


Springer Series in Synergetics

Editor: Hermann Haken

Synergetics, an interdisciplinary field of research, is concerned with the cooper-
ation of individual parts of a system that produces macroscopic spatial, temporal
or functional structures. It deals with deterministic as well as stochastic processes.

1 Synergetics An Introduction 3rd Edition
By H. Haken
2 Synergetics A Workshop
Editor: H. Haken
3 Synergetics Far from Equilibrium
Editors: A. Pacault, C. Vidal
4 Structural Stability in Physics
Editors: W. Giittinger, H. Eikemeier
5 Pattern Formation by Dynamic Systems and
Pattern Recognition
Editor: H. Haken
6 Dynamics of Synergetic Systems
Editor: H. Haken
7 Problems of Biological Physics
By L. A. Blumenfeld
8 Stoachastic Nonlinear Systems
in Physics, Chemistry, and Biology
Editors: L. Arnold, R. Lefever
9 Numerical Methods in the Study of Critical
Phenomena
Editors: J. Della Dora, J. Demongeot,
B. Lacolle
10 The Kinetic Theory of Electromagnetic
Processes By Yu.L. Klimontovich
11 Chaos and Order in Nature
Editor: H. Haken
12 Nonlinear Phenomena in Chemical Dynamics
Editors: C. Vidal, A. Pacault
13 Handbook of Stochastic Methods
for Physics, Chemistry, and the Natural Sciences
By C. W. Gardiner
14 Concepts and Models of a Quantitative Sociology
The Dynamics of Interacting Populations
By W. Weidlich, G. Haag

15 Noise-Induced Transitions Theory and
Applications in Physics, Chemistry, and Biology
By W. Horsthemke, R. Lefever

16 Physics of Bioenergetic Processes
By L. A. Blumenfeld

17 Evolution of Order and Chaos in Physics,
Chemistry, and Biology Editor H. Haken

18 The Fokker-Planck Equation
By H. Risken

19 Chemical Oscillations, Waves, and Turbulence
By Y. Kuramoto

20 Advanced Synergetics
By H. Haken

21 Stoachastic Phenomena and Chaotic Behaviour
in Complex Systems
Editor: P. Schuster

22 Synergetics - From Microscopic to Macroscopic
Order Editor: E. Frehland

23 Synergetics of the Brain
Editors: E. Bagar, H. Flohr, H. Haken,

A.J. Mandell

24 Chaos and Statistical Methods
Editor: Y. Kuramoto

25 Dynamics of Hierarchical Systems
By J.S. Nicolis

26 Self-Organization and Management of
Social Systems
Editors: H. Ulrich, G.J.B. Probst

27 Non-Equilibrium Dynamics in Chemical
Systems Editors: C. Vidal, A. Pacault

28 Self-Organization. Autowaves and Structures
Far from Equilibrium
Editor: V.I. Krinsky




Non-Equilibrium
Dynamics
in Chemical Systems

Proceedings of the International Symposium,
Bordeaux, France, September 3-7, 1984

Editors: C. Vidal and A. Pacault

With 137 Figures

Springer-Verlag
Berlin Heidelberg New York Tokyo 1984



Professeur Dr. Christian Vidal
Professeur Dr. Adolphe Pacault

Centre de Recherche Paul Pascal, Domaine Universitaire
F-33405 Talence Cédex, France

Series Editor:

Professor Dr. Dr. h. c. Hermann Haken

Institut fiir Theoretische Physik der Universitit Stuttgart, Pfaffenwaldring 57/1V,
D-7000 Stuttgart 80, Fed. Rep. of Germany

ISBN-13: 978-3-642-70198-6 e-ISBN-13: 978-3-642-70196-2
DOI: 10.1007/978-3-642-70196-2

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically those of translation, reprinting, reuse of illustrations, broadcasting, reproduction by
photocopying machine or similar means and storage in data banks. Under § 54 of the German Copyright
Law where copies are made for other than private use, a fee is payable to “Verwertungsgesellschaft Wort”,
Munich.

© Springer-Verlag Berlin Heidelberg 1984
Softcover reprint of the hardcover 1st edition 1984
The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a

specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

2153/3130-543210



Preface

Markedly apart from elementary particle physics, another current has been building
up and continuously growing within contemporary physics for several decades, and
even expanding into many other disciplines, especially chemistry, biology and, quite
recently, economics. Several reasons account for this: presumably the most impor-
tant one lies in the fact that, whatever the specific problem, model or material
concerned, the same basic mathematical features are always involved. In this way, a
general phenomenology has emerged which, unlike thermodynamics, is no longer depen-
dent upon the details or specifics: what largely prevails is the nonlinear charac-
ter of the underlying dynamics. Perhaps we are witnessing the emergence of a "non-
linear physics" - in a way similar to the birth of "quantum physics" in the twen-
ties - a physics which deals with the general behaviour of systems, whatever they
are or may be.

Over the past fifteen years, chemical systems evolving sufficiently far from
equilibrium have proved to be particularly well fitted to experimental research on
nonlinear behaviour: oscillation, multistability, birhythmicity, chaotic evolution,
spatial self-organization and hysteresis are displayed by chemical reactions whose
number is growing each year. In this volume are collected the lectures, communica-
tions and posters (abstracts) presented at an international meeting entitled:
"Non-Equilibrium Dynamics in Chemical Systems", held in Bordeaux (France), Septem-
ber 3rd-7th, 1984. Papers have been grouped into five parts devoted to what appear
to be up-to-date trends in this field. By comparing these proceedings to those of
the previous Bordeaux meetings [Springer Series in Synergetics, Vol. 3 (1978), Vol.
12 (1981)], one can get a good idea about the evolution of research on nonlinear
chemical systems. Though things appear to be more complex than at first believed,
as finer investigations are performed - a quite trivial conclusion -, it is stri-
king to note how fertile are the concepts of chemical oscillators, waves and chaos,
of non-equilibrium evolution and of dissipative structures.

This research domain is so full of life that it seems henceforth advisable to
hold an annual discussion meeting. At the same time, the need for putting a little
bit of order into a perfectly unscheduled set of conferences has become evident.
Suggestions for achieving such an international settlement were presented at the
meeting (see Introduction by A. Pacault). It is hoped that non-attendees will agree,
as attendees did.

For the third time the generous sponsorship of the French Centre National de la
Recherche Scientifique made this conference possible, and it is greatly acknowledged.
We are also indebted to the Université de Bordeaux I, Mairie de Bordeaux and Conseil
Général de la Gironde for their hospitality and financial support. Last, but not
least, we wish to address special thanks to our secretary, Mrs. Maurat, who once
again did a lot of work before, during and after the meeting, without losing her
good humour.

Bordeaux C. Vidal
October 1984 A. Pacault
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Introduction to the Meeting
“Non-Equilibrium Dynamics in Chemical Systems”

A. Pacault (Chairman of the Organizing Committee)

Centre de Recherche Paul Pascal-Domaine universitaire
F-33405 Talence Cédex, France

The field of science with which we are concerned is fascinating because it covers
a much wider domain of knowledge than traditional topics do. It requires dif-
ficult experimental studies, full of surprises, in which the results of mechanics,
thermodynamics, hydrodynamics and kinetics must be taken into account, only to
mention the main subjects. In the course of translating experimental results into
mathematical Tanguage, real objects,i.e. a set of variables with which we choose
to describe a part of the universe are compared with mathematical objects with
similar properties.

Our field of science requires talented experimentalists, familiar with various
domains of knowledge, able to converse with those accustomed to the mathematical
language.

For a better understanding of the surrounding world, we have to build interdis-
ciplinary connections, but without forgetting that "there is nothing interdiscipli-
nary in the meeting of twelve experts around a table : cross—fertilization between
domains ariges only through the penetration of each domain by the same field of
conscience” . Precisely, collaborations between Taboratories exist, which contribute
to creating this field of conscience. Nevertheless, these usually distant collabora-
tions can only exist between small groups of researchers. It is desirable that a
large community be able to meet periodically and communicate research results.

Such is the goal of the interdisciplinary meeting that we have organized. But,
since 1967, over 26 meetings have been held, and their yearly number is growing.
So many meetings cause unnecessary repetition? Couldn't we take advantage of this

meeting in Bordeaux to try to harmonize the organization of these necessary inter-
disciplinary meetings?

This harmonization has been achieved in other fields. The advances in carbon
research, to which I have been contributing for many years, are reported every year
during an international conference that is held in odd years in the U.S.A., and in
even years successively in Germany, Great Britain and France. Last July we organized
the "CARBON 84" conference in Bordeaux. Over 350 industrial and academic participants
were present. For ten years now this modus vivendi has been satisfactory, each coun-
try being entirely and solely responsible for the organization of the conference.

The scientific community that is concerned with the phenomena for whose study we
are together today is now sufficiently structured to plan an annual conference
that can be successively focoused on the various topics of interest, in order to re-
view their achievements and to discuss their present developments. Each theme need
not be considered every year.

I know, although I don't know everything, that:

- from September 17th to 22nd, 1984, we shall talk abeut "Temporal Order' in
Bremen (a symposium on Mechanisms, Models, and Significance of Oscillations in Hete-
rogeneous Chemical and Biological Systems),

—
A. Moles: Une science de l'impréeis, Le Monde aujourd'hui XIII, (12-13)-8-84.



- that from October 15th to 17th, 1984, a meeting on "Dynamically Organized Sys—
tems' will be held at Schloss Elmau, Germany,

- that on December 3'd and ath, 1984, 4in Brussels, we shall deal with "The
Physics and Chemistry of Complex Phenomena — an interface between pure and applied
research”,

- that from July 22nd to 26th, 1985, a Gordon conference in Plymouth will deal
with "Oscillations and Dynamic Instabilities'.

Would it not be convenient to decide now what should be dealt with, and where,
in 1986 ?

Now I must thank all those who have contributed to the organization of this
meeting:

First the C.N.R.S. for financial support, the University of Bordeaux I, the
Mayor or Bordeaux who will receive us tonight in the magnificent Rohan Palace. I
should thank also the Organizing Committee™ and,more specifically,Professor Vidal.

Special thanks should be addressed to those who agreed to deliver a plenary
lecture, a difficult pedagogical task but so necessary in view of the interdiscipli-
nary aspect of our field.

I must also thank those who present their most recent and original research re-
sults.

I am sure that when we depart at the end of the week, we shall have deepened our
comprehension of the world, for such is the recent scientific revolution that has
emerged from our studies: now we know that a deterministic world is not necessarily

predictable, and we begin to measure its degree of unpredictability more knowledge-
ablv,
Science joining Philosophy: Isn't this stimulating?

Thursday September Sth Sesszon, 14.30

Discussions seem to have led to a general agreement on the following points:

1. the number of meetings is too high;

2. it 1is necessary to inform the scientific community interested in the subject
that could be called "Nonlinearities and Instabilities in Chemistry” (N.I.C.) well
in advance of conference planning. This information could be delivered through the
scientific associations of each country;

3. such information would Tead to more coherence, avoiding overlap and promo-
ting interdisciplinary complementarities;

4. each conference could have a different style - summer school, workshop,
conference - insisting either on pedagogical and synthetic aspects or on original
results and breakthroughs;

5. this is no attempt to create an "institution”, but rather a friendly coopera-
tion which allows each country to take part in the international concert.

We know that a Gordon conference will take place in 1985. It would be interesting
if an Eastern European contry could be involved in 1986. Hungary could consider
such an opportunity. In 1987, Great Britain together with Belgium, in 1988 Germany,

in 1989 the U.S.A., could organize such an N.I.C. conference. We have time to think
of 1990!

Of course, all these are only proposals, and correspondence to exchange points
of view will confirm or modify this very informal attempt at harmonization.

—
F. Argoul, J.M. Bodet, J. Boissonade, P. De Kepper, P. Hanusse, A.Pacault, P. Richetti
A. Rosst, J.C. Roux, C. Vidal.



Introduction au Colloque

Le domaine scientifique qui nous occupe est passionnant parce qu'il recouvre un
champ de connaissances bien plus vaste que celui des disciplines traditionnelles.
I1 requiert des études expérimentales difficiles et pleines d'emblches prenant en
compte les acquis de la mécanique, de la thermodynamique, de 1'hydrodynamique, de
la cinétique pour ne citer que quelques grandes rubriques. La traduction des résul-
tats expérimentaux en langage mathématique rapproche les objets matériels - ensem-
ble des variables que nous choisissons pour décrire un morceau d'Univers - d'objets
mathématiques ayant des propriétés semblables.

Notre domaine scientifique mobilise donc des expérimentateurs de talent, familiers
de disciplines différentes, dialoguant avec les habitués du langage mathématique.

Pour mieux comprendre le monde qui nous entoure, il nous faut donc construire des
réseaux interdisciplinaires mais en notant "qu'il n'existe pas d'interdisciplinari-
té dans l'assemblage de dousze spécialistes autour d'une table : il n'y a de fécon-
dation réciproque d'une discipline par une autre qu'd l'intérieur d'un méme champ de
conscience passé successivement par des disciplines différentes"*. Or, justement,
des collaborations existent entre laboratoires qui permettent d'établir ce "champ
de conscience". Cependant ces collaborations lointaines ne peuvent avoir lieu qu'en-
tre un petit nombre de chercheurs et i1 est souhaitable que le plus grand nombre
puisse se retrouver périodiquement pour confronter ses résultats.

Tel est T'objectif des colloques interdisciplinaires que nous organisons. Cepen-
dant, depuis 1967, ont eu lieu plus de 26 colloques dont le nombre annuel a cru du-
rant ces derniéres années. N'est-ce pas trop si on désire éviter les répétitions ?
Ne pourrait-on profiter de cette rencontre de Bordeaux pour tenter d'harmoniser
1'organisation de ces nécessaires réunions interdisciplinaires ?

Cette harmonisation a été possible dans d'autres domaines. Les recherches sur les
carbones, auxquelles j'ai contribué depuis longtemps, sont exposées chaque année
dans une conférence internationale qui a lieu les années impaires aux U.S.A. et les
années paires successivement en Allemagne, en Angleterre et en France. En Juillet
dernier nous avons organisé a Bordeaux "CARBONE 84" qui rassemblait 350 participants
industriels et universitaires. Depuis dix ans ce modus vivendi donne satisfaction,
chaque pays étant seul entiérement responsable de 1'organisation de la conférence.

La communauté scientifique qui s'intéresse aux phénoménes pour lesquels nous som-
mes aujourd'hui réunis est maintenant suffisamment constituée pour organiser une
conférence annuelle qui ordonnerait les sujets de maniere telle que le point soit
fait régulierement a la fois sur 1'acquis et sur le présent. Les mémes thémes pour-
raient n'étre pas traités chaque année.

Je sais - mais je ne sais pas tout -,

- que du 17 au 22 Septembre 1984, on parlera a Bréme de "Temporal order" (A Sym-
posium on Mechanisms, Models, and Significance of Oscillations in Heterogeneous
Chemical and Biological Systems),

-—
A. Moles: Une science de 1'imprécis, Le Monde aujourd'hui XIII, (12-13)-8-84.
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- que du 15 au 17 Octobre 1984 a Schloss Elmal est organisée une rencontre sur
"Dynamically Organized Systems",

- que les 3 et 4 Décembre 1984 a Bruxelles on parlera de "The Physics and Chemis—
try of Complex Phenomena — an interface between pure and applied research",

- que du 22 au 26 Juillet 1985, on traitera a Plymouth dans une Gordon Conference
de "Oseillations and Dynamic Instabilities”.

Peut-&tre serait-il agréable de décider maintenant de quoi s'entretenir et ol en
1986 ?

Je dois maintenant remercier tous ceux qui ont participé a 1'organisation de cet-
te réunion.

D'abord Te C.N.R.S. qui 1'a financée,1'Université, le Maire de Bordeaux qui nous
recevra ce soir dans le magnifique Palais Rohan, ensuite le Comité d'Organisation
et plus particuliérement Te Professeur Vidal.

Des remerciements particuliers doivent étre adressés a tous ceux qui ont accepté
de faire une conférence pléniere, lourde tdche pédagogique justement si nécessaire
compte tenu de la pluridisciplinarité de notre champ d'étude.

Je remercie enfin tous ceux qui présentent leurs derniers résultats.

Je suis slr que nous nous quitterons, en fin de semaine, ayant encore approfondi
notre compréhension du Monde car telle est la récente révolution scientifique qui
est née des études qui nous occupent : maintenant nous savons qu'un monde détermi-
niste peut n'étre pas prévisible, et mieux encore nous commencons a mesurer son de-
gré d'imprévisibilité.

N'est-i1 pas stimulant que Ta science rejoigne enfin la philosophie ?

Séance du jeudi 6 Septembre d 14 h 30

Des conversations ont permis de dégager une sorte de consensus général sur les
points suivants :

1. Te nombre des conférences est trop grand;

2. i1 est nécessaire d'informer suffisamment longtemps a 1'avance la communauté
scientifique intéressée par le sujet dont le titre général pourrait étre Non-linéa-
rités et instabilités en chimie. Cette information pourrait étre donnée par les so-
ciétés scientifiques des différents pays ;

3. une telle information conduirait a une cohérence permettant d'éviter les re-
couvrements et de susciter les complémentarités interdisciplinaires ;

4. chaque conférence pourrait avoir un style différent - école, atelier, collo-
que - 1'une insistant plus sur 1'aspect pédagogique et synthétique, 1'autre sur les
résultats originaux et les découvertes par exemple ;

5. i1 n'est pas question d'institutionnaliser mais d'entretenir une aimable coo-
pération qui permette a chaque pays de prendre une place dans notre concert inter-
national.

On sait qu'en 1985 une Gordon Conference aura lieu aux U.S.A. I1 serait agréable
qu'en 1986 les pays de 1'Est interviennent, et la Hongrie pourrait envisager une
telle éventualité.

En 1987, 1'Angleterre et la Belgique réunies, en 1988 1'Allemagne, et en 1989
les U.S.A. pourraient &tre les organisateurs de cette conférence. Attendons pour
penser a 1990.

Bien entendu i1 ne s'agit que de points de vue échangés et des correspondances
permettront de consolider ou de modifier cette tentative trés informelle d'harmoni-
sation.

S —
F. Argoul, J.M. Bodet, J. Boissonade, P. De Kepper, P. Hanusse, A. Pacault, P. Richetti
A. Rosst, J.C. Roux, C. Vidal.



Spatial and Temporal Patterns Formed by Systems Far from
Equilibrium

H. Haken

Institut fir Theoretische Physik, Universitdt Stuttgart, Pfaffenwaldring 57/IV
D-7000 Stuttgart 80, Fed. Rep. of Germany

Over the past years enormous progress has been made in chemistry in
the experimental and theoretical study of temporal and spatio-temporal
patterns formed in systems far from thermal equilibrium. In this
paper I discuss why quite different systems can show similar
behavior and how this behavior can be adequately described by
evolution equations or by discrete maps. Examples for the formation
of spatial patterns in fluids and flames are provided. The problem
of chaos and routes to it, including that via quasi-periodicity, are
discussed in the framework described above. Particular attention is
paid to the relation between discrete maps and description via
trajectories in a phase space.

1. Introduction

Over the past years enormous progress has been made in making
experiments on macroscopic spatial or temporal structures formed in
chemical reactions and interpreting them theoretically. In this way
chemistry has given an outstanding contribution to the study of
systems driven far from thermal equilibrium. It 1is a particular
pleasure for me to present this talk in Bordeaux where important
contributions to this new field were given which is also witnessed
by the two volumes on nonlinear chemical dynamics edited by A.
Pacault and C. Vidal [1].

The systematic study of systems driven far from thermal equilibrium
is a rather new field of science. At least two features are most
surprising. When we think of systems in thermal equilibrium, we
all admire the great power of thermodynamics with -its universal
laws. But for a 1long time it was unclear how to extend thermo-
dynamics in an adequate way to systems far from thermal equilibrium.
Furthermore it seemed quite counter-intuitive to expect ordered
structures to occur when systems are driven far from thermal
equilibrium. Rather, one would expect wild fluctuations. As we now
know, well ordered patterns appear and even seemingly chaotic
phenomena can obey laws of order. Furthermore, strikingly analogous
phenomena are found in seemingly quite different systems, such as
lasers, fluids, electronic devices, solids, in acoustics, and other
fields.



Personally, I must confess that I was not very surprised by this
development, because about 15 years ago I stressed that far reaching
analogies of systems driven far from thermal equilibrium can be
expected ,and I suggested studying these phenomena under unifying
concepts , within an interdisciplinary field of research I called
"Synergetics" [2].

In my present paper I would 1Tike to show why quite different
systems may show precisely the same phenomena,and should like also
to include some of the more recent methods of treating both ordered
and chaotic states.

2. Modelling Processes by Differential Equations

Let us consider two chemicals A and B which by their interaction
produce a third type of chemical C and let us further assume that
chemical C may decay into a further chemical D. Denoting the

corresponding concentrations by n;, ny, n3, ny,respectively, we then
have the scheme

A+B=>C, C—>0D (2.1)
np na ns ny

It is quite simple to write down equations describing the processes
(2.1), namely the differential equation

.

ng = k; ninp - k% nj . (2.2)

As it has turned out, the theoretical treatment of temporal or
spatial structures formed by chemical reactions requires kinetic
equations of which (2.2) is an example, rather than it is sufficient

to use any concepts of thermodynamics, e.g. entropy, or quantities
related to it.

When we have a network of chemicals reacting with each other we have
to introduce the corresponding concentrations nj(t) which we lump
together into a state vector

(nl,ﬂz,.....) = . (2.3)

n
"~
The corresponding equations can be written in the form

AR +Ddan (2.4)
where R represents the reactions and D represents diffusion. Thus
(2.4) are the well known reaction diffusion equations.

I am sure that also in years to come other transport effects, such as
convection, must be considered in the study of pattern formation



which is already done e.g. in pattern formation of flames. In such a
case convection terms of the type

9

<

v

(2.5)

Qo
*

must be dincorporated into eqs.(2.4). Furthermore not only velocity

fields as in (2.5) but also temperature fields must be taken into

account. Describing all these different variables by means of a

state vector q the equations to be studied acquire the general form
-~

rae

= ﬁ(g,u) (2.6)

where o 1is an abbreviation for the control parameters by which we
control the system from the outside, e.g. by matter flux, or energy
flux 1into the system. Even if the system can be considered as
homogeneous, e.g. in a well-stirred tank reactor, typically 30
variables describing also intermediate products must be considered,
at least in principle. If the system is not well stirred, patterns
can evolve and to their description many more variables are needed.
But as is shown in synergetics, at the onset of spatio-temporal
patterns only a few degrees of freedom or variables dominate the
system and this fact 1lies at the origin of the far reaching
analogies found between quite different systems.

3. Many or few variables?

The access to the reduction of many to few variables was provided in
particular by a study of nonequilibrium phase transitions [3] but the
general principle is valid also for many other types of formation of
macroscopic structures in systems far from equilibrium. Since I have
described the whole 1idea and the detailed methods at various
instances, I just want to make a few comments [4] and present the
special case of a single order parameter.

We first assume that for a given control parameter o« a state
described by q, is established which, from a mathematical point of
view, obeys the equations (2.6). When the control parameter is
changed, this state, e.g. a homogeneous and quiescent state, can
become unstable and a small spatial structure 1(5), superimposed on
that homogeneous state, can grow. Thus a new state evolves which is
mathematically described by a superposition of three terms

4= Qo+ & (L) v(x) +r (3.1)

where the rest term contains all other configurations of the system
which interact with the growing mode , and eventually serve to
stabilize it or to cause some kind of oscillation. All what matters
for the time being is to note that the multivariable dynamic
system is entirely governed by the behavior of the amplitude £(t) in

9



(3.1) which is called an order parameter. A typical equation for the
order parameter reads

E=ae -0 (3.2)

By means of (3.1) and (3.2) it becomes possible to treat
mathematically evolving patterns. When the system is driven farther
and farther away from the instability point, the newly formed
structure 1is deformed but does not change qualitatively, i.e. for
instance,a periodic oscillation remains periodic. The whole dynamics
and pattern is still governed by the order parameter. But eventually
with further increase of control parameters the pattern can become
unstable again and can be replaced by a qualitatively new pattern,
e.g. a spatial pattern <can be replaced by a spatio-temporal
oscillation.

4. Typical order parameter equations. Spatial Patterns

Order parameter equations for spatio-temporal patterns developing in
chemical reactions are treated in a recent book by Kuramoto [5]. In
this paper I should rather Tike to present two other examples,
namely fluid dynamics and flames. Just to illustrate how such
equations in extended media may look, I present a describing pattern
formation in the convection instability. The order parameter ¥(x,t)
can be essentially considered as the deviation of the temperature
field from a constant gradient. The corresponding patterns can be
directly measured optically. The order parameter equation reads [6]

¥ o= [e - (1-A)2] yrsw oy (4.1)

Figs. 1 to 4 show typical examples of evolving structures [7].
Corresponding results have been obtained also experimentally [8] so
that there exists good qualitative agreement. As another example we
consider pattern formation in fluids where the plane flame front
of a plane burner becomes unstable. The vertical deviation ¥ of the
flame front from the horizontal plane can be considered as an order
parameter. It obeys an equation derived by Sivashinsky [9] to which
we have added the buoyancy term,which serves for the stabilization
of the evolving pattern

.1 - i -x !
¢=r [1+8(Le-1)] v2¢ - % (vo)2 + i%?gljfndku o(x,t) etk(x-x") dkdx' .
(4.2)

Typical evolving patterns calculated by methods of synergetics by
Schnaufer and myself [10] are shown in Figs.5 and 6. I personally
believe that the study of spatial and temporal patterns of flames
still provides a vast field of further experimental and theoretical
research where new interesting results can be gained.



Fig.1

Evolution of roll pattern of the convection
instability. Delta = & in eq.(4.1). T = time,

L = Lyapunov functional. The initial state, which
is not shown here, is a random field.

(After Bestehorn and Haken, to be published)

Fig. 2 Same as Fig.1, but ¢ is increased.

Hexagons occur in addition to the rolls.



Fig. 3 Same as Figs.! and 2, but § is further
increased. Only hexagons are formed now.

Fig. 4 Same as Fig.3, but other geometry and other
aspect ratio



5. Temporal Patterns. Chaos

For simplicity we shall ignore from now on the spatial dependence in
order to facilitate our presentation, so that in the realm of
chemistry we deal with well-stirred tank reactors. We shall assume
that the order parameter equations have been derived, and we should
like to remind the reader of a few typical examples. The order
parameter equation

E=2¢E-¢ (5.1)

describes the relaxation of the system towards a steady state, while
the order parameter equation

2 .
z =Xz - 2z]|z| , z = E + in (5.2)

describes a limit «cycle, i.e. periodic oscillations,and the
relaxation of the system towards a 1limit cycle.The really exciting
phenomena occur for order parameter equations which contain at Teast
three variables. Surprisingly enough, a single nonlinearity is
sufficient to produce an idirregular motion, called. deterministic
chaos. Such an equation is of the Roessler type [11]

X = -y - z

y = x + ay

z=0b+ z(x-c) .

By now famous model equations are those of Lorenz [12], derived
first in the context of fluid dynamics:



e
n

o (y-x)

x(r-z) -y

e
n

z= xy - bz .
Other equations, in which typical phenomena of the formation of
temporal patterns can be studied (mostly nowadays by computers), are

the Helmholtz equation

. . 2
X + yXx + ax + bx

A sinwt
and the Duffing equation

. . 3
X + yX + ax + bx

A sinwt

which both describe damped nonlinear driven oscillators. One can
easily convince oneself that these equations are equivalent to three
coupled first order differential equations which are autonomous.

When the amplitude of the driver A 1is increased, various temporal
patterns can be found,such as oscillations at the driver frequency,
but also oscillations at fractions of w, i.e. at multiples of the
fundamental period. One may find sequences of period doubling, but
also , other multiples of the fundamental period can occur.
Furthermore irregular oscillations, i.e. chaotic oscillations are
obtained. The occurrence of such specific regions of oscillations
does not only depend on A but also on other parameters, e.g. the
damping y. In this way one is led to study regions in parameter
space referring to specific kinds of oscillations. However, an
important point must not be overlooked. Even for the same set of
parameters quite different kinds of oscillations can be found
depending on the initial conditions. In more technical terms, that
means that in the «corresponding phase space of the variables,
different basins of attraction may coexist.

Therefore in particular one can study how a specific basin of
attraction is changed when control parameters are changed. In such a
case,the system may run through a hierarchy of instability points, at
each of which a new oscillation sets in, e.g. with periods 2T, 4T,
8T, etc.

In order to get some insight into the behavior of the solutions of
such equations, even within a limited range of control parameters and
initial conditions, 6 a good deal of effort must be spent in solving
the equations numerically. Fortunately quite a different approach
has evolved over the past decade which is from a computational point
of view much more accessible, namely the study of discrete maps.
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6. Discrete Maps

This idea, which was developed by Poincaré around the turn of the
century, is as follows. Instead of following up the whole path of
trajectories in phase space we consider the crossing points of these
trajectories with a plane (or a corresponding hyperplane). Quite
often one finds from numerical studies or experimentally that the
crossing points can be connected, at least to some approximation,
by a 1ine,so that we can label the crossing points, Xj,X2,X3,... InN
the next step one studies how the point x + is connected with its
previous point X, . This is described by Xnel = f(xn). A typical and
by now wellknown example is the logistic map

Xpe1 =@ Xp (1-xp) (6.1)
which is shown in Fig.7. When the control parameter o is changed, a
specific sequence of stationary solution x n =1,2,... is reached,

namely a steady state, a periodic state, period 2, period 4 etc. The
parameter a, at which bifurcations from period n to period 2n
occur, obey a simple law as was first shown by Grossmann and Thomae
[13]. Feigenbaum [14] observed that such a law is universal, i.e.
that it is valid for a hole class of one-dimensional maps which are
similar in shape to Fig.7. For a proof of this conjecture see
Eckmann and Coullet ([15]. Of course, certain assumptions must be
fulfilled. One of such assumptions is that the Schwartzian
derivative is positive. If this requirement is violated, new kinds
of patterns can occur, violating the period doubling sequence (see
[16]). While the logistic map has been studied by a number of authors
purely as a model which actually has highly interesting
properties, from a more fundamental point of view two questions
arise: 1) How «can we construct such maps from experimentally
observed data, 2) How are such maps connected with trajectories
which result as solutions of differential equations?
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Fig. 8 Strange attractor, constructed

Fig. 7  The logistic maps (eq.(6.1)) from experimental data [19]
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1) For the construction of discrete maps and even trajectories from
experimental data,the by now well-known method introduced by Ruelle
[17] and by Shaw et al [18] is used. Let us assume that the contin-
uous time sequence x(t) of an observable has been measured. Then one
introduces x(t+T), x(t+2T)... as additional variables and plots the
trajectory within the space spanned by these variables. A typical
example is shown in Fig.8 for a chemical reaction [19]. As is seen,
in this case the trajectories are well resolved in a three
dimensional space. Then one takes a cross - section of the
trajectories, e.g. as shown by the dotted line and constructs the
Poincaré return map which in the present case is shown in Fig.9.
This ‘procedure works for almost all times T and can be based on
rigorous grounds by means of embedding theorems [20].

A Xt b X

1

!?gxf a) b)
ik ,x, .
x |: Ax,.,

i

!

‘ ._",_ c)

'ﬁ\‘
% X ' b %
Fig. 9 Return map belonging to Fig. 10 Examples of one-humped return maps
Fig. 8 [19]

To my knowledge the point 2, namely the question of how to reconstruct
trajectories from the return map,is Tless well studied. In the
following I want to show that a whole class of return maps as shown
in Fig.l0 are caused by topologically equivalent trajectories. 1In
the following I want to construct a typical representative of such a
class of trajectories and also derive the differential equation they
obey. Clearly the whole flow of trajectories can be deformed so that
different differential equations can give rise to the same class of
trajectories. But as I want to show, these trajectories are
topologically uniquely determined.

7. Construction of suspensions of discrete maps.

In this section we shall deal with one-humped maps giving rise to
chaos. Examples are provided by Fig.1l0. Since all the essential
features of the construction can be studied by means of Fig. 10c we
shall deal with this problem. In general each of these maps belongs
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to a family of maps parametrized by a control parameter. It will be
our goal to search for an autonomous system yielding the return maps
under discussion. Since in most,if not all cases known in the family
of maps, there 1is at Tleast one 1in which a periodic oscillation
occurs, we shall first assume that the trajectories lie in a plane,
say the xy-plane. The part of the map from x = 0...b then appears
as a spiral (Fig.ll). The non-trivial part of the problem starts
when we look at the map from x = b,...,x = 2b., The point x = 2b is
mapped onto the origin x = 0. Thus in some way or another it must
cross the spiraling trajectories, which is forbidden for autonomous
systems. Thus we find the well-known effect that chaos «can be
produced only by at 1least three dimensions (a well-known theory
states that the only singular points in a plane can be fixed points
or limit cycles). Therefore we have to 1lift the trajectories which
originate from the interval b<x<2b into the 3rd dimension. When
these trajectories return to the xy-plane they must smoothly join
the trajectories starting from the same ©plane but from the
interval 0<x<b. This requires that the trajectories come in more or
less parallel to the y-direction. Since the trajectories stemming
from b<x<2b and from O0<x<b cannot end up in the same xy-plane
(because otherwise the trajectories would merge,in contrast to the
assumption of an autonomous system) the trajectories stemming
from O0<x<b and b<x<2b, respectively, must end up in different
sections of the xz-plane. We now make the additional, but wusual,
assumption that the flow is a continuous function of x, y and z
(except for one cut line as we shall see below). Up to deformations
which retain the topological connections, we choose the part of the
xy-plane with z<0 as ending part for the trajectories starting
from 0<x<b and the upper part, z>0, for those trajectories starting
from b<x<2b. Thus we are led to the initial and final locations of
the trajectories as indicated in Fig.l12. The orientation of the end
points which is necessitated by the discrete map and the continuity
requirement is indicated by the arrows. The mapping of A onto A™ is
generated by trajectories which rotate around the z-axis and
describe a compression in the z-direction and an expansion within
the xy-plane. The map of B onto B~ can be generated by a continuous

Fig. 11 Compare text Fig. 12



Fig. 13 Compare text
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sequence of rotations parallel to the y-axis, by parallel shifts and
by rotations around an axis parallel to the z-axis. Also,mixed
rotations and parallel shifts are possible,and there exists a huge
variety, even including rotations several times. This is possible
provided the cut between A and B 1is total. However, if we require
that the point generated from the trajectory starting at (a,b) is
transferred along a unique trajectory, the only possible connection
under the assumptions made above can be achieved by a sequence of
rotations of B as shown in Fig. 13. In this way B is mapped onto B~
via trajectories within a Moebius strip, whose edges are the
trajectories shown in Fig. 14. These considerations lead us in a
natural way to the Baker”s transformation and its suspension. Egs.
(7.1) describe the flow (cf. also Fig. 15). Here we have assumed
expansion factors,i.e. a spreading of the trajectories which is not
reflected by the discrete map. Therefore our example shows that the
calculation of Ljapunov exponents from discrete maps may give quite
different results from the calculation of these exponents using the
trajectories. For sake of completeness we mention that chaotic
attractors may be also characterized by various kinds of

Fig. 15 Compare text
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"dimensions" and the Kolmogorov entropy. Unfortunately space does

not allow me to discuss these problems here, but these concepts play
an important role in studying strange attractors.

8. Routes to Chaos

As the quadratic map teaches wus, before the onset of chaos a
sequence of period doublings occurs.This has become one famous route
to chaos and has been found in quite different kinds of systems such
as in fluids, lasers, and electronic devices [21]. Another way is
called the Ruelle-Takens route in which a system first undergoes an
oscillation at a frequency w1, a further oscillation at a
second frequency wp, occurs in addition, and afterwards chaos should
set in in the "generic" case. I have pointed out for a number of
years [23] that the question of whether chaos occurs or whether still
more incommensurate frequencies 1in a quasiperiodic motion occur, is
not a question of "genericity", but s a quantitative
question, so that wunder suitable circumstances 4, 5 or even more
incommensurate frequencies should be found. My predictionwhich is
based on a detailed theory [23], was in the meantime confirmed by
experiments done on the Rayleigh-Bénard instability [24]. I
personally expect that similar things may happen in chemical
reactions also, for instance in tank reactors,which are not well
stirred so that the different oscillators are essentially spatially
separated, and interact only weakly with each other. But in principle
such phenomena should occur also in well stirred tank reactors. A
third way, which has become of great interest, 1is that via
intermittency [25]. In this case chaotic outbursts vary periodically
with quiescent behavior of a system. Over the past years great and
quite successful efforts have been devoted to finding such routes in
various systems. But it seems to me that the universality of some
routes 1is sometimes overstressed. I rather think that the situation
is nowadays similar to one before chaotic oscillations came into the
focus of research interest. Before that,any records of nonperiodic
oscillations were thrown into the waste paper box because the
experimenters had not found the fine beautiful periodic oscillations
they had been Tooking for. A similar thing may happen nowadays. Many
important results are probably thrown away because they do not show
the expected route to turbulence. I think one rather should keep
one's eyes open and also keep track of any other routes to chaos.

9. Concluding Remarks

Over the past years it has become possible to classify quite a
number of chaotic oscillations and the routes leading to them. Such
analysis 1is to a great deal based on discrete maps. Therefore quite
generally one may ask what the relation of discrete maps to
differential equations is. The situation if as follows. In a number
of concrete examples, depending on the basin of attraction and the
routes of parameter changes followed up, specific ‘“universal"
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discrete maps <can be found , which mirror the behavior of the
trajectories very well. But at the same time discrete maps can
belong to the same original differential equation. Conversely
different original differential equations in their specific ranges
of parameters and initial conditions can give rise to the same class
of discrete maps, e.g. the Tlogistic map. I think at the present
moment we must be fully aware of the puzzling variety of phenomena
which is still ahead of us. A good deal of work is still to be done
to clarify the relations between time-continuous processes decribed
by differential equations and the more model-types of discrete maps.
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Part II

Oscillating Reactions and Modelling Problems



New Chemical Oscillators

Irving R. Epstein
Department of Chemistry, Brandeis University, Waltham, MA 02254, USA

1. Introduction

Any systematic analysis of the literature of oscillating chemical reactions
(see., e.g., BURGER and BUJDOSO [1]), would show at least two clear trends.
First, there has been a rapid expansion in both the number of papers published
annually and in the number of groups working on such problems. Second, and
more recent has been a diversification in the set of chemical systems studied;
an ever increasing fraction of work is being devoted to systems other than the
classic Belousov-Zhabotinskii (BZ) reaction.

We present here a brief survey of some of these new chemical oscillators.
Somewhat arbitrarily, we exclude biological and heterogeneous systems and
define "new" oscillators as.those discovered subsequent to the first of these
conferences in 1978. We may also refer to "newer" oscillators as those found
since the second Bordeaux meeting in 1981.

We first list these new systems, dividing them between those based on halo-
gen chemistry and those in which non-halogen elements play the central role.
Next we discuss briefly the search procedures which have been used to develop
new oscillators. Some comments on mechanisms for new oscillators are then
followed by a summary of a few of the more exotic dynamical phenomena which
have been seen in these systems. We conclude with some cautions to seekers of
new oscillating systems and a few predictions of things to come.

2. Reactions

A division of oscillating reactions into halogen based and non-halogen is, at
least historically speaking, a natural one. A1l of the "old" oscillators - the
BZ [2,3], Bray-Liebhafsky [4], Briggs-Rauscher [5] reactions and their variants
- have either bromate or iodate as the indispensable ingredient. The earliest
and to date the majority of the new oscillators are also halogen-based, though
breakthroughs into other regions of the Periodic Table have recently been made
and are discussed below.

2.1 Halogen Based

While the early oscillators were based upon bromate or iodate chemistry, the
largest group of new oscillators contains a third oxyhalogen ion, chlorite.
Table 1 lists the known chlorite oscillators, all of which were discovered in a
stirred tank reactor (CSTR).

The chlorite-iodate-arsenite system marks the breakthrough [6] from acci-
dentally discovered to systematically designed chemical oscillators. The sub-
sequently discovered C10,7-1" system respresents the "minimal" [7] or simplest
of what has proved to be a rather large family of iodine-containing chlorite
oscillators. The systems with A = Br0,~ might equally or better be thought of
as a family of new bromate oscillators. Some of the wide variety of behavior
exhibited by these systems is discussed in Section 5.
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Table 1. Chlorite Oscillators in a CSTR

Additional Species

A B C Notes Reference
I- "Minimal", Subcritical Hopf Bifurcation [8]
Nucleation Induced Transitions
I- 1037, Mn0,” or Cr,0,” [9]
I~ Malonic Acid Batch Oscillations, Spatial Waves [10]
105” H3 A0, First Chlorite Oscillator (6]
10~ Fe(CN)g*~, S0,27, Ascorbic [11]
Acid or Chy0+30,
105~ $,032" Batch Oscillation [10]
I, Fe(CN)g*~, 042" [11]
105 I- Malonic Acid Batch Oscillations [10]
105~ I~ H3As0, Tristability [9]
I- Br03~ Birhythmicity, Compound Oscillation, [12,13]
Chaos
Br0;~ soaz'éje(cn)e‘*', HyAsO, [14]
2 or Sn
S,05%7 Complex Oscillation, Chaos [15,16]
(NH,),CS Birhythmicity, Complex Oscillation, [17]
Chaos
I- I, $,042° Birhythmicity, Tristability, Complex [18]
Oscillation, Chaos
Br- [19]
SCN- No bistability [19]

The range of bromate oscillators has expanded considerably since NOYES' [20]}
proposal of a mechanistically based classification scheme in 1980. While such
phenomena as the reaction of bromate and cerium with oxalic acid in the pres-
ence of a purging gas stream [21] or the uncatalyzed bromate oscillators [22]
just meet our chronological criterion for novelty, they are more in the spirit
of the older BZ type oscillators.

The new bromate oscillators really date from the experimental fulfillment of
BAR-ELI's [23] prediction that a system consisting of bromate, bromide and
cerous (or manganous) ions would show sustained oscillations in a CSTR. This
"minimal bromate oscillator" was soon found by ORBAN et al. [24] and later
independently by GEISELER [25]. Figure 1 shows the excellent agreement between
the calculations based on the NFT mechanism [23,26] and the actual experimental
conditions for oscillation.

From the ability of the minimal bromate system to oscillate in the CSTR, one
may infer that the malonic acid in the BZ system could be replaced by an input
flow of bromide or indeed of any other species capable of generating bromide
from bromate at an appropriate rate. This insight led to the discovery of the
bromate-chlorite-reductant [14] and bromate-manganous-reductant [27] families
of new bromate oscillators. A similar system [28] consists of bromate , man-
ganous and hypophosphite ions in a batch reactor with a stream of N, gas to
remove the product bromine.

Another, apparently quite different, bromate oscillator is the bromate-io-
dide reaction in a CSTR [29]. This reaction poses fascinating mechanistic
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potential (high bromide) steady state; ¢& , bistability; ©, oscillation.

problems, and forms part of several coupled oscillator systems which are dis-
cussed below.

While no confirmed reports of new iodate oscillators have yet appeared, it
seems inevitable that systems based on the bistable arsenite-iodate [30,31] or
related Landolt-type [32] reactions will soon be made to oscillate. The
iodide-peroxydisulfate-oxalate reaction discussed by Chopin-Dumas elsewhere in
this volume may be the first of the new iodate oscillators.

2.2 Non-halogen

A11 homogeneous non-halogen oscillators fit into our "newer" category, being of
quite recent vintage. JENSEN [33] discovered the first non-biological organic-
based oscillator, the air oxidation of benzaldehyde catalyzed by cobalt and
bromide, in 1982. Although the system contains Br~, we classify it as "orga-
nic-based" because the mechanism [34] revolves primarily about the changing
oxidation states of carbon, while bromide plays a peripheral role. The Dupont
group [35] has recently reported another system of this type, with cyclohex-
anone in place of benzaldehyde.

Sulfur chemistry has provided the other source of new non-halogen oscilla-
tors. BURGER and FIELD [36] found oscillations in the reaction of methylene
blue, sulfide, sulfite and dissolved oxygen. The system, as illustrated in the
phase diagram of Fig. 2, does not appear to exhibit bistability or a cross-
shaped phase diagram, though it may instead possess a continuous range of
steady states [37].

A second sulfur-based oscillator, the hydrogen peroxide-sulfide reaction
recently discovered by ORBAN and EPSTEIN [38] shows, in contrast, an almost
classic cross-shaped phase diagram, Fig. 3. The Burger-Field system is the
first to oscillate in basic solution, while, as we see in Fig. 4, the H,0 -§2-
oscillations go from acidic to basic pH, making possible dramatic color e%fects
with acid-base indicators.

3. Search Proceedures

Recent progress in discovering new chemical oscillators has been aided
immeasurably by the development and use of systematic search procedures. By
far the most productive such technique has the "cross-shaped phase diagram"
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Fig. 2 Exger1mental ghase diagram for the methylene blue oscillator in the
Jo_- [505°"Jg, plane. [MB*], = 3.0 x 107 M, [OH™], = 5 x 1072
[0 Jp = 1.5 x 107" M, temperature 20 + 0.1°C. . , stab?e steady state,
0 trans1ent oscﬂ]atmns,Asustamed oscillations. Reciprocal
residence t1mes ko, (x 103 s’l) (1) 1.9; (2) 3.5 and 3.1; (3) 3.1; (4)
2.3 and 1.9; 0 (6) 5 (7) 1.6 and 1.3; (8) 1.3 and 1.0; (9)
1.5; (10) 1. 5 (11) 1.3; (12) 1.3.

Fig. 3 Experimental phase diagram for the H202-Sz’ system.

approach based on model calculations of BOISSONADE and DE KEPPER [39] and first
brought to fruition in the discovery of the chloride-iodate-arsenite oscillator

[6].

In this method [40], one starts from an autocatalytic reaction and seeks
conditions under which the system shows bistability in a CSTR. The key step is
then to find a "feedback species" which modifies the effective value of one of
the system constraints (usually an input concentration) by quite different
amounts on the two bistable branches. If this effect is in the right

600

POTENTIAL of Pt, mV

560

T

9 TIME, MIN
5 10 15 20 25 30

Fig. 4 Oscillations in the pH and redox potent1a1 of a sulfide-hydrogen
peroxide system with [H 0%]0 = 0. 4 M [S “1o = 0.0167 M, [H,S0,]¢ =
0.001 M, k, = 6 x 107" s'
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direction, and if the feedback reaction is slow compared with the relaxation of
the unperturbed system to the steady states, then adding enough of the feedback
species to the input flow will destabilize the steady states, leading to
oscillation. Such systems are characterized by cross-shaped phase diagrams
like that of Fig. 3.

In particularly fortunate cases the feedback species is generated
internally, and one need only manipulate the constraints of the bistable system
(e.g., the flow rate) until the bistable region closes and oscillation appears

beyond the critical point. The chlorite-iodide oscillator [8] is one example
of such a system.

An alternative procedure, which was exploited by GEISELER [25] in his search
for the minimal bromate oscillator, is the linear gradient technique. In this
method, one input concentration is varied continuously in time by employing two
reservoirs, one containing solution and the other pure solvent.

Sti11 another approach, to which the discovery of the methylene blue
oscillator [36] may be attributed, is a combination of careful thought,
chemical intuition and perseverance. Such tactics have probably become more
attractive with the growing awareness that so many oscillators exist.

Finally, chance, which played such a major role in the early development
of the field is still an important source of new oscillators. Like the BZ [2]
and BL [4] reactions before it, the JENSEN [33] oscillator was discovered
accidentally.

4. Mechanism

Perhaps the major factor which led to the dominant role played by the BZ
reaction was the success of the FIELD-KBRGS-NOYES [41] mechanism in

i T i I ST
1073 n
1073~ -
-
g - 14
'_O
- J
-4l -
10 ]
I~ Bistable 1
‘e
b , . N
y / ! (ci05, 510% )
. ! €10;), x!
1075k 2 L/ 1 [l )
([oatd 1074 1073 1072
[cio5] (m)

Fig. 5 Phase diagram in the (C10,7), - (I7), plane for the chlorite-iodide
reaction with pH = 2.04, k,'% 1.1 x 1073 s°1, T = 25°C. & , high iodide
steady state; @, low iodide steady state;Q , oscillatory state. Solid
lines are boundaries of experimentally determined regions; dashed lines
show calculated boundaries. Inset shows data near cross-point P on a
linear scale.
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demonstrating that chemical oscillation could be explained in terms of a
reasonable set of elementary steps and associated rate constants. It is
therefore appropriate to give a brief summary of the status of the new
oscillators with respect to mechanism.

With the single exception of the chlorite-bromate-reductant systems [14],
for which a mechanism has been developed by joining the NFT model [26] with
THOMPSON'S [42] mechanism for the Br0;7-C10,” reaction, no mechanism has been
published for any chlorite oscillator. 1In %ab]e 2, we give a recently
developed mechanism [43] for the minimal chlorite-iodide oscillator. Of
special significance is the fact that it contains no radical species, but
rather the binuclear intermediate C10,. Calculations with this mechanism give
excellent agreement with a wide varie%y of experimental results. One example
is given in Fig. 5.

The mechanisms of sulfur oscillators remain a mystery at this time. Even
the autocatalytic species, if any, has yet to be identified.

The Dupont group [34] has developed a radical chain mechanism for the Jensen
oscillator which gives good agreement with the observed oscillation. This and
work on related organic systems is discussed elsewhere in this volume.

Table II. A Mechanism for the Chlorite-Iodide Reaction

Number Reaction kg kfj
(ML)P HR4C10,7+17 = HOC1+01™ 1x103 c
(M2) HOCT+I™ = C17+HOI 2x108 c
(M3) HY+HOI+I™ = 1,4H,0 3.1x1013 2.2
(M4) HY+HOI+C10,™ = HIO0,+HOCI 1x106 c
(M5) HIO,+I™#H* = 2HOI 2x10° c
(M6) HOI+HOC1= HIO,+C1~+H* 2x108 c
(M) 1,#C10," = 1C10,+I° 1.1x10%+ %3%%%913- 1x10° kyy7
(M8) I1C10,+H,0 = HIO,+HOCI 1x103 c
(M9)P 1C10,+174H,0 = HOI+OI"+HOC1  1.3x10° c
(M10)  HOC1+HIO, = C1” + 10,7+2H* 2x108 c
(M11)  2H'410,7+I7 = 1,0,+4,0 4x10° 4x10%
(M12)  1,0,+H,0 = HOI+HIO, 8x1072 1x10%
(M13)®  1,0,+17+H,0 = 2HOI+0I" 6x10° c

Rapid equilibriad

(Mla)  H*+0I" = HOI

(M4b)  HC10, = H*+C10,-

2 A1l concentrations in M, times in s.
b Followed immediately by (Mla)

€ Set to zero in the calculation

d  Assumed instantaneous
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5. New Phenomena

One might well ask whether the advent of new types of oscillators has brought
with it the discovery of new dynamical phenomena. Of course, the BZ reaction
itself exhibits an enormous variety of behavior including chaos, spatial waves,
multistability and complex oscillation. Therefore there may not be many new
phenomena left to discover (this of course, is always a dangerous view to
take).

The new systems have, however, shown that none of these phenomena is unique
to the BZ reaction - a logically trivial, but psychologically significant
point. Furthermore, in some cases they provide variants or extensions of
phenomena which also appear in the BZ reaction. For example, though the BZ
system exhibits bistability, it has not been found to give tr1stab111ty, a
behavior which is illustrated for the AsO3 - C10,7 - 17 - 104 system [9] in
Fig. 6. The period adding sequence shown in Fig. 7 for the 618 e 0
reaction [16] is similar to, but more intricate than one reported ear?1er [47]
for the BZ reaction.

Fig. 6 Section of the phase diagram of the chlorite-iodide-jodate- arsen1te
system showing tristability in the [I7] -[H,As0;], plane.
indicates region of bistability of SSj 8nd §5 ? 1nd1cates r%q1on
of tristability. Fixed constraints: £C102 2.5 x 1073 M, [1057], =
2.5 x 1072 M, pH 3.35, k, = 5.35 x 10 % 25°C.

The range of new reactions available offers the possibility of creating
systems of chemically coupled oscillators [48]. For example, Fig. 8
illustrates the phenomenon of b1rhythm1c1ty in the C10,7-Br0; -1 reaction
[12], where the C10,7-I" and Br0,~-1~ oscillatory subsystems are coupled via
the common species I The phase diagram in Fig. 9 demonstrates some of the
complexity possible in the dynamics of such systems.

6. Some Cautions

One should not be misled from what appears above into thinking that any
chemical reaction of some complexity will oscillate when run in a CSTR if only
one is patient and careful enough. We have spent considerable time trying to
design new oscillators based on the bistable Fe(II)-HNO, reaction [49]. While
we have learned a great deal about nitrate chemistry ang now believe we
understand the problem, we have not been able to produce a genuine nitrate
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Fig. 8 Birhythmicity in the chlorite-bromate-iodide system. Potential is that
of Pt electrode vs. Hg/Hg S0, reference electrode. At times indicated
by the arrows, flow rate is changed Flow rate in each time segment
(measured as rec1proca1 residence time k ) is shown at top. Note that A
state and B state are both stable at ky = 7.14 x 1073 s”1. Fixed
constraints: T = 25°C, [I7]; = 6.5 % 13 4 M [Br03" ]y = 2.5 x 1073 M,
[C10,7], = 1. 0 X 10'“ M, [H 50 Wlo =

osci]]ator We have, however, had several tantalizing failures. In one case,
using H,0, as the feedback species, we observed somewhat irreproducible large
amp]ituée oscillations caused by 0, bubbles produced by peroxide decomposition
catalyzed by the walls of the inlet tubes. Other false alarms have resulted
from "pump oscillations", i.e., extreme sensitivity to and amplification by the
system of small volume changes due to the peristaltic pumping. Pump
oscillations are quite reproducible, but characteristically show a frequency
which is directly proportional to the pump speed.

Another factor to keep in mind is the stirring rate. Although one generally
assumes that mixing is essentially perfect in the CSTR, recent experiments by
ROUX et. al. [50] on the chlorite-iodide reaction have shown marked dependence
of the stability of steady states on the rate of stirring even at such "high"
speeds as 700 rpm. Similar effects are to be expected for oscillatory states.

7. The Future

Where can one expect new advances to be made in the next several years? It
seems 1ikely that new oscillators involving elements other than halogens,
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carbon or sulfur will be sought and found. The transition metals and nitrogen
seem like the most promising places to look

One may expect further progress
in the area of mechanisms, particularly for sulfur-based oscillators and for
the more complex chlorite systems which undoubtedly involve C10,
radicals.

and associated
Experiments involving coupled oscillators will produce increasingly
complex dynamical phenomena to ponder.

So, we can expect many more new systems
showing more complex phenomena, and a deeper understanding of them
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The Mechanism of the Oscillating Air Oxidation of Benzaldehyde

James H. Jensen!, Mark G. Roelofs?, and E. Wasserman 2

E.I. du Pont de Nemours and Company, Inc., Experimental Station
Wilmington, DE 19898, USA

During the oxygen or air oxidation of benzaldehyde catalyzed by cobalt and
bromide several measureable parameters oscillate including: redox potential,
absorbance at 620 nm, oxygen concentration, rate of benzaldehyde disappearance
and free radical concentration. At 55-100°C in a 90/10 acetic acid/water mixture

the oscillations will last for many hours[1]. A typical cycle is shown in
Figure 1.
b
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Fig. 1. (a) Oscillations of the platinum electrode potential vs. Ag/AgCl
reference electrode (——) and log [Co(III)] determined by optical absorption at
620 nm (---). A 150-mL solution contained initially 500 mM PhCHO, 10 mM
Co(AcO0),, 5 mM NaBr, and 90/10 w/w AcOH/H,0 as solvent. The temperature was
70°C, an 0, pressure of 580 torr was maiftained above the solution, and the
magnetic sé%rr1ng speed was 400 rpm. (b) A comparison of the Pt electrode
response (top trace) with the dissolved oxygen concentration (bottom trace)
expressed in terms of the percentage of saturation with O, at a partia] pressure
of 580 torr. We estimate that 100% on this scale corresponds to [0,(1)] =5 + 2
mM. Conditions are as in (a), but the solution contained initially ;50 mM pHCHO,

20 mM Co(AcO)Z, and 2 mM NaBr; 02 was introduced at a flow rate of 20 mL/min
through a frit” immersed in the liquid. (Figure from [3].)

Oscillations of the bromide ion concentration are barely detectable,
(A[Br~J<0.2[Br"] in contrast to the Belousov-Zhabotinsky and other
bromate-driven o;c%ﬁﬁa%%rs where changes in [Br-] of several orders of magnitude
are an essential feature of the mechanism[2]. Therefore this reaction appears to
belong to a different class of oscillating reactions. A second major difference
is that the reaction is both homogeneous and heterogeneous; for the latter, a
major feature is the dissolution of a gas in the liquid.

We have proposed an 11 step mechanism[3] which accounts for the oscillations,
and provides reasonable agreement with all of the experimental observations.

*Agricultural Chemicals Department
“Central Research and Development Department
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Initiation steps Rl and R2 use a Co(III) dimer, Co(III),, to produce a benzoy]
radical at a rate proportional to the product of [PhCHOJ], [Br ] and [Co(III)
During Stage I, benzoyl radical is rapidly intercepted by oxygen in R3 to f%rm
the perbenzoyl radlcal R6 continues the radical chain, while R7 terminates it.
R3, R6 and R7 are well established[4,5]. The rapid oxidation of Co(Il) by
perbenzoic acid (R9) then completes the autocatalytic generation of Co(III)z.

It 1is only when oxygen becomes severely depleted that Stage II begins, the
benzoyl radical 1ifetime increases, and its concentration rises sharply. During
Stage II, Co(III), is now reduced by benzaldehyde through the intermediacy of
benzoy1 rad1cals %n R4 and R8. The sequence R5 followed by 2xR8 provides an
alternate path for the perbenzoxy radicals during Stage II which does not
generate more Co(III).

Although the radicals have been written in the standard form, they may exist

in solution complexed with Co ion, leading to unusual chemical behavior, e.g.
(R5).

Co(I11), + Br™ ® Co(III),Br" (R1)
Co(IT1),Br” + PhCHO-= PhCO® + Br~ + CO(III) + Co(II) + W (R2)
PRCO" + 0,(1) —= PhCO,* (R3)
PhCO® + Co(I1I), + H,0 -=PhCO," + 2Co(1I) + o' (R4)
PhCO® + PhCO4* - 2PhCO,* (R5)
PhCO;" + PhCHO -=-PhCO,H + PhCO® (R6)
PhCO5* + Co(II) + ' PhCOJH + Co(1II) (R7)
PhCO," + PhCHO -= PhCOH + PhCO* (R8)
PhCO,H + 2Co(11) + 2H+——PhCOZH + Co(111), + H 0 (R9)
Co(II1) + Co(I11) == (Co(III)), (R10)
0,(9)=0,(1) (R11)

If [0,(1)] is always appreciably less than saturation, the rate of mass
transfer of oxygen from the gas phase into the Tiquid determines the average rate
of oxidation of PhCHO. The average rate of disappearance of PhCHO during a batch
reaction should be, and is, zero order in [PhCHO]. Within a given cycle;
however, [PhCHO] shows a rapid decrease during Stage II, supporting a reduction
of Co(III)2 by benzaldehyde, R4 and RS.

The rate equations for R1-R11 were integrated using a Gear algorithm[6], with
the results shown in Figure 2.

These results were sufficiently encouraging that a sensitivity analysis for
this model was done. We chose to compare the calculated period of oscillation in
a CSTR reactor to experimentally measured periods as a function of cobalt,
bromide and benzaldehyde concentrations.

The effect of varying bromide concentration is shown in Figure 3. The pro-
posed mechanism fits the experimental data quite well at high concentrations of
bromide. The experimental points are within the uncertainty of the calculated
line. However, experimentally the oscillations stop below about 3 mM bromide,
whereas the calculated line predicts that the oscillations should continue down
to about 0.02 mM Br and the period should go through a maximum and decrease.
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Fig. 2. Calculated concentration oscillations
in (a) [Co(I11),], (b) [0,(1)], and (c) [PhcO*1].

Fig. 3. Calculated, 0, and experimental,
+ (ramp), period of oscillation as a function
of bromide ion concentration.

Stage II of the model_ does not involve Br~; however, experimentally Stage II is
Tengthened at Tow [Br~]. This observation suggests that at Tow [Br ] additional
reactions are required in the model.

The model predictions for variations of cobalt concentration are shown in
Figure 4. The experimentally determined periods do not fit the calculated line
although maxima occur in both curves. This difference may be due to complexes of

Co(III) and Co(II) particularly at low cobalt which we have not taken into
account in the model.

) Fig. 5. Calculated, 0, and experimental,
Fig. 4. Calculated, O, and experimental, + 0-400 mM, {)200-1500 mM, x 0-3000 mM

+ (ramp), period of osc111at19n as a PhCHO (ramp), period of oscillation as
function of cobalt concentration. a function of benzaldehyde concentration.
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The agreement between the calculated and measured periods for benzaldehyde
concentration variations is satisfactory (Figure 5). The boundaries between
oscillation and steady state occur quite close to the prediction at both high and
low concentrations. The slope of the log-log plot is approximately -2, which is
correct for the kinetic model.

The kinetic model predicts that radicals are produced in an oscillatory
manner. We have detected two radicals in Stage II by EPR using a flow system.
This appears to be the first time that organic radicals have been detected in an
oscillating chemical reaction, although they have been proposed for other
systems. We have not been able to confirm the identity of the radicals, but
reasonable conjectures are possible.

In conclusion, it appears that the original 11 step mechanism explains the
gross oscillatory behavior of this system reasonably well. Many fine details
remain to be filled in, especially the role of bromide as a ligand, the effect of
Co complexes, and the relatively narrow range of water concentration (5-20%) in
which the reaction shows oscillatory behavior.
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Analysis of Elementary Steps in Oscillating Chemical Reactions

Donald W. Boyd, Irving R. Epstein, Kenneth Kustin, and Oscar Valdes-Aguilera
Department of Chemistry, Brandeis University, Waltham, MA 02254, USA

1. Introduction

The recently discovered chlorine(III) (chlorite-based) oscillators
show a wide range of dynamical phenomena in "batch" and "flow."

In addition to oscillations, these systems give rise to chaos,
birhythmicity, spatial inhomogeneity, and other unusual effects [1l].
To uncover the chemical origins of these phenomena, we construct
multi-step mechanisms, and test them out by modeling the system's
observed behavior with them. However, the validity of a mechanism
may not be judged fairly, if insufficient rate data exist for elemen-
tary steps in the mechanism.

We are therefore attempting to elucidate the kinetics of elemen-
tary steps relevant to chlorite-based oscillators when this infor-
mation is not available, and report several such analyses. In
addition to the application to modeling studies, the results are
also of general chemical interest. Moreover, under certain con-
ditions, these so-called elementary processes can become complex,
leading to the discovery of new phenomena. We begin by reporting
on our studies of initial steps in the reaction between MnO4~ and
Cl1(III). 1In later sections we discuss the reactions of C1(III) with
other halogen species.

2. Chlorine(III)-Permanganate

This study was undertaken because the Cl(III)-I-MnO4~ system
appeared to be a new oscillator, and not simply a perturbation on
Cl(III)-I"[2]. The Cl(III)-MnO4~ reaction is rapid.and complex;
consequently, we studied both stoichiometry and kinetics for
reaction times less than one minute by conventional and rapid
mixing spectrophotometry. Under these conditions the reaction
stoichiometry is straightforward,

MnOy~ + 5C107 + 8HT = Mn2% + 5C10, + 4H,0 (1)
with rate law

-d[Mn0oyg~1/dt = k[MnO4~1[C1(II1)] (2)

k = (k1 + ko[HY1/Ka) (1 + [HY]/K) (3)
where kj and kj are rate constants for the rate-determining steps
MnO4~ + Cl03~ —> MnOg42~ + ClOy (kj=24.4 + 2.0 M~1 s~1), and
MnO4~ + HClOp —> Mn042~ + ClOoy + HY (kp = 92 + 29 M~1 s-1); and

Ky = [HT][Cl0271/[HClO5] = (2.70 + 0.45) x 1073M at 25.0 * 0.5°C
and ionic strength 1.0M (NaClOg) [3].

The unusual reactivity pattern HC1l04 > Cl0O3~ explains the
inhibition of the Cl(III)-I~ oscillator by permanganate at pH 1.
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The I~ ion cannot compete with MnOg~ for Cl(III). Oscillation
occurs in the Cl(III)-I"-MnO4~ system at pH 2-3.5 because the
Cl(III)-I~ reaction competes favorably with the slowed-down
Cl(III)-MnO4~ reaction in this pH range. Other features of the
Cl(III)-MnOg~ study are unusual as well. The value of K5 is
smaller than that previously determined, presumably due to avoid-
ance of HClO; decomposition under rapid-mixing conditions. Neither
the values of kj; and kj, nor the greater reactivity of HC1lOjp
compared with ClO,~ are consistent with an outer-sphere electron
transfer mechanism, in contrast with most Cl0,7/Cl0O5 reactions
[4]; it seems likely that the chlorine(III)-permanganate reaction
mechanism is inner-sphere electron transfer.

3. Evidence for XCl0; Intermediates in Chlorite-Based Oscillators

Earlier studies on oxyhalogen kinetics implicated the existence

of X307 (X = halogen) species as transient intermediates in a
variety of net and exchange reactions. Species proposed include
Cly05 [5], I505 [6] and IC1l03 [7]. The mixed halogen species

IC1l0; plays a key role in the mechanism of the fundamental
Cl(III)-I" oscillator [8]. 1In batch, this system "clocks";
autocatalytic buildup of the brown color due to iodine is

followed by an abrupt fadeout. The fadeout is due to the oxidation
of iodine by unreacted chlorine(III). The kinetics of this reaction
were determined by stopped-flow [7].

The rate law for the reaction
5C105~ + 2I, + 2H0 —> 5C1~ + 4103~ + 4H' (4)

consists of three terms, one of which is Cl(III)-independent. We
have assigned the two Cl(III)-dependent terms to ClO~ reactions
with Iy and I OH” leading to ICl0; formation. The Cl(III)-indepen-
dent term is represented by the process
k
I, + Hp0 R IOHpt + I~ (5)
k-5

I0H,* + Cl0j

> ICl0op + H0 (6)

In our experiments, kg [Cl03~] >> kg [I ], and the Cl(III)-
dependence expected when the rate expression for (5) + (6) is
derived is not observed.

The kinetics of the batch reaction between chlorine(III) and
iodine species has now been documented. It is known that chloride
ion accelerates the decomposition of Cl(III) in acid media. It
is natural to speculate on the effect bromine species would have
on C1(IITI). Would the system Cl(III)-Br~ oscillate? Would it
"clock"? What reaction would occur when C1(III) and Brj are
mixed? Would mechanistic analysis require postulation of BrClO;-
type intermediates? To find out, we mixed Cl(III) with Br~ in flow
and batch, and reacted Brj (and Br3~) with C1(III) in batch.

4. Chlorine(III)-Bromide Ion and Br, Reactions

The system C1(III)-Br~ oscillates in flow [9]. However,

guidance from the better described Cl(III)-I~ oscillatory system
may be misleading, because bromine species usually possess greater
oxidizing power than analogous iodine species, and bromine species
show comparable or even greater kinetic lability. We have there-
fore adopted an empirical approach, and determined that, (a) Brj
oxidizes C1l(III) to Cl(IV) cleanly, (b) depending on pH and con-
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Figure 1. Stopped-flow oscillograph of the reaction Bry + Cl(III).
Ordinate (50 mv per major division) is proportional to decreasing

% transmittance. 1Initial concentrations in mixing chamber:

[Brp] = 3.98 x 1074M, [C1(III)]= 1.06 x 10~2M, pH 3.0, ionic
strength = 0.6M [NaClO4], temperature = 25.0 +0.5°C; wavelength =
380 nm

centration, Cl(III) can oxidize Br~ to Brjp, (c) Br~ can catalyze
the decomposition of Cl(III). We shall report on the Cl(III)-Bryp,
and C1l(III)-Br~ batch reactions.

At pH 3 the oxidation of C1(III) by Brjp is capable of spontan-
eously producing one or more of the products ClOp, Cl03~, ClO4™.
Within experimental error, we detect only ClO3; the reaction is
therefore

2C102_ + Brp; —> 2C102 + 2Br~ (7)

The rate law, determined by stopped-flow spectrophotometry
(Figure 1) depends on [H*], [Br~], [Brp] and [C1(III)I,
(initial [C1(III)]). At moderate acidities the rate law expression
is
(%) dl[clo,] = (a1 + ap[Br~1)[Bry][Cl(III)]2 (8)
dat b[CI(III)], +c[Br 14 +d(1l+el[CI1(III)]y)[Br~]

Under conditions where b[C1(III)]l, >> c[Br~]2 + d[Br~], and

aj] >> az[Br~] the rate depends on aj/b. The remaining parameter
ay/b is influenced by [H*], increasing with decreasing [H'],
reaching a maximum, then declining to a lower value at pH 7.41.

Several differences exist between the rate law for this system,
and the analogous C1(III)-I [7] and CL(III)-Cly [10] reactions.
The mechanism most consistent with the rate data involves rapid
equilibration between Brjy and Cl(III) to form the mixed halogen
intermediate; for example

Brp + Cl0p~ ———> BrClOjp + Br~ (9)
-~
(A complete mechanism requires inclusion of reaction between
C1(III) and Br3~.) This step is followed by rate-determining
Cl(III) attack; e.g.
BrClop + Clop~ ——> 2Cl0y + Br~ (10)
The complex pH dependence in acidic media can be explained by proto-

nation of BrClOp and greater reactivity of Cl03~ than HC103. 1In
alkaline media, the reaction with HOBr should be considered.



The dynamical behavior of the system Cl(III)-Br~ is complex;
product formation depends on conditions. We summarize our

gbservations as follows. Br~ in excess: the observed reaction
is

Cl0p~ + 6Br~ + 4HtY ——> C1~ + 2Br3~ + 2H,0 (11)
The rate law is
(3)d[Br3~1/dt= k[CLl(III)],[Br~]1[H*] (12)
where k = (9.5+0.5) x 1072 M~2 s~1 at 25°C and ionic strength
1.0M (NaClO4). This rate law can be explained by rate

determining formation of a protonated mixed halogen intermed-
iate, or hydrolyzed mixed halogen intermediate; e.g.

H* + Br~ + HCl0p —> BrClO + Hy0 (13)
followed by rapid Br~ attack; viz.

Br~ + BrCl0 ——> Brp + ClO~ (14)

Cl(III) in excess: ClOp is observed; Br~ appears to catalyze

the decomposition of HClOj;. The stoichiometry and rate law are
difficult to define. However, at concentrations in the narrow
range [C1(III)]lo« 2 x 1073M, [Br~] = 5 x 104 M, a clock reaction
occurs (Figure 2a), the lag time of which decreases upon

addition of small (< 2 x 1074M) amounts of added Brp (Figure 2b).
The mechanistic steps relevant to the Cl(III)-Br system should
therefore be similar to those of the Cl(III)-I~ system, with
appropriate rate constants.

5. Conclusion

The studies we report have provided rate data for the modeling
of complex dynamical systems. The importance of intermediates
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Figure 2. The Cl(III)-Br~ clock reaction. (a) [Br~] = 5 x 10~4mM,
[CLl(III)]y = 1.65 x 10-3M, [HC104] = 0.2M, ionic strength =

0.5M NaClO4q, temperature = 25.0 + 0.5°C; (b) Same conditions with
[Bro] = 2.26 x 1075M initially present; wavelength of recording =
390 nm
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of the form XClO; for chlorite-based oscillators has been
established. This conclusion is strengthened by the finding that,
even in the permanganate system, an inner-sphere mechanism pre-
dominates. Further modeling studies of other chlorite oscillators,
such as Cl(III)-thiosulfate, will determine whether direct
attachment of C1l(III) by reductant or oxidant is a common

feature of chlorite-based oscillators.
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Bistability in the Reduction of Permanganate by Hydrogen Peroxide in a
Stirred Tank Flow Reactor

P. De Kepper, Q. Ouyang, and E. Dulos

Centre de Recherche Paul Pascal, Domaine universitaire
F-33405 Talence Cédex, France

In recent years, the number of isothermal homogeneous chemical oscillating reac-
tions has considerably increased, but all the chemical oscillators are based on
halogen chemistry [1,2] with the exception of the methylene blue-sulfide-sulfite
air oxidation [3] and its simplified version : the hydrogen peroxide oxydation of
sulfide in neutral or basic solution in flow reactor [4]. The recent cobaltbromide
catalized oxidation os some aromatic compounds by air [5] could also be regarded
as a non-halogen oscillator if the role of bromide is only to form a cobalt (III)-
bromide complex more active than Co3+.

Sulfur and carbon chemistry are certainly very rich areas for complex feedback
reactions and will probably produce in the near future a wealth of chemical oscilla-
tors comparable to that found in halogen chemistry.

In the following, we present our efforts to produce oscillatory dynamics in ano-
ther area of chemistry : the_manganese chemistry. It is based on the cross-shaped
phase diagram technique [6,7]. It starts with the quest for bistable systems and
then continues with the search of unstable states at the boundaries of the bistabi-
lity domain. Isothermal chemical bistabilities can be obtained when autocatalytic
reactions are performed in flow reactor mode. A number of autocatalytic reactions is
reported in manganese chemistry. Among the best documented, Tet us mention the reduc-
tion of permanganate (MnO7) by oxalic acid [8], malonic acid [9] or hydrogen peroxide
(H,0,) [10,11,12] and the oxidation of manganeous ions (Mn2*) by periodic acid [13]
or chloroperbenzoic acid [14]..

Previous studies have shown that the permanganate-oxalic acid reaction can be

bistable when performed in a C.S.T.R. [15,16]. This reaction is relatively slow at
room temperature. We focus here on the faster MnO; - H,0, reaction.

1. The Mn0,” - H,0, - Mn?* - HCI0, system

In batch reactor

In excess H,0, and at Tow enough pH, the reduction of Mn0; to Mn2* s quantitative
with the following stoichiometry :

2Mn0; + 5H,0, + 6H* = 2Mn2* + 50, + 8H,0

The reaction generally presents an induction period with a slow decrease in MnO;
concentration, followed by an abrupt drop off with disappearance of all trace of
permanganate color. Initial addition of Mn2*, a species involved in the autocatalytic
Toop, reduces dramatically the induction period. A strange aspect of this reaction
is the oseillatory dependence of its half-life time on initial [H,0,] or [Mn?*] as
already mentioned by several authors [12].

C.S.T.R. results

In a thermally regulated flow reactor, the steady state values of the absorbance at
525 nm (maximum absorbance of Mn0O;) can take two different values as a function of the
flow rate ko (ko is the reciprocal of the residence time t) as shown in figure 1.
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The set of state with low optical density (0D) is referred to as the reduced steady
state (RSS) because manganese is mainly in its reduced Mn(II) form. It corresponds
to the extension of the equilibrium state at ky=0 and is the so called thermodynamic
branch. The high 0D set of state is referred to as the oxydized steady state (0SS),
for manganese is mainly oxidized to Mn(VII). This latter state corresponds to the
flow branch where species concentration is primarily determined by the input flow,
because the chemical processes are slow relative to the flow. The two branches over-
lap over a large range of kg. Arrows pointing respectively up and down indicate ko
Timiting values for stability on the RSS and the 0SS branches. Transition time from
0SS to RSS is typically 10 seconds whereas the reverse transition (RSS-+0SS) is of
the order of the residence time t. The determination of the stability 1imit of 0SS
and RSS can be repeated for a range of input hydrogen peroxide concentration
([H202],)* and this for different [HC]OH]O.

Figure 2 represents the bistability Timits in the (ko, [H,0,]o) plane for three
different [HC10,],, all the other constraints being kept conStant. The width of the
bistable region decreases with increasing [H,0,]o, at any [HC10,], and beyond a
critical [H,0,]p it reduces tozeroatlowflow rate. The vanishing regions of bistabi-
lity are difficult to establish because of considerable slowing down in the transi-
tion between steady states. Beyond these critical regions, changes from 0SS to RSS
are continuous, no oscillatory behaviour is observed as in the case of minimal
oscillators [17,18]. The whole pattern is consistent with a cusp point behaviour,
in the vicinity of which relaxation oscillations are generally excluded. The other
end of the bistable domain, at high flow rate,is not be observed.

Figure 3 shows a typical dependence of the bistability range in the (kg,[Mn?*].)
plane. Increasing [Mn?+*], enlarges the bistability range as a function of ky. But
above a Timiting value o? UWn2+f , only the RSS is observed. Below [MnZ+¥] ~ 10-° M
experiments are not easily reprogucible, probably due to uncontrolled trace impurities
in the permanganate solutions which are buffered at higher [Mnz+]/ . When [H,0,]0
is increased, the bistability region in the (kg,[Mn2¥]) plane shrinks. nere again,
only the Tow flow cusp point can be studied. The high flow end of the bistable
domain was not observed for any of the presently investigated conditions. Very short
residence time, beyond the reach of our present experimental set up, seems to be re-
quired.

2. Perturbed MnO; - H,0, reactions

In the next step, we modified our initial reaction system by introducing additional
reagents in order to generate appropriate feedbacks which would destabilize the
previous steady states [6,1b]. We mainly focused our attention on persulfate (S,027).

*
Input concentration of any A chemical species is denoted by [A]o.
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Indeed, persulfate is known to oxidize Mn?* to MnO; [20] with the following stoi-
chiometry :

55,057 + 2Mn2* + 8H,0 = 2Mn0; + 10 SO27 + 16 H*

This reaction is very slow at room temperature but its rate can be considerably
increased by introducing silver ions (Ag*) as catalyst [21].

Preliminary experiments have shown that Ag* also catalyzes the reduction of
MnO; by H,0,. We thus first studied the effect of Ag* on the MnO; - H,0, bistability.

The MnO, - H,0, - ag* - HC10, system

Using Ag* instead of Mn2* gives similar results. As shown in fig. 4 the bistability
range of flow rate is enlarged. Above a critical [Ag*], only the RSS is observed.
However this [Ag*], value is an order of magnitude larger than the critical [Mn2*],
value for similar conditions. An increase in [H,0,]o (Fig. 5) can considerably re-
duce the [Ag*] range of bistability.

The MnO;, - H,0, - 8,03~ - Ag® - HC10, system

An additional input flow of persulfate, up to [Szoﬁ'J = 0.1 M, in experimental
conditions otherwise similar to those used in figure 8,produces only very slight
shift in the previous phase diagram. Again only the low flow rate end of the bista-
ble domain can be probed for oscillations. No oscillatory behaviour is observed in
these experimental conditions.

Nevertheless, a different bistable region is found for lower values of [H,0,]
and DWnO:]O and at much larger residence time (t = 30 min). The Pt-potential and the
optical density hysteresis as a function of ko is shown in figure 6. In this case,
the steady states are the 0SS corresponding now to the thermodynamic branch and an
oxidized intermediate steady state (ISS) characterized by a potential plateau at
200 mV (the RSS corresponds to potential values which range from 600 to 700 mV).
Though it is not visible on the absorption measurements at 525 nm, there is a very
definite color difference between the 0SS and of the ISS, the latter is reddish-
purple, probably due to significant amounts of Mn(III) and Mn(IV), while the for-
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mer is deep purple. Figure 7 displays a section of this new bistability in the (kg,
ﬂizoi]o) phase plane. The dashed 1line corresponds to the locus of the steep inflexion
in the steady state potential which separates the ISS from the 0SS. Both ends of the
bistable region were studied but only cusp point behaviour has been observed.
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3. Concluding remarks

Desg1te the fact that no oscillatory behaviour has yet been found, the MnO; - H,0, -
S,0% Ag* - HC10, system seems to be a quite promising system since it produces
two d1fferent types of bistability. They are actually widely separated in the cons-
traint space, which suggests]1tt1e coupling in the chemical processes from which they
are issued. The point now is to see if they can be brought closer, in other experi-
mental conditions, to produce more significant coupling between the reducing process
by H,0, and the oxydizing process by S,0%2~. Another possibility for oscillation is
to study the high flow end of the bistable region ; very fast flow through reactors
are presently built for this purpose in our laboratory.

The mechanisms are still not clearly understood even for the basic permanganate
hydrogen peroxide redox reaction in spite of a wealth of-Titerature (see references in
[12]). There is no satisfactory explanation, specially for the oscillatory rate de-
pendence of the reaction on initial H,0, concentration. Formation of hydrogen pero-
xide dimer [22] or peroxide complexes w1th Mn(II) or Mn(III) [12] was proposed but
there is neither evidence for hydrogen peroxide dimers nor for peroxide complexes
of Mn(II). Moreover a Mn(III)- perox1de complex would have too short a lifetime if one
considerers the reactivity of Mn(III) [?3] The very sharp drop off ‘in the perman-
ganate concentration after a re]at1ve1y Tong induction period is also not an easy
kinetic task to solve. It requires more than first order dependence in the autoca-
talytic species or the presence of more than one major autocata]yt1c species. This
latter assumption is consistent with recent observations in stopped-flow exper1ments
on the H,0, - MnO; reaction, which show that even with a 20 fold excess of Mn2* over
MnO;, the reaction st111 exhibits an induction period [?4] Any mechanism for this
reaction will also have to account for the quadratic rate dependence of the Guyard
reaction [25] (oxidation of Mn2* by Mn0;) on initial[Mn?*, MORROW and PERLMAN [26]
results for this latter reaction suggest the formation of a binuclear 1ntermeg1ate
such as Mn,0} which may be thought of as ananalog of Ag Mn0, proposed in the Ag' cata-
lyzed reduct1on of permanganate by hydrogen L27] Pre11m1nary kinetic modeling of
the MnO; - H,0, shows that the quenching of such binuclear species by H,0, can produce
non-monotonous rate dependence of the reaction on initial [H,02].
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Measurements and Modelling of Unstable Steady State, Separatrix, and
Critical Point Behavior

Tammy Pifer, N. Ganapathisubramanian, and Kenneth Showalter
Department of Chemistry, West Virginia University, Morgantown, WV 26506-6045, USA

1. Introduction

The relaxation of a perturbed chemical system to its stable states provides a
means for characterizing the essential dynamic features of the system. These
features are contained in the phase portrait, a plot of the concentration of one
variable species as a function of another variable species for a variety of
initial conditions. A particular steady state may be characterized as a stable
node or a stable focus according to the appearance of the relaxation trajectories
around that state. In addition, basins of attraction in multistable systems may
be determined as well as the separatrix partitioning these basins. The nature of
the unstable steady state may be determined from relaxation experiments in
systems that can be accurately described in terms of one or two variable species.
This paper reports on measurements and modelling of the relaxation behavior of
the bistable iodate-arsenous acid system. The stable and unstable steady states
are characterized and the separatrix is Tocated in the phase plane. In addition,
the special case of relaxation to the critical point is investigated. A more
detailed account of this study will be forthcoming [1,2].

2. Chemical System

We consider the iodate-arsenous acid system in a CSTR with arsenous acid in

stoichiometric excess. A single stoichiometry describes the reaction at any time
according to (I).

103' + 3HiAs0, = I” + 3H 3As0, (1)

The reaction is autocatalytic in jodide with the rate of reaction governed by the
empirical rate law o.

dIIT1/dt = R, = (kg + ky(IT1)I71010, 1 (H)P (a)

Rate equations (R) provide a near quantitative description of the buffered
reaction in a CSTR,

dii j/dt = R, * ko([I']o- [11) ®)
d[IO3—]/dt = R, + Kk ([103‘] - [I0 ‘])

where kg is the reciprocal residence time and [I~ ] and [103_]o are the reactant
concentrations in the combined feed stream.

Model R was developed to describe slowing down in the jodate-arsenous acid
system [3] and a modified version has been used to describe mushroom and isola
behavior [4]. A more detailed account of the model,which is a reduction of
earlier, more elaborate models [5,6] may be found 1n [1-4].
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3. One-Dimensional System

In solutions containing excess arsenous acid, iodide and iodate are the only
stoichiometrically significant iodine containing species; therefore,
d[I71/dt + d[105 1/dt = 0 and conservation relation (1) is obtained from (R).

(10571 + [I'] = [I0g1  + [I'], (1)

Substitution of (1) into either rate equation (R) yields (R'), a one-variable
model of the system.

d[I71/dt = (kl + kZ[I—])[I-]([IO3-]O +[I-]o -[I_])[H+]2 +k0([1_]0 -[171) (RY)
3.1 The Unstable Steady State

Figure 1 shows the stable (solid circles) and unstable (open circle) steady
states of the system for the composition and residence time indicated in the
caption. The steady states 1lie on the composition 1ine defined by (1); even
away from the steady states the system is constrained to this 1line.

Fig. 1. Low iodide, unstable, and
high iodide steady states on
composition line. Combined reactant
feed stream concentrations: [103']0
= 1,00 x 10-3 M, [H3As03]p = 5.00 x
10-3 M, [I7]y = 4.41 x 105 M
(indicated by vertical dashed line).
Acidity maintained constant with
sulfate/bisulfate buffer_at pH =
2.122 ([H*] = 7.55 x 1073 M).
Reciprocal residence time

ko = 8.20 x 10-3 s~1. Temperature:
25.0 + 0.2°C. From Ref. [1].

104[103]/M

20 40 60 80 100
104[1]/m

The Tocation of the unstable steady state in Fig. 1 was determined by forcing
the system to move along the composition line. Consider the system initially in
the stable steady state with low iodide concentration. When the flow is
temporarily stopped, iodide concentration increases and the system moves toward
the unstable steady state along the composition line. Iodide concentration is
monitored and at the desired concentration the flow is resumed at the original
value of kg. The system relaxes back to the low jodide steady state if the
iodide concentration is below that of the unstable steady state in Fig. 1. When
the iodide concentration exceeds that of the unstable steady state, a transition
occurs to the high iodide steady state. Similar relaxation experiments can be
carried out with the system initially in the high jodide steady state. Here,
the flow rate is temporarily increased and iodide concentration decreases toward
the unstable steady state. A repetitive sequence of experiments allows the
location of the unstable steady state to be accurately determined.

Figure 2a shows a set of four experiments where the iodide concentrations,upon
resuming the flow,were identical within the experimental resolution of three
significant figures. The relaxation curves to each of the stable steady states
are effectively superimposable when translated on the time axis; however, the
relaxation half-times are 15.2, 31.0, 21.0 and 14.8 min for the upper and lower
curves, respectively. Relaxation curves calculated [7] from (R') are shown in
Fig. 2b. Here, the initial iodide concentrations were also the same within three
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Fig. 2. Relaxation curves from unstable steady state of system in Fig. 1:
a) Experimental behavior; (b) calculated behavior according tg (R!) with kq =
4.5 x 103 M3 s-1, ky = 4.5 x 108 M-4 s-1, and k, = 6-40 x 10 s-1. Ref. [1].

significant figures. The initial iodide concentration for the middle curve, with
a relaxation half-time of 2.6 hours, was the same within eightsignificant fiqures
as that calculated for the unstable steady state. Fiaures 2a and 2b show that
there is an extreme sensitivity to initial conditions around the unstable steady
state. In addition, we see that the system may remain near the unstable steady
state for extended periods of time when it is initially very close to that state.

4, Two-Dimensional System

Conservation relation (1) allows the system to be described in terms of one
variable. This relation is no longer valid when the system is subjected to
perturbations that introduce additional material to the reactor. Thus, model R
is needed to describe experiments where the system is perturbed by sudden
injections of reagent.

4.1 The Separatrix

Relaxation experiments were conducted to determine the location of the separatrix
in the [I ]-[I03 ] phase plane. The method was similar to that used in the one-
dimensional system. However, in these experiments the system was perturbed by
injecting reagents containing KI, KIO3, and AgNO3. In all cases, the volume of

%he injecged reagent (10-70 ul1) was insignificant compared to the reactor volume
35.39 ml).

The solid curve in Fig. 3 shows the experimentally determined separatrix.
Perturbations from the low iodide steady state were carried out using iodide and
neutral iodide/iodate reagent. Perturbations from the high jodide steady state
were carried out with silver reagent rapidly followed with iodate reagent. The
unstable steady state determined by one-dimensional perturbations (open circle)
compares well with the determination carried out by two-dimensional
perturbations, indicated by the arrows on the cormposition Tine.

5. Critical Point Behavior

The critical point was found by locating the hysteresis limits for a series of
reaction mixtures with increasing jodide concentration in the reactant stream.
The critical jodide concentration, [I']S, was iteratively determined to three

significant figures.

One-dimensional relaxation experiments were carried out at the critical iodide
concentration and different values of kg. Each perturbation consisted of a
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Fig. 3. Separatrix. Arrow heads show
initial positions of perturbed states
and their directions indicate to which
steady state the system relaxes.
Dotted lines indicate origin of
perturbed states. Concentrations and
conditions as in Fig. 1 except kg =
9.82 x 10-3 s-1. From Ref. [1].
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Fig. 4. Relaxation half-times T as a function of ko: (a) Experimental values.
Concentrations and conditions as in Fig. 1 except [I ]8 = 1.47 x 10-* M and

pH = 2.176 ([H*1, = 6.67 x 10-3 M). (b) Half-times calculated from (R').
Concentrations as in (a) except [I7]§ = 1.20 x 10-4 M. From Ref. [2].

2.0 x 10-4 M increase in fodide concentration above the steady state
concentration. A dramatic slowing down is evident near the critical point in a
plot of the relaxation half-times as a function of kg, shown in Fig. 4a.
However, the quantitative features of the slowing down are highly dependent on
the size of the perturbation, the proximity to the critical point, and the
particular definition of relaxation time [2].

Figure 4b shows relaxation half-times calculated [7] from (R'). Shown are
half-times (----) for perturbations consisting of 2.0 x 10-4 M increases above
the steady state iodide concentration and half-times (--—) predicted from
lTinear stability eigenvalues of (R'). Half-times calculated from (R') for
perturbations consisting of increases less than ca. 1.0 x 10~/ M above the steady
state fall on the linear approximation curve (-—). Each curve can be
approximately described by (2), where T is the half-time, k§ is the critical
reciprocal residence time, and z is the critical exponent.

T = |k0 - kg]—z (2)

Experimental values of z in Fig. 4a of 0.50+0.09 and 0.82+0.13 compare with the
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values (----) in Fig. 4b of 0.58 and 0.85 before and after the critical point,
respectively. Values for the linear approximation (-——) are 0.77 and 0.64.
For small perturbations very near the critical point [2], z = 2/3, in accord
with theoretical predictions [8].
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Isothermal Autocatalysis in Open Systems (CSTR): Simple Models and
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University of Leeds, Leeds LS2 9JT, United Kingdom
Stephen Scott

Macquarie University, N.S.W. 2113, Australia

Autocatalysis 1ies at the heart of all isothermal oscillatory systems. When the
catalyst is not completely stable but undergoes decay [1-5], particularly varied
behaviour is possible even in the simplest of open systems - the cstr operating
isothermally. The kinetics may be represented by the scheme

quadratic A + B - 2B  rate = kqab (1a)
cubic A+ 2B~3B rate = kjab? (1b)
B~C rate = kpb (2)

Cubic autocatalysis with catalyst decay can give rise to strange patterns of
stationary states and to sustained oscillations. (This is also true of enlarged
schemes [6] incorporating the reverse steps and the uncatalyzed reaction although
the algebra is heavier.) Today we are mainly concerned with the birth, growth and
extinction of stable oscillations and to the response of the system to continuous
changes in residence time.

1 Exotic patterns of stationary-state dependence on residence time

Consider the simple, irreversible cubic autocatalysis (1) coupled with a first-
order decay or poisoning reaction (2). The mass-balance equations can be readily
written [2] in the following dimensionless form

do. 2 1
— = -ap” + (1 - a) (3a)
dr Tres
dB 2 B 1 }
= = aB” - =+ (8. - B) (3p)
dt Tp Treg  ©
where
o = a/a0 B = b/u.0 BO = bo/ao (4)
_ 2 B 2 _ 2
vo= k1aot To ~ k1a0/k2 Tres k1aotres‘

Here ag and by are the concentrations of A and B that would be established-by the

inflow in the absence of chemical reaction and tyeg is the mean residence time.

The stationary-state condition is

2 1 Tres 2

s — U+ (-
res

This is a cubic equation in agg and a quadratic in the residence time treg. In

the special case of no B in the inflow (B, = 0), one solution of this equation is

(1 - agg) = 0. This factor may then be cancelled from each side to leave a
guadratic in agg for the two remaining stationary-states

agg (1+ 85 - agg 5s)- (5)

2

1 Tres
a.. (1 -0a. ) = 1+ =2 . (6)
ss ss Tres T,

Because the left-hand side has a maximum value of } when agg = %, and the right-
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: b FIGURE 1 Different dependence of

stationary-state extent of conversion
found for cubic autocatalysis with
catalyst decay

1-Qg¢

Tres

hand side a minimum of 4/tp when T.o. = Top, this equation can only have real
solutions if 1y 2 16. With this conaition satisfied, the resulting dependence of
the stationary-state extent of conversion 1 - agg on residence time portrays an
isola pattern as shown in figure 1a.

A graphical route to evaluating the stationary-state patterns for the general
case of non-zero catalyst inflow (By > 0) has been given elsewhere [2,3]. As well
as isolas, mushrooms and unique dependences of 1 - agg On T.ag may be found (Figs.
1b and c¢). Figure 2 divides the By - T2 parameter p?ane into regions in which each
of these different responses occur.

Bo unique IH
1/ !
8 ]
01 | !
/
/" unique FIGURE 2 Bo - Tp regions for
mushrooms /’ mushroom, isola and unique
- g dependences of stationary-state
isolas on residence time. The line H
divides systems which may show
Hopf bifurcation (high t5) from
\ Y A L Fi‘ those which may not (Tow tp)
0 116 0-1

2 Stability and character of stationary-states

The character and Local stability of the stationary-state solutions along the
different branches of the isola and mushroom ete. patterns are evaluated in the
usual manner [7] via the eigenvalues of the Jacobian matrix.

In the case of no catalyst inflow, the Towest solution corresponding to no
conversion is always a stable node (sn). The middle solution is always an unstable
saddle point (sp). The nature of the highest extent of conversion varies with the
residence time: it may be a stable node, stable focus (sf), unstable focus (uf)
or unstable node (un). For non-zero catalyst inflow there is further complication
as the character along the lowest branch, which now corresponds to non-zero extents
of conversion, varies between stable and unstable node or focus. Some of the
different sequences found are indicated on the mushrooms in Fig. 3.

3 Hopf bifurcation, 1imit cycles and sustained oscillations

Points at which a stable focus becomes unstable correspond to points of Hopf
bifurcation [8]. These are the conditions at which 1imit cycles emerge in the
a-B phase-plane. The line H in figure 2 divides the B, - T, parameter space into
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two: systems lying to the Teft (at high tp) exhibit at Teast one Hopf bifurcation
at some residence time, those lying to the right (at short t2) do not. For no
catalyst inflow (Bo = 0), limit cycle phenomena only occur if T2 > 16.

Limit cycles may be stable or unstable. Only stable Timit cycles lead to
sustained oscillations in the reactant and catalyst concentrations. Unstable
cycles cannot give rise to observable oscillations, but act in a similar way to
the separatrices of a saddle point, as watersheds. Trajectories starting within
an unstable Timit cycle tend to the stable stationary-state lying inside: other
trajectories move across the phase-plane to other stable states or cycles. The
size of a 1imit cycle is thus important whether it is stable or unstable.

4 Experimental responses to variations in residence time: birth, growth and
extinction of oscillatory behaviour

The three mushroom dependences of the stationary-state on residence time shown in
Fig. 3 differ from each other, in the way in which oscillatory behaviour sets in
and disappears. These in turn lead to different responses of the system as the
residence time is varied. The observations which would be recorded by an experi-
menter slowly decreasing the flow-rate in each case are set out below.

Figure 3(a) For an experiment set up with an initial residence time Tres = 100,
there s a unique stationary-state solution which has stable focal character.

Small perturbations decay in a damped oscillatory fashion. As the residence time
increases, the degree of damping becomes less until a point of Hopf bifurcation is
encountered, in this case at t?es = 200. Beyond this point the system moves into
a series of self-excited, sustained oscillations. These grow from a vanishingly
small amplitude at Tfeg: initially the amplitude is proportional to (Tres - r*es) .
The oscillations have a non-zero period at the point of Hopf bifurcation whicF is
determined by the imaginary eigenvalues of the Jacobian matrix A = % iw,, p = 2m/uwg.
There is no hysteresis at this "supercritical" bifurcation [8]; decreasing the
residence time simply causes the amplitude of the oscillations to shrink back to
zero at tfeg. As the residence time is increased further, the oscillations become
larger and separated by Tonger periods. The envelope surrounding the upper branch
of stationary-state in Fig. 3(a) shows the highest and lowest values of 1 - o
attained during the pulses as a function of residence time.
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At Tpeg = 312.5, a saddle point and a stable node appear in the phase-plane,
corresponaing to the two other stationary-states. Shortly after this, the limit
cycle grows sufficiently large to touch the separatrix of the saddle point and form
a homoclinic orbit. The period of motion around this cycle becomes infinite and
beyond this point oscillations are not found. There is thus a sudden quenching of
large amplitude oscillations. For all residence times greater than tp.g = 313 the
system sits at the lowest, stable state. There is also hysteresis at %ﬁis Timit.
As the residence time is decreased, we pass the point at t,.o¢ = 313 at which the
1imit cycle burst on the upward journey, but do not now move from the lower branch.
Only when there is a saddle-node bifurcation of the Tower two stationary states at
Treg = 312.5 does the system jump back into large oscillations.

Figure 3(b) Again,if an experiment is started at Tpeg = 150 there is a unique stable
node. On increasing the residence time, a supercritical Hopf bifurcation of the
above type 1is encountered at t§es = 326 and approximately sinusoidal, small-amplitude
oscillations set in. These become larger and have longer periods as tT,eg increases.
At Tpeg = 782 there is a saddle-node bifurcation, but the two emerging s%ationary—
states now 1ie within the 1imit cycle. The lowest extent of conversion is at first
an unstable node and then becomes an unstable focus. For T, = 786 there is a point
of Hopf bifurcation along the lower branch. Here an unstabYe Timit cycle emerges to
surround the stable focus, still within the original stable limit cycle. As the
residence time is further increased, the upper two solutions merge and disappear.
Finally, the unstable Timit cycle becomes large enough to touch the stable cycle and
oscillations are abruptly quenched. Beyond this point the system sits on the lowest
branch.

Again there is hysteresis at this long-residence-time end of the range of
oscillatory behaviour. If T, 5 is now reduced, the system stays on the stable lower
branch until the Hopf bifurcation point at tfeg = 786, whence it jumps back into
large amplitude oscillations about all three stationary-states.

Figure 3(c) A further increase of the catalyst inlet concentration leads to the
pattern in Fig. 3c. The behaviour at long residence-times is now quite different.

Once the oscillations have set in at the first point of Hopf bifurcation (tf.¢ =
349), there are two saddle-node bi furcations at Tpres = 921 and Tpeg = 927 within
the Timit cycle. The first gives rise to the emergence of an unstable lower branch
and the saddle point corresponding to the middle branch. At the second the middle
branch merges with the highest extent of conversion. The latter occurs before the
Towest stationary-state has regained its stability, i.e. before the second point of
Hopf bifurcation. When the unstable focus finally becomes stable, at tfqq = 939,
the 1imit cycle shrinks to a point and the oscillations vanish at this second super-
critical bifurcation. There is now no hysteresis at either end of the oscillatory
range.

4 Discussion and conclusions

The cubic rate-law model presented here affords a prototype for many systems of
practical interest, including solution-phase kinetics and enzyme reactions. It
cannot be stressed too strongly that steps 1(a) and (b) do not have to be regarded
as elementary steps. They may be combinations of such steps. Thus the reaction
between arsenite and iodate ions, which is autocatalytic [9,10] in the production
of I, is well approximated at constant pH by the rate expression

rate « {a + [I-]}[I—][Ioél
where [I7] + [105] = constant, over some range of concentration.
The present model differs significantly from the so-called "pool chemical™"
approximation approach, which assumes that the concentration of reactant A would

somehow be held constant, in two important ways. First, there is a finite maximum
value which may be attained by the reaction rate, viz.
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_ 4 3
Riax = 27 K1% >
whereas the "pool chemical" rate shows hyperexponential growth to infinitely large
values [11,12]. Secondly, multistability is a real feature of the cstr equations.
Karmann and Hinze [13] have shown that the multiple solutions for the "pool

chemical" approach are not stable to the inclusion of lower-order steps and their
reverse reactions.

We may also note that the cubic dependence on concentration embodied in step (1b)
is not a necessary feature for sustained oscillations. If the decay reaction for
the catalyst has a less simple form, for example

B ~ C rate = k2b/(1 +rb), (7)
the quadratic non-linearity of step (1a) is sufficient [14].

A rate-law of the form (7) may arise in enzyme reactions,or in heterogeneous
catalysis obeying a Langmuir-Hinshelwood law. The oxidation of carbon monoxide at
Tow pressures displays sustained oscillations under isothermal conditions in an open
system [15], and results indicate that an important role is played by the state of
the reactor surface. This, and other features of the observed behaviour, are readily
correlated qualitatively with this simple, two-step model.
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Composition Variables Needed to Model Complex Chemical Systems

Richard M. Noyes
Department of Chemistry, University of Oregon, Eugene, OR 97403, USA

1. Introduction

The state of a closed, uniform, thermostated chemical system is uniquely defined by
specifying the temperature, the pressure, the number of moles of each species cap-
able of undergoing any sort of reaction under the conditions of interest, and the
numbers of moles of any species (such as inert solvent) which are incapable of un-
dergoing any chemical change.

Such a system will ultimately decay to a state of chemical equilibrium calcula-
ble in principle by invoking the chemical potentials of all potentially reactive
species in their standard states and the activity coefficients of species as func-
tions of composition.

The trajectory of that decay may be very complex, including oscillations in con-
centrations of some species and even spontaneous nonuniformities of composition.
However, if the homogeneous system does indeed remain uniform at all times, the
trajectory can always be described in terms of a number of composition variables
equal to the total number of species capable of reaction.

The change in composition of the system can also be described in terms of vari-
ables based on extents of advancement of various chemical processes. Because there
are constraints such as conservation of the number of atoms of each element, the
number of independent variables defined in terms of extents of reaction will always
be less than the number of species undergoing reaction, and the state of even a
very complex system can often be described in terms of only one or two such vari-
ables. Description of dynamic behavior will usually require more variables, but
even this number will often be much less than the number of reactive species.

The objective of the present paper is to propose procedures for determining the
number of independent composition variables necessary to describe the behavior of
any specific system. The argument will invoke conservation of mass as expressed
in chemical stoichiometry and will rely heav11y upon a recent treatment by CORIO
[1 2]. A further objective, not addressed in this manuscript, is to examine ways
in which the directional constraints of thermodynamics can be applied to properly
selected reaction variables.

2. Stoichiometrically Significant Change

Any net chemical change in a uniform system can be described by an equation like
(T) involving p reactant species and m product species. Each of these species is
distinguishable from all others because of differences in number of atoms of some
element or because of some distinguishable characteristic such as isomerism, elec-
tronic charge, or electronic excitation.

P

1Z]uT1 i Z 0‘TJ g =0 (T)
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The oy coefficients are all negative, and the o; coefficients are all positive;
they need not be integral, and their ratios need not even be rational. The Ri and
Pj terms are formulas of chemical species. Let A denote the total number of spe-
cies represented by equation (T). Then

A = pt+om. (])

Conservation of mass dictates that it should in principle be possible to balance
equation (T) to individual atoms of every element represented. However, neither
analytical technology nor interest in the system could attain or justify such pre-
cision. It will be satisfactory if equation (T) neglects every species the magni-
tude of whose coefficient o is less than some arbitrary fraction (such as 0.01%)
of the maximum a. An equation balanced to this accuracy is said to represent the
stoichiometrically significant change in the system.

3. Multiplicity of Stoichiometrically Significant Change

Although XA species change concentration during the change in state of the system,
these changes are not all independent because conservation of atoms of each ele-
ment imposes a constraint on permissible behavior.

Let € be the number of elements whose atoms are present in at least one reactant
and one product species in equation (T). If the equation as written involves ions
in addition to neutral molecules, conservation of electronic charge imposes an ad-
ditional constraint which can be treated as a unit increase in e. Finally, if
isotopic composition of some element differs in different species, € must be in-
creased to represent,as a different kind of atom,each isotope whose fraction varies.

Although conservation of mass imposes e constraints on the system, those con-
straints are not all necessarily independent. Let v be the number of independent
mass-conservation and charge-balance constraints imposed on equation (T). Of ne-
cessity € > v. CORIO [1,2] has shown how v can be evaluated objectively as the
rank associated with the matrix obtained from the a coefficients in equation (T).

The stoichiometric multiplicity, ¢, can be defined to be the number of independ-
ent variables needed to describe any arbitrarily selected change of state of the

system. It is the number of potential composition variables less the number of
constraints. Then

¢ = A-v = p+tm- V. (2)

0f course ¢ is positive and integral for any real system.

4. Independent Component Processes

If consideration is directed to processes rather than to species, the multiplicity
¢ is the number of independent stoichiometric processes necessary to describe any
arbitrary overall process. Then any possible combination of coefficients for which
equation (T) is balanced can be generated by a linear combination of ¢ independent
component processes each of the form of equation (C).

P, = =
a o3P 0 m=1,2,...,0 (c)

1

n ~o

=l
+
I o~ 3

mi i
i=1 j
The coefficients of that combination need not be rational but their ratios must be.

The number of independent component processes is uniquely defined by the proce-
dures described above, but the specific processes may often be selected arbitrarily
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according to convenience. The situation is completely analogous to the selection
of component species in an application of the Gibbs phase rule.

5. Extents of Advancement of Component Processes

Let Em be the extent of advancement of the mth independent component process where
- is defined to be zero for the initial state of the system and is positive in
the equilibrium state.

Let <, be the concentration of the nth of the A species which are either react-
ants or products in equation (T). Then
¢
dcn = Z amndgm n = ],2,..-,)\. (3)
m=1

The A equations of the form of (3) permit a transformation of variables so
that change in state of the system can be described in terms of the ¢ variables de-
noting extents of advancement of independent processes. As equation (2) shows,
¢ < X for any conceivable system, and a smaller number of variables will be em-
ployed if changes of state are described in terms of advancement of independent
processes rather than in terms of changes in concentrations of all species. In
practice, the stoichiometrically significant change in even quite complex systems
can often be described in terms of no more than two or three independent component
processes. Thus, we have recently shown [3] how the stoichiometrically signifi-
cant change in the Belousov-Zhabotinsky reaction can be described in terms of one
or at most two component processes. However, even ¢ may become rather large for
processes like the pyrolysis of some organic compounds.

6. Extension to A1l Species

The above argument was developed for treating stoichiometric changes in the total
state of a system to the accuracy attainable experimentally. However, there may

be species whose presence is essential to describing the dynamic behavior of the
system even though they do not contribute significantly to changes in thermodynamic
properties. Let there be 1 of these intermediate species, each of which is either
a very minor reactant or product or else is always formed and destroyed at such
nearly identical rates that its absolute concentration never changes significantly.
Then equation (T) can be rewritten as (T') which describes the exact stoichiometric
change in the system.

1
oapiR + DogPs + Topd, = 0 (T")
1 =1 k=1

I~

i

The o coefficients may be positive, negative, or even exactly zero, but they are

so small in magnitude that equations (T) and (T') yield insignificantly different
results for any application to stoichiometric or thermodynamic considerations.

7. Multiplicity of Exact Stoichiometric Change

The multiplicity of the exact stoichiometric change can be determined by procedures
analogous to those for the stoichiometrically significant change. The total num-
ber of composition variables is now « given by
K = p+m+t1 = XA+ 1, (4)
The number of independent constraints on equation (T') can be designated v'.
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The quantity v' may be greater than v because of homogeneous catalysis by an ele-
ment which does not appear in equation (T) or because the additional species in (T')
remove a degeneracy which had reduced the rank of the matrix of coefficients for
equation (T). The multiplicity, 6, of the exact stoichiometric change is given by

6 = k-v'. (5)
Here 6 is the number of independent stoichiometric processes necessary to de-

scribe the exact evolution of the system. For many systems, there will be so many
intermediates that 6 will be much greater than ¢.

8. Variables to Describe Dynamic Behavior

The reason for considering exact stoichiometric change is that the dynamic behav-
ior of a system is often influenced by concentrations of species very much smaller
than those necessary to define the state for purposes of evaluating thermodynamic
properties. Dynamic modeling may need to be concerned with up to 6 independent
composition variables even though thermodynamic modeling need consider only ¢

such variables.

Fortunately, two additional types of constraint can reduce the number of inde-
pendent composition variables needed to define the state for dynamic modeling. One
such constraint exists if there are rapid reversible equilibria. Any such equilib-
rium requires that the average time for reaction of any species by the equilibrium
process is very much less than the average lifetime before reaction of that species
by a process considered in the dynamic modeling. The criterion for independence of
equilibria will involve the rank of a tensor similar to that discussed in the eval-
uation of v. Each independent equilibrium can reduce the value of 6 by unity. If
all species in the equilibrium are reactants or products, the value of ¢ will also
be reduced.

A second powerful constraint arises because many complex mechanisms involve what
CLARKE [4] calls flow-through intermediates. Such a species is always present at
very low concentrations and must react either by the reverse of the elementary pro-
cess by which it has just been formed or else by only one other process. Such a
situation can be illustrated by the elementary processes (A1) and (A2).

N

Ry #+ Ry T I +P (A1)
>

Ry + Ia e P2+P3 (A2)

If cpy 2 Cpp and cpy > Cpg, then 1. is a flow-through intermediate if k_;cpy +
k2cR3 >> k]CR] + k_2cP2 and if Ia enters into no other reactions.

Let a particular system involve t independent rapid equilibria, and let there
be o flow-through intermediates. Of course there must always be a degree of ar-
bitrariness as to whether a specific equilibrium is established sufficiently rap-
idly compared to the time scale of importance for the modeling and whether a spe-
cific flow-through intermediate is present at sufficiently small concentration com-
pared to its precursors and successors.

Let w be the modeling multiplicity or number of independent composition vari-
ables needed to model the system to the desired precision. The argument as devel-
oped above has provided unambiguous ways to evaluate w in terms of the relation

w = 6-0-T. (6)

9. Concluding Comments

Some attentive readers may be concerned that the minimum number of composition
variables necessary for dynamic modeling of the system has been defined in terms
of the number of independent stoichiometric processes. The detailed mechanism of
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chemical change is ultimately the consequence of elementary processes each of which
takes place in a single step. The number of elementary processes in a complex sys-
tem may be greater than 6. However, those processes are not stoichiometrically
independent. Different combinations of elementary processes then offer parallel
paths to accomplish the same change of state. Dynamic modeling must recognize con-
tributions from all of these parallel paths, but the number of truly independent
composition variables needed to define the instantaneous state of the system will
not exceed the value calculated by the method of this manuscript.
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Modelling of Chemical Dynamics Towards a Methodological Approach

P. Hanusse

Centre de Recherche Paul Pascal, Domaine universitaire
F-33405 Talence Cédex, France

The modelling of chemical dynamics, in particular out of equilibrium, is a field where
the variety and complexity of behaviour is at its greatest. It is, on the one hand,
the subject of concern to theoriticians, chemists and mathematicians, who find in

it remarkable examples of dynamical systems. They usually study formal simple models,
using a low dimensional space of pertinent or essential state variables. They use
rather sophisticated mathematical methods 1ike bifurcation theory, interaction of
singularities [1], graph theory etc... On the other hand the experimental chemist
starts from a very different point of view. Given a set of reactants [to which he
confers reaction properties using chemical knowledge which, for a given system, is
far from being complete] he designs a model or reaction scheme, the complexity of
which is not amenable to any systematic analysis.

It seems clear that the gap that exists between these two approaches is still so
wide that it does not allow the experimentalist to obtain full benefit of the most
recent or simply the most efficient relevant theoretical results. For this reason,
among others, the modelling of the behaviour of an experimental chemical system is
still very much of an art, even though progress has been achieved towards clarifi-
cation and classification |3|. The gap will be reduced only through the development
of a real computer-aided modelling methodology, providing the chemist with an effec-
tive, reliable and flexible tool through which, using his own language, he could
have access to the ever-progressing theoretical knowledge of complex systems.

The usual approach of an experimental chemist can be considered as deductive, to
the extent that, given a detailed chemical description of the system - the choice
of reactants, of possible reactions between them, the choice of physical kinetic
parameter values or sensible concentrations - he is essentially interested in fin-
ding under which conditions his model can produce the behaviours that he observes
in his experiment. He will usually make a simulation of his model, which most of
the time is just another way to repeat the experiment on the computer, or at least
an idealized version of it. Yet he may learn something is this process. He may even
be Tucky enough to find a satisfactory agreement between the simulation and the ex-
periment, between to two experiments we might say. But what does it mean as far as
the intrinsic capabilities of the model to produce various dynamical behaviours are
concerned ? All those who are familiar with this approach have quickly perceived
its limitation and feel very frustrated by this random quest in a high dimensional
parameter space, so high that it is very unlikely that the basic dynamical structu-
re of the model could be detected.

Contrary to this deductive approach one could consider an <nductive one, which
starting from the minimal chemical description - choice of reactants and reaction
network, with the minimum amount of restrictions - would a priori look for the
structural properties of the model before any attempt to consider physical values
of parameters and of course before any simulation. For example, graph theory tech-
niques [2] are very much of this type.

For some time now we have been involved in such an attempt, trying to incorporate
in a simulation system a reaction scheme analysis tool based on a Reaction Scheme

Translator (RST). Starting from the description of the reaction scheme in chemical
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notation including experimental conditions, this program generates all the equations
that are necessary for the analysis of the model. In a first step this program has
been used to produce the system of differential equations as well as the jacobian
of any complex system under various types of constraints - closed system, controlled
concentrations, continuous stirred tank reactor etc... -. The generated program can
be included in a simulation system which is described elsewhere |4,5|. It provides
data-handling capabilities, various integration algorithms, file management, graphs,
trajectories and profile display utilities and various analysis tools such as stea-
dy states calculation and stability analysis etc...

We shall focus on R.S.T. as a basis of a Reaction Scheme Analyser (RSA) which is
presently being developed. First of all R.S.T. is not an interpreter. The reaction
scheme is truly compiled and is submitted to a symbolic manipulation which allows
the generated program to be optimized for the given model, leading to a very effi-
cient code. Virtually any set of equations or algorithm can be generated in any
programming language, thus allowing a computer-aided use of mathematical tools. Se-
condly this symbolic treatment guarantees the generation of error-free modules
which is highly appreciable when dealing whith complex reaction schemes. Typically
a 20 species model would Tead to 20 differential equations containing 100 to 200
terms and a jacobian of 200 to 300 equations containing 300 to 500 terms. Neverthe-
less, designing an effective modelling system,which implements the inductive approach
that we defined earlier, requires new theoretical methods that allow an explicit
and systematic analysis of a complex system. We shall briefly present the basis of
such a method. It relies on the fact that most dynamical behaviours that one observes
in chemical systems have an effective Tow dimensionality. Indeed one to three dimen-
sions are enough even to produce chaos. Starting from an n-variable model we would
like to determine under which conditions, if they exist, the model is able to pro-
duce various given behaviours such as bistability, sub- or supercritical Hopf bi-
furcation, excitability, etc..

In the deductive approach, given rate-constants one looks for steady states. In
general there is no way to know where they are and how many they are. In the induc-
tive approach we shall give the value of a steady state and.since there could be
several of them,we shall determine under which conditions they all merge, and from
this point of maximum degeneracy we shall unfold the solutions to obtain the confi-
guration of steady states for any given set of control parameters. For this proce-
dure to work, it is necessary to free all rate constants of any a priori renormali-
zation; also, the reaction scheme must be generic in a sense that we shall not make
more precise here. Let us just mention that for any given model there exists an
equivalent generic model, i.e. having the same bifurcation diagram.

Consider a general model with the following rate equations
Xi = F;(X,K)

where X is a vector of state variables and K a vector of control parameters. If
there exists a stationary state XS, for any generic model, it is possible to span
the bifurcation space in such a way that the steady state is X5 = 1. This determi-
nes a set of relations between the K's : 0 = Fi(1,K). We can then work with reduced
variables x = XS - 1 in a restricted parameter space k. The dynamical equations are

X_i = f.i(X,k)
with
0 = fi(o0,k)

Suppose now that one is Tooking for bifurcations with codimension 1. One variable
only will be necessary to span the phase space. In other words,we shall first con-
sider the interaction of steady states in phase space only in one dimension. In that
case the solutions of the steady state equations will move along a line passing
through the reference state xj = 0, which can be projected out on any coordinate
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(in a typical situation). This one-dimensional variety can be parametrized by a
Taylor expansion of the solutions around the zero state :

o o
Xi =L pia X

.a=1
where x may be one of the xis. Inserting this expansion in the steady state equa-

tions, which are usually of polynomial type (in particular in chemistry due to mass
action kinetic law), or can also be expanded around zero :

0= Jij Xj + Kijk Xj Xk + ey

where we use the summation convention, oneobtains :
o+B
_ o
0= Jij Pjo X * Kijp Py Pg X+ -

We have n such equations. n-1 of them must be satisfied identically for all x.

cially if one tries to avoid numerical calculations. Symbolic generation of the va-
obtain :

0=4Jd..p

ij i=1,...,n-1

Jjr ?
0 = Jij Pir * Kijk pJ.1 Py * oeeo i=1,...,n-1
etc...

From these, the coefficients of the expansion, the p's, can be identified in terms
of the kinetic parameters.

The last equation, for i = n, which has the same structure, once the expressions
of the p's have been inserted, has the general form :

0 = Al(k) X + Az(k) X2+ Aa(k) X3+ ...

Al(k) = ‘]nj p

Az(k) = ‘]nj p

Ja
i * Knjk Pis Py *

The dependence on k expresses the fact that these terms are only function of the
kinetic parameters. The above general equation describes the' behaviour of the stea-
dy states along the one dimensional variety. By construction x = 0 is a solution.
It is possible to have a double steady state if Al(k) = 0. Onesees that, together
with the equation for the identification of Py;, ~it says :

Jij Py, = 0 for all i and j,
that is, J has a zero eigen value, which is to be expected when two steady states
coalesce. If A,(k) = 0, there exists a triple steady state. If these conditions can
be fullfilled, then the model can exhibit bistability. Clearly in one dimension the
results of catastrophy theory [6] can be applied.

By this method it is possible to determine the conditions that the parameters
should satisfy, to observe various types of bifurcations. It can be extended to
higher dimensions to detect Hopf bifurcations, excitability, saddle-node bifurca-
tions etc... For a given complex system this task is usually very difficult, espe-
cially if one tries to avoid numerical calculations. Symbolic generation of the va-
rious equations can be performed. This is the role of RSA, the Reaction Scheme
Analyser. By this technique we think that it will be possible to analyze the dyna-
mical structure of complex models, or even to classify elementary formal models.
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Bistability and Oscillations in a Flow Reactor:
The Systems H,0,-KI with and Without Iodate and (NH,), S,0;-KI
with and Without Oxalic Acid

Josette Chopin-Dumas and Marie-Noélle Papel

Ecole Supérieure de Chimie de Marseille, Domaine Universitaire de St-Jérdme
F-13397 Marseille Cédex, France

We describe two bistable systems and the corresponding oscillators. The first sys-
tem consists of H,0, and KI in a dilute H,SO, medium. An auxiliary flow of iodate
103, at elevated temperature only, causes osc111at1ons to take place. The second
system consists of (NH,), S,0,and KI in H,S0, medium,is bistable at T ) 45°C, and
it oscillates in the presence %of a flow of oxalic acid (COOH), .

The redox potential of the solutions was monitored. Part of the reactor exit flux
was passed through the cuvette of a spectrophotometer. It was thus possible to mo-
nitor the presence of I and I, and their concentration fluctuations. Since the
electrode potential is governed by the rapid couples I3/I” and I /I', and since [Ié]
varies onlya 1ittle, the potential indicates mainly pI = - log [}']

1. The H,0,-KI system

The H,0,-KI reaction is well known. It forms I, and I5. This can be observed also
by injecting an iodide stream into a reactor fed with acidic hydrogen peroxide: the
solution turns golden yellow. The evolution of the potential of this state y is
shown in figure 1 as a function of the KI concentration. An increase of the iodide
concentration raises fl;] until the solution is saturated in I, and pink I, vapour
and a black precipitate are formed.

E (mV) I
State a
w TN g
300} [H202]0 = 0.200 mole.I-!
forced, [H2504] 0 = 0.075 male.(-!
transition| To:-28.5C
by K103' = 5,38 mi
200- ‘ peﬁ.urbatmn‘ N e
1
1
100\‘\-1\.\_;_
State y Fig. 1 H,0,-KI system: redox poten-
ol s s - tial £ (response) versus [KI],
' ' (K1lo (male.) (constraint)
Upon pertubation by KIO, injection, the potential grows rapidly (see dashed arrow

in fig.

1), 1nd1cat1ng that KIO consumes I~ faster than does H,0,, and that I
disappears causing a momentary increase on [I,].

If the potent1a1 exceeds a suffi-
ciently high value, it further increases suddenly (dotted arrow in fig.

1) while

[1,] diminishes: the system has undergone a transition to a new state a where the
iodine and iodide concentrations are lower than in the y state, and [I3] is zero.

The solution is orange.

When the system is in state a and [KI], is increased, one observes, depending on
the value of the other constraints, e1ther the prec1p1tat1on of iodine, at a [KI o
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value higher than that of the y state, or a transition to the y state. On the other
hand a decrease of [KI], within the a state entails only a single response, i.e.
the transition to vy . Tﬂis spontaneous o - y transition is complex since the time-
record of the potential shows two waves indicated by the successive arrows in fig.1.
The iodine concentration was found to increase during the first wave, and [I;] rea-
ches its normal level during the second wave. o + y transitions can also be induced
by adding soda.

Hence we found that in a CSTR and in acidic medium, the HZO -KI system can, only
by adding iodate, he forced onto a stable state o which is different from the y sta-
te in which the system usually finds itself. In this new state the iodide consump-
tion is increased and the iodine formation is decreased, and KIO, is formed appa-
rently [L]. By continuity between state diagrams it was possible to verify that the
o and y states in the H,0,-KI system are analogous to the a and y states of the
BRAY reaction [2]. The o state of the BRAY system is observed at high acidity or
high iodate concentration, while the y state corresponds to low acid and iodate
concentrations. We suggest therefore that the iodide and iodine production is de-
creased in the BRAY system when it is fed strongly by KIO, or by acid and vice versa.

An increase of temperature and H,0, concentration reduces the potential differen-
ce between the two states o and y. Raising the temperature increases mainly the po-
tential of the y state, indicating an increased iodide consumption.

2. The H,0,-KI-KIO, system

At room temperature, addition of a KIO, flux to the bistable H,0,-KI system does
not give rise to oscillations, regardless of concentrations. The H,0,-KI-KI0, system
is also bistable; however a new aspect is that transitions between the stationary
states can be reduced by variations of the constraints alone. We have studied this
by adding each of the constituents to the two others: adding iodate to H,0,-KI, io-
dide to H,0,-KI0; and adding H,0, to KIO;-KI.

Addition Of KIO3 to HgOz“‘KI

This experiment confirms the findings from the transition addition of iodate to
H,0,-KI. Figure 2 shows how the potential evolves as a function of iodate concentra-
tion._The initial H,0,-KI system is spontaneously in state vy, the potential is low,
and I, and I, are formed. A Tittle jodate suffices to make fxg] drop to zero, [1,]
to grow and the potential to rise; more iodide is therefore consumed . Following
this, the potential grows slowly with iodate concentration while [I'] remains sta-
tionary: the system receives more iodate and consumes more iodide without producing
more iodine. Finally the system transits spontaneously onto state o by drastically
increasing its iodide consumption while the production of iodine diminishes.

In fig. 2one sees that the potential and with it the free [I'] in state a are
nearly independent of [KIO,| as well as [I,].
On decreasing [k103], the system way transits onto the y-state or remains in the

a-state, even at [1103]0 = 0. This alternative behaviour depends on the values of
the other constraints.

E (mV)

4001 State o 3,
+

3001 _
./y (K1lg = 0.004 mole. I

b - [H202]0 = 0.200 male. I-!
200 // [H2504]g = 0.075 male.I-!
To:-29°C .
- 5.38 min Fig. 2 H,0,- KI-KIO; system (T = 29°C);
100 5505 2 redox potential E (response) versus

Q%Hodo(mdefuns [kKI0,], (constraint)
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The temperature and [H,0,], constraints have the same influence on this system
as on the H,0,-KI system. Increasing their value causes the potential difference
between stafes o and y to diminish. Similarly when [KI], is decreased, and if [KI],
is made to go to zero, the potentials of o and y coalesce: it is thus this undif-
ferentiated a-y state in which the BRAY system H,0,-KIO, can be found at room tem-
perature. As far as the KIO,-KI system is concerneé, which can be considered as the
[H,0,]o =~ 0 Timit of the H,0,-KIO,-KI, there exists a single stationary state v.

Addition of KI to H,0,-KIO,

Where the BRAY system H,0,-KIO; is in the undifferentiated a-y state, its response
to the addition of iodide is determined by its initial composition, and if the
[H,0,]p is fixed it will be governed by [KIO,],. At high iodate concentration a
smali addition of iodide suffices to deplace the system into state a. Transition to
state y may be forced by injecting; it returns however to a when the KI-feed dimi-
nishes. Conversely, the y-state is privileged at low iodate concentrations, and
the system behaves as shown in fig. 1. At intermediate KIO, concentrations, the bi-
stability of the systemismaintained, ifwe go to very Tow [KI]y » 2.5 x 107> mol1.17%,
as can be seen in the four graphes of fig. 3. The state of the system is therefore
also determined by [KIO,]. Likewise, in cases (@ and (&) where [KIO_] = 7.5 and
6.25 x 1072 mo1.17%, state a is privileged, while y is preferred in cases (¢) and
@ where [KIO,], =5 and 3 x 10" % mo1.17* respectively.

ﬁ E mV)/)/t“ NoOH
@ v

P ., ,
300k x-,.EKIOS]O -0,0075 mole. ! 1 E (mV) )/T* NaOH
\‘TH + @ ‘
[KIO3]o =0.00625 mole.l-!
300
250 1 1 " 1 ‘\,‘
00001 00003 0.0005 T~
[K1lg (mole i)
230 0,0001 0,005 0.0005
e (o0 — ' " K1lg (mole 1)
VNG 1
200 {‘ (KI0s]o = 0,005 mole. I Elan)  __a—t
o,
~— A
\l+K103 300k @
¥ {K103]g = 0,003 mole.l-!
250t 11\
00001 00003 00005 ™
[(Klg (mole .I") 3
0 250 |1+KIO3
[H20270-0.200 mole. I~ %
[H2504] 0 = 0,075 mole. |-’ 0,0001 0,0003 0.0005
Toz 29 °C [K1lg (mole .I)

Tz 5,38 min

Fig. 3 H,0,-KI-KIO, system (T = 29°C) : redox potential E (response) versus [KI],
for various KIO, concentrations
@ and (B : state o is privileged ; © and @ : state y is privileged

Addition of H,0, to KIO,—KIT

The initial KIO,-KI system is in state y. The potential is relatively high, and I,
is formed without any trace of I7. Addition of H,0, slightly reduces [Iz and si-
milarly raises the potential (fig. 4): more iodide is thus consumed and Tess 1is
iodine produced. The y-+a transition corresponds to the same changes, only more
accentuated and rapid.
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E(mV) [K1lo = 00035mole.* Fig. 4 H,0,-KI-KIO, system (T_= 29°C):
[K103lo = 0020 mole.I”! redox potential E versus [:HZOZ]0 (constraint)
[H2S04l0 - 0.075mole.I*

! To: 29°C
%\\st\amk t - 538min

»\‘“[_

By

0.00
[Hz O3], (mole. ™)

After the transition, the potential and the iodide consumption in state o in-

crease upon decreasing [H,0,]o . The o state way persistsuntil very low [H,0,]q va-
Tues. But the a -y transition is inevitable when [H,0,[, > 0

At different values of [KIO,]o, the E = f[H,0,], curves confirm the observations
of fig. 2: the [KIO,], value does not affect the ‘potential of the system in state a,
while the potential o? the y state increases with [KI0,],.

3. The (NH,), S,0,-KI and (NH,), S,0,-KI-C,0,H, systems

When iodide is added at room temperature to an acidic persulfate solution, the po-
tential drops rapidly and then reaches a stable value. As the temperature is increa-
sed to 46.5°C, a shoulder develops on the E = f([KIl,) curve (fig. 5). At and above
55°C the (NH,), S,07KI system exhibits two stable states called a and vy, each of
sigmoid form. They coexist over a narrow range of [KI]O. Since the plot of E = f
(flow) has the same shape as E = f([KI],), it is the o state which persists at zero
flow, while the y state is stabilized by flow and exists only at high flow rates.

The system remains bistable at 61°C at all persulfate concentrations studied,
i.e. 0.01 < [szogjo < 0.4 mo1.17%

A supplementary flow of oxalic acid causes oscillations to take place. The state
diagram of the (NH,), S,0,-KI-C,0.H, system in the constraint space [KIJo, [C,0,H,]o
exhibits a cross-shaped topology (%ig. 6).

E (mV)
soop [(NHg)25208] 0 = 0.05 mole. I
[H25041 0 =0.075 mde.-!

T 25,38 min

Suate a

400
300

200

To:=465°C To:55°C  0:615T

. N A Fig. 5 S,03;” - I” system: dependence upon
o odms omo  oow Temperature’of the function E = £ [K1],)
0 (mole I
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[C204H2]g (mole. 1) [(NHa 25208 1o = 0,05 mole. I Fig. 6 Phase-sta‘ge diagram of S, 077 -
[H2504] ¢ = 0.075 mofe.I-! KI-C,0,H, system in [C,0,H,],, [ﬁljo
0.000f . To: 61T space
T 5,38 min
0.0005F
State a State y
o5 510005 o0
Qo?xno(mme14)
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Part I1I

Spatial Structures and Chemical Waves



Propagator-Controller Systems and Chemical Patterns

Paul C. Fife
Mathematics Department, University of Arizona, Tucson, AZ 85721, USA

1. Introduction

A (chemical) propagator-controller (PC) system is a reacting and diffusing system
which supports chemical wave fronts in some chemical species (the propagator
species), the velocity and wave forms of these fronts being modulated by the
concentrations of other species (the controller species). The dynamics of the
controller species may 1in turn be influenced by the concentrations of the
propagator species.

This concept is best understood in the context of simple mathematical models in
which the propagation and control processes can be closely examined. Fortunately,
such simple models exist, and there is ample evidence of their relevance to real
pattern-forming reagents. The idea of a modulated chemical front was present
already in the work of Ostrovskii and Yahno (1975), as well as in the independent
work of Ortoleva and Ross (1975) and Fife (1976).

In this talk, attention will be drawn to the ease by which spatio-temporal
patterns observed in the Belousov-Zhabotinskii reagent can be understood by the
use of PC models. My specific purposes are (1) to show that PC systems are
present 1in model chemical networks which have been proposed for the BZ reagent;
(2) to expound and analyze the simpler mathematical reaction-diffusion systems
which are of PC type, and finally (3) to show that expanding ring and rotating
spiral patterns can be understood within this context.

Most of this is a review and refashioning of previously presented material: for
item (1), see (Tyson 1979), (Tyson and Fife 1980), and (Tyson 1984); for item (2)
see (Fife 1976), (Zaikin and Kawczynski 1977), (Tyson and Fife 1980), (Fife 1984)
and (Fife 1981b); and see (Tyson and Fife 1980) and (Tyson 1983) for the ring
patterns in (3). What has remained up to now was to fit the phenomenon of spiral
patterns into the PC framework. This turns out to be more difficult than the
corresponding task for target patterns, and one approach to this is the principal
new development being reported here. Other mathematical approaches to
understanding these patterns, using less realistic models or else (in the case of
spirals) excluding analyses within the core regions, have been pursued avidly in
the past; I shall not report on them. Finally, I should mention that many other
researchers, in many countries, have come a long way toward developing our
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intuitive understanding of rotors (spirals) and rings by combinations of careful
experimentation and the fashioning of theories which are somewhat independent of
the mechanistic details underlying their formation. For two of many examples of
this, as well as good reviews, see (Winfree 1978) and (Kuramoto 1984),

2. Sigmoidal nonlinearities

The simplest mathematical realization of the PC concept is a system of two
equations with suitable small parameter and with a sigmoidal nonlinearity.
Specifically,

1
Up = edu ¥ Ef(u,v), (1)

v, = eav + glu,v), (2)

where e 1is a small positive parameter, and the nullcline f(u,v) = 0 has the
following S-shape in the u-v plane:

> Figure 1

If the diffusion terms were absent from (1) and (2), the resulting system of
ordinary differential equations might well be the familiar relaxation oscillator;
the condition for this is that g be negative on the Tleft branch in Figure 1,
and positive on the right branch. So as a rule of thumb, PC systems are most
simply modeled by adjoining diffusion to a kinetic system which has the same u-
nullcline as a relaxation oscillator. On the other hand if the nullcline g(u,v)
= 0 intersects either the left or the right branch, the intersection point may,
under simple conditions, be a global attractor, so that no oscillations exist for
the ordinary differential system. When diffusion is added, the spatio-temporal
behavior of solutions may well be totally different. For example, as we shall
see, there may exist stable oscillating solutions in the global attractor case.

A detailed description of the dynamics of the system (1), (2) will be given in
Section 4, but the following can be said at this point in support of the claim
that it has the properties of a PC system. The lowest order formal approximation
to (1), (2) for small e is the system

f(u,v) = 0, (3)
ve = glu,v). (4)
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According to Figure 1, (3) can be solved in three ways for u as a function
of 'K these three solutions are represented by the three branches in the
nullclines drawn there. The middle branch is unstable; the other two we denote by

u = hy(v). (5)

Solutions of (3), (4) may exist for which, at one instant of time, u is
discontinuous in x; such discontinuities represent transition points where the

relation between u and v changes from the + relation in (5) to the - one
or vice versa. In this way, space is divided into regions in which one or the
other of the signs + or - in (5) holds. Suppose the boundary between these

two regions is smooth, with curvature not large. At a transition point on this
boundary, if one reverts to the original equation (1) and stretches the space
variable in the direction normal to the curve of discontinuity by a factor %,
then the resulting equation in u implies that in fact the transition curve must
move with a normal velocity c¢ which depends on v:
c = c(v), (6)
as long as the value of v at the discontinuity lies strictly within the limits
V<V <V, (7)

These moving curves of discontinuity in the variable u will represent very
steep traveling fronts. u is thus the propagator variable. The fronts'
velocities are modulated by the controller variable v through the relation (6).

3. Examples

Rather simple reaction schemes have been proposed as skeletons for the Belousov-
Zhabotinskii and related reactions. See (Tyson 1983) for a critical review of
them. The most famous is the Oregonator (Field and Noyes 1974), which tracks the
changing concentrations of three species HBr0O,, Br~, and cett, Although this
model has been exceedingly successful in reproducing observed exotic phenomena of
various types, alternate three-species skeletons have been proposed as being even
more realistic. A recent one was the "explodator" (Noszticzius et al. 1984),
followed by three revised versions of the Oregonator (Noyes 1984). Tyson (1979)
and Tyson-Fife (1980) showed that a pseudo-steady-state relation legitimately
reduces the original Oregonator to a system with the properties described in
Section 2, provided that the rate constants are taken to have appropriate orders
of magnitude. At the time of the appearance of the above four alternate models,
Tyson (1984) further showed that if the explodator is supplemented by the first
reaction in the Oregonator models, then all four of the new models have these same
characteristics.

In all five cases, therefore, there is, for apparently reasonable ranges of the
parameters, a pseudo-steady state reduction of the kinetic equations to a pair of
equations supporting relaxation oscillations or excitable behavior. If diffusion
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is then added, a Tlegitimate PC system of the type in Section 2 results. If
reaction 1 is not added to the explodator, it turns out that a PC system is
still obtained, but with the following feature which distinguishes it from the
model system in Section 2: the left branch of the S-curve in Figure 1 now lies on
the v-axis, and the lower knee on that curve now becomes the sharp corner formed
by the intersection of another curve with the v-axis (Figure 2). The portion of
the v-axis below the intersection point also lies in the null set flu,v) =0,

but is unstable, so should be considered an extension of the unstable middle
branch.

)

€«— stable ﬁ

X

~
/ unstable

Figure 2

" >
For completeness, it may be instructive to indicate the pseudo-steady-state
reduction process in the case of the explodator with reaction 1 added
(e =8=1 in their notation) and Noyes' third variant of his revised
Oregonator. These two models turn out to be formally almost the same, although
their authors assign different chemical identities to one of the variable
species. The following reproduces the analysis in (Tyson 1984). In the network
below, A denotes a species whose concentration is held fixed, and 0 denotes an
inert product:

(1) A+Y s> X+1Z
(2) X+ Y 27,
(3) A+ X > 2X,
(4) 2X > A+ 7,
(5) 7Y,

(6) Y > 0.

The rate constants will be denoted by ki.g» and the concentrations of the
various species by the same identifying symbols used in the above network. Then
the kinetic equations are as follows:

- 2
X = kgAY = KXY+ KgAK - 2K X7, (8)
Vo= sk AY - KXY+ kT - kY, (9)
_ 2
1= KQAY + 2koXY + kyX® - kgl (10)

Use the scaled variables
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2,2
u = (2k4/k3)X, y = (kz/k3A)Y, v = (2k4k5/k3A Z, T = kgt
and the parameters
€ = k5/k3A, § = 2k4k5/k2k3A, q-= 2k1k4/k2k3, Y = 2k4k6/k2k3A.

Then using <t as the time variable, one obtains

eu' =u(l -u) -y(u -q), (11)
6y' =v - y(u+q) -y, (12)
v = (2u +q)y + W22 - . (13)

It is assumed (Tyson presents evidence in favor of this) that
§ << g << 1,
the pseudo-steady-state aproximation which follows from (12) is
=V
Y 7 urgH
When substituted into (11) and (13), this results in a system like (1) and (2),

except for the diffusion terms, but with the u nullcline having the general

features shown in Figure 1. If diffusion is now added, a PC system is thereby
obtained.

4. Limiting evolution problem: trigger and phase fronts

Here it will be shown that the lowest order formal approximation to the evolution
problem (1), (2) is a simpler evolution problem which can be solved by trivial
methods. For more details and graphical examples, see (Fife 1984)., As mentioned
in Section 2, excluding points on the fronts themselves, space-time can be divided
into 2 regions: the "+" region consisting of all points where the relation (5)
holds with the + sign, and the "-" region similarly defined. Let s(x,t)
denote the function yielding the state of the system at the point (x,t): s then
takes two possible values, + or -. Substituting (5) into (4), we find that

Ve = gt(v) =z g(ht(v),v) when s = +, (14)

Now Tet a spatial location x be fixed, let s be a given sign, and consider

the evolution of v according to (14). There are two ways in which a switch in
the value of s can come about:

1) At some future time, a front as described above, moving with velocity ¢
given by (6), may pass by the position x, while the value of v at that point
lies in the range (7).

2) At some future time the variable v, evolving according to (14), may reach
the upper limit Vv while s = +, or the lower limit v while s = -, The
former case may happen, for example, if g,(v) > 0, so that v steadily
increases, and no front of the first kind reaches x before v reaches V.
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Moving fronts triggering switches of type 1) have been called trigger fronts.
They are very stable structures. If switches of the second kind occur, their time
of occurrence will generally depend on x. This dependence generates a switching
surface traveling through x-space with the property that v =Vv or v at every
point of it. These moving discontinuities are called phase fronts. Of course in
either case, any sort of switch at the location x causes the dynamics of v
(14), in particular the value of V¢s to change abruptly.

One phenomenon important in the following is the conversion of a phase front to
a trigger front. Both kinds of fronts have more or less the same profile, so a
phase front profile may well evolve into a trigger front, the latter being very
stable. This will happen precisely when the velocity of the trigger front to
which it would evolve (and this velocity can readily be determined) is at least as
large as the instantaneous velocity of the phase front. In other words, if the
trigger front can outrun the phase front, it will immediately form and do so. On
the other hand if the velocity of the phase front is high, no trigger front could
be formed: the faster front wins out. Graphical examples were given in (Fife
1984).

The evolution of v according to (14), together with the above rules governing
the changes of S, constitute the 1imit evolution problem. Given initial
values v(x,0) and s(x,0) of these two functions, their subsequent evolution
may be determined by elementary, for example graphical, methods, as will be
explained in Section 5.

5. Expanding ring patterns

This outlines the basic construction of expanding target patterns given in (Tyson
and Fife 1980) and made graphical in (Fife 1984). 1 shall work within the context
of the revised Oregonator model given above. Thus, the starting point is a system
of the form (1), (2), with f as in Figure 1. It will now be important to know
the relative position of the other nullcline, g(u,v) = 0 . Notice that in the
present case, the functions f and g in (1) and (2) depend on two parameters,
q and y. Assume, as does Tyson (1984), that q << 1, and let the parameter

p = y/q be an 0(l) quantity. It is a matter of direct verification that

1) this nullcline is monotone increasing in the u-v plane,

2) g >0 below the curve, g < 0 above it;

3) there is a number g close to 3 such that for o < Qe the g
nulicline intersects the f one at only one point, to the left of the lower knee
in Figure 1; for o > Pos the intersection is to the right of it; and in the
latter case for p not too large, the intersection is on the middle increasing
branch in Figure 1. These cases are shown in Figure 3.

Suppose now that the parameter o depends on x; specifically, it depends on
r = |x| only, and satisfies o < 0 for r > 1/2, and the opposite for r <
1/2. Also suppose that p = pl < °g for r > 1., In
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> Figure 3

(Tyson and Fife 1980) we took this to represent the situation that there is a
catalyst particle at one position (the origin) which affects the chemistry by
changing the rate constants. There is evidence that such particles may act as
leading centers to cause the propagation of ring structures into the surrounding
medium, which may be an excitable one.

In the present case, according to the intersection properties mentioned above,
there exists a stable rest state (ug,vg) on the left branch for r > 1. Let us
take the uniform initial condition v(x,0) = Vo s(x,0) = -, and solve the limit
problem for t > 0 according to the technique alluded to above. First, integrate
(14), for each fixed x, forward in time. For r < 1, the value of p(r) is
such that g < 0, so that v decreases. For r < 1/2, it approaches and
eventuaily attains the value v, at which time s switches to "+". This means
there is an eventual phase front which might be encountered for r in this
range. It is shown as a dotted line in Figure 4. However, at some value of r
in this range, the velocity of this phase front matches the velocity of the
trigger front associated with that value of v =yv (although the trigger velocity
was only defined for v in the range v <v < VvV, we now define it when v =V
to be the limiting value of «c(v) as v+ v). It is at this value of r that
the phase front P; s replaced by a trigger front Tl, which propagates into
the excitable portion of the medium (r > 1) as shown by the solid line in
Figure 4.

\
tl

(symmetric)

Figure 4

' 4
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In the region r > 1, v = vy and the velocity of the trigger front is
constant at c(vo). Thus the first trigger front in Figure 4 is eventually a
straight 1line. Immediately above it, the medium is in state +, where g
remains strictly positive. This means that v, by (14), will increase, for
each x, until its upper Timit Vv s reached. This forms the phase front Py
as shown in the figure. It is roughly parallel to Tl’ because v takes roughly
the same amount of time to reach Vv no matter where on the front T1 it starts
from. The question now arises as to whether or not a trigger front can develop
spontaneously from P,. For this to happen, Po's velocity would have to drop to
the value of c(v). It turns out that when the nullcline is asymmetric as it is
in Figure 1, then this will not happen, so that a trigger front cannot be born
from P2. This asymmetry will in fact hold in the case of the revised Oregonator
example being considered. The third front, like the first, begins as a phase
front, but is necessarily changed into trigger for the same reasons. Continuing

in this manner yields a succession of expanding fronts, hence an expanding target
pattern, as shown in Figure 4.

6. Spirals

These rotating structures are born when a ring is broken. This could be done by
mechanically mixing the reagent at some small location. The ends of the broken
ring then begin to curl up, and eventually develop into a steadily rotating
spiral. The initial curling-up phenomenon is exhibited clearly by the PC model;
in fact, it is evident from a simple thought experiment, as described in (Fife
1984). I shall not repeat the argument here, but rather go on to the question of
modeling and describing the fully developed spiral. When a ring, originally
expanding in a regular fashion, is broken and begins to curl, the curling branches
become somewhat narrower and more closely packed than were the original expanding
rings. The period of the oscillation also decreases. In the context of the PC
model, it turns out that spirals can be described by using tighter space and time
scales than those of the ring structure, and in this approach the new space and
time scales are related to the old by multiplicative factors

62 = 52/3 and § = ¢ s

respectively. Also, because the spatial structure is finer and the function v
has no sharp gradients, it may be suspected that the function v has small total
variation within a spatial wave length.

To avoid irrelevant complications, I shall make two simplifying assumptions
about the functions f and g in (1), (2). The first is a symmetry assumption
on f: f(-u,-v) = -f(u,v) (Figure 5). One effect of this is to shift the u-v
coordinate system so the origin lies half-way up the middle ascending branch of
the u-nulicline. The actual nullcline in the Oregonator models is asymmetric, and
the asymmetry was important in

83



\\\ —f=0
\u>

describing the rings, but it is of no consequence in the study of spirals. The
second assumption is that

Figure 5

g(hy(v),v) = 41, (15)

at least for v near zero. This certainly gives the right sign for g in the
chemical models mentioned before, and the assumption is made only for convenience.
Let u* be the value of u on the right branch, so that

f(tu*,0) = 0. (16)
In accordance with the scale changes mentioned above, set
£ = a'zx, 7=l (17)

In terms of the polar coordinates (r,8) in the g-plane and some scaled
angular velocity w, the spiral solution will be represented by functions

u=u(r,d - s'lwt), vV = V(same). (18)

It then follows from (1), (2) that

~ 2
flu,8v) + 67 (au + wuy) = 0, (19)
BV + wVy + g(eee) = 0. (20)

From this point on, the tildes will be dropped from the symbols V.

The problems (19), (20) can be approximated, to Towest order in the small
parameter §, by a free boundary problem. In fact, to lowest order, (19) says
that f =0, so that (u,v) 1lies on either the right or left branch in Figure 5,
and (5) holds. In view of (15), we have that g = £ 1 in (20), which becomes

av + vy 1 =0, (21)

In this Towest order approximation, then, the plane will be split into two
portions, which we call @,, in which the corresponding sign in (21) holds. One
seeks for solutions such that the interface T between Q, and @_ is spiral
shaped, and is given in two parts: r,, described by % = h(r) for some

function h, and r_:8 =h(r) +7. As r > =, we require that

h =+yr + 0(1) (22)

for some vy; this will guarantee that the spiral is Archimedian, which appears
usually to be the case.
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New polar coordinates, with angle referenced to I, will be useful:

6 =06 -h(r),
so that r_ is givenby 6 =0, and T_ by 6 =m. If one also defines
H(r) = 0D, (23)

then the Laplacian may be written

2,2

_1 1 1,2\
Bgu = Flrug)p + :?uee - F(r"H)'ug - 2rHu o+ TR (24)

o
An interface condition on the free boundary T 1is needed to complete the

formulation of the problem. It can be obtained by a fine structure analysis in
the vicinity of r. Stretch variables near T by defining

¥ z%; U(r,¥) = u(r,0); V(r,¥) = v(r,8).

In this way, (1) becomes
2
8 1 § 200
U, ;?wa - p(rTH)'Uy - 2rheUy,
+ r2H2u,  + 5wl + £(U,8V) = O. (25)
vy Y ’

Originally, the interface T was specified as the location of the boundary
between the regions o, and q_ where the outer solution is in states + and
- respectively. Now, however, along with the stretch of the variable

8 into the variable ¥, with its concomitant smoothing out of the interface, we
must specify more clearly the definition of the interface 6 = h(r). We simply
define it to be the location where u = 0, 0 being a convenient value between
-u* and u*:

u=0 for 8=y =0, (26)
The next step is to formally expand
U= sl v 2 w0

Then to Towest order, (24) becomes

1 2,,2+,,0 0 _
(:7-+ roRT)U, * F(U,0) =0, (27)
and (26) becomes
w(r,0) = 0. (28)

The function f(U,0) appearing in (27) is of "bistable type": as U increases
from -u* to wu*, f is successively zero, negative, zero, positive, and zero
again. Further, by symmetry,

u* _
M (u,0)du = 0,

-u*
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It is well known (see (Fife 1979), for example), that under these conditions, the
ordinary differential equation wa + f(U,0) = 0 has a unique solution

U = x(¥) satisfying y(-=) = -u*, y(=) =u*, x(0) = 0. Therefore (27), (28)
has the transition solution

0O(r,9) = x(p(r)¥), (29)
where
p(r) = (5 + PPH(m)?) Y2, (30)
r
The first order terms in (25) yield the following:

=21 0 1 0 0 1 2 0

P Uy * F (U L0V + £ (U,0V - {r H)'U,
0 (31)

0
- 2rHU, + WU, = 0.

We also have that Ugw =0, so that WO = V*(r) for some function V*, This

order is sufficient to provide the desired interface condition.

Considered, for each fixed value of r, as a second order operator on
'zuwy + fu(uo(r,w),o)u has a
single nullvector Ug(r,w). Therefore the solvability condition for (31),
written as LUL = F, is that F be orthogonal in L, to that nullvector. This

means that

L2(-w,m), the operator L defined by LU = p(r)

@ 0re 10 1, 2,000 0 0
J2 UG LE, (U0,00v%(r) = H(r7H)'Uy - 2rHU, + wl,

ey - Jdy = 0. (32)

3dw, and assume that v > 0; then the above

We tet v = = f (10,00
orthogonality condition may be solved for V*(r). Specifically, to do so we note
that UE =p'(r)x'(py), etc. It follows that
-1.,1, 2 !
VE(r) = v [(F(rTH) - w)p + RN, (33)
where N = [(x'(r))%dx.

Equation (33) is now to be considered an interface condition which must be
imposed on T. Note that it relates the value of v on the interface to w, to
the inclination of the interface, and to its curvature (the latter two quantities
being expressed in terms of H and H'). This condition replaces the usual
relation (6) between the normal velocity of a front and the value of v there,
which is valid when the curvature is not too great and/or v is not too small.
Symmetry requires v to be odd.

To summarize, the problem for the fully developed spiral is, to lowest order in
8§, the following free boundary problem: Find a function

v(r,e), a function H(r), and constants w and vy, satisfying

A+ w g +1=0
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(where by is given by the expression (24));
v(0,r) = Nv'l[(%{rZH)' - w)p(r) + rip']
where p(r) is given by (30);
v is Zm-periodic in 8, v(r,8 + w) = -v(r,0);
and
H(r) = %~+ O(r'z) as r o e,

The expected solution will have an interface of the following form, drawn in
the original g-plane:
¥ 1

> Figure 7.

Figure 6. Wo

A complete solution would have to be obtained numerically; but approximate
solutions for large r and for small r can be obtained by the usual expansion
methods. I'11 not give the details; just the results.

For large r, asymptotic solutions exist for each w in some finite range
0 <wc< wge Given such an w, there are two possible choices for the solution
triple (v, H, y). The possible values of <y are depicted in Figure 7. I
conjecture that the spiral selected by the system through the curling-up process
is the one with the maximum value w = wg (then there is a unique solution). The
reason is that at the "curling center", in the initial stages of formation, the
system tries to twist as much as possible; this twisting is only tempered by the
diffusion of v. Therefore it is reasonable to expect that the maximum value of
w s selected.

For small r, the function v(r,8) may be expanded in a Fourier series in
8, the coefficients being power series in r. Likewise, the function H is
expandable in even powers of r. Certain symmetry relations simplify the
computations. Formal solutions of this sort are available for arbitrary w. for
example, it turns out that H(0) = -w/6. For the function v; there is some
arbitrariness in choosing the coefficients in the expansion, even though w is
prescribed.

It remains to be seen:

1) which of these small-r expansions represent real solutions which can be
continued to Archimedean spirals for all r;

2) which w {s actually selected by spirals forming in the fashion indicated;
and
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3) which small-r solutions connect with the corresponding large-r solutions
for the same value of w.

More on the mathematical side, an existence theory should be developed for the
free boundary problem, not to speak of computational techniques for handling it.

It is important to mention the limitations of this (and any other) approach to
the modeling of spirals in the BZ reagent. In Oregonator-type models, the
parameter e in (1), (2) is given explicitly in terms of rate constants. These
constants are not really known, but there is argument in favor of ¢ being small
(Tyson 1984). Of course this does not imply that 31/3 =¢§ 1is also small, as I
have assumed. That is a more stringent condition. Experimental evidence does not
suggest a wide discrepancy in space-time scales between spirals and targets,
although there is some tightening and acceleration in passing from the latter to
the former (Winfree, personal communication). Nevertheless, it is hoped that the
asymptotic treatment here, based on the smallness of §, will be qualitatively
correct at least, in describing the properties of spirals.

Research supported by N.S.F Grant DMS-8202056.
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The Speed of Propagation of Oxidizing and Reducing Wave Fronts in
the Belousov-Zhabotinskii Reaction

John J. Tyson* and V.S. Manoranjan

Centre for Mathematical Biology, Oxford University, Oxford 0X1 3LB, United Kingdom

1. Introduction

Periodic expanding target patterns of chemical activity are observed
in thin unstirred layers of solution containing bromate, malonic acid
and ferroin in dilute sulfuric acid [1,2]. Commonly these patterns
appear as thin blue rings propagating outward from a central point
into red bulk medium. Since the indicator, ferroin (Iron
1,10-phenanthroline), is blue in the oxidized state (Fe®*) and red in
the reduced state (Fe2*), the thin blue ring is a zone of oxidation
in a predominantly reduced background. The zone of oxidation is
delimited by two wave fronts: a wave front of oxidation carrying the
medium from the reduced state to the oxidized state, and a wave front
(or, we might say, wave "back") of reduction restoring the medium to
the original reduced state. These two waves travel at the same
speed, which depends on the exact chemical constitution of the
reactive solution but is practically independent of the temporal
frequency and spatial wavelength of the target pattern.

Under special conditions the opposite pattern can be observed:
red waves of reduction propagating through an oxidized bulk medium
[3]. In this case the wave front of reduction travels slowly away
from the center, and after a considerable time delay a wave back of
oxidation sets off from the center at about twice the speed of the
wave front. As the wave back catches up with the wave front, the red
ring of reduction shrinks dramatically in width and finally
disappears altogether.

2. OQualitative Description of Target Patterns

TYSON and FIFE [4] have presented a theory of target pattern
formation in the BZ reaction, based on the assumption that at the
center of each pattern there is a heterogeneity which periodically
triggers waves of excitation (either oxidation or reduction) which
then propagate away from the center at speeds determined by the
chemical composition of the medium at the wave front. They describe
the chemistry of the reaction in terms of the highly successful
Oregonator model [5,6]. In suitably scaled and reduced form the
Oregonator equations are

e dx/dt = x(1-x) - fz(x-q)/(x+q) (1a)

dz/dt

X - z (1b)

where X and z are proportional to the concentrations of HBrO, and of
Fe3*, respectively, and g, f, g are parameters (¢ << 1, f = 1, q =

*Permanent address: Department of Biologqy, Virginia Polytechnic
Institute and State University, Blacksburg, VA 24061, USA.
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Fig.l Phase plane for the Oregonator. The x~- and z-nullclines
intersect at a stable but excitable steady state in which the
indicator-catalyst is reduced. The horizontal lines AB and CD
indicate, respectively, a wave front of HBrO, production and a wave
back of HBrO, destruction.

10°3). The nullclines of system (1) are illustrated in Fig. 1, for
the case of an asymptotically stable, excitable, reduced steady
state.

According to TYSON and FIFE target patterns in the BZ reaction can
be constructed locally by singular perturbation theory from wave
fronts and wave backs suitably pieced together. For example, the
jumps in Fig. 1 illustrate the situation far from the center of a
standard pattern [1,2] of thin oxidation waves in a reduced bulk
medium. The wave front is a wave of HBrO, production connecting
state A (low HBrO,) with state B (high HBrO,) at fixed [Fe3%]
slightly larger than the steady state level. The speed of
propagation of this wave depends on the precise concentration of Fe3*
in the wave front, as well as [BrO;~] and [H*] in the bulk medium.
The visual color change lags behind the actual wave front by a small
fixed distance determined by the time necessary to increase z from
state B to the color-change-level (indicated by a dashed line in Fig.
1). The wave back is a wave of HBrO, destruction connecting state C
with state D at fixed [Fe®*] at the local maximum of the xX-nullcline.
Strictly speaking the wave back is a phase wave traveling at the same
speed as the wave front, at a fixed distance behind the front
determined by the time necessary to increase z from B to C. The
color change from blue to red lags behind the actual wave back.

Since the time needed to reduce Fe3®* from D to A at low [HBrO,] is
considerably longer than the time needed to oxidize Fe2* from B to C
at high [HBrO,], the blue annulus of oxidation is narrow relative to
the intervening red regions of reduction and the red-to-blue color
change is sharp compared to the blue-to-red color change.

The situation for waves of reduction in an oxidized medium is
illustrated in Fig. 2. In this case the wave front (CD) is a
"trigger" wave of low speed, determined by the precise [Fe3*] in the
front (i.e., the value of z along the line CD). The wave back (AB)
is also a trigger wave, traveling at a speed (determined by the value
of z along line AB) which is generally larger than the speed of the
wave front. As the wave back catches up with the wave front (i.e.,
as the red annulus moves farther away from the organizing center),
the level of the wave-back-jump (AB) must increase and the speed of
propagation of the wave back must decrease. Far enough from the
center, one of two things must happen: either the levels AB and CD
stabilize and an annulus of reduction of fixed width proceeds off to
infinity (the annulus may or may not be visible depending on whether
level AB is below or above the level of color change), or levels AB
and CD coalesce and the annulus of reduction actually disappears at
some finite distance from the center.
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Fig.2 Phase plane for the Oregonator, as in Fig. 1 except that the

stable excitable steady state corresponds to an oxidized state of the
indicator-catalyst.

Fig.3 The dependence of wave speed ¢ on indicator-catalyst
concentration z in the wave front.

All of these conclusions agree qualitatively with experimental
observations. To test the theory quantitatively we must have actual
numerical values for the wave speed as a function of z in the wave
front.

3. Wave Speeds

To calculate the dependence of wave speed, c, on Fe3®* concentration,
z, TYSON and FIFE replaced the nonlinear Oregonator kinetics (1) by a
piecewise linear approximation. They found that c=c(z) is given
implicitly by the transcendental equation

1 exp[-(c/2w)arcsin(w)]

= + !

(2)
c + (2+c2)Y/2

4fz

where 2w = (2—c2)1/2 and 3m/4 < arcsin(w) < . The wave speed as a
function of 4fz is plotted as a dashed line in Fig. 3.* As c varies
from -J2 to +J2, 4fz varies from O to 1. The wave front is
stationary (c=0) at 4fz = 2-J2 = 0.586.

We have computed c(z) for the fully nonlinear problem

x" + cx' + x(1l-x) - fz(x-q)/(x+q) = O, (3)
x(-=) = x_ , X(+=) = x_,
where x_ < X < x, are the three real roots of x(1-x) - fz(x-q)/(x+Qq)

= 0. The numerical calculations were done by the Galerkin finite
element method, as described by MANORANJAN and MITCHELL [7]. (The
numerical method was tested by computing wave speeds for the
piecewise linear model; the numerical results agreed excellently with
the analytical values of c.) For g=10"% in (3), the curve c(z) is
plotted as a solid line in Fig. 3. Notice that, in agreement with
the comparison theorem for wave speeds of TYSON and FIFE [4], the
trigger wave speed of HBrO,-production fronts developing from the
local minimum of the x-nullcline is larger (in absolute value) than
the trigger wave speed of HBrO,-destruction fronts developing from
the local maximum of the x-nullcline.

*Figure 8 in Ref. [4] is incorrect because arcsin(w) was computed in
the range (0, w/4) instead of the range (3m/4, ™).
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Recall now the situation in SMOES' [3] target patterns (Fig. 2).
The wave front is a reducing wave (blue-to-red transition following
on the heels of an HBrO,-destruction front) traveling at a
(dimensionless) speed of about 0.6. The wave back is an oxidizing
wave (red-to-blue transition following an HBrO,-production wave)
which, close to the organizing center, starts off from the local
minimum of the x-nullcline,

4fz = 4(1+J2)2qg = 0.023, x = (1+y2)g = 0.0024, (4)

at a speed of about 1.6. As the wave back moves away from the
center, the value of z in the wave increases and the speed of
propagation decreases (in absolute value). The value of 4fz must
increase twenty-fold (to approximately 0.5) before the wave back
slows down to a speed of 0.6. This is probably sufficient to bring
[Fe3*] above the color-change-level, so that the annulus of reduction
is no longer visible.

8.15'

X ®
€l 'x @@
EQ
()
w.05F
L o°
W 1 \ 1 1

2 4 6 8

[MA], moles/ liter

Fig.4 The dependence of wave speeds of oxidizing waves (x) and
reducing waves (o) on initial malonic acid concentration, from SMOES
[3]. At low [MA] oxidizing waves slow down as they propagate away
from the center: the maximum speed of oxidizing waves is marked by
an x, the minimum speed is close to the speed of the reducing wave.

In Fig. 4 we reproduce SMOES' measurements of wave speeds as a
function of initial malonic acid concentration in the reaction
mixture. At low values of [MA] one observes slow reducing wave
fronts and rapid oxidizing wave backs. As [MA] increases, the speed
of the reducing wave fronts increases (presumably because the
intersection of the x- and z-nullclines in Fig. 2 is moving up closer
to the local maximum of the x-nullcline) but the maximum speed of the
oxidizing waves remains roughly constant (because they all take off
from the local minimum of the x-nullcline, at 4fz = 4(1+J2)2q, which
is independent of [MA]). Moreover, the oxidizing waves travel about
twice as fast as the reducing waves, in quantitative agreement with
the solid line in Fig. 3.

At high values of [MA] one observes the standard BZ target
patterns: thin blue annuli in a red background, with wave fronts
(oxidizing waves) and wave backs (reducing waves) traveling at the
same speed (see Fig. 4). The wave backs are phase waves, as
discussed by TYSON and FIFE [4], and the wave fronts are trigger
waves traveling at (dimensionless) speed of roughly 1.5 (compare Fig.
3 with 4fz slightly larger than 4(1+4y2)23q).

All that remains is to calculate the dimensioned speed (in, say,
cm/sec) of oxidizing wave fronts. Undoing the scaling used by TYSON
and FIFE to obtain (3), we find that

wave speed = (k[H“][BrO;.,']D)l/2 c (5)
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where D is the diffusion coefficient for HBrO, and k is the third-
order rate constant for the autocatalytic production of HBrO,,

H* + BrOs- + HBrO, X5 Br,0, + H,0

Br,0, + 2Fe2* + 2u* £25%, oppro, + 2red*.

ROVINSKII and ZHABOTINSKII [8] have presented kinetic evidence that k
= 10 M"2s-!. Using this value of k and D = 2x10°% cm?®s~! and ¢ = 1.5
in (5), we obtain,

wave speed = 0.02 cm s~ ! M™! (J[H*][BrO; ], (6)

which agrees within a factor of 2 to the experimental observations of
FIELD and NOYES [9] and SHOWALTER [10]. For [H*] = 0.25 M and
[BrOoz"] = 0.3 M, as in the experiments of SMOES in Fig. 4, (6)
predicts wave speed = 0.06 mm/sec which is also only two-fold smaller
than the observed wave speed. (The discrepancy of a factor of 2 is
not significant given the uncertainty in the experimental value of k
and in the activity coefficient of H* in sulfuric acid solution).

4. Conclusion

We have shown that the Oregonator can describe in quantitative detail
the behavior of propagating waves of oxidation and reduction in thin,
unstirred layers of BZ reagent. In WINFREE's reagent [2] wave fronts
are trigger waves of HBrO, production and wave backs are phase waves
of HBrO, destruction, which travel necessarily at the same speed as
the preceeding wave front. In SMOES' reagent [3] wave fronts are
slow trigger waves of HBrO, destruction and wave backs are fast
trigger waves of HBrO, production. The wave backs start off at
approximately twice the speed of the wave fronts but slow down as
they catch up with the preceeding wave front.

The dimensioned value of the wave speed agrees well with
experimental measurements if we accept the ROVINSKII - ZHABOTINSKII
[8] value for the rate constant describing the autocatalytic
production of HBrO,. This observation is important in light of the
considerable disagreement among chemical kineticists about the values

of three of the rate constants involved in the five-step Oregonator
model [6].
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Macroscopic Self Organization at Geological and Other First Order
Phase Transitions

Peter J. Ortoleva

Department of Chemistry, Indiana University, Bloomington, IN 47405, USA

I. Instability and Nonlinear Restabilization During First Order Phase Transitions

A central prerequisite for the establishment of macroscopic self organization is

that a system be sufficiently far from equilibrium. During the transformation from
one thermodynamic phase to another, some systems can be so arranged that they can
exhibit macroscopic self organization phenomena. One interesting feature of such
self organization phenomena is that the spatial patterns that result from them can
persist for very long periods after the original pattern was generated and the thermo-
dynamic driving force for the processes involved has essentially gone to zero. Thus
many systems undergoing first order phase transitions can not only generate patterns
but can also "freeze in" patterns.

The freezing-in property has interesting consequences for biological systems be-
cause it implies that after the original pattern has been created only very little
expense of free energy is needed to sustain the structure. Since such a mechanism
of maintaining order exists it is hard to believe that the evolutionary pressures
have not selected many organisms which use it as a method of self organization in
embryonic development or 1im and other regenerative processes.

Geological systems are the most striking manifestation of freezing in phenomena.
In this case the patterns can persist for millions of years. These rock patterns
can exist in many geometries - bands, concentric rings, spot patterns and spirals -
and are reviewed in Refs. 1-5. The patterns may result from interdiffusion of co-
precipitates [6], flows of reactive waters through rocks to form precipitate banding
[7] and dissolution fingering [8], growth of solid solution crystals to form peri-
odic zoning [9], pressure solution to form periodic layering [10] and dissolution
seams [11] and many other phenomena [1-5]. The realization that the interplay of
first order phase transitions with transport could lead to macroscopic order dates
back to the last century [6,12], and seems to stem mainly from the work of Liesegang.

Here we discuss a few systems selected to show the range of the possible. It
is clear that this area is rich with phenomena and worthy of more attention in the
future. These systems show a complete spectrum of instability and nonlinear re-
stabilization phenomena familiar from now "traditional" reaction-diffusion theory.
However they also show new phenomena not contained in the latter theory.

II. Competitive Particle Growth Theory

When a uniform sol of PbI, in agar is allowed to age it is observed to form mottled
patterns of precipitate and precipitate~free domains. The driving force for this
instability of the uniform sol has been conjectured to be due to the competitive
growth of the particles due to the particle radius dependence of the equilibrium

constant as a result of surface tension [13]. The simplest mathematical model of
this mechanism is

Bk - R (1)
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9C _ pe2 3 (4 o3
ot = DV°c - nogg(3mR3). (2)

Equation (1) is a growth law for particles of radius R(¥,t) in the vicinity of spa-
tial point ¥ and time t; k is a rate constant, c is a monomer concentration and
c®d(R) is the R-dependent equilibrium concentration. As shown in Ref. 13, the fact
that c€9 decreases with R for supracritical particles implies that the uniform sol
is unstable to pattern-forming perturbations.

Recently the above CPG equations were simulated numerically in two spatial dimen-
sions. A number of interesting spatial patterns resulted. Cases of concentric rings

(Fig. 1), speckles (Fig. 2) and spirals (Fig. 3) were shown to evolve from very mini-
mal deviations from nonuniformity. See also Ref. 14.

Fig. 1
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The experiments of Ref. 13 show that between the patches of high precipitate con-
tent, a few "giant" particles survive. The monodisperse theory of (1) and (2) can-
not describe this phenomenon. A particle size distribution formalism studied nu-
merically in Ref. 15 and analytically and numerically in Ref. 16 shows that the modes
of patterning wherein the tail and maximum of the particle size distribution are out
of phase in space can explain these "greedy giants" in the clear areas of the PbIp
experiments.

ITI. Ostwald-Liesegang Cycle in a Pyrite-Hermitite Percolation System

Consider a flow of oxygen (X) containing water through an aquifer containing the
mineral pyrite (Py). Crudely speaking this leads to the following sequence:

X+ Py ~F +... (3)
X + F 7 Hm (4)

where Hm denotes the iron oxide mineral hermitite. Let the rate of oxidative disso-
Tution of Py be given by

I = k() ()

where k is a rate coefficient and the 2/3 power is due to the surface area dependence
of the process. Here Py represents the moles of Py per rock volume. The rate of Hm
growth is more interesting:

22 = q(8,XF)XF-Q] (6)

Here Q is the Hm equilibrium constant. Since Hm often forms as a thin coating on
the other grains of the rock, we keep track of Hm content through the thickness a

of the coating. The factor g accounts for nucleation: gq vanishes if A=0 unless

XF exceeds a nucleation threshold nQ, n%1. In that case and for A>0 q is a constant
go. The concentration of X satisfies

3X _p 82X _, X, 3Py _ aHm

at © Dxarz Vet et Tat
and similarly for F. Here r is the spatial coordinate along which a percolation
flow of speed v>0 takes place. This model is in the spirit of the original super-
saturation - nucleation - depletion picture of Ostwald to describe Liesegang banding
(except for the flow term) - see Ref. 17 for more details.

Unlike earlier models of the Ostwald type, this model yields bands of finite
width. Most interestingly it appears to be the first well-posed pde model capable
of analysis by techniques of bifurcation and linear stability analysis. Fig. 4
shows the results of analytical calculations showing that a steady Hm pulse solu-
tion exists in the shaded region of the n-g, plane. These steady solutions exist
for 1<n<nma where npay was calculated in terms of the boundary data-X and F at
the flow 1n¥et. Fig. é shows a sequence of simulations showing how the pulse be-
comes undulatory and then breaks up into discrete bands as g, is increased beyond
the domain of steady pulse propagation. Although the system has some features in
common with a Hopf bifurcation, the fact that no steady solution exists for large
99 is the underlying reason for interesting differences under study at present.
Finally we note that the occurrence of this type of banded hemitite is common in
rocks.

IV. Reactive Percolation Morphological Instabilities
Consider the flow of water through a two-mineral rock such that one of the minerals

is dissolved out. Because of the coupling of flow and dissolution through Darcy's
law (that states that the flow speed is proportional to the pressure gradient) one
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can argue that the planar dissolution front is unstable to the formation of fingers.
Numerical simulations of the phenomenon are seen in Fig. 6. Linear stability, bi-
furcation and matched asymptotic methods have been applied to this problem [18,19].

V. Self Organization in Geological Systems

It is hoped that the above phenomena and the cited references indicate the wealth
of instability, nonlinear restabilization and other self-organization effects due
to the interaction of transport and first order phase transitions. These problems
are both interesting in themselves and for the new nonlinear problems they pose.

In a number of cases they also have economically interesting applications in the
0il and mineral industries.
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Temporal and Spatial Structures in Chemical Systems Far from
Equilibrium

John Ross
Department of Chemistry, Stanford University, Stanford, CA 94305, USA

1 Introduction

In this lecture we present an overview of some recent results on temporal and spatial
structures in chemical systems far from equilibrium. We discuss experiments on
multiple stationary states (bi- and tristabilities), hysteresis of unstable station-

ary states, limit cycles, generation of limit cycles by periodic external perturba-
tions, regular and Hopf bifurcations, chemical fronts, time-independent spatial
structures and periodic precipitation processes.

2 Photo-illuminated Reactions

We begin with the photo-illuminated gas phase reaction, S20¢F.% 2 SOsF. SOs absorbs
light of a given frequency which is turned into heat; the temperature of the gas
rises which increases the concentration of SOsF and this in turn leads to an increase
in light absorption. Hence the system has a positive feedback loop which leads to
the possibility of multiple stationary states. (For representative articles on this
subject see [1-3]). When the power incident on the gaseous mixture is slowly in-
creased and then decreased over a range of light power a hysteresis loop is traced
out in the plot of steady state absorption vs. incident power. Sharp transitions
are observed between the stable branches at the marginal stability points. Two
stationary states can coexist, one on the low absorption branch and one on the high
absorption branch. The experimental results [4] confirm the theoretical predictions

(5].

A simple modification of this experimental system leads to a number of other in-
teresting results [6]., Light transmitted by the sample of sulphur compounds can be
detected and amplified, and the signal can be delayed prior to transmission to a
modulator which controls the light input into the system. By appropriate choice
of the degree of arplification and the extent of delay it is possible to stabilize
with the external feedback loop the unstable stationary state of the system with-
out external feedback. The location in phase space of the stable and unstable
states of the system without feedback are not altered by the external feedback.
Furthermore the syster with external feedback shows limit-cycle oscillations and
inverted Hopf bifurcations, and is predicted to have chaos,

3 Chemical Fronts and Waves

We turn next to chemical fronts and waves (for sore representative experimental and
theoretical articles on this subject see [7-10]). We have developed a technique
for the quantitative measurerment of propagating cheriical profiles in reaction
systems far from equilibrium [10]. The measurements are made on circular waves in
a thin layer of quiescent but excitable solution of the Belousov-Zhabotinsky re-
action by rmeans of light absorption of ferroin. Wave initiation is achieved by
the application of a voltage pulse to wire electrodes dipped into the solution.

The transmission profile of the wave is reasured with a linear photo-diode array to
a resolution of 50 microns. The chemical front is about 300 to 500 microns in
width and we confirm experimentally the rerarkable property of the constancy of
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the profile in space and time. The relaxation of the wave profile behind the front
is characterized by two distinct time constants which reflect rate-limiting pro-
cesses corresponding to the reduction of ferroin during the regeneration of bromide
ion. Further we report on front velocities at various initial reactant concentra-
tions, temperatures, and depths of solution. At given initial conditions the front
velocity is constant and the temperature dependence of the velocity has an apparent
activation energy of 34.0 kd/mole. In experiments in which two fronts are initiated
and made to collide with each other we measure the process of annihilation of the
front profiles. For a variety of initial conditions we observe, after the passage
of the front, the formation of a stable stationary spatial structure, the onset of
a mosaic pattern. This constitutes a transition from an initially homogeneous
solution to an inhomogeneous one.

4 External Perturbations

In regard to the subject of temporal structures we discuss briefly the generation
of multiple attractors by means of appropriate external perturbations in oscilla-
tory chemical reactions [12], resonance effects [13], and the possibility of the
control of distribution of dissipation in such systems [14].

5 Periodic Precipitation

The periodic precipitation process known as Liesegang band formation has been in-
vestigated for many years [15]. A theory based on a chemical instability has been
proposed for the formation of periodic precipitation processes [16-18]. The essen-
tial point of the theory is the hypothesis that band formation is a post-nucleation
process and is due to an instability in the autocatalytic growth of colloidal par-
ticles coupled with diffusion. We discuss a series of experiments [19, 20] which
substantiate this hypothesis including the determination of the temporal and spatial
evolution of band formation as measured by light scattering, by Tight deflection
and visual observation. Furthermore, in the case of PbI, precipitate we measure
the total Tead concentration as a function of time and position in a one-dimensional
band formation experiment, the total iodid concentration, and the free iodide ion
concentration; at the same time we take photographs of microscope observations of
particle formation and distribution. There is no evidence of flocculation in the
lead iodide system. Nucleation is continuous in space,contrary to the Ostwald
theory and its many variants, and band formation occurs within a region of contin-
uously nucleated material by a self-focussing, instability mechanism.
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Experimental Study of Target Patterns Exhibited by the B.Z. Reaction

J.M. Bodet, C. Vidal, A. Pacault, and F. Argoul

Centre de Recherche Paul Pascal, Domaine universitaire
F-33405 Talence Cédex, France

1. Introduction

After BELOUSOV [1] who discovered in 1958 an oscillating chemical reaction (invol-
ving a dicarbonic acid - e.g. malonic acid - potassium bromate, and an inorganic
redox couple - e.g. Fe(phen)3*/Fe(phen)3* in a strongly acidic medium) ZHABOTINSKY
[2] showed its periodicity in space as well [3,7]. This spatio-temporal self-orga-
nization can take different forms depending on the geometry of the experimental
device (1D, 2D or 3D-imensions). We are interested in the bidimensional waves,
usually appearing as expanding concentric rings (disks or targets) wich are called
target patterns. How to apprehend such a spontaneous spatial phenomenon occurring
far from thermodynamic equilibrium? We are faced with two drastically different in-
terpretations. On the one hand one can adopt a deterministic point of view and look
at the heterogeneities as the single reason [5,6,7,8] for the centre birth ; on
the other hand one can agree with the Brussels school[4] which assumesthat the
existence of internal fluctuations is at the origin of these spatial patterns. It
is an experimental challenge to try to solve this controversy. In this paper we
describe an equipment which has been especially designed to investigate the forma-
tion of the target patterns and which is adapted to a statistical study of the num-
ber and emission frequencies of centres, and of the characteristics of the waves too.

2. Experimental device and conditions

Our apparatus is so constitutedthat both the temporal and spatial evolution can be
investigated abreast. The main parts are :

- a cylindrical stirred tank reactor, where we study the temporal evolution of
stirred mixtures. A platinum thread and a reference electrode are used to record
this evolution which is thus monitored through the redox potential of the bulk ;

- a plexiglass cell, which sandwiches a disk of reacting liquid at rest between
two plates (@ = 100 mm ; e = 1 mm). The 2D behaviour is recorded on a video tape at
a rate of 25 images per second given by a standard video camera.

Both parts of this device are closed, that is to say there is no permanent input
of reagent. At time t = 0 the tank reactor (or the cell) is fed and we then let the
reaction evolve towards thermodynamic equilibrium. Accordingly we only observe
transient regimes. In this spirit, our attention has been mainly focused on the
early stages of the evolution, while the system is far away from equilibrium, which

we will call later on the <nitial state. Let us summarize the following technical
details :

- we set the whole in a thermostated room : 22°C + 1°C
- the reactant's solutions are filtered through 0.22 um millipore filters

- in a premixing tank we use a filtered nitrogen bubbling to mix the reactants.
The purpose of this gazeous agitation is to homogenize the mixture. Then we pour
the solution either into the tank reactor for a bulk investigation, or into the cell
for the thin layer investigation.
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3. Experimental observations

3.1 "Initial state" diagram

We have studied the behaviour of the B.Z. reaction scanning a set of initia! concen-
trations in sulphuric acid, malonic acid and potassium bromate. We report in Fig.
1a - 1b the salient features of both the stirred and thin layer observations.

Stirred behaviour

The domain where the reaction oscillates is bounded by a zone of monotonic evolu-
tion (which, in some sense, would correspond to a stationary state for an open sys-
tem). Inside this domain the way into which the (pseudo-) period and (pseudo-) am-
plitude of an oscillation change, while the system evolves towards equilibrium,
depends on the initial composition (see below §3.2 and Fig. 2).

Thin layer behaviour
Two phenomena are worth noting :

- a pseudo-wave arising from spontaneous phase gradients [3]
- the so-called target patterns : disks and targets.

First of all, the domain where the reaction actually oscillates in the cell is
included in the area of stirred oscillations. However the overlap is not complete :
there are several ranges of initial composition leading to oscillations in the
reactor whereas one observes a monotonic evolution in a thin layer geometry. Moreover,
the contrary seems to occur in a small domain of the plane [Br03], = 1M (according
to only two points in fig. 1.b). The experimental conditions (stirring, gdzeous,
exchanges with the surrounding, etc..) are so different that many reasons can ac-
count for this difference. But perhaps the most striking result is certainly the
fact that, even when the layer does oscillate, there is still a significant compo-
sition domain where the system never exhibits any centre. This experimental fact
calls for a relevant theoretical explanation and deserves a more complete and sys-
tematic investigation.

3.2 Evolution of the oscillations

Wanting to probe experimentally the statistical predictions made by WALGRAEF et al.
B] on the basis of their stochastic approach, we have first to select compositions
of the B.Z. system exhibiting a limit cycle type behaviour, at least for a while.
In this respect figure 2 shows two typical examples encountered during this study.
The redox potential of certain mixtures (Fig. 2a) actually keeps an almost constant
amplitude and period for some time : such mixtures therefore seem appropriate to
the statistical analysis we intend to carry out. On the contrary, some others are
definitively inadequate and must be rejected, as can be Seen in figure 2b where the
amplitude continuously decreases even though the period still exhibits a plateau.

3.3 Limit cycle behaviour and birth of centres

In spite of the 1ink which might be established between the limit cycle type beha-
viour and the occurrence of target patterns, it is tempting to search very quickly
for some qualitative correlation between the two. One can hopefully imagine, for
instance, that a difference in the properties of the limit cycle has something to
do with the above-mentioned fact that oscillations in thin layer do not necessari-
ly give rise to centres.

In order to clarify this assumption we have normalized the representation of a
redox oscillation (in the "limit cycle stage") to the unit square : i.e. the ampli-
tude variation and the period are always set equal to 1 (in arbitrary units) whate-
ver their absolute values. We are thus able to compare the "shape" of two oscilla-
tions.

The general relaxation character of all the oscillations is obvious at a glance
at figure 3. The essential difference between two of them only lies in the relative
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reduction rate. Figure 3a, drawn for [Br03]y = 0.31 M, shows how the deformation
occurs when [H,S0,]o is increased, for several [MA]o. It is seen that the reduction
takes place faster and faster as lﬁzsog]o grows, centres appearing when the reducing
phase becomes short enough (less than about 1/5 of the whole period). Nevertheless,
this is no more the case in figure 3b, which corresponds to [Br03], = 1M. There, on
the contrary, the reduction rate slows down when D{zso;]o increases, and centres
are only observed if the reducing phase exceeds some time threshold. Hence, at this
preliminary stage, looking for a very simple and qualitative correlation between
the oscillating properties of the reaction and the birth of centre obviously fails.
However, taking into account more relevant variables, especially the pH [9], we are
now trying to improve the analysis of these results as will be seen in another
paper.
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4. Conclusion

Having collected these preliminary results, we now intend to carry out a complete
statistical study of both the number and emission frequencies of centres and of the
wavelength of waves within the initial concentrations range of reactants investiga-
ted in the present paper.

This analysis, which requires an automatic image-processing device and a fast
computer, is in progress. When completed, we then hope to be in a position to dis-
criminate among the different available theoretical interpretations.
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1. Introduction

A homogeneous excitable medium supports the steady propagation of impulse waves of
excitation in response to a spatially localized stimulus. In a one-dimensional
medium, for which the nerve axon is a prototype, a periodic stimulus produces a train
of impulse waves which propagates away from the stimulus site. Successive impulses
in the train interact with each other during propagation and consequently form a
spatio-temporal wave pattern. When an equally spaced impulse train, whose temporal
period equals the period of the stimulus, develops as a consequence of the inter-
action, we say the medium is entrained to the input stimulus. In some cases however,
the impulses exhibit bunching during propagation to form an unequally spaced impulse
train. Here we investigate these phenomena by a kinematic analysis based upon an
approximation of the wave interaction. We also illustrate that, in certain parameter
ranges, the one-dimensional medium can support a center wave pattern in the absence
of a maintained stimulus. This wave pattern is a one-dimensional analog of the
target wave pattern which is observed in some two-dimensional excitable media such as
the Belousov-Zhabotinskii reagent in a shallow dish.

An impulse wave of excitation typically consists of a rapid upstroke, a plateau
(the excited state), and a fast downstroke followed by a slowly decaying tail. The
temporal profile of the tail, observed at a fixed location, represents the time
course of recovery of the medium from the excitation. The propagation speed of the
impulse is determined almost completely by the recovery level of the medium (from the
excitation of the predecessor impulse) just ahead of the upstroke. Moreover, in some
media (in which the diffusion of an "activator" is dominant over the diffusion of the
other reacting components), the recovery level of the tail can be regarded as a
function of time from the upstroke of the impulse; in other words, the temporal
profile of the tail is not affected by the influence of predecessor impulses. (Keener
[2] shows this in the case of relaxation kinetics.) Under these two approximations,
the instantaneous speed of an impulse, when it passes through a location of the
medium, is regarded as a function of time since the upstroke of the predecessor
impulse passes through the same location. 1In such a medium, the interaction of

successive impulses in the course of propagation can be described by a simple kine-
matic equation.

Figure 1-A shows the temporal profile (observed at a fixed location) of a solitary
impulse wave propagating in the following FHN (FitzHugh-Nagumo) medium:

Vg = vgx ~ £(V) - w o+ I, Wp = 02Wgy *+ b(V = YW), GD)
where f£(v) = v(v-0.14)(v=1.0), b = 0.007, Y = 2.5, I = 0.0322 and 02 = 0. This
equation, when 02 = 0, is a simplified qualitative model of nerve impulse conduction,

in which v corresponds to membrane potential and w to a slow recovery current; see
[1] for references on the FHN equation. The upstroke of the impulse is taken as the

¥ J. R. performed a part of this work while a visitor at the Center for Mathematical
Biology, University of Oxford (supported by SERC grant GR/C/6359.5)
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Fig.1-A. Temporal profile of
a solitary impulse of (1)
when I = 0.0322 and o2 = 0.
The upstroke of the impulse
is taken as the origin of
time T.

Fig.1-B. Dispersion relation
(speed c(T) versus temporal
period T) for periodic wave
trains in the FHN medium (1).

(Solutions for these

figures are computed
numerically by using a two-
point boundary value problem
solver PASVA 3. See [1]

for details of such
computations.)

[ 100 200 300

origin of t in Fig.1-A. This impulse has a damped—-oscillatory tail. So the level of
recovery from excitation is a decaying oscillatory function of time. The propagation
speed c(T) of a periodic impulse train with the temporal period T is computed numeri-
cally by using a two-point boundary value solver. Figure 1-B shows the speed c¢(T) as
a function of T, which is called the dispersion relation for the impulse trains. When
the above approximations are applicable to this medium (which will be verified by
numerical solutions of the next section), we can apply c(T) to describe the speed of
an individual impulse in a wave train. (The shape of c¢(T) coincides almost complete-
ly with the shape of the tail of the solitary impulse. This means that the speed of
an impulse can be regarded as a function of the recovery level from the predecessor
impulse.)

2. Kinematic Description of a Propagating Impulse Train

A spatially localized periodic stimulus generates a train of impulses which propa-
gates into the medium away from the stimulus site. Let xk(t), k = 1,2,¢++, be the
position of the upstroke of the kth impulse. We consider its inverse function tk(x),
0 £ x £ L, which represents the trajectory of the impulse in the x-t plane. If the
above approximations are applied, the speed dxy(t)/dt of the impulse when it passes
the location x is given by c(TK(x)), where TK(x) = tK(x) - tk=1(x) is the time since
the predecessor impulse passed the same location. 1In this way, by using dtK(x)/dx =
dt/dxy(t), we obtain the following kinematic equation for the trajectories tK(x) [1]:

(d/dx)tk(x) = B(TK(x)), B(T) 2 1/¢(T), TK(x) = tK(x)-tk-1(x). (2)

The function t9(x), 0 < x £ L, must be specified; if the medium is initially in the
rest state then tO(x) = -=. The "initial data" for tK(x) at the stimulus site x
= 0 are given by tK(0) = (k=1)Ty if Ty is the period of the stimulus.

The dotted curves in Fig.2-A show the wave trajectories tK(x) in the FHN medium (I
= 0.0322) when the stimulus has the period Tq = 100. (The input is a current injec-—
tion at the terminal x = 0, i.e. the boundary condition (3/3x)u(0,t) = y(t) is assum—
ed, where Y(t) is a Ti1-periodic square wave that is alternately zero or positive.

The zero flux condition is assumed at the other boundary. The Crank-Nicholson method
with spatial and temporal mesh Ax = 0.75 and At = 1.0 is used to solve (1).) The
dashed curves, which almost perfectly coincide with the dotted curves, are solutions
of the kinematic equation (2) (subject to the initial conditions tk(0) = (k-1)Ty)
based upon the dispersion relation of Fig.1-B. The curves in Fig.2-B show the speeds
cK(x) = dx/dtK(x) of the impulses in the x-c plane.
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Fig.2-A. Trajectories tK(x)
of the impulse waves in the
FHN medium. The medium is
entrained by the stimulus
of period Tq = 100 which is
injected at x = 0. The
dashed curves are solutions
of the kinematic equation

(2).

Fig.2-B. The dotted curves
are the instantaneous speeds
cK(x) of the impulses (1 S k
£ 32) when they pass the
location X.

The first impulse propagates into the resting medium with a constant speed co =
0.614. The successive impulses propagate away from the stimulus site x = 0 with the
slower initial speed c(TK(0)) = c(Tq) = 0.423. These impulses accelerate during
propagation (as a consequence of the increase of TK(x)) until they are "phase-locked"
to the first impulse, i.e. until the speed ck(x) and the interpulse time interval
TK(x) increase to attain c, and T*, respectively, with the increase of x, where T¥* =
126 is the smallest T for which ¢(T) = c, (see Fig.1-B). The kth impulse travels
with the speed ¢(T¢) (maintaining the initial time lag Tq) longer than the (k-1)st
impulse and phase-locks to the first wave later than the (k-1)th impulse. To demon-
strate this behavior analytically we first approximate B(T) by a linear function on
the range T; < T £ T¥. Then (2) can be solved explicitly to yield

k=2
TK(x) = T* - (T*-Tq)exp(-ax) } (ax)M/n!, o = {B(T*)-B(T1)}/(T1~T*) = 0.0283. (3)
n=0
From this solution we can deduce that at a location x far away from the stimulus site
(a) the medium (which is initially in the rest state) begins to fire repetitively at
first with period T* (b) then, as k increases, the period TK(x) of the firing in-
creases and exceeds (Tq(+T*)/2 at about (ax+2)nd firing and (c) the period TK(x)
converges to Tq with the increase of k, i.e. the medium is eventually entrained to
the Tq-periodic input stimulus.

The condition ¢'(T,) < 0 implies the instability of equally spaced Ty-periodic wave
trajectories of (2). Hence, in contrast to the above example, entrainment to the
periodic stimulus does not occur if the period T, of the stimulus satisfies c¢'(Ty) <
0. Figures 3 and 4-A show the wave trajectories when the stimulus has periods Tz =
165 and Tp = 152.5, respectively. (The dashed curves are solutions of (2). The
smooth curves in Fig.3 are from numerical solutions of (1) with coarse mesh Ax = 1.5
and At = 2.0. The disparity between the two types of curves disappears almost com-—
pletely when a finer mesh is used to solve (1). The smooth trajectories of Fig.l-A
are obtained from numerical solutions of (1) with the finer mesh Ax = 0.75 and At =
1.0.) The periodic impulse train, which propagates away from the stimulus site x =
0, reorganizes during propagation to form an unequally spaced impulse train. When
the stimulus has the period 165, the train forms a "period 2" wave pattern in which
two temporal periods 125 and 205 appear alternately. When the stimulus has the
period 152.5, the train eventually forms a "period 2" pattern in which periods 120
and 185 appear alternately. This pattern does not develop so soon, or so close to x
= 0, as that in Fig.3; presumably, it is less stable. The process of the organiza-
tion of these impulse trains can be very sensitive to noise. Figure U4-B shows the
trajectories for the To-periodic stimulus when a coarser mesh, Ax = 1.5 and At = 2.0,
is used in the numerical solution. A completely different wave pattern is formed due
to the influence of small numerical errors.
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Fig.3. An unequally spaced Fig.4-A. Wave trajectories Fig.4-B. Trajectories when
impulse train forms during when the period of the a coarser mesh is used to

propagation when the period stimulus is Tp = 152.5. solve (1) for Ty = 152.5.

of stimulus is T3 = 165.

The mechanism for formation of the unequally spaced patterns can be understood by
examining the dispersion relation of the medium. When c¢(T) is as in Fig.5 (which is
an enlargement of Fig.1-B), its inverse function T(c) is a multi-valued function of
c, i.e. the curve ¢ = c¢(T) is decomposed into the branches A,B,e+« on each of which
the single valued inverse functions Tp(c),Tg(c),-++, respectively, are defined. 1In
other words, for a specified speed c, the medium has different (equally spaced)
impulse trains with periods Tp(c),Tg(c),+++. By concatenating the spacings of the
"A" and "B" trains (with speed c¢) alternately, we can formally compose an unequally
spaced train "AB" with speed c, which corresponds to a phase-locked solution of the
kinematic equation. The curve AB in Fig.5 shows the "exact" dispersion relation for
the "AB" travelling wave solution of (1) obtained by using a two—point boundary value
problem solver. The mean period Tpg(c) of this train coincides almost perfectly, as
the above formal composition predicts, with (Tp(c)+Tg(c))/2. The "period 3" train
"AAB" is composed by concatenating two "A"s and one "B" alternately. The mean period
Tpap(e) of this train coincides almost perfectly with (2Tp(c)+Tg(c))/3. The other
impulse trains "AC", "AAAB", "ACC", etc., whose dispersion relations are shown in
Fig.5, are composed in the same manner.

The equally spaced trains "B" and "D" are unstable since their dispersion relations
satisfy ¢'(T) < 0. The unequally spaced trains "AB", "BC", "AD", etc., which contain
the unstable spacings "B" and "D", are also unstable. (Stability of these impulse
trains has been analysed based upon the kinematic description [Maginu & Rinzel, in

Fig.5. The dispersion
relation (branches A,
B,C,D) for equally
spaced impulse trains
in the FHN medium (I =
0.0322) in the T-c
plane. The curves AB,
AC, etec., are the
dispersion relations
(mean temporal period
versus speed) of the
unequally spaced
impulse trains.
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preparation].) On the other hand, the trains "AC", "AAC", "ACC", etc., which are
composed of stable spacings only, are stable. For a given mean period T there may be
many stable wave patterns corresponding to the various branches of the equally and
unequally spaced impulse trains. The particular time course of the periodic stimulus
and the initial condition will determine which pattern is eventually realized in the
medium. We anticipate, in such cases of multi-stability, hysteresis phenomena and
the capability of a brief perturbation to switch the response from one pattern to
another. The simplest stable wave pattern "AC" is realized in response to the Tp-
periodic stimulus in the numerical solution of Fig.U4-A. However, as shown in Fig.
4-B, small numerical error can switch the response to another complicated pattern.

When the dispersion relation takes the form as in Fig.6-B, the medium has at most
two different equally spaced impulse trains with the same propagation speed c: the
stable "A" train and the unstable "B" train. Any compound trains, which are composed
by the concatenations of "A"™ and "B", must be unstable since they contain the unsta-
ble spacing "B". Hence this medium has no stable periodic impulse trains whose mean
temporal period is larger than Tpsyx. When the stimulus period Ty is larger than
Tpax» no periodic wave patterns are realized during propagation. Instead, impulses
group together to form successively larger (and less unstable) bunches. This is il-
lustrated in Fig.6-A, which shows the wave trajectories tK(x) for the kinematic
description (2) when the dispersion relation c¢(T) is given by Fig.6-B and the period
To of the stimulus is larger than Tpax. (The FHN medium (1) has such a dispersion
relation ¢(T) with a single hump when -0.01 £ I £ 0.012.)

pe

0 X
Fig.6-A. Bunching of impulses in a wave Fig. 6-B. Dispersion relation c(T)
train during propagation when the period with a single hump at Tpay.

To of stimulus is larger than Tpyy.

3. Kinematics, Center Waves, and Phase Waves for Oscillatory Dynamics

By slightly increasing the parameter I the FHN medium changes from excitable to
oscillatory via a subcritical Hopf bifurcation. The reaction dynamics of (1) exhib-
its a hard oscillation when 0.0348 £ I £ 0.0352, i.e. a stable oscillation coexists
with a stable rest state when I is in this range. The dynamics has a stable large
amplitude oscillation, and the rest state is barely unstable, for I just above the
hysteresis zone. In the simulations described below we imagine that the excitable
medium is at rest when the parameter I is changed suddenly (but slightly) to exceed
I, = 0.0352 (from 0.035 to 0.036 say) and the medium is locally perturbed near x = 0
(by adding initial disturbance for v near x = 0). Under such situation we shall use
0< as a parameter and study different wave propagation phenomena which lead to phase-
resetting or target pattern formation.

We observe that the medium tends to the homogeneous bulk oscillation when ¢2 is
small. The smooth curves in Fig.7-A are the wave trajectories for the numerical
solution of (1) in the case I = 0.036 and 02 = 0.2. (The bulk reaction dynamics of
(1) has a stable periodic oscillation with period Tp = 159 when I = 0.036.) The
local disturbance around x = 0 initiates the bulk oscillation in this region which
transiently acts as a pacemaker. The leading wave propagates with nearly constant
velocity c, = 0.57 as it advances into the medium which is lingering for a long time
near the (barely) unstable rest state. The next several succeeding waves initially

m



travel fast and then slow down as they phase-lock to their predecessors with the
temporal spacing T* (see Fig.7-B). Later waves, however, penetrate farther into the
medium with their high velocity and with the pacemaker period Tp. These high veloci-
ties correspond to "phase waves" which eventually bring the medium to the homogeneous
bulk oscillation. This behavior can be understood from the kinematic description
based upon the dispersion relation (Fig.7-B) of this medium. The speed c¢(T) in
Fig.7-B tends to +« when T » Tp, which means that the periodic wave train tends to
the spatially homogeneous oscillation in this limit; the high velocity waves in this
limit are sometimes called phase waves. By applying this dispersion relation quanti-
tatively via the kinematics of equation (2) we obtain the dashed trajectories of
Fig.7-A which coincide with the smooth curves with excellent precision. In this
example the wave velocities during propagation follow a monotone branch of the dis-
persion curve with ¢'(T) > 0 so that the medium eventually entrains to the pacemaker
period Tp. The wave trajectories become horizontal (because c¢(Tpy) = +«) correspond-
ing to the uniform bulk oscillation. This convergence can be shown analytically as
was done for (3). We note that kinematic analysis with this type of dispersion
relation also predicts how the uniform oscillation is recovered (how the spatio-
temporal phase-resetting takes place) when the bulk-oscillating medium suffers a
spatially localized brief perturbation.

T
3200

2.0

Fig.7-A. A Tp-periodic
pacemaker is created near
X = 0 by a localized
initial perturbation
when ¢2 = 0.2. This
oscillation does not
remain localized as a
pacemaker; the medium
tends to the spatially
uniform bulk oscillation.
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0.5 Fig.7-B. The dispersion

relation c¢(T) for the
periodic wave trains in
x = T T the FHN medigm when
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We observe that, when diffusivity 02 of the "inhibitor" w is adequately increased,
the pacemaker region near x = 0 remains spatially localized and initiates finite
velocity waves; it forms the center of a target pattern. The wave trajectories of
Fig.8-A illustrate this for the FHN medium (1) with I = 0.036, 02 = 0.8 and initial
conditions as in the above example. The behavior is best understood by considering
the dispersion relation (Fig.8-B) of this medium. We show two components of the
curve c(T): the upper branch "H", which satisfies ¢(T) » +» as T » T, and the lower
branch "L". Speeds of waves initiated near the center follow the branch "L" rather
than "H". Intuitively one would not expect "H" to be followed since a wave initiated
time Tp after its predecessor must travel very fast (if it follows the branch "H")
and thereby decreases the time interval below Tp where "H" is not defined. Because
c'(Tp) < 0 on "L", the waves reorganize during propagation to form an unequally
spaced wave pattern with mean temporal period approximately equal to the pacemaker
period Tp. The kinematic description (with speed c(T) taken from the branch "L")
similarly generates a target pattern (Fig.8-C) which develops unequal spacing during
propagation. The kinematic pattern differs quantitatively, but not qualitatively,
from that in Fig.8-A likely because the assumption for the applicability of the
kinematic approximation may be less valid when the "inhibitor" has high diffusion
rate. We further note that the particular unequal spacings of Fig.8-A show sensi-
tivity to numerical truncation errors; parameters may be near a stability boundary
for this particular pattern. For slightly different parameters, for which c!' (T ) >
0, we would expect a target pattern with equally spaced impulses far from the center.
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Fig.8~A. The oscillation of Fig.8-B. The dispersion Fig.8-C. The wave trajecto-

the pacemaker generates a relation c(T) for perodic ries obtained as solutions

center wave when I = 0.036 wave trains in the FHN to (2) based upon the

and o2 = 0.8. medium when o2 = 0.8. dispersion relation of
Fig.8-B.

It is reasonable to expect a target pattern for some region of parameters in the
hysteresis zone of the hard oscillation. In such a case a target could be initiated
in a stably resting medium by a brief, spatially localized disturbance; the medium
ahead of the center's leading wave would remain at the stable rest state. Our at-
tempts to illustrate such a center wave for (1) in this parameter regime have so far
been unsuccessful (the disturbed region near x = 0 eventually stops oscillating when
02 is large) probably because the hysteresis zone for the FHN medium is too narrow
and the oscillation in this zone is not sufficiently stable.

Various features of the FHN reaction dynamics (e.g., excitability, self-sustained
oscillations) are shared by many other systems including models for the Belousov-
Zhabotinskii reagent. Hence some propagation phenomena in those media might be
interpreted kinematically in terms of the dispersion relation as we have done here.
For example, the one-dimensional center waves described above may be the analog of
certain circular and spherical B-Z target patterns observed in two and three dimen-
sional geometries. Such a mechanism might best be exposed by considering parameter
conditions near to the hysteresis zone of a hard oscillation. There is some indirect
evidence for a hard oscillation in the B-Z system: the induction phase of the bulk
medium is terminated by a sudden jump to large amplitude oscillations. Thus one
expects that a spatially localized disturbance, just prior to the jump while the
medium is still in the (slowly changing) stable rest state, can initiate a target

pattern. Other mechanisms for target pattern formation have been recently reviewed
in [3].
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Pattern Formation in Chemical Systems: The Effect of Convection
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The spontaneous nucleation of spatial patterns far from thermal equi-
librium has long been a puzzling phenomenon both from experimental
and theoretical point of views. Numerous questions related to pattern
formation and pattern selection in physical, chemical and biological
systems remain still unanswered. However, great progress in the under-
standing of these phenomena have been achieved in the framework of
reaction-diffusion equations which are believed to accurately describe
many nonequilibrium systems (1). It has also been suggested that, I|ike
in equilibrium phase fransitions and hydrodynamic instabilities, when
chemical spatial or femporal structures appear through the breaking
of a continuous symmetry( e.g. translational or rofational symmetry
for spatial structures, phase or gauge symmetry for temporal oscil-
lations) they are particularly sensitive to small external fields or
to internal fluctuations (2). Effectively, in this case, long range
fluctuations may sponfaneously develop, leading to topological defects
in tfhe structure ( e.g. dislocations in hydrodynamical patterhs (3),
chemical waves in oscillating or excitable media (4)). A stochastic
analysis leads to the evaluation of the probability of such fluctua-
tions and consequently to their statistics. I+t may then be shown that
in The case of chemical oscillators concentric waves or target pat-
terns should be distributed according to their wavelength and to the
characteristics of the oscillation. On the other hand spiral waves
should only appear in clusters of zero total vorticity as isolated
spiral waves are unlikely fo appear spontaneously in nearly two-
dimensional systems (5).

When the chemical reactions take place in fluid phases, concentra-
tion fluctuations may also result from the coupling with convective
motion induced for example by local temperature gradients, surface
effects like evaporative cooling and Marangoni effects or even by
stirring memory. Due to the extreme sensitivity of the phase dynamics
to fluctuations,this coupling is very likely to affect the overall

behaviour of the system and should be incorporated in its description.
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If we restrict ourself to the case of passive convective effects,

the nonlinear chemical kinetics may be written as:

X, = FiX),0) + DV X, v T (n

where Xi are the concentrations of the reacting species, F.l are non-
linear functionals, b the bifurcation parameter, Di is the Fick dif-
fusion constant and v the velocity field of fthe solvent.

In the case of a Hopf bifurcation the normal form corresponding to
the dynamics of fthe unstable modes in the vicinity of the instabi-

|ity may then be written as:
A=rh - ulal®a s c VA sy VoA (2)

where rg» U and c are complex and depend on the various kinetic con-
stants of the chemical network. The real part of "o is proportional
fo b~bc, bC being fthe critical value of the bifurcation parameter.

In this analysis the homogeneous |imit cycle appearing for b > bC
is not affected by the convective term,which, however,modifies the
inhomogeneous phase dynamics. Effectively, the adiabatic elimination
of the amplitude of the oscillations ( A = R expiW) leads to the fol-
lowing kinetic equation for the phase W:

Wo=w st Vi e cn( Y 2.y Uy (3)

(where w=|m(ro- uRz)) and the autowave propagation should be affected
by the convective motion within the solution.

Let us for example consider the simple case of a layer of solution
of thickness d where convective Bénard rolls develop along the Ox di-
rection and where a chemical spiral scroll with vertical axis is nu-
cleated (cf. fig.l)
The first order correction ¢  to the wave shape W (WN=Narc+g(y/x)

2. .2)1/2
+Max(wt - k(x"+y ; /,O) is inferred from equation (3) and is given,

z

Fig.l: Sketch of the experimental situation described in the text:

a spiral chemical wave is initiated in a convective layer.
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far from the scroll axis, by:

: , 2 , 2 2..2.1/2

o = c' VotV v, Wy = c¢' ve ot 2vxkx/(x +yT) (4)
(wt-krd> 0)

In the case of free boundary conditions Vo behaves as vx=vo.sin(ﬂz/d).

sinqo(x—a) and ¢ may be written as ¢ =sin( z/d) ¥ (x,y) leading

to:

2kvox

2,177

: 2 2 2 .
Y (x,y) = c'(( V.tV y )=(n/d) )y (x,y)+ sing (x-a) (5)

I+ turns out that the propagation of the spiral wave is practically
unaffected near the surface or in the y direction while it is strogly
affected in the cenfter of the layer and in the x direction and the is-
oconcentration lines are given in good approximation by:

2kv X
2..2,1/2 0 .
Narctg(y/x) = k(x“+y7) - >T77 singy(x-a)= cst(g)

3c'qé (x2+y )

leading to an irregular madulation of the wavefronts which increases
with the thickness of the layer. The irregularity of this modulation
may also be shown to be more important in fthe case of polygonal conv-
ective structures du fto periodicifties in fthe x and y directions. These
effects are in qualitative agreement with the experimental observa-
tions of Krinsky et al.(6) and illustrated in fig.!ll.

When one of the reacting species shows a vertical concentration
gradient like for example in the case of evaporative cooling or

adsorption effects at the top surface, the phase dynamics becomes:
. . 1o 2 " 2
W = w + VZV ,9-8in W+ c'V oW+ c" (VW™ + v.V W (7)

where g is a functional of the concentration gradients and a decrea-

sing function of the oscillation amplitude R. |f the solution of this

Fig.ll: Deformation of a one-armed spiral wave due to the effect

of convective rolls.
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equation is constructed as an expansion in the diffusion coefficients,

we see that at the leading order ( Wo=w + (vZVzg)sinWo) the temporal

oscillations may be suppressed by phase locking above a convective
threshold given by ]vzvzgl >w . This implies the coexistence of re-
gions with oscillatory or excitable behaviour within the layer. Al-

though very slow, the chemical diffusion mechanisms are expected to
alter this simple picture as they modify the zeroth order phase dyna-

mics according to the following rate equation ( W= Wo + WI)

W|= c'V ZW‘ + c"(yw|>2 + i(l,Vzg,zwo).EWI + h(XWO) + Vzk(Wo,Wl) (8)
At the surface, while f vanishes, h contains the print of the convec-
tive pattern (fthrough the (_YWO)2 tferm for example) and hence indu-
ces spatially dependent fregquency variations of the oscillations able
to trigger chemical waves in the boundary layer (7).

In this last case the coupling between chemical oscillations and
hydrodynamics may lead to a complex spatial structuration of the solu-
tion: inhomogeneous phase locking in the center of the layer and
wave generation in the boundary layers. The spatial distribution of
the excitable regions and the pacemakers should be related tfo the sym-
metry of t+he underlying convective patfern. Although there exists
experimental evidence for the existence of such phenomena (8) more
quantitative analysis are needed to explore all the possibilities

briefly sketched in the present discussion.
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1. INTRODUCTION. A remarkably wide-scope phenomenon has recently been revealed.
Chemical reactions at liquid interfaces proceed in a patterned way; spectacular
structures form and grow while matter or energy influx are maintained [1].

Despite its generality and experimental simplicity we could not find descriptions
of the phenomenon other than a report by P. Mockel on some photochemical systems
[2]. As it turned out, Mdckel's observations,which initiated the research project
described here, were only the tip of an iceberg; what we subsequently found

was beyond any of our expectations.

2. THE PHENOMENON AND ITS GENERALITY. The majority of over 40 reactions we
tested formed structures (some special cases in which structures did not form
are described below). The initial efforts by us [1,3-6] and by Micheau et al.
[7,8] were concentrated on photochemical processes. We found, however, that
photochemistry is not a conditional factor: structures are formed also by gases
diffusing through a liquid interface and reacting with solutes [5,6,9] and by
ground state reactions at liquid/liquid interfaces (e.g., separated by a mem-
brane) [1]. Various solvents were tested and it was found that if strong
evaporation, high viscosity, excited state quenching and insolubility of product
do not interfere, structure growth is observed.

We found that the phenomenon is quite general regarding the liquid inter-
face: both free and rigid interfaces operate. Selected examples are the inter-
faces between liquid and air, gas, miscible or immiscible liquids, glass, plastic.

In view of earlier experimental results and models requiring highly complex
and non-linear networks of chemical reactions for the formation of (temporal)
dissipative structures [10,11], we find it interesting that the phenomenon we
investigate shows low sensitivity to the type of reaction and its kinetics.

The classes of reactions which produce structure range from complex redoXx chains
[1-4,9], through moderately non-linear reactions of the type A + B == C [7,9],
to simple first order isomerizations! [7,12]. Examples are the photoreduction of
Fe(III) [1,6] and the air oxidation of reduced methylene blue [5] (very complex),
protonation of methylrorange [9] (second or quasi-first order), and photochromic
isomerization [7]. See Fig. 4.

3. A COMMENT ON THE MECHANISTIC APPROACH. The effort directed towards revealing
the underlying mechanism(s) of this phenomenon was split into three directions,
which are strongly correlated: a) Testing the response of the structure-growing
process to changes in various physical parameters, especially in view of known
instability phenomena in liquids [13]. b) Developing models of reaction/diffu-
sion-coupled processes for computer simulation and subsequent experimental test-
ing. c¢) Developing computerized pattern analysis tools for comparison of struc-
tures and for kinetic investigation of structure growth.

4. TESTED PARAMETERS. We describe now, phenomenologically, the effects of para-
meter changes. Due to space limitations the description is brief; details will
be published elsewhere. There were two preliminary questions: first, is a
chemical reaction necessary ? Simple diffusion of a dilute solution of dye [1],
and irradiation of photoproduct only, suggest a positive answer. Second, are
convections a latter stage in the structure building process, or do they pre-
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exist ? We showed [1,4-6] that macroscopic convections are driven at a mature
stage of the structure growth. No pre-existing convections were detected within
the sensitivity of our tests (laser illumination of dusts and deflectometry [4D)
when evaporation from the surface was excluded. Micheau et al. have shown [7,8]
that if evaporation is allowed, then the pattern formed is a visualization of
the evaporation process; this,however,is not the phenomenon we study: we have
shown by a variety of experiments that structures form in the absolute absence
of evaporation [1,5,6]. The following additional parameters were tested: a)
Surface tension. In addition to the various interfaces mentioned above,silicon
0il monolayer and addition of surfactants were tested. The structure formation
process seems insensitive to this parameter. b) The insensitivity to addition of
surfactants seems to exclude also a diffusion-limited aggregation mechanism.

c) Depth and viscosity. Profound sensitivity was found at very shallow layers
(<1 mm): induction time is increased even to the degree of no-pattern formation.
Increase in effective viscosity is probably the reason. Indeed, increase in
viscosity at a 1 cm layer produces the same changes [2,12]. A scaling law
exists for the average distance between lines as a function of depth [6,7,12].
Structures do not form in a gel [9]. d) Concentration thresholds were searched.
We have preliminary indications that these exist, but at very low values. e)
Vibrations. It is very difficult to exclude a possibility that the fluctuations
which are amplified to a full macroscopic structure are due to minute background
vibrations. We went, however, in the other direction: ultrasonic vibrations
destroy the structure; light vibrations such as caused by a nearby laboratory
magnetic motor, do not seem to interfere. f) Temperature: Rayleigh-number
calculations show that in our thin layer experiments, temperature difference
should be at least 1 °C. 1In practice, the difference is «1°C. Furthermore,
structure forms also in a stabilized temperature gradient (cooling the bottom,
warming to top). g) Gravity. Sensitivity to this parameter is suggested in thin
layer experiments. The full picture of the effect of gravity will be obtained
from an experiment in space, now in preparation.

5. TWO DIMENSIONAL SIMULATION MODELS WITH A NON-LINEAR DIFFUSION TERM. The
accumulation of the experimental data suggests that the investigated phenomenon
may indeed be an authentic non-linear reaction/diffusion coupling process.
Furthermore, the low sensitivity to the type of chemical reaction suggests that
non-linearities in the transport processes are the dominant factors. Therefore,
many of our simulation efforts have been directed towards this type of non-
linearity. We exemplify the approach with one model; others will appear
elsewhere. X

We study the reaction 2A —$ C in two dimensions. For low concentration of
c, HoZHe RT 1n C, so that in Onsager equations Vuc=(RT/C)VC. To remove the
singtilarity of diffusion rate - « as C > 0, we replace RT/C by RT/(C+a),
where LRT/a is the diffusion constant at zero concentration. Using this assump-
tion and Gauss theorem we obtain:

oC _ 1 2

'a—t- = LCCRTV (aa VC) + kA (1)
L, ,RT

3A _ UAA 2 2

Fra Ao V'A - kA (2)

where we assumed LCA=LAC=O and that the reactant A concentration does not change

during the period of study. Eq. (2) is the standard linear diffusion case; Eq.
(1) is the novel non-linear approach. To the best of our knowledge, no previous
attempts were made in coupling non-linear diffusion terms with chemical reactions.
Numerical solution of reaction-diffusion problems have been carried out so far
mainly by the finite difference method, limiting the studies to one dimension.
One of us (R.K.) has recently developed an efficient computational tool which
makes multidimensional simulation feasible [14]. The first stage in the numerical
solution is surface discretization on an evenly spaced two dimensional grid

(64x64 points) with periodic boundary conditions (other boundary conditions

could be used as well). Spatial derivatives are calculated using a Fourier
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Fig. 1: Simulated pattern growth for 2A - C (see text). Reaction rate:

- - 2 -1
103[m01e 1 sec l]; Diffusion rates of A and C: 0.10 [em” sec "]; a (eq. 1)

[0.01]M; Initial fluctuation: 5%. a) t=0[sec.], b) t=5000[sec.],
c)-t = 18000([sec.]
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Fig. 2: Total length of pattern Fig. 3: Growth rate of total product
skeletonized lines as a function density at shade value of 70

of time

method [14] which gives very accurate values. A first order propagation scheme

is used for advancing in time. Initial conditions were chosen such that the
concentration of C was zero everywhere and the concentration of A was uniform

except for two line-like fluctuations. The pattern-growth is depicted in Fig.

Three-dimensional calculations are in progress.

6. COMPUTERIZED IMAGE ANALYSIS OF COMPLEX PATTERNS. The effects of various
physical parameters on the process of pattern growth, cannot be fully studied
unless tools are developed for quantitative description of spatial structures
and their growth kinetics. Computerized image analysis proved to offer solu-
tions [15] some of which are briefly listed in this volume [16]. Two illus-

1.

trative results are described in Fig. 2 (total length of lines) and Fig. 3 (non-

120



Fig. 4: Simple and complex structures formed by a chemical reaction at an
interface. left: photo-oxidation of I™ [2,3]; right: photoreduction
of Fe(III) [1].

destructive densitometry), typical of structure formation during photo-oxidations
of anilines. Detailed description of the image analysis method will appear
elsewhere.
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1. Introduction

RUELLE [1] suggested more than a decade ago that since nonequilibrium chemical
reactions are described by coupled nonlinear differential equations, for some
conditions they might exhibit nonperiodic behavior. The nonperiodic behavior that
arises from the nonlinear nature of a system rather than from stochastic driving
forces is now called chaos, a term that we will define more carefully later.

In 1977 OLSEN and DEGN [2] reported observations of nonperiodic behavior in an
enzyme system (peroxidase). Using a celebrated theorem of LI and YORKE [3]
("Period three implies chaos"), Olsen and Degn concluded that the observed
nonperiodic behavior was chaos. Unfortunately, however, the Li and Yorke theorem
says nothing about the measure of the parameter range of chaos; the chaos
predicted by the theorem could be of zero measure and hence unobservable. Thus
the observation of period three does not necessarily imply chaos for a physical
system.

Soon thereafter observations of nonperiodic behavior in the Belousov-
Zhabotinskii (BZ) reaction were reported by SCHMITZ et al. [4], ROSSLER and
WEGMANN [5], VIDAL et al. [6], HUDSON et al. [7], SORENSON [8], and NAGASHIMA
[9]. By 1981, the time of the last Bordeaux conference [10], observations of
nonperiodic behavior in continuously stirred flow tank reactors (CSTR’s) had begun
to be analyzed in terms of power spectra, phase portraits, and one-dimensional

maps, and several papers at the conference concerned theory [11] and experiments
[12] on chaos.

However, at that time there still existed considerable healthy skepticism
regarding the existence of nonperiodic behavior in well-controlled nonequilibrium
chemical reactions. After all, nonperiodic behavior can arise from fluctuations
in stirring rate or flow rate, evolution of gas bubbles from the reaction, spatial
inhomogeneities due to incomplete mixing, vibrations in the stirring motor,
fluctuations in the amount of bromide and dissolved oxygen in the feed, and so on.
Any experimental data, no matter how well a system is controlled, will contain
some noise arising from fluctuations in the control parameters; therefore, it is
reasonable to ask: "Will noise, always present in experiments, inevitably mask
deterministic nonperiodic behavior (chaos)?"

The answer is no. We will summarize the large body of evidence, gathered
recently by groups in Bordeaux [13-18], Virginia [19-20], and Texas [21-25], that
indicates that the nonperiodic behavior observed in chemical reactions is, at
least in some cases, chaos, not noise. It is even sometimes possible to separate
the experimental noise from the deterministic dynamics. In addition, as we shall
describe, low-dimensional deterministic models deduced from the data make it
possible to predict the behavior that should occur as a control parameter (e.g.,

flow rate) is varied, and some of these predictions have been confirmed by
experiment.

The quantitative characterization of nonperiodic behavior has required the

development of flow reactors with far better control than is necessary for
exploratory studies of steady state and oscillating regimes. Positive
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displacement piston pumps are replacing peristaltic pumps, synchronous stirring
motors are replacing voltage-controlled stirrers, and low noise electronics are
yielding signals with a precision of 0.1% or better.

Time series strip chart records can be suggestive of chaos, but we have found
that it is not possible to distinguish noise from chaos without analyzing long
computer records of time series. As an example, we once observed a time series
that appeared to be chaotic, but further experiments and data analysis indicated
that the nonperiodic behavior arose from stochastic switching between two adjacent
periodic states. This kind of nonperiodicity, much discussed in the literature
[26-28], is of course not chaos. The length and accuracy of the data record
needed to distinguish noise from chaos depend on the particular problem--in
particular, on the dimension of the attractor and on the scale of the chaos
generating mechanism (the size of the folds in the attractor). In our studies of
the BZ reaction we have found that 32000 points spanning 300-600 oscillations
usually suffice if the data have a precision of ~0.3% or better. The data
requirements can be less stringent if a hallmark of one of the well-established
routes to chaos (e.g., period doubling) is observed.

In Sections 2 and 3, respectively, we will describe the characterization of
chaos and some of the routes to chaos. Theory and models of chemical chaos will
be briefly reviewed in Section 4, and Section 5 contains concluding remarks. The
detailed studies of chemical chaos have all been conducted for the BZ reaction,
but some evidence for chaos has also been obtained for several other chemical
reactions [29-30].

2. Characterization of Chaos

2.1 Power spectra and phase portraits

Around the turn of the century Poincaré and others recognized that much could be
learned about dynamical behavior from an analysis of system trajectories in a
multi-dimensional phase space in which a single point characterizes the entire
system at an instant of time. The set of phase space trajectories for all
possible initial conditions (for a given set of control parameter values) forms a
phase portrait of the system.

The N-dimensional phase portrait describing the well-stirred (that is,
homogeneous) Belousov-Zhabotinskii system could be constructed from measurements
of the time dependence of the concentration of all N chemical species in the
reaction. Fortunately, such a difficult task is unnecessary -~ a multi-dimensional
phase portrait can be constructed from measurements of a single variable by a
procedure proposed by RUELLE [31], PACKARD et al. [32], and TAKENS [33]. The
idea is a follows: For almost every observable B(t) and time delay T an
m-dimensional portrait constructed from the vectors {B(tk), B(tk+T),...,
B(tk+(m—1)T)}, where tp=kAt, k=1,2,...,#, will have the same properties (for
example, the same spectrum of Lyapunov exponents) as one constructed from
measurements of N independent variables, if m>2M+1. In principle the choice of
time delay T is arbitrary, but in practice time delays of from about one-tenth to
two-thirds of a characteristic oscillation time are usually optimum [25].

Time series, power spectra, and phase portraits are shown in Fig. 1 for the BZ
reaction for three different flow rates [21]. The power spectra for the periodic
states in Figs. 1(a) and (c) contain an instrumentally sharp fundamental frequency
and its harmonics, while the spectrum in (b) consists of broadband noise that is
well above the instrumental noise level. This spectral noise could arise from
either stochastic or deterministic processes. However, at least in principle it
should be possible to distinguish stochastic and deterministic processes from the
behavior of the power spectrum in the high frequency limit [34]: for stochastic
differential equations of order n, P(w)~w <", while for nonperiodic behavior given
by deterministic differential equations, P(w)~exp(-Tw). To our knowledge this
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Fig. 1. Data for the BZ reaction at three different residence times t (reactor
volume/total flow rate); the reservoir concentrations, given in [21], were held
fixed. (a) t=0.49 hour; a periodic state with one oscillation per period. (b)
7=0.90 hour; chaos. (c) t1=1.03 hour; a periodic state with 2 oscillations per
period. For each t the graphs show the time dependence of the bromide ion
potential, the corresponding power spectrum, and a two dimensional projection of
the phase portrait. The phase portraits for the periodic states in (a) and (c)
are limit cycles, while the chaotic state in (b) is described by a strange
attractor. (From [21].)

test for (deterministic) chaos has not yet been applied to data from
nonequilibrium chemical reactions. (However, we note that Fig. 2(b) of [19] looks
approximately exponential.)

2.2 Poincaré sections, maps, and attractors

Rather than analyze phase portraits directly it is easier to analyze the
lower-dimensional Poincaré section which is formed by the intersection of
"positively directed" orbits of an m-dimensional phase portrait with an
(m-1)-dimensional hyper-surface. A two-dimensional Poincaré section constructed
for a three-dimensional phase portrait of a nonperiodic state is shown on the
left~hand side of Fig. 2. (The right-hand side of the figure shows the effect of
perturbations, to be discussed shortly.)

The points on the Poincaré section [Fig. 2(b)] lie to a good approximation
along a smooth curve. (However, the actual dimension of the Poincaré section must
be at least slightly greater than unity because of the fractal nature of attractor
[35].) If we parameterize the distance along the curve by a coordinate X, then the
coordinate values provide a sequence {Xn} which defines a one-dimensional map,
Xn+1=f(xn)' as shown in Fig. 2(c). The data appear to fall on a single-valued
curve, indicating that the system is deterministic, that is, for any X,, the map
determines Xn+1'
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Fig. 2. A chaotic state in the absence of an external perturbation (left-hand
side) and with a perturbation (right-hand side): (a) A two-dimensional
projection of a three-dimensional phase portrait. (b) A Poincaré section
constructed by the intersection of positively directed trajectories with the
plane (normal to the paper) passing through the dashed line in (a). (c¢) a
one-dimensional map constructed by plotting as ordered pairs (Xn’ Xn+1) the
successive values of the ordinate of trajectories when they cross the dashed
line in (a). (From [22].)
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The right-hand side of Fig. 2 illustrates that the post-transient set
described by the phase space trajectories is really an attractor: the trajectories
rapidly return to this 1limit set after finite perturbations. The
basin of attraction of an attractor is the set of all initial conditions for which
the trajectories asymptotically approach the attractor. For the state illustrated
in Fig. 2 the trajectories were found to return to the attractor for all
perturbations used, so this attractor could be globally attracting [25]. However,
in some cases chemical reactions exhibit multistability, where there are two or
more disjoint basins of attraction.

2.3 Lyapunov exponents and strange attractors

An attractor in an m-dimensional space is characterized quantitatively by its
spectrum of m Lyapunov exponents: x1>x2"->xm. These exponents can be defined in
terms of the long term evolution of an infinitesimal m-sphere of initial
conditions. The m-sphere evolves into an m—ellipsoid whose ith principal axis of
length pi(t) yields the ith Lyapunov exponent [36,37]
lim 1 p; ()
A= w108y OK (1

where the Ai are ordered from largest to smallest. Any continuous time-dependent
dynamical system without a fixed point will have at least one zero exponent. Any
dissipative dynamical system will have at least one negative exponent, and the
post—-transient motion of the trajectories will occur on a zero-volume limit set,
the attractor.

A strange (or chaotic) attractor is by definition an attractor for which the
largest Lyapunov exponent is positive. Then trajectories starting from nearby
points will separate exponentially fast as time evolves. Therefore, all
information about the initial conditions is rapidly lost, since any uncertainty,
no matter how small, will be magnified until it becomes as large as the attractor;
thus there is sensitive dependence on initial conditions (RUELLE [38]). Long term
predictions about the state of the system are impossible.

The largest Lyapunov exponent for a system described by a one-dimensional map
(as in Fig. 2) can be computed from the map:

N G N I (2)
17 n 5 i

where f’(Xi) is the derivative of the map at X; and the sum is over all observed
values of X;, i=1,2,...,n. [In order to have the proper weighting of the sum (by
the "invariant distribution"), it is essential that f’(Xi) be computed for the
observed values of X;, not for a uniform mesh in X.] The value for A} computed
from the map in Fig. 2 1is about 0.6 bits/orbit, definitely positive. ~Therefore
the attractor in Fig. 2 is a strange attractor.

WOLF and SWIFT [36,37] have recently developed a method for computing the
non-negative portion of the Lyapunov spectrum directly from a time series. The
method does not require the construction of a map from the data, and in fact even
when the data are well described by a one-dimensional map, the Wolf and Swift
method yields exponent values that are more robust than those obtained from a map.
(The difficulty with the map arises in part because lnlf’(X.)| is very sensitive
to the procedure used to determine the derivative of the map.

The first step in the Wolf and Swift method is to construct an attractor from
the time series, as described in Section 2.l1. Then a starting point at time t, is
selected on an arbitrarily chosen fiducial trajectory, as illustrated in Fig. 3.
A nearby point is then found; the distance between the two points is called L(t ).
The separation L(t) between the two trajectories is monitored until it becomes
large compared to L(to) yet still small compared to the size of the folds in the
attractor. A new point is then found near the fiducial trajectory; the new point
is chosen to be (to the extent possible) in the same direction from the fiducial
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Fig. 3. A schematic diagram illustrating the procedure developed by Wolf and
Swift for computing the largest Lyapunov exponent from experimental data (see
text and refs. [36,37]).

trajectory as the point that is being replaced; i.e., the replacement step is made
with the angle el and the length L(tl) simultaneously minimized, as Fig. 3
illustrates. Then after M replacement steps, the estimate for the largest
Lyapunov exponent is given by [36, 37]:

LY g, L 3)
= - 08y —r————0 . 3
| 2 Lt 1)
The sum of the two largest expoments, i; +Xy, is given by a similar expression

with lengths L replaced by areas A; replacing lengths with 3-volumes yields
A+ Ay + A3, etc.

The Wolf and Swift method has been tested on model systems with known Lyapunov
spectra and applied to data for the Belousov-Zhabotinskii chemical reaction and
Couette-Taylor flow. See refs. [36-37] for a discussion of the requirements on
accuracy and the size of a data file.

2.4 Dimension

Another important property of an attractor is its dimension. It is, loosely
speaking, the number of independent degrees of freedom relevant to the dynamical
behavior. There are several different definitions that differ mainly in the
measure used [35, 39]; these definitions all yield the Euclidean value of
dimension for Euclidean objects, but for strange attractors the dimension is in
general fractional ("fractal" [40]). As an example of computing the dimension
from experimental data, we will describe a procedure for computing the information
dimension, d [41]. Let N(e) be the number of points in a ball of radius e about a
point X_ on an attractor. For a uniform density of points one would have
N(e) ~ €”. This relation can be used to define dimension,

4 = lim log N(e)

4
) log ¢ °’ “

where the result is averaged over several Xg.

The determination of d from slopes of plots of log N(e) vs log € is illustrated
in Fig. 4 for data obtained in an experiment [42-43] on fluid flow between
concentric rotating cylinders (Couette-Taylor flow). For too large values of e,
N(e) begins to saturate at the total number of points in the data file, as can be
seen in region C of Fig. 4(b). On the other hand, for e too small, the algorithm
detects the instrumental noise in the data, as can be seen in region A of
Fig. 4(b), where the slope approaches the embedding dimension m since random noise
fills all dimensions of the subspace. However, the intermediate length scales
(region B), where the slope is constant, reflect the fractal structure of the
attractor. The dimension of the attractor is then obtained from the asymptotic
value of the slopes (in region B) at large embedding dimension, as Fig. 4(c)
illustrates.
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Fig. 4. The computation of the dimension of an attractor is illustrated using
velocity data obtained for a weakly turbulent flow in the Couette-Taylor system
at R/Rc=16.0, where R, is the Reynolds number for the onset of time-independent
Taylor vortex flow. The different curves correspond to different embedding
dimensions m. (a) The dependence of N(e), the average number of points within a
ball of radius €, on €. (b) The slope of the curves shown in (a). Regions A,
B, and C are discussed in the text. (c) The slope in region B as a function of
m. The asymptote of the slope at large m is the (information) dimension of the
attractor; d=3.1 in this example. (From [43].)

Graphs similar to those in Fig. 4 have also been obtained for a set of
nonperiodic data for the BZ reaction (COFFMAN et al. [44]); the value of d was
2.1.

The methods we have described for determining Lyapunov exponents and dimension
have been developed very recently. These methods and other methods wunder
development promise to provide a quantitative means for characterizing chaos in
future experiments on nonequilibrium chemical reactions.

3. Routes to Chaos

3.1 Types of behavior observed in the BZ reaction

Before describing the different routes to chaos encountered in the BZ reaction,
let us describe schematically the general behavior of this reaction deduced from
experiments. As a function of two of the control parameters, residence time and
acidity, we can distinguish two types of oscillation: (i) quasi-sinusoidal small
amplitude oscillations and (ii) large amplitude relaxation-type oscillations. The
small amplitude oscillations always appear at the low flow rate boundary between
time-independent and time-dependent behavior, as Fig. 5 illustrates, and in some
experiments a regime with only small amplitude oscillations is also observed near
the high flow rate boundary between time-independent and time-dependent behavior,
as the dashed line on the right-hand side of Fig. 5 indicates. In most cases the
small and large amplitude oscillations are easily distinguished; for example, see
Fig. 1(c).
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Fig. 5. A schematic phase diagram that illustrates the general dependence of
the dynamical behavior of the BZ reaction on acidity and residence time (reactor
volume/flow rate). The diagram is a schematic projection of measurements at
different bromate, cerium, and malonic acid concentrations onto the
acid-residence time plane. Most of the experimental work along path (1) was
conducted at Virginia [7,19,20]; along paths (2), (3), and (5) at Bordeaux
[13-15 (path 2), 16 (path 3), 52 (path 5)]; and along path (4) at Texas
[18,21-25]. See the discussion in the text.

Between the two regions of small amplitude oscillations there exist two regions
of what we will call "complex behavior." If the regions of complex behavior are
traversed by varying flow rate from either the low or high flow rate side, one
ultimately reaches the region of large amplitude relaxation oscillations, the

central region of the diagram in Fig. 5. The following three kinds of complex
behavior are observed:

(1) Complex periodic behavior. Every state in this regime is a combination
of small and large amplitude oscillations, the simplest states being of the form
SPLY, that is, each period consists of p small amplitude oscillations followed by
q large amplitude oscillations. However, far more complex periodic states are
also observed [3,6,13,17,18,19,23,24,30]. Perhaps the most complex periodic state
of this type observed thus far is one with 26 oscillations per period:
s3L3521,2811.2921,2511.283L3 [45]. The complex states all appear to be juxtapositions
of nearby simpler states. Sequences of complex periodic states have been observed
along lines (1), (2), and (4) in Fig. 5.

(2) Chaotic behavior, described by strange attractors, as discussed in
Section 2. Chaos has been observed along lines (1), (2), and (5) in Fig. 5.

(3) Some observations of complex behavior do not fall neatly into either
category (1) or (2). For very complex states it is not easy to distinguish
between chaos and periodic states with a very long period. However, although
there will always be some cases where fluctuations in the control parameters and
noise from other sources prevent a definitive distinction between chaos and very
complex periodic or multiperiodic behavior, the techniques described in Section 2
make it possible to distinguish clearly in many cases between complex periodic
behavior, noisy behavior, and (deterministic) chaos.
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3.2 Alternating periodic-chaotic sequences

Similar sequences of periodic regimes alternating with chaotic regimes (or noisy
complex periodic regimes) have been observed along paths (1), (2), and (4) in
Fig. 5 when the residence time is decreased along paths (1) or (2), starting with
relaxation oscillations, or when the residence is increased along path (4), again
starting with relaxation oscillations. We will describe the experiments along
line (4), where the chaotic regime that occurs just beyond the relaxation
oscillation region has been well-characterized; chaos has not been observed near
the border of the relaxation oscillation region along lines (1) or (2).

When the residence time is increased along path (4), a regime is encountered
with irregular time series, broadband spectra, and strange attractors that are
essentially two-dimensional; data obtained for a state in. this regime are shown in
Figs. 1(b) and 2. This regime which contains chaotic states occurs over a range of
about 12% in residence time; then with further increase in residence time it
yields to a periodic regime with one large and one small amplitude oscillation per
period, as shown in Fig. 1(c). This periodic regime is stable over a parameter
domain that is about the same size as the chaotic region just described.

Proceeding in this way, we pass through a succession of alternating periodic
and chaotic regimes as the residence time is increased: P, (the original
relaxation oscillations; Fig. 1(a)), C; (chaos; Fig. 1(b)); P two oscillations
per period, one with large amplitude and one with small amplitude; Fig. 1(b)); C
(chaos); P3 (three oscillations per period, one with large amplitude and two wit
small amplitude); C3, etc. This sequence of regimes is summarized in Fig. 6(a).
Successive regimes 1in the sequence appear to be of roughly comparable width.
Beyond C5 it was not possible to distinguish between periodic and chaotic regimes
with the precision available in the experiments [21]. The sequence terminated
with the small amplitude quasi-sinusoidal oscillations that occur at the border of
the region of oscillations in Fig. 5.
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Fig. 6. Alternating periodic and chaotic transition sequences: (a) observed in
an experiment on the BZ reaction and (b) found in a four variable reversible
Oregonator model. (From [21].)

Within a "chaotic" regime the behavior is not chaotic for every value of the
residence time. There are many narrow intervals ("windows") with periodic
behavior; see, e.g., the discussion for C1 in Section 3.4.

The phase space attractors in each successive periodic region contain one more
turn in the center than the preceding periodic region [23], and the
one-dimensional maps in successive chaotic regions contain one more branch. That
is, the map for C, is single-valued (as shown in Fig. 2), the map for C, is double
valued (as shown iIn COFFMAN et al. [47]), the map for C3 is tripled-valued, etc.
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Each chaotic state C, consists primarily of what at first glance appears to be
a stochastic mixture of the adjacent periodic states Pk and Py+1s thus, for
example, C3 consists of a mixture of Pg and Py, as Fig. 6 of ROUX et al. [23]
illustrates. However, maps constructed from the time series clearly yield smooth
curves, not a scatter of points. These maps indicate that behavior is
deterministic, not stochastic. Moreover, it is difficult to imagine stochastic
processes that would lead to period doubling, the universal sequence, and tangent
bifurcations, yet all of these phenomena associated with chaos are found in
one-dimensional maps and in experiments on nonequilibrium chemical reactions, as
will now be described.

3.3 Period doubling

One-dimensional maps with a single extremum are predicted to exhibit dynamical
behavior that is universal, that is, independent of the details of the map
[48-50]. (Proof of wuniversality requires only that the map be basically
well-behaved; consult [49] for technical details.) The best known prediction is
that the periodic state should, with a change in bifurcation parameter, should
lose its stability to a state with twice the period, and the latter state in turn
should lose stability to a state with "period 4," and so on. FEIGENBAUM [48-49]
showed that the convergence rate for the period doubling sequence is given
asymptotically by a universal number, &=4.669°°*°; that is, the interval in
bifurcation parameter over which a state with period 201 would occur should be §
times smaller than the interval for the state with period 2. The accumulation
point for the period doubling sequence at period 2% marks the onset of chaos.

leeeoe 20 o o ¢ 2x2e [ °

Fig. 7. Period doubling sequence time series with periods T0(115 s), 2Ty, 22T0,
obtained in experiments on the BZ reaction. The quantity measured was the
bromide ion potential. The dots above the time series are separated by one
period. (From [24].)

Figure 7 shows the first three states of a period doubling sequence, observed
in experiments on the BZ reaction [24]. One further doubling was observed in that
reaction, but further doublings beyond period 16 were unobservable because the
parameter ranges were too narrow. It is in practice not possible to observe high
order doublings in any physical system because the sequence converges extremely
rapidly. For example, if a period 2 state were observed over a residence time
range of 2%, then the width in residence time of the period 32 state would be
about 2%/8% which is only 0.004%!

We have found that period doubling is fairly common in the BZ reaction. Many
periodic states lose their stability through period doubling, but often the
interval for even the period 2 state is less than 2%. Hence the doubling is easy
to miss unless one uses a finer mesh than 1is wusually in experiments on
nonequilibrium chemical reactions. For example, if a period 2 state were observed
over a 2% range in residence time, then the entire infinite period doubling
sequence would occur in a residence time range of only about

(2%) xn§0 8§ = 2.455%. (5)

This estimate is approximate,since the convergence rate § describes in principle
only the asymptotic behavior after many doublings, but in practice the ratio of
even the first few successive intervals is approximated well by & [48-50].
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3.4 The Universal Sequence

Universality in the period doubling sequence for one-dimensional maps is now well
known. Perhaps less well known is the U (universal)-sequence that occurs beyond
the accumulation point (2®-cycle) of the 2"-sequence. Years before the universal
scaling properties of one-dimensional quadratic maps were discovered by Feigenbaum
and others, it was found that one-dimensional maps with a single extremum (not
necessarily quadratic) exhibit universal dynamics as a function of the bifurcation
parameter (see, e.g. [50]). Beyond the period doubling sequence, which is an
infinite sequence of doubling of a periodic state with one oscillation per period,
periodic states with K oscillations per period appear for all natural numbers K,
and each of these "K-cycles" undergoes its own infinite period doubling sequence,
2PK. TFig. 8 shows examples of a fundamental 5-cycle, 6-cycle, and 3-cycle (and
the first doubling of the 3-cycle) observed in the Belousov-Zhabotinskii reaction.

Ll

e 2x3 e
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Fig. 8. Some periodic states of the U-sequence observed in experiments on the
BZ reaction. The states have periods 6T, (where T o=115 s), 5T, , and 2x3Tq.
The dots above the time series are sepatated by one period. (From f24].)

The order in which the periodic states appear as a function of bifurcation
parameter is deduced in the theory using only the single-extremum property of the
one-dimensional map [50]. The full U-sequence consists of the (infinitely long)
list of periodic states allowed by the theory. The larger the fundamental period
K, the larger the number of allowed states; there are three distinct allowed
5-cycles, four distinct 6-cycles, and 27 distinct 9-cycles.

The theory also predicts the iteration patterns of the maps--the order of
visitation of points on the X-axis. Each iteration pattern is predicted to occur
only once, and for a given value of bifurcation parameter not more than one
periodic state is stable.

The periodic windows in the U-sequence exist in the '"chaotic" regime {(e.g., the
C1 regime of Section 3.2) that follows the accumulation point of the period
doubling sequence [50]. There are no chaotic intervals, yet the set of
bifurcation parameter values for which the behavior is chaotic has positive
measure. [For a typical map probably about 85% of the measure (of the bifurcation
parameter range in which the U-sequence occurs) corresponds to chaotic states, and
15% to periodic states.]

All the U-sequence states with periods 3, 4, and 5 have been observed in BZ
experiments, and some of the U-sequence states with periods 6,7,8,9, and 10 have
also been observed [24,47]. Within the experimental resolution the order of
occurrence of the periodic states and the observed iteration patterns are in
accord with the theory for one-~dimensional maps.



3.5 Intermittency

The term intermittency is used to describe a transition from periodic to chaotic
behavior characterized by occasional bursts of "noise" [51]. For bifurcation
parameter values slightly beyond that corresponding to the onset of the bursts,
there are long intervals of nearly periodic behavior between the bursts, but
further beyond the transition the time intervals between bursts is shorter. With
further change in bifurcation parameter the intervals between bursts decrease

until ultimately it is impossible to recognize the regular oscillations of the
periodic states.

POMEAU and MANNEVILLE [51] have shown that intermittency can be understood in
terms of a tangent bifurcation of a one-dimensional map; at tangency a stable

fixed point of the map disappears (or appears, depending on the direction in which
the bifurcation parameter is changed.)

Direct evidence for a tangent bifurcation in a chemical experiment was first
obtained in Bordeaux and is shown in Fig. 9. The small amplitude oscillations are
unstable, increasing steadily in amplitude wuntil at some point they are
interrupted by one large amplitude relaxation oscillation. Note that neither the
number of small oscillations nor the height of the large one is constant.

Recently it has been shown that some of the U-sequence states lose stability at
a tangent bifurcation when the residence time is lowered (see the figure in
COFFMAN et al. [471). Again this is in accord with the theory for
one-dimensional maps: U-sequence states should lose stability through period
doubling in one direction and a tangent bifurcation in the other direction [50].

3.6 Wrinkles on a torus

Chaos may also occur as a consequence of the destruction of a two-torus that
characterizes a quasiperiodic regime with two incommensurate frequencies.
Quasiperiodicity in chemistry was recently discovered in experiments on the BZ
reaction, and chaos was reached through the development of wrinkles on the torus

(ROUX and ROSSI, this volume [52]). ARGOUL et al. [53] (in this volume) have
proposed a tentative interpretation of the experiments.

Fig. 9. (a) Time series observed in an intermittent regime in the BZ reaction.
(b) Next amplitude map constructed from the successive maxima of the small
amplitude oscillations in (a); the map is nearly tangent to the diagonal line

given by Xn+l=xn' The data were obtained along path (3) in Fig. 5. (From
[16,18].)
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4. Theory and models

Abstract chemical models exhibiting nonlinear phenomena were proposed more than a
decade ago. The Brusselator of PRIGOGINE and LEFEVER [54] has oscillatory (limit
cycle) solutions, and the SCHLOGL [55] model exhibits bistability, but these
models have only two variables and hence cannot have chaotic solutions. At least
3 variables are required for chaos in a continuous system, simply because phase
space trajectories cannot cross for a deterministic system. As mentioned in the
Introduction, the possibility of chemical chaos was suggested by RUELLE [1] in
1973. In 1976 ROSSLER ([56], inspired by LORENZ’s [57] study of chaos in a 3
variable model of convection, constructed an abstract 3 variable chemical reaction
model that exhibited chaos. This model wused as an autocatalytic step a
Michaelis-Menten type kinetics, which is a nonlinear approximation discovered in
enzymatic studies. Recently more realistic biochemical models [58,59] have also
been found to exhibit low dimensional chaos.

The detailed chemistry of the BZ reaction was first elucidated (in 1972) by
FIELD, KOROS, and NOYES [60]. From the detailed mechanism, which involved more
than 20 reactions and as many chemical constituents, FIELD and NOYES [61] then
derived a reduced model (the '"Oregonator") with only 3 variables. A modified
Oregonator (with 7 variables) was then proposed and studied by SHOWALTER et al.
[26], who were not successful in their attempt to simulate the observations by
SCHMITZ et al. [4] of nonperiodic behavior. SHOWALTER et al. [26] concluded
that "the difference between experiment and simulation suggests that the chaotic
behavior observed experimentally may result from fluctuations too small to measure
in any other way." Similar conclusions have been reached in several other studies
[27,28,62,63]. However, abstract models have been developed that display chaos
and some of the transition sequences observed in experiments (e.g., see [64-66]).

The only studies of an Oregonator model yielding chaos have been TURNER’Ss
[21,67-69] analysis of a four-variable reversible Oregonator and his more recent
analysis [70] of a seven-variable Oregonator; the four and seven-variable models
yielded essentially the same results. He found an alternating periodic-chaotic
transition sequence [21] that is in qualitative accord with that observed in
experiments, as Fig. 6(b) illustrates. RINGLAND and TURNER [69] have found that
this model has a strange attractor [Fig. 10(a)] and a one-dimensional map
[Fig. 10(b)] that appear quite similar to those observed in experiments. The
similarity between Figs. 1,2, and 10 is gratifying. However, it should be
emphasized that the plots for the model (Fig. 10) were obtained just beyond the
accumulation point for the sequence of period doublings of the quasi-sinusoidal
oscillations (near the left-hand boundary of Fig. 5), while the plots for the
experiments (Figs. 1 and 2) were obtained just beyond the accumulation point of
the sequence of period doublings of relaxation oscillations (see Section 3.3). 1In
addition, the chaotic regime beyond the period doubling sequence found in the
model [69] spans a much narrower residence time range than the chaotic regime
found in the experiments.

It is not yet wunderstood why chaos has proved to be rather elusive in
Oregonator models, but some possible reasons are the following:

(1) Even in the simplest nonlinear models the phase diagrams are often
extremely complex functions of the multiple control parameters. The numerical
studies thus far have examined only a very small fraction of the physically
accessible parameter ranges. Furthermore, not every transition sequence should be
expected to contain chaotic regimes. Some of the transition sequences observed in
the Austin and Bordeaux experiments do not contain chaotic states (e.g., see
[45]), while in other cases (with different control parameter values) chaos is
observed.

(2) The rate constants in the models are in Some cases uncertain by orders
of magnitude [63]. Even fairly small changes in the constants in nonlinear models
can produce qualitative changes in the dynamics.
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Fig. 10. (a) A two-dimensional projection of a phase portrait obtained from a
numerical simulation by RINGLAND and TURNER [69] of a four-variable reversible
Oregonator model. This strange attractor was found near the period 3 state of
the U-sequence. The inverse residence time was 9.214x10™% s~™1; the other
parameters are given in TURNER et al. [21]. (b) Next maximum maps at flow
rates of (A) 9.2095x10™% s™1, (B) 9.2140x10™% s™1, and (C) 9.2170x10™% s~1,

(3) Experiments have shown that multistability is fairly common 1in
nonequilibrium reactions. Multistability also occurs in models-—TURNER [70]
discovered (in his numerical exploration of a four-variable reversible Oregonator)
a parameter range where there were two stable coexisting states, one periodic and
one chaotic. It is hence possible for two investigators studying the same model
(with the same constants and control parameters) to use different initial
conditions and find quite different behavior. Unfortunately, there is no way
known to find all the basins of attraction for a model, even for a given set of
constants and control parameters.

(4) The BZ reaction 1is of <course very complex, and the reduced
Oregonator-type models might not describe the full range of dynamics occurring in
the reaction. Some refinements of the Oregonator are in fact likely warranted
[71-73]. Nevertheless, the evidence gathered by many investigators over the past
few years in studies of other nonlinear models with 3 or more variables suggests
(but by no means proves) that almost any Oregonator will exhibit chaos in some
parameter range. If this proves not to be the case, then the Oregonator-type
models should be re-examined in view of the experimental evidence for chaos.

5. Concluding Remarks

Evidence that some nonperiodic states observed in nonequilibrium reactions are
chaotic includes the following:

*The attractors are not periodic yet appear to have some structure--it is
difficult to imagine how stochastic fluctuations could give rise to the smooth
nonperiodic structures such as those shown in Figs. 1(b) and 2.

*One~dimensional and higher dimensional maps constructed from the data often
yield smooth curves, not a broad distribution of points as might be expected
if the nonperiodicity were a consequence of stochastic forcing.
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*The largest Lyapunov exponent can be computed from a map or directly from
measurements of the divergence rate of nearby trajectories. The two
approaches yield the same positive value for the exponent for a given set of
data; hence the data are described by a strange attractor.

*While the experimental resolution has to date been insufficient to resolve
multiple sheets in the observed attracting (almost two-dimensional) sets, an
examination of the attractors reveals clear evidence of the stretching and
folding that is a necessary consequence of the exponentially fast separation
of nearby trajectories in any strange attractor. .skl

*The strange attractors have small fractional dimension (~2). An unexpected
bonus of the determinations of the dimension is that the procedure separates
the deterministic dynamical behavior from the stochastic noise (see Section
2.4). Thus the procedure provides an estimate of the experimental noise
arising from incomplete mixing, fluctuations in stirring rate, etc., as will
be described elsewhere [44].

*Universality in the behavior of one-dimensional maps provides predictive
power: If the dynamical behavior of a chemical reaction is indeed described by
a one-dimensional map with a single extremum (as in Fig. 2), then the reaction
should in general exhibit (with change in control parameter) a period doubling
sequence leading to a chaotic regime. This regime beyond the period doubling
accumulation point should contain a universal (U) sequence of periodic windows
that should have an ordering and corresponding map-iteration pattern given by
the theory of one-dimensional maps. Moreover, each periodic window should
appear at a tangent bifurcation and disappear through a period doubling

sequence. There is evidence from the BZ experiments in support of each of
these predictions.

*Another predicted route to turbulence is through the wrinkling of a two-torus.
This too has been observed in experiments on the BZ reaction.
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Quasiperiodicity in Chemical Dynamics

J.C. Roux and A. Rossi

Centre de Recherche Paul Pascal, Université de Bordeaux I, Domaine Universitaire
F-33405 Talence Cédex, France

Historically, the first description of the transition toward turbulent
behavior turbulence predicts chaos to occur after the appearance of complicated
dynamics with at least 2 or 3 frequencies (1) (or an infinity according to

LANDAU) . Although chaotic dynamics were unambiguously identified in chemical
systems (2), quasiperiodicity - dynamics with at least two frequencies—- was
never observed. In this paper we present experimental identifications of such

dynamics and of the bifurcations by which they are born and by which they die.

Experimental results

The Belousov-Zhabotinskii reaction was conducted in a CSTR fed at constant
temperature (39 C) by the following solutions

[(CHZCOOH)Z] = 0.5 mol/1 (HZSO‘]=1.5 mol/1
(BrOsK] = 0.036 mol/1 [HZSO‘]=0.75 mol/1l
[Ce3(804)z] = 2.5 10-4 mol/1 [HZSO‘]=0.75 mol/1l

The three fluxes were maintained equal, the bifurcation parameter in this
study being the overall flow through the reactor, the volume of which is
30cc.(the experiments described in this paper represent a path along line 5 of
figure 5 of the paper of SWINNEY et al (2))

The phase portrait and the corresponding Poincare sections presented in the
following are constructed using the usual time delay method (3) from a single
time series, namely the time variation of the cerium Iv monitored
spectrophotometrically at 360nm.

At low flow rate the oscillations are nicely periodic, the signal to noise
ratio 1is over 60db as can be measured on the power spectrum. Then the limit
cycle becomes unstable for a critical value of the flow rate and gives yield to
the regime depicted in figure 1. Two frequencies are evident on the time series
as well as in the corresponding power spectra (figure 2), the frequency of the
burst and the frequency inside the burst which correspond to the frequency of
the limit cycle.

figure 1. Time series of a quasi-
periodic regime (about 1/4 of the
actual time series is plotted)
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figure 2. Power spectra showing the 107 mHz frequency
modulated by the 3.1 mHz frequency. The 1level of the
instrumental noise is indicated by the dotted line.

Description of the trajectories: a wrinkled torus

The reconstructed attractor is shown in figure 3 (for clarity only few
trajectories are plotted). Five intersections by planes nearly perpendicular to
most of the trajectories (Poincare sections) are depicted. Clearly these
sections delimit closed curves: the attractor is a torus as expected for
quasiperiodic dynamics.

figure 3. Reconstructed attractor T2= 2Tl =
4 seconds (about 1/20th of the trajectories
is plotted)

Successive Poincare sections are plotted figure 4, thus giving an idea of
the shape of this torus (each section contains about: 700 points). The
interesting point to be underlined in the topology of these maps is the tail
which appears and develops in sections (2) and (3), and which folds up along the
torus (sections (4),(5)) and is finally stretched. This wrinkling occurs every
turn inducing some kind of mixing in this part of the attractor; thus the
resulting structure of the torus must be fractal. Unfortunately this structure
is not evident from figure 4 because of the experimental scatter of the points.

The shape of this torus which can be thought as a sphere with a hole going
from north pole to south pole is not as surprising as it seems at first sight.
Similar shapes were obtained in theoretical studies by GUCKENHEIMER (4) and
LANGFORD (5); they occur as the results of the interactions of two
instabilities — a Hopf bifurcation and a steady state bifurcation - which are
both generic of these chemical systems (6).
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figure 4. 7 successive Poincare sections of the attractor.

The center of the torus is always on the right ot the
section.

Birth and death of the wrinkled torus

The circled =zones in figure 4 represent, at the same scale, the
corresponding Poincare sections of the 1limit cycle that exists prior to the
bifurcation toward the torus. The areas of these dashed 2zones stand for the
experimental scatter of the points. It is isotropic almost everywhere except
in the part of the limit cycle which corresponds to the stretching of the
wrinkle. Furthermore, we must remark that the limit cycle appears to lie on the
surface of the torus. This is an indication that the bifurcation leading to the
torus is of a saddle-node type rather than of a Hopf type (in this latter case
the limit cycle should be inside the torus). This character is also confirmed
by the abruptness of the transition and the absence of hysteresis.

Figure 5 is a schematic representation of this type of bifurcation as seen
in the Poincare map. The node represents the stable limit cycle that exists
before the bifurcation. In one part of this cycle there is a saddle in the
vicinity of the cycle. In the direction saddle—node the system will be less
contracting, which explains the anisotropic scatter of the experimental
intersections of the cycle observed in the sections of figure 4.
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figure 5. The saddle-node bifurcation explaining the
apparition of the torus (a) and two typical situations (b)

and (c¢) that could explain the experimental observations
(see ref 10)
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Bifurcations of this type in dJiffeomorphisms have been the object of
numerical (8) and theoretical (9-10) work. We learn from these studies that in
addition to a smooth torus, a saddle-node bifurcation may yield other equally
robust situations. 1In particular two of them appear to be relevant to our work:
Either (i) the 1limit cycle (in the Poincare map) is destroyed when the
saddle-node bifurcation occurs, and the disappearance of the saddle-node
corresponds to the transition from a regular, periodic, state to a chaotic one,
or (ii) the limit cycle is destroyed before the disappearance of the saddle-node
and there exists chaos concurrently with the initial periodic orbit (see fig 5c¢)

The wrinkles observed in our experiments indicate that our data is relevant
to one of these +two cases. However, it is impossible to distinguish between
them on the basis of the present data.

When the flow rate 1is further increased, the amplitude of the small
oscillations decreases and their number increasas at the expense of the large
one (figure 6). This means that the central "hole" in the torus becomes thinner
and thinner and that the system stays longer and longer in it. 1In the end we
reach a stationary state located in the center of the "hole". The disappearance
of the torus by this mechanism is consistent with the theoretical interpretation
which predicts its existence. (6-7)

figure 6. Evolution of the dynamics with further increase of
the flow rate.

Conclusions

We have presented the first clear evidence of quasiperiodicity in a
chemical dynamical system. The shape of the torus as well as its evolution is
congistent with the nature of sSome generic instabilities of this chemical
system. Some preliminary experiments in our laboratory indicate that similar
tori could be obtained after a Hopf bhifurcation of a 1limit cycle in perfect
agreement with the theoretical predictions.
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The occurrence of well-oderedstructures in physical systems
submitted to some forcing 1is a manifestation of an instability
which affects one of their normal modes. The dissipative
structure which appears results from a nonlinear saturation of
this instability. Such a transition presents some analogy with
phase - transition phenomenalll. When the wvalue of the control
parameter is close to the critical transition value, the temporal
evolution of the amplitude of the mode is governed by an
"universal" (normal form) first order equation like that given by
Landau for the initial development of instability in fluids(2,31].
In more complicated cases, there will exist, in parameter space,
polycritical surfaces on which several modes may simultaneously
become marginally unstable [4,51. In neighborhoods of such
surfaces, the dynamics is governed by coupled ordinary
differential equations for the amplitude of the nearly marginal
modes, which generalize the Landau equation to problems of
competing instabilities [6-101. In such cases the temporal
evolution of the system may become increasingly complex, e.g.
relaxation oscillations, quasiperiodic and even chaotic behavior
[51.

Various scenarios to "strange attractor"™ like behavior have
been experimentally observed in the Belousov-Zhabotinsky reaction
in an open flow system, i.e. a continuous stirred tank reactor
[11-191. We propose a global interpretation of these transitions
to chaos in terms of the competition between three instabilities.
In the neighborhood of the polycritical surface we study the
normal form which describes this interaction. We 1limit our
investigation to experimental paths which are characteristic of
the variety of dynamical behavior one can encounter in this region
of parameter space.

We first follow a path along which two among the three
instabilities enter the competition, namely an oscillatory
instability (Hopf bifurcation) and a stationary (hysteresis)
instability whose interaction can give rise .to an attracting
invariant torus [20,21]. When the control parameter (flow rate)
is varied we observe, after several frequency lockings, some
stretchings and foldings of the toroidal surface which confirms the
a lost of differentiability of the torus into chaos. While the
second frequency decreases to zero, the center hole of the torus
shrinks to a thin tube, and the trajectory spends more and more of
its time nearly stationary in this inner part of the torus before
ending on a steady state. Such an evolution of the dynamics is
likely to be relevant to explain the history of the fractal torus
observed in the Bordeaux experiment [131].

Then we consider a path where the transition to chaos
proceeds via the well - known cascade of period-doubling
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bifurcations [22-24]. As we vary the control parameter, the
strange attractor displays a more pronounced spiralling shape.
This is characteristic of the chaotic behavior which occurs close

to certain homoclinic conditions [5,25,261. A typical
one-dimensional = map, associated with these attractors, presents
several humps. Maps with double extrema have been extensively

studied in the literature. When one varies the parameters in the
model, one may encounter other phenomena such as transitions from
periodic to chaotic regimes according to the Pomeau-Maneville
theory of intermittency [27] and also discontinuous transitions
between attractors with hysteresis [28,29]. Experimental evidence
of a single humped 1D map have been obtained in the B.Z. reaction
in the chaotic regime that immediately follows the few
period-doubling bifurcations of the relaxation oscillation
detected in a Texas experiment when decreasing the low rate ([111].
With further decrease, preliminary results [30] actually suggest
that a second hump appears in the reconstructed 1D map which lends
strong support to an interpretation of the data in terms of the
chaotic behavior which occurs on the way to homoclinicity as
predicted by Shil'nikov [261].

We finally emphasize that there is, so far, no experimental
evidence of a temporal evolution which does not fit our
description in terms of the competition between three
instabilities. Therefore it 1looks very promising to use normal
form approach [7-101 to reduce the order of the F.K.N. model [31]
by selecting the relevant instabilities which control the dynamics
of this chemical reaction.

In consideration of editors requirement to limit the
publication to short communication, this paper has to be seen as

an extended abstract of a more complete and detailed review to be
published in [32].
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Noise Induced Transitions
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1. Introduction

In this paper I will deal with the effect of external random perturbations, "noise",
on chemical systems and other open nonlinear systems. As a concrete example let us
consider a CSTR. This is an open system and as such subject to external constraints,
namely the concentrations of the chemical species in the feed streams, the flow rate,
the stirring rate, the temperature, and the incident light intensity in the case of
a photochemical reaction. These external constraints characterize the state of the
environment of the open system and will, in general, fluctuate more or less strongly.
Such environmental fluctuations are particularly important for natural systems; here
random fluctuations are always present and their amplitude is not necessarily small
as in laboratory systems. In the latter systems the experimenter will of course try
to minimize the effect of random perturbations, though it is impossible to eliminate
noise completely. Clearly, random external noise is ubiquitous in open systems, but
this fact by itself would hardly warrant a systematic study of the effects of exter-
nal fluctuations. The question is whether noise is more than a mere nuisance we have to
live with. Is there any hope of finding interesting physics? The intuitive, and
wrong, answer would be negative: The system averages out rapid fluctuations and the
only trace of external noise would be a certain fuzziness in the state of the sys-
tem. Of course, if the state of the system becomes unstable, the fluctuations ini-
tiate the departure from the unstable state. Then the dynamics of the system take
over and the system evolves to a new stable state. Besides these trivial effects

of random fluctuations, external noise can give rise to unexpected and interesting
phenomena. Noise can change the stability properties of a system, namely stabilize
or destabilize a steady state. This effect was first theoretically predicted in
studies on oscillations in radio circuits [1], on the survival of populations [2],
and on oscillating enzyme systems [3]. Even more surprisingly, external noise can
create new states which nevet exist under deterministic environmental conditions [4].
Clearly, there is interesting physics to be found in a study of noise-induced phe-
nomena.

The organization of this paper is as follows: First I will discuss the modeling
of nonlinear systems coupled to a noisy environment. Then I will highlight the main
theoretical results and I will conclude by mentioning problems currently under study
and experimental results on noise-induced transitions. More details on most of the
aspects of noise-induced phenomena discussed here can be found in the recent mono-
graph [5].

2. Modeling Systems with External Noise

For the sake of clarity I will discuss the effect of external noise in as simple a
case as possible. I will therefore assume that the system has the following three
properties: 1) It is spatially homogeneous. This corresponds to the limit of fast
transport. ii) The system is macroscopic and can be described by intensive varia-
bles. This corresponds to the thermodynamic limit and implies that any finite size
effects, such as internal fluctuations, can be neglected. iii) The state of the
system can be described by one variable. This is only a point of mathematical con-
venience; explicit analytical results can be obtained for one variable systems.
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These three properties imply that the evolution of the system can be modeled by
the following kinetic equation:

x(t) = £(x,\) = h(x) + Ag(x) . (1)

Here X denotes the state of the system at time t, for instance the concentration of
a chemical species in the reactor. A is the external parameter which we will let fluc-
tuate later on. The other external constraints are not explicitly written in (1).

In most applications f is nonlinear in x but linear in A. This is the only case I
will consider in the following. Nonlinear external parameters can be treated as is
shown in [5]. Associated with (1) is a typical time scale, Tpsoyos Which is char-
acteristic of the macroscopic evolution of the system.

In order to take into account the influence of external noise, we will take (1)
as our starting point and replace A by a random process. In other words, (1) de-
scribes the system for a deterministic environment and is obtained as the amplitude
of the external noise is made to vanish. The fact that the external varameter be-
comes a stochastic process implies that the state of the system at a given instant
of time is a random variable. The state is no longer characterized by a simple num-
ber but by a probability distribution. To model the external noise, we assume that
the environment has the following three properties: 1) It is stationary, i.e. in
particular

<)‘t> =X, <(>\t - ) ()‘t+'r - A)> = (1) . (2)

Here < > denotes the mathematical expectation or average. Stationarity is assumed
in order to assess the effects of noise separately from any effects due to a sys-
tematic evolution of the environment. Furthermore, this assumption is fulfilled in
most applications to a good degree of approximation. We write the external noise as

At=>\+zt, (3)
where Zi is now a process with mean value zero. ii)a) If the noise is not deliber-
ately put on the system by an experimenter, we will assume that Z; is Gaussian dis-
tributed. This is justified by the Central Limit Theorem: The external parameter
represents the cumulative effect of a large number of small, additive contributions,
which are at most weakly coupled. b) If the experimenter wishes to study the ef-
fects of external noise by deliberately randomizing an external constraint, then the
so-called dichotomous noise is often used. In this case, Zt takes on only two val-
ues,

z, e (A0} . )

Such a noise is easy to generate electronically. 1iii) Since we are interested in
macroscopic systems, we will observe the system usually only on macroscopic time
scales. It is then reasonable to assume that Zy is a Markov process. Furthermore,
it has been argued that a non-Markovian noise will not introduce any essentially
new physics into the problem [5]. Properties i) - iii) uniquely specify the noise
process. In the case of ii)a) we find, in light of DOOB's theorem [6], that Z, is
given by a stationary Ornstein-Uhlenbeck process, i.e. it obeys.the following Lan-
gevin equation:

Z, = =Yz, + O&_ . (5)
This equation was originally introduced to model the velocity of a Brownian parti-
cle. Et is Gaussian white noise,

<gt> =0, <E.¢& =§(1) . (6)

>
t+T

It is a very irregular process with no memory at all. As indicated by the fact that
its correlation function is a Dirac delta function, i.e. a generalized function,
Gaussian white noise is a generalized stochastic process. The use of generalized
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random processes can be avoided and we can work entirely in the framework of ordi-
nary stochastic processes by exploiting the fact

t
fo Eds =W, . (7)

Here Wy is the Wiener process, which describes the position of a Brownian particle,
and which is characterized by

<Wt> =0, <Wtws> = min (t,s) , (8)

and

_ _ 2
plw,t|u,s) = [2m(t-s)1"2 exp{—% (‘g_:) } . (9)

p(w,tlu,s) is the probability density to find a value w for Wt knowing that Ws = u.

Multiplying (5) formally by dt and using (7), we obtain the stochastic differen-
tial equation (SDE)

dzt = -thdt + odwt . (10)

The probability density of Zt obeys the following evolution equation:
1
3.p(z,t]z9,0) = -3 _(-v2)p(z,t|z,,0) + 5 3, 0%p(z,t|z,,0) . (11)

This type of equation is known as a Fokker-Planck equation. The stationary solution
of (11) is given by

_ 2
b (2) = [2m(@%/20)17F exp{— %—(gz?m—)} . (12)

If the Ornstein-Uhlenbeck process is started with this probability density, then it
is a stationary process and

2

) 'YIEI
<Z > = < > = — = .
2 0, <2,2 2Ye c(T) (13)

The correlation time, which characterizes the memory of the environment, is givern by

Teor =Y . (14)

The power spectrum of Zt is
_ 1 -ivT _o°_ 1

stv) =5=fe clmdr = = v (15)

Thus in case ii)a) we have

X =hx) + A+ 209X (16)
or multiplying by dt:

ax, = [h(xX,) + )\g(Xt)]dt +z.9(x)de (17)

dZt = -tht + Oth . (18)

Here time has been rescaled, so that Y=1. (The case ii)b) will be discussed later.)
The joint probability density p(x,z,t) for the system and its environment obeys the
following Fokker-Planck equation:

- 2

(¢
9,p(x,z,t) = -9_[h(x) +Ag(x) +zg(x)Ip(x,2z,t) - 93_(-z)p(x,z,t) += 3_ p(x,z,t) .
t X z 2 Tzz (19)
After the system has been coupled to the environment for a sufficiently long time,
it will, in general, settle down to a steady state. To describe this state, we have
to find the stationary solution, i.e. d¢p=0, of (19). It turns out that this is,
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in most cases, an intractable problem. However, headway can be made by realizing
that often the external noise is very rapid, i.e.

<< .
Tcor Tmacro (20)

It is then tempting to pass to the idealization of T ,,=0. In other words, we would
like to approximate the real system and environment by an approximate one in which
the external noise has no memory. Obviously, such an approximation would only be
any good if the essential features of the real system are preserved. This requires
some circumspection. Similarly to taking the thermodynamic limit of a macroscopic
system, we have to replace the real system and environment by a series of equivalent
systems and environments in which Teoyr 90es to zero. As shown by BLANKENSHIP and
PAPANICOLAOU [7], this can be done by speeding up the noise, namely considering it
on the faster time scale t/e?, Z¢ > Zy /g2, with €+ 0 and by scaling up the amplitude
of the noise by a factor 1/e€. This amounts to replacing (17) and (18) by

= X 1
ax, [h(x,) + Ag(xt)]dt +Z29(x)dt (21)

az
t

-2 -1
-€ tht + € Oth . (22)

The Fokker-Planck equation (19) reads then:

by 1 €
Btpe(x,z,t) = -9, [h(x) + Ag(x)1p% (x,2,t) - = 9,29 (x)p (x,z,t)
1 g2 €
+€g [Bzz + 5 BZz]p (x,z,t) . (23)
The limit €+ 0 is known as_the Gaussian white noise limit, since we have for the
€ - .
power spectrum S® (V) of € Zt/ez'
2 2
€ g 1 g
S = TEET T (24)

The form of (23) suggests that we try the following perturbation expansion:
pe(x,z,t) =p,(x,z,t) + ep, (x,z,t) + ezpz(x,z,t) F oo (25)
This perturbation expansion is known as the wide band perturbation expansion [8,5].
I will skip the technical details here and just present the main results. It turns
out that to lowest order the joint probability density factorizes
P, (x,2,t) = plx,t)p (z) (26)
as it should, since the system and environment are independent at the same instant

of time in the white noise case. ps(z) is given by (12) and p(x,t) obeys the Fokker-
Planck equation

- 2 2
3,p0x,t) = =3 [hx) + Agx) + 5 g (g Ipte,t) + 5 9,9 ()plx, ) . (27)

(Prime denotes derivative with respect to x.) The stationary solution of (27) is
given by

X -
-1 2 h A
p, (x) = Ng (X)exp{gz' J radly) dy} . (28)

Here N is a normalization constant and pS(x) exists if N is finite.

3. Noise-Induced Transitions

The phenomenon of nonequilibrium transitions for nonfluctuating environmental con-
ditions is by now a familiar one and well understood [9,10]. A transition corre-
sponds to a qualitative change in the state of the system. For instance, a steady
state may lose stability for a certain value of the external parameter and new bran-
ches of stable states bifurcate. In direct analogy we will say that a nonequilibrium
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transition occurs in a system with noise, if the state of the system changes quali-
tatively. As discussed above, the state of the system is a random variable and can
thus be characterized by a probability distribution. In order to determine when a
transition occurs, we need to monitor ps(x) for qualitative changes. To do so, we
need to find a suitable indicator. As we deal with a probability distribution, mo-
ments come to mind. Consider however the simple Landau equation

X =Ax - x° = £(x,\) . (29)

Here x€ [0,%) and A € (-»,+®). This equation is frequently encountered in modeling
equilibrium and nonequilibrium critical phenomena. In the deterministic case we
have for the steady states x

f(x,A\) =0 : x=0, andx =2/A if A>o0.

A stability analysis shows that x=0 is stable for A< 0 and loses its stability at

Ac =0, where two new stable branches x = +/)X bifurcate. Let us now take into account
other rapid degrees of freedom in the system by adding a white noise term

3

X, = Axt - X+ oit . (30)
We have
_ 2 x2 x"
ps(x) =N exp{gg (A 5 - —Z—)} . (31)

It is easily verified that for A<A, =0, p_(x) consists of a single peak centered on
x=0, whereas for A>0, ps(x) consists of two peaks centered on +/X and -/A. This
transition is however not reflected in the moments of ps(x). We have

x2n+1>

< =0 for all X , (32)

and <x2n> are infinitely often differentiable with respect to the bifurcation para-
meter A. Clearly, the transition of the system cannot be detected by monitoring the
moments. Moments are n0L a reliable indicator of nonequilibrium transitions. Fur-
thermore, moments are a bad choice also on general theoretical grounds, since moments
often do not characterize a probability distribution uniquely [11]. It is obvious
from the above example that the appropriate indicator of a transition are the extrema
of the probability density: i) They reflect the qualitative features of pg(x), for
instance if pg(x) is single-humped or multi-humped. ii) It can be shown that xp
converges towards x as the noise is turned off; see below. iii) The maxima are the
most probable values and are preferentially observed in an experiment; they corre-
spond, so to speak, to the "phases" of the system.

In the white noise limit the extrema of the system are given by
- 02 -
[h(Xm) + Ag(Xm)] -39 (Xm)g(xm) =0 . (33)

We have to distinguish two types of noise: i) additive noise, g(x) = const. 1In this
case the effect of the external noise does not depend on the state of the system.
Since g~ =0, (33) reduces to the equation for the deterministic steady states X.
Thus

X =x for all o2 .

m
This gives further support to our identification of xy with the "phases" of the sys-
tem. 1i) multiplicative noise, g(x) Z const. 1In this case the effect of the ex-
ternal noise is modulated by the state of the system. For small noise intensities
o? the term g”g in (33) may be neglected and we find that Xm & X. However, if o2
becomes larger and if g‘g is sufficiently nonlinear compared to h and g, then the
extrema xp can be very different, in number and location, from the deterministic
steady states. Since this change in the behavior of the system arises without any
changes in the systemic parameters but simply by varying the noise intensity, we
have called this phenomenon a noise-induced transition.

154



Noise-induced transitions have been studied theoretically in quite a few physical
and chemical systems, namely the optical bistability [12,13,5], the Freedricksz tran-
sition in nematics [14,15,16,5], the superfluid turbulence in helium II [17], the
dye laser [18,19], in photochemical reactions [20], the vander Pol-Duffing oscilla-
tor [21] and other nonlinear oscillators [22]. Here I will present a very simple
model which exhibits a noise-induced critical point. The so-called genetic model
was first discussed in [4]. I will not describe its application to ponulation ge-

netics in this paper, see [5] for this aspect, but use a chemical model reaction
scheme:

*
A+X+YZ2x+A

* (34)
B+ X+ YZ2X+ B ’

* *
where A, B, A , and B are assumed to be in large excess. The total number N of X
and Y particles remains constant in the scheme (34) and we find for the fraction of
X particles in the system the following kinetic equation

M =%— % + Ax(l-%x) - (35)
with x€ [0,1] and A€ (-«,+o) ., The steady states of (35) are
§=§X[x-1+/1+m] . (36)

In other words, for each value of the external parameter A, which is a combination
of the concentrations of the major reactants and the kinetic constants, there is ex-
actly one steady state; this state is globally stable. Thus the genetic model (35)
does not display any transition for deterministic external constraints. Assume now
that the concentrations of A and B fluctuate rapidly, which in turn implies that A
fluctuates. In the Gaussian white noise idealization, we obtain from (33) the fol-
lowing equation for the extrema of the stationary probability density:

.]_‘. - + A 02 - - =

5 - X xm(l-xm) - Tf'xm(l xm)(l 2xm) =0 . (37)
Consider the case that A=0. Then in the deterministic situation x = %. From (37)
we find for the system with external noise that

1 _ — 2 2 _
X =5 and Xy = 5—[1 + V1 -(4/52) 1 for 0% 20 =4

. (38)
0

The system with external white noise has a noise-induced critical point at Ao=0,
Ocz =4, x,=1/2. For 0" <4, the stationary probability density has a single peak
centered on xp. = 1/2. At 02==4, this maximum becomes a double maximum and for 02>4
it splits in two; the probability density becomes double-humped. The external noise
has induced bistable behavior, which does not exist for deterministic external con-
straints. Like equilibrium critical behavior, the noise-induced critical point is
characterized by critical exponents. According to our discussion above, the order
parameter is given by

m=x -x . (39)
+
We have
1
mvVg2-g 2 for A= KC =0 , i.e. B = 5 (40)
m v 9\1/3 for 02=0C2=4 , i.e. § =3 , (41)
and
om (%) v |o? -g 2 - i.e =y =1 (42)
oA c ! R S .

A=0

We find the classical or Landau values for the critical exponents, which is expected,
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since our model excludes any spatial inhomogeneities. To characterize the dynamics
near the noise-induced critical point, define a time t. at which an initially single-
humped probability density develops a double maximum and becomes double-humped. It
has been shown [5] that

2y foro?>g?,
[o] C

t % -An(o? -0
c
i.e. t. diverges logarithmically as the critical point is approached.

4. Dichotomous Noise and Poisson White Noise

Let us now consider the case ii)b), i.e. the two-state noise case. This noise is
also known as the random telegraph signal. It is charactexized by the following,
so-called, Master equation

P(A ,t) -B oy (P(A_,t)
& o) (o <llbore)
dt P(A+,t) B -a P(A+,t)
o is the average frequency of transitions from A, to A_ and B is the average frequen-
cy of transitions from A to A . Let TA, and Tp_ denote the random waiting times in

state A, and A_, respectively. These random times are exponentially distributed,
i.e.

-at -Bt

pp (£) =0e ¢ Pp (B) = Be . (44)
+ A
The stationary solution of (43) is
=B =2
PS(A+) =y PS(A_) Y (45)
with
Y=o +B3 . (46)

If the dichotomous noise is started with the probability (45), then it is stationary
and

1
<z > =3 @b+ BA) (a7

C(T1)

%% 8, ~ )2 expl~y|T]) . (48)

Since we have to impose <Zt> = 0, according to (3), we find that

oA = -BA+ (49)

has to hold. 1In [5] the equation for the probability density of a system subjected
to dichotomous Markov noise has been derived:

8,p(x,t) = -3 £(x,)p(x,t) + oy (A_-A)2 3 gx)

t
f dt’exp{—[y + 3, (£(x,X) + Ig(x))] (t-t’)} 9 gx)px,t7) (50)

-0

where I=Y-l(BA_+OLA+) and recall that f(x,\) =h(x) + A\g(x). Further, the operator
dx acts on everything to the right of it. The memory kernel in (50) indicates that
the system is described by a non-Markovian process Xi. 1In fact, it holds that X is
Markov if and only if Z is white. Contrary to the case of Ornstein-Uhlenbeck noise,
(19), the stationary solution of (50) can be found in an exact explicit way:

X
_ g (x) o £y) a}
Ps TGS ) (G _a ) exP{ v) F@ 7, gy (EmH @) f BV

for x€U with U= [§(7\+A_) ,;:(X+A+)] and ps(x) =0 for x¢U.
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The white noise limit can be discussed directly in this case. The speeding up of
the noise corresponds to letting Y go to infinity and the scaling up of the amplitude
to letting A, go to infinity. If the noise is symmetric, i.e.

=g=2
+ poa=8= 2

’ (52)
then the Gaussian white noise limit, already discussed in section 2, is obtained if
A%/y = const = 02/2. 1In the asymmetric case, Poisson white noise is obtained if
Ap+®, o> such that A, /0 = const = w [23]. The requirement (49) implies that A_
= -fw. Note that the area of a A; pulse, A  * Tp, , is exponentially distributed, ac-
cording to (44). Thus in the white noise limit, we have the following picture: The
noise spends essentially all the time in the state A_ = -Bw. With an average fre-
quency of B, this state is interrupted by a Dirac delta spike with a weight that is
a random variable. The weights are exponentially distributed with mean value w.

The Poisson white noise limit of (50) is

= - by 2 -1
3, P(x,t) = 3Xf(x,>\)p(xrt) + BwS_g(x)[1+wd _g(x)] "9 g(x)px,t) , (53)

whose stationary solution is given by
'Y

P (x) = NIf(x,}) - Bwg )17 exp{- 2 f

w

£ (Y!X)
TR TER) = Bwg (777 dy} o

for xe€ U. The equation for the extrema of (54) reads
thix ) +Xg(x )] - Bw'g" (x)g(x) + wih™(x )+Xg” (x ) 1g(x) =0 . (55)

Since Poisson white noise is bounded from below by -Bw, contrary to Gaussian white
noise, it is particularly useful in modeling situations where the parameter should
remain positive for physical reasons. This can be achieved by imposing that X > Bw.
To illustrate the application of Poisson white noise, consider the simple photochem-
ical model

A+ X 22X

(56)
X+ hv->C .

Here again A is in large excess and C is immediately removed from the reactor. With
suitable scaling, the kinetic equation for the concentration of X reads

x = Ax - x% - kI(l-e %) | (57)
I is the incident light intensity and o is the absorption coefficient times the sam-
ple thickness. Let us briefly discuss the steady states of (57) for nonfluctuating
light intensity. x =0 is a solution of x=0 for all values of I. For large enough
I, x=0 is stable. This is the expected result, since X is photochemically degra-
ded. As I is decreased, x=0 becomes unstable and the intermediate can accumulate
in the reactor. x=0 loses stability at

a_ A
L "% - (58)

At this point a new branch of nontrivial steady states bifurcates. A bifurcation
analysis shows that this new branch can emerge subcritically or supercritically, de-
pending on the value of A. For A> Ag with

=2, (59)

the bifurcation is subcritical, i.e. the new branch exists for values of I greater
than I%. These states are unstable till the branch turns around at some I,; and be-
comes stable. We have thus for I%< I<TI, bistability; a nonzero stable steady state
X coexists with the state Xx=0. For A< Kg the bifurcation is supercritical; i.e.
the new branch exists for values of T smaller than I . This branch is stable. TLet

us now study the effect of light intensity fluctuations on the loss of stability of
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the trivial branch x=0 and on the point where the bifurcation changes from subcri-
tical to supercritical behavior. Obviously, I should always be a positive quantity.
Thus, Poisson white noise is more adequate than Gaussian white noise to model rapid
fluctuations in the incident light intensity. Let I denote the mean value. Then
to guarantee positivity, we require

Bw < I .

Applying (55) to our model (57), we find that Xﬁf=0 ceases to be a maximum at

_ A Bwka.
To " % ~ Tk (60)
¥ 13 - gw’ka + o(w?) . (61)

The transition changes from subcritical to supercritical at
A, =2 01- w0 - BwPKk20 + 2K2w20 R 111 = kowad T (1 - 2kwo] T (62)
* A9 - 28w?k%a? - 36K%wPe + O(wd) . (63)
It is interesting to compare these results to those we obtain if we use the, in this

case "unphysical", Gaussian white noise:
2

=15 -F ke,

a (64)
A= 2A% - o%k%0? .
C C

We see, as was to be expected from the form of (55), that qualitatively the same re-
sult is obtained, as long as the noise intensities are small. (We expect that at
large noise intensities the particularities of the nature of the noise will be more
pronounced.) In fact, Gaussian white noise underestimates the shift in I, and A .
It follows easily from the above expressions that in general Poisson white noise
converges to Gaussian white noise, as B+, w> 0 such that Bw? = const = cg?/2.

5. Conclusions

So far we have discussed noise-induced transitions only in the white noise limit.
Naturally, the question arises if these noise-induced phenomena are robust. In other
words, are essentially the same phenomena observed for Tecor Small, but nonvanishing?
The answer is positive. Noise-induced transitions are Mot an artifact of white
noise; they occur also for colored noise, i.e. for environments with nonzero corre-
lation times. This has been established by various techniques, namely the wide band
perturbation expansion [8,5], the approximate Fokker-Planck operator techniques [24],
and approximate renormalized equations of evolution for Gaussian noise [25]. These
methods are perturbation expansions and are limited to small Tcor: In order to ex-
plore the dependence of noise-induced phenomena on the correlation time for a wider
range the dichotomous Markov noise has been used [26,27,5], since the stationary
probability density can be calculated exactly for any value of the correlation time
and any value of the noise intensity. Not surprisingly, the transition behavior is
even richer under colored noise than under white noise. Besides studies on the
influence of colored noise, the following problems are currently investigated:

i) the dynamics of the system [28-33], ii) systems with two or more variables [34-
38], iii) the interaction between internal and external fluctuations [39,40], iv) the
influence of fluctuations and stirring in a CSTR [41,42], v) the influence of exter-
nal noise in spatially distributed systems [43,44], vi) the effect of  periodic ver-
sus random variations [45,46], and vii) the effects of noise on deterministic chaos
[47].

Let me conclude by listing the experimental studies on noise-~induced transitions
and by expressing the hope that their number will increase in the future. At
present the theoretical part of the field of noise-induced transitions is more de-
veloped than its experimental side. There is a clear need for more experimental
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work. The first experiment in which a noise-induced transition was observed, was
carried out by KABASHIMA, KAWAKUBO and coworkers [48]. They studied a nonlinear
electrical circuit. The influence of fluctuating illumination on photochemical re-
actions was investigated experimentally by P. DEKEPPER and W. HORSTHEMKE [49] and by
J. C. MICHEAU et al. [50]. Experiments on the effect of fluctuating electric fields
on electrohydrodynamic instabilities in nematics have been conducted by various
groups [51-53]. The experimental findings on the dye laser [54] were interpreted

as noise-induced effects [18,19]. The first measurement of the critical exponents

of a noise-induced critical point were carried out by MOSS and coworkers on a non-
linear electronic circuit [55].
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1. Introduction

Stochastically driven systems exhibit a variety of interesting nonequilibrium ef-
fects. These have been recently reviewed by HORSTHEMKE and LEFEVER [1] and also
addressed by other authors in this workshop. In this contribution we focus our
attention on the role played by the internal fluctuations of a system driven by an
external noise [2,3,4]. External noise effects are usually studied in the thermo-
dynamic limit in which internal fluctuations become negligible. This procedure
assumes that the external driving noise completely dominates the fluctuations in
the system. Nevertheless, a framework in which internal and external fluctuations
are simultaneously considered is necessary to calculate finite size effects. With-
in such a framework a better understanding of the physical contents of "noise in-
duced transition" phenomena [1] is obtained by investigating how changes in a sta-
tionary distribution induced by external noise are smoothed out by internal fluc-
tuations. A major novel outcome of the unified theory of internal and external
fluctuations presented here is the existence of "crossed-fluctuation" contributions
which couple the two independent sources of randomness in the system.

2. External Noise in Master Equations

We consider a homogeneous system with internal fluctuations modeled by a one-
step Markovian master equation.

P(N,E) _ - + =0 (2
5T CE™ -1) W (N) + (B -1)W_(M)IP(N,t)z [T (NP (N, t) (2.1)
where E= = exp * ?3—. We assume extensive transition probabilities w+(N) = Vr+(x),

W (N) = Vr_(x) with x = N/V and V the volume of the system. In the thermodynamic
1imit a deterministic description emerges

X() = r (x) - r_(x). (2.2)

External noise is usually modeled by considering the existence of random para-
meters in (2.2). In a more detailed description we model external noise by random
parameters in the transition probabilities of (2.1):

M ON) = W OEND + o ()W, (N) = Wy (N) + B, (2D, 4 () (2.3)
W (N) = w_‘jgN) + B () =W () g (W (W) (2.4)

where o (t) = & + §+(t), g(t) = ? + ?_(t) and g;(t), ?;(t) are specified random
processes. Eq. (2.1) with (2.3)-(2.4) is well defined as a master equation with
stochastic transition probabilities as long as w+(N) and W_(N) are positive for

all realizations of §+(t) and § (t). This positivity requirement one((t), g (t) re-
stricts the possible” choices of g (t). In particular, Gaussian white noise cannot
be consistently considered. A consistent choice for (t)(f (t)) is a dichotomic
Markov process [3] with amplitude A _(A ) and inverse ‘relaxation time)\+()\_). The

*  Permanant address.
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positivity of el (t) (g(t)) is guaranteed whenever X>A, (8 24.). Another possible
choice [4] is given by a Poisson white noise of zero mean: t) = 2(t) -Aw.
The Poisson white noise z*(t) consists of a sequence of delta peaks at random
points in time. The average time difference between two peaks is controlled by PN
and the amplitude w of the_peaks is distributed according to a probability den- _
sity pP(w) with mean value w. The process ;(t) is bounded from below, f(t)>, AW,
When § (t) (;‘_(t)) is given by a zero mean PFoisson white noise characterized by
>\+Jw+ M-, w.) the stochastic master equation is meaningful for 3<>/)\+W+,§ 2 A-Wa

With the substitutions (2.3) (2.4) in (2.1), P(N,t) becomes a_functional of §(t).
A unified description of fluctuations is given by a probability P(N,t) defined as
the average of P(N,t) over the realizations of ;‘(t). The equation satisfied by
P(N,t) is obtained averaging (2.1). In the case of a dichotomic Markoy process £.(t)
(with ;_(t)=0) we obtain an integrodifferential equation for P(N,t) [3]

t —
dp PINE)=PINE) + 2,17, fexol-(Ar T (¢-t) 1T, P(Nt') dt’ (2.5)

where [} is defined as I in (2.1) but with w+(N),w_(N) replaced by W, O(N),w_ (N)
respectiveley and f3,4 = (E =1)W, ,(N). In the thermodynamic Timit [o—»2 aul(r,2x)-
r (x)), == 21, 1(x) and (2.3} reduces to the standard description of exfaPnal
dichotomic noise " *'[1]. When considering white Poisson noise processes for ¥, (t)
and .g_(t), P(N,t) still satisfies a Markovian master equation [4]

2 P(NE) = LP(NE) + N, \e‘“’*r*"]av w4 =11 P(N,t)

wo Ty WL _ (2.6)
D™ - Wl PN
where Iy , M4 are defined as above and 4= (E'-1) W_ . (N). The average }...\ av s
over the realizations of the amplitudes w,.. An impohl,ant difference between “'(2.6)

and (2.1) is that as a result of the consideration of external noise, (2.6) includes
nonvanishing effective transition probabilities W(N — N£n) for any step size n.
For example, for a multiplicative linear noise of the form W, ](N) = a4+ N we find[4]

WNt1 —~—sN)

N 1) D e NS () easv)] (2.7)
Ag [ TN (1 W)y

The effect of white external noise in the master equation is then twofold: First, a
modification of the one-step transition probabilities (2.7), and second the introduc-
tion of new transition probabilities for n>1. In the thermodynamic 1imit, (2.6) be-
comes a partial differential equation for P(x,t) which involves derivatives of all
orders with respect to x. It has the same form than (2.6) with the replacements
o - A(re(x)-r_(x)), [, — -%rs (x),[o4 —r_ 1(x) [4]. An expansion a-
round this 1imit permits a systematic cé%culation of finité size effects. Alternative
formulations of (2.5) and (2.6) can be given in terms of the generating function

and Poisson representation associated with (2.1).

W(N

1+

n —s N) (N+1)...(Nzn)/ nl 1, n51 (2.8)

A most interesting consequence of the unified description of fluctuations given
by (2.6) shows up explicitly when considering the equations satisfied by the moments
of P(N,t). For the sake of clarity, and although such equations can be written quite
generally, here we restrict ourselves to the two first moments for the example con-
sidered in (2.7)-(2.8) and with A,=0. Inclusion of a fluctuating parameter in Wy
gives similar results. In terms of the variable x=N/V we find[4]

dp <x> =<r+’o(x) - r‘_,o(x)>+)\_( {e'w‘a‘}av -W.a- 1) <xD> (2.9)
dp 2 = 2¢xlr, ((X) = o ()Y +A(feAY 2ma- 1)<k
+V-1<r‘+,0(x) + r_’o(x)> ->\.V']( {e—ew.a. —e-w'“'j'av

Eq. (2.9) is the same that one obtains in the thermodynamic 1imit and it contains
no contributions from internal fluctuations. The first term corresponds to the de-

_ (2.170)
+W-42) x>
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terministic 1imit and the second one is the external noise contribution. The first
two terms in the r.h.s. of (2.10) have the same origin than in (2.9) but there are
additional contributions from internal fluctuations which scale with V™', The third
term exists in the absence of external noise. The fourth term is a "crossed-fluctua-
tion"contribution which couples external noise to the internal fluctuations of the
system. This coupling effect is of special relevance for small systems and can only
be obtained through a unified description of fluctuations. It can be seen that in
general "crossed-fluctuations" contributions exist in the equation for <(x) ghen-
ever ry 1(x) or r__1(x) are nonlinear functions of x. In the equation for ¢x“)

in general "crossed-fluctuations" contributions only vanish for additive external
noise. In this sense such contributions are a consequence of multiplicative (state
dependent) external noise in a finite system. We note that this coupling effect also
exists for external dichotomic Markov noise [3] and in the white noise Tlimit of the
theory [2]. It seems to be a consequence of any reasonable unified theory of fluc-
tuations. We finally remark that this effect is not obtained by simply adding a new
noise term to the stochastic differential equation which describes external noise

in the thermodynamic Timit.

3. Creation and Annihilation Process with Source

As.an 111ustratjve example of the general theory we consider a model of a nonequili-
brium process with creation and annihilation of particles and a source term. Mathe-

thicaEsﬁetails are given elsewhere [4]. The model is defined by the chemical reac-
ions

A+ X &= C B + X — 2X (3.1)

The chemical process is described by (2.1) with Wi(N) = «V+ ¥ N, W_(N) = 8 N. The
same mathematical model has also been used in the context of maser amplification [6]
and nuclear reactor modeling [7]. We consider random fluctuations of the annihila-
tion parameter Q as given by (2.4) with ;;(t) being a Poisson white noise.

The stationary distribution of the model is shown in Fig. 1 in several circum-
stances. In the absence of external noise one has a smooth function defined for all
values of N)0. This is rather different of the situation with external noise in the
thermodynamic limit: We first consider the case 8- Y- X®W> 0 for which the stochas-
tic damping coefficient @ + £(t)-¥ is always positive. The stationary distribution
is then defined in the interval (0,xg), Xo =</(&-¥-AW ), and it exhibits a tran-
sition at A = A= 8-%-AW . At this point in parameter space, the stationary dis-
tribution Pst(xp) changes its value from 0 to e (Fig. 1). This transition is modi-
fied by internal fluctuations in a system of volume V. The distribution is then de-
fined for all valus of x>0 and no sharp changes of Pgt(x) are found. For any fini-
te value of V the distribution goes smoothly to zero as x —» oo irrespective of the
value of A . However, for a fixed and large value of V a smooth but important chan-
ge of Pgt(x) still exists for A= X . The height of the distribution at its maxi-
mum becomes significantly smaller when » becomes larger than X. . If the value of
V is decreased, internal fluctuations become dominant and destroy any remnant of
the transition. For small values of V the stationary distribution is practically in-
dependent of the value of

When the parameters of the system are such that §- ¥- A%<0, a stationary distri-
bution only exists for 8 -¥ > 0. This condition is the same in the thermodynamic 1i-
mit than for a finite system. Also in both cases the stationary distribution is de-
fined in the interval (0,9@) and no transition is found. Although the system reaches
a-steady state the fact that the damping coefficient has negative realizations ma-
nifests itself in the divergence of the stationary moments ¢x™) gy for m) mg=
(’g-x)/w(h’ -'@'+>\W). Again, the value of m, is independent of the system size.
The formal expressions for <xﬁ‘> ( any m) are he same for? -¥-xw2Z 0. The mean
value and relative fluctuations are given by

(x> gy = K/ -Di0 + N/ (1+ )] (3.1)
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+

=V (1+w) [ (1+2w) ( @ %) - 2aw2]

The mean value is independent of V. The first and second terms in the r.h.s. of (3.2)
are the contributions from internal and external fluctuations respectively. The third
term is the "crossed-fluctuation" contribution discussed earlier in general.

We finally note that similar conclusions about the interplay of internal and ex-
ternal fluctuations are obtained when considering fluctuations in the source (o) or
creation ( ¥) parameters. Also in these cases a transition is smeared out by inter-
nal fluctuations. In these two cases the probability distribution in the thermodyna-
mic 1imit is defined for values of x larger than a boundary value. A change of behav-
ior at this boundary is found for a critical value of A . Fluctuations of «and ¥ turn
out to have qualitatively the same effects. They are qualitatively different from the
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previous case of @-fluctuations in which Pg¢(x) was defined for x <Xy It is interes-
ting to note that if one considers external gaussian white noise the situation is ve-
ry different. Because the realizations of gaussian noise are unbounded it is not po-
ssible to distinguish fluctuations of § from those of § in the thermodynamic 1limit.
The only difference then is between additive (o) or multiplicative (g,x) noise. We
also remark that none of the transitions described above exists in the gaussian white
noise case. Nevertheless, we expect that the white noise 1imit of the theory accounts
for the main finite size effects in the calculation of averaged quantities 1like mean
values and relative fluctuations.
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#DMR-8312958.
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Hopf Bifurcation and Ripple Induced by External Multiplicative Noise

René Lefever and John Wm. Turner
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B-1050 Bruxelles, Belgium

1. Introduction

The influence of external noise on nonequilibrium systems can advance or delay the
onset of oscillatory behaviour. Without drawing much attention, this phenomenon

was apparently first described in the field of radio engineering [ 1-3]. KUTZNETSOV
et al. [1] in a paper on the valve oscillator remark that the amplitude of the
oscillations tends to zero if the intensity of the noise exceeds a certain threshold.
Conversely, studying numerically the effect of substrate input noise on an oscilla-
tory enzymatic reaction, HAHN et al. [4] found that it may induce quasi-periodic
behaviour under conditions where oscillations do not occur according to the deter-
ministic equations.

More recently, while the interest in noise induced transitions is increasing
(see e.g. [5-7] and the references cited therein), similar observations have been
made by KABASHIMA et al. [8,9] and by DE KEPPER. In the first
case, the system studied is an electrical parametric oscillator, the oscillations of
which can be suppressed by turning on a random pumping current; in the second case,
it is a light sensitive chemical oscillator (Brigg-Rauscher reaction) in which the
light intensity fluctuations advance the occurrence of the oscillatory regime.

On the theoretical side, the influence of external multiplicative noise on a
Hopf bifurcation has been investigated by EBELING and ENGEL-HERBERT [ 111 on various
abstract model systems. These authors have shown that the direction in which the
bifurcation is shifted by the noise depends on the model considered or on the para-
meter which is perturbed. The dynamics of fluctuations near a Hopf bifurcation with
fluctuating control parameter has been analyzed by GRAHAM [ 12] . In this work, the
external noise is added to the dimensionless parameters which appear in the univer-
sal normal form equation describing near a Hopf bifurcation, the deterministic
dynamics on a long time scale. In that case, regarding the amplitude of the oscilla-
tions, it decreases with the intensity of the noise.

The results we summarize in this short note demonstrate, for a given chemical
model (Brusselator) and a given fluctuating control parameter, that the direction
of shift of a Hopf bifurcation induced by external noise can be changed by acting
on the speed of the noise relative to the speed of rotation of the system on its
deterministic limit cycle. We use for this purpose the perturbation scheme,which as
indicated recently [ 13] provides a method for solving in a systematic way the
Fokker-Planck equation describing the kind of problem at hand. We conclude the note
by commenting,in the Tlight of the results mentioned above, on the conditions under
which pure noise induced transitions (ripples) occur in this system.

2. Influence of external noise speed on the direction of shift of a Hopf bifurcation

We consider the Brusselator chemical reaction scheme
A—s X, 2X+Y — 3X, B+X —> Y+D, X ——= E. (1)

Its evolution equations read
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A-X+X2Y-BX (2)

¥ = BX-x%Y (3)

and admit the unique steady state solution

]

X

Xs = A, YS = B/A

which undergoes a Hopf bifurcation at

_ _ 2
B = BC = 1+A".
At the bifurcation point, the linear period of oscillation is equal to
T=al

We now examine the behaviour of this system when the parameter B fluctuates. Let us
assume that ,
2,2 t
B, = B +e"A°(I+
t c A1/2K

where € is a smallness parameter expressing the distance of the average <B> with
respect to the deterministic bifurcation point, i.e.

2

) (4)

%1 (5)

with I =1, 0, -1 according to whether B, is on the average above, at or below the
deterministic Hopf bifurcation point. z_"is a colored noise with zero mean value.
We take it to be the Ornstein-Uhlenbeck "process given by the stochastic differential
equation

Yz
__ 't o
dZt = _|<?+—det. (6)

The correlation time and variance of the noise z, are respectively

<B>--BC =g

2 2
Teor = K®/y and Var = ¢"/(2y). (7)

The scaling by the smallness parameter K in (4,6) is the appropriate procedure for
taking the white noise 1imit of the noise or for studying its neighbourhood [5,14] .
In the following we shall work in this limit, i.e. K — 0, and without loss of
generality let y = 1. Introducing the time scale

T = At (8)

in which the unit time corresponds for B = B_ to one period of the rotation in the
deterministic system and introducing polar cbordinates through the transformation

<B>/A+eu%§§(sine—Acose) 9
<B>/A+eu™’ “(s-Ac), (3)
(2,3,6) can be rewritten as

2

X =A+eAui§§cose, Y
=A+eAu™’ “c

3/2]+za2(czlAu—ca’Au2+c3su2 3

dTu = 2{s[c3(% -A)u3/ +2c25u )+e3(c IAu3/2)—

1/2

Al;ZK(ecAu +52c2Au)}

2. 3 1/2,.-1 2
= ef el re -z (A %) (e +¢%g,)
= f-z(Al/ %) g (10)

d e = —1+e[czs(A—%)ul/z-chzul/z]+52(-csIA+c3sAu—c252u)+s3(-czsIAu1/2)+

z 2

sA
+ (e +e"csA)
al72 7 172
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3 L 2.
-l+eh1+52h2+e h3+ ;T§?—(sgl+s 92)

= hez(Al/ %) 1y (11)
dz_ = -z_/(AK®)deto/ (ALY 2K)du_. (12)
T T T
The Fokker-Planck equation giving the probabi]ity density of the triple (u,6,z) is
z. 2 1/2
9.p(us6,2) =[-3 (f- %g)—ae(h+ ﬁg)+ n (8 z+ % 3, )1p(us6,2), n=A /2 (13)

In the following we shall analyze the stationary properties of (13) under conditions
where the time scale corresponding to the relaxation towards the limit cycle is
longer than the other two characteristic time scales of the system, i.e.

2 1

€ AZ)_ >>T and T.

Tmacro = ( cor

We shall more particularly be interested in the effect of the speed of the external
noise on the noise-induced Hopf bifurcation. We consider successively the two cases
where the correlation time of the noise is shorter than the period of oscillation T
or longer.

2.1 The correlation time of the noise is shorter than the period of oscillation

In this case

2,2,-1 2
Tnacro™ 17> Tcor O (€ A ) >>K>>K (14)
so that
172, 1/2
n=AK = (1 /T el (15)

is a smallness parameter. We write the stationary equation of (13) in term of the
powers of n

2
1 <
;?(azz+gzazz)ps(u,e,z) = [5(-8,+358)+d F+3ghl p (u,6,2) (16)

and expand the solution of (16) as
P(Us8,2) = py(u,6,2)+np;(u,6,2)+.... (17)
The perturbation scheme set up in this manner is exact]y the wide band perturbation

method described elsewhere [5,14]. To the lowest order in n, the solution of (16)
can straightforwardly be written as

p(‘)(u,e,z) = ps(z)p;(u,e) (1b)

where p_(z) is the stationary probability density of the Ornstein-Uhlenbeck pro-
cess an p;(u,e) is the solution of

2 2 5% 5%
(G807 200,95+, 3)-3 [ + T((39)g B9 -a ht H((3)g-(3)q11py = 0. (19)

(18,19) are intuitively evident: the limit n —s 0 amounts to replacing zZy by
white noise in (10,11).

To solve (19) we now make use of the smallness parameter which remains at our
disposal and expresses the slowness of the radial motion towards the Timit cycle.
We thus write (19) and its solution in the form of an expansion in e:

2 3 4 "
(F0+5F1+e Fote"Fa+e Fglpg(u,8) =0, (20)
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ps(u,e) = pg(u,6)+ epi(u,e)+... . (21)

After solving (20,21) up to the order 52 (calculations therefore must be pushed
up to the order €'), one conclydes that the reduced stationary probability

2T
Polu) = fo pg(u,6)de (22)
is given by (for A = 1)
po(u) = {147 2C+Q(u)] Jo(u) (23)
where
1 3u2
¢(u) = Nexp—(Iu- =5-), (24)
ag
2
77 . 41 2 251 239 | 3 631 57 5
Q(u) = »yu+ +H— - Ju~- + u (25)
2 2 e T 222 Tt 1600t
and
¢ = - 37 Q(u)o(u)du. (26)
0

In the Timit 02<<1 and with I =1, (23) admits a maximum Un» located at

2
760 2 77
Uy =%-T8 € +%’—<3@€2>~ (27)

Accordingly, under the conditions (14) the external noise on B advances the onset
of the oscillatory regime as compared to the deterministic situation.

2.2 The correlation time of the noise is longer than the period of oscillation

Inequalities (14) are now replaced by

-1 .21

STop>T or (£649) hookEosl ith aos1. (28)

T >
macro co

The appropriate parameter for expanding the Fokker-Planck equation and its solution
is now

n' = eA. (29)

At the Towest order in n', the solution is circularly uniform, i.e. one has
PolUs2)
PlUs »2) = —5r—

where pé(u,z) is the solution of

2 2
3 1 1 1
3uf2€(1u- —%— - %—u)]po(u,z) - ;?(azz+ %—azz)po(u,z) = 0. (30)
Since
e<<l-and 1.1 <<1,
n " Teor

we look for a solution of (30) in the form of an expansion in powers of n. This
yields at the lowest order

Polusz) = pg(2)9(u) (31)

where ¢(u) is simply the solution of the Fokker-Planck equation of the one variable
Verhulst model, namely
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2 2
[[2e5-3,u3 u - 3 (Iu- 3—;5‘~)1¢(u) = 0.

It is well known that in that case the bifurcation is delayed by a shift proportio-
nal to the intensity of the noise.

3. Comment on noise induced ripples

We have shown using a Galerkin type of resolution scheme,that when the kinetic
constant of the trimolecular step in (1) fluctuates, new pure noise induced transi-
tions become possible. For the sake of clarity let us recall for example that when
A = 2, the extrema of the probab§1ity density behave as represented in figure 1.

Uy is plotted as a function of ¢“ and for the
values of ¢ indicated. The curves labelled U
1 correspond to the situation typical above m
the Hopf bifurcation. For small intensities -025
(curve in the Tlower left corner) one sees 1
that the noise suppresses the extremum cor- AN
responding to the usual limit cycle; this is
the same behavior as in 2.2. Its amplitude
which is equal to one (in normalizing with
respect to the deterministic Timit cycle, i.e.
4é3) when ¢~ = 0, rapidly drops to zero for

¢~ = 0.1. Between 0,1 and =0.6, no other extre-
mum is found. For ¢” > 0.6, a new branch of
physically acceptable extrema appears. The
probability density exhibits a ripple sugges- 2
ting that a new kind of sustained periodic
regime sets in. This,branch of solutions does
not disappear when e~ is equal to zero or even
negative &but in absolute value smaller than

B ). As €” diminishes this pure noise induced2
branch of extrema shifts to Tower values of o°,
reaches the abscissa and finally the direction
of the bifurcation reverses.

3

It would be possible to verify these
predictions using the perturbation expansions
of the preceding section. Owing to their
length, such calculations however are hardly fe
feasible when the trimolecular constant fluc- lues o
tuates. Nevertheless the results above indica-  CUrves-
te conditions for which the Galerkin procedure
employed in [13] can be expected to converge rapidly towards the exact solution.
Indeed, this procedure is based on the assumption that to Towest order the statio-
nary probability density is nearly circularly uniform. We saw in 2.2 that this is
the case when A >> 1 and when the correlation time of the noise is longer than the
period of the deterministic limit cycle.

Figure 1: extrema of the probabi-
Tity density when the trimolecu-
lar constgnt fluctuates. The va-
are indicated on the
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Inhomogeneities Induced by Imperfect Stirring in a C.S.T.R. Effect on
Bistability

J. Boissonade, J.C. Roux, H. Saadaoui, and P. De Kepper

Centre de Recherche Paul Pascal, Domaine Universitaire
F-33405 Talence Cédex, France

1. Introduction

During the past ten years the C.S.T.R. has been considered as the fundamental tool
to study temporal behaviour of isothermal Zomogeneous chemical reactions maintened
far from equilibrium. The control parameters generally are the concentrations in
the input feed and the pumping rate kg = ! , where T is the residence time of the
reactor. The steady states arevcharacteriZed by the concentrations of all species
in the reactor. Bistability [1] and various types of oscillations [2] have been the
basic phenomena explored by this technique. A system is bistable when there are two
different steady states for the same set of control parameter values. The bistabi-
lity range extends necessarily on a finite range of kg values since at very large
flows T is short with respect to the reaction time and the only steady state has
the concentrations of the feed. The set of steady states which extends to kg = «
will be refered as the "flow branch", and the other one as the "thermodynamic branch"
(we include exotic cases [3]). Figure 1 displays a typical bistability in the ran-
ge ki < k < ks (S or Z shape as well as positive or negative slopes of both branch
are possible according to the specific system and the species chosen to characterize
the steady state). Recent experiments [4,5,6] have shown that, even at stirring ra-
te usually considered as sufficient to guarantee homogeneity the bistability of the
chlorite iodide reaction is very sensitive to this stirring rate. The two main
outcome of these experiments are : i) When the stirring rate is decreased the cri-
tical switching value ks from the thermodynamic branch to the flow branch is drama-
tically shifted to Tower values of the flow and the thermodynamic branch moves to-
wards the flow branch as shown on Fig.1 of ref.[6] ii) When performing the super-
critical perturbation the transition does not occur immediately, but the system
remains on the initial branch during a time statistically distributed and long com-
pared to the residence time. This could suggest that the initial state is metastable.
Various interpretations have been proposed to this effect of. imperfect mixing. At
first, it was suggested [4] that, if one considers turbulent mixing as an enhanced
diffusion, these results are an experimental evidence for a nucleation process, in
agreement with stochastic theories initially developed by PRIGOGINE and NICOLIS

[7] and NITZAN et al. [8] (for more references see ref. [4] and [5]).In this theo-
retical frame,transition occurs when a fluctuation has a sufficient size to drive
the whole system out of the initial state. Large diffusion rates favour damping of
spontaneous fluctuations, increasing the required critical size. These theories

?

Fig. 1 Typical bistability in a C.S.T.R.
( : thermodynamic branch
® : flow branch
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predict a decrease of the effective bistability range when diffusion decreases and
a metastability related to the time for a critical fluctuation to form. Such inter-
pretations could be supported by recent experiments by MENZINGER [9] but do not
account for the shift of the thermodynamic branch and other experimental features
reported in ref. [5]. HORSTHEMKE and HANNON [10,11] interpret the results with a

different stochastic theory, based on the dynamics of turbulent eddies in the
reactor.

Besides these stochastic interpretations, deterministic interpretations are pre-
sently developed:  GRAY [12], KUMPINSKY and EPSTEIN [13] , propose systemic appro-
aches, commonly used in chemical engineering : several ideal reactors are coupled
by conservative flows with expandable coefficients, so that by-passes or dead zones
may be taken into account.NICOLIS and FRISCH [14] use a quasi-Semenov equation in
the Timit of large diffusion coefficients and obtain a renormalization of kp. DEWEL

et al. [15] use a phenomenological theory of turbulent mixing to study surface ef-
fects produced by the feed of the reactor.

With the exception of nucleation theory, all the interpretations are related to
inhomogeneous perturbations by the feed. We propose a very simple interpretation of
the feed effect supported by numerical simulations.

2. General Scheme

We shall consider that the velocity field can be described as the superposition of
a convective velocity field and a diffusion expressing the rate of turbulent mixing.
For perfect mixing the diffusion coefficient D goes to infinity,so that the system
is homogeneous. The injection has generally a small diameter di. Except for small
flow rates,the velocity field is extremely large in the vicinity of the inlet,so
that the convective transport is large in regard to the diffusive part. If we con-
sider a small volume, typically of size dj, localized around the port, the concen-
tration inside are those of the feed or at least this small volume can be conside-
red as a small reactor with very large flow rates. In both cases, the stationary
state of this volume belongs to the flow branch. In some respect it plays the role
of a fluctuation in the nucleation theory. If the turbulent diffusion is not two
large, this small "nucleus" tends to expand (or equivalently di is longer than the
critical size) and drive the bulk into the stationary state on the flow branch.
When the stirring rate is decreased, the flow branch is favoured. One could speak of
a "forced nucleation" but this term is somehow misleading since the process is pu-
rely deterministic and the local perturbation due to the feed is permanent. The va-
1idity of the conclusions implies that the input flow is large enough to define the
small volume above. This is certainly the case close to kg, where the flow becomes
dominant compared to the reaction processes on a macroscopic scale. The transition
is shifted to Tower values of the flow rate. For the reverse transition at ki, whe-
re the flow is often very small and where the reaction process becomes dominant no
definite conclusion can be drawn. We shall now develop these ideas on simple models

and show that Tocalized injection of reactants induces effects in qualitative agre-
ement with the experiments.

3. The Model

We use a three variables model, proposed previously [16] to account for a competi-
tion between an autocatalytic step an a non autocatalytic one :
Kl
B +X~»2X

2 (M.1)
D + X = Products

If B,D,X are the concentrations inside the reactor, By, Dps Xo the concentrations

in the feed, and using mass action kinetics,the homogeneous evolution equations
written:
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dx
T = (ky B -k, D) X + kg (Xg - X)

n

dB
==k BX + kg (B - B) (1)

o
o

'—t ‘kzDX+kE(DO"D)

[=%

It was shown [16] that there are two stable stationary solutions for a proper choi-
ce of the control parameter values. With X, = 20, By = 62.5, Dy = 750, the system
is bistable for 0 < kg < 1.68:. These values are used in the rest of the work. One
and two dimensional mogel-reactors were used. In a one dimensional reactor of length
&, the convection velocity is all along equal to *. If the space is dis-
cretized into N identical cells, the equation for species Ctin cell i is :

%%} = R1 + D(C1._1 + C1.+1 - 2C1) - kE (Ci - C1+1) + source terms (2)
where Rj is the reaction term for an homogeneous system, D a renormalized diffusion
coefficient, and ké = N kg. To take into account the Zocal character of the feed
the source terms are also Tocalized and equal to i) kg Cq in cell 1 (input cell),
i1) - kg Cy in cell N (output cell), iii) 0 elsewhere (Fig. 2a). In our numerical
experiments N = 16. In a multidimensional reactor, the convection velocity depends
on the geometry of the reactor and on the stirring process. In order to produce a
qualitative description of the turbulent mixing, we represent convection and turbu-
lent diffusion by a generalized non-uniform diffusion process. The two dimensional
mode1-reactor is represented by a square array of N cells, with periodic boundary
conditions (N = 16 in the computations) and source terms defined as previously wi-
thin the input and output cells according to Fig. 2b. Equation (1) becomes here :

%ﬁ} = Ry + Dy § C; - 4Dj Cy + Source terms (3)

where the j are the indexes of the first neighbouring cells and the Di are the ge-
neralized diffusion coefficients deduced from the Tinear conservation equations :

4D; - ¢ Dj = Flow source terms (4)
J

They take the form Di =d + aj kg where aj are constants depending only on the
cell and d is an expandable parameter giving the rate of turbulent diffusion.

ke
7

Fig. 2a Model of 1-D reactor Fig. 2b Model of 2-D reactor

The dynamical equations of both reactdrs were solved on a computer for various
mixing rates and the stationary states carefully determined. The states of the
system were characterized by the concentrations averaged over all the cells.

'Due to absence of reverse reactions and absorbing boundary limit at X = 0, bista-
bility extends to kg = 0.
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4, Results

For the one-dimensional reactor,the computed bistability range as a function of kg
is displayed on figure 3 for several values of the diffusion coefficient D. The re-
sults are in perfect qualitative agreement with the experiments : the transition
point kg is shifted to lower flow values when D decreases. Moreover, close to the
transition point, stationary states on the thermodynamic branch deviates from the
homogeneous case values, a behaviour not predicted by nucleation theory.

Fig. 3 Stationary state. Model M.1~”
(¥ concentration - 1-D reactor)

- D=
+ D = 500
hﬂ‘x‘\\\ A D =250
o D =100
[_ X D= 50

1 Fig. 4 Stationary states.Model M.1
e oo (¥ and D concentration - 2-D réactor)

- d=w

. o d=20

4 ."t. e pAod= 5
+ d= 0

05 1 15 K

On figure 4 analog results are obtained for the two dimensional reactor where d is
varied from 0 to «. As could be expected the feed effect is found less dramatic
than in the one dimensional reactor,since the introduced perturbation is more easi-

ly damped with increasing dimensionality. Computations have also been performed in
the one-dimensional reactor for the reaction

A+ 2X Z 3X (M.2)

where A and was supposed to be in large excess. The homogeneous equation is a cubic
rate Taw :

R T S S I SR (5)

With k, = k_ = 9 and X, = 0.03 this system is bistable for 0.98 < kg < 2.42 .The
stationary states for D =« and D = 100 are represented on figure 5. Similar re-
sults to those of model M.1 were obtained. Moreover the reverse transition at kj
was also found shifted to Tower flow values.
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Fig. 5 Stationary states.Model M.2 — D=o
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A major argument in favour of a stochastic nucleation theory was the experimen-
tal observation of metastable states. DEWEL et al. [17] have shown that, due to
critical slowing down,after a slightly supercritical perturbation the concentrations
values first decay very slowly and present a Tong plateau close to the values of
the initial state before switching rapidly to the final stable state. This type of
relaxation has also been observed in our simulations: we present on Fig. 6 examples

of the response to two supercritical perturbation obtained for model M.1 with d=20.

For these conditionsthe transition point is kg = 1.542 .The initial state was

kp = 1.53, starting on the thermodynamic branch. A jump to kg = 1.543 at t = 0 in-
duces a plateau (curvell) Tlonger than 30 T before switching. Such Tlong relaxation
times have been also observed experimentally by PIFER et al. [18]. If the flow
jump is slightly Targer i.e. to kp = 1.55, the plateau disappears and the system

switches rapidly (curve I ). Thus, less than 1 % change in the values of the flow
may induce dramatic variations in the relaxation times. Since, typically, in stir-

ring experiments [4—6], the pumping rate is not more reliable,a rather large dis-
tribution is produced in these relaxation times in repeated experiments but thisap-
parent "metastability" does not imply any nucleation or stochastic process.

at

Fig. 6 Relaxation to a supercriti-
cal perturbation
(X concentration ; 2-D reactor)

I kg~ 1.543
I kg~ 1.55

time

5. Conclusion

We have shown that the effect of stirring on bistable chemical systems in a C.S.T.R.

can be understood without any fluctuation process. Inhomogeneities originate in
the local character of the feed. Even a simple reaction-diffusion scheme can quali-
tatively account for the main experimental facts, in particular the shift of the
transition point kg to lower values of flow when the stirring rate is decreased.

We have mentioned that the argument for a "forced nucleation" process falls at
Tow flows, in particular for the reverse transition at ki and that no general con-
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clusion can be drawn without the complete kinetical equations. Recent experiments
[13] support this statement : a shift of the reverse transition point ki to larger
flows was found in the minimal bromate oscillator.

A11 these results show that the non ideality of real flow reactors has to be
considered carefully in experimental work on "homogeneous" reactions. The "mixing
rate" cannot be simply dismissed as a small side-effect but has sometimes to be re-
tained as a control parameter.

This work has been supported by grant 831332 of the Direction des Recherches,
Etudes et Techniques.
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Turbulent Mixing and Nonequilibrium Chemical Instabilities:
The Effect of Reactant Streams in a CSTR

W. Horsthemke and L. Hannon

Center for Studies in Statistical Mechanics, Department of Physics
University of Texas, Austin, TX 78712, USA

1. Introduction

We use a phenomenological model to study the effects of imperfect mixing in the con-
tinuous flow stirred tank reactor (CSTR). 1In the limit of an infinitely fast stir-
ring rate (perfect mixing), macroscopic spatial homogeneity is achieved throughout
the reactor. Of course, realistic stirring rates are necessarily finite, in which
case, various mechanisms can give rise to spatial inhomogeneities which may not be
completely eliminated by stirring (imperfect mixing). In this paper, we examine re-
actant streams in the role of breaking stirring-induced homogeneity, and, the con-
sequent effects on the state of the chemical reaction. We find results similar to
those presented in our earlier paper [1] where we considered a different mechanism
in this role, namely fluctuations.

We consider behaviour in the Schldgl model [2] as a function of flow rate (inverse
residence time). This result is in better agreement with experimental findings [3]
than that presented in our previous paper [1]. We conclude that the interaction be-
tween reactant streams and finite stirring is the dominant mechanism underlying the
phenomena observed in experiment [3].

2. The N-Variable CSTR Model

The N-variable model for chemical reactions in a CSTR is [1,4]

N 2
3
3p Plxt) = - 2 £ (x)p(x,t) + ——2 L Teme Bog ®)P(XE)
n=1 m=1 n m

+

262{d3<_’J'd3<_”6[% (x"+x"7) -xl px",t)p(x"7,t) -p(x,t)}

- U.{p (ilt) - PO (?Srt)} ’ (1)

where x is an N-dimensional vector, the elements of which are .concentrations of the
individual chemical species, x_, and p(x,t) is the N-variable probability density
for species concentrations. The first term on the right hand side describes chemi-

cal kinetics according to the deterministic rate equations

3 X = fn(z) , n=1,...,N . (2)

The next term reflects the existence of fluctuations in the system (0% is the fluc-

tuation strength, hnm(i) are elements of the NXN diffusion matrix). The third term
uses a coalescence-dispersion mechanism (for details, see [1,4]) to model turbulent

mixing (2B is the inverse characteristic mixing time). The last term describes the

flow of reactants into and out of the CSTR (0 is the inverse residence time; p (x,t)
is the probability density for input reactant stream concentrations).
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Again we find it advantageous to work with the characteristic function, q(k) =
<exp(ikex)>, which, in steady state, is governed by the equation

a2 ¥ N 19
-nél( —ik )F(F E)qui) *5 L mzl(—lkn) (-ik )h_(F 5P a(k)
- 28la(¥) - (3 0] - ala® -q @] =0 . (3)

The solution to (3) in the infinitely fast stirring limit, B+, is

a(k) = exp(ik'x) or p(x =8&x-x) , (4)
where X is determined by the condition

£, -ox -x 1 =0, x = jd§ xp (x) , n=1,...,N . (5)

-1
We expand about this solution in the smallness parameter, B =, to obtain solutions
for rapid stirring (B large but finite)

) v o1
q(k) = exp(ik'x)[1 + 221 2 PG (6)

We substitute (6) into (3) and equate terms of like order in the smallness parameter
to obtain

204, (&) - 2¢1(-— K1 = -Ot[l'eXP( —ikex )q (k)]

a2 N
—2(1k)f(x)+~—2 ) (-ik) (=ikph o (x) (7a)
n=1 n=1 m=1
2( -2, (Z K] = w +2 ] 6, K)o )
¢!L+1 ¢5L+1 =4 —O@SL X) 22___1 Q72 == 7412 =
N Ri :&\] -1 r1+...+rN (Xyreearry) (rqre-0ry)
Y ) Yo ) SR e T e T
n=1 n ry =0 rN=° 1hee Tyt
2 ¥ N Ry R R
+ Y Y k) ik ] .- f (-1 N fEeTy)
n=1 m=1 r,=0 rN=0 rl!...r ! nm —s
(. yeearry)
x g, ! Yoo (7o)

We next expand the functions, ¢Q(£)' as power series in the variables (—ikn).

bt s . J1 o3
¢, (k) = '2_ cee L YTy Aok T (miky) N (8)
17 INT

We substitute (8) into (7a) and (7b), equate terms of like order in (-ik,), and solve

for the unknowns, 7y '31""'3N' These coefficients enter into the moments of the
finite stirring pro%ablllty density via the relationship

+ J
Jp . _ 1 3.,°' 1.3 n
<x1 ...XN > = (I ‘a‘ﬁ) ..-(-i- a—k;) q(]_() £=0 . (9)

For example, finite stirring will lead to a shift in the mean concentration of the
jth chemical species away from the steady state, Xg» of the global rate equation

(5)

8

L

< .>= -
*yo =X s ¥0,0,00u01l,eea,0 !

sj Q

I o~
=

where YQ ,1, is the coefficient of the term in the power series for ¢£(k)
which is flrst "ordér'in kJ and zeroth order in all other components of k.
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In the remainder of this paper, we make the following assumptions for simplicity.
First, we assume that the chemical reactions under consideration can be adequately
described using one intermediate species, the remaining chemical species being in
excess. Second, we assume that fluctuations in the reactant feed stream are negli-
gible. This allows us to represent the probability density for feed concentrations
by a delta function. Finally, since we wish to specifically study the effects of
reactant streams in breaking homogeneity, we omit the term reflecting fluctuations.

3. The Schlgl Model

The SchlSgl Model [2] is a generic model for bistability in a chemical reaction de-
scribed by the evolution of one intermediate species. The reaction scheme

k1 ky
A=2x7 3%k , BZ X , (10)
kq k,

leads to the kinetic rate equation

. — 3 2 _ - -

X = klx + kjax k2x + kzb f(x) . (11)
For this model, we assume the feed concentration probability density to be

p(x) = 8(x-x) . (12)
Substituting (11) and (12) into (7a,b), we obtain to first order

Y0 =0

(2) (3)
Yy, - EU Y,
Yll - ’

M ixy -0
227 o °
n
Y, = ) = (x_-x) ’
in 21’1_2 n: S o
- 3 2 - .
-k, x2 + klaxS - (o+k, )xs +ox - k,b =0 . (13)

We compare these results to the first order results presented in our previous paper
[1] where we analyzed the effects of a different mechanism, fluctuations, for break-
ing homogeneity

Ylo =0 ’
(2)
f ()Y,
Y11 f(1) ’
(xs)
2
g
Yy, =5 hx)
Yln =0 , n>2 ,
-k, x; + %k, ax: - %, x  +kb=0 . (14)

The two sets of results (13) and (14) are similar in that they both predict a de-
crease in the area of the bistable region as well as a downward shift and finite
variance for states on the upper branch as a function of the stirring rate.

In Fig. 1, we plot the mean and variance (calculated to fifth order)
Yoq 3
Jr’z... , <(x-<x>)2>:2
=1 B 2=1 B

Yoo
— (15)

Il o~

<X> =X =
S
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Fig. 1. Schlogl Model: Stationary state mean and variance vs. flow rate (ki =1,
k,a = 3, k% = 2.5, k,b = 0.636, X, = 0.602) B=w, 50, 25, 10, 5

of the stationary states as a function of the flow rate, 0, for several values of
the mixing rate, 2B. The reactant stream model (11) exhibits features which are
closer to experimental findings [3] than the fluctuation model (1). Model II shows
no stirring-related changes on the lower (flow) branch,whereas Model I shows small
upward shifts and variance. Model II predicts that the variance for states on the
upper (thermodynamic) branch will increase as the transition point is approached
whereas Model I predicts that the variance will show a small decrease as the transi-
tion point is approached.

4. Conclusions

The SchlSgl model [2] yields results that are closer to experimental findings [3]
when the homogeneity breaking mechanism is reactant flows than when it is fluctua-
tions. We conclude that the observed phenomena are essentially the effects of re-
actant streams and finite stirring rates in the CSTR.
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Stochastic Aspects of Nonequilibrium Transitions in Chemical Systems

G. Nicolis, F. Baras, and M. Malek Mansour
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B-1050 Bruxelles, Belgium

1. Introduction

One of the principal preoccupations of the present meeting is the
study of the transitions occurring in nonlinear chemical systems
far from equilibrium. Experimental evidence provides us with an
impressive number of examples, and brings out clearly the diversi-
ty of these phenomena, from bistability and sustained oscillations
to chaotic dynamics and the formation of spatial patterns in an
initially uniform system.

The theory of dynamical systems, which was marked by spectacu-
lar developments since the 1960's, establishes that there exist
large classes of nonlinear equations whose solutions show preci-
sely this kind of behavior. Whence a growing feeling about the
inevitability of complex transition phenomena in physical chemis-
try, and about the suitability of macroscopic physics - of which
the theory of dynamical systems is the principal tool - to handle
them.

Now, bifurcation or any other transition implies that, at some
stage of its development, a macroscopic system becomes capable of
generating, propagating and sustaining reproducible relationships
between its constitutive parts, extending over its entire dimen-
sions. How can this extraordinary coherence arise ? Certainly
not by the random collisions of the molecules of reacting species,
which is the usual picture afforded by classical chemical kinetics
in the presence of short-range forces. Nor can phase-transition
related phenomena be invoked since, as a rule, the systems of in-
terest are in a well-defined, thermodynamically stable phase of
matter. The theory of dynamical systems is unable to handle this
major question. An enlarged description of nonequilibrium transi-
tions is thus needed, in which the molecular aspects of these phe-
nomena are taken into account. This is precisely the purpose of
the theory of fluctuations in nonequilibrium systems, different
aspects of which will be discussed in the present paper.

Essentially, fluctuation theory provides us with the microsco-
pic counterpart of the phenomena of instability and bifurcation.
We discuss the static aspects of this problem in section 3, after
surveying in section 2 the problems related to the modelling of
the fluctuations. Section 4 is devoted to the origin of coherent
behavior 1in nonequilibrium systems. Specifically, we study the
spatial correlation function and show that, as soon as a system
deviates from thermodynamic equilibrium, it generates spatial cor-
relations of macroscopic range. This phenomenon, which has no de-
terministic analog, i1s further accentuated near bifurcation by the
fact that the correlation length tends to infinity and order en-
compasses the entire system. In section 5 we survey the time-
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dependent aspects of fluctuations with special emphasis on the ki-
netics of explosive reactions. A summary of the results and a
short discussion of some open questions is given in the final sec-
tion 6.

We want to emphasize that the need to study the molecular as-
pects of nonequilibrium transitions stems from a deep conceptual
question which cannot be overlooked in the name of pragmatism.
True, in most cases of practical interest the effect of thermody-
namic fluctuations, whose size is necessarily small, is masked by
the effect of external disturbances of macroscopic size. A com-
pletely analogous situation occurs in connection with ordinary
phase -transitions where external fields, finite size effects, or
even deliberate intervention like the seeding in crystal growth,
turn out to be more efficient than the internally generated fluc-
tuations. In both cases, however,one may regard these macroscopic
effects as probes of what the system would be capable of doing
anyway, albeit on a much longer time scale. We are therefore con-
vinced that, having mastered to some extent the phenomenology of
nonequilibrium transitions, physical <chemists will discover
growing evidence about the importance of the fluctuations. Sign
posts in this direction are the recent intriguing results on the
role of incomplete stirring [1l], which reveal the importance of
inhomogeneous disturbances even for transitions between homoge-
neous states. This 1is very much like the theoretical prediction
concerning the role of the inhomogeneous fluctuations in the cri-
tical behavior around a bifurcation point as well as in the tran-
sition between the simultaneously stable states arising beyond bi-
furcation.

2. Some comments on the modelling of the fluctuations

Space and time-correlation functions of macrovariables around non-
equilibrium steady states have recently been calculated from non-
equilibrium statistical mechanics [2] . Despite this progress,
fluctuation theory for nonequilibrium states remains based, in its
essential aspects, on stochastic theory. Specifically, it is as-
sumed that one can define an appropriate set of discrete variables
X = {Xa} , generally localized in space, which constitute a Mar-

kov process. The following gain-loss balance equation, usually re-
ferred to as multivariate master equation, can then be written (3] :

th(x;t) = g LW (X-n > ) P(X-v 5t)

- wp ()\(, - )S"',\Zp) P(,X.Qt)] (1)

<

Here Np(l > X+3p) is the transition probability per unit time

for the occurrence of an elementary process which changes the sta-
te of the system from X to X+yp . Its specific structure has to

be derived from the available information on the nature of the
processes that take place in the system and from the constraints
imposed by equilibrium and other 1imiting laws. A chemical reac-
tion is thus modelled as a birth or as a death process, whereas

transfer of energy or matter across neighboring space cells is mo-
delled as a random walk.

We have invoked so far Markov processes in discrete state space
as the natural model of fluctuations, since the latter are the
consequence of the discrete nature of the microscopic processes
underlying the macroscopic evolution laws,
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4% = E(T2) (2)

dt

where F 1is the (generally nonlinear and dissipative) evolution
operator, and X a set of control parameters. Nevertheless, consi-
derable success has been achieved by describing fluctuations as a
continuous Markov process [4,5]. In this approach it is assumed
that a generalized Langevin equation descriptive of a diffusion
process can be written,

d _ ~
Etx, = F(X,k) + I,(t) (3)

where £ is a random force obeying a fluctuation-dissipation 1i-
ke theorem, similar to the one established near the state of equi-
1ibrium. Some powerful theorems ensuring the equivalence of both
descriptions for finite time are available [6,7]. However, in ge-
neral, this equivalence does not extend for all times. We discuss
this problem briefly again in sections 3 and 5.

3. Stochastic analog of instability and bifurcation

Let A, be a set of parameter values for which a solution X; of
eqs. (2), referred to as reference state, loses its stability and
gives rise to new branches of solutions by a bifurcation mecha-
nism. We want to see how the solution of the master equation,
eq. (1), behaves under these conditions, and how this behavior de-
pends on small changes of the parameters X around Ac' The answer
to this question depends on the kind of bifurcation considered, on
the nature of the reference state, and on the number of variables
involved in the dynamics. The simplest case is, by far, the
pitchfork bifurcation occurring as a first transition from a pre-
viously stable spatially uniform stationary state. This transi-
tion is characterized by a remarkable universality. First, what-
ever the number of variables present initially, it is always pos-
sible to cast the stochastic dynamics in terms of a single, "cri-
tical" variable. This 1is the probabilistic analog of adiabatic
elimination or, in more modern terms, of the center manifold theo-
rem [4,8-10] . Second, the stationary probability distribution of
the critical variable can be cast in the form (we set 8X.= Xr—ls ,
rstands for the spatial coordinates) L oL

P ~ exp U({GXE}) (4)
where the stochastic potential U is an extensive quantity similar
to the Landau-Ginzburg type of potential familar from equilibrium
phase transitions [4,5,9,12]. For a cubic nonlinearity one obtains
the following simple form, up to a mutiplicative constant ( D is
the Fick's diffusion coefficient)

2 4
. (8%,) (6X,)
U=~ J{ - (x-2,) . ;

+ 2(9.6%)° } dy
2 L (5)

Many important properties, such as critical dimensionality and
critical exponents describing the divergence of correlation length
and other quantities can thus be obtained from renormalization
group analysis. It is worth noting that for A well below XA_  only
the quadratic terms of the potential contribute to the asymptotic
properties of P, which reduces therefore to a multigaussian dis-
tribution in accordance with the central 1limit theorem [13]
There exists,however,a (frequently very narrow) vicinity of xc
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such that the quartic part of U plays a role, owing to the cou-
pling between different spatial modes of fluctuations. We are
therefore witnessing a breakdown of the central 1imit theorem in
the present problem. This reflects the coherence associated with
bifurcation : the system can no longer be partitioned into a col-
Tection of weakly correlated subsystems.

The above results can be derived from both the master equation
and the generalized Langevin equation as starting point. As a
matter of fact one can show that, in some well-defined asymptotic
sense, the discrete Markov process described by the master equa-
tion reduces to a Markovian process with continuous realizations
equivalent to eq. (3) wherein £(t) represents a state-independent
white noise in time [12]. This implies, in <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>