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Series Editors’ Introduction

The Econometric and Tinbergen Institutes Lectures
deal with topics in econometrics that have important
policy implications. The lectures cover a wide range of
topics and are not confined to any one area or subdis-
cipline. Leading international scientists in the fields
of econometrics in which applications play a major
role are invited to give three-day lectures on a topic to
which they have contributed significantly.

The topic of model construction is one of the most
challenging subjects in the economic sciences. In the
present book John Geweke starts from the well-known
assumption that all models are false in the sense of
not fully describing the economic process under con-
sideration but that some models are useful for a par-
ticular decision problem. In an innovative approach
Geweke treats a Bayesian analysis of how to deal with
incomplete econometric models in a predictive and
decision-making context.

As editors of the series we are indebted to the Tin-
bergen Institute for continued support for the series.

Philip Hans Franses and Herman K. van Dijk
Econometric and Tinbergen Institutes

Erasmus School of Economics





Preface

This book elaborates the substance of the Economet-
ric and Tinbergen Institutes Lectures that I presented
at Erasmus University Rotterdam in June 2008. I am
grateful to the Econometric Institute, Princeton Uni-
versity Press, and especially to Herman van Dijk for
this opportunity to synthesize themes in my research
program from the past decade. I am indebted to sev-
eral anonymous reviewers for their comments, and
to Gianni Amisano for collaboration on research re-
lated to chapter 5. The National Science Foundation
supported this work through grant SBR-0720547.

Chapter 1 describes the context and theme for the
volume and should be accessible to a wide audience.
Chapter 2 provides background in Bayesian economet-
rics that should prove useful to readers with grad-
uate education in economics but not specifically in
Bayesian econometrics. It also establishes notation
that is used throughout the rest of the book. The re-
maining chapters are three essays that can be read in-
dependently of one another. They are presented to-
gether here in the belief that the reader who persists
through all three will conclude, as I have, that incom-
plete models are effective research tools. There are,
undoubtedly, instances beyond those described here
in which incomplete models will provide fresh per-
spectives on applied econometrics. It would be most
gratifying if publication of this book leads to further
research in this direction.





1
Introduction

Models are the venue for expressing, comparing, and
evaluating alternative ways of addressing important
questions in economics. Applied econometricians are
called upon to engage in these exercises using data
and, often, formal methods whose properties are un-
derstood in decision-making contexts. This is true of
work in other sciences as well.

There is a large literature on alternative formal ap-
proaches to these tasks, including both Bayesian and
non-Bayesian methods. Formal approaches tend to
take models as given, and the more formal the ap-
proach the more likely this is to be true. Whether
the topic is inference, estimation, hypothesis testing,
or specification testing, the formal treatment begins
with a specific model. The same is also true of for-
mal approaches to the tasks of prediction and policy
evaluation.

Yet the ultimate success of these endeavors depends
strongly on creativity, insight, and skill in the pro-
cess of model creation. As the model builder enter-
tains new ideas, casting off those that are not deemed
promising and developing further those that are, he or
she is engaged in a sophisticated process of learning.
This process does not, typically, involve the specifica-
tion of a great many models developed to the point of
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departure assumed in formal treatments in graduate
courses, texts in econometrics and statistics, and jour-
nal articles. Discarding models that would ultimately
be unsuccessful earlier rather than later in this pro-
cess of learning improves the allocation of research
time and talent.

Model development is inherently a task of learn-
ing under conditions of unstructured uncertainty. To
assume that one’s model fully accounts for the phe-
nomenon under question is naive. A more defensible
position is that of Box (1980): all models are wrong, but
some are useful. To this it might be added that, with
inspiration and perspiration, models can be improved.
The process of information acquisition, learning, and
behavior when objectives are well-specified in a util-
ity or loss function is familiar ground in economics.
In modeling the optimal behavior of economic agents
in this situation the dominant paradigm is Bayesian
learning, to the point that many in the profession are
comfortable terming such behavior rational.

Can this paradigm be applied to model develop-
ment? A number of obstacles suggest that the task
may be demanding. First, the behavior of practic-
ing econometricians regularly appears inconsistent
with the Bayesian learning paradigm. In particular,
the dominant statistical paradigm in econometrics
has been frequentist and the inconsistencies of this
approach with Bayesian inference and learning are
well-known. Second, Bayesian model specification is
more demanding than most non-Bayesian model spec-
ification, requiring prior distributions for inherently
unobservable constructs like parameters, as well as
for models themselves when multiple models are un-
der consideration. Finally, whereas in academic treat-
ments of Bayesian learning reality is fully specified, in
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applying economics to policy questions it is not even
clear that the existence of a data-generating process
has any epistemological standing at all.

The thesis of this monograph is that these objec-
tions can be met, and its essays are explorations of
the prospects for more effective use of the Bayesian
paradigm at the point where the investigator has
much less information than is presumed in formal
econometric approaches, be they Bayesian or non-
Bayesian. At this point models are inherently incom-
plete: that is, they are lacking some aspect of a joint
distribution over all parameters, latent variables, and
models under consideration. Chapter 2 details more
fully the concept of a complete model. It also estab-
lishes notation and serves as a primer on Bayesian
econometrics.

Model incompleteness can take many forms, and
the essays in this monograph take up three exam-
ples. Chapter 3 addresses the early steps of model
construction—before the investigator has engaged the
technical demands of formal inference or estimation
and perhaps even before data have been collected. The
emphasis in this chapter is on using formal Bayesian
methods to compare and evaluate models. Model com-
parison at this stage amounts to prior predictive analy-
sis, which was introduced to statistics by Box (1980)
and emphasized in econometrics by Lancaster (2004)
and Geweke (2005). These ideas are not new, but their
potential for greatly accelerating effective research is
not as yet well appreciated in the econometrics com-
munity. Model evaluation is the assessment of a speci-
fied model by absolute standards—a process in which
economists regularly engage. The assertion, or conclu-
sion, that a model is bad for a particular purpose is
repeatedly heard in the economist’s workday. But, as
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economists regularly point out, statements like this
raise the question, bad compared with what? The fi-
nal section of chapter 3 sets up an incomplete model
as the basis of comparison implicit in such state-
ments, and then extends the conventional appara-
tus of Bayesian model comparison to the complete
model being evaluated and the incomplete model that
is implicitly held as the standard. This treatment pro-
vides a fully Bayesian counterpoint to frequentist tests
against an unspecified alternative, also known as pure
significance testing.

No model is meant to specify all aspects of real-
ity, even a sharply confined reality chosen for its rele-
vance to a particular academic or policy question. This
restriction can be straightforward for formal econo-
metrics: for example, the stipulation that a regres-
sion model applies only over a specified range of
values of the covariates, or that a structural model
with several endogenous variables is intended only
to provide the marginal distribution of a subset of
these variables. But often the restriction is stronger.
Chapter 4 takes up the case of structural models that
are intended only to provide certain population mo-
ments as functions of the structural parameters of
the model, a restriction that is especially common in
dynamic stochastic general equilibrium models. The
chapter shows that widely applied procedures, includ-
ing conventional calibration, violate this restriction by
taking the higher-order moments of the model liter-
ally in reaching conclusions about its structural pa-
rameters. It provides a constructive approach to this
learning problem by treating explicitly the incomplete-
ness of the structural model and then completing the
model in a way that relies only on those aspects of the
structural model intended to be taken literally. In the



1. Introduction 5

example used throughout the chapter this approach
reverses widely held conclusions about the incompat-
ibility of the U.S. equity premium with simple growth
models.

Formal Bayesian methods provide a logically consis-
tent and well-understood solution to the problem of
using competing models with conflicting implications
in a decision-making context. The critical element of
this solution is the specification of prior model prob-
abilities that sum to one. In so doing, the solution
conditions on the process that actually generated the
data being one of the models under consideration.
Non-Bayesian methods that lead to rules for model
choice also make the latter assumption. A widely ob-
served characteristic of the formal Bayesian approach
is that it often assigns posterior probability very close
to unity for one of the models. The Bayesian solu-
tion then effectively amounts to model choice. This is
not a problem for econometric theory, because in gen-
eral the data-generating process is the one selected
asymptotically. On the other hand, there is an evident
conflict with reality: in reaching important decisions
policymakers routinely wrestle with alternative mod-
els, leading to an apparent inconsistency of clear evi-
dence with presumed rationality of the decision mak-
ers. The final chapter in this monograph steps back
from the key assumption that reality lies somewhere
in the space of models being considered. Replacing
the assumption that the model space is completely
specified with the alternative of a linear combination
of predictive densities of future events that renders
past events most probable, it shows that if the data-
generating process is not among the group of mod-
els considered, then one will use several models. The
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weights given to these models will converge to pos-
itive limits asymptotically. The weights assigned in
Bayesian model averaging are incorrect, under this al-
ternative specification in which the model space is
incomplete.



2
The Bayesian Paradigm

The Bayesian paradigm provides a powerful and prac-
tical structure for managing the risk inherent in de-
cision making. This chapter discusses the elements
of this structure, which is standard in the subjec-
tive Bayesian approach to inference and decision mak-
ing. A number of recent texts provide more detailed
consideration of this approach in econometrics, in-
cluding Poirier (1995), Koop (2003), Lancaster (2004),
Geweke (2005), Rossi et al. (2005), and Greenberg
(2007). This chapter also reviews the Bayesian litera-
ture on model evaluation: the effort to assess whether
the structure under consideration corresponds to re-
ality. Model evaluation is an inherently difficult ques-
tion from a Bayesian perspective, and the rest of this
monograph explores some ways this can be done using
incomplete models.

The essential element of the Bayesian paradigm is
a complete model, detailed in section 2.1. A complete
model provides a coherent joint probability distribu-
tion for the evidence relevant to the decision, un-
known parameters or latent variables in the model,
and additional factors that will determine the conse-
quences of the decision but are unknown at the time
the decision is made. With this distribution in hand,
and a utility function for preferences over all possible
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consequences of the decision, the decision maker
can, in principle, determine the decision that maxi-
mizes expected utility conditional on the observed ev-
idence. A complete model, therefore, amounts to the
explicit econometric implementation of the classical
von Neumann–Morgenstern normative theory of deci-
sion making under uncertainty. Advances in compu-
tation, and in particular in simulation methods, since
1990 have made this implementation practical us-
ing models much more realistic than those that can
be used in purely analytical approaches. Section 2.3
briefly reviews the highlights of these advances.

Especially for an important problem in a complex
environment, decision makers have before them alter-
native models. Since the models are all relevant to the
decision, each specifies the distribution of the factors
determining the consequences of the decision, condi-
tional on alternative decisions that might be made. If
all of the models are Bayesian with proper prior dis-
tributions, then they are all complete. By specifying
prior (that is, unconditional) probabilities on the al-
ternative models, decision makers can extend the co-
herent probability distributions of the individual mod-
els to all of the models under consideration, as de-
scribed in section 2.2. Since the distribution over ob-
servables and factors determining the consequences
of alternative decisions is coherent and complete, the
familiar expected utility calculus applies. The mechan-
ics of this process impose greater technical demands
than do those of a single model. Section 2.2 reviews
the substantial progress on this problem that has been
made in the past decade.

The specification of the set of Bayesian models un-
der consideration is typically recursive. It begins with
a prior probability for each model. Then, within each
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model, the prior probability distribution of unobserv-
ables (parameters and latent variables) is followed
by the distribution of observables conditional on un-
observables. Finally, each model provides the distri-
bution of factors relevant to the decision conditional
on unobservables and observables. There are minor
variations on this theme: in particular, the distribu-
tion of latent variables and observables conditional
on parameters may be more convenient. Regardless,
model specification is almost always a forward recur-
sion from models to unobservables to observables to
decision-relevant factors. Simulation from this distri-
bution is straightforward, as outlined in section 2.3,
and the convenience of this simulation emerges as
an important factor in chapters 3 and 4. For a deci-
sion maker, however, the relevant distribution is con-
ditional on the data—the observables that are known
when the decision is made. This posterior distribution
is neither forward nor recursive, and the correspond-
ing simulation is not straightforward. Since the late
1980s extraordinary progress has been made in solv-
ing these simulation problems, and these solutions
in turn are essential to the ongoing rapid growth in
the practical application of complete models to im-
portant decisions. Section 2.3 reviews these methods
very briefly. They are used only in chapter 5, which
requires no detailed understanding of posterior dis-
tribution simulators. The texts mentioned at the start
of this chapter all provide treatments of that topic in
greater depth.

The strength of the Bayesian paradigm is its speci-
fication of a complete and coherent structure answer-
ing the question: conditional on the models specified,
the available data, and a given utility function, what is
the appropriate decision? Alternative utility functions
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provide no essential complication: the paradigm pro-
vides the answer for any utility function for which ex-
pected utility is known to exist. It can also easily ad-
dress the sensitivity of the decision to alternative prior
distributions of parameters. These are all critical ad-
vantages relative to non-Bayesian methods: some ad-
ditional attractions of Bayesian methods include ac-
counting for parameter uncertainty, avoiding the need
to choose a single model from many, and the ability
to discover the extent to which disagreements among
decision makers are due to different beliefs or differ-
ent utility functions. Yet, the answer that emerges can
be no better than the models under consideration.

The same caveat applies to non-Bayesian methods.
Model evaluation, in the form of hypothesis testing,
has been central to non-Bayesian statistics since its
inception in the late nineteenth century. Within the
Bayesian paradigm it is possible to lose sight of the
fact that the precise and relevant answers it provides
are contingent on the adequacy of its complete mod-
els. There is a lively Bayesian literature on the use
of predictive distributions to evaluate these models.
Section 2.4 reviews these approaches, as do Lancaster
(2004) and Geweke (2005), and they provide foun-
dations for the rest of this monograph. Whether or
not purely Bayesian methods can be used to evaluate
models has long been an open question in this liter-
ature. Chapter 3, building on section 2.4, shows that
pure Bayesian model evaluation is both possible and
practical using incomplete models.

2.1 Complete Models

Denote a complete model by A, “assumptions.” A
complete model has four elements:
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(1) A jT × 1 observable random vector yT , where T
denotes the sample size. The notation jT allows flexi-
bility in the specification ofy. For example, if anm× 1
vector is observable at each of T sample points, then
one can write y′T = (ỹ′1, . . . , ỹ′T ) with jT = Tm. Some
data may be missing, in which case jT � Tm and jT
may be random.

(2) A kA,T×1 unobservable random vectorθA,T ∈ ΘA,T .
The vector may consist of parameters, latent variables,
or both. The notation θA,T reflects the fact that this
vector is specific to the model. The dimension kA,T
may also depend on T , as is typically the case with la-
tent variables. The number of parameters may also de-
pend on sample size, as is the case with flexible highly
parameterized models and with explicitly nonpara-
metric Bayesian models. Missing data can be included
in θA,T .

(3) A q × 1 random vector of interest ωT ∈ ΩT . This
vector includes all of the random variables that enter
into the decision maker’s utility function, described
below. For those decisions that require prediction,ωT
includes future values of random variables, some or all
of which may be observed at a future point in time.

(4) A p × 1 decision vector dT ∈ D, consisting of all
of the elements of the decision at hand. The vector dT
might include exogenous variables controlled by the
decision maker. These might not affect the distribu-
tion of ωT : for example elements of the strategy of
a small trader. At the other extreme, elements of dT
could be exogenous variables very important in the
distribution of future values of random variables: for
example the decisions made by a central bank. The
vector dT can index a policy function in a model that
is structural in the sense of Hurwicz (1962).
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A complete model has four components, consist-
ing of probability density functions. All are expressed
with respect to a measure reflecting the discrete and/
or continuous nature of the random vector distribu-
tions in question, but that fact is not recognized for-
mally in the notation. Whenever the question arises it
will be assumed, only to simplify the notation, that the
random vector is continuously distributed.

(1) A probability density of observables conditional on
unobservables:

p(yT | θA,T ,A). (2.1)

If the vector θA,T consists only of parameters, and
its length does not depend on sample size so that
θA,T = θA, then L(θA;yoT ) = p(yoT | θA,T ,A) is the
likelihood function. The vector yoT denotes the real-
ized ex post observable, i.e., data, whereas the vec-
tor yT denotes the random ex ante observable. With
more complex structures there may be some discre-
tion in the definition of the likelihood function. For
example, the vector of unobservables θA,T may con-
sist of parameters θA and latent variables λA,T . Then
the likelihood function is typically taken to be

L(θA;yoT )

=
∫
ΛA,T

p(yoT | θA,λA,T )p(λA,T | θA,A)dλA,T .

(2) A prior probability density function

p(θA,T | A), (2.2)

which expresses reasonable values of the unobserv-
ables. This notation includes a rich hierarchy for
parameters and latent variables, for example

θ′A,T = (λ′A,T ,ψ′A,φ′A),
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with

p(θA,T | A) = p(λA,T | ψA)p(ψA | φA)p(φA | A);
ψA is the vector of parameters as usually understood,
φA is a vector of hyperparameters in a hierarchical
prior distribution with two levels, and λA,T is a vec-
tor of latent variables. An essentially unlimited class
of variants on this structure is possible, including hi-
erarchical priors with multiple levels. In all cases, the
prior distribution expresses the reasonable range of
behavior of unobservables that the model is intended
to describe.

(3) A probability density of the vector of interest:

p(ωT | yT ,θA,T ,dT ,A). (2.3)

In some cases, the vector ωT might consist of certain
elements of θA,T . For example, in a marketing prob-
lem the decision might be how to approach poten-
tial customers already in the sample and ωT would
then consist of customer-specific latent variables. If,
in the same situation, the decision involved customers
drawn randomly from the population but not in the
sample, then ωT would include latent variables for
those customers. In a decision in which prediction of
the future is required,ωT might include vectors of the
form ω′

T = (ỹ′T+1, . . . , ỹ
′
T+f ), and if the composition

of θA,T does not depend on T , then

p(ωT | yT ,θA,T ,dT ,A)

=
f∏
s=1

p(ỹT+s | ỹT+s−1, . . . , ỹT+1, ỹoT , . . . , ỹ
o
1 ,θA,T ,A).

(2.4)
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The density p(ωT | yT ,θA,T ,dT ) can incorporate op-
timization by forward-looking economic agents who
know or are learning a policy indexed by dT .

(4) A utility function U(ωT ,dT ) that determines the
decision

d̂T = argmax
dT∈D

E[U(ωT ,dT ) | yoT ,A]. (2.5)

This notation embraces all decision problems within
the classical von Neumann–Morgenstern paradigm.
These range from myopic or one-step problems to
the discounted time-separable utility functions of in-
finitely lived agents in conventional dynamic struc-
tural models. There is no loss of generality in taking
the dimension of ωT to be finite, since implemented
solutions for such problems generally take this form.

This description of a complete model takes as given
the specification of the model A and the availability
of evidence in the form of data yoT . This assumption
is standard in formal econometrics but in fact sub-
stantial time, skill, and energy are generally required
to design A and acquire yoT so as to lead to a reliable
decision d̂T given the constraints of actual decision
making. The remaining chapters of this monograph
are devoted to the specification of A. With A and yoT
in hand, Bayesian inference consists of three steps.

(1) Using the first two components of the complete
model, obtain the posterior density of the unobserv-
ables

p(θA,T | yoT ,A)
= p(θA,T | A)p(yoT | θA,T ,A)/p(yoT | A). (2.6)
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(2) Introducing the third component of the complete
model, obtain the posterior density of the vector of
interest

p(ωT | yoT ,dT ,A)
=
∫
ΘA,T

p(ωT | yoT ,θA,T ,dT ,A)p(θA,T | yoT ,A)dθA,T .

(2.7)

(3) Bringing in the fourth component of the model,
evaluate

E[U(ωT ,dT ) | yoT ,A]
=
∫
ΩT
U(ωT ,dT )p(ωT | yoT ,dT ,A)dωT (2.8)

for relevant values of dT and determine d̂T in (2.5).1

All three steps are necessary for formal decision
making, but the results of the intermediate steps are
often useful and of value in themselves. From (2.6) it
is possible to proceed to alternative decision-making
problems using different vectors of interest and utility
functions, as long as (2.6) is expressed in a way that is
accessible. (Section 2.3 addresses accessibility.) For an
econometrician engaged in reporting to potential de-
cision makers, (2.6) may be the goal, and many treat-
ments of Bayesian econometrics reflect this perspec-
tive. If econometric modeling is to have value within
the classical economic framework of decision making
under uncertainty, it must be capable of supporting
the second and third steps. This objective is impor-
tant in the approach taken to expressing (2.6) and,
even more important, to the specification of A, which
is taken up in succeeding chapters.

1 This presumes the existence of (2.8). Section 2.3 returns to
this point.
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The expression of (2.7) is specific to a decision prob-
lem if the distribution of ωT actually depends on dT ,
but in many interesting cases the decision will not af-
fect this distribution. In the marketing example above,
in which potential customers are drawn either from
the sample or from the population, this is the case.
Financial management or trading strategies, in which
the decision maker has a negligible effect on future as-
set prices whose realization determines U , constitute
another broad class of examples. In a general sense, if

p(ωT | yT ,θA,T ,dT ) = p(ωT | yT ,θA,T ),
then (2.7) is a pure prediction problem. For all such
problems, making (2.7) accessible is a valuable step.
This is consistent with the robust academic and com-
mercial markets for this activity. If decision making is
not a pure prediction problem, then conditional pre-
dictions, which amount to finding (2.7) for some alter-
native interesting values of dT , provide some informa-
tion bearing on (2.8). IfD consists of just a few points,
this comes close to determining d̂T .

2.2 Model Comparison and Averaging

When an important decision is made in an uncertain
environment, there may be several models A1, . . . , An
available for determining d̂T , each model being enter-
tained seriously in the decision-making process. If the
models are complete, the calculus of the previous sec-
tion can be applied, each model Aj leading to decision
d̂T ,j for j = 1, . . . , n. Suppose that for some pairs of
models Ai and Aj it is the case that

E[U(ωT , d̂T ,i) | yoT ,Aj]� E[U(ωT , d̂T ,j) | yoT ,Aj],
(2.9)
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where “�” indicates that, from the perspective of
Aj , it would be preferable to maintain the decision
vector d̂T ,j and give up substantial resources with
certainty than to adopt d̂T ,i with no further sacri-
fice of resources. Here “substantial” means large rel-
ative to the resources required to develop and im-
plement model Aj ; (2.9) is one rendering of impor-
tance combined with uncertainty in this environment.
In this context, it is the rationale for the expenditure of
real resources on modeling and model improvement
in central banking, meteorology, epidemiology, and a
host of other decision-making contexts.

The uncertain environment arises because of differ-
ences in (2.1), (2.2), and/or (2.3) across models, com-
bined with the fact that there is no basis for com-
parison. The differences in distributions are inher-
ent in the models. The problem in comparison is that
there are n separate probability spaces. This difficulty
can be addressed readily, at least from a formal per-
spective, as follows. Denote the supermodel by A =
{A1, . . . , An}, and make the supermodel complete by
specifying a prior probability distribution P(A = Aj |
A) = p(Aj | A); this implies

∑n
j=1 p(Aj | A) = 1, and

without loss of generality p(Aj | A) > 0 (j = 1, . . . , n).
Since each model is complete, there exist coher-

ent probability densities p(yT ,θAj,T ,ωT | Aj) (j =
1, . . . , n). Consequently,

p(yT ,θA1,T , . . . ,θAn,T ,ωT | dT ,A)

=
n∑
j=1

p(Aj | A)p(θAj,T | Aj)p(yT | θAj,T ,Aj)

× p(ωT | yT ,θAj,T ,dT ).
(2.10)
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The joint distribution in (2.10) leads to the conditional
distribution p(ω | yoT ,A) required for determination
of d̂T = argmaxdT E[U(ωT ,dT ) | yoT ,A].

The steps leading to d̂T are fairly straightforward
and highlight the role of the evidenceyoT in addressing
uncertainty about models. This can be seen directly
by working backward. From (2.8), with the extended
definition of A, the determination of d̂T requires

p(ωT | yoT ,dT ,A)

=
n∑
j=1

p(Aj | yoT ,A)p(ωT | yoT ,dT ,Aj). (2.11)

The construction of p(ωT | yoT ,dT ,Aj) follows pre-
cisely the first two steps in Bayesian inference de-
scribed in section 2.1, A being replaced by Aj .

The other component of (2.11) is the posterior
model probability

p(Aj | yoT ,A) =
p(Aj | A)p(yoT | Aj)∑n
i=1 p(Ai | A)p(yoT | Ai)

, (2.12)

for each j = 1, . . . , n. It is determined by the model
prior probability p(Aj | A) and the marginal likeli-
hood

p(yoT | Aj)

=
∫
ΘAj
p(θAj,T | Aj)p(yoT | θAj,T ,Aj)dθAj,T . (2.13)

It is through (2.13), and then (2.12) and (2.11), that
the evidence yoT comes to bear in resolving conflicts
d̂T ,i �= d̂T ,j . In general, of course, it will not be the case
that d̂T = d̂T ,j for any j = 1, . . . , n.

This combination of models depends critically on
the assumption thatyT andωT are not model specific,
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reflected in the notation set up in the previous section.
This assumption seems unassailable in the case ofωT ,
which is dictated by the decision maker’s situation: a
model Aj must address the distribution of ωT in or-
der to be in the running. (Models for air traffic control
are rather different than those supporting monetary
policy.) The assumption that the observables are the
same in each model is standard, but need not be true
in practice.

2.3 Simulation

The Bayesian paradigm provides a complete and co-
herent approach to decision making. However, it takes
many things as given. Two of these, the model A or
models Aj , and the data yoT , have already been noted.
The difficulty here is in finding models and data that
lead to satisfactory and reliable decisions d̂T . By this
it is meant that formal modeling leads to decisions
improving on a naive or arbitrary decision d0

T , and to
a reasonable evaluation of the consequences of those
decisions. If the same decision were made repeatedly
at T = T0, . . . , T1—for example in weather forecast-
ing, more arguably in monetary policy, and certainly
not in climate policy—one might begin to formalize
“satisfactory and reliable decisions” along the lines of

T1∑
T=T0

E[U(ωT , d̂T ) | yoT−1, A] �

T1∑
T=T0

U(ωT , d̂T )

�
T1∑
T=T0

U(ωT ,d0
T ).

This is largely beyond the scope of this monograph,
although chapter 5 addresses some elements of this
process.
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Regardless of whether models are poor or excel-
lent, or of the difficulty in obtaining data, the Bayesian
paradigm also assumes the ability to carry out the
many computations indicated in the previous two
sections. For all but the simplest models, serious
problems begin at (2.6) once it is noted that

p(θA,T | yoT ,A) =
p(θA,T | A)p(yoT | θA,T ,A)∫

p(θA,T | A)p(yoT | θA,T ,A)dθA,T
.

The integral in the denominator is almost always
analytically intractable. Independent of this problem
(that is, even if one had a practical closed-form ex-
pression for p(θA,T | yoT ,A)), (2.7) demands another
analytically intractable integration.

The joint problem can be solved if it is possible, first,
to simulate the vector of unobservables θA,T from the
posterior density (2.6),

θ(m)A,T | (yoT ,A) ∼ p(θA,T | yoT ,A) (m = 1,2, . . . ),
(2.14)

and, second, to simulate the vector of interest ωT
conditional on unobservables and data yoT ,

ω(m)
T | (yoT ,θA,T ,dT ,A) ∼ p(ωT | yoT ,θA,T ,dT ).

(2.15)
By simulating θ(m)A,T | (yoT ,A) from the marginal pos-
terior distribution (2.14) and then drawing ω(m)

T |
(yoT ,θ

(m)
A,T ,A) from the conditional posterior distribu-

tion (2.15), it follows that

(θ(m)A,T ,ω
(m)
T ) ∼ p(θA,T ,ωT | yoT ,dT ,A).

Consequently,

ω(m)
T ∼ p(ωT | yoT ,dT ,A),

the density required at (2.7). Repeating (2.14) followed
by (2.15) with θA,T = θ(m)A,T , appealing to (2.5) one can
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approximate d̂T if, third, it is possible to solve the
optimization problem

d̂(M)T = argmax
dT

M−1
M∑
m=1

U(ω(m)
T ,dT ). (2.16)

If the Bayesian paradigm is to be implemented in this
way, the simulations (2.14) and (2.15) must be practi-
cal, the optimization (2.16) must be feasible, and there
must be some guarantee that d̂(M)T → dT , ideally with
probability 1 as M →∞.

Algorithms that implement (2.14), known collec-
tively as posterior simulators, began to be developed
for econometric models in the late 1980s.2 The leading
approaches, importance sampling and Markov chain
Monte Carlo, both guarantee that simulation approx-
imations to posterior moments converge with prob-
ability 1 under conditions that can be verified, and
provide central limit theorems for assessing the ac-
curacy of the approximation for a simulation sample
of size M . Depending on the model, a posterior simu-
lator can be sophisticated and intricate, and there is a
large literature on the theory and implementation of
these methods. Koop (2003), Lancaster (2004), Geweke
(2005), and Rossi et al. (2005) all discuss posterior
simulators in the context of econometric models. For
many econometric models, public-domain software
for (2.14) is readily available; for others, importance
sampling or Markov chain Monte Carlo algorithms can
be constructed that accomplish (2.14); and some mod-
els pose serious challenges for posterior simulation.

2 Earlier simulation algorithms can be found in Zellner (1971,
appendix C) and in Kloek and van Dijk (1978). They were inher-
ently limited to models much simpler than those used in support
of decision making at the time, to say nothing of models in use
today.
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This monograph does not assume any detailed know-
ledge of how these simulators work, or experience in
using them.

The second simulation requirement (2.15) is often
less demanding. For example, in a pure prediction
problem with ω′

T = (ỹ′T+1, . . . , ỹ
′
T+f ), (2.4) leads to

the recursions

ỹ(m)T+j

∼ p(ỹT+j | ỹ(m)T+j−1, . . . , ỹ
(m)
T+1, ỹ

o
T , . . . , ỹ

o
1 ,θ

(m)
A,T ,A)

for j = 1, . . . , f . Given the recursive construction of
most models these simulations are often straightfor-
ward, whereas in the same circumstances it is more
difficult to construct the posterior simulator (2.14).
But in general, p(ωT | yT ,θA,T ,dT ) need not bear
any relation at all to p(yT | θA,T ,A). Indeed, it may
not be possible to express this density in closed form,
yet the simulation (2.15), while not immediate, is still
feasible. Important cases are those in whichωT repre-
sents stochastic realizations conditional on an equilib-
rium, the equilibrium in turn being a function of θA,T .
Simulation methods and the Bayesian paradigm have
proved successful in these models: for example, dy-
namic stochastic general equilibrium models support-
ing central bank decision making, and models of co-
operative equilibrium supporting antitrust regulatory
decisions. In such complex models, uncertainty about
parameters is usually a major contributor to uncer-
tainty about ωT . The posterior simulation literature
directly addresses the situation in whichωT is a deter-
ministic function of θA,T ; Geweke (2005) shows that it
is not hard to extend results on convergence in that lit-
erature to the more general case, here, that is relevant
for decision making.
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The final simulation requirement is solution of the
optimization problem (2.16). If D includes only a few
points, e.g., if the decision is whether or not to permit
a proposed merger of two firms, with perhaps a few
divestment conditions if the merger is approved, then
optimization amounts only to simulation approxima-
tion of E[U(ωT ,dT ) | yoT ,A] for the relevant values
of dT . When dT is continuous, (2.16) entails optimiza-
tion of a simulated objective function. Geweke (2005)
provides conditions under which

d̂(M)T
a.s.−−−→ dT

and

M−1
M∑
m=1

U(ω(m)
T , d̂(M)T ) a.s.−−−→ E[U(ωT , d̂T )]

as M → ∞, and methods for evaluating the accuracy
of these approximations.

2.4 Model Evaluation

Prediction is central to Bayes’s theorem and to the
Bayesian paradigm. Evidence about unobservables is
systematically updated by the probability of new ev-
idence conditional on alternative values of the unob-
servables. In the case of a single model A,

p(θA,T | yoT ,A)
= kT · p(θA,T | A)p(yoT | θA,T ,A)

= kT · p(θA,T | A)
T∏
t=1

p(ỹot | yot−1,θA,T ,A),

(2.17)
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where

kT =
[∫

ΘA,T
p(θA,T | A)p(yoT | θA,T ,A)dθA,T

]−1

depends on yoT but not θA,T . The posterior density
of θA,T therefore embeds the one-step-ahead predic-
tion record associated with alternative values of θA,T .3

From (2.17),

p(θA,T | yoT ,A)
∝ p(θA,T | yoT−1, A)p(ỹ

o
T | yoT−1,θA,T ,A).

In the case of multiple models A = {A1, . . . , An},
p(Aj | yoT ,A)

= k′T · p(Aj | A)p(yoT | Aj)
= k′T · p(Aj | yoT−1, A)p(ỹ

o
T | yoT−1, Aj), (2.18)

where

k′T =
[ n∑
i=1

p(Ai | A)p(yoT | Ai)
]−1

depends onyoT but notAj . The data affect model prob-
abilities only through the probabilities that models as-
sign to what is observed, a well-known consequence
of the likelihood principle. Implicit in (2.18) is the
comparison between models inherent in the posterior
odds ratio,

p(Ai | yoT ,A)
p(Aj | yoT ,A)

= p(Ai | A)
p(Aj | A)

· p(y
o
T | Ai)

p(yoT | Aj)
,

the product of the prior odds ratio and the Bayes fac-
tor for models Ai and Aj . The posterior odds ratio is

3 There is nothing special about single-step prediction. Equa-
tion (2.17) can be expressed using multi-step densities as well.
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systematically updated by the predictive Bayes factor:

p(Ai | yoT ,A)
p(Aj | yoT ,A)

= p(Ai | yoT−1, A)
p(Aj | yoT−1, A)

· p(ỹ
o
T | yoT−1, Ai)

p(ỹoT | yoT−1, Aj)
.

These interpretations of the evidence about mod-
els are all limited by the portfolio of models A =
{A1, . . . , An} under consideration. Explicit in the no-
tation in this chapter is that all statements are con-
ditional on this portfolio. None of this analysis ad-
dresses the comparison of models with an absolute
standard: the analysis applies in the same way whether
the performances of the best models in the portfolio
are considered excellent or are found to be deficient,
assessed against this standard. On the other hand,
decision makers care about the performance of mod-
els. For example, a model A provides not only d̂T but
also E[U(ωT , d̂T ) | yoT ,A]; so long as U(ωT , d̂T ) can
be evaluated, systematic inconsistencies between util-
ity ex post and its expectation ex ante will surely be
noticed.

The idea that models should be evaluated accord-
ing to the consistency of their predictions with actual
outcomes is central to science and to statistics. Proce-
dures for rejecting models that are inconsistent with
evidence are well-established in non-Bayesian statis-
tics, although of course rejecting all models in a port-
folio is hardly constructive from the perspective of
the decision maker. Bayesian statisticians have devel-
oped two approaches to model evaluation, both based
on comparing predictive distributions with actual out-
comes. Both are well-suited to the simulation methods
used to uncover these distributions described in the
previous section.
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2.4.1 Prior Predictive Analysis

The first two components of a complete model Aj im-
ply a predictive density of observables; that is, the
distribution of the data ex ante:

p(yT | Aj) =
∫
p(θAj,T | Aj)p(yT | θAj,T ,Aj)dθAj,T .

(2.19)
The density (2.19) is the prior predictive density of
the observables. It is the model’s prediction of what
might be observed prior to collecting data yoT . Evalu-
ating (2.19) ex post at the data point yT = yoT leads to
the marginal likelihood (2.13). The weight of the evi-
dence in determining the probability of the model in
the portfolio is mediated entirely through p(yoT | Aj),
as indicated in (2.12): it is the prior predictive density
evaluated at the realized observation.

It is generally straightforward to access p(yT | Aj)
by simulation:

θ(m)Aj,T ∼ p(θAj,T | Aj), y(m)T ∼ p(yT | θ(m)Aj,T ,Aj)
(2.20)

produces

(y(m)T ,θ(m)Aj,T ) ∼ p(θAj,T ,yT | Aj)
and consequently

y(m)T ∼ p(yT | Aj).
If the length jT of the vector yT were small, one could
use these simulations directly to gain some under-
standing of the implications of the model for observ-
ables, and could use conventional smoothing meth-
ods to evaluate the marginal likelihood p(yoT | Aj).
In practice, jT is usually much too large to proceed in
this way.
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Implicit in (2.19) is the prior predictive density
p(zT | Aj) of any function of the observables zT =
h(yT ). When h is chosen to define salient aspects of
the observables, this distribution can be informative
and useful. For example, in a macroeconomic model,
h could provide the number of business cycles in a
given time period, or the sample contemporaneous
correlation between key observables like output, in-
flation, and interest rates; in an asset pricing model, h
might indicate higher sample moments of returns or
the range of returns over a given number of years; in a
microeconomic model constructed to support a regu-
latory decision, h could compare pre- and post-merger
prices.

Analytical expressions for the prior distribution of
zT = h(yT ) are generally unavailable even when
p(θA,T | A) comes from a simple and well-known fam-
ily. By comparison, it is usually straightforward to
write computer code that maps yT into zT , as the
examples in the previous paragraph suggest. Given

y(m)T ∼ p(yT | Aj) (m = 1,2, . . . ),

the collection z(m)T = h(y(m)T ) (m = 1,2, . . . ) is a simu-
lation from the prior predictive densityp(zT | A); and,
of course, zoT = h(yoT ) is the observed value of zT .
These simulations can be very useful, in two related
contexts.

One important application of prior predictive distri-
butions is in model evaluation (as distinct from model
comparison). This idea dates at least to Box (1980),
who referred to h as a “relevant model checking func-
tion,” and traces its use in this fashion to Good (1956)
and Roberts (1965), among others. In Box’s predictive
checks one determines αpre = P(zT > zoT | A), which
is tantamount to evaluating the prior c.d.f. of zT at
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the observed value zoT . Given a prior simulation sam-
ple z(m)T (m = 1, . . . ,M), the simulation-consistent
approximation of αpre is

M−1
M∑
m=1

I(zoT ,∞)(z
o
T ).

If αpre is near 0, or near 1, then, in Box’s language,
the model A is discredited by the predictive check.
Of course, such checks can be undertaken using any
number of alternative functions h.

Example 2.1. Consider the simple model

yt
i.i.d.∼ N(µ,1), µ | A ∼ N(0, h−1),

h being the hyperparameter of p(µ | A) chosen by the
investigator. Suppose the checking function is

ȳT = h(yT ) = T−1
T∑
t=1

yt = ȳT .

The prior predictive distribution is ȳT ∼ N(0, h−1 +
T−1) and

αpre = Φ[−ȳoT (hT)1/2(h+ T)−1/2]. (2.21)

If the checking function is

zT = h(yT ) =
T∑
t=1

(yt − ȳT )2 = s2
T ,

then the prior predictive distribution is s2
T ∼ χ2(T−1).

In this simple example the roles of the two checking
functions are unambiguous. Since ȳT is a sufficient
statistic, it provides evidence on the implications of
p(µ | A). Since s2

T is an ancillary statistic, it provides
information on the implications of p(yT | µ,A).
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Box’s prior predictive checks have several attrac-
tions. One is that the logical foundations of the prior
predictive distribution are transparent and unambigu-
ous, unlike the alternative discussed in section 2.4.2.
Another is that checking functions h may be a useful
device for communicating information about model
inadequacy to the decision maker. On the other hand,
the decision whether to discredit the model based
on prior c.d.f. evaluation at zoT violates the likelihood
principle. “Prior predictive p-values” are subject to the
same difficulties as frequentist p-values documented
in the Bayesian literature. Chapter 3 returns to this
issue.

The related important application of prior predictive
distributions arises in model creation and model im-
provement, where it provides strategic advantages for
a research program. Compared with the design, check-
ing, and application of posterior simulators, and per-
haps the collection of data appropriate to the model,
prior predictive analysis is often fast and cheap. Sim-
ulating

θ(m)A,T ∼ p(θA,T | A)
followed by

y(m)T ∼ p(yT | θ(m)A,T ,A)

and
z(m)T = h(y(m)T )

can sometimes be done in an afternoon, whereas car-
rying through to a posterior distribution with appro-
priate data might require weeks or months.4 The prior

4 The same can often be said for non-Bayesian methods of in-
ference, including (pseudo-) maximum likelihood and the gen-
eralized method of moments. Prior predictive analysis can be
useful for non-Bayesians, too.
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predictive exercise can indicate that a model is inca-
pable of accounting for important observed character-
istics of data: so-called stylized facts. The exercise typ-
ically involves experimentation with p(θA,T | A) and
often tinkering with p(yT | θA,T ,A), both of which are
likely to increase the econometrician’s understanding
of the model. This understanding can be critical to
the interpretation of findings, should the research pro-
ceed to formal posterior inference, and it is often use-
ful in thinking about alternative models, should the
researcher decide to abandon model A.

Prior predictive analysis is a specific instance of
model specification analysis, a well-established part
of good applied econometric practice. It places speci-
fication analysis ahead of formal inference, unlike vir-
tually all non-Bayesian specification analysis, which
is based on a fitted model (see, for example, Hendry
1995). This is rooted in the fact that a complete model
provides a full predictive distribution of observables
and any function of observables. The completeness is
essential: in particular, if there is no proper prior dis-
tribution, then the exercise is impossible. This pro-
vides the logical foundation for specification analy-
sis preceding inference. Simulation methods make it
relatively fast and cheap.

2.4.2 Posterior Predictive Analysis

Yet prior predictive analysis is clearly no substitute for
posterior inference. Moreover, if the data are informa-
tive, so that the posterior distribution of θA,T is much
more concentrated than the prior distribution, then
the posterior may reveal that the model A cannot ac-
count well for all elements of zoT simultaneously. This
insight underlies posterior predictive analysis.
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The mechanics of posterior predictive analysis are
straightforward. Given a posterior simulation sam-
ple {θ(m)A,T } from (2.14), construct a corresponding
draw

y(m)T ∼ p(yT | θ(m)A,T ,A)
along with z(m)T = h(y(m)T ). If zoT lies far from the bulk
of the distribution of {z(m)T }, then there is a problem
with the model. For univariate zT one can evaluate the
posterior c.d.f. at the point zoT and interpret values
near 0 or 1 as discrediting the model, as Box did with
the prior predictive distribution.

Some reflection on this procedure reveals that it
amounts to predicting the distribution of zT in a repe-
tition of the “experiment” that produced yoT , with the
specification that the experiment will be carried out
with model A and the same values of the unobserv-
ables θA,T . Careful expositions of posterior predictive
analysis, for example Gelman et al. (1996), are explicit
about this interpretation. To emphasize the interpre-
tation, let z̃T denote the random vector drawn from
the posterior predictive distribution (Gelman et al. use
the notation zrep

T ). The common sense appears unas-
sailable: if the model predicts that something very
different would happen in a repetition of the exper-
iment, one should be suspicious of the model. Stated
another way, if the model predicts that in repetitions
of the experiment one would almost never observe an
important discrete event that occurred in the initial
experiment—the one carried out in the real world—
then something is wrong. Computing the “significance
level” αpost of zoT from the output of the posterior
simulator formalizes this idea.

This is a violation of the likelihood principle that
many Bayesians regard as egregious: rendering a neg-
ative conclusion about a model based on events that
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did not happen and were assigned very low posterior
probability—that is, the remaining tail of the posterior
predictive distribution. A more subtle difficulty comes
from the identification of a repetition of the experi-
ment, informed by the sample, with features of that
same sample—a form of overfitting.

Example 2.2. Returning to the situation of exam-
ple 2.1, the posterior predictive distribution is

N
[ TȳoT
h+ T ,

h+ 2T
T(h+ T)

]
.

Evaluating the c.d.f. of this distribution at the ob-
served value ȳoT leads to

αpost = Φ
[ −T 1/2hȳoT
(h+ 2T)1/2(h+ T)1/2

]
. (2.22)

Referring to (2.21) let w = −ȳoT (hT)1/2(h+ T)−1/2,
and then, from (2.22),

αpost = Φ
[
w
(

r
2+ r

)1/2]
, r = h/T .

Figure 2.1 shows the relation betweenαpre andαpost as
a function of r , the ratio of prior to sample precision.
Because [r/(2 + r)]1/2 < 1, it is always the case that
|αpost−0.5| < |αpre−0.5|. For the typical situation in
which h� T , αpost � 0.5 when αpre ∈ (0.001,0.1). If
prior and posterior predictive analyses use tail prob-
abilities to criticize this model, as suggested by Box
(1980) and Gelman et al. (1996), then the prior predic-
tive analysis will provide more evidence against the
model than will the posterior predictive analysis.

The posterior predictive distribution of the ancillary
statistic s2

T is (tautologically) the same as the prior
distribution. Therefore, prior and posterior predictive
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Figure 2.1. The relationship between
αpre (2.21) and αpost (2.22).

analysis will lead to the same information about the
credibility of the model.

Example 2.2 raises another difficulty with using
αpost for model criticism. For the single sufficient
statistic in that example |αpost − 0.5| < |αpre − 0.5|,
whereas for any ancillary statistic in any modelαpost =
αpre. Models that provide credible support for actual
decisions are sufficiently complex that there is rarely a
known sufficient statistic other than the sample yoT it-
self. Checking functions h(yt) in such models cannot
be characterized neatly as sufficient or ancillary, but
the examples in this section raise serious questions
about the efficacy of posterior predictive analysis. The
next chapter returns to this issue.



3
Prior Predictive Analysis

and Model Evaluation

Prior predictive analysis, described in section 2.4.1, is
a versatile tool that provides insight into the char-
acteristics of a model and the means to evaluate a
model’s adequacy for given data. This chapter illus-
trates prior predictive analysis and introduces two
new techniques: one for studying model characteris-
tics and the other for model evaluation. The empha-
sis is on the serious application of subjective Bayesian
methods, and therefore all of the methods used are
consistent with the likelihood principle.

The illustration involves a well-used data set: the
monthly Standard & Poor’s (S&P) 500 return series.
The models considered here are comparatively sim-
ple and well-understood: the i.i.d. Gaussian model, the
generalized autoregressive conditional heteroscedas-
ticity (GARCH) model, and the stochastic volatility (SV)
model. The intention is to introduce and illustrate
methods in familiar empirical territory, not to break
fresh ground with new data or models. Section 3.1
presents the data and models.

The following section begins by undertaking a con-
ventional prior predictive analysis along the lines dis-
cussed in section 2.4.1 using several checking func-
tions. This analysis provides some indications of the
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capabilities and shortfalls of these models. Many of
these are well-understood, others less so; those in the
former category illustrate how known problems with
models become manifest in prior predictive analy-
sis. Section 3.2 closes by introducing an analysis of
variance for prior predictive distributions. Motivated
by the concerns about posterior predictive analysis
discussed in section 2.4.2, this analysis leads to a
measure of ancillarity.

The final section of this chapter provides a practi-
cal Bayesian alternative to conventional model evalua-
tion based on tail probabilities described by Box (1980)
and Gelman et al. (1996), denoted by αpre and αpost

in section 2.4. It extends ideas introduced in Geweke
(2007) and illustrates them using the data and mod-
els documented in section 3.1. Systematic application
of this procedure requires evaluation of multidimen-
sional distributions, and section 3.3 shows how this
can be accomplished with Gaussian copulas.

3.1 Data and Models

The data and models used in this chapter are among
the most familiar in the financial econometrics litera-
ture.

3.1.1 Data

The data set is the S&P 500 index at the end of the
month (adjusted for reinvestment of dividends) for
1926:1 through 2007:12 from Wharton Research Data
Services. Figure 3.1 shows the natural logarithm of this
series and also identifies some months used subse-
quently in section 3.2.1 in defining features of inter-
est in the data. A bear market begins the first time the
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Figure 3.1. Log U.S. S&P 500 index, dividends reinvested.

index falls 20% or more below its previous peak and
ends when it first attains or exceeds the level of the
previous peak. In figure 3.1 the index is plotted with a
thicker line during bear markets. The peaks defining
these markets are indicated by circles and the squares
show the trough of each bear market. The bear market
of the Great Depression stands out for its length and
depth.

The S&P 500 return series, denoted by {yt} in this
chapter, is the first difference of the one plotted in
figure 3.1 and is shown in figure 3.2 as the lighter and
more volatile line. The thicker line provides a thirteen-
month centered moving average of the monthly re-
turns. Visual inspection of the return series itself does
not suggest autocorrelation in returns, and the same
inspection of the moving average does not suggest
autocorrelation at intervals greater than a year. (Of
course, casual inspection of this kind is notoriously
unreliable compared with the more exacting analysis
pursued in section 3.2.2 or that using conventional
tests.)
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Figure 3.2. U.S. S&P 500 index log
returns, dividends reinvested.

Yet figure 3.2 strongly suggests that returns are not
independent. Even more directly it suggests that re-
turns do not satisfy the condition of exchangeability:
if one were to randomly permute the return series, its
appearance would change dramatically (and in fact it
is a trivial matter to write computer code that does
this). The most prominent departure from indepen-
dence is the apparent persistence in volatility. This
is clearer in figure 3.3, in which the thick line is con-
structed in the same way as for figure 3.2 except that
it begins with the absolute return series. The thirteen-
month moving average in figure 3.3 appears to show
serial correlation well beyond one year. Even more dra-
matic is the secular decrease in volatility from the
early 1930s through the end of the sample.1

1 Inclusion of 2008 returns would change the end of the time
series dramatically. At the time of writing in early 2009 returns
adjusted for reinvestment of dividends were not yet available for
2008.
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Figure 3.3. U.S. S&P 500 index log
returns, dividends reinvested.

3.1.2 A Gaussian Model

The first of the three models studied is one of the
simplest and best understood:

yt
i.i.d.∼ N(µ,σ2).

Its deficiencies as a model of returns have long been
recognized. Many of these are evident in figures 3.2
and 3.3 and they are well-known in financial economet-
rics. The model is included here for readers who un-
derstand the problems with the model but are less fa-
miliar with prior predictive analysis: section 3.2 shows
how these problems are revealed in the analysis.

Working toward a complete model, the prior distri-
bution has two independent components. A Gaussian
prior for µ is conditionally conjugate for µ, as is an in-
verted gamma prior for σ2. The analysis that follows
uses the independent priors

µ ∼ N(0.008,0.0032) (3.1)
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Figure 3.4. Prior densities of
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and

0.01
σ2

∼ χ2(4) ⇐⇒ 1
σ2

∼ Gamma(2,200). (3.2)

Figure 3.4 shows the prior densities for µ and σ .
These prior densities will be retained for the popula-
tion mean and standard deviation in the GARCH and
SV models as well.

Because the Gaussian model has only location and
scale parameters, many population properties appear
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to be inconsistent with the S&P 500 returns series. For
example, cov[(yt − µ)2, (yt−s − µ)2] = 0 for all s �= 0,
which appears to be inconsistent with the behavior
displayed in figure 3.3, and it will be seen that the cor-
responding sample moment appears to conflict with
this restriction as well. Similarly, population excess
kurtosis is identically zero, whereas sample informa-
tion suggests otherwise. Of course such casual com-
parisons of sample and population moments do not
tell us much, and can even be misleading. Section 3.2.2
and chapter 4 return to this issue.

3.1.3 A GARCH Model

The generalized autoregressive conditional hetero-
scedasticity (1,1) (hereafter, simply GARCH) model
may be expressed

yt ∼ N(µ,σ2
t ), σ2

t = α0 +α1ε2
t−1 + β1σ2

t−1,

with
α0 > 0, α1 � 0, β1 � 0. (3.3)

Clearly, E(yt) = µ. Bollerslev (1986, 1988) and He and
Terasvirta (1999) establish additional unconditional
moments, as follows.

(1) If, in addition to (3.3),

α1 + β1 < 1, (3.4)

then the unconditional variance

σ2 = α0

1−α1 − β1
(3.5)

exists.
(2) If, in addition to (3.3),

β2
1 + 2α1β1 + 3α2

1 < 1, (3.6)
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then the fourth moment exists and in this case
the unconditional excess kurtosis is

κ = 6α2
1

1− β2
1 − 2α1β1 − 3α2

1

� 0. (3.7)

(3) Given the inequality (3.6), the first-order auto-
correlation of squared deviations from the mean
is

ρ = corr[(yt − µ)2, (yt−1 − µ)2]

= α1(1− β2
1 −α1β1)

1− β2
1 − 2α1β1

� 0. (3.8)

These relationships impose two constraints on the
set of population moments (ρ, κ) consistent with any
GARCH model. The first constraint arises from (3.3),
(3.7), and (3.8). From (3.7), ∂κ/∂β1 � 0, and from (3.8),
∂ρ/∂β1 � 0. If β1 = 0 then, from (3.7) and (3.8),
κ = 6ρ2/(1 − 3ρ2), a relationship imposed in the
ARCH(1) model. Consequently, due to the nonnega-
tivity constraint on β1 in (3.3), κ � 6ρ2/(1 − 3ρ2);
equivalently,

ρ � [κ/(6+ 3κ)]1/2 < 3−1/2. (3.9)

The second constraint arises from (3.4), (3.7), and (3.8):

1− β1 > α1 ⇐⇒ 1− β2
1 > α1 +α1β1

⇐⇒ 1− β2
1 −α1β1 > α1

⇐⇒ 6α1(1− β2
1 −α1β1) > 6α2

1

⇐⇒ 6(1− β2
1 − 2α1β1)ρ > 6α2

1

⇐⇒ 3(κ + 2)ρ > κ

⇐⇒ ρ >
κ

3(κ + 2)
. (3.10)
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Figure 3.5. Some aspects of the prior distribution in the
GARCH model. (a) α1 as a function of ρ and κ. (b) β1 as a
function of ρ and κ.

Panels (a) and (b) of figure 3.5 show the range of
(ρ, κ) combinations permitted in the GARCH model
and their relation to the parameters α1 and β1. The
dotted line on the right reflects the first constraint in
(3.9) and the dotted line on the left reflects the con-
straint (3.10). Values of α1 close to the lower bound
α1 = 0 combined with values of β1 near the upper
bound β1 = 1 account for many more of the (ρ, κ)
combinations than do values of α1 close to 3−1/2 and
values of β1 close to 0. It is clear, from these two
panels, that a prior distribution taking α1 uniform on
[0,3−1/2) and β1 uniform on [0,1), subject to (3.4)
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Figure 3.5. (Continued.) (c) Prior distribution of
ρ and κ. (d) Prior distribution of α1 and β1.

and (3.6), would induce a prior distribution on ρ, κ
concentrated near the right boundary of (ρ, κ) com-
binations, which are those arising in the ARCH(1)
model.

Rather than express a prior distribution directly for
the four parameters of the model, one can begin by
placing prior distributions on the four population mo-
ments µ, σ , ρ, and κ and then work backward to the
prior distributions for θ′ = (µ,α0, α1, β1)′. Since prior
predictive analysis is carried out by simulation it is
not necessary to solve analytically for the prior on
θ. Moreover, it is easier to think about prior distribu-
tions for population moments, which may reasonably
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be regarded as independent, than it is to state a prior
distribution for individual parameters, for which inde-
pendence is unreasonable. Proceeding in this way also
makes it possible to maintain the same substantive
priors across very different models, and section 3.1.4
does just this.

This requires that (3.7) and (3.8) be solved forα1 and
β1. There is no closed-form solution. These equations
suggest several iterative algorithms for determining
the roots. Of these, the choice

α = (2β)−1{1+ 2ρβ− β2

± [(β2 − 2ρβ− 1)2 − 4βρ(1− β2)]1/2},
β = (2κ)−1{−2ακ + [4κ2 − 8α2κ2 − 24κα2]1/2}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.11)

guarantees convergence to the solution. Of the two so-
lutions for α in (3.11), one satisfies (3.6) and the other
does not.

The analysis that follows in section 3.2.2 employs
an exponential prior distribution with mean 8 for κ
and uniform (0,1) prior distribution for ρ, indepen-
dent except that the support of (ρ, κ) is restricted
as indicated in figure 3.5. The prior distributions for
µ and σ are given by (3.1) and (3.2), respectively.
The random variables µ, σ , and (ρ, κ) are mutually
independent in the prior distribution. Figure 3.5(c)
is a scatterplot of 10,000 random draws from the
prior distribution of (ρ, κ). Mapping these draws into
(α1, β1), using the functions portrayed in panels (a)
and (b) of the figure, yields the scatterplot in panel (d).
As panels (a) and (b) suggested would be the case,
the prior distribution is heavily concentrated near the
boundary (3.6).
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3.1.4 A Stochastic Volatility Model

The SV model of Jacquier et al. (1994) may be ex-
pressed

yt ∼ N(µ,σ2
t ),

logσ2
t = α+ δ logσ2

t−1 + σvvt,
vt

i.i.d.∼ N(0,1),

with
δ ∈ (−1,1), σv > 0. (3.12)

As in the previous two models, E(yt) = µ. Jacquier
et al. (1994) provide the unconditional moments σ2,
ρ, and κ defined in section 3.1.3.

(1) The unconditional variance is

σ2 = E(ε2
t ) = exp

[
α

1− δ +
σ2
v

2(1− δ2)

]
. (3.13)

(2) The first-order autocorrelation of squared devia-
tions from the mean is

ρ = corr[(yt − µ)2, (yt−1 − µ)2]

=
[

exp
( δσ2

v
1− δ2

)
− 1

]/[
3 exp

( σ2
v

1− δ2

)
− 1

]
.

(3.14)

(3) The unconditional excess kurtosis is

κ = 3 exp
( σ2

v
1− δ2

)
− 3 > 0. (3.15)

No additional constraints beyond those required for
stationarity (3.12) are needed for existence of these
population moments.

One can begin as in section 3.1.3 by placing prior
distributions on the four population moments µ, σ ,
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ρ, and κ, and then determine the prior distributions
implied for θ′ = (µ, δ,α,σv)′. Motivated by (3.15)
define

q = log
(
κ + 3

3

)
= σ2

v
1− δ2

(3.16)

and substitute (3.16) into (3.13) to get

log(σ2) = α
1− δ +

q
2

(3.17)

and into (3.14) to produce

ρ · [3 exp(q)− 1] = exp(δq)− 1. (3.18)

The recursive solution is therefore

(1) from (3.18),

δ = 1
q

log{ρ[3 exp(q)− 1]+ 1};

(2) from (3.16),
σ2
v = (1− δ2)q;

(3) from (3.17),

α = (1− δ)(logσ2 − 1
2q). (3.19)

The model places constraints on ρ and κ. From
(3.15), exp[σ2

v/(1 − δ2)] = (κ + 3)/3. Substituting in
(3.14) yields

ρ = [(κ + 3)/3]δ − 1
κ + 2

.

This is a monotone increasing function of δ, and
taking the limits as δ→ −1 and δ→ 1 shows that

ρ ∈
( −κ
(κ + 2)(κ + 3)

,
κ

3(κ + 2)

)
. (3.20)

The lower limit is irrelevant given that the prior distri-
bution support for ρ is [0,1). The upper limit imposes
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constraints on (ρ, κ). The constraints are indicated by
the dotted curves in panels (a) and (b) of figure 3.6,
which provide (δ,σv) as a function of (ρ, κ). The up-
per limit on ρ in (3.20) is exactly the same as the lower
limit on ρ in (3.10) imposed by the GARCH model.

Simulating from this prior amounts to drawing κ
from the exponential prior and ρ from the uniform
prior, but rejecting (κ, ρ) if (3.20) is violated. Then µ
is drawn from (3.1) and σ2 is drawn from (3.2). Fig-
ure 3.6(c) is a scatterplot of 10,000 random draws
from the prior distribution of (ρ, κ). Mapping these
draws into (δ,σv), using the functions portrayed in
parts (a) and (b) of the figure, yields the scatterplot in
part (d). The points there constitute 10,000 random
draws from p(δ,σv). The corresponding draws for α
are provided by (3.19).

3.2 Prior Predictive Analysis

The three complete models lead to prior predictive
densities p(yT | Aj) (j = 1,2,3). For the sample
described in section 3.1, T = 983. The prior predictive
distributions are accessed by simulation as described
in section 2.4.1. From (2.20),

θ(m)Aj ∼ p(θAj | Aj), y(m)T ∼ p(yT | θ(m)Aj ,Aj)

(m = 1, . . . ,M) (3.21)

produces

y(m)T ∼ p(yT | Aj) (m = 1, . . . ,M),

and then

z(m)T = h(y(m)T ) ∼ p(zT | Aj). (3.22)

Section 3.2.1 presents functions h producing features
that are the elements of zT , and a conventional prior
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Figure 3.6. Some aspects of the prior distribution in the
stochastic volatility model. (a) δ as a function of ρ and κ.
(b) σv as a function of ρ and κ.

predictive analysis with these features is presented in
section 3.2.2. Section 3.2.3 decomposes variation in
zT ∼ p(zT | A) into two components, one explained by
θAj and one not. That section illustrates how the corre-
sponding analysis of variance provides insight into the
alternative models and identifies ancillary statistics.

3.2.1 Features (or Checking Functions)

The choice of features in a prior predictive analysis
is subjective and is driven by the application of the
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model at hand. In a specific decision-making applica-
tion the vector of interest ωT might coincide with the
arguments of the utility function U(ωT ;dT ). For ex-
ample, in the illustrative problem here the utility func-
tion might be the return from a trading rule, and the
functions of interest might then be the returns from
several such rules. A model predicting returns from
trading rules conflicting with those actually observed
would be a cause for concern.

The illustration here is not linked to a specific de-
cision and the features are chosen with reference to
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Table 3.1. Features of the S&P 500 return series.

Feature Data

Return mean × 100 0.810
Return standard deviation × 100 5.515
Months in bear markets 350
Largest bear market decline 0.846

Return skewness −0.437
Return excess kurtosis 8.166
Ratio of range to standard deviation 12.451

Return autocorrelation, lag 1 0.078
Squared return autocorrelation, lag 1 0.242
Squared return autocorrelation, lag 12 0.182
Absolute return long-memory parameter 0.693

the statistical properties of the returns and the sub-
sequent analyses in sections 3.2.3 and 3.3. There are
eleven features and these are indicated in table 3.1
along with their corresponding observed values. The
first four features of returns pertain to the drift in the
price index: the mean and standard deviation of re-
turns, the total number of months in bear markets,
and the largest decline in a bear market. The next three
features describe the shape and spread of the distri-
bution of returns: the sample skewness and kurtosis
coefficients, and the ratio of the range to the standard
deviation.

The last four features are characteristics of the dy-
namics of returns. All have received at least some em-
phasis in the extensive literature on econometric mod-
eling of equity returns. A conventional non-Bayesian
analysis with a Gaussian model yields a statistically
significant first-order autocorrelation coefficient. The
positive sample first-order autocorrelation coefficient
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for squared returns is consistent with persistence in
volatility. The sample twelfth-order autocorrelation
coefficient for the squared return is also evidence of
such persistence, but the relative values of the two
statistics appear to be inconsistent with simple geo-
metric decay in the autocorrelation function. The final
feature is also evidence of long persistence in volatil-
ity and is widely interpreted as a stylized characteris-
tic of asset returns. The data value shown is the GPH
estimate d̂ of the long-memory parameter using the
lowest T 1/2 = 31 harmonic periodogram ordinates
(Geweke and Porter-Hudak 1984).

The observed features lead immediately to the non-
Bayesian method of moments estimates ρ̂ = 0.242 and
κ̂ = 8.166. Since κ̂/3(κ̂ + 2) = 0.268, from (3.10) and
(3.20) these point estimates are inconsistent with the
GARCH model but consistent with the SV model. How-
ever, to equate population moments with sample mo-
ments, without consideration of the distribution of the
sample moments, is always treacherous; section 4.4
demonstrates this in an entirely different context. It is
especially unreliable here because the sampling stan-
dard deviation of κ̂ depends on the eighth moment
of the return yt . Not only the size of this moment is
in doubt in the context of the GARCH model, its very
existence is.

3.2.2 Results

Figures 3.7, 3.8, and 3.10 show prior predictive den-
sities for all but the first two features listed in ta-
ble 3.1, computed from (3.21), (3.22) with M = 104.
Each panel displays a histogram from the simulations
as well as an approximate probability density function
computed using a conventional Gaussian kernel with
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Table 3.2. Inverse prior cumulative
distribution functions of features.

Inverse c.d.f.
at data︷ ︸︸ ︷

Feature Gauss GARCH SV

Return mean 0.50 0.50 0.52
Return standard deviation 0.52 0.54 0.51
Months in bear markets 0.49 0.55 0.53
Largest bear market decline 0.91 0.90 0.91

Return skewness 0.00 0.03 0.16
Return excess kurtosis 1.00 0.98 0.74
Ratio of range to 1.00 0.66 0.68
standard deviation

Return autocorrelation, 0.99 0.96 0.96
lag 1
Squared return 1.00 0.51 0.88
autocorrelation, lag 1
Squared return 1.00 0.91 0.98
autocorrelation, lag 12
Absolute return long- 1.00 0.97 0.99
memory parameter

standard deviation 25[vâr(z(m))/M]1/2. In each panel
the vertical line denotes the data point from table 3.1.
The range of the horizontal axis is taken sufficiently
wide to include all 104 simulated values of the feature,
and widened further if necessary to include the data
point. Consequently, the scaling for a given panel can
vary across the three figures. Table 3.2 provides the
values of all eleven prior predictive cumulative distri-
bution functions evaluated at the observed values in
table 3.1, P(zT � zoT | Aj), for the three models.
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Figure 3.7. Prior predictive densities of some features in
the Gaussian model (vertical lines indicate data values).
(a) Months in bear markets. (b) Largest bear market decline.
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Figure 3.7 and the corresponding column of table 3.2
convey the well-documented failure of the Gaussian
model of asset returns. A sufficiently diffuse prior will
always include the sample mean and the standard de-
viation of the return series. That is true here, by de-
sign of the prior: compare (3.1) and (3.2) with the val-
ues in the first two lines of table 3.1. It is not sur-
prising that the prior seems to account for the bear
market observations as well. The last seven features
are all ancillary statistics in the Gaussian model, with
p(zT | θA,A) = p(zT | A) for all θA ∈ ΘA. Therefore
the corresponding predictive densities in figure 3.7
would be the same for any prior density p(µ,σ2 | A)
in a Gaussian return model A.

Figure 3.8 provides prior predictive densities from
the GARCH model for the same features. The densities
for the bear market features are remarkably similar to
those from the Gaussian model. This result is consis-
tent with the occurrence and persistence of cycles be-
ing driven almost entirely by the first two moments of
returns, whose prior distributions are the same in the
two models. The predictive distribution of the return
sample autocorrelation is a little more diffuse in the
GARCH model than it is in the Gaussian model.

In contrast, the prior distributions of the other six
features that are portrayed are dramatically different.2

The prior predictive distributions of features associ-
ated with volatility dynamics, shown in panels (g)–(i)
of the figures, are all much more diffuse than in the
Gaussian model. They are also clearly much more in
line with the data. This is evident in (1) the values of
p(zoT | A), which are orders of magnitude larger in

2 Note the very different scaling of the horizontal axis for some
of the same panels in figures 3.7 and 3.8.
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the GARCH model than in the Gaussian model, and
in (2) the values of αpre, suggested by Box (1980) and
presented in table 3.2, that are more favorable to the
GARCH model than they are to the Gaussian model.

The prior predictive distributions of the sample
skewness and kurtosis coefficients, in panels (c) and
(d) of figure 3.8, are remarkable. The range of the hor-
izontal axis, which is taken just wide enough to in-
clude all 104 simulations, is driven by the fact that
population sixth moments (in the case of skewness)
and population eighth moments (in the case of kurto-
sis) fail to exist for virtually all of the (α1, β1) values
supported by the prior distribution, as indicated in fig-
ure 3.5. This is evident from comparing panel (g) of
this figure with the ranges for existence of higher mo-
ments indicated in figure 1 of Bollerslev (1986). That
is why, despite the fact that the prior distribution for
the coefficient of population kurtosis supports very
high values, the observed value is in the ninety-eighth
percentile of the prior predictive distribution of the
sample kurtosis coefficient for T = 984. The GARCH
model does not account well for the leptokurtosis and
the skewness of observed returns simultaneously.

This limitation becomes even more evident in bivari-
ate prior predictive distributions. The leading example
is the joint distribution of the sample first-order auto-
correlation coefficient of squared returns and the sam-
ple excess kurtosis coefficient. Figure 3.9 provides the
log prior predictive joint density of these two features,
constructed using the multivariate Gaussian copula
described in section 3.4. The contours show the dif-
ference between the log predictive density at its max-
imum and the points in the figure. The distribution is
somewhat similar to the prior distribution of the cor-
responding population moments shown in figure 3.5,
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Figure 3.8. Prior predictive densities of some features in
the GARCH(1,1)model (vertical lines indicate data values).
(a) Months in bear markets. (b) Largest bear market decline.
(c) Return skewness.
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correlation, lag 1.
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Figure 3.8. (Continued.) (g) Squared return autocorrela-
tion, lag 1. (h) Squared return autocorrelation, lag 12.
(i) Absolute return long-memory parameter.
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Figure 3.9. The contours show the level of the log prior
predictive density below the maximum. The dots show
4,000 draws from the prior predictive distribution. The in-
tersection of the horizontal and vertical lines indicates the
data point.

but it concentrates more on low values of excess kurto-
sis. In general, prior predictive distributions of sample
moments converge to prior predictive distributions of
the corresponding population moments, but conver-
gence is slower the higher the moments, and especially
slow when a central limit theorem does not govern
convergence due to the failure of the requisite higher-
order moments to exist. That is the case here. (Geweke
(1986) elaborates on this point in the context of the
GARCH model.)

Figure 3.10 shows the univariate prior predictive dis-
tributions of the same nine features in the SV model.
This model is a vast improvement on the Gaussian
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Figure 3.10. Prior predictive densities of features in the
SV model (vertical lines indicate data values). (a) Months
in bear markets. (b) Largest bear market decline. (c) Return
skewness.
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Figure 3.10. (Continued.) (d) Excess kurtosis of returns.
(e) Ratio of range to standard deviation. (f) Return autocor-
relation, lag 1.
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Figure 3.10. (Continued.) (g) Squared return autocorre-
lation, lag 1. (h) Squared return autocorrelation, lag 12.
(i) Absolute return long-memory parameter.
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Figure 3.11. The contours show the level of the log pre-
dictive density below the maximum for the GARCH model.
The dots show 4,000 draws from the prior predictive dis-
tribution. The intersection of the horizontal and vertical
lines indicates the data point.

model in the same way that the GARCH model is.
Comparison of figures 3.10 and 3.8 shows that the
SV model has greater consistency with the observed
dispersion of returns, but the GARCH model is more
consistent with volatility dynamics.

This comparison becomes especially evident in the
prior predictive joint distribution of these two mo-
ments. Figure 3.11 provides the same joint log prior
predictive density for the SV model that figure 3.9 does
for the GARCH model, for the same range of sample
moments. The scale of the log predictive density is
also the same: the contours in figure 3.11 are mea-
sured relative to the peak of the GARCH log predictive
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density in figure 3.9. The log predictive density in the
SV model, evaluated at the observed values, is about
−2.5. This is substantially greater than the log pre-
dictive density in the GARCH model, which is about
−8.5. Highest predictive density regions of conven-
tional size for these moments are more concentrated
in the GARCH model than in the SV model. Notice that
the data point is excluded from such regions in the for-
mer model but included in the latter one. Section 3.3
pursues this analysis in higher dimensions.

3.2.3 Prior Predictive Analysis of Variance

For any feature zT for which E(z2
T | A) < ∞, the Rao–

Blackwell theorem implies that

var(zT | A)
= varθA[E(zT | θA,A)]+ EθA[var(zT | θA,A)].

(3.23)

Loosely speaking, (3.23) attributes uncertainty about
zT to two sources: uncertainty about θA and intrinsic
uncertainty about zT that would exist even if θA were
known. This section focuses on

f(zT | A) =
varθA[E(zT | θA,A)]

var(zT | A)
,

which is the fraction of the prior predictive variance
in zT due to the prior variance in θA.

The decomposition can be approximated with arbi-
trary accuracy using a minor extension of the prior
predictive simulator described earlier in this chapter.
For each of the simulated parameter values θ(m)A ∼
p(θA | A), simulate

z(m,r)T ∼ p(zT | θ(m)A ) (r = 1, . . . , R),
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and define

z̄(m)T = R−1
R∑
r=1

z(m,r)T (r = 1, . . . , R)

and

z̄T = M−1
M∑
m=1

z̄(m)T .

(The extension of the simulator consists of the addi-
tional R − 1 simulations of zT corresponding to each
θ(m)A .) A classical one-way analysis of variance with
balanced design then provides a simulation-consistent
estimate of the decomposition (3.23). As M,R →∞,

(MR)−1
M∑
m=1

R∑
r=1

(z(m,r)T − z̄T )2 a.s.−−−→ var(zT | A),

M−1
M∑
m=1

(z̄(m)T − z̄T )2 a.s.−−−→ varθA[E(zT | θA,A)],

f̂ (zT | A) =
R
∑M
m=1(z̄

(m)
T − z̄T )2∑M

m=1
∑R
r=1(z

(m,r)
T − z̄T )2

a.s.−−−→ f(zT | A).

Suppose that the prior distribution is substantively
diffuse: that is, that it provides substantial support
for all reasonable, and perhaps some unreasonable,
values of θA. Suppose also that f(zT | A) � 0. Then,
if the prior predictive distribution indicates that zoT is
implausible, the difficulty lies with the specification of
p(yT | θA) and not with p(θA | A). The limiting case
f(zT | A) = 0 is instructive.
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Proposition 3.1. If zT is an ancillary statistic in the
model A, then f(zT | A) = 0.

Proof. By definition (Casella and Berger 2002, p. 282),
p(zT | θA,A) = p(zT | A). Then E(zT | θA,A) =
E(zT | A) and so f(zT | A) = 0.

The converse of this result is false, the simplest
counterexample perhaps being

P(θ = 1, z = 0) = 1
2 ,

P(θ = 0, z = −1) = P(θ = 0, z = 1) = 1
4 .

If f(zT | A) = 0, then

M(R − 1)
M − 1

· f̂ (zT | A)
1− f̂ (zT | A)

·∼ F(M − 1,M(R − 1)),

leading to a consistent test of the hypothesis f(zT |
A) = 0. Thus it is possible to show that zT is not an-
cillary using the analysis of variance proposed here.
The conclusion f(zT | A) = 0 does not imply that
zT is ancillary, but finding f(g(zT ) | A) = 0 for
a number of alternative nonlinear transformations g
would strongly suggest that zT is, indeed, an ancil-
lary statistic. As a by-product the prior predictive sim-
ulations supporting that conjecture would then pro-
vide rejection regions for conventional non-Bayesian
specification tests.

In principle it is possible to establish analytically
whether zT is ancillary, but in practice this is far from
clear and the analytical exercise may be impractica-
bly difficult. Moreover, while the ancillarity of zT is
critical to a non-Bayesian specification test, the focus
here is more qualitative: whether or not changes in the
prior distribution would lead to substantially different
conclusions about p(zoT | A).
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Table 3.3 provides analysis of variance in the prior
predictive distribution of the features introduced in
section 3.2.1, for the three models and the data set dis-
cussed in section 3.1. As indicated in the table, three
of the features were transformed to assure finite vari-
ance in the prior predictive distributions in all three
models.

For the i.i.d. Gaussian model, the prior predictive
analysis of variance reflects the well-known fact that
location- and scale-invariant statistics are ancillary. In
the GARCH and SV models no feature in table 3.3 is an
ancillary statistic. In the case of skewness and the re-
turn autocorrelation at lag 1 this is evident only after
an appropriate transformation of the feature, because
in these two cases means are zero conditional on any
values of the model parameters. For most of the fea-
tures, substantial portions of prior predictive variance
are due both to variation in parameters and to variance
conditional on parameters.

With the exception of return autocorrelation at lag 1,
substantial fractions of the prior predictive variances
of the features studied are due to prior variation in
the model parameters. The important implication for
prior predictive analysis is that model checking based
on these features is sensitive to the prior distribution
of parameters as well as to the distribution of ob-
servables conditional on parameters. In the absence of
strong substantive information about the parameters,
it is important to avoid dogmatic or near-dogmatic
prior distributions. Doing so requires some substan-
tive understanding of the model. As illustrated in
parts (a) and (b) of figures 3.5 and 3.6, this can happen
inadvertently if one resorts to seemingly vague or flat
prior distributions in the parameter space.
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Table 3.3. Analysis of variance,
features of the S&P 500 return series.

[var(zT | A)]1/2 and f(zT | A)︷ ︸︸ ︷
Feature zT Gaussian GARCH SV

Return mean 0.359 0.69 0.366 0.60 0.347 0.61
× 100

Return standard 0.026 1.00 0.031 0.82 0.032 0.97
deviation

Months in bear 215.4 0.75 214.4 0.61 209.1 0.70
markets

Largest bear 0.208 0.77 0.205 0.58 0.207 0.70
market decline

Return 0.069 0.01 0.152 0.01 0.284 0.01
skewnessa

|Return 0.040 0.01 0.100 0.11 0.171 0.25
skewnessa|
Return excess 0.013 0.01 0.244 0.45 0.170 0.81
kurtosisa

Range/standard 0.008 0.01 0.018 0.34 0.018 0.60
deviationa

Return AC, 0.031 0.01 0.046 0.01 0.044 0.01
lag 1

|Return AC, 0.019 0.01 0.029 0.04 0.028 0.08
lag 1|
Squared return 0.031 0.01 0.132 0.59 0.097 0.57
AC lag 1

Squared return 0.031 0.01 0.078 0.40 0.054 0.54
AC lag 12

Absolute return 0.137 0.01 0.233 0.55 0.205 0.55
long memory d̂

Bold numbers indicate a significantly positive level at 0.001; italic numbers
indicate a significantly positive level at 0.05. Results are based on 10,000
simulations with M = R = 100.
aTransformation zT /(1+ |zT |) has been applied.



3.3. Comparison with an Incomplete Model 71

3.3 Comparison with an Incomplete Model

A significant limitation of Bayesian model comparison
described in section 2.4 is the conditioning on a par-
ticular set of well-articulated models. It may well be
the case that none of these models account well for
“stylized facts” or other aspects of the data that are
thought to be important for the purposes at hand.
Bayesian methods in particular place probability dis-
tributions on all knowable quantities, and these dis-
tributions imply restrictions on what may happen,
or could have happened. If events transpire that are
improbable under all of the well-articulated models,
then one has little confidence in the set of models be-
ing used. This set of circumstances can be revealed
by non-Bayesian methods, for example in frequentist
testing of restrictions against unspecified alternatives.
A Bayesian model in which these deficiencies do not
emerge is said to be well-calibrated (Dawid 1984; Lit-
tle 2006). Prior predictive analyses, described in sec-
tions 2.4.1 and 3.2, and posterior predictive analyses,
discussed in section 2.4.2, are designed to uncover the
same problems. As argued in section 2.4.2, the former
are Bayesian and the latter are not.

One conclusion might be that inference under a
specified set of models should be Bayesian but that
assessment of these models can and should involve
non-Bayesian ideas. (For an alternative conclusion see
Poirier (1988), especially pp. 138–41.) In particular,
such a synthesis of Bayesian and frequentist ideas
has been advocated by many, including prominent
Bayesians like Berger (2000). This is an interesting
challenge to the conjecture that economists and other
scientists act like Bayesians, rather than frequentists.
There is no doubt that these investigators look for
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deficiencies in well-specified models using frequen-
tist methods, using hypothesis tests and p-values as
well as less formal steps. But judicious application
of frequentist methods can also amount to Bayesian
learning using available technology—an idea familiar
to econometricians from Leamer (1978).

Prior predictive analyses, described in sections 2.4.1
and 3.2, and posterior predictive analyses, discussed
in section 2.4.2, can be used to assess models. They
can lead one to conclude that a model is deficient, or
preforms poorly, for a particular purpose. But such
analyses, whether Bayesian or not, raise the question:
deficient or poor performance compared with what?
If one is to reject all models under consideration as
deficient, then there must be at least a tacit belief that
there exist models that perform better, together with
some notion of how well these models perform. This
section puts these ideas in a formal Bayesian context.

3.3.1 Methods

If one were certain that a set of complete models
A1, . . . , An included all possible models for y, no
model-validation exercise could have a disconcerting
outcome. Indeed, there would then be no reason to
engage in model validation, but the fact that these ex-
ercises are a critical part of good econometric work
reflects the fact that one (or, at any rate, one’s audi-
ence) is never so certain. More importantly, one often
has incompletely articulated ideas about reasonable
distributions for checking functions zi (i = 1, . . . , q).
An informal model of some kind for the zi seems es-
sential to the choice of checking functions, driven by
the characteristics that the investigator thinks a good
model ought to have. To formalize this notion, asso-
ciate a model Bi with each checking function zi, of the
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form p(zi | Bi). A natural extension of this idea is an
incomplete model p(z1, . . . , zq | B) for the q check-
ing functions. These models may be incomplete, in
the sense that they cannot be (or at least have not
been) derived as prior predictive distributions from
any complete model for y. Therefore, the models Bi
may not even be known to be coherent: that is, it may
not be known whether there exists a model A such
that p(θA | A) and p(y | θA,A) yield p(zi | A) =
p(zi | Bi) (i = 1, . . . , q), or p(z1, . . . , zq | B) if a joint
incomplete model is being entertained.

The incomplete models Bi allow one to compare the
complete models in hand (the Ai) with as-yet incom-
pletely specified alternatives, using formally justified
Bayesian methods. The purpose of this exercise is to
model what econometricians do implicitly in their day-
to-day work, and to elucidate the corresponding for-
mal procedures. To see how this idea works, suppose
that for a group of features zoT , approximations to
p(zoT | Ai) (i = 1, . . . , n) are available. (These approxi-
mations will typically be constructed from simulations
z(m)T ∼ p(zT | Ai) (m = 1, . . . ,M) using nonparamet-
ric or semiparametric methods. Section 3.3.2 provides
more detail, but these considerations limit the length
of zT .) Typically, the incomplete model B consists of
independent distributions for each of the q compo-
nents of zT , with the distribution zTi | Bi chosen so
that p(zoTi | Bi) can be evaluated directly and then

p(zoT | B) =
q∏
i=1

p(zoTi | Bi).

It is now possible to assess the evidence in the ob-
served zoT about the complete models A1, . . . , An and
the incomplete model B. Indeed, this is the only ba-
sis of comparison with B because that model speaks
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only to zT , not to yT . In particular, the Bayes factor
in favor of model Ai versus the incomplete model B
is p(zoT | Ai)/p(zoT | B). If it is not possible to assess
p(zoT | Ai)with sufficient accuracy, then it may be pos-
sible to undertake the exercise with subsets of zoT ; in-
deed, this may be instructive in any event because it
may lead to a conclusion that a model Ai is adequate
in some respects but not in others.

This exercise can be carried out even when there is
only one complete model under consideration. Bayes
factors in favor of models will of course be sensitive to
the specific choice of incomplete model, and different
investigators will use different incomplete models B.
These differences are unavoidable, and even desirable:
especially in the model formulation stage, different
economists have different ideas about what a model
ought to be able to achieve. Moreover, investigators
are likely to change formal prior densities p(θA | A)
as they observe the implications for p(zT | A). This
is also desirable if features zT have been chosen at
least in part because they help interpret the impli-
cations of models. In general, the minimal standard
p(zoT | A)/p(zoT | B) > 1 would appear reasonable for
the complete model A.

To the extent that the elements of zT capture the
same qualitative aspects of the model, one might ex-
pect p(zoT | A)/p(zoT | B) to be even larger, because
A enforces coherence while B does not. As a simple
example, suppose that the sample mean zT1 and sam-
ple median zT2 of yT constitute the two features in zT
capturing central tendency, and the incomplete model
specifies independent distributions for the two fea-
tures each embracing all reasonable values for cen-
tral tendency. In the plausible case in which A en-
forces strong correlation between the mean zT1 and
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the median zT2, and in the event that A provides sup-
port for the indicators of central tendency reflected in
zoT1 ≈ zoT2,p(zoT | A)/p(zoT | B)� 1 becausep(zT | A)
concentrates its support on zT1 ≈ zT2.

3.3.2 Application

The prior distributions detailed in table 3.4 provide
components of an incomplete model B for zT . For
each of the eleven features i described in section 3.2,
the prior distributions listed in table 3.4 provide the
functional form and the parameters of the densities
p(zTi | Bi).

The nine panels of figure 3.12 display all but the
first two prior densities p(zTi | Bi) of the incomplete
model as solid curves. The panels also incorporate
the prior predictive densities from each of the three
models that were displayed separately in figures 3.7,
3.8, and 3.10. The solid vertical line indicates the ob-
served value of the feature from table 3.1 in each
case. In the panel corresponding to feature i the value
of p(zoTi | B) is indicated by the intersection of the
solid vertical line with the solid curve; the value of
p(zoTi | A1) for the Gaussian model A1 is indicated
by the intersection with the dotted curve; the value of
p(zoTi | A2) for the GARCH model A2 is indicated by
the intersection with the dash-dotted curve; and the
value of p(zoTi | A3) for the SV model A3 is indicated
by the intersection with the dashed curve.

Feature by feature, each model Ai can be evaluated
by comparison with the incomplete model B using fig-
ure 3.12. In the case of the price drift features (months
in bear markets and largest bear market decline),

p(zoTi | Aj)/p(zoTi | B) > 1
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Table 3.4. Prior distributions of
features in the incomplete model.

Incomplete model
prior distribution︷ ︸︸ ︷

Feature Functional form Mean St. dev.

Return mean Gaussian 0.8 0.3
× 100

Return standard σ−2 ∼ Gamma 0.62 0.31
deviation × 100

Months in bear Uniform(0, T ) T/2 12−1/2T
markets

Largest bear ∝ (1−f)2I(0.2,1)(f ) 0.4 0.155
market decline

Return Gaussian 0 1
skewness

Return excess Exponential 8 8
kurtosis

Ratio of range 1+ Gamma 7 3
to standard
deviation

Return Gaussian 0 0.1
autocorrelation,
lag 1

Squared return Uniform(0,1) 1/5 121/2

autocorrelation,
lag 1

Squared return Beta 0.25 0.25
autocorrelation,
lag 12

Absolute return Gaussian 0.5 0.25
long-memory
parameter
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Figure 3.12. The prior predictive densities of features in
the Gaussian (dotted), GARCH (dash-dotted), SV (dashed),
and incomplete (solid) models. The solid vertical line in-
dicates the observed value. (a) Months in bear markets.
(b) Largest bear market decline. (c) Return skewness.
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Figure 3.12. (Continued.) (d) Excess kurtosis of returns.
(e) Ratio of range to standard deviation. (f) Return autocor-
relation, lag 1.
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Figure 3.12. (Continued.) (g) Squared return autocorre-
lation, lag 1. (h) Squared return autocorrelation, lag 12.
(i) Absolute return long-memory parameter.
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for all three complete models. For return skewness,

p(zoTi | Aj)/p(zoTi | B) � 1

in the case of the GARCH and SV models, but the Gaus-
sian model does not compare well with the incomplete
model. In the case of kurtosis,

p(zoTi | Aj)/p(zoTi | B) � 1

only for the SV model;

p(zoTi | Aj)/p(zoTi | B) < 1

for the GARCH model and

p(zoTi | Aj)/p(zoTi | B)� 1

for the Gaussian model. For the alternative measure
of dispersion, ratio of range to standard deviation,

p(zoTi | Aj)/p(zoTi | B) > 1

for the SV model,

p(zoTi | Aj)/p(zoTi | B) � 1

for the GARCH model, and

p(zoTi | Aj)/p(zoTi | B)� 1

in the case of the Gaussian model. For the sample first-
order autocorrelation coefficient, p(zoTi | Aj) falls
short of p(zoTi | B) in all three models, but much more
so for the i.i.d. Gaussian model. For the sample first-
order autocorrelation coefficient of squared returns in
both the SV and GARCH models,

p(zoTi | Aj)/p(zoTi | B) > 1,
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Table 3.5. Log Bayes factors in favor of each model over
the incomplete model, for four groups of features.

Gaussian GARCH SV

Price drift −2.23 1.48 0.83
(four features) −2.27 1.28 1.10

Return moments −∞ −2.65 3.52
(three features) −∞ −2.14 3.48

Return dynamics −∞ −0.04 2.46
(four features) −∞ −0.29 2.81

All eleven features −∞ 1.25 4.44
−∞ 1.15 3.82

whereas this Bayes factor is very small in the Gaus-
sian model. On the other hand, for the sample twelfth-
order autocorrelation coefficient of squared returns in
all three models,

p(zoTi | Aj)/p(zoTi | B) < 1,

and the Gaussian model again does not fare well. Re-
sults are similar for the long-memory parameter for
absolute returns, which is the alternative measure of
long-run persistence in return volatility.

The interpretation of these results becomes clearer
by examining Bayes factors for groups of features.
Table 3.5 provides the log Bayes factor

log[p(zoT | Aj)/p(zoT | B)]
for several configurations of a vector of features zT
and each of the three models Aj . In each case the
densities were approximated using the Gaussian cop-
ula described in section 3.4, with smoothing parame-
ter ci = 25[var(z(m)Ti )/M]

1/2, where M is the number
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of draws from the prior predictive distribution and
var(z(m)Ti ) is the sample variance of these M draws.
(This is the same Gaussian copula smoothing pa-
rameter used to compute the contours of the pre-
dictive densities in figures 3.9 and 3.11.) For all en-
tries M = 5,000. The computations were undertaken
twice, with independent draws from the prior predic-
tive distribution; the differences within the pairs of
results provides a rough idea of the accuracy of the
approximations of the densities.

The group of features labeled “price drift” is com-
posed of the first four features in table 3.4: the sample
mean and sample standard deviation of returns, the
number of months in bear markets, and the largest
bear market decline. For this group the Bayes factor
favors the incomplete model by a ratio of about 10:1
over the Gaussian model. It mildly favors the GARCH
and SV models over the incomplete model.

The group of features labeled “return moments” has
three components: the sample skewness and excess
kurtosis coefficients and the ratio of the range to the
standard deviation. The sample of this group z(m)Ti
drawn from the Gaussian prior predictive distribu-
tion is so far removed from zoT that approximation of
p(zoT | Aj) is impossible; hence the entries −∞ for the
log Bayes factor. The GARCH model fails, with Bayes
factors favoring the incomplete model by a ratio of
about 10:1. On the other hand, the SV model receives
strong support, with Bayes factors more than 30:1 in
its favor.

The group of features labeled “return dynamics”
consists of the last four features in table 3.4: the sam-
ple first-order autocorrelation coefficient of returns,
the sample squared return autocorrelation coefficient
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at lags 1 and 12, and the long-memory parameter esti-
mate for absolute returns. The Gaussian model, again,
cannot come close to reproducing the observed vector
of features. For the GARCH model,

p(zoT | Aj)/p(zoT | B) � 1,

while the Bayes factor favors the SV model over the
incomplete model by a ratio of more than 10:1.

For all features combined, the Gaussian copula pro-
duces approximations of sufficient quality to assess
both the absolute and relative performance of each
of the three models. The Gaussian model fails. The
Bayes factor weakly favors the GARCH model over the
incomplete model, by a ratio of about 3:1. It strongly
favors the SV model, the ratio being above 40:1. The
results for the three subvectors are useful in the inter-
pretation of this outcome. They show that the satisfac-
tory evaluation of the GARCH model, overall, is com-
promised by its failure to account for observed higher
sample moments of returns as well as the benchmark
incomplete model does, and by doing no better than
the incomplete model for return dynamics. This evalu-
ation is especially telling given that the GARCH model
is designed to account for these features. The results
for the three subvectors also show that the strong per-
formance of the SV model, in comparison with the in-
complete model, is due to its ability to outperform the
incomplete model in explaining higher-order sample
moments and persistence in volatility.

Of course, all of these results depend on the speci-
fication of the incomplete model. Given the results in
table 3.5, it is a matter of simple arithmetic to recom-
pute Bayes factors against alternative specifications of
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the incomplete model so long as p(zoT | B) can be com-
puted in closed form. While formulation of the incom-
plete model, like all models, is subjective, modifica-
tions of the incomplete model that still provide scope
for a wide range of plausible observable features tend
not to change the outcomes in table 3.5 very substan-
tially. This can be appreciated best, perhaps, in the
context of figure 3.12. The qualitative conclusion that
the GARCH model is rejected against an incompletely
specified alternative, while the SV model is accepted, is
likely to stand under reformulations of the incomplete
model.

3.4 Appendix: A Gaussian Copula for
Evaluating Predictive Densities of
Vector Functions of Interest

The random vector z has q components,

z′ = (z1, . . . , zq)′.

The problem is to approximate a p.d.f. p(z) at a speci-
fied point zo, usingM i.i.d. draws from the distribution
with p.d.f. p(z) and c.d.f. P(z).

(1) Using a Gaussian kernel with standard deviation c,
compute the approximations

pi(zi) = c−1 1
M

M∑
m=1

φ
(zi − z(m)i

c

)
,

Pi(zi) =
1
M

M∑
m=1

Φ
(zi − z(m)i

c

)
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(3.24)

for i = 1, . . . , q. Compute this approximation at each
sampled point: that is, take zi = z(m)i (m = 1, . . . ,M)
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in (3.24). This is the computationally intensive part of
the algorithm.

(2) Using this approximation, transform the sampled
z(m)i to normally distributed w(m)

i ,

w(m)
i = fi(z(m)i ),

where fi(·) = Φ−1[Pi(·)], and define

w(m) = (w(m)
1 , . . . ,w(m)

q ) (m = 1, . . . ,M).

(3) The mean vector M−1
∑M
m=1w(m)

� 0. Approxi-
mate the variance as the q × q matrix

Σ = 1
M

M∑
m=1

w(m)w(m)′.

(4) Find

wo
i = fi(zoi ), f ′i (zoi ) (i = 1, . . . , q).

(5) Finally, determine

p(zo) = φ(wo; 0,Σ) ·
q∏
i=1

f ′i (z
o
i ).

Densities like the ones shown in figures 3.9 and 3.11
are produced using this algorithm. Rather than eval-
uate the densities at a single point zo, the evaluation
takes place on an appropriate grid of points, for subse-
quent input into standard mathematical applications
software that produces contours of the form shown in
those figures.



4
Incomplete Structural Models

The dynamic stochastic general equilibrium (DSGE)
model has become a central analytical tool in study-
ing aspects of economic behavior in which aggregate
uncertainty is important. Models in this family ab-
stract sufficiently from measured economic behavior
that clarification of the dimensions of reality they are
intended to mimic is important. This clarification is es-
sential if these models are to deepen our understand-
ing of real economies. If the relation between DSGE
models and measured economic behavior can be made
formal, explicit, and simple, then the analytic power of
this approach and the understanding of economic be-
havior will be enhanced. This chapter explores such a
characterization of the relation between DSGE models
and measured economic behavior.

The approach taken here is to examine three alter-
native interpretations of the relationship. The first,
called the strong econometric interpretation, leads to
complete econometric models. It is widely understood
that DSGE models fare badly under this interpreta-
tion, and the DSGE literature consistently disavows
its appropriateness given the level of abstraction in
the models. The second, called the weak economet-
ric interpretation, greatly reduces the dimensions of
observed behavior that a DSGE model is designed to
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explain. It is the interpretation advanced by Kydland
and Prescott (1996). Its assumptions are in fact no
weaker than those that lead to likelihood-based econo-
metrics, and DSGE models therefore fare badly under
this interpretation as well, although the failure is not
so immediately evident. This chapter develops and
extends a third, minimal econometric interpretation
of DSGE models as being incomplete, extending work
by DeJong et al. (1996). The assumptions underlying
this interpretation are much weaker, and it is immune
to the difficulties encountered when the DSGE model
is interpreted as a complete model. To be capable
of explaining measured aggregate economic behav-
ior, however, DSGE models must, under this interpre-
tation, be married to incomplete econometric mod-
els that provide empirically plausible descriptions of
measured behavior. This chapter shows how to do this
in a way that is formal, explicit, simple, and easy to
implement.

The three econometric interpretations are all pre-
sented with reference to a particular substantive ap-
plication: DSGE models designed to explain the equity
premium. The chapter begins, in section 4.1, by set-
ting forth four such models. The alternative econo-
metric interpretations are taken up in turn in sec-
tions 4.2, 4.3, and 4.4. In each case numerical and
graphical methods are used to illustrate the appli-
cation to equity premium models. The weak econo-
metric interpretation (section 4.3) corroborates the
findings of the DSGE literature regarding the equity
premium puzzle—as it must, for this is the interpre-
tation used there. The minimal econometric interpre-
tation (section 4.4) overturns some of the findings
widely regarded as established by DSGE models.
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4.1 The Essential Elements of DSGE Models

DSGE models have several common elements. They
specify the preferences of economic agents over al-
ternative paths of consumption, the technology of
production, and perhaps a government sector. They
assume that all economic agents choose their most
preferred path of consumption. They allow stochas-
tic perturbations to the production technology. They
use the principle of competition to determine equilib-
rium paths of quantities and prices as functions of
tastes, technology, and stochastic shocks. The specifi-
cation of tastes and technology transforms the shock
distribution to a distribution of quantities and prices.

The notation introduced in chapter 2 isolates the
econometrically relevant implications of these mod-
els. Let A denote the assumptions of a particular
model. Examples of these assumptions include the
specification that preferences are time separable with
constant relative risk aversion in each period, that pro-
duction is Cobb-Douglas, that shocks to technology
are log-normal and first-order autoregressive, and that
equilibrium is competitive. Let θA denote the vector
of parameters that provides quantitative content for
the model: for example, the specification that labor’s
share of income is 0.70, that the coefficient of relative
risk aversion is 2.0, and so on. Finally, let “y” denote
an observable, finite sequence of quantities and prices
whose equilibrium values the model describes: for ex-
ample, ninety years of annual asset returns and output
growth.

If the model has a unique equilibrium then it implies
a distribution ofy, given the values of the parameters.
The generic expression for this distribution that was
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introduced in chapter 2 is p(y | θA,A). In most DSGE
models,p(y | θA,A) cannot be derived in closed form.
As discussed in section 2.4.1 it is typically not diffi-
cult to learn about p(y | θA,A) by means of forward
simulations: given a value of θA, pseudorandom vec-
tors y(m) can be drawn independently and repeatedly
from p(y | θA,A). In many cases, this ability to simu-
late is sufficient to draw formal conclusions about the
model and to use it to study the substantive questions
it was designed to address.

4.1.1 An Example: General Equilibrium Models of
the Equity Premium

Average annual real returns on relatively risk-free
short-term securities in the United States have been
about 1% during the past hundred years. Annual real
returns on equities over the same period have aver-
aged above 6%. The equity premium—the difference
between the return to equities and the return to rel-
atively risk-free short-term securities—has therefore
exceeded 5%. Many simple general equilibrium mod-
els predict average returns on risk-free assets that are
much higher than the observed average value, and av-
erage equity premia that are much lower, given pa-
rameter values generally regarded as reasonable. This
predictive failure has become known as the equity pre-
mium puzzle. Kocherlakota (1996) provides a review
of the literature.

In the simplest general equilibrium model of the
equity premium there is a single perishable good pro-
duced and consumed each period. Let period-t pro-
duction of the good be yt , and denote the period-to-
period gross growth rate of output by xt = yt/yt−1.
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The representative agent orders preferences over ran-
dom paths of consumption {yt} by

Et

[ ∞∑
s=0

δsU(yt+s)
]
. (4.1)

In this expression δ ∈ (0,1) is the subjective discount
factor and Et denotes expectation conditional on time-
t information. The instantaneous utility function is the
constant relative risk aversion (CRRA) utility function

U(yt) = y1−α
t /(1−α), (4.2)

it being understood that U(yt) = log(yt) when α = 1.
The parameter α is the coefficient of relative risk aver-
sion in the instantaneous utility function (4.2), and it is
also proportional to the marginal rate of intertemporal
substitution in the preference ordering (4.1).

Define a risk-free asset to be a claim to one unit of
consumption in the next period. If such an asset is
held in this economy, its period-t price must be

pt = δE[U ′(yt+1)/U ′(yt)] = δEt(x−αt+1). (4.3)

Define one share of equity to be a claim to the fraction
f of output in all future periods. If this asset is held
in this economy, its period-t price must be

qt = f · Et

[ ∞∑
s=1

δsU ′(yt+s)yt+s
U ′(yt)

]

= fytEt
[ ∞∑
s=1

δsU ′(yt+s)yt+s
U ′(yt)yt

]

= fytEt
[ ∞∑
s=1

δs
s∏
j=1

x1−α
t+j

]
, (4.4)
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from which it follows that

qt = δEt
[
U ′(yt+1)(fyt+1 + qt+1)

U ′(yt)

]
= δEt[x−αt+1(fyt+1 + qt+1)]. (4.5)

From (4.4), the share price is proportional to output.
If the growth rate xt is stationary, then qt/yt is also
stationary even though output yt is not. This is a con-
sequence of the assumption that instantaneous utility
is of the CRRA form (4.2); in fact, (4.2) is the unique in-
stantaneous utility function with this property in (4.1)
(King et al. 1990).

4.1.2 The Mehra–Prescott and Rietz Models

Mehra and Prescott (1985) assume that the growth rate
xt is a first-order Markov chain with n discrete states.
The growth rate is λj in state j. Assume that the time-
t information set includes the history of growth rates,
and let Pt denote probability conditional on time-t in-
formation. Then the Mehra–Prescott assumption can
be expressed as

Pt(xt+1 = λj | xt = λi) = φij. (4.6)

Suppose that this economy is in state i at time t.
Then, from (4.3) and (4.6), the price of the risk-free
asset is

pt = p(i) = δ
n∑
j=1

φijλ−αj ,

and the return to the risk-free asset held from period
t to period t + 1 is

rt+1 = r (i) = 1/p(i) − 1.
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From (4.4) the share price qt is proportional to output
yt . Hence for xt = λi, express the share price as qt =
wiyt . Substituting in (4.5),

wi = δ
n∑
j=1

φijλ−αj (fλj +wjλj)

= δ
n∑
j=1

φijλ
(1−α)
j (f +wj) (i = 1, . . . , n).

Solving this system of n linear equations for (w1, . . . ,
wn) yields the share prices wiyt . If xt−1 = λi and
xt = λj , then the net return to equity holding from
period t − 1 to period t is

st = s(i,j)

= qt + fyt − qt−1

qt−1

= wjyt + fyt−1λj −wiyt−1

wiyt−1

= λj(wj + f)
wi

− 1.

Mehra and Prescott (1985) take up the case n = 2
and impose the restriction φ11 = φ22 = φ. They
choose λ1 = 1.054, λ2 = 0.982, andφ = 0.43 to match
the mean, standard deviation, and first-order autocor-
relation in the annual growth rate of per capita U.S.
real consumption between 1889 and 1978. They then
examine whether there are values of α less than 10
and any values of δ ∈ (0,1) that are consistent with
the observed average annual real returns of 0.0080
for short-term relatively risk-free assets and 0.0698
for the Standard & Poor’s Composite Stock Price Index
over the same period. Their conclusion is negative.
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Rietz (1988) uses the same model but adds a third
state for output growth (n = 3). The third state occurs
with low probability, the growth rate in this state is
quite negative, and return to one of the two normal
growth states occurs with certainty in the next period.
Rietz concludes that this model is consistent with the
observed average returns to risk-free assets and the
Stock Price Index, for some combinations of the pa-
rameter values: for example, α in the range of 5–7, δ
above 0.98, and a probability of about 0.1% of a growth
rate in which half of output is lost.

4.1.3 The Labadie and Tsionas Models

Labadie (1989) takes

logxt = β0 + β1 logxt−1 + εt, εt
i.i.d.∼ N(0, σ2).

Tsionas (2005) generalizes this to

logxt = β0 + β1 logxt−1 +ω1/2
t εt,

εt
i.i.d.∼ N(0,1), ωt

i.i.d.∼ pω(·),
with {ωt} and {εt} mutually independent. The risk-
free asset price follows from (4.3):

pt = δEt(x−αt+1)

= δ exp[−α(β0 + β1 logxt)]Et[exp(−αω1/2
t+1εT+1)]

= δ exp(−αβ0)x
−αβ1
t Et(α2ωt+1/2)

= δ exp(−αβ0)x
−αβ1
t M(α2/2),

where M(·) denotes the moment-generating function
of ω, M(t) = E[exp(ωt)]. The net return on holding
the risk-free asset is thus

rt = exp(αβ0)x
αβ1
t /δM(α2/2)− 1. (4.7)
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Direct substitution in (4.4) leads to

qt/fyt =
∞∑
s=1

csmsx
αs
t , (4.8)

with

αs =
ρβ1(1− βs1)

1− β1
,

cs = exp
[
ρsβ0

1− β1
− ρβ0β1(1− βs1)

(1− β1)2

]
,

ms = δs
s∏
j=1

M
[ρ2(1− βj1)2

2(1− β1)2

]
,

where ρ = 1 − α. The expression (4.8) converges,
and equilibrium with finite equity prices exists, if and
only if M[ρ2/2(1− β2

1)] < δ−1. Defining the left-hand
side of (4.8) to be ht , the return to equity is then
st = xt(ht + 1)/ht−1 − 1.

Tsionas (2005) thus extends Labadie (1989) by per-
mitting the growth shock to be a scale mixture of nor-
mals. The best-known scale mixture of normals is the
Student-t distribution, corresponding to an inverted
gamma mixing distribution pω(·). However, the in-
verted gamma distribution has no moment-generating
function: the implicit integral on the left-hand side
of (4.7) diverges, and there is no equilibrium with fi-
nite asset prices (Geweke 2001). An attractive flex-
ible family of symmetric distributions is the finite
scale mixture of normals, for which the moment-
generating function is trivial and always exists. A dis-
tribution in this family has n components, with com-
ponent i assigned probability pi. Conditional on com-
ponent i, ωt = ω(i) (i = 1, . . . , n). Thus, the p.d.f. of
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ut =ω1/2
t εt is

p(ut) = (2π)−1/2
n∑
i=1

piω
−1/2
(i) exp(−u2

t /2ω(i)).

To extend Labadie’s model in much the same way that
Rietz extended Mehra and Prescott’s, let n = 2, let i =
1 denote the “normal” state, let i = 2 denote the “high-
variance” state, and refer to the resulting specification
as the Tsionas model.

The Labadie and Tsionas models can be calibrated
in the same way as the Mehra–Prescott and Rietz
models. In the Labadie model choose β0, β1, and σ2

to match the same three moments used by Mehra
and Prescott: the mean, the standard deviation, and
the first-order autocorrelation coefficient of U.S. con-
sumption growth for 1889–1978. Do the same thing
for the Tsionas model, but instead substituteω(1) for
σ2. To parallel the treatment of Rietz, let p1 = 0.99
and p2 = 0.01 in the Tsionas model.

4.2 Strong Econometric Interpretation

Under the strong econometric interpretation a DSGE
model provides a predictive distribution for an observ-
able sequence of quantities and/or prices y. Given the
parameter values, p(y | θA,A) is the ex ante, predic-
tive distribution for the observables y. Then, letting
yo denote the observed value of y, L(θA;yo,A) =
p(yo | θA,A) is the likelihood function ex post. To
provide such a predictive distribution the model must
specify values of the parameters θA, or indicate a rea-
sonable range for parameter values and a distribution
over that range, not just a distribution conditional on
an unknown parameter vector θA. Many studies that
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Figure 4.1. Annual combinations of (a) the risk-free rate
and the equity premium and (b) the risk-free rate and the
consumption growth rate, 1889–1978.

construct and calibrate DSGE models provide this sort
of information about parameter values, at least infor-
mally, by means of reference to values in the literature
and through their choice of calibrated values used in
simulations.

In the Mehra–Prescott and Rietz variants of the DSGE
equity premium models, the number of states is fi-
nite. Given n states, there can be at most n2 differ-
ent observable combinations of consumption growth
and asset returns. This property obviously does not
characterize the data in any literal way. Formally, the
likelihood function is zero for all parameter values in
these models, which would therefore be rejected by
conventional econometric specification tests. In fact,
the observed combinations of the risk-free rate and
the equity premium have a very dispersed support, as
illustrated in figure 4.1(a).

Similar problems with respect to the support of the
distribution of observables arise in the Labadie and
Tsionas variants of the model. Corresponding to any
growth rate there is exactly one risk-free return (4.7),
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and to any two successive growth rates, one risky re-
turn based on (4.8). Thus, for example, these models
imply that

min
(b0,b1,b2)

T∑
t=1

(rt − b0 − b1x
b2
t )

2 = 0. (4.9)

Because this condition is violated in the data, likeli-
hood-based specification tests will reject the model.
The observed combinations of growth rates and risk-
free rates, displayed in figure 4.1(b), do not even
suggest a relationship like (4.9).

The restriction of observables to a degenerate space
of lower dimension is a well-documented failure of
most DSGE models. Watson (1993), for example, has
illustrated that the reduction in dimension is not even
approximately true as a characterization of the data
in the one-sector neoclassical model of King et al.
(1988). The problem derives from the small number
of shocks—often just one, as is the case here—and the
larger number of observables. Smith (1993) presents a
simple real business cycle model with two shocks and
two observables, and employs a formal, likelihood-
based approach to make inferences about parameter
values. Since observables are not restricted to a space
of lower dimension, his model is not trivially rejected
under the strong econometric interpretation. The dif-
ficulty lies not in the economics of dynamic general
equilibrium, but in developing these models to the
point of accommodating a sufficiently large number
of shocks in a credible way. A strong econometric in-
terpretation of DSGE models requires an explicit ac-
counting for the dimensions of variation observed in
the data, which are not accounted for in the model.
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4.3 Weak Econometric Interpretation

Most macroeconomists who work with DSGE mod-
els eschew the strong econometric interpretation. For
example, Mehra and Prescott (1985), in constructing
their model of consumption growth, the risk-free re-
turn, and the equity premium, plainly state that the
model is intended to explain the first moments in re-
turns but not the second moments. That is, the model
purports to account for sample average values of the
risk-free return and the equity premium, but not for
the volatility in returns (Mehra and Prescott 1985,
p. 146). Kydland and Prescott (1996, p. 69) also empha-
size that the model economy is intended to “mimic the
world along a carefully specified set of dimensions.”

To begin the process of formalizing this interpre-
tation of DSGE models, let z = f(y) denote the di-
mensions of the model that are intended to mimic the
real world. In the DSGE literature such dimensions are
typically sample moments: means, variances, autocor-
relations, and the like. The weak econometric interpre-
tation of a DSGE model is that the model provides a
predictive distribution for the functions z = f(y) of
the observable, finite sequences of quantities and/or
pricesy. This section argues that this is the interpreta-
tion most frequently given to DSGE models by macroe-
conomists, including Kydland and Prescott (1996), and
that it is in fact a special case of prior predictive
analysis, described in section 2.4.1 and articulated
at least as early as Box (1980). While applications of
DSGE models sometimes resort to ad hoc comparison
of predictive distributions with observed behavior,
careful investigators, including Kydland and Prescott
(1996), use the weak econometric interpretation of
DSGE models presented here. This section illustrates
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this interpretation in the context of the equity pre-
mium model introduced in section 4.1. Finally, this
section shows that this implementation of the weak
econometric interpretation in fact makes the same
assumptions as the strong econometric interpretation.

4.3.1 Formalizing the Weak Econometric
Interpretation

Given a complete, probabilistic specification of the
model, p(z | θA,A) is implied by p(y | θA,A) and
z = f(y). Hence there is a predictive density

p(z | A) =
∫
ΘA
p(θA | A)p(z | θA,A)dθA

for z. Thus, from a formal econometric perspective,
the dimensions of the model that are intended to
mimic the real world are the functions of interest
introduced in section 2.4.1.

In the DSGE literature, this predictive density is typi-
cally investigated by means of simulation. Often, θA is
fixed, or a few different values of θA are considered to
allow for uncertainty about θA. These are simply par-
ticular forms of the prior density p(θA | A). Formally,
the simulations in this literature take the form

θ(m)A ∼ p(θA | A),
y(m) ∼ p(y | θ(m)A ,A),

z(m) = f(y(m))
for m = 1, . . . ,M . As discussed in section 3.2, the
pseudorandom vectors z(m) characterize the predic-
tive distribution of the model and can be compared
with the observed value, zo.

Kydland and Prescott (1996, p. 70) are quite clear
about this process:
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If the model has aggregate uncertainty … then the
model will imply a process governing the ran-
dom evolution of the economy. In the case of un-
certainty, the computer can generate any num-
ber of independent realizations of the equilibrium
stochastic process, and these relations, along with
statistical estimation theory, are then used to mea-
sure the sampling distribution of any desired set
of statistics of the model economy.

And again (Kydland and Prescott 1996, pp. 75–76):

If the model economy has aggregate uncertainty,
first a set of statistics that summarize relevant as-
pects of the behavior of the actual economy is se-
lected. Then the computational experiment is used
to generate many independent realizations of the
equilibrium process for the model economy. In
this way, the sampling distribution of this set of
statistics can be determined to any degree of ac-
curacy for the model economy and compared with
the values of the set of statistics for the actual
economy. In comparing the sampling distribution
of a statistic for the model economy to the value
of that statistic for the actual data, it is crucial that
the same statistic be computed for the model and
the real world. If, for example, the statistic for the
real world is for a 50-year period, then the statistic
for the model economy must also be for a 50-year
period.

A formal Bayesian approach conditions on zo: the
observed dimensions of the real world the model is
intended to address. Given two competing models, A
and B, the posterior odds ratio is then

p(A | zo)
p(B | zo) =

p(A)p(zo | A)
p(B)p(zo | B) .
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For the purposes of model evaluation and compari-
son, therefore, it is the predictive density of z at the
observed value zo that matters. This has long been rec-
ognized in the Bayesian model evaluation literature, as
discussed in section 2.4.1. Lancaster (2004, p. 81) has
noted that calibration as conventionally practiced is a
special case of prior predictive analysis.

If the order of the vector z is not too large, then
numerical approximation of p(zo | A) is straight-
forward and much simpler than numerical approx-
imation of the full marginal likelihoods would be
under the strong econometric interpretation of the
DSGE model. The latter requires backward simula-
tion, for example by means of a Markov chain Monte
Carlo algorithm. The former only requires the z(m)
produced through the forward simulations reported
in the DSGE literature. Conventional smoothing pro-
cedures like kernel density methods will provide a
numerical approximation to p(zo | A):

p(zo | A) � M−1
M∑
m=1

K(z(m);zo),

where the kernel smoother K(z;zo) is a nonnega-
tive function of z that is concentrated near zo and
integrates to one.

4.3.2 Illustration in the Equity Premium Model

The Mehra–Prescott and Labadie models completely
specify the distribution of growth. The Rietz and Tsi-
onas models each specify the distribution of growth
up to a single, unknown parameter: λ3, growth in
the event of a crash, and ω(2), the high variance,
respectively. For the Rietz model, adopt the prior
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Table 4.1. Deciles of prior distributions.

Decile λ3 ω(2) α δ

0.1 0.185 0.332 0.281 0.840
0.2 0.277 0.491 0.499 0.907
0.3 0.358 0.677 0.756 0.939
0.4 0.434 0.917 1.077 0.958
0.5 0.509 1.26 1.500 0.970
0.6 0.583 1.77 2.089 0.979
0.7 0.659 2.68 2.978 0.986
0.8 0.738 4.61 4.509 0.991
0.9 0.826 11.12 8.016 0.995

distribution

log[λ3/(1− λ3)] ∼ N(0.036,1.1852);

and for the Tsionas model, use

1.33/ω(2) ∼ χ2(1.66).

Deciles for both distributions are given in table 4.1.
The distribution of λ3 is centered at λ3 = 0.509, halv-
ing of expected output, which is the intermediate of
the three examples taken up in Rietz (1988). The dis-
tribution ofω(2) centers the standard deviation in the
high-variance state about 1.26, implying that in this
state output is about as likely to be between one-third
and triple its normal value as it is to be outside this
range.

All other parameters in the models pertain to the
consumption growth process. In the exercises report-
ed here these parameters were held fixed at their cal-
ibrated values, which are chosen to reproduce the
mean, standard deviation, and first-order autocorre-
lation of the consumption growth rate. Modifying the
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analysis by introducing prior distributions for these
parameters increases the technical complexity of the
exercise, because the dimension of the predictive dis-
tribution is increased from two to five, but should have
little effect on the final results.

None of the models fix the relative risk aversion pa-
rameter α or the subjective rate of discount δ. This
analysis employs priors that should provide substan-
tial probabilities over the ranges most economists
would regard as plausible. For α, take

logα ∼ N(0.4055,1.30772),

and for δ,

log[δ/(1− δ)] ∼ N(3.476,1.4182).

Deciles for these prior distributions are also shown
in table 4.1. The prior distribution for α is centered
at α = 1.5, and a centered 80% prior credible interval
for α is (0.281,8.016). The prior distribution for δ is
centered at 0.97, and a centered 80% prior credible
interval is (0.840,0.995).

These prior distributions, together with the data
densities described in section 4.1, provide predictive
densities for all four models. For each model, draws
from predictive densities for output growth rate and
asset returns can be made by

(1) drawing from the prior distributions of the un-
known parameters;

(2) conditional on the drawn parameters, generating
a sample of ninety successive years of growth
rates from the probability density for {xt}; and

(3) solving for the risk-free and risky returns in each
year as indicated in section 4.1.
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Figure 4.2. Predictive distributions for the risk-free rate
and the equity premium under the weak econometric in-
terpretation. (a) The Mehra–Prescott model. (b) The Rietz
model.

Draws from the predictive density for any function of
output growth rate and asset returns are then just
the corresponding functions of this generated, syn-
thetic sample. For example, to draw from the pre-
dictive density for ninety-year means of the risk-free
rate and the equity premium, following step (3) just
construct these functions and record them. Notice
that the predictive density for the mean risk-free rate
and the mean equity premium accounts for both un-
certainty about parameter values (by means of the
draws from the prior) and sampling variation due to
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Figure 4.2. (Continued.) (c) The Labadie
model. (d) The Tsionas model.

ninety-year averaging (by means of the ninety-year
simulation).

Figure 4.2 shows the predictive distributions for
ninety-year averages of the risk-free return and the
equity premium, as represented by 1,000 points z̃(m)
drawn from p(z | A) for each model. In each panel, the
vertical line indicates the observed value of 0.008 for
the risk-free rate and the horizontal line indicates the
observed value of 0.0618 for the equity premium. The
supports of the Rietz and Tsionas model predictive
distributions include the observed values, but those
of the Mehra–Prescott and Labadie model predictive
densities do not. This corroborates the failure of the
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latter two models to explain the equity premium puz-
zle in the weak econometric DSGE literature, and the
ability of the Rietz and Tsionas models to account for
the observed means.

High values of the risk-free rate correspond to low
values of δ. Negative values of the risk-free rate and
high equity premia in the Rietz and Tsionas mod-
els typically reflect high risk aversion in conjunction
with a low probability of very negative growth rates.
The values of the risk-free rate and the equity pre-
mium in the Rietz and Tsionas models close to the
historical averages typically correspond to situations
in which very negative growth rates were possible
but did not occur during the simulated ninety-year
history.

Table 4.2 provides approximations of the log prior
predictive density, log[p(zo | A)], of each of the
four models under the weak econometric interpreta-
tion. An independent symmetric bivariate Gaussian
density kernel was centered at the observed sample
mean for the risk-free return and the equity premium,
and points were drawn from the predictive density
p(z | A). Various standard deviations were used as
indicated in the left-hand column of table 4.2. As one
moves down the rows, approximations show greater
bias (because they include values of z(m) farther from
the data point) but less variance (because more points
are given weight). Asymptotic standard errors for the
kernel density approximations are indicated paren-
thetically. Table 4.2 shows that the prior predictive
densities of the Mehra–Prescott and Labadie models
are zero at the observed value zo. The Tsionas model
is favored over the Rietz model, the Bayes factor being
about 3:1.
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Table 4.2. Weak econometric interpretation:
Relative log marginal likelihoods.

Gaussian Model (random draws)
smoothing ︷ ︸︸ ︷

kernel Mehra–
standard Prescott Rietz Labadie Tsionas
deviation (108) (108) (106) (106)

0.0001 −∞ 1.512 −∞ 3.04
(0.011) (0.76)

0.0003 −∞ 1.887 −∞ 2.90
(0.036) (0.21)

0.0010 −114 1.902 −455 3.07
(0.011) (0.06)

0.0030 −19.03 1.9228 −53.72 3.01
(0.39) (0.0036) (0.68) (0.02)

0.0100 −3.0153 2.1558 −2.894 3.086
(0.0006) (0.0009) (0.004) (0.006)

The numerical standard error of the kernel approximation is indicated
parenthetically for table entries.

4.3.3 Difficulties with the Weak Econometric
Interpretation

As the DSGE literature emphasizes, all models are ap-
proximations of reality, and it is important to clarify
which aspects of reality a model is intended to mimic.
In the strong econometric interpretation of a model,
this limited scope is recognized in the choice of the
random vector y. If, subsequently, attention is shifted
to only a subset of the original variables, there are
no conceptual difficulties: one simply works with the
marginal distributions of the included variables.

The dimensions of reality addressed by DSGE mod-
els entail a limitation in scope of a different kind.
For example, the equity premium models are intended
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to explain sample means of the risk-free return and
the equity premium, but no other aspects of these re-
turns. This is not possible: if the model accounts for
(T + 1)-year averages as well as T -year averages, then
the model also has implications for the year-to-year
returns.

More significantly, the DSGE calibration literature
takes the short-run dynamics of these models liter-
ally, in establishing the sampling distribution of the
set of statistics z that summarize the relevant aspects
of the behavior of the actual economy. This fact is em-
phasized in Kydland and Prescott (1996). It is made
quite clear in careful calibration studies: see, for exam-
ple, Gregory and Smith (1991, p. 298) and Christiano
and Eichenbaum (1992, pp. 436, 439). Bayesian prior
predictive analysis of a complete model also incorpo-
rates all of the dynamics of the model, and the use of
the sampling distribution of z in the DSGE calibration
literature is equivalent to such an analysis.

There is an important distinction in context between
the DSGE calibration literature and a prior predictive
analysis, however. The latter treats the model as de-
scriptive of the entire distribution of z. The former re-
gards the model as predictive for the first moment but
for no other aspects of z. The sampling distribution
of the statistic z is often a function of profoundly un-
realistic aspects of DSGE models, aspects that lie out-
side the dimensions of reality that the models were in-
tended to mimic. For example, in the equity premium
models, the sampling distribution of average asset re-
turns over the ninety-year period are closely related to
the variances of these returns, through the usual arith-
metic for the standard deviation of a sample mean. In
establishing the sampling distribution of these means
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through repeated simulation of the model, one is tak-
ing literally the second moments of returns inherent
in the model. These are precisely the dimensions the
original model was not intended to capture (Mehra
and Prescott 1985, p. 146), and the models are unre-
alistic in these dimensions. For example, the sample
standard deviation of the equity premium is 0.164 in
the 1889–1979 data, whereas at prior median values
the standard deviation is 0.055 in the Mehra–Prescott
model and 0.258 in the Rietz model.

The weak econometric interpretation of DSGE mod-
els leads to formal methods for model comparison
that are easy to implement and have an unambiguous
interpretation. As a by-product, there are some inter-
esting and useful visual displays. But the assumptions
that underlie the weak econometric interpretation are
in fact the same as those made in the strong economet-
ric interpretation: the model is assumed to account
for all aspects of the observed sequence of quantities
and/or prices.

4.4 Minimal Econometric Interpretation

The logical problems encountered in the proposition
that DSGE models account for only a few sample mo-
ments of observed sequences of quantities and prices
prevents the development of this notion into coherent
methods of inference about these models. To broaden
the proposition to assert that DSGE models in fact pro-
vide likelihood functions leads to outright dismissal of
many of these models. This section considers a more
modest claim for DSGE models, also studied by De-
Jong et al. (1996): that they account only for popu-
lation moments of specified, observable functions of
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sequences of prices and/or quantities. A DSGE model,
A, with a given parameter vector θA implies popula-
tion momentsm = E(z | θA,A), where z = f(y) is the
same vector of sample moments considered under the
weak econometric interpretation. IfA is endowed with
a prior distributionp(θA | A), thenA provides a distri-
bution form as well. But the modelA does not provide
a distribution for y or z, and is therefore incomplete.

By not claiming to predict sample moments, the min-
imal econometric interpretation avoids the logical pit-
fall that carrying out inference based on the model’s
predictive distribution for these moments inevitably
leads back to a conventional likelihood function. What
is given up in this retreat is that the DSGE model, by it-
self, now has no implications for anything that might
be observed—no one will ever see a population mo-
ment. To endow such a model with empirical content
it is necessary to posit, separately, a link between the
population moments m and the observable sequence
of prices and/or quantitiesy. DeJong et al. (1996) also
noted the need for such a link. This section shows how
to do this formally, and provides some examples of the
procedure. The result is an integration of atheoretical
econometric models with DSGE models.

4.4.1 Formal Development

Let A and B denote two alternative DSGE models, each
describing the same vector of population moments
m by means of the respective densities p(m | A)
and p(m | B). The densities could be degenerate at
a point but in general are not because of subjective
uncertainty about parameter values in both models.

Introduce a third econometric model E that spec-
ifies a conditional distribution of observables p(y |
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θE,m, E) together with a proper conditional prior dis-
tribution p(θE |m, E). Model E is incomplete because
it provides no prior distributionp(m | E): in this sense
it may be said to be atheoretical. The prior distribution
form is provided either by model A through p(m | A)
or by model B through p(m | B). Thus we have the
following condition.

Condition 4.1. Conditional on the DSGE model A and
the econometric model E,

p(m,θE,y | A,E)
= p(m | A) · p(θE |m, E) · p(y | θE,m, E).

Conditional on the DSGE model B and the econometric
model E,

p(m,θE,y | B, E)
= p(m | B) · p(θE |m, E) · p(y | θE,m, E).

The sole function of the DSGE model is to provide a
prior distribution for m.

Proposition 4.2. Given condition 4.1,

p(y |m, A, E)

=
∫
p(m,θE,y | A,E)dθE

p(m | A,E)

=
∫
p(m | A)p(θE |m, E)p(y | θE,m, E)dθE

p(m | A)
=
∫
p(θE |m, E)p(y | θE,m, E)dθE

= p(y |m, E),
and p(y |m, B, E) = p(y |m, E) as well.

Condition 4.1 and proposition 4.2 lead to the follow-
ing result.
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Proposition 4.3. Given condition 4.1,

p(A | yo, E)
p(B | yo, E) =

p(A | E)p(yo | A,E)
p(B | E)p(yo | B, E)

= p(A | E)
∫
p(m | A)p(yo |m, E)dm

p(B | E)
∫
p(m | B)p(yo |m, E)dm

.

(4.10)

The evidence about models A and B, in the context
of the econometric model E, is in the convolutions∫

p(m | A)p(yo |m, E)dm,∫
p(m | B)p(yo |m, E)dm,

⎫⎪⎪⎬⎪⎪⎭ (4.11)

whose ratio in (4.10) is the Bayes factor in favor of
model A. Loosely speaking, if p(yo | m, E) overlaps
more with p(m | A) than with p(m | B), the Bayes
factor favors model A. This looser interpretation un-
derlies the confidence interval criterion proposed in
DeJong et al. (1996), for univariate m. The odds ra-
tio (4.10) provides an exact interpretation, which also
extends to multivariate m.

The expression∫
p(m | A)p(yo |m, E)dm

in (4.11) is the convolution of two densities, the first
of which is the density for m implied by the DSGE
model, A. It can be accessed by means of the con-
ventional simulations used in the calibration litera-
ture: if θ(r)A is a random sample from p(θA | A), then
m(r)
A = m(θ(r)A ) is a random sample from p(m | A);

similarly for p(m | B).
To access p(yo |m, E), the second density in (4.11),

define the auxiliary model E∗ with the improper prior
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density p(m | E∗) ∝ constant, p(θE | m, E∗) =
p(θE |m, E), and p(y | θE,m, E) = p(y | θE,m, E∗).
Then

p(m | yo, E∗)

∝
∫
p(m | E∗)p(θE |m, E∗)p(yo | θE,m, E∗)dθE

∝
∫
p(θE |m, E)p(yo | θE,m, E)dθE

= p(yo |m, E). (4.12)

A posterior simulator for yo and the auxiliary model
E∗ provides a sample m(s)

E∗ whose density kernel is
p(yo |m, E).

Thus, from (4.10),

p(A | yo, E)
p(B | yo, E) =

p(A | E)
∫
p(m | A)p(m | yo, E∗)dm

p(B | E)
∫
p(m | B)p(m | yo, E∗)dm

.

Models A and B can be compared on the basis of three
simulations of the moment vector m:

m(r)
A (r = 1, . . . , NA) drawn from p(m | A),

m(r)
B (r = 1, . . . , NB) drawn from p(m | B),

m(s)
E∗ (s = 1, . . . , NE∗) drawn from p(m | yo, E∗).

Informal comparison can be based on a visual inspec-
tion of the clouds of points from these three models.
A more formal comparison can be made by means of
the kernel density approximation,

p(A | yo, E)

∝ p(A | E)(NANE∗)−1
NA∑
r=1

NE∗∑
s=1

K(m(r)
A ,m(s)

E∗ ), (4.13)

and similarly for p(B | yo, E).
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Table 4.3. Posterior moments in the vector
autoregression (parameters defined in (4.14)).

Standard
Parameter Mean deviation

m1 0.0088 0.0106
m2 0.0591 0.0227
f11 0.4362 0.0907
f12 −0.0972 0.0303
f21 −0.0065 0.3143
f22 0.2003 0.1077
σ11 0.0022 0.0003
σ22 0.0268 0.0041
σ12 −0.0009 0.0008

4.4.2 Illustration in the Equity Premium Model

In the equity premium example the vector m consists
of the population means for the risk-free rate and the
equity premium. Perhaps the simplest econometric
model E with implications for m is a first-order Gaus-
sian bivariate autoregression for the risk-free rate and
equity premium, with stationarity imposed:

yt −m = F(yt−1 −m)+ εt (t = 1879, . . . ,1978),

where the 2× 1 vector yt consists of the observed
risk-free rate rt and the equity premium et in the
indicated year, and εt

i.i.d.∼ N(0, Σ).
Draws ofm from the posterior distribution were ob-

tained using a Metropolis within Gibbs posterior sim-
ulation algorithm. An improper prior for (m,F,Σ),
flat subject to the stationarity condition on F, was
employed. This prior satisfies the conditions for the
model E∗ discussed above. Some posterior moments
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for the parameters of the model(
rt −m1

et −m2

)
=
[
f11 f12

f21 f22

](
rt−1 −m1

et−1 −m2

)
+
(
ε1t
ε2t

)
,(

ε1t
ε2t

)
i.i.d.∼ N

((
0
0

)
,
[
σ11 σ12

σ12 σ22

])
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(4.14)
are indicated in table 4.3. There is modest autocorrela-
tion in the risk-free rate (about 0.4), less in the equity
premium (about 0.2), and very little cross-correlation
between the two time series. The innovation variance
in the equity premium exceeds that of the risk-free
rate by a factor of more than 10. The implied stan-
dard deviation for the equity premium is over 0.16,
and that for the risk-free rate is over 0.05.

The posterior distribution of m is indicated by the
crosses in each panel of figure 4.3. The range of val-
ues well within the support of the posterior distribu-
tion extends far beyond the observed sample means,
indicated by the horizontal and vertical lines in each
panel. A centered 90% posterior credible interval for
the mean of the risk-free rate extends from −0.9% to
2.6%. For the equity premium the range is much larger:
from 2.2% to 9.7%. Even with ninety years of data, there
is great uncertainty about the population mean of the
equity premium. This uncertainty is due to the great
variance in the equity premium from year to year. It
is not due to drift: there has been no tendency for the
equity premium to rise or fall secularly (Mehra and
Prescott 1985, table 1), and the autocorrelation in the
simple model used here is only 0.2.

The dots in each panel of figure 4.3 represent the
p.d.f. p(m | A) for the indicated model A. For each
model, parameters were drawn from the same prior
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Figure 4.3. Distributions under the minimal economet-
ric interpretation. Pluses represent the posterior distribu-
tion in the econometric model E∗. (a) The Mehra–Prescott
model. (b) The Rietz model.

distributions used in the weak econometric interpre-
tation. (These priors are summarized in table 4.1.) The
corresponding population moments were then com-
puted. For the Mehra–Prescott and Rietz models there
are closed-form expressions for these moments. For
the Labadie and Tsionas models, a simulation of 1,000
periods was made corresponding to each set of pa-
rameter values drawn from the prior. A second anti-
thetic simulation (i.e., shocks with signs reversed) was
then made. The mean of the risk-free rate and the
equity premium averaged over the two 1,000-period
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Figure 4.3. (Continued.) (c) The Labadie
model. (d) The Tsionas model.

simulations was then used in lieu of the population
mean.

Comparisons of the panels in figure 4.2 with the cor-
responding ones in figure 4.3 reveal similar patterns.
But the distributions in figure 4.2 are more diffuse,
relative to those in the latter figures, which are more
neatly demarcated and somewhat more compact. The
difference reflects the sampling variation in ninety-
year averages, which is present in figure 4.2 but not
in figure 4.3.

In the minimal econometric interpretation, a model
receives support to the extent that the posterior den-
sity p(m | yo, E∗), represented by the crosses in
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figure 4.3, overlaps with the prior density p(m | A),
represented by the dots, in a manner that is made
explicit in expression (4.12). Because the posterior
density p(m | yo, E) is so diffuse, there is substan-
tial overlap between p(m | yo, E∗) and p(m | A)
for each of the four alternative models A. This is
true even of the Mehra–Prescott and Labadie models,
which received no support under the weak economet-
ric interpretation. The weak econometric interpreta-
tion takes literally the unrealistically small variance in
the risk-free return and the equity premium implied
by these two models and concludes that they can-
not account for the observed averages. The minimal
econometric interpretation utilizes the much greater
sampling variation implied by the bivariate autore-
gression, and interprets the historical evidence about
population moments as being much weaker. This find-
ing underscores the point made forcefully by Eichen-
baum (1991, p. 611) that assuming that the popula-
tion moment is equal to the sample moment can be
treacherous.

Formal approximation using (4.13) supports these
informal findings: see table 4.4, which uses some of
the same Gaussian kernels employed in table 4.2. The
ordering by Bayes factors is Tsionas model over Rietz
model over Labadie model over Mehra–Prescott model,
with the ratios being roughly 5:2:1:0.55. These con-
clusions are robust over the bandwidths indicated in
table 4.4.

4.5 Implications for Structural Modeling

This chapter examined three distinct interpretations
of the implications of a structural model for observed
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Table 4.4. Minimal econometric interpretation:
Relative log marginal likelihoods.

Gaussian
smoothing Model

kernel ︷ ︸︸ ︷
standard Mehra–
deviation Prescott Rietz Labadie Mixture

0.001 1.548 2.825 2.141 3.709
(0.007) (0.016) (0.006) (0.008)

0.003 1.699 2.837 2.053 3.696
(0.005) (0.011) (0.005) (0.008)

0.010 1.842 2.928 2.144 3.629
(0.005) (0.008) (0.005) (0.007)

Note: approximations use (4.13) with NA = 106, N∗E = 105. The numerical
standard error of the kernel approximation is indicated parenthetically for
table entries.

behavior. Since these models imply distributions for
the paths of prices and quantities, a straightforward,
likelihood-based approach—termed the strong econo-
metric interpretation in this chapter—is perhaps the
most obvious. Many DSGE models fail under this in-
terpretation because they predict exact relations that
are not found in the data.

A widespread interpretation of DSGE models in the
macroeconomics literature is that they are intended
only to mimic the world along a carefully specified
set of dimensions. This interpretation is sometimes re-
duced to a list of sample moments, on the one hand,
and a list of corresponding moments of the model’s
predictive distribution, on the other. Careful investi-
gators recognize that some basis for comparison of
these two sets of moments is needed. Kydland and
Prescott (1996) clearly indicate that what is at stake
is whether the sample moments are consistent with
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the predictive distribution of the model for those
moments. This inherently Bayesian approach—termed
the weak econometric interpretation in this chapter,
and equivalent to a prior predictive analysis—takes
the period-to-period dynamics of the models literally
in comparing sample moments with the distribution
of these sample moments implied by the DSGE model.
While it confines itself to just a few dimensions of the
data, in accounting for sampling variation it makes the
same assumptions as the strong econometric interpre-
tation does. It is therefore subject to the same crit-
icism: that those assumptions are inconsistent with
what is observed.

To isolate the idea that DSGE models explain only
certain dimensions of the data, in a way that does not
run afoul of the literal incredibility of these models,
this chapter examined the implications of the claim
that DSGE models predict only certain specified pop-
ulation moments of observable data. Since population
moments are never observed, a link between popu-
lation and sample moments must be forged if the
DSGE model is to have refutable implications. The
chapter showed that atheoretical econometric mod-
els with no claim to prior information about the pop-
ulation moments in question can perform this func-
tion, with the DSGE model providing the prior dis-
tribution for the dimensions it addresses. Under this
set of assumptions—termed the minimal economet-
ric interpretation—formal model comparison is pos-
sible and is free of the logical problems associated
with the weak econometric interpretation. It leads to
comparison of the prior distribution of the popula-
tion moments that the model is intended to describe
with the posterior distribution of these moments in
the auxiliary econometric model.
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These ideas were illustrated using the “equity pre-
mium puzzle” models of Mehra and Prescott (1985),
Rietz (1988), Labadie (1989), and Tsionas (2005). The
weak econometric interpretation reaffirmed both the
inability of the Mehra–Prescott and Labadie models to
account for the sample average risk-free rate and the
equity premium in the United States, and the ability of
the Rietz and Tsionas models to do so. This reflects the
fact that it is the weak econometric interpretation that
is dominant in the DSGE literature of macroeconomics.
This application provided a rich graphical interpreta-
tion of these models as well as Bayes factors for the
comparison of models.

The minimal econometric interpretation of the same
models greatly changed the nature of the findings,
and underscores that point that the methodological
issues raised in this chapter have substantive implica-
tions for macroeconomics. The most important find-
ing was that information about the population mean
of the equity premium is limited due to its large year-
to-year fluctuations. The posterior distribution for the
mean of the risk-free rate and the equity premium
supports values consistent with the original Mehra–
Prescott model, the other models considered in this
chapter, and perhaps with many other DSGE mod-
els designed to address this question as well. In the
context of the minimal econometric interpretation of
these models there is no evidence of an equity pre-
mium puzzle in the canonical U.S. data set used to
study this question.



5
An Incomplete Model Space

The formal solutions of most decision problems in
economics, in the private and public sectors as well
as in academic contexts, require probability distribu-
tions for magnitudes that are as yet unknown. Point
forecasts are rarely sufficient. For econometric inves-
tigators whose work may be used by clients in differ-
ent situations the rationale for producing predictive
distributions is clear.

Increasing awareness of these requirements, com-
bined with advances in modeling and computing, is
leading to a sustained emphasis on these distributions
in econometric research (Diebold et al. 1998; Christof-
fersen 1998; Corradi and Swanson 2006a,b; Gneiting
et al. 2007). In many situations several models with
predictive distributions are available, and this natu-
rally leads to questions of model choice or combi-
nation. While there is a large econometric literature
on choice or combination of point forecasts, dating
at least to Bates and Granger (1969) and extending
through many subsequent contributions reviewed re-
cently by Timmermann (2006), the treatment of pre-
dictive density combination in the econometrics lit-
erature is much more limited. Granger et al. (1989)
and Clements (2006) attacked the related problems of
event and quantile forecast combination, respectively.
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Wallis (2005) was perhaps the first econometrician to
take up combinations of predictive densities explic-
itly. Hall and Mitchell (2007) developed the closest
precursor of the approach taken here.

5.1 Context and Motivation

This chapter considers the situation in which alter-
native models provide predictive distributions for
a vector time series yt given its history Yt−1 =
{y1, . . . ,yt−1}. A prediction model A (for “assump-
tions”) is a construction that produces a probabil-
ity density for yt from the history Yt−1 denoted
p(yt ;Yt−1, A). There are many kinds of prediction
models. Some important examples begin with para-
metric conditional densities p(yt | Yt−1,θA,A). Then,
in a formal Bayesian approach, the predictive density
p(yt ;Yt−1, A) is

p(yt | Yt−1, A)

=
∫
p(yt | Yt−1,θA,A)p(θA | Yt−1, A)dθA, (5.1)

where p(θA | Yt−1, A) is the posterior density

p(θA | Yt−1, A)∝ p(θA | A)
t−1∏
s=1

p(ys | Ys−1,θA,A)

and p(θA | A) is the prior density for θA. A non-
Bayesian approach might construct the parameter
estimates θ̂t−1

A = ft−1(Yt−1) and then

p(yt ;Yt−1, A) = p(yt | Yt−1, θ̂t−1
A ,A). (5.2)

The specific construction of p(yt ;Yt−1, A) is unim-
portant in this chapter: in the extreme, it could be en-
tirely judgmental. What is critical is that it relies only
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on information available at time t − 1 and that it pro-
vides a mathematically complete predictive density
for yt . The primitives are these predictive densities
and the realizations of the time series yt , denoted yot
(“o” for “observed”) in situations where the distinction
between the random vector and its realization is im-
portant. This set of primitives is the one typically used
in the few studies that have addressed these questions
(see, for example, Diebold et al. 1998, p. 879). As Gneit-
ing et al. (2007, p. 244) notes, the assessment of a pre-
dictive distribution on the basis of only p(yt ;Yt−1, A)
and yot is consistent with the prequential principle of
Dawid (1984).

5.1.1 Log Scoring

The assessment of models and combinations of mod-
els considered in this chapter relies on the log pre-
dictive score function. For a sample YT = YoT , the log
predictive score function of a single prediction model
A is

LS(YoT ,A) =
T∑
t=1

logp(yot ;Yot−1, A). (5.3)

In a full Bayesian approach,

p(yt ;Yt−1, A) = p(yt | Yt−1, A)

and (5.3) becomes

LS(YoT ,A) =
T∑
t=1

logp(yot | Yot−1, A) = logp(YoT | A)

= log
∫
p(YoT ,θA | A)dθA.
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In a parametric non-Bayesian approach (5.2) the log
predictive score is

LS(YoT ,A) =
T∑
t=1

logp(yot | Yot−1, θ̂
t−1
A ,A),

which is smaller than the full-sample log-likelihood
function evaluated at the maximum-likelihood esti-
mate θ̂TA.

Some of the analytical results that follow require
that there is a data-generating process D giving rise
to the ergodic vector time series {yt}. That is, there
is a true model D but it is not necessarily one of the
models under consideration. For most D and A,

ED[LS(YT ,A)]

=
∫ [ T∑

t=1

logp(yt ;Yt−1, A)
]
p(YT | D)dYT

exists and is finite. Given the ergodicity of {yt},
T−1 LS(YT ,A)

a.s.−−−→ lim
T→∞

T−1ED[LS(YT ,A)]

= LS∗(A;D). (5.4)

Whenever it is necessary to assume a true model D,
that will mean that (5.4) is true for D and any model
A under consideration.

The log predictive score function is a measure of the
out-of-sample prediction track record of the model.
Other such scoring rules are, of course, possible: mean
square prediction error is perhaps the most familiar.
One could imagine using a scoring rule to evaluate the
predictive densities provided by a modeler. Suppose
that the modeler then produced predictive densities
in such a way as to maximize the expected value of
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the scoring rule, the expectations being taken with re-
spect to the modeler’s subjective probability distribu-
tion. The scoring rule is said to be proper if, in such
a situation, the modeler is led to report a predictive
density that is coherent and consistent with his sub-
jective probabilities. (The term “proper” was coined
by Winkler and Murphy (1968), but the general idea
dates back at least to Brier (1950) and Good (1952).)
If the scoring rule depends on YoT and p(yt ;Yt−1, A)
only through p(yot ;Yot−1, A), then it is said to be local
(Bernardo 1979).

Any other proper local scoring rule must take the
form

g(Yot−1)+ c
T∑
t=1

logp(yot ;Yot−1, A)

with c > 0, a linear transformation of (5.3). This was
shown by de Finetti and Savage (1963) and Shuford
et al. (1966) for the case in which the support of
{yt} is a finite set of at least three discrete points
(for further discussion see Winkler (1969, p. 1,075)).
It was subsequently shown for the case of continu-
ously distributed {yt} by Bernardo (1979) (for further
discussion see Gneiting and Raftery (2007, p. 366)).

This chapter considers alternative prediction mod-
els A1, . . . , An. Propriety of the scoring rule is impor-
tant in this context because it guarantees that if one
of these models were to coincide with the true data-
generating process D, then that model would attain
the maximum score as T →∞.

There is a substantial literature on scoring rules for
discrete outcomes and in particular for Bernoulli ran-
dom variables (DeGroot and Fienberg 1982; Clemen
et al. 1995). However, as noted in the recent review ar-
ticle by Gneiting et al. (2007, p. 364) and in Bremmes
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(2004), the literature on scoring rules for probabilistic
forecasts of continuous variables is sparse.

5.1.2 Linear Pooling

This chapter explores some consequences of using
the log scoring rule (5.3) to evaluate combinations of
probability densities p(yt | Yot−1, Aj) (j = 1, . . . , n).
There are, of course, many ways in which these den-
sities could be combined, or aggregated; see Genest
et al. (1984) for a review and axiomatic approach.
McConway (1981) showed that, under mild regularity
conditions, if the process of combination is to com-
mute with any possible marginalization of the distri-
butions involved, then the combination must be linear.
Moreover, such combinations are trivial to compute,
both absolutely and in comparison with alternatives.
Hence consider predictive densities of the form

n∑
i=1

wip(yt ;Yot−1, Ai), (5.5)

where

n∑
i=1

wi = 1; wi � 0 (i = 1, . . . , n).

The restrictions on the weights wi are necessary and
sufficient to ensure that (5.5) is a density function for
all values of the weights and for all arguments of the
density functions. Evaluate these densities using the
log predictive score function

T∑
t=1

log
[ n∑
i=1

wip(yot ;Yot−1, Ai)
]
. (5.6)
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Stone (1961) coined the term opinion pool to de-
scribe a combination of subjective probability distri-
butions. Linear combinations of these distributions
are known as linear opinion pools (Bacharach 1974).
The term “prediction pools” describes the setting spe-
cific to this chapter. While all models are based on
opinions, only formal statistical models are capable
of producing the complete predictive densities that,
together with the data, constitute the primitives of
the prediction pool. The appropriate choice of weights
in (5.5) is widely regarded as a difficult and impor-
tant question. This chapter uses the past performance
of the pool to select the weights; in the language of
Jacobs (1995), the past constitutes the training sam-
ple for the present. Sections 5.3 and 5.5 show that
this is easy to do. This chapter compares linear pre-
diction pools using the log scoring rule. An optimal
prediction pool is one with weights chosen so as to
maximize (5.6).

Hall and Mitchell (2007) proposes combining predic-
tive probability densities by finding the nonnegative
weights wi that maximize (5.6). The motivation for
that proposal is asymptotic: as T →∞, the weights so
chosen are those that minimize the Kullback–Leibler
directed distance from an assumed data-generating
process D to the model (5.5). Hall and Mitchell (2007)
shows that direct maximization of (5.6) is more reli-
able than some other methods, involving probability
integral transforms, that have been proposed in the
literature. The focus of this chapter is complementary
and more analytical, and the examples that follow pro-
vide a larger-scale implementation of optimal pooling
than does Hall and Mitchell (2007).

The characteristics of optimal prediction pools turn
out to be strikingly different from those that are
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constructed by means of Bayesian model averaging
(described in section 2.2) as well as those that result
from conventional frequentist testing (which is often
problematic since the models are typically nonnested).
Given a data-generating process D that produces er-
godic {yt}, a limiting optimal prediction pool exists,
and unless one of the modelsAj coincides withD, sev-
eral of the weights in this pool are typically positive.
In contrast, the posterior probability of the model Aj
with the smallest Kullback–Leibler directed distance
from D will tend to one and all others will tend to
zero. Any frequentist procedure based on testing will
have a similar property, but with a distance measure
specific to the test.

The contrast is rooted in the fact that for both
Bayesian model averaging and frequentist tests, the
model space is taken to be complete: that is, Aj = D
for some j. For optimal prediction pools, the model
space is incomplete: that is, it is not assumed thatAj =
D for some j, and in general Aj �= D (j = 1, . . . , n).
Section 5.6 shows, by construction, that there exists a
model with a log score exceeding that of the optimally
scored prediction pool. It follows from proposition 5.2
that Aj �= D (j = 1, . . . , n).

This chapter develops the basic ideas for a pool of
two models (section 5.2) and then applies them to
prediction model pools for daily S&P 500 returns for
1972–2005 (section 5.3). It then turns to the general
case of pools of n models and studies how changes
in the composition of the pool change the optimal
weights (section 5.4). Section 5.5 constructs an opti-
mal pool of six alternative prediction models for the
S&P 500 returns. Section 5.6 studies the implications
of optimal prediction pools for the existence of predic-
tions models, as yet undiscovered, that will compare
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favorably with those in the pool as assessed by a log
predictive scoring rule. The final section concludes.

5.2 Pools of Two Models

Consider the case of two competing prediction models
A1 �= A2. From (5.4),

T−1[LS(YT ,A1)− LS(YT ,A2)]
a.s.−−−→ LS∗(A1;D)− LS∗(A2;D).

If A1 corresponds to the data-generating process D,
then in general

LS∗(A1;D)− LS∗(A2;D) = LS∗(D;D)− LS∗(A2;D)
� 0

and the limiting value coincides with the Kullback–
Leibler distance from D to A2. If in addition A1 is
nested in A2, then LS∗(A1;D) − LS∗(A2;D) = 0, but
in most cases of interest LS∗(A1;D) �= LS∗(A2;D) and
so if A1 = D then LS∗(A1;D)− LS∗(A2;D) > 0. These
special cases are interesting and informative, but in
application most econometricians would agree with
the dictum of Box (1980) that all models are false.
Indeed, the more illuminating special case might be
LS∗(A1;D) − LS∗(A2;D) = 0 when neither model Aj
is nested in the other: then both A1 and A2 must be
false.

In general, LS∗(A1;D) − LS∗(A2;D) �= 0. For most
prediction models constructed from parametric mod-
els of the time series {yt}, a closely related implica-
tion is that one of the two models will almost surely
be rejected in favor of the other as T → ∞. For ex-
ample, in the Bayesian approach (5.1) the Bayes factor
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in favor of one model over the other will converge to
zero, and in the non-Bayesian construction (5.2) the
likelihood ratio test or another test appropriate to the
estimates θ̂tAj will reject one model in favor of the
other.

Given the two prediction models A1 and A2, the pre-
diction pool A = {A1, A2} consists of all prediction
models

p(yt ;Yt−1, A) = wp(yt ;Yt−1, A1)
+ (1−w)p(yt ;Yt−1, A2), (5.7)

where w ∈ [0,1]. The corresponding log predictive
score function is

fT (w)

=
T∑
t=1

log[wp(yot ;Yot−1, A1)+(1−w)p(yot ;Yot−1, A2)].

(5.8)

The optimal prediction pool corresponds to w∗
T =

argmaxw fT (w) in (5.8).1 At time t − 1 the determi-
nation of such a pool was impossible for the pur-
poses of forming the elementswp(yt ;Yot−1, A1)+(1−
w)p(yt ;Yot−1, A2) (t = 1, . . . , T ) because it is based on
the entire sample. However, the weightsw could be de-
termined recursively at each date t based on informa-
tion through t − 1. It will subsequently be seen that the

1 The setup in (5.8) is formally similar to the nesting proposed
by Quandt (1974) in order to test the null hypothesis A1 = D
against the alternative A2 = D (see also Gourieroux and Monfort
(1989, section 22.2.7)). That is not the objective here. Moreover,
Quandt’s test involves simultaneously maximizing the function
in the parameters of both models and w, and is therefore equiv-
alent to the attempt to estimate by maximum likelihood the
mixture models discussed in section 5.6; Quandt (1974) clearly
recognizes the pitfalls associated with this procedure.
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required computations are practical, and in the exam-
ples in the next section there is almost no difference
between the optimal pool considered here and those
created recursively when the alternative procedures
are evaluated using a log scoring rule.

The first derivative of fT , denoted f ′T (w), is

T∑
t=1

p(yot ;Yot−1, A1)− p(yot ;Yot−1, A2)
wp(yot ;Yot−1, A1)+ (1−w)p(yot ;Yot−1, A2)

. (5.9)

The second derivative of fT , denoted f ′′T (w), is

−
T∑
t=1

[ p(yot ;Yot−1, A1)− p(yot ;Yot−1, A2)
wp(yot ;Yot−1, A1)+ (1−w)p(yot ;Yot−1, A2)

]2

.

Notice that f ′′T (w) � 0; and pathological cases aside,
f ′′T (w) < 0. For all w ∈ [0,1], T−1fT (w)

a.s.−−−→ f(w).
If

lim
T→∞

T−1
T∑
t=1

ED|p(yt ;Yt−1, A1)− p(yt ;Yt−1, A2)| �= 0,

(5.10)
then f(w) is concave. The condition (5.10) does not
necessarily hold, but the only common case in which
it does not seems to be when one of the models nests
the other and the restrictions that create the nesting
are correct for the pseudotrue parameter vector. The
focus here is on prediction models A1 and A2 that are
typically nonnested and, in fact, have predictive den-
sities with substantially different functional forms.
Henceforth it will be assumed that (5.10) is true. Given
this assumption, w∗

T = argmaxw fT (w) converges al-
most surely to the unique valuew∗ = argmaxw f(w).
Thus for a given data-generating process D there is
a unique limiting optimal prediction pool. As shown
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in Hall and Mitchell (2007) this prediction pool mini-
mizes the Kullback–Leibler directed distance from D
to the prediction model (5.5).

It will prove useful to distinguish between several
kinds of prediction pools, based on the properties of
fT . Ifw∗

T ∈ (0,1), thenA1 andA2 are each competitive
in the pool {A1, A2}. If w∗

T = 1, then A1 is dominant
in the pool {A1, A2} and A2 is excluded in that pool;2

equivalently, f ′T (1) � 0, which amounts to

T−1
T∑
t=1

p(yot ;Yot−1, A2)
p(yot ;Yot−1, A1)

� 1.

By mild extension, A1 and A2 are each competitive in
the population pool {A1, A2} if w∗ ∈ (0,1), and if
w∗ = 1 then A1 is dominant in the population pool
and A2 is excluded in that pool.

Some special cases are interesting not because they
are likely to occur but because they help to illuminate
the relationship between prediction pools and con-
cepts familiar from model comparison. First consider
the hypothetical case A1 = D.

Proposition 5.1. If A1 = D, then A1 is dominant in the
population pool {A1, A2} and f ′(1) = 0.

Proof. If A1 = D,

f ′(1) = lim
T→∞

T−1
T∑
t=1

ED

[
1− p(yt ;Yt−1, A2)

p(yt ;Yt−1,D)

]
= 0.

From (5.9) and the strict concavity of f it follows that
A1 is dominant in the population pool.

2 Dominance is a necessary condition for forecast encompass-
ing (Chong and Hendry 1986) asymptotically, but it is weaker
than forecast encompassing.
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A second illuminating hypothetical case is

LS∗(A1;D) = LS∗(A2;D).

Given (5.10), thenA1 �= D andA2 �= D in view of propo-
sition 5.1. The implication of this result for practical
work is that if two nonnested models have roughly
the same log score, then neither is “true.” Section 5.6
returns to this implication at greater length.

Turning to the more realistic case LS∗(A1;D) �=
LS∗(A2;D), w∗ ∈ (0,1) also implies that A1 �= D and
that A2 �= D. In fact, one never observes f , of course,
but the familiar log scale of fT (w) provides some in-
dication of the strength of the evidence against the
proposition that A1 = D or A2 = D. There is a litera-
ture on testing that formalizes this idea in the context
of (5.7) (see Gourieroux and Monfort 1989, chapter 22;
Quandt 1974). The motivation is not to demonstrate
that any prediction model is false: it is known at the
outset that this is the case. What is more important is
that (5.7) evaluated at w∗

T provides a lower bound on
the improvement in the log score predictive density
that could be attained by models not in the pool, in-
cluding models not yet discovered. Section 5.6 returns
to this point.

If w∗ ∈ (0,1) then, for a sufficiently large sam-
ple size, the optimal pool will have a log predictive
score superior to that of either A1 or A2 alone, and as
sample size increases,w∗

T
a.s.−−−→ w∗. This is in marked

contrast to conventional Bayesian model combination
or non-Bayesian tests. Both will exclude one model or
the other asymptotically, although the procedures are
formally distinct. For Bayesian model combination the
contrast is due to the fact that the conventional setup
conditions on one of either D = A1 or D = A2 be-
ing true. As has been seen, in this case the posterior
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probability of A1 and w∗
T have the same limit. The

incompleteness of the model space, that is, A1 �= D
and A2 �= D, changes the conventional assumptions.
It leads to an entirely different result: even models that
are arbitrarily inferior, as measured by Bayes factors,
can substantially improve predictions from the supe-
rior model as indicated by a log scoring rule. For non-
Bayesian testing the explanation is the same: since a
true test rejects one model and accepts the other, it
also conditions on one of either D = A1 or D = A2

being true.

5.3 Examples of Two-Model Pools

This section illustrates some properties of two-model
pools using daily percentage log returns of the S&P
500 index and six alternative models for these re-
turns. All of the models used rolling samples of 1,250
trading days (about five years). The first sample con-
sisted of returns from January 3, 1972, through De-
cember 14, 1976, and the first predictive density eval-
uation was for the return on December 15, 1976. The
last predictive density evaluation was for the return
on December 16, 2005 (T = 7,324).

Three of the models are estimated by maximum
likelihood and predictive densities are formed by
substituting the estimates for the unknown parame-
ters: a Gaussian i.i.d. model (“Gaussian,” hereafter); a
Gaussian generalized autoregressive conditional het-
eroscedasticity model with parameters p = q = 1,
or GARCH(1,1) (“GARCH”), which is described in sec-
tion 3.1.3; and a Gaussian exponential GARCH model
with p = q = 1 (“EGARCH” (Nelson 1991)). Three of
the models formed full Bayesian predictive densities
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Table 5.1. Log predictive scores
of the alternative models.

Gaussian −10,570.80
GARCH −9,574.41
EGARCH −9,549.41
t-GARCH −9,317.50
SV −9,460.93
HMNM −9,336.60

using Markov chain Monte Carlo algorithms: a GARCH
model with i.i.d. Student-t shocks (“t-GARCH” (Dueker
1997)); the stochastic volatility model of Jacquier et al.
(1994) (“SV”), detailed in section 3.1.4; and the hierar-
chical Markov normal mixture model with serial cor-
relation and m1 = m2 = 5 latent states described in
Geweke and Amisano (forthcoming) (“HMNM”).

Table 5.1 provides the log predictive score for each
model. That for t-GARCH exceeds that of the near-
est competitor, HMNM, by 19. Results for these two
models are based on full Bayesian inference but the
log predictive scores are not the same as log marginal
likelihoods because the early part of the data set is
omitted and because rolling rather than full samples
are used. Nevertheless, the difference between these
two models strongly suggests that a formal Bayesian
model comparison would yield overwhelming poste-
rior odds in favor of t-GARCH. Of course the evidence
against the other models in favor of t-GARCH is even
stronger: 143 against SV, 232 against EGARCH, 257
against GARCH, and 1,253 against Gaussian.

Pools of two models, one of which is t-GARCH, reveal
that t-GARCH is not dominant in all of these pools.
Figure 5.1 shows the function fT (w) for pools of two
models, one of which is t-GARCH, with w denoting
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Figure 5.1. Functions fT (w) in some two-model pools. (a)
GARCH, t-GARCH. (b) EGARCH, t-GARCH. (c) SV, t-GARCH.
(d) HMNM, t-GARCH.
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the weight on the t-GARCH predictive density. The
vertical scale is the same in each panel. All func-
tions fT (w) are, of course, concave. In the GARCH
and t-GARCH pool, fT (w) has an internal maximum
at w = 0.944 with fT (0.944) = −9,315.50, whereas
fT (1) = −9,317.12. This distinction is barely detect-
able in panel (a), in which it appears that f ′T (w) � 0.
For the EGARCH and t-GARCH pool, and for the HMNM
and t-GARCH pool, the maximum is clearly internal.
For the SV and t-GARCH pool, fT (w) is monotone
increasing, with f ′T (1) = 1.96. In the Gaussian and
t-GARCH pool, not shown in figure 5.1, t-GARCH is
again dominant, with f ′T (1) = 54.4. Thus, while all
two-model comparisons strongly favor t-GARCH, it is
dominant only in the pool with Gaussian and in the
pool with SV.

Figure 5.2 portrays fT (w) for two-model pools con-
sisting of HMNM and one other predictive density,
with w denoting the weight on HMNM. The scale of
the vertical axis is the same as in figure 5.1 in all pan-
els except (a), which shows fT (w) in the two-model
pool consisting of Gaussian and HMNM. The latter
model nests the former and it is dominant in this
pool, with f ′T (1) = 108.3. In pools consisting of HMNM
on the one hand and GARCH, EGARCH, or SV on the
other, the models are mutually competitive. Thus SV
is excluded in a two-model pool with t-GARCH, but
not in a two-model pool with HMNM. This is not a
logical consequence of the fact that t-GARCH has a
higher log predictive score than HMNM. Indeed, the
optimal two-model pool for EGARCH and HMNM has a
higher log predictive score than any two-model pool
that includes t-GARCH, as is evident by comparing
figure 5.2(c) with all the panels of figure 5.1.
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Table 5.2 summarizes some key characteristics of
all the two-model pools that can be created for these
predictive densities. The entries above the main diag-
onal indicate the log scores of the optimal pools of
two prediction models. The entries below the main
diagonal indicate the weights w∗

T on the models in
the row entries. In each cell there is a pair of en-
tries. The upper entry reflects pool optimization ex-
actly as described in the previous section. In partic-
ular, the optimal prediction model weight is deter-
mined just once, on the basis of the predictive den-
sities for all T data points. This scheme could not
be used in practice because only past data are avail-
able for optimization. The lower entry in each pair re-
flects pool optimization using the predictive densities
p(yos ;Yos−1, Aj) (s = 1, . . . , t − 1) to form the optimal
pooled predictive density foryt . The log scores (above
the main diagonal in table 5.2) are the sums of the
log scores for pools formed in this way. The weights
(below the main diagonal in table 5.2) are averages of
the weightsw∗

t taken across all T predictive densities.
(For t = 1, w∗

1 was arbitrarily set at 0.5.)
For example, in the t-GARCH and HMNM pool, the

log score using the optimal weight based on all T ob-
servations is −9,284.7. If, instead, the optimal weight
is recalculated in each period using only past predic-
tive likelihoods, then the log score is −9,287.3. The
weight on the HMNM model is 0.289 in the former
case, and the average weight on this model is 0.307
in the latter case. Note that in every case the log score
is lower when it is determined using only past pre-
dictive likelihoods than it is when it is determined
using the entire sample. But the values are, at most,
about 3 points lower. The weights themselves show
some marked differences; pools involving EGARCH
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seem to exhibit the largest contrasts. The fact that
the two methods can produce substantial differences
in weights, while the log scores are always nearly the
same, is consistent with the small values of |f ′′T (w)| in
large neighborhoods of the optimal value ofw evident
in figures 5.1 and 5.2.

Figure 5.3 shows the evolution of the weight w∗
t in

some two-model pools when pools are optimized us-
ing only past realizations of predictive densities. Un-
surprisingly,w∗

t fluctuates violently at the start of the
sample. Although the predictive densities are based
on rolling five-year samples, w∗

t should converge al-
most surely to a limit under the conditions specified in
section 5.2. The HMNM and t-GARCH pool (panel (a))
might be interpreted as displaying this convergence,
but the case for the EGARCH pools is not so strong.

Whether or not section 5.2 provides a good asymp-
totic paradigm for the behavior of w∗

t is beside the
point, however. The important fact is that a number
of pools of two models outperform the model that
performs best on its own (t-GARCH), performance be-
ing assessed by the log scoring rule in each case. The
best of these two-model pools (HMNM and EGARCH)
does not even involve t-GARCH, and it outperforms
t-GARCH by 37 points. These findings illustrate the
fresh perspective brought to model combination by
linear pools of prediction models. Extending pools to
more than two models provides additional insights.

5.4 Pools of Multiple Models

In a prediction pool with n models the log predictive
score function is

fT (w) =
T∑
t=1

log
[ n∑
i=1

wip(yt ;Yt−1, Ai)
]
,
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Figure 5.3. Evolution of model weights in some two-
model pools. (a) HMNM, t-GARCH. (b) HMNM, EGARCH. (c)
t-GARCH, EGARCH. (d) EGARCH, GARCH.
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where w = (w1, . . . ,wn)′, wi � 0 (i = 1, . . . , n), and∑n
i=1wi = 1. Denote by f(w) the limit (as T →∞) of

T−1fT (w)
a.s.−−−→ lim

T→∞
T−1

×
∫ T∑
t=1

log
[ n∑
i=1

wip(yt ;Yt−1, Ai)
]
p(YT | D)dYT .

Given the assumptions about the data-generating pro-
cess D,

T−1fT (w)
a.s.−−−→ f(w).

Let pti denote p(yot ;Yot−1, Ai) (t = 1, . . . , T ; i =
1, . . . , n). Substituting 1−∑ni=2wi for w1,

∂fT (w)
∂wi

=
T∑
t=1

pti − pt1∑n
k=1wkptk

(i = 2, . . . , n) (5.11)

and

∂2fT (w)
∂wi∂wj

= −
T∑
t=1

(pti − pt1)(ptj − pt1)
[
∑n
k=1wkptk]2

(i, j = 2, . . . , n).

The (n − 1) × (n − 1) Hessian matrix ∂2fT/∂w∂w′ is
nonpositive definite for all w and, pathological cases
aside, negative definite. Thus f(w) is strictly concave
on the unit simplex. Given the evaluations pti over the
sample from the alternative prediction models, find-
ing w∗

T = argmaxw fT (w) is a straightforward convex
programming problem. The limit f(w) is also concave
in w and wT

a.s.−−−→ w∗ = argmaxw f(w).
Proposition 5.1 generalizes immediately to pools of

multiple models.
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Proposition 5.2. If A1 = D, then A1 is dominant in the
population pool {A1, . . . , An} and

∂f(w)
∂wj

∣∣∣∣
w=w̃

= 0 (j = 1, . . . , n),

where w̃ = (1,0, . . . ,0)′.

Proof. From (5.11),

∂f(w)
∂wj

∣∣∣∣
w=w̃

= lim
T→∞

T−1
T∑
t=1

ED

[p(yt ;Yt−1, Aj)
p(yt ;Yt−1,D)

− 1
]

= 0 (j = 2, . . . , n),

and consequently

∂f(w)
∂w1

∣∣∣∣
w=w̃

= 0

as well. From the concavity of f(w), w∗ = w̃.

Extending the definitions of section 5.2, models
A1, . . . , Am (m < n) are jointly excluded in the pool
{A1, . . . , An} if

∑m
i=1w

∗
Ti = 0; they are jointly com-

petitive in the pool if 0 <
∑m
i=1w

∗
Ti < 1; and they

jointly dominate the pool if
∑m
i=1w

∗
Ti = 1. Obviously,

any pool has a smallest dominant subset. A pool triv-
ially dominates itself. There are relations between ex-
clusion, competitiveness, and dominance that are use-
ful in interpreting and constructing optimal prediction
pools.

Proposition 5.3. If {A1, . . . , Am} dominates the pool
{A1, . . . , An}, then {A1, . . . , Am} dominates

{A1, . . . , Am,Aj1 , . . . , Ajk}
for all {j1, . . . , jk} ⊆ {m+ 1, . . . , n}.
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Proof. By assumption, {Am+1, . . . , An} is excluded in
the pool {A1, . . . , An}. The pool

{A1, . . . , Am,Aj1 , . . . , Ajk}
imposes the constraints wi = 0 for all i > m,
i �= {j1, . . . , jk}. Since {Am+1, . . . , An} was excluded in
{A1, . . . , An}, these constraints are not binding. There-
fore {Aj1 , . . . , Ajk} is excluded in the pool {A1, . . . , Am,
Aj1 , . . . , Ajk}.

Thus a dominant subset of a pool is dominant in all
subsets of the pool in which it is included.

Proposition 5.4. If {A1, . . . , Am} dominates all pools

{A1, . . . , Am,Aj} (j =m+ 1, . . . , n),

then {A1, . . . , Am} dominates the pool {A1, . . . , An}.
Proof. The result is a consequence of the concavity of
the objective functions. The assumption implies that
there exist optimal weights w∗

2 , . . . ,w∗
m such that

∂fT (w∗
2 , . . . ,w

∗
m,wj)/∂wj < 0

when evaluated at wj = 0 (j = m + 1, . . . , n). Taken
jointly these n−m conditions are necessary and suf-
ficient for wm+1 = · · · = wn = 0 in the optimal pool
created from the models {A1,, . . . , An}.

The converse of proposition 5.4 is a special case
of proposition 5.3. Taken together these propositions
provide an efficient means of showing that a small
group of models is dominant in a large pool.

Proposition 5.5. The set of models {A1, . . . , Am} is
excluded in the pool {A1, . . . , An} if and only if Aj
is excluded in each of the pools {Aj,Am+1, . . . , An}
(j = 1, . . . ,m).
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Proof. This is an immediate consequence of the first-
order conditions for exclusion, just as in the proof of
proposition 5.4.

Proposition 5.6. If the model A1 is excluded in all
pools (A1, Ai) (i = 2, . . . , n), then A1 is excluded in
the pool (A1, . . . , An).

Proof. From (5.9) and the concavity of fT the assump-
tion implies that

T−1
T∑
t=1

pt1
pti

� 1 (i = 2, . . . , n). (5.12)

Let w̃i (i = 2, . . . , n) be the optimal weights in the pool
(A2, . . . , An). From (5.11),

T−1
T∑
t=1

pti∑n
j=2 w̃jptj

= λ if w̃i > 0 (i = 2, . . . , n)

(5.13)
for some positive but unspecified constant λ. From
Jensen’s inequality and (5.12),

T−1
T∑
t=1

pt1∑n
j=2 w̃jptj

< T−1
T∑
t=1

n∑
i=2

w̃i
pt1
pti

< 1. (5.14)

Suppose that w̃i > 0. From (5.13),

T−1
T∑
t=1

pti∑n
j=2 w̃jptj

= T−1
T∑
T=1

n∑
�=2

w̃�
pt�∑n

j=2 w̃jptj

= 1 (i = 2, . . . , n). (5.15)

From (5.14) and (5.15),

T−1
T∑
t=1

pti − pt1∑n
j=2 w̃jptj

� 0 (i = 2, . . . , n).
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Since w1 = 1 − ∑ni=2wi, it follows from (5.11) that
∂fT (w)/∂w1 � 0 at the point w = (0, w̃2, . . . , w̃n)′.
Because fT is concave this is necessary and sufficient
for A1 to be excluded in the pool (A1, . . . , An).

Proposition 5.6 shows that one can establish the ex-
clusion of A1 in the pool {A1, . . . , An}, or for that mat-
ter any subset of the pool {A1, . . . , An} that includes
A1, by showing that A1 is excluded in the two-model
pools {A1, Ai} for all Ai that make up the larger pool.

The converse of proposition 5.6 is false. That is, a
model can be excluded in a pool with three or more
models and yet be competitive in some (or even all)
pairwise pools. Consider T = 2 and the following
values of pti:

A1 A2 A3

t = 1 0.4 0.1 1.0
t = 2 0.4 1.0 0.1

The model A1 is competitive in the pools {A1, A2}
and {A1, A3} because in (5.9) f ′T (0) > 0 and f ′T (1) < 0
in each pool. In the optimal pool {A2, A3} the models
A2 and A3 have equal weight with

2∑
t=1

3∑
j=2

w̃jptj = 0.55.

The first-order conditions in (5.11) are

∂fT (w)
∂w2

= ∂fT (w)
∂w3

= 0.3
0.55

> 0,

and therefore the constraint w1 � 0 is binding in
the optimal pool {A1, A2, A3}. The contours of the log
predictive score function are shown in figure 5.4(a).
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Figure 5.4. Counterexamples relevant to proposition 5.6.

Notice also in this example that

LS(YoT ,A1) = −1.833 > −2.302

= LS(YoT ,A2) = LS(YoT ,A3),

and thus the model with the highest log score can be
excluded from the optimal pool. The same result holds
in the population: the Kullback–Leibler distance from
D to A1 may be less than the distance from D to Aj
(j = 2, . . . , n) and yetA1 may be excluded in the popu-
lation pool {A1, . . . , An} so long asn > 2. Ifn = 2 then
the model with the higher log score is always included
in the optimal pool.

No significantly stronger version of proposition 5.6
appears to be true. Consider the conjecture that if
model A1 is excluded in one of the pools {A1, Ai} (i =
2, . . . , n), then A1 is excluded in the pool {A1, . . . , An}.
The contrapositive of this claim is that ifA1 is compet-
itive in {A1, . . . , An}, then it is competitive in {A1, Ai}
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(i = 2, . . . , n), and by extension A1 wold be compet-
itive in any subset of {A1, . . . , An} that includes A1.
That this is not true may be seen from the following
example with T = 4:

A1 A2 A3

t = 1 0.8 0.9 1.3
t = 2 1.2 1.1 0.7
t = 3 0.9 1.0 1.1
t = 4 1.1 1.0 0.9

The optimal pool {A1, A2, A3} weights the models
equally, as may be verified from (5.11). But A1 is ex-
cluded in the pool {A1, A2}: assigning w to A1, (5.9)
shows that

f ′T (0) =
−0.1
0.9

+ 0.1
1.1

+ −0.1
1

+ 0.1
1
< 0.

The contours of the log predictive score function are
shown in figure 5.4(b).

5.5 Multiple-Model Pools: An Example

Using the same S&P 500 returns data set described in
section 5.3 it is easy to find the optimal pool of all six
prediction models described in that section. (The op-
timization required 0.22 seconds using conventional
Matlab software, illustrating the trivial computations
required for log score optimal pooling once the predic-
tive density evaluations are available.) The first line of
table 5.3 indicates the composition of the optimal pool
and the associated log score. The EGARCH, t-GARCH,
and HMNM models are jointly dominant in this pool
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Table 5.3. Optimal pools of 6 and 5 models.

Gaussian GARCH EGARCH t-GARCH SV HMNM Log score

0.000 0.000 0.319 0.417 0.000 0.264 −9,264.83
0.000 0.060 — 0.653 0.000 0.286 −9,284.30
0.000 0.000 0.471 — 0.000 0.529 −9,280.34
0.000 0.000 0.323 0.677 0.000 — −9,296.08

while the Gaussian, GARCH, and SVOL models are ex-
cluded. In the optimal pool the highest weight is given
to t-GARCH, the next highest to EGARCH, and the
smallest positive weight to HMNM.

Weights do not indicate a predictive model’s con-
tribution to the log score, however. The next three
lines of table 5.3 show the impact of excluding one of
the models dominant in the optimal pool. The results
show that HMNM makes the largest contribution to the
optimal score, 31.25 points; EGARCH the next largest,
19.47 points; and t-GARCH the smallest, 15.51 points.
This ranking strictly reverses the ranking by weight in
the optimal pool. When EGARCH is removed GARCH
enters the dominant pool with a small weight, whereas
the same models are excluded in the optimal pool
when either t-GARCH or HMNM is removed.

These characteristics of the pool are evident in fig-
ure 5.5, which shows log predictive score contours for
the dominant three-model pool on the unit simplex.
Weights for EGARCH and t-GARCH are shown explic-
itly on the horizontal and vertical axes, with resid-
ual weight on HMNM. Thus the origin corresponds
to HMNM, the lower right vertex of the simplex to
EGARCH, and the upper left vertex to t-GARCH. Values
of the log score for the pool at those points can be read
from table 5.1. The small circles indicate optimal pools
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Figure 5.5. The log score function for the prediction
pool consisting of the three jointly dominant models.

formed from two of the three models: EGARCH and
HMNM on the horizontal axis, t-GARCH and HMNM
on the vertical axis, and EGARCH and t-GARCH on the
diagonal. Values of the log score for the pool at those
points can be read from the last three entries in the
last column of table 5.3. The optimal pool is indicated
by the asterisk. Moving away from this point, the log
score function is much steeper moving toward the di-
agonal than toward either axis. This reflects the large
contribution of HMNM to the log score relative to the
other two models just noted.

The optimal pool could not be used in actual pre-
dictions during the years 1975 through 2005 because
the weights draw on all of the returns from that pe-
riod. As in section 5.3, optimal weights can be com-
puted each day to form a prediction pool for the
next day. These weights are portrayed in figure 5.6.
There is substantial movement in the weights, with
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Figure 5.6. Evolution of model weights in the six-model
pool. (a) Weight on model EGARCH. (b) Weight on model
t-GARCH.

a noted tendency for the weight on EGARCH to be
increasing at the expense of t-GARCH, even late in
the period. Nevertheless, the log score function for
the prediction model pool constructed in this way is
−9,267.82, just 3 points lower than the pool optimized
over the entire sample. Moreover, this value substan-
tially exceeds the log score for any model over the
same period, or for any optimal pool of two models
(see table 5.3).

This insensitivity of the pool log score to substan-
tial changes in the weights reflects the shallowness
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Figure 5.6. (Continued.) (c) Weight on model HMNM.
(d) Sum of weights on all other models.

of the objective function near its mode: a pool with
equal weights for the three dominant models has a
log score of −9,265.62, almost as high as that of the
optimal pool. This leaves essentially no possible re-
turn (as measured by the log score) to more elaborate
methods of combining models like bagging (Breiman
1996) or boosting (Friedman et al. 2000). Whether
these circumstances are typical can be established in
future research by applying the same kind of analysis
undertaken in this section for the relevant data and
models.



5.6. Pooling and Model Improvement 155

5.6 Pooling and Model Improvement

The linear pool {A1, A2} is superficially similar to the
mixture of the same models. In fact the two are not the
same, but there is an interesting relationship between
their log predictive scores. In the mixture of models
A1 and A2,

p(yt | Yt−1,θA1 ,θA2 ,w,A1·2)
= wp(yt | Yt−1,θA1)+ (1−w)p(yt | Yt−1,θA2).

(5.16)

Equivalently there is an i.i.d. latent binomial random
variable w̃t , independent of Yt−1, P(w̃t = 1) = w, with

yt ∼
{
p(yt | Yt−1,θA1) if w̃t = 1,
p(yt | Yt−1,θA2) if w̃t = 0.

If the prediction model Aj is fully Bayesian (5.1) or
utilizes maximum-likelihood estimates in (5.2), then,
under weak regularity conditions,

T−1 LS(YT ,Aj)
a.s.−−−→ lim

T→∞
T−1

∫
logp(YT | θ∗Aj ,Aj)p(YT | D)dYT

= LS∗(Aj ;D) (j = 1,2),

where

θ∗Aj = argmax
θAj

lim
T→∞

T−1
∫

logp(YT | θAj ,Aj)

· p(YT | D)dYT (j = 1,2), (5.17)

and these are sometimes called the pseudotrue values
of θA1 and θA2 . However, θ∗A1

and θ∗A2
are not, in gen-

eral, the pseudotrue values of θA1 and θA2 in the mix-
ture model A1·2, and w∗ is not the pseudotrue value
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of w. These values are instead

{θ∗∗A1
,θ∗∗A2

,w∗∗}

= argmax
θA1 ,θA2 ,w

lim
T→∞

T−1
∫ T∑
t=1

log[wp(yt | Yt−1,θA1)

+(1−w)p(yt | Yt−1,θA2)]p(YT | D)dYT .
(5.18)

Let w∗ = argmaxw f(w). Note that

lim
T→∞

T−1
∫ T∑
t=1

log[w∗∗p(yt | Yt−1,θ∗∗A1
)

+ (1−w∗∗)p(yt | Yt−1,θ∗∗A1
)]p(YT | D)dYT

� lim
T→∞

T−1
∫ T∑
t=1

log[w∗p(yt | Yt−1,θ∗A1
)

+ (1−w∗)p(yt | Yt−1,θ∗A1
)]p(YT | D)dYT

= w∗ LS∗(Aj ;D)+ (1−w∗)LS∗(Aj ;D).

Therefore, the best log predictive score that can be
obtained from a linear pool of the modelsA1 andA2 is
a lower bound on the log predictive score of a mixture
model constructed from A1 and A2. This result clearly
generalizes to pools and mixtures of n models.

To illustrate these relationships, suppose that the
data-generating process D is

yt ∼
{
N(1,1) if yt−1 > 0,
N(−1,1) if yt−1 < 0.

In model A1,

yt
i.i.d.∼ N(µ,σ2) with µ � 1,
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Figure 5.7. Expected log scores for individual models, a
linear model pool, a mixture model, and the data-generat-
ing process.

and in model A2,

yt
i.i.d.∼ N(µ,σ2) with µ � −1.

Corresponding to (5.17) the pseudotrue value of µ is 1
in A1 and −1 in A2; the pseudotrue value of σ2 is 3 in
both models. The expected log score, approximated
by direct simulation, is −1.974 in both models. This
value is indicated by the dashed horizontal line near
the bottom of figure 5.7. The function f(w), also ap-
proximated by direct simulation, is indicated by the
concave solid curve in the same figure. The maximum,
at w = 1

2 , is f(w) = −1.866. Thus fT (w) would in-
dicate that neither model could coincide with D, even
for small T .

The mixture model (5.16) will interpret the data as
independent and identically distributed, and the pseu-
dotrue values corresponding to (5.18) will be µ = 1 for
one component, µ = −1 for the other, and σ2 = 1 in
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both. The expected log score, approximated by direct
simulation, is−1.756, indicated by the dotted horizon-
tal line in figure 5.7. In the modelA = D, yt | (yt−1, A)
has mean−1 or 1 and variance 1. Its expected log score
is −1

2[log(2π) − 1] = −1.419, indicated by the solid
horizontal line near the top of the figure.

The example illustrates that max f(w) can fall well
short of the mixture model expected log score, and
that the latter can, in turn, be much less than the data-
generating process expected log score. It is never pos-
sible to show that A = D: only to adduce evidence that
A �= D.

5.7 Consequences of an Incomplete Model Space

In any decision-making setting requiring prediction
there will be competing models. If one takes the model
space to be complete—that is, if one conditions on one
of the available models being true—then econometric
theory is comparatively tidy. In both Bayesian and non-
Bayesian approaches, it is typically the case that one
of a fixed number of models will come to dominate as
sample size increases without bound.

In social science applications, at least, there is no
reason to believe that the model space is complete and
in many instances there is ample evidence that it is in-
complete. This chapter develops an approach to model
combination designed for incomplete model spaces. It
shows that linear prediction pools generally yield su-
perior predictions as assessed by a conventional log
score function. (This finding does not depend on the
existence of a true model.) An important character-
istic of these pools is that prediction model weights
do not necessarily tend to zero or one asymptotically,
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as is the case for posterior probabilities. (This result
invokes the existence of a true model.) The example
studied here involves six models and a large sample.
One of these models has a posterior probability very
nearly one. Yet three of the six models in the pool have
positive weights, all substantial.

Optimal log scoring of prediction pools has three
practical advantages. First, it is easy to do: compared
with the cost of specifying the constituent models and
conducting formal inference for each, it is practically
costless. Second, the behavior of the log score as a
function of model weights can show clearly that the
model space is incomplete. Third, linear prediction
pools provide an easy way to improve predictions as
assessed by the log score function. The example stud-
ied in this chapter illustrates how acknowledgment
that the model space is incomplete can improve pre-
dictions, even as the search for better models goes on.

The last result is especially important. The examples
in this chapter showed how models that are clearly
inferior to others in the pool nevertheless substan-
tially improve prediction if they are included as part
of the pool rather than being discarded. The analyt-
ical results in section 5.4 and the examples in sec-
tion 5.5 establish that the most valuable model in a
pool need not be the one most strongly favored by the
evidence interpreted under the assumption that one
of several models is true. This lesson may well extend
to decision-making contexts generally.
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