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Preface

Complex Systems in Finance and Econometrics is an authoritative reference to the basic tools and concepts of complexity
and systems theory as applied to an understanding of complex, financial-based business and social systems. Fractals,
nonlinear time series modeling, cellular automata, game theory, network theory and statistical physics are among the
tools and techniques that are used for predicting, monitoring, evaluating, managing, and decision-making in a wide
range of fields from health care, poverty alleviation, and energy and the environment, to manufacturing and quality
assurance, model building, organizational learning. and macro and microeconomics. In the last of these areas, market
bubbles and crashes, foreign exchange, and bond markets are addressed.

Sixty-nine of the world’s leading experts present 49 articles for an audience of advanced undergraduate and graduate
students, professors, and professionals in all of these fields. Each article was selected and peer reviewed by one of the
Section Editors of the Encyclopedia of Complexity and Systems Science with advice and consultation provided by our
Board Members and Editor-in-Chief. This level of coordination assures that the reader can have a level of confidence in
the relevance and accuracy of the information far exceeding that generally found on the World Wide Web or any print
publication. Accessiblilty is also a priority and for this reason each article includes a glossary of important terms and a
concise definition of the subject. The primary Section Editors for this project were Bruce Mizrach and Brian Dangerfield,
while Andrej Nowak, Cristina Marchetti, Marilda Sotomayor, Daniel ben-avraham and Schlomo Havlin recruited and
reviewed several of the articles. An alphabetical list of the 49 articles and the authors is presented on pages XV through
XVII, and the articles are also organized by section on pages VII to VIIL. A summary, perspective and roadmap for the
articles on Finance and Econometrics can be found on pages 290 to 292, and for System Dynamics on pages 853 to 855.

Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of col-
lective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures.
They are therefore adaptive as they evolve and may contain self-driving feedback loops. Thus, complex systems are much
more than a sum of their parts. Complex systems are often characterized as having extreme sensitivity to initial condi-
tions as well as emergent behavior that are not readily predictable or even completely deterministic. One conclusion is
that a reductionist (bottom-up) approach is often an incomplete description of a phenomenon. This recognition, that
the collective behavior of the whole system cannot be simply inferred from the understanding of the behavior of the in-
dividual components, has led to many new concepts and sophisticated mathematical and modeling tools for application
to financial-based business and social systems.
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Glossary

Agent-based simulation A simulation of a system of
multiple interacting agents (sometimes also known as
“microscopic simulation”). The “micro” rules govern-
ing the actions of the agents are known, and so are
their rules of interaction. Starting with some initial
conditions, the dynamics of the system are investigated
by simulating the state of the system through discrete
time steps. This approach can be employed to study
general properties of the system, which are not sensi-
tive to the initial conditions, or the dynamics of a spe-
cific system with fairly well-known initial conditions,
e. g. the impact of the baby boomers’ retirement on the
US stock market.

Bounded-rationality Most economic models describe
agents as being fully rational - given the information at
their disposal they act in the optimal way which max-
imizes their objective (or utility) function. This opti-
mization may be technically very complicated, requir-
ing economic, mathematical and statistical sophistica-
tion. In contrast, bounded rational agents are limited
in their ability to optimize. This limitation may be due
to limited computational power, errors, or various psy-
chological biases which have been experimentally doc-
umented.

Market anomalies Empirically documented phenomena
that are difficult to explain within the standard ratio-
nal representative agent economic framework. Some
of these phenomena are the over-reaction and under-
reaction of prices to news, the auto-correlation of stock
returns, various calendar and day-of-the-week effects,
and the excess volatility of stock returns.

Representative agent A standard modeling technique in
economics, by which an entire class of agents (e. g. in-

vestors) are modeled by a single “representative” agent.
If agents are completely homogeneous, it is obvious
that the representative agent method is perfectly legit-
imate. However, when agents are heterogeneous, the
representative agent approach can lead to a multitude
of problems (see [16]).

Definition of the Subject

Mainstream economic models typically make the assump-
tion that an entire group of agents, e.g. “investors”, can
be modeled with a single “rational representative agent”.
While this assumption has proven extremely useful in ad-
vancing the science of economics by yielding analytically
tractable models, it is clear that the assumption is not re-
alistic: people are different one from the other in their
tastes, beliefs, and sophistication, and as many psychologi-
cal studies have shown, they often deviate from rationality
in systematic ways.

Agent Based Computational Economics is a frame-
work allowing economics to expand beyond the realm
of the “rational representative agent”. By modeling and
simulating the behavior of each agent and the interac-
tion among agents, agent based simulation allows us to
investigate the dynamics of complex economic systems
with many heterogeneous and not necessarily fully ratio-
nal agents.

The agent based simulation approach allows econ-
omists to investigate systems that can not be studied with
the conventional methods. Thus, the following key ques-
tions can be addressed: How do heterogeneity and system-
atic deviations from rationality affect markets? Can these
elements explain empirically observed phenomena which
are considered “anomalies” in the standard economics lit-
erature? How robust are the results obtained with the an-
alytical models? By addressing these questions the agent
based simulation approach complements the traditional
analytical analysis, and is gradually becoming a standard
tool in economic analysis.

Introduction

For solving the dynamics of two bodies (e.g. stars) with
some initial locations and velocities and some law of at-
traction (e. g. gravitation) there is a well-known analytical
solution. However, for a similar system with three bodies
there is no known analytical solution. Of course, this does
not mean that physicists can’t investigate and predict the
behavior of such systems. Knowing the state of the system
(i. e. the location, velocity, and acceleration of each body)
at time ¢, allows us to calculate the state of the system an
instant later, at time ¢t + At. Thus, starting with the ini-
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tial conditions we can predict the dynamics of the system
by simply simulating the “behavior” of each element in the
system over time.

This powerful and fruitful approach, sometimes called
“Microscopic Simulation”, has been adopted by many
other branches of science. Its application in economics is
best known as “Agent Based Simulation” or “Agent Based
Computation”. The advantages of this approach are clear —
they allow the researcher to go where no analytical mod-
els can go. Yet, despite of the advantages, perhaps sur-
prisingly, the agent based approach was not adopted very
quickly by economists. Perhaps the main reason for this
is that a particular simulation only describes the dynamics
of a system with a particular set of parameters and initial
conditions. With other parameters and initial conditions
the dynamics may be different. So economists may ask:
what is the value of conducting simulations if we get very
different results with different parameter values? While
in physics the parameters (like the gravitational constant)
may be known with great accuracy, in economics the
parameters (like the risk-aversion coeflicient, or for that
matter the entire decision-making rule) are typically esti-
mated with substantial error. This is a strong point. In-
deed, we would argue that the “art” of agent based sim-
ulations is the ability to understand the general dynam-
ics of the system and to draw general conclusions from
a finite number of simulations. Of course, one simula-
tion is sufficient as a counter-example to show that a cer-
tain result does not hold, but many more simulations are
required in order to convince of an alternative general
regularity.

This manuscript is intended as an introduction to
agent-based computational economics. An introduction
to this field has two goals: (i) to explain and to demon-
strate the agent-based methodology in economics, stress-
ing the advantages and disadvantages of this approach rel-
ative to the alternative purely analytical methodology, and
(ii) to review studies published in this area. The emphasis
in this paper will be on the first goal. While Sect. “Some
of the Pioneering Studies” does provide a brief review of
some of the cornerstone studies in this area, more com-
prehensive reviews can be found in [19,24,32,39,40], on
which part of Sect. “Some of the Pioneering Studies” is
based. A comprehensive review of the many papers em-
ploying agent based computational models in economics
will go far beyond the scope of this article. To achieve
goal (i) above, in Sect. “Illustration with the LLS Model”
we will focus on one particular model of the stock market
in some detail. Section “Summary and Future Directions”
concludes with some thoughts about the future of the
field.

Some of the Pioneering Studies
Schelling’s Segregation Model

Schelling’s [36] classical segregation model is one of the
earliest models of population dynamics. Schelling’s model
is not intended as a realistic tool for studying the actual
dynamics of specific communities as it ignores economic,
real-estate and cultural factors. Rather, the aim of this very
simplified model is to explain the emergence of macro-
scopic single-race neighborhoods even when individuals
are not racists. More precisely, Schelling found that the
collective effect of neighborhood racial segregation results
even from individual behavior that presents only a very
mild preference for same-color neighbors. For instance,
even the minimal requirement by each individual of hav-
ing (at least) one neighbor belonging to ones’ own race
leads to the segregation effect.

The agent based simulation starts with a square mesh,
or lattice, (representing a town) which is composed of cells
(representing houses). On these cells reside agents which
are either “blue” or “green” (the different races). The cru-
cial parameter is the minimal percentage of same-color
neighbors that each agent requires. Each agent, in his turn,
examines the color of all his neighbors. If the percentage of
neighbors belonging to his own group is above the “mini-
mal percentage”, the agent does nothing. If the percentage
of neighbors of his own color is less then the minimal per-
centage, the agent moves to the closest unoccupied cell.
The agent then examines the color of the neighbors of the
new location and acts accordingly (moves if the number of
neighbors of his own color is below the minimal percent-
age and stays there otherwise). This goes on until the agent
is finally located at a cite in which the minimal percentage
condition holds. After a while, however, it might happen
that following the moves of the other agents, the mini-
mal percentage condition ceases to be fulfilled and then
the agent starts moving again until he finds an appropri-
ate cell. As mentioned above, the main result is that even
for very mild individual preferences for same-color neigh-
bors, after some time the entire system displays a very high
level of segregation.

A more modern, developed and sophisticated rein-
carnation of these ideas is the Sugarscape environment
described by Epstein and Axtell [6]. The model consid-
ers a population of moving, feeding, pairing, procreat-
ing, trading, warring agents and displays various qual-
itative collective events which their populations incur.
By employing agent based simulation one can study the
macroscopic results induced by the agents’ individual
behavior.
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The Kim and Markowitz Portfolio Insurers Model

Harry Markowitz is very well known for being one of the
founders of modern portfolio theory, a contribution for
which he has received the Nobel Prize in economics. It is
less well known, however, that Markowitz is also one of
the pioneers in employing agent based simulations in eco-
nomics.

During the October 1987 crash markets all over the
globe plummeted by more than 20% within a few days.
The surprising fact about this crash is that it appeared to be
spontaneous - it was not triggered by any obvious event.
Following the 1987 crash researchers started to look for
endogenous market features, rather than external forces,
as sources of price variation. The Kim-Markowitz [15]
model explains the 1987 crash as resulting from investors’
“Constant Proportion Portfolio Insurance” (CPPI) pol-
icy. Kim and Markowitz proposed that market instabilities
arise as a consequence of the individual insurers’ efforts to
cut their losses by selling once the stock prices are going
down.

The Kim Markowitz agent based model involves two
groups of individual investors: rebalancers and insurers
(CPPI investors). The rebalancers are aiming to keep
a constant composition of their portfolio, while the insur-
ers make the appropriate operations to insure that their
eventual losses will not exceed a certain fraction of the in-
vestment per time period.

The rebalancers act to keep a portfolio structure with
(for instance) half of their wealth in cash and half in stocks.
If the stock price rises, then the stocks weight in the port-
folio will increase and the rebalancers will sell shares until
the shares again constitute 50% of the portfolio. If the stock
price decreases, then the value of the shares in the port-
folio decreases, and the rebalancers will buy shares until
the stock again constitutes 50% of the portfolio. Thus, the
rebalancers have a stabilizing influence on the market by
selling when the market rises and buying when the market
falls.

A typical CPPI investor has as his/her main objective
not to lose more than (for instance) 25% of his initial
wealth during a quarter, which consists of 65 trading days.
Thus, he aims to insure that at each cycle 75% of the initial
wealth is out of reasonable risk. To this effect, he assumes
that the current value of the stock will not fall in one day by
more than a factor of 2. The result is that he always keeps
in stock twice the difference between the present wealth
and 75% of the initial wealth (which he had at the begin-
ning of the 65 days investing period). This determines the
amount the CPPI agent is bidding or offering at each stage.
Obviously, after a price fall, the amount he wants to keep

in stocks will fall and the CPPI investor will sell and fur-
ther destabilize the market. After an increase in the prices
(and personal wealth) the amount the CPPI agent wants to
keep in shares will increase: he will buy, and may support
a price bubble.

The simulations reveal that even a relatively small frac-
tion of CPPI investors (i.e. less than 50%) is enough to
destabilize the market, and crashes and booms are ob-
served. Hence, the claim of Kim and Markowitz that the
CPPI policy may be responsible for the 1987 crash is sup-
ported by the agent based simulations. Various variants of
this model were studied intensively by Egenter, Lux and
Stauffer [5] who find that the price time evolution becomes
unrealistically periodic for a large number of investors (the
periodicity seems related with the fixed 65 days quarter
and is significantly diminished if the 65 day period begins
on a different date for each investor).

The Arthur, Holland, Lebaron, Palmer
and Tayler Stock Market Model

Palmer, Arthur, Holland, Lebaron and Tayler [30]
and Arthur, Holland, Lebaron, Palmer and Tayler [3]
(AHLPT) construct an agent based simulation model that
is focused on the concept of co-evolution. Each investor
adapts his/her investment strategy such as to maximally
exploit the market dynamics generated by the invest-
ment strategies of all others investors. This leads to an
ever-evolving market, driven endogenously by the ever-
changing strategies of the investors.

The main objective of AHLPT is to prove that mar-
ket fluctuations may be induced by this endogenous co-
evolution, rather than by exogenous events. Moreover,
AHLPT study the various regimes of the system: the
regime in which rational fundamentalist strategies are
dominating vs. the regime in which investors start devel-
oping strategies based on technical trading. In the techni-
cal trading regime, if some of the investors follow funda-
mentalist strategies, they may be punished rather than re-
warded by the market. AHLPT also study the relation be-
tween the various strategies (fundamentals vs. technical)
and the volatility properties of the market (clustering, ex-
cess volatility, volume-volatility correlations, etc.).

In the first paper quoted above, the authors simulated
a single stock and further limited the bid/offer decision to
a ternary choice of: i) bid to buy one share, ii) offer to sell
one share, or: iii) do nothing. Each agent had a collection
of rules which described how he should behave (i, ii or iii)
in various market conditions. If the current market condi-
tions were not covered by any of the rules, the default was
to do nothing. If more than one rule applied in a certain
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market condition, the rule to act upon was chosen prob-
abilistically according to the “strengths” of the applicable
rules. The “strength” of each rule was determined accord-
ing to the rule’s past performance: rules that “worked” be-
came “stronger”. Thus, if a certain rule performed well, it
became more likely to be used again.

The price is updated proportionally to the relative ex-
cess of offers over demands. In [3], the rules were used to
predict future prices. The price prediction was then trans-
formed into a buy/sell order through the use of a Constant
Absolute Risk Aversion (CARA) utility function. The use
of CARA utility leads to demands which do not depend on
the investor’s wealth.

The heart of the AHLPT dynamics are the trading
rules. In particular, the authors differentiate between “fun-
damental” rules and “technical” rules, and study their rel-
ative strength in various market regimes. For instance,
a “fundamental” rule may require a market conditions of

the type:

dividend/current price > 0.04

in order to be applied. A “technical” rule may be triggered
if the market fulfills a condition of the type:

current price > 10-period moving-average of past prices.

The rules undergo genetic dynamics: the weakest rules are
substituted periodically by copies of the strongest rules
and all the rules undergo random mutations (or even ver-
sions of “sexual” crossovers: new rules are formed by com-
bining parts from 2 different rules). The genetic dynamics
of the trading rules represent investors’ learning: new rules
represent new trading strategies. Investors examine new
strategies, and adopt those which tend to work best. The
main results of this model are:

For a Few Agents, a Small Number of Rules,
and Small Dividend Changes

e The price converges towards an equilibrium price
which is close to the fundamental value.

e Trading volume is low.
There are no bubbles, crashes or anomalies.
Agents follow homogeneous simple fundamentalist
rules.

For a Large Number of Agents
and a Large Number of Rules

e There is no convergence to an equilibrium price, and
the dynamics are complex.

e The price displays occasional large deviations from the
fundamental value (bubbles and crashes).

e Some of these deviations are triggered by the emer-
gence of collectively self-fulfilling agent price-predic-
tion rules.

e The agents become heterogeneous (adopt very different
rules).

e Trading volumes fluctuate (large volumes correspond
to bubbles and crashes).

e The rules evolve over time to more and more complex
patterns, organized in hierarchies (rules, exceptions to
rules, exceptions to exceptions, and so on ...).

e The successful rules are time dependent: a rule which is
successful at a given time may perform poorly if rein-
troduced after many cycles of market co-evolution.

The Lux and Lux and Marchesi Model

Lux [27] and Lux and Marchesi [28] propose a model to
endogenously explain the heavy tail distribution of returns
and the clustering of volatility. Both of these phenomena
emerge in the Lux model as soon as one assumes that
in addition to the fundamentalists there are also chartists
in the model. Lux and Marchesi [28] further divide the
chartists into optimists (buyers) and pessimists (sellers).
The market fluctuations are driven and amplified by the
fluctuations in the various populations: chartists convert-
ing into fundamentalists, pessimists into optimists, etc.

In the Lux and Marchesi model the stock’s fundamen-
tal value is exogenously determined. The fluctuations of
the fundamental value are inputted exogenously as a white
noise process in the logarithm of the value. The market
price is determined by investors’ demands and by the mar-
ket clearance condition.

Lux and Marchesi consider three types of traders:

o Fundamentalists observe the fundamental value of the
stock. They anticipate that the price will eventually con-
verge to the fundamental value, and their demand for
shares is proportional to the difference between the
market price and the fundamental value.

o Chartists look more at the present trends in the market
price rather than at fundamental economic values; the
chartists are divided into

e Optimists (they buy a fixed amount of shares per unit
time)

o Pessimists (they sell shares).

Transitions between these three groups (optimists, pes-
simists, fundamentalists) happen with probabilities de-
pending on the market dynamics and on the present num-
bers of traders in each of the three classes:

o The transition probabilities of chartists depend on
the majority opinion (through an “opinion index” mea-
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suring the relative number of optimists minus the rel-

ative number of pessimists) and on the actual price

trend (the current time derivative of the current mar-
ket price), which determines the relative profit of the
various strategies.

e The fundamentalists decide to turn into chartists if
the profits of the later become significantly larger than
their own, and vice versa (the detailed formulae used
by Lux and Marchesi are inspired from the exponential
transition probabilities governing statistical mechanics
physical systems).

The main results of the model are:

e No long-term deviations between the current mar-
ket price and the fundamental price are observed.

e The deviations from the fundamental price, which
do occur, are unsystematic.

e In spite of the fact that the variations of the funda-
mental price are normally distributed, the variations
of the market price (the market returns) are not. In
particular the returns exhibit a frequency of extreme
events which is higher than expected for a normal
distribution. The authors emphasize the amplifica-
tion role of the market that transforms the input
normal distribution of the fundamental value varia-
tions into a leptokurtotic (heavy tailed) distribution
of price variation, which is encountered in the actual
financial data.

e clustering of volatility.

The authors explain the volatility clustering (and as a con-
sequence, the leptokurticity) by the following mechanism.
In periods of high volatility, the fundamental information
is not very useful to insure profits, and a large fraction of
the agents become chartists. The opposite is true in quiet
periods when the actual price is very close to the funda-
mental value. The two regimes are separated by a thresh-
old in the number of chartist agents. Once this threshold
is approached (from below) large fluctuations take place
which further increase the number of chartists. This desta-
bilization is eventually dampened by the energetic inter-
vention of the fundamentalists when the price deviates too
much from the fundamental value. The authors compare
this temporal instability with the on-off intermittence en-
countered in certain physical systems. According to Egen-
ter et al. [5], the fraction of chartists in the Lux Marchesi
model goes to zero as the total number of traders goes to
infinity, when the rest of the parameters are kept constant.

Illustration with the LLS Model

The purpose of this section is to give a more detailed
“hands on” example of the agent based approach, and

to discuss some of the practical dilemmas arising when
implementing this approach, by focusing on one specific
model. We will focus on the so called LLS Model of the
stock market (for more detail, and various versions of the
model, see [11,17,22,23,24,25]. This section is based on the
presentation of the LLS Model in Chap. 7 of [24]).

Background

Real life investors differ in their investment behavior from
the investment behavior of the idealized representative
rational investor assumed in most economic and finan-
cial models. Investors differ one from the other in their
preferences, their investment horizon, the information at
their disposal, and their interpretation of this information.
No financial economist seriously doubts these observa-
tions. However, modeling the empirically and experimen-
tally documented investor behavior and the heterogeneity
of investors is very difficult and in most cases practically
impossible to do within an analytic framework. For in-
stance, the empirical and experimental evidence suggests
that most investors are characterized by Constant Relative
Risk Aversion (CRRA), which implies a power (myopic)
utility function (see Eq. (2) below). However, for a gen-
eral distribution of returns it is impossible to obtain an
analytic solution for the portfolio optimization problem
of investors with these preferences. Extrapolation of fu-
ture returns from past returns, biased probability weight-
ing, and partial deviations from rationality are also all ex-
perimentally documented but difficult to incorporate in an
analytical setting. One is then usually forced to make the
assumptions of rationality and homogeneity (at least in
some dimension) and to make unrealistic assumptions re-
garding investors’ preferences, in order to obtain a model
with a tractable solution. The hope in these circumstances
is that the model will capture the essence of the system
under investigation, and will serve as a useful benchmark,
even though some of the underlying assumptions are ad-
mittedly false.

Most homogeneous rational agent models lead to the
following predictions: no trading volume, zero autocorre-
lation of returns, and price volatility which is equal to or
lower than the volatility of the “fundamental value” of the
stock (defined as the present value of all future dividends,
see [37]). However, the empirical evidence is very differ-
ent:

e Trading volume can be extremely heavy [1,14].

e Stock returns exhibit short-run momentum (positive
autocorrelation) and long-run mean reversion (nega-
tive autocorrelation) [7,13,21,31].
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e Stock returns are excessively volatile relative to the div-

idends [37].

As most standard rational-representative-agent models
cannot explain these empirical findings, these phenomena
are known as“anomalies” or “puzzles”. Can these “anoma-
lies” be due to elements of investors’ behavior which are
unmodeled in the standard rational-representative-agent
models, such as the experimentally documented devia-
tions of investors’ behavior from rationality and/or the
heterogeneity of investors? The agent based simulation ap-
proach offers us a tool to investigate this question. The
strength of the agent based simulation approach is that
since it is not restricted to the scope of analytical methods,
one is able to investigate virtually any imaginable investor
behavior and market structure. Thus, one can study mod-
els which incorporate the experimental findings regarding
the behavior of investors, and evaluate the effects of var-
ious behavioral elements on market dynamics and asset
pricing.

The LLS model incorporates some of the main empir-
ical findings regarding investor behavior, and we employ
this model in order to study the effect of each element of
investor behavior on asset pricing and market dynamics.
We start out with a benchmark model in which all of the
investors are rational, informed and identical, and then,
one by one, we add elements of heterogeneity and devia-
tions from rationality to the model in order to study their
effects on the market dynamics.

In the benchmark model all investors are Rational,
Informed and Identical (RII investors). This is, in effect,
a “representative agent” model. The RII investors are in-
formed about the dividend process, and they rationally act
to maximize their expected utility. The RII investors make
investment decisions based on the present value of future
cash flows. They are essentially fundamentalists who eval-
uate the stock’s fundamental value and try to find bar-
gains in the market. The benchmark model in which all
investors are RII yields results which are typical of most
rational-representative-agent models: in this model prices
follow a random walk, there is no excess volatility of the
prices relative to the volatility of the dividend process, and
since all agents are identical, there is no trading volume.

After describing the properties of the benchmark
model, we investigate the effects of introducing various el-
ements of investor behavior which are found in laboratory
experiments but are absent in most standard models. We
do so by adding to the model a minority of investors who
do not operate like the RII investors. These investors are
Efficient Market Believers (EMB from now on). The EMBs
are investors who believe that the price of the stock re-

flects all of the currently available information about the
stock. As a consequence, they do not try to time the mar-
ket or to buy bargain stocks. Rather, their investment deci-
sion is reduced to the optimal diversification problem. For
this portfolio optimization, the ex-ante return distribution
is required. However, since the ex-ante distribution is un-
known, the EMB investors use the ex-post distribution in
order to estimate the ex-ante distribution. It has been doc-
umented that in fact, many investors form their expecta-
tions regarding the future return distribution based on the
distribution of past returns.

There are various ways to incorporate the investment
decisions of the EMBs. This stems from the fact that there
are different ways to estimate the ex-ante distribution from
the ex-post distribution. How far back should one look at
the historical returns? Should more emphasis be given to
more recent returns? Should some “outlier” observations
be filtered out? etc. Of course, there are no clear answers
to these questions, and different investors may have differ-
ent ways of forming their estimation of the ex-ante return
distribution (even though they are looking at the same se-
ries of historical returns). Moreover, some investors may
use the objective ex-post probabilities when constructing
their estimation of the ex-ante distribution, whereas oth-
ers may use biased subjective probability weights. In order
to build the analysis step-by-step we start by analyzing the
case in which the EMB population is homogeneous, and
then introduce various forms of heterogeneity into this
population.

An important issue in market modeling is that of the
degree of investors’ rationality. Most models in economics
and finance assume that people are fully rational. This as-
sumption usually manifests itself as the maximization of
an expected utility function by the individual. However,
numerous experimental studies have shown that people
deviate from rational decision-making [41,42,43,44,45].
Some studies model deviations from the behavior of the
rational agent by introducing a sub-group of liquidity,
or “noise”, traders. These are traders that buy and sell
stocks for reasons that are not directly related to the future
payoffs of the financial asset - their motivation to trade
arises from outside of the market (for example, a “noise
trader’s” daughter unexpectedly announces her plans to
marry, and the trader sells stocks because of this unex-
pected need for cash). The exogenous reasons for trading
are assumed random, and thus lead to random or “noise”
trading (see [10]). The LLS model takes a different ap-
proach to the modeling of noise trading. Rather than di-
viding investors into the extreme categories of “fully ratio-
nal” and “noise traders”, the LLS model assumes that most
investors try to act as rationally as they can, but are influ-
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enced by a multitude of factors causing them to deviate to
some extent from the behavior that would have been op-
timal from their point of view. Namely, all investors are
characterized by a utility function and act to maximize
their expected utility; however, some investors may devi-
ate to some extent from the optimal choice which maxi-
mizes their expected utility. These deviations from the op-
timal choice may be due to irrationality, inefliciency, lig-
uidity constraints, or a combination of all of the above.

In the framework of the LLS model we examine the
effects of the EMBs’ deviations from rationality and their
heterogeneity, relative to the benchmark model in which
investors are informed, rational and homogeneous. We
find that the behavioral elements which are empirically
documented, namely, extrapolation from past returns, de-
viation from rationality, and heterogeneity among in-
vestors, lead to all of the following empirically docu-
mented “puzzles”:

Excess volatility

Short-term momentum

Longer-term return mean-reversion

Heavy trading volume

Positive correlation between volume and contempora-
neous absolute returns

e Positive correlation between volume and lagged abso-
lute returns

The fact that all these anomalies or “puzzles”, which
are hard to explain with standard rational-representative-
agent models, are generated naturally by a simple model
which incorporates the experimental findings regarding
investor behavior and the heterogeneity of investors, leads
one to suspect that these behavioral elements and the di-
versity of investors are a crucial part of the workings of the
market, and as such they cannot be “assumed away”. As
the experimentally documented bounded-rational behav-
ior and heterogeneity are in many cases impossible to an-
alyze analytically, agent based simulation presents a very
promising tool for investigating market models incorpo-
rating these elements.

The LLS Model

The stock market consists of two investment alternatives:
a stock (or index of stocks) and a bond. The bond is as-
sumed to be a riskless asset, and the stock is a risky asset.
The stock serves as a proxy for the market portfolio (e. g.,
the Standard & Poors 500 index). The extension from one
risky asset to many risky assets is possible; however, one
stock (the index) is sufficient for our present analysis be-
cause we restrict ourselves to global market phenomena
and do not wish to deal with asset allocation across several

risky assets. Investors are allowed to revise their portfolio

at given time points, i. e. we discuss a discrete time model.
The bond is assumed to be a riskless investment yield-

ing a constant return at the end of each time period. The
bond is in infinite supply and investors can buy from it as
much as they wish at a given rate of r¢. The stock is in fi-
nite supply. There are N outstanding shares of the stock.

The return on the stock is composed of two elements:

a) Capital Gain: If an investor holds a stock, any rise (fall)
in the price of the stock contributes to an increase (de-
crease) in the investor’s wealth.

b) Dividends: The company earns income and distributes
dividends at the end of each time period. We denote
the dividend per share paid at time f by D;. We assume
that the dividend is a stochastic variable following
a multiplicative random walk, i. e., D; = Di—1(1 + 2),
where Z is a random variable with some probability
density function f(z) in the range [z, z2]. (In order to
allow for a dividend cut as well as a dividend increase
we typically choose: z; < 0,2z, > 0).

The total return on the stock in period ¢, which we denote

by R; is given by:

b+ D,

R =
! P

. 1)
where P is the stock price at time ¢.

All investors in the model are characterized by a von
Neuman-Morgenstern utility function. We assume that all
investors have a power utility function of the form:

Wl—Ot
uw) = ——. @

where « is the risk aversion parameter. This form of utility
function implies Constant Relative Risk Aversion (CRRA).
We employ the power utility function (Eq. (2)) because
the empirical evidence suggests that relative risk aversion
is approximately constant (see, for example [8,9,18,20]),
and the power utility function is the unique utility func-
tion which satisfies the CRRA condition. Another impli-
cation of CRRA is that the optimal investment choice is
independent of the investment horizon [33,34]. In other
words, regardless of investors’ actual investment horizon,
they choose their optimal portfolio as though they are in-
vesting for a single period. The myopia property of the
power utility function simplifies our analysis, as it allows
us to assume that investors maximize their one-period-
ahead expected utility.

We model two different types of investors: Rational,
Informed, Identical (RII) investors, and Efficient Market
Believers (EMB). These two investor types are described
below.
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Rational Informed Identical (RII) Investors RII in-
vestors evaluate the “fundamental value” of the stock as
the discounted stream of all future dividends, and thus can
also be thought of as “fundamentalists”. They believe that
the stock price may deviate from the fundamental value
in the short run, but if it does, it will eventually converge
to the fundamental value. The RII investors act according
to the assumption of asymptotic convergence: if the stock
price is low relative to the fundamental value they buy in
anticipation that the underpricing will be corrected, and
vice versa. We make the simplifying assumption that the
RII investors believe that the convergence of the price to
the fundamental value will occur in the next period, how-
ever, our results hold for the more general case where the
convergence is assumed to occur some T periods ahead,
with T > 1.

In order to estimate next period’s return distribution,
the RII investors need to estimate the distribution of next
period’s price, P41, and of next period’s dividend, Dy .
Since they know the dividend process, the RII investors
know that D;y; = D;(1 + 2) where Z is distributed ac-
cording to f(z) in the range [z;, z;]. The RII investors em-
ploy Gordon’s dividend stream model in order to calculate
the fundamental value of the stock:

f_ Eit1[Deya]

Py = Th—g (€)
where the superscript f stands for the fundamental value,
Eiy1[Di12] is the dividend corresponding to time t + 2
as expected at time t 4 1, k is the discount factor or the
expected rate of return demanded by the market for the
stock, and g is the expected growth rate of the dividend,
ie,g=E(2) = fzzlz f(2)zdz.

The RII investors believe that the stock price may tem-
porarily deviate from the fundamental value; however,
they also believe that the price will eventually converge to
the fundamental value. For simplification we assume that
the RII investors believe that the convergence to the fun-
damental value will take place next period. Thus, the RII
investors estimate Py as:

P =P, .

The expectation at time ¢ + 1 of Dty depends on the re-
alized dividend observed at t + 1:

Eit1[Dig2]l = D1+ g)
Thus, the RII investors believe that the price at ¢ + 1 will
be given by:
Dipi(1+9)

Py =P, = -

At time t, D; is known, but D;4 is not; therefore Ptf_H is
also not known with certainty at time ¢. However, given
Dy, the RII investors know the distribution of D, :

Diy1 = Di(1+ 2),

where Z is distributed according to the known f(z). The

realization of D,y determines P{ 41+ Thus, at time ¢, RII
investors believe that P, is a random variable given by:

Py = ptf+1 _ D+ 50+ —Zi)(l * g).
g

Notice that the RII investors face uncertainty regarding
next period’s price. In our model we assume that the RII
investors are certain about the dividend growth rate g,
the discount factor k, and the fact that the price will con-
verge to the fundamental value next period. In this frame-
work the only source of uncertainty regarding next pe-
riod’s price stems from the uncertainty regarding next
period’s dividend realization. More generally, the RII in-
vestors’ uncertainty can result from uncertainty regarding
any one of the above factors, or a combination of several of
these factors. Any mix of these uncertainties is possible to
investigate in the agent based simulation framework, but
very hard, if not impossible, to incorporate in an analytic
framework. As a consequence of the uncertainty regarding
next period’s price and of their risk aversion, the RII in-
vestors do not buy an infinite number of shares even if they
perceive the stock as underpriced. Rather, they estimate
the stock’s next period’s return distribution, and find the
optimal mix of the stock and the bond which maximizes
their expected utility. The RII investors estimate next pe-
riod’s return on the stock as:
D:(1+2)(1+g)

- Pry1 + Dy k—g + D:(1+2)

= - 4
t+1 B, B, (4)

where Z, the next year growth in the dividend, is the source
of uncertainty. The demands of the RII investors for the
stock depend on the price of the stock. For any hypothet-
ical price P, investors calculate the proportion of their
wealth x they should invest in the stock in order to maxi-
mize their expected utility. The RII investor i believes that
if she invests a proportion x of her wealth in the stock at
time ¢, then at time ¢ + 1 her wealth will be:

Wiy = Wil =)L+ rp) + xRipa]. (5)

where R, is the return on the stock, as given by Eq. (1),
and W} is the wealth of investor i at time ¢ given that the
stock price at time ¢ is Py.
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If the price in period t is the hypothetical price Py, the
t 4 1 expected utility of investor i is the following function
of her investment proportion in the stock, x:

EUW/y ) = BU (Wi [ =x)(1 + ) + 2Rea]) . (6)

Substituting R4, from Eq. (4), using the power utility
function (Eq. (2)), and substituting the hypothetical price
Py, for Py, the expected utility becomes the following func-
tion of x:

22

. (W}i)l—a
EU(WH_I):ﬁ/ (1_x)(1+rf)
zZ1
Dt<1+z><1+g) D1+ 2) o
+x f(2)dz,
Py,

(7)

where the integration is over all possible values of z. In
the agent based simulation framework, this expression for
the expected utility, and the optimal investment propor-
tion x, can be solved numerically for any general choice
of distribution f(z). For the sake of simplicity we restrict
the present analysis to the case where £ is distributed uni-
formly in the range [z, z;]. This simplification leads to the
following expression for the expected utility:

EU(Wyy,)

o (wpte 1 k—g\ Pu
T (1-a)2—a)(z—21) (k+1)x_m

Q2—a)
{ [(1 — 0+ )+ Pi (iJrg) Di(1 + zZ)]

k Q2—a)
- [(1 —x)(1 +rp) + Pi (ﬁ) Dy(1 + 21)] }

(8)

For any hypothetical price Py, each investor (numerically)
finds the optimal proportion xj, which maximizes his/her
expected utility given by Eq. (8). Notice that the optimal
proportion, xj, is independent of the wealth, W} Thus,
if all RII investors have the same degree of risk aversion,
a, they will have the same optimal investment propor-
tion in the stock, regardless of their wealth. The number
of shares demanded by investor i at the hypothetical price
Py, is given by:

XL(Ph)W;i(Ph)'

Ni(p,) =
h( h) P,

)

Efficient Market Believers (EMB) The second type of
investors in the LLS model are EMBs. The EMBs believe in
market efficiency - they believe that the stock price accu-
rately reflects the stock’s fundamental value. Thus, they do
not try to time the market or to look for “bargain” stocks.
Rather, their investment decision is reduced to the opti-
mal diversification between the stock and the bond. This
diversification decision requires the ex-ante return distri-
bution for the stock, but as the ex-ante distribution is not
available, the EMBs assume that the process generating the
returns is fairly stable, and they employ the ex-post distri-
bution of stock returns in order to estimate the ex-ante re-
turn distribution.

Different EMB investors may disagree on the optimal
number of ex-post return observations that should be em-
ployed in order to estimate the ex-ante return distribu-
tion. There is a trade-off between using more observations
for better statistical inference, and using a smaller num-
ber of only more recent observations, which are probably
more representative of the ex-ante distribution. As in real-
ity, there is no “recipe” for the optimal number of obser-
vations to use. EMB investor i believes that the m’ most
recent returns on the stock are the best estimate of the ex-
ante distribution. Investors create an estimation of the ex-
ante return distribution by assigning an equal probability
to each of the m’ most recent return observations:

L 1 .
Prob'(Ri+1 = Ri—j) = — forj=1,...m" (10
m

The expected utility of EMB investor i is given by:

EU(W,,,)

W 1—«a m! —
% ,,111 . [1—x)1+rp)+ 9th_]-]1 ,
=

(11)

where the summation is over the set of m’ most recent ex-
post returns, x is the proportion of wealth invested in the
stock, and as before W, is the wealth of investor i at time ¢
given that the stock price at time ¢ is Pj,. Notice that W
does not change the optimal diversification policy, i.e., x.
Given a set of m' past returns, the optimal portfolio for the
EMB investor i is an investment of a proportion x*' in the
stock and (1- x*') in the bond, where x*' is the propor-
tion which maximizes the above expected utility (Eq. (11))
for investor i. Notice that x*' generally cannot be solved
for analytically. However, in the agent based simulation
framework this does not constitute a problem, as one can
find x*' numerically.



10

Agent Based Computational Economics

Deviations from Rationality Investors who are efficient
market believers, and are rational, choose the investment
proportion x* which maximizes their expected utility.
However, many empirical studies have shown that the be-
havior of investors is driven not only by rational expected
utility maximization but by a multitude of other factors
(see, for example, [34,41,42,43,44]). Deviations from the
optimal rational investment proportion can be due to
the cost of resources which are required for the portfolio
optimization: time, access to information, computational
power, etc., or due to exogenous events (for example, an
investor plans to revise his portfolio, but gets distracted
because his car breaks down). We assume that the differ-
ent factors causing the investor to deviate from the opti-
mal investment proportion x* are random and uncorre-
lated with each other. By the central limit theorem, the ag-
gregate effect of a large number of random uncorrelated
influences is a normally distributed random influence, or
“noise”. Hence, we model the effect of all the factors caus-
ing the investor to deviate from his optimal portfolio by
adding a normally distributed random variable to the op-
timal investment proportion. To be more specific, we as-
sume:

xl = x* 4§, (12)

where &' is a random variable drawn from a truncated nor-
mal distribution with mean zero and standard deviation o.
Notice that noise is investor-specific, thus, & is drawn sep-
arately and independently for each investor.

The noise can be added to the decision-making of
the RII investors, the EMB investors, or to both. The re-
sults are not much different with these various approaches.
Since the RII investors are taken as the benchmark of
rationality, in this chapter we add the noise only to the
decision-making of the EMB investors.

Market Clearance The number of shares demanded by
each investor is a monotonically decreasing function of the
hypothetical price P, (see [24]). As the total number of
outstanding shares is N, the price of the stock at time ¢ is
given by the market clearance condition: P; is the unique
price at which the total demand for shares is equal to the
total supply, N:

xh(Pt)W;i(Pt) _

S ON®) =) 2

where the summation is over all the investors in the mar-
ket, RII investors as well as EMB investors.

N, (13)

Agent Based Simulation The market dynamics begin
with a set of initial conditions which consist of an initial

stock price Py, an initial dividend Dy, the wealth and num-
ber of shares held by each investor at time t = 0, and an
initial “history” of stock returns. As will become evident,
the general results do not depend on the initial conditions.
At the first period (¢ = 1), interest is paid on the bond, and
the time 1 dividend D; = Dy(1 + %) is realized and paid
out. Then investors submit their demand orders, N ;l (Pp),
and the market clearing price P; is determined. After the
clearing price is set, the new wealth and number of shares
held by each investor are calculated. This completes one
time period. This process is repeated over and over, as the
market dynamics develop.

We would like to stress that even the simplified bench-
mark model, with only RII investors, is impossible to solve
analytically. The reason for this is that the optimal in-
vestment proportion, xj,(Py,), cannot be calculated analyt-
ically. This problem is very general and it is encountered
with almost any choice of utility function and distribu-
tion of returns. One important exception is the case of
a negative exponential utility function and normally dis-
tributed returns. Indeed, many models make these two as-
sumptions for the sake of tractability. The problem with
the assumption of negative exponential utility is that it im-
plies Constant Absolute Risk Aversion (CARA), which is
very unrealistic, as it implies that investors choose to invest
the same dollar amount in a risky prospect independent of
their wealth. This is not only in sharp contradiction to the
empirical evidence, but also excludes the investigation of
the two-way interaction between wealth and price dynam-
ics, which is crucial to the understanding of the market.

Thus, one contribution of the agent based simulation
approach is that it allows investigation of models with re-
alistic assumptions regarding investors’ preferences. How-
ever, the main contribution of this method is that it per-
mits us to investigate models which are much more com-
plex (and realistic) than the benchmark model, in which
all investors are RII. With the agent based simulation ap-
proach one can study models incorporating the empiri-
cally and experimentally documented investors’ behavior,
and the heterogeneity of investors.

Results of the LLS Model

We begin by describing the benchmark case where all in-
vestors are rational and identical. Then we introduce to the
market EMB investors and investigate their affects on the
market dynamics.

Benchmark Case: Fully Rational and Identical Agents
In this benchmark model all investors are RII: rational,
informed and identical. Thus, it is not surprising that the
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benchmark model generates market dynamics which are
typical of homogeneous rational agent models:

No Volume All investors in the model are identical; they
therefore always agree on the optimal proportion to in-
vest in the stock. As a consequence, all the investors always
achieve the same return on their portfolio. This means that
at any time period the ratio between the wealth of any two
investors is equal to the ratio of their initial wealths, i. e.:
wi W
—t =0 (14)
wiow
As the wealth of investors is always in the same propor-
tion, and as they always invest the same fraction of their
wealth in the stock, the number of shares held by different
investors is also always in the same proportion:
. X Wi . .
N ; _ tP t t th _ WOI

NoxW oW ow)

Pt

(15)

Since the total supply of shares is constant, this implies that
each investor always holds the same number of shares, and
there is no trading volume (the number of shares held may
vary from one investor to the other as a consequence of
different initial endowments).

Log-Prices Follow a Random Walk In the benchmark
model all investors believe that next period’s price will
converge to the fundamental value given by the discounted
dividend model (Eq. (3)). Therefore, the actual stock price
is always close to the fundamental value. The fluctuations
in the stock price are driven by fluctuations in the fun-
damental value, which in turn are driven by the fluctuat-
ing dividend realizations. As the dividend fluctuations are
(by assumption) uncorrelated over time, one would ex-
pect that the price fluctuations will also be uncorrelated.
To verify this intuitive result, we examine the return auto-
correlations in simulations of the benchmark model.

Let us turn to the simulation of the model. We first
describe the parameters and initial conditions used in the
simulation, and then report the results. We simulate the
benchmark model with the following parameters:

Number of investors = 1000

Risk aversion parameter o= 1.5. This value roughly
conforms with the estimate of the risk aversion param-
eter found empirically and experimentally.

Number of shares = 10,000.

We take the time period to be a quarter, and accord-
ingly we choose:

Riskless interest rate ry = 0.01.

Required rate of return on stock k = 0.04.

Maximal one-period dividend decrease z; = -0.07.
Maximal one-period dividend growth z, = 0.10.

Z is uniformly distributed between these values. Thus,
the average dividend growth rate is g = (z; + 23)/2 =
0.015.

Initial Conditions: Each investor is endowed at time t =
0 with a total wealth of $1000, which is composed of 10
shares worth an initial price of $50 per share, and $500 in
cash. The initial quarterly dividend is set at $0.5 (for an
annual dividend yield of about 4%). As will soon become
evident, the dynamics are not sensitive to the particular
choice of initial conditions.

Figure 1 shows the price dynamics in a typical simu-
lation with these parameters (simulations with the same
parameters differ one from the other because of the dif-
ferent random dividend realizations). Notice that the ver-
tical axis in this figure is logarithmic. Thus, the roughly
constant slope implies an approximately exponential price
growth, or an approximately constant average return.

The prices in this simulation seem to fluctuate ran-
domly around the trend. However, Fig. 1 shows only one
simulation. In order to have a more rigorous analysis we
perform many independent simulations, and employ sta-
tistical tools. Namely, for each simulation we calculate the
autocorrelation of returns. We perform a univariate re-
gression of the return in time ¢ on the return on time t — ji:

R; :O{j+,8th_j+8,

where R; is the return in period ¢, and j is the lag. The
autocorrelation of returns for lag j is defined as:

cov(Ry, Rt—j)

T Tem

and it is estimated by B. We calculate the autocorrelation
for different lags, j = 1, ...40. Figure 2 shows the average
autocorrelation as a function of the lag, calculated over 100
independent simulations. It is evident both from the figure
that the returns are uncorrelated in the benchmark model,
conforming with the random-walk hypothesis.

No Excess Volatility ~ Since the RII investors believe that
the stock price will converge to the fundamental value next
period, in the benchmark model prices are always close
to the fundamental value given by the discounted divi-
dend stream. Thus, we do not expect prices to be more
volatile than the value of the discounted dividend stream.
For a formal test of excess volatility we follow the tech-
nique in [37]. For each time period we calculate the actual
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price P;, and the fundamental value of discounted divi-
dend stream, Ptf , as in Eq. (3). Since prices follow an up-
ward trend, in order to have a meaningful measure of the
volatility, we must detrend these price series. Following
Shiller, we run the regression:

lnPt=bt+C+€t, (16)

in order to find the average exponential price growth rate
(where b and ¢ are constants). Then, we define the de-
trended price as: p; = P;/e’*. Similarly, we define the de-
trended value of the discounted dividend stream p{ , and
compare o (p;) with J(p{). For 100 1000-period simula-
tions we find an average o(p;) of 22.4, and an average

st AN 1A .
Vi=a/ L~ 30 40

lag

J(p{ ) of 22.9. As expected, the actual price and the fun-
damental value have almost the same volatility.

To summarize the results obtained for the benchmark
model, we find that when all investors are assumed to be
rational, informed and identical, we obtain results which
are typical of rational-representative-agent models: no vol-
ume, no return autocorrelations, and no excess volatility.
We next turn to examine the effect of introducing into the
market EMB investors, which model empirically and ex-
perimentally documented elements of investors’ behavior.

The Introduction of a Small Minority of EMB Investors
In this section we will show that the introduction of a small
minority of heterogeneous EMB investors generates many
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of the empirically observed market “anomalies” which
are absent in the benchmark model, and indeed, in most
other rational-representative-agent models. We take this
as strong evidence that the “non-rational” elements of in-
vestor behavior which are documented in experimental
studies, and the heterogeneity of investors, both of which
are incorporated in the LLS model, are crucial to under-
standing the dynamics of the market.

In presenting the results of the LLS model with EMB
investors we take an incremental approach. We begin
by describing the results of a model with a small sub-
population of homogeneous EMB believers. This model
produces the above mentioned market “anomalies”; how-
ever, it produces unrealistic cyclic market dynamics. Thus,
this model is presented both for analyzing the source of
the “anomalies” in a simplified setting, and as a reference
point with which to compare the dynamics of the model
with a heterogeneous EMB believer population.

We investigate the effects of investors’ heterogeneity
by first analyzing the case in which there are two types
of EMBs. The two types differ in the method they use
to estimate the ex-ante return distribution. Namely, the
first type looks at the set of the last m; ex-post returns,
whereas the second type looks at the set of the last m; ex-
post returns. It turns out that the dynamics in this case
are much more complicated than a simple “average” be-
tween the case where all EMB investors have m; and the
case where all EMB investors have m,. Rather, there is
a complex non-linear interaction between the two EMB
sub-populations. This implies that the heterogeneity of in-
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vestors is a very important element determining the mar-
ket dynamics, an element which is completely absent in
representative-agent models.

Finally, we present the case where there is an entire
spectrum of EMB investors differing in the number of ex-
post observations they take into account when estimating
the ex-ante distribution. This general case generates very
realistic-looking market dynamics with all of the above
mentioned market anomalies.

Homogeneous Sub-Population of EMBs When a very
small sub-population of EMB investors is introduced to
the benchmark LLS model, the market dynamics change
dramatically. Figure 3 depicts a typical price path in a sim-
ulation of a market with 95% RII investors and 5% EMB
investors. The EMB investors have m = 10 (i. e., they es-
timate the ex-ante return distribution by observing the set
of the last 10 ex-post returns). o, the standard deviation
of the random noise affecting the EMBs’ decision making
is taken as 0.2. All investors, RII and EMB alike, have the
same risk aversion parameter « = 1.5 (as before). In the
first 150 trading periods the price dynamics look very simi-
lar to the typical dynamics of the benchmark model. How-
ever, after the first 150 or so periods the price dynamics
change. From this point onwards the market is character-
ized by periodic booms and crashes. Of course, Fig. 3 de-
scribes only one simulation. However, as will become evi-
dent shortly, different simulations with the same parame-
ters may differ in detail, but the pattern is general: at some
stage (not necessarily after 150 periods) the EMB investors

Agent Based Computational Economics, Figure 3
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5% of Investors are Efficient Market Believers, 95% Rational Informed Investors
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induce cyclic price behavior. It is quite astonishing that
such a small minority of only 5% of the investors can have
such a dramatic impact on the market.

In order to understand the periodic booms and crashes
let us focus on the behavior of the EMB investors. After
every trade, the EMB investors revise their estimation of
the ex-ante return distribution, because the set of ex-post
returns they employ to estimate the ex-ante distribution
changes. Namely, investors add the latest return generated
by the stock to this set and delete the oldest return from
this set. As a result of this update in the estimation of the
ex-ante distribution, the optimal investment proportion
x* changes, and EMB investors revise their portfolios at
next period’s trade. During the first 150 or so periods, the
informed investors control the dynamics and the returns
fluctuate randomly (as in the benchmark model). As a con-
sequence, the investment proportion of the EMB investors
also fluctuates irregularly. Thus, during the first 150 pe-
riods the EMB investors do not effect the dynamics much.
However, at point a the dynamics change qualitatively (see
Fig. 3). At this point, a relatively high dividend is realized,
and as a consequence, a relatively high return is generated.
This high return leads the EMB investors to increase their
investment proportion in the stock at the next trading pe-
riod. This increased demand of the EMB investors is large
enough to effect next period’s price, and thus a second high
return is generated. Now the EMB investors look at a set
of ex-post returns with two high returns, and they increase
their investment proportion even further. Thus, a positive
feedback loop is created.

Notice that as the price goes up, the informed investors
realize that the stock is overvalued relative to the funda-
mental value P/ and they decrease their holdings in the
stock. However, this effect does not stop the price increase
and break the feedback loop because the EMB investors
continue to buy shares aggressively. The positive feedback
loop pushes the stock price further and further up to point
b, at which the EMBs are invested 100% in the stock. At
point b the positive feedback loop “runs out of gas”. How-
ever, the stock price remains at the high level because the
EMB investors remain fully invested in the stock (the set
of past m=10 returns includes at this stage the very high
returns generated during the “boom” - segment a-b in
Fig. 3).

When the price is at the high level (segment b-c), the
dividend yield is low, and as a consequence, the returns
are generally low. As time goes by and we move from
point b towards point ¢, the set of m = 10 last returns
gets filled with low returns. Despite this fact, the extremely
high returns generated in the boom are also still in this set,
and they are high enough to keep the EMB investors fully

invested. However, 10 periods after the boom, these ex-
tremely high returns are pushed out of the set of relevant
ex-post returns. When this occurs, at point ¢, the EMB in-
vestors face a set of low returns, and they cut their invest-
ment proportion in the stock sharply. This causes a dra-
matic crash (segment c-d). Once the stock price goes back
down to the “fundamental” value, the informed investors
come back into the picture. They buy back the stock and
stop the crash.

The EMB investors stay away from the stock as long
as the ex-post return set includes the terrible return of
the crash. At this stage the informed investors regain con-
trol of the dynamics and the stock price remains close to
its fundamental value. 10 periods after the crash the ex-
tremely negative return of the crash is excluded from the
ex-post return set, and the EMB investors start increasing
their investment proportion in the stock (point e). This
drives the stock price up, and a new boom-crash cycle is
initiated. This cycle repeats itself over and over almost pe-
riodically.

Figure 3 depicts the price dynamics of a single simu-
lation. One may therefore wonder how general the results
discussed above are. Figure 4 shows two more simulations
with the same parameters but different dividend realiza-
tions. It is evident from this figure that although the sim-
ulations vary in detail (because of the different dividend
realizations), the overall price pattern with periodic boom-
crash cycles is robust.

Although these dynamics are very unrealistic in terms
of the periodicity, and therefore the predictability of the
price, they do shed light on the mechanism generating
many of the empirically observed market phenomena. In
the next section, when we relax the assumption that the
EMB population is homogeneous with respect to m, the
price is no longer cyclic or predictable, yet the mechanisms
generating the market phenomena are the same as in this
homogeneous EMB population case. The homogeneous
EMB population case generates the following market phe-
nomena:

Heavy Trading Volume As explained above, shares
change hands continuously between the RII investors and
the EMB investors. When a “boom” starts the RII investors
observe higher ex-post returns and become more opti-
mistic, while the RII investor view the stock as becom-
ing overpriced and become more pessimistic. Thus, at this
stage the EMBs buy most of the shares from the RIls.
When the stock crashes, the opposite is true: the EMBs are
very pessimistic, but the RII investors buy the stock once
it falls back to the fundamental value. Thus, there is sub-
stantial trading volume in this market. The average trading
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volume in a typical simulation is about 1000 shares per pe-
riod, which are 10% of the total outstanding shares.

Autocorrelation of Returns The cyclic behavior of the
price yields a very definite return autocorrelation pat-
tern. The autocorrelation pattern is depicted graphically
in Fig. 5. The autocorrelation pattern is directly linked to
the length of the price cycle, which in turn are determined
by m. Since the moving window of ex-post returns used to
estimate the ex-ante distribution is m = 10 periods long,
the price cycles are typically a little longer than 20 periods
long: a cycle consists of the positive feedback loop (seg-
ment a-b in Fig. 3) which is about 2-3 periods long, the
upper plateau (segment b-c in Fig. 3) which is about 10
periods long, the crash that occurs during one or two peri-

ods, and the lower plateau (segment d-e in Fig. 3) which is
again about 10 periods long, for a total of about 23-25 pe-
riods. Thus, we expect positive autocorrelation for lags of
about 23-25 periods, because this is the lag between one
point and the corresponding point in the next (or previ-
ous) cycle. We also expect negative autocorrelation for lags
of about 10-12 periods, because this is the lag between
a boom and the following (or previous) crash, and vice
versa. This is precisely the pattern we observe in Fig. 5.

Excess Volatility The EMB investors induce large devia-
tions of the price from the fundamental value. Thus, price
fluctuations are caused not only by dividend fluctuations
(as the standard theory suggests) but also by the endoge-
nous market dynamics driven by the EMB investors. This
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“extra” source of fluctuations causes the price to be more
volatile than the fundamental value P/.

Indeed, for 100 1000-period independent simulations
with 5% EMB investors we find an average o (p;) of 46.4,

and an average o ( p{ ) of 30.6; i. e., we have excess volatility
of about 50%.

As a first step in analyzing the effects of heterogene-
ity of the EMB population, in the next section we examine
the case of two types of EMB investors. We later analyze
amodel in which there is a full spectrum of EMB investors.

Two Types of EMBs  One justification for using a repre-
sentative agent in economic modeling is that although in-
vestors are heterogeneous in reality, one can model their
collective behavior with one representative or “average”
investor. In this section we show that this is generally not
true. Many aspects of the dynamics result from the non-
linear interaction between different investor types. To il-
lustrate this point, in this section we analyze a very simple
case in which there are only two types of EMB investors:
one with m = 5 and the other with m = 15. Each of these
two types consists of 2% of the investor population, and
the remaining 96% are informed investors. The represen-
tative agent logic may tempt us to think that the resulting
market dynamics would be similar to that of one “average”
investor, i. e. an investor with m = 10. Figure 6 shows that
this is clearly not the case. Rather than seeing periodic cy-
cles of about 23-25 periods (which correspond to the av-
erage m of 10, as in Fig. 3), we see an irregular pattern. As
before, the dynamics are first dictated by the informed in-
vestors. Then, at point a, the EMB investors with m = 15
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induce cycles which are about 30 periods long. At point b
there is a transition to shorter cycles induced by the m = 5
population, and at point c there is another transition back
to longer cycles. What is going on?

These complex dynamics result from the non-linear
interaction between the different sub-populations. The
transitions from one price pattern to another can be
partly understood by looking at the wealth of each sub-
population. Figure 7 shows the proportion of the total
wealth held by each of the two EMB populations (the re-
maining proportion is held by the informed investors). As
seen in Fig. 7, the cycles which start at point a are dictated
by the m = 15 rather than the m = 5 population, be-
cause at this stage the m = 15 population controls more
of the wealth than the m = 5 population. However, af-
ter 3 cycles (at point b) the picture is reversed. At this
point the m = 5 population is more powerful than the
m = 15 population, and there is a transition to shorter
boom-crash cycles. At point ¢ the wealth of the two sub-
populations is again almost equal, and there is another
transition to longer cycles. Thus, the complex price dy-
namics can be partly understood from the wealth dynam-
ics. But how are the wealth dynamics determined? Why
does the m = 5 population become wealthier at point b,
and why does it lose most of this advantage at point ¢? It
is obvious that the wealth dynamics are influenced by the
price dynamics, thus there is a complicated two-way inter-
action between the two. Although this interaction is gen-
erally very complex, some principle ideas about the mu-
tual influence between the wealth and price patterns can
be formulated. For example, a population that becomes
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dominant and dictates the price dynamics, typically starts
under-performing, because it affects the price with its ac-
tions. This means pushing the price up when buying, and
therefore buying high, and pushing the price down when
selling. However, a more detailed analysis must consider
the specific investment strategy employed by each popula-
tion. For a more comprehensive analysis of the interaction
between heterogeneous EMB populations see [25].

The two EMB population model generates the same
market phenomena as did the homogeneous population
case: heavy trading volume, return autocorrelations, and
excess volatility. Although the price pattern is much less
regular in the two-EMB-population case, there still seems
to be a great deal of predictability about the prices. More-
over, the booms and crashes generated by this model are
unrealistically dramatic and frequent. In the next section
we analyze a model with a continuous spectrum of EMB
investors. We show that this fuller heterogeneity of in-
vestors leads to very realistic price and volume patterns.

Full Spectrum of EMB Investors Up to this point we
have analyzed markets with at most three different sub-
populations (one RII population and two EMB popula-
tions). The market dynamics we found displayed the em-
pirically observed market anomalies, but they were unreal-
istic in the magnitude, frequency, and semi-predictability
of booms and crashes. In reality, we would expect not only
two or three investor types, but rather an entire spectrum
of investors. In this section we consider a model with a full
spectrum of different EMB investors. It turns out that more
is different. When there is an entire range of investors, the
price dynamics become realistic: booms and crashes are

300 400

time

not periodic or predictable, and they are also less frequent
and dramatic. At the same time, we still obtain all of the
market anomalies described before.

In this model each investor has a different number of
ex-post observations which he utilizes to estimate the ex-
ante distribution. Namely, investor i looks at the set of the
m' most recent returns on the stock, and we assume that
m' is distributed in the population according to a trun-
cated normal distribution with average 1 and standard
deviation o0, (as m < 0 is meaningless, the distribution
is truncated at m = 0).

Figure 8 shows the price pattern of a typical simula-
tion of this model. In this simulation 90% of the investors
are RII, and the remaining 10% are heterogeneous EMB
investors with m = 40, and 0, = 10. The price pattern
seems very realistic with “smoother” and more irregular
cycles. Crashes are dramatic, but infrequent and unpre-
dictable.

The heterogeneous EMB population model generates
the following empirically observed market phenomena:

Return Autocorrelation: Momentum and Mean-Reversion
In the heterogeneous EMB population model trends are
generated by the same positive feedback mechanism that
generated cycles in the homogeneous case: high (low) re-
turns tend to make the EMB investors more (less) aggres-
sive, this generates more high (low) returns, etc. The dif-
ference between the two cases is that in the heterogeneous
case there is a very complicated interaction between all
the different investor sub-populations and as a result there
are no distinct regular cycles, but rather, smoother and
more irregular trends. There is no single cycle length —
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the dynamics are a combination of many different cycles.
This makes the autocorrelation pattern also smoother and
more continuous. The return autocorrelations in the het-
erogeneous model are shown in Fig. 9. This autocorrela-
tion pattern conforms with the empirical findings. In the
short-run (lags 1-4) the autocorrelation is positive - this
is the empirically documented phenomena known as mo-
mentum: in the short-run, high returns tend to be fol-
lowed by more high returns, and low returns tend to be fol-
lowed by more low returns. In the longer-run (lags 5-13)
the autocorrelation is negative, which is known as mean-
reversion. For even longer lags the autocorrelation even-
tually tends to zero. The short-run momentum, longer-
run mean-reversion, and eventual diminishing autocorre-

20 30 40

lation creates the general “U-shape” which is found in em-
pirical studies [7,13,31] and which is seen in Fig. 9.

Excess Volatility The price level is generally determined
by the fundamental value of the stock. However, as in the
homogeneous EMB population case, the EMB investors
occasionally induce temporary departures of the price
away from the fundamental value. These temporary de-
partures from the fundamental value make the price more
volatile than the fundamental value. Following Shiller’s
methodology we define the detrended price, p, and fun-
damental value, p/. Averaging over 100 independent sim-
ulations we find o(p) = 27.1 and a(pf) = 19.2, which is
an excess volatility of 41% .
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Heavy Volume As investors in our model have different
information (the informed investors know the dividend
process, while the EMB investors do not), and different
ways of interpreting the information (EMB investors with
different memory spans have different estimations regard-
ing the ex-ante return distribution), there is a high level of
trading volume in this model. The average trading volume
in this model is about 1700 shares per period (17% of the
total outstanding shares). As explained below, the volume
is positively correlated with contemporaneous and lagged
absolute returns.

Volume is Positively Correlated with Contemporaneous
and Lagged Absolute Returns  Investors revise their port-
folios as a result of changes in their beliefs regarding the
future return distribution. The changes in the beliefs can
be due to a change in the current price, to a new divi-
dend realization (in the case of the informed investors),
or to a new observation of an ex-post return (in the case
of the EMB investors). If all investors change their be-
liefs in the same direction (for example, if everybody be-
comes more optimistic), the stock price can change sub-
stantially with almost no volume - everybody would like
to increase the proportion of the stock in his portfolio, this
will push the price up, but a very small number of shares
will change hands. This scenario would lead to zero or per-
haps even negative correlation between the magnitude of
the price change (or return) and the volume. However, the
typical scenario in the LLS model is different. Typically,
when a positive feedback trend is induced by the EMB
investors, the opinions of the informed investors and the
EMB investors change in opposite directions. The EMB in-
vestors see a trend of rising prices as a positive indication
about the ex-ante return distribution, while the informed
investors believe that the higher the price level is above the
fundamental value, the more overpriced the stock is, and
the harder it will eventually fall. The exact opposite holds
for a trend of falling prices. Thus, price trends are typi-
cally interpreted differently by the two investor types, and
therefore induce heavy trading volume. The more pro-
nounced the trend, the more likely it is to lead to heavy
volume, and at the same time, to large price changes which
are due to the positive feedback trading on behalf of the
EMB investors.

This explains not only the positive correlation between
volume and contemporaneous absolute rates of return, but
also the positive correlation between volume and lagged
absolute rates of return. The reason is that the behavior of
the EMB investors induces short-term positive return au-
tocorrelation, or momentum (see above). That is, a large
absolute return this period is associated not only with high

volume this period, but also with a large absolute return
next period, and therefore with high volume next period.
In other words, when there is a substantial price increase
(decrease), EMB investors become more (less) aggressive
and the opposite happens to the informed traders. As we
have seen before, when a positive feedback loop is started,
the EMB investors are more dominant in determining the
price, and therefore another large price increase (decrease)
is expected next period. This large price change is likely to
be associated with heavy trading volume as the opinions
of the two populations diverge. Furthermore, this large in-
crease (decrease) is expected to make the EMB investors
even more optimistic (pessimistic) leading to another large
price increase (decrease) and heavy volume next period.

In order to verify this relationship quantitatively, we
regress volume on contemporaneous and lagged absolute
rates of return for 100 independent simulations. We run
the regressions:

Vi
Vi

a+Bc|Ri—1+¢&, and
a+,BL|Rt_1_1|+8t,

(17)

where V; is the volume at time ¢ and R; is the total return
on the stock at time ¢, and the subscripts C and L stand for
contemporaneous and lagged. We find an average value of
870 for ¢ with an average t-value of 5.0 and an average
value of 886 for A, with an average t-value of 5.1.

Discussion of the LLS Results The LLS model is an
Agent Based Simulation model of the stock market which
incorporates some of the fundamental experimental find-
ings regarding the behavior of investors. The main non-
standard assumption of the model is that there is a small
minority of investors in the market who are uninformed
about the dividend process and who believe in market ef-
ficiency. The investment decision of these investors is re-
duced to the optimal diversification between the stock and
the bond.

The LLS model generates many of the empirically doc-
umented market phenomena which are hard to explain
in the analytical rational-representative-agent framework.
These phenomena are:

Short term momentum;

Longer term mean reversion;

Excess volatility;

Heavy trading volume;

Positive correlation between volume and contempora-

neous absolute returns;

e DPositive correlation between volume and lagged abso-
lute returns;

e Endogenous market crashes.
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The fact that so many “puzzles” are explained with a sim-
ple model built on a small number of empirically docu-
mented behavioral elements leads us to suspect that these
behavioral elements are very important in understanding
the workings of the market. This is especially true in light
of the observations that a very small minority of the non-
standard bounded-rational investors can have a dramatic
influence on the market, and that these investors are not
wiped out by the majority of rational investors.

Summary and Future Directions

Standard economic models typically describe a world of
homogeneous rational agents. This approach is the foun-
dation of most of our present day knowledge in economic
theory. With the Agent Based Simulation approach we can
investigate a much more complex and “messy” world with
different agent types, who employ different strategies to try
to survive and prosper in a market with structural uncer-
tainty. Agents can learn over time, from their own expe-
rience and from their observation about the performance
of other agents. They co-evolve over time and as they
do so, the market dynamics change continuously. This is
a world view closer to biology, than it is to the “clean”
realm of physical laws which classical economics has
aspired to.

The Agent Based approach should not and can not re-
place the standard analytical economic approach. Rather,
these two methodologies support and complement each
other: When an analytical model is developed, it should
become standard practice to examine the robustness of
the model’s results with agent based simulations. Simi-
larly, when results emerge from agent based simulation,
one should try to understand their origin and their gener-
ality, not only by running many simulations, but also by
trying to capture the essence of the results in a simplified
analytical setting (if possible).

Although the first steps in economic agent based sim-
ulations were made decades ago, economics has been slow
and cautious to adopt this new methodology. Only in re-
cent years has this field begun to bloom. It is my belief and
hope that the agent based approach will prove as fruitful
in economics as it has been in so many other branches of
science.
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Introduction

Agent Based Modeling and Neoclassical Economics based
modeling naturally generates complexity whereas neoclas-
sical economics is incompatible in principle with complex-
ity. The reasons that preclude complexity in neoclassical
economic models also ensure that neoclassical economics
cannot describe any society ever observed or that could
ever be observed.

The meaning of complexity has been developed,
mainly by physicists, to cover unpredictable, episodic
volatility and also particular network topologies. In both
cases there are nodes representing the components of
a system and there are links among the components that
can represent interactions amongst those components.
Unpredictable, episodic volatility can result from particu-
lar forms of behavior by components and the interactions
amongst those components. I am not aware of any investi-
gations into relationships between that type of complexity
and network topology.

The point to be made here is that the core assumptions
and the methodology of conventional neoclassical eco-
nomics preclude the emergence of episodic volatility and
render social network topology inconsequential. When
elaborated with heterogeneous agents, network topologies
might have some effects on the outputs from computa-
tional neoclassical economic models - but, again, I am not
aware of any systematic investigations into this possibi-
lity.

*The remarks about neoclassical economics are drawn from my
inaugural lecture [28]

microeconomic _—CGE

" agent
eory ,
\ AcE —_heterogeneity
strong / ABSS agent
agent metastability
interaction I C|S
statistical
physics

Agent Based Modeling and Neoclassical Economics: A Critical
Perspective, Figure 1
Constraints on model designs

Economic Modeling Approaches

All definitions of complexity take for granted that there
will be some specifications of individual components, that
in general each component will interact with some other
components and there will be some macro level phenom-
ena that could not be described or understood except on
the basis of the components and their interactions. The
purpose of this section is to categorize the ways in which
economists, agent based modelers and complexity scien-
tists approach this micro-macro issue.

There are several strands in the economics and social
sciences literatures for building macro analyzes explicitly
on micro foundations. The main strands are computable
general equilibrium (CGE), agent based computational
economics (ACE), agent based social simulation (ABSS)
and complexity science (CS) including econophysics and
sociophysics. These strands are not all mutually exclusive
although there are some conflicting elements among sev-
eral of them.

Computable General Equilibrium

CGE is the most theoretically constrained of the four
strands under consideration. As with general equilibrium
theory, it is predicated on the assumptions that house-
holds maximize utility and firms maximize profits and that
markets clear. The computational load associated with ex-
plicit representation of every household and firm leads to
the adoption of representative agents intended to capture
the behavior of a group such as all households or firms
in a particular industrial sector. Some CGE models rep-
resent technology with input-output tables; others with
marginalist production functions.

Agent Based Computational Economics

An objection to the representative agent device is raised
in the ACE literature where the effects of agent hetero-
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geneity are explored. In these models, households can dif-
fer in their utility functions (or at least the parameters of
those functions) or agents can adopt different game theo-
retic strategies and firms can employ different production
functions. The theoretical core of ACE is not essentially
different from that of CGE, both relying on conventional
economic theory.

Agent Based Social Simulation

Models reported in the ABSS literature are by and large
not driven by traditional theoretical concerns. There is
a very wide range in the degree of empirical content: many
models being developed to explore “stylized facts”, others
driven by qualitative case studies. The latter are often vali-
dated against both qualitative micro level data provided by
stakeholders and against macro level statistical data.

Complexity Science

Because neoclassical economic theory excludes social em-
beddedness, the social complexity research that could be
relevant to a consideration of neoclassical economics must
be concerned with unpredictable, episodic turbulence. The
CS literature on financial markets was seminal and re-
mains well known. The interest in financial markets goes
back to Mandelbrot [25] who used financial market data
both because it exhibits “outliers” in the relative change
series and because of the fineness of the time grain of
the price and volume data. A seminal article by Palmer
et al. [35] reported a simulation model in which individ-
uals were represented by an early form of software agent
and which produced time series marked by the occasional
episodes of volatility of the sort observed in real financial
market data. However, similar unpredictable episodes of
turbulence and volatility have emerged in models of the
early post-Soviet Russian economy [31], domestic water
consumption [8,15] and models of transactions in inter-
mediated markets [29]. Fine grain data exhibiting the same
patterns of volatility were found subsequent to the original
publication of each model.

Relationships Among the Four Approaches

The common thread between CGE and ACE is their com-
mon reliance on longstanding economic concepts of util-
ity, continuous production functions, profit maximiza-
tion, the use of game theory et sic hoc omnes. The com-
mon thread between ABSS and complexity science is the
importance of social interaction and specifications of in-
dividual behavior that are either more ad hoc or based on
detailed qualitative evidence for specific cases.

Complex, as distinct from rational, agents’ behavior is
“sticky”: it takes non-trivial events or social pressures to
make them change. This is the social meaning of metasta-
bility. They are also socially embedded in the sense that
they interact densely with other agents and are influenced
by some of those other agents, generally speaking others
who are most like themselves and who they have reason
to like and respect [10]. The social difference between in-
fluence and imitation is the social equivalent of the physi-
cal difference between dissipative and non-dissipative pro-
cesses. Of course, such influence is meaningless unless the
agents differ in some way - they must be heterogeneous.

Methodological Issues

Neoclassical economic theory has no empirically based
micro foundation. It has agents of two types: households
that maximize utility and firms that maximize profits.
Time and expectations are allowed to influence these max-
imization processes by substituting “expected utility” or
“expected profits” for the realized magnitudes. In such
models, agents (households or firms) act as if they know
with certainty a population distribution of possible out-
comes from their actions. In the terminology introduced
by Knight [23], risk pertains when the agent knows the fre-
quency distribution of past outcomes that, as in actuarial
contexts, are expected with confidence to pertain in the fu-
ture. When no such frequency distribution is known, then
uncertainty prevails. In the sense of Knight (though the
terminology gets muddled in the economics literature),
the assumption that agents maximize expected utility or
expected profits is tenable in conditions of risk but not
in conditions of uncertainty. Moreover, it has long been
known (with Nobel prizes awarded to Allais [4] and to
Daniel Kahneman of Kahneman and Tversky [21] for the
demonstrations) that individuals do not act as if they were
maximizers of utility or expected utility. Nor is there any
evidence that enterprises actually maximize profits. Many
economists acknowledge that rationality is bounded and
that we lack the cognitive capacity to absorb the required
amount of information and then to process that infor-
mation in order to identify some optimal decision or ac-
tion. This has given rise to a variety of schools of eco-
nomic thought such as evolutionary economics (Nelson
and Winter [32] is the seminal work here) and Keynesian
economics [22] being amongst the best known.

There is evidently a recognizable (and often recog-
nized) divide between the behavioral assumptions of neo-
classical economics on the one hand and, on the other
hand, common observation, experimental observation
(cf. [5]) and a host of business histories (the work of Chan-
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dler [12,13] and Penrose [37] being surely the most influ-
ential). The evidence shows that the assumptions of neo-
classical economics are inaccurate descriptions of the be-
havior the theories and models are purported to represent.
There are two classes of defense for these descriptively in-
accurate assumptions. On is the as-if defense and the other
is the for-simplicity defense. These are considered in turn.

The as-if defense was enunciated in several forms by
Samuelson [39], Friedman [17] and Alchian [3] in the
years around 1950. The details of the differences between
Samuelson and Friedman are not germane here. Both ar-
gued that their purpose was to model aggregate economic
entities such as markets or national economies and de-
scriptively inaccurate assumptions at micro level are per-
missible provided that the models are descriptively accu-
rate at macro level. Alchian’s contribution was to propose
a mechanism. He asserted that, at least in the case of firms,
those that were more profitably would be more likely to
survive than firms that were less profitable. Consequently,
over time, more and more firms would approach more
closely to the maximum of profits available to them so that,
even if they did not actually seek to maximize profits, the
surviving population of firms would be those that implic-
itly did actually maximize profits.

The as-if defense is in practice an equilibrium argu-
ment. Neoclassical economic models are solved for the
simultaneous maximization of utility and profits by all
agents — or, at least it is proved that such a solution ex-
ists. In such a configuration, no agent has any incentive
to change its behavior so the equilibrium presumed to be
stable in the small (that is, once reached it is maintained).
There is no proof that any general equilibrium model with
an arbitrary number of agents is stable in the large (that
is, that any feasible solution is an attractor of the system
as a whole). The Alchian form of the as-if defense does
not take into account any effects of agent interaction or
influence of any agent by any other agent. In empirical -
that is to say, econometric - testing of neoclassical models,
extreme events and observations are dismissed as outliers
and removed from the data set being used for the testing
or else their effect is encapsulated by specially constructed
dummy variables.

The for-simplicity defense rests on the presumption
that simpler models are always to be preferred to more
complicated models and the achievement of simplicity jus-
tifies making assumptions about behavior and environ-
ment that are not justified by evidence. The author has for
many years now justified this claim by choosing any ar-
bitrary leading economics journal and searching the most
recent issue for an assumption made “for simplicity”. On
every occasion, the assumption made “for simplicity” has

turned out to be an assumption that changed the nature
of an empirical problem being addressed so that it con-
formed to the requirements (such as convexity or absence
of externalities) of the mathematical technique being ap-
plied to the analysis. Seven of the eleven papers in, at the
time of writing, the most recent (November 2007) issue of
the Quarterly Journal of Economics appealed to the value
of simplicity or, in one case, tractability to justify assump-
tions or specifications that were not justified empirically.
The direct quotations are:

Tractability obviously dictated the use of a simple
summary statistic of the distribution of legislator
ideologies (see p. 1418 in [14]).

The fact, established below, that deriving the prop-
erties of the seats-votes relationship requires consid-
eration only of the properties of the univariate dis-
tribution of ¢ as opposed to those of the bivariate
distribution of o and p considerably simplifies the
analysis (see p. 1480 in [9]).

We make three key assumptions to simplify the
analysis. First, we assume that all jobs last indef-
initely once found (i.e., there is no subsequent
job destruction). Second, anticipating our empiri-
cal findings, we assume that wages are exogenously
fixed, eliminating reservation-wage choices. Third,
we assume that utility is separable in consumption
and search effort (see p. 1516 in [11]).

A more conventional timing assumption in search
models without savings is that search in period ¢
leads to a job that begins in period t + 1. Assuming
that search in period t leads to a job in period t itself
simplifies the analytic expressions... (see p. 1517
in [11]).

For Simplicity, we’ll assume that ﬂSAT (X,‘,S) s ﬂTEST
(Xi’s) and Boru (X,-,S) are linear in X; ; and can
thus be written .... We will further assume that
the random utility component is independent and
identically distributed (i. i. d.) from a type 1 extreme
value distribution (see p. 1616 in [19]).

For simplicity, all households represent two-earner
married couples of the same age (see p. 1683
in [33]).

For simplicity, the model assumes that the high-

est 35 years of earnings correspond to the ages be-
tween 25 and 59 (see p. 1685 in [33]).

We follow Auerbach and Kotlikoff (1987) by mea-
suring efliciency gains from social security privati-
zation using an LSRA that compensates households
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that would otherwise lose from reform. To be clear,
the LSRA is not being proposed as an actual govern-
ment institution. Instead, it is simply a hypothetical
mechanism that allows us to measure the standard
Hicksian efficiency gains in general equilibrium as-
sociated with privatization (see p. 1687 in [33]).

Assume for simplicity that these batch sizes are
fixed for each product class .... Given these fixed
batch sizes for the two classes of product, the firm
maximizes profits by deciding how many produc-
tion runs. .. [to] undertake... (see pp. 1731-1732
in [7]).

We adopt a number of simplifying assumptions to
focus on the main implications of this framework.
First, we assume that the relationship between the
firm and each manager is short-term. Second, when
Xi,k = Zi k> the manager obtains a private bene-
fit. We assume that managers are credit-constrained
and cannot compensate principals for these private
benefits and that these private benefits are suffi-
ciently large so that it is not profitable for the princi-
pal to utilize incentive contracts to induce managers
to take the right action. These assumptions imply
that delegation will lead to the implementation of
the action that is preferred by the manager. .. (see
p- 1769 in [1]).

All but the first of these quotations are from theoreti-
cal papers and the “simplifications” enable the authors
to produce equilibrium solutions to their models. No
one has ever knowingly observed an equilibrium and in
a world where not everything is convex due to (for exam-
ple) economies of large scale production and where com-
putational capacities limit cognitive abilities, in principle
no equilibrium ever will be observed. Indeed, Radner [38]
showed that a necessary condition for general equilibrium
to exist is that all agents have unlimited computational ca-
pacities if trading takes place at a sequence of dates. In the
core general equilibrium model, all transactions are agreed
at a single moment for all time. The “simplifications” re-
quired to produce equilibrium models cannot therefore
be justified on the basis of relevance to empirical obser-
vation. They also ensure that the models cannot capture
complexity.

Conditions for Complexity

The social and behavioral conditions for complexity man-
ifest as unpredictable, episodic volatility appears to be the
following:

o Individuals behave in routine ways unless some non-
trivial event or events or social pressure from other in-
dividuals induce them to change their behavior.
Individuals interact with other individuals.

Individuals influence but do not generally imitate one
another.

e Interactions amongst individuals and individual be-
havior are not dominated by events that do not arise
from that interaction and behavior.

These conditions were first noticed as a general pheno-
menon in physical models and articulated by Jensen [20]
as metastability, dense interaction, dissipation, and cold-
ness of the system, respectively. The phenomenon of un-
predictable, clustered volatility in social models had pre-
viously been noticed as had its similarity to self organized
criticality as described by statistical physicists starting with
Bak et al. [6].

Complexity and Social Volatility

Volatility in social statistical time series and power law dis-
tributed cross sectional data have long been observed by
statisticians and social scientists. Vilfredo Pareto [36] dis-
covered that the personal distribution of income is power
law distributed, a finding which has been replicated widely
across countries and time. The same phenomenon is now
well known to characterize word use [43] city sizes [44],
firm sizes (including market shares) [41], distributions
of links between internet sites [2] and a host of other
cross sectional distributions. Where firm sizes and mar-
ket shares are concerned, there have been strands in the
industrial economics literature reporting models yielding
that result. However, the observed results have not been
explained by models in which households maximize util-
ity and firms maximize profits. As Simon and Bonini [41]
point out, some variant to Gibrat’s Law (or the law of pro-
portional effect), which states that the growth rate of indi-
viduals (say firms) is not correlated with individual size,
will generate one highly skewed distribution or another
and the particular distribution can be refined by an appro-
priate choice of the representation of the law.

These desired results also emerged from a series of
models based on plausible or empirically based specifica-
tions of individual behavior and social interaction in agent
based social simulation models. In capturing stakehold-
ers’ perceptions of the behavior and social interactions of
relevant classes of individuals and also in relying on well
validated propositions from social psychology and cogni-
tive science, models were implemented that produced the
sort of skewed distributions that we observe in practice.
Episodic volatility followed from the metastability and so-
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cial embeddedness of agents. In the nature of this process,
most changes are relatively small in magnitude but a few
changes are very large. This results in fat-tailed distribu-
tions of relative changes in variable values at macro level
and also in cross sectional data as described by Gibrat’s
Law. In practice, the large relative changes tend to be
bunched together in unpredictable episodes of volatility.

While these results arise naturally in evidence-driven
ABSS models, they are not easily reconciled with neoclas-
sical economic theory. As Krugman [24] (quoted by Eeck-
hout [16]) had it, “We have to say that the rank-size rule
is a major embarrassment for economic theory: one of
the strongest statistical relationships we know, lacking any
clear basis in theory”.

Complexity and Social Network Topology

Social network topologies can obviously have no meaning
in a model comprised by representative agents. In ACE,
ABSS and CS models, there will always be a network of
social interaction. However, the nature of the interaction
can be very different across the different approaches.

In ACE models, it is common to find social inter-
action taking the form of games - typically the Prison-
ers’ Dilemma. A nice example of such a model is Tesfat-
sion’s labor market model using McFadzean and Tesfat-
sions’s [26,42] Trading Network Game. In Tesfatsions’s
labour market model, there is a fixed number of work-
ers and a fixed number of employers identical in their
total offers of labour and of employment, respectively.
Each worker (resp. employer) ascribes a value of utility
to an employment arrangement with any employer (resp.
worker). The utility starts out at a some exogenous value
and is then increased or reduced depending on the expe-
rience at each trading date. The experience is the combi-
nation of cooperation and defection by each party to the
employment relation at each time step. The social network
in this model

. is represented in the form of a directed graph
in which the vertices V(E) of the graph represent
the work suppliers and employers, the edges of the
graph (directed arrows) represent work offers di-
rected from work suppliers to employers, and the
edge weight on any edge denotes the number of
accepted work offers (contracts) between the work
supplier and employer connected by the edge (see
p-431in [42]).

The topology of this network depends on the outcomes of
sequences of prisoners’ dilemma games determining the
utilities of workers and employers to one another. Every

worker can see every employer and conversely so that the
directed links between agents are limited by the number
of work contracts into which each agent can engage. After
some arbitrary number of time steps, the strategies of the
agents are represented as genes and a genetic algorithm
is applied so that, over a whole simulation, the elements
of the most successful defect/cooperate strategies become
more dominant. Since these strategies determine the out-
comes of the prisoners’ dilemma games, the social network
continues to evolve with utility enhancing strategies be-
coming more dominant.

In a recent (at the time of writing) issue of The Journal
of Economic Dynamics and Control, Page and Tassier [34]
modeled the development of chain stores across markets.
A firm was defined by its product. Each product was as-
signed an “intrinsic quality” represented by an integer
drawn at random from a distribution 6 (g), and a set of
I “hedonic attributes” represented by I positive integers
in a range from 0 to some arbitrary, user selected num-
ber A. Consumers are represented by utility functions that
are positively related to “quality” and negatively related
to the difference between some desired set of hedonic at-
tributes and the hedonic attributes of the product. There
are a number (set by the model user) of discrete markets.
Page and Tassier then run a variety of simulations that
allow for firms to replicate themselves across markets or,
through lack of demand, to leave markets.

These two models seem to be representative of a wide
class of ACE models. In the first place, agents are defined
by utility functions or game theoretic strategies so that the
behavior of any individual agent is either fixed or responds
smoothly to infinitesimal changes in prices, incomes or
whatever other arguments might populate its utility func-
tion. In either event, agents cannot be metastable and fol-
low behavioral routines until (but only until) some signif-
icant stimulus causes them to change their behavioral re-
sponses. In the second place, agents’ preferences and re-
sponses are not influenced by the preferences or actions
of any other agents like themselves. That is, their behavior
as determined by their utility functions or game theoretic
strategies will respond to market signals or the actions of
the other agent in their game but not to communications
with or observations of any other agents. These agents are
not, in the words of Granovetter [18], socially embedded
especially since it is rare in a neoclassical model for there
to be more than two players in a game and unheard-of for
there to be more than three (cf. [27]).

Whilst we cannot state with authority that the con-
ditions of metastability, social influence and the consis-
tency principle are necessary for complexity to emerge at
macro level from micro level behavior, these conditions
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have characterized the social simulation models that have
produced the episodic and unpredictable volatility associ-
ated with complexity. The absence of social embeddedness
in the neoclassical ACE models must also explain their lack
of any representation of social (as distinct from merely
economic) networks.

Complexity and the Role of Evidence

An interesting and fairly typical feature of papers report-
ing neoclassical models - both theoretical and computa-
tional with agents - is that they motivate the modeling ex-
ercise by appeal to some empirical, macro level economic
phenomenon and then ignore evidence about the micro
level behavior that might bring about such phenomena.
This practice can be seen in both of the ACE examples de-
scribed in Sect. “Conditions for Complexity”.

Tesfatsion [42] motivates her model on more theoret-
ical grounds than do Page and Tassier [34]. She wrote:

Understanding the relationship between market
structure, market behavior, and market power in
markets with multiple agents engaged in repeated
strategic interactions has been a major focus of an-
alytical, empirical, and human-subject experimental
researchers in industrial organization since the early
1970s. To date, however, definitive conclusions have
been difficult to obtain.

She goes on to cite “a unified theoretical treatment of
oligopoly decision-making”, an article on empirical find-
ings with respect to market power that looks only at indus-
try level statistical measures, and some work with experi-
mental subjects. No references are made, either by Tesfat-
sion or those she cites, to any case studies of the “repeated
strategic interactions” in which the “multiple agents” en-
gage.

Page and Tassier give more historical detail. Their mo-
tivation turns on:

Chain stores and franchises dominate the Ameri-
can economic landscape. A drive through any mod-
erately sized city reveals remarkable conformity in
restaurants, stores, and service centers. Anyone who
so desires can eat at Applebee’s, shop at Wal-Mart,
and grab a Starbuck’s latte grande while getting her
car brakes done at Midas (see p. 3428 in [34]).

For example, in many markets, Lowe’s and Home
Depot capture a significant portion of the home
improvement market. These big box stores drove
many small independent hardware stores and lum-
ber yards out of business. The residual demand

resides in niches that can be filled by hardware
chains specializing in upscale home furnishings like
Restoration Hardware. ... Often, when Lowe’s en-
ters a market, it creates a niche for Restoration
Hardware as well. And, as both Lowe’s and Restora-
tion Hardware enter more and more markets, they
in turn create additional common niches that can
be filled by even more chains. Thus, chains beget
chains (see p. 3429 in [34]).

So this article claims a clear and direct historical basis. And
yet

... To capture the increasing correlation in niches
formally, we introduce two new concepts, the niche
landscape and the differential niche landscape. The
former plots the quality required to enter a mar-
ket at a given set of hedonic attributes. The latter
plots the differences in two niche landscapes. In the
presence of chains, differential niche landscapes be-
come flat, i.e. the niche landscapes become corre-
lated across markets (see p. 3429 in [34]).

The representation of the actors in this framework has
been discussed above. At no stage is the agent design dis-
cussed in relation to any empirical accounts of the behav-
ior and motivations of the managers of Wal-Mart, Star-
bucks, Lowes, Restoration Hardware or any other enter-
prise or any consumer.

This is, of course, the way of neoclassical economics
and it has extended to ACE research as well. What is per-
haps more unsettling is that it has also extended to the bas-
tions of complexity science - the econophysicists.

There is a long literature now on complexity and fi-
nancial markets and also on complexity an the formation
of opinions - opinion dynamics. There are at least two
reasons for the popularity amongst physicists of financial
market modeling. First, there are long series of very fine
grain data. Second, the data exhibits the unpredictable,
episodic volatility associated with complexity. The popu-
larity of opinion dynamics cannot be based on the quality
of the data — even at macro level - because that quality is
much more coarse grain and inconsistent over time than
financial market data. Nonetheless, the two literatures are
marked by the heavy presence and influence of physicists
and by the lack of connection between their agent designs
and any available evidence about the behavior of traders in
financial markets or voters or others acting on or express-
ing their opinions.

A good example from the opinion dynamics litera-
ture — chosen at random from The European Physical Jour-
nal B - is by Schweitzer and Hoyst [40], “Modeling collec-
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tive opinion formation by means of active Brownian par-
ticles”. The motivation for their article is

The formation of public opinion is among the chal-
lenging problems in social science, because it reveals
a complex dynamics, which may depend on differ-
ent internal and external influences. We mention
the influence of political leaders, the biasing effect
of mass media, as well as individual features, such as
persuasion or support for other opinions.

We immediately have complexity and social relevance to
motivate an article on social dynamics in a physics jour-
nal. However, there is no empirical justification for mod-
eling individuals who form opinions as active Brownian
particles. The apparent complexity in the outcomes of so-
cial processes of opinion formation can be produced by the
non-linear feedbacks of fields of active Brownian particles.
Whether individuals actually behave in this way is not ad-
dressed by Schweitzer and Hoyst or, as far as I know, by
any contributor to the opinion dynamics literature.

Much the same can be said of the econophysics liter-
ature on financial markets. The clustered volatility associ-
ated with complexity is readily produced by physical mod-
els with characteristics of metastability, dissipation and
dense patterns of interaction. What the econophysicists
fail to address is the question of whether their particular
formulations - and active Brownian particle is just one of
many examples — are descriptively accurate representations
of the individual actors whose behavior they are seeking to
analyze.

In this regard, the econophysicists are not better sci-
entists than neoclassical economists. It can be said in fa-
vor of neoclassical (including ACE) economists that they
are at least following in a long tradition when they ig-
nore the relationship between what people actually do and
how agents are modeled. In the long history of the phys-
ical sciences, however, observation and evidence at micro
and macro level and all levels in between has dominated
theory (cf. [30]). There are some at least in the ABSS re-
search community who would prefer our colleagues with
backgrounds in the physical scientists to follow their own
methodological tradition in this regard and not that of the
neoclassical economists.

Future Directions

Complexity science is not a niche research interest in the
social sciences. Societies are complex and all social science
should be complexity science. However, any social science
that excludes social interaction and inertia or routine nec-
essarily suppresses complexity. As noted here, the adop-

tion of utility theory and representative agents by neo-
classical economists (and other social scientists influenced
by them) amounts to the exclusion of behavioral inertia
and social interaction, respectively. To drop both utility
and representative agents and to build analyzes bottom up
from a sound basis in evidence would produce a better -
very likely, a good - body of economic analysis. But the
transition from present convention would be enormous -
a transition that experience shows to be beyond the ca-
pacity of current and previous generations of mainstream
economists. Not only would they have to abandon theo-
ries that drive and constrain their research but also their
whole epistemological and wider methodological stance.
They would have to accept that prediction and forecasting
cannot be core methodological objectives and that theo-
ries are built by abstracting from detailed evidence based
social simulation models the designs and outputs from
which have been validated by stakeholders in a range of
contexts. This would be a future direction guided by good
science.
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Glossary

Abduction also called inference to the best explanation,
abduction is a method of reasoning in which one looks
for the hypothesis that would best explain the relevant
evidence.

Agents entities of a model that (i) are perceived as a unit
from the outside, (ii) have the ability to act, and pos-
sibly to react to external stimuli and interact with the
environment and other agents.

Agent-based computational economics (ACE) is the
computational study of economic processes modeled
as dynamic systems of interacting agent.

Agent-based models (ABM) are models where (i) there
is a multitude of objects that interact with each other
and with the environment; (ii) the objects are au-
tonomous, i. e. there is no central, or top-down con-
trol over their behavior; and (iii) the outcome of their
interaction is numerically computed.

Complexity there are more than 45 existing definitions
of complexity (Seth Lloyd, as reported on p. 303
in [97]). However, they can be grouped in just two
broad classes: a computational view and a descriptive
view. Computational (or algorithmic) complexity is

a measure of the amount of information necessary to
compute a system; descriptive complexity refers to the
amount of information necessary to describe a system.
We refer to this second view, and define complex sys-
tems as systems characterized by emergent properties
(see emergence).

Deduction the logical derivation of conclusions from
given premises.

Economics is the science about the intended and unin-
tended consequences of individual actions, in an en-
vironment characterized by scarce resources that both
requires and forces to interaction.

Emergence the spontaneous formation of self-organized
structures at different layers of a hierarchical system
configuration.

Evolution in biology, is a change in the inherited traits of
a population from one generation to the next. In social
sciences it is intended as an endogenous change over
time in the behavior of the population, originated by
competitive pressure and/or learning.

Heterogeneity non-degenerate distribution of character-
istics in a population of agents.

Induction the intuition of general patterns from the ob-
servation of statistical regularities.

Interaction a situation when the actions or the supposed
actions of one agent may affect those of other agents
within a reference group.

Out-of-equilibrium a situation when the behavior of
a system, in terms of individual strategies or aggregate
outcomes, is not stable.

Definition of the Subject

A crucial aspect of the complexity approach is how inter-
acting elements produce aggregate patterns that those ele-
ments in turn react to. This leads to the emergence of ag-
gregate properties and structures that cannot be guessed
by looking only at individual behavior.

It has been argued [144] that complexity is ubiquitous
in economic problems (although this is rarely acknowl-
edged in economic modeling), since (i) the economy is
inherently characterized by the interaction of individuals,
and (ii) these individuals have cognitive abilities, e. g. they
form expectations on aggregate outcomes and base their
behavior upon them: “Imagine how hard physics would
be if electrons could think”, is how the Nobel prize winner
Murray Gell-Mann, a physicist, has put it (as reported by
Page [131]).

Explicitly considering how heterogeneous elements
dynamically develop their behavior through interaction is
a hard task analytically, the equilibrium analysis of main-
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stream (neoclassical) economics being a shortcut that in
many cases is at risk of throwing the baby out with the bath
water, so to speak. On the other hand, numerical computa-
tion of the dynamics of the process started to be a feasible
alternative only when computer power became widely ac-
cessible. The computational study of heterogeneous inter-
action agents is called agent-based modeling (ABM). In-
terestingly, among its first applications a prominent role
was given to economic models [4], although it was quickly
found of value in other disciplines too (from sociology
to ecology, from biology to medicine). The goal of this
chapter is to motivate the use of the complexity approach
and agent-based modeling in economics, by discussing
the weaknesses of the traditional paradigm of mainstream
economics, and then explain what ABM is and which re-
search and policy questions it can help to analyze.

Introduction

Economics is in troubled waters. Although there exists
a mainstream approach, its internal coherence and abil-
ity to explain the empirical evidence are increasingly ques-
tioned. The causes of the present state of affairs go back
to the middle of the eighteenth century, when some of the
Western economies were transformed by the technolog-
ical progress which lead to the industrial revolution. This
was one century after the Newtonian revolution in physics:
from the small apple to the enormous planets, all objects
seemed to obey the simple natural law of gravitation. It
was therefore natural for a new figure of social scientist,
the economist, to borrow the method (mathematics) of
the most successful hard science, physics, allowing for the
mutation of political economy into economics. It was (and
still is) the mechanical physics of the seventeenth century,
which ruled economics. In the final chapter of his Gen-
eral Theory, Keynes wrote of politicians as slaves of late
economists: in their turn, they are slaves of late physicists
of the seventeenth century (see also [125]).

From then on, economics lived its own evolution based
on the classical physics assumptions (reductionism, de-
terminism and mechanicism). Quite remarkably, the ap-
proach of statistical physics, which deeply affected physical
science at the turn of the nineteenth century by emphasiz-
ing the difference between micro and macro, was adopted
by Keynes around the mid 1930s. However, after decades
of extraordinary success it was rejected by the neoclassical
school around the mid 1970s, which framed the discipline
into the old approach and ignored, by definition, any in-
terdependencies among agents and difference between in-
dividual and aggregate behavior (being agents, electrons,
nations or planets).

The ideas of natural laws and equilibrium have been
transplanted into economics sic et simpliciter. As a con-
sequence of the adoption of the classical mechanics
paradigm, the difference between micro and macro was
analyzed under a reductionist approach. In such a set-
ting, aggregation is simply the process of summing up
market outcomes of individual entities to obtain econ-
omy-wide totals. This means that there is no difference
between micro and macro: the dynamics of the whole is
nothing but a summation of the dynamics of its compo-
nents (in term of physics, the motion of a planet can be
described by the dynamics of the atoms composing it).
This approach does not take into consideration that there
might be two-way interdependencies between the agents
and the aggregate properties of the system: interacting el-
ements produce aggregate patterns that those elements in
turn react to. What macroeconomists typically fail to re-
alize is that the correct procedure of aggregation is not
a sum: this is when emergence enters the drama. With the
term emergence we mean the arising of complex structures
from simple individual rules [147,153,171]. Empirical ev-
idence, as well as experimental tests, shows that aggre-
gation generates regularities, i. e. simple individual rules,
when aggregated, produce statistical regularities or well-
shaped aggregate functions: regularities emerge from in-
dividual chaos [106]. The concept of equilibrium is quite
a dramatic example. In many economic models equilib-
rium is described as a state in which (individual and ag-
gregate) demand equals supply. The notion of statistical
equilibrium, in which the aggregate equilibrium is com-
patible with individual disequilibrium, is outside the box
of tools of the mainstream economist. The same is true
for the notion of evolutionary equilibrium (at an aggregate
level) developed in biology. The equilibrium of a system
no longer requires that every single element be in equilib-
rium by itself, but rather that the statistical distributions
describing aggregate phenomena be stable, i.e. in “[...]
a state of macroscopic equilibrium maintained by a large
number of transitions in opposite directions” (p. 356
in [64]).

According to this view, an individual organism is in
equilibrium only when it is dead. A consequence of the
idea that macroscopic phenomena can emerge is that re-
ductionism is wrong.

Ironically, since it can be argued, as we will do in
the section below, that economics strongly needs this
methodological twist [144], ABM has received lees at-
tention in economics than in other sciences ([110]; but
[82] is a counter-example). The aim of this chapter is
not to provide a review of applications of the complex-
ity theory to economics (the interested reader is referred
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to [15,26,60,124,140,142]), but rather to describe the de-
velopment of the Agent-Based Modeling (ABM) approach
to complexity.

The chapter is structured as follows: after reviewing
some limits of mainstream economics (Sect. “Additional
Features of Agent-Based Models”), Sects. “The Economics
of Complexity” and “Additional Features of Agent-Based
Models” describe how the complexity perspective differs
from the traditional one, and how many problems of the
mainstream approach can be overcome by ABM. As an ex-
ample, we present a prototypical example of ABM, based
on the work of Thomas Schelling on the dynamics of seg-
regation. After dedicating some sections to, respectively,
a skeleton history of ABM, a recursive system represen-
tation of these models, a discussion on how ABM can be
interpreted, estimated and validated, we finally discus how
the complexity approach can be used to guide policy inter-
vention and analysis. A final section discusses the achieve-
ments of the ABM agenda.

Some Limits of the Mainstream Approach

The research program launched by the neoclassical school
states that macroeconomics should be explicitly grounded
on microfoundations. This is how Robert Lucas put it:
“The most interesting recent developments in macroeco-
nomic theory seem to me describable as the reincorpo-
ration of aggregative problems [...] within the general
framework of ‘microeconomic’ theory. If these develop-
ments succeed, the term ‘macroeconomic’ will be simply
disappear from use and the modifier ‘micro’ will become
superfluous. We will simply speak, as did Smith, Marshall
and Walras, of economic theory” (pp. 107-108 in [115]).
According to the mainstream, this implies that economic
phenomena at a macroscopic level should be explained
as a summation of the activities undertaken by individ-
ual decision makers. This procedure of microfoundation
is very different from that now used in physics. The latter
starts from the micro-dynamics of the single particle, as
expressed by the Liouville equation and, through the mas-
ter equation, ends up with the macroscopic equations. In
the aggregation process, the dynamics of the agents lose
their degree of freedom and behave coherently in the ag-
gregate. In mainstream economics, while the procedure is
formally the same (from micro to macro), it is assumed
that the dynamics of the agents are those of the aggregate.
The reduction of the degree of freedom, which is char-
acteristic of the aggregation problem in physics, is there-
fore ruled out: a rational agent with complete information
chooses to implement the individually optimal behavior,
without additional constraints. There are three main pil-

lars of this approach: (i) the precepts of the rational choice-
theoretic tradition; (ii) the equilibrium concept of the Wal-
rasian analysis; and (iii) the reductionist approach of clas-
sical physics. In the following, we will show that assump-
tions (i)-(ii), which constitute the necessary conditions for
reducing macro to micro, are logically flawed (and empir-
ically unfounded), while rejection of (iii) opens the road to
complexity.

Mainstream economics is axiomatic and based on un-
realistic (or unverifiable) assumptions. According to the
supporters of this view, such an abstraction is necessary
since the real world is complicated: rather than compro-
mising the epistemic worth of economics, such assump-
tions are essential for economic knowledge. However, this
argument does not invalidate the criticism of unrealis-
tic assumptions [136]. While it requires internal coher-
ence, so that theorems can be logically deduced from a set
of assumptions, it abstracts from external coherence be-
tween theoretical statements and empirical evidence. Of
course, this implies an important epistemological detach-
ment from falsifiable sciences like physics. In setting the
methodological stage for the dynamic stochastic general
equilibrium (DSGE) macroeconomic theory, Lucas and
Sargent declared:

“An economy following a multivariate stochastic
process is now routinely described as being in equi-
librium, by which is meant nothing more that at
each point in time (a) markets clears and (b) agents
act in their own self-interest. This development,
which stemmed mainly from the work of Arrow
[...] and Debreu [...], implies that simply to look
at any economic time series and conclude that it
is a disequilibrium phenomenon is a meaningless
observation. [...] The key elements of these mod-
els are that agents are rational, reacting to policy
changes in a way which is in their best interests pri-
vately, and that the impulses which trigger business
fluctuations are mainly unanticipated shocks.” (p. 7
in [116]).

The self-regulating order of Adam Smith [153] is trans-
formed into a competitive general equilibrium (GE) in the
form elaborated in the 1870s by Walras, that is a configura-
tion of (fully flexible) prices and plans of action such that,
at those prices, all agents can carry out their chosen plans
and, consequently, markets clear. In a continuous effort of
generalization and analytical sophistication, modern (neo-
classical) economists interested in building microfounda-
tions for macroeconomics soon recurred to the refinement
proposed in the 1950s by Arrow and Debreu [14], who
showed that also individual intertemporal (on an infinite
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horizon) optimization yields a GE, as soon as the econ-
omy is equipped with perfect price foresight for each fu-
ture state of nature and a complete set of Arrow-securities
markets [11], all open at time zero and closed simultane-
ously. Whenever these conditions hold true, the GE is an
allocation that maximizes a properly defined social welfare
function, or the equilibrium is Pareto-efficient (First Wel-
fare Theorem).

The literature has pointed out several logical incon-
sistencies of the mainstream approach. Davis [44] identi-
fies three impossibility results, which determine the break-
down of the mainstream, i.e. neoclassical, economics:
(i) Arrow’s 1951 theorem showing that neoclassical theory
is unable to explain social choice [10]; (ii) the Cambridge
capital debate pointing out that mainstream is contradic-
tory with respect to the concept of aggregate capital [40];
and (iii) the Sonnenschein—Mantel-Debreu results show-
ing that the standard comparative static reasoning is inap-
plicable in general equilibrium models. In particular, a few
points are worth remembering here.

1. The GE is neither unique nor locally stable under gen-
eral conditions. This negative result, which refers to the
work of Sonnenschein [155], Debreu [46] and Man-
tel [119], can be summarized along the following lines.
Let the aggregate excess demand function F(p) - ob-
tained from aggregating among individual excess de-
mands f(p) — be a mapping from the price simplex IT
to the commodity space PN. A GE is defined as a price
vector p such that F(px) = 0. It turns out that the only
conditions that F(-) inherits from f(-) are continuity,
homogeneity of degree zero and the Walras’ law (i.e.,
the total value of excess demand is zero). These assure
the existence, but neither the uniqueness nor the local
stability of p*, unless preferences generating individ-
ual demand functions are restricted to very implausible
cases.

2. The existence of a GE is proved via the Brower’s fix
point theorem, i.e. by finding a continuous function
g(): T — [T so that any fixed point for g(-) is also
an equilibrium price vector F(p*) = 0. Suppose that
we are interested in finding an algorithm which, start-
ing from an arbitrary price vector p, chooses price se-
quences to check for px and halts when it finds it. In
other terms, to find the GE price vector F(p%) = 0
means that halting configurations are decidable. As this
violates the undecidability of the halting problem for
Turing machines, from a recursion theoretic viewpoint
the GE solution is incomputable [138,167]. Notice that
the same problem applies, in spite of its name, to the
class of computable GE models [169].

3. By construction, in a GE all transactions are undertaken
at the same equilibrium price vector. Economic theory
has worked out two mechanisms capable of reaching
this outcome. First, one can assume that buyers and
sellers adjust, costless, their optimal supplies and de-
mands to prices called out by a (explicit or implicit) fic-
titious auctioneer, who continues to do his job until he
finds a price vector which clears all markets. Only then
transactions take place (Walras’ assumption). Alterna-
tively, buyers and sellers sign provisional contracts and
are allowed to freely (i. e., without any cost) recontract
until a price vector is found which makes individual
plans fully compatible. Once again, transactions occur
only after the equilibrium price vector has been es-
tablished (Edgeworth’s assumption). Regardless of the
mechanism one adopts, the GE model is one in which
the formation of prices precedes the process of ex-
change, instead of being the result of it, through a taton-
nement process occurring in a meta-time. Real markets
work the other way round and operates in real time, so
that the GE model cannot be considered a scientific ex-
planation of real economic phenomena [9].

4. It has been widely recognized since Debreu [45], that
integrating money in the theory of value represented
by the GE model is at best problematic. No economic
agent can individually decide to monetize alone; mon-
etary trade should be the equilibrium outcome of mar-
ket interactions among optimizing agents. The use of
money - that is, a common medium of exchange and
a store of value — implies that one party to a trans-
action gives up something valuable (for instance, his
endowment or production) for something inherently
useless (a fiduciary token for which he has no imme-
diate use) in the hope of advantageously re-trading it
in the future. Given that in a GE model actual trans-
actions take place only after a price vector coordinat-
ing all trading plans has been freely found, money can
be consistently introduced into the picture only if the
logical keystone of the absence of transaction costs is
abandoned. By the same token, since credit makes sense
only if agents can sign contracts in which one side
promises future delivery of goods or services to the
other side, in equilibrium markets for debt are mean-
ingless, and bankruptcy can be safely ignored. Finally,
as the very notion of a GE implies that all transactions
occur only when individual plans are mutually com-
patible, and this has to be true also in the labor mar-
ket, the empirically observed phenomenon of involun-
tary unemployment and the microfoundation program
put forth by Lucas and Sargent are logically inconsis-
tent.
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5. The very absence of money and credit is a consequence
of the fact that in GE there is no time. The only role as-
signed to time in a GE model is, in fact, that of dating
commodities. Products, technologies and preferences
are exogenously given and fixed from the outset. The
convenient implication of banning out-of-equilibrium
transactions is simply that of getting rid of any disturb-
ing influence of intermediary modifications of endow-
ments - and therefore of individual excess demands -
on the final equilibrium outcome. The introduction of
non-Walrasian elements into the GE microfoundations
program - such as fixed or sticky prices, imperfect com-
petition and incomplete markets leading to temporary
equilibrium models - yields interesting Keynesian fea-
tures such as the breaking of the Say’s law and scope
for a monetary theory of production, a rationale for fi-
nancial institutions and a more persuasive treatment
of informational frictions. As argued in Vriend [165],
however, all these approaches preserve a Walrasian
perspective in that models are invariably closed by
a GE solution concept which, implicitly or (more of-
ten) not, implies the existence of a fictitious auction-
eer who processes information, calculates equilibrium
prices and quantities, and regulates transactions. As
a result, if the Walrasian auctioneer is removed the de-
centralized economy becomes dynamically incomplete,
as we are not left with any mechanism determining
how quantities and prices are set and how exchanges
occur.

The flaws of the solution adopted by mainstream macroe-
conomists to overcome the problems of uniqueness and
stability of equilibrium on the one hand, and of analytical-
tractability on the other one - i. e. the usage of a represen-
tative agent (RA) whose choices summarize those of the
whole population of agents — are so pervasive that we dis-
cuss them hereafter.

6. Although the RA framework has a long history, it is
standard to build the microfoundation procedure on
it only after Lucas’ critique paper [114]. Mainstream
models are characterized by an explicitly stated op-
timization problem of the RA, while the derived in-
dividual demand or supply curves are used to obtain
the aggregate demand or supply curves. Even when
the models allow for heterogeneity, interaction is gen-
erally absent (the so-called weak interaction hypoth-
esis [139]). The use of RA models should allow one
to avoid the Lucas critique, to provide microfounda-
tions to macroeconomics, and, ¢a va sans dire, to build
Walrasian general equilibrium models. Since models
with many heterogeneous interacting agents are com-

plicated and no closed form solution is often available
(aggregation of heterogenous interacting agents is ana-
lyzed in [5,6,7,53,78]), economists assume the existence
of an RA: a simplification that makes it easier to solve
for the competitive equilibrium allocation, since direct
interaction is ruled out by definitions. Unfortunately, as
Hildenbrand and Kirman [95] noted:

“There are no assumptions on isolated individu-
als, which will give us the properties of aggregate
behavior. We are reduced to making assump-
tions at the aggregate level, which cannot be jus-
tified, by the usual individualistic assumptions.
This problem is usually avoided in the macroeco-
nomic literature by assuming that the economy
behaves like an individual. Such an assumption
cannot be justified in the context of the standard
model”.

The equilibria of general equilibrium models with a RA
are characterized by a complete absence of trade and ex-
change, which is a counterfactual idea. Kirman [99], Gal-
legati [76] and Caballero [36] show that RA models ig-
nore valid aggregation concerns, by neglecting interaction
and emergence, hence committing fallacy of composition
(what in philosophy is called fallacy of division, i. e. to at-
tribute properties to a different level than where the prop-
erty is observed: game theory offers a good case in point
with the concept of Nash equilibrium, by assuming that
social regularities come from the agent level equilibrium).
Those authors provide examples in which the RA does not
represent the individuals in the economy so that the re-
duction of a group of heterogeneous agents to an RA is
not just an analytical convenience, but it is both unjusti-
fied and leads to conclusions which are usually mislead-
ing and often wrong ([99]; see also [98]). A further result,
which is a proof of the logical fallacy in bridging the mi-
cro to the macro is the impossibility theorem of Arrow: it
shows that an ensemble of people, which has to collectively
take a decision, cannot show the same rationality of an in-
dividual [123]. Moreover, the standard econometric tools
are based upon the assumption of an RA. If the economic
system is populated by heterogeneous (not necessarily in-
teracting) agents, then the problem of the microfounda-
tion of macroeconometrics becomes a central topic, since
some issues (e.g., co-integration, Granger-causality, im-
pulse-response function of structural VAR) lose their sig-
nificance [69].

Allin all, we might say that the failure of the RA frame-
work, points out the vacuum of the mainstream micro-
foundation literature, which ignores interactions: no box
of tools is available to connect the micro and the macro
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levels, beside the RA whose existence is at odds with the
empirical evidence [30,158] and the equilibrium theory as
well [99].

The Economics of Complexity

According to the mainstream approach there is no direct
interaction among economic units (for a pioneeristic and
neglected contribution see [68]; see also [101]). In the most
extreme case, any individual strategy is excluded (princi-
ple of excluded strategy, according to Schumpeter [149])
and agents are homogeneous. Small departures from the
perfect information hypothesis are incoherent with the
Arrow-Debreu general equilibrium model, as shown by
Grossman and Stiglitz [88], since they open the chance
of having direct links among agents [156]. In particular, if
prices convey information about the quality there cannot
be an equilibrium price as determined by the demand-sup-
ply schedule, since demand curves depend on the proba-
bility distribution of the supply (p. 98 in [87]).

What characterizes a complex system is the notion
of emergence, that is the spontaneous formation of self-
organized structures at different layers of a hierarchical
system configuration [43]. Rather, mainstream economics
conceptualizes economic systems as consisting of several
identical and isolated components, each one being a copy
of a RA. The aggregate solution can thus be obtained by
means of a simple summation of the choices made by each
optimizing agent. The RA device, of course, is a way of
avoiding the problem of aggregation by eliminating het-
erogeneity. But heterogeneity is still there. If the macroe-
conomist takes it seriously, he/she has to derive aggregate
quantities and their relationships from the analysis of the
micro-behavior of different agents. This is exactly the key
point of the aggregation problem: starting from the micro-
equations describing/representing the (optimal) choices of
the economic units, what can we say about the macro-
equations? Do they have the same functional form of the
micro-equations (the analogy principle)? If not, how is the
macro-theory derived?

The complexity approach to economics discards the
GE approach to the microfoundation program, as well as
its RA shorthand version. Instead of asking to deductively
prove the existence of an equilibrium price vector p* such
that F(p%) = 0, it aims at explicitly constructing it by
means of an algorithm or a rule. From an epistemologi-
cal perspective, this implies a shift from the realm of clas-
sical to that of constructive theorizing [168]. Clearly, the
act of computationally constructing a coordinated state —
instead of imposing it via the Walrasian auctioneer - for
a decentralized economic system requires complete de-

scription of goal-directed economic agents and their in-
teraction structure.

Agent-based modeling represents an effective imple-
mentation of this research agenda ([60,124], see also [24,
67,81,175]). ABM is a methodology that allows one to
construct, based on simple rules of behavior and interac-
tion, models with heterogeneous agents, where the result-
ing aggregate dynamics and empirical regularities are not
known a priori and are not deducible from individual be-
havior. It is characterized by three main tenets: (i) there
is a multitude of objects that interact with each other and
with the environment; (ii) the objects are autonomous, i. e.
there is no central, or top-down control over their behav-
ior; and (iii) the outcome of their interaction is numeri-
cally computed. Since the objects are autonomous, they are
called agents ([3,4]; see also the repository of ACE-related
material maintained by Leigh Tesfatsion at http://www.
econ.iastate.edu/tesfatsi/ace.htm): “Agent-based Compu-
tational Economics is the computational study of eco-
nomic processes modeled as dynamic systems of interact-
ing agent” [161].

Agents can be anything from cells to biological entities,
from individuals to social groups like families or firms.
Agents can be composed by other agents: the only require-
ment being that they are perceived as a unit from the out-
side, and that they do something, i. e. they have the ability
to act, and possibly to react to external stimuli and interact
with the environment and other agents. The environment,
which may include physical entities (infrastructures, ge-
ographical locations, etc.) and institutions (markets, reg-
ulatory systems, etc.), can also be modeled in terms of
agents (e.g. a central bank, the order book of a stock ex-
change, etc.), whenever the conditions outlined above are
met. When not, it should be thought of simply as a set of
variables (say, temperature or business confidence).

The methodological issues are the real litmus paper
of the competing approaches. According to one of the
most quoted economic papers, Friedman [71], the ulti-
mate goal of a positive science is to develop hypotheses
that yield valid and meaningful predictions about actual
phenomena. Not a word on predictions at the meso-level
or on the realism of the hypotheses. Even the Occam rule
is systematically ignored: e.g. to get a downward slop-
ing aggregate demand curve, mainstream economics has
to assume indifference curves which are: (i) defined only
in the positive quadrant of commodity-bundle quantities;
(ii) negatively sloped; (iii) complete; (iv) transitive, and
(v) strictly convex, while ABM has to assume only the ex-
istence of reservation prices. Moreover, to properly aggre-
gate from microbehavior, i. e. to get a well shaped aggre-
gate demand from the individual ones, it has to be as-
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sumed that the propensity to consume out of income has
to be homogeneous for all the agents (homothetic Engel
curves) and that distribution is independent from relative
prices. This methodology resembles the scientific proce-
dure of the aruspexes, who predicted the future by reading
the animals’ bowels. The ABM methodology is bottom-up
and focuses on the interaction between many heteroge-
nous interacting agents, which might produce a statistical
equilibrium, rather than a natural one as the mainstream
approach assumes. The bottom-up approach models in-
dividual behavior according to simple behavioral rules;
agents are allowed to have local interaction and to change
the individual rule (through adaptation) as well as the in-
teraction nodes. By aggregating, some statistical regularity
emerges, which cannot be inferred from individual behav-
ior (self emerging regularities): this emergent behavior feeds
back to the individual level (downward causation) thus es-
tablishing a macrofoundation of micro. As a consequence,
each and every proposition may be falsified at micro, meso
and macro levels. This approach opposes the axiomatic
theory of economics, where the optimization procedure
is the standard for a scientific, i.e. not ad-hoc, modeling
procedure.

The agent-based methodology can also be viewed as
a way to reconcile the two opposing philosophical perspec-
tives of methodological individualism and holism. Hav-
ing agents as the unit of analysis, ABM is deeply rooted
in methodological individualism, a philosophical method
aimed at explaining and understanding broad society-
wide developments as the aggregation of decisions by indi-
viduals [13,172]. Methodological individualism suggests —
in its most extreme (and erroneous) version - that a sys-
tem can be understood by analyzing separately its con-
stituents, the reductionist approach that the whole is noth-
ing but the sum of its parts [51,127]. However, the ability
to reduce everything to simple fundamental objects and
laws does not imply the ability to start from those objects
and laws and reconstruct the universe. In other terms, re-
ductionism does not imply constructionism [2].

The Austrian school of economics championed the
use of methodological individualism in economics in the
twentieth century, of which Friederich von Hayek has
been one of the main exponents. The legacy of Hayek to
ABM and the complex system approach has been recog-
nized [166]. Methodological individualism is also consid-
ered an essential part of modern neoclassical economics,
with its analysis of collective action in terms of rational,
utility-maximizing individuals: should the microfounda-
tions in terms of individual rational behavior be aban-
doned, the Lucas Critique [114] would kick in. However,
it is hard to recognize the imprinting of methodological

individualism in the RA paradigm, which claims that the
whole society can be analyzed in terms of the behavior
of a single, representative, individual and forgets to ap-
ply to it the Lucas critique. On the other hand, focusing
on aggregate phenomena arising from the bottom up [61]
from the interaction of many different agents, ABM also
adopts a holistic approach when it claims that these phe-
nomena cannot be studied without looking at the entire
context in which they are embedded. Indeed, holism is
the idea that all the properties of a given system cannot
be determined or explained by the sum of its component
parts alone. Instead, the system as a whole determines in
an important way that the parts behave. The general prin-
ciple of holism was concisely summarized by Aristotle in
his Metaphysics: “The whole is more than the sum of its
parts”, a manifesto of the complexity approach. However,
ABM (and more in general complexity theory) should not
be confused with general systems theory, an holistic ap-
proach developed in the 1950s and 1960s that in its most
radical form argued that everything affects everything else:
according to systems theory, phenomena that appear to
have simple causes, such as unemployment, actually have
a variety of complex causes — complex in the sense that
the causes are interrelated, nonlinear, and difficult to de-
termine [133]. Conversely, the complexity approach looks
for simple rules that underpin complexity, an agenda that
has been entirely transferred to ABM.

Also, ABM can be thought of as a bridge be-
tween methodological individualism and methodological
holism. In agent-based models aggregate outcomes (the
whole, e.g. the unemployment rate) are computed as the
sum of individual characteristics (its parts, e. g. individual
employment status). However, aggregate behavior can of-
ten be recognized as distinct from the behavior of the com-
prising agents, leading to the discovery of emergent prop-
erties. In this sense, the whole is more than - and different
from - the sum of its parts. It might even be the case that
the whole appears to act as if it followed a distinct logic,
with its own goals and means, as in the example of a cartel
of firms that act in order to influence the market price of
a good. From the outside, the whole appears no different
from a new agent type (e. g. a family, a firm). A new entity
is born; the computational experiment has been successful
in growing artificial societies from the bottom up [61].

This bottom-up approach to complexity consists in de-
ducing the macroscopic objects (macros) and their phe-
nomenological complex ad-hoc laws in terms of a multi-
tude of elementary microscopic objects (micros) interact-
ing by simple fundamental laws [154], and ABM provides
a technique that allows one to systematically follow the
birth of these complex macroscopic phenomenology. The
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macros at a specific scale can become the micros at the next
scale.

Depending on the scope of the analysis, it is generally
convenient to stop at some scale in the way down to recon-
struct aggregate, top-level dynamics from the bottom up.
When applied to economics, only a few levels (e. g. a micro,
a meso and a macro level) are in general sufficient to pro-
vide a thorough understanding of the system. Defining the
elementary units of analysis amounts to fixing the limits
for the reductionist approach, which is not aprioristically
discarded but rather integrated in the analysis. These units
are in fact characterized by an inner structure that does not
depend on the environment in which they are embedded.
They can thus be analyzed separately.

The need for the ABM approach at any given scale
is often linked to the existence of some underlying auto-
catalytic process at a lower level. Autocatalytic processes
are dynamic processes with positive feedbacks, where the
growth of some quantity is to some extent self-perpetuat-
ing, as in the case when it is proportional to its initial value.
The importance of positive feedbacks has been recognized
in the literature on increasing returns, in particular with
respect to the possibility of multiple equilibria [151], since
the time of Marshall. However, the traditional analysis is
static, and does not address how an equilibrium out of
several might be selected. Looking at the problem from
a dynamic stochastic process perspective, selection is ex-
plained in terms of one set of small historical events mag-
nified by increasing returns.

Moreover, the existence of an autocatalytic process im-
plies that looking at the average, or most probable, behav-
ior of the constituent units is non representative of the dy-
namics of the system: autocatalyticity insures that the be-
havior of the entire system is dominated by the elements
with the highest auto-catalytic growth rate rather than by
the typical or average element [154]. In presence of auto-
catalytic processes, even a small amount of individual het-
erogeneity invalidates any description of the behavior of
the system in terms of its average element: the real world is
controlled as much by the fails of distributions as by means
or averages. We need to free ourselves from average think-
ing [3].

The fact that autocatalytic dynamics are scale invari-
ant (i. e. after a transformation that multiplies all the vari-
ables by a common factor) is a key to understanding the
emergence of scale invariant distributions of these vari-
ables (e. g. power laws), at an aggregate level. The relevance
of scale free distributions in economics (e. g. of firm size,
wealth, income, etc.) is now extensively recognized (Brock,
1999), and has been the subject of through investigation in
the econophysics literature [120].

Additional Features of Agent-Based Models

We have so far introduced the three fundamental char-
acteristics of ABM: there are agents that play the role
of actors, there is no script or Deus ex-machina and the
story is played live, i.e. it is computed. Following Ep-
stein [58,59,60], we can further characterize the method-
ology, by enumerating a number of features that, although
not necessary to define an agent-based model, are often
present. These are:

Heterogeneity

While in analytical models there is a big advantage in re-
ducing the ways in which individuals differ, the computa-
tional burden of ABM does not change at all if different
values of the parameters (e.g. preferences, endowments,
location, social contacts, abilities etc.) are specified for dif-
ferent individuals. Normally, a distribution for each rel-
evant parameter is chosen, and this simply implies that
a few parameters (those governing the distribution) are
added to the model.

Explicit Space

This can be seen as specification of the previous point: in-
dividuals often differ in the physical place where they are
located, and/or in the neighbors with whom they can or
have to interact (which define the network structure of the
model, see below).

Local Interaction

Again, this can be seen as a specification of the network
structure connecting the agents. Analytical models often
assume either global interaction (as in Walrasian markets),
or very simple local interaction. ABM allow for much
richer specifications. No direct interaction (only through
prices) is allowed in the GE, while direct interaction (local
and stochastic, usually [101]) is the rule for the complexity
approach: figures la-c give a graphical representation of
Walrasian, random and scale-free interaction respectively.
Note that the empirical evidence supports the third case:
hubs and power laws are the rule in the real world [38,52].

Actually, some neoclassical economists asked for an
analysis of how social relations affect the allocation of re-
sources (e. g., [12,107,134]). They went almost completely
unheard, however, until the upsurge in the early 1990s of
a brand new body of work aimed at understanding and
modeling the social context of economic decisions, usu-
ally labeled new social economics or social interaction eco-
nomics [56]. Models of social interactions (Manski [118]
offers an operational classification of the channels through
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Agent Based Models in Economics and Complexity, Figure 1

a a Walrasian GE representation; b a random graph; c a scale free graph in which several hubs can be identified

which the actions of one agent may affect those of other
agents within a reference group) are generally able to pro-
duce several properties, such as multiple equilibria [34];
non-ergodicity and phase transition [54]; equilibrium strat-
ification in social and/or spatial dimension [27,83]; the ex-
istence of a social multiplier of behaviors [84]. The key
idea consists in recognizing that the social relationships
in which individual economic agents are embedded can
have a large impact on economic decisions. In fact, the
social context impacts on individual economic decisions
through several mechanisms. First, social norms, cultural
processes and economic institutions may influence mo-
tivations, values, and tastes and, ultimately, make pref-
erences endogenous [31]. Second, even if we admit that
individuals are endowed with exogenously given prefer-
ences, the pervasiveness of information asymmetries in
real-world economies implies that economic agents vol-
untarily share values, notions of acceptable behavior and
socially based enforcement mechanisms in order to re-
duce uncertainty and favor coordination [50]. Third, the
welfare of individuals may depend on some social charac-
teristics like honor, popularity, stigma or status [41]. Fi-
nally, interactions not mediated by enforceable contracts
may occur because of pure technological externalities in
network industries [152] or indirect effects transmitted
through prices (pecuniary externalities) in non-competi-
tive markets [28], which may lead to coordination failures
due to strategic complementarities [42].

Bounded Rationality

Interestingly, while in analytical models it is generally eas-
ier to implement some form of optimal behavior rather
than solving models where individuals follow “reasonable”
rules of thumb, or learn either by looking at what hap-
pened to others or what happened to them in the past,
for ABM the opposite is true. However, it can be argued
that real individuals also face the same difficulties in de-

termining and following the optimal behavior, and are
characterized by some sort of bounded rationality: “There
are two components of this: bounded information and
bounded computing power. Agents have neither global in-
formation nor infinite computational capacity. Although
they are typically purposive, they are not global optimizers;
they use simple rules based on local information” (p. 1588
in [59]).

The requirement on full rationality is indeed very
strong, since it requires an infinite computational capac-
ity (the ability of processing tons of data in a infinitesimal
amount of time) and all the information. Moreover, ac-
cording to the mainstream approach, information is com-
plete and free for all the agents. Note that one of the as-
sumptions in the Walrasian approach is that each agent
has only private information: this is equivalent to say that
strategic behavior about information collection and dis-
semination is ruled out and the collection of the whole
set of the information is left to the market via the auc-
tioneer (or a benevolent dictator [25]). Indeed, one could
read the rational expectation “revolution” as the tentative
to decentralize the price setting procedure by defenestrat-
ing the auctioneer. Limited information is taken into ac-
count, but the constraints have to affect every agent in the
same way (the so-called Lucas’ islands hypothesis) and the
Greenwald-Stiglitz theorem [86] states that in this case
the equilibrium is not even Pareto-constrained. If infor-
mation is asymmetric or private, agents have to be hetero-
geneous and direct interaction has to be considered: this
destroys the mainstream model and generates coordina-
tion failures.

On the contrary, agent-based models are build upon
the hypothesis that agents have limited information. Once
again, the ABM approach is much more parsimonious,
since it only requires that the agents do not commit sys-
tematic errors. Moreover, given the limited information
setting, the economic environment might change affect-
ing, and being affected by, agents’ behavior: individuals
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learn through experience and by interacting with other
agents.

Non-equilibrium Dynamics

As we will explain in more details below, ABM are recur-
sive models, in which the state of the system at time ¢ +
1 is computed starting from the state at time ¢. Hence,
they allow the investigation of what happens all along the
route, not only at the start and at the end of the jour-
ney. This point is, we believe, the most important. Brian
Arthur (p. 1552 in [16]) offers an effective statement of
its relevance for economic theory: “Standard neoclassi-
cal economics asks what agents’ actions, strategies, or ex-
pectations are in equilibrium with (consistent with) the
outcome or pattern these behaviors aggregatively create.
Agent-based computational economics enables us to ask
a wider question: how agents’ actions, strategies or expec-
tations might react to — might endogenously change with -
the pattern they create. [...] This out-of-equilibrium ap-
proach is not a minor adjunct to standard economic the-
ory; it is economics done in a more general way. [...]
The static equilibrium approach suffers two characteris-
tic indeterminacies: it cannot easily resolve among multi-
ple equilibria; nor can it easily model individuals’ choices
of expectations. Both problems are ones of formation (of
an equilibrium and of an ‘ecology’ of expectations, respec-
tively), and when analyzed in formation - that is, out of
equilibrium - these anomalies disappear”.

As we have seen, continuous market clearing is as-
sumed by the mainstream. It is a necessary condition to
obtain “efficiency and optimality” and it is quite curious
to read of a theory assuming the explenandum. In such
a way, every out of equilibrium dynamics or path depen-
dency is ruled out and initial conditions do not matter.
The GE model assumes that transactions happen only af-
ter the vector of the equilibrium prices has been reached:
instead of being the result of the exchange, it foresees it
par tatonnement in a logical, fictitious time. Because the
real markets operate in real, historical, time and the ex-
change process determines prices, the GE model is not able
to describe any real economy [9]. Clower [39] suggested
(resemblance Edgeworth, [57]) that exchange might hap-
pen out of equilibrium (at false prices). In such a case,
agents will be quantity-rationed in their supply of-demand
for: because of it, the intertemporal maximization prob-
lem has to be quantity-constraints (the so-called Clower
constraint) and if the economy would reach equilibrium,
it will be non-optimal and inefficient.

The requirement on rationality is also very strong,
since it requires an infinite computational capacity (the

ability of processing tons of data in a infinitesimal amount
of time) and all the information. In fact, if information is
limited, the outcome of a rational choice may be non-opti-
mal. Once again, all the ABM approach is much more par-
simonious, since it requires that the agents do not com-
mit systematic errors. Moreover, given the limited infor-
mation setting, the economic environment might change
affecting, and being affected by, agents’ behavior: learning
and adaptive behavior are therefore contemplated.

Finally, according to Beinhocker [26], the approaches
differ also as regard dynamics (Complex Systems are open,
dynamic, non-linear systems, far from equilibrium; Main-
stream economics are closed, static, linear systems in equi-
librium) and evolution (Complex Systems have an evo-
lutionary process of differentiation, selection and am-
plification which provides the system with novelty and is
responsible for its growth in order and complexity, while
Mainstream has no mechanism for endogenously creating
novelty, or growth in order and complexity.

An Ante Litteram Agent-Based Model:
Thomas Schelling’s Segregation Model

One of the early and most well known examples of an
agent-based model is the segregation model proposed by
Thomas Schelling [145,146], who in 2005 received the
Nobel prize for his studies in game theory (surveys of
more recent applications of ABM to economics can be
found in [159,160,161,163]). To correctly assess the im-
portance of the model, it must be evaluated against the
social and historical background of the time. Up to the
end of the 1960s racial segregation was institutionalized in
the United States. Racial laws required that public schools,
public places and public transportation, like trains and
buses, had separate facilities for whites and blacks. Resi-
dential segregation was also prescribed in some States, al-
though it is now widely recognized that it mainly came
about through organized, mostly private efforts to ghet-
toize blacks in the early twentieth century — particularly
the years between the world wars [63,126]. But if the so-
cial attitude was the strongest force in producing residen-
tial segregation, the Civil Rights movement of the 1960s
greatly contributed to a change of climate, with the white
population exhibiting increasing levels of tolerance. Even-
tually, the movement gained such strength to achieve its
main objective, the abolition of the racial laws: this was
sealed in the Civil Rights Act of 1968 which, among many
other things, outlawed a wide range of discriminatory con-
duct in housing markets. Hence, both the general pub-
lic attitude and the law changed dramatically during the
1960s. As a consequence, many observers predicted a rapid
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decline in housing segregation. The decline, however, was
almost imperceptible. The question then was why this hap-
pened. Schelling’s segregation model brought an answer,
suggesting that small differences in tolerance level or ini-
tial location could trigger high level of segregation even
without formal (i. e. legal) constraints, and even for de-
cent levels of overall tolerance. In the model, whites and
blacks are (randomly) located over a grid, each individual
occupying one cell. As a consequence, each individual has
at most eight neighbors (Moore neighborhood), located
on adjacent cells. Preferences over residential patterns are
represented as the maximum quota of racially different
neighbors that an individual tolerates. For simplicity, we
can assume that preferences are identical: a unique num-
ber defines the level of tolerance in the population. For ex-
ample, if the tolerance level is 50% and an individual has
only five neighbors, he would be satisfied if no more than
two of his neighbors are racially different. If an individual
is not satisfied by his current location, he tries to move to
a different location where he is satisfied.

The mechanism that generates segregation is the fol-
lowing. Since individuals are initially located randomly on
the grid, by chance there will be someone who is not satis-
fied. His decision to move creates two externalities: one in
the location of origin and the other in the location of des-
tination. For example, suppose a white individual decides
to move because there are too many black people around.
As he leaves, the ethnic composition of his neighborhood
is affected (there is one white less). This increases the pos-
sibility that another white individual, who was previously
satisfied, becomes eager to move. A similar situation oc-
curs in the area of destination. The arrival of a white in-
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dividual affects the ethnic composition of the neighbor-
hood, possibly causing some black individual to become
unsatisfied. Thus, a small non-homogeneity in the initial
residential pattern triggers a chain effect that eventually
leads to high levels of segregation. This mechanism is re-
inforced when preferences are not homogeneous in the
population.

Figure 2, which shows the NETLOGO implementation
of the Schelling model, exemplifies [173]. The left panel
depicts the initial residential pattern, for a population of
2000 individuals, evenly divided between green and red,
living on a 51 x 51 cells torus (hence the population den-
sity is 76.9%). Two values for the tolerance threshold are
tested: in the first configuration, tolerance is extremely
high (70%), while in the second it is significantly lower
(30%), although at a level that would still be considered
decent by many commentators. The initial residential pat-
tern (obviously) shows no levels of segregation: every in-
dividual has on average 50% of neighbors of a different
race. However, after just a few periods the equilibrium
configurations of the middle (for a tolerance level of 70%)
and right (for tolerance level of 30%) panels are obtained.
The level of segregation is high: more than three quar-
ters of neighbors are on average of the same racial group,
even in case (b), when individuals are actually happy to
live in a neighborhood dominated by a different racial
group! Moreover, most people live in perfectly homoge-
neous clusters, with different ethnic clusters being often
physically separated from each other by a no man’s land.
Only the relative mix brought by confining clusters keeps
down the measure of overall segregation. Should the over-
all composition of the population be biased in favor of one

NETLOGO implementation of Schelling’s segregation model. a Initial (random) pattern. The average share of racially similar neighbors
is roughly 50%. With a tolerance level of 70% (40%), less than 20% (more than 80%) of the individuals are not satisfied. b Final pattern.
The average share of racially similar neighbors is 72.1%. Everyone is satisfied. c Final pattern. The average share of racially similar

neighbors is 99.7%. Everyone is satisfied
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ethnic group, we would clearly recognize the formation of
ghettoes.

Note that the formation of racially homogeneous eth-
nic clusters and ghettoes is an emergent property of the
system, which could hardly be deduced by looking at in-
dividual behavior alone, without considering the effects
of interaction. Moreover, the clusters themselves could be
considered as the elementary unit of analysis at a differ-
ent, more aggregate level, and their behavior, e. g. whether
they shrink, expand, merge or vanish, studied with respect
to some exogenous changes in the environment. Not only
a property, i.e. a statistical regularity, has emerged, but
also a whole new entity can be recognized. However, this
new entity is nothing else but a subjective interpretation
by some external observer of an emergent property of the
system.

The Development of Agent-Based Modeling

The early example of the segregation model notwithstand-
ing, the development of agent-based computational eco-
nomics is closely linked with the work conducted at the
Santa Fe Institute for the study of complexity, a private,
non-profit, independent research and education center
founded in 1984 in Santa Fe, New Mexico. The purpose of
the institute has been, since its foundation, to foster multi-
disciplinary collaboration in pursuit of understanding the
common themes that arise in natural, artificial, and social
systems. This unified view is the dominant theme of what
has been called the new science of complexity.

The outcomes of this research program are well de-
picted in three books, all bearing the title The economy as
an evolving complex system [4,17,29]. The following quo-
tation, from the preface of the 1997 volume, summarizes
very accurately the approach:

“In September 1987 twenty people came together at
the Santa Fe Institute to talk about ‘the economy as
a evolving, complex system’. Ten were theoretical
economists, invited by Kenneth J. Arrow, and ten
were physicists, biologists and computer scientists,
invited by Philip W. Anderson. The meeting was
motivated by the hope that new ideas bubbling in
the natural sciences, loosely tied together under the
rubric of ‘the sciences of complexity’, might stim-
ulate new ways of thinking about economic prob-
lems. For ten days, economists and natural scien-
tists took turns talking about their respective worlds
and methodologies. While physicists grappled with
general equilibrium analysis and non-cooperative
game theory, economists tried to make sense of spin
glass models, Boolean networks, and genetic algo-

rithms. The meeting left two legacies. The first was
the 1988 volume of essays; the other was the found-
ing, in 1988, of the Economics Program at the Santa
Fe Institute, the Institute’s first resident research
program. The Program’s mission was to encourage
the understanding of economic phenomena from
a complexity perspective, which involved the devel-
opment of theory as well as tools for modeling and
for empirical analysis. [...] But just what is the com-
plexity perspective in economics? That is not an easy
question to answer. [...] Looking back over the de-
velopments in the past decade, and of the papers
produced by the program, we believe that a coher-
ent perspective — sometimes called the ‘Santa Fe ap-
proach’ - has emerged within economics.”

The work carried out at the Santa Fe Institute greatly
contributed to popularize the complexity approach to
economics, although a similar line of research was ini-
tiated in Europe by chemists and physicists concerned
with emergent structures and disequilibrium dynamics
(more precisely, in Brussels by the group of the Nobel
prize winner physical chemist Ilya Prigogine ([128]) and
in Stuttgart by the group of the theoretical physicist Her-
mann Haken [91], as discussed in length by Rosser [141]).

Two main reasons can help explaining why the Santa
Fe approach gained some visibility outside the restricted
group of people interested in the complexity theory
(perhaps contributing in this way to mount what Hor-
gan [96,97], called an intellectual fad). Together, they of-
fered an appealing suggestion of both what to do and how
to do it. The first reason was the ability to present the com-
plexity paradigm as a unitary perspective. This unitary vi-
sion stressed in particular the existence of feedbacks be-
tween functionalities and objectives: individual objectives
determine to some extent the use and modification of ex-
isting functionalities, but functionalities direct to some ex-
tent the choice of individual objectives. It is this analytical
focus that proved to be valuable in disciplines as diverse
as the social sciences, the biological sciences and even ar-
chitecture [70]. The second reason has to do with the cre-
ation of a specific simulation platform that allowed rel-
atively inexperienced researchers to build their own toy
models that, thanks to the enormous and sustained in-
crease in commonly available computing power, could run
quickly even on small PCs. This simulation platform was
called SWARM [18], and consisted in a series of libraries
that implemented many of the functionalities and techni-
calities needed to build an agent-based simulation, e. g. the
schedule of the events, the passing of time and graphical
widgets to monitor the simulation. In addition to offer-
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ing a practical tool to write agent-based simulations, the
SWARM approach proposed a protocol in simulation de-
sign, which the SWARM libraries exemplified.

The principles at the basis of the SWARM protocol are:

(i) The use of an object-oriented programming language
(SWARM was first written in OBJECTIVE C, and later
translated into JAVA), with different objects (and ob-
ject types) being a natural counterpart for different
agents (and agent types);

(ii) A separate implementation of the model and the tools
used for monitoring and conducting experiments on
the model (the so-called observer);

(iii) An architecture that allows nesting models one into
another, in order to build a hierarchy of swarms -
a swarm being a group of objects and a schedule of
actions that the objects execute. One swarm can thus
contain lower-level swarms whose schedules are inte-
grated into the higher-level schedule.

A number of different simulation platforms that ad-
hered to the SWARM protocol for simulation design have
been proposed since, the most widespread being REPAST
([129]; see also [135]). However, other alternative ap-
proaches to writing agent-based models exist. Some rely
on general-purpose mathematical software, like MATHE-
MATICA, MATLAB or MATCAD. Others, exemplified by
the STARLOGO/NETLOGO experience [137], are based on
the idea of an agent-based specific language.

Finally, despite the fact that ABM are most often com-
puter models, and that the methodology could not de-
velop in the absence of cheap and easy-to-handle per-
sonal computers, it is beneficial to remember that one of
the most well-known agent-based models, the segregation
model we have already described, abstracted altogether
from the use of computers. As Schelling recalls, he had
the original idea while seated on plane, and investigated
it with paper and pencil. When he arrived home, he ex-
plained the rules of the game to his son and got him to
move zincs and coppers from the child’s own collection
on a checkerboard, looking for the results: The dynamics
were sufficiently intriguing to keep my twelve-year-old en-
gaged p. 1643 in [148].

A Recursive System Representation
of Agent-Based Models

Although the complexity theory is, above all, a mathemat-
ical concept, a rather common misunderstanding about
agent-based simulations is that they are not as sound as
mathematical models. In an often-quoted article, Thomas
Ostrom [130] argued that computer simulation is a third

symbol system in its own right, aside verbal description
and mathematics: simulation is no mathematics at all
(see [79]). An intermediate level of abstraction, according
to this view, characterizes computer simulations: they are
more abstract than verbal descriptions, but less abstract
than pure mathematics. Ostrom (p. 384 in [130]) also ar-
gued that any theory that can be expressed in either of
the first two symbol systems can also be expressed in the
third symbol system. This implies that there might be ver-
bal theories, which cannot be adequately expressed in the
second symbol system of mathematics, but can be in the
third [79].

This view has become increasingly popular among so-
cial simulators themselves, apparently because it offers
a shield to the perplexity of the mathematicians, while
hinting at a sort of superiority of computer simulations.
Our opinion is that both statements are simply and plainly
wrong. Agent-based modeling - and more in general sim-
ulation - is mathematics, as we argue in this paragraph.
Moreover, the conjecture that any theory can be expressed
via simulation is easily contradicted: think for instance of
simulating Hegel’s philosophical system.

Actually, agent-based simulations are nothing else but
recursive systems [59,110], where the variables s that de-
scribe at time ¢ the state of each individual unit are deter-
mined, possibly in a stochastic way, as a function of the
past states s and some parameters a:

sijt = fi(sit—1, S—it—15 ai, a—i; t) (1)

The individual state variables could include the memory of
past values, as in the case when an unemployed person is
characterized not only by the fact that he is unemployed,
but also by when he last had a job. The function f; and
the parameters a; determine individual behavior. They can
possibly change over time, either in a random way or de-
pending on some lagged variable or on higher-order pa-
rameters (as in the Environment-Rule-Agent framework of
Gilbert and Terna [80]); when this is the case, their ex-
pression can simply be substituted for in Eq. (1). Equa-
tion (1) allows the recursive computation of the system: at
any moment in time the state of each unit can be expressed
as a (possibly stochastic) function of the initial values X,
only, where X, includes the initial states and parameters
of all the individual units:

sie = gi(Xo; 1) (2)

The aggregate state of the system is simply defined as

St = ZS,’J (3)
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Equilibrium in this system is described as a situation where
the aggregate state S, or some other aggregate statistics Y
computed on the individual states or the individual pa-
rameters are stationary.

Notice that this formalization describes both tradi-
tional dynamic micro models and agent-based simula-
tions. In principle an agent-based model, not differently
from traditional dynamic micro models, could be solved
analytically. The problem is that the expressions involved
quickly become unbearable, as (i) the level of hetero-
geneity, as measured by the distribution of the parame-
ters a; and functional forms f;, increases; (ii) the amount
of interaction, as measured by the dependency of s; ¢
on s_; ;—1, increases; (iii) the functional forms f become
more complicated, e.g. with the introduction of if-else
conditions, etc.

Hence, the resort to numerical simulation. Traditional
analytical models on the other hand must take great care
that the system can be solved analytically, i.e. by sym-
bolic manipulation. Hence the use of simple functions as
the omnipresent Cobb-Douglas, the assumption of homo-
geneous units (that can then be replaced by a RA), the
choice of simple interaction processes, often mediated by
a centralized coordination mechanism. However, analyti-
cal tractability alone is a poor justification of any modeling
choice. As the Nobel laureate Harry Markowitz wrote, “if
we restrict ourselves to models which can be solved an-
alytically, we will be modeling for our mutual entertain-
ment, not to maximize explanatory or predictive power”
(as reported in [112]). Restricting to analytically solvable
modls — as they are called in the not sufficiently well-
known paper by Axel Leijonhufvud [108] - looks danger-
ously close to the tale of the man who was searching for
his keys under the light of a street lamp at night and, once
asked if he had lost them there, he answered “No, but this
is where the light is”.

Analysis of Model Behavior

Being able to reach a close solution means that it is pos-
sible to connect inputs and outputs of the model, at any
point in time, in a clear way: the input-output transforma-
tion function, or reduced form, implied by the structural
form in which the model is expressed, is analytically ob-
tained (e. g. the equilibrium expression of some aggregate
variable of interest, as a function of the model parameters).
Hence, theorems can be proved and laws expressed.

On the contrary, in a simulation model the reduced
form remains unknown, and only inductive evidence
about the input/output transformation implied by the
model can be collected. Performing multiple runs of the

simulation with different parameters does this. In other
words, simulations suffer from the problem of stating gen-
eral propositions about the dynamics of the model start-
ing only from point observations. Since scientific expla-
nations are generally defined as the derivation of general
laws, which are able to replicate the phenomena of inter-
ests [93,94], simulations appear to be less scientific than
analytical models. As Axelrod [19] points out, “like deduc-
tion, [a simulation] starts with a set of explicit assump-
tions. But unlike deduction, it does not prove theorems.
Instead, a simulation generates data that can be analyzed
inductively”. Induction comes at the moment of explain-
ing the behavior of the model. It should be noted that al-
though induction is used to obtain knowledge about the
behavior of a given simulation model, the use of a sim-
ulation model to obtain knowledge about the behavior
of the real world refers to the logical process of abduc-
tion [109,117]. Abduction [66,132], also called inference to
the best explanation, is a method of reasoning in which one
looks for the hypothesis that would best explain the rele-
vant evidence, as in the case when the observation that the
grass is wet allows one to suppose that it rained.

Being constrained to unveil the underlying input-out-
put transformation function by repetitively sampling the
parameter space, simulations cannot prove necessity, i. e.
they cannot provide in the traditional sense necessary con-
ditions for any behavior to hold. This is because nothing
excludes a priori that the system will behave in a radically
different way as soon as the value of some parameter is
changed, while it is generally not possible to sample all val-
ues of the parameter space. In other words, the artificial
data may not be representative of all outcomes the model
can produce. While analytical results are conditional on
the specific hypothesis made about the model only, simula-
tion results are conditional both on the specific hypothesis
of the model and the specific values of the parameters used
in the simulation runs: each run of such a model yields is
a sufficiency theorem, [yet] a single run does not provide
any information on the robustness of such theorems [20].

The sampling problem becomes increasingly harder as
the number of the parameters increase. This has been re-
ferred to as the curse of dimensionality [143]. To evaluate
its implications, two arguments should be considered. The
first one is theoretical: if the impossibility to gain a full
knowledge of the system applies to the artificial world de-
fined by the simulation model, it also applies to the real
world. The real data generating process being itself un-
known, stylized facts (against which all models are in gen-
eral evaluated) could in principle turn wrong, at some
point in time. From an epistemological point of view, our
belief that the sun will rise tomorrow remains a probabilis-
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tic assessment. The second, and more decisive, consider-
ation is empirical: we should not worry too much about
the behavior of a model for particular evil combinations
of the parameters, as long as these combinations remain
extremely rare (one relevant exception is when rare events
are the focus of the investigation, e. g. in risk management,
see [150]). If the design of the experiments is sufficiently
accurate, the problem of how imprecise is the estimated
input-output transformation function becomes marginal:

While the curse of dimensionality places a practical
upper bound on the size of the parameter space that
can be checked for robustness, it is also the case that
vast performance increases in computer hardware
are rapidly converting what was once perhaps a fatal
difficulty into a manageable one [20].

In conclusion, extensive experimentation is the only
way to get a full understanding of the simulation behav-
ior. Sampling of the parameter space can be done ei-
ther systematically, i. e. by grid exploration, or randomly.
Following Leombruni et al. [111], we can further distin-
guish between two levels at which sampling can be done:
a global level and a local level. Local sampling is conducted
around some specific parameter configurations of interest,
by letting each parameter vary and keeping all the oth-
ers unchanged. This is known as sensitivity analysis, and
is the equivalent to the study of the partial derivatives of
the input-output transformation function in an analytical
model.

As an example, Fig. 3 reports a plot of the equilibrium
level of segregation in the Schelling model, for decreas-
ing values of tolerance (left panel) and increasing popu-
lation density (right panel). Tolerance level is sampled in
the range [0,.7] by increasing steps of .05, while popula-
tion size is sampled in the range [1000, 2000] by increasing
steps of 100. To get rid of random effects (in the initial res-
idential pattern and in the choice of a different location of
unsatisfied individuals), 100 runs are performed for every
value of the parameter being changed, and average out-
comes are reported. This gives an idea of the local effects
of the two parameters around the central parameter con-
figuration where the population size is equal to 2000 and
the tolerance level is equal to 70%.

For what concerns the effect of tolerance on segrega-
tion (left panel), it should be noted that the somewhat ir-
regular shape of the relationship is a consequence not of
the sample size but of the small neighborhood individu-
als take into consideration (a maximum of eight adjacent
cells, as we have seen), and the discretization it brings. As
the effect of population size on segregation (right panel) is
concerned, it may seem at a first glance counter-intuitive

that segregation initially diminishes, as the population
density increases. This is due to the fact that clusters can
separate more if there are more free locations. Of course,
nothing excludes the possibility that these marginal effects
are completely different around a different parameter con-
figuration. To check whether this is the case, it is necessary
either to repeat the sensitivity analysis around other con-
figurations, or to adopt a multivariate perspective.

Allowing all parameters to change performs global
sampling, thus removing the reference to any particular
configuration. To interpret the results of such a global
analysis, a relationship between inputs and outputs in the
artificial data can be estimated, e. g.:

Y = m(Xy) . (4)

Where Y is the statistics of interest (say, the Gini coeffi-
cient of wealth), computed in equilibrium, i. e. when it has
reached stationarity, and X contains the initial conditions
and the structural parameters of the model: Xy = {so, a}.
If the (not necessary unique) steady state is independent of
the initial conditions, Eq. 4 simplifies to:

Y = m(A) . (5)

Where A contains only the parameters of the simulation.
The choice of the functional form m to be estimated, which
is sometimes referred to as metamodel [103] is to a certain
extent arbitrary, and should be guided by the usual criteria
for model specification for the analysis of real data.

As an example, we performed a multivariate analysis
on the artificial data coming out of the Schelling’s segre-
gation model, by letting both the population size and the
tolerance threshold to vary. Overall, 2115 parameter con-
figurations are tested. After some data mining, our pre-
ferred specification is an OLS regression of the segregation
level on a third order polynomial of the folerance thresh-
old, a second order polynomial of population density, plus
an interaction term given by the product of tolerance and
density. The interaction term, that turns out to be highly
significant, implies that the local analysis of Fig. 3 has no
general validity.

The regression outcome is reported in Table 1.

Such a model allows predicting the resulting segrega-
tion level for any value of the parameters. Of course, as the
complexity of the model increases (e. g. leading to multiple
equilibria) finding an appropriate meta-model becomes
increasingly arduous.

Finally, let’s remark that the curse of dimensionality
strongly suggests that the flexibility in model specification
characterizing agent-based models is to be used with care,
never neglecting the KISS (Keep it simple, Stupid) prin-
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Regression results for Schelling’s segregation model. Instead of repeating the experiment n times for each parameter configuration,
in order to average out the random effects of the model, we preferred to test a number of different parameter configurations n times
higher. Thus, population size is explored in the range [1000, 2000] by increasing steps of 10, and tolerance level is explored in the

range [0, 7] by increasing steps of .05

Number of obs =2115
Source SS df MS F(6,2108) = 19465.03
Model 666719.502 6(111119.917 Prob > F = 0.0000
Residual [ 12033.9282 | 2108 5.70869461 R-squared = 0.9823
Total 678753.43 2114 321.075416 Adj R-squared = 0.9822
Root MSE = 2.3893
Segregation Coef. Std.Err.  t P > |t| [95% Conf. Intervall]
tolerance 3.379668 .0819347 (41.25 0.000 |3.218987 3.54035
tolerance_2 | —.0655574 | .0013175 | —49.76 | 0.000 |—.0681411 | —.0629737
tolerance_3 |.0003292 6.73e— 06 | 48.94 0.000 |.000316 .0003424
density —23.83033 | 3.274691 |—7.28 |0.000 |—30.25229 [ —17.40837
density_2 20.05102 2372174 |8.45 0.000 |15.39897 24.70306
interaction | —.1745321(.0153685 [—11.36 |0.000 |—.2046712|—.144393
_cons 57.31189 1.957341 |[29.28 0.000 |53.47336 61.15041

ciple. Schelling’s segregation model is in this respect an
example of simplicity, since it has but a few parameters:
this is not incoherent with the complexity approach, since
it stresses how simple behavioral rules can generate very
complex dynamics.

Validation and Estimation

The previous section has dealt with the problem of inter-
preting the behavior of an agent-based model, and we have
seen that this can be done by appropriately generating and
analyzing artificial data. We now turn to the relationship
between artificial and real data, that is (i) the problem of

choosing the parameter values in order to have the be-
havior of the model being as close as possible to the real
data, and (ii) the decision whether a model is good enough,
which often entails a judgment on “how close” as close as
possible is. The first issue is referred to as the problem of
calibration or estimation of the model, while the second
one is known as validation.

Note that all models have to be understood. Thus, for
agent-based models analysis of the artificial data is always
an issue. However, not all models have to be estimated or
validated. Some models are built with a theoretical focus
(e.g. Akerlof’s market for lemons), and thus comparison
with the real data is not an issue — although it could be ar-



46

Agent Based Models in Economics and Complexity

gued that some sort of evaluation is still needed, although
of a different kind.

Estimation

Although the terms calibration and estimation are some-
times given slightly different meanings (e.g. [105]), we
agree with Hansen and Heckman (p. 91 in [92]) that “the
distinction drawn between calibrating and estimating the
parameters of a model is artificial at best. Moreover, the
justification for what is called calibration is vague and con-
fusing. In a profession that is already too segmented, the
construction of such artificial distinctions is counterpro-
ductive.”

Our understanding is that, too often, calibration sim-
ply refers to a sort of rough estimation, e. g. by means of
visual comparison of the artificial and real data. However,
not all parameters ought to be estimated by means of for-
mal statistical methods. Some of them have very natural
real counterparts and their value is known (e. g. the inter-
est rate): the simulation is run with empirical data. Un-
known parameters have on the other had to be properly
estimated.

In analytical models the reduced form coefficients, e. g.
the coefficients linking output variables to inputs, can be
estimated in the real data. If the model is identified, there
is a one-to-one relationship between the structural and the
reduced form coefficients. Thus, estimates for the struc-
tural coefficients can be recovered. In a simulation model
this can’t be done. However, we could compare the out-
come of the simulation with the real data, and change the
structural coefficient values until the distance between the
simulation output and the real data is minimized. This is
called indirect inference [35], and is also applied to analyt-
ical models e. g. when it is not possible to write down the
likelihood. There are many ways to compare real and arti-
ficial data. For instance, simple statistics can be computed
both in real and in artificial data, and then aggregated in
a unique measure of distance. Clearly, these statistics have
to be computed just once in the real data (which does not
change), and once every iteration until convergence in the
artificial data, which depends on the value of the structural
parameters. The change in the value of the parameters of
each iteration is determined according to some optimiza-
tion algorithm, with the aim to minimize the distance.

In the method of simulated moments different order
of moments are used, and then weighted to take into ac-
count their uncertainty (while the uncertainty regarding
the simulated moments can be reduced by increasing the
number of simulation runs, the uncertainty in the estima-
tion of the real, population moment on the basis of real

sample data cannot be avoided). The intuition behind this
is to allow parameters estimated with a higher degree of
uncertainty to count less, in the final measure of distance
between the real and artificial data [174]. Having different
weights (or no weights at all) impinges on the efficiency
of the estimates, not on their consistency. If the number
of moments is equal to the number of structural param-
eters to be estimated, the model is just-identified and the
minimized distance, for the estimated values of the param-
eters, is 0. If the number of moments is higher than the
number of parameters the model is over-identified and the
minimized distance is greater than 0. If it is lower it is un-
der-identified. Another strategy is to estimate an auxiliary
model both in the real and in the artificial data, and then
compare the two sets of estimates obtained. The regres-
sion coeflicients have the same role as the moments in the
method of simulated moments: they are just a way of sum-
marizing the data. Hence, if the number of coefficients in
the auxiliary model is the same as the number of struc-
tural parameters to be estimated the model is just-identi-
fied and the minimized distance is 0. The specification of
the auxiliary model is not too important. It can be proved
that misspecification (e. g. omission of a relevant variable
in the relationship to be estimated) only affects efficiency,
while the estimates of the structural parameters remain
consistent. A natural choice is of course the meta-model
of Eq. 4.

Validation

A different issue is determining “how good” a model is.
Of course, an answer to this question cannot be unique,
but must be made in respect to some evaluation crite-
rion. This in turn depends on the objectives of the analy-
sis [62,102,111,164]. The need for evaluation of the model
is no different in agent-based models and in traditional an-
alytical models. However, like all simulations agent-based
models require an additional layer of evaluation: the valid-
ity of the simulator (the program that simulates) relative
to the model (program validity).

Assuming this is satisfied and the program has no
bugs, Marks [121] formalizes the assessment of the model
validity as follows: the model is said to be useful if it can
exhibit at least some of the observed historical behaviors,
accurate if it exhibits only behaviors that are compatible
with those observed historically, and complete if it exhibits
all the historically observed behaviors. In particular, letting
R be the real world output, and M be the model output,
four cases are possible:

a. No intersection between R and M (R N M = 0): the
model is useless;
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b. M is a subset of R (M C R): the model is accurate, but
incomplete;

c. Ris a subset of M (M D R): the model is complete,
but inaccurate (or redundant, since the model might tell
something about what could yet happen in the world);

d. M is equivalent to R (M < R): the model is complete
and accurate.

Of course, the selection of the relevant historical behav-
iors is crucial, and amounts to defining the criteria against
which the model is to be evaluated. Moreover, the recogni-
tion itself of historical behavior passes through a process of
analysis and simplification that leads to the identification
of stylized facts, which are generally defined in stochastic
terms. Thus, a model is eventually evaluated according to
the extent to which it is able to statistically replicate the
selected stylized facts.

Finally, let’s note that the behavior of the model might
change significantly for different values of the parameters.
Hence, the process of validation always regards both the
structure of the model and the values of the parameters.
This explains why and how validation and estimation are
connected: as we have already noted, estimation is an at-
tempt to make the behavior of the model as close as pos-
sible to real behavior; validation is a judgment on how far
the two behaviors (still) are. A model where the parame-
ters have not been properly estimated and are e. g. simple
guesses can of course be validated. However, by definition
its performance can only increase should the values of the
parameters be replaced with their estimates.

The Role of Economic Policy

Before economics was political economy. According to the
classical economists, the economic science has to be used
to control the real economies and steer them towards de-
sirable outcomes. If one considers the economic system
as an analogue of the physical one, it is quite obvious to
look for natural economic policy prescriptions (one policy
fits all). This is the approach of mainstream (neoclassical)
economists. There is a widespread opinion, well summa-
rized by Brock and Colander [33], that, with respect to the
economic policy analysis of the mainstream, (i) complex-
ity does not add anything new to the box of tools. This
point needs substantial corrections (see also the reflections
by Durlauf [3]). The complexity approach showed us that
the age of certainty ended with the non-equilibrium revo-
lution, exemplified by the works of Prigogine. Considering
the economy as an evolving (adaptive) system we have to
admit that our understanding of it is limited (there is no
room for Laplace’ demon in complexity). Individual be-
havioral rules evolve according to their past performance:

this provides a mechanism for an endogenous change of
the environment. As a consequence the rational expec-
tation hypothesis loses significance. However, agents are
still rational in that they do what they can in order not
to commit systematic errors [113]. In this setting there is
still room for policy intervention outside the mainstream
myth of a neutral and optimal policy. Because emergent
facts are transient phenomena, policy recommendations
are less certain, and they should be institution and histor-
ically oriented [65,170]. In particular, it has been empha-
sized that complex systems can either be extremely fragile
and turbulent (a slight modification in some minor detail
brings macroscopic changes), or relatively robust and sta-
ble: in such a context, policy prescriptions ought to be case
sensitive.

In a heterogenous interacting agents environment,
there is also room for an extension of the Lucas critique.
It is well known that, according to it, because the underly-
ing parameters are not policy-invariant any policy advice
derived from large-scale econometric models that lack mi-
crofoundations would be misleading. The Lucas Critique
implies that in order to predict the effect of a policy ex-
periment, the so-called deep parameters (preferences, tech-
nology and resource constraints) that govern individual be-
havior have to be modeled. Only in this case it is possi-
ble to predict the behaviors of individuals, conditional on
the change in policy, and aggregate them to calculate the
macroeconomic outcome. But here is the trick: aggrega-
tion is a sum only if interaction is ignored. If non-price
interactions (or other non-linearities) are important, then
the interaction between agents may produce very different
outcomes. Mainstream models focus on analytical solvable
solutions: to get them, they have to simplify the assump-
tions e. g. using the RA approach or a Gaussian represen-
tation of heterogeneity. At the end, the main objective of
these models is to fit the theory, not the empirics: how
to explain, e.g., the scale-free network of the real econ-
omy represented in Fig. 1c by using the non interacting
network of the mainstream model of Fig. 1a? At a mini-
mum, one should recognize that the mainstream approach
is a very primitive framework and, as a consequence, the
economic policy recommendations derivable from it are
very far from being adequate prescriptions for the real
world.

Real economies are composed by millions of interact-
ing agents, whose distribution is far from being stochas-
tic or normal. As an example, Fig. 4 reports the distribu-
tion of the firms’ trade-credit relations in the electronic-
equipment sector in Japan in 2003 (see [47]). It is quite
evident that there exist several hubs, i. e. firms with many
connections: the distribution of the degree of connectivity
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Network of firms (electrical machinery and other machines sec-
tor, Japan). Source: De Masi et al. [47]

is scale free, i.e. there are a lot of firms with one or two
links, and very a few firms with a lot of connections. Let
us assume the Central Authority has to prevent a financial
collapse of the system, or the spreading of a financial cri-
sis (the so-called domino effect, see e.g. [104] and [157]).
Rather than looking at the average risk of bankruptcy (in
power law distributions the mean may even not exist, i. e.
there is an empirical mean, but it is not stable), and to infer
it is a measure of the stability of the system, by means of
a network analysis the economy can be analyzed in terms
of different interacting sub-systems, and local interven-
tion can be recommended to prevent failures and their
spread.

Instead of a helicopter drop of liquidity, one can make
targeted interventions to a given agent or sector of activ-
ity: Fujiwara, [72], show how to calculate the probability
of going bankrupt by solo, i. e. because of idiosyncratic ele-
ments, or domino effect, i. e. because of the failure or other
agents with which there exist credit or commercial links.

One of the traditional fields of applications of eco-
nomic policy is redistribution. It should be clear that
a sound policy analysis requires a framework built with-
out the RA straight jacket. A redistributive economic pol-
icy has to take into account that individuals are different:
not only they behave differently, e. g. with respect to saving
propensities, but they also have different fortunes: the so-
called St.Thomas (13:12) effect (to anyone who has, more
will be given and he will grow rich; from anyone who has
not, even what he has will be taken away), which is the road
to Paradise for Catholics, and to the power-law distribu-
tion of income and wealth for the econophysicists.

Gaffeo et al. [75], show that there is a robust link be-
tween firms’ size distribution, their growth rate and GDP
growth. This link determines the distributions of the am-
plitude frequency, size of recessions and expansion efc.
Aggregate firms’ size distribution can be well approxi-
mated by a power law [21,74], while sector distribution
is still right skewed, but without scale-free characteris-
tics [22]. Firms’ growth rates are far from being normal:
in the central part of the distribution they are tent shaped
with very fat tails. Moreover, empirical evidence shows
that exit is an inverse function of firms’ age and size and
proportional to financial fragility. In order to reduce the
volatility of fluctuations, policy makers should act on the
firms’ size distribution, allowing for a growth of their cap-
italization, their financial solidity and wealth redistribu-
tion [48,49]. Since these emerging facts are policy sensi-
tive, if the aggregate parameters change the shape of the
curve will shift as well.

Differently from Keynesian economic policy, which
theorizes aggregate economic policy tools, and main-
stream neoclassical economics, which prescribes individ-
ual incentives because of the Lucas critique but ignores in-
teraction which is a major but still neglected part of that
critique, the ABM approach proposes a bottom up analy-
sis. What generally comes out is not a one-size-fits-all pol-
icy since it depends on the general as well as the idiosyn-
cratic economic conditions; moreover, it generally has to
be conducted at different levels (from micro to meso to
macro). In short, ABM can offer new answers to old unre-
solved questions, although it is still in a far too premature
stage to offer definitive tools.

Future Directions

We have shown that mainstream approach to economics
uses a methodology [71], which is so weak in its assump-
tions as to have been repeatedly ridiculed by the episte-
mologists [37], and dates back to the classical mechani-
cal approach, according to which reductionism is possible.
We have also seen that adopting the reductionist approach
in economics is to say that agents do not interact directly:
this is a very implausible assumption (billions of Robinson
Crusoes who never meet Friday) and cannot explain the
emerging characteristics of our societies, as witnessed by
the empirical evidence. The reductionist approach of the
mainstream is also theoretically incoherent, since it can be
given no sound microfoundations [8,100].

In the fourth edition of his Principles, Marshall wrote,
“The Mecca of the economist is biology”. What he meant
to say was that, because economics deals with learning
agents, evolution and change are the granum salis of our
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economic world. A theory built upon the issue of alloca-
tions of given quantities is not well equipped for the anal-
ysis of change. This allocation can be optimal only if there
are no externalities (increasing returns, non-price interac-
tions etc.) and information is complete, as in the case of the
invisible hand parabola. In the history of science, there is
a passage from a view emphasizing centralized intelligent
design to a view emphasizing self organized criticality [27],
according to which a system with many heterogenous in-
teracting agents reaches a statistical aggregate equilibrium,
characterized by the appearance of some (often scale free)
stable distributions. These distributions are no longer op-
timal or efficient according to some welfare criterion: they
are simply the natural outcome of individual interaction.

Because of the above-mentioned internal and exter-
nal inconsistencies of the mainstream approach, a growing
strand of economists is now following a different method-
ology based upon the analysis of systems with many het-
erogenous interacting agents. Their interaction leads to
empirical regularities, which emerge from the system as
a whole and cannot be identified by looking at any sin-
gle agent in isolation: these emerging properties are, ac-
cording to us, the main distinguishing feature of a com-
plex system. The focus on interaction allows the scientist
to abandon the heroic and unrealistic RA framework, in
favor of the ABM approach, the science of complexity pop-
ularized by the SFI. Where did the Santa Fe approach go?
Did it really bring a revolution in social science, as some of
its initial proponents ambitiously believed? Almost twenty
years and two “The economy as an evolving complex sys-
tem” volumes later, Blume and Durlauf summarized this
intellectual Odyssey as follows:

“On some levels, there has been great success. Much
of the original motivation for the Economics Pro-
gram revolved around the belief that economic
research could benefit from an injection of new
mathematical models and new substantive perspec-
tives on human behavior. [...] At the same time,
[...] some of the early aspirations were not met”
(Chaps. 1-2in [29]).

It is probably premature to try to give definitive answers.
For sure, ABM and the complexity approach are a very
tough line of research whose empirical results are very
promising (see e.g., Chaps. 2-3 in [77]). Modeling an
agent-based economy however remains in itself a complex
and complicated adventure.
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Glossary

Autoregressive model describes a stochastic process as
a weighted average of its previous values and a stochas-
tic error term.

Threshold autoregressive model is an autoregressive
model in which parameters change depending on
the time index or the previous values of the process.

Markov-switching autoregressive model is an autore-
gressive model in which parameters change over time
depending on an unobserved Markov chain.

Prior distribution summarizes the information about
the parameters of interest after observing the data.
Posterior distribution summarizes the information
about the parameters of interest after observing the

data.

Definition of the Subject

Economic fluctuations display definite nonlinear features.
Recessions, wars, financial panics, and varying govern-
ment policies change the dynamics of almost all macroe-
conomic and financial time series. In the time series liter-
ature, such events are modeled by modifying the standard
linear autoregressive (abbreviated, AR) model

yi=ct ¢y + bayiat o+ dpyi—p e,

where y; is a covariance stationary process, €; is an in-
dependent and identically distributed noise process, €; ~
i.i.d.N(0,0?%), and the parameters c, ¢;, and o2 are fixed
over time. In particular, the literature assumes that y; fol-

lows two or more regimes. The three most commonly used
nonlinear models differ in their description of the tran-
sition between regimes. In the threshold autoregressive
(abbreviated, TAR) model, regime changes abruptly; in
the smooth threshold autoregressive (abbreviated, STAR)
model, regime changes slowly. Nevertheless, in both mod-
els the regime change depends on the time index or lagged
values of y;. In the Markov-switching autoregressive (ab-
breviated, MAR) model, however, the regime change de-
pends on the past values of an unobserved random vari-
able, the state of the Markov chain, and possibly the lagged
values of y;.

Arguably, the best-known example of the nonlinear
time series model is the model of cyclical fluctuations of
the US economy. It was first introduced and estimated
by Hamilton [45] for quarterly US real Gross National
Product over the 1952(II)-1984(IV) period. The model
has two discrete regimes. The first regime is associated
with a positive 1.2% growth rate and the second regime
is associated with a negative —0.4% growth rate. Against
his original motivation to find decade-long changes in
growth rate trends for the US economy, Hamilton finds
that negative growth regimes occur at the business cy-
cle frequency. Positive growth regimes last, on average,
10 quarters, and negative growth regimes last, on aver-
age, 4 quarters. Moreover, he finds that the estimated
regimes coincide closely with the official National Bu-
reau of Economic Research (abbreviated, NBER) recession
dates.

Figure 1 illustrates Hamilton’s results for the ex-
tended 1952(I1)-2006(IV) sample. Panel (a) shows the
quarterly growth rate of the US real Gross Domestic
Product, currently the more common measure of output;
panel (b) plots the estimated probability that the US econ-
omy is in a negative growth regime. The shaded regions
represent recessionary periods as determined informally
and with some delay by the NBER: It took nine months
for the NBER’s Business Cycle Dating Committee to deter-
mine the latest peak of the US economy, which occurred
in March 2001 but was officially announced in Novem-
ber 2001. Even though the NBER dates were not used in
the model, the periods with high probability of a nega-
tive growth rate coincide almost perfectly with the NBER
dates.

In addition to the formal recession dating methodol-
ogy, Hamilton [45] presents clear statistical evidence for
the proposition that the US business cycle is asymmetric:
Behavior of output during normal times, when labor, capi-
tal, and technology determine long-run economic growth,
is distinct from behavior during recessions, when all these
factors are underutilized.
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Output growth and recession probabilities

Introduction

Hamilton’s paper triggered an explosion of interest in
nonlinear time series. The purpose of this paper is to give
a survey of the main developments from the Bayesian per-
spective. The Bayesian framework treats model parame-
ters as random variables and interprets probability as a de-
gree of belief about particular realizations of a random
variable conditional on available information. Given the
observed sample, the inference updates prior beliefs, for-
mulated before observing the sample, into posterior beliefs
using Bayes’ theorem

s0ly) = LNOTE)
f&)

where y is the sample observations y = (y1,...,yr), 0 is

the vector of parameters 6 = (¢, $1..... ¢y, o?), () is

the prior distribution that describes beliefs prior to observ-

ing the data, f(y|0) is the distribution of the sample con-

1980 1985 1990 1995 2000 2005

ditional on the parameters, f(y) is the marginal distribu-
tion of the sample, and p(6]y) is the posterior distribution
that describes the beliefs after observing the sample. Zell-
ner [100], Bauwens, Lubrano, and Richard [7], Koop [58],
Lancaster [61], and Geweke [39] cover Bayesian econo-
metrics extensively and provide excellent introductions to
relevant computational techniques.

We review the three most commonly used nonlinear
models in three separate sections. We start each section
by describing a baseline model and discussing possible
extensions and applications (Matlab implementation of
baseline models is available at http://www.people.vcu.edu/
~okorenok/share/mlab.zip). Then we review the choice of
prior, inference, tests against the linear hypothesis, and
conclude with models selection. A short discussion of re-
cent progress in incorporating regime changes into theo-
retical macroeconomic models concludes our survey.

Our survey builds on reviews of the TAR and STAR
models in Tong [95], Granger and Terasvirta [41], Teras-
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virta [90], Bauwens, Lubrano, and Richard [7], Lubra-
no [63], Potter [74], Franses and van Dijk [34], van Dijk,
Terasvirta, and Franses [98], and on reviews of the MAR
models in Hamilton [46], Potter [74], and Kim and Nel-
son [51].

We limit our survey of nonlinear models only to
the TAR, STAR, and MAR models. For a reader in-
terested in a wider range of time series models from
a Bayesian prospective, we recommend Steel’s [84] survey:
He overviews linear, as well as nonlinear, and parametric,
as well as nonparametric, models.

Threshold Autoregressive Model

A threshold regression was introduced by Quandt [75]
and was extended to the threshold autoregressive model
by Tong [92,93] and Tong and Lim [94]. Tong [95] had
a great impact on popularizing TAR models.

We limit our baseline model to a single switching vari-
able z;. The choice of the switching variable depends on
the purpose of the investigation. For the analysis of struc-
tural breaks at an unknown point in time, Perron and
Vogelsang [70], as well as DeJong [24], among many oth-
ers, use the time index (z; = t). For the purpose of pre-
diction, Geweke and Terui [37], Chen and Lee [15], and
others, use a lagged value of the time series (z; = y;—4),
the self-exciting threshold autoregressive (abbreviated,
SETAR) model.

In our discussion, the number of lags in the model p
and a delay d is fixed. We also limit the baseline model to
the homoscedastic case so that the variance of ¢; is con-
stant in both regimes.

Introducing a more general notation, x; = (1, y;—1,

o Yi—p) B' = (c.¢1,....¢p), the two-regime TAR
model becomes
yi=x,B1+e if zy <t (firstregime),

yi=x,B2+e€ if z>1 (secondregime),

or more succinctly
Yt = [1— I[r,oo)(zt)]x;ﬂl + I[t,oo)(zt)x;ﬂZ +e, (1)

where I4(x) is an indicator function that is equal to one if
x € A, in particular Iz o0y(2;) = 1if z; € [r,00). The in-
dicator function introduces the abrupt transition between
regimes. It is convenient to rewrite the model in a more
compact form

ye =x(0)B + e, )

where x(t) = (x}, I[r,00)(z¢)x}) and B’ = (B1.6’) with
§=B2— B

If the number of observations in regime i is less than
or equal to the number of parameters, we cannot esti-
mate parameters, or the model is not identified. In the
Bayesian inference, we resolve the identification problem
by restricting the region of possible parameter values to
the one where the number of observations per regime is
greater than the number of regressors.

The baseline model can be extended in several ways.
First, we can allow the variance of the error term to dif-
fer in each regime. In this case, we rescale the data and
introduce an additional parameter ¢ = 03/07, as in Lu-
brano [63]. Second, we can allow the number of lags to
differ in each regime. Then p equals to max{p;, p2}.

A more substantial change is required if we want to in-
crease the number of regimes r. We can either use a single
transition variable

yi = x:Bi(t) + oi(b)ey,

where i(t) = 1ifz; < 1, i(t) = 2if 11 < z, < 1,
..., i(t) = rif 1,1 < z;; or we can use a combination
of two (or more) transition variables as in Astatkie, Watts,
and Watt [5], where first stage transition is nested in the

second stage transition

ye =[(1 = Iz, 00)(Z1))X,B1 + Ij7, ,00)(210) %, B2]
- [1 = I1g;,00)(221)]
+ [(1 = Ijg,00)(Z10)X, B3 + I 11y 00)(211)x} Ba]
Igy,00)(22) + €1,

nested TAR model.

Also, we can treat either the choice of number of lags,
the delay, or the number of regimes as an inference prob-
lem. Then p, d, and r are added to the vector of the model
parameters, as in Geweke and Terui [37] and Koop and
Potter [57].

Finally, the univariate TAR model can be extended to
describe a vector of time series as in Tsay [96]. The n
dimensional two-regime TAR model can be specified in
a manner similar to Eq. (1) as

Vi = [1 = Ijz,00)(20)|(C1 + P11 Vi + -+ + D1p Vi)
+ I1,00) (2N (Co + Po1 Yy + o+ Pop Vi p) + €

where Y; = (y14,. .., yur) isa (nx1) vector, Cy isa (nx1)
vector, @j;, j =1,2,i = 1,..., pare (nx n) matrices, and
€; = (€14,...,€p,t) is a vector of error terms with mean
zero and positive definite covariance matrix X.

The TAR model has a wide range of applications. Tiao
and Tsay [91], Potter [73], Pesaran and Potter [71], Roth-
man [78], and Koop and Potter [54] demonstrate both
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statistically significant and economically important non-
linearities in the US business cycle. Pfann, Schotman, and
Tschernig [72] find strong evidence of high volatility and
low volatility regimes in the behavior of US short-term in-
terest rates. Dwyer, Locke, and Yu [26], Martens, Kofman,
and Vorst [66], and Forbes, Kalb, and Kofman [33] de-
scribe the relationship between spot and futures prices of
the S&P 500 index and model financial arbitrage in these
markets as a threshold process. Obstfeld and Taylor [68]
study the law of one price and purchasing power parity
convergences and find strong evidence of two regimes.
They demonstrate fast, months rather than years, conver-
gence when price differences are higher than transaction
costs, and slow or no convergence otherwise.

To simplify the exposition, our discussion of infer-
ence for all models will be conditional on the initial ob-
servations in the sample. We assume that y;—,,..., yo
are observable. Two alternative treatments are possible.
One can treat the initial observations as unobserved ran-
dom variables and include the marginal density of ini-
tial observations into the likelihood. Alternatively, in the
Bayesian analysis, one can treat the initial observations as
any other parameter and augment the parameter space, 6,
with Yi—ps---s)o-

Prior

The first step in Bayesian inference is to formalize prior be-
liefs about the model’s parameters by choosing functional
forms and parameters of prior distributions.

The prior density for v depends on our choice of z;.
First, we can limit the prior support by the minimum and
the maximum of z;. Second, if z; = t the threshold is
a date, and so the prior density is naturally discrete. If,
however, z; = y;—4, the threshold t is continuous and
so is the prior density.

For a model to be identified, we restrict the support of
the prior density to the region where the number of obser-
vations per regime is greater than the number of regres-
sors. We assign an equal weight to the entire support to
get the ‘non-informative’ prior for t that is proportional to
a constant

T[(T) S8 I[Z(kl),Z(T—kz)](f) P (3)

where k; and k; are the number of regressors in the first
and second regimes, and the subscript (¢) indicates the or-
der in the sample, z(;) < zp) < --+ < z(7). For example,
z(y = l and z(1) = T if z; is a time index since the order-
ing is natural. For an alternative prior distribution of t see
Ferreira [31].

We assume that the prior density for 8 and o2 is in-
dependent of the prior density for t. Also, because, con-
ditional on 7, the model (2) is linear, we use the natural
conjugate prior for B and o2

7(Bl0%) = N(B|Bo. 0> M; ),

7(0?) = IGy(0*|vo. o),

where IG,(.) denotes the density of the Inverted Gamma-2
distribution. The functional form of the Inverted Gamma-
2 density is given by

1Gy(0?|v,s) =T (K)_l (f>% (02)—%(V+2)

2 2
xp (-5).

The natural conjugate prior allows us to use analytical in-
tegration that considerably simplifies the inference.

Estimation

The next step of the Bayesian analysis is to combine sam-
ple information with our prior beliefs to form the poste-
rior beliefs. Given prior distributions, we update prior dis-
tributions with the sample likelihood into posterior dis-
tributions using Bayes’ theorem. The posterior distribu-
tion can be further summarized for each parameter with
its marginal expectation and variance.

Using the assumption of Normal errors, the likelihood
function of the model (2) is

f(B.o% tly) o™ exp {—Tiz > - xi(r)ﬁ)z} :
()

The posterior density is a product of the prior and the
likelihood

p(,B,(TZ,‘Eb/) = n(ﬂ|02)n(02)n(f)f(ﬂ,02, z|ly). (5)

Conditional on the threshold parameter, model (2) is
linear. Applying the results from the standard natural con-
jugate analysis in the linear regression model (for details
see Zellner [100]), the posteriors density of 8, conditional
on threshold and the data, can be obtained by integrating
the posterior with respect to o2

p(Blz. y) /P(ﬁ,azlr,y) do?

t(B1B(x). s(r), M(z),v), (6)



58

Bayesian Methods in Non-linear Time Series

where t(.) denotes the density of the multivariate Student
t-distribution with

M(z) = Mo + Y _ x¢(t)' x:(7).
B(x) = M) ™ (I ()i + Moho) .

s(v) = so + ByMoPo + ) _ y; — B ()M(D)B(2),
v=vy+T.

Further, by integrating Eq. (6) with respect to 8, we ob-
tain the marginal posterior density for v, which is pro-
portional to the inverse of the integrating constant of
t(B|B(7),s(r), M(z), v) times the threshold prior density

p(zly) oc s() ™2 M(z)| " a (). (7)

Though analytical integration of this function is not avail-
able, the fact that it is a univariate function defined on
bounded support greatly simplifies the numerical integra-
tion.

By integrating numerically the posterior for § condi-
tional on the threshold and the data, we find marginal pos-
terior density for 8

p(Bly) = f p(Blr. y)plely) dr.

Finally, using analytical results for the expectation of the
conditional density 8, we can find the marginal moments
of B by integrating only over t

EBly) = / E(Blz. p)p(ely) dr.
Var(Bly) = / Var(Blr. y)p(tly) dr

+ [@B1e.9) - EBLEEIE.
~ B(B1) plely) dr.

Similarly, applying the results from the standard natu-
ral conjugate analysis, we obtain the posterior density of
o conditional on the threshold and the data. Then we
integrate out T numerically to get the marginal posterior
density for o2

p(o?ly) = / 1G3(0? v, s(x)p(zly) dr .

and the marginal moments E(o|y) and Var(c|y).

Testing for Linearity and Model Selection

After estimating the TAR model, we might ask whether
our data are best characterized by two regimes or a sin-
gle regime? Model (2) becomes linear when both regimes

have identical regression coefficients, so that the difference
B1— B2 = 8 is zero. There are two methods to the null hy-
pothesis test Hy : § = 0. The first approach is the Bayesian
equivalent of the F-test. Taking into account that § condi-
tional on 7 has a Student t-distribution and that the linear
transformation of a Student random vector is also a Stu-
dent, the quadratic transformation of §

T—k

Gt y) = (6 — 8(1)) Moz (1)(8 — 8(v)) Tos(0)

®)

has a Fisher distribution, where
M2.1(7) = Mo (t) — Ma1 ()M} (1)M12

and §(t) is our estimate. M(t) is partitioned by dividing
B into B; and 8. The posterior ‘p-value’ of the Bayesian
F-test gives the unconditional probability that £(5|y) ex-
ceeds £(§ = 0]y). It can be computed numerically as

PrE(S) > £(5 = O)y)
- /F(E(é’ =01k T—K)-plely) dr. (9)

where F(§(8 = 0|y), k, T — k) is the Fisher distribution
function with k; and T — k degrees of freedom. The null
hypothesis is accepted if, for example, Pr(§(§) > £(§ =
0)]y) is larger than 5%.

The second approach, the posterior odds, is more gen-
eral, and can also be used to select the number of lags p,
the delay parameter d, or the number of regimes r. Koop
and Potter [55,56] advocate and illustrate this approach
in the context of the TAR model. To choose between

two competing models, m; with 6; = (8,8, 1,0%) and
my with 6, = (B1.0,7,02), we calculate the posterior
odds ratio

_ fOylm)m(my)
PO = S ) ()

where 7 (m;) is the prior probability for the model i, and
f(y|m;) is the marginal likelihood or marginal density of
the sample. Since f(y|m;) is a normalizing constant of the
posterior density, it can be calculated as

Flmy) = / F16:. mo) (6] m;) d6

With a ‘non-informative’ prior that assigns equal
weight to each model, the posterior odds reduces to the
ratio of marginal likelihoods, or the Bayes factor. Again,
applying the standard natural conjugate analysis of the lin-
ear regression model, the marginal likelihood for model i
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is

_v(zjlm;)
s(zi|lm;)” " 2

Mo\
(W) rwlm) dr.  (10)

which can be calculated numerically. The model with the
highest marginal likelihood is preferred.

Smooth Transition Autoregressive Model

In some applications, imposing an abrupt transition be-
tween regimes might be undesirable. For example, if the
initial estimate of output is slightly below the threshold,
even a small upward revision will result in a substan-
tial change of the forecast in the TAR model. Bacon and
Watts [6], in a regression model context, and Chan and
Tong [14], in the TAR model context, propose to make the
transition between regimes smooth. Terasvirta [89] devel-
ops a modeling cycle for the STAR model that includes
specification, estimation, and evaluation stages as in the
Box and Jenkins [9] modeling cycle for the linear time se-
ries model.

In the STAR model, a smooth transition is imposed by
replacing the indicator function in Eq. (1) by the cumula-
tive distribution function

yi = [1=F(y(zs—)]x; 1+ F(y(z:—1))x1 B2 +€;. (1a)
Terasvirta [89] uses the logistic function

1

e =) = -0y

where y € [0, 00) determines the degree of smoothness.
As y increases, smoothness decreases. In the limit, as y ap-
proaches infinity, F(.) becomes an indicator function, with
F(y(z; — 1)) ~ 1 when z; > 7. We can rewrite Eq. (1a) as

ye=x;(y.0)B + € . (2a)

where x}(y, ) = (x}, F(y(z: — 1))x}).

Note that the identification problem discussed for the
TAR model does not occur in the STAR model. We can-
not have fewer observations than regressors because we no
longer classify observations into regimes. The new param-
eter ¥, however, introduces a new identification problem.
If y = 0, the logistic function equals % for any value of
7, so T is not identified. Also x/(y, ) is perfectly collinear
unless the two regimes have no common regressors. Per-
fect collinearity implies that § is also not identified. As in

the TAR model, we choose such prior densities that resolve
the identification problem.

The baseline model can be extended in several direc-
tions. Generally, the transition function F(.) is not limited
to the logistic function. Any continuous, monotonically
increasing function F(.) with F(—o0) = 0 and F(oco) = 1
can be used. For example, the popular alternative to the
logistic function is the exponential function

F(y(zi = 7)) = 1 —exp(—y(z — 7)) .

In the regression model context, Bacon and Watts [6]
show that results are not sensitive to the choice of F(.). As
in the TAR model, we can increase the number of regimes
either with a single transition variable

ye =x,f1 + F(yi(ze — 1))xi(Ba — B1) + ...
+ F(yr(ze — 0 ))x(Br — Br—1) + €,

or with a combination of transition variables

ye =[(1 = F(y1(z1: — n)))x,B1 + F(y1(z11 — 1))} B2
[(1 = F(ya(z2t — 12)))]
+ [(1 = F(y1(z1: — 11))x; B3
+ F(yi(z1: — 11))x;Bal - [F(y2(zar — 02)] + € .

See van Dijk and Franses [97] for a discussion of the mul-
tiple regime STAR model.

Also, we can treat the choice of number of lags p, de-
lay d, or number of regimes r as an inference problem,
adding p, d, and r to the vector of parameters in the model.
In addition, we can allow the variance of the error term to
change between regimes, or more generally, use an autore-
gressive conditional heteroscedasticity form as in Lund-
bergh and Terasvirta [64], or a stochastic volatility form
as in Korenok and Radchenko [59].

Finally, similar to the TAR model, the univariate STAR
model can be extended to model a vector of time series
as in Granger and Swanson [42]. The n dimensional two-
regime STAR model can be specified as

Vi =[1=F(y(z; —t)NCy + P11 Y1 + -+ + P1pYip)
+ F(y(z: —ONCy + P Vi1 + -+ + P2 Yip)
+ €,

where we use the same notation as in the multivariate TAR
model.

Applications of the STAR model include models of
the business cycles, real exchange rates, stock and futures
prices, interest rates, and monetary policy. Terasvirta and
Anderson [88] and van Dijk and Franses [97] demon-
strate nonlinearities in the US business cycles. Skalin and
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Terasvirta [82] find similar nonlinearities in Swedish busi-
ness cycles. Michael, Nobay, and Peel [67], Sarantis [80],
and Taylor, Peel, and Sarno [87] show that the real ex-
change rate nonlinearly depends on the size of the de-
viation from purchasing power parity; Lundbergh and
Terasvirta [65] and Korenok and Radchenko [59] use the
STAR model to fit the behavior of exchange rates inside
a target zone. Taylor, van Dijk, Franses, and Lucas [86] de-
scribe the nonlinear relationship between spot and futures
prices of the FTSE100 index. Anderson [1] uses the STAR
model to study yield movements in the US Treasury Bill
Market. Finally, Rothman, van Dijk, and Franses [79] find
evidence of a nonlinear relationship between money and
output; Weise [99] demonstrates that monetary policy has
a stronger effect on output during recessions.

Prior

As in the TAR model, the natural conjugate priors for
and o2 facilitate analytical integration. Bauwens, Lubrano,
and Richard [7] impose the identification at y = 0 by
modifying the prior density of 8

n(Blo?, y) = N(B|0,0° My (y)),

where, assuming prior independence between f; and 4,
M, is defined as

[ Mo 0
MO(V) - ( 0 Mo’zz/ eXp()/) ) '

As y gets closer to zero, the prior variance falls, increasing
precision around § = 0. The choice of § = 0 is consistent
with the linear hypothesis, which can be formulated as ei-
ther § = 0 or y = 0. When y is positive, prior precision
about § = 0 decreases as variance rises, so more weight is
given to the information in the sample. We keep the natu-
ral conjugate prior of 0% without modifications.

We do not modify the prior for the threshold parame-
ter 7. When y is large, the smooth transition function is
close to the step transition function. Thus, we prefer to
limit the prior to the region where the number of observa-
tions per regime is greater than the number of regressors
to avoid the TAR identification problem.

The prior for the smoothness parameter, y, cannot be
‘non-informative’ or flat. As y — oo the smooth transi-
tion function becomes a step transition with a strictly pos-
itive likelihood. This means that the marginal likelihood
function of y is not integrable. To avoid the integration
problem, Bauwens, Lubrano, and Richard [7] use the trun-
cated Cauchy density

7(y) o< (14 y*) " p,00)(y) -

Estimation

Inference in the STAR model follows the TAR methodol-
ogy, taking into account the additional parameter y, and
the new definitions of My(y) and x(z, y).

In particular, the likelihood function of model (2a) is

fB. 0% v yly) oco™"
1
exp %_F Y - V)5)2€ . (4a)
the posterior density is

p(B.0% 7. yly) = 2(Blo*)m (0*)m (D)m (y)
fB.0% . yly), (5)
and the joint posterior density of t and y is proportional
to the inverse of the integrating constant of the Student

t-density t(B|B(z, y),s(z,y), M(z,y),v) times the prior
densities for c and y

p(@yly) o Is(r =T Mz ) 7
n(O)x(y), (7a)
where
M(t,y) = Mo(y) + Y xi(z, y) x(z.y) .
Be.y) = M@y~ (X x(@ vy + Mor)Bo) .
s(z.y) = so+ BoMo(¥)Bo
+ Y yi— B IME Y)Y,
v=vg+T.
This function is bivariate and can be integrated numeri-
cally with respect to 7 and y. Then, as in the TAR model,
we use numerical integration to obtain marginal densities
and moments for 8 and o2.
Compared to the TAR model, 8; and B, cannot be
interpreted as regression coefficients in regime 1 and
regime 2. Smooth transition implies that the effect of

change in x; on y; is a weighted average of two regimes
with weights changing from one observation to the other.

Testing for Linearity and Model Selection

The STAR model becomes linear when either § = 0 or
y = 0. The test for Hy : § = 0 is equivalent to the test in
the TAR model. The quadratic transformation of §

§0@lr.v.y)
T—k

= (6= 3(0.)) M2 ()6 = 807D =5

(8a)
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where

Mai(t,y) = Ma(t,y)— Mo (t, y) M (z, ) Mia(z, ),

has a Fisher distribution. We can find the posterior ‘p-
value’ of the Bayesian F-test numerically as

Pr(§(8) > £(8 = 0)[y)

- // F(E(S = 0ly). ka. T — K)p(z. y]y) dr dy .
(92)

The null hypothesis is accepted, for example, if Pr(§(§) >
£(8§ = 0)|y) is larger than 5%.

The test for Hy : y = 0 can be conducted using
the 95% highest posterior density interval (abbreviated,
HPDI), defined as the smallest interval with 95% proba-
bility of y to be in the interval

mhaxPDI(h) = {y| /p(f, y)r(r)dr > hy ,
s.t. Pr(PDI(h)) > 0.95.

The null hypothesis is accepted, for example, if y = 0 is
inside the 95% HPDI.

As in the TAR model, linearity tests and model selec-
tion can be conducted using posterior odds. In the STAR
model, the marginal likelihood for model i is given by

Yo
i (M) S _(iyilmg)
flylm;) = —— (e yilm:) ”
1
M 2
' (W) 7 (zi|mi)z (yi|m;) dz; dyi,
is Vi|lMmi

(10a)

which can be calculated numerically. The model with the
highest marginal likelihood is preferred.

Markov-Switching Model

Unlike the threshold models, where the regime transition
depends on a time index or on lagged values of y;, the
Markov-switching autoregressive model relies on a ran-
dom variable, s;. A Markov-switching regression was in-
troduced in econometrics by Goldfeld and Quandt [40]
and was extended to the Markov-switching autoregressive
model by Hamilton [45].

As in the threshold models, we limit our baseline MAR
model to two regimes that differ only in mean. The vari-
ance of the error term is constant. The number of lags p
is determined by the model choice. The two-regime MAR
model becomes

p
e = 1) = Y $i(yimi — ps,) + €,
i=1 (11)
s, = o if s, =0 (first regime),
s, = o + 1 if s; =1 (second regime),

where [ts, = [ + s¢/t1. An unobserved discreet random
variable s; takes only integer values of 0 or 1. The transi-
tion probability Pr(s; = j|s;—1 = i) = p;; that state i will
be followed by state j depends only on s;—, the first or-
der Markov-switching process, with transition probability
matrix

p= ( b pa ) .
P12 p22
Since we have only two possible regimes and p;;+pi» = 1,
we estimate only two free parameters, the probabilities of
remaining in the same regime p;; and p,;. We also as-
sume that, conditional on previous history of states s =
(s1,...,s7), the transition probabilities are independent
of other parameters and the data.

In general, we do not have a clear association between
regimes and the state indicator. This introduces an iden-
tification problem when we change regime identifiers, 0
and 1, and accordingly change u§ = o + pq and u} =
—p1. For example, if s; = 0 during recessions, then the
long run average during recessions is (1 and the long-run
average during expansions is (Lo + /41 . On the other hand, if
s¢ = 0 during expansions, then the long-run average dur-
ing expansions is ;5 = fto + 1 and the long-run average
during recessions is ;uy — p1 or uf = —p1.

The second identification problem occurs in the MAR
model when p; = 0; the model becomes linear. In this
case, the conditional mean E(y¢|s; = 0) = E(y¢|s; =
1) = o is independent of the state realizations, s, and
transition probability matrix, P. Neither s nor P are iden-
tified.

The baseline model can be extended in several direc-
tions. The Markov-switching component can be modi-
fied by increasing the number of regimes as in Calvet and
Fisher [11] and Sims and Zha [81] or by increasing the
order of the Markov-switching process so that s; depends
onsy_p,...,Ssr. Both changes can be incorporated by in-
creasing the number of states in the baseline model, as in
Hamilton [46].

Diebold, Lee, and Weinbach [22], Filardo [32], and Pe-
ria [69] relax the assumption of time invariant Markov-
switching by making the transition probabilities depend
on lagged values of y;. In most applications, however, rel-
atively few transitions between regimes makes it difficult
to estimate the transition probabilities and restricts model
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choice to two or three regimes with time-invariant proba-
bilities.

The error term can be modified by introducing
regime-switching for the variance of the error term as in
Hamilton and Susmel [47], and Cai [10]; by relaxing the
assumption of Gaussian density for the error term as in
Dueker [25]; or by specifying a general Markov-switching
moving average structure for the error term as in Billio,
Monfort, and Robert [3].

Finally, the univariate Markov-switching model can
be extended to a multivariate model. Diebold and Rude-
busch [23] propose a model where a number of time series
are driven by a common unobserved Markov-switching
variable, the dynamic factor model. The dynamic factor
model captures the fact that many economic series show
similar changes in dynamic behavior during recessions.
Krolzig [60] provides a detailed exposition of how the
baseline model can be extended to the Markov-switching
vector autoregressive model.

The applications of the MAR model include models of
business cycles, interest rates, financial crises, portfolio di-
versification, options pricing, and changes in government
policy. Hamilton [45], Filardo [32], Diebold and Rude-
busch [23], Kim and Nelson [51], Kim and Piger [53], and
Hamilton [48] find statistically significant evidence that
expansionary and contractionary phases of the US busi-
ness cycle are distinct. Hamilton [44], Cai [10], Garcia and
Perron [35], Gray [43], Dueker [25], Smith [83], Hamil-
ton [48], and Dai, Singleton, and Yang [18] describe dra-
matic changes in interest rate volatility associated with the
OPEC oil shocks, the changes in the Federal Reserve op-
erating procedures in 1979-1982, and the stock market
crash of October 1987. Ang and Bekaert [3] show a sim-
ilar increase in volatility in Germany during the reunifica-
tion period. Jeanne and Masson [49] use the MAR model
to describe the crisis of the European Monetary System in
1992-1993; Cerra and Saxena [13] find permanent losses
in output after the Asian crisis. Ang and Bekaert [2] re-
port that the correlation between international equity re-
turns is higher during bear markets relative to bull mar-
kets. Radchenko [76] shows that gasoline prices respond
faster to a permanent oil price change compared to a tran-
sitory change. Finally, Sims and Zha [81] document abrupt
changes of shocks to US monetary policy, and Davig and
Leeper [20] document the regime changes in fiscal policy.

Prior

As in the threshold models, the natural conjugate priors
facilitate considerably the integration of the posterior den-
sity. Conditional on sy, [Lg, and /¢1, the MAR model is lin-

ear
Ve(se) = xj(s)p + € . (12)
where

}’t(st) =Yt — HUs; »

X?(St) =(yr-1— Msi—yseves Yt—p — ,Uvst,,,) s

and ¢ = (¢1,... .¢,). For the regression coefficient )
and the variance of the error term o2, the natural conju-
gate prior is given by

n(@lo®) = N(@ldo. 0> My )14 ().
7(0?) = IGy(0*|vo, so)
where A is a region where the roots of polynomial 1—¢; L—
o+ — ¢pLP = 0 lie outside the complex unit circle. This

restriction imposes stationarity on y(s;).
Conditional on s; and ¢, the MAR model is also linear

)’t(fig) = x;(gﬁ)/l + €, (13)

where

P
}’t(&) =)Vt — Z¢i}’t—p s

i=1

p
X?(‘ﬁ) = (LSt - Z¢i5t—p) )

i=1
and i = (4o, 41)". The natural conjugate prior for /i is
m(i1) = N(fi|fio. Mgy, 0,00) (141) -

where the indicator function imposes an identification
constraint. In particular, we constrain the mean of the sec-
ond regime to be greater than the mean of the first regime
and in this way fix the order of regimes. We also impose
1 # 0.

Kim and Nelson [51] show that the natural conju-
gate prior for the vector of transition probabilities p =

(P11, p22) is
7 (p) = B(puler, B1)B(pazloa, B2)

where B(.) denotes the density of Beta distribution defined
on the interval [0, 1].

Estimation

In the Bayesian approach, we add realizations of the vector
of states to the model parameters: 8 = (ug, 1,91, ...,
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$p, 0, P11, P22, ST, ,s7)’. Analytical or numerical inte-
gration of the posterior density p(8|y), where 0 is p + 5 +
T x 1, may be difficult.

Albert and Chib [4] developed inference methodol-
ogy that overcomes the curse of dimensionality using
Gibbs-sampling, a Markov chain Monte Carlo simulation
method of integration. The technique was further refined
by Kim and Nelson [50]. Monte Carlo integration takes
random draws from the posterior density and, by aver-
aging them, produces estimates of moments. In partic-
ular, Gibbs-sampling allows us to generate many draws
68, ¢ = 1,...,G, from joint density of p(f|y) using
only conditional densities p(6;|6; js y) either for all i or
for blocks of parameters. The joint and marginal distribu-
tion of #®) converge at an exponential rate to the joint
and marginal distribution of 6 under fairly weak condi-
tions. Casella and George [12], Gelfand and Smith [36],
and Geweke [38] provide the details.

To implement the Gibbs-sampling simulation, we
have to describe the conditional posterior distributions for
all parameters or parameter blocks. It is convenient to sep-
arate parameters into five blocks: the state vector s, the
transition probabilities p, the regression coefficients ¢ in
the conditional linear model (12), the regression coeffi-
cients /i in the conditional linear model (13), and the vari-
ance of the error term o2

The state vector s is a first-order Markov process,
which implies that given s;4 all information, for exam-
plesi+2,...,syand y,y1, ..., yr, is irrelevant in describ-
ing s;. Then the posterior density of s conditional on other
parameters becomes

plslp, . 1, 0%, y)
T—1

= p(ST|ﬁ7¢’/:L’O-27y) 1_[ p(sf|sf+17ﬁ7¢’ﬂ5027}/t) s
t=1

(14)

where y* = (y1,..., y¢)". The functional form of the pos-
terior density suggests that we can generate draw of the
state vector recursively. First we generate the last element
st. Then, conditional on st, we generate st —;. More gen-
erally, conditional on s;41, we generate s; for t = T — 1,
T—2,...,1

To generate the state vector, Kim and Nelson [50] use
the output from Hamilton’s [45] filter. To facilitate exposi-
tion, we suppress the conditioning on parameters and con-
sider first a model without lags.

Hamilton’s filter starts from the observation that, be-
fore observing the data, the probability of finding the state
in regime j, Pr(sy = j|y°), equals the unconditional proba-

bility, Pr(s; = j), which is proportional to the eigenvector
of P associated with unitary eigenvalue.

Using transition probabilities and the probability of
observing regime j conditional on observations obtained
through date ¢, Pr(s; = j|y"), we predict the next period
regime

Pr(s;1 = jly") = Pr(s; = 0[y")poj +Pr(sy = 1|y")p1;.
(15)

Once y;. is observed, we update the prediction using
Bayes rule

Pr(sp1 = jly'™") = Pr(si1 = jlyes1. ")
_ SOelsen = 3oy Prisir = jly")

FGerly) - (169)

where the numerator is the joint probability of observing
ye+1 and sq4; = j, which is a product of the probabil-
ity of observing . given that state s¢,; is in regime j
(for example f(ys+1]si+1 = 0, y") = N(uo,0?%)) and our
prediction from Eq. (15). The denominator is the uncon-
ditional density of observing y;. 1, which is a sum of the
numerator over all possible regimes

fenly) =D fGeelsir = j.y) Prlsirr = jly").
J
(17)

Starting from Pr(sy = j|y°), the filter iterates through
Egs. (15)-(17) until we calculate Pr(s; = j|y") for every t
and j. As a by-product of the filter we obtain the likelihood
function

f@. i, p.0%sly) = [[fGemalyh) . (18)

t

For the AR(1) model, the filter should be adjusted.
Given Pr(s; = j|y'), we forecast the next period regime
and the previous period regime jointly, taking one sum-
mand in Eq. (15) at a time

Pr(spy1 = j.se = ily") = pijPr(s; = ily"),  (15a)

for j =0,1and i = 0, 1. After y,4 is observed, we update
our prediction to

Pr(se41 = j.s¢ = i|yt+1)

_ fOenlsers = josi = i y") Pr(seps = jose = ily")
f(}’t+1|)’t) ’

(16a)
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where f(yit1l|sit+1 = j,s¢ = i,y") is the density of ob-
serving y; + 1 given that state s; + 1 is in regime j and
state s; is in regime i (for example f(y¢41|s¢+1 = 0,5, =
0, ") =N(io + ¢1(yt — o), %))

f()’t+1|)’t) = ZZf()’t+1|5t+1 =j.5e = iv}’t)

L Pr(si = s = ilyY) . (17a)

Summing (16a) over i,

Pr(spr1 = jly™™) = Pr(spyr = j.ose = ily't). (19)

1

finishes the iteration. Iterating through Egs. (15a)-(17a)
and (19) we get Pr(s; = j|y*) for every f and j. The exten-
sion to a more general AR(p) model is similar.

The output of Hamilton’s filter gives only the first term
in the product (14), which is sufficient to generate sy. To
generate the other states s; conditional on y* and s; + 1,
t=T-—1,T—2,...,1, we again use Bayes rule

pji Pr(se = jly")
> pji Pr(se = jly")

Pr(s; = jlsip1 = i, y") = . (20)

where Pr(s; = j|y') is the output from Hamilton’s filter.
Since s; is a discrete random variable taking on values 0
and 1, we can generate it by drawing random numbers
from uniform distribution between 0 and 1, and compar-
ing them to Pr(s; = 1|s;41 = i, y').

Conditional on other parameters in the model, the
likelihood function of transition probabilities reduces to
a simple count #;; of transitions from state i to state j

nii

FPlit, 02,5, y) = pII(1 — p11)™2py2 (1 — px)™' ,
which is the product of the independent beta distributions.
The posterior distribution for the transition probabilities
conditional on the other parameters is a product of inde-
pendent beta distributions

p(pl. . 0% 5. )
= B(a1 + n11, B1 + n12) - B(ay + np, B2 + n21) .

To derive posterior distributions for @, ji, and o2
conditional on other parameters, we use standard results
for a linear model with the natural conjugate priors. The
natural conjugate priors are reviewed, for example, by
Geweke [39], Koop [58], or Lancaster [61]. In particular,
the conditional distribution of the regression coefficients

is Normal
P@lp. 1. 0% 5. y)
=N (E¢ (0_2M0,¢¢~>0 +07? th(s)'yt(s)> , E¢>
-1a(),
p(@lp.¢.0%5.y)
=N (Eu (Mo,u/lo +o7? Zm(@%(@) : EM>
“1(0,00) (11,

where
Xy = (0_2M0,¢ +072 th(s)/xt(5)>_1 ;
S = (Mo + 072 Y 5@ x@) .

The conditional distribution for the variance of error term
is Inverted Gamma-2

p(@*1p. . t.s.y)
= 1G, (50 + Z(J’t(st) — X)(s0))*, vo + T) .

Testing for Linearity and Model Selection

Given our prior, the linear model is not nested in the MAR
model. To test against a linear model, we use the Bayes
factor. We also use the Bayes factor to select the number
of regimes and the number of lags.

The Bayes factor is a ratio of marginal likelihoods of
the alternative models. To find the marginal likelihood,
we need to integrate the product of the likelihood func-
tion and the prior density with respect to all parameters.
Chib [16] shows that the marginal likelihood can be com-
puted from the output of the Gibbs sampler requiring only
that the integrating constants of the conditional posterior
distributions be known. This requirement is satisfied for
the natural conjugate priors.

From the Bayes’s theorem it follows that the identity

_ fyl)m ()
SO =@

holds for any 6. The complete functional form of the nu-
merator is given by the product of the likelihood (18) and
the prior densities. Chib suggests evaluating the denom-
inator, the posterior density, at the posterior mode 6*.
Then the posterior density at the posterior mode can be
written as
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The first term

p(a*ly) =
[p(@16.0% 5.5.5) p (60 .s1y) 46 do 0 s,

can be estimated by averaging over the full conditional
density

G
B(*1y) = G Y p (£7169.0%9, 9,50, y)
g=1

This estimate converges at an exponential rate to the true
marginal distribution of fi.
In the second term,

P (I, )
= /P(¢~5*|ﬂ*,02,ﬁ,s,y)p(Oz,ﬁ,sm*,y) do? dp ds,

the complete conditional density of ¢ cannot be averaged
directly because the Gibbs sampler does not provide draws
conditional on i*. We generate necessary draws by addi-
tional G iterations of the original Gibbs sampler, but in-
stead of generating i we set it equal to f1*. Then the esti-
mate of the second term

p(P71A".y)
2G
=c' ) p(¢Z*|Ia*,UZ(g),I;(g)J(g),y)7
g=G+1

converges at an exponential rate to the true p (¢|A*, y).
Similarly, by generating additional draws from the Gibbs
sampler we compute p (62*|1*,$*. y) and p(p*[y. u*,
¢Z*’ 02*)'

Substituting our estimate of posterior density into
marginal likelihood results in

Inf(y) =Inf(y16%) +Inx (0%) —Inp (2*|y)
“Inp (1At y) — Inp (57 1a% 3. y)
—Inp (p*ly. u*. ", 0%) .

The model with the highest marginal likelihood is pre-
ferred.

Future Directions

Given the large volume of evidence collected in the non-
linear time series, incorporating regime-switching policies

and disturbances into general equilibrium models may
lead to a better understanding of monetary and fiscal poli-
cies.

Over the years, the time series literature has col-
lected substantial statistical evidence that output, unem-
ployment, and interest rates in the US exhibit differ-
ent behavior in recessions and expansions. Contrary to
the real business cycle models in which short-run and
long-run fluctuations have the same origin, the statisti-
cal evidence suggests that the forces that cause output to
rise may be quite different from those that cause it to
fall.

Also, many studies provide evidence that monetary
and fiscal policies have changed substantially throughout
US history. Taylor [85], Clarida, Gali, and Gertler [17],
Romer and Romer [77], and Lubik and Schorfheide [62]
show that, since the mid-1980s, the Fed reacted more
forcefully to inflation. Favero and Monacelli [30] and
Davig and Leeper [20] demonstrate that US fiscal policy
has fluctuated frequently responding to wars, recessions,
and more generally to the level of debt. Sims and Zha [81],
after extensive comparison of 17 regime-switching struc-
tural VAR models, report that their best-fitting model re-
quires nine regimes to incorporate the large shocks, for ex-
ample, generated by the OPEC oil embargo or the Vietnam
War. They conclude that, “It is time to abandon the idea
that policy change is best modelled as a once-and-for-all,
nonstochastic regime switch” (p. 56).

The research by Davig and Leeper [19,20,21] and
Farmer, Waggoner, and Zha [27,28,29] show consider-
able promise in introducing nonlinear regime-switching
components into dynamic stochastic general equilibrium
models. For example, Davig and Leeper [20] estimate
regime-switching rules for monetary policy and tax pol-
icy and incorporate them into the otherwise standard
new-Keynesian model. Unlike expansionary fiscal policy
in the fixed-regime model, fiscal expansion in the regime-
switching model increases inflation and output.
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Glossary

Business policy and strategy A firm’s business strategy
defines how and where it competes, and its approach to
doing so. A business strategy typically specifies a firm’s
goals, the products and services offered and the mar-
kets served, and the basis for competing (price, service,
quality, etc.). A strategy may also define the organiza-
tion structure, systems and policies which implement
the strategy. In addition, firm’s will have systems and
policies which focus on operations and functions, and
are not truly “strategic” in nature. Nevertheless, these
operational policies can be important in determining
business performance.

Business dynamics Business dynamics is the study of
how the structure of a business (or a part of the busi-
ness), the policies it follows, and its interactions with
the outside world (customers, competitors, suppliers)
determine its performance over time. Business struc-
ture consists of feedback loops surrounding the stocks
and flows of resources, customers, and competitive
factors that cause change over time; business policies
are important components of these feedback loops.
Business dynamics is a means of determining the likely
performance that will result from alternative business
policies and strategies.

Definition of the Subject

System dynamics has long been applied to problems of
business performance. These applications range from op-
erational/functional performance to overall strategic per-
formance. Beginning with its founding at MIT’s Sloan

School of Management in 1957, an important focus of re-
search, teaching, and application has been on understand-
ing why companies and markets exhibit cycles, or under-
perform competitors in terms of growth or profitability.
The original publication in the field was Forrester’s In-
dustrial Dynamics [26], which not only laid the theoret-
ical foundations for the field, but also provided an un-
derstanding of the causes of instability in supply chains.
Since that initial work, research and application has been
widespread. It has addressed the dynamics underlying in-
stability in manufacturing and service organizations, the
processes which encourage or inhibit growth, the dynam-
ics of research organizations, and the causes of cost and
schedule overruns on individual projects. It has been ap-
plied in many industries, from manufacturing to high-tech
to financial services and utilities, both by academics and
consultants. Business theory and applications are taught at
many universities, including but not limited to MIT, Lon-
don Business School and others in England, Bergen (Nor-
way), Manheim and Stuttgart (Germany) (see [62,72] for
more details). Business policy and strategy has and will
continue to be one of the major application areas for sys-
tem dynamics.

Introduction

Business strategy, sometimes called simply ‘policy’ or
‘strategy’, is primarily concerned with how and where
firm’s choose to compete. It includes such decisions as
setting goals, selecting which products and services to of-
fer in which markets, establishing the basis for compet-
ing (price, service, quality, etc.), determining the organi-
zation structure, systems and policies to accomplish the
strategy, and designing policies for steering that strat-
egy continually into the future. Academic and applied re-
search on business strategy developed separately from sys-
tem dynamics. That research, while widely disparate, has
largely focused on static assessments and tools. For exam-
ple, cross-sectional studies of many companies attempt to
identify key differences that determine success or failure as
a guide to management; “strategic frameworks” (for exam-
ple, learning curves, growth share matrices, Porter’s five
forces [79,80]) assist managers in framing strategy and in-
tuitively assessing performance over time; scenario plan-
ning helps managers visualize alternative futures; the re-
source-based view of the firm and core competencies [81]
help managers identify how resources and capabilities de-
termine the best way to compete. While these tools provide
valuable insights and frameworks, they leave the connec-
tion between a firm’s business strategy and the evolution of
its performance over time to the intuition of managers —
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while traditional business strategy addresses the starting
point and the desired end point, and the mechanisms that
might allow the firm to transition between the two, the
ability of those mechanisms to achieve that transition, and
the path for getting between the two, is left unanswered.

Academic and applied research on operational and
functional performance has similarly developed separately
from system dynamics. Although it is difficult to general-
ize, this research is again typically static in nature and/or
focused on the detailed management of a part of the orga-
nization over a relatively short period of time (for example,
optimization of production scheduling during a month,
quarter or year; optimal inventory management during
a quarter or year). While this detailed management is nec-
essa