28] p. 336)
envisaging a new kind of models that would include aspects
such as:

Dynamic structure: Detailed attention to the sequences
of actions which occur in the system being studied and to
the forceswhich trigger or temper such actions, with a par-
ticular concern on the controlling influences of lags and
delays.

Information flows: Explicit recognition of information
flow channels and information transformation with time
and transmission.

Decision criteria: Re-examination of the proper deci-
sion criteria which must not be defined as depending only
on current values of gross economic variables; instead,
such criteria must be traced to the motivations, hopes, ob-
jectives and optimism of the people involved, including as
well what he calls business man’s intuition which “repre-
sents a disordered accumulation of basic insights into how
people and social systems react. The hope for the future
lies in generating an orderly arrangement of basic insights”
([28] p. 342).

Non-linear systems: Economic systems present most –
if not all – of the time highly non-linear characteristics.

Differential equations: The behavior of economic sys-
tems should be better described by non-linear differential
equations since they have been developed to describe de-
lays, momentum, elasticity, reservoirs, and accelerations,
which are better suited quantities for describing the eco-
nomic world. In practice these equations would be han-
dled as incremental difference equations in order to obtain
numerical solutions.

Incremental changes in variables: To prefer the formu-
lation of a model in terms of the motivations that cause
incremental changes in a variable since the new value of
a variable “can be found by solving the equations for its
incremental change and then adding the change to the pre-
ceding full value of the variable” ([28] p. 344).

Model complexity: Much complex and complete mod-
els can be developed with these techniques.

Empirical solutions: It is useless to look for explicit
unique or “correct” solutions; instead, these models pro-
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vide diverse solutions according to the different assump-
tions about the model structure and the initial values of
the variables.

Symbolism and correspondence with real counterparts:
The possibility of having a pictorial representation – a flow
diagram – whose processes of information, money, goods,
and people, are moved, i. e. simulated, time-step-by-time-
step from place to place.

Structure over coefficient accuracy: To prefer a struc-
ture in which we have confidence using intuitively esti-
mated coefficients instead of using unlikely structures with
accurately derived coefficients from statistical data.

A subsequent advance came in 1958 with an article
entitled “Industrial Dynamics: A Major Breakthrough for
Decision Makers” published in the Harvard Business Re-
view [27]. In this article Forrester shaped the previous
ideas with the concern that management should evolve
from a highly fragmentized art to a profession capable of
recognizing unified systems given that the task of man-
agement is to interrelate the flows of information, ma-
terials, labor, money, and capital equipment. He again
emphasized features such as electronic data processing,
decision making, simulation, feedback control, and infor-
mation flows. These elements were presented as the cor-
nerstones of the innovative industrial dynamics program
at MIT.

Industrial Dynamics

The definitive breakthrough came in 1961 with his mag-
nus opus “Industrial Dynamics” [24]. Themainmotivation
behind was the development of a science for designing and
controlling industrial systems, the quest for amanagement
science. In particular he conceived it as “a method of sys-
tem analysis for management.” (p. 9). He stated:

Industrial dynamics is the study of the informa-
tion-feedback characteristics of industrial activity
to show how organizational structure, amplification
(in policies), and time delays (in decisions and ac-
tions) interact to influence the success of the enter-
prise (p. 13).

Forrester underlined four pillars for this new science: in-
formation-feedback control theory anchored on the con-
cept of servomechanisms, the study of decision-making
processes, an experimental approach to system analysis
based on simulation, and the use of computers.

Coming from engineering, he had inmindmodels that
deal with nonlinear dynamic systems whose purpose is
to design new systems – as opposed to just explain sys-
tems; the models should show how changes in policies

or structure will produce better or worse behavior. In or-
der to accomplish this aim Forrester indicated that we
should focus on understanding the characteristics of the
system in hands (instead of looking for specific predic-
tions) and on our assumptions about them. “We then have
a means for tracing the implications of our assumptions”
([24] p. 55).

What should be included in a model? Forrester un-
derlined that “there will be no such thing as the model
of a social system, any more than there is the model of
an aircraft . . . the factors that must be included arise di-
rectly from the questions that are to be answered” ([24]
p. 60). It is expected that these factors will include closed-
loop information-feedback structures that give rise to so
much of the interesting behavior. An important aspect of
this new kind of models is symbolism and pictorial rep-
resentations by means of flow diagrams with a special em-
phasis on correspondence: themodel variables should cor-
respond to those in the system being represented. In this
book Forrester also demarcated the network structure of
this new kind of models asmade of four basic components:
accumulations (levels), flows (rates), decision functions,
and information channels; these networks trace cause-ef-
fect relationships which are described via mathematical
formalization. He also discussed in detail how to repre-
sent delays and how to model decision processes which
are particularly defined by general policies, i. e. rules that
state how operation decisions are made converting infor-
mation into action; this study of general policies explains
the importance for SD of the examination of human deci-
sion-making processes. Another fundamental characteris-
tics are continuous flows and aggregation: “grouping of in-
dividual events into classes . . . Our interest in themodel . . .
is from the viewpoint above the separate individual trans-
actions” ([24] p. 65); it is assumed that different individual
items are controlled by the same identical decision-func-
tion; this notion leads to aggregation which is a distinc-
tive aspect of SD: “items controlled by sufficiently simi-
lar policies that depend on sufficiently equivalent informa-
tion sources may be combined into a single channel” ([24]
p. 109); the central criterion for such aggregation is the
purpose of the model. Finally, model significance (or va-
lidity) rests on its suitability for a particular purpose which
is motivated by the design of improved industrial and eco-
nomic systems.

Principles of System Dynamics

Themain concern in these initial steps were business oper-
ations. However, Forrester sketched a glance to a broader
view in the final part of his book; there, he speaks of “sys-
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tem” dynamics since “the study of systems can provide
a framework to unite subjects . . . The dynamic model rep-
resents a system as broad as one chooses to describe” ([24]
pp. 344, 346). Indeed, looking for a more general view he
presents a section of “principles of systems structure”:

The principles to be discussed here all arise in the
context of information-feedback systems. They are
systems principles. They are not the principles of the
management art such as have been taught in orga-
nization, production, and human relations courses.
Because the principles apply to systems behavior,
they do not fall into neat separate packages . . . The
concept of a system implies interaction and interde-
pendence. In attempting to identify factors that are
common to all systems, we must keep the essential
indivisibility in mind ([24] pp. 347, 348).

Indeed, Forrester reaffirmed this general systems view in
a follow-up book entitled Principles of Systems [25] pub-
lished in 1968. He gives a basic definition of system as
“a grouping of parts that operate together for a common
purpose” ([25] p. 1-1). Moreover, he suggests that the way
to organize knowledge is with this idea of systemwhich are
represented by the models we develop:

A structure (theory) is essential if we are to effec-
tively interrelate and interpret our observations in
any field of knowledge . . . Without an organizing
structure, knowledge is a mere collection of ob-
servations, practices and conflicting incidents . . .
A model is s substitute for an object or system . . .
Any set of rules and relationships that describe
something is a model of that thing. In this sense,
all of our thinking depends on models. Our men-
tal processes use concepts which wemanipulate into
new arrangements. These concepts are not, in fact,
the real system that they represent. The mental con-
cepts are abstractions based on our experience. This
experience has been filtered andmodified by our in-
dividual perception and organization processes to
produce ourmental models that represent the world
around us ([25] pp. 1-2, 3-1).

The previous statement summarizes core assumptions for
SD. It points at the central notion of mental model and
it emphasizes that these models are models of systems.
In fact, in an article published in 1968 in Management
Science, Forrester [28] underlined that this application of
feedback concepts to social systems was evolving toward
a theory of structure in systems with a particular goal of
policy design. Specifically, “industrial dynamics is a phi-
losophy of structure in systems. It is also gradually becom-

ing a body of principles that relate structure to behavior”
([28] p. 141). Two fundamental variables are identified:
levels and rates, and the basic structural element is the
feedback loop: “every decision is responsive to the exist-
ing condition of the system and influences that condition”
([28] p. 143). And, as stated above, the structure is an aid
to organize knowledge in a particular situation given a par-
ticular purpose which is motivated by the pursue of expla-
nation and policy design.

This historical review has accentuated central aspects
of the foundation of SD. As a summary, this science
initially envisaged by Forrester for designing systems is
known nowadays as system dynamics. The models de-
veloped in SD have distinctive characteristics: dynamic
structures, information flows, study of decision criteria,
non-linearity, difference equations, symbolism and cor-
respondence, and emphasis on confidence based on the
structure of the model. The practice of this science is an-
chored on: the concept of servomechanism, the study of
decision-making processes, the embrace of an experimen-
tal approach, and the use of computers for building for-
mal models. These models are models of systems and the
main goal is to help to organize our knowledge – which
can be seen as arranged in mental models – so as to en-
hance learning processes and systems design on concrete
settings and under specific purposes.

With these elements in mind, it is now possible to pro-
ceed with a brief discussion on important aspects regard-
ing assumptions on reality and knowledge that can be rec-
ognized behind these premises and the practice of SD.

“Real”World and Presentationalism

The traditional distinctions of ontology, epistemology,
and methodology, form the habitual framework to drive
a philosophical discussion. But the isolation of these issues
may not be the most adequate or clear strategy. Given the
interrelated nature of such categories and the misleading
discussion on those terms which is present in a large part
of organization and management science literature – part
of this confusion will be exposed and clarified below – then
a different plan will be used to develop the rest of this ar-
ticle. An instinctive option is to pick up significant issues
and to relate them with what we can identify as part of the
core of SD.

Where to start? Assumptions concerning a “real”
world can be a first step to take since the traditional debate
developed through the years around the claim of build-
ing models of “social systems” has fueled part of the dis-
cussions in systems science. As most of examinations on
philosophical matters the debate has been permeated by
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a confusion originated in terms and words without the
proper examination of the topic. However, this short re-
vision is useful for opening the assessment of the premises
of SD regarding a real world.

A prominent example is the criticism made by influen-
tial commentators who state that SD models represent an
assumed “objective” real world [49]. This kind of critique
usually labels SD as a “hard” approach, e. g. [48], mean-
ing with such a term models of an assumed objective ma-
chine-like world – and habitually including and inverting
the meaning of the term “positivism” – a mistaken assess-
ment that still can be seen nowadays, e. g. [16]. This type
of comments can be illustrated with the following quote
from the work of Flood and Jackson [23]:

System dynamics models still center on capturing
the structure of the “real world” . . . the under-
lying assumption of SD that there is an external
world made up of systems the structure of which
can be grasped using models built upon feedback
processes . . . Because intentions derive from inside
social systems, from the conscious human actors
which constitute them, many possible appreciations
of the nature and purpose of particular social sys-
tems are possible. SD simply does not deal with the
innate subjectivity of human beings . . . In essence
the argument is that social systems cannot be stud-
ied, in the way of system dynamics, objectively from
the outside (pp. 78, 79–80).

However, that is not what SD looks for. The mentioned
emphasis on the examination of human decision-making
processes and on the assumptions behind, the notion of
mental model, the fact that model significance rests on its
suitability for a particular purpose, among other aspects,
should suffice to illustrate the point. Already Forrester in
1961 [24] emphasized: “a model can be useful if it repre-
sents only what we believe to be the nature of the system
under study . . . we are forced to commit ourselves on what
we believe is the relative importance of various factors. We
shall discover inconsistencies in our basic assumptions . . .
Thorough any of these we learn” (pp. 57–58, emphasis
original). This should be enough to discard the assessment
made by Flood and Jackson, and similar critics, who mis-
takenly placed SD in the terrain of a sort of naive realism as
depicted in the quote above; this point is extensively clar-
ified by Lane [55,56]. More importantly, this argument is
helpful to introduce the discussion about the nature of SD
models, the assumptions behind these models, and their
relation with a “reality”. The notion that drives these mat-
ters has been labeled in SD literature as “mental model”

and even though this concept is not free of debate [21] it is
placed at the core of the discipline.

The idea of mental model was already addressed by
Forrester, as it has been indicated; he demarcated it in 1970
as the mental image of selected concepts and relationships
of the world around us that we carry in our heads [26];
furthermore, “the mental model is fuzzy. It is incomplete.
It is imprecisely stated . . . [It] changes with time” (p. 213).
Doyle and Ford [22], looking for a consensus on this sub-
ject, propose as a definition: “a relatively enduring and ac-
cessible [conscious], but limited, internal conceptual rep-
resentation of an external system (historical, existing or
projected) whose structure is analogous to the perceived
structure of that system” (p. 411). Sterman [98] summa-
rizes what the expression “mental model” refers to: “our
beliefs about the networks of causes and effects that de-
scribe how a system operates, along with the boundary of
the model (which variables are included and which are
excluded) and the time horizon we consider relevant . . .
Most of us do not appreciate the ubiquity and invisibil-
ity of mental models, instead believing naively that our
senses reveal the world as it is. On the contrary, our world
is actively constructed (modeled) by our senses and brain”
(p. 16–17). It should be noticed that these mental models
may refer as well to planned or desired systems existing in
the mind of the modeler [54]. The ultimate goal of system
dynamics is to enhance our learning processes by testing
and improving our mental models in a way that becomes
consistent with the complexity of the systems that we face
and design everyday [98].

Then, what is a SD model as related to some “real”
world? Or how is it related to the notion of mentalmodels?
The usual option to answer these questions is to frame the
discussion in the debate realism/anti-realism. This exam-
ination is even more relevant considering that some criti-
cism labels SD as anchored on “realism”. A brief clarifica-
tion follows.

Realism? Anti-Realism?

Typical of latest debates in history of science concerns the
dispute between the so-called realism, i. e. theories are true
or false as descriptions of the world, and instrumentalism,
i. e. theories are more or less adequate. This latter posi-
tion is closer to pragmatism: theories are just instruments
to systematize – and for many philosophers predict – ob-
servations, but theories are not claims about the world; or
they can be also subjected to linguistic frameworks but still
always truth-value-less. An overview of this debate is made
by Leplin [60]. Yet, here it should be clarified that both po-
sitions and those definitions – habitually taken by histori-
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ans of science – are two sides of the same coin. In short,
both are forms of idealism. This assessment will be com-
mented next.

On the one hand, scientific “realism” is usually de-
fended using the method of abduction as source of knowl-
edge, i. e. inference to the best explanation, which is just
a form of induction and hence it is confirmationist, ul-
timately relativistic. It is not realism at all; it is exactly
the opposite, i. e. idealism. For instance, take the influen-
tial ideas of Sellars [91] who defends an illustrative tra-
ditional position of scientific realism holding the source
of knowledge on observation and relying on justification
by induction for building theoretical frameworks; he em-
phasizes: “Laws in question are stipulated to be induc-
tively established in the observation framework” (p. 313),
the theories are then refined by empirical generalizations
and what he calls further “injections” of images of the the-
ory into the observational framework, in a typical pro-
cess of instructional correction. A further refined and for-
mal model of such a framework (proposed by Friedmann,
holding a model–submodel relation) is commented by
Morrison [66] who still holds, nevertheless, the search for
truth and justification as support for his criticism and the
necessity of confirmation [67]; see also for example the pa-
per of Kukla [52] with a criticism to the ideas of Fried-
mann, yet also supported also on confirmation. In short,
this “realism” is just idealism as we know it. Similar “re-
alist” positions abound on the literature of the history of
science. E.g. Smith [95] postulates a realist stance based on
“common sense” but, since for him “science begins with
observations” (p. 53), his realism ends up, indeed, trapped
in sensations, i. e. idealism. Quantum mechanics does not
escape the debate, e. g. arguing in favor of realism within
the subjective theory of probability (the Copenhagen in-
terpretation, Bohr, Heisenberg, etc.), Dickson [20] stands
on the verification criterion for discussing on what he calls
“quantum realism”; naturally such base can not succeed,
which is anyway best self-explanatorily reflected in the first
part of the title of his paper “An Empirical Reply to Em-
piricism”; simply there is no such reply. Another case is
the criticism of Brown [13] to the deterministic notion of
“realism” that Cherniak discards (who supports it on com-
puter simulation of finite agents); the criticism of Brown
shows a Galilean notion of realism, i. e. achievable true de-
scriptions of the world via laws, but in a very “complex
world” and thus, for him, inaccessible to agents with lim-
ited cognitive capacity; this Galilean view is found in large
part of complexity science. In other attempts, for instance
Schlagel [90] defends “contextualistic realism” which ends
up in relativism: elements of the world have a conditional
status relative to contexts and conditions, the existents are

real relative to the particular structures and contexts on
which they depend; his proposal is just idealism and can be
better described as a sort of multi-phenomenalism, indeed
relativism. The diverse “realist” positions actually rooted
on non-negotiable empiricism seem endless; e. g. further
examples are found in [1,59,75], and in most papers with
the expression “scientific realism” in the abstract.

On the other hand, let us consider a supposedly oppo-
site position, for instance instrumentalism. Instrumental-
ism actually ends up in relativism as well, e. g. with respect
to the points of view where instruments can be applied;
at the end the notions of “applicability” or “adequacy” be-
come reference frameworks for establishing partial truths.
Newton-Smith [68] proposes a conciliatory position, he
calls it “modest realism” which ends up indeed in a sort
of “moderate” relativism; a catalog of various scientific re-
alisms can be found in that paper too, all of them address-
ing still the question of how such truths about a real world
can be sustained (justified). In short, instrumentalists de-
clare the dependence on observations, i. e. idealism, and
thus this position is in fact sharing assumptions with the
alleged “realists”. Leplin [60] summarizes: “some theory
can be reduced to observation by defining or translating
theoretical terms into terms that describe observable con-
ditions. The remainder must be construed instrumentally”
(p. 394).

The “realism” vs. instrumentalism debate is futile and
yet it is perhaps one of the core discussions in philoso-
phy of science. But unlike these influential historians of
science, the presented dispute tends to be dismissed by
several professional philosophers who see it as self-serv-
ing and unsophisticated; Fuller [33] underlines this assess-
ment though he also illustrates the consequences of leav-
ing such pointlessness discussions to endure. In this case,
two seemingly unaware idealist factions argue about the
best way to establish positive knowledge, e. g. either with
a supposedly “true” description of the world (more pre-
cisely: phenomena, subjectivism) or by pragmatism (and
again: phenomena, relativism). This shared idealism is the
matter of the next section.

Presentationalism

A broader debate can be assessed framed in the opposition
between realism and idealism, see e. g. [72] and [77]. It will
be shown that SD rests on the broad stance known as ide-
alism, i. e. presentationalism – this latter term is preferred
here just for clarity [10].

Firstly, it should be commented the widely inverted
and misleading use of both terms. And there is good com-
pany. Blackmore [10] shows various celebrities that be-
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came misusers of the expressions in question such as the
former president of the American History of Science So-
ciety and prominent Harvard University professor, Er-
win Hiebert, and Sir Russell Brain, outstanding neurol-
ogist and former president of the British Association for
the Advancement of Science. Add the seemingly custom-
ary tendency to quote references in second hand without
inspecting direct sources and a few decades later we have
the terms used in exactly their opposite original sense in
journals and books. Blackmore pictures the situation:

Like-minded ‘empiricists’ have restricted what they
understand by the term to what idealistic philoso-
phers of science have wanted them to understand
by it. And since the term ‘realism’ sounds good
to ‘tough-minded empiricists’ and since idealistic
philosophers such as Hume, Comte, Schuppe, and
Mach and their recent successors scarcely if ever
have admitted their idealism, many scientists and
historians of science have let themselves be seduced
into reversing the normal epistemological defini-
tions of ‘realism’ and ‘idealism’. Even worse, re-
spected scholars such as Stillman Drake, perhaps
our most outstanding authority on the manuscripts
of Galileo, and Larry Laudan, a young, energetic,
and much published commentator on Mach and
‘empiricism’, have allowed themselves to become
advocates of hopelessly naive ‘non-philosophical’
positions. Drake is sure that Galileo held no philo-
sophical position, or that if he did, it had no effect on
his scientific work. Laudan is equally positive on the
basis of Mach’s written comments that his phenom-
enalistic epistemology had no influence on Mach’s
‘empirical’ methodology of science. The simplic-
ity of their views can party be explained by their
tendency to understand by the term ‘philosophy’,
not one’s most basic universal assumptions, but
expressed talk about speculative matters. Similarly,
many ‘materialists’ who feel sure that the physical
world is directly given in experience, and who ac-
cept the idealist Kant’s distinction between ‘science’
and ‘metaphysics’, are convinced that anyone who
identifies the physical world with what is beyond im-
mediate experience is an ‘idealist’ and ‘metaphysi-
cian’ and (following Wittgenstein) ‘is merely utter-
ing nonsense’ (p. 131 in [10]).

In order to clarify, it is appropriate to underscore the atti-
tude behind an empiricist epistemology. A major defining
posture is what has been labeled as idealism, given the nat-
ural disbelief of a world beyond senses, which is the pillar
of an empiricist epistemology. The term “idealism” comes

from the “idea” of Bishop Berkeley, who took physical ob-
jects as “ideas” which included sensations and thoughts:
“It is evident to any one who takes a survey of the ob-
jects of human knowledge, that they are either ideas actu-
ally imprinted on the senses, or else such as are perceived
by attending to the passions and operations of the mind,
or lastly ideas formed by help of memory and imagina-
tion, either compounding, dividing, or barely represent-
ing those originally perceived in the aforesaid ways.” [8].
This idealism relies entirely on senses and mind-depen-
dent worlds since consequently sense-data were the only
things of whose existence our perceptions could assure us,
and that to be known is to be ‘in’ a mind, and therefore
to be mental. Berkeley, therefore, concluded that nothing
can ever be known except what is in some mind, and that
whatever is known without being in my mind must be in
some other mind [85]. Hunter [47] summarizes:

As a result of their constraints on knowledge and
meaning, empiricists tend to be skeptical of nec-
essary truths that are independent of mind and
language, and of putative eternal abstract entities
(p. 110).

This idealism can be equally identified with terms such
as ‘phenomenalism’, ‘neutral monism’, or ‘subjective ide-
alism’ (e. g. [10]), or presentationalism. In other words,
“anything in time or space, anything than can be known
by the human mind, is phenomenal” (p. 146 in [15]).

Taking this posture to the context of science, Bart-
ley [4] provides the implications: “Presentationalists see
the subject matter of science not as an external reality inde-
pendent of sensation. The subject matter of science is our
sensory perceptions. The collectivity of these sensations is
renamed ‘nature’ . . . The aim of science is seen not as the
description and explanation of that independent external
reality but as the efficient computation of perceptions . . .
[It] became the dominant twentieth-century philosophy of
physics” (p. 11, 16, emphasis original). In general this po-
sition is the pillar of the prevalent conception of science
which has been fueled by physics (for instance in the in-
terpretation of quantum mechanics of Bohr and Heisen-
berg) and backed by influential names like Mach, Russell,
Wittgenstein, Ayer, Lewis, Carnap, etc.

To appreciate the contrast, a standard definition of re-
alism can be:

‘Realism’ . . . is used for the view that material ob-
jects exist externally to us and independently of our
sense experience. Realism is thus opposed to ideal-
ism, which holds that no such material objects or
external realities exist apart from our knowledge or
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consciousness of them, the whole universe thus be-
ing dependent on the mind or in some sensemental.
It also clashes with phenomenalism, which, while
avoiding much idealist metaphysics, would deny
that material objects exist except as groups or se-
quences of sensa, actual and possible (p. 126 in [10]).

Apart from the particular emphasis on material objects (as
opposed to Berkeley’s ideas), another point is that real-
ism defends a cosmocentric thesis opposed to the anthro-
pocentric view in the discussions of the alleged “realists”
of science presented earlier; in the latter case the observer-
centered learning process is fundamental, and it is carried
on via induction looking for acquiring positive, verifiable,
and true knowledge – or justified true belief. Moreover,
let us recall that historians of science denote with the term
“realism” just the concern with supposed true descriptions
of the world. But in fact realismdoes not imply that knowl-
edge is achievable, it does not imply that the world is a per-
fect clock, it does not imply determinism, it does not im-
ply that there can be correspondence between theories and
such real world; these are different affirmations that un-
fortunately seem to be muddled inside the same bag. One
thing is to assume a real world beyond senses. But a differ-
ent inquiry is the character we ascribe to it. Another dif-
ferent issue is the role we assume for our senses. Another
very different concern is the question of knowability, etc.
Rescher [77] illustrates typical examples of the confusing
use of terms in literature: “The three positions to the effect
that real things just exactly are things as philosophy or as
science or as ‘commonsense’ takes them to be – positions
generally designated as scholastic, scientific and naive real-
ism, respectively – are in fact versions of epistemic ideal-
ism exactly because they see reals as inherently knowable
and do not contemplate mind-transcendence for the real”
(p. 187).

Coming back to presentationalism, this position then
assumes that we are imprinted by the environment, andwe
call to this impressions “knowledge”. Given the limitation
of our senses then presentationalism postulates that noth-
ing more can be known; and thus, such assumption is used
to construct the world in our minds: for a presentational-
ist, strictly speaking, the world is not re-presented since we
do not have access to it, the world is just what is presented
to our senses: the world as we experience it happens to be
the world itself; and, since anything that can be known by
the human mind is, then, phenomenal (sensations, etc.),
therefore knowledge strictly depends on – and is source
in – what is sensed, e. g. observed. Hence knowledge needs
to be justified in order to avoid error; and yet, the only ex-
istent knowledge is the imperfect evidence sourced in sen-

sation and, nevertheless, a foundation that can be justified
is pursued. This is the popular plan we have come up with,
so far, to try to avoid the destruction of empiricism made
by Hume. The picture can be summarized:

Almost all traditional epistemologies are Lamarck-
ian in their accounts of the growth of knowledge.
This is conspicuously true of presentationalism, al-
most all adherents to which maintain an inductivist,
justificationalist account of knowledge growth, ac-
cording to which knowledge is constructed out of
sensations (as building blocks or elements) by a rel-
ative passive process of combination, accumulation,
repetition, and induction (p. 25 in [4]).

This position is identified with idealism and most popu-
larly associated with epistemological empiricism, with all its
assumptions and its consequent scientific method.

The last point to underline is that this epistemology
has subordinated ontology. A remarkable illustration of
this type of problems was already made by Bowman [11]:
“The result . . . is the more or less deliberate abnega-
tion of a genuine epistemology and the substitution for
it of a highly formal logic. Hence the paradox illustrated
equally in the case of Plato and, recently, of Mr Russell,
of a radical empiricism (expressed in Plato’s Protagorean
theory of sensation and in Russell’s subjectivism) sub-
sisting side by side with the extremist rationalism. Such
a dualistic position is the despair of philosophy, and indi-
cates a failure in the synthetic work of thought” (p. 485).
This despair is easy to recognize in current science which
presents a contradictory ontological position whose diffi-
culty is found in its subsumption under a radical episte-
mology. Indeed extreme empiricism, i. e. presentational-
ism, has become the metaphysics, i. e. the theory of real-
ity, of our science. The debates on “scientific realism” pre-
sented earlier picture this failure. On this particular subject
the different use of terms in literature is a source of confu-
sion; but here the terms have been inverted by historians
of science and scientists; and beyond a semantic confusion
this has brought a narrow conception and a very restricted
examination of epistemological assumptions. In short, the
subjectivism of Descartes and Kant – or more precisely,
Kantian idealism – is what now is labeled as “realism”,
e. g. everything has become “phenomena”. As a matter of
fact common expressions like “objective phenomena” or
“real phenomena” uncover an idealistic position where
the “objective” or “real” are just phenomena. Indeed, the
so-called scientific “realism” commented above is nothing
more than a sort of empiricism driven by Hume and Kant.
This “realism” is just ontology overlapped by epistemol-
ogy (idealism).More precisely, regarding Kant, let us recall
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his “Transcendental Idealism” which was the common an-
swer of Kant when he was accused of idealist, e. g. see [93],
denying to be a “dogmatic idealist” (in the Berkeley sense;
see e. g. [101]); a full discussion of this failed defence of
Kant is made by Guyer [37]. In particular Turbayne [101]
defends Kant when he was accused of having misinter-
preted (or even completely having misunderstood) Berke-
ley’s idealism; yet, Turbayne’s conclusion summarizes the
Kantian idealism (and its ambiguity) unmistakably: “The
Kantian antidote to this is not the a priori nature of space,
but its reality or subjectivity, which assimilates space and
its contents into the realm of ideas, and thus prevents illu-
sion” (p. 243, emphases added). Regarding consequences,
perhaps the best summary is the radical idealist position of
Mach – who denied even the existence of atoms since they
cannot be observed. Kant seems to be taken for granted
without a proper reflection on his position.

These few points were commented since this debate is
the major informer of the method and the assumptions of
management science, organization science, and social sci-
ence in general, places where SD has its roots. More im-
portant, by making this clarifications then a clear ground
for SD can be envisaged. It can be affirmed that SD has
been mistakenly labeled as “realist” by many commenta-
tors alluding the alleged aim of building “true” descrip-
tive theories of the world, and using the misleading defi-
nitions of historians of science. But also from the discus-
sion above it should be clear that SD safely rests on pre-
sentationalism. Moreover, the identified presentationalist
stance known as “instrumentalism”, and in general the so-
called anti-realists positions (independent of the inverted
use of the term), fit to the SD worldview: the abstractions
from our experience are arranged in mental models which
form knowledge that we want to improve in order to make
better decisions. The SD models built for achieving this
goal are judged against their adequacy and suitability for
a particular purpose; thesemodels are not claims about the
world but instruments for systematizing observations and
for boosting learning processes using experimentation via
simulation.

The Discussions on Positivism:
Presentationalism and Knowledge

An issue previously mentioned which is closely connected
with presentationalism is relativism and positivism. Since
positivism usually – and mistakenly – is pejoratively asso-
ciated with a supposed objective representation of reality,
then an important clarification is needed. In short: posi-
tivism is consistent with presentationalism and with rela-
tivism as well.

Presentationalism Brings Positivism

Blackmore [10] reminds that strictly speaking neither “ra-
tionalism” nor “empiricism” are properly epistemologi-
cal terms at all; the entrenched idealism has led just to
this narrowed identification. For instance, usually the term
“empiricism” is synonymous of knowledge sourced in
observation, i. e. in a restricted epistemological context,
but such popular narrowness is inaccurate. Blackmore re-
marks: “Granted, that if one means by ‘empiricism’ not
just an extensive and careful concern with empirical ev-
idence but restricting reference or knowledge or both to
sensory appearances, then there are indeed epistemologi-
cal implications. One has become an epistemological phe-
nomenalist or subjective idealist, or if you will, a positivist”
(p. 130, emphases original). This clarification is needed for
two reasons; on the one hand, as it was stated, SD has been
labeled as “positivist” but the critics take this term as a sort
of naive realism; the confusion is patent once we realize
that positivism actually is a consequence of idealism, the
opposite doctrine of realism. On the other hand, since SD
is better identified with idealism then a sort of positivism
can be also associated with it, but not the sort of “posi-
tivism” that the critics have in mind but the authentic pos-
itivism; and yet we will see that with the use of simulation
positivism does not necessarily fit either.

The case of management science is a good example re-
garding the discussion on relativism and positivism. Let us
consider the traditional and unfortunate sharp division be-
tween “hard vs. soft” which also takes the form “quantita-
tive vs. qualitative”. However, this discussion ismisleading
as well. It is not difficult to find researchers that claim to
be anti-positivists but being themselves grounded on posi-
tivism (e. g. empirical observation, verification, induction,
etc.) without noticing the contradiction. A good exam-
ple is the claimed opposition between positivism and phe-
nomenology. Yet, phenomenology is authentic positivism
when is committed to evidence – Husserl himself under-
lines this aspect – see e. g. [94]. Indeed it is easy to appre-
ciate an inverted use of the term “positivism” in literature;
in management science this is a favored and widespread
practice where so-called anti-positivists do not notice their
positivism. The fact is that anthropocentrism is the ground
in our most influential epistemologies that recognize the
obvious imperfections of our sensorial apparatus but, nev-
ertheless, rely knowledge on sensation (observation, etc.),
that is, positivism, which is nothing more that our anxiety
to confirm and validate, i. e. justify, our “imperfect” knowl-
edge, e. g. empirically. This is a simplification of highly
loaded terms; clarifications and further discussions can be
found elsewhere, e. g. regarding positivism see [9,97,100].
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Positivism is Anchored on Justification

Within a presentationalist worldview the search for confir-
mation and verification is nothing less than the search for
justification of knowledge where the intellectual authority
lies in sense experience. From a presentationalist account
it is straightforward to have a justificationist approach for
confirming and verifying theories. Following Bartley [4]:

Preoccupied with the avoidance of error, they sup-
pose that, in order to avoid error, they must make
no utterances that cannot be justified by – i. e., de-
rived from – the evidence available. Yet sense per-
ception seems to be the only available evidence . . .
The claim that there is an external world in addi-
tion to the evidence is a claim going beyond the evi-
dence. Hence, claims about such realms are unjusti-
fiable. Crucial to the presentationalist argument are,
then, two things: the desire to give a firm foundation
or justification to the tenets of science, and the con-
strual of sense experience as the incorrigible source
of all knowledge (pp. 12–13, emphases original).

In fact justification philosophy taken as the search for epis-
temic ‘authorities’ has been the dominant style of western
philosophy looking for “well-grounded” knowledge. For
instance in the customary view of knowledge as justified
true belief , e. g. in the sense of Russell [86]) – as the re-
sult of systematic analysis “of our sensory experience of
a knowable external reality” (p. 47 in [96]). Within this
popular position the central problem of epistemology – as
succinctly formulated by Radnitzky [76] – becomes:

“When is it rational or, so to speak consistent with
one’s intellectual integrity, to accept a particular
position?” The formulation suggests the direction
in which the answer is to be sought: “When con-
cerned with a statement, a theory, etc., accept those
and only those statements, theories, etc., which not
only are true but whose truth has been established”
(p. 282, emphasis original).

The goal of justification is usually entrenched within the
method of induction where every new repeated observa-
tion is a confirmation that validates – justifies – the the-
oretical statement. Even with weaker conditions the way
of reasoning is the same, for instance within the ideas of
Ayer where strict verifiability is seen as a too rigid crite-
rion – he introduces confirmability to some degree, instead
of complete and conclusive verifiability (see [88]); justifi-
cation is still pursued. The appeal of justification can be
explained because it looks for avoiding relativism (inher-

ently attached to presentationalism) since not all positions
are equally good or bad and it suggests to look for some-
thing beyond blind belief [76]. Though it is not the only
option, nevertheless, it is the most common view of sci-
ence; the concerns on validation, justification, verification,
confirmation, and generalization, are part of this popular
and influential view. Here the observer is the fixed point
of reference. In short, within a justificationist logic, it is
rational to accept only those positions that have been jus-
tified according to the rational authority which in the case
of presentationalism is sense experience, consistent then
with the highly influential ideas of Locke, Berkeley, Hume,
Mach, Carnap that have shaped our prevalent view of
science [4].

Justification in System Dynamics

Turning back to SD, it must be recalled the role of mental
models whose characteristic nature of “abstractions based
on experience” can be better assessed within a presenta-
tionalist stance. Here justification has also a place. How
is this knowledge justified? Already Forrester [24] empha-
sized, within the debate of model validation, that, “knowl-
edge of all forms can be brought to bear on forming an
opinion of whether or not a model is suitable to its partic-
ular purpose” (p. 129). Therefore, Forrester [25] also em-
phasized that “we can never prove that any model is an
exact representation of ‘reality’ . . . Models are then to be
judged, not on an absolute scale that condemns them for
failure to be perfect, but on a relative scale that approves
them if they succeed in clarifying our knowledge” (p. 3–4).
This sort of relativism will be addressed next.

With the aim of placing this stance within the discus-
sion of history of science, Barlas and Carpenter [3] ad-
dressed the “philosophical roots of model validation” as-
sociating SD with what they called a “relativist philoso-
phy of science”. In this view justification is pursued: such
a knowledge is seen as socially, culturally and historically
dependent and it becomes socially justified belief. Here
“a valid model is assumed to be only one of many possible
ways of describing a real situation . . . for every model car-
ries in it the modeler’s world view . . . validation is a mat-
ter of social conversation” (p. 157). Hence, confirmation
and verification are pursued through a social process rel-
ative to a frame of reference. This sort of moderate rela-
tivism was later criticized by Vásquez, Liz and Aracil [103]
for whom such relativism is unacceptable in spite of their
recognition that there is no privileged single model (or set
of models); since they are also concerned with epistemo-
logical justification these authors present Putnam’s inter-
nal “realism” as a more adequate way to conceptualize the
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type of knowledge consistent with the assumptions about
reality held by SD practitioners; in short, these authors un-
derline that mental models are the source of knowledge –
and its justification – helping to select the structures that
must be assumed as working in real systems; here knowl-
edge is taken as internal to the conceptual scheme of SD.
Since there can be many models for a given situation, the
authors argue that this framework gives the possibility of
convergence as a result of “the strong interactive charac-
ter of mental models” (p. 34) recognizing that in any case
SDmodeling is a process of revision and adjustment.With
this proposal these authors seek to achieve justification
and some realistic representational content in spite of the
plurality of alternative SD models available for a specific
situation. It is easy to see that this proposal is still relativis-
tic, in this case knowledge is relative to the mental models
and the conceptual scheme – though the mentioned au-
thors would not agree since for them there is a “reality”
given by the internal representational schema, in this case
the mental models of the modelers.

The fail to recognize presentationalism as the episte-
mology which is driving ontology is at the root of the pre-
sented discussions. This is a distinctive trait present in
large part of the philosophy of science literature. How-
ever, the characteristic problem of mistaking positivism
with a sort of supposed “objectivism” is also present in
this discussion – in fact, Barlas and Carpenter, following
the misdirecting literature on the subject, argue that the
relativist philosophy that they defend rejects positivism;
Vásquez, Liz and Aracil also follow the same inertia. How-
ever, these theses, which seek for confirmation, verifica-
tion, justification, reflect the search for positive knowledge
within an idealist epistemology. In the first case, knowl-
edge is confirmed and accepted through social interaction
and it is relative to a context. In the second case, knowl-
edge is justified onmentalmodels. To appreciate a genuine
contrasting position see an anti-justificationist approach
to validation in computer simulation in [51]; the core of
anti-justificationism can be found in the work of Popper,
e. g. [73,74].

System Dynamics as Presentationalist

It should be clear that the assumptions on SD reject naive
realism; the models are not supposed to be accurate and
corresponding descriptions of an external true reality –
and furthermore, this is not what the term “positivism”
refers to. In any case validation in SD does not mean a sup-
posed “positive proof” or to assess the development of
“true models” of the world. On the contrary, SD aims at
enhancing our ways of reasoning, it emphasizes a process

of learning so as to consistently improve our mental mod-
els which are product of our experience and the opera-
tions of ourmind. Hence SD is closer to presentationalism.
Knowledge can be socially justified and our mental models
can be enhanced. Moreover, a particular emphasis on the
modeling process is also underlined – see e. g. [29,44,89]
and it will be commented in the eight section devoted to
simulation.

A Brief Note Regarding Social Theory

Another important discussion is related to the theories
about the “social world” that are supposedly held in SD,
i. e. the social theory behind SD if any. Part of the mis-
guided debate is explained by the widespread use of the
traditional framework of Burrell and Morgan [14] whose
oversimplification of social science in four paradigms has
deviated major issues covering important topics under
a too practical and inadequate schema – e. g. see a criti-
cism in Deetz [19]. Jackson [49] provides a summary of
such usual misconstruction:

System dynamics . . . is essentially functionalist in
nature. It sees system structure as the determining
force behind system behavior . . . If humans are free
to construct social systems as they wish, what de-
termining influence does system structure have? . . .
This tension between determinism and free will is
unresolved (p. 39).

It should suffice to recall from the discussion above that
the aggregate approach of SD is not a theory of human be-
havior; SD is not concerned with individual action. Fur-
thermore, it does not assume that a structure, of any kind,
determines human behavior either, i. e. the sort of de-
terminism that Burrell and Morgan [14] oppose to “free
will” and in the lines of the already vague term known
as “structuralism” – see an early clarification of the prob-
lems of such type of oversimplification in [84]. In any
case, this sort of criticism has been answered and clari-
fied by Lane [56] who has underlined the main point: SD
is concerned with aggregate social phenomena and not
with individual meaningful actions [55]. Moreover, sys-
tem dynamics does not propose invariant causal laws, as
Lane [56] also concludes: “The only universal law/theory
on offer is a grand methodological, or structural theory,
associated with a representation scheme . . . it does not at-
tract the determinism-related criticisms attached to grand
theory in the sense of Parsons and Mills” (p. 111). In [57]
Lane proposes to link system dynamics with a different
framework: agency/structure theories.
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Servomechanism

Part of the confusion is because of the misunderstanding
by various commentators of the notion of feedback that
underlies SD. This point has been also a source of mis-
conception given the use of feedback in theories of control
applied to social systems, e. g. cybernetics. Consider for ex-
ample the following comment by Flood and Jackson [23]:

The attempt of SD thinkers to model external real-
ity is misguided . . . The emphasis placed on “struc-
ture” as the means of revealing knowledge about the
optimal behavior of systems cannot be accepted . . .
SD modelers using feedforward control appear to
believe that there are optimal future states that we
should steer systems towards” (pp. 80, 81).

Such criticism apparently is associated with the notion of
feedback used in cybernetics. However SD does not pursue
optimization, let alone by studying “knowledge revealing”
structures in order to achieve supposed optimal behavior
patterns. Instead, the goal is to have a better understanding
of feedback structures in order to enhance decision-mak-
ing and policy design. This point has been also addressed
by Lane [53,55]. The central clarification of this issue has
been made by Richardson [78] who distinguishes two dif-
ferent threads in the development of the concept of feed-
back in the social sciences: the cybernetics thread and the
servomechanisms thread. The failure in noticing these two
different lines of thought has produced various miscon-
ceptions regarding the notion of feedback in SD, a concept
that has been shown as one of its building blocks. On the
one hand, the cybernetic conception of feedback is defined
in terms of input and output, it is limited only to loops of
negative polarity which in turn are conceived as the mech-
anisms of control – and hence there is a particular inter-
est in goal seeking and goal formulation given the concern
in cybernetics for achieving adaptive behavior via directed
processes and homeostatic mechanisms; feedback mech-
anisms guide this pursue of viable behavior which is car-
ried by goal-seeking processes. On the other hand, in SD,
coming from the servomechanisms thread, feedback loops
are taken as intrinsic parts of the system (and not just as
mechanisms of control), it includes also loops of positive
polarity, and such feedback structures are seen as responsi-
ble for counterintuitive behaviors and policy resistance in
social systems; here the analysis is directed toward policy
design.

Explanation and Mechanism

The next interesting question would be how we can
achieve better understanding and better policy design by

enhancing our mental models. How can we characterize
this type of knowledge?

A solid account of explanation should be placed at
the heart of any scientific activity. The general inquiry
about [scientific] explanation has to do with “learning
how the process of doing science facilitates understand-
ing, and what type(s) of understanding science provides”
([7] p. 307). In a very intuitive way, a first approach to ex-
planation might be associated plainly with removing puz-
zlement [6]. It is also common to affirm that an explana-
tion aims to answer queries of why in order to provide
understanding [87]. Yet, to characterize such idea is a ma-
jor and open unresolved question in philosophy of sci-
ence [69]. The notion of causality has traditionally played
a central role; this view has pervaded most of scientific re-
search where theory development and explanations are es-
sentially conceived as the search for causes, e. g. [50,87].
However, several explanations are not essentially based on
simple causal relations but on other approaches such as
identification, models, analogies, formal linguistics, laws
of association, laws of co-existence, variational principles,
among others [83]. Berger [7] underlines the prominence
of this question when attempting to characterize the expla-
nations provided by nonlinear dynamical modeling:

Mathematical modeling [is recognized] as one of
the central activities of science, and it is reasonable
to say that modeling explanations dramatically in-
crease our understanding of the world. But themod-
eling explanations found in contemporary scientific
research show that the interesting claims of causal
accounts are untenable . . . An adequate account of
scientific explanation must accommodate modeling
explanations, because they are simply too central to
ignore (pp. 329–330).

The main goal of this section is to explore the position and
the characterization of the kind of explanation pursued in
system dynamics. This characterization fits with the pre-
sented core of SD and the presentationalist stance. And
again various clarifications will be needed along the way.

Causality

The difficult issue of causality can be treated in several
senses. In the first place, a possible relationship associated
with the term “determinism” on human behavior is dis-
missed with a previous argument: SD causal models does
not point at supposed laws of causality governing human
action [55,56]. What is more interesting is to investigate
the concept of causality as such in SD models; after all,
a large part of SD modeling relies on what are known as
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“causal”-loop diagrams. Forrester emphasized the term in-
terrelationships [24] where feedback loops are understood
as closed informational paths connecting in a sequence de-
cisions that control actions [25]; he labeled it as a “cir-
cular cause-and-effect structure” (p. 1–9). In fact the de-
velopment of causal-loop diagrams has become important
in SD practice; in particular, flow diagrams were initially
recognized as useful pictorial representations that help to
formulate and communicate the structure of a dynamic
model [24]. Thesemodels are ultimately theories of behav-
ior, surely causal theories of behavior. But consistent with
presentationalism, these theories are sourced in the men-
tal models of the modeler, there is no direct connection to
an alleged causation in a real world. Sterman summarizes
a definition: “a causal diagram consists of variables con-
nected by arrows denoting the causal influences among the
variables” [98]; here, every link represents what the mod-
eler believes is a causal relationship between two variables;
this causal attribution is seen as a central feature of mental
models, as Sterman also stresses “we all create and update
cognitive maps of causal connections among entities and
actors . . . Within a causal field, people use various cues
to causality including temporal and spatial proximity of
cause and effect, temporal precedence of causes, covaria-
tion, and similarity of cause and effect” [98]. Again, the
core of the discussion should be driven by the concept of
mental model in order to deliver a clear discussion on this
view of causality held in SD. This section outlines a frame-
work.

Most of the time we seem to hold a strong causal view
of the world. In particular, the causal relationship – what-
ever that could be – tends to be the source of explanatory
power, i. e. the explanans, and one usual source of valid-
ity, that is, for having a relevant valid explanation we must
have a causal relationship. That is the usual principle, and
it is usually associated to the term “determinism”. Recall-
ing the discussion on presentationalism, one should note
that – as Hesslow [42] underlines – if we are going to retain
a Humean view of the world, i. e. consistent with idealism,
then it seems that we have two different paths, probabilis-
tic or deterministic. The latter one is of interest here (for
the probability account of causation see e. g. [43]). Within
a deterministic approach, a cause is always sufficient con-
dition or a part of a sufficient condition for the effect, that
is, if At is a nonsufficient cause of Bt0 , then there must be
some auxiliary condition Ct00 , [with t00 < t0], such that At
in combination with Ct00 is sufficient for Bt0 . Hesslow clar-
ifies this “sufficiency principle” [42]:

The deterministic approach has been something of
a received view of causation. This view, which we

may call the ‘sufficiency principle’ is also common
among scientists. The sufficiency principle is not in
itself strictly deterministic. It does not mean that ev-
ery event has a sufficient cause, only that if an event
has a cause, then it has a sufficient one. However, it
seems that the popularity of the sufficiency principle
is a reflection of a widely spread, though usually im-
plicit, commitment to the stronger thesis, that every
event has a sufficient cause (p. 592).

The cited paper of Hesslow aims to show that the de-
terministic approach is superior to the probabilistic one,
that is, the idea that the probabilistic account presup-
poses determinism. Indeed what is happening is the trap
of Hume – so to speak. The issue in hands is illustrated
with the Humean fork: based on observation of constant
conjunction of events – altogether with temporal prior-
ity, i. e. the cause is observed prior to its effect – we sup-
pose a causal connection between them – see summaries
in e. g. [46,70] and the original work of Hume [45]. These
suppositions are arranged in our mental models, that is, in
our theories about what we assume as the relevant causal
connections that we suppose so as to explain the world.

With this framework in mind, the network of causal
connections that the SD modeler believes to be relevant
indicates a sort of “sufficiency principle”, but of a special
kind. It is sufficient relative to the purpose of the model, as
it has been indicated above. And it is sourced in themental
model since SD is seen as a vehicle for learning and not as
a device for operating a “real world”. How are these causal
relationships portrayed? In a generic form, a feedback loop
based stance is based on the fact that decisions in a time t
affect the environment which affects again the future as-
sessment of the situation in a time t0(t0 > t) which usually
is the base for new upcoming decisions and actions taken
in a time t00 (t00 > t0) and so on. These relationships are not
necessarily close in space or time. Furthermore, a related
issue is what can be labeled as “multiple causality”. The
complexity of social systems is a current concern for social
scientists; the multiple interactions among several agents,
actors, or entities, is what has been distinguished as the
key to study and to understand complex systems because
of the recognition of our inability to deal with them based
on traditional incomplete simple-causality thinking – the
assumption that explanation of phenomena can be satis-
factory or even sufficient based in simple unidirectional
causal relationships between variables or constructs. What
is more, feedback loops have important implications as-
sociated with counterintuitive behavior that usually we do
not consider easily or that we misunderstand; they have
a key role in complex settings; in fact they are, to a large
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extent, responsible for the arising of complex behaviors;
this is a central affirmation in SD [26,98]. The simplest ex-
ample might be the tendency that we have to infer linear
growth from single first order positive feedback loops. But
the behavior here actually is exponential. Let S be the state
of a system and g the constant fractional growth rate, the
linear first order positive loop and its solution are:

dS
dT

D gS

and it has as solution:

S D S0eg t :

The central question is: are these causal theories, portrayed
in system dynamics, claims about the world? i. e. Are these
models assumed true descriptions of the world? Clearly
no. From the presentationalist stance of SD, the causal-
loop diagram is essentially what the modeler believes is
the relevant causal network for the problem in hands. It
constitutes his theory about it. The source of knowledge
is the mental model and causality is only a supposition of
the modeler and a way to arrange knowledge, it is not an
affirmation of truth about a supposed causal world. And
furthermore, causation as such is not the source of expla-
nation provided by SD. In order to clarify this we should
take a look to the notion of explanation held in system
dynamics.

Mechanism

System dynamics aims to answer why questions. This is
done generally via the development of dynamic hypotheses.
A core premise of SD has always been to enhance learn-
ing and to provide understanding [30]. This aim has been
stated from the very beginning; for instance Forrester as-
serted in Industrial Dynamics: “Our objective is to enhance
understanding and to clarify our thinking about the sys-
tem” p. 57 in [24]).

How is this goal pursued? A SD model should be able
to account for a specific problematic behavior which is ex-
plained in terms of the structure of the model; here the
term “structure” refers to the stock and flow organization,
the feedback loops and the rules of interaction [98]. This
approach to explanation is known as a dynamic hypothe-
sis and is the core concept in order to provide understand-
ing from a system dynamics point of view; its endogenous
character is the chief feature that makes it intelligible; for
instance: “One key task in this search for insightful, system
level understanding is the telling of ‘system stories’ – co-
herent, dynamically correct explanations of how influen-
tial pieces of system structure give rise to important pat-

terns of system behavior” (p. 1 in [65]). In fact this task
represents one of the more significant research lines [79].

How can we characterize this particular kind of ex-
planation? As a first point, the notion of organized social
complexity helps to drive this discussion. A quote bor-
rowed from Hayek illustrates it:

Where we have to deal with such social wholes we
cannot, as we do in the natural sciences, start from
the observation of a number of instances which we
recognize spontaneously by their common sense at-
tributes as instances of ‘societies’ or ‘economies’ . . .
What we group together as instances of the same
collective or whole are different complexes of indi-
vidual events, in themselves perhaps quite dissim-
ilar, but believed by us to be related to each other
in a similar manner: they are classifications or se-
lections of certain elements of a complex picture on
the basis of a theory about their coherence (p. 43
in [40]).

Based on the quote above of Hayek, he suggests conceiving
the explanation as modeling [104], and for social sciences
he rejects the usual prediction and control aspirations and
asks the reader to focus more on models to explain typi-
cal processes [64], he depicts it with biology: “It deals with
pattern-building forces, the knowledge of which is useful
for creating conditions favorable to the production of cer-
tain kinds of results, while it will only in comparatively few
cases be possible to control all the relevant circumstances”
(as cited in p. 202 in [104]). Hayek calls it “explanation
of the principle”. Essentially he means the explanation of
a kind of phenomena instead of particular events. As an-
other example consider mathematics: “A set of equations
which shows merely the form of a system of relationships
but does not give the values of the constants contained in
it, is perhaps the best general illustration of an explanation
merely of the principle on which any phenomenon is pro-
duced” (p. 291 in [39]). This analogy illustrates the notion
of abstract relations that would build an “explanation of
the principle” which can be associated with mechanism as
the source of explanatory power – instead of causality.

Again, a clarification is needed given the widespread
identification of the term “mechanism” with ontic com-
mitments. Fundamentallymechanism is a kind of explana-
tion. It should be noticed that “mechanism” refers to epis-
temological issues. However, the term is habitually associ-
ated with assumptions about reality. But Hogben already
clarified in 1930:

In any discussion between the two [mechanist and
holist or vitalist], the combatants are generally at



826 System Dynamics Philosophical Background and Underpinnings

cross purposes. The mechanist is primarily con-
cerned with an epistemological issue. His critic has
always an ontological axe to grind. The mechanist
is concerned with how to proceed to a construction
which will represent as much about the universe as
human beings with their limited range of receptor
organs can agree to accept. The vitalist or holist has
an incorrigible urge to get behind the limitations of
our receptor organs and discover what the universe
is really like (1930, p. 100, as cited in [12], p. 347).

The explanatory notion of mechanism is well underlined
by Grene: “Let us look for a mechanism which might un-
derlie the phenomena we hope to understand, seeking
wherever we may relevant sources from which to derive . . .
an analogue of a possible mechanism . . . [Such an expla-
nation is of value because it tells us] how in fact those phe-
nomena are produced” (as cited in [12], p. 346, emphasis
original).

However, there is still no agreement about what
a mechanism is and how it appears to succeed in science
as a way to provide understanding. Perhaps the most com-
plete account is the one of Tabery [99] who proposes inte-
grating two complementary points of view. These two as-
pects are (i) the interactions among several parts and, (ii)
the activities associated with these interactions. Both char-
acteristic are taken as necessary for having a mechanism-
based explanation.

On the one hand there is the emphasis on interactions,
a thesis supported by Glennan [36] with a central con-
cern on the nature of complex systems since the role of
parts and its interactions are conceived as indispensable.
The work of Bechtel and Richardson [5] develops the as-
sociation of mechanism and complex systems (in biology
and psychology) and emphasizes the tasks of decomposi-
tion and localization as the heuristics in order to uncover
mechanisms. This position replies to the conventional
view of a mechanism as merely the interactions between
causal processes as the essential explanans; Glennan [36]
stresses: “A mechanism for a behavior is a complex system
that produces that behavior by the interaction of a num-
ber of parts, where the interactions between parts can be
characterized by direct, invariant, change-relating gener-
alizations” (p. 344). Glennan clarifies also that he avoids
using the term “causal-law” and instead uses “change-
relating generalizations” because these relations are not
exception-less as traditionally a law is understood. In ad-
dition, he emphasizes the very different character of such
account which is in opposition to the traditional causal
view in which mechanisms are sequences or chains of
events leading up to a particular event – which is of-

ten associated in systems theory literature with “linear
thinking”.

On the other hand we have activities. Machamer, Dar-
den and Craver [62] emphasize this aspect adding that
mechanisms are not only inter-connected entities but also
activities producing regular changes from initial to finish
conditions; they call themselves dualists since for them
both notions – entities and activities – are necessary to
constitute a mechanism:“The organization of these enti-
ties and activities determines the ways in which they pro-
duce the phenomenon. Entities often must be appropri-
ately located, structured, and oriented, and the activities
in which they engage must have a temporal order, rate,
and duration” (p. 3). It is important to underline their cri-
tique to Glennan’s view arguing that the concept of activity
is fundamental to understand the changes produced (be-
cause of the activities) through the process and not only
as the black-box view of change of states or change of
properties of the inter-connected entities; they picture it
clearly with the following statement: “it is not the peni-
cillin that causes the pneumonia to disappear, but what
the penicillin does” (p. 6). Furthermore, in order to ac-
count for a mechanism they emphasize three distinctions:
set-up conditions (as part of the mechanism, not as a sort
of input; this includes relevant entities and their properties
and initial states), intermediate activities (including also
relevant entities, properties, and an intelligible account of
the activities that link them) and termination conditions
(such as privileged endpoints, equilibrium states or the
final stage of some unitary integral process). They also
draw attention to the fact that mechanisms take place in
nested multi-level hierarchies and that they usually are not
full pictures but truncated abstract accounts – a mecha-
nism schema – depending on the required level of detail or
aggregation.

System dynamics modeling is perhaps one of the best
ways to picture this kind of explanation. One can distin-
guish twomain components in the structure of SDmodels:
the physical and institutional assumptions – including the
chosen parts/variables and the interconnections between
them, and the decision rules of the agents [98]. The in-
terplay between the physical structure and the associated
decision rules as the explanation for behavior is a founda-
tional aspect. Indeed the interconnections and the activ-
ities needed to account for a mechanism are included in
these system dynamic models structures. Specifically, the
activities producing change can be referenced in the links
of the models and the decision rules describe how the in-
teractions produce certain activities. The whole set of ini-
tial and final conditions and the inter-connected parts en-
gaged in producing activities characterize a mechanism.
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For example, the simplest mechanism is perhaps a single
feedback loop. The set-up conditions are the initial values
of the variables involved, the termination condition is the
endpoint of the loop which can be accounted in a mech-
anism as “the final stage of what is identified as a unitary,
integral process”(p. 12 in [62]). The intermediate activities
are depicted by the links and the application of the deci-
sion rules. For instance, a simple positive first order loop
can produce exponential behavior beyond the particular
values of the variables involved. More intricate structures
are the source of different behaviors, i. e. the change in the
values or patterns of variables through time.

This stance fits an explanation of an abstract principle
in the sense of Hayek. The structure is the source of ex-
planation of patterns of behavior, i. e. the change in the
values or patterns of variables of interest through time.
This is known in SD as a dynamic hypothesis [98]. With
this focus on aggregate patterns – instead of individual
events – as consequence of the structure, it can be said
that the “causal” mechanism is indeed the loop structure
of the system, or the particular and relevant feedback sub-
structures of the model that may explain the behavior; for
instance Richardson [78] illustrates it in this way: “The
‘cause’ of an arms race is viewed not as a given event or
even a given sequence of events, but as a feedback struc-
ture dominated by self-reinforcing positive loops, within
which events take place” (p. 338). These types of explana-
tions are based on mechanisms as explanatory power and
not in simple causal relationships as the source of explana-
tion, even less in (substantivalist) causality, i. e. change in
singular properties/entities. Furthermore, these hypothe-
ses are developed for each problem consistent with the
mental models of the modelers. This is why system dy-
namics is not committed to specific theories and only to
the explanation of problematic behaviors in terms of struc-
ture of the model in order to enhance learning and deci-
sion-making.

A particular remark must be made. It can be noticed
a natural link betweenmechanism and the idea of “generic
structure”. This latter expression has been used in dif-
ferent senses in SD literature. Lane and Smart [58] trace
the evolution of this concept – see also [71], they iden-
tify three different interpretations. One of these view can-
not be connected with mechanism, the one popularized
by Senge, e. g. [92,109,110], usually known under the ex-
pression “system archetypes”. The lack of computer sim-
ulation within this interpretation points at a problem of
validity in its scope and claims, as Lane and Smart dis-
cuss [58], e. g. since this perspective skips the possibility
of formal computer model building then the relation be-
tween structure and behavior is weak and the mentioned

approach becomes just a hasty shortcut from problematic
behavior to insights and principles, and without the exper-
imental spirit of SD for enhancing learning. But two other
notions are relevant. On the one hand, generic structures
can be conceived as general models (theories of behavior)
of a class of systems that are associated with a domain of
application, e. g. urban development, supply chain, eco-
nomic growth. Lane and Smart label these structures as
“canonical situation models”. On the other hand, a generic
structure may refer to theories of mathematical structures
(feedback loops, levels, rate equations, etc.) that generate
corresponding dynamic behaviors, i. e. “systems belong to
the same class if they can be represented by the same struc-
ture . . . This dynamic structure when abstracted from any
application domain data defines the class of system” (p. 93
in [58]); therefore they offer transferability of structure
across diverse domains. These models can be labeled as
“abstracted micro-structures”, e. g. patterns of exponential
growth, goal seeking, oscillation, etc. [58,98]. Both inter-
pretations look for establishing a general class of models
that formally link structure with behavior and they con-
stitute an important line of research. These developments
contribute to different aspects of SD practice; in particular
they directly fuel the processes of conceptualization and
formal model construction (e. g. see [31,58,98]), and more
important, they enhance understanding and the improve-
ment of our mental models as long as we can exploit the
powerful idea of having general classes of models, either
within a domain of application or across different domains
by transferring structures across them.

Consequently, system dynamics explanations can be
characterized asmechanisms, since there can be found the
source of explanatory power. In spite of its causal dia-
grams, the explanans, i. e. that which does the explain-
ing, is based on mechanisms – dynamic hypotheses based
on structures; and the problematic behavior is the ex-
planandum, i. e. that which is explained. Following Gly-
mour: “Remains, however, a considerable bit of science
that sounds very much like explaining, and which perhaps
has causal implications, but which does not seem to de-
rive its point, its force, or its interest from the fact that
it has something to do with causal relations (or their ab-
sence)” (as cited in [p. 212 in 83]). The theories built with
SD are essentially structure-based and not content-based
(substantivalist) explanations i. e. they are not associated
with intrinsic properties of objects or entities but with the
consequences of processes and activities entrenched in rel-
evant parts of the structure of the model. Recalling Hayek
who identifies explanation with modeling, it is interesting
to notice the range of his thought expressed half a century
ago and that accurately illustrates SD explanations:
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Any model defines a certain range of phenomena
which can be produced by the type of situation
which it represents. We may not be able directly to
confirm that the causal mechanism determining the
phenomenon in question is the same as that of the
model. But we know that, if the mechanism is the
same, the observed structures must be capable of
showing some kinds of action and unable to show
others (p. 221 in [38]).

A further reminder follows. Since SD was previously iden-
tified with instrumentalism, then a mechanism is not to be
taken as a description; here a mechanism is an instrument
for arranging observations. It should be kept in mind that
mechanism is a kind of explanation which refers to episte-
mological issues.

The popularity of simple causality as the way to char-
acterize the explanation of phenomena contrasts with the
assumptions made in SD: structures that generate pro-
cesses responsible for behavior. This is consistent with the
purpose of system dynamics simulation which might be
oriented to activities such as theoretical-representations
building, articulation and testing in order to learn in and
about complex systems [98]. System dynamics uses simu-
lation as a method which is different from the traditional
inductive logic of research that deals with single instances
which attempts to confirm theories via repeated observa-
tion. However, SD does not dismiss presentationalism as
it was shown. This should be highlighted as an impor-
tant and distinctive characteristic of SD. Though there is
a commitment with a real world, justification is rooted in
social processes and on mental models, and it is also rel-
ative to the purpose of the model. Furthermore, the goal
is to enhance our decision-making processes by improv-
ing our mental models. How can we characterize such
method? A short comment follows.

Simulation andMethod

In a plain sense “simulation means driving a model of
a system with suitable inputs and observing the corre-
sponding outputs” (p. 23 in [2]). But simulation actually
is not just a matter of number crunching. Its scope is
broader. And it represents another challenge for philos-
ophy of science. Winsberg [107] illustrates it:

Typically, to a philosopher of science, epistemologi-
cal issues arise when we try to justify high level the-
oretical claims based on low level data or specific
observational reports. But simulation is about start-
ing with theory and working your way down. This
kind of epistemology is, to the philosopher of sci-

ence, a curious beast. It is an epistemology that is
concerned with justifying inferences from a theory
to its application – an inference that most philoso-
phy of science has assumed is deductive and conse-
quently not in need of justification (p. S447).

What is simulation in SD? It can be affirmed that it is
a technique able to represent and test theoretical concepts
and not only – in a narrow sense – a tool to just solvemath-
ematical problems. Besides, the emphasis on processes, on
patterns of collective action and on the relations between
components and its dynamic consequences can be better
addressed with simulation because of its capacities to rep-
resent these issues with fewer restrictions than other ap-
proaches [35]. But there is more. Simulation reflects a very
different attitude. This way of inquiry suggests a whole dif-
ferent and new scientificmethodology [82,106,107].Wins-
berg emphasizes that “simulation represents an entirely
new mode of scientific activity – one that lies between the-
ory and experiment . . . a form of theory articulation or
‘model building’ (pp. 117, 119 in [106]). Axelrod [2] in-
deed suggests “a third way” of doing science:

Simulation as a way of doing science can be con-
trasted with the two standard methods of induction
and deduction . . . Simulation is a third way of do-
ing science. Like deduction, it starts with a set of
explicit assumptions. But unlike deduction, it does
not prove theorems. Instead, a simulation generates
data that can be analyzed inductively. Unlike typical
induction, however, the simulated data comes from
a rigorously specified set of rules rather than direct
measurement of the real world (p. 24).

Moreover, its strength rests on the capacity for conduct-
ing experiments [82]. This emphasis on experimentation is
the key to understand why this approach is different. Our
mental models are nothing more than theoretical mod-
els that attribute properties and relations to the systems
they represent; the relevance of these theoretical models
depends on the purpose of the model. And computer sim-
ulation simply permits experiments of these (theoretical)
models. This is where the novelty and the power of this
methodology are to be found, in the very iterative pro-
cess of model building and experimentation via simula-
tion. This position contrasts with the traditional promi-
nence of assumed representational capacities of theories
and models where usually the emphasis has been placed,
see [107]. But computer simulation has a distinct episte-
mology [105] that emphasizes the process of modeling. The
method was demarcated by Forrester [24] in Industrial
Dynamics:
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Simulation consists of tracing through, step by step,
the actual flows of orders, goods, and information,
and observing the series of new decisions that take
place . . . This is the counterpart of trying a new pol-
icy or organizational structure in the real system. . .
After a simulation run comes interpretation of the
results. Did it turn out as expected? If not, why? As
the experiment is examined, new questions arise . . .
This is a process of invention and trial . . . Each sim-
ulation result teaches, and it also prompts additional
questions . . . Such experimentation will yield new
insights into the characteristics of the system that
the model represents (pp. 23, 44–45, 55).

Hence, the method of simulation through continued ex-
perimentation is aimed at providing better understand-
ing of the modeled system. As it was mentioned, the
method calls attention to the process – see also [44,89]. In-
deed SD aims at developing amodeling culture (consistent
with [80]) that gives emphasis to model building as an on-
going dialectic between stakeholders instead of a mapping
exercise concerned on the efficacy of the model itself.

Why is fundamental the use of the computer? Perhaps
the best answer is provided again by Forrester [26]:

We stress the importance of being explicit about
assumptions and interrelating them in a computer
model . . . The most important difference between
the properly conceived computer model and the
mental model is in the ability to determine the dy-
namic consequences when the assumptions within
the model interact with one another. The human
mind is not adapted to sensing correctly the con-
sequences of a mental model . . . The computer
model . . . is a statement of system structure. It con-
tains the assumptions being made about the sys-
tem . . . Generally, the consequences are unexpected
(pp. 213–215).

The shortcomings of our mental models coupled with the
complexity of the systems we model lead to the use of
the computer. Sterman [101] summarizes these drawback
with aspects such our flawed cognitive maps and our er-
roneous inferences about dynamics. As it was shown, the
strength of explanation and understanding in SD is not in
the causal models as such; the heart lies in the develop-
ment of dynamic hypotheses with the use of simulation
in order to enhance our understanding and our decision-
making processes. Explanations are posed under the no-
tion of mechanism; but this is an iterative process that
seeks a central aim: to improve our own theories about the
world.

Future Directions

There are several aspects to develop based on this reflec-
tion on various assumptions behind system dynamics. The
central argument was built around the position known
as presentationalism. This stance integrates and informs
many of the debates on related subjects, e. g. validation,
and it characterizes the initial purposes and assumptions
held in the field. However, there are a number of lines to
emphasize and to develop.

We have focused on the role of the idea of “mental
model” for the practice of SD. Yet, it can be seen utiliza-
tion of SD models under assumptions which are closer to
a naive realism that seem to ignore the purposes of en-
hancing understanding and learning processes. This ar-
ticle should help to underscore that system dynamics is
less naive – and hence more powerful – when we recog-
nize a presentationalist stance which means that our the-
ories about the world are just that, theories based on our
experience and on the operations of our own mind. We
can improve these theories with the use of system dynam-
ics, that is, making our assumptions about systems explicit
and using simulation as a method for enhancing under-
standing and for developing explanations that guide our
processes of systems design. This recognition includes the
relative nature of justification of knowledge held in SD and
the emphasis on mechanism as a powerful way to develop
explanations about complex systems.

It has been introduced mechanism as the way to char-
acterize the particular type of explanation pursued in SD.
The explanatory force does not rest on causal relations as
such but on the structures – physical and decision rules
aspects – and on the dynamic processes and activities that
explain change. The idea of mechanism is shaped in SD
under the expression “generic structure”. The focus on
understanding behavior in terms of abstract structures is
a central line of inquiry. This article underlines the impor-
tance of developing such a line of research since it has been
located at the core of the kind of knowledge that SD pro-
vides. The issue of unification to provide understanding
of diverse phenomena is a definitive step in the way to as-
sert that the field progresses as long as broader range of
phenomena may be explained with the same mechanism.
Should be the advance of system dynamics assessed by the
progress in this type of study? Behind this discussion there
are major and provocative issues that arise to be devel-
oped.

The long debate of qualitative and quantitative mod-
eling is informed by this characterization. It is clear that
the issue of explanation compels theorists and practition-
ers to ask themselves what is the kind of explanation they
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are pursuing and if such explanations are enough and sat-
isfying; it is worthy to ask for qualitative modeling what
kind of understanding it gives and how it can be character-
ized, in other words, to give an account of explanans and
explanandum. Another line to develop might be oriented
around the following question: what would be essential cri-
teria for comparing different arranges or modes of orga-
nization in order to identifying them as belonging to the
same type of mechanism? The identification and search of
mechanisms becomes a powerful heuristic for guiding the
modeling process.

There are promising suggestions for philosophy of sci-
ence as well. SD offers guidelines, e. g. can the ways in
which system dynamicists work provide meaningful in-
sights, or even concrete accounts, for the philosophical un-
resolved issue of explanation? The mechanism depicted in
system dynamics proposes a kind of explanation that goes
beyond the received view based on causation. A related
question is whether explanation must always follow a de-
ductive path; the classic models of Hempel, e. g. [41], em-
phasized the condition of deduction and general laws for
having an explanation; however, the explanation in SD is
not framed under a deductive schema from universal cov-
ering laws, instead it can be conceived as a sort of abduc-
tive reasoning based on the understanding of the dynamics
of the model as a way to understand the actual behavior it
accounts for. A further issue is that in spite of the lack of
universality, i. e. no universal laws, SD models aim to pro-
vide understanding for a diverse range of phenomena that
might share relevant influential structures and similar as-
sociated behaviors, that is, it accounts for regularities in
order to unify them in a certain kind of explanation un-
der the same explanation. This situation insinuates a fla-
vor of paradox because of the traditional rigid association
of universal laws with the explanation of regularities, but
in SD there are no general laws though the aim is to ex-
plain general regularities. The study of models and com-
puter simulation – instead of abstract theories and tradi-
tional methodologies – is an additional indication that SD
suggests for philosophy of science, including the emphasis
on the modeling process.
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Glossary

Behavior mode The traditional meaning of the term is
the qualitative nature of the observed system behav-
ior, such as damped or expanding oscillations, over-
shoot and collapse, exponential growth or adjustment
to equilibrium, or limit cycles. In linear systems theory,
the term has a more specific meaning, cf. the explana-
tion for eigenvalues.

Bode plot (phase and gain plot) A tool used in classical
control theory to characterize the frequency response,
i. e., the amplification A and phase shift � in the sys-
tem output variable of interest x (t) D A sin (! t C �)
compared to the input variable u (t) D sin (! t), as
a function of the frequency ! of the input.

Chaos A type of behavior exhibited by nonlinear systems
that appears to be approximately periodic but with
a seemingly random element. A hallmark of chaotic
behavior is that it is sensitive to initial conditions.

Dominant structure A general term for the feedback
loops (or possibly external driving forces) that are
“most important” in generating a behavior pattern of
interest. In nonlinear models, particularly single-tran-
sient models, there is frequently a shift in structural
dominance, i. e. in the strength and significance of cer-
tain feedback loops.

Dynamic decomposition weights (DDW) An applica-
tion of Eigenvector Elasticity Analysis (EVA) that
focuses on how parameter changes influence the rela-
tive weights (DDW’s) of the system behavior modes in
a particular variable.

Eigenvalue An eigenvalue for a square matrix A is a value
� for which the equation Ar D �r has a non-zero so-
lution r ¤ 0. The column vector r is called the (right)
eigenvector corresponding to the eigenvalue �. The
eigenvalues and eigenvectors determine the behavior
modes (components) in the solution to the linear dy-
namical system ẋ D Ax. A real eigenvalue � leads to
an exponential behavior mode exp (�t) while a com-
plex eigenvalue � D � ˙ i! leads to oscillatory be-
havior modes exp (� t) sin (! t C �). The eigenvectors
determine the weight, or the degree to which a partic-
ular behavior mode is expressed in a particular system
variable.

Eigenvalue elasticity analysis (EEA) A method of ana-
lyzing the significance of a structural element, say
a loop or a link in the model with a gain g, in terms
of its marginal effect upon the eigenvalues � of the sys-
tem. There are several suchmeasures, such as the influ-
ence measure @�/@g � g, the elasticity @�/@g � 
g/��, or,
in the case of complex-valued eigenvalues, the effect
upon the damping ratio, natural frequency, damping
time, etc., as illustrated in Fig. 7. See also Loop Eigen-
value Elasticity Analysis (LEEA).

Eigenvector See explanation for Eigenvalue.
Eigenvector elasticity analysis (EVA) A complement to

Eigenvalue Elasticity Analysis (EEA) that looks explic-
itly at the expression or relative weight of each behav-
ior mode in each system variable. These weights are
related to the eigenvectors of the system matrix.

Frequency domain A term used to describe the analysis
of signals with respect to frequency. While a time do-
main graph shows the behavior of the signal over time,
the frequency domain graphs shows how much of the
signalvariance lies within each given frequency band.

Independent loop set (ILS) Although the number of
feedback loops in a model can be very large (theoreti-
cally astronomically large), there is a much smaller in-
dependent loop set that can be considered independent
structural elements. For a strongly connected system
(where any pair of variables are connected via causal
chain in both directions) with N links and n vari-
ables, there are exactly N � n C 1 independent loops.
Simple algorithms exist for constructing independent
loop sets, in particular Shortest Independent Loop Sets
(SILS). See also explanation for Loop Eigenvalue Elas-
ticity Analysis (LEEA).
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Linear dynamical system A system where the rates ẋ D
(dx1/dt; : : : ; dxn/dt) are a linear function of the state
variables x D (x1; : : : ; xn) and exogenous or control
variables u D 


u1; : : : ; up
�
, expressed by the equation

ẋ D Ax C Bu where A is an n � n matrix and B is an
n � p matrix. Unlike nonlinear systems of the general
form ẋ D f (x; u), linear systems have analytical solu-
tions based on the eigenvalues and eigenvectors of the
matrix A (cf. explanation for Eigenvalues).

Linear systems theory The mathematical theory of linear
dynamical systems.

Loop eigenvalue elasticity analysis (LEEA) A form of
eigenvalue elasticity analysis (EEA) that uses graph
theory to express structural changes in terms of
change in the strength of individual feedback loops.
Independent loops can be assigned individual (loop)
eigenvalue elasticities or influence measures just like
other structural elements (see explanation for Eigen-
value Elasticity Analysis (EEA) and Independent Loop
Set (ILS)).

Model simplification approach A way of attributing dy-
namic behavior to particular pieces of structure by re-
placing the full model with a simplified structure. See
also Structure contribution approach.

Nonlinear systems Systems of the form ẋ D f (x; u)
where f is a nonlinear function. See explanation for
Linear dynamical systems.

Pathway participation metric A measure that decom-
poses the curvature (ẍ D d2x/dt2) of a variable
xi into the individual driving components, ẍi DP

j @ẋi /@x j � ẋ j . By considering the sign of the cur-
vature relative to the slope, i. e., ẍ/ẋ, one may de-
fine behavior as (apparently) dominated by positive
ẍ/ẋ > 0 or negative ẍ/ẋ < 0 feedback loops. The com-
ponent (pathway) with the largest absolute value and
the same sign as ẍ/ẋ is then defined as the dominant
structure.

Quasilinear models Models that are almost linear in
structure around the operating point of interest so that
they may be well approximated by a linear model.

Quasiperiodic behavior A behavior that is a sum of os-
cillations of incommensurate frequencies so that the
system never returns to exactly the same point (which
would be the case for periodic behavior).

Shortest independent loop set (SILS) An Independent
Loop Set (ILS) that consists of the shortest possible
loops (in terms of the number of nodes and links in
each loop). Since the choice of ILS is far from unique,
an SILS provides amore focused choice of loops, which
are typically also easier to interpret due to their short
length.

Single-transient models Models where the behavior of
interest is the transition toward an equilibrium or con-
stant growth rate. Models are typically nonlinear, ex-
hibit patterns such as smooth transition, overshoot
and collapse, growth, or stagnation.

Structure contribution approach A way of linking
model structure to dynamic behavior by consider-
ing how individual pieces of structure (feedback loops
or subsystems) contribute to the behavior pattern of
interest by turning the structure on or off (in tra-
ditional simulation experiments) or by considering
the marginal effect of small changes in structure (the
eigenvalue approach). See also Model simplification
approach.

Definition of the Subject

The link between system structure and dynamic behav-
ior is one of the defining elements in the system dynam-
ics paradigm, yet it is only recently that systematic, math-
ematically rigorous methods for exploring this link have
started to become available. In a sense, a simulation model
can be viewed as an explicit and consistent theory of the
behavior it exhibits. Although this point of view has cer-
tainmerits, not least the fact that it lifts the discussion from
outcomes to causes of these outcomes and from events to
underlying structure [11,59], we are concerned here with
a more compact explanation of the system’s behavior. In
fact, most system dynamics modeling projects report their
results in terms of simpler explanations of the observed
results, typically in terms of dominant feedback loops that
produce the salient features of the behavior.

Most often, dominant structure is thought of in terms
of feedback loops and, occasionally, external driving forces
to the system. For simple systems with relatively few vari-
ables it is usually easy to use intuition and trial and error
simulation experiments to explain the dynamic behavior
as resulting from particular feedback loops. In larger sys-
tems, this method becomes increasingly difficult and the
risk of incorrect explanations rises accordingly. There is
a need, therefore, for analyticalmethods that provide some
consistency and rigor to this process.

These analytical tools are important to the practitioner
because the structure-behavior link is the key to finding
leverage points for policy initiatives. And they are impor-
tant to the theorist because a system dynamics theory of
a particular phenomenon is an account of how certain
feedback loops cause certain dynamic patterns of behav-
ior to appear. The qualitative understanding of the model
behavior is often at least as important as the particular nu-
merical predictions obtained, even in applied studies. Yet
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the rigor of such an account depends directly on the rigor
with which structure-behavior link can be made in a given
model.

The classical disciplines of linear systems theory and
control engineering have provided a set of concepts and
tools, particularly system eigenvalues and eigenvectors,
that can also be applied under many circumstances to the
nonlinearmodels found in system dynamics, not as a com-
plete theory but as a pragmatic aid. This article reviews the
recent advances in analytical tools based on linear systems
theory and discusses its future potential for the both the
system dynamics practitioner and the theorist.

Thoughwe strongly believe in the utility of thesemeth-
ods, it is important to realize that advances in nonlin-
ear dynamics and complexity theory in recent decades
have shown that it is not possible to construct a complete
theory of dominant structure because nonlinear systems
are capable of exceedingly complex and intricate behav-
ior that is impossible to predict without actually simulat-
ing the system. Furthermore, applications of graph theory
to system dynamics models have revealed that the con-
cept of feedback loops has some inherent problems and
limitations because there are potentially many different
loop descriptions of the same system (see [28,40]). Thus,
the analytical tools should be viewed as pragmatic aids
to model analysis that can guide the modeler’s intuition,
rather than universal methods that provide automatic
answers.

We first provide a brief historical introduction to the
different ways scholars have thought about the notion of
dominant structure, including an example of the tradi-
tional approach to structural analysis. In the next section
we present the formal mathematical representation of lin-
ear and nonlinear systems and how one may describe the
dynamic behavior in terms of behavior modes and system
eigenvalues. In the four following sections we present al-
ternative approaches to performing this analysis. We con-
clude with a summary of the current state of research and
a discussion of future directions.

Introduction

Understanding model behavior is closely related to the
process of model testing and validation, for which there is
a well-established tradition and an extensive literature in
the field (e. g., [2,10,17,36,46,47]). Indeed there is no sharp
line between model building, testing, validation, and anal-
ysis – in practice, the analyst undertakes all these processes
simultaneously [17].

Of particular concern is whether one can identify
pieces of structure that are in some sense “important” in

generating the observed behavior of interest. Tradition-
ally, system dynamics analysts have relied on trial-and-
error simulation to discover these structures, by changing
parameter values or switching individual links and feed-
back loops on and off. The tradition is well developed and
includes a set of principles for partial model formulation
and testing based the organizational theory of bounded ra-
tionality [27,36].

The intuition guiding this effort often relies on simple
feedback systems with one or a few state variables, where
the behavior is fully documented and understood. In par-
ticular, the modeler uses well-understood “generic struc-
tures” that seem to appear again and again in system dy-
namics models, such as “overshoot and carrying capacity
collapse”, “drifting goal structure”, etc. (see [30,56,60] for
an account of these structures). Clearly such structures can
be a useful aid to understanding if the model is sufficiently
simple to allow such simple structures to be identified.

A simple example of a generic structure is the classical
model of diffusion, sometimes known as the Bass model
([3], see also Chapter 9 in [59]). The model structure is il-
lustrated in Fig. 1, and the resulting behavior, an s-shaped
growth curve, is illustrated in Fig. 2. The idea behind the
model is that the adoption of a new technology is driven by
the number of users that have already adopted it, through
a word-of-mouth effect. One may interpret the s-shaped
behavior as the interaction of two feedback loops, namely
loop no. 2, the positive “word-of-mouth”, and loop no. 1,
the negative “exhaustion” loop (see Fig. 1). In the begin-
ning, the positive loop dominates, leading to exponential
growth in the number of adopters. Later, however, the
negative loop gains strength, and the behavior shifts to an
exponential adjustment toward the eventual market satu-
ration. Thus, the traditional feedback loop analysis helps
give an intuitive understanding of the dynamics of the
model.

In large-scale models with perhaps hundreds of state
variables, however, the traditional approach shows signifi-
cant limitations. In practice, model building and analysis is
often done using a “nested” partial model testing approach
where one goes from the level of small pieces of structure
to entire subsystems of the model, with frequent re-use of
known formulations and partial models. Although this ap-
proach does carry a long way, it can be very difficult to
discover feedback mechanisms that transcend model sub-
structures in ways not anticipated by the modeler in the
original dynamic hypothesis. Thus, there is a danger that
observed behavior is falsely attributed to certain feedback
mechanisms when in fact another set of feedbacks is driv-
ing the outcome. Likewise, one may make false inferences
about how a particular feedback mechanism modifies the
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The Bass model of diffusion

System Dynamics, Analytical Methods for Structural Dominance,
Analysis in, Figure 2
Behavior of the Bass model

behavior, e. g., whether it attenuates or amplifies a partic-
ular oscillation.

Modern software packages can run extensive tests for
sensitivity and “reality checks” where a large number of
parameters are varied simultaneously [44]. This is clearly
a significant improvement over “manual” trial and er-
ror methods, particularly when these methods are com-
bined with statistical inference methods such as Kalman

Filtering or Monte Carlo maximum likelihood estima-
tion [6,8,39,43,45,55]. A variant of this approach involves
using statistical experimental design and correlationmeth-
ods to screen for significant model structure (parameters),
as suggested by Ford and Flynn [9]. Indeed, the prospects
of marrying such methods with modern search and opti-
mization methods like classifier systems [26] or genetic al-
gorithms [19] seem very promising. However, these meth-
ods are more addressing issues in estimation, validation
and testing than inferences about or understanding how
(dominant) structure is causing behavior.

Richardson [47] suggested a taxonomy of approaches
to the notion of dominant structure, where he distin-
guishes along three dimensions, namely linear vs. nonlin-
ear systems, model reduction vs. loop contribution, and
the characterization of behavior in terms of time graphs
vs. eigenvalues or frequency response. Of these, the dis-
tinction between model reduction and loop contribution
is the most important.

In the model reduction approach, the idea is to replace
a large complicated model with a simplified smaller model
that captures the “essence” of the dynamics. A good ex-
ample of this is Sterman’s simple model of the economic
long wave [58], which was distilled from the much larger
System Dynamics National Model [18]. Eberlein [5,7] at-
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tempted to tackle model simplification in a systematic way
in linear systems by focusing on retaining specific behavior
modes. In large part his results were negative: it is gener-
ally not possible to build simpler models that reproduce
the salient behavior without sacrificing either the accuracy
of the behavior or the ability to relate the simplified model
variables to those in the full model. It is fair to say that this
line of inquiry has largely been abandoned as a result. Ex-
tracting the “essence” of a model remains an art more than
a science.

The focus here will be on Richardson’s second cate-
gory, the loop contribution or, more generally, the struc-
ture contribution approach. It reflects the intuitive idea
that if one removes the element under consideration, e. g.
by weakening a link or switching off a feedback loop, and
the behavior then “disappears”, one would say that the el-
ement in some sense “causes” the observed behavior.

This notion underlies the traditional trial-and-error
simulation approach, sometimes supplemented with
methods from the classical control engineering, which fo-
cuses on how structural elements modify the behavior of
the system, viewed in terms of the frequency response.
Typically, the method works “backwards” by starting with
simple feedback systems of single loops and then consid-
ering the marginal effect of adding links and loops. We
discuss this approach in Sect. “Traditional Control Theory
Approaches” below.

If, instead, one considers marginal (infinitesimal)
changes in structure, e. g. in the strength of a particular
link, it is possible to derive rigorous analytical results for
the resulting change in behavior expressed as the eigen-
values of the linearized model. One would then say that if
a change in a system element has a relatively large effect
upon the behavior pattern of interest, this element is “sig-
nificant” in “causing” the behavior. This is what underlies
the eigenvalue elasticity and eigenvector approaches dis-
cussed in Sects. “Eigenvalue Elasticity Analysis”, “Eigen-
vectors and Dynamic Decomposition Weights (DDW)”.
The marginal and experimental approaches may supple-
ment each other well, where a marginal analysis may iden-
tify elements that can then be tested experimentally for
their significance.

Unlike the traditional control method and the eigen-
value method that work in the structural and frequency
domain, the pathway participation method (PPM) relates
directly to the time path of particular system variables and
is more concerned with the qualitative nature of the time
path, expressed in terms of signs of the slope (whether
growing or declining) and curvature (whether convex or
concave) than with numerical measures of degree of in-
fluence. Briefly stated, the PPM traces the causal links

in the variables influencing the system variable in ques-
tion and then identifies the most important chain of links.
We discuss this method in Sect. “Pathway Participation
Metrics”.

Common to the approaches discussed here is that they
all build upon a precise mathematical characterization of
the system behavior. In the next section, we demonstrate
how the concepts from linear systems theory may be used
to give a precise characterization of behavior in terms of
component behavior modes.

Characterizing Linear and Nonlinear Systems

A system dynamics model can be represented mathemati-
cally as a set of ordinary differential equations

dx (t)
dt

� ẋ (t) D f (x (t) ; u (t)) ; (1)

where x (t) is a (column) vector of n state variables (lev-
els) (x1 (t) ; : : : ; xn (t)), u (t) is a column vector of p ex-
ogenous variables or control variables



u1 (t) ; : : : ; up (t)

�
,

f ( ) is a corresponding vector function, and t is simulated
time. In this paper, we restrict our attention to the state
variables (levels) of the model for notational convenience,
ignoring the auxiliary variables. Mathematically, a model
can always be brought to the reduced form (1), but in prac-
tice, the auxiliary variables give a more intuitive account
of the analysis. Likewise, we do not consider time-varying
systems (where time t enters as an explicit argument in the
function f ), since these can usually be accommodated by
an appropriate definition of the exogenous variables u. In
general, f is a nonlinear function of its arguments, and we
speak of a nonlinear system. Conversely, if f is a linear
function, we speak of a linear system.

Figure 3 and Table 1 show a well-known example, the
inventory–workforce model. It has three state variables,
Inventory (INV),Workforce (WF), and ExpectedDemand
(ED), and one exogenous variable, Demand (DEM), i. e.,

x (t) D
0

@
INV
WF
ED

1

A ; u (t) D (DEM) ; (2)

and the function f is determined by the equations in
Table 1.

Given the model structure (1), knowledge of the ini-
tial conditions x (0), and the path of the input variables
u (t), the behavior of the model is completely determined.
It is in this sense that the model structure (1) constitutes
a “theory” of the time behavior x (t), as mentioned in the
introduction. Yet, we are interested in methods that yield
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Flow diagram of the inventory workforce model

a more compact explanation, short of having to simulate
the entire model structure.

It turns out that in its ultimate form, this dream is
beyond reach: Since the days of Henri Poincaré, mathe-
maticians have known that it is impossible to find general
analytical solutions to nonlinear systems. Furthermore,
the development of nonlinear dynamics and chaos theory
has proven that such systems, even when they have very
few state variables, can produce highly complex and intri-
cate behavior that goes beyond general analytic methods
(e. g., [42,48]). Thus, we will never find a final general the-
ory where we can infer the behavior of the system directly
from its structure; instead, we will always have to rely on
simulation to discover the dynamics implied by the struc-
ture. (This is not to say that no general analytical results
exist in nonlinear systems. The field of chaos theory has
uncovered a number of universal features, e. g., relating
to the transition from periodic or quasi-periodic behavior
to chaos, where the transitions show both qualitative and
quantitative similarities that are independent of the spe-
cific forms of the model equations (see, e. g., [42]). How-

ever, these universal features relate to specific situations
such as period-doubling or intermittency routes to chaos).

The best we can hope for, therefore, is a set of tools
that will guide intuition and help identify dominant struc-
ture in the model. By dominant structure we mean par-
ticular feedback loops that are in some sense “important”
in shaping the behavior of interest. To the extent that we
can identify such dominant structures, we may say that we
have found a “theory” of the observed behavior.

Although the term “behavior” may appear rather
loose, experience and reflection tells us that there is a lim-
ited number, perhaps a dozen or so, of relevant behav-
ior patterns that dynamical systems can exhibit. Some of
these behaviors, like exponential growth, exponential ad-
justment, and damped or expanding oscillations, are typ-
ical of linear systems. Others, like limit cycles, quasiperi-
odic motion, mode-locking, and chaos, can only be exhib-
ited by nonlinear systems.

Common to the approaches considered in this paper
is that they are based on tools from linear systems theory,
i. e., they approximate the nonlinear model (1) with a lin-
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Equations of the inventory workforcemodel

Equation Name Units
d/dt(ED) D (DEM � ED)/tce; ED0 D DEM � df Expected demand [Units/Month]
d/dt(INV) D P � S; INV0 D DI Inventory [Units]
d/dt(WF) D HFR;WF0 D DWF Workforce [Workers]
S D DEM Shipments [Units/Month]
P D NP � EO Production [Units/Month]
EO D fp � (1 � (1 � 1/fp)̂SP) Effect of overtime [Dimensionless]
NP D WF � pdy Normal production [Units/Month]
DI D ED � nic Desired inventory [Units]
SP D DP/NP Schedule pressure [Dimensionless]
DEM D 1(Exogenous) Demand [Units/Month]
DP D ED C IC Desired production [Units/Month]
IC D (DI � INV)/tci Inventory correction [Units/Month]
HFR D (DWF � WF)/hft Hire/fire rate [Workers/Month]
DWF D ED/pdy Desired workforce [Workers]
hft D 5 Hire/fire time [Month]
pdy D 1 Productivity [Units/Month/Worker]
tce D 4 Time to change expectations [Month]
fp D 1:05 Flexibility in production [Dimensionless]
nic D 3 Normal inventory coverage [Months]
ict D 2 Inventory correction time [Months]
df D 0:5 Disequilibrium fraction [Dimensionless]

earized version, using first-order Taylor expansion around
some operating point x0; u0, i. e.,

ẋ(t) � f (x0; u0) C @ f
@x

(x � x0) C @ f
@u

(u � u0) ; (3)

or, by redefinition of the variables x ! x � x0 � f (x0; u0)
�(t � t0) and u ! u � u0,

ẋ (t) � Ax (t) C Bu (t) ; (4)

where A is constant n � n matrix of partial derivatives
@ fi /@x j and B is constant n � p matrix of partial deriva-
tives @ fi /@uj , and all partial derivatives are evaluated at the
operating point.

For the linear system (4), there is a well-developed and
extensive theory of the system behavior as a function of
its structure, expressed in the matrices A and B. One may
broadly distinguish two parts of the theory, named classi-
cal control theory (e. g., [38]) and modern linear systems
theory (e. g., [4,31]).We return to the classical control the-
ory in the next section.

Modern control theory or linear systems theory (LST)
is concerned with the dynamical properties of the system
as a direct function of the system matrices A and B. A key
element in this theory is the notion of the system eigenval-
ues, i. e., the eigenvalues of the matrix A. If, for simplicity,

we restrict ourselves to the endogenous dynamics of the
system (set u D 0), we can write the solution to (4) as

xi (t) D ci;1 exp (�1 t) C ci;2 exp (�2 t) C � � �
C ci;n exp (�n t) ; i D 1; : : : ; n ; (5)

where �1; : : : ; �n are the n eigenvalues of the matrix A
and ci: j are constants that depend upon the eigenvectors
and the initial condition of the system. In other words, the
resulting behavior is a weighted sum of distinct behavior
modes, exp (�t). If an eigenvalue is real, the correspond-
ing behavior mode is exponential growth (if � > 0) or
exponential decay (if � < 0). Complex-valued eigenvalues
come in complex conjugate pairs � D � ˙ i! which give
rise to oscillations exp (� t) sin (! t C �) of frequency !
that are either expanding (if � > 0) or damped (if � < 0).
In this manner, the eigenvalues serve as a compact and rig-
orous characterization of the behavior (of linear systems).

At any point in time, any system, linear or nonlinear,
may be approximated by the expression (5). Whether it
remains a good approximation depends upon how much
and how quickly the eigenvalues change due to the nonlin-
earities in the function f . If they are more or less constant
for significant periods of time, wemay speak of quasilinear
systems that are well approximated by the linear system.
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In some cases, however, the eigenvalues change so rapidly
that it makes little sense to characterize the behavior by
equation (5). (See [29] for further discussion).

Traditional Control Theory Approaches

The first set of methods, which we call the traditional ap-
proach, has been used for decades and is part of the stan-
dard curriculum in system dynamics teaching at the grad-
uate level. It involves using the concepts from classical
control theory [38] to very simple systems with only a few
state variables.

The starting point is the simple first- and second-order
positive and negative feedback loops found in any intro-
ductory treatment of system dynamics. The advantage of
the approach is its simplicity. Although it serves at a guide
to intuition, however, the obvious shortage is that it ap-
plies rigorously only to simple systems. There have been
some attempts to treat higher-order systems by adding
a few feedback loops [23], but the step to large-scale mod-
els is beyond this method given its inherent limitations.

Graham [23] distills a number of principles that are
based on the metaphor of a “disturbance” traveling along
the chain of causal links in a feedback loop and getting
amplified, damped, and possibly delayed in the process.
For major negative feedback loops, which are known to
tend to produce oscillation, adding minor negative loops
and cross-links, or shortening the delay times increases the
damping. Conversely, adding positive loops in to the os-
cillatory system tends to lengthen the period of oscillation
whereas the effect on the damping depends upon the de-
lays in the positive loop. Using the metaphor of pushing
a child on a swing, it becomes clear that the timing of the
propagation of a disturbance has as much importance for
its effect on the damping as its strength.

For analyzing the behavior of positive feedback loops,
Graham suggested calculating the Open-loop steady-state
gain (OLSSG), a measure of the amplification around the
loop. A gain greater than unity will result in exponential
growth while gains less than 1 will give exponential adjust-
ment (leveling off or decay). The intuition is perhaps best
illustrated by an example: sales-driven growth. Suppose
a salesperson can eventually pull in $100,000 per month
in orders (probably with a several-month long delay), and
assume that the company allocates 10% of revenue tomar-
keting. Then this eventually leads to $10,000 per month
for sales efforts. If the cost of a salesperson (salary, over-
head, expenses etc.) is, say, $8,000 dollars per month, then
the efforts of the current sales force will provide enough
revenue to support 10; 000/8; 000 D 1:25 persons per cur-
rent person. Thus, the OLSSG of the positive loop from

salespersons ! orders ! revenues ! marketing budget
! salespersons is 1.25, and the system will grow exponen-
tially (until other factors limit the growth). Conversely, if
the gain is less than 1, one salesperson will not sell enough
to support their own cost, and the loop will lead to ex-
ponential decay. Graham showed how the actual rate of
growth is partly determined by the OLSSG, and partly by
the time constants (delays etc.) involved. (See also Sub-
sect. 15.3 in [59]).

In the context of oscillating systems, system dynamics
has also employed a concept from classical control theory,
frequency response. The frequency response is determined
from the transfer function of the system, G (i!), which is
a complex-valued function that specifies how an input sig-
nal u (t) with frequency ! results in an output signal x (t)
that may be phase shifted (delayed), and either amplified
or attenuated. For linear systems, G can be calculated di-
rectly from the system matrices in (4) – the transfer func-
tion (matrix) is G (i!) D B (i! I � A)�1, where I is the
identitymatrix (see e. g. [4]). For nonlinear systems,Gmay
be found through simulation experiments.

Usually, G is represented in a Bode or phase-and-gain
diagram. For instance, Fig. 4 shows a Bode diagram of the
inventory variable INV (t) relative to the exogenous de-
mand input variable DEM(t) in the inventory workforce
model in Fig. 3. The diagram shows how the relative am-
plitude of the oscillation and the relative phase shift (in
radians) between input and output varies as a function of
the frequency of the input.

It is clear from the diagram that there is a certain fre-
quency range, around the system’s own natural frequency,

System Dynamics, Analytical Methods for Structural Dominance,
Analysis in, Figure 4
Phase-and-gain diagram (Bode diagram) showing the inventory
A sin(!tC
) with amplitudeA andphase shift
, relative to a si-
nusoidal demand sin(!t), for varying values of the frequency !

of the demand fluctuation
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where fluctuations in demand are greatly amplified com-
pared to other frequencies. Indeed, it is a general phe-
nomenon in systems that they will tend to amplify cer-
tain frequencies while attenuating other frequencies. This
may be used to explain or understand the role of particu-
lar structures in the model in generating oscillation at cer-
tain frequencies, even when there are no oscillations com-
ing in from the outside world. (External random noise is
enough to produce oscillations in the system because ran-
dom noise contains fluctuations at all frequencies). In this
manner, the approach nicely demonstrates the “endoge-
nous viewpoint” that behavior (oscillations) is generated
internally by the system. As an analytic tool for large scale
systems, however, the method does not seem to produce
any additional insights. Thus, we may conclude that the
classical approaches servemostly as intuitive metaphors to
guide the analyst rather than as full analytical tools.

Pathway ParticipationMetrics

The pathway participation method [34,35] represents
a further development of an original suggestion by
Richardson [46] to provide a rigorous definition of loop
polarity and loop dominance. Richardson motivated this
with the common confusion associated with positive feed-
back loops, which may exhibit a wide range of behav-
iors [23], as Barry Richmond noted with wonderful hu-
mor:

“Positive loops are . . . er, well, they give rise to expo-
nential growth . . . or collapse . . . but only under certain
conditions . . . Under other conditions they behave like
negative feedback loops . . . ” [49].

Richardson proposed that the polarity of a loop be de-
fined as the sign of the expression

@ẋi
@xi

D @ fi (x ; u)
@xi

; (6)

in the model (1), with a positive sign indicating a positive
loop and vice-versa. When several loops operate simulta-
neously, the sign of the expression indicates whether the
positive or negative loops dominate. Note, however, that
the definition only applies to minor loops (i. e. loops in-
volving a single level). Put differently, it only considers
the diagonal elements of the matrix A in the linearized
system (4). Richardson [46] demonstrates how even with
this limitation, analyzing the system with this metric can
(sometimes) yield insights into behavior of higher-order
systems.

The expression (6) hints that it is relevant to consider
the curvature, i. e., the second time derivative, ẍ, of a vari-
able when looking for dominant structure. Although he

does not say so explicitly, this is effectively the focus ofMo-
jtahedzadeh’s pathway method. Figure 5 shows how one
may classify behavior by comparing the first and second
time derivatives of a variable. As seen in the figure, the
sign of the expression ẍ/ẋ, which Mojtahedzadeh denotes
the total pathway participation metric or PPM, indicates
whether the behavior appears dominated by positive or
negative loops, much in line with Richardson’s definition
of dominant polarity. A zero curvature indicates a shift
in loop dominance (cf. the middle column in the figure).
Note, however, that the interpretation of the middle row
in the figure where the slope ẋ is zero has no clear inter-
pretation in terms of loop dominance. Indeed this hints at
one of the weaknesses of the approach that we will return
to below.

Mojtahedzadeh’s method proceeds by decomposing
the PPM into its constituent terms as follows,

PPMi D ẍi
ẋi

D
nX

jD1

@ fi
@x j

ẋ j
ẋi
; (7)

where, for brevity, we have chosen to ignore the exoge-
nous variables u. One might say that each of the terms in
the sum in (7) represents the separate influence of each of
the systems’ state variables on the behavior of xi. Mojta-
hedzadeh in fact uses a normalized measure for the terms,



@ fi /@x j

�
ẋ j

nP

kD1

ˇ
ˇ


@ fi /@xk

�
ẋk
ˇ
ˇ
; (8)

which can vary between �1 and +1, to measure the rela-
tive importance of the pathway from variable j. By explic-
itly considering auxiliary variables y in themodel, onemay
further decompose each term @ fi /@x j into a sum of terms

@ f ki
@x j

D @ fi
@y1

� @y1
@y2

� � � � � @ym�1

@ym
� @ym
@x j

; (9)

corresponding to a causal chain or pathway 
k D
fx j ! ym ! � � � y2 ! y1 ! ẋig. Mojtahedzadeh now
considers each possible pathway (9) and defines the “dom-
inant” pathway as the one with the largest numerical value
and the same sign as PPMi . Having selected this domi-
nant pathway, 
�

i j D fx j ! ym ! � � � y2 ! y1 ! ẋig,
which originates in the state variable x j the procedure is
repeated for that state variable xj, and so forth, until one
either reaches one of the already “visited” state variables
(in which case a loop has been found) or an exogenous
variable (in which case an external driving force has been
found). Thus, the procedure may result in three alternative
forms of dominant structure illustrated in Fig. 6, namely
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Characteristic behavior patterns based on the first and second time derivatives
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Three alternative forms of dominant structure in the PPMmethod

a “pure” minor or major feedback loop, a pathway from
a feedback loop elsewhere in the system, or a pathway
from an exogenous variable.

By dividing the observedmodel behavior into different
phases according to the taxonomy in Fig. 5 and then apply-
ing the method just described at different points in during
these phases, one can reveal how the dominant structure
changes over time. For illustration, the PPM method is
applied to the Bass model and the results are presented
in Fig. 7. The figure shows the metrics of four alterna-
tive pathways (four feedback loops) and the results ac-
cord nicely with the informal analysis done earlier: The
method identifies two phases, exponential growth, expo-
nential adjustment, and identifies the “word-of-mouth”

positive loop (loop 1) as dominant in the first phase and
the “exhaustion” loop (loop 2) as dominant in the second
phase.

The PPMmethod is still mostly used at an early explo-
rative stage on rather simple models, where it does appear
to aid insight into the dynamics (e. g. [41]), and has been
implemented in a software package, Digest, [35].

From the studies performed so far, it is clear that
the main strength of this method is its relative computa-
tional simplicity (it does not require computing eigenval-
ues, which is a numerically demanding task), and the intu-
itive and direct connection it makes between the observed
behavior and the influencing structural elements. Unlike
the other approaches which operate in the “frequency do-
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SystemDynamics, Analytical Methods for Structural Dominance,
Analysis in, Figure 7
Pathway participationmeasures in the Bass model

main”, the method considers the time path of a specific
variable directly.

There are, however, some important outstanding is-
sues that remain to be clarified. First, the method is not
suitable for oscillatory systems. The problem is easy to
recognize when one considers how the PPM measure will
vary over the course of a sinusoidal outcome: The sign of
the PPM will shift twice during each cycle, indicating that
the behavior is alternately dominated by positive and neg-
ative loops, even though the system structure, and hence
the loop dominance, may remain unchanged all the time.
Richardson [46] already alluded to this problem by noting
that the measure only considers the diagonal elements in
the system matrix in (4), yet we know that the structure
causing oscillation is the major negative loop that involve
the off-diagonal elements. This is a significant limitation,
given the prevalence and importance of oscillation in sys-
tem dynamics analysis.

A second limitation of the current implementation
of PPM is that it uses a depth-first search for the single
most influential pathway for a variable. This strategy does
not capture the situation where more than one structure
may contribute significantly to the model behavior and,
through the depth-first algorithm, may miss alternative

paths that could prove to yield a larger total value of the
metric. This problem could be addressed by modifying the
search algorithm and is most likely of minor importance.

Another issue is how to treat the case when ẋ D 0 since
it appears in the denominator of the terms in (6). How-
ever, it is not clear that it is necessary to do this division,
given that it is easy to identify the nine cases in the figure
by simply examining its sign. Thus, the issue is probably
not of much significance.

The fourth issue, on the other hand, is more signifi-
cant, namely the emphasis on identifying a single “domi-
nant” structure. In reality, of course, the behavior of a vari-
able is influenced bymany loops and pathways at once. Re-
ducing the consideration to a single one of these may miss
important features of the structure-behavior relationships.
For instance, a variable may be influenced by two negative
loops and one positive, with the sum of the two negative
loops dominating the influence of the positive loop, even
though that loop by itself has the strongest influence on the
behavior. It is more appropriate to consider the relative
importance of alternative pathways, yet the method does
not address how one would partition the behavior among
pathways (the three structures in Fig. 6) – only among in-
dividual links.

Thus, while the notion of pathways seems an interest-
ing and useful idea, it may be that it will ultimately bemore
effective to use a list, ranked in order of magnitude, of the
pathways that influence a variable.

Finally, the method shares a weakness with the tradi-
tional method in that it considers primarily partial system
structures rather than global system properties. In con-
trast, the two eigenvalue methods to which we now turn
are based on a rigorous characterization of the entire sys-
tem (at a given point in time).

Eigenvalue Elasticity Analysis

The third method may be termed eigenvalue elasticity
analysis (or EEA for short) and builds upon the tools
from modern linear systems theory (LST), applied to
the linearized model (4). The method is concerned with
the structural elements that significantly affect the sys-
tem eigenvalues or behavior modes – the values � in (5).
Specifically, it measures influence by the elasticity of an
eigenvalue � with respect to some parameter g in the
model, defined as " D 


@�/@g
�
(g/�), i. e. the fractional

change in the eigenvalue relative to the fractional change
in the parameter. The advantage of this fractional mea-
sure is that it is dimensionless, i. e., independent upon
the choice of units, including the time scale unit. Some-
times, the influence measure is used instead, defined as
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� D (@�/@g)g. This measure has dimension [1/time] and
so depends upon the choice of is time unit, but it is gener-
ally easier to interpret for complex-valued eigenvalues and
avoids numerical problems with very small or zero eigen-
values (see [29,54]).

The idea behind EEA was first introduced in system
dynamics by Forrester [14] in the context of economic sta-
bilization policy. For purposes of policy analysis in oscil-
lating systems, one may define a number of criteria from
engineering control theory, all of which relate to the eigen-
values of the system, as summarized in Table 2. Figure 8
provides a graphical characterization of the eigenvalues
and policy criteria in the complex plane. Though these
measures are not new, the EEA method is unique in its
attempt to use them to gain qualitative intuitive under-
standing of the system. A significant step in this direction
was first suggested by Forrester [15] with the notion that
the elasticities of any links in the model (corresponding
to elements of the matrix A in the linearized system (4)),
can be interpreted as the sum of elasticities of all feedback
loops containing that link. We have chosen to name this
approach loop eigenvalue elasticity analysis (LEEA).

Kampmann [28] provided a rigorous definition of
LEEA and also pointed to the fact that feedback loops
are not independent. In other words, given the possibly
very large number of loops in a given model (Kampmann
demonstrated how the theoretical maximum number of
loops grows combinatorically with the number of vari-
ables), it only makes sense to speak of individual contribu-
tions of a limited set of independent loops. He proved that
a fully connected system (where there is a feedback loop
between any pair of variables – the typical case in system

System Dynamics, Analytical Methods for Structural Dominance, Analysis in, Table 2
Stabilization policy criteria and corresponding effects on eigenvalues and BDW of a policy change in a system element g

Policy Criterion Description Change in
eigenvalue

 D ı ˙ i!; ! > 0

Change in
BDW w

Appropriate
measure in
time path

Damping Increases the rate of decay of oscillation (or decreases the rate
of expansion)

@ı
@g

g
ı

< 0 N/A x(tCT)
x(t)

Frequency Decreases the frequency of oscillation (or lengthens the
period T)

@!
@g

g
!

< 0 N/A T

Variance Reduces the variance of a target variable (or the weighted
average variances of several variables)

No simple relation @w
@g

g
w < 0

R
x (t)2 dt

Auto-spectrum Reduces variance of target variable(s) within a target frequency
range

No simple relation @w
@g

g
w < 0 Filter in

frequency
domain

Frequency
response gain

Reduces the gain (amplification) in the target frequency range
for a particular combination of disturbance exogenous and
output variables.

Based upon transfer function G (i!)

System Dynamics, Analytical Methods for Structural Dominance,
Analysis in, Figure 8
Characterization of eigenvalues plotted in the complex plane

dynamics models) with N links and n variables has a to-
tal of N � n C 1 independent loops and provided a pro-
cedure for constructing this set and calculating the loop
elasticities.

Kampmann’s analysis points to a fundamental issue
relating to the notion of feedback loops as a way to explain
behavior: the significance assigned to a particular loop de-
pends upon the context (the chosen independent loop set).
In other words, feedback loops are derived and relative
concepts rather than fundamental independent building
blocks of systems. Oliva [40] further refined the defini-
tion of independent loop sets by introducing the Short-
est independent loop set (SILS) along with a procedure
for constructing the set. Although a SILS is not generally
unique, experience seems to suggest that it is easier to in-
terpret [41]. Yet the issue remains that independent feed-
back loop sets are relative concepts.



System Dynamics, Analytical Methods for Structural Dominance, Analysis in 845

System Dynamics, Analytical Methods for Structural Dominance, Analysis in, Table 3
Loops and their influences in the inventory workforcemodel. Values aremeasured at time t D 0. Themodel contains three eigenval-
ues, 
1 D �0:250 and 
2; 
3 D �0:138˙ i 0:285. The influence measure is defined as g � @
/@g. For the imaginary part, a positive
influence measure means that the frequency is increased

Loop Nodes Gain Influence
on Re[
1]

Influence
on Re[
2]

Influence
on Im[
2]

1 ED > CED �0.250 �0.250 0.000 0.000
2 W > HFR �0.200 0.000 �0.100 �0.022
3 INV > IC > DP > SP > EO > P �0.076 0.000 �0.038 0.008
4 INV > IC > DP > DW > HFR > W > NP > P �0.100 0.000 0.000 0.176
5 INV > IC > DP > DW > HFR > W > NP > SP > EO > P 0.015 0.000 0.000 �0.027

In Table 3, we show how the LEEA analysis applies
to the simple inventory–workforce model in Fig. 3. The
model contains a total of 5 feedback loops, all of which
are independent. The loops are listed in Table 3, includ-
ing their constituent variables (nodes), and the gain of the
loop (defined in a similar manner to the pathway partic-
ipation metrics above). We see that there are three mi-
nor negative loops, related to the exponential smoothing
of expected demand (loop 1) and the adjustment of work-
force to desired workforce (loop 2). The minor loop 3 is
the “overtime shortcut” that allows production to adjust
part way to desired production immediately so one does
not have to wait for the workforce to adjust. Loop 4 is the
mainmajor negative loop that adjusts inventory to desired
levels via workforce adjustment. Finally, loop 5 (the only
positive loop) is a fairly weak loop that moderates the ef-
fect of loop 4 by adjusting the overtime effect “back to nor-
mal” when the workforce is brought in line with desired
production.

Although the model is nonlinear (due to the overtime
function), the eigenvalues do not change very much over
the course of its behavior. The model contains one real
eigenvalue (�1 D �0:250) and one pair of complex con-
jugate eigenvalues (�2; �3 D �0:138 ˙ i 0:285). The first
eigenvalue corresponds to the adjustment of expected de-
mand (ED). The other pair produces a damped oscillation
in inventory and workforce.

Table 3 also shows the loop influences upon the three
eigenvalues. Note how there is a one-to-one correspon-
dence between loop 1 (the adjustment of expected de-
mand) and the first eigenvalue. This is due to fact that
the ED level constitutes a single strongly connected com-
ponent of the model (see Fig. 3), i. e. there is no feed-
back between this level and the rest of the model. We also
note that the workforce adjustment and the overtime loops
have a stabilizing influence upon the behavior (they make
the real part of the oscillatory eigenvalues more negative
and have relative little effect upon the frequency of oscil-

lation). Conversely, the major negative loop 4 has a desta-
bilizing influence, since strengthening it will increase the
frequency of oscillation and not increase the damping. The
effects of loop 5 are fairly weak.

From this analysis, one would therefore expect param-
eters that strengthen loop 2 (shortening hire/fire time) or
loop 3 (increase overtime effect) would stabilize the system
while strengthening loop 4 (shorter inventory adjustment
time) will destabilize the system. Indeed this is what hap-
pens, as illustrated in the simulations in Fig. 9.

The EEA/LEEA method has been applied in a num-
ber of contexts (e. g. [1,20,22,24,29,51,52,54]), but re-
mains a tool employed only by specialists in fundamen-
tal research, not least because it has not been incorpo-
rated into standard software packages. Thus, the potential
of the method for widespread practice remains unex-
plored.

One might be skeptical that a method derived from
linear systems theory may have any use for the nonlin-
ear models found in system dynamics. Kampmann and
Oliva [29] considered what types of models the method
would be particularly suited for. They defined three cat-
egories of models, based upon the behavior they are de-
signed to exhibit: 1) linear and quasilinear models, 2) non-
linear single-transient models, and 3) nonlinear periodic
models. The first category encompasses models of oscil-
lations, possibly combined with growth trends, with rel-
atively stable equilibrium points, (e. g., the classical in-
dustrial dynamics models [11]). Nonlinearities may mod-
ify behavior (particularly responses to extreme shocks)
but the instabilities and growth trends can be analyzed in
terms of linear relationships. Kampmann and Oliva con-
cluded that LEEA showed the most promise and poten-
tial for this class of models because the analytical foun-
dations are solid and valid, and because the method has
the ability to find high-elasticity loops even in large mod-
els very quickly without much intervention on the part of
the analyst.
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Simulated behavior of inventory–workforce model, showing the effect on inventory of parameter changes for overtime (flexibility
of production), inventory adjustment time (ict), and labor hiring/firing time (hft), respectively

The second class is typical of scenario models like the
World Model [13,33], the Urban Dynamics Model [12], or
the energy transition model in [57], to name a few, that
show a single transient behavior pattern, like overshoot
and collapse or a turbulent transition to a new equilib-
rium. In these models, nonlinearities usually play an es-
sential role in the dynamics. Yet it is possible to divide
the behavior into distinct phases where certain loops tend
to dominate the behavior. In this class of models LEEA
also shows promise by measuring shifts in structural dom-
inance by the change in elasticities. But it requires more
input from the analyst (e. g. in defining the different phases
of the transition) and it has no obvious advantage over
other methods, like PPM.

The third class, nonlinear periodic models, are those
that exhibit fluctuating behavior in which nonlinearities
play an essential role, such as like limit cycles, quasiperi-
odic behavior, or chaos, (see, e. g. [48]). Here the utility
of the method is much less clear and depends upon the
specifics of the model in question. For example, the clas-
sic Lorenz model that exhibits limit cycles, period dou-
bling and deterministic chaos does not lend itself to any
insight using LEEA [29]. This is particularly the case in
systems with strong nonlinearities such as min and max
functions. In these systems, the behavior may change
abruptly (eigenvalues suddenly shift) in what is called
border-collision bifurcations [37,61]. In other cases, the
method of breaking the behavior into phases with dif-

ferent dominant structures may yield significant insight
from LEEA. For instance, Sterman’s simple long wave
model [58] lends itself well to this approach (e. g. [24,28]).

In the present paper, we add a fourth category of mod-
els or behavior for which the method has not been ex-
plored yet. We name this category nonlinear multi-modal
models. These encompass the cases where one behavior
mode interacts with and therefore modifies another be-
havior mode – something that can only happen in non-
linear systems. The most common example is mode-lock-
ing or entrainment, in which oscillations become synchro-
nized (e. g. [25]). Another example is mode modification,
where one behavior mode (growth or oscillation) affects
the character of another (typically oscillation). An exam-
ple of this is the interaction of the business cycle with the
economic long wave, where the former tends to get more
severe during long wave downturns [16]. Whether LEEA
can contribute to this class of models remains to be seen.

Compared to the former two methods, the EEA/LEEA
is mathematically more general and rigorous, though
many of the mathematical issues in the method remain to
be addressed, as we summarize below. This rigor is also
the main strength of the method, since it provides an un-
ambiguous and complete measure of the influence of the
entire feedback structure on all behavior modes.

A weakness or challenge that is starting to show up is
the computational intensity in calculating eigenvalues and
elasticities. This is not so much an issue of computer time
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and memory space as of the stability of numerical meth-
ods. Kampmann and Oliva [29] found that the numerical
method used sometimes proved unstable, yielding mean-
ingless results. Clearly, there is a need to explore this issue
further, possibly building upon the developments in con-
trol engineering.

A more serious weakness is the difficulty in interpret-
ing the results: Eigenvalues do not directly relate to the
observed behavior of a particular variable. The concepts
of eigenvalues and elasticities are rather abstract and un-
intuitive [10]. There is a need for tools and methods that
can translate them into visible, visceral, and salient mea-
sures. Here, the measures in Table 2 may provide a guide.
In particular, it is possible to use (linear) filtering in the
frequency domain to define a behavior of interest. For ex-
ample, an analyst may be concerned with structures caus-
ing a typical business cycle (3–4-year oscillation) and, by
specifying a filter that “picks out” that range of fluctuation,
could obtain measures for structures that have elasticities
in that range. Because filters are typically linear operators,
all the analytical machinery of the LEEA method will also
apply in this case – a significant advantage.

Using filters will also solve an issue that appears in
large-scale models, namely the presence of several identi-
cal or nearly identical behavior modes. Saleh et al. [54] do
consider the analytical problems associated with repeated
eigenvalues, where it becomes necessary to use general-
ized eigenvectors, and where other behavior modes ap-
pear involving power functions of time. A filter essentially
constitutes a weighted average of behavior modes and in
this fashion avoids the “identity problem” of non-distinct
eigenvalues.

The most serious theoretical issue, in our view, is how
the results are interpreted using the feedback loop concept.
As mentioned, the concept is relative (to a choice of an in-
dependent loop set). Moreover, practice reveals that the
number of loops to consider is rather large and that the
loops elasticities often do not have an easy or intuitive ex-
planation. A lot of care must be taken when interpreting
the results. For instance, Kampmann and Oliva [29] found
that “phantom loops” – loops that cancel each other by
logical necessity and are essentially artifacts of the equa-
tion formulations used in the model – could nonetheless
have large elasticities and thus seriously distort the inter-
pretation of the results. An example of “phantom loops” is
found in the Bass model in Fig. 1, where loops 3 and 4 are
artifacts of the way the model is formulated. If the variable
Total population (T) was eliminated from the equations,
the loops would disappear and in fact they exactly cancel
each other out (since T is constant). Nonetheless, they ap-
pear on the list of loops and appear to have a separate in-

fluence on behavior. These kinds of problems may not be
intractable, but their resolution will require careful math-
ematical analysis.

Finally, a problem with EEA and LEEA is that it only
considers changes to behavior modes, not the degree to
which these modes are expressed in a system variable of
interest. This issue is addressed by also considering the
eigenvectors of the system, which is the foundation for the
analysis in the next section.

Eigenvectors and Dynamic DecompositionWeights
(DDW)

The last set of methods, which are still in early devel-
opment, we have termed the eigenvector-based approach
(EVA). EVA attempts to improve the EEA/LEEA method
by considering howmuch an eigenvalue or behavior mode
is expressed in a particular system variable. The logic of the
method and how EEA and EVA complement each other is
shown in Fig. 10. As shown by Kampmann [28], in a sense
there is a one-to-one correspondence between eigenvalues
and loop gains whereas the eigenvectors arise from the re-
maining “degrees of freedom” in the system. The observed
behavior of the state variables in the model is then the
combined outcome of the behavior modes (from the loop
gains) and the weights for each mode (from the eigenvec-
tors) in the respective state variable.

A number of researchers have attempted to develop
EVA methods. Some emphasize the curvature (second
time derivative) of the behavior, similar to the starting
point of the PPM method [24,50,51,52]. The slope or rate
of change ẋ (t) of a given variable x in the linearized system
may be written by

ẋ (t � t0) D w1 exp (�1 (t � t0)) C � � �
C wn exp (�n (t � t0)) ; (10)

where the weights wi are related to the eigenvectors. Then
the curvature at time t0 is

ẍ (t0) D w1�1 C � � � C wn�n : (11)

One may therefore interpret (11) has the sum of contri-
bution from individual behavior modes. Güneralp [24]
suggested using the terms on the right-hand side of (11)
as weights to combine elasticities of individual behavior
modes "i with respect to some system element (like a link
gain or a loop gain) into a weighted sum

"̄ D

nP

iD1
wi�i"i

nP

iD1
jwi�i j

; (12)
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Schematic view of eigenvalue and eigenvector analysis approach

as a measure of the overall significance of that system
element. He further normalized the elasticity measure by
the elasticity measure for other system elements, i. e., as-
suming there are K such elements (loops or links), the
relative importance �k of the kth element is defined as

�k D "̄k
KP

jD1

ˇ
ˇ"̄ j
ˇ
ˇ
; (13)

with themotivation that elasticities may vary greatly in nu-
merical values, making comparisons at different points in
time difficult, whereas �k is a relative measure varying be-
tween +1 and �1. His results shed an alternative light on
the behavior of these models, but the mathematical mean-
ing, consistency and significance of the doubly normalized
measure (13) remains to be clarified. It is still too early to
tell what the most useful approach will be, but one may
note that the emphasis on the curvature shares the basic
weakness in the PPM approach in dealing with oscilla-
tions.

Other researchers have looked directly at the dynamic
decomposition weights (DDW) wi in (10), i. e., the relative
weight of the modes for a particular variable, from a policy
criterion perspective, similar to Forrester’s original focus
and the starting point for the EEA analysis [21,53,54].

For instance, Saleh et al. [54] look at how alterna-
tive stabilization policies affect the behavior of business
cycle models, using both a simple inventory–workforce
model [59], and a more extensive model based on
Mass [32] and used in the LEEA analysis of Kampmann
and Oliva [29]. Using the procedure in Fig. 9, they decom-
pose the net stabilizing effect of a policy into its effect on
the behavior mode itself (LEEA) and its effect on the ex-

pression of that mode in the variable of interest, measured
the dynamic decomposition weights (EVA or DDW).

To illustrate the approach we perform the computa-
tions for the inventory–workforce model (Fig. 3 and Ta-
ble 1). We find that the following equations describe the
behavior of the state variables

ED D 1 � 0:500e�0:250t

INV D 3 � 2:167e�0:250t

C 1:134e�0:138t sin (2:945 C 0:285t)

WF D 1 C 0:669e�0:250t

� 1:169e�0:138t sin (1:553 � 0:285t) :

(14)

As expected from the structure of the model, the behavior
of Expected Demand does not have an oscillatory compo-
nent and only shows a short transient exponential adjust-
ment for the stock to match Demand. On the other hand,
Inventory and Workforce, in addition to having the tran-
sient behavior to reach equilibrium captured by the first
eigenvalue, have an oscillatory component represented by
the second eigenvalue. Note that each state variable has
a different Dynamic Decomposition Weight (w) for each
reference mode, i. e., each eigenvalue contributes differ-
ently to the overall behavior of each state variable.

An exploration of the policy design space can be
achieved by assessing the influence of model parameters
on the dynamic decomposition weight. By focusing on the
weights of the behavior modes for the variable of interest
we can identify leverage points to increase or decrease the
presence of a behavior mode in the variable. The weight
elasticity column in Table 4 reports the parameter elastic-
ity of w2 (the weight of eigenvalue 2, the oscillatory behav-
ior mode) on Inventory ("w D (dw/dp)(p/w)). The mag-
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Elasticity to parameters of weight of eigenvalue 2 (�0:138 C i 0:85) on inventory and influence of parameters on eigenvalue 2 –
inventory–workforce model

Parameter w2 on INV Elasticity Influence on Re[
2] Influence on Im[
2]
Demand 2:000 0:000 0:000
Inventory correction time 0:656 0:038 �0.157
Flexibility in production 0:364 �0.549 �0.266
Productivity �0.353 0:000 0:000
Time to change expectations �0.240 0:000 0:000
Normal inventory coverage 0:239 0:000 0:000
Hiring/Firing time 0:238 0:100 �0.127
Disequilibrium fraction 0:000 0:000 0:000

nitude of the elasticity quantifies the impact that changes
in the parameter value have on the weight of the oscilla-
tory behavior model on Inventory. The table is sorted in
descending order of absolute value of elasticity.

Changes in parameters, however, not only impact
the behavior decomposition weights, but also change the
eigenvalues themselves. This dual impact of parameter
changes introduces a challenge in developing policy rec-
ommendations. The last two columns of Table 4 report the
influence on the eigenvalue (real and imaginary part) for
each parameter. Thesemeasures of influence should be in-
terpreted in a similar way as the weight elasticities. The in-
fluence measure is defined as �
 D 


@�/@p
�
p. A positive

real-part measure indicates that increasing the parameter
will destabilize the system by lengthening the settling time
and vice-versa. A positive imaginary-part measure indi-
cates that increasing the parameter will increase the fre-
quency of oscillation – normally considered a destabilizing
influence – and vice-versa.

Five parameters, demand, disequilibrium fraction, pro-
ductivity, normal inventory coverage, and time to change
expectations, have no influence on the oscillatory behavior
mode. Demand and disequilibrium fraction are initializa-
tion constants that do not participate in any of the feed-
back loops in the model. Productivity is essentially a scal-
ing measure having to do with the definition of units of
labor and goods in the model. Redefining units should not
affect the dynamics of the model. While time to change
expectations is involved in loop 1, it does not participate
in the oscillatory behavior observed in the model since, as
discuss above, Expected Demand is in a separate strongly
connected component of the model.

In accordance with LEEA, the flexibility in produc-
tion parameter, which strengthens overtime loop 3 (cf.
Fig. 3), has a strong stabilizing influence, by both increas-
ing the damping and lowering the frequency of the os-
cillatory mode. Likewise, as predicted by LEEA, a shorter

hiring/firing time will increase damping by strengthening
the labor adjustment loop 5 but, again in accordance with
LEEA, also increases the frequency of adjustment because
it also strengthens the major loop 4. Finally, lowering the
inventory correction time will strengthen the link from in-
ventory to desired production, and consequently the three
loops 3, 4 and 5, with the net effect that although the ad-
justment is a little faster (a more negative real part), the
frequency is also increased significantly, i. e., it is a less ef-
fective way of stabilizing the system (cf. Fig. 9).

As an alternative approach, Fig. 11 shows what hap-
pens to the frequency response of the state variables (In-
ventory INV, Workforce WF, and Expected Demand ED)
when the parameter Hiring/Firing Time (hft) is reduced
by 2% from 5 to 4.9. There are a number of things to no-
tice in the figure. First, there is no effect whatsoever on the
ED variable, which should not be surprising, given that
there is no feedback to this variable from the rest of the
system. Second, the effect on the amplitude, like the am-
plitude itself, is strongly dependent upon the frequency
of variation. We see that there is a significant amount of
dampening on the Inventory fluctuation around the reso-
nant frequencies in the range 0.1 to 0.3. On the other hand,
there is a small amount of amplification of inventory in the
higher frequency ranges. The effect on Workforce is very
different: though there is a small attenuation in the reso-
nant frequencies, there is a significant increase in variance
in the higher frequency range. In other words, although
the LEEA analysis showed a faster hiring policy to be sta-
bilizing (by strengthening loop 2, cf. Table 3), the DDW
analysis shows that it depends – both upon the variable in
question and the context (frequency of variation).

Future Directions

As mentioned above, it is not possible to construct a com-
plete theory that will automatically provide modelers with
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Effect on frequency response of the inventory workforce model
of reducing the parameter Hiring/Firing Time (hft) from 5.0 to
4.9. The diagram shows the gain of the base case (upper graph)
for the three state variables, and the resulting change in the
gain, measured as the ratio (A0/A) from the parameter change
(lower graph)

“the” dominant structure. Given the analytical intractabil-
ity of nonlinear high-order systems found in our field, the
most we can hope for is a set of tools that will guide the
analysis and aid the development of the modeler’s intu-
ition.

That said, however, we are left with an impression
that the analytical foundation for these tools is in need of
further development before one rushes into implement-
ing them into software packages. We are quite satisfied
with the current state of affairs in this regard, where code,
models, and documentation are made freely to download
(most of the cited papers provide a URL to their code and
models). Understanding how and why the tools work the
way they do is crucial, and this will require that a number
of puzzles, uncertainties, and technical problems be ad-
dressed. Only then will the time come to submit the meth-
ods for wider application to test their real-world utility.

While the classical method remains a useful intuitive
guide and teaching tool for graduate students, there are
no signs that it may be developed further. (That said, it is
possible that the classical control transfer function method
may be employed in the eigensystem approaches to ex-
plore nested canonical systems, though this is purely spec-
ulative). The pathway method would benefit from a firmer
mathematical foundation. In particular, it would be im-
portant to compare how its results and conclusions com-
pare to those found in the LST. It is possible that the path-
way method may eventually be merged with the LST ap-
proaches as a subset of a general analytical toolbox. We
believe that there is a great deal of promise in combin-
ing the eigenvalue and eigenvector analysis in the LST ap-
proaches. This combination will yield a complete system
characterization and an understanding of both how par-
ticular feedback loops are involved in generating a behav-
ior mode, and how system elements determine the expres-
sion of that behavior mode in a particular variable. A uni-
fied LST approach along the lines suggested in Fig. 10 thus
seems within reach.

It will probably be a while, however, before these
methods will find their way into widely available and
use-friendly software packages. Apart from the theoreti-
cal issues alluded to above, a number of technical issues
related to numerical calculations, various “pathological
cases” (such as non-distinct eigenvalues), and special cases
of feedback loops (“figure-eight” loops, for instance), will
need to be addressed.

On the more creative side, it would be interesting to
explore alternative forms of visualizing the various influ-
ence measures developed. For instance, one could imagine
that links between variables in a model diagram “glow” in
different colors and intensities depending upon their effect
on a behavior pattern in question. This is not just a ques-
tion of fancy user interfaces: as mentioned in the introduc-
tion, the function of these tools will be as intuitive consis-
tent aids to understanding, not analytical “answering ma-
chines”. In this light, the visualization is as important as
the analytical principles behind it. Given the power of the
human eye in finding patterns in visual data, this could be
a significant next step.
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When Jay Wright Forrester published his first paper in
1958 he subtitled it “a major breakthrough for decision-
makers”. At the time some thought this rather an exag-
geration if not pompous. Now that 50 years of system
dynamics (SD) has elapsed we can at least point to the
achievements made and re-state continuing progress in
the pages of this section. Was it a ‘major breakthrough’?
It certainly has the potential to raise the standards in evi-
dence-based policy making to warrant this description and
some startlingly good examples of such work will be men-
tioned here. But after 50 years perhaps one might expect
more than has surfaced heretofore.

The key might be connected to the skills required to
formulate good SD models – those which address a real-
world problem with devastating simplicity and insight. It
is deceptively easy to produce an SD model but there are
subtleties involved in producing a really effective model
for policy purposes. An uplift in modeling skills is some-
thing which a subset of the (now significant) amount of
published material on SD is aimed at and this section will
add to that corpus of work. In addition it will illustrate
the extent to which SD applications have spread from its
genesis in business to embrace health care, environmen-
tal, energy and climate issues, project management, some
aspects of biological science and human physiology, gov-
ernmental and public policy generally, economics (mainly
macro), the diffusion of innovations and finally social and
economic development. Other applications are being en-
countered as the power of the methodology is becoming
appreciated. It has long since justified the change of ti-
tle from Industrial Dynamics (1958) to System Dynamics
(1970 onwards).

Richardson contributes an overview of the basics of SD
modeling (see � System Dynamics, The Basic Elements
of). The underlying conceptual framework is that of the
information feedback loop together with resource stocks
and flows and an endogenous perspective on causation.
The simplicity of the loop concept is apt to contribute to
the apparent ease with which SD models can be created
(along with the icon-based suites of SD software). But the
novice reader should appreciate that it can take time to as-
similate the modeling skills necessary to execute well an
SD model-based application. Practice is essential and the
references included will lead to further published material
to assist the steep climb up the learning curve. So-called

experts are still being confronted with the subtleties of SD
modeling after years of involvement.

To place the SD methodology in context, the contri-
bution by Schwaninger (see � System Dynamics in the
Evolution of the Systems Approach) profiles it along-
side various others ‘systems’ based approaches which have
emerged in the management and social sciences. Those
professing to become experts in SD need to know about
the other range of approaches which co-exist in the field of
systems science. All these other methodologies have their
own enthusiasts and this may even extend to the forma-
tion of societies with annual conferences. His Appendix B
shows a diagram of the different systems approaches and
their interrelationships.

The foundations of the SD methodology can be char-
acterized by certain philosophical issues. Olaya’s text (see
� System Dynamics Philosophical Background and Un-
derpinnings) defines a central one as presentationalism,
associated with the notion of ‘mental models’. A number
of other philosophical issues which relate to SD are intro-
duced, including those of positivism and social theory.

The practice of SD when applied to real-world appli-
cations essentially involves managerial learning and will
often involve an interaction with client teams rather than
one individual. How best to organize such structured
approaches to participative model building is described
by Rouwette and Vennix (see � Group Model Build-
ing). Client participation is required for successful mod-
eling.

If the promotion of learning and understanding is the
primary raison d’etre of SD, then achievement of this goal
in an individual can be a significant accomplishment, es-
pecially if that person is the most senior in the client team.
But there is a further goal to be pursued should the study
fully reap the benefits of the SD methodology: How can
we foster organizational learning? Maani tackles this head
on (see � System Dynamics and Organizational Learn-
ing). He defines the core capabilities of a learning organi-
zation and goes on to list the developing literature on or-
ganizational learning and, most importantly, how SD can
aid the process through learning laboratories and micro-
worlds.

Running an SD model creates a time-path of output
behavior covering all the variables it is deemed necessary
to include in the model. The various runs of the model are,
most frequently, addressed in comparative fashion rather
than taken in isolation. They can therefore be described
as computer-based scenarios each of which charts a pos-
sible but not assured future. Georgantzas (see � Scenari-
o-Driven Planning with System Dynamics) describes en-
vironmental (traditional) scenario generation for which
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there is a considerable body of literature. But he empha-
sizes that successful strategy design involves the integra-
tion of three things: a knowledge of the business environ-
ment; the effects of unstated assumptions about change in
the environment and strategy on performance; and finally
the need to compute the effects on organizational perfor-
mance. These three facets are accomplished by the process
of SD modeling.

Thus far this introductory roadmap has covered all the
background for contextualizing and creating an SDmodel.
We now turn to various tasks associated with ex post mod-
eling activities. Three such aspects are covered: model val-
idation; analytical methods to explain behavior and deter-
mine dominant loops; and model optimization.

Schwaninger and Groesser (see � System Dynamics
Modeling: Validation for Quality Assurance) range over
the various aspects of model validation, beginning with its
epistemological foundations. In real-worldmodeling stud-
ies testing and validation is a sine qua non of the pro-
cess. The range of tests made available and the attention
given to the task of validation in the literaturemark out SD
as unique in the field of management science. Few other
methodologies get near to the variety of tests which can be
applied to an SD model. The authors consider the range of
tests under three headings: model-related context; model
structure; and model behavior.

Kampmann and Oliva deal with the behavioral analy-
sis issue (see � System Dynamics, Analytical Methods for
Structural Dominance Analysis in). This activity tries to
shed light on the model’s dynamic behavior: Why does it
behave as it does?What loop structures are responsible for
the dominant behavior – and indeed shifts in that behav-
ior where it occurs? In other words, they explore the link
between system structure and dynamic behavior. Early
methods used eigenvalue analysis but, since then, more
sophisticated approaches have been put forward. A major
advance will occur when one or more of these is refined
enough to be included in an SD software package. This is
likely to take some time although an improved user inter-
face showing links glowing with differing degrees of inten-
sity, reflecting their relative importance, is possible in the
not-too-distant future.

Dangerfield describes the methods for improving
model performance (see� System Dynamics Models, Op-
timization of). The task can be categorized under two
headings: calibration and policy optimization. The for-
mer relates to the determination of optimal parameter sets
which deliver the best fit of the model to past time series
data. Policy optimization on the other hand seeks to estab-
lish policies which deliver the ‘best’ performance against
a suitable metric, such as minimum cost or maximum rev-

enue. Using such an approach can accelerate the learning
which comes from repeated runs of the model. Sadly, in
the existing SD literature, there is scant evidence of its use
in real-world studies.

Themethodology of SD exists for no other reason than
to offer a quantum leap in the standards of policy analy-
sis. Therefore, any review must include a range through
the landscape which defines areas of application. There
are eight such areas covered in this section and the choice
has been made in the knowledge that there are others
which may also have been included and some new areas
which are only just being opened up to the tools of SD
modeling.

Business Strategy was the genesis of SD applications
and rightly takes pride of place. This is the field in which
the most numerous SD applications occur. Lyneis (see
� Business Policy and Strategy, System Dynamics Appli-
cations to) concentrates on the process of how SD models
are used in the task of strategy formulation. He goes on
to consider the various drivers of business dynamics such
as oscillations in supply chains and boom and bust life cy-
cles. Detailed references are provided for a wide range of
business application case studies.

Health care is consuming a higher share of GDP in
many Western industrialized countries. This is due to the
age profile of the population and advances in pharmaco-
logical andmedical technologies. It is unsurprising that SD
methods have been applied in tackling some of the most
high-profile issues in health care and the relatively recent
literature is testimony to the success of SD-based analy-
sis. Indeed, it is arguable that some of the best modeling
applications have surfaced in this sector. To do justice to
the field of health care two contributions were solicited, in
part because of the different funding systems which exist
on either side of the Atlantic: Wolstenholme surveys the
work done by UK and European authors (see � Health
Care in the United Kingdom and Europe, System Dynam-
ics Applications to), whilst Hirsch and Homer concentrate
on work published by US authors (see � Health Care in
the United States, System Dynamics Applications to).

Wolstenholme describes work carried out in the UK
and Continental Europe but gives particular emphasis to
three areas where models have been deployed. He starts
with the problem of delayed hospital discharge which gen-
erates hospital capacity problems. Epidemiology is also
reviewed, in particular research on the epidemiology of
HIV/AIDS. Finally, recent work on mental health reform
in the UK is described.

Hirsch and Homer note that the system in the USA
is comparatively difficult to manage because of its free-
market approach and relative lack of regulation. They con-
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centrate on threemain areas: disease epidemiology includ-
ing heart disease and diabetes; substance abuse; and health
care capacity and delivery.

Along with health care, the depletion of environmen-
tal resources and its effects has consumedmany thousands
of column inches in printed news media. SD has been em-
ployed in the pursuit of more compelling applications in
this sector and the efforts go back to the well-known Lim-
its to Growth study in 1971–72. Ford charts the most no-
table efforts which have emerged (see � System Dynam-
ics Models of Environment, Energy and Climate Change).
He ranges over environmental resource problems in the
western USA, models for greater understanding of climate
change and global warming and concludes with studies in
energy, specifically two applications to the electric power
industry.

The field of economics is one where SD has received
a mostly hostile reception. The statistical economic mod-
eling tool of econometrics has an extensive history and
as a preferred modeling methodology seems hard to dis-
lodge. However, there are an increasing number of hetero-
dox economists who are prepared to embrace SD concepts
and Radzicki (see � System Dynamics and Its Contribu-
tion to Economics and Economic Modeling) describes the
advances taking place. Whilst some of the literature em-
bodies the translation of existing economic models into an
SD format (which is a laudable objective) he calls for more
economic dynamics models to be built from scratch em-
bodying the best practice in SD modeling. Economic pol-
icy is too important to be informed by a single, seemingly
unassailable, modeling methodology and it is to be hoped
that in the future SD will become even more accepted as
a viable tool for use in this field.

In a similar vein comes the contribution of Saeed (see
� Dynamics of Income Distribution in a Market Econ-
omy: Possibilities for Poverty Allevation). He takes an eco-
nomic modeling perspective and describes an SD model
which explains resource allocation, production and enti-
tlements in a market economy. Its purpose is to under-
stand better how poverty might be reduced in the context
of the redistribution of income. A comprehensive listing
of the model is provided in an appendix.

The application of SD to public policy generally is dealt
with by Andersen, Rich and MacDonald (see � Public
Policy, System Dynamics Applications to). They empha-
size how public policy issues are complex, cross organi-
zational boundaries, involve stakeholders with widely dif-
ferent perspectives and evolve over time, such that longer
term results may be wholly different from short-term out-
comes. Detail is provided for one public policy case in-
volving the Governor’s Office of Regulatory Assistance in
New York State. They conclude with coverage of studies
in a range of public domains such as defense, health care,
education and the environment.

One area of SD application has brought the methodol-
ogy into the legal arena. Disruption and delay in the exe-
cution of complex projects invariably finds two parties in
dispute. Such disputes often center upon time delays and
use of resources on projects – and what might have hap-
pened if things had been managed differently. SD models
have been employed by parties to such disputes to attempt
to justify the occurrence of these events. Howick, Acker-
mann, Eden and Williams (see � Delay and Disruption
in Complex Projects) report on how cognitive mapping,
cause mapping and SD can be fused into what they de-
scribe as a cascade model building process. The result is
a rigorous process for explaining why a project behaved in
a certain way.

New products and processes are emerging at an ever-
increasing rate in modern times. We need to understand
the myriad mechanisms which are the basis for their rate
of adoption. Milling and Maier range over various SD
models which have been created to understand and im-
prove the management of the diffusion of innovations (see
� Diffusion of Innovations, System Dynamics Analysis of
the). From the often-cited Bass diffusion model (1969) the
authors develop a series of additional features in a modu-
lar fashion. These features include competition, network
externalities, dynamic pricing and research and develop-
ment. They conclude by stressing how it is not possible to
offer general recommendations for strategies in dynamic
and complex environments; such recommendations can
only be given in the context of the specific case under
scrutiny.
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Glossary

Endogenous Generated from within. Contrasting with
“exogenous,” meaning generated by forces external to
a system or point of view.

Feedback loop A closed path of causal influences and in-
formation, forming a circular-causal loop of informa-
tion and action.

System dynamics System dynamics is a computer-aided
approach to theory-building, policy analysis and
strategic decision support emerging from an endoge-
nous point of view.

Definition of the Subject

System dynamics is a computer-aided approach to theory-
building, policy analysis, and strategic decision support
emerging from an endogenous point of view [18,20]. It ap-
plies to dynamic problems arising in complex social, man-
agerial, economic, or ecological systems – literally any dy-
namic systems characterized by interdependence, mutual
interaction, information feedback, and circular causality.

Introduction

The field of system dynamics developed initially from the
work of Jay W. Forrester. His seminal book Industrial Dy-
namics [7] is still a significant statement of philosophy and
methodology in the field. Within ten years of its publica-
tion, the span of applications grew from corporate and in-
dustrial problems to include the management of research

and development, urban stagnation and decay, commod-
ity cycles, and the dynamics of growth in a finite world. It
is now applied in economics, public policy, environmen-
tal studies, defense, theory-building in social science, and
other areas, as well as its home field, management. The
name industrial dynamics no longer does justice to the
breadth of the field (for extensive examples, see [20,28], so
it has become generalized to system dynamics. The mod-
ern name suggests links to other systems methodologies,
but the links are weak and misleading. System dynamics
emerges out of servomechanisms engineering, not general
systems theory or cybernetics [18].

The system dynamics approach involves:

� Defining problems dynamically, in terms of graphs
over time.

� Striving for an endogenous, behavioral view of the sig-
nificant dynamics of a system, a focus inward on the
characteristics of a system that themselves generate or
exacerbate the perceived problem.

� Thinking of all concepts in the real system as continu-
ous quantities interconnected in loops of information
feedback and circular causality.

� Identifying independent stocks or accumulations (lev-
els) in the system and their inflows and outflows (rates).

� Formulating a behavioral model capable of reproduc-
ing, by itself, the dynamic problem of concern. The
model is usually a computer simulation model ex-
pressed in nonlinear equations, but is occasionally left
unquantified as a diagram capturing the stock-and-
flow/causal feedback structure of the system.

� Deriving understandings and applicable policy insights
from the resulting model.

� Implementing changes resulting frommodel-based un-
derstandings and insights.

Mathematically, the basic structure of a formal system
dynamics computer simulation model is a system of cou-
pled, nonlinear, first-order differential (or integral) equa-
tions,

d
dt

x(t) D f(x;p) ;

where x is a vector of levels (stocks or state variables),
p is a set of parameters, and f is a nonlinear vector-valued
function. Such a system has been variously called a state-
determined system in the engineering literature, an abso-
lute system [3], an equifinal system [32], and a dynamical
system [16].

Simulation of such systems is easily accomplished
by partitioning simulated time into discrete intervals of
length dt and stepping the system through time one dt
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at a time. Each state variable is computed from its pre-
vious value and its net rate of change x0(t): x(t) D
x(t � dt) C dt � x0(t � dt). In the earliest simulation lan-
guage in the field (DYNAMO) this equation was written
with time scripts K (the current moment), J (the previ-
ous moment), and JK (the interval between time J and
K): XK D XJ C DT �XRATEJK (see, e. g., [22]). The com-
putation interval dt is selected small enough to have no
discernible effect on the patterns of dynamic behavior
exhibited by the model. In more recent simulation en-
vironments, more sophisticated integration schemes are
available (although the equation written by the user may
look like this simple Euler integration scheme), and time
scripts may not be in evidence. Important current sim-
ulation environments include STELLA and iThink (isee
Systems, http://www.iseesystems.com/), Vensim (Ventana
Systems, http://www.vensim.com/), and Powersim (http://
www.powersim.com/).

Forrester’s original work stressed a continuous ap-
proach, but increasingly modern applications of system
dynamics contain a mix of discrete difference equations
and continuous differential or integral equations. Some
practitioners associated with the field of system dynam-
ics work on the mathematics of such structures, including
the theory and mechanics of computer simulation, anal-
ysis and simplification of dynamic systems, policy opti-
mization, dynamical systems theory, and complex nonlin-
ear dynamics and deterministic chaos.

The main applied work in the field, however, focuses
on understanding the dynamics of complex systems for
the purpose of policy analysis and design. The conceptual
tools and concepts of the field – including feedback think-
ing, stocks and flows, the concept of feedback loop domi-
nance, and an endogenous point of view – are as important
to the field as its simulation methods.

Feedback Thinking

Conceptually, the feedback concept is at the heart of the
system dynamics approach. Diagrams of loops of infor-
mation feedback and circular causality are tools for con-
ceptualizing the structure of a complex system and for
communicating model-based insights. Intuitively, a feed-
back loops exists when information resulting from some
action travels through a system and eventually returns in
some form to its point of origin, potentially influencing
future action. If the tendency in the loop is to reinforce
the initial action, the loop is called a positive or reinforc-
ing feedback loop; if the tendency is to oppose the initial
action, the loop is called a negative, counteracting, or bal-
ancing feedback loop. The sign of the loop is called its po-

larity. Balancing loops can be variously characterized as
goal-seeking, equilibrating, or stabilizing processes. They
can sometimes generate oscillations, as when a pendu-
lum seeking its equilibrium goal gathers momentum and
overshoots it. Reinforcing loops are sources of growth or
accelerating collapse; they are disequilibrating and desta-
bilizing. Combined, balancing and reinforcing circular
causal feedback loops can generate all manner of dynamic
patterns.

Feedback loops are ubiquitous in human and natu-
ral systems and, under various names and representations,
have been widely recognized in popular and scholarly lit-
erature. Feedback thought has been present implicitly or
explicitly for hundreds of years in the social sciences and
literally thousands of years in recorded history [9]. We
have the vicious circle originating in classical logic and
morphing into common usage, the bandwagon effect, the
invisible hand of Adam Smith, Malthus’s correct obser-
vation of population growth as a self-reinforcing process,
Keynes’s consumption multiplier, the investment accel-
erator of Hicks and Samuelson, compound interest or
inflation, the biological concepts of proprioception and
homeostasis, Festinger’s cognitive dissonance, Myrdal’s
principle of cumulative causation, Venn’s idea of a sui-
cidal prophecy, Merton’s related notion of a self-fulfilling
prophecy, and so on. Each of these ideas can be concisely
and insightfully represented as one ormore loops of causal
influences with positive or negative polarities. Great social
scientists and feedback thinkers; great social theories are
feedback thoughts. (For a full exposition of the evolution
of the feedback concept see [19].)

Loop Dominance and Nonlinearity

The loop concept underlying feedback and circular causal-
ity by itself is not enough, however. The explanatory power
and insightfulness of feedback understandings also rest
on the notions of active structure and loop dominance.
Complex systems change over time. A crucial requirement
for a powerful view of a dynamic system is the ability of
a mental or formal model to change the strengths of in-
fluences as conditions change, that is to say, the ability to
shift active or dominant structure.

In a system of equations, this ability to shift loop dom-
inance comes about endogenously from nonlinearities in
the system. For example, the S-shaped dynamic behavior
of the classic logistic growth model (dP/dt D aP � bP2)
or similar structures like the Gompertz curve (dP/dt D
aP� bP ln(P)) can be seen as the consequence of a shift in
loop dominance from a positive, self-reinforcing feedback
loop (aP) producing exponential-like growth, to a negative

http://www.iseesystems.com/
http://www.vensim.com/
http://www.powersim.com/
http://www.powersim.com/
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System Dynamics, The Basic Elements of, Figure 1
Core structure of Forrester’s market growthmodel [8], showing a blue reinforcing loop underlying the growth (or reinforcing decline)
of Salesmen, Orders, and Revenue, a red balancing loop containing various delayed recognitions of the company’s delivery delay,
and a green balancing loop responsible for capacity ordering if the delivery delay drops too far below its operating goal

feedback loop (�bP2 or �bP ln(P)) that brings the system
to its eventual goal. The shift in loop dominance in these
models comes about from the nonlinearity in the second
term, which grows faster than the first term and eventually
overtakes it. Only nonlinear models can endogenously al-
ter their active or dominant structure and shift loop dom-
inance.

Real systems are perceived to change their active or
dominant structure over time, often because of the build-
up of internal forces. Thus from a feedback perspective,
the ability of nonlinearities to generate shifts in loop dom-
inance is the fundamental reason for advocating nonlinear
models of social system behavior.

Figures 1 and 2, abstracted from an early, classic pa-
per [8] illustrate these ideas. In Fig. 1 salesmen (in the blue
reinforcing loop) book orders for the company; if enough
revenue is generated, there is enough budget to hire more
salesmen and corporate growth ensues.Whether salesmen
(in this simplified picture) book enough orders depends
on the company’s delivery delay for the product, as per-
ceived by the market (red balancing loop). The company
builds production capacity according to its perceived need,
as indicated by its perceived delivery delay and its target
for that (green balancing loop).

Figure 2 shows the dynamics this feedback structure
endogenously generates. In the early phase, salesmen grow
as orders and revenue grow; the system’s exponential
growth behavior in that phase is generated by the reinforc-

ing salesmen loop. But then the feedback loop dominance
soon shifts to the balancing delivery delay loop, which con-
strains sales effectiveness and brings a halt to growth. The
system moves into an oscillatory phase generated by the
various monitoring and perception delays around the now
dominant red balancing loop. Salesmen eventual peak and
decline, as the green production capacity ordering loop
fails to keep production capacity sufficient to hold the de-
livery delays in check.

Thus the dynamic behavior of this system is a conse-
quence of its feedback structure and the nonlinearities that
shift loop dominance endogenously over time. The par-
ticular decline scenario shown in Fig. 2 illustrates one of
the deep insights of the model: the adaptive goal structure,
in which the delivery delay operating goal moves slowly
to accommodate changes in the company’s delivery de-
lay, weakens the green balancing loop trying to bring on
capacity. The company never perceives its delivery delay
is sufficiently higher than its (sliding) target, so it fails to
order sufficient capacity to sustain growth. A fixed goal
for the acceptable delivery delay sends a stronger sig-
nal, which can turn this corporate decline into oscillating
growth [8].

Thus, nonlinearity is crucial to the system dynamics
approach. However, it is crucial not merely because of its
mathematical properties but because it enables the formal-
ization of a profoundly powerful perspective on theory and
policy – the endogenous point of view.
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System Dynamics, The Basic Elements of, Figure 2
The dynamic behavior of the model shown in Fig. 1, illustrating an early growth phase, which turns into an oscillatory phase as the
feedback loop dominance shifts to the red balancing delivery delay loop, and results in a long term corporate decline as the green
capacity ordering loop responds to a sliding operating goal for the acceptable delivery delay

The Endogenous Point of View

The concept of endogenous change is fundamental to the
system dynamics approach. It has both philosophical and
engineering origins. A deep and lasting insight of the earli-
est attempts at servomechanisms control is the realization
that the attempt to control a system generates dynamics of
its own, complicating the dynamics trying to be controlled.
A governor mechanism imposed to control the speed of
a steam engine can generate oscillatory “hunting behav-
ior,” as the control system overshoots and undershoots the
set point. As it becomes part of the system, the governing
mechanism thus generates dynamics of its own.

The insight transfers readily, but with added signifi-
cance, from engineering systems to people systems: At-
tempts to control complex human systems – coercing,
guiding, managing, governing – generate dynamics of
their own. Moreover, some of these endogenously gen-
erated dynamics are created by the control mechanisms
themselves (like the governor of a steam engine) and
some are created by human creative responses to the
management efforts (e. g., principal-agent interactions).
These natural and human forces, creating counteracting
and compensating pressures in response to system control
efforts, emerge as complicated circular-causal feedback
structures. The often complex, difficult-to-understand dy-
namics of such management systems are to a great degree
a consequence of their internal structures.

To capture and analyze such management complex-
ities, one must look inward to see the ways a complex
system naturally responds to system pressures. The en-
dogenous point of view is thus central to the system dy-
namics approach. It dictates aspects of model formula-
tion: exogenous disturbances are seen at most as trig-
gers of system behavior (like displacing a pendulum); the
causes are contained within the structure of the system it-
self (like the interaction of a pendulum’s position and mo-
mentum that produces oscillations). Corrective responses
are also not modeled as functions of time, but are de-
pendent on conditions within the system. Time by it-
self is not seen as a cause in the endogenous point of
view.

Theory building and policy analysis are significantly
affected by this endogenous perspective. Taking an en-
dogenous view exposes the natural compensating tenden-
cies in social systems that conspire to defeat many policy
initiatives. Feedback and circular causality are delayed, de-
vious, and deceptive. For understanding, system dynamics
practitioners strive for an endogenous point of view. The ef-
fort is to uncover the sources of system behavior that exist
within the structure of the system itself.

System Structure

These ideas are captured almost explicitly in Forrester’s [9]
organizing framework for system structure:
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� Closed boundary
� Feedback loops
� Levels
� Rates
� Goal
� Observed condition
� Discrepancy
� Desired action.

The closed boundary signals the endogenous point of view.
The word closed here does not refer to open and closed
systems in the general system sense, but rather refers to the
effort to view a system as causally closed. The modeler’s
goal is to assemble a formal structure that can, by itself ,
without exogenous explanations, reproduce the essential
characteristics of a dynamic problem.

The causally closed system boundary at the head of this
organizing framework identifies the endogenous point of
view as the feedback view pressed to an extreme. Feedback
thinking can be seen as a consequence of the effort to cap-
ture dynamics within a closed causal boundary. Without
causal loops, all variables must trace the sources of their
variation ultimately outside a system. Assuming instead
that the causes of all significant behavior in the system
are contained within some closed causal boundary forces
causal influences to feed back upon themselves, forming
causal loops. Feedback loops enable the endogenous point
of view and give it structure.

Levels and Rates

Stocks (accumulations, or “levels” in early system dynam-
ics literature) and the flows (“rates”) that affect them are
essential components of system structure. A map of causal
influences and feedback loops is not enough to determine
the dynamic behavior of a system. A constant inflow yields
a linearly rising stock; a linearly rising inflow yields a stock
rising along a parabolic path; a stock with inflow propor-
tional to itself grows exponentially; two stocks in a balanc-
ing loop have a tendency to generate oscillations; and so
on. For example, the boxes in Fig. 1 represent accumula-
tions in the company and its market; the three stocks in
the red balancing loop (the order backlog and the two per-
ceptions of the company’s delivery delay) give that loop its
tendency to generate oscillations which propagate through
out the system. Accumulations are the memory of a dy-
namic system and contribute to its disequilibrium and dy-
namic behavior.

Forrester [7] placed the operating policies of a sys-
tem among its rates, the inflows and outflows governing
change in the system. Many of these rates of change as-
sume the classic structure of a negative feedback loop striv-

ing to take action to reduce the discrepancy between the
observed condition of the system and a goal. The simplest
such rate structure results in an equation of the form

RATE D GOAL� LEVEL
ADJUSTMENT TIME

;

where ADJUSTMENT TIME is the time over which the
level adjusts to reach the goal. This simple formulation re-
flects Forrester’s more general statement about rates in his
hierarchy of system structure (above) which can be richly
thought of as

RATE D f (DESIRED ACTION)

DESIRED ACTION
D g(DESIRED CONDITION;

OBSERVED CONDITION)

OBSERVED CONDITION D h(LEVELS) ;

for some functions f , g, and h representing particular sys-
tem characteristics.

Operating policies in a management system can in-
fluence the flows of information, material, and resources,
which are the only means of changing the accumulations
in the system. While flows can be changed quickly, as
a matter of relatively quick decisionmaking, stocks change
slowly – they rise when inflows are great than outflows,
and decline when inflows are less than outflows.

The simple “tub dynamics” of stocks are clear even to
children, yet can be befuddling in complex systems. The
accumulation of green house gases in the atmosphere, for
example, affects the flow of heat energy radiated from the
earth. To turn around global warming, the accumulation
of green house gases must drop far enough to raise ra-
diant energy above the inflow of solar energy, a simple
stock-and-flow insight. But to cause the accumulation of
green house gases to drop, their generation must fall be-
low their natural absorption rate (another simple stock-
and-flow observation). So turning around global warming
is a process involving a chain of at least two significant ac-
cumulations, and people have trouble thinking it through
reliably. The accumulations can only be changed by man-
aging their associated flows. They will change only slowly
even if we manage the technical and political pitfalls in-
volved in lowering green house gas production (see [29]).

The significance of stocks in complex systems is vivid
in a resource-based view of strategy and policy. Resources
that enable a corporation or government to function or
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flourish are stocks, usually accumulated over long periods
of time with significant investment of time, energy, and
money. Reputations are also stocks, built over similarly
long periods of time. While inadequate by themselves to
give a full picture of the dynamics of a complex system,
stocks and flows are vital components of system structure,
without which fundamental understandings of dynamics
are impossible [33].

Behavior is a Consequence of System Structure

The importance of stocks and flows appears most clearly
when one takes a continuous view of structure and dy-
namics. Although a discrete view, focusing on separate
events and decisions, is entirely compatible with an en-
dogenous feedback perspective, the system dynamics ap-
proach emphasizes a continuous view [7]. The continuous
view strives to look beyond events to see the dynamic pat-
terns underlying them: model not the appearance of a dis-
crete new housing unit in a city, but focus instead on the
rise and fall of aggregate numbers of housing units. More-
over, the continuous view focuses not on discrete deci-
sions but on the policy structure underlying decisions: not
why this particular apartment building was constructed
but what persistent pressures exist in the urban system
that produce decisions that change housing availability in
the city. Events and decisions are seen as surface phenom-
ena that ride on an underlying tide of system structure
and behavior. It is that underlying tide of policy structure
and continuous behavior that is the system dynamicist’s
focus.

There is thus a distancing inherent in the system dy-
namics approach – not so close as to be confused by dis-
crete decisions and myriad operational details, but not so
far away as to miss the critical elements of policy structure
and behavior. Events are deliberately blurred into dynamic
behavior. Decisions are deliberately blurred into perceived
policy structures. Insights into the connections between
system structure and dynamic behavior, which are the goal
of the system dynamics approach, come from this particu-
lar distance of perspective.

Suggestions for Further Reading
on the Core of SystemDynamics

The System Dynamics Review, the journal of the System
Dynamics Society, published by Wiley, is the best source
of current activity in the field, including methodological
advances and applications.

The core of a vibrant field is difficult to discern in
the flow of current work. However, the works that the
field itself singles out as exemplary can give some reliable

hints about what is considered vital to the core. In this
sense two edited volumes are noteworthy: An early, inter-
esting collection of applications is Roberts [24]; Richard-
son [21] is a more recent two-volume edited collection in
the same spirit, containing prize-winning work in philo-
sophical background, dynamic decision making, applica-
tions in the private and public sectors, and techniques for
modeling with management.

In addition, the following works, selected from among
winners of the System Dynamics Society’s Jay Wright
Forrester Award (see www.systemdynamics.org/Society_
Awards.htm), can be considered insightful although im-
plicit exemplars of the core of system dynamics. (Publi-
cations are listed beginning with the most recent; see the
bibliography for full citations):

� Thomas S. Fiddaman, “Exploring policy options with
a behavioral climate-economy model”

� Kim D. Warren, Competitive Strategy Dynamics
� Eric F. Wolstenholme, “Towards the Definition and

Use of a Core Set of Archetypal Structures in System
Dynamics”

� Nelson P. Repenning, “Understanding Fire Fighting in
New Product Development”

� John D. Sterman, Business Dynamics, Systems Thinking
and Modeling for a Complex World

� Peter Milling, “Modeling innovation processes for de-
cision support and management simulation.”

� Erling Moxnes, “Not Only the Tragedy of the Com-
mons: Misperceptions of Bioeconomics.”

� Jac A. M. Vennix, Group Model Building: Facilitating
Team Learning Using System Dynamics

� Jack B. Homer, “A SystemDynamicsModel of National
Cocaine Prevalence.”

� Andrew Ford, “Estimating the Impact of Efficiency
Standards on Uncertainty of the Northwest Electric
System.”

� Khalid Saeed, Towards Sustainable Development: Es-
says on System Analysis of National Policy

� Tarek Abdul-Hamid and Stuart Madnick, Software
Project Dynamics: An Integrated Approach

� George P. Richardson, Feedback Thought in Social Sci-
ence and Systems Theory

� Peter M. Senge, The Fifth Discipline
� John D. W. Morecroft, “Rationality in the Analysis of

Behavioral Simulation Models.”
� John D. Sterman, “Modeling Managerial Behavior:

Misperceptions of Feedback in a Dynamic Decision
Making Experiment.”

For texts on the system dynamics approach, see Alfeld and
Graham [2], Richardson and Pugh [22], Wolstenholme

http://www.systemdynamics.org/Society_Awards.htm
http://www.systemdynamics.org/Society_Awards.htm
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[34], Ford [6], Maani and Cavana [11], and the most com-
prehensive text to date, Sterman [28].
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Glossary

Algorithmic trading Algorithmic trading is the practice
of automatically transacting based on a quantitative
model.

Broker A broker is a firm that matches buyers and sellers
in financial transactions. An interdealer broker (IDB)
is an intermediary providing trading services to hedge
funds, institutions, and other dealers. IDB’s handle the
majority of Treasury securities transactions in the sec-
ondary market.

Coupons Owners of Treasury notes and bonds receive
periodic payments called coupons. They are fixed by
the Treasury at auction and are typically paid semi-an-
nually.

Depth Depth is the quantity the dealer is willing to sell at
the bid or offer.

Electronic communications networks (ECN) The Secu-
rities and Exchange Commission defines electronic
communications networks (ECNs) as “electronic trad-
ing systems that automatically match buy and sell or-
ders at specified prices”.

Market microstructure Market microstructure is a field
of economics that studies the price formation process
and trading procedures in security markets.

On-the-run On-the-run refers to the most recently auc-
tioned Treasury security of a particular maturity. After
the next auction, the security goes off-the-run.

Price discovery The process by which prices adapt to new
information.

Primary dealers Primary dealers are large brokerage
firms and investment banks that are permitted to trade
directly with the Federal Reserve in exchange for mak-
ing markets in Treasuries. They provide the majority
of liquidity in the Treasurymarket, participate in Trea-
sury auctions, and provide information to assist the
Fed in implementing open market operations.

Secondary market After the initial auction of Treasury
instruments, trading in on-the-run and off-the-run se-
curities makes up the secondary Treasury market.

When issued When-issued bonds are those Treasuries
whose auctions have been announced but have not yet
settled.

Definition of the Subject

This article discusses the microstructure of the US Trea-
sury securities market.

US Treasury securities are default risk free debt instru-
ments issued by the US government. These securities play
an important, even unique, role in international financial
markets because of their safety, liquidity, and low transac-
tions costs. Treasury instruments are often the preferred
safe haven during financial crises, a process often referred
to as a “flight to quality”.

According to the US Treasury, there was more than
$9 trillion in US government debt outstanding as of Au-
gust 31, 2007. Of this quantity, the public holds more than
$5 trillion and $4.5 trillion is tradable on financial mar-
kets. Foreigners hold approximately $2.4 trillion of the
marketable supply, with Japan and China together holding
more than $1 trillion. According to the Securities Indus-
try and Financial Markets Association (SIFMA), average
daily trading volume in the US Treasury market in 2007
was $524.7 billion.

Microstructure is the study of the institutional details
of markets and trading behavior. Microstructural analysis
takes three ideas seriously that are often overlooked: the
institutional features of the trading process influence how
private information is impounded into prices; agents are
heterogeneous; and information is asymmetric. Empirical
microstructure research studies topics such as the causes
and effects of market structure, how market structure in-
fluences price discovery, how trading and order flow reveal
private information, how quickly public information is
impounded into prices, the volatility-volume relation, and
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the determinants of transactions costs (i. e., the compo-
nents of bid-ask spreads). The relatively recent availabil-
ity of tick-by-tick financial data and limit order book data,
as well as the computer resources to manipulate them,
have been a great boon to financial market microstructure
research.

Introduction

We begin by describing the types of Treasury issues and
the major Treasury market participants, including the
Federal Reserve, primary dealers and the major electronic
brokers. We then outline the stages of the Treasury mar-
ket, from auction announcements to the secondary mar-
ket. Next, we examine several closely related areas of the
literature: Seasonality in the Treasury market and the re-
actions of the Treasurymarket to macro andmonetary an-
nouncements; discontinuities in Treasury prices; and the
effect of order flow in Treasury markets. We then discuss
modeling and other academic questions about the Trea-
sury market.

Types of Treasury Issues

As of October 2007, the US Treasury issued four types of
debt instruments. The shortest-maturity instruments are
known as Treasury bills. 22:6% of the marketable US debt
is in bills, securities with maturities of 1 year or less. Bills
are sold at a discount and redeemed at their face value at
maturity. They do not pay any coupons prior to maturity
and currently havematurities up to 26 weeks. Treasury bill
prices are usually quoted in “discount rate” terms, which
are calculated with an actual/360 day count convention,

T-bill discount rate D [face value – bill price]
� (360/number of days until maturity) :

Thus, a bill with a face value of $100,000, a cash price of
$97,500 and 90 days to maturity will have a discount rate
of 10% D [100�97:5]�(360/90) in a newspaper. Treasury
bill yields are often quoted as “bond equivalent yields”,
which are defined as,

T-bill yield D
�
face value � bill price

bill price

	

� (365/number of days until maturity) :

Treasury instruments with intermediate maturities (2-,
5- and 10-year) are known as Treasury notes. Notes pay
semi-annual coupons, and make up 54:7% of the debt.
In February 2006, the US Treasury also resumed issu-
ing 30-year instruments, known as Treasury bonds. Bonds

also pay semi-annual coupons, and make up 12:5% of the
US debt.

The price of both notes and bonds are quoted as a per-
centage of their face value in thirty-seconds of a point.
A quoted price of 98-08 means that the quoted price of
the note (or bond) is (98 C 8/32 D) $98.25 for each
$100 of face value. The cash price of bonds and notes
is equal to the quoted price plus accrued interest since
the last coupon payment, calculated with an actual/actual
day count convention. Quoted prices are sometimes called
“clean” prices, while cash prices are said to be “dirty”.

The US Treasury also issues 5-, 10-, and 20-year Trea-
sury Inflation–Protected Securities (“TIPS”), whose pay-
off is linked to changes in the US Consumer Price Index
(CPI). These make up about 10:2% of the total value of
Treasuries outstanding. The principal value of TIPS is ad-
justed daily and the semi-annual coupon payments and
principal payment are then based on the adjusted principal
amount. Economists extract inflation forecasts by com-
paring the TIPS yields to those on similar nominal in-
struments. The Federal Reserve Bank of Saint Louis pro-
vides “TIPS spreads” through its publication, Monetary
Trends.

There is also an active market in STRIPS (Separate
Trading of Registered Interest and Principal of Securi-
ties) which are popularly known as “zero coupon” bonds.
These instruments are created by the Treasury through an
accounting system which separates coupon interest pay-
ments and principal. Finally, the US Treasury also is-
sues savings bonds, low denomination securities for retail
investors.

TreasuryMarket Participants

The Federal Reserve in the Treasury Market

The Federal Reserve Bank of New York, under the guid-
ance of the Federal Open Market Committee (FOMC), is
a uniquely important player in the Treasury market. The
FOMCmeets approximately every six weeks to review eco-
nomic conditions and determine a target for the federal
funds rate, the rate at which US banks borrow/lend reserve
balances from/to each other. The manager of the Open
Market Desk (a.k.a., “the Desk”) at the Federal Reserve
Bank of New York is responsible for ensuring that the
average federal funds transaction is close to the target by
buying and selling Treasury instruments (primarily short-
term). In practice, the Desk accomplishes this in two ways.
First the Desk buys sufficient Treasuries to satisfy most
but not all the markets’ demand for deposits at the Fed.
Secondly, the Desk buys Treasuries via repurchase (repos)
agreements (overnight and for terms of several days) to
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achieve a desired repo rate that influences the federal funds
rate and other short-term interest rates through arbitrage.

To determine day-to-day actions, every morning, staff
at both the Division of Monetary Affairs of the Board of
Governors of the Federal Reserve System and the Desk
forecast that day’s demand for reserve balances. The Desk
staff also consults market participants to get their views on
financial conditions. The relevant Desk and Board staffs
then exchange views in a 9 am conference call. Finally,
the relevant Desk staff, the Board staff, and at least one
of the voting Reserve Bank Presidents then confer dur-
ing a second conference call at about 9:20 am. The Desk
staff summarizes market conditions, projects actions for
the day and asks the voting Reserve Bank President(s) for
comments. Openmarket operations commence shortly af-
ter the conclusion of this call.

When the Desk buys Treasuries, it increases available
liquidity (reserves) in debt markets and tends to lower
interest rates. Selling Treasuries has the opposite effect,
lowering reserves and raising interest rates. If the inten-
tion is to make a permanent change in reserves, then out-
right purchases or sales are undertaken. In contrast, if the
Desk anticipates that only temporary changes in reserves
are necessary, it uses repos (for purchases) or reverse re-
pos (for sales). Bernanke [7] notes that actual open market
sales of debt instruments are rare; it is more common for
the Federal Reserve to allow such securities to expire with-
out replacing them. Both open market sales and allowing
the Fed’s securities to expire have the same balance sheet
effects: The Fed holds fewer bonds and more cash, while
the public will hold more bonds and less cash.

The Federal Reserve provides several valuable refer-
ences on its operating procedures. The Annual Report
of the Markets Group of the Federal Reserve Bank of
New York describes open market operations and current
procedures (Federal Reserve Bank of New York, Markets
Group [26]). Meulendyke [57] provides a comprehensive
view of Federal Reserve monetary policy operations with
a historical perspective. Akhtar [1] explains howmonetary
policy is decided and how such policies affect the econ-
omy. Finally, Harvey andHuang [43] gives some historical
perspective on operating procedures in the 1980s.

Primary Dealers

Among the most important private sector players in the
Treasury markets are the 21 primary dealers. The Federal
Reserve Bank of New York explains that primary deal-
ers must “participate meaningfully in both the Fed’s open
market operations and Treasury auctions and . . . provide
the Fed’s trading desk with market information and analy-

sis that are helpful in the formulation and implementation
of monetary policy”. The Federal Reserve does not regulate
primary dealers, but does subject them to capital require-
ments. The Federal Reserve can withdraw a firm’s primary
dealer designation if it fails to participate in auctions or
open market operations or if its capital reserves fall below
desired levels.

Interdealer Brokers

Prior to 2000, voice-assisted brokers dominated secon-
darymarket trading in Treasuries. Except for Cantor–Fitz-
gerald, all these brokers reported their trading activity to
GovPX, a consortium. In the face of demands by the Secu-
rities and Exchange Commission and bond market deal-
ers for greater transparency, five IDBs formed GovPX as
a joint venture in 1991. In March 1999, Cantor–Fitzgerald
opened up its internal electronic trading platform, eSpeed,
to clients. The eSpeed system quickly grabbed a dominant
market share, and Cantor Fitzgerald spun off eSpeed as
a public company in December 1999. In 2000, a competing
electronic brokerage, BrokerTec, joined the market. As in
foreign exchange and equitymarkets, most interdealer and
institutional trading in Treasuries quickly migrated from
voice networks to these electronic communications net-
works (ECNs), which have dominated trading in Treasury
instruments since 2001. Mizrach and Neely [58] describe
the transition from voice assisted trading, largely through
the primary dealers, to electronic trading in the Treasury
market.

As of November 2007, the two dominant ECNs are
eSpeed and BrokerTec. London-based ICAP, PLC, owns
BrokerTec while eSpeed merged in the summer of 2007
with BGC, another London based interdealer brokerage.
eSpeed and ICAP compete for both on- and off-the-
run liquidity. Hilliard Farber and Tullett–Prebon hold
the largest brokerage share outside of the dominant two
platforms.

Stages of the Treasury BondMarket

The sale of Treasuries undergoes four distinct phases:
when issued, primary, on-the-run and off-the-run. Each
of these stages has a distinct market structure.

The Primary Market

In the primary market, the US Treasury sells debt to the
public via auction. The US Treasury usually publishes
a calendar of upcoming tentative auction dates on the
first Wednesday of February, May, August, and Novem-
ber and bids may be submitted up to 30 days in advance
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of the auction. In practice, however, the Treasury only an-
nounces firm auction information several days in advance
and most bids are submitted at that time. Since August 8,
2002, the Treasury has made auction announcements (for
all new securities) at 11:00 am Eastern Time (ET). 13- and
26-week bills are auctioned weekly; 2- and 5-year notes
are auctioned monthly; 10-year notes are auctioned eight
times a year. 30-year bonds, which were reintroduced on
February 9, 2006 after a five year hiatus, are auctioned four
times a year.

The US Treasury has used a single price auction ex-
clusively since November 1998. Garbade and Ingber [35]
discuss the transition from multiple price auctions to the
current format single price auctions. All securities are al-
located to bidders at the price that, in the aggregate, will
result in the sale of the entire issue. This mitigates the
risk of a “buyer’s curse” – the highest bidder paying more
than other auction participants. To prevent a single large
buyer from manipulating the auction, the Treasury re-
stricts anyone from buying more than 35% of any single
issue. Bids may be submitted up to thirty days prior to
the auction, and large institutions make use of the Trea-
sury Automated Auction Processing System (TAAPS). Re-
tail investors can participate through the Treasury Direct
program. The Treasury allocates a portion of nearly every
auction to small investors at the same price as the large in-
stitutions. These are called non-competitive bids, and they
are quantity only orders that are filled at the market clear-
ing price.

Primary dealers dominate the auction process. In 2003,
they submitted 86% of auction bids, totalling more than
$6 trillion. They were awarded $2.4 trillion, or 78% of the
total auction supply.

The Secondary Market

The secondary market is composed of the when-issued,
on-the-run and off-the-run issues.

When-Issued Even prior to the primary auction, there
is an active forward market in Treasury securities (apart
from TIPS) that are about to be issued. Trading in the
when-issued security market typically begins several days
prior to an auction and continues until settlement of auc-
tion purchases. Nyborg and Sundaresan [61] document
that when-issued trading provides important information
about auction prices prior to the auction and also permits
market participants to reduce the risk they take in bidding.
Fabozzi and Fleming [25] estimate that 6% of total inter-
dealer trading is in the when-issued market. Just prior to
auctions though, these markets become substantiallymore

active. In the bill market, when-issued trading volume ex-
ceeds the volume for the bills from the previous auction.

On-the-Run Upon completion of the auction, the most
recently issued bill, note or bond becomes on-the-run and
the previous on-the-run issue goes off-the-run. Overall
Treasury trading volume is concentrated in a small num-
ber of on-the-run issues. Trading in these benchmark on-
the-run issues, which Fabozzi and Fleming [25] say con-
stitutes approximately 70% of total trading volume, has
migrated almost completely to the electronic networks.
Mizrach and Neely [58] estimate a 61% market share for
the BrokerTec platform and a 39% share for eSpeed in
2005, which is consistent with industry estimates.

Off-the-Run With more than 200 off-the-run issues
trading in October 2007 – 44 bills, 116 notes, and
45 bonds – most off-the-run volume takes place in voice
and electronic interdealer networks. Barclay, Hendershott
and Kotz [5] document the fall in ECNmarket share when
issues go off the run. They also report that transaction
volume falls by more than 90%, on average, once a bond
goes off-the-run. The ECN market share falls from 75:2%
to 9:9% for the 2-year notes, from 83:5% to 8:5% for the 5-
year notes, and from 84:5% to 8:9% for the 10-year notes.
Several IDBs handle most off-the-run securities trading.

On- Versus Off-the-Run Liquidity and Prices Off-the-
run securities trade at a higher yield (lower price) than on-
the-run securities of similar maturity. Many researchers
have attempted to explain the yield differential with rel-
ative liquidity. Vayanos andWeill [68] utilize a search the-
oretic model that is motivated by the fact that bonds may
be difficult to locate once they go off-the-run. Goldreich,
Hanke, and Nath [36] compare on-the-run and off-the-
run Treasuries and show that the liquidity premium de-
pends primarily on the amount of remaining future liquid-
ity, which is highly predictable. The study exploits the fact
that the liquidity of a Treasury is predictable. Duffie [18]
argues that legal or institutional restrictions on supplying
collateral induces “special” repo rates that are much less
than market riskless interest rates. The price of the under-
lying instrument is increased by the present value of the
savings in borrowing costs.

Supply Variation and Prices Although it is generally
accepted that the on-the-run premium is due to greater
liquidity, the theoretical relation between the supply of
a given bond issue and prices is not clear. Do issue sizes
produce lower yields (higher prices) through their liq-
uidity effects or does downward-sloping demand for in-
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dividual securities produce higher prices (lower yields)
for larger issues? Empirically, the evidence is mixed. Si-
mon [65,66], Duffie [18], Seligman [64] and Fleming [29]
find that the larger issues lead to lower prices (higher
yields), while Amihud and Mendelson [2], Kamara [51],
Warga [69], and Elton and Green [23] find the oppo-
site: The liquidity effect predominates, resulting in higher
prices (lower yields) for larger issues. There might be
a nonlinear relationship. Liquidity may increase prices up
to a certain point, but then finite demand for any in-
dividual security reduces the attractiveness of additional
supply.

The Treasury FuturesMarket

Spot markets are not the only markets for US Treasuries.
The Chicago Board of Trade (CBOT) has active futures
markets for 2-, 5-, 10- and 30-year US Treasuries. Table 1
briefly describes the CBOT contracts and pricing conven-
tions.

Like other exchange-traded derivatives, Treasury fu-
tures have two advantages: trading is highly liquid and
marking-to-market minimizes counterparty risk. The
CBOT open auction trading hours are 7:20 am to 2:00 pm,
Central Time, Monday through Friday; the CBOT elec-
tronic market functions from 6:00 pm to 4:00 pm, Central
Time, Sunday through Friday. All Treasury contracts have
a March–June-September–December cycle.

A variety of Treasury instruments meet the criteria to
be deliverable issues. Table 1 describes the pricing conven-
tions and the characteristics of the assets that may be de-

TreasuryMarket, Microstructure of the U.S., Table 1
Contract Details from the CBOT TreasuryMarket

Contract Quote
conven-
tion

Pricing example Deliverable asset characteristics

2-year 1/32 and
quarters
of 32nds

95 � 060 D 95 C 6/32
95 � 062 D 95 C 6:25/32
95 � 065 D 95 C 6:5/32
95 � 067 D 95 C 6:75/32

US Treasury notes with a face value� $200,000 and
original maturity � 5 years and 3 months and
remainingmaturity� 1 year and 9months from the first day of the delivery month and
and remaining maturity� than 2 years from the last day of the delivery month.

5-year 1/32
and
halves
of 32nds

90 � 170 D 90 C 17/32
90 � 175 D 90 C 17:5/32

US Treasury notes with a face value� $100,000 and
original maturity � 5 years and 3 months and
remainingmaturity � 4 year and 2 months from the first day of the delivery month

10-year 1/32
and
halves
of 32nds

90 � 170 D 90 C 17/32
90 � 175 D 90 C 17:5/32

US Treasury notes with a face value� $100,000 and
remainingmaturity � 10 years
remainingmaturity � 6 year and 6 months from the first day of the delivery month

30-year 1/32nds 85 � 12 D 85 C 12/32 US Treasury bonds with a face value� $100,000 and
if callable: Not callable for at least 15 years from the first day of the delivery month;
if not callable: Remainingmaturity � 15 years from the first day of the delivery month.

livered to satisfy the contracts. The CBOT defines “con-
version factors” that adjust the quoted futures prices for
the asset that is actually delivered. Despite these conver-
sion factors, one issue will be the “cheapest to deliver”.
Cash prices at delivery depend on both the conversion fac-
tor for a particular bond and the interest accrued on that
bond since the last coupon payment.

Although agents frequently use the futures markets for
hedging or taking positions on future price movements,
only a modest amount of microstructure research has fo-
cused on futures markets. Brandt, Kavajecz, and Under-
wood [11] show that futures and spot market order flow
are useful in predicting daily returns in each market and
that the type of trader influences the effect of order flow.
Mizrach and Neely [59] show that futures markets con-
tribute a substantial amount of price discovery to US Trea-
sury markets. Campbell and Hendry [12] compare price
discovery in the 10-year bond and futures contracts in
both the United States and Canada.

Seasonality and Announcement Effects

Seasonality and announcement effects are intimately re-
lated to themicrostructure literature in that the latter seeks
to explain howmarkets with heterogeneous agents react to
the release of information.

Seasonality and Macroeconomic Announcements

The earliest studies considered the issue of daily seasonal-
ity in Treasuries. Flannery and Protopapadakis [27] docu-
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ment differing day-of-the-week patterns in Treasuries and
stock indices. The patterns in the prices of Treasuries se-
curities vary by maturity and differ from those found in
stock indices. They conclude that no single factor explains
seasonal patterns across asset classes. In contrast to this
day-of-the-week effect in spot T-bills, Johnston et al. [50]
find day-of-the-week effects in government national mort-
gage association (GNMA) securities, T-note, and T-bond
futures, but not in T-bill futures. The fact that day-of-the-
week effects exist in spot T-bills but not in T-bill futures
points up the importance of futures settlement rules.

Later studies began to consider the effects of macro
announcements on price changes, volatility, volume and
spreads. Macroeconomic announcements have been an
especially popular subject of study because they occur
at regular intervals that can be anticipated by market
participants. The existence of survey expectations about
upcoming macro announcements permits researchers to
identify the “shock” component of the announcement,
which allows them to investigate the differential effects of
anticipated and unanticipated news releases of different
magnitudes.

Ederington and Lee [20,21] did the seminal modern
work with intraday data on macro announcement effects
in bond markets. They found that volatility increases be-
fore the announcement and remains elevated for some
time afterwards. The employment, PPI, CPI and durable
goods orders releases produce the greatest impact of the
9 significant announcements, out of 16 studied. Eder-
ington and Lee [22] follow up on their earlier studies
by linking the literatures on seasonality and announce-
ments in the bond market. Comparing the contributions
of past volatility, seasonality and announcements in pre-
dicting intraday volatility bond futures data and exchange
rates, these authors argue that announcements account for
much of the apparent seasonality in interest rate volatility.

One of the earliest important results was that bond
market prices react more strongly to macro announce-
ments than do equity markets. Fleming andRemolona [32,
34] examined the 25 largest price changes in the GovPX
data and related them all to macroeconomic announce-
ments. Fleming and Remolona [34] note: “In contrast to
stock prices, US Treasury security prices largely react to
the arrival of public information on the economy”. Flem-
ing and Remolona [32,33] attribute the relative sensitivity
of bond markets to the fact that bond prices depend only
on expected discount rates while stock prices are also de-
termined by future expected dividends. Macro announce-
ments can have little or no effect on stock prices if their ef-
fects on expected dividends and discount rates offset each
other.

Several studies used more sophisticated econometric
procedures to evaluate the impact of announcements on
persistence in volatility in a full model. Jones, Lamont
and Lumsdaine [49] examine volatility patterns in the
5-year Treasury market around US announcements. Daily
volatility from an ARCH-M does not persist for days after
announcements and the authors interpret this as indicat-
ing that agents rapidly incorporate announcement infor-
mation into prices. Weekly volatility displays a U-shaped
pattern; the largest price changes occur on Mondays and
Fridays. Further, Jones, Lamont and Lumsdaine [49] find
a risk premium in returns on days of announcements.
Bollerslev, Cai, and Song [8] also consider the interac-
tion of announcements and persistence in volatility with
5-minute US Treasury bond data. Modeling the intraday
volatility patterns and accounting for announcements re-
veals long-memory in bond market volatility.

An important issue in microstructure is the determi-
nation of bid-ask spreads. Balduzzi, Elton, and Green [4]
use intraday GovPX data to look at the effects of macro
announcements on volume, prices and spreads. Confirm-
ing previous findings, prices adjust to news within one
minute while increases in volatility and volume persist for
up to 60 minutes. Spreads initially widen but then return
to normal after 5 to 15 minutes. News releases explain
a substantial amount of bond market volatility. Impor-
tantly, Balduzzi, Elton, and Green [4] argue that the dif-
ferential impact of news on long and short bond prices
indicates that at least two factors will be needed for mod-
els of the yield curve. They also present evidence that dis-
continuities (jumps) will be important in modeling bond
prices.

Some recent papers have relaxed the restrictive as-
sumption that announcements influence Treasury mar-
ket variables in a linear, symmetric fashion. For example,
Christie–David, Chaudhry, and Lindley [15] allow the ef-
fects of announcement shocks to depend on the size and
sign of the shock. They measure these nonlinear effects on
the intraday 10- and 30-year Treasury futures from 1992
to 1996.

Most studies of the effects of volatility have mea-
sured such variation with some function of squared re-
turns. One can use the volatility implied by options prices,
however, to measure expected volatility over longer hori-
zons. Heuson and Su [45], for example, show that implied
volatilities from options on Treasuries rise prior to macro
announcements and that volatilities quickly return to nor-
mal levels after announcements. Beber and Brandt [6] use
intraday, tick data from 1995 to 1999 to determine that
macro announcements reduce the variance of the option-
implied distribution of US Treasury bond prices. The con-
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tent of the news and economic conditions explain these
changes in higher-order moments. The study attributes
the results to time-varying risk premia rather than relative
mispricing or changing beliefs.

In a comprehensive study of the impact of US macroe-
conomic announcements across asset markets, Andersen,
Bollerslev, Diebold and Vega [3] study the reaction of in-
ternational equity, bond and foreign exchange markets.
They confirm that US macroeconomic news drives bond
prices, as well as those of the other assets.

Monetary Policy Announcements

Researchers have carefully investigated the effects of the
Federal Reserve’s actions on the Treasury market. While
the literature has examined the effect of a wide variety
of monetary policy behavior and communications – e. g.,
open market operations, FOMC news releases, speeches,
etc. – onmany aspects of Treasurymarket behavior, a large
subset of these papers deal with one specific topic: The ef-
fect of federal funds target changes on the Treasury yield
curve.

Federal Funds Target Changes and the Treasury Yield
Curve The “expectations hypothesis of the term struc-
ture” motivates research on how the short- and long-end
of the Treasury yield curve react to unexpected changes in
the federal funds target rate. That is, if the FOMC increases
overnight interest rates, how does this change short- and
long-term rates?

Using data on 75 changes in the federal funds tar-
get from September 1974 through September 1979, Cook
and Hahn [16] find that these target changes caused larger
movements in short-term rates than in intermediate- and
long-term Treasury rates. A difficulty with interpreting the
Cook and Hahn [16] results is that efficient markets pre-
sumably can often anticipate most or all of a target change
and such expectations are already incorporated into the
yield curve. To confront this problem, Kuttner [53] de-
composes target changes into anticipated and unantici-
pated components, finding –unsurprisingly – that Trea-
sury rates respond much more strongly to unanticipated
changes and that the results are consistent with the expec-
tations hypothesis of the term structure. That is, the antic-
ipated component of an interest rate change does not af-
fect expectations. Hamilton [41] carefully reexamines the
work of Kuttner [53], showing that it is robust to uncer-
tainty about the dates of target changes and the effect of
learning by market participants.

Poole and Rasche [62] also decompose federal funds
target changes into expected and unexpected compo-

nents – but use a later contract month than Kuttner [53] to
avoid problems associated with computation of the con-
tract payoff. They find that interest rates across the ma-
turity spectrum fail to respond to the anticipated compo-
nents of the changes in the intended funds rate.

Poole, Rasche and Thornton [63] consider how
changes in FOMC procedures affect the impact of target
changes on interest rates. This study first succinctly de-
scribes the changes in FOMC procedures in the 1990s. The
FOMC began to contemporaneously announce policy ac-
tions in 1994 and adopted this as formal policy in 1995.
Starting in August 1997, each policy directive has included
the quantitative value of the “intended federal funds rate”.
And since 1999, the FOMC has issued a press release af-
ter each meeting with the value for the “intended federal
funds rate” and, in most cases, an assessment of the bal-
ance of risks. After describing such procedural changes,
Poole, Rasche and Thornton [63] go on to consider the
response of the Treasury yield curve to funds rate target
changes both before and after the FOMC began contem-
poraneously announcing target changes in 1994. In doing
so, these authors account for measurement error in expec-
tations and uncertainty about the dates of target changes
and even whether market participants understood that the
Federal Reserve was targeting the funds rate prior to 1994.
They assess the market’s knowledge of targeting by exam-
ining news reports. While short-rates respond similarly in
both subperiods, long rates do not respond as strongly to
funds rate target changes after 1994. The authors inter-
pret their results as being consistent with the Fed’s greater
transparency about long-run policy in the second subsam-
ple. With long-run expectations more firmly anchored,
unexpected changes in the funds target have smaller effects
on long rates.

One puzzle that has emerged from this literature is that
the average effect of changes in the federal funds target
on the yield curve is modest, despite the facts that such
changes should be an important determinant of the yield
curve and that yields are highly volatile around FOMC an-
nouncements. Fleming and Piazzesi [31] claim to partially
resolve this puzzle by illustrating that such yield changes
depend on the shape of the yield curve.

This literature on the reaction of the Treasury market
to monetary policy has become progressively more sophis-
ticated in assessing market expectations of Fed policy and
modeling institutional features of the futures market and
Fed operations. Nevertheless, the underlying conclusion
that unanticipated target changes lead to large price in-
creases on short-term Treasuries and smaller changes on
the prices of long-term Treasuries has been remarkably
robust.



870 Treasury Market, Microstructure of the U.S.

Other Federal Reserve Behavior and the Treasury Mar-
ket There has been a substantial literature analyzing how
other types of Federal Reserve behavior have influenced
the Treasury market. The literature has considered open
market operations, FOMC statements, Congressional tes-
timonies, and FOMCmember speeches.

Open market operations are similar to macroeco-
nomic announcements in that they are potentially impor-
tant bond market events, occurring at regularly scheduled
times. Harvey and Huang [43] used intraday data from
1982 to 1988 to examine how Federal Reserve openmarket
operations influenced foreign exchange and bondmarkets.
The paper finds that Treasury market volatility increases
during open market operations, irrespective of whether
they add or drain reserves. Oddly, volatility increases even
more during the usual time for open market operations if
there are no such transactions. The authors interpret this
finding as indicating that open market operations actually
smooth volatility.

Early studiesmade the simplifying assumption that the
effect of macro announcements on the Treasury market
was constant over time. This is not necessarily the case,
of course. For example, the effect of macro announce-
ments on the Treasury market might depend on monetary
policy priorities. Kearney [52] characterizes the changing
response of daily 3-month Treasury futures to the em-
ployment report over 1977 to 1997 and relates it to the
changing importance of employment in the Fed’s reaction
function.

de Goeij andMarquering [17] also considers how both
macro announcements and monetary policy events af-
fect the US Treasury market. Using daily data from 1982
to 2004 de Goeij and Marquering [17] find that macro
news announcements strongly affect the daily volatility of
longer-term Treasury instruments while FOMC events af-
fect the volatility of shorter-term instruments.

Some studies have explored more esoteric components
of information aboutmonetary policy. Boukus and Rosen-
berg [9], for example, use Latent Semantic Analysis to de-
compose the information content of FOMCminutes from
1987 to 2005. They then relate the information content
to current and future economic conditions. Chirinko and
Curran [13] argue that Federal Reserve speeches, testi-
monies, and meetings increase price and trading volatil-
ity on the 30-year bond market. FOMC meetings are the
most important of the events considered. They go on to
consider whether these Federal Reserve events merely cre-
ate noise or transmit information about the future policy
decisions or the state of the economy. They conclude that
such events may reduce welfare by “overwhelming private
information”, creating herding behavior.

Announcements and Liquidity Variation

The literature on variation in liquidity and price effects
overlaps with the literature on macroeconomic announce-
ments. The seminal work of Amihud and Mendelson [2]
showed that yields on short-time-to-maturity Treasuries
vary inversely with liquidity. That is, more liquid assets
have lower yields/higher prices. Harvey and Huang [43]
discovered elevated volatility in interest rate (and for-
eign exchange) futures markets, in the first 60–70 min-
utes of trading on Thursdays and Fridays. Ederington and
Lee [20] confirmed Harvey and Huang [43]’s speculation
that major macroeconomic announcements – especially
the employment report, the PPI, the CPI, and durable
goods orders – create the intraday and intraweek patterns
in the volatility of Treasury bond futures. Volatility is very
high after announcements and remains elevated for hours.
Fleming and Remolona [32] extend this work to show
that the 25 greatest surges in activity in the 5-year on-
the-run bond market came onmacroeconomic announce-
ment days, within 70 minutes of the announcement. The
most important announcements for trading surges were
employment reports, fed funds targets, 30-year auctions,
10-year auctions, the CPI, NAPM surveys, GDP, retail
sales, and 3-year auctions. Releases that affect prices also
matter for trading activity. Fleming and Remolona [32]
observe that timeliness, the degree of surprise in the an-
nouncement and market uncertainty also increase an-
nouncements’ impact on trading.

Researchers continued to explore the impact of vari-
ation in liquidity caused by other events. For example,
Fleming [28] exploits exogenous variation in Treasury is-
suance to show that securities that are “reopened” – the
Treasury sells additional quantities of existing securities –
have greater liquidity, lower spreads, than comparable as-
sets. Paradoxically, this higher liquidity does not produce
lower yields for the reopened securities.

More recent papers have explored variation in liquid-
ity and volatility across markets. Chordia, Sarkar and Sub-
rahmanyam [14] estimate a vector autoregression (VAR)
in liquidity and volatility variables in stock and bond mar-
kets. They find that common factors make the variables’
innovations highly correlated. Volatility shocks predict
liquidity variables.

End-of-the-Year Patterns in One-Month Treasury Bills

The previous sets of papers studied daily and intraday sea-
sonality, often as caused bymacroeconomic or Federal Re-
serve announcements. Short-term Treasury bills also ex-
hibit year-end seasonality, however. Market participants
consider Treasury market instruments of 30 days or less
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to be highly liquid, close – but not perfect – substitutes
for cash. The fact that short-term Treasuries are not per-
fect substitutes for cash is presumably what allows the New
York Desk to use open market operations to manipulate
short-term interest rates through a liquidity effect. A pe-
culiar year-end pattern in one-month Treasury yields re-
inforces this evidence that such Treasuries are not perfect
substitutes for cash.

Following on related work of Griffiths and Win-
ters [40] in repos, Griffiths and Winters [39] find that
yields on one month T-Bills (and other one-month secu-
rities) increase significantly at the beginning of December,
remain high during December, and return to normal a few
days before the year-end. This pattern does not exist in
three-month T-bills. Neely and Winters [60] find similar
patterns in the one-month LIBOR futures market.

Griffiths and Winters [38,39,40] explain this Decem-
ber effect by asserting that a year-end preference for liq-
uidity drives the year-end surge in short-term interest
rates. Debt holder (lenders in the money markets) start to
liquidate their one-month securities in the last few days
of November to meet cash obligations at the end of De-
cember. This preference for liquidity drives up one-month
interest rates for most of December. Liquidity demand re-
turns to normal at the end of December as investors repur-
chase short-term instruments, and interest rates return to
normal levels.

Discontinuities in the US TreasuryMarket

The literature on discontinuities (or jumps) in Treasury
prices is closely related to the literature on announce-
ments, as announcements are obvious candidates to ex-
plain jumps. Three recent papers have looked at discon-
tinuities in US Treasury prices. Huang [47] estimates daily
jumps with bi-power variation on 10 years of 5-minute
data on S&P 500 and US T-bond futures to measure the
response of volatility and jumps to macro news. He iden-
tifies a major role for payroll news in bond market jumps
by analyzing their conditional distributions and regress-
ing continuous and jump components on measures of dis-
agreement and uncertainty concerning future macroeco-
nomic states. Huang [47] also finds that the bond market
is relatively more responsive than the equity market.

Dungey, McKenzie, and Smith [19] estimate jumps
and cojumps (simultaneous discontinuities in multiple
markets) in the term structure of US Treasury rates. They
find that the middle of the yield curve often cojumps
with one of the ends, while the ends of the curve exhibit
a greater tendency for idiosyncratic jumps. Macro news
is strongly associated with cojumps in the term structure.

Using BrokerTec data from 2003–2005, Jiang, Lo, and
Verdelhan [48] extend this work by focusing on the role of
liquidity shocks – estimated from the limit order book –
in jumps and the relation of jumps to order flow and price
discovery.

Lahaye, Laurent and Neely [54] examine jumps and
cojumps across foreign exchange, stock, gold and 30-year
Treasury futures. Discontinuities in bond futures prices
were larger but less frequent than those in foreign ex-
change rates and smaller and about as frequent as those
in equity markets. News announcements appear to cause
many cojumps of bond prices with prices of other types of
assets.

Order Flow in the US TreasuryMarket

The effect of order flow on prices has been a popular re-
cent topic in microstructure. Several papers have explored
the impact of order flow on prices and the ways in which
macro/monetary announcements influence these impacts.

Huang, Cai, and Wang [46] use intraday 1998 GovPX
spot data on the 5-year Treasury note to characterize trad-
ing patterns of primary dealers, announcement effects and
volatility-volume relations. The paper finds that both pub-
lic information (i. e., announcements) and dealer inven-
tory/order flow affect trading frequency.

Green [37] uses the Madhavan, Richardson, and Roo-
mans [55] model to study the impact of GovPX trading in
5-year around announcements. Order flow has its largest
price impact after large macro surprises, times of greater
uncertainty about the announcement, and times of high
liquidity. Green [37] concludes that order flow does reveal
information about riskless rates.

Brandt and Kavajecz [10] find that order flow im-
balances can explain up to 26% of the day-to-day varia-
tion in yields on non-announcement days. In contrast to
Green [37], they find that order flow has its strongest im-
pact at times of low liquidity. Brandt, Kavacejz, and Un-
derwood [11] extend the work of Brandt and Kavajecz [10]
to control for trader type and macroeconomic announce-
ments in explaining the impact of bond market order flow
on futures prices.

Menkveld, Sarkar, and Van der Wel [56] confirm ear-
lier conclusions that announcements have significant ef-
fects on 30-year Treasury yields and they also find that cus-
tomer order flow is much more informative on announce-
ment days than on non-announcement days. They go on
to investigate the profits that different types of traders
make on announcement and non-announcement days.

At high frequencies, order flow is highly autocorre-
lated. A dynamic analysis of the market resilience requires
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modeling this formally. We turn to empirical modeling of
the Treasury market order book in the next section.

Modeling the Limit Order Book

A purchase or a sale of a Treasury bond influences prices
directly as trades work their way up the supply or demand
curves. We would like to know whether these effects are
large and long-lasting. To address this question, we must
introduce a dynamic model of the limit order book.

Hasbrouck [44] proposed to study intra-day price for-
mation with a standard bivariate vector autoregressive
(VAR) model. Time t here is measured in 1-minute in-
tervals. Let rt be the percentage change in the transaction
price and x0t be the sum of signed trade indicators ( +1 for
buyer initiated,�1 for seller initiated) over minute t. Trea-
sury market data sets typically indicate trade initiation as
a “hit” �1 or a “take” +1.

The bivariate vector autoregression assumes that
causality flows from trade initiation to returns by permit-
ting rt to depend on the contemporaneous value for x0t , but
not allowing x0t to depend on contemporaneous rt. The
model for returns is specified as follows
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Mizrach and Neely [58] use 5 lags of the return series and
15 lags of the signed trades. The market impact is then de-
fined as the dynamic effect of a buy shock to the return
series,

@rtCn

@xt
: (2)

Mizrach and Neely [58] provide 15 minute market impact
estimates from the GovPXmarket in 1999. The 2-year note
is most resilient with prices only 0:0042% higher following
a buyer initiated trade. The 30-year bond is the least liquid,
with prices rising 0:0229% following a buy order. Mizrach
and Neely also report 2004 estimates for the Cantor elec-
tronic limit order book. Market impacts range from 45 to
88% lower in the more liquid eSpeed ECN market. Flem-
ing andMizrach [30] find further reductions inmarket im-
pacts on the BrokerTec ECN for 2005 and 2006.

Price Discovery

A crucial issue in the market microstructure literature is
price discovery. This is the process by which prices embed
new information. In the Treasury market, price discovery

occurs in both the secondary spot market and in the fu-
tures markets at the Chicago Board of Trade (CBOT). The
degree to which eachmarket contributes to price discovery
is a natural issue to address.

To investigate relative price discovery in these two
Treasury markets, Mizrach and Neely [59] follow Has-
brouck [44] and assume that the price series have a unit
root, are cointegrated, and have an rth order VAR repre-
sentation,

pt D ˚1pt�1 C˚2pt�2 C � � � C ˚r pt�r C ut :

It follows that the N returns,
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have the convenient Engle–Granger [24] error-correction
representation,

�pt D ˛zt�1 CA1�pt�1 C � � � CAr�pt�r�1 Cut ; (4)

where zt is an error-correction term of rank N � 1.
We analyze price discovery using the moving average

representation of our return process (3),

�pt D �(L)"t : (5)

The disturbances are mean zero and serially uncorrelated,
E["i;t] D 0 and cov["i;t; "i;t�r] D 0, but they may be
contemporaneously correlated, cov["i;t; " j;t] ¤ 0.

The information share is related to the long run im-
pulse responses, �(1) D P1

jD0�(Lj), the permanent ef-
fect of the shock vector on the Treasury prices. Cointe-
gration makes the long run multipliers common across all
markets,
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To eliminate contemporaneous correlation among the er-
ror terms in (5), we decompose˝ D E

�
"t"

0
t
�
, the N � N

covariance matrix, to find a lower triangular matrix M,
whose i; jth element we denotemi j, such that MM0 D ˝ .
The Hasbrouck [44] information share for market j is de-
fined as

Hj D hPn
iD j �imi j
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�Pn
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(7)

where the �i s are the elements of row i of the long-run
multipliers in (6). Because the Choleski decomposition is
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not unique, the information share will vary with the order
of the equations in the VAR.

Mizrach and Neely [59] pair spot and maturity
matched futures for the 2-year, 5-year and 10-year on-the-
run spot notes. This calculation requires us to adjust fu-
tures prices according to the on-the-run spot instruments
with which we compare them. The CBOT provides adjust-
ment factors for each instrument. These adjustments typi-
callymake a single bond the cheapest to deliver (CTD), but
the CTD is typically off-the-run. Nevertheless, the CTD
off-the-run bonds and the most liquid on-the-run bonds
are very close substitutes – their daily returns are highly
correlated – so it is reasonable to examine price discovery
between futures prices and on-the-run bonds, despite the
fact that they are not identical.

Mizrach and Neely [59] find that information shares
rise with the growth of the GovPX market, but fall as the
ECNs take market share from GovPX voice markets. The
spot market share is highest for the 2-year note, reach-
ing 86%, while the 10-year spot market share never ex-
ceeds 50%. In addition, relative market liquidity mea-
sures like spreads, trades and volatility each strongly ex-
plain daily relative price discovery shares. Mizrach and
Neely [59] compute both upper and lower bound estimates
of the information shares. They also report estimates based
on the Harris, McInish andWood [42] methodology.

Campbell and Hendry [12] find similar results for the
Canadian government bond market. They find that the
information share in the 10-year spot note is below 50%
in nearly all their sample of several months between 2002
and 2004. Upper and Werner [67] find that price discov-
ery in the German Bund is dominated by the futures mar-
ket, and in times of stress, like the 1998 Long Term Capi-
tal Management Crisis, the spot market information share
falls to essentially zero. Upper and Werner [67], however,
compare the futures market to the relatively illiquid, CTD
bonds. This might explain their finding that the spot mar-
ket does very little price discovery.

Future Directions

This article has reviewed the microstructure of the US
Treasury market. The Open Market Desk at the Federal
Reserve Bank of New York plays a uniquely important role
in the Treasury market by using transactions in those se-
curities to adjust the level of bank reserves. Primary deal-
ers are key players in both Treasury auctions and the Fed’s
open market operations. The Treasury market consists of
several phases: when-issued, primary, on-the-run and off-
the-run. Two ECNs, eSpeed and BrokerTec, intermediate
the most active trading, during the on-the-run phase. The

Treasury futures market at the CBOT complements trad-
ing in the spot market.

Treasury markets exhibit end-of-year, daily and in-
traday seasonality. Macro and Federal Reserve announce-
ments are responsible for a substantial part of the daily and
intraday seasonality. The literature studying the impact of
order flows on Treasury prices has also considered how
macro news and Federal Reserve actions influence such
impact.

The futures markets in Chicago play an important
role in price discovery, and a discussion of Treasury mi-
crostructure needs to take this into account. Both spot
and futures markets are quite resilient and recent research
on the Treasury ECNs suggest that the market contin-
ues to become more liquid. Fleming and Mizrach [30]
report that volume has increased almost 5 times since
2001. This increase in trading volume accompanies a de-
cline in the importance of the primary dealers. The Finan-
cial Times reported in March 2007 that hedge funds ac-
counted for 80% of trading activity in the Treasury mar-
ket with only a 20% share for the primary dealers. One
large fund alone, Citadel, accounts for 10% of the trad-
ing volume on eSpeed and BrokerTec. It was perhaps in-
evitable that trading by the millisecond would come to
the Treasury market as it did to equities and foreign ex-
change. Perhaps we should only be surprised that it took so
long.

The Treasury market plays a central role in the credit
market. Times of financial crisis highlight the Treasury
market’s role as a safe haven for investors both in the
US and overseas. Treasury securities also serve as bench-
marks for complex derivatives like mortgage backed secu-
rities and structured loans like collateralized debt obliga-
tions. The microstructure of the US Treasury market is
fundamental to our understanding of the global financial
markets.
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Price taking equilibrium 549
Price-contingent orders 581
Primary care trusts (PCTs) 498
Primary dealers 863
Principal trade 93
Prior distribution 54
Probability density 247
Product 671
Production factor 164
Productivity 164
Project 116
Public policy 655
Purchasing power parity 164

Q

Quadratic return variation 694
Qualitative system dynamics 497
Quasilinear models 834
Quasiperiodic behavior 834
Quote-driven markets 581

R

Random field 394
Rational expectations (RE) 293
Real option 671
Realized volatility 464, 694
Recession 273
Recorder 484
Reduced form models 615
Reductionism 497
Reference Mode 738
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Reference mode 484
Reference mode of behavior 497
Regime-Switching Model 190
Representative agent 1
Return 308
Revisionist economic models 164
Riskless principal trade 93
RTTRS (or TRS) 94

S

SAD 375
Scenario 671
Scenario-driven planning (abbreviated SdP) 671
SEC 94
Secondary market 863
Sector 164
Self-employment 164
Self-exciting threshold models 525
Sensation seeking 375
Serial dependence 636
Serial offering 94
Settlement 581
Shapley value 549
Sharpness 525
Short memory 203
Short position 581
Shortest independent loop set (SILS) 834
Sieves 394
Simulated method of moments 375
Simulation 738
Single-transient models 834
Situation 671
Size 525
Skewness 464
Slippage 581
Small group effectiveness 549
Smooth transition models 394
Smooth transition threshold model 190
Smoothed probability of a regime 190
SMP-1 environmental scanning 671
SMP-2 mission 671
SMP-3 objectives 671
SMP-4 policy 671
SMP-5 strategy 671
SMP-6 strategy design or formulation 671
SMP-7 strategic action or implementation 671
SMP-8 evaluation and control 671
SMP-9 learning through feedback 671
Social services 498
Spot market 581

SRO 94
Stakeholder 655
Start of the homicide surge (SHS) 273
Steepness 525
Stochastic volatility 694
Stock 513, 727, 738
Stock return 353
Stop-loss orders 581
Strategic management process (abbreviated SMP) 671
Structural change 525
Structural model 615
Structure contribution approach 834
Subeconomy 164
Swaps 581
System 497, 672, 753
System behavior 497
System dynamics 164, 497, 655, 753, 856
System dynamics (abbreviated SD) 672
System structure 497
System theory 753
Systematic risk 340
Systems approach 753
Systems thinking 497, 738

T

Tail 308
Tail index 308
Take-profit orders 581
Technical Trading 581
Theories of value 164
Threshold autoregressive model 54
Threshold model 190, 394
Time reversibility 525
Time series 525, 636
Time-varying transition probability 190
Totally balanced game 549
TRACE (formerly NASD TRACE) 94
Trading volume 582
Transition probability 190
Treatment effects 615
Triangular arbitrage 582

U

Unearned income 164
Unintended consequences 497
Unobserved effects 215
Unsystematic risk 340
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V

Validation process 767
Value stocks 361
Variable or metric 672
Variety 753
Varying cross-sectional rank (VCR) 394
Volatility 340, 395, 464

W

Wage employment 164
When issued 863
Workbook 484

Z

Zero-one parameter 802
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A

Abduction 43
ABSS see Agent based social simulation
ACE see Agent based computational economics
Ackoff 744
Action/implementation threshold 682
Adaptation 801
Adopters 137
Adoption rate 146
Adverse selection 589
Affine models

affine continuous-time jump–diffusion models 702
affine dynamic term structure models 704

Agency for International Development 243
Agent

in neoclassical economic theory 23
Agent-based computational economics (ACE) 22
Agent-based computer simulations 251
Agent-based modeling (ABM) 746

and neoclassical economics 22
role of evidence 27

Agent-based models (ABMs) 294
analytical 294
computational 294

Agent-based simulation 1
Agent-based social simulation (ABSS) 23
Aggregate

time effects 216
Aggregation

with injection 455
Aircraft market models 89
Alarm 274
Alignments 667
Alpha stable distribution 317
Alternative futures 675
Amplification

relative 689, 690
significant 689

supply chain 689
temporary 690

Amplification ratio 689
Amplification ratio magnitude 690
Analytical methods for structural dominance

analysis 854
Anxiety 388, 391
Arbitrage 586
Arbitrage pricing theory (APT) 394, 396, 476
ARCH 394, 397, 411

model 527
Archetypal swing 673
ARIMA 343
Artificial neural networks (ANN) 394, 398, 405,

406, 409
As-if defense 24
Asia 686, 688
Asset

pricing model 296
risky 575

Assumptions, neoclassical economics 24
Auctioneer, Kyle model 575
Auctions 568
Austrian school of economics 36
Autocatalytic process 37
Autocorrelation 446
Autocorrelation function 636
Autoregressive (AR) model 191, 192, 198

linear 429
nonlinear 429

Auxiliary model 46
Average partial effect 221, 227
Average structural function 227

B

B2B 686
B2C 686
Bagging 394, 409, 410
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Bandwagon effect 145
Bank 258
Barriers

entry 678
exit 678
inertia 678

Basic element 853
BASICS 675
Bass diffusion model 85
Bass model 137
Bates stochastic volatility jump-difussion model 703
BAttelle scenario inputs to corporate strategies 675
Bayes factor 58
Bayes’ theorem 55
Bayesian 192, 195, 197
Bayesian approach

to estimation 193
Bayesian econometrics 55
Bayesian estimation 194, 196, 198
Bayesian F-test 61
BDS 347

test 428, 439, 643, 644, 649
Bed capacity 685
Behavioral 606
Behavioral economics 735
Belgrade 243
Beliefs 297

fundamentalist 297
trend-following 297

Benchmarking 680
Bid-ask spreads 390
Bilinear model 527
Bilinear process 637
Binary alloy 265
Binary selection variable 225
Black and Scholes 467
Black and Scholes formula 467
Black-box 690
Black monday 308
Black–Scholes model 703

quadratic return variation 697
volatility smile and smirte 702

Black–Scholes option pricing model 349
Boltzmann kinetic equation 255
Boltzmann–Gibbs distribution 247–249, 251
Bonds 583

US treasury market 583
Book-to-market ratio 361
Boom and bust dynamics 85
Bootstrap 375, 380
Bootstrap test 539, 649

Bottom-up
approach 36

Bounded-rationality 1, 38
Brine shrimp population 786
Brokers 570

interdealer (IDB) 863, 865
Brownian motion 342
BS 702
Bubbles 4
Bullwhip effects 689
Business cycle 190, 191, 193, 195–197, 199, 200, 675

asymmetry 530, 531, 534, 541, 543, 544
Business dynamics 69

growth-producing feedbacks 72, 87
negative feedback (constraints to growth) 88
negative feedback, constraints to growth 72

Business ecosystems 672
Business strategy 69, 854

resource-based view 72
role of models 70
scientific model applied to 71

Business to business 686
Business to customer 686
Business units 689
BV 700

C

Calibration 45, 802
Cap-and-trade 797
Capability, organizational 690, 691
Capacity

full 686
utilization 147

Capital 163
Capital asset pricing model (CAPM) 347, 361, 476, 478
Capital intensive 163
Capitalist sector 163
Capitalist system 163
Carbon cycle 783
Carbon market 798, 800
Carnot cycle 265
Carrying capacity 684
Cauchy distribution 326
Causal-loop diagrams 75, 77
Causal loops 738
Causal mapping 676
Causality 823, 825
Cause map 117, 119, 124, 128–130, 132
CCC model 477
CGE see Computable general equilibrium
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Change
environmental 672

Change order 119
Chaos 426

noisy 429
Characteristic function 643
Chartist 4
Chronic illness 513

asthma 513
depression 522
diabetes 513
disability 514
disease management 515
heart failure 514
HIV/AIDS 513
prediabetes 515
premature mortality 514
prevention 514
risk factors 519

Circular and cumulative causation 733
Claim 129, 132, 133
Classical control engineering 837
Classical control theory 839
Clear Lake region 685
Clearing and settlement 583
Climate change

human-induced 685
Climate feedbacks 783
Climate modeling 790
Closed loop 657
Closed-loop thinking 500
Clustered samples

sample stratification 632
social interactions 633
spatial dependence 633
survey sampling 632

Clustering 591
Cobweb model 731
Cognitive map 124, 129
Cointegration 203, 204, 348
Commercial 163
Commercial customers 584
Commodity cycle models 82
Communication 140
Competition

imperfect 677
Competitive advantage 672

sustainable 691
Complex 677

Complex organizations
management 499
planning 500

Complexity 159, 667
conditions for 25
science (CS) 23

Complicated 677
Composite error 217
Computable general equilibrium (CGE) 22
Computer simulation 828

as method 828
Computing scenarios, process of 691
Conceptualization, context for 690
Conditional independence 228
Conditional variance 345
Confirmation 821
Confusion

conceptual 676
operational 676

Consensus 680
Consequences, profound 689
Constant proportion portfolio insurance (CPPI) 3
Constant relative risk aversion (CRRA) 5
Constructionism 36
Contemporaneously exogenous 217
Continuous time

processes 349
stochastic volatility models 697
SV jump–diffusion model, quadratic return

variation 698
Control theory 782
Controlled interventions 666
Controlling feedback 163
Copeland and Galai’s model 572
Copula 639

copula density 639
empirical copula 639

Core memory 675
Corporate 163
Corporate finance 305
Correlated random effects 220
Correlated random slopes 221
Correlation integral 428, 644
Count data models 617

count regression 627
poisson regressions 629

Courtroom litigation 663
Crashes 3
Creative learning exchange 664
Credit 268
Critical path method 117, 120
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Cross-impact analysis 675
Cross-impact matrices 674
Cross-national observations 241
Cross-validation (CV) 432
CS see Complexity science
Culture

corporate 681
Cumulated profits 151
Cumulative probability 247
Curse of dimensionality 43
Curvature 841
Customer base 686
Cybernetics 753–755
Cyclical pattern 688
Cyprus 682, 684
Cyprus’ Tourism Organization 684
CYSTAT 684

D

Daylight saving time changes 388, 390
Dealer markets

multiple 569
single 568

Dealer model 458
Dealers, market microstructure 572
Dealing 2000-2 570
Death spiral 795, 796
Debt 251, 252, 268
Decision

strategic 690
Decision making 498
Deduction 43
Defence analysis 809
Defense, neoclassical economics 24
Delay 121, 738
Delayed discharge model, sectors 503
Delayed hospital discharge model 505

examples 504
impact 506
outcomes 504

Delayed hospital discharges 502
Delivery

dental care 514
HMO planning 514
mental health 514

Delphi 674
Demand elasticity 155
Demand for health care managing 508
Density dependent control 788

Dependence measures 637
bicovariance function 648
bispectrum 648
Hellinger distance 643, 652
Kendall’s tau 639
mutual information 649
Spearman’s rank correlation 638
spectral density 648

Depression 375
Depression (mood) 388, 390, 391
Derivates, futures 585
Derivatives 583, 586

options 590
Dewey 691
Diagnosis of mental health, modeling 508
Diagnosis, modeling 507
Dialectics, multiperspective 690
Dialog 743
Difference equation modeling 730
Diffusion equation 247
Diffusion of innovation 136, 855
Dimension

correlation 428
Lyapunov (Kaplan–Yorke) 428

Disconnect 602
Discrete choice 616

conditional logit (CL) model 618
Luce model 618
probit 618
random utility model 618

Discrete time
SV models 695

Discretization 276
Disequilibrium adjustment 689, 690
Disruption 119, 121–123

and delay in complex projects 855
Distribution 308

conditional 329
fat-tailed 308
financial market returns 308
tail behavior 311

Divergence measures 637, 640
Cramér–von Mises criterion 640
integrated functions of density differences 641
Kolmogorov–Smirnov statistic 641
Kullback–Leibler divergence 641, 642
quadratic forms 646

Dividend 4
yield 382, 383, 385, 387

Dominant logic 690
Double-entry accounting 253
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DSGE model 543, 544
Duffie, Pan and singleton stochastic volatility

jump–diffusion model 703
Duration dependence 196
Dynamic complexity 140, 513
Dynamic decomposition weight 848
Dynamic environment 153
Dynamic factor model 62, 196, 198, 200
Dynamic programming models 624

nested fixed point (NFP) algorithm 625
Dynamic system 753, 754, 758
Dynamic term structure models

affine models 704
empirical evidence 705
empirical evidence on the volatility spanning

condition 706
quadratic yield variation in affine models 705
volatility spanning condition in affine models 706

Dynamic thinking 500
Dynamical systems 753
Dynamically complete 223
Dynamics

complex 290
intricate 690
nonlinear 290

Dynamism, environmental 680

E

Easley and O’Hara’s model 573
Eastern Europe 266
EBITDA 684, 685
EBS 585
EBS (electronic broker system 570
ECNs see Electronic crossing networks
Ecological economics 735
Economathematics 239
Econometric modeling 802
Econometrics 290, 802
Economic determinants of volatility 719
Economic dualism 163
Economic modeling approaches 22
Economic sector 163
Economic temperatures 265
Economics

agent-based modeling 22
and economic modelling 855

Econophysics 28, 239, 247
Education policy 664
Efficient 353
Efficient market believer (EMB) 6

Efficient market hypothesis 342, 353, 354, 359
Egypt 685
Eigenvalue 834
Eigenvalue elasticity analysis (ELA) 834
Elasticity 843, 848
Elections 276

presidential 278
senatorial 277

Electric utility models 89
Electricity market 783
Electronic brokers 570
Electronic communications networks 584, 863, 865
Electronic crossing networks (ECNs) 570
Emergent behavior 746
EMM 712
Empiricism 818–820
Endogeneity 626
Endogenity, control function 626
Energy systems 782
Engagement 667
Entrepreneurship 163
Entropy 250, 454

K2 428
Kolmogorov 427

Environment 35, 677, 682, 685
complex-dynamic 677
complex-static 677
discontinuous 677
disturbed-reactive 677
energy and climate changesee 855
independent-dynamic 677
independent-static 677
placid 677
placid-clustered 677
surprising 677
turbulent field 677

Environmental applications 665
Environmental footprint 684
Environmental scanning 678
Environmental systems 782
Epidemiological system 802
Epidemiology 513, 810

system dynamics 498
system dynamics studies 506

Equilibrium 31, 684, 690
Equity 353
Equity premium

constant 376, 382, 388
ex ante 375, 382
ex post 375, 382, 383, 385
puzzle 375, 376, 382
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structural breaks 383, 387
time-varying 376, 388, 390
trends 383, 387

Equivocality 680
environmental 677

Error
diagram 275

Error correction model 203, 204, 207
Estimation 45
Estimation methods

characteristic functions 710
efficient estimation of general continuous-time
processes 711

efficient method of moments 712
estimation from option data 716
estimation via discrete-time model specification or
approximation 707

filtering the latent state variable directly during
estimation 708

indirect inference 712
Kalman filter 708
Markov chain Monte Carlo 714
maximum likelihood with characteristic
functions 711

methods accommodating the lack of a closed-form
transition density 709

particle filter 715
realized volatility 719
reprojection method 700, 714
simulated maximum likelihood 712
simulated method of moments 711

Evidence, role in neoclassical economics 27
Evolution 294

of the systems approach 754, 853
Excess volatility 7
Exogenous factors 242
Exogenous variable 126
Expectations

bounded rationality 293
rational 293

Experience curve 147
Experimental methodology 239
“Experiments” in social phenomena 241
Explanation 823–828
Exponential Boltzmann–Gibbs function 251
Exponential distribution 250, 269
Exponential function 247, 249, 259
Exponential smoothing 466
Extended memory 203, 208
Extrapolation techniques 676
Extreme value distribution 312

F

Factor model 394, 405
Falsification 770
Fama–French model 362
Fama–MacBeth 363
Family income 261
Family income distribution 262
Feed-forward 686
Feedback 738, 782

negative 684
positive 684

Feedback control systems 675
Feedback loops 154, 163, 658, 728
Feedback trading 590
Fiberglass laminate 687
Final prediction error (FPE) 433
Finance 290
Financial accounting 688
Financial customers 584
Financial economics 340
Financial markets 163
Financial service industry models 89
Finite normal mixtures 327
Finite portion transport 456
Firms

active 677
as agents in neoclassical economic theory 23
passive 677

First-difference 218
Fixed effects 218
Fixed effects GLS 221
Fixed effects models 633

conditional likelihood 629
incidental parameters 628
within model 629

Flow 683, 728, 738
Fokker–Planck equation 247, 257, 263
For-simplicity defense 24
Forecast 190, 191, 587
Forecasting 192, 200

traditional 690
Foreign exchange market 447
Forest thinking 500
Formal model 659
Former Soviet Union 266
Forrester, Jay W. 739, 813, 816, 821

industrial dynamics 739
Forward markets 583
Fractal tiling 456
Fractional Brownian motion 347



Index 889

Fractional GARCH model 347
Frequency distribution of past outcomes 23
Frequency domain 837
Frequency response method 840
Full cost coverage 149
Full information maximum likelihood with optimal

filtering (FIMLOF) 734
Functional coefficient 394, 406, 408
Fund flow 390
Fundamental value 5
Fundamentalist 4
Fundamentals 594

G

Game theory
neoclassical economics 26

Gamma distribution 247, 254, 256
GARCH models 330
Garman’s model 571
GDP 525–529, 531, 533–535, 537, 540, 542, 543

GNP 533, 534, 539, 541, 542
General electric 675
General equilibrium 32

necessary condition for 25
General practitioner services (GPs) 502
General systems theory 36
Generalized autoregressive conditional

heteroskedasticity 345
Generalized central limit theorem 454
Generalized estimating equations 221
Generalized hyperbolic distribution 320
Generalized impulse response function 542
Generic structures 731
Genetic algorithm (GA) 303, 810
Genetic programming 304
Geologic analogy method 734
Gibbs sampler 194, 196–198
Gibbs-sampling 63
Gibrat’s law 25
Gini coefficient 247, 261, 262
GO-GARCH 476
Goal

organizational 679
Gordon S. Brown 675
Government securities dealers 570
Governor’s Office of Regulatory Assistance

(GORA) 658
GPs see General practitioner services
Group model building 486, 488, 660, 853
Group workshops 124, 129

Growth
exponential 684

Growth dynamics 85
negative feedback (constraints) 88
positive feedback 87

Growth stocks 361

H

Hamilton filter 63
HAR 700
Harrod growth model 734
Hasbrouck measure 576
Health

social care management, system dynamics
studies 507

social care, overview 501
Health care 514, 664

costs 514
delivery 519
market models 89
providers 518
system dynamics applications 497
United Kingdom and Europe 497, 854
United States 854

Health insurance 521
Health management, system dynamics workforce

planning models 509
Health protection 521
Health treatment, system dynamics 498
Heston stochastic volatility model 703
Heterogeneity 37, 294, 587, 604
Heteroskedasticity 219
Highest posterior density interval 61
Hill

estimator 313
Holism 36
Homicide, surge 273
Hospital bed utilization 504
Household

budget data 616
income 163

Households as agents in neoclassical economic
theory 23

Hubbert’s lifecycle method 734
Hull and White stochastic volatility model, average

integrated variance 702
Human activity systems, dynamic complexity 498
Hydrological modeling 783
Hyperbolic distribution 324
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Hypothesis 636
Hénon map 433

I

ICAPM 366
Iceberg orders, market microstructure 568
Idealism 817–819
Identifiability 616
Identification 56, 59, 61

partial identification 622
point identification 622

Idiosyncratic errors 217
Imitators 140
Impact fracture 445
Imperfect rationality 606
Implied volatility

short definition 694
Impossibility theorem 34
Impulse response function (IRF)

linear 435
nonlinear 435

Income 269
Income diffusion 263
Income distribution 259, 263
Income temperature 259, 263, 264
Increasing returns 37
Incubation distributions 810
Independent loop set (ILS) 834
Indicator 276

economic 278
Indirect inference 46
Induction 43
Industrial dynamics 814
Inflation 528, 529
Influence diagram 126, 130
Influence measure 843
Information

agency problems 586
asymmetric information (information
asymmetry) 585

non-fundamental information 593
Information-based models, market microstructure 572
Information costs, market microstructure 572
Informed traders 572, 573
Innovation 136
Innovators 137
Input-output transformation function 43
Inquiry system 690
Insight 691
Installed base 145

Institutional economics 733, 735
Institutional learning 691
Institutionalist economic models 163
Instrumental variables 622

causality 623
LATE 628
local instrumental variables 628
natural experiments 623
weak instruments 627

Instrumentalism 817
Integration error 729
Intelligence systems 691
Interaction 37
Interdealer market 583
Interdisciplinary modeling 800
Internal revenue service 259
Intuitive logics 675
Invariant tests 638
Invasion

Turkish 684
Inventory 585, 675, 687
Inventory models, market microstructure 570
Inverse cubic law 317
IPCC 685
Iron law of wages 163
IS-LM model 729
IS-LM/AD-AS model 731
Israel 685
IThink 683
IV

continous-time SV jump–diffussion model 698
IV and cumureative squard jump component
decomposition 698

J

Japan 686
Japanese firms 686
Jay W. Forrester 513
Justification 819, 821

in system dynamics 821

K

k-Skip bipower variation 700
Kalman filter 708
Keiretsu 686
Keynesian 163
Keynesian cross model 731
Knowledge 690
Kolmogorov forward equation 247
Kullback–Leibler information 437
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Kurtosis 310, 594
excess 310

Kuznets hypothesis 267
Kyle model 575
Kyoto protocol 797

L

Labor 163
Labor intensive 163
Labor productivity 163
Labour market model

Tesfatsions’s 26
Language

fuzzy 679
Latent class models

finite mixture model 629
information criterion 630
nonparametric maximum likelihood 630

Latent factor models, simulated likelihood 627
Law

of requisite variety 753, 759
Leadership 743
Learning

cycle, IPRD 691
game 132
laboratory 744
organization 660
organizational 691
rational 297

Legislative processes 663
Leibniz 677
Leontief, Vassily 239
Leptokurtosis 308
Leverage 738
Likelihood function 57, 60
Limit order 593, 608
Limit order markets 568
Limited dependent variable (LDV) models 616

latent variable 617
Limiting factors 728
Limits to growth 734
Linear 838
Linear and quasilinear model 845
Linear autoregressive (abbreviated, AR) model 54
Linear dynamic system 834
Linear thinking 680
Linear vs. nonlinear system 836
Link number 452

Liquidity 583
customer effectively demands instantaneous
liquidity 599

overnight liquidity 600
Liquidity traders 573, 587, see alsoUninformed traders
Litigation 117
LLS model 5
Local linear estimator 431
Location 604
Logic 690
Logical incrementalism 680
Logistic map 425
Long-run effects 656
Loop contribution 837
Loop eigenvalue Elasticity analysis (LEEA) 833
Lorenz curve 247, 261
Loss (cost) function 394
Loss function 397, 410, 412–416, 418, 419
Lucas critique 34, 36, 47, 529
Lyapunov exponent

global 426
local 425, 434

Lyapunov-like index 437
Lyapunov spectrum 427

M

Macrocosm 690
Madhavan, Richardson and Roomans model 577
Management exercises 662
Management flight simulator 159, 744
Management laboratory 159
Management science 782
Managerial practice field 745
Manufacturing 150
Marginal 837
Marginal factor cost 163
Marginal likelihood 58, 61, 64
Marginal revenue product 163
Market 304, 863–873

micro-structure 304
order-driven 304
secondary 863, 865, 866, 872
US treasury 864–866

Market anomalies 1, 375, 377
daylight saving effect 391
daylight-saving effect 377
January effect 377, 388
Monday effect 388
mondays effect 377
risk-free rate puzzle 385
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SAD effect 377, 389, 390
turn of the month effect 388

Market beta 361
Market capitalization 361
Market economy 163, 250
Market entry 142
Market inefficiency 353
Market maker 299, 573
Market microstructure 567

Copeland and Galai’s model 572
Easley and O’Hara’s model 573
empirical 576
Garman’s model 571
Hasbrouck measure 576
information-based models 572
inventory models 570
Kyle model 575
Madhavan, Richardson and Roomans model 577

Market order 608
Market power hypothesis 608
Market saturation 85
Market share 145, 156
Marketing 810
Markov chain 190, 192, 194
Markov chain Monte Carlo 63
Markov models 375, 378

additive markov gordon model 378
geometric markov gordon model 378

Markov process 263
Markov switching 328, 347
Markov switching autoregressive model 61
Markov switching model 190–193, 195, 198, 199, 525,

532, 533, 536, 538–541, 543, 594
Bounceback model 534, 535, 540, 542

Martingale 394, 395, 397, 399, 400, 413
Martingale difference 342
Marxist economic theory 163
Marxist system 163
Matching methods 624

ATET 624
Maximum likelihood 802
Maximum likelihood estimates 194, 197
Maximum likelihood estimation 193, 804
Maximum likelihood estimator 805
MCMC 695
Mean reversion 7
Mean square forecast error (MSFE) 425
Measured-mile approach 117
Mechanism 825–828
Medical malpractice 656
Mediterranean Sea 682

Mental health diagnosis, modeling 508
Mental model alignment 666
Mental models 660, 681, 690, 742, 815, 816
Merton jump–diffusion model, quadratic return

variation 697
Meta-model 44
Method of moments 375
Method of simulated moments 46, 375, 383
Methodological individualism 36
Methodology 769, 771, 778
Microcosm 690
Microfoundations 607
Microscopic simulation 1
Microstructure 291, 863, 867, 868, 871, 873

US treasury market 871
Microworld 519, 738, 744
Military 665
Military intervention 684

Turkish 685
Minor 841
Mitigation 801
Mixture-of-distributions hypothesis 695
Model 163

unobserved components model 529
validation 821

Model calibration 802
Model quality 767, 768, 778
Model reduction vs. loop contribution 836
Model selection 58, 60, 64
Model simplification approach 834
Model specification 695
Model validation 854
Model validity 733
Modeling

agent-based 290
Modeling process 678, 767, 769, 777

antagonistic 682
interactive 682

Models 823
Modern linear systems theory 839
Module 152
Moment condition models 622

generalized method of moments 622
Momentum 7
Money 250, 251, 269

distribution 249
supply 591
temperature 251

Monte-Carlo simulation 375, 376, 379, 383
Monte-Carlo tests 649
Multi-objective optimization 809
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Multiple dealer markets 569
Multiplier-accelerator model 731
Multivariate GARCH, CCC model 477
Multivariate regressions 240
Multivariate stochastic volatility 479
Mutual fund flows 390
Myopic profit maximization 148

N

NASA’s Johnson Space Center 685
NASDAQ market 570
National Bureau of Economic Research 198
Natural experiments, exogenously variation 623
NBER 533, 534, 540, 542
Negative feedback loop 82, see Balancing feedback loop
Neoclassical economics 33, 163

agent-based modeling 22
assumptions 24
game theory 26
simplicity 24
tractability 24

Net present value (NPV) 686, 688
Network 38
Network barrier 146
Network effects 145
Network externalities 145
Neural network estimator 434
News 586, 607
1/f noise 446
Noise amplification 429
Noise trader 6, 587
Non-equilibrium 39
Nonlinear 164
Nonlinear cointegration 203, 205, 208
Nonlinear error-correction 348
Nonlinear multi-modal model 846
Nonlinear panel data models 226
Nonlinear periodic model 845, 846
Nonlinear single-transient model 845
Nonlinear time series 394, 397, 413, 419
Nonlinearity 591
Non-parametric 394, 398, 403, 407, 412, 419
Non-parametric estimator 347
Non-parametric test 636
Non-representative samples 632
Normal distribution 326
Normal inverse Gaussian distribution 324
Notrade equilibrium 572
Numerical methods 783
NYSE, order system 568

O

Obesity 513
Object 35
Objective function 802
Objectives 679
Observational 239
Observed covariates 215
Oil market models 89
Oligopolistic innovation diffusion model 144
Oligopoly 677
Open-loop steady-state gain 840
Operational thinking 500
Opportunity cost 164
Optimization 688, 802, 854
Option pricing 467
Option pricing models

empirical evidence 703
volatility and jump risk premium 703
volatility smile 702
volatility smirk 702

Order backlogs 83
Order-driven

trading mechanism 568
Order flow 595

commercial-customer 600
customer 605
financial-customer 600
interdealer 596

Ordinary differential equation (ODE) 164, 730
Organizational cybernetics 753, 755, 759
Organizational learning 690, 739, 853
Output elasticity 164
Overbooking 685
Overconfidence 391
Overlapping-generations model 265
Overruns 116
Overshoot 593
Overtime 123

P

Panel data 617
fixed effects 633
incidental parameter 628
random effects 617

Paradigm 672
shift 673

Pareto distribution 247
Pareto-optimal set 810
Pareto, Vilfredo 239
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Partial effects 216
at the average 226

Participative model building, system dynamics 508
Particle filter 715
Patient flows, characteristics 507
Pattern modeling process 731
Pattern recognition 286
Payoff 802
Payoff function 804, 806
PCTs see Primary care trusts
Penetration pricing 149
Penguin effect 145
Perceived implications 680
Perfect market 164
Performance 679
Permutation tests 649, 650
Personal mastery 741
Phillips machine 729
Philosophical background and underpinnings 853
PIN

easley and O’Hara model 573
Planning 691

interactive 691
Planning systems, interactive 690
Plural rationality 674
Poisson process 350
Policy 685
Policy design 687
Policy optimization 802, 805
Policy parameter 688
Political economy 164
Pollution

anthropogenic 682
carbon-dioxide (CO2) 685

Population averaged effect 221
Position limits 585
Positive feedback loop see also Reinforcing feedback

loop, 85
Positivism, management science 820
Post-earnings announcement drift 593
Post Keynesian economics 733, 735
Post-project 132

lessons 132
Posterior density 57, 60
Posterior distribution 55

conditional posterior distributions 63
Posterior odds 58
Potential customers 140
Poverty alleviation 855
Power law 48, 258

function 247, 259

Power spectrum 446
Powersim 783
PPP 604
Predictability 359
Prediction 273

advance 287
algorithm 274
problem 273
targets 275

Present-value constraint 356
Present-value model 359
Presentationalism 817, 819, 820, 822

in system dynamics 822
Pressure 123
Price 256
Price cascades 591
Price-contingent orders 591
Price discovery 607, 867, 871–873
Price wars 678
Pricing strategies 148
Primary care trusts (PCTs) 502
Principle

of detailed balance 255
of systems 732, 733

Prior 60, 62
natural conjugate priors 60

Prior distributions 55, 57
natural conjugate prior 57
‘non-informative’ prior 57

Prisoner’s dilemma 26
Private information 602
Probability density 247
Probit 193, 196
Problem solving 690
Problem structuring 493
Product diffusion 85
Product launch 148
Product life cycle concept 85, 138
Production 687, 688
Production factor 164
Productivity 83, 123, 130, 164
Profit 264, 687
Profitability 682, 684
Public policy 665, 855
Public policy problems 661
Purchasing power parity 164, 602

Q

Quadratic return variation
Black–Scholes model 697
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definition 697
Merton jump–diffusion model 698
short definition 694

Qualitative modeling 77
Quality 151
Quantile regression, semiparametric estimators 617
Quantitative thinking 500
QV 697

R

R&D-process 152
Racial and ethnic health disparities 522
Random-access magnetic storage 675
Random coefficient models 630

quasi-random numbers 632
random coefficient logit 630
simulation-assisted estimation 632

Random coefficients 233
Random effects 219
Random effects models 633

numerical integration 629
random intercept model 629

Random field 394, 403
Randommultiplicative process 454
Random trend model 222
Random utility model 618

conditional choice probabilities 618
conditional logit 618
multinomial logit 619
multinomial probit 619
nested logit 619

Random walk 446
hypothesis 342

Rank-based tests 637
Rank correlation 639
Rank-size rule 26
Rank tests 638
Rational bubbles 317
Rational expectation 38
Real options 680
Real typologies 732
Realism 816, 818
Realized bipower variation, estimation of the squard

tump quadratic variation component 700
Realized volatility

definition 698
discretization bias 699
estimation and specification of SV models 719
ex-past vs. ex-ante measures of volatility 699
Heterogeneaus auto regressive model 700

high-low price range estimator 699
long-memory 700
market microstructure noise 699
model-free ex-ante forecasts of volatility 700
short definition 694
unbaised and consistent estimater of the return
quadratic variation 699

Recession 191, 193, 197, 198, 273
economic 278
end 281
start 280

Reduced form 43
Reductionism 31
Reference mode 738
Regime switching 347
Regime-switching models 190–192, 200
Regularity rules 239
Regulation 583
Reinforcing effect 156
Representative agent 34
Representativeness 691
Reprojection method 700
Required reserve ratio 253
Resistance

to change 681
Resources 156

corporate 680
Retail trading 584
Return autocorrelation 11
Return predictability 354
Return process and no-arbitrage condition, canoncial

decomposition for special semi-martingales 697
Returns 595

on investment 156
Reuters 585
Revisionist economic models 164
Rework 119
Rework cycle 117, 122
Risk

neoclassical economics 23
Risk analysis 130
Risk assessment 119, 130
Risk aversion 388

time-varying 389–391
Risky assets 575
River restoration 790
Rogue trader risk 585
Round numbers 591
Round-off error 729
RV 698
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S

SAD seasonal affective disorder 375
Sales force 686, 688
Salmon population 783
Sample selection 620

censoring 616
self-selection 620
truncation 620
two-step Heckman procedure 621

Santa Fe approach 41
Saving propensity 254
Scale invariance 444
Scaling 267
Scenario 130, 131, 150

base-run 684
computed 672, 688, 689
decision 676, 679
environmental 679
growth 682
mixed environmental 676
pollution 685
risk 131
tourism growth 684

Scenario-driven planning 690
Schwartz, Anna 239
Scientific thinking 500
Seasonal affective disorder (SAD) 388, 389

clinical incidence 389
onset/recovery 390

Seasonality 684
tourism 684

Sector 164
Segregation 265
Segregation model 2, 39, 40
Selection bias 617

self-selection 620
Self-employment 164
Self-exciting tar 347
Self-modulation model 458
Semiparametric estimators 617

informative bounds 621
Senge, Peter 741
Sensation seeking 375, 388
Sensitive dependence on initial conditions 426
Sensitivity analysis 44
Sequence

formulation-solution-implementation 690
Sequential exogeneity 222
Serial correlation 219
Serial dependence 636

Serial independence test 636
BDS test 639

Service industry dynamics 83
Shadow marketing 673
Shared vision 741
Sharpe ratio 382, 383, 385
Shipping market models 89
Short memory 203, 208

process 204
Sierpinski gasket 445
Sieve 394, 398
Simplicity

neoclassical economics 24
Simplification

over 679
unwarranted 679

Simulation 133, 154, 484, 738
Simulation-based methods 617

data augmentation 620
Markov chain Monte Carlo 617
maximum simulated likelihood 619
smooth 619

Simulation model 682
Simulation modeling 513, 672
Simultaneous equations model (SEM) 616
Single dealer markets 568
Single transient behavior pattern 846
Situation

formulation 690
nature 681
structure 681

Skimming price 149
SMM 711
Smooth transition 347
Smooth transition autoregressive model 59
“Smooth transition” threshold models 192
Smoothing 281
Social classes 269
Social experiments, randomized trials 616
Social interactions 300
Social net 674
Social network topology, agent-based modeling 26
Social process 680
Social system 680
Social theory 822
Social volatility, agent-based modeling 25
Sociophysics 248
Space 37
Spreads 584
Stable distributions 344, 453
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STAR model
multiple regime STAR model 59
n dimensional two-regime STAR model 59

State dependence 216
State-space model 196–198
Statistical mechanics 249
Statistics 248
Stella 783
Stochastic differential equation 349
Stochastic growth 257
Stochastic volatility 479

different notions of 694
model 350, 527, 528
short definition 694

Stock 583, 683, 728, 738
London Stock Exchange 584

Stock-flow diagrams 77
Stock management 79
Stock return 359
Stop-loss orders 591
Strategic behavior 159
Strategic decision processing system 690
Strategic flexibility 673, 682
Strategic management 676
Strategic situation formulation 678
Strategies and tactics net 674
Strategy

business 675, 676
copycat 680
corporate 675, 676
divisional 676
functional 676
process 676
process or functional 675
tradeoffs-free 674

Strategy design 680, 690, 691
tradeoffs-free 675

Strategy implementation 73, 76
calibration 76, 77

Stratified sampling 632
choice-based sampling 632
endogenously stratification 632
weighted GMM estimation 632

Strictly exogenous 218
Structural change 525, 527–530, 543, 544
Structural form 43
Structural models 621

causality 623
conditional prediction 622
cowles commission approach 622
reduced form 622

Structure
complex 677
complicated 677
stock and flow 687, 690

Structure causes performance 681
Structure contribution approach 834
Student t distribution 325
Subeconomy 164
Subscript 142
Subsidiaries, active 676
Substance abuse

cocaine prevalence 513
heroin addiction 513
tobacco 513

Sugarscape 2
Supply chain dynamics 79
Surplus demand 687
Surprises, strategic 674
Sustainability 682
Sustainability management 746
Sustainable solutions 672
SV 695
Swarm 41
Syndemics 522
System-as-cause thinking 500
System dynamics (SD) 164, 485, 500, 513, 682, 690,

727, 738, 753, 754, 762, 767–769, 771, 772, 813
applications, health care 497
as presentationalist 822
case study 502
components 500
criticism 816, 822
definition 499
foundations 815
history 499
justification in 821
model, configuration 503
model, health and social care 503
modeling tools 500
need 499
origin of 813
participative model building 508
servomechanism 823
simulation 828, 829
studies, epidemiology in Europe 506
studies, health and social care management 507
thinking skills 500
workforce planning models, health
management 509

System structure 681
System theory 753, 759
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Systems
autopoietic 684
hierarchical 673
purposeful 673

Systems approaches 753, 754, 757, 761
Systems methodology 757, 761, 762
Systems movement 754, 756, 758
Systems sciences 753, 756
Systems thinking 75, 738
Systems thinking/system dynamics method 501

and modeling methodology 740

T

Tactics 680
competitive 680
cooperative 680
counterproductive 680
defensive 680
implementation 680
marketing 686
offensive 680
piecemeal 680

Take-profit orders 591
TAR model

n dimensional two-regime TAR model 56
nested TAR model 56

Tatonnement 33
Technical analysis 302
Technical capability 154
Technical trading 590

support and resistance levels 590
Technical trading rule (TTR) 439
Technological knowledge 152
Technology 685
Telecom industry models 89
Tent map 425
Term structures of interestrates, applications 704
Tesfatsions’s labour market model 26
Testing for linearity 58, 60, 64
Texas 685
Theory

of value 164
Theory building 690
Thermal equilibrium 260
Thinking, complex organizations 500
Threshold autoregressive model 56, 347
Threshold model 190–193, 394, 399, 400, 525, 532,

536–540
STAR model 536, 539
TAR model 536, 537, 539, 540, 543

Tick size 583
Time graphs vs. eigenvalues or frequency response 836
Time horizon 681
Time-reversal symmetry 255
Time reversibility 525, 531, 541
Time series 636
Time series analysis 341

nonlinear 341
Time-series processes 383

AR 375, 379
ARCH 375, 391
ARMA 379
autocorrelation 383
covariation 383
GARCH 375, 379

TIME STEP 804
Time-to-market 153
Time-to-volume 153
Time-varying expected return 353, 359
Time-varying parameter model 528, 543
Time-varying transition probabilities 196
Topology

social network 26
Tourism 682
Tourism demand 685
Tractability, neoclassical economics 24
Trade deficit 265
Trade size 583
Traders, market microstructure 572
Trading mechanism, order-driven 568
Trading network game, Tesfatsions’s 26
Trading process, tree diagram 574
Trading volume 7, 583

NYSE 583
Traditional 840
Transfer function 840
Transformation

preliminary 276
Transition probability 194
Transparency 585
Treatment effect models 623

average treatment effect 623
potential outcome model 621
Rubin causal model 623

Treatment evaluation 617
counterfactual 620

Treatment of mental health diagnosis
modeling 508

Treatment of physical conditions
modeling 507
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Tree
diagram of the trading process 574

Trend-impact analysis 675
Two-class society 266
Two-class structure 259

U

U-Statistics 643, 644, 649
UC models 197
Unbalanced panel data 225
Uncertainty 673

environmental 678
future 677
interdependence-induced 679
management of 690
neoclassical economics 23
strategic 676

Uncovered interest parity 602
Unearned income 164
Unemployment

acceleration 273
rate 532, 533, 540, 541, 543

Uninformed traders 572
Unintended consequences 656

secondary crisis 656
Universality 267, 286
Unobserved components (UC) model 196, 528,

534, 536
Unobserved effect 217
Unobserved heterogeneity 215, 628

gamma distribution 629
independently 629
mixture model 629
omitted variable 624

Unobserved shocks 216
Urban dynamics 734
US business cycle 54
US Census Bureau 261
U.S. Centers for Disease Control and Prevention

(CDC) 514
US government bond market 570
USA 686, 688
USV 706

V

Validation 45, 46, 275, 767, 768, 770
Validation methods 771, 779
Validity 767, 768, 770
Valuation 376, 377

constant P/E model 377

Donaldson–Kamstra (DK) method 376, 378,
380, 382

free-cash-flow method 377, 380
fundamental 375, 377
Gordon growth model 378, 380
relative value method 377
residual income method 377, 380

Value-at-risk 332
Value chain

customer-supplier 682, 690
jet ski 687

Value chain components 690
Value-chain management structure, generic 686
Value-chain participants 685
Value stocks 361
VAR seeVector autoregressive model
VAR model 528–530, 543, 544
Variable

auxiliary constant 683
converter 683
locally meaningful 690

Variance gamma distribution 326
Variation

seasonal 684
Variation order 119
Vector autoregression (VAR) model 195
Vector autoregressive (VAR) model 576
Vector moving average (VMA) representation 576
Vensim 783
Verhulst, François 684
Virtual enterprise network (VEN) 686
VMA see Vector moving average representation
Volatility 343, 395, 396, 398, 405, 411, 412, 416, 588
Volatility and financial market innovation

variance swaps 718
VIX index 718
volatility derivatives 718

Volatility and jump risk premium, empirical
evidence 703

Volatility clustering 5, 295, 329, 459, 464
Volatility risk premium

open questions 719

W

Wage employment 164
Wealth 256, 257, 269
Wealth distribution 256, 258
Wealth of nations 731
Wealth temperature 258
Weight elasticity 848
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Welfare policies 663
What if scenarios 661
Whirlwind 675
White noise 446
Wiener process 342
Wiggins SV model 698
Wold representation see Vector moving average

representation

Word-of-mouth 139
Workforce 675
World Bank 262, 266
World dynamics 734

Z

Zero-one parameter 802, 808, 810
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