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Preface and Introduction

Harrie de Swart is a Dutch logician and mathematician with a great and open inter-
est in applications of logic. After being confronted with Arrow’s Theorem, Harrie
became very interested in social choice theory. In 1986 he took the initiative to
start up a group of Dutch scientists for the study of social choice theory. This
initiative grew out to a research group and a series of colloquia, which were held
approximately every month at the University of Tilburg in The Netherlands. The
organization of the colloquia was in the hands of Harrie and under his guidance
they became more and more internationally known. Many international scholars
liked visiting the social choice colloquia in Tilburg and enjoyed giving one or more
presentations about their work. They liked Harrie’s kindness and hospitality, and the
openness of the group for anything and everything in the field of social choice.

The Social Choice Theory Group started up by Harrie consisted, and still con-
sists, of scholars from several disciplines; mostly economics, mathematics, and
(mathematical) psychology. It was set up for the study of and discussion about
anything that had to do with social choice theory including, and not in the least, the
supervision of PhD students in the theory. Members of the group were, among oth-
ers, Thom Bezembinder (psychologist), Hans Peters (mathematician), Pieter Ruys
(economist), Stef Tijs (mathematician and game theorist) and, of course, Harrie de
Swart (logician and mathematician). The group has always been very serious and
has had a clear view on social choice. Logic and mathematics are important for the
theory; hence both should form an important component in the study of it. However,
social choice theory also belongs to the social sciences and, consequently, the social
scientific part is equally important. This two-component approach of the group to
social choice theory nicely converged in the first two PhD students trained by the
group and supervised by Harrie. One student (Ton Storcken) was a mathematician
and the other one (Ad Van Deemen) was a social scientist.

The group met regularly, approximately once a month, not only to prepare the
students to go to any length, but also to discuss a wide range of topics in social
choice theory; from variations of Arrow’s theorem to coalition formation in simple
games. The first two PhD students graduated in 1990 and 1991 respectively; both
with honors. However, this was not that much of a surprise considering the scientific
strength, the involvement and the commitment of the group.
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vi Preface and Introduction

In fact, the group did not have a clear name; it was simply called: the Social
Choice Theory Group or: the Social Choice Group. In the beginning of the nineties,
the group expanded and more Dutch universities became involved. As a result, more
PhD students followed. However, the group kept its easy-access and open status. The
organization of the meetings remained in Harrie’s hands and with that its inviting
and informal character continued.

Only in 1999, the group became something of an administrative unit. The par-
ticipating universities represented in the group were asked to do their bit and to
contribute an annual amount to meet the costs for the colloquia. Consequently, from
then on an annual meeting had to be held to discuss and approve the invitation
policy and a financial report. These annual meetings were chaired by Harrie and,
typically, never took more than half an hour. The administration and policies were
always found to be in order. It was a small detail, if not a small distraction, which
unfortunately had to be dealt with. The main objective was, and still is, social choice
theory. Curiosity, openness, and hospitality remained the key words.

In 2009, the Social Choice Theory Group officially and formally existed 10 years.
It was celebrated with an international social choice conference at the end of May
2009. Moreover, something completely different but nevertheless very important
occurred in that year: in September Harrie de Swart reached the pension age and,
as is obliged in The Netherlands, had to retire. Fortunately, the continuation of the
Social Choice Group will not be in jeopardy. The organization of the colloquia will
be gradually transferred to other hands, accompanied and supported by Harrie’s
experience and insights. It is clear that Harrie leaves behind a precious and important
institution, operating in an informal way and directed primarily at studying social
choice.

This book is dedicated to Harrie de Swart. It is to honor his initiatives and activi-
ties for the Social Choice Theory Group and the monthly Social Choice Colloquia. It
is to thank him for all his efforts and energy he spent on this group and its colloquia.
We think that he fulfilled an enormous task. The social choice colloquia are interna-
tionally well-known by now. Moreover, social choice theory became an important
and strong scientific field in the Netherlands because of this.

In the colloquia, almost any topic within the field of collective decision making
has been discussed; from voting and power distribution in the European Council
to cabinet formation in the Netherlands; from plurality voting and the Borda count
to restricted domains for Arrovian social welfare functions; from freedom, rights
and networks to stability of network formation; from committee decision making
to coalition formation games. We wanted a book that represents the open view on
collective decision making and also reflects the richness and diversity of the col-
loquia. We approached a number of authors who have all presented one or more
lectures in the social choice colloquia. They all responded very enthusiastically.
Without exception, they wanted to contribute to Harrie’s book as it is called on the
fly. Clearly, not all topics discussed in the course of all those years are covered.
However, we think that the result is a divers and rich reflection indeed.

In chapter “From Black’s Advice and Arrow’s Theorem to the Gibbard–
Satterthewaite Result”, Donald Saari gives, as ever, a challenging interpretation of
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Arrow’s Theorem and relates it to problems of paired comparison and strategic vot-
ing. In his view, the cause of Arrow’s result lies mainly in the inter-profile condition
of IIA. This condition requires a rule to ignore important information about the
voters’ transitivity of preference. Since IIA forces a rule to compare the alterna-
tives pairwise, better partwise, and independently, the connecting information for
the parts to create a whole is missing. In other words, the macro-result of an aggre-
gation process satisfying IIA – the social choice or the social preference – is not
based on all the preference information available on micro-level. It is interesting to
note that also Amartya Sen approached the ordinal non-comparability framework of
Arrow from an informational point of view (see Sen’s Collective Choice and Social
Welfare, 1970, San Francisco, Holden-Day, Inc ). However, there is an important
difference between Saari and Sen. According to Sen, the cause of Arrow’s result
lies in the fact that only ordinal preference (utility) information is used. The cause
is in the exclusion of non-preference information. In the view of Saari, however, the
cause lies in the fact that not all available ordinal preference information is used.
Connecting information at the micro level (transitivity of preferences) is neglected.
So, Arrow’s Theorem is not caused by a shortage of information as stated by Sen,
but by a neglect of available information. Clearly, this is fascinating.

In chapter “The Impact of Forcing Preference Rankings When Indifference
Exists”, William Gehrlein brings in an important contribution to the probability
approach to the Condorcet paradox. Instead of the traditional Impartial Culture
Condition, he uses the (much more difficult to handle) Impartial Weak Ordered
Culture Condition and shows that partially indifferent voter preferences have a seri-
ous impact on the probability of a Condorcet winner. Subsequently, he studies what
will happen with the probabilities of a Condorcet winner when indifferent voters are
forced to change their indifference part into a ranking. He ingeniously calculates the
probabilities for different proportions of voters who are forced to produce complete
rankings. He shows that the probabilities of a Condorcet winner for partially indif-
ferent voters are remarkably different from the probabilities under forced complete
rankings.

In chapter “Connections and Implications of the Ostrogorski Paradox for Spatial
Voting Models”, Hannu Nurmi and Donald Saari deal with the difficult Ostrogorski
paradox and reveal some of its secrets. They establish a clear and beautiful connec-
tion with McKelvey’s Chaos Theorem: if the Ostrogorski paradox (and the related
Anscombe paradox) occurs, the core of a spatial voting game will be empty. Hence,
according to McKelvey’s Theorem, a global cycle will then exist. Furthermore, they
resolve Kelly’s conjecture about the relationship between the absence of a Con-
dorcet winner and the Ostrogorski paradox. It is a beautiful paper that might induce
a stream of new research on the Ostrogorski paradox.

Chapter “Maximal Domains for Maskin Monotone Pareto Optimal and Anony-
mous Choice Rules” written by Olivier Bochet and Ton Storcken typically belongs
to the hard core of social choice. In this contribution, domain restrictions are stud-
ied, not only as is traditional for the specific majority rule, but more general for a
class of social choice rules satisfying Pareto optimality, Maskin monotonicity and
anonymity. They employ a positive approach, that is, they construct and proof the
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existence of a maximal, strategy-proof and non-dictatorial possibility domain both
for the three- or- more agent case as for the special case of two agents. It is an
accurate and technically excellent elaborated study. We have met this professional
skillfulness quite frequently in the social choice colloquia. It is what makes social
choice theory such an attractive and beautiful field of science.

Chapter “Extremal Restriction, Condorcet sets, and Majority Decision Making”
by Adrian Van Deemen and Elena Saiz re-examines a specific domain restriction
called Extremal Restriction (ER). This restriction is supposed to be necessary and
sufficient for the existence of a Condorcet winner. Some counter-examples for this
result are given in the case that zero-assignments, that is assignments of preferences
to no voter at all, are not allowed. Moreover, all maximal sets of preferences satisfy-
ing ER are enumerated for the three alternative case. Finally, a study of Condorcet
sets, or as Saari calls them Condorcet profiles (see chapter “From Black’s Advice
and Arrow’s Theorem to the Gibbard–Satterthewaite Result”), and of their exten-
sions over weak orderings is given.

Chapter “Rights Revisited, and Limited” written by Maurice Salles and Feng
Zhang is in the style of the famous non-starred chapters of Sen’s Collective Choice
and Social Welfare. It is an easy accessible and intuitive account of some important
results on limited rights. (Limited) rights, liberty and Sen’s famous liberalism theo-
rem are studied both in the aggregation framework and the choice framework and are
compared to each other. It is argued that in neither case limited rights are an escape
route for the Sen-type impossibility results. An important and challenging point in
their chapter is that liberalism can be studied in terms of obligation (necessity) and
possibility. They therefore propose to use modal and related logics in the formal
analysis of rights and liberty in the future. They believe that the use of these logics
may throw new light on the problems with respect to rights and liberty.

In chapter “Some General Results on Responsibility for Outcomes”, Martin Van
Hees investigates the problem of responsibility for outcomes in committee decision
making. His account of responsibility consists of two components. A member of a
committee can be held responsible first if she is causally effective for the realiza-
tion of an outcome and secondly if she has had the “opportunity to do otherwise”.
Clearly, a formal approach to this kind of responsibility will be notoriously difficult.
However, Van Hees gives a very elegant and beautiful formal analysis, which leads
to a clear insight in the relation between different forms of transparency in collective
decision making and responsibility. We find this a path-breaking chapter that may
lead to a stream of new research.

In chapter “Existence of a Dictatorial Subgroup in Social Choice with Indepen-
dent Subgroup Utility Scales, an Alternative Proof”, Anna Khmelnitskaya works
within a research program of social choice theory that tries to extend the ordi-
nal non-comparable framework of Arrow. She constructs new proof for an exist-
ing theorem (see Khmelnitskaya & Weymark, 2000, Social Choice & Welfare,
17, 739–748) about the existence of a dictatorial group for different extended
measurability-comparability frameworks (see Sen’s Collective Choice and Social
Welfare, Chap. 8). The proof provides insight into the “structure of possible interre-
lations between utilities of different individuals”.
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Chapter “Making (Non-standard) Choices” written by Wulf Gaertner is about
making non-standard choices. Using the axiomatic method, he describes choice
functions that violate contraction and expansion consistency conditions. He finds
that non-standard choices do not have a uniform structure. However, choice func-
tions that violate the standard rationality conditions do not imply that individuals
are behaving irrationally.

In the next interesting chapter “Puzzles and Paradoxes Involving Averages: An
Intuitive Approach”, Feld and Grofman study seemingly paradoxical aggregation
results. They present the insight that sometimes these paradoxical puzzles can be
solved by reconstructing them from their constituent parts by appropriately weight-
ing these parts and sequentially by using the notion of weighted average. In this way,
they are able to answer curious questions like “how can it be that most households
in the United States are headed by unmarried adults, yet most adults are married?”
or “How can family income be going down even though per capita income is going
up?”

In chapter “Voting Weights, Thresholds and Population Size: Member State Rep-
resentation in the Council of the European Union”, Madeleine Hosli analyzes the
empirical distribution of votes in the Council of the European Union in a solid and
thorough way. Her empirical investigations clearly show that voting rules in this
committee indeed embody an important trade-off between the number of individuals
required for making a collective decision on the one hand, and the expected costs of
decision making on the other. With this nice empirical result, she strongly confirms
the well-known trade-off model of Buchanan and Tullock from The Calculus of
Consent (1962, Ann Arbor, The University of Michigan Press),

Chapter “Stabilizing Power Sharing” is a challenging chapter about stability of
power sharing written by Steven Brams and D. Marc Kilgour. They model power
sharing both as a duel in which the players fire sequentially and as a duel in which
they interact simultaneously. In both modeling approaches, the players are allowed
to choose to share prizes. Moreover, they study which prize ratio renders power
sharing stable. They find and explain that the incentives to share power in the
simultaneous interaction case are greater than in the sequential interaction case. It
is interesting to see the differences between sequential interactive decision making
and simultaneous interactive decision making so clearly.

Chapter “Different Approaches to Influence Based on Social Networks and Sim-
ple Games”, written by Michel Grabisch and Agnieszka Rusinowska, is a concise
and in-depth overview of different approaches to influence processes among agents
in collective decision making situations. The inclination of an individual to make
a decision may clearly differ from his or her actual decision making behavior.
Many kinds of influences may transform the inclination into a different decision.
Grabisch and Rusinowska describe and discuss different approaches to these influ-
ence processes in collective decision making processes. The models presented are
thoroughly discussed and reviewed both formally and informally. The result is a
distinctive and amiable work that presents the state-of-the-art in this exciting field
of research in a clear way. In addition, it presents an agenda of open problems for
future research.
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Chapter “Networks, Information and Choice” is written by René Janssen and
Herman Monsuur. In this chapter, the focus is on information sharing in collabora-
tion networks. They discuss a network model with feedback for situational aware-
ness (i.e. “knowing what is going on”) in which exogenously given characteristics of
the nodes are combined with the topology of the network. Subsequently, the authors
discuss several (stochastic) variations of the model and a game-theoretical model
to study the evolution of networks. It is a solid and fascinating study that gives
insight in the role of information sharing and communication in complex (military)
management operations.

Chapter “Characterizations of Bargaining Solutions by Properties of Their Status
Quo Sets” contains an admirably written and interesting study of several bargaining
solution concepts. It is written by Hans Peters. In the more traditional axiomatic
approach to bargaining, a mapping that assigns a solution to a bargaining problem is
specified. The mapping is supposed to satisfy certain properties as expressed by the
axioms. Crucial in this approach is the notion of status quo or point of disagreement.
It represents the payoff to the players if no deal is agreed upon. In this chapter, the
set of outcomes of a bargaining game depending on a status quo point are fixed as
much as possible. Instead, the status quo point is varied. If two status quo points
give rise to the same solution, they are said to belong to the same status quo set.
Subsequently, the traditional bargaining solutions like the Nash Bargaining Solution
or the Kalai-Smorodinsky Solution are characterized in terms of properties of their
status quo sets.

The final chapter “Monotonicity Properties of Interval Solutions and the Dutta–
Ray Solution for Convex Interval Games” written by Elena Yanovskaya, Rodica
Branzei and Stef Tijs deal with interval games. These are games in coalitional form
with uncertain payoffs. Only the bounds for the payoffs of coalitions are known
for certainty. The chapter examines different monotonicity properties of the more
classic cooperative game solutions for interval games.

It is obvious that social choice theory and game theory are very close to each
other and that they do have many overlapping themes. However, to explain the
structure of the Harrie’s book, we would say that it starts with specific social choice
theoretical themes like Arrow’s Theorem and the probability approach to the Con-
dorcet paradox, and that it ends with more specific game theoretical topics, like
interval games in coalitional form. In between we see a mixture of views on col-
lective decision making in which social choice theory and game theory each play
their role. Most important however, is the fact that the several views on collective
decision making presented in this book are quite divers, and it is this diversity that
so elegantly covers the content of the Social Choice Colloquia in Tilburg as initiated
and organized by Harrie de Swart.

Ecully, France Adrian Van Deemen
Nijmegen, The Netherlands Agnieszka Rusinowska
October 2009
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From Black’s Advice and Arrow’s Theorem
to the Gibbard–Satterthewaite Result

Donald G. Saari

Sequential paired comparisons are commonly used in daily practice. During the
annual academic hiring season, for instance, applicants arrive for interviews in a
sequence often determined by travel schedules. With the usual dating scenario,
imagine a popular woman expecting several men to call asking for a date; with each
call her response of “Yes,” “No,” or “Maybe” is based on a comparison of the cur-
rent caller with someone still being considered. To ensure an orderly departmental
meeting, the chair assembles an agenda that identifies the order in which items will
be considered. In engineering, it is not uncommon to make pairwise comparisons of
the alternatives to reach a final decision. These are but only four of many possible
examples of the common situation where a decision and choice is made by compar-
ing alternatives in pairs in a specified order. One of several questions addressed here
is whether the order matters.

Problems of paired comparisons motivated Arrow’s (1951) development of his
troubling result about voting rules. While there now exists a benign interpretation
of Arrow’s result showing that this result does not mean what we thought it did for
the last 60 years (Saari, 2008), the Finnish philosopher Aki Lehtinen (2005) raised
questions about my development; two of them are addressed here. Finally, although
Satterthwaite connected Arrow’s theorem with the seminal Gibbard–Satterthwaite
theorem about strategic behavior, the continual flow of papers describing when dif-
ferent voting rules admit strategic behavior makes it reasonable to review the funda-
mental source of strategic choices. My emphasis, which differs from Satterthwaite’s,
is a third theme of this paper.

D.G. Saari (B)
Institute for Mathematical Behavioral Science, University of California Irvine,
CA 92697-5100, USA
e-mail: dsaari@uci.edu

A. Van Deemen, A. Rusinowska (eds.), Collective Decision Making,
Theory and Decision Library C 43, DOI 10.1007/978-3-642-02865-6_1,
C© Springer-Verlag Berlin Heidelberg 2010
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2 D.G. Saari

1 Black’s Advice

Returning to the hopes of the young men hoping to win our young lady’s affections,
or an applicant trying to secure an academic position, Niemi and Gretlein (1985)
recalled Duncan Black’s (1958) sage advice that “the later any motion enters the
voting, the greater its chance of adoption.” In other words, to win, try to be the last
considered. By using examples, Niemi and Gretlein formulated and proved their ver-
sion of Black’s assertion; they showed how the ordering of the paired comparisons
can favor an alternative that is placed later in the sequence. As a way to introduce
certain notions that are needed in my discussion of Arrow’s result in Sect. 2, I
improve upon this result by identifying what causes the problem and outlining a
proof of Black’s likelihood assertion.

The complete source of the problem is identified by a coordinate system that I
developed to analyze n-candidate elections (Saari, 2000, 2008). To motivate what
follows, recall that a coordinate system is useful for a project if it provides insights
and it helps to resolve difficulties. For instance, the traditional x-y-z cartesian coor-
dinates are not useful for problems of satellite tracking because they create com-
putational difficulties. Instead, spherical coordinates, which describe the radius and
angular position of the object, are more natural and valuable. Similarly for voting,
an objective should be to identify appropriate configurations of voter preferences
that affect the outcomes of certain voting rules but not the outcomes of other rules;
doing so is a step toward creating a coordinate system for the space of profiles.
This project is partially completed (Saari, 2000, 2008); the description given here
emphasizes those particular profile coordinates that identify everything that can hap-
pen with paired comparisons. As described, we now know which profile coordinate
directions cause all possible paired comparison voting problems.

To describe the trouble-causing directions for the n alternatives {A1, . . . ,An},
select any ranking, say A1 � A2 � . . . � An , and use it to generate a set of
n-rankings by moving a ranking’s top-place candidate to the bottom in the next
ranking. This approach defines the set

{A1 � A2 � . . . � An, A2 � . . . � An � A1, . . . , An � A1 � . . . � An−1}.
(1)

Any ranking in this set generates the same set of n rankings, so there are n!
n =(n−1)!

distinct sets of this form. For technical reasons, these rankings define (n−1)(n−2)
2

orthogonal coordinate directions in profile space, but for pragmatic purposes, one
should use a set defined by A1 � A2 � . . . � An as combined in a particular way
with the set defined by its reversal An � An−1 � . . . A2 � A1; I call them the
Condorcet directions or Condorcet profiles.

These Condorcet profiles are totally responsible for all possible paired compar-
ison problems that could ever occur in voting theory (Saari, 2000), nothing else
causes difficulties; i.e., if a profile is orthogonal to all of the Condorcet profile
directions, then nothing goes wrong with that profile’s paired comparisons. By this
I mean that the paired comparison rankings are so surprisingly transitive that their
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tallies satisfy an amazing consistency property. Namely, if τ(Ak, A j ) is the differ-
ence between the Ak and A j tallies in a pairwise comparison, then

τ(Ak, A j )+ τ(A j , As) = τ(Ak, As) for all j, k, s. (2)

As the paired comparisons for such a profile define a transitive ranking, they also
define a Condorcet winner. Here the order in which the motions or alternatives are
considered does not matter – whether introduced early or late in the process, the
likelihood of adoption remains the same because the Condorcet winner always is
selected.

The choice of a sequencing never matters with a Condorcet winner because she
will win, so for Black’s advice to have any substance, it must reflect those settings
where a profile’s Condorcet profile components are sufficiently dominant to deny
having a Condorcet winner. To analyze this effect, first determine the paired com-
parison outcomes for any such direction, such as the one in Eq. (1). A direct tally
shows that for each j , A j beats A j+1 by (n − 1) : 1, where A j+sn is identified with
A j . (Thus An beats An+1, which is A1, with the (n − 1) : 1 tally.) Of importance to
my analysis is that there also can be secondary, ternary, etc. cycles; e.g., for positive
integer k < n

2 , A j beats A j+k by (n − k) : k. The important fact is that there cannot
be a Condorcet winner if and only if a profile’s Condorcet components create a
top-cycle.

An explanation for Black’s advice now is immediate. For A1 to have a chance
of being elected, A1 must be in the top-cycle where she loses to some alternatives
in this cycle, but beats others. Thus if A1 is introduced early in the comparisons,
she must be compared with alternatives from the cycle that can beat her, so she is
guaranteed to lose. To win, she must be positioned late enough in the sequencing
to be compared only with alternatives she can beat. With no prior information, the
ideal position is to be compared last. (She could lose, but she has a better chance of
victory.)

To outline an approach to convert these comments into a probability statement,
start with the simple case of three candidates A, B, C , (or where the top cycle
consists of three candidates). With a cycle, A can only be elected if and only if she
is last listed among these three. (If the cycle is A � B, B � C , C � A, then B beats
C in the first stage, only to lose to A in the final stage. With the reversed cycle, C is
advanced to be defeated by A.) So a comparison of the likelihood of A being elected
by being listed in any position other than last, with her being listed last (i.e., after
B and C), is a comparison between the probability A is a Condorcet winner with
the probability A is a Condorcet winner plus the probability of a three-candidate top
cycle.

A similar approach holds for more alternatives, but finding which sequencings
allow A1 to win involves finding all secondary, ternary, etc. cycles. By knowing
these cycles, we can determine all successful sequencings. For instance and without
loss of generality, suppose that the top cycle is A1 � A2, A2 � A3, . . ., As−1 �
As , As � A1. To use this cycle to create a sequencing that ensures A1’s victory,
compare alternatives in the reverse order of the cycle; i.e., start by comparing As−1
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with As−2, advance the winner (which is As−2) to be compared with As−3, . . . ,
the winner of the comparisons to date with A2, and the winner of this comparison
(which is A2) with A1; A1 wins.

For a general approach that involves all possible cycles, let SA j be the set of all
candidates in the top-cycle that A j beats; as there is a cycle, each SA j is non-empty
and each Ak is in at least one SA j . To construct all possible agendas where A1 wins,
start from the end of the agenda and work toward the beginning. All such agendas
must conclude with A1 being immediately compared with, and, if followed, only
with alternatives in SA1 . If Ak ∈ SA1 is the item in a sequence with which A1 is
initially compared, then the alternatives between Ak and A1, and the alternative
with whom Ak is initially compared, must come from SAk . This process continues
until all candidates are listed in the sequencing. All possible agendas where A1 wins
can be created in this manner; the agenda in the preceding paragraph illustrates this
construction, so this process always creates examples. (This construction involves
all alternatives, not just those in the top-cycle.)

Ignoring the alternatives that are not in the top-cycle (as they merely add insignif-
icant terms in the computations), each SA j has at most s−2 elements. This is because
if SA j contained s − 1 alternatives, A j would beat all of them, so there could not be
a top-cycle. If |SA1 | = k ≤ s −2, then, because A1 cannot be the first listed of these
k +1 alternatives, the above construction permits (k +1)!−k! = k(k!) ways to rank
these alternatives. Thus (because j !k! . . . m! < ( j + k + . . . + m)!) the number of
sequences of the above type where A1 wins is less than

(k + 1)!(s − (k + 1))! ≤ (s − 1)! < s!
2
. (3)

The number of sequences where A1 wins divided by s! provides an estimate on
the likelihood of A1 winning; this value is less than 1

2 . A1 loses with all remaining
sequences – including where she is listed earlier in the ordering. As this set has the
larger value of over 1

2 , this completes the outline.

2 New Interpretations of Arrow’s Result

For almost 60 years, the mystery associated with Arrow’s (1951) result has gen-
erated a large literature. Motivated by a delightful 2008 discussion about Arrow’s
theorem that I had with Harrie de Swart in Lyon, France, it is reasonable to review
the ways I developed to interpret this result and resolve its mysteries. (Details are in
Saari, 2008.)

To review, Arrow’s theorem uses the conditions:

1. Voters have complete, transitive preferences of the alternatives; there are no
restrictions.

2. The societal outcome is a complete, transitive ranking.
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3. (Pareto) The rule satisfies the Pareto condition in that if for some pair of alterna-
tives, all voters rank the pair in the same manner, then that is the societal ranking
for the pair.

4. (IIA) The societal ranking of each pair is determined only by the voters’ relative
ranking of that pair. Namely, if p1 and p2 are two profiles where, for each voter,
the way the voter ranks the pair in p1 is the same as how the voter ranks the pair
in p2, then the societal ranking of that pair is the same for both profiles.

Arrow’s conclusion is that with three or more alternatives and two or more voters,
the only rule that always satisfies these conditions is a dictatorship; i.e., de facto, the
rule identifies a particular voter in that, for all profiles, the societal outcome agrees
with his ranking.

Arrow’s result has much broader consequences; e.g., in decision problems, “cri-
teria” replace “voters.” Now, a natural way to analyze the complexities associated
with many problems is to use a “divide-and-conquer” approach; but dividing prob-
lems into parts cause some of these decision rules to satisfy versions of #3, 4.
Whenever this happens, the conclusion is that the decision rule must depend upon
the information coming from a single criterion.

The power of Arrow’s theorem is that, in practice, we normally do not use dicta-
torial voting rules nor decision rules based on a single criterion. As a consequence,
Arrow’s result requires circumstances to arise where the rule violates at least one of
the above conditions. To use an illustration from statistics, a non-parametric paired
comparison rule clearly satisfies #3, 4. But even if the data satisfies #1, Arrow’s
result asserts that there exist configurations of transitive data where the outcome is
non-transitive.

2.1 What Causes Arrow’s Result

To appreciate the source of Arrow’s theorem, notice the crucial role played by #1;
if the voters did not have to have transitive rankings, we could not expect transitive
societal outcomes. If all voters, for instance, had the same cyclic ranking, the Pareto
condition would impose a cyclic societal ranking. But before describing the impor-
tance of this observation, let me mention that among the artists {Rembrandt, van
Gogh, Monet}, I prefer van Gogh over Rembrandt. Are my preferences transitive?
It is impossible to tell because more information is needed; to answer the question,
you need to know my rankings of {Monet, Rembrandt} and {Monet, van Gogh}.

But now consider what happens when determining the {van Gogh, Rembrandt}
societal ranking; the IIA condition (#4) requires the rule to ignore all informa-
tion about how voters rank {Monet, van Gogh} and {Monet, Rembrandt}. In other
words, IIA requires the rule to ignore the available, crucial, and connecting informa-
tion that the voters have transitive preferences! (This comment, along with exam-
ples demonstrating how IIA severs the transitivity condition and forces a rule to
replace the actual transitive preferences with cyclic ones, is developed in detail in
Saari (2008).) Even though condition #1 is imposed, in practice it cannot be used
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because IIA makes it ineffective. But if #1 is not being used, then, as described in
the preceding paragraph, Arrow’s conclusion becomes obvious.

This analysis (see Saari, 2008 for details) leads to a new and useful interpretation
of Arrow’s result. To explain, it is reasonable to expect that an appropriate, complete,
transitive societal ranking does exist; the problem is to find it. Indeed, proponents
of different voting rules may argue that “their approach,” whether it be the plurality
vote, approval voting, or the Borda Count, delivers the appropriate “societal out-
come of the whole.” But any rule based on Pareto and IIA must try to assemble
the “societal whole” by determining an outcome for each pair independent of what
may be appropriate outcomes for all other pairs. This leads to a new interpretation
whereby

Arrow’s Theorem asserts that with three or more alternatives and two or more agents (or
criteria), situations exist where the structure of the whole does not resemble what is obtained
from a rule that is based on the IIA and Pareto conditions; i.e., the structure of the whole
does not resemble what is obtained by analyzing each part independently. More generally,
settings exist where trying to construct an outcome for the whole by trying to find indepen-
dent answers for each part will fail.

A way of viewing this assertion, which identifies a severe limitation of the com-
mon divide-and-conquer methodologies, is with the story about a group of blind
men trying to determine the structure of an elephant; no matter how carefully they
examine each part, it is not clear whether they will be able to accurately describe the
whole. What is missing is a way for them to connect information about the parts; as
described below, the same holds for Arrow’s theorem.

But first, because all paired comparison problems are caused by the Condorcet
profile directions (Sect. 1), Arrow’s negative conclusion must also be caused by
these profile directions. Indeed, by restricting the space of profiles so that no profile
has any component in a Condorcet direction (in a linear algebra sense), Arrow’s
dictatorial conclusion is replaced by the Borda Count (where, when tallying an
n-candidate ballot, n − j points are assigned to the j th ranked alternative).

2.2 Positive Assertions

Knowing what causes Arrow’s conclusion allows us to find positive resolutions.
Namely, IIA forces an associated rule to drop the connecting information that the
parts satisfy transitivity, so a way to resolve the problem is to replace IIA with a
modified condition that allows a rule to use the connecting transitivity information.
As an example, a given transitive ranking permits us to determine both the relative
ranking of a pair and the intensity of this ranking in terms of the number of alter-
natives that separate them. This defines my “Intensity of IIA,” or “IIIA” condition
(Saari, 1995, 2008). To illustrate with the A � B � C � D ranking in a {A, D}
comparison, IIA uses only the {A � D} information, while IIIA permits using the
{A � D, 2} information indicating that, in the transitive ranking, A and D are
separated by two alternatives.
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This IIIA information provides a new way to compute pairwise rankings; when
determining the {X, Y } ranking and tallying a ballot by using the {X � Y, k} infor-
mation, assign k + 1 points to X to reflect (one point) that X is ranked above Y
and (the other k points) to reflect the intensity of this ranking. The majority vote,
however, does not use the “k” information. To show how this added information
avoids problems, because the Condorcet profile directions cause all paired com-
parison difficulties, it suffices to use these profile directions to compare the usual
majority vote (which satisfies IIA) with this new pairwise voting approach based on
IIIA information. The general case reflects what happens with

A � B � C, B � C � A, C � A � B (4)

where this profile’s IIIA information is

Ranking {A, B} {B, C} {A, C}
A � B � C {A � B, 0} {B � C, 0} {A � C, 1}
B � C � A {B � A, 1} {B � C, 0} {C � A, 0}
C � A � B {A � B, 0} {C � B, 1} {C � A, 0}

Majority vote outcome A � B, 2 : 1 B � C, 2 : 1 C � A, 2 : 1
IIIA vote outcome A ∼ B, 2 : 2 B ∼ C, 2 : 2 A ∼ C, 2 : 2

(5)

As each candidate in Eq. (4) is in first, second, and third position precisely once,
it is arguable that the outcome should be a complete tie. But by using the limited
IIA information reflecting only who is ranked above whom, rather than the expected
complete societal tie, the majority vote outcome (Eq. 5) is the A � B, B � C ,
C � A cycle with each tally being 2:1. In contrast, by using the added information
reflecting the transitivity of voter preferences, the above IIIA tally avoids the cycle
by defining the expected A∼ B∼C complete tie.

For a positive result (Saari, 1995, 2008), by replacing IIA in #4 with IIIA,
Arrow’s dictator is replaced with rules based upon the Borda Count. (This is because
the Borda Count is equivalent to the Eq. (5) IIIA way of computing pairwise out-
comes.) The acceptable rule could be the full Borda Count, a rule where only certain
voters can vote but with the Borda Count, or Black’s rule where a majority vote is
used over pairs unless there is a cycle, then use the Borda Count. (For subtle reasons
the rule must be based on the Borda Count rather than, say, the plurality vote.)

This discussion leads to a comment made by Lehtinen (2005) who accepts my
analysis of the flaws of IIA and how it dismisses the assumption of transitive prefer-
ences but questions whether my critique of IIA validates the adoption of the Borda
Count. He may be reading too much into my theorem because my result only asserts
that with the goal of preserving the essence of Arrow’s structure while obtaining
positive conclusions, an answer is IIIA and the resulting Borda Count. But to claim
that the Borda Count should be selected over other voting rules demands more; it
requires identifying and comparing all properties of the Borda Count with those of
other voting rules. This separate argument is, in part, described in Saari (2008).
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Lehtinen also raises questions about the majority vote over pairs. As the pairwise
vote satisfies IIA and Pareto, a flaw of this voting rule is captured by the above new
interpretation of Arrow’s result. Namely, if an appropriate structure of the whole
exists, it cannot always be accurately captured with majority vote outcomes over
the pairs; this rule loses important information about the transitivity of voter pref-
erences. Moreover, recall (Sect. 1) that the Condorcet profile directions cause all
problems about majority votes; e.g., if a profile has no components in the Condorcet
directions, the Borda and paired comparisons outcomes agree (Saari, 2008). A gen-
eral profile, however, has Condorcet components – while the Borda Count ignores
them, these components can alter the paired comparison rankings. So, an immediate
consequence of the profile coordinates is that any support in favor of the majority
vote must include an argument why, for instance, the societal outcome for Eq. (4)
should not be a complete tie.

3 Strategic Voting

A continual thrust in the area of social choice is to understand how to preserve the
integrity of group decision issues such as voting. But to prevent fraud and discourage
strategic attempts to alter election outcomes, we must appreciate how this can be
done. While I will explain what can happen and why, the basic ideas are captured
by the familiar phrases

“Don’t waste your vote! Instead, vote for —!” “Vote early; vote often!”

Campaign aims are clear: increase your vote, reduce your opponents’ votes.
Strategic voting and fraud adopt the same objectives, but they use approaches that
jeopardize the goal of “reflecting the views of the voters.” All of us have engaged in
strategic voting as manifested by the “Don’t waste your vote!” cry: voters tactically
misrepresent actual preferences to achieve personally more favorable election out-
comes. Fraud, on the other hand, is reflected by the “Vote often!” appeal, where
additions and subtractions to voting tallies are manufactured in non-acceptable
forms.1

To illustrate with a two candidate election, as I prefer Anni over Barb, I have two
ways to vote: a vote for Anni is productive, while a vote for Barb is counterproduc-
tive. As this example makes clear, the two candidate setting provides no strategic
opportunities, but it can admit fraudulent ways to provide Anni added votes and/or
Barb with fewer.

Everything becomes more subtle with three or more candidates; to see this, sup-
pose my sincere preference ranking is A � B � C if Connie joins the race. Of the
3! = 6 ways to mark my ballot, the sincere A � B � C choice often is, but not

1 It is interesting how the social choice literature extensively examines the issue of strategic voting,
but I am unaware of any careful analysis of the mechanics of fraud.
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always, productive (e.g., Nader supporters in the 2000 Florida presidential election
discovered negative consequences of sincere voting). The reversed C � B � A
choice often is (but not always) counterproductive. An important point is that there
remain four options; if one of these choices is personally productive for a current
setting, it becomes a strategic opportunity. What permits strategic voting, then, are
the extra options that always accompany three or more candidates but never arise
with just two alternatives.

To capture this sense, treat strategic voting as a “directional derivative” problem.
To see the connection, recall that a typical ∂ f (p)

∂v directional derivative concern from,
say, finance or engineering, seeks a direction v of change from the current location
of p to achieve a preferred f value. Similarly, the goal of strategic voting is to
determine the direction (the way to mark the ballot) to move the election outcome
from the current situation to one with an improved personal benefit. Indeed, in vot-
ing a shrewdly selected “voting direction” can alter the election outcome by adding
support to certain candidates and/or reducing support for others.

3.1 Can Strategic Voting Be Avoided?

While one might try to design a voting rule that is immune to strategic action, the
important Gibbard (1973)–Satterthwaite (1975) Theorem proves this is impossible
to do as soon as there are three or more alternatives. As they prove, all reason-
able rules (e.g., not a dictatorship) admit settings where some voter can obtain
a personally better outcome by voting stategically. To appreciate this fascinating
result, I will develop intuition as to why it is true, who can be strategic, how to
identify successful strategic actions for a specified voting rule, and how to reduce
strategic actions.

Actually, the ideas behind strategic voting are simple. But as details can change
with the voting rule, the challenge is to simultaneously handle all reasonable rules.
Satterthwaite did so, in part, by establishing an interesting connection between
Arrow’s result and the Gibbard–Satterthwaite Theorem (e.g., through IIA); as indi-
cated above, my sense is that a more productive approach is to understand how
the added opportunities provided by three or more alternatives generate strategic
opportunities.

First, some notation is introduced. Let the six preference rankings be designated
as

Type Ranking Type Ranking
1 A � B � C 4 C � B � A
2 A � C � B 5 B � C � A
3 C � A � B 6 B � A � C

(6)

Thus (3, 4, 0, 6, 2, 2) represents the profile with three type 1 voters, four type 2,
etc.
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3.2 Illustrating Examples

To illustrate the basics of the Gibbard–Satterthwaite Theorem, suppose the sincere
election outcome would be A � B � C with A and B nearly tied; the voting
rule assigns 3, 2, 0 points, respectively, to a voter’s first, second, and third ranked
candidates. To determine who can be strategic and what they should do, notice that
only voters preferring B � A (i.e., types 4, 5, 6) have an incentive to strategically
change the outcome.

To determine who can do what, the following table describes changes in the
A–B tally should these voters vote strategically. Each row represents a voter of the
indicated type; each column identifies how this voter can mark the ballot. A matrix
entry indicates the advantage gained for B in the B–A tally if the voter votes as
indicated. For instance, a sincere type 6 ballot assigns 3 points to B and 2 to A, so
B enjoys a point differential. But if this voter strategically votes as though of type
4, it would offer 2 points for B and 0 for A giving B a two point advantage. Thus
the advantage gained for B by voting strategically in this manner is 2 − 1; this is
the matrix entry for the appropriate row and column. The underlined positive entries
identify all strategic options.

Type 1 2 3 4 5 6
4 −1 − 2 < 0 −3 − 2 < 0 −2 − 2 < 0 0 3 − 2 > 0 1 − 2 < 0
5 −1 − 3 < 0 −3 − 3 < 0 −2 − 3 < 0 2 − 3 < 0 0 1 − 3 < 0
6 −1 − 1 < 0 −3 − 1 < 0 −2 − 1 < 0 2 − 1 > 0 3 − 1 > 0 0

(7)

The negative values in the first three columns underscore the expected; with this
election rule, a strategic voter’s vote should never rank A above B. Somewhat sur-
prisingly, voters with the strongest incentive to reverse the electoral outcome (type 5
with B > C > A preferences) have no strategic opportunities. Only type 4 and 6
voters can be strategic: a type 4 voter should vote as though type 5, of the two
strategic options for a type 6 voter the impact is maximized by pretending to be of
type 5.

Now consider a runoff election where the first stage ranking (using (3, 2, 0)) is
A � B � C and B and C are nearly tied; the winner is determined by a runoff where
polls show that C will beat A but A will beat B. Who can be strategic, and what
should they do? As a two-person election offers no strategic advantages, all tactical
actions are to influence who is advanced to the runoff. Thus voters preferring A � C
(types 1, 2, 6) wish to advance B, those preferring C � A (types 3, 4, 5) want to
advance C . So, although the strategic objective is to influence the final choice of A
or C , all strategic machinations emphasize candidates B and C . Following the lead
of Eq. (7), Eq. (8) indicates for types 1, 2, and 6 the advantages gained by B over C
by voting as specified. For types 3, 4, and 5 (marked by stars), the entries compute
the strategic advantages for C over B.
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Type 1 2 3 4 5 6
1 0 −2 − 2 < 0 −3 − 2 < 0 −1 − 2 < 0 1 − 2 < 0 3 − 2 > 0
2 2 + 2 > 0 0 −3 + 2 < 0 −1 + 2 > 0† 1 + 2 > 0† 3 + 2 > 0†

6 2 − 3 < 0 −2 − 3 < 0 −3 − 3 < 0 −1 − 3 < 0 1 − 3 < 0 0
3∗ −2 − 3 < 0 2 − 3 < 0 0 1 − 3 < 0 −1 − 3 < 0 −3 − 3 < 0
4∗ −2 − 1 < 0 2 − 1 > 0† 3 − 1 > 0 0 −1 − 1 < 0 −3 − 1 < 0
5∗ −2 + 1 < 0 2 + 1 > 0† 3 + 1 > 0† 1 + 1 > 0 0 −3 + 1 < 0

(8)

The underlined, positive entries identify all strategic opportunities. Notice how
type 2 voters with A � C � B preferences gain a strong strategic advantage by
voting as though they have the opposite B � C � A preferences (type 5). In
Eq. (7), voters with extreme views about the two top candidates have no strategic
opportunities; in Eq. (8), voters with extreme views between A and C (types 1 and 4)
have strategic options. In other words, a problem with crafting a general theorem
is that the types of voters with strategic opportunities can change with the voting
rule.

To further emphasize my point that the choice of the rule can change the strategic
options, convert the Eq. (8) runoff into an instant runoff whereby the same ballots
cast in the first stage are used in the runoff. To see how this simple change eliminates
strategic options, notice that while a type 2 voter (who favors A) has the strongest
impact of advancing B to the runoff by voting as though type 6, this vote is coun-
terproductive in an instant runoff because, by advancing B, the voter’s vote in the
runoff supports B rather than his favorite A. The daggers identify which strategic
options from a standard runoff are not applicable in an instant runoff. While an
“instant runoff” drops options with the largest strategic impact, strategic choices
remain.

3.3 Lessons Learned

A way to identify strategic opportunities for any rule mimics the above (Saari, 2003).
Small numbers of voters can be successfully strategic with a specified rule only if the
sincere outcome is nearly a tie. For such a setting, create a table similar to Eqs. (7)
and (8) to catalogue the consequences of each voter voting in all possible manners.
This “cataloguing approach” identifies who can benefit by being strategic along
with the action. An election rule with several stages (e.g., a runoff or an agenda) has
strategic opportunities in determining which candidates are advanced to the next
stage.

This cataloguing also identifies other oddities of election rules. For instance, with
some rules, a voter could be rewarded with a personally better election outcome by
not voting (Fishburn & Brams, 1983)! To see how this can happen with the Eq. (8)
runoff election, if a type 2 voter fails to vote, C’s tally is reduced on the first stage,
which could advance B to the runoff – where the negligent voter’s favored candidate
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A now will win. Indeed, all sorts of phenomena, such as where a previously winning
candidate now loses because she received added support, can occur with any multi-
stage election rule (Saari, 1995, 2003). The reason is that the extra stages introduce
a sense of nonlinearity and nonconvexity into the election rule that can negate the
intended “monotonicity” (where more votes help, not hurt) and permit all sorts of
counterintuitive behavior to arise.

The cataloguing approach (e.g., Eqs. (7) and (8) captures the essence of the proof
for the Gibbard–Satterthwaite Theorem. The first cataloguing step requires a nearly
tied vote; similarly, the theorem requires proving that all rules have boundaries that
separate those profiles where one or another candidate wins. It is easy to ensure that
such boundaries exist; just require the rule to allow each candidate to win with some
profile. To see the effect of this condition, suppose A and B win with, respectively,
profiles p1 and p2. In some order, change each individual’s preference ranking in
p1 to what it is in p2. At some point in the process, changing a voter’s preferences
alters the outcome; this transition defines part of the boundary separating profiles
that support one or another candidate.

The next cataloguing step computes the effects of each voter’s strategic choices.
For a more general description, replace the (3, 2, 0) voting rule with the (w1,w2, 0)
weights where w1 > 0 and w1 ≥ w2 ≥ 0. In tallying such a positional ballot,
assign w j points to the j th positioned (ranked) candidate. There are, in general, six
different tallies – except for the plurality vote (w2 = 0) and the “vote-for-two” rule
( w1 = w2) where each has three.

All of this is captured in Fig. 1. Figure 1a triangle is the simplex of non-negative
entries where x + y + z = 1; it captures normalized election tallies where, say,
( 1

2 ,
1
6 ,

1
3 )means that A, B, and C received, respectively, a half, a sixth, and a third of

the total vote. Thus the ranking assigned to a point is determined by its proximity to
each vertex; e.g., as the three bisecting lines in the interior represent tied outcomes,
the bullet near the vertical line represents a A � B � C outcome with a close A–B
tally. (Figure 1a numbers identify the region’s Eq. (6) ranking.)

A voter’s vote moves the outcome as suggested in Fig. 1b. A type 3 voter, for
instance, adds w1 and w2 points respectively to C’s and A’s tally, so the positional
election outcome moves in the (w2, 0, w1) direction toward C ; this is depicted with
the Fig. 1b arrow labeled with a 3. The fact that type 1, 2, 3 voters prefer A over

• −4
5

1
2

3 4

5
6A B

C

1
2

3 4

5
6

A B

C

a. Near tie;A B b. Change in outcome c. Computing “−4 plus 5”

Fig. 1 Geometry of strategic voting
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B is reflected by the geometry where these arrows are on the A side of the dashed
dividing line.

Strategic choices are captured by Fig. 1c. If, for example, a type 4 voter does not
vote sincerely (or fails to vote), the sincere outcome moves opposite to the type 4
arrow in Fig. 1b to represent points lost in C’s and B’s tallies; in Fig. 2c, this arrow
points downward to the left. Should this voter now vote as though type 5 (arrow
pointing downward to the right), the dashed arrow (the vector sum of these two
effects) captures the advantage gained; B is helped significantly and C somewhat.
As an appropriately modified length of this dashed arrow moves Fig. 1a bullet to the
right, it identifies a strategic option. (The dashed arrow’s horizontal component is an
Eq. (7) type entry.) Thus, if the sincere outcome is sufficiently close to the boundary
(i.e., a tied vote), such a strategic nudge would successfully alter the outcome.

A point made by the above examples is that, in general, different rules have dif-
ferent kinds of boundaries allowing strategic behavior. Thus, to prove a general the-
orem such as the Gibbard–Saterthwaite result, we cannot specify in advance where
the boundaries are located and how they should be crossed to provide a personal
advantage. But this is not a problem because the directions admitted in Fig. 1b
are such that wherever the boundary is positioned (i.e., whatever the rule), some
combination of Fig. 1b vectors (as in Fig. 1c) can move the outcome toward and
over the boundary to create a successful manipulative move. The essence of proof
of the Gibbard–Saterthwaite theorem is similar. If a rule allows voters to vote in a
way to help any specified candidate, a situation similar to Fig. 1b, c2 emerges where
differences can be combined to point roughly in any specified direction. Thus, if a
sincere outcome is near a boundary, a strategic vote can be fashioned to cross the
boundary and change the conclusion.

All sorts of embellishments are possible. Not all voters, for instance, need to
have the same voting power, a voter’s power can change with situations, and on and
on. Whatever the specified conditions and while details differ, the basic idea of the
proof remains the same. Namely, with a sufficiently rich space of outcomes (e.g.,
at least each of three candidates could be the winner), the admissible directions of
change ensure there always exists a setting where some voter’s change represents a
strategic opportunity.

3.4 Minimizing Strategic Behavior

By understanding what causes the Gibbard–Satterthwaite Theorem, we obtain insight
about how to minimize strategic action. For instance, the choice of a strategic vote
is situation-specific; a strategy successful in one setting can hurt a voter’s interest
in other settings. Thus, a way to reduce strategic action is to make it difficult for a

2 It is not necessary to require a vote for a candidate to help her; it may be that voting against her
helps her. All that is needed is that some vote creates a change in the candidate’s direction.
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strategic voter to determine whether a strategic choice is personally productive or
counterproductive.

A natural approach is to prevent voters from knowing, in advance, the likely sin-
cere outcome. This suggests avoiding ways that convey the current election status,
such as publishing polls, just prior to an election. As a personal illustration while
serving on a committee to select one of five candidates, it became clear that everyone
wanted either A or B to win, with C a possibility. But rather than a secret ballot,
the chair erred by polling each person for his or her vote. Comments from the first
voters made it clear that A would be the sincere winner; with the strategic voting of
the remaining committee members, B won.

In this era of instant information, suppressing polling information is no longer
realistic. A second approach is to follow the lead of the instant runoff by altering a
rule so that it remains user friendly, but becomes too complicated to predict what
can happen. As an illustration, suppose a n-candidate election is tallied with the
Borda Count (assign n − j points to a voter’s j th ranked candidate). At the end
of the first stage, drop all candidates who do not receive at least an average score;
use the same ballots to rerank the remaining candidates with the Borda Count to
determine the winner. With the complexity of determining who will survive the first
stage, where it is not even clear how many candidates will advance, structuring a
successful strategic option can be daunting.

As all voting rules admit strategic settings, a natural issue is to find which rule
minimizes the likelihood of a small number of voters successfully manipulating the
outcome. I solved this problem (Saari, 1990, 1995) for positional rules; e.g., the
(w1, w2, 0) rules. To suggest how this was done, the cataloguing shows that the
answer depends on 1) how easily a strategic vote, with a specified rule, penetrates
the boundary to change the election outcome and 2) how many opportunities (i.e.,
nearly tied outcomes) the rule provides for strategic action.

The first step uses the earlier directional derivative analogy where ∂ f
∂v is the scalar

product of the gradient ∇ f and the unit vector v. My analysis replaced ∇f with a
normal vector N of the boundary (e.g., the profiles with tie votes) that points in
the desired direction of change. By normalizing to length one the voting direction
defined by the (w1, w2, 0) rules, the scalar product produced the answers needed for
this step.

To handle the more complicated second step, notice that if a profile has the A �
B � C outcome, and if, for each voter, the A and B names are interchanged, the
new profile’s outcome is B � A � C. This symmetry (called “neutrality”) means
that, for each positional rule, each strict outcome is supported by the same portion
of profiles in profile space. The goal is to determine how the boundary size changes
with the rule. Notice how this problem resembles the calculus exercise of finding
the rectangle of area one with the smallest perimeter, or the ellipse of area one with
the smallest circumference. The answer is the most symmetrical object of, respec-
tively, a square and a circle. Similarly, the voting rule with the smallest boundaries
(i.e., offering the fewest strategic opportunities) is given by the symmetries of the
w1 −w2 and w2 − 0 values; it is where they agree so w1 = 2w2, which is the Borda
Count.
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To my surprise, the conclusion is that the Borda Count is the unique positional
rule to minimize the likelihood of a successful strategic action. The likelihood
increases as the rule differs from the Borda Count (i.e., as the symmetry between
adjacent weights is lost) to reach its maximum value with the plurality and “vote-
for-two” rules. This last conclusion is manifested by the familiar “Don’t waste your
vote” cries associated with the plurality vote.

4 Concluding Comments

While Satterthwaite (1975) nicely established a connection between Arrow’s result
and the Gibbard–Satterthwaite theorem, my sense is that the real connection between
them is that both results require three or more alternatives and that Arrow’s result
depends on pairwise comparisons. After all, Arrow’s theorem is based on the inabil-
ity of those rules that emphasize the structure of parts (pairs) to handle the Con-
dorcet profile directions, while the Gibbard–Satterthwaite theorem is a directional
derivative result. A Condorcet profile direction requires at least three alternatives;
to have enough directions to permit strategic voting options requires at least three
alternatives. Thus, a real connection is the number of alternatives required to create
the desired effects.

Satterthwaite showed that if a rule – in its definition and the way in which voters
use it – satisfies Arrow’s IIA, then the rule is not manipulable. To appreciate this
condition, notice how it restricts the admissible directions of change to the lower
dimensional “either-or” type associated with a pair where we know that strategic
options do not exist. As indicated, strategic behavior requires enough effective direc-
tions so that combinations of not voting in one way but voting in another can force
the conclusion to cross a boundary. Conversely, strategic behavior is not possible
for settings that restrict the appropriate directions, thus results about where strategic
behavior cannot occur tend to impose restrictions on possible directions of change.
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The Impact of Forcing Preference Rankings
When Indifference Exists

William V. Gehrlein

1 Introduction

Consider an election involving n voters and three candidates {A, B,C}, with A � B
denoting the situation in which a voter prefers Candidate A to Candidate B. The
preferences of individual voters are required to be transitive, which excludes the
possibility of individual preference cycles on candidates, such as A � B, B � C and
C � A. The assumption of transitivity of individual preferences is a commonly held
criterion of individual rationality for decision makers. There are then six possible
complete preference rankings on the candidates that might represent the preferences
of a voter when indifference between candidates is not allowed, as shown in Fig. 1.

Here, qi denotes the probability that a voter who is randomly selected from the
population of prospective voters will have the i th associated preference ranking
on candidates in Fig. 1. For example, this voter will have the transitive preference
ranking B � A � C with probability q3. The impartial culture condition (IC) was
a commonly used assumption for voter preferences in early studies that considered
the likelihood that various interesting election outcomes might be observed. With
IC, it is assumed that qi = 1

6 for each 1 ≤ i ≤ 6 and that all voters arrive at their
preferences independently of the preferences of other voters.

The interesting election outcome that has received the most attention in the lit-
erature considers the probability that a Condorcet Winner exists. To describe this
notion, we start by defining a voting situation as the specific outcomes of voters’
preferences that are observed when each of n voter’s preference rankings is deter-
mined by random selection from the possible rankings with the assumption of IC.
Let ni denote the number of voters in this voting situation that have the i th asso-
ciated preference ranking on candidates in Fig. 1, with

∑6
i=1 ni = n. Candidate

A then defeats Candidate B by pairwise majority rule (PMR) if more voters have
preference rankings with A � B than have B � A. This situation is denoted as
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A A B C B C
B C A A C B
C B C B A A
q1 q2 q3 q4 q5 q6

Fig. 1 The possible complete preference rankings on three candidates

AMB if n1 + n2 + n4 > n3 + n5 + n6 when no voter indifference is allowed.
Candidate A is the pairwise majority rule winner (PMRW) if both AMB and AMC ,
and the PMRW is frequently referred to as the Condorcet Winner in the literature,
since (Condorcet, 1785) observed that it was possible to have an intransitive PMR
relationship, despite the fact that the individual voters all have transitive preferences.
The possible existence of a PMR cycle is known as Condorcet’s Paradox, such as
with a voting situation in which AMB, BMC and CMA.

Condorcet was a strong supporter of the notion that the PMRW should be the
winner of any election, whenever such a candidate exists. As a result, this standard
for evaluating the effectiveness of election procedures has become known as the
Condorcet Criterion, and it has received nearly universal acceptance. All of this
has led to a significant interest in the probability that a PMRW exists, since the
Condorcet Criterion has no meaning in the presence of a cyclic PMR relationship.
The Condorcet Efficiency of a voting rule is defined as the conditional probability
that the voting rule selects the PMRW as the election winner, given that a PMRW
exists.

A landmark result in the extensive amount of study that has been conducted to
develop representations for the probability that a PMRW exists is given in (Guil-
baud, 1952). This result presents a representation for the probability PPMRW(3,∞, IC)

that a PMRW exists for a three candidate election in the limiting case for voters as
n → ∞ with the assumption of IC, with

PPMRW(3,∞, IC) = 3

4
+ 3

4π
Sin−1

(
1

3

)

≈ 0.91226. (1)

The condition of IC has become widely viewed as representing a scenario that
exaggerates the probability that various paradoxical outcomes will be observed in
voting situations, so the probability in (1) can be viewed as a lower bound on the
probability that a PMRW exists. Therefore, there is a considerable resulting interest
in the Condorcet Efficiency of voting rules, since it can then generally be anticipated
that a PMRW will exist with a relatively high probability.

The Condorcet Efficiency of voting rules with the assumption of IC for large
electorates as n → ∞ was analyzed in (Gehrlein & Fishburn, 1978). The class of
voting rules that were considered was the set of all weighted scoring rules (WSR’s).
A WSR works in a three candidate election by having voters assign points to can-
didates, based on the positions of the candidates in the voters’ preference rankings.
With the WSR denoted as Rule λ, each voter gives one point to their most pre-
ferred candidate, λ points to their middle ranked candidate and zero points to their
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least preferred candidate, where 0 ≤ λ ≤ 1. The winner is then determined as the
candidate that obtains the greatest total number of points from all voters.

A representation is obtained for the Condorcet Efficiency, CE (3,∞, IC, λ), of
Rule λ for three candidate elections in the limit of voters as n → ∞ with IC, and

CE(3,∞, IC, λ) =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

π
{

Sin−1
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2
3z′
)
+ Sin−1

(√
1

6z′
)}

+
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(√

2
3z′
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1

6z′
))2
}

+ 4π2
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where
z′ = 1−λ (1 − λ) and g′

(
t, z′
) = 4

(
3z′ − 2

)2 − (3z′ − 2 − t z′
)2 + 6

(
3z′ − 2

)
.

The symmetry of the definition of z′ leads directly to the observation that
C E (3,∞, IC, λ) = CE (3,∞, IC, 1 − λ), and it is also proved in (Gehrlein &
Fishburn, 1978) that CE (3,∞, IC, λ) increases as λ increases for 0 ≤ λ ≤ 0.5.
Computed values of CE (3,∞, IC, λ) are listed in Table 1 for each value of
λ = 0.00 (0.05) 0.50. The computed values in Table 1 clearly show that the selec-
tion of the λ that is used in a WSR can have a significant impact on the Condorcet
Efficiency that results.

Table 1 Computed values of CE (3,∞, IC, λ)

λ CE (∞, λ, 0)

0.00 0.7572
0.05 0.7749
0.10 0.7930
0.15 0.8113
0.20 0.8296
0.25 0.8473
0.30 0.8639
0.35 0.8786
0.40 0.8905
0.45 0.8984
0.50 0.9012

2 The Possible Existence of Voter Indifference

It is clearly possible that individual voters might be indifferent between some can-
didates, and indifference between Candidates A and B is denoted by A∼B for a
voter’s preference when neither A � B nor B � A. The notion of IC is extended to
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apply it to the case that allows for voter indifference between candidates in (Fishburn
& Gehrlein, 1980), where it is only required that voter preferences on candidates
can be represented by weak orders. Voters with complete preference rankings, like
those above in Fig. 1, represent a class of voters. A second class of voters have weak
ordered preferences that reflect a partial degree of indifference on the candidates, in
which there is voter indifference on one pair of candidates. The case of complete
indifference in which a voter is completely indifferent between all three candidates
is ignored, since there is no particular reason for such a voter to be involved in any
associated election.

Partial indifference would be displayed by a voter who has A∼B but feels that
both A � C and that B � C. It is still required that voter’s preferences must be tran-
sitive, so there are only six different weak ordered individual preference structures
that represent partial indifference:

A~B A~C B~C A B C 
C  B A B~C A~C A~B
q7 q8 q9 q10 q11 q12

Fig. 2 The possible preference rankings with partial indifference on three candidates

Let k1 denote the probability that a voter has preferences that are consistent with
complete preferences in Fig. 1 and let k2 denote the probability that a voter has pref-
erences that are consistent with partial indifference in Fig. 2. Complete indifference
is ignored, so k1 + k2 = 1 and

∑12
i=1 qi = 1.

The Impartial Weak Ordered Culture Condition (IWOC) from (Fishburn &
Gehrlein, 1980) defines the probability that a randomly selected voter has a speci-
fied preference ranking on the candidates when partial indifference is allowed. With
IWOC, each of the six complete linear preference rankings in Fig. 1 is assumed to
be equally likely to be observed as the preferences of a voter in this category, with
probability k1/6. Similarly, each voter in the class of voters with partial indifference
has probability k2/6 = (1 − k1) /6 of having each of the six possible preference
rankings with partial indifference in Fig. 2.

In order to determine if a PMRW exists when voter indifference is allowed, some
modification must be made to our original definition of PMR. Let ANB denote the
outcome that a majority of the voters who have some actual preference on Can-
didates A and B have A � B. For example, ANB in a specific voting situation if
n1+n2+n4+n8+n10 > n3+n5+n6+n9+n11. Note that the n7+n12 voters with
preferences containing A∼B are completely excluded in this definition of ANB.
The probability PPMRW (3,∞, IWOC) that a PMRW exists for a three-candidate
election in the limit of voters with n → ∞ under the IWOC assumption is given by
the representation

PPMRW(3,∞, IWOC) = 3

4
+ 3

2π
Sin−1

(
1

k1 + 2

)

. (3)
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Table 2 Computed values of PPMRW(3,∞, IWOC, k1)

k1 k2 PPMRW (3,∞, IWOC, k1)

0.00 1.00 1.0000
0.10 0.90 0.9870
0.20 0.80 0.9753
0.30 0.70 0.9648
0.40 0.60 0.9552
0.50 0.50 0.9465
0.60 0.40 0.9385
0.70 0.30 0.9312
0.80 0.20 0.9244
0.90 0.10 0.9181
1.00 0.00 0.9123

The representation for PPMRW (3,∞, IWOC) in (2) obviously reduces to the rep-
resentation for PPMRW (3,∞, I C) in (1) in the special case with k1 = 1. Table 2 lists
computed values of PPMRW (3,∞, IWOC) for each k1 = 0.00 (0.10) 1.00 from (3).
The proportion of voters that have partial indifference in their preferences, as mea-
sured by k2, clearly has an impact on the probability that a PMRW exists, given the
results in Table 2. Increasing levels of k2 lead to increases in PPMRW (3,∞, IWOC),
with certainty that a PMRW exists in the extreme case of k2 = 1. The requirement
that a PMRW must exist in the case of such dichotomous preferences is well known
from results that are presented in (Inada, 1964).

The assumption of IWOC is extended to consider the impact that voter indiffer-
ence has on the Condorcet Efficiency of WSR’s in (Gehrlein & Valognes, 2001),
and this creates an additional complication. This complication arises because the
combination of weights (1, λ, 0) is not as easily distributed to candidates when
partial indifference exists as it was with IC, when voter indifference between candi-
dates was prohibited. There are two possible approaches to resolving this issue.
First, the weights in the WSR can be modified to accommodate indifference in
voters’ preferences, when such indifferences exist. Second, the voters could be
required to arbitrarily break indifference ties to produce a complete preference rank-
ing on candidates, which would then allow a direct application of the WSR weights
(1, λ, 0). The objective of the current study is to consider what the difference in
impact is for these two approaches to the problem of dealing with indifference
ties.

The first of these approaches was taken in (Gehrlein & Valognes, 2001). For
voting preference rankings with partial indifference, the (1, λ, 0)weights were mod-
ified in different ways to keep fixed the total number of points that each voter has
to distribute to candidates. For a situation in which a voter is indifferent between
two top-ranked candidates that are both preferred to the third candidate, the two tied
top-ranked candidates received (1 + λ) /2 points each, while the least preferred can-
didate receives zero points. For a situation in which a voter was indifferent between
two tied bottom-ranked candidates that are both less preferred than the third candi-
date, the two tied bottom-ranked candidates each receive λ/2 points while the most



22 W.V. Gehrlein

preferred candidate receives one point. Each voter still assigns a total of 1−λ points
to candidates in both cases.

When this method is used to redistribute the points that voters allocate to the
candidates in the presence of partial indifference, a limiting representation for the
Condorcet Efficiency, CE (3,∞, IWOC, k1, λ), of Rule λ as n → ∞ is obtained as:

CE (3,∞, IWOC, k1, λ) =
⎡
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where:

z = 4 + (3k1 + 1)
(

1 − 2λ+ 2λ2
)
,

and

g = 4 (k1 + 2)2 z − (k1 + 2 − k1t)2 z − (3k1 + 6 + 2k1t) (k1 + 3)2 .

It is easily seen that CE (3,∞, IWOC, k1, λ) = CE (3,∞, IWOC, k1, 1 − λ)
from these definitions, and it is also proved in (Gehrlein & Valognes, 2001) that
CE (3,∞,IWOC, k1, λ) increases both as λ increases for 0≤λ≤ 0.5 and as k1 dec-
reases (k2 increases) for 0 ≤ k1 ≤ 1. Computed values of CE (3,∞, IWOC, k1, λ)

that are obtained by using numerical integration with the representation in (4) are
listed in Table 3 for each combination of values with λ = 0.00 (0.05) 0.50 and k1 =
0.00 (0.20) 1.00. These computed values clearly show that both the selection of the
particular λ that is used by a WSR and the degree of partial indifference that is
present in voters’ preferences, as measured by k2, can have a significant impact
on the Condorcet Efficiency that results. It must be true from definitions that
CE (3,∞,IWOC,1, λ)= CE (3,∞, IC,λ). Moreover, since CE (3,∞, IWOC, k1, λ)

decreases as k1 increases, it follows that CE (3,∞, IWOC, k1, λ) is minimized
when k1 = 1, which makes it equivalent to CE (3,∞, IC, λ) for any given λ.

Table 3 Computed values of CE (3,∞, IWOC, k1, λ)

λ\k1 0.00 0.20 0.40 0.60 0.80 1.00

0.00 0.8495 0.8156 0.7942 0.7787 0.7668 0.7572
0.10 0.8776 0.8456 0.8260 0.8121 0.8015 0.7930
0.20 0.9069 0.8756 0.8580 0.8459 0.8368 0.8296
0.30 0.9372 0.9038 0.8877 0.8773 0.8697 0.8639
0.40 0.9683 0.9261 0.9106 0.9014 0.8951 0.8905
0.50 1.0000 0.9354 0.9199 0.9111 0.9053 0.9012



The Impact of Forcing Preference Rankings When Indifference Exists 23

3 The Impact of Requiring Forced Rankings

The existence of partial indifference in voters’ preferences has been seen to have a
significant impact on both the probability that a PMRW exists and on the Condorcet
Efficiency of WSR’s. So far, the existence of partial indifference has been dealt with
by modifying the weights that are used in WSR’s to accommodate this indifference.
It has already been suggested that a second approach to this issue would be to require
voters to arbitrarily break indifference ties in their preferences to report a complete
preference ranking on the candidates. It would intuitively seem that the implementa-
tion of this forced ranking option should not produce dramatically different results in
our observations. However, this is not actually the case, and some very bad outcomes
can result from forcing voters to break ties in their preferences to produce complete
rankings.

The results of (Gehrlein & Valognes, 2001) produce the first negative result
from forcing rankings. It is shown that when voters are forced to produce rank-
ings the net effect is that CE (3,∞, IWOC, k1, λ) will be modified to be equivalent
to CE (3,∞, IC,λ) for all values of k1, which corresponds to the lowest level of
Condorcet Efficiency that can be observed for any specified Rule λ. This provides
compelling evidence to support the avoidance of forcing rankings in the context of
applying WSR’s to obtain an election winner, if the Condorcet Criterion is being
considered as a measure of the effectiveness of voting rules.

The new result regarding the impact of forcing rankings that is considered here
is the fact that the PMRW that would be observed in the forced complete rankings
might be different than the PMRW that would be observed in the original voting
situation that contains partial indifference. The probability that such a result might
be observed turns out to be remarkably greater than intuition suggests. This obser-
vation is reached after we develop a limiting representation for the probability that
the same PMRW exists under both cases as n → ∞ under the assumption of IWOC.

The development of this representation begins with the definition of four discrete
variables that describe the likelihood that various outcomes are observed as voters
are randomly selected with preferences and associated probabilities as specified in
Figs. 1 and 2. Let X j

i denote the variable value for the j th voter for the i th measure
of interest. The first two variables are defined by

X j
1 = +1 : q1 + q2 + q4 + q8 + q10

0 : q7 + q12 (5)

−1 : q3 + q5 + q6 + q9 + q11

X j
2 = +1 : q1 + q2 + q3 + q7 + q10

0 : q8 + q11 (6)

−1 : q4 + q5 + q6 + q9 + q12

The definition of X j
1 in (5) and the preference rankings in Figs. 1 and 2 indicate

that X j
1 = +1 (−1) if the preference ranking for the j th voter has A � B (B � A),



24 W.V. Gehrlein

and X j
1 = 0 if A∼B. Then, AN B for a given voting situation if

∑n
j=1 X j

1 > 0.

If X1 denotes the average value of X j
1 , then ANB if X1 > 0 or X1

√
n > 0. The

same analysis with (6) leads to the conclusion that ANC in a voting situation if
X2

√
n > 0.

Variables X j
3 and X j

4 will be defined in the same fashion to determine if AMB
and AMC in the voting situation that is obtained by having the j th voter arbitrarily
break indifference ties if that voter has a preference ranking that contains partial
indifference. These variables are formally defined by the qi probabilities, with

X j
3 = +1 : q1 + q2 + q4 + q8 + q10 + qABC

7 + qCAB
12

−1 : q3 + q5 + q6 + q9 + q11 + qBAC
7 + qCBA

12

(7)

X j
4 = +1 : q1 + q2 + q3 + q7 + q10 + qACB

8 + qBAC
11

−1 : q4 + q5 + q6 + q9 + q12 + qCAB
8 + q BC A

11

(8)

Some additional discussion is needed to define the probabilities for these vari-
ables that result from having random tie breaking to force rankings on indifference
pairs. Consider the event denoted by probability q7 in which A∼B with A � C
and B � C . Let qABC

7 denote the probability that a randomly selected voter has
preferences with the partial indifference with A∼B, and then randomly breaks
the tie by ranking A � B to lead to the transitive ranking A � B � C . Then,
q7 = qABC

7 + qBAC
7 .

The definitions of the variables X j
3 and X j

4 lead to the conclusion that AMB if
X3

√
n > 0 and AMC if X4

√
n > 0. It then follows that Candidate A will be the

PMRW based both on the original voting situation and on the voting situation that
results from forced ranking when Xi

√
n > 0 for all 1 ≤ i ≤ 4. In the limit as n →

∞, the joint distribution between these four Xi
√

n variables becomes multivariate
normal, and the correlations between these variables is the same as the correlation
between the corresponding original X j

i variables. The first step to obtaining these

correlation terms is the determination of the expected values of the X j
i variables,

and these expected values are denoted by E
(

X j
i

)
, with

E
(

X j
1

)
= (q1 + q2 + q4 + q8 + q10)+ 0 (q7 + q12)− (q3 + q5 + q6 + q9 + q11)

E
(

X j
2

)
= (q1 + q2 + q3 + q7 + q10)+ 0 (q8 + q11)− (q4 + q5 + q6 + q9 + q12)

E
(

X j
3

)
=
(

q1 + q2 + q4 + q8 + q10 + qABC
7 + qCAB

12

)

−
(

q3 + q5 + q6 + q9 + q11 + qBAC
7 + qCBA

12

)

E
(

X j
4

)
=
(

q1 + q2 + q3 + q7 + q10 + qACB
8 + qBAC

11

)

−
(

q4 + q5 + q6 + q9 + q12 + qCAB
8 + qBCA

11

)

(9)
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With the assumption of IWOC, qi = k1/6 for 1 ≤ i ≤ 6 and qi = (1 − k1) /6
for 7 ≤ i ≤ 12, and when the indifference ties are broken randomly q XY Z

i =
(1 − k1) /12 for 7 ≤ i ≤ 12.

All of this leads to the observation that E
(

X j
i

)
= 0 for all 1 ≤ i ≤ 4, so that

E
(
Xi

√
n
) = 0 for all 1 ≤ i ≤ 4. This allows for the definition of the probability

that Candidate A will be the PMRW based both on the original voting situation
and on the voting situation that results from forced ranking as being identical to
the joint probability that Xi

√
n > E

(
Xi

√
n
)

for all 1 ≤ i ≤ 4. The probability
that any variable takes on any specific value, including its expected value, in a
continuous distribution is equal to zero, so this joint probability can be rewritten
as the joint probability that Xi

√
n ≥ E

(
Xi

√
n
)

for all 1 ≤ i ≤ 4. This describes
a four-variate normal positive orthant probability, and much is known about the
development of representations for these probabilities, once the correlation matrix
has been obtained.

The definitions in (5) and (6) lead to E
(

X j2

i

)
= 2+k1

3 for i = 1, 2 and (7) and

(8) lead to E
(

X j2

i

)
= 1 for i = 3, 4. The expected value of the cross-products of

the original variables comes from:

E
(

X j
1 X j

2

)
= q1 + q2 − q3 − q4 + q5 + q6 + q9 + q10 = 1

3

E
(

X j
1 X j

3

)
= q1 + q2 + q3 + q4 + q5 + q6 + q8 + q9 + q10 + q11 = 2 + k1

3

E
(

X j
1 X j

4

)
= q1 + q2 − q3 − q4 + q5 + q6 + qACB

8 − qCAB
8 + q9 + q10 − qBAC

11

+ qBCA
11 = 1

3

E
(

X j
2 X j

3

)
= q1 + q2 − q3 − q4 + q5 + q6 + qABC

7 − qBAC
7 + q9 + q10 − qCAB

12

+ qCBA
12 = 1

3

E
(

X j
2 X j

4

)
= q1 + q2 + q3 + q4 + q5 + q6 + q7 + q9 + q10 + q12 = 2 + k1

3

E
(

X j
3 X j

4

)
= q1 + q2 − q3 − q4 + q5 + q6 + qABC

7 − qBAC
7 + qACB

8 − qCAB
8 + q9

+ q10 − qBAC
11 + qBCA

11 − qCAB
12 + qCBA

12 = 1

3
(10)

Since E
(

X j
i

)
= 0 for all 1 ≤ i ≤ 4, the correlation terms are obtained from the

general representation

Cor
(

X j
i , X j

k

)
=

E
(

X j
i X j

k

)

√

E
(

X j2

i

)√

E
(

X j2

k

) . (11)
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The resulting correlation matrix is denoted by R, with terms ri, j , and all of the
above leads to

R =

⎡

⎢
⎢
⎢
⎢
⎣

1 1
k1+2

√
k1+2

3

√
1

3(k1+2)

− 1
√

1
3(k1+2)

√
k1+2

3

− − 1 1
3− − − 1

⎤

⎥
⎥
⎥
⎥
⎦
. (12)

The correlation matrix R in (12) is similar to the general form of a correlation
matrix for which an elegant closed form representation for the multivariate normal
positive orthant probability is known. The correlation matrix R∗, with terms r∗i, j ,
has the general form

R∗ =

⎡

⎢
⎢
⎣

1 α β αβ

− 1 αβ β

− − 1 α

− − − 1

⎤

⎥
⎥
⎦ . (13)

The positive orthant probability for this joint distribution with correlation matrix
R∗ is �4 (R∗), and (Cheng, 1969) proves that

�4
(
R∗) = 1

16
+ 1

4π

{
Sin−1 (α)+ Sin−1 (β)+ Sin−1 (αβ)

}

+ 1

4π2

[{
Sin−1 (α)

}2 +
{

Sin−1 (β)
}2 −

{
Sin−1 (αβ)

}2
]

.

(14)

Matrix R∗ in (13) is the same as R in (12) with α = 1
k1+2 and β =

√
k1+2

3 ,
except for r3,4 and r∗3,4.

A procedure that is described in (Plackett, 1954) is applicable in this situation to
obtain a representation for �4 (R) as

�4 (R) = �4
(
R∗)+ I, (15)

where I is a bounded integral over a single variable, and the first step of this
procedure is to obtain the matrix C(t), where

C(t) = tR + (1 − t) R∗. (16)
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Let cij denote the matrix entries for C(t), and for this R and R∗, we obtain

C(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1
k1+2

√
k1+2

3

√
1

3(k1+2)

− 1
√

1
3(k1+2)

√
k1+2

3

− − 1 3+t(k1−1)
3(k1+2)

− − − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (17)

The second step is to obtain the matrix inverse H(t) = C (t)−1, with entries
hi j . Since R and R∗ only differ for r3,4 and r∗3,4, Plackett’s procedure obtains the
integral I from the representation

I = c′3,4
4π2

1∫

0

[
1

1 − c3,4
2

] 1
2

Cos−1

(
h1,2

√
h1,1h2,2

)

dt. (18)

Here, c′3,4 = ∂c3,4
∂t . The H(t) matrix is very complex and is not reported here.

The objective is to develop a representation for the conditional probability,
PMA(3,∞, IWOC, k1), that there is mutual agreement between the original PMRW
in a voting situation that contains partial indifference between candidates and the
PMRW that exists in the voting situation that results by forcing voters to report a
complete ranking by arbitrarily breaking indifferences on pairs, given that a PMRW
exists in the original voting situation. The symmetry of IWOC with respect to can-
didates and the assumption that n → ∞ can be used to obtain a representation for
PMA (3,∞, IWOC, k1) from the identity relationship

PMA (3,∞, IWOC, k1) = 3�4 (R)
PPMRW (3,∞, IWOC, k1)

. (19)

By using Plackett’s procedure with (19), substitution and significant algebraic
reduction ultimately leads to:

PMA (3,∞, IWOC, k1) =
1

16
+ 1

4π

{

Sin−1
(

1

k1 + 2

)

+ Sin−1

(√
k1 + 2

3

)

+ Sin−1

(√
1

3 (k1 + 2)

)}

+ 1

4π2

⎡

⎣
{

Sin−1
(

1

k1 + 2

)}2
+
{

Sin−1

(√
k1 + 2

3

)}2

−
{

Sin−1

(√
1

3 (k1 + 2)

)}2⎤

⎦

− (1 − k1)

4π2

1∫

0

Cos−1
(
(k1 + 3) {(k1 − 1) t − 3 (k1 + 1) (k1 + 3 − t)} + g (k1, t)

g (k1, t)

)

√{(k1 − 1) t + 3 (k1 + 3)} {3 (k1 + 1)− (k1 − 1) t} dt.

(20)
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Table 4 Computed values of PMA (3,∞, IWOC, k1)

k1 k2 PMA (3,∞, IWOC, k1)

0.00 1.00 0.6908
0.10 0.90 0.7077
0.20 0.80 0.7253
0.30 0.70 0.7437
0.40 0.60 0.7634
0.50 0.50 0.7845
0.60 0.40 0.8076
0.70 0.30 0.8337
0.80 0.20 0.8645
0.90 0.10 0.9043
1.00 0.00 1.0000

Here, g (k1, t) = (k1 + 2) {3 (k1 + 3) (k1 + 1)+ (k1 − 1) (t − 2) t}.
The bounded integral in (20) does not have a simple closed form solution,

but it is easily evaluated with numerical integration for specific values of k1, and
computed values of PMA (3,∞, IWOC, k1) are listed in Table 4 for each value of
k1 = .00(.10)1.00.

One obvious result from Table 4 is that PMA (3,∞, IWOC, 1) = 1.00, along
with the result that follows from intuition that PMA (3,∞, IWOC, k1) decreases
as k1 decreases. The very surprising result from Table 4 is the highly significant
degree with which PMA (3,∞, IWOC, k1) decreases as k1 decreases. At the extreme
in which all voters have dichotomous preferences, with k1 = 0, a PMRW must
exist for each of the initial voting situations, but PMA (3,∞, IWOC, 0) is only
0.6908.

4 Conclusion

Voters certainly could be indifferent between some pairs of candidates in three can-
didate elections, and such a response from voters creates complications for most
voting rules, with approval voting being an exception. One option that could be
used to avoid these complications is to force voters to arbitrarily break indiffer-
ence ties and to report complete preference rankings. Previous research has shown
that resorting to this tactic can have a significant negative impact on the Condorcet
Efficiency of WSR’s. We now find that this tactic can also have another dramatic
negative impact, since it can result in a significant likelihood that a different PMRW
will be observed in the resulting forced raking voting situation when compared to
the PMRW that exists in the original voting situation. While it is generally acknowl-
edged that assumptions like IWOC tend to exaggerate the probability of observing
such paradoxical outcomes, the results that are observed here are so dramatic that
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this clearly signals that the option of forcing complete preference rankings can lead
to real problems in election scenarios.
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Connections and Implications of the Ostrogorski
Paradox for Spatial Voting Models

Hannu Nurmi and Donald G. Saari

1 Introduction

Spatial models occupy an important position in modern social choice theory. From
the early applications to party competition and electoral equilibrium they have
spread to the study of inter-institutional power in the European Union (EU) and
cabinet coalitions in multiparty systems (Downs, 1957; Napel & Widgrén, 2004;
Napel & Widgrén, 1992; Laver & Shepsle, 1996). They have applications in expert
systems by advising voters how to make choices in elections. These models use
assumptions that allow modelers to assign voters or decision makers to points in
a policy space, which often is a multi-dimensional Euclidean space. Similarly, the
decision alternatives, or candidates, are typically positioned in the policy space as
points or probability distributions over points. Work on spatial models has produced
a variety of results ranging from the existence of stable outcomes (equilibria) of var-
ious various kinds (McKelvey & Schofield, 1987; Saari, 1997, Saari & Asay, 2009)
to power distributions among voters (Steunenberg, Schmidtchen, & Koboldt, 1999)
and suggestions for institutional design (Shepsle & Weingast, 1987).

An objective of this paper is to offer new connections by identifying the spa-
tial models approach with well-known puzzles such as the Ostrogorski paradox. In
this manner, new themes are introduced while several mysteries and conjectures
are answered. We also question the standard condition whereby a voter prefers the
candidate (or policy position) whose stance is closest to his. As we show, plau-
sible variations in this basic assumption have implications suggesting reasonably
stable outcomes in social choice, which may be more optimistic than suggested by
the above mentioned results. After describing a variety of paradoxical settings, we
explain why all of them occur.
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The class of aggregation paradoxes that are emphasized here bears the name of
Ostrogorski, a Russian diplomat and political theorist whose magnum opus (Ostro-
gorski, 1970) appeared in the opening years of the twentieth century (also see Rae
& Daudt, 1976; Bezembinder & Van Acker, 1985). This paradox is introduced and
analyzed in the next section, and its variant – the exam paradox (Nermuth, 1992) –
is discussed in the section that follows it. We then answer some conjectures, con-
nect these issues with the core and “chaos theorem” of spatial voting, and evaluate
the implications that these paradoxes have for the spatial modeling of individual
preferences. To indicate the generality of certain answers, Sect. 9 considers another
aggregation paradox, viz. Simpson’s (1951) paradox.

It is interesting how aggregation paradoxes have been the focus of scholarly
attention for some time. As an illustration, the notion behind “Simpson’s Para-
dox” was recognized by Cohen and Nagel back in 1934, which was nearly two
decades before Simpson’s important article. In 1940s and 1950s important contri-
butions were made by May (1946, 1947). Of relevance to this current paper is his
pioneering work (May, 1954) demonstrating how “cyclic preferences” make sense
should an individual’s preferences be determined by multiple criteria of perfor-
mance. One of our points is related to May’s: As we show, the basic tenet underlying
many spatial models (that voter preferences have a particular spatial representa-
tion) is far from innocuous. Situations exist where rational individuals could choose
between two alternatives the one that is further away from the individuals’ optimum
point.

2 Ostrogorski’s Paradox

Consider an election involving 5 voters, 2 parties, and 3 issues where each voter
views the issues to be of equal importance and no other considerations influence the
voters’ opinions about the parties. Consider two ways of determining the dominant
party:

1. Each voter prefers the party that is closer to his/her (hereinafter his) opinion on
more issues;

2. For each issue, the winner is the party that receives more votes than its com-
petitor. Namely, the dominant party is the one winning on more issues than the
other.

In a nutshell, Ostrogorski’s paradox occurs when the outcome differs in these
two cases.

Table 1 distribution of opinions about parties X and Y provides a strong version
of the paradox because not only do the results differ under procedures (1) and (2),
but the winner under (2) is unanimous. Replacing any one Y with an X creates a
weaker version of the paradox where “just” a majority differs under (1) and (2).

It is reasonable to worry whether the qualitative nature of Table 1 is mislead-
ing; perhaps “closeness” of voters to parties should be captured in a more precise
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Table 1 Ostrogorski’s
paradox

Issue Issue 1 Issue 2 Issue 3 The voter votes for

Voter A X X Y X
Voter B X Y X X
Voter C Y X X X
Voter D Y Y Y Y
Voter E Y Y Y Y

Winner Y Y Y ?

manner. To address this concern, represent each issue with a coordinate direction
in a 3-dimensional Euclidean space R

3 where X = (4, 4, 4) and Y = (3, 3, 3).
Represent each voter’s stance for the three issues with an ideal point in R

3; let A’s
views be at (4, 5, 3.2), B at (5, 3.2, 4), C at (3.2, 4, 5), D at (2, 2, 2) and E at
(1, 1, 1). By comparing these component values with those of X and Y, the Table 1
conclusion of a majority support for Y for each issue follows. In contrast, each of A,
B, and C is closer to X than to Y ; the common distance from A, B, or C to X given
by the sum of distances of each issue (called the l1 distance) is 0.8 + 0 + 1 = 1.8,
which is smaller than the common l1 distance of any of these three points to Y which
is 0.2 + 1 + 2 = 3.2. The conclusion holds with other distances; e.g., the common
Euclidean distance to X is

√
(0.8)2 + 02 + 12 = √

1.64 while that to Y is the larger√
0.22 + 12 + 22 = √

5.04.
To introduce our concern about the appropriate way to represent a voter’s prefer-

ences, in Table 1 replace “voter” with “criterion” and imagine an individual trying
to determine whether to support candidate X or Y . The criteria may be relevant
educational background, political experience, negotiation skills, political connec-
tions, etc. The issues might be education, economy, and foreign policy. Each row
and column table entry indicates our voter’s preference of a candidate for that cri-
terion and issue. While there are at least two natural ways for our voter to make his
choice, if all issues and criteria are deemed of equal importance, our voter’s deci-
sion is ambiguous: emphasizing criteria (row-column aggregation) with the major-
ity principle suggests supporting X ; stressing issues (column-row aggregation)
yields Y .

Geometrically, our voter’s views can be represented with the above values for the
locations of the criteria over issues; the l1 distance of his opinions from Y is 3(3.2)+
3+6 = 18.6 while that from X is 3(1.8)+6+9 = 20.4. Using the Euclidean metric,
the distance from Y is

√
3(5.04)+ 3 + 12 = √

30.04 while the distance from X is
the larger

√
3(1.64)+ 12 + 27 = √

43.92. With either metric, then, this individual’s
views are closer to that of candidate Y than of candidate X . While the standard
spatial voting assumption has this individual selecting the closest candidate Y, is
this the correct choice? In reality, it can not be inferred in a pairwise comparison
between X and Y whether our voter would always accept Y . In fact, by resorting
to the reasonable principle of basing his choice on the criterion-wise performance
of candidates, he will vote for X because X outperforms Y on three criteria, while
Y beats X on only two. This assertion corresponds to common usage where a voter
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justifies his support for a candidate in terms of her education, experience, skills, and
so forth.

Because Y is closer to the individual’s beliefs on each dimension, these problems
cannot be resolved by assigning salience weights to issue dimensions. Strategic con-
siderations – which may underly occasional votes against preferences – do not enter
into the calculus dictating the choice of X rather than Y because there are only two
alternatives and the other voters’ ideal points are not known.

3 The Anscombe and Exam Paradoxes

Closely related to Ostrogorski’s (1970) paradox is one described by Anscombe
(1976). In a nutshell, it says that a majority of voters could be in a minority (i.e., on
the losing side) on a majority of issues involving dichotomous choices. In Table 2,
which illustrates this paradox, voters A, B and C are on the losing side on a majority
of issues: A is on the losing side for issues 2 and 3, B on issues 1 and 3, and C on
issues 1 and 2.

Because Table 2 is not an Ostrogorski’s paradox, the example proves that these
paradoxes are not equivalent. (Ostrogorski is a specialized Anscombe paradox.)
Using this table to model our voter who is trying to determine which candidate
to support, Anscombe’s paradox captures the amusing but not uncommon situation
where a voter’s candidate of choice, as based on criteria, could disappoint the voter
with her stance over issues.

But while an Anscombe paradox need not be an Ostrogorski paradox, it can
always be converted into one with appropriately selected parties U and V (Nurmi
& Meskanen, 2000).

Theorem 1 For any Anscombe paradox based on specified positions of parties X
and Y , there exist parties U and V (created by adopting various positions from
parties X and Y ) where the Anscombe paradox becomes an Ostrogorski paradox.

Proof For an Anscombe paradox, let M be the set of voters in the majority where
each is on the losing side for a majority of issues, and let L be the set of these issues.
For each issue not in L, let the stance of party U and V be, respectively, that of the
winning and losing side. For each issue in L, let the stance of the party U and V be,
respectively, the stance of the losing and winning side.

Table 2 Anscombe’s paradox
Issue Issue 1 Issue 2 Issue 3

Voter A X X Y
Voter B Y Y Y
Voter C Y X X
Voter D X Y X
Voter E X Y X

Winner X Y X
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By construction, each member of M agrees with party U over a majority of
issues, so M constitutes the majority party. Also by construction, each member
of M is on the losing side of a majority of issues. Thus an Ostrogorski paradox
is created. If the original Anscombe paradox is a strong one (i.e., a majority of
voters are on the losing side of all issues), then so is the corresponding Ostrogorski
paradox. �

To illustrate this Anscombe and Ostrogorski connection, recall that Table 2 is
not an Ostrogorski paradox because voters A and C support party X while voter
B supports party Y . But with the U and V parties, these voters’ preferences over
issues become, respectively, (V, U, U ), (U, V, U ), (U, U, V ), so all three of
these voters support party U . (The other two voters unanimously support party V .)
It is interesting how this change from X and Y to U and V is not dissimilar to how
parties are formed and/or respond to changing circumstances.

The exam paradox introduced and analyzed by Nermuth (1992) generalizes
Ostrogorski’s paradox by positioning it in a domain where the proximity of alterna-
tives to ideal points assumes degrees rather than dichotomous values. (This approach
is similar to our example using points in R

3 but where the l1 and Euclidean distances
are replaced with a related mathematical representation.) As an illustration of Ner-
muth’s example, consider four issues and five criteria. One of two competitors, X,
is located at the distances from the voter’s ideal point in a multi-dimensional space
given in Table 3. The score of X on each criterion is simply the arithmetic mean of
its distances rounded to the nearest integer; with a tie, round down to the nearest
integer. X’s competitor Y, in turn, is located in the space as indicated in Table 4.

Table 3 X’s distances from
the voter’s ideal point

Criteria Issue 1 Issue 2 Issue 3 Issue 4 Average Score

Criterion 1 1 1 2 2 1.5 1
Criterion 2 1 1 2 2 1.5 1
Criterion 3 1 1 2 2 1.5 1
Criterion 4 2 2 3 3 2.5 2
Criterion 5 2 2 3 3 2.5 2

Table 4 Y’s distances from
the voter’s ideal point

Criteria Issue 1 Issue 2 Issue 3 Issue 4 Average Score

Criterion 1 1 1 1 1 1.0 1
Criterion 2 1 1 1 1 1.0 1
Criterion 3 1 1 2 3 1.75 2
Criterion 4 1 1 2 3 1.75 2
Criterion 5 1 2 1 2 1.75 2

4 Core Conditions and Aggregation Paradoxes

Perhaps the best-known results on spatial models pertain to the conditions under
which a core outcome exists (Banks, 1995; McKelvey & Schofield, 1987; Saari,
1997). Recall: the core is the set of majority undominated outcomes:
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x ∈ C ⇔ x My,∀y ∈ W

where M is the weak majority preference relation; i.e., x My means either that x
beats y with a majority of votes or that there is a tie between the two. These core
results are based on the assumption that the ideal points, distance measures, and,
more generally, utility functions of the individuals are well-defined in the policy
space. The results characterize the number of issues for which a “stable core”1 does,
or does not, exist (Saari, 1997; see Saari, 2004 for an exposition) and explain how
the majority rule performs when the core is empty (McKelvey, 1976, McKelvey &
Schofield, 1987).

The definition of a core ensures that if the spatial representation of voter ideal
points has a core and if, say, X is in the core, then the Ostrogorski paradox cannot
occur. Even stronger:

Theorem 2 If an Ostrogorski or Anscombe paradox occurs, then any spatial repre-
sentation of the voters’ ideal points has an empty majority vote core.

Proof For p to be a majority vote core point over k issues, a majority of the voters’
ideal points cannot be on either side of any hyperplane passing through p. (If a
majority were on one side, there is a point on the normal to the plane at p that this
majority prefers.) With an odd number of voters, this condition requires p to coin-
cide with some voter’s ideal point; with an even number of voters, either p coincides
with some voter’s ideal point, or each ideal point has a companion ideal point where
their connecting line contains p forming a “Plott configuration” (Plott, 1967).2 (For
instance, four ideal points define a quadrilateral; the core point is the intersection of
the two diagonals).

Because of Theorem 1, we can assume that X = (X1, . . . , Xk) and Y =
(Y1, . . . , Yk) are points selected to ensure that this is an Ostrogorski paradox where
the ideal points for majority party members are closer to X than Y and each majority
party voter is on the losing side of at least one issue. Suppose p coincides with some
voter’s ideal point. As a majority of the voters have their ideal points closer to X
than to Y, this voter cannot be in the minority; i.e., p coincides with the ideal point
of a majority party voter.To be a member of the majority party, this voter must agree

1 “Stable” means that if a core does exist, it continues to exist even with any very slight change in
preferences. To illustrate instability, a core exists if three ideal points lie on a line in R

2. But this
core is unstable because it disappears by ever so slightly moving any point off the line.
2 If p is not at an ideal point with an odd number of voters, any hyperplane passing through p and
an ideal point must have less than half of the voter ideal points on either side. Slightly perturbing
this plane moves the ideal point to one side and creates a plane with a majority on one side. If n is
even and p is not an ideal point, select a plane passing through p than meets no ideal points; i.e., n

2
points are on either side. If moving the plane meets one ideal point, but not a companion, slightly
change the plane to pass through this ideal point to create a setting with a majority on one side;
thus each ideal point is accompanied by a companion on the line passing through p. As p must be
in the convex hull defined by all majority settings of candidates, these companion points must be
on opposite sides of p.
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with X over a majority of the issues. The Ostrogorski paradox requires this party
to lose a majority of the issues, so this voter is on the losing side of, say, the j th,
issue. Pass a hyperplane through p that is orthogonal to the j th coordinate axis; i.e.,
the j th coordinate of this hyperplane agrees with that of the identified voter, so it is
closer to X j than to Y j . As a majority of the j th coordinates of voter ideal points
are closer to Y j , a majority of the ideal points are on one side of this hyperplane, so
p cannot be a core point.

The remaining case is where, with an even number of voters, p is not at an ideal
point. The hyperplane argument shows that for the j th issue, j = 1, . . . , k, a major-
ity of the j th components of the ideal points cannot be larger than, or smaller than,
the value of p j ; i.e., p j is in the median of the j th component of all ideal points.
Thus, if Y j is the winning issue, all ideal points with their j th component on the
Y j side of p j and at least one that is on the X j side, are in the winning coalition.
As p lies between each companion pair of ideal points p j lies between their j th
components for each j . Thus, at least one of these ideal points is on the winning
side at least half of the time. (If k is odd, this is for a majority of the time.) As each
ideal point is in a companion pair, at least half of the ideal points are on the winning
side at least half of the time, so an Anscombe or Ostrogorski paradox cannot occur.
This completes the proof. �

So, with an Anscombe paradox, any spatial representation for the voters’ ideal
points has an empty core. But even if the core fails to exist, an Ostrogorski or
Anscombe paradox need not arise. To see this, slightly modify the above numerical
example by replacing each 3.2 value with 3.6; while these changes suffice to avoid
the Ostrogorski paradox, the core remains empty. (Generically, the majority vote
core is empty with three or more issues (Saari, 1997, 2004).) The reason the Ostro-
gorski paradox need not occur is that the more demanding core concept compares X
with all possible Y locations, but Ostrogorski and Anscombe compare X only with
a fixed Y.

Nevertheless, the core and Ostrogorski paradox remain closely intertwined in
that whenever the voters’ ideal points define an empty majority vote core, points
X and Y can be selected to create an Ostrogorski paradox! To exhibit the ideas,
which is a spatial voting extension of Theorem 1, this assertion is illustrated in the
next theorem for five voters and two issues; the construction clearly extends to all
settings.

Theorem 3 Whenever five ideal points in R
2 have an empty core, points X and Y

can be selected to create an Ostrogorski paradox.

Proof Let PC be the convex hull (the triangle in Fig. 1) defined by any three ideal
points forming a coalition C . This is the coalition’s Pareto set because moving any
point in PC leads to a poorer outcome for at least one coalition member. Moreover,
it follows from the triangle inequality that for any q not in the triangle, this coalition
prefers the point q̃ that is the closest point in the triangle to q. As such, if a core
point exists, it must be in PC . But as the core is empty, the intersection of the 10
possible triangles is empty.
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Fig. 1 Core vs. Ostrogorski

X
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2 2
Y

3 3
4

5

a. General setup b. Finding X

...
.

For each issue (axis) find the median of the voters’ ideal points; use these points
to construct an axis in R

2 (the dashed lines in Fig. 1a). Place Y at the center of this
axis. Because the core is empty, we can select a triangle that does not include Y.
Let X be the point in this triangle that is closest to Y. It follows from the triangle
inequality that X is closer to each of these three ideal points than is Y; i.e., these
three ideal points define the majority party.

To ensure that Y wins over each issue, it suffices to prove that X is in the interior
of some quadrant (so that X is farther from each median line). If the leg of the
selected triangle that is closest to Y is not parallel to any axis, then either X is an
ideal point on the triangle or the point of the intersection of this leg and perpendic-
ular line passing through Y (the slanted dashed line in Fig. 1b). In either case, the
geometry forces X to be in the interior of a quadrant.

If this leg is on, or parallel to some axis, say the vertical one, and if this closest
leg is parallel, but not on the axis, then all three points are strictly on the same side
of Y for some issue, which violates the definition of Y. If all three ideal points are on
the axis, and as Y is not in the triangle, all three ideal points are strictly on the same
side of Y on this axis, which again violates the condition that Y is at the median of
each issue. Thus, at least one ideal point is off this axis, and (again, to ensure Y is
at the median) it must either be on, or on the other side of the remaining axis. Thus
this leg is not parallel to any axis; this completes the proof. �

The Ostrogorski paradox generated by the Fig. 1 example is in Table 5. This
example reflects our concern whether a voter should be modeled as preferring a
closest point, or in terms of his votes over issues. After all, the choice of Y, which
is determined by the voters’ votes over issues, is uniquely defined. In contrast, there
are five three-voter coalitions in Fig. 1a satisfying the condition that their Pareto
set misses Y (coalitions {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 4, 5}, {1, 2, 5}); these
different majorities create an ambiguity in the choice of the “closest point for a
majority of the voters” as each coalition defines a different X choice (XC ). Even
more, it follows from the geometry that there is no Condorcet winner among these
five XC choices; e.g., all voters in {3, 4, 5} prefer their X3,4,5 choice over the X1,2,3
choice. Instead, these five XC define the cycle

X1,2,3 � X1,4,5 � X2,3,4 � X3,4,5 � X1,2,3 (1)
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Table 5 Ostrogorski’s
paradox with two issues

Issue Issue 1 Issue 2 The voter votes for

Voter 1 Y X X
Voter 2 X X X
Voter 3 X Y X
Voter 4 Y Y Y
Voter 5 Y Y Y

Winner Y Y ?

5 Resolving Kelly’s Conjecture

The conditions under which Ostrogorski’s paradox occurs have been studied by
several authors (e.g. Rae & Daudt, 1976; Deb & Kelsey, 1987; Kelly, 1989; Laffond
& Lainé, 2000; Laffond & Lainé, 2009; Shelley, 1984). Rae and Daudt establish a
connection between Ostrogorski’s paradox and cyclic majorities.

To explain, in the Table 1 Ostrogorski setting, X beats Y with a majority vote.
Could a third candidate Z enter the race where Z would beat X? Using a nice
argument that improves upon the Rae and Daudt observation, Kelly (1989) shows
that, yes, such a Z can be found, But, as Kelly also shows, Y would beat Z to create
a cycle! Even stronger, Kelly proved for three issues that “every occurrence of the
Ostrogorski paradox implies that among the 8 possible candidates there can be no
Condorcet winners.” In other words, no matter how another candidate Z is selected,
she cannot be a Condorcet winner. Kelly conjectured that this “no Condorcet win-
ner” relationship holds for an odd number of issues. This conjecture is captured by
the Eq. (1) cycle where each XC represents a candidate.

For our purposes, if Kelly’s conjecture is true, it would cast doubt on the standard
approach where voters select a candidate based on criteria rather than issues. This
is because none of the many possible candidates dominates.

Insights about Kelly’s conjecture follow from Theorem 2, which asserts that any
spatial representation of the voters’ ideal points with an Ostrogorski or Anscombe
paradox must have an empty majority vote core. With an empty core,
McKelvey’s 1976 chaos theorem applies; namely, for any starting and intermediate
points, xs and xi , a majority vote agenda {xi } can be crafted where the first and last
terms are xs and an intermediate term agrees with xi . With this agenda, xi+1 beats
xi for all i; i.e., if the core does not exist, expect to find cycles among candidates
and proposals. Thus

McKelvey’s spatial voting result verifies Kelly’s conjecture for any number of votes and
issues; i.e., in a spatial context, an Ostrogorski or Anscombe paradox ensures that there is
no Condorcet winner.

While this observation fully answers Kelly’s conjecture in a spatial setting, it does
not for the discrete setting. The problem is illustrated with Table 5 where, without
having the advantage of using distances, it is not clear whether voters 1 and 3 are
indifferent (which is the usual assumption with dichotomous choices), or whether
they prefer X or Y . But as the next theorem shows, even with this complication,
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Kelly’s conjecture is true for any number of issues greater than two, not just for odd
numbers of them.

Theorem 4 For any number of issues greater than two, the occurrence of an Ostro-
gorski or Anscombe paradox means that there cannot be a Condorcet winner.

Proof To convert preferences over k issues into vertices of a k-dimensional cube
[−1, 1]k , for each issue, designate the losing choice by a −1 and the winning
choice by a 1; e.g., in Table 1, voter A’s preferences become (−1, −1, 1). Thus,
for each j , the sum of the j th entries over all voter vectors is positive and the
winning portfolio is the cube vertex y = (1, 1, . . . , 1). As a candidate’s plat-
form is represented by a cube vertex, there are 2k possible candidates. To compare
voter preferences between two candidates, take the difference between the vectors;
e.g., if x = (−1, −1, . . . , −1) (representing the losing side on each issue), then
1
2 (x − y) = (−1, −1, . . . , −1). Thus 1

2 (x − y) is a normal vector for a plane
passing through the cube’s center; all voters with vectors (vertices) above this plane
prefer x, those below prefer y, and those on the plane are indifferent; i.e., a voter’s
choice is determined by whether the dot product of 1

2 (x − y) with the voter’s vector
is, respectively, positive, negative, or zero. As each 1

2 (x − y) entry is a−1, the dot
product with a voter’s vector equals the difference between the number of issues for
which this voter is on the losing and winning sides; e.g., a voter on the losing side
of most issues has a positive value. An Anscombe paradox requires a majority of
the voters to be on the losing side a majority of the time, so a majority of the voters
prefers x to y.

We now know that x is preferred to y; we must show that for any other vertex, say
c, a vertex can be found that is preferred to c. Other than y, all vertices (candidate’s
positions) have at least one “−1” in its vector representation. Select any such can-
didate, say c, where “−1” is in the j th position. Let d be the vector that agrees with
c in all components except the j th where it has a +1. Thus 1

2 (d − c) is the vector
with 1 in the j th component and zeros elsewhere; its scalar product with a voter’s
vector has a positive value (supporting d over c) for a voter who is on the winning
side of the j th issue. Thus the sum of j th components over all voter vectors is the
difference between the number of voters preferring d to c. This sum is positive, so
d is preferred to c. As this holds for any c, the theorem is proved. �

This argument can be used to fashion all sorts of cycles. The natural idea is that
a candidate can improve her standing by assuming the winning side of an issue.
What creates the cycle is the peculiar choice of preferences allowing an Anscombe
paradox, as reflected by x � y, where a majority of the voters are on the losing side
a majority of the times; e.g., for five issues,

(−1,−1,−1,−1,−1) � (1, 1, 1, 1, 1). (2)

A five issue cycle is (1, 1, 1, 1, 1) � (1, 1, 1, 1,−1) � (1, 1, 1,−1,−1) � 1, 1,
−1,−1,−1) � (1,−1,−1,−1,−1) � (−1,−1,−1,−1,−1) � (1, 1, 1, 1, 1).
To create a cycle involving all 32 candidates, vary the number of voters of different
types.
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6 Differences Between Dichotomous and Spatial Models

Deb & Kelsey (1987) derive the following necessary and sufficient condition for an
Ostrogorski’s paradox to occur:

kn − 2ny − 2kx − 12xy ≥ 0. (3)

Here x = 1 when n (the number of voters or criteria) is even, and x = 1
2 when n

is odd. Similarly, y = 1 when the number k of issues is even and y = 1
2 when k is

odd.
To illustrate, the Table 1 example has n = 5 and k = 3, so x = y = 1

2 . Substitut-
ing into Eq. (3) yields (3)(5)−2(5) 1

2 −2(3) 1
2 −12(1

2 )(
1
2 ) = 15−5−3−3 = 4 > 0,

which means that an Ostrogorski example can be constructed. Now try to modify
this example to create an Ostrogorski example that uses only two issues. Here,
n = 5, k = 2, x = 1

2 , y = 1, so Eq. (3), has the negative (2)(5) − 2(5) − 2(2) 1
2 −

12( 1
2 )(1) = −2 value. Thus, the Deb and Kelsey condition ensures that no such

two-issue example exists.
But, in seeming contraction with the Deb and Kelsey condition, such two-issue

examples do exist! One was constructed in Fig. 1 and Table 5. This conflict between
whether such an example does, or does not, exist reflects the difference between
dichotomous and spatial voting settings; the former is incapable of handling votes
that could be interpreted as being a tie, such as with voters 1 and 3 in Table 5. In
a spatial voting context, the more refined distances resolve these difficulties. The
purpose of the Deb and Kelsey condition, then, is to identify all settings that suffer
this ambiguity.

The following statement converts the Deb and Kelsey condition into a format
that is easier to understand. As Corollary 1 shows, the main complexities arise with
small number of even issues; this is precisely where problems occur about whether
or not a voter’s preferences indicate a tie vote.

Corollary 1 An Ostrogorski paradox can be created in the following situations:
Suppose both n and k are odd. If k ≥ 3, then n ≥ 3.
Suppose n is odd and k is even. If k = 4, then n ≥ 5. Otherwise, n ≥ 3.
Suppose both n and k are even. If k = 4, then n ≥ 10; if k = 6 or 8 then n ≥ 6;

if k ≥ 10, then n ≥ 4.

Proof For odd values of k (so y = 1
2 ), Eq. (3) assumes the n ≥ 2x + 8x

k−1 form.

Thus, for x = 1
2 (or n odd valed), n ≥ 3; for x = 1 (or n even valued), n ≥ 2+ 8

k−1
and the assertion follows. Similarly, for even values of k (so y = 1), Eq. (3) assumes
the n ≥ 2x + 16x

k−2 form; the remaining conclusions follow. �
Notice, ten voters are required to create a four-issue Ostrogorski paradox! (see

Table 6). But if distances could be used, voters in the majority could use (X, X, Y,
Y ) preferences that would be closer to X than Y . Without the aid of distances, how-
ever, such a preference must be judged as a tie. In turn, this ambiguity requires using
preferences of the (X, X, X, Y ) type. This change is what increases the number of
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Table 6 Ostrogorski’s
paradox with four issues

Issue Issue 1 Issue 2 Issue 3 Issue 4

Voters 1 and 2 Y X X X
Voters 3 and 4 X Y X X
Voters 5 and 6 X X Y X
Voters 7–10 Y Y Y Y

Winner Y Y Y X

necessary voters from three to ten. Namely, the mysterious nature of Eq. (3) cap-
tures those kinds of situations involving ties that arise with small, even numbers of
issues. In contrast, the general spatial voting theorem (using the obvious extension
of Theorem 3 and Saari (1997) is that

a spatial voting Ostrogorski paradox always can be created with any generic3 placement of
any odd number (greater or equal to three) of voters’ ideal points with two or more issues,
and any generic placement of any even number (greater or equal to four) of voter’s ideal
points with three or more issues.

Because the role of Eq. (3) is to identify which small numbers of voters and
issues cause problems about who a voter prefers, there is no reason to believe that
larger values of this inequality have any other meaning. Nevertheless, one might
wonder whether larger values of this inequality might indicate a larger likelihood
of the paradox. Although Kelly’s (1989) computer simulations (using an impartial
culture assumption) suggest that the paradox’s probability increases with voters (or
criteria), but decreases with an increase in issues, it is doubtful that Eq. (3) plays
a role other than coincidental; likelihood issues must reflect those profile structures
that allow the paradox. Our explanation of all such paradoxes sheds light on this and
other questions.

7 Relating and Explaining the Paradoxes

Surprisingly, all of the “Yes–No,” “X–Y” voting issues described in this article are
consequences of the same kinds of profile configurations of voter preferences. As
these configurations also explain all paired comparison votes, explanations for para-
doxical problems in one setting can be transferred to explain puzzles in others. For
instance, as we show next, the structure causing an Ostrogorski paradox is essen-
tially that required to create a Condorcet cycle.

An important source of these problems (Saari & Sieberg, 2001, 2004) is that a
voting rule’s issue-by-issue outcomes are not determined by the actual profile, but
rather by a set of associated profiles. In a real sense, then, problems arise because the
voting rule cannot identify what is the actual profile; instead, the selected conclusion
is an appropriate one for the largest subset of profiles in the associated set!

3 Namely, either the ideal points, or an arbitrarily small change in them, will create an example.
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To illustrate, the Table 1 outcomes occur because, for the first three voters, each
issue has the X � Y outcome with a 2:1 vote. Now suppose it is known only that
the rule respects anonymity and, for each issue, there is the X � Y outcome with a
2:1 vote. Armed with this information and by permuting the names of the voters, the
following five profiles constitute all supporting choices; they are indistinguishable
to the rule4:

1. (X, X, X), (X, X, X), (Y, Y, Y ) 2. (X, X, X), (X, X, Y ), (Y, Y, X)
3. (X, X, X), (Y, X, X, ), (X, Y, Y ) 4. (X, X, X), (Y, X, X, ), (X, Y, Y )
5. (X, X, Y ), (X, Y, X), (Y, X, X)

(4)

For each of the first four choices, the last voter’s preferences are closer to Y than
to X ; only with the fifth – the actual choice – are all three of the voters positioned
closer to X than to Y . By adding the remaining two Table 1 voters (who support Y
on all issues), it follows from Eq. (4) that for 80% of the possibilities (i.e., where the
two Y voters join with each of the first four choices), there is no paradox; Y wins
with a majority vote over each issue and Y is the closest point for three of the five
voters. Only one choice from this set – the actual profile – creates a conflict.

This example makes it reasonable to believe (as made mathematically precise
in Saari (2001)) that the majority vote rule handles the ambiguity about the actual
profile by selecting an outcome that is appropriate for most profiles within its asso-
ciated set. Thus this approach provides an appropriate, non-paradoxical answer for
a majority of the cases; e.g., for the first four cases, Y is the winner with either way
of computing. This approach can create a paradoxical conflict only for a minority
of settings, such as the Table 1 profile. This explanation – where a rule emphasizes
the associated set of profiles rather than the actual one – holds for all of the above
paradoxes.

As an illustration of this associated set, the Table 7 profile belongs to the associ-
ated set of profiles defined by the Table 2 profile. As Table 7 illustrates the Ostro-
gorski paradox, it follows that the Table 2 profile, which reflects just the Anscombe
paradox, has an Ostrogorski paradox in its associated set.5 The next question is
to identify the configurations of profiles for which the associated set includes the
foundation for an Ostrogorski and Anscombe paradox.

The kinds of profiles that cause these paradoxical concerns are identified with a
coordinate system developed to analyze n-alternative voting problems (Saari, 2000,
2008). Certain profile coordinate directions are responsible for all possible problems

4 The set associated with a given profile is the set of profiles that is obtained permuting each
column in all possible ways.
5 An Anscombe paradox need not include an Ostrogorski paradox in its associated set. To create
an illustrating example, take a strong Ostrogorski paradox with an even number of issues where
Y always wins. For the odd numbered issues, exchange the X and Y names to create a strong
Anscombe example. The same majority loses over each issue, but as X and Y each win half the
issues, no permutation of preferences can create an Ostrogorski paradox. We leave it as an exercise
for the reader to determine necessary and sufficient conditions for an Ostrogorski paradox to be in
an Anscombe associated set.
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Table 7 Connecting
Anscombe and Ostrogorski

Issue Issue 1 Issue 2 Issue 3

Voter A X Y Y
Voter B Y X Y
Voter C Y Y X
Voter D X Y X
Voter E X X X

Winner X Y X

Fig. 2 Ranking wheel
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that affect paired comparisons. To construct these profile directions, use the Fig. 2
ranking wheel (Saari, 2000, 2008). Uniformly near the edge of the wheel place the
numbers 1 to n; these are the ranks. On the wall, place the names of the alternatives
in any specified order. Read off the ranking; in Fig. 2 it is A � B � C � D � E �
F . Rotate the wheel so that the ranking number 1 is by the next name and read off
the new ranking. Repeat until each candidate has been in first place precisely once.
Figure 2 configuration is

A � B � C � D � E � F, B � C � D � E � F � A, C � D � E � F � A � B,
D � E � F � A � B � C, E � F � A � B � C � D, F � A � B � C � D � E .

(5)

Each ranking defines a unique set and each ranking in a set defines the same set,
so there are n!

n = (n − 1)! distinct sets. These sets are the building blocks for the
Condorcet profile directions; each Condorcet coordinate combines, in a particular
manner, the set defined by a ranking and the set defined by reversal of this ranking.
As such, there are (n−1)!

2 orthogonal Condorcet profile directions. (Orthogonality
follows because each ranking is in one, and only one, Condorcet direction. But,
because of a subtle feature caused by profiles that do not affect the outcomes of any
voting rules, there are only (n−1)(n−2)

2 directions). The theorem (Saari, 2000) is that
all paired comparisons problems are due to a profile’s components in the Condorcet
directions; e.g., if a profile is orthogonal to all Condorcet directions, then no paired
comparison difficulties occur.

To see how the Condorcet directions cause non-transitivity problems, notice that
the Eq. (5) profile defines the A � B, B � C , C � D, D � E , E � F , F � A cycle
where the tally for each pair is 5:1. An important point is that, for any number of
alternatives, all non-transitive outcomes and other paired comparison problems are
caused by the Condorcet profile directions – including the paradoxes of our interest.
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To illustrate, Corollary 1 asserts that a six-issue Ostrogorski paradox can be
created with three voters, so the majority has two voters. To create an example,
select two alternatives from Eq. (5), say A and B, and relabel them with a Y ;
denote all other alternatives by X . Now, the first and third Eq. (5) choices become
(Y, Y, X, X, X, X), (X, X, X, X, Y, Y ). By letting the third voter have all Y ’s,
the majority loses over the first, second, fifth, and sixth issues. An examination of all
examples in this article shows that the preferences for the majority always have this
structure; e.g., Table 1 has three issues, so the majority party’s preferences can be
constructed from the A � B � C , B � C � A, C � A � B Condorcet direction.
By replacing C with Y and replacing the names of the other two alternatives with X ,
the majority party’s preferences are (X, X, Y ), (X, Y, X), (Y, X, X) of the table.

This connection is not a coincidence. The next theorem asserts that this “renam-
ing” process captures all Ostrogorski and Anscombe paradoxes.

Theorem 5 For any Ostrogorski or Anscombe paradox, let L be the set of k issues
over which a majority of the voters lose, but where each voter is on the winning side
of at least one issue. The preferences of these voters over L can be identified with
components in the Condorcet profile directions for k alternatives.

The condition that each voter is on the winning side of at least one issue in L is for
convenience. With the Ostrogorski paradox, for instance, each voter must support X
on a majority of issues, so he must be on the winning side of at least one issue in L.

Proof The proof reverses the renaming manner used to create the above three-voter,
six-issue example. List the k issues in the standard column format with X ’s and Y ’s.
For the j th column, j = 1, . . . , k, rename the winning and losing issue, respec-
tively, with A j � A j+1 and A j+1 � A j , where Ak+1 is identified with A1. The
winner for each issue (column) represents the pairwise tally for the particular pair
of alternatives, which, by construction, is a cycle.

We must show that each row (voter’s preferences) can be identified with a tran-
sitive ranking; what provides flexibility is that the renaming construction specifies
only paired comparisons of the {A j , A j+1} type. If these rankings of adjacently
listed alternatives do not create a cycle, then the remaining pairs can be ranked to
create a transitive ranking. The only way a cycle can be created by these k pairs is
if this voter is on the winning side of each issue (which is impossible by being from
an Anscombe paradox), or on the losing side of each of the k issues, which again is
excluded by assumption.

The renaming process creates a set of transitive preferences that causes a cycle,
so it follows from Saari (2000, 2008) that the cycle is caused by Condorcet direction
components in the profile. �

Theorem 5 finally establishes what probably has been long suspected; the Ostro-
gorski and Anscombe paradoxes must be intimately connected with non-transitive
paired comparison behavior. An added benefit is how this connection explains our
quandary about whether voters’ preferences should be described by the closest
point, or by issues. Namely, it is shown in Chap. 2 of Saari (2008) how, with the
Condorcet profile directions, the pairwise vote drops the assumption that voters have
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transitive preferences (which then explains phenomena such as Arrow’s Impossibil-
ity Theorem).

In the context of the Ostrogorski paradox, it means that voting over issues
divorces the connection of how a voter relates the issues to a particular party. So,
if issues are separate from one another, if they are not connected or related by a
voter to determine his support for a party, then the issue-by-issue approach provides
the better connection. But if the issues are related, e.g., if they are related in terms
of, say, compromises to create a coherent platform, then the selection of the clos-
est point is the appropriate choice. A similar description holds for the voter trying
to select a candidate; if individual issues matter more than how their combination
characterizes a criterion for a candidate, select the candidate according to issues. But
if the combined stance over issues characterize how a candidate should be viewed
with respect to specified criteria, then select the candidate whose position is the
closest point in issue space.

8 Supermajority Voting

Theorem 5 proves that there is an intimate connection between the profiles that are
derived from the ranking wheel construction and the profiles that cause the Ostro-
gorski paradox. We now use this observation to obtain new results where, rather
than being based on the majority vote, the Ostrogorski paradox occurs with a more
severe voting rule. To illustrate with the situation where our voter is trying to select
between two candidates, he might use a more demanding decision rule whereby he
continues to support a status quo favorite candidate (or party) unless its competitor
is closer to his position on, say, more than two-thirds of the issues.

Indeed, as reflected by the super majority requirements that many countries
impose on certain kinds of legislation to ensure some political stability, the status
quo may be preferred unless more than, say, 3

5 of the electorate prefers its competi-
tor. This behavior is illustrated in Table 8 with 3 issues and 5 voters where the status
quo party 1’s position is 1 on every issue and the competing party 0’s position is 0
on every issue. If each voter votes for 0 unless 1 is closer to his position and if it
takes a 4

5 vote to win on each of the issues, no Ostrogorski’s paradox emerges. The
lower 3

5 requirement, however, does admit the paradox. (Comparing this example
with the core, if the voting rule requires a winning position to have 3 out of 5 voters,
the core is generically empty with three or more issues. The stronger rule requiring
4 of the 5 voters to pass a proposal can have a non-empty core (Saari, 1997)).

Table 8 Ostrogorski’s
paradox: 0-1 version

Issue Issue 1 Issue 2 Issue 3

Voter A 1 1 0
Voter B 1 0 1
Voter C 0 1 1
Voter D 0 0 0
Voter E 0 0 0
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Wagner (1983, pp. 305–306) shows that an Anscombe’s paradox cannot arise if,
on average, there is a sufficiently strong support over all winning issues:

If N individuals cast yes-or-no votes on K proposals then, whatever the decision method
employed to determine the outcomes of these proposals, if the average fraction of voters,
across all proposals, comprising the prevailing coalitions is at least three-fourths, then the
set of voters who disagree with a majority of outcomes cannot comprise a majority.

This assertion is about an average “yea” vote over all issues; it does not mean
(as interpreted by some authors) that an Anscombe paradox can be avoided by using
a three-fourths rule. Indeed, by using Theorem 5, we prove (Theorem 6) that such
an interpretation is wrong because an Anscombe paradox can occur even with a rule
that is just one vote shy of requiring unanimity support.

Definition 1 For integer n > 2, let q be an integer satisfying n
2 < q < n. A “q rule

with n voters” is where the winner of a paired comparison must receive q or more
votes.

Theorem 6 Suppose the majority party wants to pass all issues and each party
member agrees with most of these issues. For any q rule, even a q rule that is one
vote away from unanimity, the majority party can lose over a majority of the issues.
Indeed, the majority party may never win a single issue.

To indicate why this extreme result does not contradict Wagner’s assertion, the
example developed below has 2m − 1 voters and issues. As the maximum number
of “Yes” votes is m + (m − 1)(2m − 1), the average of “Yes” votes is bounded by
m+(m−1)(2m−1)

(2m−1)2
, which is slightly over a half and far from Wagner’s three-fourths

threshold.

Proof For n = 2m − 1, let the majority party have m voters, a minority party have
m − 1 voters, and q = n − 1 = 2m − 2. For the first m of the 2m − 1 issues, use the
ranking wheel from Theorem 5 to create the set of m rankings

A1 � A2 � · · · � Am, . . . . . . , Am � A1 � . . . Am−1. (6)

To assign voters’ choices in the majority party, create an m×m array as in Eq. (7).
The kth row represents Eq. (6)’s kth ranking; the j th column represents A j . The j th
column, kth row entry is the ranking wheel position of A j in the kth ranking. Thus,
the first row’s entries are 1, 2, . . . , m. For the second row, because A2 is top ranked
and A1 bottom ranked, the entries are m, 1, 2, 3, . . . , m − 1.

A1 A2 . . . Am

1 2 . . . m
m 1 . . . m − 1
. . . . . . . . . . . .

2 3 . . . 1

(7)
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The ranking wheel places each alternative in each position precisely once, so a spec-
ified integer in Eq. (7) is in precisely one row for each column and one column for
each row.

To create an example that proves the theorem, treat each A j as an issue to
be decided by a “Yes–No” vote. Select an integer between 1 and m, perhaps 1.
Everywhere this integer appears, replace it with a “Yes.” Replace all other inte-
gers with a “No.” For each of these m issues, have each of the m − 1 minority
party members vote “No.” Over each of these m issues, the “No” side wins with a
q = (m −1)+ (m −1) = 2m −2 = n −1 vote, which is one vote shy of unanimity.

For the remaining m − 1 issues, have each majority party member vote ‘Yes.”
(As required, each majority party member agrees with the party a majority of the
time.) Over these issues, assign either a “Yes” or “No” to each minority member.
If “No” is assigned to each minority party member for each issue, the outcome is
not decided (as neither side obtains the quota). Thus the majority party cannot win
anything.

To create an illustrating example where the majority party barely loses on a q =
n − s rule, select s different integers from Eq. (7), and, in each column, rename
each of these integers with “Yes”; rename the other integers in this column with
“No.” The rest of the construction is the same. However, to ensure that each voter
of the majority party supports a majority of the party’s issues, notice that over the m
issues, he supports s of them, and disagrees on m − s. So, instead of adding m − 1
additional issues, it suffices to add l issues, where l + s > m − s, or to add only
m − 2s new issues. �

As Theorem 5 asserts, all illustrating examples must be of this kind. To see why
with a different argument, suppose a different example can be created for the q =
n−1 case. Each column has precisely one “Yes,” and, as the same voter cannot vote
“Yes” on more than one of the first m issues (to be a member of the majority party),
each row has precisely one “Yes.” In the first row, a sole “Yes” appears in some
column; name that column A1. In general, in the j th row, the number 1 appears
in only one column; call that column A j . The result, then, is a permutation of the
columns of the original example. In other words, all examples are permutations of
the columns and/or rows for Eq. (7).

As Theorem 6 makes no mention about the number of issues, it is reasonable to
question whether this kind of super-majority voting result requires a certain number
of issues. While we have not explored the answer for “Yea–Nay” voting, the answer
is known for spatial voting. According to results in Saari (1997, 2004) about the
existence of a core,

expect that a spatial voting q-rule Ostrogorski paradox can be created with at least 2q−n+1
issues.

So, it is possible to create a spatial voting example with a q = 5, n = 7
rule with at least 2(5) − 7 + 1 = 4 issues where the ideal points do not define
a three-dimensional subspace. The qualifying “expect” is added only because the
existence of a core for q

n >
3
4 has a complicated structure; for precise values, consult

(Saari, 1997, 2004).
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The Ostrogorski paradox requires each member of the majority party to support
the party over a majority of the issues. To introduce a new, related class of paradoxes,
we impose stronger conditions on what issues the majority party can adopt. Namely,
it is reasonable to require a certain percentage of majority party members to support
a specific proposal before it can be put forth by the party.

Definition 2 For α satisfying 0 < α < 1, a party provides α-support for an issue if
at least the fraction α of party voters are in favor of it.

The choice of α may require αn to be just one vote, at least 25% support, a
majority vote, or maybe even a particular supermajority. To simplify the arithmetic,
replace the q rule with a β > 1

2 rule requiring, for passage, that a rule has at least
the fraction β support. (With n voters, the associated q-rule is q = βn). The new
issue is to determine when Ostrogorski problems can plague the majority party if it
has α-support over all issues and the passage of a measure requires a β rule.

Theorem 7 Suppose a majority party has α-support over all issues. The party can
lose in a majority of the issues if the β rule satisfies

2 − α
2

≥ β. (8)

If the majority party has a sufficient number of members, then Eq. (8) is a necessary
and sufficient condition for this kind of Ostrogorski paradox.

So if α represents the majority (i.e., α > 1
2 ), then the specified problem occurs

only for β < 3
4 rules, which captures the spirit of Warner’s result and strengthens

it by imposing a particular rule (i.e., both α > 1
2 , β ≥ 3

4 ). If a β rule determines
outcomes and a majority party’s support for an issue (so α = β), the problem can
exist for any β < 2

3 ; a way to avoid the problem is to require α = β = 2
3 .

Proof Again let n = 2m − 1; the most extreme case is with m voters in the majority
party and m − 1 in the minority. As αm of voters from the majority party must vote
“Yes,” the number of possible “No” votes is (1 − α)m from the majority party and
m − 1 from the minority for a total of 2m − 1 − αm votes. This negative vote is
victorious if and only if the β rule satisfies 2m − 1 − αm ≥ β(2m − 1), or

β ≤ 2m − 1 − αm

2m − 1
= 2 − α − 1

m

2 − 1
m

.

As the derivative of 2−α−x
2−x is positive, the function has its minimum value at x = 0,

so
2−α− 1

m

2− 1
m

> 2−α
2 . So, the “No” side is assured victory if 2−α

2 ≥ β; i.e., examples

exist where the majority party loses over each of these issues. For β > 2−α
2 , there

exist m values where β > 2m−1−αn
2m−1 = 2−α− 1

m

2− 1
m
, so the “Nea” side will not win.
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Now add m − 1 other issues where each majority member votes “Yes." (This
allows each member to support the majority party on a majority of the issues. But
as each majority party voter already supports the party on αm issues, just add k
new issues where the k value ensures that each majority party voter supports the
party a majority of the time; i.e., a k value where αm+k

m+k > 1
2 , or any k satisfying

k ≥ m − 2αm + 1). To illustrate with the q = n − 1 rule of Theorem 6, αm = 1,
so the smallest k = m − 2 + 1 = m − 1). The majority party loses over each of the
first m issues – a majority of the outcomes.

To prove that such scenarios exist, select a positive integer value for m so that αm
is an integer; e.g., m is a multiple of the denominator of α. In the m ×m array given
by Eq. (7) select αm integers; replace each with a “Yes.” Rename all other integers
with a “No.” Each issue (each column) has (1 − α)m “No” votes and each of these
voters (each row) has “Yes” on αm of the issues. The rest of the construction follows
the above. �

9 Simpson’s Paradox: A Shadow Over the Sure-Thing Principle

A basic theme of the last two sections is how the troubling paradoxes arise because,
rather than the actual profile, the decision rule uses information from an associ-
ated set of profiles; the selected outcome is a “reasonable one” for most profiles
in this set. The idea appears to extend to other paradoxical settings. For instance,
Ostrogorski’s paradox is only one of several compound majority paradoxes (e.g.,
see Nurmi, 1999); e.g., Simpson’s paradox can arise when dealing with standard
problems such as rates of improvement, recovery, growth etc. To quote Blyth (1972);
for two general methods to generate these paradoxes (see Saari, 1990, 2001):

. . .Savage’s sure-thing principle (“if you would definitely prefer g to f, either knowing that
event C obtained, or knowing that C did not obtain, then you definitely prefer g to f.”) is not
applicable to alternatives f and g that involve sequential operations.

Consider the following example where f and g may represent incentive schemes
or experimental treatments where the fractions indicate success, efficiency, or qual-
ity (e.g. frequencies of exceeding some performance threshold):

g f

Event C 1/3 1/4
Event non-C 2/3 1/2

While this example suggests that g is, indeed, preferable to f, the following table,
which raises doubt about this assertion, is consistent with the above data:
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g f

Event C 40 out of 120 10 out of 40
Event non-C 10 out of 15 45 out of 90
Total 50 out of 135 55 out of 130

The “total” row now makes it natural to accept the opposite conclusion that f,
with its higher aggregate success rate, is preferred to g.

Formally, this paradox can be expressed as follows (Blyth, 1972): Let A, B and
C denote three distinct properties or predicates, such as being a victorious candi-
date, being a big campaign spender, supporting certain legislation, living in a given
neighborhood etc. Let A′, B′ and C ′ denote the absence of A, B and C , respectively,
and let

P(A|B) < P(A|B′); (9)

i.e., A is more likely to occur if B does not. Simpson’s paradox occurs whenever
inequalities 10 and 11 also hold.

P(A|B ∩ C) ≥ P(A|B′ ∩ C) (10)

P(A|B ∩ C ′)≥ P(A|B ′ ∩ C ′) (11)

More dramatic examples are where these inequalities (Eqs. 9, 10, and 11) involve
larger margins. Blyth gives the conditions for extreme forms of Simpson’s paradox.
To outline of his conditions consider the comparing the effectiveness of using an
innovative, rather than the standard approach to combat racial prejudice.

A = property of creating a more positive attitude about racial issues,
B = property of using the innovative educational approach,
B′ = property of using the standard approach
C = educational program in district 1
C ′ = educational program in district 2.

The paradox associated with Eqs. (9), (10), and (11), then, is that, in general,
the standard approach provides better results than the innovative approach (Eq. 9),
but in both districts the innovative approach is more successful (Eqs. 10 and 11)!
An extreme case of the paradox (which resembles the q-rules of the last section) is
where Eqs. (10) and (11) are replaced with Eqs. (12) and (13) for a choice of γ ≥ 1.

P(A|B ∩ C) ≥ γ P(A|B ′ ∩ C) (12)

P(A|B ∩ C ′)≥ γ P(A|B ′ ∩ C ′) (13)
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As shown below, we could have P(A|B) ≈ 0 and P(A|B ′) ≈ 1
γ

, so with γ = 1, we
have P(A|B) ≈ 0 and P(A|B ′) ≈ 1, which suggests an extremely strong level of
success with the standard approach, yet this association is reversed in each district!

To understand Simpson’s paradox, consider the decomposition of the conditional
probabilities P(A|B) and P(A|B ′) in terms of C and C ′:

P(A|B) = [P(C |B)]P(A|B ∩ C)+ [P(C ′|B)]P(A|B ∩ C ′) (14)

and

P(A|B′) = [P(C |B′)]P(A|B′ ∩ C)+ [P(C ′|B′)]P(A|B′ ∩ C ′) (15)

As Eqs. (14) and (15) prove, P(A|B) is a weighted average of P(A|B ∩ C) and
P(A|B ∩ C ′); P(A|B ′) is a weighted average of P(A|B ′ ∩ C) and P(A|B′ ∩ C ′).
The P(C |B) and P(C ′|B) weights, then, represent the proportions of people from
the two districts who are exposed to a particular educational approach. By varying
these weights; all sorts of paradoxical examples follow. Some conditions, of course,
avoid the problem; e.g., if B, B ′,C and C ′ are independent, no paradox could ensue.

If the ease with which instances of Simpson’s paradox can be constructed is
an indicator of how often they may occur, then Saari’s (1990) procedure suggests
that they may be very common. To illustrate with the above example, let x and y
represent, respectively, the likelihood of the innovative and standard approach hav-
ing success. As both values range over [0, 1], the (x, y) outcome lies in the square
S = [0, 1]×[0, 1] ⊂ R

2. For instance, (0, 0) ∈ S represents where both approaches
have a zero success rate, while (1

2 ,
1
3 ) ∈ S is where the innovative approach enjoys

a 50% success rate, but the standard one has only a 33.3% chance of success.
To create a Simpson’s paradox choose two points, X = (Xx , X y) ∈ S and Y =

(Yx , Yy) ∈ S, each of which is located below the x = y line connecting (0,0) and
(1,1); i.e., these points indicate that the innovative approach had a greater likelihood
of success. These points represent what happens in each district; i.e., expressions
(10) and (11).

Form a rectangle by drawing lines parallel to the coordinate axes through X and
Y as in Fig. 3. A portion, denoted by A, of the area of the rectangle spanned by
X and Y is located above the x = y line; for these points, the standard approach is
more likely to succeed. To create a paradox, select any z = (zx , zy) ∈ A to represent
the Eq. (9) outcome of what happens in general.

Fig. 3 Generating Simpson’s
paradoxes ( , )
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We now must select appropriate weights for the weighted averages of Eqs. (14)
and (15). This is immediate; let

s = (zx − Xx )

(Yx − Xx )
, t = (zy − X y)

(Yy − X y)
.

To explain these values by using the s term, notice that Xx ≤ zx ≤ Yx , so s merely
determines the zx location from Xx with the Xx − Yx scale. In other words,

zx = s Xx + (1 − s)Yx , zy = t X y + (1 − t)Yy . (16)

Thus the s, 1−s, t, 1−t values determine the appropriate Eqs. (10) and (11) weights.
This construction holds for any z ∈ A, so, in spirit, Simpson’s paradox is related

to the Ostrogorski paradox. This is because A is in the associated set of Eq. (9)
outcomes defined by specific Eqs. (10) and (11) values. Again, notice that most
outcomes (i.e., those not in A) are consistent.

By selecting different z values, we can explore the extremes of Simpson’s para-
dox. For instance, choosing X near (0, 0) and Y near (1, 1), both below the x = y
line, represents nearly zero success for either approach in one district, but near cer-
tainty in the other. The z value now can be selected almost anywhere in S, meaning
that anything can happen in general. Selecting z near the (0, 1) vertex, for instance,
corresponds to the earlier P(A|B) ≈ 0 and P(A|B ′) ≈ 1 assertion.

These are the basic outlines of Saari’s procedure. It is based on geometrical prop-
erties of cones and, in particular, on the fact that cones can be used to represent a
wide class of decision situations (for details, see Saari, 1990, 2001). Saari’s paradox
machine6 begins with two sub-population distributions located on the same side
of the x = y line. The closer the points representing those sub-populations are to
(0, 0) and (1, 1), respectively, the more freedom one has in generating instances
of Simpson’s paradox. Comparing this procedure with what was said above in the
context of Blyth’s analysis of Simpson’s paradox, we see that moving the selected
point z is tantamount to manipulating the weights P(C |B), P(C |B′), P(C ′|B) and
P(C ′|B ′) weights.

10 Conclusion

By establishing a connection between standard concerns in spatial voting, such
as the existence of a core and the McKelvey “chaos theorem,” new insights are
obtained about long standing issues coming from the Ostrogorski and Anscombe
paradoxes. We learn, for instance, that these paradoxes are discrete versions of the
chaos theorem, that Kelly’s conjecture about no Condorcet winner not only is true,
but it is a version of the spatial chaos theorem, that while the Ostrogorski paradox
is a special case of an Anscombe paradox, with the same ideal points a change in

6 Nurmi coined this term in a previous paper.
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the parties converts an Anscombe paradox into an Ostrogorski one, and that the
reason a standard Ostrogorski paradox cannot arise with certain number of issues is
primarily a matter of asserting whether a (X , Y ) outcome represents a tie or support
for a particular party.

Many distinguished researchers in this area have noted connections between
Condorcet’s voting problems and Ostrogorski’s paradoxes (a partial list includes
Bezembinder & Van Acker, 1985; Kelly, 1989; Laffond & Lainé 2006; Laffond &
Lainé, 2009); we create a stronger connection by proving that they are essentially
equivalent; with a renaming of the alternatives, one setting can be converted into
the other. Then, by establishing that both the Condorcet cycles and Ostrogorski’s
problems arise with precisely the same kind of profile configurations, it becomes
possible to relate q-rule voting problems to supermajority Ostrogorski voting para-
doxes showing, for instance, that the Ostrogorski difficulty can occur even with a
rule that is one vote shy of unanimity.

A reason the identified profiles cause these problems is that with issue-by-issue
voting, or paired comparisons, the outcomes are not determined by a particular
profile, but rather by an associated set of profiles. The actual outcome is one that
proves to be reasonable for a wide selection of profiles in this associated set, but
it can be paradoxical for the actual profile. This problem is not restricted to paired
comparisons and Ostrogorski; as shown, it also identifies the cause of the statistical
Simpson paradox.

What makes the Ostrogorski problem intriguing is its path dependency charac-
teristic where reaching a decision in one manner differs from the conclusion that
can occur when making the decision in a different manner. Which is correct? By
understanding the kinds of profiles totally responsible for the Ostrogorski paradox,
we now know that the pairwise vote strips away any connections – intended or
otherwise – among the issues! (See Chap. 2 of Saari (2008) for a more complete
discussion.) If the issues are, indeed, divorced from one another, the issue by issue
approach probably is better. But should the issues be related, such as where the issue
of health care may be modified to adjust the concerns from the issue of governmental
deficits, then issue-by-issue voting defeats the purpose. In other words, pragmatics
dictates that in the real world, Ostrogorski’s paradox most surely will be with us for
a long time.
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Maximal Domains for Maskin Monotone Pareto
Optimal and Anonymous Choice Rules

Olivier Bochet and Ton Storcken

1 Introduction

In reaction to the well-known impossibility results of Arrow, Gibbard and Satterthe-
waite domain restrictions were studied in the seventies and eighties of last century.
Also the strategy-proofness condition was questioned to be too strong. The slightly
weaker Maskin monotonicity property essential for implementation of choice rules
in Nash equilibria appears, however, to reveal the same kind of impossibilities (see
Muller and Satterthwaite, 1977). Here we will study domain restrictions which allow
for Pareto optimal, Maskin monotone and anonymous choice rules.

In the work of Kalai and Muller (1977), Kalai and Ritz (1980), Ritz (1983, 1985)
so called domain restrictions are studied. Each agent has a domain of admissible
preferences. As this domain does not need to be the set of all possible preferences
it is called a restricted domain. In this type of work restrictions for two types
of collective decision rules are considered. (1) Pareto optimal, non-dictatorial or
anonymous and independent of irrelevant alternatives welfare functions assigning to
every combination of admissible preferences a collective preference and (2) Pareto
optimal, non-dictatorial or anonymous and strategy-proof choice rules assigning
to every combination of admissible preferences a collective choice. In character-
izing and looking for admissible domains which are inclusion maximal it is possi-
ble to reveal the impact of the well-known impossibility results of Arrow (1978),
Gibbard (1973) and Satterthwaite (1975). It is important to note that here we do not
focus on a specific collective decision rule, but rather on collective decision rules
satisfying some minimal requirements. Also it is assumed that agents may choose
their preferences independently and in such this type of study differs from that of
for instant Sen and Pattanaik (1969), where combinations of individual preferences
arerestricted such that pairwise majority is acyclic or from Puppe and Tasnádi (2007)
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where domain restrictions are considered such that the Borda score rule is well-
behaved. For a general discussion on restricted domains we would like to refer to
Gaertner (2002).

A dual approach in revealing the impact of these impossibility theorems is by
restricting as much as possible the set of admissible preferences such that the
remaining domains prevail the impossibility, that is on such domain Pareto optimal
and for instance strategy-proof choice rules are dictatorial. Aswal, Chatterji, and
Sen (2003) and Storcken (1984) belong to this strand of literature.

The work presented here belongs to the former mentioned literature on the “pos-
itive” approach. Here we avoid the Muller and Satterthwaite (1977) impossibil-
ity, stating that on an unrestricted domain Pareto optimal and Maskin monotone
choice rules are dictatorial, instead of those of Arrow (1978), Gibbard (1973) and
Satterthwaite (1975). So, the domain of admissible preferences is restricted such
that it allows for Pareto optimal, Maskin monotone and non-dictatorial choice rules.
On the one hand to simplify the study and on the other hand to investigate what
type of restriction is needed if these restrictions were independently imposed on
agents, we restrict precisely the set of one agent, say agent i . In that way this
work adds to the line started with Bochet and Storcken (2005). As in their work
the collective choice rule admissible by such the domains is strongly hierarchical
and therefore almost dictatorial. Here we replace non-dictatorship by anonymity to
guarantee for more equal decisiveness power among the agents. In case of at least
three agents it appears that the domain of admissible preferences of agent i is as
follows. There is an alternative, say x, such that in all the admissible preferences
of agent i this alternative x is either ordered best or second best. So, at most one
alternative different from x can be ordered better than x by that agent i . This yields
that at all combinations of individual preferences there is at most one alternative
which is unanimously preferred to x . Consequently the imputation rule with status
quo x is single valued and therefore a choice rule. On unrestricted domains the
imputation rule is a choice correspondence, i.e. it assigns non-empty sets of alter-
natives to combinations of individual preferences. It chooses all alternatives which
are Pareto optimal and at least as good as x for all agents. It is Maskin monotone,
see also Moulin (1980). Moreover, on these restricted domains it appears to be the
only type of rule that is simultaneously Pareto optimal, anonymous and Maskin
monotone.

The two agents case is more technical than the three or more agents case. It
appears that agent i may order alternative x strictly worse than second best and
rules different from the imputation rule are possible on domains which allow for
Pareto optimal, Maskin monotone and anonymous choice rules. We therefore treat
this case separately.

The paper is structured as follows. In Sect. 2 the model and basic notions are
defined, Sect. 3 deals with the three or more agents case and Sect. 4 with the two
agents case. Section 5 tries to shed some light on the robustness of the results pre-
sented here.
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2 Maskin Monotonic Choice Rules

Consider choice rules for a set N of n � 2 agents over a set of m alternatives say A.
Although in general we assume that there are at least three alternatives sometimes
also cases with one or two alternatives are considered. Only linear orderings, i.e.
(strongly) complete, anti-symmetric and transitive relations on A are admissible as
individual preferences. Let L(A) denote the set of all linear orderings on A. Let R
be a linear ordering on A and let x and y be two different alternatives in A. Then
x ... = R denotes that x is the best alternative at R, ...x ...y... = R denotes that x is
strictly preferred to y at R, ...xy... = R denotes that x is strictly preferred to y at R
and there is no alternative in between this preference and x ...y = R denotes that x is
best alternative and y is worst alternative at R. So, xy... = R means that alternative
x is best and y is second best at R. Furthermore, the upper and lower contour of
alternative x at R is defined as up(x, R) = {a ∈ A : a = x or ...a...x ... = R}
and low(x, R) = {a ∈ A : a = x or ...x ...a... = R} respectively. As the set of
individual preferences might be restricted let ∅ �= L{i} ⊆ L(A) be the domain of
individual preferences of agent i ∈ N and L N = {p : p is a function from N to
L(A) such that p(i) ∈ L {i} for all i ∈ N } be the set of profiles. A choice rule K is a
function from L N to A. For coalitions M , a non-empty subset of agents, profile p is
said to be a M-deviation of profile q if p|N−M = q|N−M . For an alternative x in A
and agent i in N let L{i}

x = {R ∈ L{i} : x ... = R} be the set of preferences of agent
i with best alternative x . Furthermore, for alternatives y let L M

x × L N−M
y denote the

set of profiles p in L(A)N such that p(i) ∈ L{i}
x for all i ∈ M and p( j) ∈ L{ j}

y for
all j ∈ N − M . In case M = N , we consider L M

x × L N−M
y = L N

x .
Next we rephrase some well-known conditions for choice rules in the notation

at hand. Choice rule K is anonymous if in view of the domain restriction it is sym-
metrical in every possible argument change. That is for all profiles p in L N and all
permutations σ on N such that p ◦ σ is in L N we have that K (p) = K (p ◦ σ).
It is Pareto-optimal if for all alternatives x and y, with x �= y, and all profiles p,
such that for all agents i in N ...x ...y... = p(i), K (p) �= y. In that case we say
that x Pareto-dominates y at profile p. Furthermore, let Par(p) denote the set of all
alternatives that are not Pareto-dominated at profile p. The choice rule K is unani-
mous if K (p) = a for all alternatives a and profiles p ∈ L N

a . It is strategy-proof if
for all agents i and all profiles p and q, such that q is a {i}-deviation of p, we have
K (q) ∈ low(K (p), p(i)). The choice rule K is intermediate strategy-proof if for all
coalitions M of N and for all profiles p in L N , such that there is a preference R in
L(A) with p(i) = R for all i ∈ M , and all M-deviations q of p in L N it holds that
K (q) ∈ low(K (p), R). Choice rule K is Maskin-monotone if K (p) = K (q) for all
profiles p and q such that low(K (p), p(i)) ⊆ low(K (p), q(i)) for all agents i .

A set of profiles L N is called a Maskin possibility domain if there exist choice
rules K from L N to A which are simultaneous anonymous, Maskin-monotone and
Pareto-optimal. Such a domain is called a maximal Maskin possibility domain if in
addition there is no possibility domain say L̂ N such that L N

� L̂ N . Similarly we
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define a strategy-proof possibility domains and maximal strategy-proof possibility
domains.

The following results logically link several of the conditions defined above and
is well-known.

Theorem 1 Let K : L N → A be a choice rule. If choice rule K is strategy-proof,
then it is Maskin-monotone.

3 Three or More Agents

In this section we study maximal domains for Pareto-optimal, Maskin-monotone
and anonymous choice rules where only the set of preferences of agent 1 is
restricted. So, let L{i} = L(A) for all agents i � 2 and let K be such a choice
rule from maximal Maskin possibility domain L N to A. The domain of agent 1 is
supposed to be rich: for all x ∈ R there are R ∈ L1 ∩ Lx . It means that all alter-
natives can be ordered best by agent 1. Although for this section the same results
hold without this condition it simplifies the case of two agents and it simplifies the
proofs in this section. The main results are derived through the following notion of
decisiveness. Let M be a coalition and (x, y) an ordered pair of alternatives, possibly
x = y. We say that M is decisive on (x, y) at K , notation (x, y) ∈ DK (M), if
K (p) = x for all profiles p ∈ L M

x × L N−M
y .

Lemma 1 Let n � 2. Let M be a coalition, p ∈ L N and x, y ∈ A, with x �= y. Let
K (p) = x, xy... = p(i) for all i ∈ M and y... = p(i) for all i ∈ N − M. Then
(x, y) ∈ DK (M).

Proof Let q ∈ L M
x × L N−M

y . It is sufficient to prove that K (q) = x . Let r ∈ L N

be an (N − M)-deviation of p and an M-deviation of q. Now Pareto optimality
implies that K (r) ∈ {x, y}. If K (r) = y, then Maskin-monotonicity would imply
the contradiction K (p) = y. So, K (r) = x . But then Maskin-monotonicity implies
K (q) = x .

Lemma 2 Let n � 2. Let M be a coalition such that 1 /∈ M, x, y ∈ A, with x �= y.
Let K (p) = x. Then (x, y) ∈ DK (M).

Proof Consider M-deviation q of p such that xy... = q(i) for all i in M . Then
Maskin-monotonicity implies that K (q) = K (p) = x . So, the result follows from
Lemma 1.

Lemma 3 Let n � 2. Let x, y ∈ A, with x �= y, and (x, y) ∈ DK ({1}). Then
{x} × A ⊆ DK ({1}).
Proof There exist p ∈ L N such that x ... = p(1) and y...x = p(i) for i ∈ N − {1}.
As (x, y) ∈ DK ({1}) we have by Maskin-monotonicity that K (q) = x for all
alternatives a and all profiles q such that x ... = q(1) and a... = q(i) for all agents
i � 2. But this means that {x} × A ⊆ DK ({1}).
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Lemma 4 Let n � 2. Let x ∈ A such that {x} × A ⊆ DK ({1}). Then for all agents
i ∈ N − {1} we have {x} × A ⊆ DK ({i}).
Proof Let y ∈ A with x �= y and let i � 2. It is sufficient to prove that (x, y) ∈
DK ({i}). Consider profile p such that p ∈ L{1}

x × L N−{1}
y . Because of (x, y) ∈

DK ({1}) it follows that K (p) = x . Now by anonymity it follows that K (p) =
K (p ◦ σ) where σ is the permutation on N such that σ(1) = i , σ(i) = 1 and
σ(k) = k for all k ∈ N − {1, i}. But as p ◦ σ ∈ L{i}

x × L N−{i}
y it follows by Lemma

2 that (x, y) ∈ DK ({i}).
Let a be an alternative. Domain L N is said to be an a-at least second best domain

whenever L{1} = {R ∈ L(A) : There are alternatives b ∈ A−{a} such that a... = R
or ba... = R}. So, at such domains at each preference of agent 1 alternative a is
either best or second best. Clearly in case of a two alternatives set with L{1} = L(A)
the domain L N is an a-at least second best domain. Note that at every profile p in
an a-at least second best domain a ∈ Par(p) or Par(p) is a singleton. So, we can
define the following imputative choice rule Ka which is defined for an arbitrary
profile p as follows: Ka(p) = a if a ∈ Par(p) else Ka(p) is the alternative that
Pareto-dominates a at p. Clearly Ka is well-defined Pareto-optimal and anonymous.
It is straightforward and therefore left to the reader to proof that it is strategy-proof.
The following Lemma shows that whenever L N is a maximal possibility domain for
n � 3 and L M

a × L N−M
b �= ∅, with (a, b) ∈ DK ({1}) for some alternatives a �= b,

then L N is an a-at least second best domain and K = Ka .

Lemma 5 Let n � 2. Let (a, b) ∈ DK ({1}) for some alternatives a �= b.

1. Let profile p be such that p(i) ∈ L{i}
a for some agent i . Then K (p) = a.

2. Let q be a profile. Then K (q) ∈ ∩{up(a, q(i)) : i � 2}.

Proof By Lemma’s 3 and 4 it follows that {a} × A ⊆ DK ({1}) and {a} × A ⊆
DK ({i}) for all agents i ∈ N − {1}.

(Proof of statement 1) Suppose i = 1. Consider b ∈ A − {a} and a N − {1}-
deviation q of p such that q( j) = b...a for j � 2. Now because of {a} × A ⊆
DK ({1}) it follows that K (q) = a. So, by Maskin-monotonicity it follows that
K (p) = a.

Suppose i � 2 and p(1) ∈ L{1}
b for some b ∈ A. Consider N −{1, i}-deviation q

of p such that q( j) = b...a for j � 2 and j �= i . Now because of {a}×A ⊆ DK ({i})
it follows that K (q) = a. So, by Maskin-monotonicity it follows that K (p) = a.
This proves 1.

(Proof of statement 2) To the contrary suppose that ...a...K (p)... = p(i) for
some agent i � 2. Then Maskin-monotonicity implies K (q) = K (p) where q is
an {i}-deviation of p such that aK (p)... = q(i). But as K (p) �= a. we have a
contradiction with statement 1 which concludes the proof of this statement.

Lemma 6 Let n � 3. Let L{1}
a × L N−{1}

b �= ∅, with (a, b) ∈ DK ({1}) for some
alternatives a �= b. Then L N is an a-at least second best domain and K = Ka.
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Proof Suppose that there are alternatives b, c ∈ A − {a} with b �= c such that for
some R ∈ L {1} we have b...c...a... = R. Consider profile q such that q(1) = R,
bca... = q(2) and cba... = q( j) for all j � 3. Next consider {2}-deviation r of
q defined by r(2) = bac... and {3}-deviation v of q defined by v(3) = cab....
By statement 2 of Lemma 5 and Pareto optimality it follows that K (r) = b and
K (v) = c. But Maskin-monotonicity then implies from K (r) = b that K (q) = b
and from K (v) = c that K (q) = c. This contradiction proofs that L N is a subset of
an a-at least second best domain. Maximality of L N now implies that it is an a-at
least second best domain.

In order to prove that K = Ka consider p a profile. In view of Pareto-optimality
it is sufficient to prove that K (p) ∈ ∩{up(a, p(i)) : i ∈ N }. To the contrary suppose
that ...a...K (p)... = p(1). By Lemma 5 we have that ...K (p)...a... = p(i) for all
i � 2. Consider now profile q such that aK (p)... = q(1) and K (p)a... = q(i)
for all i � 2. Then Maskin-monotonicity implies that K (p) = K (q). This however
contradicts {a} × A ⊆ DK ({1}). So, K (p) ∈ ∩{up(a, p(i)) : i ∈ N } and K = Ka .

Remark 1 The following Theorem is based on the result of Gibbard (1973) and
Satterthwaite (1975) which states that a strategy-proof choice rule F from a unre-
stricted domain L N , with n ≥ 2, to a set of alternatives A such that F(L N ) con-
tains at least three alternatives is dictatorial on these, which means that F is not
anonymous.

Theorem 2 Let n � 3 and m � 3. Let L {i} = L(A) for i � 2. Then L N is a maximal
Maskin possibility domain if and only if there are alternatives a such that L N is an
a-at least second best domain. Furthermore, if K is an anonymous, Pareto-optimal
and strategy-proof choice rule on a maximal possibility domain, then there is an
alternative a such that K = Ka.

Proof (Only-if-part and Furthermore part) Let K be an anonymous, Pareto-optimal
and Maskin monotone choice rule on a maximal possibility domain L N . By Lemma 6
we are done if for some alternative a ∈ A and b ∈ A with (a, b) ∈ DK ({1}) and
a �= b. So, suppose that for all (a, b) ∈ A×(A−{a})we have that (a, b) /∈ DK ({1}).
We will prove the following. There is a y ∈ A such that for all x ∈ A we have that
L{1}

x ⊆ {R ∈ L(A) : xy... = R}. This of course contradicts the maximality of
domain L N and completes the proof of this part. Let x1, x2 ∈ A with x1 �= x2. It is
sufficient to prove that there is a y ∈ A such that L {1}

xi ⊆ {R ∈ L(A) : xi y... = R}
for i ∈ {1, 2}. For i ∈ {1, 2} let Ri ∈ L{1}

xi and consider Ki = K |{Ri }×L N−{1} .
Clearly for i ∈ {1, 2} we have that Ki is Maskin-monotone. Because the domain
of Ki is actually unrestricted it follows that Ki is anonymous and strategy-proof.
So by the result of Gibbard Satterthwaite implies that #Ki (L N−{1}) � 2. Note that
because of unanimity for i ∈ {1, 2} we have that xi ∈ Ki (L N−{1}). Furthermore,
Maskin-monotonicity and the assumption on DK ({1}) imply that #Ki (L N−{1}) = 2.
Say Ki (L N−{1}) = {xi , yi }, with xi �= yi for i ∈ {1, 2}.

Next we prove for i ∈ {1, 2} that xi yi ... = Ri . Without loss of generalization let
i = 1. To the contrary let x1z...y1... = R1. Consider p ∈ L N such that p(1) = R1
and z...x1 = p(i) for all agents i � 2. Because of Pareto-optimality of K it follows
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that K (p) ∈ {x1, z}. Because of K1(L N−{1}) = {x1, y1} it follows that K (p) = x1
but then by Lemma 1 we have the contradiction (x1, z) ∈ B × (A − {x1}) and
(x1, z) ∈ DK ({1}).

Now we prove that y1 = y2. Consider q ∈ L N such that q(1) = R1 and
q(2) = R2. Because of K1(L N−{1}) = {x1, y1} it follows that K (q) ∈ {x1, y1}.
By anonymity and K2(L N−{1}) = {x2, y2} it follows that K (q) ∈ {x2, y2}. As
x1 �= x2 it follows that y2 = x1, y1 = x2 or y1 = y2. First we show that y2 �= x1.
To the contrary suppose that y2 = x1. Consider the profiles v and w defined such
that v(1) = R1, w(1) = R2 and v(i) = w(i) = y1...x2 for i ∈ N − {1}. Then by
Lemma 1 and the assumptions on DK ({1}) it follows that K (v) = y1. Because of
the assumptions on DK ({1}) it follows with Maskin-monotonicity that K (w) �= x2.
So, as K2(L N−{1}) = {x2, y2} it follows that K (w) = y2 = x1. But then K is
not Maskin-monotone going from profile w to v. This contradiction implies that
y2 �= x1. Similarly we have that y1 �= x2. Hence, y1 = y2 which is the desired result.

(If-part) Follows easily.

Corollary 1 Let n � 3 and m � 3. Let L{i} = L(A) for i � 2. Then L N is a
maximal strategy-proof possibility domain if and only if there are alternatives a such
that L N is an a-at least second best domain. Furthermore, if K is an anonymous,
Pareto-optimal and strategy-proof choice rule on a maximal possibility domain, then
there is an alternative a such that K = Ka.

4 Two Agents and Maskin Monotonicity

In this section we study the special case of two agents. It appears that other domains
than at least second best domains allow for possibility results as well. In the three
agent case it appears that agent 1 has some decisive power over an alternative which
later appears to be the status quo x of the three or more agents case. Anonymity
implies that this decisiveness is also present for every other agent i . It is straight-
forward to deduce that at any combination of individual preferences the outcome is
in the intersection of the upper contours of x at these preferences. In case of three
agents consider profile p such that yzx ... = p(2) and zyx ... = p(3). We have that
the outcome is among y and z if both are in the upper contour set of agent’s 1 pref-
erence. At a profile q where agent’s 2 preference has changed to yx ... = q(2) and
all the other agents have kept their same preference as at p, however, the outcome
would be y. This because it is the only alternative in the upper contours of x at the
preferences of profile q. Maskin monotonicity implies then that y is the outcome
at the former combination. But similarly we may deduce that this outcome is z by
changing the role of z and y and agent 2 and 3. This contradiction shows that x is
never ordered less than second best by agent 1. In the deduction of this contradiction
the presence of three agents is essential. Therefore in the two agents case alternative
x is not necessarily ordered at least second best.
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Let K be a Pareto-optimal, Maskin monotone and anonymous choice rules on
domain L N , where N = {1, 2}. First we prove that the set of decisive pairs of agent
2 is transitive and antisymmetric on B.

Lemma 7 DK ({2}) is transitive and antisymmetric, i.e. for x, y ∈ A with x �= y, if
(x, y) ∈ DK ({2}), then (y, x) /∈ DK ({2}).
Proof (Proof of transitivity) Let (x, y), (y, z) ∈ DK ({2}). It is sufficient to prove
(x, z) ∈ DK ({2}). Without loss of generality suppose x , y and z are three different
alternatives. Consider profiles p, q and r such that p(1) = r(1) ∈ L {1}

c , xyz... =
p(2) = q(2), r(2) = yz... and q(1) ∈ L{1}

y . In view of Lemma 2 it is sufficient to
prove that K (p) = x . Now by Pareto-optimality we have K (p) ∈ {x, y, z}. Because
of (y, z) ∈ DK ({2}) it follows that K (r) = y. So, by Maskin-monotonicity we have
that K (p) �= z. Because of (x, y) ∈ DK ({2}) it follows that K (q) = x . So, by
Maskin-monotonicity we have that K (p) �= y. Hence, we have the desired result
K (p) = x .

(Proof of antisymmetry) This follows immediately because K is anonymous.

The following Lemma shows that decisiveness spreads over upper contours.

Lemma 8 Let x, y and z be different alternatives and R a preference in L {1} such
that y...z.....x ... = R. Let (x, y) ∈ DK ({2}). Then (z, y) ∈ DK ({2}).
Proof Let q ∈ L N such that q(1) = R and zy... = q(i) for all i ∈ N − {1}. By
Lemma 2 it is sufficient to prove that K (q) = z. Consider p and r two (N − {1})-
deviations of q such that xzy... = p(i) and zxy... = r(i) for all i ∈ N−{1}. Because
of (x, y) ∈ D(N − {1}) it follows that K (p) = x . Pareto-optimality implies that
K (r) ∈ {y, z}. If K (r) = y, then Maskin-monotonicity would yield the contradic-
tion K (p) = y. So, K (r) = z and Maskin-monotonicity implies K (q) = z.

The following Theorem characterizes maximal Maskin possibility domains.

Theorem 3 Let N = {1, 2}. Then L N is a maximal Maskin possibility domain if
and only if there is an alternative a and for all x, y ∈ A there exist subsets Yx and
Yy of A and alternatives m{x,y} ∈ Yx ∩ Yy such that

1. Ya = {a}, x, a ∈ Yx and if y ∈ Yx − {x}, then Yy ⊆ Yx − {x};
2. L {1} = V where V = {R ∈ L(A) : if R ∈ L{1}

x then up(a, R) = Yx and
Yx ∩ Yy ⊆ low(m{x,y}, R) for all alternatives y}.

Proof (Proof of the only-if-part) Let L N be a maximal Maskin possibility domain
and K a Pareto-optimal Maskin monotone and anonymous choice rule from L N

to A. For alternatives x in A and Rx ∈ L1
x define YRx = {b ∈ A : b = K (p)

where p(1) = Rx }. Now if b ∈ YRx , then Maskin monotonicity and Lemma 2 imply
that (b, x) ∈ DK ({2}). By the definition of decisiveness we have the reverse that if
(b, x) ∈ DK ({2}), then b ∈ YRx . So, YRx = {b ∈ A : (b, x) ∈ DK ({2})}. As the left
hand side of the equation is independent of the actual Rx ∈ L1

x we may conclude
that YRx = YR′

x
for all Rx , R′

x ∈ L1
x . Therefore we may define Yx = YRx for some

Rx ∈ L1
x .
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Next we prove that K (p) = best(p(2)|Ybest(p(1) ). To the contrary let p(1) ∈ L1
x ,

y ∈ Yx and ...y...K (p)... = p(2). Consider {2}-deviation q of p such that
yK (p)... = q(2). Maskin monotonicity implies K (p) = K (q), but the findings
on Yx yields the contradiction that K (q) = y.

Considering p ∈ L N such that p(1) = Rx ∈ L1
x and p(2) ∈ L1

y and anonymity
yields best(p(2)|Yx ) = best(p(1)|Yy ). So, there are m{x,y} ∈ Yx ∩ Yy such that for
all Rx ∈ L1

x and all z ∈ Yx ∩ Yy we have that (m{x,y}, z) ∈ Rx . For y ∈ Yx − {x}
Lemma 7 implies that Yy ⊆ Yx − {x}. In view of Lemma 8 we may assume for all
Rx ∈ L1

x that Yx × (A − Yx ) ⊆ Rx .

Next we prove the existence of such an alternative a. Let b ∈ A and Rb ∈ L{1}
b .

As Yx × (A − Yx ) ⊆ Rx , there is an alternative a such that up(a, Rb) = Yb. As
a ∈ Yb it follows that Ya ⊆ Yb. Hence Ya = Ya ∩ Yb. Because of a ∈ Ya =
Ya ∩ Yb ⊆ low(m{a,b}, Ra) for some Ra ∈ L{1}

a it follows that m{a,b} = a. Now by
Ya∩Yb ⊆ low(m{a,b}, Rb) and the definition of a it follows that Ya = {a}. So, for all

Rx ∈ L{1}
x for some x ∈ A there are aRx with up(aRx , Rx ) = Yx and YaRx

= {aRx }.
However, as for all x and y in A we have m{x,y} ∈ Yx ∩ Yy �= ∅. It follows that
for all x and y in A we have that aRx = aRy . So, there is an alternative a such that

Ya = {a}, for all x ∈ A and all R ∈ L{1}
x we have a ∈ Yx and up(a, R) = Yx .

All in all we have now that L1 ⊆ V . Maximality of the domain and the if-part
imply that L1 = V .

(Proof of the if-part) Define choice rule K for an arbitrary profiles p as follows

K (p) = best(p(2)|Ybest(p(1)) ).

First we prove that K is Pareto optimal, anonymous and Maskin monotone.
To prove Pareto optimality let ...x ...y... = p(1) and ...x ...y... = p(2). To prove

y �= K (p). This is the case if y /∈ Ybest(p(1)). Therefore suppose that y ∈ Ybest(p(1)).
Because of ...x ...y... = p(1) and L{1} = V it follows that x ∈ Ybest(p(1)). So,
y �= K (p) because of y �= best(p(2)|Ybest(p(1)) ).

Anonymity follows straightforwardly because of L{1} = V .
In order to prove Maskin monotonicity let p and q be two profiles such that

low(K (p), p(i)) ⊆ low(K (p), q(i)) for all i ∈ N . To prove that K (p) = K (q).
As low(K (p), p(1)) ⊆ low(K (p), q(1)) it follows that a ∈ low(K (p), p(1)) ∩
low(K (p), q(1)). Therewith, K (p) ∈ Ybest(q(1)) ⊆ Ybest(p(1)) which yields that
K (p)= best(p(2)|Ybest(p(1)) ) implies that K (p)= best(p(2)|Ybest(q(1)) ). Now because
of low(K (p), p(2)) ⊆ low(K (p), q(2)) we may conclude that K (p) = best(q(2)
|Ybest(q(1)) ).

Next we prove that the domain is maximal. Let L̂ N be a Maskin possibility
domain such that L N ⊆ L̂ N . It is sufficient to prove that L N = L̂ N . Because of
the finite setting we may assume that L̂ N is a maximal Maskin possibility domain.
So for the only-if-part it follows that there is an alternative â and for all x , y ∈ A
there exist subsets Ŷx and Ŷy of A and alternatives m̂{x,y} ∈ Ŷx ∩ Ŷy such that

1. Ŷâ = {̂a}, x, â ∈ Ŷx and if y ∈ Ŷx − {x}, then Ŷy ⊆ Ŷx − {x};
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2. L̂{1} = V̂ where V̂ = {R ∈ L(A) : if R ∈ L{1}
x then up(̂a, R) = Ŷx and

Ŷx ∩ Ŷy ⊆ low(m̂{x,y}, R) for all alternatives y}.
Now by the assumption L{1} = V we have that L{1}

a = La . This and L{1} ⊆ L̂{1}
implies subsequently a = â, Yx = Ŷx for all x in A, V = V̂ , and m{x,y} = m̂{x,y}
for all x and y. So, L N = L̂ N .

Example 1 Taking Yx = {x, a} and m{x,a} = a for all alternatives x yields an a-at
least second best domain. Clearly Ka(p) = best(p(2)|Ybest(p(1)) ).

Next we show that in the two agents case (maximal) Maskin possibility domains
can be different from at least second best domains.

Example 2 Let A = {a, b1, b2, b3, b4, c} and take L{1} = {R ∈ L :

R = a... or

R = ca... or

R = bi ca...for some i ∈ {1, 2, 3, 4}}.

Think of a as the status quo, b1 up to b4 as four mutely exclusive changes of the
status quo and c as a compromise of all these bi ’s. Now the domain restriction
reflexes the situation that agent 1 is a strong supporter of either the status quo, the
compromise or one of these changes bi . Taking Ybi = {bi , c, a} for i ∈ {1, 2, 3, 4},
Yc = {c, a}, Ya = {a}, m{bi ,b j } = m{bi ,c} = c and m{bi ,a} = a for i, j ∈ {1, 2, 3, 4}
with i �= j , and m{a,c} = a yields by Theorem 3 that L N is a maximal Maskin
possibility domain. Clearly it is not an at least second best domain.

5 Conclusion

Theorem 2 and Corollary 1 characterize the maximal Maskin and strategy-proof
possibility domain respectively in case there are at least three agents of which
precisely for one agent’s set of preferences is restricted. The maximal domain is
an a-at least second best domain. Theorem 3 covers the case for maximal Maskin
possibility domains in case there are two agents only of which precisely one agent’s
set of preferences is restricted. The admissible choice rules can loosely speaking be
interpreted as follows. Agent 1 offers a set of alternatives which are at least as good
as the status quo a. Now N − {1} unanimously decides on this set. In order to have
this unanimous decision unambiguously in case of more than two agents the set
offered by agent 1 can contain at most one alternative different from the status quo
a. This yields an a-at least second best domain. As now agent 1 offers at most two
alternative overall this type of rule is an imputation rule with status quo. The case
of two agents allows for a little more freedom. Now agent 1 may offer more than
two alternatives as can be seen in Example 2. To guarantee Maskin monotonicity
he can only offer subsets of these which coincide with the worst among what is
offered and to guarantee anonymity there is always a unique best in the intersection
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of two sets that can be offered. This clarifies the conditions in Theorem 3. We further
like to point out that the at least second best condition and those in Theorem 3
prevent in these domains two alternatives different from alternative a are connected
in the sense of Aswal et al. (2003). This shows that their impossibility result is not
applicable to the domains discussed here.

Although contrary to the result of Bochet and Storcken (2005) the rules that
are admissible on these domains ad hand are by definition anonymous they lack
neutrality. At the end of this section we want to point out that trading off a part
of anonymity with neutrality may yield an impossibility. We show that there do
not exist domains at which the set of admissible preferences of precisely one agent
is restricted which allow for Maskin monotone, Pareto- optimal choice rules that
have the absolute majority property. This property incorporates both a principle of
anonymity and neutrality yet it demands for that only at special situation. Therefore
it does not guarantee neither of the two conditions in full strength. Let choice rule
K from L N to A respects absolute majority if K (p) = a for all profiles p such that
#{i ∈ N : best(p(i)) = a} > n

2 . Or as a matter of speech in the setting at hand
anonymity cannot be substituted by absolute majority.

Theorem 4 Let n � 3. Let L{i} = L(A) for i � 2. Then there do not exist choice
rules K from L N to A which are simultaneously Pareto-optimal, Maskin monotone
and respects absolute majorities.

Proof Let K be a Pareto-optimal and Maskin monotone choice rule from L N to
A which in addition satisfies absolute majorities. For R ∈ L{1} consider choice
rule K R from L N−{1} to A defined for all p ∈ L N−{1} by KR(p) = K (q) where
q|N−{1} = p and q(1)=R. Clearly because n �3 and K respects absolute majorities
it follows that K R is unanimous. Also because K is Maskin monotone K R is so. So,
it follows by Muller Satterthwaite that K R is dictatorial with dictator say iR > 1.
Now consider profile r ∈ L N such that r(i) = R for i ∈ N − {iR} and r(iR) = R′
where best (R) �= best(R′). Because K respects absolute majority K (r) = best(R)
and because K R is dictatorial with dictator iR it follows that K (r) = best(R′) a
clear contradiction.

References

Arrow, K. J. (1978). Social choice and individual values (19th ed.). New Haven, CT: Yale Univer-
sity Press.

Aswal, N., Chatterji, S., & Sen, A. (2003). Dictatorial domains. Economic Theory, 22, 45–62.
Bochet, O., & Storcken, T. (2005). Maximal domains for strategy-proof or Maskin monotonic

choice rules. Meteor Working Paper, Maastricht University.
Gaertner, W. (2002). Restricted domains. In: K. J. Arrow, A. K. Sen, & K. Suzumura (Eds.), Hand-

book of social choice and welfare (Vol. 1, Chap. 3, pp. 131–170). Amsterdam: Elsevier.
Gibbard, A. (1973). Manipulation of voting schemes: A general result. Econometrica, 41, 587–601.
Kalai, E., & Muller, E. (1977). Characterization of domains admitting nondictatorial social welfare

functions and nonmanipulable voting procedures. Journal of Economic Theory, 16, 457–469.
Kalai, E., & Ritz, Z. (1980). Characterization of the private alternatives domains admitting Arrow

social welfare functions. Journal of Economic Theory, 22, 23–36.



68 O. Bochet and T. Storcken

Moulin, H. (1980). The strategy of social choice. Amsterdam: North Holland.
Muller, E., & Satterthwaite, M. A. (1977). The equivalence of strong positive association and

strategy-proofness. Journal of Economic Theory, 14, 412–418.
Puppe, C., & Tasnádi, A. (2007). Nash implementable domains for the Borda count. Social Choice

and Welfare, 31, 367–392.
Ritz, Z. (1983). Restricted domains, Arrow social welfare functions an noncorruptable and nonma-

nipulable social choice correspondences: The case of private alternatives. Mathematical Social
Sciences, 4, 155–179.

Ritz, Z. (1985). Restricted domains, arrow social welfare functions an noncorruptable and nonma-
nipulable social choice correspondences: The case of private and public alternatives. Journal
of Economic Theory, 35, 1–18.

Satterthwaite, M. A. (1975). Strategy-proofness and Arrow’s conditions: Existence and correspon-
dence theorem for voting procedures and social welfare functions. Journal of Economic Theory,
10, 187–217.

Sen, A. K., & Pattanaik, P. K. (1969). Necessary and sufficient conditions for rational choice under
majority decision. Journal of Economic Theory, 1, 178–202.

Storcken, T. (1984). Arrow’s impossibility theorem on restricted domains. Methods of Operations
Research, 50, 83–98.



Extremal Restriction, Condorcet Sets,
and Majority Decision Making

Adrian Van Deemen and M. Elena Saiz

1 Introduction

The domain condition of extremal restriction (ER) plays an important role in the
theory of majority decision making. In its precise form, the condition states that if
someone strictly prefers alternative x to alternative y and alternative y to alternative
z, then anyone who strictly prefers z to x must strictly prefer z to y and y to x
(Sen & Pattanaik, 1969, also cf. Sen, 1970, 1986). Sen & Pattanaik (1969, Theorem
XI) prove ER to be both sufficient and necessary for transitivity of majority decision
making and thus for the existence of a majority winner. The absence of a majority
winner for a set of individual preferences is usually called a Condorcet paradox. ER
belongs to the class of domain restrictions that forbid the occurrence of this paradox.
However, ER guarantees more, namely the transitivity of the majority relation. For
solid and concise studies of the Condorcet paradox, see (Gehrlein, 1983, 2006) and
(Nurmi, 1999).

ER is a qualitative domain restriction. Such restrictions exclude configurations
of individual preference orderings from the domain of majority rule in order to
avoid cyclical majority preferences and with that the absence of majority decisions.
The research after these domain restrictions has been initiated by Black (1958) and
Arrow (1963). Black uses a point representation of alternatives, that is, he presents
alternatives as points on the real line. Black shows that if individual preferences
satisfy the domain restriction of single-peakedness and if the number of voters
is odd, then majority decision will be transitive. One step further is to conceive
alternatives as points in a (Euclidian) n-space. This step has lead to several inter-
esting results about the existence of majority equilibrium. The first condition in
this respect is pairwise symmetry (Plott, 1967), (i.e., Matthews, 1980). Others are
the existence of a median in all directions (Davis, De Groot, Hinich, 1972), and the
condition of intermediate preferences (Grandmont, 1979). All these results show the
peculiarity of the existence of majority equilibrium in a multi-dimensional space.

A. Van Deemen (B)
Institute for Management Research, Radboud University, 6500 HK Nijmegen, The Netherlands
e-mail: a.vandeemen@fm.ru.nl

A. Van Deemen, A. Rusinowska (eds.), Collective Decision Making,
Theory and Decision Library C 43, DOI 10.1007/978-3-642-02865-6_5,
C© Springer-Verlag Berlin Heidelberg 2010

69



70 A. Van Deemen and M.E. Saiz

McKelvey (1976) shows the existence of global cycles when a majority equilibrium
does not exist. This research line has led to the fascinating field of spatial voting
theory (Enelow & Hinich, 1984) and the related theory of spatial voting games
(Owen & Shapley, 1989).

Arrow (1963) uses the notion of single-peaked preferences in a different way. He
formulates it within a finite combinatorial framework as a condition on triples of
alternatives. Within this framework, Arrow formulates a possibility theorem which
states that single-peakedness is a sufficient condition for the majority rule to be a
social welfare function. Hence, imposing single-peakedness on the domain of the
majority rule circumvents the problem of cyclic majority relations and with that
the occurrence of the Condorcet paradox. The labeling “qualitative” stems from
the fact that the exclusion of preference configurations takes place without refer-
ring to numbers or frequencies of voters having a non-excluded preference. In this
respect, qualitative domain conditions also differ from the distributional or number-
specific conditions (see Sen, 1986) like the condition of cyclically mixed preference
profiles (Gaertner, 1979) and the condition of positive net preferences formulated
by Feld & Grofman (1986). Also see Regenwetter, Marley, & Grofman (2003),
Regenwetter, Grofman, Marley, & Tsetlin (2006).

Since the seminal work of Arrow, several alternative qualitative domain condi-
tions have been formulated, among which single-caved preferences (Inada, 1969),
limited agreement (Sen & Pattanaik, 1969) and Sen’s value-restricted preferences
(Sen, 1966). Extremal restriction was first formulated and studied in Sen & Pattanaik
(1969). For review studies of qualitative domain conditions, consider Gaertner
(2001), or Sen (1970, 1986). A probabilistic extension of value-restriction is given in
Regenwetter et al. (2003, 2006). Qualitative domain conditions also play an impor-
tant role in multiple criteria decision analysis. A study in this field is Arrow &
Raynaud (1986).

ER has a unique place among these conditions since it is, as far as we know,
the only combinatorial one which is both sufficient and necessary for transitivity
of majority decision making. The Sen-Pattanaik Theorem therefore is not only a
remarkable result but also an important marker in the history of the study of combi-
natorial domain conditions. It announced more or less the end of this research field
(Kramer, 1973). However, there are at least two reasons to re-examine ER.

The first and most important reason is that ER is rather intractable. Consequently,
and in contrast to e.g. single-peakedness and value restriction, it is difficult to give
a clear interpretation of the condition. By showing which parts from the domain of
majority decision making are exactly excluded and which parts are included by ER,
we make the condition more tractable so that it is easier to find an interpretation.
In our view, the question of what ER exactly means is difficult to answer without
knowledge of this exclusion-inclusion pattern. The first aim of this paper therefore
is to construct this pattern in order to make the condition more tractable and to find
an interpretation of ER.

For this pattern construction a combinatorial method is presented and used. This
method also can be used to study exclusion-inclusion patterns of other domain
restrictions. The origin of this method is Kemeny & Snell (1962). Also see van
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Deemen (1997) and Regenwetter et al. (2003, 2006). The method consists in the
construction of a planar graph in which the vertices are weak preference orderings.
An edge between two vertices is drawn if and only if the set symmetric difference of
the two orderings represented by the vertices contains exactly one element. In this
paper we zoom in on ER by means of this method. As used here, the method will
result in a detailed exclusion-inclusion pattern of ER that exactly shows when a set
of voter preference satisfies or violates the restriction.

The second reason to study ER concerns the necessity part of the Sen-Pattanaik
Theorem. According to the necessity definition used by Sen and Pattanaik, if a set
of rankings or preference orderings violates ER, then there must be assignments of
these preference orderings to numbers of criteria such that majority rule yields an
intransitive relation. The main point hereby is that zero-assignments – i.e. assign-
ments of some preference ordering to no individual or criterion at all (cf. Sen &
Pattanaik, 1969, especially footnote 5) – are allowed. However, bringing in prefer-
ences into the analysis which no individual or criterion bears, seems to be in contra-
diction with the essence of social choice theory and also of multiple criteria decision
analysis in which only criteria will be selected by the decision maker which are “per-
tinent ones for the decision (Arrow & Raynaud, 1986, p. 8)”. The aim of this paper
is to find out what happens with the Sen-Pattanaik claim when zero-assignments
are not allowed. It turns out that the theorem cannot endure this slight adaptation.
In addition, we show that lists of preferences that violate ER but yield transitive
majority relations can easily be constructed (also cf. Regenwetter et al., 2003). In
our view, this implies that the search for a pure combinatorial domain condition
which is both sufficient and necessary for transitivity of the majority relation is still
open. To enable the search for such a condition, we enumerate all sets of weak
orderings on a triple that lead to a Condorcet paradox. These sets will be called
Condorcet sets. Furthermore we show that every list of weak preference orderings
which is not a Condorcet set will yield transitive majority decisions.

2 Notation, Definitions, and the Sen-Pattanaik Theorem

We start with a few standard definitions and results. Let X be a finite set consisting
of at least three alternatives. A preference R over X is a binary relation over X . As
usual, we write xRy instead of (x , y) ∈ R. Define xPy := (xRy & not yRx) and xIy
:= (xRy & yRx). R is said to be

– reflexive if for all x ∈ X : xRx;
– complete if for all x , y ∈ X : xRy or yRx;
– symmetric if for all x , y ∈ X : xRy ⇒ yRx;
– anti-symmetric if for all x , y ∈ X : xRy & yRx ⇒ x = y;
– transitive if for all x , y, z ∈ X : xRy & yRz ⇒ xRz; and
– acyclic if there is no cycle, i.e. if there are no x1, x2, . . ., xm such that x1 Px2 &

x2 Px3 & . . . & xm−1 Pxm & xm Px1.
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A preference over X is a weak ordering if it is complete and transitive (and hence
reflexive). It is a linear ordering if it is complete, anti-symmetric and transitive. A
weak ordering which is not linear is called a nonlinear weak ordering. The set of
linear orderings is denoted by L(X), the set of weak orderings over X by O(X), the
set of reflexive, complete and acyclic relations by A(X), and the set of reflexive and
complete relations by B(X). Clearly,

L(X) ⊆ O(X) ⊆ A(X) ⊆ B(X).

Let N = {1, 2, . . . , n} denote the set of individuals (or criteria) where n ≥ 2. A
preference profile π is a mapping from N into O(X). A weak ordering assigned to an
individual is called an individual preference. The set of all profiles is denoted by �.

A collective choice rule is a mapping from � into B(X). A social decision func-
tion is a collective choice rule the range of which is restricted to A(X). A social
welfare function is a collective choice rule the range of which is restricted to O(X).
Clearly, a social welfare function is a social decision function, but not conversely.

Let Nπ (x, y) denote the number of individuals who prefer x to y in profile π.
The majority rule M is a collective choice rule such that for every profile π ∈ �

and for every x , y:

x M(π)y if Nπ (x, y) ≥ Nπ (y, x).

M(π) is called the majority relation for profile π. The asymmetric part of M(π)
is called the strict majority relation and is denoted by S(π). Thus, x S(π)y if
x M(π)y and not yM(π)x , i.e. if Nπ (x, y) > Nπ (y, x). The symmetric part is
denoted by I(π). Thus, xI (π)y if Nπ (x, y) = Nπ (y, x). Note that M(π) is com-
plete. An alternative x ∈ X is a majority winner if it has a majority over every
other alternative. As is well known, there are profiles π ∈ � such that M(π) is
cyclic. In this case no majority winner exists. The standard example is the following
profile:

1 voter : xyz

1 voter : zxy

1 voter : yzx

Applying the majority rule yields the cyclic majority relation xSy, ySz and zSx.
Hence there is no majority winner. A profile, for which there are no majority win-
ners, is called a Condorcet paradox. Assigning preferences to criteria instead of
voters leads to Condorcet paradoxes in the field of multiple criteria decision analysis
(Arrow & Raynaud, 1986). We note that Condorcet paradoxes in this field cannot
be avoided by weighting the criteria.

A set of individual preferences over X satisfies extremal restriction (ER) if and
only if for every triple {x , y, z} ⊆ X ,
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(∃ i : x Pi y & y Pi z)⇒ (∀ j : z Pj x ⇒ z Pj y & y Pj x).

See Sen & Pattanaik (1969). Also see Sen (1970, 1986). By implication, if x Pi y
& y Pi z, then x Pi z, since Ri is complete and transitive. Hence, according to ER,
if x Pi y, y Pi z and x Pi z for some i , then z Pj y and y Pj x for any j with z Pj x .
Thus, to satisfy the condition, Pj restricted to {x , y, z} needs to be the converse
of Pi restricted to {x , y, z}. Extremal restriction is a conjunction of Inada’s con-
ditions echoic preferences, antagonistic preferences and dichotomous preferences
(Inada, 1969).

The Sen-Pattanaik Theorem states that ER is both sufficient and necessary for
transitivity of majority decisions and hence for the preclusion of instances of the
Condorcet paradox.

Theorem 1 (Sen-Pattanaik) Extremal Restriction is a sufficient and necessary con-
dition for the majority rule to be a social welfare function.

For a proof, consider Sen & Pattanaik (1969), Sen (1970) or Mueller (2003).
The notion of necessity in this theorem deserves attention. Sen (1986, p. 1139)

describes it in the following way:
“A domain restriction for some property of the range (e.g. that social preferences

be all transitive) is necessary, in this sense, if every violation of the restriction leads
to a list of preference orderings such that some assignment of these orderings over
some number of individuals would lead to the violation of that property of the range
(e.g. would lead to intransitive social preference).” Also see Sen & Pattanaik (1969).

To illustrate the meaning of this definition with respect to ER, consider the
list {xyz, yzx}. Clearly, this set does not satisfy ER. Hence, according to the Sen-
Pattanaik Theorem, there must be assignments of xyz and yzx to numbers of voters
such that the majority relation is not transitive for the resulting profiles. To discover
the assignments, consider:

n1 : xyz

n2 : yzx

If n1 > n2 or n1 < n2, then the majority relation is transitive. Remains n1 = n2
which leads to xIy, ySz and xIz. This violates transitivity of M . Clearly, n = n1 + n2
is even when n1 = n2. Hence, in this case we cannot find an intransitivity for odd
numbers of voters.

3 Extremal Restriction: What It Excludes

In this section the exclusion pattern of ER is analyzed. Since ER is a triple condition,
it suffices to restrict the analysis to triples (3-element sets) only. Consider a triple,
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say, {x , y, z}. There are thirteen weak orderings on this set. We leave out complete
indifference xIyIz. The remaining twelve orderings are:

xyz zxy yzx
x(yz) z(xy) y(zx)
xzy zyx yxz
(zx)y (yz) (xy)z

Here, (uv) means uIv, and uv stands for uPv where u, v ∈ {x , y, z}.
We need some additional concepts. Two weak orderings Ri and R j are said to be

adjacent if their set-symmetric difference (Ri ∪ R j ) − (Ri ∩ R j ) contains exactly
one ordered pair. For instance, xyz and x(yz) are adjacent since, writing (x , y) for
xRy, we have,

({(x, y), (x, z), (y, z)} ∪ {(x, y), (x, z), (y, z), (z, y)})− ({(x, y), (x, z), (y, z)}
∩ {(x, y), (x, z), (y, z), (z, y)}) = {(z, y)}.

Because of the fact that the set-symmetric difference of two linear orderings
cannot contain exactly one ordered pair, the notion of adjacency cannot meaning-
fully be applied to two linear orderings. Therefore, we introduce the supplementary
notion of nearest-neighbour. Two linear orderings are said to be nearest-neighbours
if and only if their set-symmetric difference contains exactly two ordered pairs. For
example, xyz and xzy are nearest-neighbours because their set-symmetric difference
contains just two ordered pairs; to wit, yz and zy. Note that a linear ordering can
be a nearest-neighbour to another linear ordering and be adjacent to a weak order-
ing (which cannot be a linear ordering). Thus, if we have xyz, x(yz) and xzy, then
xyz and xzy are adjacent to x(yz) and, moreover, are nearest-neighbours of each
other.

Now, represent the weak orderings over {x , y, z} as points in the plane and draw
a line between each pair of adjacent points. Leaving out complete indifference, we
then obtain the following planar graph (see Fig. 1).

The numbers in the graph are for future references to the respective orderings.
The adjacencies and nearest-neighbours of an ordering can be read off directly from
this figure. For instance, zxy and zyx are nearest-neighbours while zxy and z(xy)
are adjacent. The linear orderings at the endpoints of the dashed lines in Fig. 1
are converses of each other. These orderings have no ordered pairs of elements in
common.

We use the following procedure: Pick a linear ordering in the figure and inves-
tigate what is excluded by ER for that ordering. Then, pick one of the nearest-
neighbours of the first selected linear ordering and analyze what is excluded for
this one. Go on in this way until all linear orderings have been investigated. This
will suffice because the antecedent in the formula (∃i : x Pi y & y Pi z) ⇒ (∀ j :
z Pj x ⇒ z Pj y & y Pj x) precludes nonlinear weak orderings from having any exclu-
sion potential. Implementing this procedure, we obtain:
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Fig. 1 Planar graph of adjacent weak orderings

1. Take xyz. If for some i : xyz, then for every j with zx : zyx. However, then for no
j : zxy, z(xy), (yz)x or yzx.

2. Take xzy. If for some i : xzy, then for every j with yx : yzx. However, then for no
j : yxz, y(zx), (yz)x or zyx.

3. Take zxy. If for some i : zxy, then for every j with yz: yxz. However, then for no
j : yzx, y(zx), (xy)z or xyz.

4. Take zyx. If for some i : zyx, then for every j with xz: xyz. However, then for no
j : yxz, (xy)z, x(yz) or xzy.

5. Take yzx. If for some i : yzx, then for every j with xy: xzy. However, then for no
j : xyz, x(yz), (zx)y or zxy.

6. Take yxz. If for some i : yxz, then for every j with zy: zxy. However, then for no
j : xzy, (zx)y, z(xy) or zyx.

The algorithm for finding an exclusion pattern ought to be clear by now: pick a
linear ordering, look up its converse in Fig. 1 at the opposite of the dashed line, and
then seek the adjacencies and nearest-neighbours of this converse. The orderings
found around the opposite are precisely the ones which are excluded. They form
the segment of exclusion. In this segment the opposite must be left out of course.
For example, in (3) zxy is combined with its converse yxz. The adjacencies of yxz
are (xy)z and y(zx), and its nearest-neighbours are xyz and yzx. Thus, the segment
of exclusion runs from xyz through yzx with yxz left out. Further, the segments of
exclusion rotate in the counter-direction with the next choice. For instance, take the
linear ordering to the left of zxy and the segment of exclusion swings to the right;
take the linear ordering to the right and it swings to the left. Considering this all, we
arrive at the following proposition:

Proposition 1 For each linear ordering over a triple, extremal restriction excludes
the adjacencies and the nearest-neighbours of its converse.
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This proposition leads to a useful interpretation of ER: if someone has a strict
preference then only the diametrically opposed strict preference is allowed in order
to guarantee transitivity of majority decision making. Divergences of this diametri-
cally opposed preference are not allowed. In terms of multiple criteria decision anal-
ysis it requires that if the decision maker has a strict preference on one criterion, then
on any other criterion, he has to use the adjacent and nearest-neighbor preferences
of this strict preference, or he has to use the diametrically opposed strict preference.
Divergences from this diametrically opposed preference or from the adjacent and
nearest-neighborhood preferences are not allowed. The allowance of diametrically
opposed preferences for different individuals or criteria and the prohibition of slight
deviations from these opposed preferences are remarkable. Full conflicting prefer-
ences are allowed but partially conflicting ones are excluded. There is either much
consensus or much conflict; something in-between is forbidden. In other words: if
there is a conflict, it rather should be a good one.

There is a similarity here with Plott’s third symmetry condition in the spatial
analysis of majority equilibrium (Plott, 1967). This condition requires that “all indi-
viduals for which the point [of equilibirum] is not a maximum can be divided into
pairs whose interests are diametrically opposed (Plott, 1967 p. 790).” Apparently,
ER is the combinatorial counterpart of Plott’s symmetry condition.

4 Extremal Restriction: What It Includes

As usual, a set is called maximal with respect to some property if it cannot properly
be included in another set with the same property. What are the maximal sets of
weak orderings (over a triple) satisfying extremal restriction?

To construct a maximal set, pick a linear ordering, say xyz. Then, according to
Proposition 1, the adjacencies and nearest-neighbours of zyx – to wit, zxy, z(xy),
(yz)x and yzx – are forbidden (see Fig. 1). Hence, xyz can only be combined with
the remaining weak and linear orderings. Take one of the remaining linear orderings,
say, xzy. But xzy forbids zyx, (yz)x , y(zx) and yxz (see Fig. 1). Together, xyz and
xzy forbid zxy, z(xy), zyx, (yz)x , yzx, y(zx), and yxz. There remains (xy)z, x(yz)
and (zx)y. Thus, a maximal set satisfying ER is {(xy)z, xyz, x(yz), xzy, (zx)y}.
Observe that the two linear orderings xyz and xzy together forbid all the remaining
linear orderings from being in this set.

Now combine xyz with yxz. Since, according to Fig. 1, yxz forbids the segment
from xzy through zyx with exclusion of zxy, and xyz forbids the segment from zxy
through yzx with exclusion of zyx, we arrive at the maximal set {y(zx), yxz, (xy)z,
xyz, x(yz)}. After this, combine xyz with its converse zyx. Since zyx excludes the
segment from yxz through xzy with exclusion of xyz, this yields the maximal set
{xyz, zyx, (zx)y, y(zx)}. Finally, combine xyz with the weak orderings which are
not forbidden by ER. This yields the maximal set {xyz, x(yz), (zx)y, (xy)z, y(zx)}.

Proceeding in the same way for every linear ordering in Fig. 1, we obtain a list
of 15 maximal sets satisfying ER. However, the list is not complete. The set of all
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nonlinear weak orderings over a triple also satisfies ER and therefore should be
added to the list. So we arrive at:

(1) {(xy)z, xyz, x(yz), xzy, (zx)y}
(2) {x(yz), xzy, (zx)y, zxy, z(xy)}
(3) {(zx)y, zxy, z(xy), zyx, (yz)x}
(4) {z(xy), zyx, (yz)x , yzx, y(zx)}
(5) {(yz)x , yzx, y(zx), yxz, (xy)z}
(6) {y(zx), yxz, (xy)z, xyz, x(yz)}
(7) {xyz, zyx, (zx)y, y(zx)}
(8) {xzy, yzx, (xy)z, z(xy)}
(9) {zxy, yxz, x(yz), (yz)x}

(10) {xyz, x(yz), (zx)y, (xy)z, y(zx)}
(11) {(xy)z, x(yz), xzy, (zx)y, z(xy)}
(12) {x(yz), (zx)y, zxy, z(xy), (yz)x}
(13) {(zx)y, z(xy), zyx, (yz)x , y(zx)}
(14) {z(xy), (yz)x , yzx, y(zx), (xy)z}
(15) {(yz)x , y(zx), yxz, (xy)z, x(yz)}
(16) {x(yz), (zx)y, z(xy), (yz)x , y(zx), (xy)z}

Any subset of each of these 16 maximal sets satisfies ER. Moreover, there are
no other sets satisfying it. As we already observed, any linear ordering over a triple
together with another linear ordering over that triple which is not forbidden by the
first both exclude all the remaining linear orderings over that triple. Inspecting the
maximal sets, we indeed see that no set of weak orderings over a triple satisfying
ER can contain more than two distinct linear orderings over that triple.

Proposition 2 Any set of weak orderings over a triple with three or more distinct
linear orderings violates extremal restriction.

Generalized to preferences over an m-set with m > 3, this proposition implies
that only one triple together with only three individual preference orderings whose
restriction with respect to this triple are linear and distinct, are sufficient to let ER
break down. In Kelly (1991) and Fishburn (1992), Craven’s conjecture is studied
that says that 2m−1 is the maximum number of linear orderings on m alternatives
satisfying some constraints on triples. This conjecture is correct for m = 3, but
is false for m ≥ 4 (Fishburn, 1992). It clearly does not hold for ER According to
Proposition 2: the maximum number is 2 for this constraint. To illustrate, consider
{x , y, z, u}. There are 24 linear orderings on this set. For example, {zxyu, zxuy}
satisfies ER. Adding any linear ordering will violate this constraint.

Clearly, Craven’s conjecture is about linear orderings. As Kelly (1991, p. 274)
noticed, the combinatorics for weak orderings will probably be very difficult. How-
ever, as a first step, the complete list of sets maximal with respect to ER enables us
to calculate the proportion of preference sets that satisfy ER. Remember that we left
aside complete indifference in our analysis. Taking the set of nonempty subsets of
each maximal set from the list above and avoiding double counts, we arrive at twelve
1-sets, forty eight 2-sets, eighty 3-sets (triples), sixty 4-sets, eighteen 5-sets, and one
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6-set of weak orderings over a triple that satisfy ER. So, we count 219 nonempty sets
satisfying it. Since there are 212 − 1 = 4095 nonempty subsets of weak orderings
over a triple, we arrive at a proportion of 219/4095 = 0.053 nonempty subsets of
weak orderings over a triple that satisfy ER. Generalizing to #X ≥ 3, the number of
triples is

C(m, 3) = m!/[(m − 3)!3!].

Obviously, the proportion of nonempty subsets of weak orderings over an m-set
that satisfy ER will rapidly shrink when m increases.

5 Zero Assignments and Counter-Examples
for the Sen-Pattanaik Theorem

In the Sen-Pattanaik Theorem, it is allowed that preferences are assigned to zero
voters. In this section, it will be investigated what happens with the SP-Theorem
when we impose the requirement that preferences cannot be assigned to nobody (i.e.
to zero voters). We provide counter-examples for the theorem by using the maximal
lists of preferences satisfying ER.

To start the analysis, consider the following profile:

n1 : xyz

n2 : xzy

n3 : zxy.

Obviously, (xyz, xzy, zxy) does not satisfy ER (cf. Proposition 2). So, let us dis-
cover for which n1, n2 and n3 the majority relation is intransitive. Since x Pi y for
every i : xSy. There are four cases to investigate:

Case 1: Suppose yMz. Thus ySz or yIz. First, suppose ySz. Now, ySz if n1 > n2+n3.
But then xyz is the majority relation which is transitive. So, suppose yIz,
i.e. n1 = n2 + n3. Since xSy, we only have intransitivity if xIz or zSx. First,
suppose xIz, i.e. n1 + n2 = n3. Substituting this equation in n1 = n2 + n3
yields n1 = 2n2+n1, which is true if and only if n2 = 0. But then n1 = n3.
Hence, if n2 = 0 and n1 = n3, then the majority relation for this profile
is intransitive. Now suppose zSx. Given the profile, zSx if n3 > n1 + n2.
Noting that n1 = n2 + n3, this is possible only when n2 < 0, which is not
true. But then zxy is the majority relation which is transitive.

Case 2: Suppose zSy, i.e. n3 + n2 > n1. Since xSy, we have transitivity for both
xMz and zMx. Hence, for this case, we cannot find intransitivity.

Case 3: Suppose zMx, i.e. zSx or zIx. Both zSx and zIx are treated under Case 1.
Case 4: Suppose xSz, i.e. n1 + n2 > n3 . Since xSy, we have transitivity for both

zMy and yMz.
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This shows that if the list of preferences as presented above yields an intransitive
majority relation, then n2 = 0 and n1 = n3. Clearly, if n2 = 0 and n1 = n3, then M
is intransitive. Hence, M is intransitive for the above profile if and only if n2 = 0
and n1 = n3. Thus if the assignment of xzy to n2 = 0 is forbidden, the Sen-Pattanaik
Theorem no longer holds.

To sum up, using every preference in the set {xyz, xzy, zxy}, that is, working with
preference profiles which are onto with respect to this set, we only can find prefer-
ence profiles for which the majority relation is transitive. To find an intransitivity,
we need a zero-assignment which is precluded by the definition of a preference
profile. Intuitively, the set {xyz, xzy, zxy} must satisfy some unknown condition that
is necessary for majority decision making to be transitive.

The above analysis implies that there are preference profiles that violate ER but
that generate transitive majority relations. To see this, consider the maximal sets of
preferences over a triple set satisfying ER as constructed in Sect. 4 of this paper. For
example, consider Set 7: {xyz, zyx, y(zx), (zx)y} and add the strict preference yzx.
This gives, e.g., (xyz, zyx, y(zx), (zx)y, yzx), which clearly violates ER. However,
the majority relation is ySx, ySz, and zSx, which is transitive. Clearly, this it is a
violation of necessity.

To give another example, consider the first maximal set satisfying ER given in
Sect. 4: {(xy)z, xyz, x(yz), xzy, (zx)y}. Adding yzx to this set yields a set that
violates ER. However, the profile ((xy)z, xyz, x(yz), xzy, (zx)y, yzx) yields xSy, xSz
and ySz as the majority relation. Again, this is a violation of necessity of ER.

Now look at the complement of each maximal set. For example the complement
of 1) is {yxz, y(zx), yzx, (yz)x , zyx, z(xy), zxy}. Investigating this list, it is clear that
it violates ER. However, it leads to a weakly ordered (and hence transitive) majority
relation. In this case, we have (yz)x . Call the complement of any maximal ER-set
an Anti-ER set. Checking now for any Anti-ER list, we see that all of them yield
weakly ordered majority relations. The complements of Sets 1 through 6 lead to
weak orders with one indifferent pair, the complements of Sets 7 through 9 and Set
16 lead to complete indifference and the complements of Sets 10 through 15 lead to
linear orderings. So we have the following proposition:

Proposition 3 Any Anti-ER list leads to a weakly ordered majority relation.

In order to satisfy this proposition, all elements in each Anti-ER set are needed.
That is, they may contain proper subsets which lead to quasi-transitive or even cyclic
majority relations. For example, the Anti-ER for the maximal ER set {xyz, x(yz),
(zx)y, (xy)z, y(zx)} is {xzy, yxz, yzx, zxy, zyx, z(xy), (yz)x}, which contains the
subset {xzy, yxz, zyx} that leads to acyclic majority relations.

6 Condorcet Sets

From now on we label the orderings by their numbers as given in Fig. 1. A Con-
dorcet set is a set of preferences that lead to a Condorcet paradox. For example
the set {1, 4, 5} in Fig. 1 is a Condorcet set. It yields the typical (xyz, yzx, zxy)
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(a) (b)

Fig. 2 The two basic Condorcet sets

as a Condorcet profile. Clearly any permutation of this set leads to a Condorcet
paradox. The set {1, 4, 5} forms a triangle when connecting the points representing
the preferences. See Fig. 2. Another basic set leading to a Condorcet paradox is
{2, 3, 6}. It forms the other triangle in Fig. 2.

Any other Condorcet set than {1, 4, 5} and {2, 3, 6} must contain one of these
sets and are therefore called extended Condorcet sets. For clear reasons, we call
{1, 4, 5} and {2, 3, 6} the basic Condorcet sets.

The Condorcet sets are exhaustively enumerated in the following table
(see Table 1). Consider Fig. 1 or 2 for the numbers. In the first column of Table 1
we find the extensions of the basic Condorcet set {1, 4, 5}; in the second one the
extensions of {2, 3, 6}. Note that for any set in the first column, its complement
is stated in the second one and vice versa. This immediately leads to the following
proposition:

Proposition 4 The complement of any Condorcet set is a Condorcet set.

To illustrate the proposition, consider Fig. 3. In Fig. 3a the basic Condorcet set
{1, 4, 5} and its complement {10, 2, 7, 8, 3, 9, 12, 6, 11} are given. The complement
is an extension of the basic Condorcet set {2, 3, 6}. Figure 3b shows the extended

Table 1 Enumeration of Condorcet sets

1, 4, 5 2, 3, 6, 7, 8, 9, 10, 11, 12
1, 4, 5, 7, 12 2, 3, 6, 8, 9, 10, 11
1, 4, 5, 8, 11 2, 3, 6, 7, 9, 10, 12
1, 4, 5, 9, 10 2, 3, 6, 7, 8, 11, 12
1, 4, 5, 7, 9, 11 2, 3, 6, 8, 10, 12
1, 4, 5, 8, 10, 12 2, 3, 6, 7, 9, 11
1, 4, 5, 7, 8, 11, 12 2, 3, 6, 9, 10
1, 4, 5, 7, 9, 10, 12 2, 3, 6, 8, 11
1, 4, 5, 8, 9, 10, 11 2, 3, 6, 7, 12
1, 4, 5, 7, 8, 9, 10, 11, 12 2, 3, 6



Extremal Restriction, Condorcet Sets, and Majority Decision Making 81

 

(a) (b)

Fig. 3 Two Condorcet sets and their complement Condorcet sets

Condorcet set {1, 9, 4, 12, 5, 10, 7} and its complement {2, 8, 3, 6, 11}, which is an
extension of the basic Condorcet set {2, 3, 6}.

It can be observed that all extended Condorcet sets minus their basic part yield
complete majority indifference relations. This indifference relation of an additional
set joined with a basic Condorcet set operates, so to say, as an algebraic group
identity element preserving the paradox of the basic list.

A proper subset of a Condorcet set is not necessarily a Condorcet set. Any set
which is not a Condorcet set will be called a majority set. All these sets lead by
construction to a majority decision. However, not all majority sets lead to a transitive
majority relation. As we already saw, the list of transitive majority sets contains
in any case the maximal ER sets, any proper subset of any maximal ER set, and
the Anti-ER sets. Furthermore we notice that it is not an easy task to give a clear
interpretation of the set of all majority sets, e.g. in terms of “super” symmetry. The
only thing we can say is that being a member of the list of majority sets is a necessary
and sufficient condition to avoid the Condorcet paradox.

7 Conclusion

The exclusion-inclusion pattern constructed by means of the Kemeny-Snell method
shows that ER is a condition that allows full conflict between individual prefer-
ences or between preferences on criteria in the case of multiple criteria decision
analysis. It includes diametrically opposed preferences and excludes the slightest
deviation from these diametrically opposed preferences. Hence, partial conflicts are
excluded. There is either much consensus or much conflict; something in-between
is forbidden.
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The inclusion analysis given in this paper shows that the meeting of ER in reality
is remote. First, according to Proposition 2, any set with more than two different
linear preference orderings cannot satisfy it. This is a discouraging proposition. It
implies that if at least three individuals have distinct linearly ordered preferences or
if a decision maker linearly orders the alternatives differently on at least three crite-
ria, the condition will be violated. Secondly, the proportion of nonempty subsets of
the set of weak orderings over a triple meeting the condition is small, namely 0.053.
This proportion rapidly decreases when the number of alternatives increases. How-
ever, ER is not the only domain condition that prevents the occurrence of Condorcet
paradoxes. Many other conditions among which value restriction, single-peakedness
and limited agreement may be operational.

Checking whether the preferences in a profile belong to a majority set is both
sufficient and necessity to find out whether the profile leads to a majority decision.
However, as we already noted, it is difficult to find a suitable underlying interpre-
tation of all these majority sets e.g. in terms of symmetry or conflict. Moreover,
majority sets do not necessarily lead to transitive majority relations. In this respect,
the search for a generalized and tractable sufficient and necessary condition for the
transitivity of majority decision is still open.
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Rights Revisited, and Limited

Maurice Salles and Feng Zhang

1 Introduction

In two recent papers, Salles (2008, 2009) introduced a notion of limited rights1

first in an aggregation function framework (2008), then in the framework of social
choice rules. Our purpose in this paper, is to provide a general exposition of these
results from an intuitive viewpoint in a way that imitates in some sense the famous
non-starred chapters in Sen (1970b).2 The studies of rights, freedom, liberalism
within social choice theory originated in Sen’s magisterial paper (1970a). In this
short contribution, Sen demonstrates that there is an incompatibility between some
weak form of collective rationality of social preference, a Pareto unanimity condi-
tion and some specific form of what Sen called at that time liberalism. This latter
condition can also be interpreted as an unequal distribution of power or as a violation
of the so-called neutrality condition. Since 1970, rights etc. have been considered
within other paradigms. For instance, rights have been introduced in game forms by
Gärdenfors (1981, 2005), Gaertner, Pattanaik, and Suzumura (1992), Peleg (1998),
and Suzumura (2006). Freedom (liberty) has been mainly analyzed in the context of
opportunity sets following the pioneering paper of Pattanaik and Xu (1990).3 Saari
and Pétron (2006) and Li and Saari (2008) have recently revisited the foundational
framework of Sen and of Gibbard (1974) by examining the informational structure
of the aggregation procedures.4

In Sect. 2, we will present the necessary concepts for individuals and for soci-
ety emphasizing the aggregation function approach compared to the social choice
approach. In Sect. 3 we will describe Sen’s theorem in both frameworks and give
examples. We will allude to the Cartesian product structure to show how it can help
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1 The first to have presented this notion in an unfortunately unpublished paper is Edi Karni (1974).
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4 See also Saari (2008).
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to formalize the notion of personal sphere. Section 4 will deal with limited rights as
introduced by Salles in his recent papers. The two final sections will be devoted to a
general discussion about welfarism and possible extensions of the analysis of rights
within social choice using modal logic.

2 Necessary Concepts

We consider a group of people who have preferences over options that will be iden-
tified with social states. To simplify, we may consider a finite group of individuals
who rank (with possible ties) a finite set of social states according to their prefer-
ences. Each individual having a ranking, the social choice question is to find either
a social preference or some way to choose from any part of the set of social states.
Procedures to obtain a social preference from a list of individual preferences will be
called aggregation functions and procedures to obtain a choice for any set of options
will be called social choice functions.5

The social preference can be a ranking or some other type of relations with less
demanding rationality properties. For instance, with a ranking if someone prefers a
to b and is indifferent between b and c she prefers a to c. If she is indifferent between
a and b and between b and c, she is indifferent between a and c (this property is
the transitivity of indifference–ties). For social preferences, we can consider also
the case in which only strict preferences are transitive (when a is preferred to b and
b to c, a is preferred to c), or in which the indifference relation is not transitive
anymore (this has been called quasi-transitivity by Sen). One can also imagine that
indifference can be in some sense partly transitive as in the case of semi-orders or
interval orders. The strict social preference can be acyclic which means that there
is no cycles of the type a preferred to b, b preferred to c, c preferred to d and d
preferred to a.6 In formal developments in choice theory, the acyclicity condition
is strongly related to the existence of a choice within any finite subset of the set of
options.

The other framework is to have, given the rankings of individuals, a rule to choose
from any set of social states with the obligation that some social state must be chosen
in this set. In decision theory and standard microeconomics, the choice of elements
from a set can be defined by reference to a binary relation meaning “at least as
good as” in which case the chosen elements are the best according to this relation
(provided that they exist). But the chosen elements can be given and then one can
infer a binary relation on the basis of choice. This is the central topic of revealed
preference theory (the choice made by some individual reveals her preference).

5 We use the word “function” even if the word ‘correspondence’ is more common. Here our func-
tion is accordingly a set-valued function.
6 Here the cycle involves four options, but acyclicity excludes all cycles whatever the number of
options.
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3 Sen’s Theorem

In the social preference framework, Sen considers the case where the collective
rationality condition is rather weak, that is where strict social preferences are sup-
posed to be acyclic. In particular, this means that indifference is not supposed to
be transitive and even that strict preference is not supposed to be transitive – it is
possible that a be preferred to b and b to c with an indifference between a and c).
The so-called Pareto condition states that a is socially preferred to b whenever
all individuals prefer a to b. In general people think that the Pareto condition is
not questionable. It has however an important consequence. Given that individual
preferences are sufficiently diverse, it excludes constant functions. It is sufficient
that there exist two options a and b for which individuals can possibly prefer a to
b or b to a, since in such cases it is possible that all individuals prefer a to b or
all individuals prefer b to a and, in the aggregation functions setting, a is socially
preferred to b or b is socially preferred to a. If the aggregation function is a constant
function, the outcome is a fixed social preference whatever the individual prefer-
ences. This would be the case when the fixed preference has been determined by a
moral or religious code. The liberalism condition attributes to each individual i some
specific power over two social states, say ai and bi , viz. ai is socially preferred to bi
whenever individual i prefers ai to bi and bi is socially preferred to ai whenever i
prefers bi to ai . Sen’s result can be obtained for a weaker form of liberalism, called
minimal liberalism, where there are only two individuals who are endowed with
the just described specific power.7 Sen’s Theorem shows that there is an incompat-
ibility between the acyclicity of the social preference, the Pareto condition and the
condition of minimal liberalism provided that there is a sufficient diversity of the
individual rankings.

In the choice-theoretic framework, the Pareto condition takes the following form.
In a subset of social states to which a and b belong, b is not chosen whenever
all individuals prefer a to b. The condition of minimal liberalism regarding, say,
individual i and social states a and b, amounts to say that b is not chosen in a set to
which a belongs whenever individual i prefers a to b, and that a is not chosen in a
set to which b belongs whenever individual i prefers b to a. It can then be shown that
there is an incompatibility between the existence of a choice procedure, the Pareto
condition and minimal liberalism provided that there is a sufficient diversity of the
individual rankings.

Let us consider a famous example introduced by Sen about the reading of
Lady Chatterley’s Lover. This example involves two individuals, let us call them
Mr. Prude and Mr. Lascivious, and three social states, namely, a, b and c. The social
state a is the social state in which Mr. Prude reads Lady Chatterley’s Lover, b is the
same social state except that Mr. Lascivious reads the book and c, again, is the same

7 We will only consider this minimal version of liberalism, even in its weak form, in the next
section, since all impossibilities obtained for minimal liberalism have implicit corollaries for lib-
eralism. Accordingly, we will not used systematically the term “minimal”, “liberalism” meaning
also, from now on, “minimal liberalism”.
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social state except that no one reads the book. One can find reasons for Mr. Prude
ranking the options with c being top-ranked, a being ranked in second position
and b in the third. It seems obvious that option c which amounts to censorship
has his preference. However, ranking a before b means that he does not want that
Mr. Lascivious can benefit in any way from reading the book and he is ready to sacri-
fice himself in this matter. In contrast, one can imagine that Mr. Lascivious will rank
c at the bottom of his ranking. Being not only lascivious but also slightly sadistic,
he has pleasure to imagine Mr. Prude having to read the book, and, accordingly, he
top-ranks option a. Now, the liberalism condition can be applied as far as Mr. Prude
is concerned to options a and c. This implies that in the social preference c will
be ranked before a. The same condition regarding Mr. Lascivious is applicable to
options b and c. This implies that in the social preference b will be ranked before c.
But both individuals have ranked a before b, and as a consequence of the Pareto
condition, a will be ranked before b in the social preference. One can see then that
a is ranked before b which is ranked before c which is ranked before a, which is a
cycle.

We believe that there is some ambiguity in this example; because it is rather
unclear that if Mr. Prude reads the book, then Mr. Lascivious will be prevented to
read the book. One way to deal with this difficulty is to introduce a Cartesian product
structure for the options so that each option is in fact an ordered pair. In this frame-
work option a where Mr. Prude reads the book is either Mr. Prude reads the book and
Mr. Lascivious does not read the book or both Mr. Prude and Mr. Lascivious read
the book. If for an ordered pair (x, y), the first coordinate, x , refers to Mr. Prude
and the second, y, to Mr. Lascivious, one can write (r, n) for Mr. Prude reads the
book and Mr. Lascivious does not read it, (r, r) for both read the book, (n, r)
for Mr. Prude does not read the book and Mr. Lascivious reads the book, and
(n, n) for no one reads the book. We now have four rather than three options
and it seems that Sen’s a is (r, n), b is (n, r) and c is (n, n). Suppose now that
Mr. Prude ranks the four options as, from the most preferred to the least preferred,
(n, n), (r, n), (n, r), (r, r) and that Mr. Lascivious as (r, r), (r, n), (n, r), (n, n).
With this structure it seems natural that Mr. Prude has the “power” conferred
by the liberalism condition over options (r, n) and (n, n) since in both cases
Mr. Lascivious’s situation is the same (he does not read the book), but also over
options (n, r) and (r, r) since in both cases Mr. Lascivious reads the book. Simi-
larly Mr. Lascivious should have the “power” over (n, n) and (n, r) since in both
cases Mr. Prude does not read the book and also over (r, n) and (r, r) since in both
cases Mr. Prude reads the book. Given this and the Pareto condition ((r, n) is ranked
before (n, r) by both individuals), one obtains two cycles rather than one cycle, viz.
a cycle (n, n), (r, n), (n, r), (n, n) and a cycle (r, r), (r, n), (n, r), (r, r).8

Let us return to Sen’s original example but now in the choice-theoretic frame-
work. Since a is preferred to b by both individuals, the Pareto condition requests

8 This variation on Sen’s example was presented in Salles (1996). It is also in Hausman and
McPherson (2006). The first edition of Hausman and McPherson appeared in 1996.
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that b be not chosen in the set made of a, b and c. But a is not chosen either, since
given the power of Mr. Prude over a and c and the fact that Mr. Prude ranks c before
a, a cannot be chosen in a set to which c belongs. Similarly, with Mr. Lascivious
and options b and c, c cannot be chosen in a set to which b belongs. In conclusion,
there is no option that can be chosen among the three options a, b and c.

In the modified Sen’s example, if we consider a set of options made of (n, n),
(r, n), (n, r), since (r, n) is ranked before (n, r) by both individuals, the Pareto
condition excludes (n, r) as a possible choice. Since Mr. Prude prefers (n, n) to
(r, n), (r, n) is excluded and since Mr. Lascivious prefers (n, r) to (n, n), (n, n)
is also excluded so that there is no choice in this three-option set. Similarly, if we
consider a set of options made of (r, r), (r, n), (n, r), the Pareto condition excludes
(n, r), and the liberalism condition as applied to Mr. Lascivious and options (r, r)
and (r, n) excludes option (r, n) and applied to Mr. Prude and options (n, r) and
(r, r) excludes option (r, r) so that we are left with nothing as a possible choice in
this set.

It should be noted that with the Cartesian product structure and liberalism being
defined as a power conferred to individuals when other individuals’ situation is
unmodified it is possible to construct examples where cycles are obtained with-
out using the Pareto condition (see, for instance, Salles (2000)). Furthermore, this
Cartesian product structure seems to be an interesting formalization of the idea of
personal sphere often associated to Mill’s major work (1859).

In his book (1970b), Sen suggests other examples. For instance, he proposes
options involving sleeping positions (on the back or on the belly) or involving the
color of kitchen walls. He also develops his analysis and give further examples in
a number of papers which are collected in his book of 2002.9 Incidentally, we will
use sleeping positions examples in the sequel.

4 Limited Rights

Salles’s purpose in his two papers (2008, 2009) was to study a weakening of the
conditions associated with the notion of individual liberty in a formal way. Even
when restricted to two individuals, we consider this condition to be rather strong
in the mathematical framework. In our view, only its interpretation makes it both
acceptable and obvious. In his comments to a paper of Brunel (now Pétron) and
Salles (1998), and Hammond (1998) writes:

In the social choice rule approach . . ., local dictatorship become a desideratum, provided
that the ‘localities’ are appropriate. Our feelings of revulsion should be reserved for non-
local dictatorships, or local dictatorships affecting issues that should not be treated as per-
sonal.

Of course, we share this opinion, but there is nothing in the basic mathematical
framework that guarantees this personal aspect (in contrast with a suitable Cartesian

9 See also Sen (1976, 1982).
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product structure). In this basic framework it is however possible to weaken dicta-
torships. What Salles demonstrates in his two papers is that this weakening does not
offer a very interesting escape route from Sen’s negative results. In particular, this
is true in the framework of social choice rules as compared with the aggregation
function framework.

In this section, we will first present the technical results as simply as possible.
Then we will provide examples. Let us explain first why we think that it is important
to consider a weakening of the liberalism conditions. In the social choice theoretic
framework, there is some ambiguity in the treatment of liberalism regarding either
the ability to throw out an option or the obligation to throw out an option, or, in
the aggregation function framework regarding the fact that the individual endowed
with a right over two options either necessarily imposes his strict preference over
these two options to society or not. It seems that the liberalism as stated is about
obligation or necessity.10 A possible remedy to this slight defection is to require
that the social preference is not the reverse preference of the individual endowed
with mentioned right. In the choice framework, this means that the less preferred
option of the concerned individual is either thrown out or is chosen along with the
preferred option.

4.1 The Social Preference Framework

The Pareto condition remains identical: whenever all individuals prefer option x
to option y, then x is ranked before y in the social preference. Let us now explain
how the liberalism condition, as applied to only two individuals, is weakened. Let us
suppose that the weak liberalism condition pertains to individual i regarding options
a and b. Whenever i prefers one option, say, a, to the other option, b, then b cannot
be ranked before a in the social preference. Given that social preference is supposed
to be complete, this is equivalent to saying that either a is ranked before b or there
is a tie at the social preference level between a and b. In such a situation we will
say that a is socially at least as good as b. To have the weak liberalism condition,
one, of course, needs to have something similar for another individual, say, j , and
options c and d. Now consider a rule called the Pareto extension rule. According to
this unanimity-based rule, option x is socially preferred to option y if all individuals
prefer x to y. Otherwise, y is socially at least as good as x . Clearly, in this case
each individual is endowed with the kind of power attributed by the weak liberalism
condition not only over two options but over all options. It is very easy to see that
the social strict preference (preferred to or better than) is transitive so that the kind
of possible cycles obtained in Sen’s analysis are not obtainable any more. However,
if we ask for a stronger form of collective rationality, we get again an impossibility.
In Salles (2008), three forms of stronger rationality conditions were considered.

10 See, for clarifying comments, Pattanaik (1996).
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The standard rationality condition is the transitivity of the social preference, viz.
of the relation “at least as good as” which implies as already mentioned that both
the strict preference, “better than,” and indifference are transitive. The aggregation
rule is then a social welfare function in the terminology of Arrow (1950, 1951,
1963). What Salles (2008) demonstrates is that there is no social welfare function
satisfying the Pareto condition and the weak liberalism condition provided that the
two options over which the two individuals have some power are not identical (this
means, of course, that there are at least three options). To see how this is possible,
we reconsider Sen’s example about Lady Chatterley’s Lover. Mr. Prude ranks the
options in the order c, a, b (c, first, a second and b third) and Mr. Lascivious in the
order a, b, c. Because of the weak liberalism condition as applied to Mr. Prude, c
is socially as good as a, and as applied to Mr. Lascivious b is socially at least as
good as c. Then by transitivity of the relation “at least as good as,” b is socially as
good as a. But the Pareto condition tells us exactly the opposite: a is socially better
than b. When a Cartesian structure is introduced in this example we obtain two
violations of transitivity. First, since (n, r) is socially at least as good as (n, n) by
weak liberalism applied to Mr. Lascivious, (n, n) is socially at least as good as (r, n)
by weak liberalism applied to Mr. Prude, we must have that (n, r) is socially as
least as good as (r, n) by transitivity. This is contradicted by the fact that according
to Pareto condition (r, n) is socially better than (n, r). Secondly, since (n, r) is
socially at least as good as (r, r) by weak liberalism applied to Mr. Prude, and (r, r)
is socially at least as good as (r, n) by weak liberalism applied to Mr. Lascivious,
(n, r) is socially at least as good as (r, n) by transitivity. This is contradicted by the
fact that (r, n) socially better than (n, r) by the Pareto condition.

Between transitivity of the relation “at least as good as” and transitivity of the
relation “better than” (where the relation of indifference is not supposed to be
transitive), two kinds of relations have been introduced: semi-orders and interval
orders (Luce, 1959, 2000; Suppes, Krantz, Luce, & Tversky, 1989; Fishburn, 1985).
Semi-orders and interval orders consider the possibility of, loosely speaking, partial
transitivity of indifference. We will give an example for interval orders which is the
relation that has the weakest form of rationality for which we obtain an impossi-
bility. The kind of transitivity assumption for interval orders states that the relation
“better than” is (implicitly) transitive and that if for four elements a, b, c and d, we
have that a is better than b, b and c are indifferent, and c is better than d, then a
must be better than d.11 We will assume that a is a social state in which individual
i sleeps on the back and that b is the same social state as a, except that individual i
sleeps on the right side. Furthermore, c is a social state in which individual j takes a
bath in any given morning and d is the same social state as c except that individual j
takes a shower in the same given morning. The weak liberalism condition attributes
power to individual i as far as social states a and b are concerned, and to individual
j as far as social states c and d are concerned. Let us assume that individual i ranks

11 Given completeness of the relation “at least as good as,” this implication is equivalent to another
implication which is generally used in measurement theory.
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the four social states in the order d, b, a, c and individual j in the order a, c, d, b.
Since both individuals rank a before c, and d before b, a is socially better than c
and d is socially better than b by the Pareto condition. Since j has a power over c
and d and since she prefers c to d, c is socially as good as d by weak liberalism.
First, if this “socially at least as good as” is in fact “socially better than,” then by
transitivity of “better than” a is socially better than b. Since individual i prefers b to
a and since weak liberalism gives her power over a and b, we should have that b is
socially at least as good as a, which contradicts a socially better than b. Secondly,
if this “socially at least as good as” is “there is an indifference between”, then since
a is socially better than c, c and d are socially indifferent and b is socially better
than d, a is socially preferred to b by the properties of interval orders. Then we are
exactly in the same situation as in the first case where b was socially as good as
a. That is, having applied the assumption of weak liberalism to individual i and to
social states a and b, we arrived at a contradiction.

It is shown by Salles (2008) that the results obtained for social welfare functions,
semi-order valued functions and interval-order valued functions are very similar.
The differences only pertain to the set of social states. For social welfare functions,
the two social states over which individuals i and j have power must not be identical.
For semi-order valued functions, we must add that there are at least four social
states. For interval-order valued functions, the social states over which individual i
and j have power must be distinct (so that there are at least four social states). As
shown by the extended version of Sen’s example regarding Lady Chatterley’s Lover
having four distinct social states is not a strong requirement. With two elements a
and b, one can form four elements in the two-person Cartesian product structure:
(a, b), (b, a), (a, a), (b, b).

4.2 The Choice-Theoretic Framework

In the choice-theoretic framework, the Pareto condition remains the same as what
we described in Sect. 3. An option x Pareto-dominated by y will not be chosen in a
set of options to which y belongs. On the other hand, the weak liberalism entails an
important modification. As previously, two individuals i and j have a specific power
over two options, a and b for i , and c and d for j . Let us consider individual i . Weak
liberalism says that if individual i prefers one of the two options, say, a, to the other,
b, then if it happens that b is chosen in a set to which a belongs then a has to
be chosen too. For individual j , it says, of course that if j prefers one of the two
options, say, c, to the other, d, then if it happens that d is chosen in a set to which c
belongs, c has to be chosen too.

Let us consider an example that was previously described. The options a and b
are identical social states except that in a individual i sleeps on the back and in b
she sleeps on the right side. Options c and d are also identical social states except
that in c individual j take a bath in any given morning and in d she takes a shower
in the same given morning. Let us assume that individual i ranks the social states
in the order d, a, b, c and individual j in the order b, c, d, a. To find a rationale
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behind these rankings, let us imagine the following story. Individual j is individual
i’s servant. Individual i knows that if individual j takes a bath in the morning she
will be sleepy during all the day and, then, less efficient. Accordingly, she ranks d
at the top of her preference and c at the bottom. Since she prefers to sleep on the
back she ranks a before b. Individual j knows that sleeping on the back is not that
recommended for a good rest and that when individual i is a little tired she is in
a bad mood. Consequently, she ranks b at the top of her preference and a at the
bottom. Since she prefers taking a bath rather than having a shower, she ranks c
before d. This rationale shows very clearly the negative externality phenomenon. It
also shows that it is not so easy to justify that people who are, in principle, uncon-
cerned should be indifferent (here, for instance, individual i should be indifferent
between c and d). It shows, in fact, the limits of the notion of personal sphere. If
we consider a choice over the set composed of the four social states a, b, c and d,
since both individuals prefer d to a and b to c, neither a nor c can be chosen by the
Pareto condition. We are left with b and d. But since individual i prefers a to b, if
b happens to be chosen then a has to be chosen too by weak liberalism applied to
individual i . The fact is that a cannot be chosen so b cannot be chosen either. We
are left with d. But since individual j prefers c to d, if d happens to be chosen, c has
to be chosen too by weak liberalism. We know that c being chosen is impossible. In
conclusion there is no choice at all. It is shown in Salles (2009) that we still have
an impossibility when one social state a or b is either c or d (then a, b, c and d
are not distinct) provided that there are at least four social states. When there are
only three social states (in this case, of course, one of a or b is either c or d), we
can still obtain an impossibility provided that the so-called Weak Axiom of Revealed
Preference (WARP) is satisfied. WARP was introduced in the form presented here
by Arrow (1959, 1984) and studied among others by Schwartz (1976), Sen (1971)
and Suzumura (1976). We can explain WARP in a very elementary way. Let us
suppose that you are making your weekly shopping in a supermarket. At the exit,
in your shopping trolley there are goods from many different sections including
the household products section. Now if we set all the goods aside and ask you to
start again your shopping but with the possibility to uniquely visit the household
products section, what you will choose will be exactly what you previously chose
in the household products section. This is WARP!

What is remarkable with this result is that, except that we cannot deal with the
case of only two social states and that for three-option case we need WARP, it
is exactly the result obtained in Sect. 3. There is no need to consider rationality
properties of the WARP type. Now, is there a justification for using this new –
weak – form of liberalism? Although we have been criticized because choice can
only be uniquely defined, on the basis that it is impossible to have two different
social states being chosen, it seems to us that this is rather irrelevant since this is in
complete contrast with the standard theory of choice as developed by economists,
psychologists, philosophers, mathematicians etc. Furthermore, let us consider our
previous example. Let us suppose that individual i slightly prefers a to b, that is she
slightly prefers to sleep on the back. In the liberalism version of Sect. 3, b is then
excluded if a can be chosen. If sleeping on the back is a possible option, sleeping
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on the right side is forbidden for i .12 Since her preference is only slight, this means
that she does not dislike sleeping on the right side and from time to time even take
pleasure in sleeping also on her right side.13 With weak liberalism, either the social
state including “sleeping on the right side” is excluded or, if not excluded, then the
social state including “sleeping on the back” is permissible. We can then truly see
the condition of liberalism as a condition giving rights: if individual i has the right
to sleep on the right side, she must also have the right to sleep on her back. One can
develop the same kind of comments with the bath and shower variant. Individual j
may prefer taking a bath to having a shower, but this preference may be very slight.
It seems strange in this case that she has no right to have a shower. Weak liberalism
says on the other hand that if she has the right to have a shower, she must also have
the right to take a bath.

5 Discussion and Remarks

Salles (2008) draws a parallel between Arrovian theorems and Sen-type theorems.14

From a technical point of view there are major differences. Arrovian theorems are
obtained for finite societies (the set of individuals has to be finite) and this is not
necessary for Sen-type theorems. Also, there is no need of the controversial con-
dition of independence of irrelevant alternatives for Sen-type theorems. The main
difference which is at the origin of the numerous researches in non-welfaristic issues
in normative economics is that Sen-type theorems are non-welfaristic. The word
welfarism is associated with the idea that the goodness of social states are evaluated
only on the basis of individual utilities attached to these social states. This leads to
the following observation. If we have four social states w, x , y and z and if each
individual attributes the same utility to w and to x , and the same utility to y and
to z, then the social ranking of w and y must be the same as the social ranking
of x and z. This can be generalized to various properties which have been called
neutrality properties for aggregation functions defined on lists of individual utility
functions and can be extended to aggregation functions defined on lists of individual
preferences in which case one obtains intra or inter lists neutrality.15 For instance, if
the preference restriction of each individual i to x and y is related to her preference
restriction to z and w, in the sense that individual i prefers x to y if and only if
she prefers z to w, she prefers y to x if and only if she prefers w to z and she is
indifferent between x and y if and only if she is indifferent between z and w, then x
is socially preferred to y if and only if z is preferred to w, y is socially preferred to

12 If during her sleep, individual i turns to the right side while she was sleeping on the back, one
must have a device to take her back to her back!
13 This also calls our attention to problems related to indeterminacy and vagueness (Piggins &
Salles, 2007).
14 For Arrovian theorems see Blau (1979), Blair and Pollack (1979), Blair, Bordes, Kelly, & Suzu-
mura (1976) and Suzumura (1983).
15 A remarkable introduction to the non-welfaristic literature is Pattanaik (1994).
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x if and only if w is socially preferred to z and there is a social indifference between
x and y if and only if there is a social indifference between z and w. The roles of
x and z are similar, as are the roles of y and w.16 Intuitively, neutrality means that
the names of social states do not matter. To give a simple voting example, if voters
are asked to rank the candidates and the voting procedure gives an outcome that
is also a ranking, and if candidate a is ranked before candidate b in the outcome
ranking, then modifying all ballot papers by replacing the name a by the name c
and the name b by the name d, given neutrality (which is, in general, satisfied by
voting rules), will give an outcome where c will be ranked before d. The liberalism
conditions obviously violate neutrality since specific social states are attached to
specific individuals. Likewise, anonymity, a condition that says that the name of
individuals do not matter, is also violated since some specific individuals have some
specific power.

In the choice-theoretic framework, we obtained exactly the same kind of result
as Sen’s theorem (with the exception of the assumptions on the number of options
and on the two options over which the individuals have some power, but we believe
that these assumptions are not very constraining).

6 Conclusion

In this paper, we have described, in a rather intuitive way, the results obtained
by Salles (2008, 2009). We have considered two frameworks. A framework where
social preferences were obtained from individual preferences (an aggregation func-
tion setting) and a framework where, rather than a social preference, a choice was
done over all subsets of possible social states (a social choice function setting – or
social choice correspondence setting as it is called by people who do not like to use
the word “function” when the values taken by the “function” are subsets of a given
set). The intuitive presentation has been based on many, sometimes quite famous
examples. These examples were totally absent in Salles’s papers. We think that the
choice-theoretic framework is particularly interesting in the sense that it offers a
rather direct generalization of Sen’s theorem. This is not the case in the aggregation
function setting. The next step in our research will be to study rights within the social
choice paradigm by using the concepts of possibility and necessity as introduced in
modal logic.17 We have previously outlined that the analysis of rights within social
choice theory had two basic formal aspects: obligation and possibility. Modal logic
deals with this kind of notions, and, in particular, deontic logic studies the normative
use of language. We conjecture that, using these logics, we will get new results that
should clarify the sort of problems we considered.

16 Formally z is obtained from x and w is obtained from y by a permutation over the finite set of
options.
17 See Priest (2008).
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Some General Results on Responsibility
for Outcomes

Martin van Hees

1 Introduction

Consider a committee that has to decide on a particular issue. After some deliberation
and exchange of information, the members come to a decision, possibly by means
of a vote. The decision made – the outcome – is something we can attribute to the
committee. Indeed, we say, for instance, that a court of law hands down a verdict,
a government adopts a policy, or that a company’s board settles for a new strategy.
Moreover, we can say that the committee bears responsibility for the decision it
made. To what extent can we also attach such attributions to the individuals consti-
tuting the committee? Are some of them responsible for the decision made? And, if
so, can we hold each individual judge, cabinet minister, or company board member
responsible for the outcome of the decision process in which she was engaged?

The answers to these questions are not obvious. One possibility, though, is to say
that membership of a committee in itself is sufficient to incur responsibility for what-
ever decision the committee makes. In this view, one is responsible simply because
one is formally involved in the decision making process. If your dissatisfaction with
some outcome is so strong that you do not want to be responsible for its realization,
then, so goes the argument, you should have withdrawn from the committee. By
remaining you have committed yourself to whatever decision is being made, or you
are at least are complicit in it, even if the decision is one with which you strongly
disagree. It is this commitment which is then taken to create responsibility for the
resulting outcome.

We may call this kind of responsibility formal because it does not depend on the
specific behaviour of the individual within the committee of which she is a member,
i.e. the way she voted; rather, it accrues to her simply by virtue of her participation
in the decision process. Whether we indeed always have such formal responsibility
is contestable, however. Opting out need not always be a feasible option and it is
therefore not always reasonable to state that a member is responsible. Moreover,
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even when opting out is a possibility, the rationale of assigning responsibility to
any member can be contested. Suppose, for instance, that you have accepted an
invitation to become a member of an internal appointment committee because you
think the hiring policy of the company you work for should be changed. Say you
object strongly to the very unequal male/female ratio in the company’s top positions.
Furthermore, when accepting the invitation, you were justified in believing that the
policy could only be changed if you were to join the committee. Now suppose that,
despite all your best efforts within the committee, you cannot convince the other
committee members that your most preferred candidate – a woman – should be
appointed. A majority turns out to be in favour of another candidate and the majority
gets its way: yet again a male candidate is appointed to a top position. In cases like
these – that is, in situations where some member of the group did his utmost to try
to prevent some decision from being taken – we may be reluctant to aver that he is
nevertheless responsible for the outcome. And even if we were justified in holding
the person responsible merely for his having partaken in the decision process, the
example shows that formal responsibility does not cover all types of responsibility.
We may also want to assess whether a person is responsible for the outcome because
of how he fulfilled his membership of the decision making body.

This second, non-formal kind of responsibility concerns a member’s responsibil-
ity insofar as it evolves from the specific way the person acted within the commit-
tee. We refer to such responsibility when we say, for instance, that the opposition
in parliament is not to be held responsible for some particular decision made by
the government parties, or that a judge who expresses a dissenting opinion is not
responsible for the verdict of the court of which he is a member. More generally, it
is the kind of responsibility that we implicitly invoke when we say that some mem-
bers of the decision making body are and some are not responsible for the eventual
outcome. This paper focuses on this kind of non-formal responsibility for outcomes
which, to ease the readers’ burden, we henceforth simply refer to as “responsibility”.

Responsibility judgements are notoriously difficult when several agents have
contributed to the outcome, a problem known as “the many hands problem”
(Thompson, 1980). In fact, in an important recent paper, Philip Pettit (2007) sug-
gests that there may be situations in which none of the members of a group can
be held responsible in this way. In this paper we examine some general conditions
under which we can indeed assign responsibility to one or more of the individuals
involved in the decision making process.

To do so, we must of course adopt some particular theory of responsibility; that
is, we must have an account of what it means to say that a person is or is not respon-
sible for some outcome. Drawing on Braham and van Hees (2009b), we assume
that a person is responsible only if two conditions are realized. First, the person
should have made a causal contribution to the outcome. That is, his behaviour –
say the way he voted – was one of the causal factors that led to the realization of
the outcome. Secondly, the person should have had a reasonable opportunity to do
otherwise. This expresses the idea that we do not hold a person responsible for some
outcome if it would not be reasonable to say that he could have done otherwise. The
unreasonableness of such a claim may result from the person’s simply not having
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had any alternative (say when someone is physically forced to perform some partic-
ular act), or from his not having had a reasonable alternative (say when someone is
threatened with great loss if some act is not performed).

Clearly, these are just the rough outlines of an account of responsibility.1 In
Braham and van Hees (2009a, 2009b) we have shown how this account of respon-
sibility can be described in game-theoretical terms and how the resulting approach
solves the many hands problem – the analysis gives a rigorous formulation of the
conditions under which we hold an agent responsible. Sections 2 and 3 below
present the main elements of that analysis.2 In Sect. 4 we apply the framework to
examine the conditions under which responsibility voids arise, that is, situations in
which there is some aspect of the outcome (or the outcome itself) for which none of
the members can be held responsible. We shall see that the possibility of such voids
depends crucially on whether the game satisfies a certain weak requirement of trans-
parency. In our two-pronged theory of responsibility, the second step (ascertaining
the availability of an alternative opportunity) may be more difficult to apply than
the first (ascertaining whether the person made a causal contribution). The difficulty
of establishing whether a person is responsible or not would be greatly reduced
if causal efficacy were to suffice for assigning responsibility. For this reason, in
Sect. 5 we examine the conditions under which causal efficacy always coincides
with responsibility. It turns out that such a reduction of moral responsibility to causal
efficacy is indeed possible, provided the game satisfies a stronger requirement of
transparency. Next, in Sect. 6, we examine the types of decision situations in which
being “efficacious” for some aspect of an outcome always entails being responsi-
ble for all of its aspects. Clearly, in such situations the allocation of responsibility
would be even easier – we simply have to check whether a person has made a causal
contribution to some aspect of the outcome to ascertain that he is fully responsible,
that is, responsible for all aspects. However, the class of games in which this is the
case turns out to be rather restricted.

2 The Formal Framework

A game G is an n+4-tuple (N , X, S1, . . . , Sn, π, Γ ), where N (with cardinality n)
is the set of players, X a set of alternatives, for each i ∈ N , Si is a set of strategies,
π is a mapping from the set of all strategy combinations (one for each individual)
onto X , and Γ is an n-tuple of probability distributions Γi , each describing the
probabilities that an agent justifiably assigns to the various strategy combinations
the others could adopt.

Note that a game as defined here does not specify the preferences of the individ-
uals and in that sense cannot properly be called a game. However, the beliefs that

1 Neither of the two conditions is uncontested. See Braham and van Hees (2009b) for references
to discussions.
2 For related accounts, see Goldman (1999) and Vallentyne (2008).
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agents have concerning the way the others will act, and which are given by Γi , may
well be derived from such preference information. In fact, we are implicitly making
such an assumption when we assume that each i is justified in believing that Γi is
the correct description of those probabilities.

An event is any combination of individual strategies belonging toΠi∈T Si , where
T is some non-empty subset of N. For any events sU and sT , sU is called a subevent
of sT if U ⊆ T and if each member of U has the same strategy in sU as in sT . The
outcomes to which some event sT can lead is given by π(sT ) = {π(sN ) | sT is a
subevent of sN }.

A play of the game is any event sN and a contingency is an event in which the
strategies of exactly n−1 individuals are specified. To simplify the reader’s task, we
shall often write s−i and s−T rather than sN−{i} or sN−T , respectively. For the same
reason, we write sT−i instead of sT−{i}. Given an event sT , si denotes the strategy
that i ∈ T adopts in sT , for event s′T , it is denoted by s ′i , etc. Finally, for disjoint T
and U we write (sT , sU ) to denote the (sub)event consisting of the combination of
the (mutually exclusive) events sT and sU .

Aspects of elements of X can be called states of affairs and are represented by
(non-empty and proper) subsets A of X . Thus, to refer to the example given in the
introduction, if x ∈ X is the outcome of an appointment procedure, we may say
that x ∈ A describes the fact that x is a man, x ∈ B describes him being younger
than thirty, etc. Obviously, we often want to ascertain an individual’s responsibility
for the realization of some such state of affairs, say when we want to examine the
responsibility of the members of an appointment committee for hiring a man rather
than a woman. Hence, we are not only interested in a person’s responsibility for the
actual outcome x of the game but also for proper subsets of X containing x .3

3 Conditions for Responsibility

As explained in the introduction, our account of responsibility rests on two pil-
lars. We assume one can only be held responsible for a state of affairs A if one
was causally effective for its realization and if one had sufficient opportunity to do
otherwise.

Braham and van Hees (2009a) argued that causal contributions can be analyzed
game-theoretically in terms of the performance of an action which is a part of some
minimally sufficient condition for A. The basic idea goes back to what is called
the NESS-test in the theory of causation (Hart & Honoré, 1959; Mackie, 1974).
According to the NESS-test (“Necessary Element of a Sufficient Set of conditions”),
an event c is said to form a causal condition for another event e if, and only if, c is
a member of a set of conditions which is sufficient for e but which, if c were not an

3 In our formal analysis we shall restrict ourselves to subsets, whereby responsibility for some
x ∈ X is analyzed in terms of responsibility for the singleton set of which x is the sole member. Yet,
to simplify notation, we often omit the set brackets when the outcome refers to such a singleton set.
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element, would not have been sufficient. Formulated in terms of events, this yields
the following definition of causal efficacy.

Definition 1 Given G and some play sN of G, individual i is causally effective for
A (“makes a causal contribution to A”) if, and only if, there is some subevent sT of
sN such that π(sT ) ⊆ A and π(sT−i ) �⊆ A.

Note that the definition is in terms of i’s action being “necessary” for some event
to lead to A. Since i’s action can only be so if there is a subevent in which every
individual is necessary and in which i adopts the same action, we can say that i
makes a causal contribution if, and only if, his action is part of some minimally
sufficient condition for A.

To illustrate the definition, consider a three-person committee facing a choice
between three alternatives x , y and z. Each individual strategy consists of a vote for
exactly one of the three alternatives, and the procedure that is used is the plurality
rule combined with the specification that the chair breaks ties (we do not need to
specify exactly how he does so, stipulating only that (a) the outcome will be one of
the alternatives that are tied, (b) if the chair voted for one of the tied alternatives, then
the alternative for which he voted will be chosen). First, suppose there is unanimity –
all players vote for x . Any combination of two votes for x is sufficient for x to be
adopted. Clearly, such a combination is also minimally sufficient for x – a single
vote for x is not sufficient for x to be chosen. Since each of the individual votes for
x is a member of at least one such minimally sufficient combination, each player
makes a causal contribution to x .

Next consider the case in which each individual votes for a different alternative,
that is, there is a tie. Assuming the chair, i say, voted for x , the outcome is x . Apply-
ing the definition, we see that each individual is causally effective for x – the actual
play is a minimally sufficient condition for x .4 Moreover, it is easy to check that i is
causally effective for {x, y} and {x, z} as well, whereas the individuals who voted
for y and z are not effective for {x, z} and {x, y}, respectively.

The second ingredient of our account of responsibility expresses the requirement
that one should have had a reasonable opportunity to do otherwise. It can easily be
seen that causal efficacy as defined here entails that one had at least one alternative
opportunity; that is, one could have performed an alternative action which could
have resulted in a different state of affairs. After all, if π(sT−i ) �⊆ A, then there
must be some s′i and s ′N−T such that π(sT−i , s′i , s′NT

) �∈ A. However, the kind
of alternative opportunity that causal efficacy entails is too weak to ground moral
responsibility. To see why, consider again the voting committee faced with a tie
between x , y and z, with the chair’s vote for x breaking the tie. We saw that each
individual is causally effective for the realization of x . Yet we may not want to
hold the individuals who voted for y or z responsible for the outcome. Suppose,
for instance, that the players did not had any idea about how the others would vote
and therefore assigned equal probability to each possible contingency. In this case,

4 In formal terms, if sN denotes the actual play, we have π(sN ) = x but π(sN−i ) �= {x}, for all
i ∈ N .
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not voting for x was the best they could do to prevent x from being chosen. More
precisely, such a vote minimized the probability they would be effective for x . On
the other hand, if one of them knew for sure that the chair would vote for x and
the other player for z, then we can hold him responsible for the outcome x – even
though he voted for y. After all, he knew that his vote would then lead to x . Causal
efficacy is therefore not sufficient for moral responsibility: the beliefs the agents had
about the impact of their alternative actions are also relevant.

But how do those beliefs matter? It will not do to say that we should focus on the
probability that the outcome would have been prevented if the player had adopted
some other strategy. To see why, consider a play of the game in which all three of
the players voted for x . All players had a strict preference for x and they all knew
so; they therefore each assigned a probability of one to the contingency in which
the others vote for x . Clearly, given these probabilities, no individual could vote in
such a way that the outcome x would result with a probability lower than one. Yet
we do hold each of them responsible for the realization of x : a person may not have
been able to lower the probability that x would result, but he could have lowered the
probability that he would be effective for x .

We therefore assume that the kind of alternative possibility that is needed to
hold a person responsible involves the existence of a strategy which he justifiably
believed to be less likely to make him causally effective for A than the strategy he
actually played. To make this precise, define for each individual i and each s ∈ Si ,
hi (s, A) = {s−i | i is effective for A in (s, s−i )} and set the probability that i will
be effective for A if he adopts s as:

pi (A, s) =
∑

s−i∈h(s,A)

Γi (s−i ).

Combining the two elements – causal efficacy and opportunity to do otherwise –
now yields the following criteria for the assignment of moral responsibility5:

Definition 26 Given G and a play sN of G, an individual i ∈ N is responsible for
A ⊆ X if and only if,

1. i is causally effective for A in sN ;
2. for some s′ ∈ Si : pi (A, s ′) < pi (A, si ).

5 Note that Definition 2 takes the conditions to be necessary and sufficient. A fully fledged theory
of responsibility would also include a condition referring to the minimum degree of autonomy
needed for responsibility. In what follows we simply assume this third requirement is always
satisfied.
6 The definition is a simplified version of the one presented in Braham and van Hees (2009b). First,
we here ignore the possibility that an alternative opportunity may not be eligible; that is, it may not
be reasonable to demand that the agent performed it. We simply assume that any of the available
strategies is eligible. For a normative defence of this assumption in the analysis of political decision
making, see Dowding and van Hees (2007). Moreover, we here ignore the possibility that the
individuals’ strategies are correlated in the sense that the probability that an agent i assigns to a
contingency s−i may differ for his different strategies.
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4 Responsibility Voids

In this section we turn to the analysis of responsibility voids, that is, situations
in which there is some aspect of the outcome of the game for which none of the
individuals can be held responsible.

Definition 3 A game G displays a responsibility void if, and only if, for some A �= X
and some sN : π(sN ) ∈ A and no i ∈ N bears responsibility for A in sN .

It turns out that the possibility of such voids depends crucially on the transparency of
the game, that is, on whether there is an appropriate fit between the adoption of cer-
tain strategies and the resulting outcome. We distinguish two types of transparency.
Each is defined in terms of minimal A-strategies.

Definition 4 We call a strategy s ∈ Si a minimal A-strategy of i if pi (A, s) ≤
pi (A, s′) for all s ′ ∈ Si . An A-minimal play is a play in which each player adopts a
minimal A-strategy.

The first notion of transparency that we discuss states that a play in which all individ-
uals adopt an A-minimal strategy, that is, a play in which each individual minimizes
the probability of being effective for A, will never lead to A.

Definition 5 A game G satisfies weak transparency if, and only if, for any A ⊆
X (A �= X) and any A-minimal play sN : the outcome of sN does not belong to A.

Proposition 1 A game never displays responsibility voids if, and only if, it is weakly
transparent.

Proof
⇒. Follows directly from the definition of A-minimality and from having an alter-
native opportunity.

⇐. Assume some play sN yields a void for some A. Let T be the set of all players
who are causally effective for A. Any i ∈ T must be playing a minimal A-strategy
for he would otherwise be responsible for A. Clearly, if T = N , the play is A-
minimal and the game thus violates weak transparency. Assume T �= N , and let
s′N be the play in which all of the members of T adopt the same strategy as in sN

and in which all of the members of N − T adopt an A-minimal strategy as well.
Since only the members of T are causally effective for A in sN , it must be the case
that π(sT ) ⊆ A. We therefore must have π(s ′N ) ∈ A. Since s′N is, by construction,
A-minimal, the game violates weak transparency. ��

Weak transparency is a reasonable demand and will be satisfied by most voting
games. Yet it may be violated in some special cases. Consider the following amend-
ment of the plurality voting game described earlier. Though the individuals can only
vote for x , y or z, there is a fourth alternative, say u, which will be the outcome if all
of the alternatives get exactly one vote. Suppose such a full-blown tie does indeed
materialize. It is easy to check that each player is causally effective for the resulting
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outcome u. Yet, for almost any reasonable specification of the various probabilities
involved, each of the individuals plays a minimal u-strategy.

Though violations of weak transparency are thus possible, they will only arise
in specific voting games and therefore need not worry us too much. The mere
absence of voids may, however, not dispel all concerns about the assignment
of responsibility. One particular difficulty is that it may be difficult to establish
whether an agent did indeed have a reasonable opportunity to do otherwise; we
may, for instance, not have the required information about the various probabili-
ties. In the next two sections we examine the possibility of defining games which
would avoid responsibility voids and which would considerably simplify the analy-
sis because in them causal efficacy would be a necessary and sufficient condition for
responsibility.

5 Equivalence of Efficacy and Responsibility

If causal efficacy and moral responsibility were always to coincide, an assessment
of whether a person is morally responsible for some A would only require an exami-
nation of whether he is causally effective for it. It turns out there is a straightforward
way to characterize games in which the two concepts are equivalent.

Definition 6 A game is strongly transparent if, and only if, for any player i and any
A: if i plays an A-minimal strategy, then i is not causally effective for A.

Proposition 2 A game is strongly transparent if, and only if, causal efficacy always
coincides with moral responsibility (that is, a person is causally efficacious for some
A if and only if he is morally responsible for A).

Proof
⇒. Let a game be strongly transparent. If i is responsible for some A then, by defi-
nition, he is effective for it. Assume he is effective for it. Strong transparency entails
he does not play an A-minimal strategy, which means he is morally responsible
for A.

⇐ . Suppose the game violates transparency: some player is effective for A through
the adoption of an A-minimal strategy. Clearly, he cannot be responsible for A.
Hence, he is effective but not responsible: the equivalence of moral responsibility
and causal efficacy does not hold. ��

Whereas the result in itself is not very surprising, it can be fruitfully applied.
To establish whether some voter is responsible for some state of affairs A, we now
only have to examine whether he was effective for it. In terms of voting theory,
pivotality here suffices to establish responsibility: if a person’s vote was pivotal for
the realization of the state of affairs, the person is responsible for it.
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6 Full Responsibility

We have seen that strong transparency entails that causal effectivity coincides with
moral responsibility. Of course, this does not preclude a person’s being responsible
only in a very limited sense: there may be many states of affairs resulting from the
game for which he cannot be held responsible. We could preclude this by addi-
tionally demanding that a person is always “fully” responsible or not responsible
at all.

Definition 7 A game satisfies full responsibility if, and only if, for any play sN and
any i ∈ N , either i is morally responsible for any proper non-empty subset of X
containing π(sN ) or i is responsible for no such subset of X at all.

Clearly, if strong transparency as well as full responsibility are satisfied, it becomes
very easy to determine whether a person is responsible or not. We only have to
establish that a person is causally effective for some aspect of the outcome to infer
that he is morally responsible for all aspects of it. Unfortunately, it turns out that
the two conditions are only satisfied in a very restricted and unattractive class of
games.

Definition 8 A game is dictatorial if, and only if, there is some i ∈ N such that for
all x ∈ X there is some s ∈ Si for which π(s) = x .

Proposition 3 Let #X ≥ 3. Any game satisfying strong transparency and full
responsibility is dictatorial.

Proof Take any G satisfying strong transparency and full responsibility. The proof
proceeds in three steps.

Step 1. We show that for any play sN in which for each i there is an ai such that si is
an X − ai -minimal strategy: if some sT is a minimal sufficient condition for π(sN ),
then T ⊆ {i | si is an X − π(sN )-minimal strategy}. Furthermore, for all i ∈ T and
for all y �= π(sN ), si is not X − y-minimal.

Suppose some element of X − ∪i∈N Ai is the outcome, where each Ai is defined as
Ai = {ai |si is an X −ai -minimal strategy}. Since π(sN ) ∈ ∩i∈N X − Ai , each i fails
to be responsible for some X − {ai } containing π(sN ). However, some i must be
causally effective for π(sN ) and by strong transparency and full responsibility must
therefore be responsible for any proper subset of X containing π(sN ). Hence, we
must have π(sN ) ∈ ∪i∈N Ai , that is, some i plays an X − π(sN )-minimal strategy.

Take some i who does not play an X−π(sN )-minimal strategy. Since si is X−ai -
minimal for some ai �= π(sN ), i is not responsible for X − {ai }. Hence, by strong
transparency and full responsibility he is not effective for π(sN ). Since this holds for
all i who do not play an X − π(sN )-minimal strategy, only individuals who play an
X − π(sN )-minimal strategy are effective for π(sN ). Strong transparency and full
responsibility implies that any such i is responsible for any A containing π(sN ),
which means that they do not play an X − y-minimal strategy if y �= π(sN ).
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Step 2. Let s∗T be a sufficient condition for some outcome x and assume there is
no U having fewer members than T and for which there is an event s′U which
is sufficient for some (possibly different) element of X . We prove that T is a
singleton set.

For any A and i , let s A
i denote an A-minimal strategy of i . Assume N contains

exactly two elements i and j , and consider the play (s X−x
i , s X−y

j ) (x �= y). The
result now follows immediately from step 1. Next assume N contains at least three
elements, let s∗T be as defined and let y, z be two elements distinct from x (y �= z).

Take arbitrary i ∈ T and consider the play (s X−y
T−i , s X−x

i , s X−z
N−T ). By Step 1 the

outcome must be either x , y or z. If the outcome is y, step 1 entails that s X−y
T−i is a

sufficient condition for y, contradicting the way s∗T was defined. If z is the outcome,
we have π(sN−T ) = z by step 1, contradicting π(s∗T ) = x . Hence, the outcome is x
and, again by step 1, s X−x

i is a sufficient condition for x . Hence, T = {i}.
Step 3. If i has a strategy s∗i which is sufficient for x , then he has one for any y ∈ X .

Let s∗i be as defined. Take two different elements y, z of X − {x} and consider the

play (s X−y
i , s X−z

N−i ). By Step 1, we either have π(s X−y
i ) = {y} or π(s X−z

N−i ) = {z}.
However, π(s X−z

N−i ) = {z} contradicts sufficiency of s∗i for x . ��
If we want to avoid dictatorial games, we should thus either drop the requirement
of strong transparency or full responsibility. Dropping full responsibility seems to
be the natural candidate. Indeed, if we permit it to be weakened by demanding that
at least some player is fully responsible for the outcome, then possibilities emerge.
Consider again the plurality rule in which a chair breaks ties. In our discussion of
the rule in Sect. 3 we saw that it is possible that some voters are responsible for some
but not all aspects of the outcome. However, it is also true that in the two examples
that we gave, the chair, person i , is responsible for every aspect of the outcome.

7 Conclusion

Though the analysis of this paper applies to decision processes in general, our par-
ticular interest lies in responsibility for the outcome of voting processes. To give
just one illustration of why this is important, consider politicians’ voting records.
Clearly, the assessment of such records is very relevant in any well-functioning,
representative democracy – we want to know which collective decisions we can
justifiably hold our representatives responsible for.

Moreover, the results are relevant when decisions have to be made about which
voting rules to adopt. For instance, if we want to avoid responsibility voids, we
should have to ensure that the voting game is weakly transparent. Similarly, if we
take an equivalence of moral responsibility and causal efficacy to be a desideratum,
we should opt for voting rules that yield a strongly transparent game. Clearly, the
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results are general in the sense that they apply to games as such, and are not applied
to particular voting rules. A natural next step would therefore be to examine the
conditions under which particular voting games satisfy the conditions introduced.
Indeed, such an analysis is necessary if we want to establish which particular vot-
ing rules are compatible (and which are not) with the importance we attach to the
possibility of holding people responsible.
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Existence of a Dictatorial Subgroup in Social
Choice with Independent Subgroup Utility
Scales, an Alternative Proof

Anna B. Khmelnitskaya

1 Introduction

In Arrow’s (1951) famous impossibility theorem, individual preferences are ordi-
nally measurable and interpersonally noncomparable. Building on the seminal work
of Sen (1970), there is now an extensive literature that investigates the implications
for social decision-making of alternative assumptions concerning the measurabil-
ity and interpersonal comparability of individual preferences. See, for example,
Roberts (1980a, 1980b), d’Aspremont (1985), Yanovskaya (1988, 1989), Tsui &
Weymark (1997), and Bossert and Weymark (2004). These studies adapt mainly the
welfarist approach to social choice and assume that only individual utilities matter
for ranking a feasible set of social alternatives. In this case a social choice rule can
be equivalently described in terms of a social welfare ordering – a social ordering
of the admissible profiles of individual utilities (admissibility is understood as the
satisfaction of several a priori appealing conditions), or in terms of a social wel-
fare function – a function that represents a social welfare ordering and measures
social welfare. Various assumptions concerning the measurability and interpersonal
comparability of utility can be formalized by partitioning the set of feasible individ-
ual profiles and requiring the social welfare ordering to be constant over a cell of
the partition. These studies show that under different measurability-comparability
assumptions over individual utilities, i.e., in case when more democracy is adapted
by the society, classes of nondictatorial social choice rules exist that satisfy all of
Arrow’s axioms (restated in terms of utility functions). In the aforecited publica-
tions the measurement scales of individual utilities are assumed to be of the same
type across the entire society. An extension of this direction is a study of Arrovian
social choice problems when individual utilities in disjoint subgroups of individuals
are measured by different scale types, in other words, when separate subgroups
of individuals admit different types of information. This situation is common in
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real decision making. A typical example is the partitioning of a human society into
families which in turn consist of individuals. If an outsider is making the compar-
isons based on reports from individuals, it is reasonable to suppose that the kind
of information available within and between families will be different in general.
Indeed, the kinds of utility comparisons that can be made within a family cannot be
made between people who do not know each other. A number of publications of the
author (Khmelnitskaya, 1996, 2002; Khmelnitskaya & Weymark, 2000) is devoted
to study of Arrovian social choice problems with different scales of individual utility
measurement in disjoint subgroups of individuals. In particular, in Khmelnitskaya
and Weymark 2000 it is shown that for ordinally or cardinally measurable subgroup
utility when levels (and in the case of cardinal utilities, differences) of utility may
or may not be interpersonally comparable while no utility comparisons between
subgroups are possible, every continuous social welfare ordering that meets the
weak Pareto principle depends on the utilities of only one of the subgroups and is
determined in accordance with the scale type admissible to this dictatorial subgroup.
Here we introduce another proof1 for this statement restated in equivalent terms of a
social welfare function. This proof is longer but completely self-contained different
to the proof in Khmelnitskaya and Weymark (2000) which is based on the employ-
ment of Bossert-Weymark (2004) continuous analogue of both – Arrow’s (1951)
impossibility theorem and Sen’s (1970) variant of Arrow’s theorem for cardinally
measurable utilities. Moreover, being based on the study of level surfaces of a social
welfare function this proof provides also extra deep insight into the structure of
possible interrelations between utilities of different individuals, while the proof in
Khmelnitskaya and Weymark (2000) allows only to state existence of a dictatorial
subgroup.

In Sect. 2, we introduce basic definitions and notation and provide a formal
statement of the problem. Section 3, provides the proof of the existence of a dicta-
torial subgroup for different combinations of mutually independent subgroup scales
restated in terms of a social welfare function.

2 The Framework

Consider a society consisting of a finite set N = {1, . . . , n} of n ≥ 2 individuals. Let
X be a finite set of at least three alternatives and let R denote the set of all possible
preference orderings over X . The members of R are assumed to be weak orders, i.e.,
complete, reflexive and transitive binary relations. A social choice problem is a triple
< X, N , {Ri }i∈N >, where {Ri }i∈N is a profile of individual preferences Ri ∈ R,
i ∈ N . To introduce measurability/comparability assumptions, we consider indi-
vidual preferences represented as individual utilities, which may be interpreted as
measurements of these preferences. So, let U be the set of all real-valued functions
defined on X × N : for any u ∈ U , let u(x, i) denote the i th individual utility at the

1 This proof circulated before in Khmelnitskaya’s unpublished manuscript (Khmelnitskaya, 1999).
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alternative x ∈ X . By a solution to a social choice problem we understand a social
welfare functional, which is a mapping f : D → R where D ⊆ U is the domain of
f . We assume f satisfies three welfarism axioms:

Unrestricted Domain. D = U , i.e., f is defined for all u ∈ U .

Independence of Irrelevant Alternatives. For any u, u′ ∈ D and A ⊆ X , if u(x, i) =
u′(x, i) for all x ∈ A and i ∈ N , then R : A = R′ : A where R = f (u) and
R′ = f (u′). (R : A denotes the restriction of R to A ⊆ X .)

Pareto Indifference. For any pair x, y ∈ X and for all u ∈ D, if u(x, i) = u(y, i)
for all i ∈ N then x I y, where I denotes the indifference relation corresponding to
R = f (u).

According to the welfarism theorem (D’Aspremont & Gevers, 1977; Hammond,
1979), these three axioms ensure that only individual utilities matter when ranking
social alternatives, so any vector u = (u1, . . . , un) in the n-dimensional Euclidian
space IRn can be considered as a profile of individual utilities for the society N ; here
ui is the utility of i th individual. From this perspective, a solution to a social choice
problem can be regarded as a social welfare ordering (SWO), which is a weak order
R∗ on IRn , the set of possible profiles of utility vectors. We assume that R∗ also
satisfies the Weak Pareto property.

Weak Pareto (WP). For all u, v ∈ IRn , if ui > vi for all i ∈ N , then u P∗v, where
P∗ denotes the strict preference relation corresponding to R∗.

A function W : IRn → IR1 represents the SWO R∗ if for all u, v ∈ IRn

u R∗v ⇐⇒ W (u) ≥ W (v).

The representation W is called a social welfare function (SWF). By WP, any SWF
W is strictly increasing, i.e., for all u, v ∈ IRn

u � v �⇒ W (u) > W (v).

We impose one more restriction on an SWO R∗ requiring R∗ to be continuous.

Continuity (C). For all u ∈ IRn , the sets {v ∈ IRn | vR∗u} and {v ∈ IRn | u R∗v} are
closed in IRn .

Continuity guarantees the existence of a continuous SWF (Debreu, 1954).
In the sequel by Dn , we denote the diagonal of IRn . Let for any real c ∈ IR1, cN be

a vector in IRn with all components equal to c and let γ (c) = {u ∈ IRn |W (u) = c}
be a c-level surface of the SWF W ; obviously, for every u ∈ IRn , γ (W (u)) is a level
surface of W containing u.

Remark 1 Because of continuity and strict monotonicity of all SWF, every level
surface of any SWF meets a diagonal Dn of IRn and moreover, this meet of set is a
singleton. Hence, a natural scale for the meanings of SWF arises: since every SWF
W is defined up to monotonic strictly increasing transforms, then without loss of
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generality it may be assumed that for any u ∈ IRn , W (u) = c, with c defined by the
equality γ (W (u)) ∩ Dn = {cN }.

In the classic case of Arrow utilities were ordinally measurable and interperson-
ally non-comparable. More generally, within the SWO framework, the degree of
measurability and comparability of utility inside the society N can be specified by a
class of invariance transforms Φ, where each transform φ ∈ Φ is a list of functions
φ = {φi }i∈N , φi : IR1 → IR1, with the property: for all u, v ∈ IRn

u R∗v ⇐⇒ (φu)R∗(φv), (1)

where φu = {φi ui }i∈N . In what follows we use the notation ΦN , when we need to
specify to which particular society N the transforms of a class Φ apply; when no
ambiguity appears, the index N will be omitted.

Under conditions imposed, the Arrovian social choice problem in the infor-
mational environment introduced by an invariance class Φ can be equivalently
described in terms of SWF W which

(1) is a continuous real-valued function W : IRn → IR1, such that for any c ∈ IR1,
W (cN ) = c;

(2) is nondecreasing,2 i.e., for all u, v ∈ IRn ,

u ≥ v �⇒ W (u) ≥ W (v);

(3) is invariant under invariance transforms of class Φ, i.e., for any φ ∈ Φ and for
all u, v ∈ IRn,

W (u) ≥ W (v) �⇒ W (φu) ≥ W (φv). (2)

For an invariance class Φ to be a scale in the sense of the standard the-
ory of measurement it has to satisfy the stronger condition of being a group
(see Phanzagl, 1971). Different scale types for individual utility measurement have
been examined in the literature (Roberts, 1980; d’Aspremont, 1985; Bossert & Wey-
mark, 2004). Next we list the scales to be considered.

Ordinal Measurability (OM). φ ∈ Φ iff φ is a list of independent strictly increasing
transforms φi , i ∈ N .

Ordinal Measurability and Full Comparability (OFC). φ ∈ Φ iff φ is a list of
identical strictly increasing transforms, i.e., for any real t and all i ∈ N , φi (t) =
φ0(t) where φ0 is a strictly increasing function independent of i .

Cardinal Measurability (CM). φ ∈ Φ iff φ is a list of independent strictly positive
affine transforms, i.e., for any real t and all i ∈ N , φi (t) = αi + βi t for some real
αi and real βi > 0.

2 This holds because W is continuous and strictly increasing.
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Cardinal Measurability and Unit Comparability (CUC). φ ∈ Φ iff φ is a list of
strictly positive affine transforms with common unit, i.e., for any real t and all i ∈ N ,
φi (t) = αi + βt for some real αi and β > 0 with β independent of i .

Cardinal Measurability and Full Comparability (CFC). φ ∈ Φ iff φ is a list of
identical strictly positive affine transforms, i.e., for any real t and all i ∈ N φi (t) =
α + βt for some real α and β > 0, both independent of i .

The main concern of this paper is the situation when the entire society N is
partitioned into m disjoint subgroups of individuals, i.e., N = N1 ∪ N2 ∪ · · · ∪ Nm

with Ni ∩ N j = ∅ for i �= j . It is assumed that a SWF W defined on IRn for
different subgroups of variables indexed by Nk , k ∈ {1, . . . ,m}, may admit invari-
ance transforms of different invariance classes ΦNk , which amounts to W being
invariant under transforms of a class ΦN such that ΦN = {ΦNk }m

k=1, i.e., for every
φ ∈ ΦN for all k ∈ {1, . . . ,m}, φNk = {φi }i∈Nk ∈ ΦNk . In other words ΦN is
the Cartesian product of the subgroup classes of transforms ΦNk . Notice that the
class ΦN meets the condition (1). But, in general, even if all invariant classes ΦNk

are scales, ΦN is not necessarily a scale: the condition of being a group may no
longer hold. For example, a combination of CFC scales with a common zero is not a
scale. In what follows we concentrate on mutually independent subgroup scales. The
subgroup scales ΦNk , k = 1, . . . ,m, are mutually independent, if for any distinct
k1, k2 ∈ {1, . . . ,m}, for all i ∈ Nk1 and j ∈ Nk2 , there exist φi ∈ ΦNk1

and
φ j ∈ ΦNk2

such that φi (t) = αi + βi t with βi > 0 and φ j (t) = α j + β j t with
β j > 0, where αi �= α j and βi �= β j . Note that since OM and CM include the
positive affine transforms, these classes are covered by the above definition as well.
Mutual Independence preserves the group property and guarantees ΦN to be the
direct product of groups ΦNk when each of the ΦNk is a group, i.e., it guarantees
ΦN to be a scale, if all ΦNk are scales. It should also be stressed that Mutual Inde-
pendence is a property of the set of subgroup classes of transforms {ΦN1 , . . . , ΦNm },
not of individual transforms within these classes.

Introduce now some extra notation. By nk we denote the cardinality of Nk . It is
obvious that

∑m
k=1 nk = n. Let for any u ∈ IRn and all k ∈ {1, . . . ,m}, uNk be a

subvector of u that belongs to IRnk and is composed of components ui , i ∈ Nk . IRNk

is a coordinate subspace of IRn induced by coordinates with indices from Nk , i.e.

IRNk = {v ∈ IRn | vi = 0, i /∈ Nk}.

For any u ∈ IRn and k∈{1, . . . ,m}, let

IRNk (u) = {u′ ∈ IRn | u′
N\Nk

= uN\Nk }

be a hyperplane of dimension nk parallel to coordinate subspace IRNk and containing
u. Obviously, IRNk = IRNk (0) and IRNk (u) = u + IRNk .

Denote by

DNk = {u ∈ IRNk | ui = u j , i, j ∈ Nk, & ui = 0, i /∈ Nk}



116 A.B. Khmelnitskaya

the diagonal of a coordinate subspace IRNk , and let L D be a subspace of IRn spanned
by the diagonals DNk , k ∈ {1, . . . ,m}. It is easy to see that every u ∈ L D, u =
{ui }i∈N , has the form ui = vk(i), for some v = v(u) ∈ IRm and k(i) defined by the
relation i ∈ Nk(i), i.e., all variables in L D indexed by the same subgroup of indices
have the same value.

For any vector u ∈ IRn and any real c, denote by u‖cNk the vector in IRn with
components

(u‖cNk )i =
{

ui , i ∈ N\Nk,

c, i ∈ Nk .

It is easy to see that u‖cNk is an orthogonal projection of u on the hyperplane
IRN\Nk (cNk ). For any real c, let (cNk , 0N\Nk ) denote the vector in IRn with
components

(cNk , 0N\Nk )i =
{

c, i ∈ Nk,

0, i ∈ N\Nk .

We denote an orthogonal projection of the level surface γ (c) to the hyperplane
IRNk (cN ) by γNk (c). For any two points u, u′ ∈ IRn , u �= u′, let l(u, u′) and
r [u, u′) be respectively a straight line passing through both points, u and u′, and
a ray starting from u and passing through u′; moreover, by r(u, u′) = r [u, u ′)\{u}
we denote an open ray without its origin.

As usual, IRn+ = {u ∈ IRn|ui ≥ 0, i ∈ N , & u �= 0} is the nonnegative orthant
in IRn . For the mean value of a vector u ∈ IRn we use the standard notation ū, i.e.
ū = (

∑n
i=1 ui )/n. Following (Bossert & Weymark, 2004), for any vector u ∈ IRn ,

the fan generated by u is

Y (u) = {u ∈ IRn |u = θ1n + λu, θ ∈ IR, λ ∈ IR+}.

A subset Y of IRn is a fan, if it is a fan generated by some u ∈ IRn .

3 Existence of a Dictatorial Subgroup

Clearly, every continuous nondecreasing n-dimensional function that is determined
only by variables with indices from one of the subgroups and that is invariant under
invariance transforms proper to this subgroup of variables is a SWF. Below we
study the situations for which such a form of a SWF is the only possible one, or
equivalently, for which a dictatorial subgroup, i.e., a decisive coalition equal to one
of the subgroups of individuals, must exist. The social ordering is then determined
in accordance with the scale type of this dictatorial subgroup.

Theorem 1 Let N = N1 ∪ N2 ∪ · · · ∪ Nm, Ni ∩ N j = ∅ for all i �= j , and let a
continuous nondecreasing function W : IRn → IR1 with respect to variables indexed
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by Nk be invariant under one of scales OM, OFC, CM, CUC, or CFC. Moreover,
the subgroup scales are assumed to be mutually independent. Then there exists a
unique integer k ∈{1, . . . ,m}, such that for all u ∈ IRn, W has the form

W (u) = W (uNk ),

i.e., W is determined only by variables indexed by Nk, and besides is fully charac-
terized by the scale type proper to this subset of variables.

Remark 2 Notice that any CFC transform at the same time is a transform of any of
the OM, OFC, CM and CUC invariant classes. Hence, it is possible to simplify the
statement of Theorem 1 by requiring only that the function W (u) with respect to
variables indexed by Nk , k ∈ {1, . . . ,m}, be invariant under mutually independent
CFC transforms.

Theorem 1 allows us to construct a SWF characterization for various combina-
tions of OM, OFC, CM, CUC and CFC independent subgroup utility scales on the
basis of well-known results for social choice problems with the same measurement
scales of individual utilities for the entire society.

In terms of level surfaces, the statement of Theorem 1 means that for any function
W (u), there exists a unique k ∈ {1, . . . ,m} such that every level surface γ (c) is
parallel to the coordinate subspace IRN\Nk . The latter is tantamount to IRN\Nk (u) ⊂
γ (W (u)), for all u ∈ IRn . It is not difficult to see that for the proof of the last
inclusion, it is sufficient to show that every meet of set γ (W (u)) ∩ IRNk (u), k ∈
{1, . . . ,m}, except one is a hyperplane of dimension nk . For different combinations
of mutually independent OM, CM and CUC scales, the result may be easily obtained
based on the admissibility of the transform φ = {φi }i∈N :

φi (t) =
{

t, S = Nk,

(1 − α)ai + αt, α > 0, i ∈ N\Nk .

Indeed, for all combinations of OM, CM and CUC scales, for all k ∈ {1, . . . ,m},
every meet of set γ (W (u))∩IRNk (u) together with any two points contains the whole
straight line passing through these points, and therefore has to be a hyperplane.
So, for this case the proof of Theorem 1 is rather simple. However, if we append
OFC and CFC scales, then the defined above transform φ is inadmissible for all
combinations of scales, and not every meet of set γ (W (u))∩IRNk (u) is a hyperplane.

To prove Theorem 1, first, we show that every level surface γ (c) contains its own
orthogonal projection γNk (c) on the hyperplane IRNk (cN ), k ∈ {1, . . . ,m}, which
in turn coincides with the meet of set γ (c) ∩ IRNk (cN ) (Lemma 1). Next, in terms
of these projections we derive a necessary and sufficient condition for a function
W (u) to be fully determined only by variables indexed by some fixed subgroup Nk
(Lemma 2). And finally, we prove that this condition holds under the hypothesis of
the theorem (Lemma 3 and Lemma 4).

Lemma 1 Any level surface γ (c) for all k ∈{1, . . . ,m} contains its own orthogonal
projection on the hyperplane IRNk (cN ), i.e.,
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γNk (c) ⊂ γ (c), (3)

moreover, either dim γNk (c) = nk or dim γNk (c) = nk − 1 and

γNk (c) = γ (c) ∩ IRNk (cN ). (4)

Proof Fix some k ∈ {1, . . . ,m}. To prove (3) it will suffice to show that for every
u ∈ γ (c), u‖cN\Nk ∈ γ (c). Let u ∈ γ (c). If u ∈ IRNk (cN ), then u‖cN\Nk = u and
obviously, u‖cN\Nk ∈ γ (c). Assume u /∈ IRNk (cN ). Due to Remark 1, cN ∈ γ (c).
Take an admissible transform φ = {φi }i∈N :

φi (t) =
{

t, i ∈ Nk,

(1 − α)c + αt, α > 0, i ∈ N\Nk .

By (2) for all α > 0, W (φu) = W (φcN ). But for any α > 0, φcN = cN ∈ γ (c).
Hence, for all α > 0, φu ∈ γ (c), and moreover, since u /∈ IRNk (cN ), φu corre-
sponding to different α are different. If α = 1, φu = u, whence r(u‖cN\Nk , u) ⊂
γ (c). Therefore, every neighborhood of u‖cN\Nk has a nonempty meet with γ (c).
Whence by continuity of W , u‖cN\Nk ∈ γ (c). Since W (u) is defined for every
u ∈ IRn , W (u‖cN\Nk ) is well defined. Assume W (u‖cN\Nk ) = a �= c. Because of
continuity of W , there exists a neighborhood S of u‖cN\Nk such that |W (u′)− a| <
|c − a|/2, for all u′ ∈ S, wherefrom |W (u′) − c| > |c − a|/2, for every u′ ∈ S.
Hence, W (u′) �= c, for all u′ ∈ S. The obtained contradiction proves (3).

From the definition of orthogonal projection it follows directly that

γNk (c) ⊂ IRNk (cN ) (5)

and

γ (c) ⊂ γNk (c)+ IRN\Nk .

Whence,

dim γNk (c) ≤ nk

and

dim γ (c) ≤ dim γNk (c)+ (n − nk).

Combining the last inequalities together with the equality dim γ (c) = n − 1, we
obtain

nk − 1 ≤ dim γNk (c) ≤ nk .
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From the definition of orthogonal projection it also follows that

γ (c) ∩ IRNk (cN ) ⊂ γNk (c).

From which together with (3) and (5), (4) follows immediately. ��
Remark 3 Lemma 1 remains true under a coarser partition of N into disjoint sub-
groups when a few subgroups Nk , k ∈ {1, . . . ,m}, may merge into one. It is worth
noting that this remark concerns all subsequent propositions as well.

Remark 4 Due to the admissibility of the transform {φi (t) = α + t}i∈N for all real
α, the level surfaces γ (c) relevant to different c can be obtained from each other
by parallel shifts along the diagonal Dn . (This property was mentioned earlier in
Roberts (1980)). Wherefrom together with (4) it follows that for all real c and c′,

γNk (c
′) = γNk (c)+ (c′ − c)N , (6)

i.e., all projections γNk (c) relevant to the same k and different c can be obtained
from each other by parallel shifts along Dn .

Remark 5 Observe that γNk (c) is a cone in IRNk (cN )with a top in cN . Indeed, if u′ ∈
γNk (c) and u′ �= cN , then there exists u ∈ γ (c), u �= cN , such that u′ = u‖cN\Nk .
Since cN ∈ γ (c) and because of the admissibility of the transform {ψi (t) = (1 −
α)c + αt}i∈N for all α > 0, r [cN , u) ⊂ γ (c). But the ray r [cN , u′) is a projection
of the ray r [cN , u) onto the hyperplane IRNk (cN ). Thus, for every u′ ∈ γNk (c)
such that u′ �= cN , r [cN , u′) ⊂ γNk (c), which proves that γNk (c) is a cone. In
particular, a cone γNk (c) with dim γNk (c) = nk may coincide with IRNk (cN ). If
dim γNk (c) = nk − 1, it may be a hyperplane in IRNk (cN ) passing through cN .

Denote by HNk (c) the cylinder γNk (c)+ IRN\Nk .

Remark 6 As it was already noted in the proof of Lemma 1, for any real c and all
k∈{1, . . . ,m},

γ (c) ⊂ HNk (c). (7)

Lemma 2 A function W for any u ∈ IRn has the form

W (u) = W (u Nk ), for some k∈{1, . . . ,m},

i.e. depends only on the variables ui with indices i ∈ Nk, if and only if there exists
real c such that dim γNk (c) = nk − 1.

Proof I. Necessity. Clearly, for every real c

γ (c) ∩ IRNk (cN ) = {u ∈ IRNk (cN ) | W (u) = c}.

By hypothesis, for all u ∈ IRn and, in particular, for all u ∈ IRNk (cN ), W (u) =
W (uNk ). But for u ∈ IRNk (cN ), the variables uNk are intrinsic coordinates in
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IRNk (cN ). Therefore and because of (4), the projection γNk (c), being a subset of
the nk-dimensional hyperplane IRNk (cN ), is characterized by the unique equality
W (uNk ) = c in the intrinsic coordinates of IRNk (cN ), whence it follows that for
every c, dim γNk (c) = nk − 1.

II. Sufficiency. From (6) for all real c and c′,

HNk (c
′) ∩ IRNk (cN ) = γNk (c)+ ((c′ − c)Nk , 0N\Nk ),

i.e., for all c′ �= c, every meet of set HNk (c
′)∩ IRNk (cN ) is obtained from γNk (c) by

a parallel shift along the diagonal DNk (c) of the hyperplane IRNk (cN ),

DNk (c) = {u ∈ IRn | ui = u j , i, j ∈ Nk & ui = c, i /∈ Nk}.

If we show that for every k∈{1, . . . ,m} such that dim γNk (c) = nk − 1, all parallel
shifts of γNk (c) along DNk (c) in IRNk (cN ) do not meet each other and cover the
whole IRNk (cN ), it will follow that cylinders HNk (c) relevant to different c do not
meet and cover IRn . On the other hand, since W is defined on the entire IRn , for
every u ∈ IRn , there exists a level surface of W containing u. Hence, because of
(7) for every real c, γ (c) = HNk (c), which is the same as for all u ∈ IRn , W (u) =
W (uNk ). Thus, to complete the proof of sufficiency, it is enough to show that for
every k ∈ {1, . . . ,m} for which dim γNk (c) = nk − 1, the parallel shifts of γNk (c)
along DNk (c) in IRNk (cN ) do not meet each other and cover IRNk (cN ).

First, we show that for every k ∈ {1, . . . ,m}, the parallel shifts of γNk (c)
along DNk (c) in IRNk (cN ) cover IRNk (cN ). For any u ∈ IRn the level surface
γ (W (u)) passes through u. Whence and because of Remark 1, every γ (W (u))
is a cone with a top in {W (u)}N ∈ Dn and all level surfaces may be obtained
from each other by parallel shifts along Dn . Therefore, through every point in
any two-dimensional half-plane with a boundary Dn , denoted in the sequel by
IR2±(Dn), passes a ray that starts in some cN ∈ Dn and belongs completely to
γ (c). Moreover, since different level surfaces do not meet and are obtained from
each other by parallel shifts along Dn , from every point cN ∈ Dn , in any half-
plane IR2±(Dn), there emanates a unique ray that belongs to γ (c) and that does
not meet other level surfaces γ (c′), c′ �= c. Parallel rays starting from different
cN ∈ Dn and belonging to some half-plane IR2±(Dn) cover the entire IR2±(Dn).
Hence, for every cN ∈ Dn , in any two-dimensional plane IR2(Dn) passing through
Dn there are exactly two rays starting from cN and located in distinct half-planes
of IR2(Dn) separated by Dn , i.e., in IR2+(Dn) and IR2−(Dn) respectively; in par-
ticular, these two rays may form a straight line meeting Dn in cN . A collection
of mutually non-overlapping pairs of rays relevant to different level surfaces γ (c)
covers IR2(Dn). Since every u ∈ IRNk (cN )\DNk (c) and a straight line DNk (c)
determine unambiguously a two-dimensional plane, a set of all two-dimensional
planes IR2(DNk (c)) ⊂ IRNk (cN ) containing the diagonal DNk (c) of IRNk (cN ) covers
IRNk (cN ). Any plane IR2(DNk (c)) may be considered as a projection of a cylinder
IR2(DNk (c)) + IRN\Nk on IRNk (cN ). Since Dn ⊂ IR2(DNk (c)) + IRN\Nk , every
cylinder IR2(DNk (c)) + IRN\Nk is covered by a set of all two-dimensional planes
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IR2(Dn) ⊂ IR2(DNk (c)) + IRN\Nk . Observe that Dn‖cN\Nk = DNk (c). There-
fore, for each plane IR2(Dn) ⊂ IR2(DNk (c)) + IRN\Nk that is not orthogonal to
IR2(DNk (c)), a projection of γ (c) ∩ IR2(Dn) on IRNk (cN ) consists of exactly two
rays r̃1, r̃2 ⊂ γNk (c) starting from cN ∈ DNk (c) and belonging to the different half-
planes IR2+(DNk (c)) and IR2−(DNk (c)) of the plane IR2(DNk (c)) that are separated
by DNk (c), i.e., r̃1 ⊂ IR2+(DNk (c)), r̃2 ⊂ IR2−(DNk (c)). Any plane orthogonal to
IR2(DNk (c)) maps completely on DNk (c). Under parallel shifts along DNk (c), rays
r̃1 and r̃2 cover the entire plane IR2(DNk (c)), while the collection of all shifts of
γNk (c) along DNk (c) covers the hyperplane IRNk (cN ).

To show that for every k ∈ {1, . . . ,m} for which dim γNk (c) = nk − 1, parallel
shifts of γNk (c) along DNk (c) in IRNk (cN ) do not meet, it suffices to show that
every half-plane IR2±(DNk (c)) contains a ray belonging to γNk (c) and solely one.
Assume the contrary, and let at least two rays r1, r2 ⊂ γNk (c) ∩ IR2±(DNk (c)).
Then due to continuity of the level surface γ (c) and continuity of the projection
mapping Pr : IRn → IRNk (cN ), the piece of a half-plane IR2±(DNk (c)) between rays
r1 and r2 also belongs to γNk (c) as well, which is impossible since by hypothesis,
dim γNk (c) = nk − 1. ��
Remark 7 The necessary and sufficient condition in Lemma 2 may be restated equiv-
alently in terms of cylinders HNk (c). Indeed, the equality

dim γNk (c) = nk − 1, for some k∈{1, . . . ,m},

is tantamount to the equality

γ (c) = HNk (c), for the same k. (8)

Lemma 3 For every level surface γ (c), if for some k∈{1, . . . ,m}
(1) dim γNk (c) = nk − 1, then γN\Nk (c) = IRN\Nk (cN ) and for all k′ ∈{1, . . . ,m},

k′ �= k, γNk′ (c) = IRNk′ (cN );
(2) dim γNk (c) = nk, then γN\Nk (c) �= IRN\Nk (cN ),

and furthermore, if γNk (c) = IRNk (cN ), then dim γN\Nk (c) = n − nk − 1,
while if γNk (c) �= IRNk (cN ), then dim γN\Nk (c) = n − nk.

Proof To prove the first statement, assume that dim γNk (c) = nk − 1, for some
k∈{1, . . . ,m}. By (4) and (8), for all k∈{1, . . . ,m}

γN\Nk (c) = γ (c) ∩ IRN\Nk (cN ) = HNk (c) ∩ IRN\Nk (cN ) = IRN\Nk (cN ).

Similarly for all k′ ∈{1, . . . ,m}, k′ �= k,

γNk′ (c) = γ (c) ∩ IRNk′ (cN ) = HNk (c) ∩ IRNk′ (cN ) = IRNk′ (cN ).
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Prove now the second one. Assume the contrary that γN\Nk (c) = IRN\Nk (cN ).
Then because of (3), IRN\Nk (cN ) ⊂ γ (c), which is equivalent to W (u) = W (uNk ).
Whence, by Lemma 2, dim γNk (c) = nk − 1, which contradicts to the hypothesis.

Next, from Lemma 1 and Remark 3 it follows that either dim γN\Nk (c) = n−nk ,
or dim γN\Nk (c) = n−nk −1. If dim γN\Nk (c) = n−nk −1, then by the Remark 7,
γ (c) = HN\Nk (c). Obviously,

HN\Nk (c) ∩ IRNk (cN ) = IRNk (cN ),

i.e.,

γ (c) ∩ IRNk (cN ) = IRNk (cN ),

whence by (4), γNk (c) = IRNk (cN ).
Further, if we suppose γNk (c) = IRNk (cN ) and repeat the latter arguments, then

because of (3) and Lemma 2, we arrive at dim γN\Nk (c) = n − nk − 1. ��
Remark 8 Because of Remark 3, the validity of the second statement in the second
point of Lemma 3 can be obtained directly from the first point as well.

From the first statement of Lemma 3 applying the induction argument with
respect to the number m of subgroups Nk in the partition of N , we derive the next
corollary.

Corollary 1 For any level surface γ (c) not every projection γNk (c), k∈{1, . . . ,m},
coincides with the corresponding hyperplane IRNk (cN ).

Lemma 4 For every level surface γ (c), for any k ∈{1, . . . ,m}, a projection γNk (c)
either coincides with a hyperplane IRNk (cN ) or dim γNk (c) = nk − 1.

Proof From the first statement of Lemma 3, if dim γNk (c) = nk and γNk (c) �=
IRNk (cN ), then dim γN\Nk (c) = n − nk . It follows that there exist a real ε > 0 and
two points u1 ∈ γNk (c), u2 ∈ γN\Nk (c), such that uε1 = u1 + (εNk , 0N\Nk ) ∈ γNk (c)
and uε2 = u2 + (0Nk , εN\Nk ) ∈ γN\Nk (c). Moreover, by Lemma 1 and Remark 3 ,
u1, uε1, u2, uε2 ∈ γ (c). Consider the admissible transform φ = {φi }i∈N :

φi (t) =
{

t + ε, i ∈ Nk,

t, i ∈ N\Nk .

By (2), W (φu1) = W (φuε2). Then notice that φu1 = uε1 ∈ γ (c). Hence, φuε2 ∈
γ (c). But φuε2 = u2 + εN , whence since u2 ∈ γ (c) and since all level surfaces
γ (c′) for different c′ can be obtained from each other by parallel shifts along Dn ,
φuε2 ∈ γ (c + ε). But for φuε2 ∈ γ (c), the latter is impossible. ��
Remark 9 From Remark 4 it follows that, if for some c and k ∈ {1, . . . ,m}, the
statement of Lemma 3 or of Lemma 4 holds true, then for the same k it holds true
for all c′ �= c.
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Proof of Theorem 1 From Corollary 1 and Lemma 4 it follows that for some
k ∈ {1, . . . ,m}, dim γNk (c) = nk − 1. Moreover, by the first statement of
Lemma 3, this k is unique. Whence together with Lemma 2 we obtain the validity of
Theorem 1. ��
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Making (Non-standard) Choices

Wulf Gaertner

1 Introduction

Imagine a person who, given three alternatives x , y and z, chooses x over y, y over z,
and z over x . This person’s choices definitely are not transitive. What we encounter
instead is a case of cyclical choice. There have been quite a few experiments which
reveal that a non-negligible number of individuals exhibits cycles of binary choice,
for one reason or another.1 Simple mistakes but also a high degree of complexity
of the alternatives at stake have frequently been given as reasons for cyclical choice
behaviour.

A constituent element of the standard model of rational choice is the “weak
axiom of revealed preference” WARP (Samuelson, 1938) which says that if some
alternative x is picked when another alternative y is available, then y is never
chosen from a set of alternatives including both x and y. The WARP axiom is
equivalent to the following requirement: If for two sets X and Y with X ⊂ Y ,
C(Y ) ∩ X is nonempty, where C(Y ) is the choice from Y , then the choice from X
is C(X) = C(Y ) ∩ X (Arrow, 1959).

There is wide agreement that WARP, together with its stronger version, the
“strong axiom of revealed preference” (Houthakker, 1950), and Arrow’s require-
ment are the central consistency conditions of economic behaviour. Individuals who
satisfy either of these requirements are viewed as acting “fully rationally”. The
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1 In an experiment of choice behaviour among gray jays, Waite (2001), reported in Manzini and
Mariotti (2007), finds that all the birds preferred option a to b and b to c, but no bird preferred a to
c, where all alternatives, characterized by (n, l), consisted in getting n raisins at the end of an l cm
long tube, with a = (1 raisin; 28 cm), b = (2;42) and c = (3;56). Apparently, many birds showed an
intransitive choice behaviour in this experiment.
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question then arises how one should describe the behaviour of those agents who
violate these conditions. Are they behaving irrationally?

Sen (1993) has argued that a violation of WARP or Arrow’s condition is by no
means sufficient to claim that an agent’s choices have to be viewed as irrational. Sen
writes that “we cannot determine whether the person is failing in any way without
knowing what he is trying to do, that is, without knowing something external to
the choice itself” (1993, p. 501). Sen makes a distinction between purely internal
grounds which are confined to the choice itself, and the environment or context
within which the choice act has taken place. Here, motivations, goals, and princi-
ples play a role and only when this “external reference” has been specified, does
it become reasonable to discuss the issue of rational versus irrational behaviour. In
the conventional case or the case that standard microeconomics textbooks discuss,
choices are induced by preference optimization and this external reference provides
justification for the conditions described above.

Let us briefly mention some other cases; we shall discuss them in more detail in
the main body of this paper. Consider the following situation depicted by Manzini
and Mariotti (2007). Let there be three alternatives a, b and c. Suppose that c Pareto
dominates a while no other comparisons are possible according to the Pareto cri-
terion. Assume now that the choosing individual considers a to be fairer than b
and b fairer than c. The individual decides first according to the Pareto principle
and only then, when Pareto is not decisive, according to fairness. Consequently, the
individual’s choice function C is such that C({a, b, c}) = {b}. First a is eliminated
by c due to the Pareto principle and then c is eliminated by b due to the fairness
criterion. As the reader can see, two criteria are consecutively applied in this choice
situation.

If we consider binary choices, we obtain C({a, b}) = {a} and C({b, c}) = {b}
due to fairness and C({c, a}) = {c} due to Pareto. So we get a pairwise cyclical
choice pattern as in our very first example and also a violation of WARP since a was
chosen against b while b was picked from a set where both a and b were present.
Or, according to Arrow’s choice axiom, b was chosen from the superset {a, b, c}
but not picked from the subset {a, b}. Can the described choice behaviour be termed
irrational? Obviously not though it violates the standard axioms of rational choice,
i.e., WARP and Arrow’s axiom of choice consistency.

Sen (1993) and Baigent and Gaertner (1996) considered the choice of the second
largest element as the most preferred choice. So let there be three pieces of cake with
a being largest and c being smallest with b lying in between. Then an individual who
has internalized the above principle will choose c from {a, c} and c from {b, c} but
will pick b from {a, b, c}. Such choice behaviour violates Arrow’s choice axiom and
also a condition called expansion. The latter says that if an alternative x is chosen
from a set S and from a set T , then it must also be chosen from S ∪ T . Again, do
we have an instance of irrational choice in front of us? The person who follows the
principle of choosing the second largest and not the largest element would clearly
deny this.

Finally, let us consider a person who always picks the median element (see
Gaertner & Xu, 1999). So let there be seven elements a, b, c, d, e, f and g arranged
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according to their price from highest to lowest. The individual chooses c from
{a, b, c, d, e} and picks c from {a, b, c, f, g} but chooses d from {a, b, c, d, e, f, g}.
The reader realizes immediately that Arrow’s choice axiom is again violated and
also the requirement that we called expansion is not fulfilled. Again, does the indi-
vidual described show any trace of inconsistency?

The purpose of this paper is twofold. First, as has become “visible” above, we
argue that choice situations that do not fulfil the standard rationality conditions by
no means imply that individuals are behaving irrationally. On the contrary, they
are very rational, following particular external references. Second, if the standard
requirements are not satisfied as shown above, the question is which the conditions
are that characterize various types of non-standard behaviour. In other words, how
do the axioms look like that entail such types of choice behaviour?

In Sect. 2 we shall discuss in more detail the three choice functions briefly intro-
duced above. Note again that they all violate the standard axioms of rational choice.
In Sect. 3, we depict other choice functions that are non-standard. Section 4 offers
some concluding remarks.

2 Three Particular Choice Functions

2.1 Sequential Rationalizability

Manzini and Mariotti (2007) have proposed a choice function that they call a ratio-
nal shortlist method which works as follows. It is assumed that a decision maker
uses sequentially two rationales to discriminate among the given alternatives. These
rationales are applied in a fixed order, independently of the set of available alterna-
tives, to remove inferior alternatives. The authors assert that this procedure sequen-
tially rationalizes a choice function if, for any feasible set, “the process identifies the
unique alternative specified by the choice function” (2007, p. 1824). An example of
such a procedure has already been given in the introduction, the first rationale being
the Pareto principle, the second rationale being the fairness criterion.

Let us become more formal now. Let X be a set of alternatives, with at least
three elements. Given S ⊆ X and an asymmetric binary relation P ⊆ X × X , let
us denote the set of P-maximal elements of S by max(S; P) = {x ∈ S : � y ∈ S
with (y, x) ∈ P}. Let χ be the set of all nonempty subsets of X . A choice function
on X picks one alternative from each possible element of χ . In other words, it is a
function C : χ → X with C(S) ∈ S for all S ∈ χ . In the standard model of rational
choice, a choice function C maximizes according to an acyclic binary relation P
such that C(S) = max (S; P) for all S ∈ χ . The new concept by Manzini and
Mariotti uses two asymmetric binary relations P1 and P2 from X × X in order to
eliminate alternatives via two sequential rounds.

Definition 1 (Manzini & Mariotti, 2007) A choice function C is a rational shortlist
method (RSM) whenever there exists an ordered pair (P1, P2) of asymmetric rela-
tions, with Pi ⊆ X × X for i ∈ {1, 2}, such that C(S) = max (max (S; P1); P2)
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for all S ∈ χ . (P1, P2) are said to sequentially rationalize C . Each Pi is called a
rationale.

In the first round the decision maker retains only those elements that “survive”
according to rationale P1. In the second round, he retains only the element that is
maximal according to rationale P2. And this is the final choice. The authors empha-
size that it is crucial that the rationales and the sequence in which they are applied
are invariant with respect to the choice set. Note that in the authors’ example with
the Pareto condition and the fairness requirement, discussed in the introduction, the
outcome of the two-stage procedure would be different if the fairness criterion had
been applied first.

We now introduce a more formal definition of the weak axiom of revealed pref-
erence.

Definition 2 WARP. If an alternative x is chosen when y is available then y is
not chosen when x is available. More formally, for all S, T ∈ χ : [{x} = C(S),
y ∈ S, x ∈ T ] → [{y} �= C(T )].

WARP is a necessary and sufficient condition such that choice is rationalized
by an ordering (a complete and transitive binary relation). Note again that WARP
is violated both by the criterion of choosing the second largest element and by the
method of picking the median element, and is not satisfied by RSM either.

Definition 3 Weak WARP (Manzini & Mariotti, 2007). If an alternative x is chosen
both when only y is also available and when y and other alternatives {z1, . . . , zk}
are available, then y is not chosen when x and a subset of {z1, . . . , zk} are available.
Formally, for all S, T ∈ χ : [{x, y} ⊂ S ⊂ T, {x} = C({x, y}) = C(T )] → [{y} �=
C(S)].

Note that the maxim of picking the second largest element satisfies Weak WARP.
However, the choice of the median violates this condition. This can be seen from
the following example. Let there be seven elements q, v, w, x, y, z, and r with q
having the highest price and r having the lowest. Let us further assume, without loss
of generality, that in the case of only two objects, the higher priced object is chosen.
Then C({x, y}) = {x},C({q, v, w, x, y, z, r}) = {x} but C({w, x, y, z, r}) = {y}.

Let us next formally define the expansion condition which was already described
in the introduction.

Definition 4 Expansion. An alternative which is picked from each of two sets is also
chosen from their union. Formally, for all S, T ∈ χ : [{x} = C(S) = C(T )] →
{x} = C(S ∪ T )].

The following result now holds.

Result 1 (Manzini & Mariotti, 2007) Let X be any (not necessarily finite) set. A
choice function C on X is an RSM iff it satisfies Expansion and Weak WARP.

As already mentioned, both the principle of picking the second largest element
and the principle of choosing the median do not satisfy the expansion condition.
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Both rules focus on positions and therefore, the choice may change when the menu
changes. Picking the largest element or the smallest element as the best choice
would always satisfy Expansion.

Consider the following weakening of the expansion condition. Manzini and
Mariotti call it “always chosen”.

Definition 5 Always Chosen. If an alternative is chosen in pairwise choices over all
other alternatives in a set, then it is chosen from the set. Formally, for all S ∈ χ :
[{x} = C({x, y}) for all y ∈ S − {x}] → [{x} = C(S)].

A binary cyclical choice pattern was manifest in the example with the two criteria
of Pareto and fairness. The following property excludes such cycles.

Definition 6 No Binary Cycles. There are no pairwise cycles of choice. Formally,
for all x1, . . . , xn+1 ∈ X : [C({xi , xi+1}) = {xi }, i ∈ {1, . . . , n}] → [{x1} =
C({x1, xn+1})].

Manzini and Mariotti assert that the class of choice functions that do not satisfy
WARP can be classified in the following way. There are three subclasses: choice
functions that violate exactly one of No Binary Cycles or Always Chosen, and those
that violate both. Therefore, the following result can be formulated.

Result 2 A choice function that violates WARP also violates Always Chosen or No
Binary Cycles.

The rational shortlist method can be generalized to more than two rationales.
Manzini and Mariotti call this sequential rationalizability.

Definition 7 (Manzini & Mariotti, 2007) A choice function C is sequentially ratio-
nalizable whenever there exists an ordered list P1, . . . , Pk of asymmetric relations,
with Pi ⊆ X × X for i ∈ {1, . . . , k}, such that, defining recursively,

Mo(S) = S,Mi (S) = max(Mi−1(S; Pi )), i ∈ {1, . . . , k}, we have C(S) =
Mk(S) for all S ∈ χ .

We say that (P1, . . . , Pk) sequentially rationalize C ; each Pi is called a rationale.

For each S, there are sequential rounds of elimination of alternatives. At each
round, only those elements that are maximal according to a round-specific rationale
carry over to the next round. Again, the rationales and the sequence are invariant
with respect to the choice set.

Result 3 (Manzini & Mariotti, 2007) If a choice function is sequentially rationaliz-
able, it satisfies Always Chosen.

The intuition behind this result is very simple. If an alternative x , let’s say, sur-
vives in binary contests on each stage i , given rationale Pi , i ∈ {1, . . . , k}, then it
eliminates all the other alternatives and is eliminated by no other rationale. So it is
always chosen.

Since WARP is violated if there is a binary cycle, the following result follows
from Results 2 and 3.
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Result 4 (Manzini & Mariotti, 2007) A sequentially rationalizable choice function
violates WARP iff it exhibits binary cycles.

Manzini and Mariotti call the violations of Always Chosen and No Binary Cycles
two elementary pathologies of choice to which “all violations of ‘rationality’ can be
traced back” (2007, p. 1832). Since the principle of choosing the second largest
element as well as the maxim of picking the median element both violate Always
Chosen, they cannot be sequentially rationalizable. Furthermore, they reveal an ele-
mentary pathology of choice according to the two authors. Do they really? We shall
look at them more closely in the following two sections.

2.2 Picking the Second Largest

Baigent and Gaertner (1996) were the first to characterize axiomatically the choice
of the second largest element (or piece of cake, if you wish), thereby following
an example by Sen (1993) expressing a norm of politeness or the attitude of not
being too greedy. Let q denote a linear order on X ; q can be seen as representing
the relevant “quality” – ordering over the given set of alternatives. In other words,
q may represent an ordering in terms of size or length (from highest to lowest,
let’s say), in terms of a specified quality such as speed or acceleration, and so on.
In contrast to the authors’ original approach and for reasons of simplification, we
only consider objects of unequal size or length, for example. Therefore, a linear
ordering (complete, transitive and asymmetric) will do. Now in order to characterize
the choice of the second largest, let M(S, q) denote the maximal elements of S ∈ K
according to q, where K is the set of all subsets of X , including the empty set.
So in contrast to the analysis in Sect. 2.1, we shall also consider situations where
the choice set will be the empty set. We shall be more specific in due course. Note
that according to our assumption above, M(S, q) is always unique. The standard
approach of optimization would now postulate that for all S,C(S) = M(S, q). The
Baigent–Gaertner–Sen choice function in contrast is, for all S ∈ K ,

C(S) = M(S − M(S, q), q). (1)

This means that if there are m elements arranged by q according to size, let’s say,
the maximal element is deleted from S and in a second step, the maximal element
is chosen from the remaining m − 1 objects. Note that according to its construction,
C(S) is the empty set for one-element sets and C(∅) = ∅.

The characterization that we now present is not the original one from the
Baigent–Gaertner article but a more recent one proposed by Xu (2007). It is some-
what simpler and also differs from the earlier one in so far as choice sets can be
empty, as mentioned above. Here are the axioms.

Definition 8 Emptiness of Singleton Choice Situations (ESCS).
For all x ∈ X,C({x}) = ∅.
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Definition 9 Non-Emptiness of Non-Singleton Choice Situations (NENCS). For all
S ∈ K with �S ≥ 2,C(S) �= ∅.

Definition 10 Constrained Contraction Consistency (CCC). For all S ∈ K with
�S ≥ 3, there exists s∗ ∈ S with {s∗} �= C(S) such that, for all S1, S2 ⊆ S, if
s∗ ∈ S1 ⊆ S2 and C(S2) ⊆ S1, then C(S1) = C(S2).

Definition 11 Anti-Expansion (AE). For all distinct x, y, z ∈ X , if {x} = C({x, y})
= C({x, z}), then {x} �= C({x, y, z}).
Definition 12 Consistency of a Revealed Norm (CRN). For all S ∈ K and all x ∈ S,
if {x} �= C(S) and {x} �= C({x ∪C(S)}), then, for all y ∈ S −{x}, {x} �= C({x, y}).

Let us give some brief explanations of the five axioms above. ESCS just states
that the choice from single-element choice situations is “choosing nothing” or
abstaining from picking the only element that is given. It may be another expression
of politeness. This is in conformity with Sen’s (1993) example of not choosing the
last apple in the fruit basket. Where there is more than one apple left, NENCS says
that a “genuine” choice will be made.

Axiom CCC is a contraction consistency condition in the vein of Arrow’s (1959)
requirement of choice consistency, though weaker. It says that if there is some focal
alternative s∗ that is not chosen from the grand set (for example, the largest object),
and this alternative is also included in subsets S1 and S2, then the choice from S2,
if it is contained in S1, is also the choice from S1. Note that the latter part of this
argument is what Arrow required in his consistency condition.

Definition 11, i.e. Anti-Expansion, is the opposite of Expansion in Definition 4,
here defined in a binary way. An element that is picked in all binary contests is not
chosen from the union of these elements. Finally, axiom CRN requires that if an
element x is not picked from set S, neither from a set which consists of x and the
chosen element from S, then x should not be chosen in any pairwise contest between
itself and any element from S.

Here is Xu’s (2007) characterization.

Result 5 A choice function C that reflects the norm of never picking the largest
element is in this sense rationalizable iff it satisfies axioms ESCS, NENCS, CCC,
AE and CRN.

Given the Baigent–Gaertner–Sen choice function in (1), any choice function C on
X is rationalizable according to (1) iff there exists an ordering q on X that satisfies
(1).

Does the choice function just characterized show any signs of elementary pathol-
ogy? If the expansion condition or its weakening, viz. Always Chosen, are viewed
in such a way that any violation of either of these two requirements is pathological,
then the answer should definitely be “yes”. On the other hand, the norm which is
behind the maxim of never choosing the largest element as the first best choice is
very clear and intuitive, though not every agent is, of course, supposed to follow
this rule. The anti-expansion axiom mirrors a fundamental feature of this choice
behaviour, viz. that the individual position of objects within an overall arrangement
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of these objects counts. The addition as well as subtraction of alternatives matters a
lot, and does change an individual’s choice, a feature that will also become manifest
in the third choice function that we shall discuss now.

2.3 The Choice of the Median Element

Gaertner and Xu (1999) offered a characterization of the choice of the median as
the best alternative. Picking the median makes a lot of sense in various contexts.
Choosing a median-priced gift manifests a good balance between the extremes of
appearing as a miser and showing off. The pursuit of balancedness can be found
in classic Chinese philosophy. However, as mentioned at the end of our introduc-
tion, picking the median-sized element violates Arrow’s consistency requirement
and Expansion.

Let us again become more formal. We assume that q once more represents the
relevant “quality” – ordering over a given set of alternatives. For example, q linearly
orders the party spectrum from left to right (or right to left, if preferred); q may order
objects according to their price or size or weight.

For all S ∈ χ , the set of all nonempty subsets of X , and all x ∈ S, we define
U (x, S, q) = {a ∈ S : aqx}, and
L(x, S, q) = {a ∈ S : xqa}.

Then, for all S ∈ χ , define G(S, q) as

{ {x ∈ S : |U (x, S, q)| = |L(x, S, q)|}, if |S| is odd,
{x ∈ S : |U (x, S, q)| − 1 = |L(x, S, q)|}, if |S| is even.

(2)

|S| stands for the cardinality of set S. Note that in the case of an even number of
objects, there are two median elements “theoretically”. In the original Gaertner–Xu
paper we defined both these elements as median elements. In the present version,
a decision in the sense of uniqueness is made, defining the right of the two objects
as the median element. We now wish to say that a choice function is median-type
rationalizable iff there exists a linear ordering q on X such that C(S) = G(S, q),
for all S ∈ χ .

Again we do not present the original set of axioms put forward by Gaertner and
Xu (1999), but use the recent set of axioms from Xu (2007).

Definition 13 Non-Emptiness of Singleton Choice Situations (NESCS). For all x ∈
X,C({x}) = {x}.
Definition 14 Independence of Rejected Alternatives (IRA). For all S ∈ χ with
#S ≥ 3, there exist distinct x, y ∈ S such that C(S) ∩ {x, y} = ∅ and C(S′) =
C(S′ − {x, y}) for all S′ ⊆ S.

Definition 15 Minimal Consistency of Rejection (MCR). For all distinct x, y, z ∈
X , if {x} �= C({x, y, z}) and {x} �= C({x, y}), then {x} �= C({x, z}).

These three axioms together with two earlier ones from Sect. 2.2 will give us our
result. But before that, let us briefly explain the new axioms.
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Axiom NESCS says that the choice from a singleton set is always the single
element. Axiom IRA states that in the case of at least three alternatives, there is
always a pair of alternatives that is choice-irrelevant (i.e. each of them is never
chosen) and this also holds for all subsets of the considered set. Axiom MCR spec-
ifies that if x is rejected from a triple of alternatives, it is also rejected in pairwise
contests.

Here is the characterization result given by Xu (2007).

Result 6 A choice function C that reflects the norm of picking the median element
is in this sense rationalizable iff it satisfies axioms NESCS, NENCS, AE, IRA and
MCR.

We see that the characterization results 5 and 6 have two axioms in common,
and it is the anti-expansion condition in particular to which we want to draw the
reader’s attention. We mentioned earlier that the maxim of picking the median ele-
ment neither satisfies the latter condition nor Manzini and Mariotti’s Weak WARP
axiom. The issue of pathology comes up again. By no means do we want to claim
that the two rules from the present and preceding section are THE rules to follow.
But making a balanced choice is a deeply rooted principle that looks for the center
of gravity, as advocated by the Confucian school. So many people seem to have
internalized it in order to apply it under various circumstances. And, fortunately,
many people follow certain rules of modesty and politeness.

3 Some Other Non-Standard Choice Functions

Does non-standard choice “automatically” mean that one of the standard rationality
or consistency conditions is violated? Not necessarily. Consider, for example, the
so-called “Mother Teresa” choice function.

If q again stands for the relevant “quality” – ordering over a given set of objects,
let’s say that q orders the elements according to their size or weight or value, a per-
son who always picks the lowest or smallest object according to q perfectly satisfies
the standard consistency condition. WARP and Arrow’s consistency requirement are
“easily” fulfilled.

Consider a choice procedure where at stage 1, the largest and the smallest ele-
ments according to ordering q are eliminated, and where at stage 2 the then largest
element is picked. This two-stage choice procedure does not satisfy Arrow’s con-
sistency as can be seen from the following example. Let S = {a, b, c, d, e, f, g}
with a being largest and g being smallest according to q. Then elements a and g
are deleted at stage 1 and b is picked at stage 2. Next, consider S′ = {b, c, d, e, f }.
Elements b and f are now deleted at stage 1 and c is chosen at stage 2. Clearly, b
which was chosen from S is still available under S′ but not picked.

Recently, Salant and Rubinstein (2008) considered various choice functions
“with frames” which they call extended choice functions. A frame represents
“observable information that is irrelevant in the rational assessment of the alterna-
tives, but nonetheless affects choice” (2008, p. 1287). A frame can be a status-quo
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bias, an aspiration level or a deadline for making a choice. In the latter case, the
decision maker needs time to process the information relevant to each alternative
available for choice. However, a deadline has been set before which the choice has
to be performed. In the sequel, we consider a choice procedure which is based on
two orderings, viz. an attention ordering and a preference ordering.

The attention ordering O with respect to X , the set of alternatives, determines
the objects the decision maker focuses on. The preference ordering P represents the
decision maker’s preferences. Given (A, n) where n is the number of objects the
decision maker can actually consider, the decision maker chooses the best element
according to P among the first min {n, |A|} elements in A based on ordering O .

Salant and Rubinstein formulate three properties that characterize the class of all
extended choice functions Co,p(A, n).

Definition 16 Attention 1. If C({a, b}, 1) = a, then for every set A that contains a
and b, C(A, 1) �= b.

This property says that if alternative a is more accessible to the decision maker
than object b, then for every set A that contains a and b, the decision maker will not
pick b if the amount of attention devoted to the choice problem is small.

Definition 17 Attention 2. If C({a, b}, 2) = a, then for every set A, C(A, |A|) �= b.

This property states that if object a is picked when the decision maker considers
both a and b, then for every set A that contains a and b, the decision maker will not
choose b when he considers all the elements of set A.

Definition 18 Attention 3. If C(A, k) = a and C({x, y}, 1) = y for every y ∈ A,
then C(A ∪ {x}, k) = a.

This property says that adding an element x to a set A, where x is less accessible
than all the elements of A, does not alter the choice as long as the amount of attention
k, devoted to the deliberation process remains constant.

Note that for this class of extended choice functions, the two relations P and
O are treated completely symmetrically though P expresses the preferences of the
decision maker and O merely reflects the degree of attention devoted to the choice
procedure. Note also that this class of choice functions violates Arrow’s consis-
tency condition. If for three elements x, y and z, we have x OyOz but z Py Px , then
C({x, y, z}, 2) = y, while C({y, z}, 2) = z.

4 Concluding Remarks

In the foregoing sections, we discussed a larger number of – what we have called –
non-standard choice functions which except for the Mother Teresa choice function
have the property that standard consistency conditions are violated. Are simple
mistakes or a high degree of complexity of the underlying options the reason for
this? Not at all. We argued that all these choice functions appear reasonable under
specified circumstances.



Making (Non-standard) Choices 135

We would like to make it very clear that standard utility maximization plays a
very productive role in certain environments, for example in consumer theory when
commodities are narrowly defined. If what counts are the characteristics of certain
consumer goods, characteristics which are clearly identifiable and measurable and
not properties such as the last apple in a fruit basket or the largest or the most
gorgeous piece of cake or the shiniest chair at a garden-party, then ordinary utility
maximization can be the appropriate tool. This is so because the external reference
is confined to the derivation of a maximum amount of “utils” generated by different
combinations of commodity characteristics. We would never claim, for example,
that choosing the median element in such situations makes a lot of sense. How-
ever, when individual-based internalized norms or societal norms play an impor-
tant role, the picture can change drastically as we have seen. Unfortunately, since
there exists a multitude of norms of different kinds, it appears highly unlikely that a
larger set of properties will be satisfied by all choice functions based on norms (see
Baigent, 2007).

At the end of this paper, we would like to add one more thought. We have
described the individual alternatives for choice in a narrow sense. So if one set
of objects contains two identically looking apples and the second set just contains
one of these apples and not the other, we have “tacitly” assumed that the latter is
a strict subset of the former. Consider the following situation where the host of the
evening presents a basket S containing two identical pears and two identical apples
to one of his guests, i.e., S = {p, p; a, a}. Assume that the guest picks one of the
apples so that {a} = C(S). Now reduce the fruit basket from S to S′ such that
S′ = {p, p; a}. If the guest now picks a pear, i.e., {p} = C(S′), Arrow’s contraction
consistency condition is violated since a ∈ S′ ⊂ S, a ∈ C(S), but {p} = C(S′).
If, however, the last or only apple in set S′ is considered to be essentially different
from one of the two identically looking apples in S, we do not have S′ = {p, p; a}
but S′′ = {p, p; â} so that it is no longer true that S′′ ⊂ S. Object â is different from
a ∈ S since â is the only apple left in the fruit basket. If alternatives are defined
in such a comprehensive way, one can argue that for a given set S, there are no
proper subsets at all. Each set S′ which no longer contains one or several elements
from S is a set of its own, with new characteristics so to speak. Apple a as the last
remaining apple in the fruit basket and apple a among several identical apples are
no longer the same. Clearly, in such a world, contraction and expansion consistency
conditions are trivially satisfied. Comprehensively describing alternatives or states
of the world can be done, if at all, without any clearly defined limits but to say the
least, this is not the path that general economic analysis pursued in the past (see also
Baigent & Gaertner, 1996, p. 241).
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Puzzles and Paradoxes Involving Averages:
An Intuitive Approach

Scott L. Feld and Bernard Grofman

1 Three Insights into Aggregation

Before we proceed to a discussion of specific issues involving weighted averages,
we wish to make two broad points derived from our reading of the aggregation
literature, and then state the third insight that is at the heart of this essay

Insight 1: if data is broken into different pieces, the properties of the whole may
be different from a summation performed on each of its parts, and exactly how we
divide something into parts can matter a great deal.

Here we are not making any kind of metaphysical claim about “emergent prop-
erties.” Rather we are simply observing that how we divide things up into pieces
matters for the results, and, thus in particular, aggregating information from some
of the possible piecewise divisions need not give us the same result as looking at the
whole.

Most of the social choice discussion of this insight involves properties of majority
rule and related voting rules such as so-called paradoxes like the paradox of cyclical
majorities, Hillinger’s paradox, Anscombe’s paradox, Ostrogorski’s paradox, the
referendum paradox, and the paradox of compound elections (see e.g., Saari, 1994,
1995; Nurmi, 1999; Saari & Sieberg, 2001). But in this essay we will be looking
at the majority rule preference aggregation process only in passing. Instead, we
will illustrate the insight above with a familiar mathematical operation, the median,
since this illustration makes many of the same points, but without the “philosophic
baggage” that comes with discussing terms like democracy or majority rule.

Consider the sequence of numbers 1 through 9. The median is, of course, 5. If we
take these nine numbers and divide them into the three sets of three numbers each:
{1, 2, 3}, {4, 5, 6} and {7, 8, 9}, the three medians are 2, 5, and 8, and thus the
“median median” is again 5. But now, divide the set into groups as {1, 2, 3}, {4, 6,
8} and {5, 7, 9}. Now the medians are 2, 6 and 7, and so the median median is 6. We
can also readily create groups whose median median is 4, e.g., {1, 2, 5}, {3, 4, 6}
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and {7, 8, 9}. The alert reader will notice, however, that there are constraints on how
far away the median median can be from the overall median in this example, and we
can work out the mathematics to define those constraints.

It is useful to consider the limiting case. Imagine a very large set from 1 to n, n
odd, to be divided into k still very large equally sized pieces, with k a divisor of n,
such that each piece has s = n/k elements, with s also an odd number.1 Let us put
the s(k − 1)/4 smallest numbers into the first (k − 1)/2 pieces, and let us put the
next s(k − 1)/4 smallest numbers into the remaining (k − ((k − 1)/2) = (k + 1)/2)
pieces, with the same number of elements in each piece. Now none of the smallest
s(k − 1)/2 elements can be a median median, since the median median will be a
median in the last set of pieces, and in each of those the median element must be
some element with a larger value, since a minority of the elements in each such piece
come from the smaller numbers. But, with this “trick” in mind we can construct
a partition in which the median median is simply the median among the largest
(sk − (s(k − 1)/2) = s(k + 1)/2) numbers. But that means that, for n large, we can
construct examples where the median median is ((n + 1)/2+ n)/2 = (3n + 1)/4 ∼=
3n/4. In a similar manner, we can work out a partition in which the median median
is ((n + 1)/2 + 0)/2 = (n + 1)/2 ∼= n/4.

More generally, we can “force” the median median to be (essentially) any number
in the range from the first quartile to the third quartile in the distribution by choosing
our partition appropriately. (With small n and k values we cannot quite get to these
limits, as shown in the example we looked at earlier.)

Insight 2: the results we get when some portion of the information about the data
is not available to us, need not be the same as when we have all the data to examine.

What we have identified as insight 2 seems like such an obvious point that one
might wonder why we have listed it as a fundamental insight. But in fact there are
examples where we can get unexpected insights from realizing this simple point
(though usually only after doing a lot more thinking and sophisticated theoremizing
about its implications).

Consider, for example, the work of van der Hout, de Swart and ter Veer (2006).
They axiomatize properties of pure list systems of proportional representation in
terms of what they call the plurality ranking rule, namely one which “assigns to
each combination of individual preference orderings of the parties a social order-
ing of those parties, where a party higher (receives more seats) when it is the first
preference of more voters (receives more first votes)” (2006, p. 460) They look
at a property they call consistency which says, very roughly speaking, that if a
party “does better” in two disjoint subsets than does another party, then it should
still do better than the other party when the subsets are combined into one, a key
question in studying aggregation. They prove some theorems about what kinds of
procedures satisfy consistency and some other properties generally thought to be
normatively desirable such as neutrality, anonymity, and faithfulness (which looks

1 We restrict ourselves to odd numbers so as to avoid complications caused by finding the median
for an even number of cases.
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at what would happen if there is only one voter, and requires that that voter’s prefer-
ences be honored). For present purposes, however, their most important result has to
do with party fragmentation. Roughly speaking, they show (2006, p. 466) that only
proportional representation rules that make use of only first preference information
are party fragmentation proof, i.e., such that splitting a party into two separate lists
can never improve its summed seat allocation. Thus, they argue that a normative
case can be made for rules that “throw away” information.2

On the other hand, Saari (1994, 1995) has made a strong case for the Borda rule to
be used in choosing a single winner because that rule is the most attractive of all the
“scoring rules” and scoring rules, unlike pairwise comparisons, take into account the
entire structure of voter preferences and do not “throw away” information by only
looking at pairwise comparisons. Moreover, by recognizing that pairwise compar-
isons throw away information, Saari argues that results such as Arrow’s Theorem
which require the condition of independence of (so-called) irrelevant alternatives,
should not be regarded as either paradoxical or problematic for democratic theory.

Insight 3: while the whole is not the simple sum of its parts, sometimes we can
reconstruct the whole from the parts by appropriately weighting the parts.

2 Parts and Wholes

How can it be that most households in the United States are headed by unmar-
ried adults, yet most adults are married? How can family income be going down
even though per capita income is going up? How can standardized achievement test
scores (e.g. SAT scores) be going down over time even though the scores of every
racial and ethnic group taking the test is going up? How can most people think that
roads are crowded even though most of the time there may be hardly any cars on
the road? How can it be that most classes at a university are small and yet nearly all
the students find that most of their classes are large? How can George Bush win the
Electoral College even though he got fewer votes than his opponent?

It might appear as if these puzzles have nothing in common. Certainly, they deal
with totally different substantive arenas. Yet, as we show below, each of these appar-
ent paradoxes can be resolved by understanding the notion of average in two differ-
ent ways, (1) as an average over a whole, and (2) as an averaged average, i.e., an
average over a set of parts. Since these parts are not necessarily equal to one another,
we may think of an “averaged average” as a “weighted” average – where the weights
are related to the relative sizes of the parts. The two types of averages, weighted and

2 I might also note that, when van der Hout, de Swart and ter Veer (2006) use the term ‘plurality
ranking rule’ to characterize list PR the implicit linkage they draw between plurality voting rules
and list PR voting is at odds with how these systems are commonly treated in political science.
In the electoral systems literature, with only a handful of exceptions (see Kurrild-Klitgard, 2008;
Grofman, forthcoming) list PR systems and plurality systems are regarded as at opposite ends of
a proportionality continuum, and their great similarity in focusing on only first place preferences
tends to be overlooked.
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unweighted, need not coincide and, indeed, can be very far apart.3 Each type of
average gives us a different “perspective” that helps us make sense of the world.4

2.1 Types of Households

How can we explain that almost half of the households in the United States are
headed by unmarried adults, yet most adults are married? Well, it’s not really very
complicated once we realize that every marriage has two partners. Consider a simple
example: suppose that there are 15 single adults and 10 married couples, composing
25 households in a very small town. Here households either contain single persons or
married persons. The majority of households (15/25) are headed by single people,
but the majority of the people are married and dwelling in households headed by
married people (20 married out of 35 adults). We can think of this in weighted
average terms as follows: if we count people, then most are married; if we look at
units (households), then to convert back to people we must weight the proportions
of household containing married persons by the number of married persons in such
households, and then normalize by the ratio of households to people (25/35). In
other words, the proportion of adults who are married

= 20/35

= (2∗10 + 0∗15)/35

= 2∗(10/25)∗(25/35)+ 0∗(15/25)∗(25/35).

So to convert back from averages based on units, here the proportions of units
headed by a married person, to an average for the society as a whole, here the

3 Because Simpson (1951) was perhaps the first to clearly state the apparent paradox of differ-
ent outcomes for averages (or other features) of parts and whole, compositional paradoxes of
the sort we review here are often known generically as Simpson’s paradox (see e.g., Wainer &
Brown, 2004). However, the statistical intuition goes back at least as far as Yule (1903), and the
basic intuition has been well known for hundred of years, showing up for example in Eldbidge
Gerry’s manipulation of constituency boundaries in early 19th century Massachusetts to yield a
majority of the seats with less than a majority of the votes, a now classic instance of what has of
what has come to be called in the U.S., in Gerry’s (dis)honor, the gerrymander. Nurmi (1999) refers
to gerrymandering as a special case of what he calls the referendum paradox. We prefer to think of
both gerrymandering and the referendum paradox as special cases of paradoxes involving weighted
averages, and thus as special cases of what we might think of as the generalized Simpson’s paradox.
(See also our earlier discussion of compositional effects involving the median.) There are numerous
essays that touch on Simpson’s paradox. Some look at how Simpson’s paradox is related to causal
inference (in particular, the problem of confounding variables: see e.g., Pearl, 2000), or at other
statistical issues (see e.g., Blyth, 1972; Samuels, 1993), while some look at instances of the paradox
in various substantive domains (see e.g., Baker & Kramer, 2001; Wainer, 1986).
4 Also, depending upon how we weight there can be different types of weighted averages for the
same data.



Puzzles and Paradoxes Involving Averages 141

proportion of married persons in the society, we weight the units containing married
persons by 2∗(25/35) and we weight the units containing unmarried persons by
0∗(25/35).

Note that we are not claiming that one type of average is correct and the other
wrong. A sociologist studying marriage and divorce would certainly need to know
the proportion of people who are married. For real estate agents, on the other hand,
the fact that most households are headed by unmarried adults is what matters,
because that tells them an important fact about the mature of the clientele for real
estate rentals and sales.5

2.2 Family and per Capita Income

How can family income be going down even though per capita income is going up?
Well, once again the key is to understand that units (here families) come in different
sizes. Imagine a simple world. In the beginning, there are 15 families of mean size
six, giving us a population of size 90, and average per capita income is $5,000. Here,
average family income is $30,000. Some years later, there are 25 families of mean
size four, giving us a population of 100 persons, and average per capita income is
$7,000. In this second time period, average family income is $28,000. Even though
society is getting much richer – in the sense that total GDP has gone up by 56%
(from $450,000 to $700,000) and per capita income has increased by 40% – if we
look at families they appear poorer. Why is that? Well, basically families are smaller
in period two than they were to start, so when we convert per capita income to family
income we would need to take into account family size.

We can again think of this in weighted average terms as follows: to convert from
family income to per capita income, we simply weight family income by the ratio
of families to persons. In other words, per capita income in time one

= $5,000

= ($30,000)∗(15/90).

Similarly, per capita income in time two

= $7,000

= ($28,000)∗(25/100).

Once again both per capita income and family income are meaningful numbers.
But, if we compare family incomes for time periods when families are very different
in average size, we are in effect, comparing apples and oranges. Also, if per capita

5 Also relevant to real estate agents is the average size of household. We would expect average size
of household to differ between households head by someone married and those not.
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income is increasing, but family size is going down at an even faster rate, so that
the ratio of per capita income to persons per family declines, then we will observe a
decline in family income even though the society may well be getting richer (as in
the example above)! So we must be very careful to understand why the two indices
of income don’t need to go up (or down) in sync.

2.3 Standardized Test Scores

How can SAT (standardized test) scores be going down even though the SAT scores
of every racial and ethnic group taking the test is going up? Well, what we have
here is a compositional effect that can easily be understood in terms of weighted
averages. The average SAT score is given by the scores of the various groups taking
the test multiplied by (i.e., weighted by) the proportion of test takers coming from
that group.

Consider a simplified world where we divide test takers into two groups, His-
panic and non-Hispanics and compare two different points in time. Imagine that,
the SAT test scores for both Hispanics and non-Hispanics increased from time
one to time two, but that in both periods the SAT scores of Hispanics are lower
than those of non-Hispanic test takers. Imagine further that the proportion of His-
panic test takers increased between the two test periods. To make this example
concrete, let us imagine that, at time one, Hispanic SAT Verbal scores are, say,
500, while non-Hispanic SAT Verbal scores are 600, and that 5% of the test-
takers are Hispanic; while at time two, Hispanic SAT Verbal scores are 520 and
non-Hispanic SAT Verbal scores are 610, but now 20% of the test-takers are His-
panic. The mean SAT score in the first period is 0.95∗600+0.05∗500 = 595;
while the mean SAT score in the second period is 0.8∗610+0.2∗520 = 592.
How could average scores in to go down even though performance within each
group of test-takers was going up? Well, quite simply, a higher proportion of
the lower test-scoring group was now taking the exam. Overall average scores
here are given by the weighted average of the scores of each of the groups tak-
ing the test, with the weights the proportion of test takers coming from that
group.

There are numerous variants of this kind of compositional effect. Imagine, for
example, that in a given university, within each graduate department, men and
women are equally likely to be accepted relative to their proportions in the applicant
pool. Yet overall, it still might be the case that, say, more women than men are
accepted to the university if women and men do not apply to all departments in
equal proportions, and if the acceptance rate is higher in the units where mostly
women are applying. We can even construct hypothetical examples in which the
GPA (or GRE) score of students who are not admitted for graduate study in a given
university is higher than the GPA (or GRE) of students who are accepted to that
university All we need to do is to find a case in which the departments that admit
(substantially) more students have (substantially) lower thresholds of acceptance in
terms of undergraduate GPAs or GREs.
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2.4 Crowded Roads

How crowded are the roads? Well, if we took a snapshot of the roads at various times
of day, we would find that a large part of the time the roads are (nearly) empty, and,
thus, from this perspective, we would probably conclude that, on average, roads
weren’t very crowded. But now look at things from the perspective of the drivers.
When they are out, it is likely that they will be on the road when it is crowded; thus,
most drivers will experience crowded roads.

To see how this works imagine a very simplified example. Imagine that the roads
are either empty, which they are 22/24ths of the time, or every driver is on the road
(rush hour, coming and going), which occurs 2/24ths of the time. Now the average
crowdedness of the roads is 8.3% relative to the total number of cars that might be
there (= 1∗ 2/24 + 0∗22/24), but every driver thinks the roads are 100% crowded
because that is their only experience! When the roads are empty there are no drivers
on the road to experience that emptiness!

2.5 Class Sizes

Assume, for simplicity, that, at a given university, each of its m faculty teaches the
same number of courses, say k, and that the total enrollment in all courses taught
in some semester is E. Clearly we have n, the number of courses, equal to mk. The
average class taught by faculty, s̄, thus contains E/n students. It must also be the
case that, if the ith class is of size si , then

s̄ = � si/n. (1)

But, how large is the class size experienced by the average student? Well, if
the ith class is of size si , then exactly si students experience a class of that size.
Thus, the average class size experienced by students is the student-weighted class
average, i.e.,

� s2
i /� si . (2)

In general, these two numbers, weighted and unweighted averages (given by
Eqs. (1) and (2) respectively), will not be the same, and they can be very far apart.
Feld and Bernard (1977) used data from the classes at the State University of New
York at Stony Brook to analyze this ratio for several different majors and for the
university as a whole. For example, for the university as a whole, classes had a mean
size of 40.5 with a standard deviation of 65.8. While faculty thought (correctly) that
they were teaching classes with an average of just under 41 students in each, students
thought (correctly, as well) that they were taking classes which averaged over 150
students!6 {See text box below for mathematical details.)

6 See also Feld and Grofman (1980).
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The well known Herfindahl-Hirschman (H-H) index of concentration
(Hirschman, 1945; Herfindahl, 1950; cf. Taagepera & Grofman, 1981),
1 − � p2

i , is a special case of a weighted average. In effect it is simply a
size-weighted average, i.e., if the proportions in each of the various units are
given by pi , then the H-H index gives the average proportion weighted by
itself, and then subtracted from one. Here, the larger the size of the bigger
components in the distribution the smaller will be the H-H index. The paradox
of class sizes discovered by Feld and Bernard (1977, 1980) is closely related
to the Herfindahl-Hirschman index.

While the Feld and Bernard (1977) calculations are in terms of raw num-
bers, it is easy to convert their formulae to percentages. In particular, if we
divide through by E , the total enrollment, then we get the average class size
as a proportion of total class enrollment, p̄, as being given by

p̄ = � pi/n = 1/n. (1′)

Similarly, the class size proportion experienced by the average student is
given by

� p2
i /� pi = � p2

i (2′)

Feld and Grofman (1980) show that R, which is the ratio of Eq. (2) to (1),
or of Eq. (2)′ to (1)′, is given by

R = 1 + σ 2/μ2. (3)

Thus, the class size paradox (and also, we should note, the H-H index)
can be directly linked to familiar ideas in statistics; namely the mean and the
variance of a distribution (cf. Feld & Grofman, 2007).

A professor with a six course load who finds herself teaching, say, six classes
with 75 students each may think it better to teach one 400 person class to allow her
to offer five seminars to 10 students each. However, in her “improved” situation,
almost all her former students (400 of the 450) are enrolled in a 400-person class,
and the average class size from the perspective of the students is a whopping 356,
even though the professor sees herself with the same average class size she had
before, namely 75 students per class! Many universities, in part at the urging of
their faculty, have “changed” their course offerings in this way, apparently without
recognizing the very large consequences for their students, who see themselves at
a multiversity despite the seemingly large number of small seminars the faculty
(correctly) insist are being offered the student body!
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2.6 Bush v. Gore: The 2000 US Presidential Election

In addition to the claim that George W. Bush (and/or the U.S. Supreme Court) stole
the election from Al Gore because of what happened in the Florida recount process,
a frequent claim about the 2000 US presidential election has been that Bush won
the Electoral College vote despite Gore having won a plurality of the popular vote
because of the biases in the Electoral College introduced by overweighting the small
states. The Electoral College is a form of weighted voting, with states as units.
Each state gets a number of Electoral College votes equal to the combined size
of its House and Senate delegations. Of course, while House seats are allocated
proportional to a state’s population,7 each state gets two Senate seats regardless of
population.

It is true that, in the 2000 presidential contest, Bush did better than Gore in
the smallest states, and Gore did better than Bush in the largest states,8 which
makes blaming the discrepancy between Electoral College and popular vote out-
come plausible.9 But even if (a) states were equipopulous and (b) each state’s share
of Electoral College votes had been perfectly proportional to its population, it is
still possible for Bush to have won the Electoral College while losing the popular
vote. Such an outcome could have happened under a winner take all rule for each
state’s electoral college vote if, Gore’s average margin of victory in the minority of
states that Gore won was much larger than Bush’s average margin of victory in the
majority of states that Bush won. Had this occurred, Gore would have wasted more
votes than did Bush.10

To see how this could work consider the simplest possible example. Imagine
that we have just three equipopulous districts, with equal turnout in each. Repub-
licans win two with 60% of the vote, Democrats win one with 85% of the vote.
The Democrats won more votes, yet capture a minority of the seats.11 The knowl-
edgeable reader will immediately recognize that what we have here is a form of
gerrymandering (Grofman, 1990).

7 Still, because of lumpiness effects due to rounding and the fact that no state can be given less
than one seat in the House of Representatives regardless of its size, the U.S. House apportionment
is only approximately proportional to state populations (Balinski & Young, 1982).
8 The correlation between state size (measured by the size of its congressional delegation in 2000)
and the Bush share of the two party presidential vote in 2000 was only −0.16.
9 For the record, we should note that Bush’s 2000 presidential victory was overdetermined, i.e.,
can be “blamed” on many factors, from failure by Gore to hold his home state of Tennessee, to
excessive wasted votes by Gore in the Electoral College, to felon disfranchisement that dispropor-
tionately froze out potential Democratic-leaning voters (especially minority voters) from political
participation in 2000, to Gore’s legal team’s mismanagement of the legal issues in Florida, to the
“spoiler” candidacy of Ralph Nader.
10 We can make the story more complicated by allowing for apportionment and turnout effects
(Grofman, Koetzle, & Brunell, 1997; cf. Grofman, Brunell, & Campagna, 1997).
11 In actuality, however, Bush won his 31 states with an average of 58% of the two-party vote;
while Gore won his 19 states (plus the District of Columbia) with an average of 57% of the vote.
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The 2000 House of Representatives was apportioned based on the 1990 census.
Had the apportionment used in 2002 (based on the 2000 Census, and thus closer to
the actual population figures in the states ca. 2000) been available for use instead,
i.e., had the Electoral College allocation that will be used in 2004 been used in 2000,
then Bush would have increased his Electoral College share from 50.5% to 51.8%.
Indeed, even had the 2000 Electoral College allocated votes based just on the 2002
House seats (with no bonus for Senate seats), but again using a statewide winner
take all system, then (putting Florida into the Bush column, as before), Bush would
still have won the 2000 election with 50.1% of the votes. Thus, if all other things
were equal, Bush might have been predicted (ca. 2002) to do better in 2004 than he
did in 2000! And, of course, in fact he did.12

2.7 Friendship Networks

Most of us find that we have fewer friends than some of our friends do. In fact,
Feld (1991) shows why we ought to expect that the average person’s average friend
has a friendship network that is larger than her own. That is because the relatively
few people with many friends include many of us in their large friendship nets. Con-
sequently, we number among our own friends a disproportionately high proportion
of people with many friends. When we “average in” the size of their very large
friendship networks with those of our other friends with smaller rolladexes, we can
still expect to find that, on average, friends of ours have a large friendship network
than we do.

3 Different Types of Averages

Besides the distinction between weighted and unweighted averages we have empha-
sized here, there are other types of averages than every social scientist should know
about.

3.1 Median

Consider the median, the value such that half or more of the items in a distribution
are at or above that value while half or more of the items in that same distribution
are at or below it as well. In addition to playing a central role in models of party
competition over a single policy or ideological dimension (see e.g., Downs, 1957),
there are useful things to say about the median versus the mean highly relevant to
social science theory.

12 Indeed, in 2004, even were there no Senate two seat “bonus”, Bush could still carry a weighted
majority of the states.
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For example, Seymour Martin Lipset’s famous thesis (Lipset, 1959) that rich
countries are more likely to be democratic than poor countries is almost always
tested with data on mean income (Diamond, 1992). But that’s nonsense. The appro-
priate test is median income; otherwise you fall prey to the “Abu Dhabi fallacy”
of thinking that a county with a few billionaires and lots of poor people is a rich
country. In fact, unpublished work by one of the present authors has shown that
essentially all of the current counterexamples to rich countries being democratic are
countries where there are huge differences between mean and median income.13

3.2 Geometric Mean

Another neglected type of average is the geometric mean, the square root of the
product of the values to be averaged. Statisticians regard the geometric mean as
appropriate when losses or gains can best be expressed in percentage terms; when
rapid growth is involved in the development of a bacterial or viral population, or
when the data span several orders of magnitude (Good & Hardin, 2003, p. 96).
Consider competing claims about the value of some quantitative variable where one
side has an incentive to lie on the high side and the other side to lie on the low side,
and the two claims are orders of magnitude apart. The physicist turned electoral
systems specialist Rein Taagepera (personal communication, September 5, 2003)
has proposed that. rather than taking the arithmetic average of the two values, we
are more likely to come closer to the truth if we take the geometric mean instead.

Taagepera tells an amusing story to illustrate this point. While still a high school
student in Morocco, Professor Taagepera heard two quite different estimates of
the number of people killed in an incident involving French troops and Moroccan
protesters. The protestors claimed that roughly 4,000 were killed; the French offi-
cials that only 40 were. Taagepera did not believe either estimate but he did believe
that they provided bounds on the feasible range. If we simply took the arithmetic
average of the two estimates to get a “best” estimate, we would get 2,020, far closer
to the “official” than to the “local” estimates. However, we might more plausibly
assume that each estimate is off by the same proportion, x , i.e., 4,000/x = x/40.
Thus, x2 = 4,000∗40 and the “best estimate” of the number of protesters killed is
simply the square root of 16,000, i.e., 400. Hence, assuming each estimate is off by
the same proportion gives us the rule that the “best estimate” is the square root of
the product of the estimates, a.k.a. the geometric mean. As it turns out, the young
Taagepera had a friend in the police force who was in a position to provide a more

13 Some scholars have tried to “save” the Lipset thesis by restating it as one where countries that are
rich and which become democratic are likely to stay so. But if we look at median income rather than
mean income there is no need to “rescue” the thesis in this way. Moreover, the principal underlying
mechanism implied by Lipset, namely the greater likelihood of there being a substantial middle
class in wealthier countries than in poorer countries, makes far more sense if operationalized in
terms of median income (or of other related features of the income distribution) than when it is
operationalized by per capita income.
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reliable estimate of deaths than the public estimate, and this estimate proved to be
very close to the geometric mean calculated above.14

3.3 Harmonic Mean

Lastly, we consider a useful use of the harmonic mean, the simplest case of which,
for two values, s1 and s2, is defined as 1/(1s1 + 1/s2) perhaps the most obscure
mean of all. We illustrate the uses of the harmonic mean with a Mother Goose tale.
As is well known, Jack and Jill went up the hill to fetch a pail of water. Jack fell
down and broke his crown and Jill came tumbling after. Now, imagine the hill is
one mile high and Jack and Jill went up the hill at only two miles per hour, but they
came tumbling down the hill at 6 miles per hour. What was their average speed on
the hill? Let d be distance and s be speed. The answer is based on the harmonic
mean of 2 and 6 (see Fig. 1), and is given by the formula.

d/(1/s1 + 1/s2) = 2/(1/2 + 1/6) = 3 miles per hour

Thus 3 miles per hour is the correct answer, not, the simple average – four miles
per hour.15

Fig. 1

14 For other uses of the geometric mean see Taagepera (2001).
15 The figure below was drawn by a student, Gaelan Lloyd, in Professor Grofman’s three quarter
undergraduate statistics course to illustrate Lloyd’s answer to a “Jack and Hill homework assign-
ment” in the section of the course dealing with different types of averages. We are indebted to
Mr. Lloyd for permission to reproduce the figure.
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4 Discussion

Understanding the idea of weighted average helps us make sense of many soci-
ological and social psychological puzzles of the sort discussed above, as well as
puzzles in other social science disciplines – such as how a majority can be outvoted
on a majority of issues if we vote, not on policies one at a time, but instead on
policy platforms combining multiple issues (Anscombe, 1976; Nurmi, 1999; Saari
& Sieberg, 2001); or how a minority of the voters can control a majority of the seats
in a legislature (see Grofman, 1990 and discussion of the Electoral College above).
Moreover, the notion of weighted averages shows up in a number of places where
you might not expect it, e.g., in the Hirschman-Herfindahl measure of concentration,
which can be thought of as a “self-weighted” average. In sum, issues of aggregation
and so-called aggregation paradoxes and the many varieties of average are all topics
that should be part of the common wisdom of the educated social scientist.
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Voting Weights, Thresholds and Population Size:
Member State Representation in the Council
of the European Union

Madeleine O. Hosli

1 Introduction

Voting rules influence policy outcomes. This is true for national electoral proce-
dures, decisions within domestic parliaments as well as policy results generated by
supranational institutions. Of course, voting rules and procedures are not the only
factors influencing policy outcomes, but they certainly do have crucial repercus-
sions.

Voting in European Union (EU) institutions has not been of much interest as
long as, especially in the framework of the Council of Ministers (now the Coun-
cil of the EU), decisions were taken almost exclusively on the basis of unanimity.
The increased role of qualified majority votes (QMV), however, has changed the
practical relevance of the decision quota.

This contribution aims at clarifying trade-offs related to voting rules, notably
as regards the decision quota and the distribution of votes in the Council of the EU.
Although voting is not always conducted formally in the Council, there is little doubt
that the distribution of voting weights and the QMV threshold within this institution
influence the way coalitions between EU member states are built, and the bargaining
processes leading to collective decisions.

Of course, the decision quota – i.e. the threshold in terms of the percentage of
votes required to make decisions – is not the only relevant “voting rule”. The order
on which issues are voted, respective agenda-setting power and the overall inter-
institutional framework certainly do affect policy results. Nonetheless, QMV and
the distribution of votes affect both representation of EU member states in EU insti-
tutions and the negotiation process leading to policy decisions. Over time, decision
quotas – in terms of the required number of votes needed to support a proposal –
have been adapted for the Council and new voting rules have been implemented,
such as the triple majority rule incorporated into the Treaty of Nice and the double-
majority clause encompassed in the Lisbon Treaty. However, these decision quotas
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also have important repercussions as regards the minimum fraction of total EU pop-
ulation needed to either support or block a decision as taken by the Council. These
latter effects can nicely be shown on the basis of graphical presentations.

This chapter focuses on Council decision thresholds, vote distributions and
implied minimal fractions of EU population, and is structured as follows. The next
section shows the trade-off between adverse external effects of decision rules based
on a low decision threshold as compared to high decision-making costs under more
inclusive voting provisions. Section three provides an overview of the distribution
of votes in the Council as compared to EU members’ population size in the past,
partially by resorting to graphical tools. Section four discusses government prefer-
ences for the Council decision threshold in the framework of the negotiations on
the European Constitution. Section five shows the currently applicable rules on the
basis of the Treaty of Nice and the Lisbon Treaty, respectively. Again, using graph-
ical tools, partially unexpected consequences of these provisions are shown. The
conclusion summarizes and briefly discusses the main findings of the chapter.

2 Characteristics of Voting Rules

In terms of thresholds, three major categories of decision rules within a voting body
can be distinguished: simple majority, special majority rules – including QMV – and
unanimity. In addition, there may be voting rules determining, for example, the order
on which issues are voted.1 Generally, a trade-off exists between the external effects
of a decision on the individual voter (or committee member) and the collective costs
of decision-making. The unanimity rule minimizes the first type of costs, i.e. the
risk of a member being negatively affected by a decision not reflecting his or her
own preferences, but it maximizes the latter type of costs. By comparison, the sim-
ple majority rule minimizes costs of collective decision-making, but encompasses
enhanced risks for individuals to be outvoted and hence, to be negatively affected
by a collective decision.

This trade-off can be shown graphically on the basis of an illustration used by
Buchanan and Tullock (1962).2 Figure 1 shows external costs of decision-making,
whereas Fig. 2 reflects the collective costs of reaching the required threshold (the
decision quota). Figure 3 adds the two curves graphically to derive the total costs
of a specific voting rule. The point representing minimum total costs of decision-
making, consequently, is point K in Fig. 3, showing an “optimal” quota or threshold
for collective decisions.

In theory, it is possible to find an “optimal decision threshold” for a committee
(see point K in Fig. 3). An institution such as the Council of the EU, for example,

1 For a thorough discussion on the importance of the order on which issues are voted, see for
example Rasch (2000).
2 Figures 1, 2, and 3 are based on Buchanan and Tullock (1962), pp. 65 and 70–71. This represen-
tation has also been applied by Torsten Peters (1996) in an analysis of EU decision rules.
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might potentially benefit from such a “search”. However, it is not easy to assess the
two types of costs in practice, as it is difficult to locate point K on the basis of empir-
ical information. First, evaluating the external costs of a decision to an individual is
a complex endeavor.3 Second, assessing the costs of decision-making on the basis of

3 For example, individuals can have incentives to overstate the external costs of a decision to
themselves in order to obtain bargaining concessions from other committee members. The same is
true for governments as represented in the Council of the EU.
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the decision rule, combined with the number of individuals involved in the decision
process, certainly is a challenging task. Costs involved in this process are, for exam-
ple, costs of bargaining and possible “side-payments” among actors. Nonetheless,
the graphical illustrations (Figs. 1, 2, and 3) help clarifying potential costs involved
in reaching decisions within a committee, including within an institution such as the
Council of the EU. It shows that a decision rule close to unanimity helps to attain
an outcome unlikely to be detrimental to an individual actor’s interests, but is likely
to maximize the costs of finding a suitable solution for the group as a whole.

As far as the Council of the EU is concerned, trade-offs exist for member states
as regards the protection of their individual interests in the case of QMV, but in
addition to this, the capacity of the Council of the EU to act is clearly influenced
by the definition of the threshold.4 This trade-off, in fact, was at the core of heated
discussions in recent years among EU heads of state and government as regards the
decision thresholds that should be applicable in the Council. Clearly, several mem-
ber states feared that if the quota would be too low, their risk of being outvoted –
potentially violating substantial national interests – would be considerable. How-
ever, governments also realized that the Council of the EU would have to maintain
a reasonable capacity to act, in spite of considerable EU enlargement.

In the representation by Buchanan and Tullock, the trade-off related to the def-
inition of the quota is essentially based on the “one person, one vote” approach.
However, in the EU, a second matter complicates the situation: in recent years,
apart from the discussion on the appropriate QMV threshold to be used, there was
considerable debate as regards the distribution of votes among individual EU states.
In other words, it seems that two – partially interrelated – problems came to the fore
simultaneously in political bargaining processes. The next section focuses on the
issue of representation (voting weights) by EU states in the Council.

3 Former Vote Allocations in the Council

Past enlargements of the EU have been accompanied by relative changes in the
distribution of votes in the Council, but they were not usually paralleled by adap-
tations in the absolute number of members’ voting weights. With the exception of
the first, 1973 enlargement – in which the UK, Denmark and Ireland joined the
European Community (EC) – member states’ voting weights were not usually modi-
fied. Similarly, the definition of the QMV threshold did not experience much change
over time. In fact, up until the Treaty of Nice, in all stages of membership in the
EU’s past, the QMV threshold was located at a level of approximately 71% of the
total.5 Maintenance of this fraction for several different constellations of member-
ship suggests that the voting system may not have been set up “coincidentally”

4 On voting weights in the EU and the capacity of the Council to act, e.g. see Leech (2002) and de
Swart (2008).
5 See Hosli (1993).
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Table 1 The distribution of votes and the decision quota in the council, 1958–1995 (total number
of votes; percentages in brackets)

Member 1958–1972 1973–1980 1981–1985 1986–1994 Since 1995

Austria – – – 4 (4.6)
Belgium 2 (11.8) 5 (8.6) 5 (7.9) 5 (6.6) 5 (5.7)
Denmark – 3 (5.2) 3 (4.8) 3 (3.9) 3 (3.4)
Finland – – – 3 (3.4)
France 4 (23.5) 10 (17.2) 10 (15.9) 10 (13.2) 10 (11.5)
Germany 4 (23.5) 10 (17.2) 10 (15.9) 10 (13.2) 10 (11.5)
Greece – – 5 (7.9) 5 (6.6) 5 (5.7)
Ireland – 3 (5.2) 3 (4.8) 3 (3.9) 3 (3.4)
Italy 4 (23.5) 10 (17.2) 10 (15.9) 10 (13.2) 10 (11.5)
Luxembourg 1 (5.9) 2 (3.4) 2 (3.2) 2 (2.6) 2 (2.3)
Netherlands 2 (11.8) 5 (8.6) 5 (7.9) 5 (6.6) 5 (5.7)
Portugal – – – 5 (6.6) 5 (5.7)
Spain – – – 8 (10.5) 8 (9.2)
Sweden – – – – 4 (4.6)
United Kingdom – 10 (17.2) 10 (15.9) 10 (13.2) 10 (11.5)

Total 17 (100) 58 (100) 63 (100) 76 (100) 87 (100)

Qualified Majority 12 (70.6) 41 (70.7) 45 (71.4) 54 (71.1) 62 (71.3)

Blocking Minority 6 (35.3) 18 (31.0) 19 (30.2) 23 (30.3) 26 (29.9)

Source: adapted from Hosli (1993).

(or on the basis of political bargaining), but may have implied some more exact
“thinking behind the stage”.6 Nonetheless, equal vote allocations were maintained
for the largest states (including Germany and France) throughout all enlargements,
up until the more recent changes envisaged by the Treaty of Nice. Table 1 shows the
distribution of votes, the requirement for QMV and the implicit threshold to form
“blocking minorities” over time.

The number of votes for the largest member states was increased from four to
ten in the context of the 1973 enlargement. Similarly, the number of votes allocated
to the middle-sized states, Belgium and the Netherlands, was then raised from two
to five. After the 1973 enlargement, voting weights, however, remained constant
for all EC states and new member states obtained shares corresponding to the ones
held by EC members of similar size.7 For example, in the 1981 enlargement, Greece
obtained five votes – the same number of votes as Belgium and the Netherlands had.
Similarly, in 1986, Portugal received five votes, but Spain eight (as its population
size was between that of the largest members and the middle-sized ones). Up until
the 1995 enlargement – with the exception of the first constellation of membership –
no country obtained four votes. This allocation occurred, however, for Austria and
Sweden when they joined the EU in 1995.

6 On the specific reasons for the definition of the quota in different constellations of member-
ship and the relationship between the voting weights of larger and smaller members, e.g. see
Moberg (1998), Midgaard (1999) and Best (2000).
7 See Moberg (1998).
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Table 2 Population size and votes in the council, 1958, 1973, 1986 and 1995

Population
1958 (in
million)a

Number
of votes
1958–
1972

Population
1973 (in
million)

Number
of votes
1973–
1980

Population
1986 (in
million)

Number
of votes
1986–
1994

Population
1995 (in
million)

Number
of votes
1995–
2004

Austria – – – – – – 8.0 4
Belgium 9.2 2 9.7 5 9.9 5 10.1 5
Denmark – – 5.0 3 5.1 3 5.2 3
Finland – – – – – – 5.1 3
France 46.5 4 52.1 10 55.4 10 57.5 10
Germanyb 54.0 4 62.0 10 60.9 10 80.6 10
Greece – – – 5 9.9 5 10.3 5
Ireland – – 3.1 3 3.6 3 3.6 3
Italy 50.5 4 54.8 10 57.2 10 56.9 10
Luxembourg 0.3 1 0.4 2 0.4 2 0.4 2
Netherlands 11.5 2 13.4 5 14.5 5 15.2 5
Portugal – – – – 10.3 5 9.9 5
Spain – – – – 38.9 8 39.1 8
Sweden – – – – – – 8.7 4
United

King-
dom

– – 56.3 10 56.6 10 58.0 10

Total 172.0 17 256.8 63 322.7 76 368.5 87

Average
(Non-
weighted)

28.67 2.83 28.53 7.0 26.89 6.33 24.57 5.8

aThe figures are for the population censuses of the following years: 1960 (Luxembourg and the Nether-
lands), 1961 (Belgium, Germany and Italy) and 1962 (France).
bFederal Republic of Germany for 1958, 1973 and 1986.
Sources: Eurostat: Basic Statistics of the EU; United Nations Statistical Yearbook; World Bank World
Tables.

In order to show the relation between population size and number of votes in
the Council in the past, Table 2 gives population figures for member states at the
inception of the Community, its first enlargement in 1973, the “Iberian” enlargement
by Portugal and Spain in 1986 and the 1995 enlargement.

Hence, the relation between population size and the number of votes allocated to
member states, up until the 1995 enlargement, varied somewhat within groups. For
example, in the context of the first constellation of membership, the population size
of the large members ranged from 46.5 million (France) to 54 million (Germany).
As of 1986, the respective range was from 55.4 million (France) to 60.9 million
(Germany). Nevertheless, vote allocation to both states was on an equal basis: both
held four votes starting in 1958, and ten since 1973.

Generally, the distribution of votes in a comparison between smaller and larger
members can be illustrated nicely by the means of “Lorenz curves”.8 In the case

8 Lorenz curves graphically illustrate the cumulative shares of two variables as compared to a
proportional relationship. They are particularly useful, for example, to show patterns of income
distribution among a country’s citizens (with the share in population shown on one axis and the
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of the Council, they can show the distribution of votes compared to population size
for different constellations of EU membership. Of specific interest in these graphs
are the relative changes in “proportionality” over time, but these curves can also be
used for another purpose: the graphs not only show the relative degree of “inequal-
ity” – compared to a proportional distribution – but they can also illustrate the (min-
imal) fraction of total population required to either reach the QMV threshold in the
Council or to constitute a “blocking minority”: the intersection of the curve with a
horizontal line at the decision threshold (in percent) of the total vote (given on the
vertical axis) shows – on the horizontal axis, read off from the right-hand side –
the minimal EU population as represented in the Council that can prevent a QMV
decision from being accepted (point x1). These graphs, then, provide some informa-
tion that is relevant in terms of the trade-off related to decision quotas as shown by
Buchanan and Tullock: expected external costs to individuals will increase if QMV
in the Council is at a level requiring a relatively small fraction of the population to
support a decision – paralleled by a relatively high “blocking minority” as a per-
centage of total population – whereas expected decision costs increase if the QMV
threshold is high (also in terms of the required fraction of EU population needed to
support a decision), paralleled by a small share of EU population able to block a
Council decision.

In Figs. 4 and 5, the intersection of the Lorenz curve with a (horizontal) line
at 100% minus the decision threshold shows the minimal share of EU population
necessary to support a proposal (at point x2, again read off from the right-hand side).

Figures 4 and 5 show that the distribution of votes in the Council in both 1958 and
1995, in terms of representation based on population size, favored smaller member
states. But the relative advantage for smaller states appears to be more pronounced
in 1995 than it was in the beginning of the European Community (EC): the Lorenz
curve shifted “outwards” and away from a proportional distribution.9 These trends
are largely due to the increased number of small and medium-sized member states
in 1995 as compared to 1958.

In earlier stages of the EC, a common assumption was that the QMV quota could,
in an extreme case, be attained by a fraction of less than 50% of the EU’s total pop-
ulation (as represented in the Council). However, on the basis of population figures,
Moberg (1998) demonstrated that this was not the case in practice. Figures 4 and 5
graphically support Moberg’s finding: the minimal required share of EU population
to obtain QMV (100 − x2) was about 62% in the first constellation of Community
membership, and decreased to about 54% by 1995. However, due to actual member
state representation, the largest three states could carry a proposal (1958); in 1995,
the largest eight states (representing about 88% of EU population) were needed. The

share in total income on the other), or an overview of political parties’ share of votes received
in domestic elections as compared to seats obtained in the national parliament. The degree of
inequality can subsequently be expressed by the Gini-index: in a two-dimensional setup, the Gini-
index measures the size of the area between the resulting Lorenz curve and the 45-degree line that
represents pure proportionality.
9 In fact, the Gini-Index for the 1958 constellation of membership, is 0.085, as compared to 0.14
in 1995. A Gini-Index of 0 indicates an entirely proportional distribution.
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smallest four states (including one 4-vote state) could block a proposal, whereas
the smallest nine could do so in 1995. In terms of the trade-off related to external
and decision-making costs, this means that in the phase following the 1995 EU
enlargement, as compared to the first constellation of membership, potential exter-
nal costs to individual member states increased (with the QMV quota in population
terms decreasing from 62 to 54%), whereas the costs of decision-making decreased.
The minimum blocking minority in percentage terms of total population, however,
remained fairly constant.

4 Government Preferences for the Council Decision Threshold

In the 2003 negotiations on the European Constitutional Treaty – in the aftermath of
the 2002–2003 Convention on the Future of Europe – EU member state governments
negotiated, inter alia, the new Council decision rules, to be applicable in view of
then considerable prospective EU enlargement. In fact, during the December 2003
EU summit meeting, the voting threshold and the vote allocation to EU member
states in the Council constituted one of the most intensively discussed items in the
intergovernmental bargaining processes.

Table 3 shows options discussed towards the end of 2003. This is the point in time
that interviews were held with official representatives of the various EU member
states in the framework of the research project “Domestic Structures and European

Table 3 Official government positions of European Union member states as regards the preferred
decision threshold for the council

Preferred
decision
threshold
(answer
categories in
brackets)

The Nice Treaty
model: (1) 72%
of the qualified-
majority votes;
(2) a majority of
member states;
(3) 62% of the
population.
(Category 1)

75% or more
of member
states and a
specific
majority
of the
population
(Category 2)

A 60/60
threshold
(Category 3)

A simple
majority of
member states
and three-fifth
of the
population
(Category 4)

A simple
majority of
member
states and a
simple
majority
of the
population
(Category 5)

Member
state

Estonia
Hungary
Malta
Poland
Slovakia
Spain
Sweden

Czech
Republic

Lithuania

Cyprus
Denmark
France
Germany
Ireland
Italy
Luxembourg
Netherlands
United Kingdom

Austria
Belgium
Finland
Greece
Latvia
Portugal
Slovenia

Source: DOSEI data collection, answers as regards official government positions to question 8
(“Which voting threshold does the government prefer for qualified majority voting in the
Council?”).
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Integration” (DOSEI).10 DOSEI Question 8 asked experts about the preferred rule
regarding the QMV threshold in the Council. It gave respondents five choices, rang-
ing from the option that decisions be taken by a simple majority of member states
and of EU population (option 5) up to the triple majority clause as encompassed
in the Treaty of Nice (option 1). In practice, however, only answer categories 1, 3,
4, and 5 were chosen by experts, with option 4 denoting the possibility of a sim-
ple majority of member states and three-fifths of the population being required for
decisions in the Council to pass – a proposal resulting from the Convention on the
Future of Europe.

Table 3 gives the official government positions as regards the preferred Coun-
cil decision threshold. A plurality of member states (nine) preferred option four,
whereas the number of member states favoring the options reflected by categories
one and five was also considerable (seven each). Only two states preferred option
three. Option four – a majority of member states and 60% of EU population – was
indeed the option that came out of the negotiations on the Convention on the Future
of Europe. The actual decision thresholds, however, were adapted and increased to
55% (member states) and 65% (EU population) respectively, in the context of the
subsequent EU summit meeting.

5 Recent Adaptations: Nice and Lisbon Treaty Provisions

The recent changes, first due to the Treaty of Nice and then the more recent Lisbon
Treaty, have essentially led to a re-weighting of votes, in addition to the introduction
of triple-majority provisions (Treaty of Nice) and a double-majority clause (Con-
vention and later the Lisbon Treaty), respectively. What is the current distribution
of votes in the Council and what are the consequences as regards relative propor-
tionality in a comparison of population size and voting weights? Table 4 shows
the distribution of votes and decision thresholds encompassed by these more recent
provisions.

Clearly, as Table 4 shows, the Treaty of Nice introduced a triple-majority clause
that implemented a fairly high decision threshold (almost 74%) based on the new
voting weights, in addition to the requirement of a majority of EU member states
and 62% of population. Clearly, this raised collective costs of decision-making. The
population threshold (62%) implies that the distribution of population as compared
to voting weights (“proportionality”) brought the EU back close to the 1958 situa-
tion. But as seen graphically (see Fig. 6), the minimal required share of EU popu-
lation to obtain the 73.9% threshold was about 58%, implying a blocking minority
threshold of about 12% of EU population. These are fairly high decision quotas. As
Felsenthal and Machover (2001) have demonstrated, however, the third threshold
– the required majority of EU member states – was in fact void, as there was no

10 The DOSEI project was funded under the 5th framework programme of the European Commis-
sion. For detailed project information see http://dosei.dhv-speyer.de.
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Fig. 6 Share in votes and share in total population: Council of the European Union, Treaty of Nice,
27 member states

winning coalition meeting the voting weight threshold and the population threshold
without also meeting the majority of EU member state criterion.

The European Convention was comparatively radical by proposing a 50% of
member state and 60% of EU population threshold as the future Council decision
rule. In the subsequent EU Summit meeting, these thresholds were adapted to 55
and 65%, respectively – the provisions actually implemented in the Lisbon Treaty.

Clearly, the Convention proposal would have increased expected external costs to
individual governments, but lowered the collective costs of decision-making for the
Council. Expressed in terms of Fig. 3, they would have located the sum of expected
external and of collective decision costs towards the left as compared to the situation
reflected in the Nice Treaty.

How did these newer provisions affect the distribution of votes as compared to
EU population size? Figure 7 shows that the double-majority clause according to
the Lisbon Treaty implies a QMV threshold of only about 13% of EU population
(derived from the 55% of member state provision), whereas the blocking minority
threshold has decreased to about 8%. This decrease corresponds with the fact that
the Council’s capacity to act, under the provisions of the Lisbon Treaty, clearly
increased.11 In terms of the trade-off related to decision rules, expected external
costs increase quite significantly by the implementation of this provision, with
collective decision costs being much lower – a shift even more to the left on the
combined costs curve (Fig. 3).

Figure 7 also shows that the official decision thresholds in terms of EU population
size integrated into the most recent provisions, do not always reflect the “minimal

11 On respective calculations, e.g. see de Swart (2008).
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Fig. 7 Share in votes and share in total population: Council of the European Union, Lisbon Treaty,
27 member states

blocking minority threshold” in terms of the share of EU population needed to attain
QMV: implied in one of the other quotas can be another threshold in terms of pop-
ulation size that may in fact be lower (and with this, expected decision costs may
increase, with the effects not necessarily being transparent to the general public).
In fact, the minimal population blocking minority threshold has remained approxi-
mately stable when comparing the 1958, 1995 and Nice Treaty situations, with six,
15 and 27 member states, respectively. Somewhat counter-intuitively, it is the Lis-
bon Treaty provisions, which enhance the Council’s overall capacity to act, that have
lowered the implicit requirement in terms of the minimal share of EU population that
can block a decision: this share used to be about 12%. In the Lisbon Treaty situation,
calculated on the basis of 2007 population figures, it has decreased to approximately
8%. The relatively favorable representation of smaller members is also expressed
by the fact that the Lorenz curve, just comparing the “one state, one vote” provision
based on a 55 threshold with the (implicit) population threshold, has moved away
from the proportional 45-degree line: the Gini-index (Lisbon provisions) is highest
as compared to earlier stages of Council representation.

Finally, what do the decision thresholds imply in terms of the minimum number
of member states required to support a QMV decision? Figure 8 shows the situation
for the Nice Treaty provisions (27 member states): the minimum requirement in
terms of the 50% of member state quota is 14 states; the minimum requirement
in terms of the 62% of EU population clause is 10 states and finally, the minimum
requirement in terms of the 73.9% of weighted vote criterion is 7 states. This implies
that for the 27-member EU under the Nice provisions, the minimal blocking crite-
rion in terms of member states is 14 states (majority of member state threshold).
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For the Lisbon Treaty, the situation is similar. However, as there are only two
decision quotas, the figure looks slightly different. Figure 9 shows the situation for
the Lisbon Treaty (27 EU states), based on 2007 population figures.

In terms of minimum requirements, the 65% of EU population provision implies
that QMV can be attained by a minimum of 6 member states (with the minimal
blocking threshold of the smallest states being 22), whereas the 55 of member state
threshold leads to a QMV minimal requirement of 15 states (or conversely, a mini-
mum blocking minority of the smallest 13 EU member states).

6 Conclusions

Voting rules in a committee generally embody an important trade-off: the more
inclusive they are – that is, the more members they require for the passage of a
proposal – the higher are the costs of decision-making. But the more inclusive they
are, the lower are the possible external effects of a decision for individual members.
The simple majority rule has the advantage of generating relatively low costs of
collective decision-making and with this, improving a committee’s capacity to act,
but it implies potentially high (external) costs of collective decisions to individual
members, due to the risk for them to be outvoted and hence to be negatively affected
by a collective decision.

This contribution started out by a graphical demonstration of this trade-off. Sub-
sequently, it showed the relationship between population and representation of EU
member states in the Council of the EU. Clearly, QMV thresholds and related min-
imum blocking minority requirements, expressed in terms of total EU population,
have important repercussions as regards the trade-offs related to decision rules (costs
of decision-making and expected external costs). The chapter then demonstrated
ways to assess effects of the voting threshold in terms of proportionality of respec-
tive minimum requirements for QMV and blocking minorities.

The most recent changes to the Council’s patterns of representation and deci-
sion thresholds, as incorporated into the Treaty of Nice and the recent Lisbon
Treaty, have changed the Council’s capacity to act (with the Lisbon Treaty clearly
increasing this capacity and clearly lower expected Council decision costs). But
implicitly, the effects in terms of required fractions of population size show that
the Nice Treaty caused a minimal blocking minority in terms of population size
of as little as about 12% of total EU population (caused by the 73.9 of weighted
vote threshold), whereas the minimal fraction of population able to carry a deci-
sion (due to the voting weight threshold) was about 58% of EU population. This
blocking minority threshold, in fact, was at about the same level as in 1958 (six
members, weighted voting system) and the situation reached with the 1995 enlarge-
ment (15 EU states, weighted votes). The Lisbon Treaty decreases the blocking
minority threshold: QMV needs support by 65% of EU population as represented in
the Council. But implied in the 55% member state threshold is a minimal blocking
minority in terms of EU population of just about 8%. Accordingly, the smallest



Voting Weights, Thresholds and Population Size 167

13 EU states, constituting approximately 8% of total EU population, can block a
Council decision (27 EU states). Clearly, although expected decision costs appear to
be low – due to the relatively low formal decision threshold – the small percentage of
EU population needed to block a proposal, implicit in the 55% of member state pro-
vision, potentially enhances decision-making costs (and with this, lowers expected
external effects to individual EU governments, notably those of the smallest member
states).

According to the Nice Treaty provisions, collective decision costs for the Council
are high, but potential external effects to individual governments are comparatively
low. Whereas the Lisbon Treaty clearly enhances the Council’s collective capacity
to act – and with this, lowers the institution’s decision costs while containing the
potential risk of enhancing external costs to individual EU states – it has, somewhat
counter-intuitively, lowered the minimum share of EU population needed to block a
collective Council decision. For the 27-member EU, this minimal blocking minority
consists of just about 8% of total EU population. This is the lowest threshold reached
in the course of the various EU enlargements. Accordingly, the Lisbon Treaty, while
increasing the leverage of larger states in EU decision-making due to the explicit
integration of the population size threshold, still provides considerable protection to
the EU’s smallest member states, notably allowing them to prevent decisions on the
basis of the 55% of member states clause.
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Stabilizing Power Sharing

Steven J. Brams and D. Marc Kilgour

1 Introduction

Power sharing has been problematic from time immemorial. Children have difficulty
sharing toys and desserts. Couples have difficulty dividing responsibilities.

In the corporate world, it is rare for two CEOs to share power without crossing
swords. After a merger, quarrels between the CEOs of the merged companies are
common; sometimes they become so fierce that one CEO is forced out. Such a power
struggle is almost always detrimental to the new company, occasionally leading to
its collapse.

At the national level, no country in the world officially has two presidents or two
prime ministers. When two party leaders agree to share the prime ministership, then
one typically holds this position for one period followed by the other’s taking the
reins for another period.1 But power sharing in the sense of ensuring that different
factions are represented in a government has proved successful in many countries
(Norris, 2008).

When there is power sharing among political parties in parliamentary democra-
cies because no party wins a majority of seats in the parliament, it is most often of
cabinet ministries. Usually the largest party is awarded the prime ministership, and
there is no simultaneous sharing of this prize.

At the international level, it is quite common for countries to rotate offices in
an international organization. A new secretary-general of the United Nations never
comes from the same country and almost never from the same region of the world
as his or her predecessor, just as the presidency of the Council of Ministers of the
European Union rotates every six months among its 27 members. Still, the largest
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1 This happened, for example, when a national-unity government, comprising the two largest par-
ties in Israel, assumed power over the 4-year period from 1983 to 1986. Itzhak Shamir of the Likud
Party was prime minister for the first two years, and Shimon Peres of the Labor Party for the next
two years.
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countries in these organizations often exercise veto power – de facto or de jure –
and sharing is anything but equal among the members of these organizations.

We focus in this paper on two-party power-sharing agreements and ask which
factors make them stable. In a previous paper (Brams & Kilgour, 2008), we devel-
oped game-theoretic models in which players could agree to share power or engage
in a duel. Each player had an unlimited number of bullets to expend, round by round.

By firing at an opponent and, with a specified probability, eliminating it, a player
could capture all the assets. But because we assumed that the players were not per-
fect shots, shooting was not a surefire strategy to acquire these assets.

Ominously, we found that power sharing was almost never rational, however the
assets were divided and however they were discounted in repeated play. Because the
players almost always had an incentive to shoot, there was a “race to preempt.”

The only way we found to slow down this race was to postulate that shooting
would cause damage in each period that it occurred. But even this damage was often
insufficient to deter the players from shooting, because they still received benefits
in each period they survived.

If only one player survived, it benefited the most, because it received all the
remaining assets. Because these assets were discounted or damaged more heavily
the longer play continued, a player did best by eliminating its opponent early, which
was abetted by its being a good shot.

In this paper, we assume that the game the duelists play is different from the ones
we analyzed earlier. While repeated, it does not bestow payoffs on the players in
each period that shooting occurs and neither is eliminated. Instead, there is a single
prize, awarded at the end of play, which goes to

• both players if they agree to share it; or
• one or neither player if they refuse to share it and instead fire at each other until

one or both is eliminated.

Thus, the context of power-sharing is a situation in which one player faces
another in a duel. Unlike most duels, in which one or both players end up wounded
or dead, the duel we propose is one the players can opt out of by refusing to shoot;
doing so means sharing some prize that one player alone would receive if it were
the sole survivor. We say that the players share power – and ultimately win some
prize that they divide – when neither shoots the other in the duel.

We admit that this is an unusual outcome for a duel, and that our usage of the term
“duel” might be considered inappropriate. Our work is adapted from mathematical
models of duels; we conceive of power sharing as a game in which two opponents
confront each other and must choose whether to reconcile – and share the resulting
benefits, which we call “power” – or to fight and try to eliminate the other. We will
give conditions in which it is rational for neither player to shoot and, instead, for
both to share power.

We consider two possibilities for shooting – that it may occur either sequen-
tially or simultaneously. Although power sharing can occur for each possibility,
the power-sharing region is considerably enlarged when shooting is simultaneous.
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Simultaneity also makes more sharing arrangements stable, so players have greater
opportunity to design an agreement without fear that it will be abrogated.

2 Notation and Assumptions

Assume there are two players, P and Q. Power is a prize that both players may share
at any time and has an initial value of 1.2 If P and Q decide to share the prize, they
do so in the ratio of a : (1 − a), which is a ratio that we assume was set before play
commenced. If the value of the prize when the players agree to share it is ν, then P
receives a payoff of aν, and Q a payoff of (1 − a)ν.

Alternatively, P and Q may attempt to eliminate one another. If P fires at Q, Q
is eliminated with probability p; if Q fires at P, P is eliminated with probability q.
When a player is eliminated, its payoff is 0. The survivor, if any, wins the entire
prize. We assume that there is no disgrace or other penalty incurred from firing and
missing an opponent.

Once started, firing proceeds in rounds as long as both players survive. If one or
both players are eliminated, the game terminates, and the survivor, if any, receives
the prize at that time.

In any round, both players have one opportunity to eliminate their opponent. A
round of shooting in which neither player is eliminated reduces the value of the prize
by a factor of 1 − s, which reflects the damage caused by firing. Consequently, the
prize is worth 1 in the first round, s in the second round, s2 in the third round, and
so on. If there are n rounds of fighting in which neither player is eliminated, and if
the prize is then won during the (n + 1)st round, then it is worth sn .

The payoff to a player is the expected value of the prize it receives. The players
value nothing else, and firing has no cost.3

To avoid trivial cases, we usually assume that 0 < a < 1, 0 < s < 1,
0 < p < 1, and 0 < q < 1, and their values are common knowledge. While a may
be related to the other parameters, including p, q, or s, we assume no specific rela-
tionship in our models. Later, we study which values of a (in terms of p, q, and s)
make sharing the prize – as opposed to fighting for it – a rational choice of the
players.

Unlike our earlier models (Brams & Kilgour, 2008), we assume there are no
interim rewards – in particular, there is no accumulation of payoffs, round by round,

2 Power is often conceptualized as a relationship between players, not a good they may share.
Because it is not apparent what sharing means in a power relationship, we posit a divisible good
(prize) that the players agree to share or, by shooting, try to capture entirely.
3 This no-cost assumption differs from that in most economic models, in which players use up
resources when they attack one another. We do not develop such a model here in order to focus
on the conditions that discourage fighting when it is not costly. But cost considerations come into
play indirectly – fighting makes the prize less valuable.
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as long as the players survive.4 In particular, neither player receives anything until
(i) each agrees to share the prize (once and for all), or (ii) at least one player is
eliminated.

While time plays no direct role in our models, the players know that play cannot
continue indefinitely (see note 4). The damage parameter, s, is effectively a discount
parameter, whereby the prize shrinks in value as fighting continues. Consequently,
even winning all of it in some later round will be less advantageous than sharing it
at the start of play.

We turn next to assessing the effects of sequential versus simultaneous shooting.
As we will show, simultaneous shooting is more likely to deter the players from
firing, because it is more fearsome: It may cause more damage early; and it may
eliminate both players on any round, which sequential shooting can never do.

3 Sequential Interaction

We assume the players act in sequence:5 Either the players agree at the outset to
share the prize, or one of them fires at its opponent. If, say, P eliminates Q, P receives
the prize, which has value 1. If P fails, Q responds by firing at P. If Q eliminates P,
Q receives the prize, still worth 1. But if Q also fails, the players are in the same
position as at the start, except that the value of the prize has been reduced from
1 to s.

We search for Nash equilibria in stationary strategies, which means that a player’s
strategy depends only on its strategic possibilities at the moment and not on the
history of the players’ interaction. Thus, a stationary strategy that calls for a player
to try to eliminate its opponent in the first round must, if both players survive the
first round, call for the player to try to eliminate its opponent on the second round,
and so on in future rounds.6

In analyzing sequential firing, we do not assume any particular firing order.
Instead, we search for divisions of power that each player prefers to its most favor-
able sequential duel. It is easy to show that, in a sequential contest, a player does

4 If anything, costs rather than rewards accumulate as play continues. Firing uses up ammunition
and other limited resources. The models we develop probably apply best to situations in which P
and Q have more or less equal resources, so a war of attrition would not favor either player. While
fighting always ends in a finite number of rounds because p and q are positive, one cannot say
exactly when it will end, except in probabilistic terms.
5 This assumption underlies the theory of moves (Brams, 1994), the graph model (Fang, Hipel, &
Kilgour, 1993), and other variants of non-cooperative game theory. Whether “launch on warning”
should be considered a simultaneous or sequential move is discussed in Sect. 6.
6 Why is this plausible? Because the only feature that has changed in the second and subsequent
rounds is the value of the prize, which has decreased, so the strategic incentives remain the same
because there is nothing in our model that relates the size of the prize to these incentives. To
illustrate a nonstationary strategy, assume that after one round of firing, P chooses not to fire to
try to induce its opponent to share the prize. Because P‘s behavior changes in the course of play,
history matters, rendering its strategy nonstationary.
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better if it shoots first. We search for a division of power in which each player prefers
its share to the expected share it will receive if it, rather than its opponent, opens
fire. Varying the probability that P, say, fires first produces a spectrum of sequential
contests: A division of power is stable iff each player finds it at least as preferable
as every possible sequential contest.

To determine whether sharing and receiving the fixed amount, a, or firing first is
better for P, we calculate P’s expected reward, VP , if P fires at Q. If Q survives, Q
will fire back at P in the same round, as Q has nothing to lose, and will gain if it
eliminates P. Because both players survive with probability (1− p)(1−q), we have

VP = V = p(1)+[(1−p)q](0)+[(1−p)(1−q)](sV ) = p +[(1−p)(1−q)](sV ),

where the factor sV on the right side reflects the continuation of the game to a second
round in which V is reduced to sV. Solving for V produces

VP = p

1 − [(1 − p)(1 − q)]s . (1)

P is rationally deterred from initiating the firing if and only if (iff) VP ≤ a, which is
equivalent to

p ≤ a − as(1 − q)

1 − as(1 − q)
. (2)

The fraction on the right side of (2) is the threshold value of p for deterrence to
occur – that is, for P to prefer its share of the prize, a, to what it obtains, on average,
from fighting.

Note that the numerator of the right side of (2) is a[1 − s(1 − q)]. Since

[1 − s(1 − q)] < [1 − as(1 − q)]

because a < 1, it follows that, independent of the values of s and q, if P is rationally
deterred, then p < a. In other words, (2) implies that if p ≥ a, a rational P will
always prefer to initiate the firing.

Similarly, Q will be rationally deterred from initiating the firing iff its expected
value, VQ , is not greater than 1 − a, the value it receives from sharing. Analogous
to (2), the condition for deterrence of Q is

q ≤ 1 − a − s(1 − a)(1 − p)

1 − s(1 − a)(1 − p)
. (3)

Just as P is rationally deterred when the right side of (2) is less than a, Q is
rationally deterred when the right side of (3) is less than 1 − a. In particular, if
q ≥ 1 − a, a rational Q will never be deterred from initiating the firing.

Rewriting (3) as a condition on p and combining it with (2) shows that (2) and
(3) both hold iff p satisfies
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s→ 1
(no damage)

0 < s < 1 s → 0
(total destruction)
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Fig. 1 Sequential-interaction model. s = damage parameter. Power-sharing region shaded

a − (1 − q)+ s(1 − a)(1 − q)

s(1 − a)(1 − q)
≤ p ≤ a − as(1 − q)

1 − as(1 − q)
(4)

and, of course, 0 < p < 1. The points (q, p) defined by these conditions are shown
as the shaded region in Fig. 1 for three cases: s approaches 0; 0 < s < 1; and s
approaches 1.

Inequality (4) provides both lower and upper bounds on p. The upper bound on
p always lies between 0 and a, and is strictly decreasing in s and increasing in q.
It approaches a as s approaches 0 or as q approaches 1, and it approaches 0 as s
approaches 1 and q approaches 0.

The lower bound for p given by (4) is nonpositive when

q ≤ (1 − s)(1 − a)

1 − s(1 − a)
,

which explains why the additional condition, p > 0, may come into play. When

(1 − s)(1 − a)

1 − s(1 − a)
< q < 1 − a,

this lower bound is positive, increasing in q and decreasing in s.
As q approaches 1, the numerator on the right side of (4) approaches a, and when

q = 1 − a, the numerator on the left side of (4) equals 1. Thus, for example, as q
approaches 0, P is rationally deterred from firing iff

0 < p ≤ a − as

1 − as
.

As Fig. 1 shows, for any fixed (positive) value of s, deterrence is possible if p and
q are sufficiently small. Deterrence is maximal when damage is nearly total (i.e., s
is near 0), and occurs when both p < a and q < 1−a. The rectangular area defined
by these inequalities is greatest when a = 1 − a = 1/2, rendering the deterrence



Stabilizing Power Sharing 175

region a square of area 1/4. In some sense, players that share the prize equally are
least likely to prefer to fire.

Deterrence is impossible when s = 1, i.e., firing inflicts no damage. Therefore,
for a power-sharing arrangement to be stable, unsuccessful firing must produce some
damage, and the players’ probabilities of eliminating their opponents must not be
too high.

In the special case when a = 1/2 and the players share the prize equally, the
deterrence region – the set of (q, p) values where both players are rationally deterred
from firing – is symmetric (it becomes a square as s approaches 0). The corner point
of the deterrence region opposite the origin (0, 0) is (x , x), where

x = s − 1 +√
s − s2

s
.

Note that x is a decreasing function of s and approaches 0 as s approaches 1; it
approaches 1/2 as s approaches 0. When a = 1/2 and s approaches 0, the area of the
deterrence region is maximal at 1/4 of the (q, p) unit square. Thus, even in the best
case of total damage and equal sharing, both players’ shooting accuracies cannot
exceed 1/2 for deterrence to occur.

4 Simultaneous Interaction

We now assume that the players act simultaneously (or that if one player fires first,
its opponent can return fire, regardless of whether the first shot hits its mark). Since
there is only one variant of sequential firing, we simply define a stable division
(a, 1−a) as one that is Pareto-superior to fighting. Thus, either the players agree at
the outset to share the prize, or they fire at each other. In the latter case, it is possible
for both shots to be successful, eliminating both players in any round, so each would
receive a payoff of 0.

If the first shot is successful and a player is therefore eliminated, it would
appear inconsistent to allow the eliminated player to return fire. However, there
are instances of people who are fatally shot but, while taking their dying breath,
manage to kill an assailant. At the international level, a “doomsday machine” also
works in this manner, enabling state A to destroy B even as A itself is destroyed.
By contrast, instantaneous reciprocation cannot happen in the sequential-interaction
model, because an eliminated player cannot subsequently eliminate its opponent.

As in the sequential-interaction model, the value of the prize in the simultaneous-
interaction model is reduced by the factor of 1 − s on each round if both players
fire and neither is eliminated. Also as before, we restrict our analysis to stationary
strategies.

To determine whether sharing or firing is better for P, we calculate P’s expected
payoff, WP , if P fires at Q. P will receive a positive payoff if P’s shot succeeds
and Q’s (simultaneous) shot fails, whereas P will receive a payoff of 0 if Q’s shot
succeeds. If neither player’s shot hits the mark, which will occur with probability
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(1− p)(1−q), both players will survive and the game will continue to a new round:

WP = [p(1−q)](1)+ q(0)+ [(1−p)(1−q)]sW = p(1−q)+ [(1−p)(1−q)]sW.

This equation can be rewritten as

WP = p(1 − p)

1 − [(1 − p)(1 − q)]s . (5)

P is rationally deterred from initiating the firing iff WP ≤ a, which is equivalent to

p ≤ a − as(1 − q)

(1 − q)− as(1 − q)
. (6)

The fraction on the right side of (6) is the threshold value of p for deterrence. This
threshold is always positive; it is less than 1 iff a−as(1−q) < (1−q)−as(1−q),
which reduces to q < 1−a. Hence, if q ≥ 1−a, P is rationally deterred from firing
no matter what the value of p is.

Analogous to (6), Q is rationally deterred from firing iff

q ≥ 1 − a − s(1 − a)(1 − p)

(1 − p)− s(1 − a)(1 − p)
. (7)

The threshold value of q, given by the right side of (7), is always positive, and
it is less than 1 iff p < a. Hence, if p ≥ a, Q is rationally deterred from firing no
matter what the value of q is.

It is rational for P and Q to share the prize iff both (6) and (7) hold. Rewriting (7)
as a lower bound on p (rather than an upper bound on q) shows that power sharing
in the ratio a : (1 − a) is rational for both players iff

a − (1 − q)+ s(1 − a)(1 − q)

q + s(1 − a)(1 − q)
≤ p ≤ a − as(1 − q)

(1 − a)− as(1 − q)
, (8)

and, of course, 0<p< 1. The deterrence region, which are the points of the (q, p)
unit square defined by (8), is shaded in Fig. 2 for three cases: s approaches 0, 0<s<
1, and s approaches 1.

Note that for any value of a, there are always some (q, p) values for which both
players prefer to share the prize in the ratio a : (1 − a) rather than fight. The deter-
rence region includes all points where p ≥ a and q ≥ 1−a; in particular, it includes
points where the values of p and q are both near 1. Unlike the sequential-interaction
model, both players benefit from sharing when they have high probabilities of elim-
inating each other.

The deterrence region also includes points where the values of q and p are near
0, but those points are much more confined, as Fig. 2 makes clear. But as s falls, the
damage caused by firing increases, and the deterrence region near (q, p) = (0, 0)
grows larger.
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s→1
(no damage)

0 < s < 1 s→0
(total destruction)

a a a

1 1 1

0 0 01 - a 1 - a 1 - a1 1 1
q q q

p p p

Fig. 2 Simultaneous-interaction model. s = damage parameter. Power-sharing region shaded

Figure 2 also shows that as s approaches 0, the deterrence region includes the
rectangle with opposite corners (0, 0) and (1−a, a), and the rectangle with opposite
corners (1 − a, a) and (1, 1). In other words, in a broad band around the 45◦ line
from (0, 0) to (1, 1), both players will be deterred.

Note that for any fixed s with 0 < s < 1 (the middle case of both Figs. 1 and 2),
the intersections of the curved lines in Figs. 1 and 2 with the q- and p-axes are
identical. This shows that at any (q, p) where deterrence is rational in the sequential-
interaction model (Fig. 1), it is also rational in the simultaneous-interaction model
(Fig. 2).

5 How Should Power Be Shared to Induce Stability?

We now take a different approach to power sharing, asking a design question: When
power is to be shared in the ratio a : (1 − a), what values of a render power sharing
stable? More specifically, given p and q, what are the stabilizable values of a, if
any, and for each of these, what values of s support power sharing? As we will see,
the answers to these questions depend fundamentally on whether the interaction is
sequential or simultaneous.

5.1 Sequential Interaction

Suppose that P and Q are interacting sequentially (SQ). Then P will rationally be
deterred from initiating the firing iff VP ≤ a. From (1),

VP = fSQ(p,q,s) = p

1 − (1 − p)(1 − q)s
≤ a. (9)

Analogously, Q will rationally be deterred from initiating the firing iff



178 S.J. Brams and D.M. Kilgour

VQ = q

1 − (1 − p)(1 − q)s
≤ 1 − a. (10)

Inequality (10) is equivalent to

a ≤ gSQ(p,q,s) = 1 − q − (1 − p)(1 − q)s

1 − (1 − p)(1 − q)s
. (11)

Combining (9) and (11), power sharing in the ratio a : (1 − a) is stable – neither
P nor Q will initiate the firing – for all values of a that satisfy the double inequality,

fSQ(p,q,s) ≤ a ≤ gSQ(p,q,s). (12)

Now suppose that p > 0 and q > 0 are fixed and consider the behavior of the
functions, fSQ(p,q,s) and gSQ(p,q,s), as s increases from 0 to 1. It is easy to verify
that P’s expected reward is bracketed by a lower bound of p and an upper bound
that is a function of p and q,

fSQ(p, q, 0) = p ≤ fSQ(p,q,s) ≤ p

p + q − pq
= fSQ(p,q,1), (13)

for any value of s satisfying 0 ≤ s ≤ 1. Furthermore, from (9), fSQ(p,q,s) is strictly
increasing in s. From (10), gSQ(p,q,s) is strictly decreasing in s, and, analogous to
(13),

gSQ(p, q, 0) = 1 − q ≥ gSQ(p,q,s) ≥ p − pq

p + q − pq
= gSQ(p,q,1) (14)

for any value of s satisfying 0 ≤ s ≤ 1.
Comparing the two right-hand expressions in (13) and (14), we find

gSQ(p,q,1) = p − pq < p = fSQ(p,q,1), (15)

because of our assumptions that p > 0 and q > 0. Inequality (15) contradicts
inequality (12), so (12) cannot be true when s = 1.

Thus, when there is no damage, there is no possibility of power sharing when
interaction is sequential. One player will initiate the shooting, which will continue
until one player is eliminated and the other player obtains all the (undamaged) value.

Note that the difference, gSQ(p,q,s) − fSQ(p,q,s), is a strictly decreasing func-
tion of s, because both gSQ and − fSQ are strictly decreasing functions of s.
From (12) it follows that power sharing is possible if and only if this strictly decreas-
ing difference is nonnegative, allowing for values of a that would stabilize power
sharing. This implies that if power sharing is possible for some specific value of s,
say s = s0, then it is also possible for all s < s0, and in particular for s = 0.

But from (13) and (14) we know that gSQ(p, q, 0)− fSQ(p, q, 0) ≥ 0 iff (1−q)−
p ≥ 0, or, equivalently, p + q ≤ 1. Therefore, there is no possibility for power
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sharing (with sequential interaction) when p + q > 1. In other words, if the sum of
the elimination probabilities is too high, each player will have an incentive to get in
the first shot.

Next suppose that p and q satisfy p + q = 1. Then

gSQ(p, q, 0)− fSQ(p, q, 0) = 1 − q − p = 0,

which implies that power sharing is possible, but only for s = 0. In addition, because
a must satisfy (12), power can be shared only in the ratio a : (1 − a) = p : q. In
conclusion, power can be shared if p + q = 1, but only if damage is total (s = 0)
and the power-sharing agreement exactly reflects the elimination-probability ratio
(p : q).

The case p + q < 1 is all that remains. By (12), power-sharing can be stabilized
for any value of s that satisfies fSQ(p, q, s) ≤ gSQ(p, q, s), which is equivalent to

s ≤ 1 − p − q

(1 − p)(1 − q)
= smax(p, q).

If s = 0, power can be shared in the ratio a : (1 − a) iff a satisfies the inequality
p ≤ a ≤ 1 − q. But, as can be verified directly, if s = smax(p, q), power must be
shared in the ratio a0 : (1 − a0), where

a0 = a0(p, q) = p

p + q
,

which is the limiting case discussed in the previous paragraph.
The possibilities for power sharing are illustrated in Fig. 3. Note that all values

of a such that p ≤ a ≤ 1 − q induce stability if s = 0, but the interval of sta-
bilizable values of a (shaded area in Fig. 3) diminishes in length as s increases.
When s reaches smax(p, q), the interval contains only the single point a0(p, q), and
it vanishes entirely as s increases further. In fact, it can be shown that the length of
this interval decreases at an increasing rate as s increases.

We conclude that sequential interaction offers relatively few opportunities to sta-
bilize power sharing. First, players will not be deterred from shooting unless their
combined probabilities of eliminating their opponents on any round are relatively
low; otherwise, each player will find it advantageous to try to eliminate its opponent
at the start. Second, even when this condition is met, the ratio of their power shares,
a : (1−a), must more or less reflect the ratio of their elimination probabilities, p : q,
for the players to be deterred from firing; in fact, only this ratio stabilizes power
sharing if s = smax(p, q).

Finally, the damage caused by firing on any round must be substantial. Indeed, if
the value of the prize that the players seek is relatively undiminished on each round
they shoot (i.e., if s is high), power sharing may be impossible, even when all other
conditions for stability are met.
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Fig. 3 Sequential
stabilization (shaded area)
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1– q 
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5.2 Simultaneous Interaction

Now suppose that P and Q are interacting simultaneously. Then P will be rationally
deterred from initiating the firing if WP ≤ a. From (5),

WP = fSM(p,q,s) = p(1 − q)

1 − (1 − p)(1 − q)s
≤ a

and, analogously for Q,

WQ = fSM(p,q,s) = q(1 − p)

1 − (1 − p)(1 − q)s
≤ 1 − a.

The latter inequality is equivalent to

a ≤ gSM (p,q,s) = 1 − (1 − p)q − (1 − p)(1 − q)s

1 − (1 − p)(1 − q)s
.

Therefore, power sharing in the ratio a : (1 − a) is stable for all values of a that
satisfy the double inequality,

fSM (p,q,s) ≤ a ≤ gSM(p,q,s). (16)

Now suppose that p > 0 and q > 0 are fixed, and consider the behavior of the
functions, fSM (p,q,s) and gSM(p,q,s), as s increases from 0 to 1. As in the case of
sequential interaction, it is easy to verify that

fSM (p, q, 0) = p − pq ≤ fSM (p,q,s) ≤ p − pq

p + q − pq
= fSM (p,q,1 )
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for any value of s satisfying 0 ≤ s ≤ 1, and that fSM (p,q,s) is strictly increasing in
s. Similarly, gSM (p,q,s) is strictly decreasing in s, and

gSM (p, q, 0) = 1 − q + pq ≤ gSM(p,q,s) ≤ p

p + q − pq
= gSM(p,q,1 ),

for any value of s satisfying 0 ≤ s ≤ 1.
Observe that gSM (p,q,1) > fSM (p,q,1), which implies that inequality (16) is true

(for appropriate values of a) when s = 1. Moreover, gSM (p,q,s) − fSM (p,q,s) is a
strictly decreasing function of s. Therefore, for any values of p and q, power sharing
(with simultaneous interaction) is possible for every value of s – that is, power
sharing in some ratio is feasible, whatever the level of damage shooting causes.

As in the sequential-interaction case, the length of the interval of stabilizable
values of a diminishes, at an increasing rate, as s increases. This is shown in Fig. 4
for the same values of p and q that were used in Fig. 3.

The values of s and a that make sequential stabilization possible (darker shade
in Fig. 4) can be shown to be a subset of those that make simultaneous stabilization
possible (lighter shade). Note in Fig. 4 that

fSM (p,q,1 ) = gSM (p,q,1 ) and fSQ(p,q,1) = gSQ(p,q,1 ).

However, the interval between these points stabilizes power sharing in the case
of simultaneous interaction but not in the case of sequential interaction.

Clearly, simultaneous interaction is much more potent a tool than sequential
interaction for stabilizing power sharing. More specifically,

• simultaneous stabilization is possible for any values of p and q, whereas sequen-
tial stabilization is possible only if p + q ≤ 1;

0 1

1

s

a

fSM  (p, q, s)

gSM  (p, q, s)

p – pq

1 – q + pq

Fig. 4 Stabilization comparison. Simultaneous (light shading) versus sequential (light shading)



182 S.J. Brams and D.M. Kilgour

aaa

qqq

111

000 111

s→1
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0 <  s < 1 s→ 0
(total destruction)

Fig. 5 Stabilizable values of a when p = 1/2. Simultaneous: light shading: Sequential: dark
shading

• if p + q ≤ 1, simultaneous stabilization is possible for every value of s, whereas
sequential stabilization is possible only if s ≤ smax(p, q);

• if p + q ≤ 1 and s ≤ smax(p, q), simultaneous stabilization produces a wider
interval of values of a than does sequential stabilization.

The superior ability of simultaneous interaction to stabilize power sharing is
made even more evident in Fig. 5, which fixes p = 1/2 and asks how the stabi-
lizable power-haring ratios depend on q. The figure includes three cases, s = 0
(total damage), s = 1/2, and s = 1 (no damage).

Observe that as q increases from 0, the stabilizable values of a decrease. For
example, when s = 0 and stabilization is simultaneous, values of a from 1/2 to 1
can be stabilized if q = 0, but at q = 1 the stabilizable values of a run from 0 to 1/2.
If interaction is sequential, the situation is bleaker: There are no stabilizable values
of a when q exceeds 1/2. Thus, it is apparent that simultaneous interaction is far
more efficacious at stabilizing power sharing than sequential interaction, especially
when the elimination probability of a player increases.

Increasing s (i.e., decreasing damage) diminishes the possibility of stabilization
in both the simultaneous and sequential cases. As suggested by the three cases in
Fig. 5, if a particular point (q, a) is stabilizable (for either sequential or simultaneous
interaction) for any particular value of s, then it is also stabilizable for any smaller
value of s. For instance, any point, (q, a), that is shaded (either light or dark) when
s = 1/2 is also shaded when s = 0. Thus, the more the damage caused by shooting,
the more players will try to avoid it.

6 Conclusions

Why are the incentives to share power in the simultaneous-interaction case greater
than in the sequential-interaction case? The former allows for the possibility that
both players will be eliminated and, consequently, receive none of the prize, whereas
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the latter model allows for at most one player to be eliminated. This makes the
prospect of fighting more unsavory if interaction is simultaneous, raising the value
to the players of sharing the prize.7

To deter players from firing and encourage power sharing, therefore, it helps if
the players can respond rapidly, if not immediately, to firing by an opponent and so,
potentially, wreak more damage. A hair trigger, despite the risks of accidental firing,
therefore strengthens deterrence. So does the doctrine of “launch on warning,” given
good intelligence and surveillance, because it enables the attacked player to retaliate
before it is hit.

The near-simultaneity of possible retaliation by the superpowers during the Cold
War arguably benefited deterrence, Wohlstetter’s (1959) warning of the “delicate
balance of terror” notwithstanding. Of course, mutual assured destruction (MAD)
was never entirely assured, because the doomsday machines the superpowers put in
place were not certain to work.

Failures of either command and control or political will were a constant concern,
making the doomsday machines at best probabilistic (Brams, 1985, p. 36; Brams &
Kilgour, 1988, pp. 50–52). However, as each side developed second-strike capabil-
ity – primarily through its submarine-launched nuclear missiles, which could not be
destroyed in a first strike despite the increased accuracy of ICBMs – MAD became
more secure and, perhaps, less mad. Each side could ride out a first strike and still
wreak destruction on the other side.

The simultaneous-interaction model mirrors this second-strike capability. Al-
though firing may not literally be simultaneous, a player can respond to an attack,
even if devastated by it, so a successful shot in simultaneous interaction does not
“eliminate” an opponent entirely.

Put differently, even when great damage is inflicted on a player, it may be able
to respond. What makes power sharing a rational strategy in this situation is the
damage that both sides incur if both are eliminated at once (e.g., possibly a “nuclear
winter” in the case of a nuclear exchange).

Unlike nuclear warfare, the damage caused by terrorist acts tends not to be highly
destructive, except over long periods of time. Thus low damage, as well as sequen-
tiality, may make terrorists reluctant to share power; instead, they do better by slowly
wearing down the government. Indeed, the government may hasten its own demise
if it fights back heavy-handedly, alienating the populace and, ultimately, losing its
support if it is unable to detect and destroy many terrorist targets.

To increase the damage factor for terrorists, the best counterstrategy would seem
to be to dry up their sources of support, especially financial, that derive from the
populace. This, of course, is easier said than done. But we emphasize that the main
lesson of our models is that the s factor – specifically, diminishing the value of the

7 The demise of dueling in the early 20th century seems to have been largely a function of the
moral repugnance that came to be associated with it. But it also may have been due to the greater
possibility that both players would be killed or wounded as pistols became more accurate. For a
review of recent books on dueling, see Krystal (2007).
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prize by making shooting (attacks) as damaging as possible – is the key to making
power sharing attractive to both sides.

Can our models be extended to n-person power-sharing games, starting with tru-
els, or 3-person extensions of duels (Kilgour & Brams, 1997; Bossert, Brams, &
Kilgour, 2002)? The combinatorial possibilities of shooting rapidly multiply as the
players increase, but so do the potential benefits of not shooting, so we think this
question is well worth exploring in today’s multipolar world.
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Different Approaches to Influence Based
on Social Networks and Simple Games

Michel Grabisch and Agnieszka Rusinowska

1 Introduction

1.1 Aim of the Paper

The existence of influence between agents in collective decision-making situations,
in which individual agents are to choose among a number of alternatives, may have
a considerable impact on the collective decision, and consequently, on the perfor-
mance of the collective body. Investigating appropriate tools to measure influence
is of importance in every organization, at the individual, group and macro levels.
The capacity to influence others seems to be as old as the world, since already
the biblical story of Adam and Eva can be modeled in terms of influence, and the
consequences of this “first” influence are experienced constantly in the world. Since
influence is present practically everywhere, in all kinds of structures where, e.g.,
personal, social, economic, and political decisions are to be made, it is not surpris-
ing that different approaches to the influence issues can be and have been applied.
For a short overview of theoretical and empirical studies of political influence and
power in groups presented in the political economic literature, we refer, e.g., to van
Winden (2004).

The aim of the present paper is to deliver an overview of the key investigations of
our research on influence. The model presented in this paper is a game theoretical
model and contributes to the literature of cooperative game theory and network the-
ory on interactions and influence between agents. Since there are many worthwhile
research on this framework, delivering an overview of research conducted on the
influence model is of importance. It helps to realize what has been done on this
subject and to which direction it is good to navigate. In the following subsection,
we give a short overview of both cooperative and noncooperative approaches to
influence, with a particular focus on our own research on this topic.
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1.2 Overview of Research on Influence

Already more than 50 years ago, Isbell (1958) introduced the concept of influence
relation to qualitatively compare the a priori influence of voters in a simple game. In
a voting game, where players vote either “yes” or “no”, voter k is said to be at least as
influential as voter j , if whenever j can transform a losing coalition into a majority
by joining it, voter k can achieve the same ceteris paribus. This influence relation
is extended in Tchantcho, Diffo Lambo, Pongou, and Mbama Engoulou (2008) to
voting games with abstention. Grabisch and Roubens (1999) analyze the concept
of interaction among agents. Players in a coalition are said to exhibit a positive
(negative) interaction when the worth of the coalition is greater (smaller) than the
sum of the individual worths.

The cooperative game theoretical approach to interaction is also used in Hu
and Shapley (2003a, 2003b), where the authors apply the command structure of
Shapley (1994) to model players’ interaction relations by simple games. For each
player, boss sets and approval sets are introduced, and based on these sets, a sim-
ple game called the command game for a player is built. Given a set of command
games, the command function is defined, which assigns to each coalition the set of
all players that are “commandable” by that coalition.

A different approach, related to noncooperative game theory, is applied in Koller
and Milch (2003), where the so called multi-agent influence diagrams are intro-
duced. These diagrams are a graphical representation for noncooperative games,
and represent decision problems involving multiple agents.

One of the concepts naturally related to influence is the concept of leadership.
DeMarzo (1992) examines the set of outcomes sustainable by a leader with the
power to make suggestions which are important even if players can communicate
and form coalitions. van den Brink, Rusinowska, and Steffen (2009) define the sat-
isfaction and power scores for opinion leaders – followers structures and examine
common properties of these scores.

As mentioned in Hojman and Szeidl (2006), individual decisions and strate-
gic interaction are both embedded in a social network. Social networks are there-
fore particularly useful in analyzing influence. In Lopez-Pintado (2008), where the
author stresses the fact that decisions of individuals are often influenced by the
decisions of other individuals, a network of interacting agents whose actions are
determined by the actions of their neighbors is studied.

The point of departure for our research on influence is a framework originally
introduced in Hoede and Bakker (1982). The model concerns influence in a social
network in which agents are to make an acceptance/rejection decision on a cer-
tain proposal. Each agent has an inclination to say either “yes” or “no” on the
proposal, but agents may influence the decisions of others, and consequently the
agents’ decisions may differ from their preliminary inclinations. Such a transforma-
tion from the inclinations to the decisions is represented by an influence function.
In Hoede and Bakker (1982) the concept of decisional power (called later in some
related papers the Hoede–Bakker index) is introduced. Some properties of this index
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are studied in Rusinowska and de Swart (2007), where the authors examine if the
Hoede–Bakker index satisfies some postulates for power indices, like the mono-
tonicity postulate, the donation postulate, and the bloc postulate (see e.g., Felsenthal
& Machover, 1998), and if the Hoede–Bakker index displays some voting power
paradoxes, like the redistribution paradox (Fischer & Schotter, 1978; see also
Schotter, 1981), the paradox of new members (Brams, 1975; Brams & Affuso, 1976),
and the paradox of large size (Brams, 1975). Following a probabilistic approach
to power indices (see e.g., Laruelle & Valenciano, 2005), Rusinowska and de
Swart (2006) investigate a generalization of the Hoede–Bakker index that coincides
with the Penrose measure (Penrose, 1946; see also Banzhaf, 1965), and some mod-
ifications of this index that coincide with other well known power indices, like the
Rae index (Rae, 1969), the Coleman indices (Coleman, 1971, 1986), and the König–
Bräuninger index (König & Bräuninger, 1998). Analogous modifications of the
Hoede–Bakker index to the Shapley–Shubik index (Shapley & Shubik, 1954) and
the Holler–Packel index (Holler & Packel, 1983) are presented in Rusinowska (2009).
In Rusinowska (2008) the not-preference based version of the Hoede–Bakker index
is investigated.

As noticed in our first paper on influence (Grabisch & Rusinowska 2009b), the
Hoede–Bakker index does not give a full description of the influence, in the sense
that it hides the actual role of the influence function. This observation has initiated
our larger project on the model of influence in a social network, with the aim to
investigate measures of influence and other tools to deal with this phenomenon. In
Grabisch and Rusinowska (2009b), the concept of a weighted influence index of a
coalition on an individual is defined. We consider different influence functions, like
the majority function, the guru function, the identity function, the reversal function,
the mass psychology function, and study their properties. In particular, the set of
followers, the kernel of an influence function, and a purely influential function are
analyzed.

As mentioned above, another framework which models players’ interactions is
the framework of command games introduced by Hu and Shapley (2003a, 2003b).
In Grabisch and Rusinowska (2009a), we study the relation between this frame-
work and the influence model and show that the model of influence is more gen-
eral than the command games. In particular, we define several influence functions
which capture the command structure. Moreover, we propose a more general defi-
nition of the influence index and show that under some assumptions several well-
known power indices coincide with some expressions of the weighted influence
indices.

In Grabisch and Rusinowska (2008), we study the exact relation between two
central concepts of the influence model: the influence function and the follower
function. We deliver sufficient and necessary conditions for a function to be a
follower function, and describe the structure of the set of all influence functions
that lead to a given follower function. Moreover, we investigate the exact relations
between the key concepts of the command games and of the influence model. A
sufficient and necessary condition for the equivalence between an influence function
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and a command game is delivered. We also find sufficient and necessary conditions
for a function to be a command function, and describe the minimal sets generating
a command game.

In Grabisch and Rusinowska (2009d), the yes/no model is extended to the influ-
ence model in which each agent has a totally ordered set of possible actions. The
generalized influence indices and other tools related to the multi-choice model are
investigated and the results are compared to the ones obtained in the yes/no model
of influence. In Grabisch and Rusinowska (2010), we consider another generalized
model of influence in which each player has a continuum of actions.

1.3 Structure of the Paper

In the remaining parts of the paper, we present a formal description of our inves-
tigations on the selected influence issues. Section 2 concerns the yes/no model of
influence. We describe the model and recapitulate some results on the key concepts
of the influence model. In Sect. 3 the framework of command games and some
of the relations between this framework and the yes/no influence model are pre-
sented. In Sect. 4 we mention the generalized model of influence in which agents
have a totally ordered set of possible actions. Section 5 gives some reflections on
the problem of identifying the model of influence in a practical situation. Sec-
tion 6 is devoted to concluding remarks on our future research on the influence
issues.

2 The Model of Influence in a Social Network

2.1 Description of the Model and Weighted Influence Indices

We consider a social network with a set of agents (players, actors, voters) denoted
by N := {1, 2, . . . , n} who are to make a certain acceptance-rejection decision on a
specific proposal. Each agent has an inclination either to say “yes” (denoted by +1)
or “no” (denoted by −1). By the inclination of an agent we mean an action that the
agent would choose being completely “on his own”, that is, without any interaction
with other agents and not being influenced by others. Let i = (i1, i2, . . . , in) denote
an inclination vector and I := {−1,+1}n be the set of all inclination vectors. For
convenience, (1, 1, . . . , 1) ∈ I and (−1,−1, . . . ,−1) ∈ I are denoted by 1N and
−1N , respectively, and also for mixed cases like (−1N\S, 1S).

Agents in such a social network may influence each other, and due to the influ-
ences, the final decision of an agent may be different from his original inclina-
tion. Formally, each inclination vector i ∈ I is transformed into a decision vector
Bi = ((Bi)1, (Bi)2, . . . , (Bi)n), where B : I → I, i #→ Bi is the influence func-
tion. The set of all influence functions will be denoted by B.
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What do we mean by influence and how is it modeled in our framework? In our
most general statement, we say that an agent is influenced if the decision of the agent
is different from his (original) inclination. In Grabisch and Rusinowska (2009b) we
distinguish between a direct influence and an opposite influence. The direct influ-
ence of a unanimous coalition on an agent, that is, a coalition of players with the
same inclination, means that the agent’s inclination is different from the inclina-
tion of that coalition, but his decision coincides with the inclination of the coali-
tion. Under the opposite influence of a coalition on an agent, the inclination of the
agent coincides with the inclination of the coalition, but his decision is different
from the inclination of the coalition. In the case of direct influence, which is the
most common, the agent changes his opinion because he may be convinced by the
arguments of the influencing coalition, or for some political, hierarchical or more
personal reason, he feels obliged to follow that coalition. On the other hand, the
opposite influence is a kind of reactive behavior. The agent, again for some political
or personal reason, systematically decides for the opposite opinion of the influenc-
ing coalition. In the present paper, we consider for simplicity only the notion of
the direct influence, and hence, in all following definitions we will omit the word
“direct”.

Let us introduce several notations for convenience. Cardinality of sets S, T, . . .
will be denoted by the corresponding lower case s, t, . . .. We omit braces for sets,
e.g., {k,m}, N \ { j}, S ∪ { j} will be written km, N \ j , S ∪ j , etc. For any S ⊆ N ,
|S| ≥ 2, we introduce the set IS of all inclination vectors under which all members
of S have the same inclination

IS := {i ∈ I | ∀k, j ∈ S [ik = i j ]} (1)

and Ik := I , for any k ∈ N . By iS we denote the value ik for some k ∈ S, i ∈ IS .
Let for each S ⊆ N and j ∈ N \ S, IS→ j denote the set of all inclination vectors of
potential influence of S on j , that is,

IS→ j := {i ∈ IS | i j = −iS} (2)

and additionally, for each B ∈ B, let I ∗S→ j (B) denote the set of all inclination
vectors of observed influence of S on j under B ∈ B, that is,

I ∗S→ j (B) := {i ∈ IS→ j | (Bi) j = iS}. (3)

In Grabisch and Rusinowska (2009b), we introduce the weighted influence
indices, whose main idea is to give a relative importance to the different inclination
vectors. For each S ⊆ N , j ∈ N \S and i ∈ IS , we introduce a weight αS→ j

i ∈ [0, 1]
of influence of coalition S on j ∈ N \ S under the inclination vector i ∈ IS . There is
no normalization on the weights, but we assume that for each S ⊆ N and j ∈ N \ S,
there exists i ∈ IS→ j such that αS→ j

i > 0. Moreover, we impose the symmetry
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assumption that αS→ j
i depends solely on the number of agents having the same

inclination as S under i ∈ IS .
Given B ∈ B, for each S ⊆ N , j ∈ N \ S, the weighted influence index of

coalition S on player j is defined as

dα(B, S → j) :=
∑

i∈I ∗S→ j (B)
α

S→ j
i

∑
i∈IS→ j

α
S→ j
i

∈ [0, 1]. (4)

It is the (weighted) proportion of situations of observed influence among all situa-
tions of potential influence. Two particular ways of weighting lead to the possibility
influence index d(B, S → j), under which any possibility of influence is taken into
account, and the certainty influence index d(B, S → j), where we take into account
only the situations in which all agents outside S ∪ j have the inclination different
from the inclination of S. We have for each S ⊆ N , j ∈ N \ S and B ∈ B

d(B, S → j) = dα(B, S → j), where αS→ j
i = 1 for each i ∈ IS

and

d(B, S → j) = dα(B, S → j), where for each i ∈ IS

α
S→ j
i =

{
1, if ∀p /∈ S ∪ j, i p = −iS

0, otherwise.

Consequently, we can write

d(B, S → j) = |I ∗S→ j (B)|
|IS→ j | ∈ [0, 1] (5)

d(B, S → j) = |{i ∈ I ∗S→ j (B) | ∀p /∈ S [i p = −iS]}|
2

∈ {0, 1

2
, 1}. (6)

The possibility influence index gives therefore the fraction of potential influence
situations that happen to be situations of observed influence indeed. The certainty
influence index measures also such a fraction, except that it focuses only on situa-
tions in which the coalition in question is the only one which (directly) influences
the agent.

2.2 Follower Functions and Influence Functions

The key concept of the influence framework is the concept of follower of a given
coalition, that is, an agent who always follows the inclination of that coalition when
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all members of the coalition have the same inclination. The follower function of
B ∈ B is a mapping FB : 2N → 2N defined as

FB(S) := {k ∈ N | ∀i ∈ IS, (Bi)k = iS}, ∀S ⊆ N , S �= ∅ (7)

and FB(∅) := ∅. We say that FB(S) is the set of followers of S under B. The set of
all follower functions is denoted by F . In Grabisch and Rusinowska (2009b), it is
shown that

dα(B, S → j) = 1, ∀ j ∈ FB(S) \ S.

Another important concept of the influence model is the concept of kernel of an
influence function, which is the set of “truly” influential coalitions. Assume FB is
not identically the empty set. The kernel of B is defined as

K(B) := {S ∈ 2N | FB(S) �= ∅, and S′ ⊂ S ⇒ FB(S
′) = ∅}. (8)

As defined before, in order to model influences between players, that is, to repre-
sent a transformation between agents’ inclinations and their decisions, an influence
function is used. We like to recapitulate definitions and some basic properties of
some of the influence functions defined in Grabisch and Rusinowska (2009b) that
model different types of influence. Four functions will be mentioned: the identity
function (which models the absence of any influence), the reversal function (which
depicts a systematic reversal of inclination), the guru function (which describes fol-
lowing the guru by each agent in every situation, assuming such a guru exists),
and the majority function (under which if a majority of agents has the positive
inclination, then all agents choose the yes-option, otherwise all agents choose the
no-action). Let us recall definitions of these influence functions.

• The identity function Id ∈ B is defined by

Idi = i, ∀i ∈ I. (9)

• The reversal function −Id ∈ B is defined by

(−Id)i = −i, ∀i ∈ I. (10)

• Let k̃ ∈ N be a particular player called the guru.

The guru influence function Gur[̃k] ∈ B is defined by

(Gur[̃k]i) j = ik̃, ∀i ∈ I, ∀ j ∈ N . (11)

• Let n ≥ t > $ n
2 %, and for any i ∈ I we define i+ := {k ∈ N | ik = +1}. The

majority influence function Maj[t] ∈ B is defined by
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Maj[t]i :=
{

1N , if |i+| ≥ t

−1N , if |i+| < t
, ∀i ∈ I. (12)

In Grabisch and Rusinowska (2009b), we prove that the follower functions of
these influence functions, for each S ⊆ N , are equal to

FId(S) = S, F−Id(S) = ∅, F
Gur[̃k](S) =

{
N , if k̃ ∈ S

∅, if k̃ /∈ S,

FMaj[t](S) =
{

N , if s ≥ t

∅, if s < t

and the kernels of these influence functions are

K(Id) = {{k}, k ∈ N }, K(−Id) = ∅, K(Gur[̃k]) = {̃k},
K(Maj[t]) = {S ⊆ N | |S| = t}.

In Grabisch and Rusinowska (2008), we establish the exact relation between the
influence function and the follower function. In particular, we find sufficient and
necessary conditions for a function to be the follower function of some influence
function. Moreover, given a follower function, we find the smallest and greatest
influence functions that lead to this follower function.

First of all, note that while there is no restriction on an influence function
B : 2N → 2N , any follower function FB : 2N → 2N should satisfy some
conditions. The mapping Φ : B → (2N )(2

N ), defined by B #→ Φ(B) := FB

is neither a surjection nor an injection (that is, several different B’s may have the
same follower function, and there are functions in (2N )(2

N ) which cannot be the
follower function of some influence function). We have Φ(B) = F . In Grabisch
and Rusinowska (2008), we prove that a function F : 2N → 2N is a follower
function of some B ∈ B (i.e., FB = F , or Φ(B) = F) if and only if it satisfies the
following three conditions:

• F(∅) = ∅;
• F is an isotone function (S ⊆ S′ implies F(S) ⊆ F(S′));
• If S ∩ T = ∅, then F(S) ∩ F(T ) = ∅.

Moreover, the smallest and greatest influence functions belonging to Φ−1(F) are
respectively the influence functions B F and B F , defined by, for all i ∈ I and all
k ∈ N :

(B F i)k :=
{
+1, if k ∈ F(S+(i))
+− 1, otherwise

,
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(B F i)k :=
{
−1, if k ∈ F(S−(i))
+1, otherwise

,

where S±(i) := { j ∈ N | i j = ±1}.
For instance, if F(S) = ∅ for all S ⊆ N , then B ≡ −1N and B ≡ 1N .
If F = Id, then Φ−1(Id) = {Id}.

In Grabisch and Rusinowska (2008), we also find the (algebraic) structure of
Φ−1(F), i.e., the set of all influence functions that lead to the follower function F
and we indicate how to compute it. This structure happens to be a distributive lattice.

2.3 Example

In order to illustrate the concepts introduced in the previous subsections, let us con-
sider a three-agent network, i.e., N = {1, 2, 3}, with the following principles of the
decision-making process:

(i) Agent 1 follows himself;
(ii) Agent 2 follows agent 1;

(iii) Agent 3 follows the majority (i.e., he decides according to the inclination of at
least two agents).

Figure 1 shows a social network for this example. An arc from player j to k
means that j influences player k.

The set of all inclination vectors is I = {−1,+1}3, |I | = 8. Table 1 presents the
influence function B for the example. Please note that B is a kind of a mixture of the
three influence functions mentioned in Sect. 2.2: agent 1 uses the identity function
Id, agent 2 decides according to his guru k̃ = 1, and agent 3 applies the majority
function Maj[t] with t = 2.

Fig. 1 Three-agent social
network

2 3

1

Table 1 The influence function B

i ∈ I (1, 1, 1) (1, 1,−1) (1,−1, 1) (−1, 1, 1) (1,−1,−1) (−1, 1,−1)
Bi (1, 1, 1) (1, 1, 1) (1, 1, 1) (−1,−1, 1) (1, 1,−1) (−1,−1,−1)

i ∈ I (−1,−1, 1) (−1,−1,−1)
Bi (−1,−1,−1) (−1,−1,−1)
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Table 2 The sets of followers under B

S ⊆ N ∅ 1 2 3 12 13 23 N
FB(S) ∅ 12 ∅ ∅ N N 3 N

Table 2 shows the set of followers under B of each coalition. Obviously, the condi-
tions for a follower function recapitulated in Sect. 2.2 are satisfied by FB .

From Table 2 we get the kernel of the influence function B

K(B) = {1, 23}

and using Table 1, we can calculate the influence indices. Note that for each weighted
influence index, we have

dα(B, 1 → 2) = dα(B, 13 → 2) = dα(B, 12 → 3) = 1

which illustrates the property of the weighted influence index mentioned in Sect. 2.2,
and moreover

dα(B, 2 → 1) = dα(B, 3 → 1) = dα(B, 23 → 1) = 0.

Table 3 presents the possibility and certainty influence indices
(
d(B, S → j),

d(B, S → j)
)

for each ∅ �= S ⊂ N and j ∈ N \S.
Note that in this example the certainty influence index is either 0 or 1, but is

never equal to 1
2 . This is related to the neutrality of the influence function B defined

in Table 1 which states that B(−i) = −Bi for each i ∈ I .

Table 3 The possibility and certainty influence indices
(
d(B, S → j), d(B, S → j)

)

S → 1 2 3 12 13 23
j ↓
1 − (0, 0) (0, 0) − − (0, 0)

2 (1, 1) − (
1

2
, 0) − (1, 1) −

3 (
1

2
, 0) (

1

2
, 0) − (1, 1) − −

3 The Command Games

3.1 Command Games and Command Functions

The framework of command games has been introduced in Hu and Shapley (2003a,
2003b), and later analyzed in Grabisch and Rusinowska (2008, 2009a). Let us recall
the key concepts of this model. Let N = {1, . . . , n} be the set of players. For k ∈ N
and S ⊆ N \ k:

• S is a boss set for k if S determines the choice of k;
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• S is an approval set for k if k can act with an approval of S.

For each k ∈ N , a simple game (N ,Wk) is built, called the command game for k,
with the set of winning coalitions defined by

Wk := {S | S is a boss set for k} ∪ {S ∪ k | S is a boss or approval set for k}. (13)

The boss and approval sets for k can be recovered by

Bossk = {S ⊆ N \ k | S ∈ Wk} = Wk ∩ 2N\k

Appk = {S ⊆ N \ k | S ∪ k ∈ Wk but S /∈ Wk}.

We have Bossk ∩ Appk = ∅. In particular, if Appk = 2N\k , then k is called a free
agent, since he needs no approval (∅ ∈ Appk) and nobody can boss him (Bossk=∅).
If Appk = ∅, then k is called a cog.

Given a set of command games {(N ,Wk), k ∈ N }, the command function
ω : 2N → 2N is defined as

ω(S) := {k ∈ N | S ∈ Wk}, ∀S ⊆ N . (14)

ω(S) is the set of all members that are “commandable” by S.
As noticed in Grabisch and Rusinowska (2008), any set of command games

{(N ,Wk), k ∈ N } can be viewed as a mapping Ω : N × 2N → {0, 1}, with

(k, S) #→ Ω(k, S) =
{

1, if S ∈ Wk

0, otherwise
.

Recall that for any S ⊆ N , the principal filter of S is defined as ↑ S := {T ⊆ N |
T ⊇ S}. A normal command game Ω is a set of simple games {(N ,Wk), k ∈ N }
satisfying the two conditions:

• For each k ∈ N , there exists a minimal nonempty family of nonempty subsets
Sk

1 , . . . , Sk
lk

(called the generating family of Wk) such that

Wk =↑ Sk
1 ∪ . . .∪ ↑ Sk

lk
.

• For each k ∈ N , Sk
1 ∩ · · · ∩ Sk

lk
�= ∅.

The last condition is motivated by the following fact: if there exist two disjoint boss
sets for agent k, then there will be a conflict if the boss sets have a different opinion.
We denote by G the set of all normal command games. There exists a bijection
Ψ : 2N×2N → (2N )(2

N ) defined by

Ψ (Ω) = ω, with ω(S) := {k ∈ N | Ω(k, S) = 1}, ∀S ⊆ N

Ψ−1(ω) = Ω, with Ω(k, S) = 1 iff k ∈ ω(S). (15)

In Grabisch and Rusinowska (2008), we show the exact relation between com-
mand games and command functions. We prove that ω ∈ (2N )(2

N ) corresponds to
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some normal command game, i.e., ω ∈ Ψ (G), if and only if the following conditions
are satisfied:

• ω(∅) = ∅, ω(N ) = N ;
• ω is isotone;
• If S ∩ S′ = ∅, then ω(S) ∩ ω(S′) = ∅.

Note the similarity between the sufficient and necessary conditions for a function to
be the command function of some command game, and those for a function to be
the follower function of some influence function. We can conclude that comparing
the command framework with the influence model should be based on comparing
command games with influence functions, and will be closely related to the relation
between command functions and follower functions.

3.2 Command Games and Influence Functions

We investigate the relation between command games and influence functions. In
particular, we are interested in equivalence between command games and influence
functions. An influence function B and a command gameΩ are said to be equivalent
if ω ≡ FB .

In Grabisch and Rusinowska (2008), we show that if B is an influence function,
then there exists a unique normal command game Ω equivalent to B if and only
if FB(N ) = N . Moreover, if Ω is a normal command game, then any influence
function in Φ−1(ω) is equivalent to Ω .

Let us present command games equivalent to the four influence functions reca-
pitulated in Sect. 2.2. In Grabisch and Rusinowska (2009a), we prove the following:

• The identity function Id ∈ B is equivalent to the set of command games
{(N ,W Id

k ) | k ∈ N }, where

W Id
k = {S ⊆ N | k ∈ S}, ∀k ∈ N .

• There is no set of command games equivalent to the reversal function −Id ∈ B.

• The guru function Gur[̃k] ∈ B is equivalent to the set of command games

{(N ,WGur[̃k]
k ) | k ∈ N }, where

WGur[̃k]
k = {S ⊆ N | k̃ ∈ S}, ∀k ∈ N .

• The majority function Maj[t] ∈ B, where n ≥ t > $ n
2%, is equivalent to the set of

command games {(N ,WMaj[t]
k ) | k ∈ N } with

WMaj[t]
k = {S ⊆ N | s ≥ t}, ∀k ∈ N .
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Note that the existence of a unique normal command game equivalent to B ∈
{Id,Gur[̃k],Maj[t]} could be already concluded from Sect. 2.2, where it is straight-

forward to see that FB(N ) = N for B ∈ {Id,Gur[̃k],Maj[t]}. On the other hand, we
note that F−Id(N ) = ∅.

3.3 Example Continued

We turn to the example presented in Sect. 2.3, and model it in terms of a com-
mand structure. Hence, we have a three-agent game N = {1, 2, 3}, in which agent
1 follows himself, agent 2 follows agent 1, and agent 3 follows the majority. The
command game Ω for the example is defined as follows:

W1 = W2 = {1, 12, 13, 123}
W3 = {12, 13, 23, 123}.

Hence, we have

Boss1 = ∅, Boss2 = {1, 13}, Boss3 = {12}
App1 = {∅, 2, 3, 23}, App2 = ∅, App3 = {1, 2}.

Note that agent 1 is a free agent, and agent 2 is a cog.
The command function ω for this example is presented in Table 4.
Note that the influence function B defined in Sect. 2.3 and the command gameΩ of
the present example are equivalent, because ω ≡ FB .

Table 4 The command function ω

S ⊆ N ∅ 1 2 3 12 13 23 N
ω(S) ∅ 12 ∅ ∅ N N 3 N

3.4 Power and Influence Indices

In Grabisch and Rusinowska (2009a), a more general version of the weighted influ-
ence index is defined which can cover all imaginable types of influence, in particular,
the direct influence, the opposite influence, an influence of a coalition on its member,
etc. First of all, it is assumed that only a coalition with all members unanimous in
inclinations may influence an agent. An influence of a coalition S on a player j takes
place if (Bi) j = λ, where λ ∈ {−i j , iS,−iS,+1,−1}. Hence, the set IS→ j,λ(B) of
all inclination vectors of influence of S on j under B is defined as

IS→ j,λ(B) := {i ∈ IS | (Bi) j = λ} (16)
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and given B ∈ B, for each S ⊆ N , j ∈ N , the general weighted influence index of
coalition S on player j under B is defined as

ψα,λ(B, S → j) :=
∑

i∈IS→ j,λ(B) α
S→ j
i

∑
i∈IS

α
S→ j
i

. (17)

In particular, the weighted (direct) influence index defined in the previous section is
recovered as

ψα,λ(B, S → j) = dα(B, S → j) if λ = −i j and α
S→ j
i = 0 for i j = iS.

For an arbitrary set of command games, we construct several equivalent (com-
mand) influence functions. This shows that the model of influence is broader than
the framework of the command games. Moreover, we apply several power indices
to the command games and prove that these power indices coincide with some
expressions of the general weighted influence indices under the command influ-
ence functions. One of the (command) influence functions that we define is the
influence function with abstention, related to an extended three-action model of
influence recapitulated in Sect. 4.1. In this model, each agent has three options for
his decision: “yes” (denoted by +1), “no” (denoted by −1), or “abstain” (denoted
by 0), that is, B(I ) ⊆ {−1, 0,+1}n .

Given a set of command games {(N ,Wk) | k ∈ N }, the command influence
function Com is defined for each k ∈ N and i ∈ I by

(Comi)k :=

⎧
⎪⎨

⎪⎩

+1, if { j ∈ N | i j = +1} ∈ Wk

−1, if { j ∈ N | i j = −1} ∈ Wk

0, otherwise

. (18)

According to Com, for each agent k and each inclination vector, if all players with
the same inclination forms a winning coalition in his command game, the agent k
follows the inclination of this winning coalition. Otherwise, k abstains.

We have shown that for each set of command games {(N ,Wk) | k ∈ N }, the
command influence function Com is equivalent to this set of command games (in
the sense of Sect. 3.2).

We prove that if {(N ,W j ) | j ∈ N } is a set of command games, and Com is the
command influence function defined in (18), then for each j, k ∈ N

Shk(N ,W j ) = ψα(Sh),λ=ik
(Com, k → j)− ψα(Sh),λ=−ik

(Com, k → j)

where Shk(N ,W j ) is the Shapley–Shubik index of player k in the command game
for j , ψα(Sh),λ is the weighted influence index defined in (17), and for each i ∈ I
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α
(Sh)k→ j
i =

⎧
⎨

⎩

1
n( n−1

|i |−1)
, if ik = +1

1
n( n−1

n−|i |−1)
, if ik = −1

(19)

and |i | := |{m ∈ N | im = +1}|. Moreover,

Bzk(N ,W j ) = ψα(Bz),λ=ik
(Com, k → j)− ψα(Bz),λ=−ik

(Com, k → j)

where Bzk(N ,W j ) is the Banzhaf index of player k in the command game for j ,
ψα(Bz),λ is the weighted influence index defined in (17) with

α
(Bz)k→ j
i = 1, ∀i ∈ I.

This means that both the Shapley–Shubik index and the Banzhaf index of player
k in the command game for j are equal to the difference between the weighted
influence index in which agent j is said to be influenced by k if he follows k, and
the weighted influence index in which the influence of k on j means that agent
j’s decision is opposite to the inclination of k. Both weighted influence indices are
measured under the command influence function Com. The difference between the
results on these power indices lies only in the weights: while for the Shapley–Shubik
index the weights are defined in (19), the weights for the Banzhaf index are always
equal to 1.

4 Enlarging the Set of Possible Yes/No Actions

4.1 The Influence Model with an Ordered Set of Possible Actions

In Grabisch and Rusinowska (2009d), we extend the yes/no model of influence to
the framework in which each agent has a totally ordered set of possible actions. We
recapitulate in this section the main concepts and results of this work. We investigate
the generalized influence indices and other tools related to the multi-choice model.

Let us recapitulate a simplified version of this model. We consider a social net-
work with the set of agents denoted by N = {1, . . . , n}. There is a totally ordered
(finite) set of possible actions denoted by A. A real number is assigned to each
action in A, so that the ordering of these numbers reflect the ordering of the actions
(ordinal scale). Let A denote the set of these numbers. Assuming there are no two
actions with the same rank, we have a bijection between A and A, so that we can
deal only with A. A particular example is to allow abstention (see, e.g., Braham
& Steffen, 2002; Felsenthal & Machover, 1997, 2001), and to consider the yes/no-
abstention model of influence with A = {−1, 0,+1}, with 0 denoting the action
“to abstain”. The yes/no model of influence considered in the previous sections is
obviously covered by this generalized framework with A = {−1,+1}.
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Each player has an inclination to choose one of the actions. Let i denote an
inclination vector and I = An be the set of all inclination vectors.1 As in the yes/no
model, it is assumed that agents may influence each others, and due to the influences,
the final decision of a player may be different from his original inclination. Let
B : I → I, i #→ Bi denote the influence function, and Bi a decision vector. The set
of all influence functions will be denoted by B. We introduce for any ∅ �= S ⊆ N

IS := {i ∈ I | ∀k, j ∈ S [ik = i j ]}, (20)

which is the set of inclination vectors under which all players in S have the inclina-
tion to choose the same action.

We analyze positive influence which measures how much a coalition pulls the
agent’s decision closer to the inclination of the coalition. A player who has an incli-
nation different from the inclination of a given coalition is said to be influenced
by this coalition if his decision is closer to the inclination of the coalition than his
inclination was. A direct influence in the yes/no model is therefore a particular case
of positive influence. We also investigate negative influence. For each inclination
vector in which the members of a given coalition have the same inclination, there is
one (or two) action(s) which is (are) the most extreme action(s). These actions lie
farthest from the inclination of the coalition. If the inclination of a player is different
from such actions, and his decision comes “closer” to the extreme action, we say that
there is a negative influence of the coalition on the player. An opposite influence in
the yes/no model is a particular case of negative influence. In the present paper we
recapitulate only the positive influence. Let for each S ⊆ N and j ∈ N \S

IS→ j := {i ∈ IS | i j �= iS} (21)

denotes the set of all inclination vectors of potential positive influence of S on j .
Given coalition S ⊂ N , agent j ∈ N \ S, and inclination vector i ∈ IS→ j , there
is a certain distance |i j − iS| between i j and iS . Under the influence, the decision
(Bi) j of agent j may be different from his inclination, and we can also measure the
distance |(Bi) j − iS| between the decision of the agent and the inclination of the
coalition. For each S ⊆ N , j ∈ N \S, and B ∈ B, we define the set of all inclination
vectors of influence of S on j under B as

I ∗S→ j (B) := {i ∈ IS→ j | |(Bi) j − iS| < |i j − iS|}. (22)

For each S ⊆ N , j ∈ N \ S and i ∈ IS→ j , we introduce a weight αS→ j
i ∈ [0, 1]

of influence of coalition S on j ∈ N \ S under the inclination vector i ∈ IS→ j .
We assume that for each S ⊆ N and j ∈ N \ S, there exists i ∈ IS→ j such that

α
S→ j
i > 0.

1 We keep for the set of inclination vectors the same notation as in the yes/no model. This should
cause no confusion.
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Given B ∈ B, for each S ⊆ N , j ∈ N \S, the generalized weighted influence
index of coalition S on agent j is defined as

Dα(B, S → j) :=
∑

i∈I ∗S→ j (B)

[|i j − iS| − |(Bi) j − iS |
]
α

S→ j
i

∑
i∈IS→ j

|i j − iS |αS→ j
i

∈ [0, 1]. (23)

We can recover the generalized possibility influence index of coalition S on player
j as

D(B, S → j) = Dα(B, S → j), where α
S→ j
i = 1 for each i ∈ IS→ j

that is,

D(B, S → j) =
∑

i∈I ∗S→ j (B)

[|i j − iS | − |(Bi) j − iS|
]

∑
i∈IS→ j

|i j − iS | . (24)

A follower of a coalition in the generalized influence model is defined as an
agent whose decision is never farther from the inclination of the coalition than
his inclination was. An agent who always decides according to the inclination of
the coalition in question is called a perfect follower of that coalition. Formally, the
follower function of B ∈ B is a mapping FB : 2N → 2N defined as

FB(S) := { j ∈ N | ∀i ∈ IS [[i j �= iS ⇒ |(Bi) j − iS| < |i j − iS|]
∧ [i j = iS ⇒ (Bi) j = iS]]}, (25)

where FB(∅) := ∅, and the perfect follower function Fper
B : 2N → 2N is defined as

Fper
B (S) := { j ∈ N | ∀i ∈ IS [(Bi) j = iS]}. (26)

Of course, each perfect follower is also a follower, i.e., for each B ∈ B and S ⊆ N ,
Fper

B (S) ⊆ FB(S).
It is important to note that all the above definitions coincide with the ones of the

yes/no model if we put A = {−1,+1}. We show that some of the properties of the
follower function in the yes/no model remain valid also in the extended model of
influence. In particular,

• FB is an isotone function;
• FB(S) ∩ FB(T ) = ∅ whenever S ∩ T = ∅;
• Dα(B, S → j) = 1 for each j ∈ Fper

B (S)\S.

In the yes/no model, the last property is satisfied for the set of followers FB(S),
but in the multi-choice game it remains valid only for the set of perfect followers
Fper

B (S).
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Assume FB is not identically the empty set. The kernel of B is defined similarly
as in the yes/no model of influence, i.e.,

K(B) := {S ∈ 2N | FB(S) �= ∅, and S′ ⊂ S ⇒ FB(S
′) = ∅}.

Next, we generalize several influence functions B ∈ B (defined in the yes/no
model) for the multi-choice framework. We investigate the properties of these
functions and compare them with the results on the analogous functions in the

yes/no model. Let us recapitulate the majority influence function ˜Maj[t] defined in
the extended model, which differs from the majority function Maj[t] presented in
Sect. 2.

Let n ≥ t > $ n
2 %, and introduce for any i ∈ I and a ∈ A, the set

ia := {k ∈ N | ik = a}.

The majority influence function ˜Maj[t] ∈ B is defined by

(
˜Maj[t]i

)

j
:=
{

a, if ∃a ∈ A [|ia | ≥ t]
i j , otherwise

, ∀i ∈ I, ∀ j ∈ N . (27)

If a majority of players have an inclination a, then all agents decide for a, and if not,
then each agent decides according to his own inclination.

We prove that the follower function of this majority function, for each S ⊆ N , is
equal to

F
˜Maj[t]

(S) =

⎧
⎪⎨

⎪⎩

N , if s ≥ t

S, if n − t < s < t

∅, if s ≤ n − t,

and the kernel is K(˜Maj[t]) = {S ⊆ N | |S| = n − t + 1}. The results on the set
of followers and the kernel for the majority function in the multi-choice model are
different from the ones obtained for the yes/no model of influence, which is rather
not surprising, since the definitions of the majority influence function in the two
models differ from each other.

4.2 Example Continued

We turn again to the example presented in Sect. 2.3, i.e., N = {1, 2, 3}, but
assume that the agents have a third option to choose, the abstention. We have
A = {−1, 0,+1}, and there are 27 possible inclination vectors, |I | = 27.
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For all inclination vectors with inclinations “yes” or “no”, the extended influence
function B in the 3-action model coincides with the influence function B presented
in Sect. 2.3. We have still to define B when at least one agent has the inclination to
abstain. Roughly speaking, in this example we assume the abstention to weaken the
influence and independence of agent 1 and to increase the independence of agents
2 and 3. For instance, if agent 1 is inclined to abstain, and the remaining agents are
unanimous, he will decide according to their inclination. Agent 2 follows agent 1
except for the situations where agent 1 is inclined to abstain, and agents 2 and 3
are unanimous. When there is at least one “abstention”, agent 3 will follow himself,
except the situations when he is inclined to abstain, and the remaining agents are
unanimous. In this case agent 3 will decide according to their inclination. Table 5
shows the influence function B.

Table 6 presents the generalized possibility influence indices. Note that, for
instance, the cases B(0,−1, 1) = (0, 0, 1) and B(0, 1,−1) = (0, 0, 1) count for
the influence of agent 3 on agent 2, since the distance between the inclinations of
agents 2 and 3 was 2, and the distance between the decision of agent 2 and the
inclination of agent 3 becomes 1.

Indeed, when comparing Tables 3 and 6, we can see that in the 3-action model the
influence indices of agent 1 on agents 2 and 3, and the influence index of coalition
{1, 2} on agent 3 decreased, while the influence of coalition {1, 3} on agent 2 is still
equal to 1. The influence of coalition {2, 3} on agent 1 increased.

Table 5 The influence function B

i ∈ I Bi i ∈ I Bi i ∈ I Bi

(−1,−1,−1) (−1,−1,−1) (0, 0, 0) (0, 0, 0) (1, 1, 1) (1, 1, 1)
(−1,−1, 0) (−1,−1,−1) (0, 0,−1) (0, 0,−1) (1, 1,−1) (1, 1, 1)
(−1, 0,−1) (−1,−1,−1) (0,−1, 0) (0, 0, 0) (1,−1, 1) (1, 1, 1)
(0,−1,−1) (−1,−1,−1) (−1, 0, 0) (−1,−1, 0) (−1, 1, 1) (−1,−1, 1)
(−1,−1, 1) (−1,−1,−1) (0, 0, 1) (0, 0, 1) (1, 1, 0) (1, 1, 1)
(−1, 1,−1) (−1,−1,−1) (0, 1, 0) (0, 0, 0) (1, 0, 1) (1, 1, 1)
(1,−1,−1) (1, 1,−1) (1, 0, 0) (1, 1, 0) (0, 1, 1) (1, 1, 1)
(−1, 0, 1) (−1,−1, 1) (0,−1, 1) (0, 0, 1) (1,−1, 0) (1, 1, 0)
(−1, 1, 0) (−1,−1, 0) (0, 1,−1) (0, 0,−1) (1, 0,−1) (1, 1,−1)

Table 6 The generalized possibility influence indices D(B, S → j)

S →
j ↓

1 2 3 12 13 23

1 − 1

9

1

9
− − 1

3

2
8

9
− 4

9
− 1 −

3
2

9

2

9
− 2

3
− −
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Table 7 The sets of followers under B

S ⊆ N ∅ 1 2 3 12 13 23 N
FB(S) ∅ ∅ ∅ ∅ 12 N 3 N

Finally, we calculate the sets of followers under B of each coalition. They are
presented in Table 7.

One can see from comparing Tables 2 and 7 that agent 1 as well as coalition {1, 2}
lost (some of) their followers when allowing the abstention. Moreover, the kernel of
the influence function B contains all two-agent coalitions, that is,

K(B) = {12, 13, 23}.

From the comparison of K(B) in the yes/no model and in the three-action model,
we can see that when extending the model to the three-action framework, coalition
{2, 3} remains the “truly” influential coalition, while agent 1 is not “truly” influential
on his own anymore, but he needs one of the remaining agents to belong to the
kernel.

Our conclusions on influence indices, followers, and kernels, are obviously valid
only for this example, when we specifically “weaken” the position of agent 1 by
allowing the abstention. However, we like to stress the fact that for an arbitrary
example one can apply the same approach and draw conclusions on the impact of
enlarging the set of possible actions on agents’ influence position.

4.3 The Influence Model with a Continuum of Actions

In Grabisch and Rusinowska (2010), we consider another generalized model of
influence in which each player has a continuum of actions. The set of actions is
assumed to be a real interval [a, b]. Each player has an inclination to choose one of
the actions, i.e., by the inclination of a player we mean the particular action from
[a, b] the player wants to choose. For the continuum case, we have defined and
studied, in particular, the influence index of a coalition on a player, several influence
functions, the set of followers and perfect followers, and the kernel of an influence
function. The main difference between the two generalized models of influence lies
naturally in the definitions of the influence indices. While in the previous model (i.e.,
the model with a totally ordered set of actions), the influence index has been defined
by the sums of some expressions over the particular sets, in the continuum case the
sums are replaced by integrals. These integrals are calculated over particular sets of
inclination vectors which are of a smaller dimension than the set of n-inclination
vectors. We show the equivalence between the influence index of a coalition on a
player and the corresponding influence index in which the coalition in question is
treated as one player. For a more detailed analysis of this model we refer to Grabisch
and Rusinowska (2010).
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5 Levels of Knowledge and the Identification Problem

Let us come back for simplicity to the yes/no model. So far we have taken for
granted that the function B is known, so that influence indices, the follower func-
tion, kernels, command games, etc., can be computed. In practice this is too strong
an assumption, since the knowledge of B requires the observation of n2n values,
which are 0 or 1. Specifically, supposing that the inclination vector i is known
(there are 2n different such vectors), we observe the final decision of each agent
(n values).

Let us first try to establish a kind of hierarchy of knowledge. At the top level
of this hierarchy lies the influence function B. Its complete definition requires
n2n binary values, and these values are free, i.e., we actually have n2n degrees
of freedom. Knowing B permits to compute all quantities defined in this paper. At
the second level lie follower functions. They also require n2n binary values to be
defined, but due to properties that characterize follower functions (see Sect. 2.2),
there are less than n2n degrees of freedom. In fact, this point is completely elu-
cidated since we know all possible influence functions that give rise to a given
follower function: they are given by the function Φ−1 (see Sect. 2.2). Now, due
to the equivalence between command functions of command games and follower
functions (up to the condition that F(N ) = N ), and moreover between com-
mand functions and boss sets and approval sets (see Sect. 3.1), we can say that the
knowledge of boss sets and approval sets lies on the same second level as follower
functions.

On the next third level we presumably find indices of influence, although their
exact position with respect to follower functions is not known, nor is known their
exact relation with influence functions (similarly as in the case of follower functions,
one would like to know the set of influence functions giving rise to a given set of
values for the influence indices). The number of different values for the influence
indices is equal to the number of S → j , for S ⊆ N , S �= ∅, N , and j �∈ S. This
gives

∑

S⊆N S �=∅,N
(n − s) = (2n − 2)n −

n−1∑

s=1

s

(
n

s

)

< n2n.

Therefore, the knowledge of the indices does not permit to recover B.
On the fourth level we find influence graphs (social networks), as the one given

to explain the example in Sect. 2.3. An influence graph is only a qualitative descrip-
tion of influence among agents, and does not specify what happens in case of con-
flict (i.e., when two arrows arrive on the same agent), nor it permits to distinguish
between the influences when the inclination of influencing agents is “yes” or “no”.
The kernel is another type of qualitative information, but which does not seem com-
parable to influence graphs. The kernel identifies the minimal influencing coalitions,
but does not tell whom they influence.
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Let us assume that in some experimental situation, observing the behavior of
agents, the ultimate knowledge we would like to get is the influence function B.
However, we can only know it partly, hence what can we do in order to have the
most complete possible knowledge on it? We give some thoughts on this problem
below.

A first general remark is that we are concerned here with the vast area of machine
learning (and therefore optimization, interpolation), and also hypothesis testing and
the theory of estimation. We use the generic term of identification for obtaining
the complete definition of some function or quantity, as for example the influence
function. In any problem of identification, it is important to define what should be
done in case of lack of knowledge. In our context, the answer for this is fairly obvi-
ous: if there is no observation of influence, by invoking the principle of insufficient
reason, just say there is no influence, and therefore B = Id. This defines the general
philosophy one should take: use the available knowledge of any kind to construct
B, and for the regions where B is not known, just put B = Id. The same holds for
any kind of notions so far introduced: in case of absence of observation/knowledge,
the follower function is identical to the empty set, all influence indices are 0, etc.

What can we observe in an experimental situation? The direct observation of
inclinations and decisions of agents defines B on a small part of its domain. How-
ever, a priori information can be used to complete the model, for instance:

(i) It is likely (or well known, often observed, etc.) that coalition S strongly influ-
ences agents j, k, . . .;

(ii) We suppose that the underlying model is of the majority type, or of the guru
type where agent j plays the rôle of the guru, or of the mass psychology type,
etc.

In the first case, we use the mathematical properties underlying our concepts to
find the set of functions B compatible with the information we have on the follow-
ers, degrees, and so on (inverse function problem, completely solved for the case
of follower functions). In the second case, the procedure is quite different since
this is typically a problem of hypothesis testing and estimation, and therefore the
appropriate statistical tools should be used. For example: “Is player k a guru?” is a
hypothesis, and an appropriate test should be defined for this. Now, “Is the model
of the majority type?” is both a hypothesis testing (yes or no) and an estimation
problem, since the threshold t has to be measured. For each hypothesis, there should
exist a minimal subset I0 ⊆ I of all inclination vectors, so that, if observing deci-
sions for this set I0, the test can be done with a given probability of success/failure.
The estimation problem proceeds similarly. Note that the same methodology can
be applied to derive a model on lower levels of knowledge, that is, for the follower
function (equivalently, the boss and approval sets), the degrees, the influence graph
and so on. It should be possible to test for example: “Is S a boss set for agent k?”
and so on.
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In summary, the problem of identification of an influence model in a practical
situation is a difficult one, and should initiate a new area of research.

6 Future Research on Influence

As one can conclude from this short overview, the influence issues create very com-
plex problems that can be recognized in everyday life situations. Consequently, there
are still many open questions that should be answered and many possibilities to
continue the project on influence. We would like to finish the paper by mentioning
some of our future research plans on these issues.

– The influence framework that we have studied so far is the one-step model, where
a decision of an agent may be influenced by opinions of other players, but no pos-
sibility of iterating influence is assumed. In reality, the mutual influence does not
stop necessarily after one step, as modeled by the influence framework studied by
us so far, but may iterate. We intend to introduce dynamic aspects in the model,
to study the behavior of the series of (different) influence functions, and to look
for the convergence conditions for such series.

– We have compared our approach to influence based on social networks with the
cooperative game theoretic approach based on command games. We are also
going to compare the dynamic model of influence with the command games. In
the framework of command games, an authority distribution over an organization
was defined, and the power transition matrix of the organization was created. A
Markov chain was used to describe the organization’s long-run authority. In our
future investigations, we could introduce the authority distribution based on the
influence indices.

– In order to measure influence between agents in a social network, we defined, in
particular, the influence indices. However, we did not focus either on properties
of these indices nor on their axiomatization. Consequently, in our future research
on the influence topics, an axiomatic characterization of the influence indices
should be provided.

– In our work on influence, we paid a lot of attention to the concept of influence
function. In particular, we determined the exact relation between influence func-
tions and follower functions. While we defined several influence functions and
studied their properties, only deterministic functions were considered. Hence,
it would be interesting to assume that the influence function is a probabilistic
function. Such an assumption will model the reality in a more adequate way than
restricting the analysis to deterministic functions.

– Our research on influence conducted so far was only theoretical. In order to get
a deeper insight into the process of influence between agents, we would like to
conduct some experiments on this issue, and to address the difficult problem of
identification of the model, as presented in Sect. 5.
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Networks, Information and Choice

René Janssen and Herman Monsuur

1 Introduction

In several scientific disciplines, like sociology, biology and economics, interaction
between individual entities are formulated in terms of networks. In sociology these
interactions may indicate friendship, in biology they may represent an ecological
food web, while in economics these interactions may be alliances. In the literature
one may find several illustrations of this social, biological and economic network
approach. For comprehensive introductions see, for example, Barabási (2003), Dutta
and Jackson (2003), Goyal (2007), Jackson (2009), Wasserman and Faust (1994) or
Watts (1999). The network approach is interesting and has been fruitful due to the
analytical tractability: there are several ways of expressing and measuring relevant
features of networks such as power, centrality, clustering, robustness or domination.
These features, or network statistics, can be used to make explicit how actions of
actors, rather than determined by norms and values, can be viewed as consequences
of the system of relations by which they are constrained and/or empowered. For a
first illustration, in a strategic and political context, we refer to Delver and Mon-
suur (2001), where norms, or (von Neumann–Morgenstern) standards of behaviour,
are derived from a dominance network on a set of strategic options, economic
doctrines or other lasting intellectual conceptions with regard to a certain issue.
In that model, domination between a pair of alternatives is assumed to be gener-
ated by at least one effective coalition. An effective coalition will be inclined to
apply its binary dominance, but, in the larger context of the dominance relation,
it may have strategic reasons for not exercising its power. We refer to Delver and
Monsuur (2001) for (behavioral) axioms that characterize these standards. A sec-
ond illustration of the use of various network statistics is the study of dynamic
evolution of interactions between a fixed set of homogeneous actors. For various
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reasons, nodes form and terminate links, thereby rearranging the network, see Dutta
and Jackson (2003) and Jackson (2009) for an overview of this literature where
local, binary decisions shape global network structures. In Monsuur (2007b) we
introduced a mechanism that formalizes a possible incentive that guides nodes in
constructing their local network structure, see Sect. 5 for more details. Reiteration of
this mechanism, based on the so-called cover relation (Monsuur & Storcken, 2004)
that only uses local network features, results in just a few types of emergent, sta-
ble network topologies. Examples are uni-polar networks, bi-polar networks and
ring-networks.

In management and also military sciences, the concept of networked operations
has attained considerably attention. There the issue is how operations are affected by
the topology and architecture of information, physical and also social networks. The
idea of networked operations is that it offers decisive advantage through the timely
provision and exploitation of (feedback) information and intelligence to enable
effective decision-making and agile actions. Clearly, the latent power of networks
is not new, but technological advances over time have enabled better exchange of
information. These advances will continue and must be optimized through the par-
allel development of new procedures and concepts of operation, see Cares (2005,
2006), Darilek, Perry, Bracken, Gordon, Nichiporuk (2001), Grant (2006), Mon-
suur (2007a) or Perry and Moffat (2004) for illustrations in the military domain.
For example, consider the ancient Chinese game of “GO” in which players capture
stones and occupy territory. The board on the left of Fig. 1 shows a traditional grid,
while the board on the right shows a grid designed for a complex network. There
are large hubs, clusters and long distance connections. It is clear that in order to win
this game, new strategies will have to be developed. On the left, a traditional strat-
egy creates advantage from a great number of adjacent stones, while new strategies
have to take into consideration hubs and long distance connections between cleverly
placed clusters (Cares, 2006). An appealing property of these “battles of networks”
is that complex networks prevent competitors from guessing the specifics of their
strategies.

Fig. 1 The game of GO on a regular and complex network structure (Modification of a figure from
Cares (2006)
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Of course, a great challenge is the development of a clear notion of the value that
operating in an networked manner may generate. In management science, market
forces determine value: winners emerge and losers fade away. Here serendipity,
trial and error abound, see Cares (2005). But, from a national security point of view,
speculation and experimentation may generate unnecessary human sacrifice. This
implies that the need for validating and quantifying (in advance) the benefits of
various ways of networked operations is extremely important. This identification
and measurement of networked effects may be identified as a third potential use of
various relevant network features. In this paper, we therefore focus on the aspect of
information sharing in collaboration networks and discuss a feedback model for
situational awareness, that combines exogenously given characteristics of nodes
with their positioning within the network topology. Here, situational awareness is
generally understood to mean “knowing what is going on”, implying the possession
of knowledge and understanding to achieve a certain goal. Using this model, one
may identify the contribution of the network topology to the situational awareness of
individual nodes and also to the network as a whole. In Sect. 2, we give an overview
of methods for measuring network value, which are based on feedback in a net-
work. In Sect. 3, we introduce and discuss our model for situational awareness and
consider two stochastic variations that reflect incentives and choices of the nodes
regarding transferring or uploading information along the links. Next, in Sect. 4, we
return to the more general problem of identifying and measuring network effects.
In Sect. 5, we discuss a choice mechanism that guides nodes in deciding on the
deletion and forming of links in a network. In the final section, we present some
conclusions.

2 Network Value of Nodes

A network G is a pair (V, E) where V = {v1, v2, . . . , vn} with n ≥ 2 is a finite set
of nodes and E is a subset of {(x, y) : x, y ∈ V, x �= y}, the set of ordered pairs
of V . An element (a, b) of E is called a link from a to b. In the context of informa-
tion networks, a link (a, b) assumes that information flows from node a to b.

The networks we have in mind in this contribution connect autonomous nodes,
where a link between two nodes indicates a formal or informal agreement of some
kind of cooperation. Examples of such networks are social networks, networks of
alliances between firms or (international) military networks exchanging informa-
tion. We assume that networks generate value for the network as a whole, but also for
the individual nodes that are connected through operational links of the network. In
a social network for example, network value of a particular node may be something
like status or prestige that a node derives from characteristics of its local network
structure: perhaps it is in a brokery position, meaning that the network becomes
disconnected if it severs links. An important characteristic of a social network is
that if a node somehow succeeds in gaining extra status, this also adds to the status
of neighboring nodes, so status is transferable. Generally speaking, network value
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is the valuation of any “good” or “asset” a node is supposed to control based on its
position within the network topology (and its exogenous characteristics).

For the information networks we have in mind, network value is taken to be
the so-called situational awareness. The concept of situational awareness is gener-
ally understood to mean “knowing what is going on”, implying the possession of
knowledge and understanding to achieve a certain goal. It is the perception of the
elements in the environment, the comprehension of their meaning and the projection
of their status in the near future, see Endsley (1995). We assume that this situational
awareness is transferable and, in addition, the extent of transferability depends on
the strength of the tie between the two nodes.

We let A be the adjacency matrix, where ai j ∈ [0, 1] is the extent to which value
from node j is usable or transferable to node i regarding the improvement of i’s
situational awareness. We take aii = 0 for each node i . To determine the usability
or transferability ai j for a link ( j, i), we may use an approved method, the Analytic
Hierarchy Process (AHP), introduced in Saaty (1980). To this end, we suggest to use
just 4 independent dimensions that cover the attribute usability, see the hierarchy in
Fig. 2.

Relevance is the extent to which the information is applicable and helpful for
the task at hand. Timeliness is the extent to which information is sufficiently up-
to-date and current for the task at hand. Concise is the extent to which information
is compactly represented without being overwhelming. Finally, Reputation is the
extent to which information is highly regarded in terms of source and content. This
way, the receiving node is able to evaluate the quality of the transferred situational
awareness, given its own uncertainties, tasks and range of decisions considered.

To motivate and validate our choice for these dimensions, one could carry out
a principal component or factor analysis, starting with 20 or more dimensions for
information quality, like accurate, timely and concise, see Knight and Burn (2005)
and Wang and Strong (1996). This factor analysis is an effective statistical technique
to suppress redundant data and dimensions and provide in only a few indepen-
dent factors (combinations of the existing dimensions) most of the data/information
(Gorsuch, 1983). Our choice of the four dimensions is based on the observation
that a factor analysis typically returns factors concerning: evaluation (“good-bad”),
potency (“strong-weak”), and activity (“dynamic-static”). This factorial structure
makes intuitive sense. To match this with our dimensions, observe that “reputation”
has to do with evaluation. “Relevance” is related to potency, while “timeliness” is
identified with activity. To also address the issue of information overload, we include
the dimension “concise”.

Usability

Relevance Timeliness Concise Reputation

Fig. 2 Hierarchy for measurement of usability of information
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Now, given a (directed) link from node j to node i , one has to come up with a
scalar si j

k between 0 and 1 for each dimension k, k = 1, . . . , 4. For example, the

scalar si j
4 measures the “reputation” of information flowing from node j to node i :

si j
4 is between 0 (no effect, bad reputation) and 1 (“ideal” or “very reliable”). These

estimates are from the point of view of the receiving node i . To aggregate these
4 estimates into one scalar we have to determine the relative importance of the
dimensions for usability of information that flows along a link. To this end, a 4 × 4
reciprocal matrix R is constructed:

⎛

⎜
⎜
⎝

Relevance Timeliness Concise Reputation

Relevance 1 R12 R13 R14
Timeliness 1/R12 1 R23 R24
Concise 1/R13 1/R23 1 R34
Reputation 1/R14 1/R24 1/R34 1

⎞

⎟
⎟
⎠,

where Ruv indicates the relative importance of dimension u with respect to v. The
AHP uses a nine point (semantic) scale resulting in a reciprocal matrix R, meaning
that Ruv = 1/Rvu . The six relative importances may be provided using expert
opinions and express the point of view of an arbitrary node that receives infor-
mation through links of the network. (We assume that this is the same for each
receiving node.) Using techniques from the AHP, a vector w = (w1, w2, w3, w4) of
relative weights (summing to 1) for the dimensions is derived from this matrix R.
For internal consistency reasons in the matrix R, the number of dimensions must
not exceed 4, see Monsuur (1997). Finally, one then may compute the expres-
sion

∑4
k=1wksi j

k , which can be used as an estimate for the entry ai j of the adja-
cency matrix A, indicating the usability of the information flowing from node j
to node i

Now, given a network G = (V, E) and adjacency matrix A, one may distinguish
several approaches for the determination of network value of nodes in an informa-
tion network. Here we only consider approaches that are based on some notion of
feedback of operational links. The reason that we focus on feedback of links that
transfer information is that, from an informational point of view, just one specific
arrangement of links and nodes creates value: sub-networks that form a cycle, see
Cares (2005). These cycles make possible to react to one another, share ideas, adjust
views and act accordingly.

We consider the following approaches:

• The iterated feedback. Feedback is made operational through iteration of the adja-
cency matrix:

xt = Axt−1

thereby updating the (previously obtained) situational awareness. In most cases,
one takes x0 = e, a vector of 1’s.
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� The weighted average of direct and indirect updates. To this end, we consider
infinite sums:

x =
∞∑

k=0

(αA)k x0,

where α < 1/λ to assure convergence. Here λ is the principal eigenvalue of A.
� The recursive, mutual dependence of situational awareness. This recursive depen-

dence is expressed as an eigenvalue problem for the adjacency matrix A:

λci =
∑

j

ai j c j

or

ci =
∑

j

ai j

λ
c j

where λ is the principal eigenvalue. If the components of c sum to 1, it is called
the Perron vector. So, we let the value ci of node i be proportional to the com-
bined values of nodes it is linked to. This is a sum of independent contributions
of the type ai j c j , consisting of usability ai j , times the network value c j . As the
network is connected, any nonnegative eigenvector of A is a multiple of c, see
for example Berman and Plemmons (1979). The scalar 1/λ may be interpreted
as follows. If we take into consideration just one isolated link, the extent of trans-
ferability equals ai j . But, if we go beyond this dyadic level, taking into account
all incoming links, this aggregates to 1

λ
ai j . Similar phenomena of smoothening

data occur if one tries to extract a ranking profile from a matrix of intransitive or
inconsistent data. For example, in the AHP the estimate Ruv is aggregated into
wu/wv .

� Balancing incoming and outgoing interactions. Consider the vector of fair bets
f , discussed and axiomatized in Slutzki and Volij (2005): for each node i , we let

∑

j

ai j f j =
∑

j

a ji fi .

The first part may be seen as a measure of the value transfered to node i , given
the usabilities ai j and values f j . The second part then measures the total amount
of value that is transfered from node i . These two are supposed to be the same.
This corresponds to a kind of steady state of the process of information flow
through the network. To compute this vector of fair bets, one has to solve the
equation v = C−1

A Av, where CA is the diagonal matrix with the column sums of
A on the diagonal.

Note that the redistribution of value, if properly normalized, results in the eigenvector.
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We next consider two other approaches for the determination of situational
awareness, which are defined for arbitrary networks. The first one combines
operational feedback with local informational potential, while the second one com-
bines operational feedback with exogenous values:

• Combining operational feedback links with local informational potential. In
Herings, van der Laan, and Talman (2005), network value of a node i is the
unique (positive) solution of the equation

xi =
∑

j :( j,i)∈E

(1 + 1

n
x j ).

In this model, a node receives 1 point for each (direct) incoming link, representing
the possibility of receiving information, plus 1/n times the value of the sending
node.

• Combining operational feedback links with exogenous value. In this model, first
introduced in Monsuur (2007a), given a scalar α and a vector of exogenous char-
acteristics b, the value v is the unique solution of the equation:

v = αAv + b.

So, the vector v is the sum of two components. First of all, the vector b, the
“stand-alone” value. Secondly, the improvement that results form transferred
value, αAv, of this final vector v itself. We therefore say that v is “confirmed” by
the network structure and b. Note that in taking the sum, we tacitly assume that
the value contributions of nodes to a common adjacent node are independent:
each node has unique characteristics and their transfered network value can be
summed at the receiving node.

The scalar α > 0 may be interpreted as the balance between exogenous values
b and the influence of the network topology, Av. It also relates to the transition
from the local, dyadic level to the aggregate level of information flowing through
the network. We discuss this model in more detail in the following two sections.

3 Situational Awareness in Networks

Consider a military network where nodes exchange information they have gathered
and processed. Then network value may be the situational awareness in the area
of operation that results from the functioning of this information exchange network.
Transferability depends on usability of information: is the information that is relayed
to a particular node relevant, timely, concise, and is it highly regarded in terms of
source and content. The concept of situational awareness is generally understood
to mean “knowing what is going on”, implying the possession of knowledge and
understanding to achieve a certain goal. There are at least two factors that influence
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situational awareness of nodes, where nodes represent decision facilities, informa-
tion fusion centers, combat units and so on. Firstly, it depends on characteristics of
the individual decision-makers themselves, such as experience and training, qual-
ity of information fusion facilities and rate at which information can be processed,
the location within the area of operation, the psycho-social environment, organiza-
tion, prior knowledge, etc. In this contribution, we assume that these characteristics
are given and fixed. We focus on another, second factor, which is the positioning
of nodes within the network and the network topology. As networks provide an
opportunity for cooperating entities to share information, situational awareness of a
particular node also depends on the local network topology.

3.1 Deterministic Behaviour of Nodes

We assume that through exchanging information, cooperating nodes in a network
are able to increase their situational awareness. In this subsection we assume that
individual nodes are always in a position to receive information or hand over infor-
mation to others if possible and they are always prepared to do so. This assumption
states that the nodes behave fully deterministically.

Let the nodes are labeled from 1 to n. For a node i , a real nonnegative number
bi , which is called the “stand-alone” situation awareness of this particular node,
represents its experience and training, location within the area of operation, its prior
knowledge, etc. The vector b contains all the individual values bi .

If there is a link from node j to node i , we say that node j is an adjacent node
of node i . As explained in Sect. 2, we then associate a real nonnegative number, ai j ,
with this link which represents the usability of the information flowing from node
j to node i from the point of view of the receiving node i . If there is no link from
node j to node i , we put ai j = 0. The n × n matrix A with the entries ai j is called
the adjacency matrix.

Next we introduce a discount factor α, 0 < α < 1, which brings in the fact that
the usability of information which is flowing along links will decay over time, i.e.
information will lose its usability if it is getting older. Before sharing information,
the situational awareness of the nodes is given by the vector b. After each node has
received information only from its adjacent nodes, the new situational awareness of
the nodes is given by b + αAb. By iteration information can be updated through the
network, so that nodes also receive information from nodes which are not adjacent
nodes, but which are two, three, or more steps away. Updating information in m
steps yields the situation awareness vm , which for m ≥ 1 is defined recursively as
follows:

v0 = b; v1 = b + αAv0 . . . vm = b + αAvm−1

Taking the limit of m to infinity, we get

v = lim
m→∞ vm = lim

m→∞

m∑

k=0

αk Akb = (I − αA)−1 b



Networks, Information and Choice 219

We call v the situational awareness of the nodes after sharing information. This
vector v satisfies the equation

v = αAv + b

In this sense we can say that v is “confirmed” by the network structure and the
“stand-alone” situational awareness of the nodes, b: if we add to b the transferred
situational awareness αAv due to v itself, we again obtain v.

For example consider the network of Fig. 3 with

b =

⎛

⎜
⎜
⎜
⎜
⎝

b1
b2
b3
b4
b5

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

1.00
0.50
0.85
1.00
0.30

⎞

⎟
⎟
⎟
⎟
⎠

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 0.5 0 0 0
0 0 0 0.5 0
0 0.5 0 0 0.5

0.5 0 0.5 0 0
0.5 0 0 0.5 0

⎞

⎟
⎟
⎟
⎟
⎠

α = 0.25

Solving the equation v = αAv + b yields the following situational awareness:

v =

⎛

⎜
⎜
⎜
⎜
⎝

v1
v2
v3
v4
v5

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

1.08
0.66
1.01
1.26
0.59

⎞

⎟
⎟
⎟
⎟
⎠

So we can conclude that, compared to b, for each node the situational awareness
has increased.

We next show that the situational awareness derived with our model that includes
exogenous characteristics, is similar to the Perron eigenvector c of Sect. 2 in case
we let α approach 1/λ from below. (A matrix A is primitive if Ak > 0 for some
positive k.)

Theorem 1 Suppose that A is primitive. Then

lim
α↑1/λ

(1 − αλ)v = (dT b)c.

Here, d is the (positive) eigenvector of AT corresponding to λ with dT c = 1.

Fig. 3 A communication
network
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Proof Note that the principal eigenvalue of αA equals αλ < 1. As A is primi-
tive, αλ has multiplicity 1 and is larger than any other eigenvalue. Suppose that
the eigenvalue of A with second largest modulus is μ, so, the second largest eigen-
value for αA is αμ < αλ. Without loss of generality, we assume that to αμ cor-
responds a m × m Jordan block and that these are the only eigenvalues, so αA is
an (1 + m) × (1 + m)- matrix, with two Jordan blocks, corresponding to the two
eigenvalues αλ and αμ. We then have αA = S J S−1, and

J k =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(αλ)k 0 . . . . . . 0
0 (αμ)k

(k
1

)
(αμ)k−1 . . .

( k
m−1

)
(αμ)k−m+1

0 0 (αμ)k
(k

1

)
(αμ)k−1 . . .

...
...

...
(k

1

)
(αμ)k−1

0 0 0 (αμ)k

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Straightforward calculations show that

∞∑

k=0

J k =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1/(1 − αλ) 0 . . . . . . 0
0 1/(1 − αμ) 1/(1 − αμ)2 . . . 1/(1 − αμ)m
0 0 1/(1 − αμ) . . . 1/(1 − αμ)m−1

...
...

... 1/(1 − αμ)2
0 0 0 1/(1 − αμ)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore, D = limα↑ 1
λ
(1 − αλ)

∑∞
p=0 J p is a matrix with all entries equal to

0, except for d11 = 1. Furthermore, lim
α↑ 1

λ
(1 − αλ)

∑∞
p=0(αA)p = SDS−1. As

αAS = S J , we let the first column of S be the Perron vector c of αA, which is the
Perron vector of A. Let dT be the first row of S−1, meaning that d is a multiple of
the Perron vector of AT. As S−1S = I , we know that dT c = 1, so d is a positive
vector. Therefore, SDS−1 = cdT, proving our claim.

It is quite easy to investigate the effect of changes in the matrix A on the sit-
uational awareness. For example, consider upgrading the network by increasing
usabilities of all existing links:

A(t) = A + tG,

where the matrix G is defined by Gi j = 1 if Ai j �= 0 and Gi j = 0 otherwise. Then
one easily derives:

v′(0) = αBGv,

where B = (I − αA)−1. For the Perron vector c, in the model without exoge-
nous values, this is much more complicated. Then one may prove for symmetric A,
adapting the approach presented in Deutsch and Neumann (1985):
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Proposition 1 c′(0) = M+Gc − 1
n (e

T M+Gc)c, where M+ is the Moore-Penrose
inverse of the matrix λI − A.

3.1.1 A Network Performance Metric

Next we introduce a network performance metric which combines given character-
istics of the nodes with the network topology (NT) in order to compare different
network configurations. As stated before, updating information in m steps yields
situation awareness vm . For m ≥ 1 we define the network performance metric
NTbm by

NTbm = eT vm

eT b
= eT ∑m

k=0 α
k Akb

eT b
=

m∑

k=0

αk eT Akb

eT b

where e is a vector of 1′s. Taking the limit of m tending to infinity, we get

NTb = lim
m→∞ NTbm = eT v

eT b
= eT (I − αA)−1 b

eT b

This means that we take the quotient of the total situational awareness after
updating, and the total value of exogenously given characteristics as expressed in
the vector b.

3.2 Stochastic Behaviour of Nodes

In the former subsection we assumed that individual nodes are always in a position
to receive information from adjacent nodes or hand over information to other nodes
if possible and they are always prepared to do so. However as may be experienced in
practice, the process of updating information not only depends on given character-
istics of the nodes itself and the network structure. It also depends on the uncertain
willingness or possibility of individual nodes to receive and transfer information.
We will now take into account this uncertainty.

At each stage k, k ≥ 1, of the process of updating information within the network,
the uncertain behaviour of the nodes is modelled by a collection of independent
and identically distributed random variables εk,i j : Ω → [0, 1], 1 ≤ i, j ≤ n,
such that εk,i j = 1 if an information flow between node j and i is possible and
εk,i j = 0 otherwise. So from the viewpoint of a receiving node i we can say that
all its adjacent nodes j are willing to send information to node i but because of
uncertain external factors it is not always possible or some nodes j do not want to
send information to node i although an information flow is possible. So we can say
that from the viewpoint of a receiving node i that all its adjacent nodes j behave
in a random manner. For a fixed outcome ω in the sample space Ω the process of
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updating information in m steps yields the situation awareness vm(ω), which for
m ≥ 1 is defined recursively by

v0(ω) = b; v1(ω) = b + αA1(ω)v0(ω) . . . vm(ω) = b + αAm(ω)vm−1(ω)

where the matrices Ak have the entries ai jεk,i j . Note that we obtain the former,
deterministic expression for the situation awareness vm if all the matrices Ak(ω) are
equal to A. The network performance metric that combines the given characteristics
of the nodes with the network topology is defined by

NTbm = E
(
eT vm

)

eT b
= 1 +

m∑

k=1

αk
E
(

eT
(∏k−1

s=0 Am−s

)
b
)

eT b

where E (·) denotes the expectation and e is a vector of 1′s.
Most of all we are interested in the case when m tends to infinity. So let

{D1, . . . , DN } be the collection of all outcomes of A1(ω). Notice that this collection

is always finite, because N ≤ 2n . Suppose α ≤
(

max
j

∑n
i=1 ai j

)−1

. Then the

network performance that combines the given characteristics of the nodes with the
network topology is defined by

NTb =
∫

eT x dμ(x)

eT b

Here μ is the unique probability measure which satisfies the equation

μ =
N∑

m=1

P (A1 = Dm) μ ◦ f −1
m ,

where fm is the affine mapping fm : x #→ b+αDm x . The existence and uniqueness
of this probability measure follows from the fact that

{ f1, . . . , fN ; P (A1 = Dm) , . . . , P (A1 = DN )}

is an iterated function system with probabilities. In order to determine and compute
NTb we use the following theorem:

Theorem 2 Fix a sequence of matrices {Ak(ω)}k≥1 for some outcome ω in the sam-
ple space Ω . Let the orbit {xn}∞n=0 be defined by x0 = b and xn+1 = b + αAn+1xn.
Then with probability one

NTb = lim
n→∞

1

n + 1

(

1 +
n∑

k=1

eT xk

eT b

)
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Proof The integral
∫

eT x dμ(x) in the expression of NTb can be determined by
applying Elton’s theorem (Elton, 1987). This means that

lim
n→∞

1

n + 1

n∑

k=0

eT xk =
∫

eT x dμ(x)

with probability one. By dividing both sides of this expression by eT b, the theorem
is proved.

3.2.1 Observing the Choices of Other Nodes

In the previous discussion we assumed that for the process of updating information
within the network, the uncertain behaviour of the nodes is modelled by a collection
of independent and identically distributed random variables εk,i j , k≥1,1 ≤ i, j ≤ n.
In this simple model the behaviour of a node does not depend on the behaviour
of other nodes, i.e. if a node i did not receive any information from its adjacent
nodes in step k − 1, it does not have any effect on the willingness of this node i
to send information to other nodes in step k. In order to incorporate this kind of
behaviour of nodes, we have to adjust our model, i.e. the random variables εk,i j ,

k ≥ 1, 1 ≤ i, j ≤ n will not be i.i.d. anymore. A reasonable assumption is that the
probability distribution of the random 0–1 variables εk,i j , 1 ≤ i, j ≤ n is completely
determined once the outcomes of the 0–1 random variables εk−1,i j , 1 ≤ i, j ≤ n
are known.

Fix an arbitrary node i and an adjacent node of this node i , say node j . From the
point of view of a receiving node i , we suppose that at each stage k, k ≥ 1, node j
behaves in the following way. With probability pi j (1) node j sends information to
node i and with probability pi j (0) it does not send information to node i , indepen-
dently of the state of the system at stage k−1. So with probability 1− pi j (1)− pi j (0)
the decision of node j to send information depends on the outcomes of the 0-1
random variables εk−1,i j , 1 ≤ i, j ≤ n. But how does this dependence look like?
We say that at step k the probability that node j sends information to node i depends
on two factors: (1) is it true that j has sent information to node i at the former step
k − 1? (2) is it true that node j received information from its own adjacent nodes at
step k − 1?

Analogous to the interaction model with network structure, see Jackson (2009),
we suggest the following (Markov) model which takes into account these factors:

P
(
εk,i j = 1|εk−1,i j = βi j , εk−1, j t = β j t , t ∈ N j

) =

pi j (1)+
(
1 − pi j (1)− pi j (0)

) 1

γ + (1 − γ )|N j |

⎛

⎝γβi j + (1 − γ )
∑

t∈N j

β j t

⎞

⎠
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and

P
(
εk,i j = 0|εk−1,i j = βi j , εk−1, j t = β j t , t ∈ N j

) =
1 − P

(
εk,i j = 1|εk−1,i j = βi j , εk−1, j t = β j t , t ∈ N j

)

where node j is an adjacent node of node i , N j is the set containing all indices of the
adjacent nodes of node j , the parameter 0 ≤ γ ≤ 1 measures the balance between
the contribution of the adjacent nodes of node j and the behaviour of node j itself
at the previous step and finally the random 0–1 variables εk,i j , 1 ≤ i, j ≤ n are
conditionally independent given εk−1,i j , 1 ≤ i, j ≤ n. If node j is not an adjacent
node of node i we take

P
(
εk,i j = 0

) = 1

4 Network Dynamics

As stated in the introduction, a great challenge is the development of a clear notion
of the value that operating in an networked manner may generate. To this end, the
so-called NEC value chain has been introduced. Here, NEC stands for Network
Enabled Capabilities. The claims are that a robustly, secure and more extensive
networked organization generates shared, accurate, timely, relevant information,
which improves information sharing. This in turn results in better shared under-
standing. This enables better decisions and agile and adaptable actions. Eventually,
this results in better effects. The defence organization has introduced five Maturity
Levels (ML’s) that provide a framework for defining or describing the capabilities
of an organization, with ML1 being the lowest and ML5 being the highest level. The
fourth and fifth ML may be briefly described as follows:

• ML4: Collaborate. Organizations demonstrate collective development and exe-
cution of a shared common plan that establishes independent relationships. A
unified infrastructure based on a single network allows the seamless sharing of
data. Advanced horizontal and vertical interactive collaboration facilitates plan-
ning and execution. Major organizational and process changes are evident, with
rich and continuous interactions between partners. The whole organization can
readily adapt to any mission, rapidly planning and synchronizing to execute a
common intent.

• ML5: Coherent effects. At the highest level of maturity, coalitions or alliances
can rapidly plan and execute missions as if they were one homogeneous team.
Complete situational awareness is possible through a proliferation of sensors
and continuous interaction between partners. Information is transparently avail-
able regardless of location. Decision making is extremely fast and responses
are agile.
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To also include network statistics into the measurement tools for these ML’s,
we may use the model of Sect. 3. This way, one may compute the informational
advantage that a node derives from its positioning within the network. But, we also
may try to quantify the total networked effects. In the literature, one may find several
models. In the model described in Cares (2005) it is assumed that just one specific
arrangement of links and nodes creates value. These arrangements are sub-networks
that form a cycle. In a cycle, the functions of nodes flow into each other over a
path that revisits at least one node once. To give an indication of the magnitude
of networked effects, it is suggested to use the largest eigenvalue of the adjacency
matrix, which is a measure of the multiplicity of internal paths:

λ = max
x>0

min
i

(Ax)i
xi

.

A drawback of this model is that it does not take into consideration the various
network values of the nodes; the nodes are assumed to be homogeneous. A second
model is the model introduced in Ling, Moon, and Kruzins (2005). They introduce
a time-dependent connectivity measure given by

CM(t) =
NT∑

μ=1

Kμ(t)

Nμ∑

ν=1

Nμν∑

γ=1

Lμνγ (d, t),

where Kμ, the value of the node μ, is used to express the inhomogeneity of the
nodes, while Lμνγ (d, t) is the value of the route γ connecting neighbors μ and ν.
For example, take L to be equal to the product of the values of A along the route,
divided by its length. This measure CM (t) then is normalized to obtain a measure
of network reach. Although this model takes into account the inhomogeneity of
the nodes, these values Kμ are fixed and have been determined in advance. So the
positioning of the nodes does not matter. To also take this into account, one may
substitute for Kμ the network value discussed previously in Sect. 3. Then, using
CM (t), the topology of the network is represented using two more or less inde-
pendent components: nodes and their values Kμ(t) due to the positioning within
the network, and the information flow parameter Lμνγ (d, t) of routes γ connecting
nodes μ and ν. As a final model, in Sect. 3.1.1, we suggested an alternative network
performance metric that combines given characteristics b of nodes with the Network
Topology. It is the quotient of two values measured on the same scale:

NTb =
∑

i vi
∑

i bi
= eT (I − αA)−1b

eT b
,

where e is a vector of 1’s. It is easy to verify that NTb does not depend on the unit
of the scale on which values of b are measured. An advantage of our model is that
it also makes possible to identify and quantify
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• the contribution of the network to the network value v: this is equal to αAv;
• the percentage of network value v that is not due to value emanating from other

nodes, which we call the powerbase: As vi equals
∑

j (
∑∞

p=0(αA)p)i j b j , for
node i , this percentage PB(i, α), is equal to

PB(i, α) =
∑

j (
∑∞

p=0(αA)p)i jb j
∑

j (
∑∞

p=0(αA)p)i j b j
,

where b j = 0 for j �= i and bi = bi .

By multiplying numerator and denominator by (1 − αλ), we then may prove
(Monsuur, 2008):

Theorem 3 Suppose that A is primitive. Then, for any given vector b of exogenously
given characteristics, we have

lim
α↑ 1

λ
P B(i) = di bi

dT b
,

where d is the left eigenvector of A.

To obtain a large network value v, one has to invest in incoming links; to obtain
a large powerbase, one also has to maintain outgoing links, that transfers value to
other nodes of the network. Of course, for symmetric networks, where an incoming
link goes hand in hand with an outgoing link with the same strength, the powerbase
also equals ci bi

cT b
.

5 A Choice Mechanism for Network Evolution

In the Maturity Levels described in the previous section, social networks may play
an important role. As may be observed in practice, social networks change over time.
In this section, we describe a model that can be used to study the dynamic evolution
of networks. This model falls within the category of game-theoretic models, or to be
more precise within the class of pairwise stability models (Jackson, 2009). Nodes
re-arrange their local network structure, attempting to improve their position.

In this section we only consider symmetric networks. To be more specific, we
let E be a subset of {(x, y) : x, y ∈ V, x �= y}, the set of non-ordered pairs of V .
Next, P =< c0, c1, . . . , ck > is a path in G from c0 to ck , if {c0, c1, . . . , ck} ⊂ V
and (ci , ci+1) ∈ E for all i ∈ {0, . . . , k − 1}. We tacitly assume that networks are
connected: between any two nodes there is a path connecting the two nodes. A cycle
in a network G is a path < v1, v2, . . . , vk−1, vk > of k − 1 ≥ 3 distinct nodes, with
vk = v1. A tree-network is a network without cycles. Finally, a complete network is
a network that has a link for each pair of nodes.



Networks, Information and Choice 227

5.1 The Uncovered Set

In Monsuur & Storcken (2004) we introduced the so-called cover relation, based on
the original formulation of the cover relation for tournaments in Miller (1980).

Let a, b be nodes in V , a �= b. Then a covers b in G = (V, E) if (1) for all
x ∈ V \ {a}, (x, b) ∈ E implies (x, a) ∈ E , and (2) there exists at least one node
c /∈ {a, b} ⊂ V such that (c, a) ∈ E while (c, b) /∈ E . This means that node a covers
node b if all nodes linked to b are also linked to a and node a has at least one extra
link. Note that we do not require that (b, a) ∈ E . Intuitively speaking, a outperforms
b. If the network is a social network or a network of alliances, then it also is clear
that a’s position is more advantageous: every social link of b can be covered by one
of a and a has at least one extra link. The cover relation is a generalization of the
cover relation defined for tournaments as introduced in Miller (1980). We let U or
U (G) be the uncovered set: U = {v ∈ V : there is no node w ∈ V that covers v in
the network G}. In Monsuur & Storcken (2004), we characterized this non-empty
set U of uncovered nodes by three independent axioms. There we use the concept of
a center φ that assigns to any network G = (V, E) a non-empty subset φ(G) ⊂ V .
The center φuc assigns to a network G the set of uncovered nodes.

Theorem 4 The center set U is the only inclusion minimal set of nodes that is com-
patible with structural equivalence, has the mediator property and is stable.

Here a center φ of nodes is compatible with structural equivalence if for two
nodes a and b that are structurally equivalent, a ∈ φ(G), if and only if b ∈ φ(G).
Next, a center φ has the mediator property if for each pair of distinct nodes a and b,
there is a shortest path connecting these nodes, such that any node in between a and
b on this path is in φ(G). The third condition is on stability. A center φ is stable if
for each (noncentral) node s /∈ φ(G) and each node t /∈ V , there is a (central) node
w ∈ φ(G) such that s /∈ φ(G ′), where G ′ = (V ∪ {t}, E ∪ {(s, t), (w, t)}). This
condition may be interpreted as follows: a node s not belonging to the central nodes,
in trying to become central, may develop a relation with a new node t . However, the
set of current central nodes is assumes to be able to neutralize this effort by selecting
a node of the center to also connect to this new node t .

5.2 Forming or Severing Links

In order to be able to introduce and explain the notion of pairwise stable networks,
in Monsuur (2007b) we used the following dichotomy: A node is either covered or
it is uncovered. We further assume that the status “uncovered” is ranked higher than
the status “covered”.

The mechanism. Each step consists of taking, randomly, two distinct nodes a and b
from V . Then for the link (a, b):

• if (a, b) ∈ E , it is deleted by a if the network remains connected and the status
of node a does not decrease,

• if (a, b) /∈ E , it is added if both a and b achieve a higher status.
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To motivate the deletion of links, note that a node a is able to unilaterally sever
any existing link (a, x), x ∈ V . If, for example, a is covered and therefore is in a
subdued position, the link (a, x) is possibly severed as a’s status can not decrease
any further (and costs are less). The link is also possibly severed if a is uncovered,
and afterward it still is uncovered. Note that a link (a, b) is not deleted if this results
in a disconnected network. As afterwards, a and b are not able to communicate
anymore, directly nor indirectly, this seems a reasonable decision. Regarding the
addition of links, as both nodes must agree to establish the link, it is assumed that
both have to gain in terms of achieving the status of being uncovered. The structural
mechanism embodies the idea that nodes have the discretion to form or sever links.
The formation of a link requires the consent of both nodes involved, while severance
can be done unilaterally.

A network G is called pairwise stable if the mechanism described before never
leads to changes. If G′ = (V, E ′) differs from G = (V, E) by just one link (a, b)
and, starting with G this difference is the result of the mechanism described before,
then G ′ is said to be a successor network of G. We have the following theorem, see
Monsuur (2007b):

Theorem 5 Let G be a network with |V | > 2. Suppose that there is at least one node
c that is covered. Then there exists a sequence of successor networks that transforms
G into one of the following pairwise stable networks

• a uni-polar network,
• a bi-polar network,
• a ring-network,

(see Fig. 4), where a uni-polar network is a network with |V | > 3 and E = {(s, vi ) :
vi ∈ V \{s}} for some node s; a bi-polar network is a tree-network with |U | = 2 and
|C | > 2; and finally, a ring-network is a network (V, E) with V = {v1, v2, . . . , vk},
k > 2 and E = {(v1, v2), (v2, v3), . . . , (vk , v1)} (so U = V ).

In van Klaveren, Monsuur, Janssen, Schut, and Eiben (2009) we conducted a
simulation study that shows that, starting with a randomly generated network, one
almost always ends up with a ring-network. So, ring-networks are very dominant
and have a large “basin of attraction”. Further research will involve nonhomoge-
neous actors and more sophisticated “agent”-behaviour, combining social choice
theory, (social) network theory and artificial intelligence.

(a) (b) (c)

Fig. 4 Types of pair-wise stable network topologies: (a) ring, (b) uni-polar, (c) bi-polar
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6 Conclusions

In military network sciences, several major research challenges have been formu-
lated. One of these challenges, see National Research Council, Committee on Net-
work Science for Future Army Applications (2005), is the study on

Dynamics, spatial location, and information propagation in networks. A major need in
network science is a better understanding of the relationship between the architecture of the
network and its function. This is particularly important in networks where dynamics plays
an important role, either through the flow of information around the network or through
changes in the network structure (by evolution or adaptation). How the structure of a net-
work relates to the behavior of the system is still not well-understood and will be a major
impediment to progress in many applications.

To this end, in this contribution, we investigated a model for situational aware-
ness that combines the network topology with exogenous characteristics of nodes.
We also discussed a model for network evolution. A more sophisticated version of
that model, is currently under investigation to be included in the tools for measuring
the Maturity Levels, as described in Sect. 4. Altogether, the results presented here
may be useful to increase our understanding of the role of social, information and
physical networks in complex operations.
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Characterizations of Bargaining Solutions
by Properties of Their Status Quo Sets

Hans Peters

1 Introduction

In the classical axiomatic approach to bargaining as initiated by Nash (1950), solu-
tions are characterized by properties that focus on how the solution outcome changes
if the feasible set changes. This is in particular the case for the main distinguishing
properties, such as “independence of irrelevant alternatives” for the Nash bargain-
ing solution, and “individual monotonicity” for the Kalai–Smorodinsky solution.
Among the first papers that focus more explicitly on the role of the status quo point
(or disagreement point) is (the hitherto unpublished paper) Peters (1986). Parts
of it have been published in a modified and extended version by Peters and van
Damme (1991). In Sects. 2–9 of this chapter the results of Peters (1986) are quite
accurately reproduced: the only somewhat more substantial change is the character-
ization of the Continuous Raiffa Solution, which has benefitted from later insights.
The chapter is concluded by an added section (Sect. 10), which provides a brief
overview of later related literature.

2 Bargaining and Status Quo

Many economic situations that involve a (potential) conflict between two parties
may be modelled as two-person bargaining games. One distinguishing feature of
such situations is the presence of some alternative which results if no agreement
between the two parties is reached. Some possible candidates for this alternative
are: (i) maintenance of the status quo; (ii) the carrying out of threats by one or
both parties; (iii) a decision made by an outside arbitrator; . . .An example of (i)
is, in dividing a fixed amount of money: if no agreement is reached then no party
gets anything. In the case of (ii), we may think of economic (or real) warfare if no
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agreement is attained. Legal decisions are often instances of (iii). A conflict between
an industry or firm and a union may result in a strike (case (ii)) or in governmental
or legal arbitration (case (iii)).

A bargaining game (S, d) consists of a subset S of the plane, and a point d in S
called the status quo point (mathematical details are given in the next section). Its
interpretation is that there are two parties (bargainers, players), who bargain over the
outcomes in S. If they agree on some x = (x1, x2) ∈ S, then players 1 and 2 receive
(e.g., von Neumann–Morgenstern) utilities x1 and x2, respectively. Otherwise, they
receive d1 and d2, respectively. So, in a bargaining game, the original nature of the
status quo point is abstracted from (indeed, the point d may be called, alternatively,
the disagreement point or threat point). Further, it is implicitly assumed that an
agreement x ∈ S can be enforced in some way or another, e.g., collusion in duopoly
by some legal contract. In other words (in the language of game theory) a bargaining
game (S, d) of this kind is a cooperative game.

The usual “axiomatic” approach to bargaining is to specify some map or bargain-
ing solution f , assigning to each bargaining game (S, d) a point of S, by requiring it
to satisfy certain properties (“axioms”). (For convenience, we adopt here a manner
of speech which corresponds to a normative point of view but, in principle, one
might take a positive standpoint.) One would expect the point f (S, d) to depend
properly on d, so individual rationality (i.e., f (S, d) ≥ d always) is the least
to require. Indeed, the status quo point plays a prominent role in the definitions
of most well-known bargaining solutions (see, e.g., Kalai & Smorodinsky, 1975;
Nash, 1950); but in most properties characterizing these solutions, its role is only
implicit. Consider, for instance, the well-known property called independence of
irrelevant alternatives, proposed by Nash in his seminal paper (Nash, 1950). This
property requires two bargaining problems to have the same solution outcome when-
ever (i) they have a common status quo point; (ii) the outcomes in one game are a
subset of the outcomes in the other game; and (iii) the solution outcome in the
larger game is also feasible in the smaller game. So in the description of this prop-
erty – and of many other properties in the literature – the status quo point is kept
fixed while the set of (other) outcomes is varied. In this chapter we shall take the
opposite approach: we shall propose some properties in which the set of outcomes
of a bargaining game, or subsets of it depending in obvious ways on the status
quo point, are kept fixed as much as possible, and the status quo point is varied.
In particular, if two status quo points d and e give rise to the same solution out-
come, i.e., f (S, d) = f (S, e), we shall say that d and e belong to the same sta-
tus quo set. We shall characterize bargaining solutions by properties of their status
quo sets.

This approach will result in alternative characterizations of the bargaining solu-
tions of Nash (1950), Kalai and Rosenthal (1978), Kalai & Smorodinsky (1975),
Raiffa (1953), and of the Egalitarian solution (e.g. Kalai, 1977). These results are
presented in Sects. 4–7, respectively. The paper on which this chapter is based
(Peters, 1986), originated from an attempt to characterize another solution pro-
posed by Raiffa (1953), called here the Continuous Raiffa solution; the result of
that attempt is presented in Sect. 8.
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It will be seen that all these different solutions are characterized by different
subsets of the same large set of properties. Every single one of these properties
is satisfied by at least two, and often more than two of the mentioned solutions.
This indicates that there is a closer relationship between these solutions than one
would expect at first sight. It also shows that the properties considered in this chapter
are not “tailor made” for particular solutions. We shall elaborate on these points in
Sect. 9. Further, we shall also give a “sensitivity analysis” of our results.

In Sect. 10 we provide a brief overview of later literature.
In the next section we give the basic definitions and discuss the announced prop-

erties of bargaining solutions.

3 Basic Definitions and Properties

For elements x, y ∈ R
2 we use the following vector inequalities: x > y, meaning

that xi > yi for i = 1, 2; and x ≥ y, meaning that xi ≥ yi for i = 1, 2. The
inequalities x < y and x ≤ y are defined similarly.

For a non-empty subset T of R
2 we denote the comprehensive hull of T by

com(T ) := {y ∈ R
2 | y ≤ x for some x ∈ T }.

If T = com(T ), we say that T is comprehensive.
A two-person bargaining game or simply a game is a pair (S, d) with d ∈

int(S) ⊆ R
2 (where int(S) is the interior of S) such that

S is closed and convex, (1)

gi (S) := max{xi | x = (x1, x2) ∈ S} exists for i = 1, 2, (2)

S is comprehensive. (3)

Closedness of S is required for mathematical convenience. Convexity of S may
follow, for instance, from the use of lotteries and von Neumann-Morgenstern utility
functions in some underlying bargaining situation. The point g(S) in (2) is called
the global utopia point of S: (2) requires its existence. Comprehensiveness of S
can be interpreted as the possibility of free disposal of utility. The set S is the set of
feasible outcomes and d is the status quo point. For the game-theoretic interpretation
of a bargaining game we refer to Sect. 2. By B we denote the set of all two-person
bargaining games.

A two-person bargaining solution or simply a solution is a map f : B → R
2

which assigns to each (S, d) ∈ B a feasible outcome.
Let S be a subset of R

2 satisfying (1), (2), and (3), let x be a point in S, and let
f be a solution. The status quo set of S with respect to f and x is the set

D(S, f, x) := {d ∈ int(S) | f (S, d) = x}.
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Although the status quo set plays a central role in this chapter, we shall avoid using
the notation D(·, ·, ·) whenever possible: most of the properties in this section in
particular can be formulated at least as clearly without the use of this notation.

Other important subsets of S, for a game (S, d), are: the Pareto optimal subset of
S, denoted

P(S) := {x ∈ S | if y ∈ S and y ≥ x then y = x};

the weakly Pareto optimal subset of S, denoted W (S), which is just the boundary of
S; and the individually rational subset of S with respect to d , denoted

Sd := {x ∈ S | x ≥ d}.
We are now sufficiently equipped to define our first series of properties for a

solution f .

Individual Rationality (IR): f (S, d) ≥ d for every game (S, d).

Pareto Optimality (PO): f (S, d) ∈ P(S) for every game (S, d).

Weak Pareto Optimality (WPO): f (S, d) ∈ W (S) for every game (S, d).

Independence of Non-Individually Rational Outcomes (INIR):
f (S, d) = f (com(Sd), d) for every game (S, d).

The first three of these properties need no further discussion. All main solutions
discussed in this chapter are individually rational, and, apart from the Egalitarian
solution of Sect. 7 which is only weakly Pareto optimal, they are all Pareto optimal.
Therefore, it will be convenient to use the expression standard solution for a Pareto
optimal, individually rational solution. The last property, INIR, requires the solution
outcome of a game to depend only on the individually rational subset.

Remark 1 Although IR is implied by the combination of INIR and PO, as is easy to
prove, we shall nevertheless talk about standard solutions with the INIR property.

In order to define further properties for a solution f , we need some additional
notation. For a non-empty subset T of R

2, let conv(T ) denote the convex hull of T ,
i.e., the smallest convex set containing T , and let comv(T ) (= com(conv(T )) =
conv(com(T ))) denote the convex comprehensive hull of T .

Split-the-difference (Spl): For all x, y ∈ R
2 with x1 > y1 and y2 > x2 we have

f (comv({x, y}), (y1, x2)) = 1
2 (x + y).

Weak Split-the-difference (WSpl): For all x, y ∈ R
2 with x1 − y1 = y2 − x2 > 0 we

have f (comv({x, y}), (y1, x2)) = 1
2 (x + y).

The Split-the-difference property exhibits symmetry as well as independence of
the particular utility presentations chosen; the latter makes sense especially if the
utility functions are of the von Neumann-Morgenstern type. The second property
WSpl is strictly weaker: for instance, the Egalitarian solution (see Sect. 7) satisfies
WSpl but not Spl, whereas all other main solutions to be discussed in this chapter
satisfy Spl.
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The next property requires a status quo set to contain the straight (half)line
through the status quo point and the solution point.

Linearity (Lin): For every game (S, d) and every interior point e of S on the straight
line {αd + (1 − α) f (S, d) | α ∈ R} through d and f (S, d), we have f (S, e) =
f (S, d).

An interpretation of the Linearity property is as follows. If, for the set of feasible
outcomes S, the status quo point d gives rise to the outcome f (S, d) = x , then
every other interior point e of S which preserves the ration of the “gains” over the
status quo outcome, i.e., satisfies (x2 −d2)/(x1 −d1) = (x2 − e2)/(x1 − e1), should
also give x as the solution outcome, i.e., f (S, e) = x . Of course, this is just a
slight reformulation of the mathematical linearity condition, but it has an apparent
economic interpretation. We shall also consider the following weaker version of
Linearity.

Restricted Linearity (RLin): For every game (S, d) with S = com(Sd), we have
int(S) ∩ {αd + (1 − α) f (S, d) | α ≥ 1} ⊆ D(S, f, f (S, d)).

Restricted Linearity is strictly weaker than Linearity, for instance, the Kalai-
Smorodinsky solution (see Sect. 6) satisfies RLin but not Lin. For further discussion
on this condition, see Sect. 6.

In order to introduce the next property, suppose that we have a game (S, d) and
a point e ∈ S, e ≤ d, such that f (S, d) = f (S, e). One may imagine negotiations
starting from e and going through d on the way to agreement. It may be that this
“negotiation path” is independent of what comes “after” d, i.e., of Sd . Such a kind of
“path independence” is required in the following property, albeit in a weaker form.
For a game (S, d), we introduce the set T (Sd) := comv({(d1, g2), (g1, d2)}), where
g is the global utopia point of com(Sd) (the “T” is from “Triangular”).

Independence of Strongly Individually Rational Outcomes (ISIR): For every game
(S, d) with S = com(Sd) and every e ∈ S with e ≤ d we have: if f (T (Sd), e) =
f (T (Sd), d), then f (S, e) = f (S, d).

For the next property, let (S, d) and (S, e) be games with d1 > e1 and d2 < e2.
Then d may be considered an improvement for player 1 and a deterioration for
player 2 when compared with e, and one could expect of a solution f that f (S, d)
be unequal to f (S, e). In order to phrase this as a property, call, for a game (S, d)
and a point x ∈ S, the status quo set D(S, f, x) discriminating if e > e′ or e′ > e for
any two distinct points e, e′ of D(S, f, x). Further, call a game (S, d) rectangular if
S = com({x}) for some x > d.

Discrimination (Disc): For every non-rectangular game (S, d) and every x ∈ S the
status quo set D(S, f, x) is discriminating.

We have to exclude rectangular games in this definition, since otherwise no
standard solution would have the Discrimination property. Of the main solutions
studied in this chapter, only the Nash solution does not have the Discrimination
property.
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A discriminating status quo set that is a curve in the plane, will be the graph of a
strictly monotonically increasing function. The next and final property that we need
requires this function to be differentiable.

Differentiability (Diff): For every (S, d) ∈ B with D(S, f, f (S, d)) discriminat-
ing, there exists a number β < d1, and a differentiable function on the interval
(β, f1(S, d)) such that {x ≥ d | x ∈ int(S), f (S, x) = f (S, d)} is the graph of that
function on [d1, f1(S, d)).

The Differentiability property requires the proportion of infinitesimally small
utility gains with respect to a status quo point to be equal to the proportion of
infinitesimally small utility losses, under the assumption that the solution outcome
remains unaltered. Of course, just as was the case with the interpretation we gave of
the Linearity property, this interpretation is, in essence, the mathematical definition
of differentiability, which can be said to have some economic content here. Diff will
be used in the characterization of the Continuous Raiffa solution in Sect. 8.

4 The Nash Solution

The Nash solution N : B → R
2 assigns to every (S, d) ∈ B the point of Sd

where the product (x1 − d1)(x2 − d2) is maximized. This solution was introduced
and characterized in the seminal article of Nash (1950). The main property used in
that characterization is the Independence of Irrelevant Alternatives property (IIA):
if (S, d) and (T, d) are games with S ⊆ T and f (T, d) ∈ S, then f (S, d) =
f (T, d). There has been much discussion on IIA in the literature (e.g., Kalai &
Smorodinsky, 1975; Luce & Raiffa, 1957), and other characterizations of Nash’s
solution have been given (for an overview see Peters, 1992). IIA-dislikers may like
the now following characterization of the Nash solution, which does not use the IIA
property.

Theorem 1 The Nash solution is the unique standard solution with the properties
INIR, Spl, and Lin.

Proof IR, PO, and INIR of the Nash solution N are straightforward from its defini-
tion. The properties Lin and Spl follow from the following geometric characteriza-
tion of N :

For every game (S, d), the point z in P(S) is the Nash solution point if and only
if there is a supporting line of S at z with slope equal to the negative of the slope of
the straight line through d and z. (∗)

For a proof of (∗), see, e.g., Lemma IX.1.4 in Owen (1995) or Lemma 2.2 in
Peter (1992).

Now let f : B → R
2 be a standard solution satisfying INIR, Spl, and Lin. Let

(S, d) ∈ B, let z = N (S, d) (observe that z > d), let � be the supporting line of S
at z as in (∗), and let p, q ∈ W (S) with d1 ≤ p1 < z1 and d2 ≤ q2 < z2 and such
that the straight line �′ through p and q is parallel to �. Let T ⊆ R

2 consist of all
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Fig. 1 Illustrating the proof of Theorem 1

points of S except those strictly above �′. We first prove that N (T, d) = f (T, d)
(see Fig. 1).

In view of (∗), z′ = N (T, d) is the point of intersection of �′ and the straight line
m through d and z. Note that z′ lies strictly in between p and q. Choose e on m with
d ≤ e < z′, p1 ≤ e1, and q2 ≤ e2. Let v,w ∈ �′ with v1 = e1 and w2 = e2. Since
the slope of �′ is equal to the negative of the slope of m, we have z′ = 1

2 (v +w), so
by Spl: f (comv({v,w}), e) = z′. So by INIR: f (T, e) = z′ which implies, by Lin:
f (T, d) = z′. Hence, f (T, d) = N (T, d).

Finally, we prove that N (S, d) = f (S, d). Suppose not, then by PO: f1(S, d) >
N1(S, d) or f2(S, d) > N2(S, d). Say f1(S, d) > N1(S, d); we derive a con-
tradiction. Let p and q be as above with, additionally, q ∈ P(S) such that
q2 > f2(S, d). Let e′ be a point on the straight line through d and f (S, d) with
d ≤ e′ ≤ f (S, d) and q1 ≤ e′1 < f1(S, d). By Lin: f (S, e′) = f (S, d). So by INIR:
f (T, e′) = f (S, d). Hence by Lin: f (T, d) = f (S, d), which implies (by the first
part of the proof) f (S, d) = N (T, d) = z′, a contradiction since f1(S, d) > z′1. ��

Note that Remark 1 applies in this theorem: we could omit IR and obtain a
stronger theorem, since IR is implied by the combination of PO and INIR. Note
also that we cannot dispense with the PO property in Theorem 1: the solution that
assigns N (S, d) to every non-rectangular game (S, d) and (x1, d2) to every rectan-
gular game (com({x}), d), satisfies every property in the theorem except PO.

The Nash solution satisfies all other properties introduced in Sect. 3 except ISIR
and Disc. These statements follow elementarily, or with the aid of (∗) in the proof of
Theorem 1. In particular, if for some game (S, d) the Pareto optimal surface P(S)
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is not smooth in some point x̄ , then the status quo set D(S, N , x̄) is not a straight
(half)line but a cone, as follows from (∗). Thus, N does not satisfy Disc.

5 The Kalai–Rosenthal Solution

The Kalai–Rosenthal solution K R : B → R
2 assigns to every game (S, d) the

point of P(S) on the straight line through d and the global utopia point g(S) of
S (see Sect. 3). The solution K R was introduced in Kalai and Rosenthal (1978),
and characterized in Peters and Tijs (1985) with the aid of a property called global
individual monotonicity in which, not surprisingly, the global utopia point plays an
important role. This may be seen as a drawback since the global utopia point can
depend on non-individually rational outcomes. The following characterization of the
solution K R, in which the ISIR property is used, may be less liable to such criticism:
in this respect, it is of special interest to note already that the Kalai–Smorodinsky
solution – to be considered in Sect. 6, and the Continuous Raiffa solution of Sect. 8,
satisfy ISIR as well as INIR.

Theorem 2 The Kalai–Rosenthal solution is the unique standard solution with the
properties ISIR, Spl, Lin, and Disc.

Proof IR, PO, ISIR, Spl, Lin, and Disc of KR follow straightforwardly from its
definition. Now let f : B → R

2 be a solution satisfying these six properties. We
will prove that f = K R by an argument based on contradiction. Suppose that
f (S, d) �= K R(S, d) for some (S, d) ∈ B. Take α ≥ 1 so large that for e :=
αd + (1 − α)K R(S, d) we have S = com(Se). Then K R(S, e) = K R(S, d) and,
by Lin of f and f (S, d) �= K R(S, d) = K R(S, e), we have f (S, e) �= K R(S, e).
For notational convenience we suppose from now on, without loss of generality, that

Fig. 2 Illustrating the proof
of Theorem 2

( , )
( , )

)( , ( ,( , )

( , )
( , )
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e = (0, 0), g(S) = (1, 1), f1(S, e) > f2(S, e) (See Fig. 2). Then, in view of Disc
of f , we have:

D(S, f, f (S, (0, 0))) is discriminating. (4)

By Spl, f (comv({(1, 0), (0, 1)}), (0, 0)) = (1
2 ,

1
2 ), so by Lin, f (comv({(1, 0),

(0, 1)}), (β, β)) = ( 1
2 ,

1
2 ) for every β ≤ 0. From this, we conclude by ISIR that

f (S, (β, β)) = f (S, (0, 0)) for every β ≤ 0. Since, by Lin of f , also f (S, x) =
f (S, (0, 0)) for every x ≤ (0, 0) with x on the straight line through (0, 0) and
f (S, (0, 0)), we conclude that (4) is violated. ��

The Kalai–Rosenthal solution satisfies all properties introduced in Sect. 3 except,
typically, INIR.

6 The Kalai–Smorodinsky Solution

The Kalai–Smorodinsky solution K S : B → R
2 assigns to every game (S, d)

the point of P(S) on the straight line through d and the so-called utopia point
h(S, d) := g(com(Sd)) of (S, d). So, in contrast with the Kalai–Rosenthal solu-
tion, this solution depends only on the individually rational subset of S, for a game
(S, d). In other words, K S satisfies INIR. It was introduced by Raiffa (1953) and
characterized by Kalai and Smorodinsky (1975), who proposed it as an alternative
for the Nash solution. They used a monotonicity property, usually referred to as
individual monotonicity.

Note that K S is a standard solution which satisfies Spl, Disc, and ISIR (and
of course WPO and WSpl). Further, it does not satisfy Lin but it does have the
Restricted Linearity property Rlin. Recall that in RLin attention is restricted to
games (S, d)with S = com(Sd) (which is equivalent to h(S, d) = g(S)) and that its
conclusion applies only to points x on the straight line through d and f (S, d) which
lie “below” d and for which, consequently, h(S, x) is constant, namely h(S, d), for
a standard solution f .

The following example shows that K S does not have the differentiability
property.

Example 1 Let S = comv({(1, 1
2 ), (0, 1)}) and d = (0, 0). Then K S(S, d)= ( 2

3 ,
2
3 ),

and the status quo set D(S, K S, ( 2
3 ,

2
3 )) is the graph of the function j defined by:

j (t) :=

⎧
⎪⎨

⎪⎩

t for −∞ < t ≤ 0

2t − 3
2 t2 for 0 ≤ t ≤ 1

3
1
2 t + 1

3 for 1
2 ≤ t < 2

3 .

Note that j is not differentiable, so KS does not satisfy Diff.

Another example exhibits a standard solution satisfying INIR, Spl, RLin, and
ISIR, but not Disc, and which is not the Kalai–Smorodinsky solution.
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Example 2 For a non-rectangular game (S, d), let max(S, d) be the maximal (with
respect to ≥) point of {x ∈ Sd | com(Sx )= com(Sd)}, and otherwise let max(S, d) =
d . We define the solution f : B → R

2 by f (S, d) := K S(S,max(S, d)). It is an
easy exercise (left to the reader) to show that this is a standard solution with the four
properties mentioned above and not Disc.

We conclude from this example that the four properties INIR, Spl, RLin, and
ISIR do not determine a unique standard solution. Adding Disc, however, we obtain
a characterization of KS.

Theorem 3 The Kalai–Smorodinsky solution is the unique standard solution with
the properties INIR, Spl, RLin, ISIR, and Disc.

Proof We leave it to the reader to verify that KS is a standard solution which has
the five mentioned properties. Let now f : B → R

2 be a standard solution which
has these five properties, and let (S, d) ∈ B. We want to prove:

f (S, d) = K S(S, d). (5)

In view of INIR of f and K S we may suppose that S = com(Sd). For notational
convenience we assume (without loss of generality) d = (0, 0) and h(S, (0, 0)) =
(1, 1). In view of Spl and Rlin, we have f (comv({(1, 0), (0, 1)}), (α, α)) = ( 1

2 ,
1
2 )

for every α ≤ 0, so by ISIR of f we have f (S, (α, α)) = f (S, (0, 0)) for every
α ≤ 0. Since, in view of Disc, the status quo set of S with respect to f and f (S, d)
is discriminating, we conclude with Rlin that f (S, (0, 0)) = K S(S, (0, 0)), thus
that (5) holds. ��

7 The Egalitarian Solution

The Egalitarian solution E : B → R
2 assigns to every game (S, d) the point

z ∈ W (S) such that z1 − d1 = z2 − d2. Both players receive the same surplus utility
above status quo, so the Egalitarian solution implies a utility comparison between
the players. The Egalitarian solution has been characterized in several ways, e.g.
Kalai (1977) and Peters (1992). We present another characterization below.

Note that E satisfies IR, WPO but not PO, Wspl but not Spl, INIR, ISIR, Lin (and
RLin), Disc, and Diff. So E is not a standard solution, and only splits the difference
in symmetric triangular games. A characterization is given in the following theorem.

Theorem 4 The egalitarian solution is the unique solution with the properties IR,
WPO, WSpl, INIR, ISIR, Lin, and Disc.

Proof (See Fig. 3.) We have already noticed that E has the properties listed in the
theorem. Now let f be a solution with these properties, and let T = comv({x, y})
where x, y ∈ R

2 such that x1 < y1 and x2 > y2. We first prove

f (T, (x1, y2)) = E(T, (x1, y2)). (6)
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Fig. 3 Illustrating the proof
of Theorem 4
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If y1−x1 = x2−y2, then (6) follows from WSpl. Suppose, without loss of generality,
that y1 − x1 > x2 − y2. Then let r ∈ R

2 be defined by r = (y1, y2 + y1 − x1),
let s be the point on the straight line through x and y with second coordinate r2,
and let p, q ∈ R

2 with p1 = s1, q1 = r1, p2 = q2 < r2 such that p, q,
r , and s are the vertices of a square. Let � be the straight line through p and r .
By WSpl and Lin, we have f (comv({q, s}), z) = 1

2 (q + s) for all z on � with
z ≤ p. By WPO and IR, f (comv({y, s}), p) ∈ conv({q, y}) ∪ conv({y, s}). Let
m denote the straight line through p and f (comv({y, s}), p). By Lin, we have
f (comv({y, s}), z) = f (comv({y, s}), p) for all z on m with z ≤ p. By ISIR, also
f (comv({y, s}), z) = f (comv({y, s}), p) for all z on � with z ≤ p. So by Disc, �
and m must coincide. Consequently, f (comv({y, s}), p) = E(comv({y, s}), p),
since the slope of � is equal to 1. Hence by Lin, f (comv({y, s}), (x1, y2)) =
E(comv({y, s}), (x1, y2)). Now (6) follows by INIR.

Next, let (S, d) be an arbitrary game. Then, with the aid of (6) applied to the tri-
angular game (T (Sd), d) (see Sect. 3), the proof of f (S, d) = E(S, d) is analogous
to the proof of Theorem 3. ��

8 The Continuous Raiffa Solution

This section is devoted to a characterization of a solution originally proposed by
Raiffa (1953). For a game (S, d), let us start in the point d and go into the direction
of the utopia point h(S, d). Having travelled an infinitesimally small distance �d,
we change our route into the direction of the new utopia point h(S, d +�d). In this
way we travel to some point on the Pareto optimal frontier of S, which will be the
solution outcome. The solution just described is the Continuous Raiffa solution: it
is based on the idea underlying the (Raiffa–)Kalai–Smorodinsky solution combined
with a continuous adjustment of the utopia point. As Raiffa saw it, this solution has
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also a Nash-like feature: the curve described above will intersect the Pareto optimal
subset of S with a slope equal to the negative of the slope of a supporting line of
the set of feasible outcomes at the point of intersection, i.e., the solution point. The
reader should compare this with condition (∗) in the proof of Theorem 1.

We shall now formally describe the continuous Raiffa solution. For a game (S, d)
in B, let the upper Pareto function u : (−∞, g1(S)) → R be defined by u(α) :=
max{β ∈ R | (α, β) ∈ S} for every α ∈ (−∞, g1(S)) and let the lower Pareto
function l : (−∞, g2(S))→ R be defined by l(β) := max{α ∈ R | (α, β) ∈ S} for
every β ∈ (−∞, g2(S)). Let further the function rS : int(S)→ R be defined by

rS(x) := (u(x1)− x2)(l(x2)− x1)
−1 for every x ∈ int(S). (7)

The function rS assigns to every interior point x of S the slope of the straight line
through x and the utopia point h(S, x). We consider the following problem:

Find a solution R of the first order ordinary differential equation dx2/dx1 =
rS(x) (x ∈ int(S)), defined on an interval (γ, δ) containing d1, with R(d1) = d2 and
with the point (δ, limx1→δ R(x1)) ∈ W (S). (∗∗)

A solution R of problem (∗∗) is a differentiable strictly monotonically increasing
function describing the curve in the first paragraph of this section, and the point
(δ, limx1→δ R(x1)) is the continuous Raiffa solution outcome of the game. We have:

Lemma 1 Problem (∗∗) has a unique solution.

Proof Let a1 = (a1, a2) be a point in the interior of S with a > d. Let V (a) denote
the rectangle with vertices (a1, a2), (a1, 2d2−a2), (2d1−a1, a2), (2d1−a1, 2d2−a2)

(see Fig. 4). Note that rS is continuous on V (a). We show that rS satisfies a Lipschitz
condition (with respect to x2) on V (a). To this end, let 2d1 − a1 ≤ x1 ≤ a1, and let
(x1, x2) and (x1, x̄2) in V (a), say with x̄2 ≥ x2. It is easy to show, with the aid of
the convexity of S, that rS(x1, x̄2) ≤ rS(x1, x2). Hence:

d

a

b

y1

Rb

Ra

Ra

Rb

V (a)

V (b)

S

S

Fig. 4 Illustrating the proof of Lemma 1; here, b := a2
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|rS(x1, x̄2)− rS(x1, x2)| = rS(x1, x2)− rS(x1, x̄2)

= (u(x1)− x2)(l(x2)− x1)
−1 − (u(x1)− x̄2)

(l(x̄2)− x1)
−1

= (x̄2 − x2)(l(x2)− x1)
−1

≤ (x̄2 − x2)(l(a2)− a1)
−1.

This shows that rS satisfies a Lipschitz condition with Lipschitz constant (l(a2) −
a1)

−1. So, by a standard theorem (e.g., Theorem 2.3 or Theorem 3.1 in Chap. 1 of
Coddington and Levinson (1984)) there exists a unique solution Ra of the equation
dx2/dx1 = rS(x) (x ∈ V (a)) with Ra(d1) = d2, and with either

(i) Ra(y1) = a2 for some d1 < y1 < a1, or
(ii) Ra(a1) exists (and d2 < Ra(a1) ≤ a2).

Let a1 := a. The next step is to choose a point a2 in the interior of S with
a2 > (y1, Ra1(y1)) if (i) above holds, and a2 > (a1

1, Ra1(a1
1)) if (ii) holds, and

then repeat the whole argument for the rectangle V (a2), which is defined similar
to V (a1). We then obtain a unique solution Ra2 of the equation dx2/dx1 = rS(x)
(x ∈ V (a2)) with Ra2(d1) = d2, which (by uniqueness) coincides with Ra1 on the
common part of their domains. By choosing, next, points a3, a4, . . . similarly as
a2, and such that the sequence a1, a2, a3, a4, . . . approaches W (S), we obtain the
desired result, with R := Ra1 on the domain of Ra1 , R := Ra2 on the domain of
Ra2 , and so on. ��

In view of Lemma 1, the Continuous Raiffa solution, from now on denoted C R :
B → R

2, is well defined. Also, the graph of the unique solution R of (∗∗) is a
subset of the status quo set of S with respect to C R and C R(S, d). But in fact, it
can be shown (see Livne, 1989b) that (except for rectangular games) the unique
solutions of (∗∗) for different status quo points either coincide completely, or result
in different limit points on the boundary. This implies that the Continuous Raiffa
solution satisfies Disc.

Also, C R is individually rational (since R in (∗∗) is monotonically increasing)
and Pareto optimal (since the part of the graph of R which is in Sd , is a subset of
conv({d} ∪ P(S)), as follows from (7). So C R is a standard solution. Further, it
follows in a more or less straightforward manner from the definition of C R that it
satisfies ISIR, INIR, Spl, and Diff.

We now show that all these properties together characterize C R.

Theorem 5 The Continuous Raiffa solution is the unique standard solution with the
properties ISIR, INIR, Spl, Disc, and Diff.

Proof We have already observed that C R has all mentioned properties. Now let f :
B → R

2 be a standard solution satisfying ISIR, INIR, Spl, Disc, and Diff. Let (S, d)
be a non-rectangular game (see Fig. 5). By Diff, there is a differentiable function
g : (α, f1(S, d)) → R for some α < d1 such that {x ≥ d | x ∈ int(S), f (S, x) =
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Fig. 5 Illustrating the proof of Theorem 5

f (S, d)} is the graph of that function on the interval [d1, f1(S, d)). Let d1 ≤ β <

f1(S, d). In order to prove that C R(S, d) = f (S, d) we have to prove:

g′(β) = (u(β)− g(β))(l(g(β))− β)−1. (8)

Denote e := (β, g(β)), and V := com(Se). By INIR we have f (V, e) = f (S, d),
and by Disc: D(V, f, f (V, e)) is discriminating. So by Diff, there is a differen-
tiable function j : (γ, f1(S, d)) → R for some γ < e1 such that {x ≥ e |
x ∈ int(V ), f (V, x) = f (S, d)} is the graph of that function on [e1, f1(S, d)).
By INIR, the graphs of g and j coincide on [e1, f1(S, d)). So in order to prove (8),
it is sufficient to show:

j ′(e1) = (u(e1)− j (e1))(l( j (e1))− e1)
−1. (9)

Now consider the game (T, e) where T := comv({(e1, u(e1)), (l(e2), e2)}). By
Disc, D(T, f, f (T, e)) is discriminating. By ISIR we have: {x ∈ D(T, f, f (T, e)) |
γ < x1 ≤ e1} is equal to the graph of j on (γ, e1]. By INIR and Spl, we
have {x ∈ D(T, f, f (T, e)) | e1 ≤ x1 < f1(T, e)} is equal to {αe + (1 −
α)( 1

2 (e1, u(e1))+ 1
2 (l(e2), e2)) | 0 < α ≤ 1}. By Diff applied to D(T, f, f (T, e)),

we conclude that (9) holds. ��

9 Overview, Comparison and Independence of the Properties

All solutions occurring in this chapter have been characterized by different sub-
sets of one family of properties, and none of the properties is the “privilege” of
one particular solution. Thus, rather than emphasizing the differences between the
solutions, our results show the relationships between them.

Table 1 supports these statements. In this table also the so-called Super-Additive
Solution P M proposed in Perles and Maschler (1981) is included, in order to
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Table 1 Overview of properties and solutions. A “+” means that a particular solution has a par-
ticular property, a “−” means that the solution does not have the property. Characterizing (sets of)
properties are indicated by ∗. The numbers between parentheses refer to the examples showing
independence, see the text.

Properties N K R K S E C R P M

IR +∗ +∗ +∗ +∗ +∗ +
PO +∗ +∗ +∗ − +∗ +
WPO + + + +∗ + +
Spl +∗ +∗ +∗ − +∗ +
WSpl + + + +∗ + +
INIR +∗ (1) − +∗ (1) +∗ (1) +∗ (1) +
ISIR − +∗ (3) +∗ (5) +∗ (8) +∗ (10) +
Lin +∗ (2) +∗ (2) − +∗ (2) − −
RLin + + +∗ (6) + − +
Disc − +∗ (4) +∗ (7) +∗ (9) +∗ (11) −a

Diff + + − + +∗ (2) +a

a For the PM solution, no status quo set is ever discriminating and therefore it trivially satisfies
Diff. However, the individually rational part of a status quo set may have non-smooth points.

illustrate that the properties used in this chapter are not tailor made for particular
solutions. The table shows which solutions satisfy which properties, and which
properties are sufficient to characterize a particular solution. Proofs, as far as not
contained in the foregoing sections, are left to the reader.

We conclude this section by reflecting on the independence of the properties used
in the five characterizations. We have seen already (Remark 1) that IR is implied by
the combination of PO and INIR: this fact may be used in the characterizations of
the solutions N , K S, and K R. Although further relaxations may be possible, we
shall pay no further attention to the properties (W)PO and IR. Omitting (W)Spl
may lead to characterizations of nonsymmetric solutions: also this point will not be
further elaborated.

We shall now consider the remaining properties in a systematic way. Correspond-
ing to each number in Table 1 we shall give an example of a solution different from
the one being characterized (column) and having all the properties (starred, in the
column) except for the property with that particular number.

(1) K R
(2) K S
(3) Take f : B → R

2 defined by f (S, d) = N (S, d) if P(S) is smooth in
N (S, d), f (S, d) = K R(S, d) otherwise.

(4) For (S, d) ∈ B, let p̄(S) and p(S) denote the left and right endpoints, respec-
tively, of P(S), and let m(S) := K S(S, ( p̄1(S), p

2
(S))). We define a solution

f : B → R
2 by defining its status quo sets, as follows:

D(S, f, x) :=

⎧
⎪⎪⎨

⎪⎪⎩

{s ∈ int(S) | s2 = x2} if x ∈ P(S) with x2 > m2(S)
{s ∈ int(S) | s1 = x1} if x ∈ P(S) with x2 < m2(S)
{s ∈ int(S) | s ≤ x} if x = m(S)
∅ otherwise.
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(5) Take f : B → R
2 defined by f (S, d) = N (S, d) if P(S) is smooth in

N (S, d), f (S, d) = K S(S, d) otherwise.
(6) C R
(7) See Example 2.
(8) Take f : B → R

2 defined by f (S, d) = N (S, d) if P(S) is smooth in
N (S, d), f (S, d) = E(S, d) otherwise.

(9) Let, for (S, d) ∈ B, max(S, d) be the point defined in Example 2, and let
f (S, d) := E(S,max(S, d)).

(10) N
(11) Let, for (S, d) ∈ B, max(S, d) be the point defined in Example 2, and let

f (S, d) := C R(S,max(S, d)).

10 Overview of Related Literature

In this section we briefly reference the main literature on the topic of this chapter.
We apologize beforehand for not being complete.

Modified and extended versions of some of the results of Peters (1986), notably
on the Nash solution and the continuous Raiffa solution, were published in Peters
and van Damme (1991). In particular, these authors replace the Linearity property
by a weaker condition called Disagreement Point Convexity and use this in a char-
acterization of the n-person Nash bargaining solution.

For more results on and alternative characterizations of the Continuous Raiffa
solution see the work of Livne (1989a, 1989b) and Furth (1990). These authors
provide proofs of the fact that C R is discriminating. See also Livne (1986) for an
early reference on changing status quo points.

Another natural condition is disagreement point monotonicity: if the status quo
point changes in favor of one of the players, then the solution outcome should
also change favor of that player. Most well-known solutions have this property, see
Thomson (1987). Chun and Thomson (1990a, 1990b) obtain, among other results, a
characterization of the n-person Nash bargaining solution using a modified version
of disagreement point convexity.

Calvo and Gutiérrez (1994) use status quo sets to extend the Perles–Maschler
solution (Perles and Maschler, 1981) to games with more than two players.

Calvo and Peters (2000) characterize the two-person equal area bargaining solu-
tion by properties of its status quo set.

Recently, Anbarci and Sun (2009) use properties of the status quo set to derive,
among other things, a characterization of a discrete version of the Raiffa solution.

Finally, we mention that properties of the status quo sets (in particular, convex-
ity) already played a role in the literature on arbitration games (see, e.g., Tijs &
Jansen, 1982).

Acknowledgments Special thanks go to Dave Furth for his stimulating remarks on Peters (1986),
which forms the basis for this chapter.
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Monotonicity Properties of Interval Solutions
and the Dutta–Ray Solution for Convex
Interval Games

Elena Yanovskaya, Rodica Branzei, and Stef Tijs

1 Introduction

Cooperative interval games are introduced and studied in Alparslan Gök, Miquel,
and Tijs (2009) and Alparslan Gök, Branzei, and Tijs (2008, 2009), where the inter-
val core plays a central role. Such games model situations with cooperation with
incomplete information of agents and of their coalitions about the payoffs they can
obtain for sure.

There are many real-life situations in which people or businesses are uncertain
about their coalitional payoffs. Situations with uncertain payoffs in which the agents
cannot await the realizations of their coalition payoffs cannot be modeled according
to classical game theory. Several models that are useful to handle uncertain payoffs
exist in the game theory literature. We refer here to chance-constrained games
(Charnes & Granot, 2007), cooperative games with stochastic payoffs (Suijs, Borm,
de Waegenaere, & Tijs, 1999), cooperative games with random payoffs (Timmer,
Borm, & Tijs, 2005). In all these models stochastics plays an important role.

This paper deals with a model of cooperative games where only bounds for pay-
offs of coalitions are known with certainty. Such games are called cooperative inter-
val games. Formally, a cooperative interval game in coalitional form (Alparslan Gök
et al., 2009) is an ordered pair 〈N , w〉 where N = {1, 2, . . . , n} is the set of players,
and w : 2N → I (R) is the characteristic function such that w(∅) = [0, 0], where
I (R) is the set of all nonempty, compact intervals in R. For each S ∈ 2N , the worth
set (or worth interval) w(S) of the coalition S in the interval game 〈N , w〉 is of the
form [w(S), w(S)]. We denote by I G N the family of all interval games with player
set N . Note that if all the worth intervals are degenerate intervals, i.e. w(S) = w(S)
for each S ∈ 2N , then the interval game 〈N , w〉 corresponds in a natural way to
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the classical cooperative game 〈N , v〉 where v(S) = w(S) for all S ∈ 2N . Some
classical T U -games associated with an interval game w ∈ I GN will play a key
role, namely the border games 〈N , w〉, 〈N , w〉 and the length game 〈N , |w|〉, where
|w| (S) = w(S)−w(S) for each S ∈ 2N . Note thatw = w+|w|. An interval solution
concept F on I G N is a map assigning to each interval game 〈N , w〉 ∈ I G N a set of
n-dimensional vectors whose components belong to I (R). We denote by I (R)N the
set of all such interval payoff vectors. Cooperative interval games are very suitable to
describe real-life situations in which people or firms that consider cooperation have
to sign a contract when they cannot pin down the attainable coalition payoffs, know-
ing with certainty only their lower and upper bounds. The contract should specify
how the players’ payoff shares will be obtained when the uncertainty of the worth of
the grand coalition is resolved at an ex post stage. In the following we briefly explain
how interval solutions for cooperative interval games are useful to support decision
making regarding cooperation and related binding contracts. A vector interval allo-
cation obtained by an agreed upon solution concept offers at the ex ante stage an
estimation of what individual players may receive, between two bounds, when the
uncertainty on the reward of the grand coalition is resolved in the ex post stage. We
notice that the agreement on a particular interval allocation (I1, I2, . . . , In) based
on an interval solution concept merely says that the payoff xi that player i will
receive in the interim or ex post stage is in the interval Ii . This is a very weak
contract to settle cooperation within the grand coalition. Therefore, writing down
in the contract the procedure to be used to transform an interval allocation into a
classical payoff vector when the uncertainty onw(N ) is resolved at the ex post stage,
is compulsory. Such procedures are described in Branzei, Tijs, and Alparslan Gök
(2008).

The first step in the study of interval game solutions is to extend classical the-
ory of cooperative game solutions to interval games. For example, we can apply
some single-valued solution concept to both border games, and in the case when
the solution of the upper game weakly dominates that of the lower game, the corre-
sponding interval vector could be admitted as the interval solution, generated by a
classical cooperative game solution. Just in this manner the interval Shapley value
for convex interval games was defined in Alparslan Gök et al., 2009. The same
approach can be applied to the extension of set-valued solutions as well (Alparslan
Gök et al., 2008, 2009).

Naturally, the problem of existence of such interval solution arises. In fact if
for some interval game 〈N , w〉 the characteristic function values of the lower and
upper games on the grand coalition coincide, i.e., w(N ) = w(N ), then for any
single-valued classical solution ϕ the (vector) inequality ϕ(N , w) ≤ ϕ(N , w) is
impossible, and this approach cannot be applied to the extension of the solution ϕ
to the interval game 〈N , w〉.

It is clear that the possibility of the extension of a classical cooperative game
solution to interval games depends both on the class of interval games into consid-
eration and on monotonicity properties of the classical cooperative game solution
itself. Thus, in the paper by Alparslan Gök et al., 2009 the class of convex interval
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games was introduced. It turned out that the most known cooperative game solutions
such as the core, the Shapley value, and the Weber set are extendable to the class of
convex interval games (though, as for the classical case, they exist on larger classes
of interval games).

This paper examines different monotonicity properties of classical cooperative
game solutions on the class of convex games and with the help of these prop-
erties verifies the existence or not existence of the corresponding interval game
solutions.

A special attention is devoted to the extension of the (constrained egalitar-
ian) Dutta–Ray solution (Dutta, 1990; Dutta & Ray, 1989) to the interval set-
ting. It is shown that this solution exists on the class of convex interval games,
belongs to the interval core, and has the same monotonicity properties as the clas-
sical Dutta–Ray solution. The last one has two nice axiomatic characterizations
on the class of convex TU games both with the consistency axioms: the first
uses the Davis–Maschler definition of the reduced games, and the second uses
the Hart–Mas-Colell definition. It turns out that the interval Dutta–Ray solution
has only one characterization with the help of consistency in the sense of Hart–
Mas-Colell definition (HMC-consistency), because the Davis–Maschler reduced
game of a convex interval game may not belong to the class of convex interval
games.

The outline of the paper is as follows. In Sect. 2 we recall basic definitions,
notation and results on (convex) interval games. In Sect. 3 we recall the known
monotonicity properties of TU game solutions and connect them with the existence
of the corresponding generated interval solutions and the inheritance by them of the
monotonicity properties. In Sect. 4 we prove that the interval Dutta–Ray solution
of a convex interval game belongs to the interval core of the game. The Lorenz
domination on the product vector set is determined and it is shown that the interval
Dutta–Ray solution Lorenz dominates each other interval core element. Section 5
provides an axiomatic characterization of the Dutta–Ray solution for convex interval
games. We conclude in Sect. 6 with remarks about alternative ways to axiomatically
characterize the (Dutta–Ray) constrained egalitarian interval solution on the class of
convex interval games.

2 Definitions and Notation

An interval game is a triple 〈N , (w,w)〉 where N is a finite set of players, w,w :
2N → R are a lower and a upper characteristic functions, respectively, such that for
each coalition S ⊂ N , w(S) ≤ w(S). The TU games 〈N , w〉, 〈N , w〉 are called
the lower and the upper games of the interval game 〈N , (w,w)〉, respectively.

Let G N be an arbitrary class of TU games with the player set N . Further we
denote by I G N the class of interval games with the player set N such that for any
〈N , (w,w)〉 ∈ I G N both the lower and upper games 〈N , w〉, 〈N , w〉 belong to the
class G N .
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Denote by X (N , w), X (N , w) the sets of feasible payoff vectors of the lower
and upper games, and by Y (N , w), Y (N , w) the sets of efficient payoff vectors,
respectively:

X (N , w) = {x ∈ R
N | ∑i∈N xi ≤ w(N )},

X (N , w) = {x ∈ R
N | ∑i∈N xi ≤ w(N )},

Y (N , w) = {x ∈ X (N , w) | ∑i∈N xi = w(N )},
Y (N , w) = {x ∈ X (N , w) | ∑i∈N xi = w(N )}.

Definition 1 A single-valued solution (value) φ for a class I G N of interval games
is a mapping assigning to each interval game 〈N , (w,w)〉 ∈ I G N a pair of vectors
φ(N , (w,w)) = (x, y) ∈ R

N × R
N such that x ∈ X (N , w), y ∈ X (N , w) and

x ≤ y.

Definition 2 An interval value φ on a class of interval games I G N is generated by
a TU game value ϕ if

φ(N , (w,w)) = (ϕ(N , w), ϕ(N , w)). (1)

Equality (1) implies that the inequality

ϕ(N , w) ≤ ϕ(N ,w) (2)

should hold, and, hence, not all TU game values can be extended to the generated
interval values, or some value can be extended only for some special classes of TU
classical and interval games.

In the sequel we consider only interval values generated by some known TU
classical game values.

Consider the class Gc
N of convex TU games with a finite set of players N . Define

the class I Gc
N of convex interval games with the set of players N by the following

way:

〈N , (w,w)〉 ∈ I Gc
N ⇐⇒ 〈N , w〉, 〈N , w〉, 〈N , w − w〉 ∈ Gc

N and w(S) ≤ w(S)

for all S ⊂ N .

Given a vector x ∈ R
N and a coalition S ⊂ N , by xS we denote the projection

of the vector x on the subspace R
S, and by x(S) the sum x(S) =∑i∈S xi .

An interval [a1, a2] dominates an interval [b1, b2], [a1, a2] � [b1, b2], if a1 ≥
b1, a2 ≥ b2. An interval vector a = ([a1, a′

1], . . . , [an, a′
n]) dominates an interval

vector b = ([b1, b′1], . . . , [bn, b′n]), a � b, if [ai , a′
i ] � [bi , b′i ] for i = 1, . . . , n.

In the next section we study which TU game values for convex games can be
extended to the generated interval values and which ones can not.

By C(N , v) we denote the core of 〈N , v〉, and by C(N , w) the interval core of
the interval game 〈N , (w,w)〉, w = (w,w):

C(N , w) = {(x, y) ∈ R
N × R

N | x ∈ C(N , w), y ∈ C(N , w), x ≤ y}.
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We notice that this definition is different from the usual one, which regards the
interval core as a set of |N |-dimensional vectors in I (R)N , but it is equivalent in its
consequences.

3 Monotonicity Properties of TU Game Values
and of the Corresponding Generated Interval Values

3.1 Existence of Interval Values Generated by TU Game Values

In this section we consider the interval values on the class of convex interval games
I Gc

N .

Given a TU value ϕ for the class Gc
N , the existence of the generated by it interval

value φ on I Gc
N , i.e. the fulfilment of inequality (2) is equivalent to the following

monotonicity property of ϕ:

Convex monotonicity (CvM). If 〈N , v〉, 〈N , v′〉, 〈N , v′ − v〉 ∈ Gc
N , and v′(S) ≥

v(S) for all S ⊂ N , then ϕ(N , v′) ≥ ϕ(N , v).
Let us compare this property with other known monotonicity properties of TU

game solutions1:

Aggregate monotonicity (AM). If v′(N ) > v(N ) and v′(S) = v(S) for all S � N ,
then ϕ(N , v′) ≥ ϕ(N , v).

Contribution monotonicity (CM). For each i ∈ N inequalities
v′(S ∪ {i})− v′(S) ≥ v(S ∪ {i})− v(S) for all S �. i imply ϕi (N , v′) ≥ ϕi (N , v).

Weak contribution monotonicity (WCM) (Hokari & van Gellekom, 2002). If for all
i ∈ N and all coalitions S �. i the inequalities v′(S∪{i})−v′(S) ≥ v(S∪{i})−v(S)
hold, then ϕ(N , v′) ≥ ϕ(N , v).

Note that all these properties were defined for games with the same sets of play-
ers. It is clear that

CM �⇒ WCM �⇒ AM. (3)

Let us check where convex monotonicity is placed in relations (3).

Proposition 1 On the class of convex games Gc
N

WCM �⇒ CvM �⇒ AM.

Proof Let 〈N , v〉, 〈N , v′〉, 〈N , v′ − v〉 be convex games such that v′(S) ≥ v(S) for
all S ⊂ N . Then for all i ∈ N and S �. i

v′(S ∪ {i})− v′(S) ≥ v(S ∪ {i})− v(S). (4)

1 The definitions of the properties are given for arbitrary classes of TU games, so they are not
indicated.
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If a value ϕ on Gc
N satisfies weak contribution monotonicity, then ϕ(N , v′) ≥

ϕ(N , v), and ϕ satisfies convex monotonicity.
Let now ϕ′ be any value on the class Gc

N that satisfies convex monotonicity.
Then for games 〈N , v〉, 〈N , v′〉 inequalities (4) hold, inclusively for those such that
v(S) = v′(S) for all S � N , v′(N ) > v(N ), implying ϕ(N , v′) ≥ ϕ(N , v).

��
Relations (3) and Proposition 1 permit to check for what TU game values for

convex games the generated interval values exist or not.
It is well-known that the Shapley value satisfies contribution monotonicity.

Therefore, there exists the interval Shapley value on the class of convex interval
games (Alparslan Gök et al., 2009).

On the other hand, it is known that the prenucleolus and the τ -value on the class
of convex games do not satisfy aggregate monotonicity (Hokari, 2000; Hokari &
van Gellekom, 2002). Therefore, the interval prenucleolus and the interval τ -value
do not exist on the class I Gc

N .

The (constrained) egalitarian solution for TU games was defined by Dutta and
Ray (1989) as the unique Lorenz maximal allocation in the Lorenz core. We call it
the Dutta–Ray solution (DR). This solution can be empty, its existence was proved
in the same paper for the class of convex games. For each convex game 〈N , v〉 the
Dutta–Ray solution is the unique allocation in the core which Lorenz dominates
every other core allocation. This solution was characterized on the class of convex
games by Dutta (1990) in two ways, both using consistency properties: he proved
that the DR solution is the unique solution satisfying constrained egalitarianism
(CE) for two-person games and consistency either in the definition due to Davis and
Maschler (1965), or in the definition due to Hart and Mas-Colell (1987).

The Dutta–Ray solution on the class of convex TU games possesses many attrac-
tive properties. In particular, Hokari and van Gellekom (2002) proved that the DR
solution over the class of convex games satisfies weak contribution monotonic-
ity, hence, by Proposition 1 it satisfies convex monotonicity providing the exis-
tence of the generated Dutta–Ray interval solution on the class of convex interval
games.

The properties and a characterization of the interval Dutta–Ray solution will be
the main subject of the next sections.

The last monotonicity property compares players’ payoffs with respect to solu-
tion vectors in the initial game and its subgames:

Population monotonicity. If 〈N , v〉 is a convex game and N ′ ⊂ N , then ϕi (N , v) ≥
ϕi (N ′, v) for all i ∈ N ′, where 〈N ′, v〉 is the subgame of 〈N , v〉.

This property assures the existence of population monotonic allocation schemes
(Sprumont, 1990). Recall that for a game v ∈ G N , which is totally balanced, a
scheme a = (ai S)i∈S,S∈2N \{∅} of real numbers is a population monotonic allocation
scheme of v if

(i)
∑

i∈S ai S = v(S) for all S ∈ 2N \ {∅},
(ii) ai S ≤ aiT for all S, T ∈ 2N \ {∅} with S ⊂ T and for each i ∈ S.
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We notice that convexity of v is a sufficient condition for the existence of population
monotonic allocation schemes.

3.2 Inheritance of Monotonicity Properties by Interval Values

It is not difficult to extend the above defined monotonicity properties (except for
convex monotonicity) to interval values. For interval values we demand that the
properties hold both for the lower and upper games. Let φ be an interval value for
the class I Gc

N of interval convex games. The following definitions are the extensions
to interval convex games of the given above monotonicity properties of TU game
values.

Aggregate monotonicity. If 〈N , (w,w)〉 and 〈N , (w′, w′)〉 are interval convex games
such that w(S) = w′(S), w(S) = w′(S) for all S � N , and w′(N ) > w(N ), w′(N )
> w(N ), then φ(N , (w′, w′)) � φ(N , (w,w)).

Contribution monotonicity. For interval convex games 〈N , (w,w)〉 and 〈N , (w′,
w′)〉 and for each i ∈ N inequalities w′(S ∪ {i}) − w′(S) ≥ w(S ∪ {i}) − w(S),
w′(S ∪ {i}) − w′(S) ≥ w(S ∪ {i}) − w(S) for all S �. i imply φi (N , (w′, w′)) �
φi (N , (w,w)).

Weak contribution monotonicity. If for interval convex games 〈N , (w,w)〉 and
〈N , (w′, w′)〉, for all i ∈ N , and all coalitions S �. i the inequalities w′(S ∪ {i})−
w′(S) ≥ w(S ∪ {i})− w(S), w′(S ∪ {i})−w′(S) ≥ w(S ∪ {i})− w(S) hold, then
φ(N , (w′, w′)) � φ(N , (w,w)).

Population monotonicity. If 〈N , (w,w)〉 is an interval convex game and N ′ ⊂ N ,
then φi (N , (w,w)) � φi (N ′, (w,w)) for all i ∈ N ′, where 〈N ′, (w,w)〉 is the
subgame of 〈N , (w,w)〉.

From the definitions it follows that all these properties are inherited by interval
values generated by TU game values: if a value ϕ on the class of TU convex games
Gc

N satisfies one of the monotonicity properties, then the generated interval value φ
on the class I Gc

N satisfies the same property in the interval setting.
In particular, since the Shapley value and the Dutta–Ray solution on the class of

convex games are population monotonic, we obtain that the interval Shapley value
and the interval Dutta–Ray solution are population monotonic on the class of convex
interval games as well.

This last monotonicity property provides the existence of population monotonic
interval allocation schemes (Alparslan Gök et al., 2009). Recall that for a game
w ∈ I G N a scheme A = (Ai S)i∈S,S∈2N \{∅} with Ai S ∈ I (R)N is a population
monotonic interval allocation scheme of w if

(i)
∑

i∈S Ai S = w(S) for all S ∈ 2N \ {∅},
(ii) Ai S � AiT for all S, T ∈ 2N \ {∅} with S ⊂ T and for each i ∈ S.
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We notice that convexity ofw is a sufficient condition for the existence of population
monotonic interval allocation schemes.

4 The Interval Dutta–Ray Solution on the Class of Convex
Interval Games

4.1 Properties of the Interval Dutta–Ray Solution

The solution CE of constrained egalitarianism on the class of two-person superad-
ditive games is defined for each game 〈{i, j}, v〉 as follows:

CEi ({i, j}, v) =

⎧
⎪⎨

⎪⎩

v({i, j})
2 if v({i, j})

2 ≥ max{v({i}), v({ j})},
v({i}), if v({ j}) ≤ v({i, j})

2 < v({i}),
v({i, j})− v({ j}), if v({i}) ≤ v({i, j})

2 < v({ j}).
(5)

Definition (5) shows that the CE solution assigns to each two-person superad-
ditive game the payoff vector in the core nearest to the diagonal, i.e. to the equal
share efficient payoff vector. This solution vector Lorenz dominates every other
vector from the core: CE({i, j}, v) �Lor x for all x ∈ C({i, j}, v) \ {CE({i, j}, v)}.
Recall the definition of Lorenz domination between vectors x, y ∈ R

n+ such that∑n
i=1 xi = ∑n

i=1 yi = I . Denote by x̂ = (x̂1, . . . , x̂n) the vector obtained by
rearranging its coordinates in a non-decreasing order, that is, x̂1 ≤ x̂2 ≤ . . . ≤ x̂n.

Then x Lorenz dominates y, x �Lor y whenever
∑p

i=1 x̂i ≥ ∑p
i=1 ŷi for all

p ∈ {1, . . . , n − 1}, with at least one strict inequality.
The Dutta-Ray solution extends the CE solution to all convex TU games: it

assigns to each convex game 〈N , v〉 ∈ Gc
N the vector DR(N , v) ∈ C(N , v) which

Lorenz dominates every other vector from the core:

DR(N , v) �Lor x for all x ∈ C(N , v) \ {DR(N , v)}. (6)

Proposition 1 permits to define the interval Dutta–Ray solution for interval con-
vex games as a mapping assigning to each convex interval game 〈N , (w,w)〉 the
pair of vectors (DR(N , w),DR(N , w)). This definition can be done in the form of
the Lorenz domination as for convex TU games. For this, first we should extend the
Lorenz domination to sets of ordered pairs of vectors (x, y) ∈ R

N × R
N such that

x ≤ y.
Let A = {(x, y) | x ∈ R

N , y ∈ R
N , x ≤ y} be a set of pairs of vectors, and

let (x, y), (x ′, y′) ∈ A. We say that (x, y) Lorenz dominates (x ′, y′) if the Lorenz
curve L(x, y) Pareto dominates the Lorenz curve L(x ′, y′). Note that in a weakly
increasing ordering of the vector (x, y) defining the Lorenz curve L(x, y), it may
happen that xi > y j for some components i > j.
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Proposition 2 For any convex interval game 〈N , w〉 = 〈N , (w,w)〉 ∈ I Gc
N the

interval Dutta–Ray solution (DR(N , w), DR(N , w)) belongs to the interval core
C(N , w) and Lorenz dominates every other pair of vectors (x, y) ∈ C(N , w).
Proof Since DR(N , w) ∈ C(N , w),DR(N , w) ∈ C(N , w) and DR(N , w) ≤
DR(N , w), we have (DR(N , w),DR(N , w)) ∈ C(N , w).

By the definition of the DR solution on the class Gc
N ,

DR(N , w) = x∗ �Lor x, DR(N , w) = y∗ �Lor y for all x ∈ C(N , w) \ {x∗} ,
y ∈ C(N , w) \ {y∗

}
.

Then, by separability of the Lorenz domination,

(x∗, y) �Lor (x, y) for any y ∈ R
N and all x ∈ C(N , w) \ {x∗} ,

(x, y∗) �Lor (x, y) for any x ∈ R
N and all y ∈ C(N , w) \ {y∗} . (7)

It is clear that relations (7) imply the demanded result. ��
The DR solution on the class Gc

N is covariant with respect to identical affine
transformations of players’ utilities. It means that for any game 〈N , v〉 ∈ Gc

N , any
positive number α ∈ R+, and arbitrary vector b = (b, b . . . , b) ∈ R

N with equal
components, it holds

DR(N , αv + b) = αDR(N , v)+ b, (8)

where for all S ⊂ N , (αv + b)(S) = αv(S)+ b · |S|.
It turns out that this property can be extended to the interval DR solution even in

a stronger manner:

Proposition 3 For any finite N the interval DR solution on the class I Gc
N is covari-

ant with respect to identical affine transformations of players’ utilities, which may
be different for lower and upper games: for arbitrary 〈N , (w,w)〉 ∈ I Gc

N , numbers
α, α′ ∈ R+ such that α ≤ α′, and vectors a = (a, . . . , a), b = (b, . . . , b) ∈ R

N

with equal components such that a ≤ b, it holds

DR(N , α(w + a, w + b) =
(
αDR(N , w)+ a, αDR(N , w)+ b)

)
.

Moreover, if the upper game is positive, i.e. w(S) ≥ 0 for all S ⊂ N , then

DR(N , (αw + a, α′w + b) =
(
αDR(N , w)+ a, α′DR(N , w)+ b

)
.

Proof First, notice that the pair 〈N , αw+a〉, 〈N , αw+b〉 defines the convex interval
game 〈N , (αw + a, αw + b)〉.

Let now α′ > α > 0, w(S) ≥ 0 for all S ⊂ N . Then both border games
〈N , αw + a〉, 〈N , α′w + b〉 are convex and αw(S) + a · |S| ≤ α′ · w(S) + b · |S|
for all S ⊂ N . The length game 〈N , α′w− αw+ b− a〉 is also convex because for
each S,
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α′w(S)− αw(S)+ (b − a)|S| = (α′ − α)w(S)+ α(w(S)− w(S))+ (b − a)|S|,

and the sum of convex games is also convex.
Now equalities (8) establish the result. ��
Similar to the classical TU game theory, given an interval game 〈N , (w,w)〉,

α′ ≥ α > 0, a = (a, . . . , a), b = (b, . . . , b) with a ≤ b, we call the game
〈N , (αw + a, αw + b)〉 strategically equivalent to the game 〈N , (w,w)〉.

If the upper game 〈N ,w〉 is positive, then 〈N , (αw + a, α′w + b)〉 is called
strategically equivalent to the game 〈N , (w,w)〉.

Recall Dutta’s algorithm (Dutta, 1990) for the calculation of the DR solution for
convex TU games. Let for a convex TU game 〈N , v〉, x = DR(N , v), and let the
players be ordered with respect to their decreasing solution payoffs:

x = (a1, . . . , a1︸ ︷︷ ︸
T1

, a2, . . . , a2,︸ ︷︷ ︸
T2

. . . ak . . . , ak︸ ︷︷ ︸
Tk

). (9)

The numbers a1 > a2 > . . . ,> ak are found subsequently:

a1 = maxS⊂N
v(S)
|S| = v(T1)|T1| ,

...
...

a j = max
S⊂N\∪ j−1

i=1 Ti

v j (S)
|S| = v j (Tj )

|Tj | , j = 2, . . . , k,

(10)

where

v j (S) = v(

j−1⋃

i=1

Ti ∪ S)− v(
j−1⋃

i=1

Ti ) for all S ⊂ N \
j−1⋃

i=1

Ti .

It is clear that for finding the interval DR solution we should apply the algorithm
for the lower and upper games 〈N , w〉, 〈N , w〉 separately. Then, in the general case,
the corresponding partitions of the player set N may be different for the lower and
upper games. However, it is clear that if the lower and upper games are strategi-
cally equivalent, then the partitions of N in coalitions whose players have equal
shares corresponding to the DR solutions DR(N , w),DR(N , w) are the same. The
analogous result holds for the interval DR solution:

Proposition 4 Let two convex interval games 〈N , (w,w)〉, 〈N , (w′, w′)〉 be strate-
gically equivalent, and let DR(N , (w,w)) = (x, y) where

x = DR(N , w) = (x1, . . . , x1︸ ︷︷ ︸
T1

, x2, . . . , x2,︸ ︷︷ ︸
T2

. . . xk . . . , xk︸ ︷︷ ︸
Tk

),

y = DR(N , w) = (y1, . . . , y1︸ ︷︷ ︸
Q1

, y2, . . . , y2︸ ︷︷ ︸
Q2

. . . yr . . . , yr︸ ︷︷ ︸
Qr

),
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and x1 > . . . > xk, y1 > . . . > yr . Then DR(N , (w′, w′)) = (x ′, y′), where

x ′ = (x ′1, . . . , x ′1︸ ︷︷ ︸
T1

, x ′2, . . . , x ′2,︸ ︷︷ ︸
T2

. . . x ′k . . . , x ′k︸ ︷︷ ︸
Tk

),

y′ = (y′1, . . . , y′1︸ ︷︷ ︸
Q1

, y′2, . . . , y′2︸ ︷︷ ︸
Q2

. . . y′r . . . , y′r︸ ︷︷ ︸
Qr

),

and x ′1 > . . . > x ′
k, y′1 > . . . > y′r . Moreover, x ′ = αx + b, y′ = α′y + b′ for some

α′ ≥ α > 0, b = (b, . . . , b), b′ = (b′, . . . , b′), b′ ≥ b.

Proof From the definition of strategically equivalent interval games it follows that
w′ = αw + b, w′ = α′w + b′, where b′ ≥ b, α′ ≥ α > 0, and α′ > α only if
w(S), w′(S) ≥ 0 for all S ⊂ N . Then formulas (9) and (10) give the result. ��

Monotonicity properties of the interval Dutta–Ray solution have been already
discussed in the previous section. Now we are going to define and to show consis-
tency properties of the interval Dutta–Ray solution.

5 Consistency of the Dutta–Ray Solution on the Class of Convex
Interval Games and Its Axiomatic Characterization

Consistency properties of a solution connect the solution vectors of TU games with
different sets of players. More exactly, a TU game solution σ is consistent, if, given
a TU game 〈N , v〉 and a solution vector x ∈ σ(N , v), for any coalition S ⊂ N the
vector xN\S belongs to the solution σ(N\S, vx ) (σ (N\S, vσ )) of the reduced game,
obtained from 〈N , v〉 after leaving the coalitions S. The characteristic function of the
reduced game is defined in different ways depending on the methods of aggregating
the values v(T ∪ Q) for T ⊂ N \ S, Q ⊂ S and xS or on the solution σ itself into a
unique characteristic function value vx

N\S(T ) (v
σ
N\S) of the reduced game.

Thus, to consider consistency properties of a solution, we should put into con-
sideration the classes of games with different sets of players. Let N be an arbitrary
universal set of players. Denote by GN = ⋃

N⊂N G N , I GN = ⋃
N⊂N I G N

the classes of all TU classical and interval games whose finite sets of players are
contained in the universal set N , and characteristic functions are defined by the
classes G N , I G N , N ⊂ N , respectively.

Dutta (1990) showed that the DR solution on the class of convex TU games
Gc
N with an arbitrary set N is consistent in the definition of Davis–Maschler (max

consistency) (Davis & Maschler, 1965) and of Hart–Mas-Colell (self consistency)
(Hart & Mas-Colell, 1987). We extend the definitions of consistency of TU game
solutions to the generated by them interval solutions by demanding consistency of
the corresponding TU game solutions for both border games. Since the Dutta–Ray
solution is single-valued both for TU classical and interval convex games, we give
the definitions of interval consistency in the definitions of Davis–Maschler and of
Hart–Mas-Colell only for single-valued solutions.
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A single-valued solution φ on a class I GN of interval games generated by a
TU game solution ϕ on a class Gc

N is DM-consistent or satisfies the reduced game
property in the sense of Davis–Maschler if for any game 〈N , (w,w)〉 ∈ I GN and a
coalition S ⊂ N ,

(ϕ(N , w), ϕ(N , w))S = (ϕ(S, wx ), ϕ(S,wy)), (11)

where x = ϕ(N , w), y = ϕ(N , w), 〈S, (wx , wy)〉 ∈ I GS and the characteristic
functions of the upper and lower reduced games are defined as follows:

wx (T ) =
⎧
⎨

⎩

w(N )− x(N \ S), if T = S,

max
Q⊂N\S

(
w(T ∪ Q)− x(Q)

)
for other T ⊂ S,

(12)

wy(T ) =
⎧
⎨

⎩

w(N )− y(N \ S), if T = S,

max
Q⊂N\S

(
w(T ∪ Q)− y(Q)

)
for other T ⊂ S.

(13)

Moreover, the reduced interval games 〈S, (wx , wy)〉 should belong to the class I Gc
N

for all S ⊂ N .
In definitions (12) and (13) the characteristic functions of the reduced on S inter-

val game depend on the solution payoffs xi of players i ∈ N \ S leaving the game.
Hart and Mas-Colell (1987) proposed another approach to the definition of reduced
games, where they depend on the solutions of subgames of the initial game.

A solution φ on the class I Gc
N of interval games, generated by a TU game solu-

tion ϕ, is HMC-consistent or satisfies the reduced game property in the sense of
Hart–Mas-Colell if for any game 〈N , (w,w)〉 ∈ I GN , and every coalition S ⊂ N ,
it holds

(ϕ(N , w), ϕ(N , w))S = (ϕ(S, wϕ), ϕ(S,wϕ)), (14)

where the reduced games 〈S, wϕ〉, 〈S, wϕ〉 ∈ I Gc
N are defined as follows:

wϕ(T ) =
{
w(N )−∑i∈N\S ϕi (N , w), if T = S,

w(T ∪ (N \ S))−∑ j∈N\S ϕ j
(T ∪ (N \ S), w), for T � S,

where 〈T ∪ (N \ S), w〉, are the subgames of the lower game 〈N , w〉.
The reduced game of the upper game are defined analogously.
An interval solution ϕ is bilateral DM-consistent (bilateral HMC-consistent) if

equality (11) ((14)) only holds for two-person coalitions S, i.e. |S| = 2.
Since the given above definitions of consistency are applied separately to lower

and upper games, it may seem that the results about consistency of TU games solu-
tions can be directly extended to interval games. However, convex interval games
demand convexity not only of lower and upper games, but also convexity of the



Interval Dutta–Ray Solutions 261

length game. Just this property can be violated by the classical reduced games that
does not permit to extend consistency of the DR solution to the interval setting.

Proposition 5 The Dutta–Ray solution over the class I Gc
N with |N | ≥ 4 does not

satisfy bilateral DM-consistency.

Proof We give an example of three-person convex interval game whose Davis–
Maschler reduced interval games with respect to the DR solution do not belong
to the class I Gc

N .
Example 1 Let N = {1, 2, 3}. Consider the following interval game 〈N , (w,w)〉:

w(S) =

⎧
⎪⎨

⎪⎩

3, if S = {1, 2} ,
5, if S = {1, 2, 3} ,
0 for other S,

w(S) =

⎧
⎪⎨

⎪⎩

3, if S = {1, 2},
4, if S = {1, 2, 3} ,
0 for other S.

Then

(w − w)(S) =
{

1 for S = {1, 2, 3} ,
0 for other S,

,

w(S) ≥ w(S) for all S ⊂ N , and all games 〈N , w〉, 〈N , w〉, 〈N , w−w〉 are convex.
We have

DR(N , w) =
(

3

2
,

3

2
, 1

)

= x, DR(N , w) =
(

5

3
,

5

3
,

5

3

)

= y.

Consider the reduced games 〈{2, 3}, wy〉, 〈{2, 3}, wx 〉 of the games 〈N , w〉, 〈N ,
w〉 on the player set {2, 3} and with respect to the payoff vectors y and x , respec-
tively. Then

wy(2) = max{0, 3 − 5
3 } = 4

3 ,

wx (2) = max{0, 3 − 3
2 } = 3

2 ,

and we obtainwy({2}) < wx ({2}) that means the reduced interval game 〈{2, 3}, (wy,

wx )〉 /∈ I Gc
N . ��

Let us consider HMC-consistency of the interval DR solution. To begin with we
should return to the DR solution on the class of convex TU games Gc

N .Dutta (1990)
showed that the DR solution on the class of convex TU games Gc

N is both DM-
consistent and HMC-consistent. However, he did proved that the Hart–Mas-Colell
reduced games of a convex TU game with respect to the DR solution are convex
only for two-person reduced games. The follows example shows this fact.
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Example 2 N = {1, 2, 3, 4}, v({i}) = 0 for all i ∈ N , v(N ) = 6 + 3ε,
v({1, 2}) = 4, v({1, 3}) = 1/2, v({i, j}) = 1 for other (i, j) �= (1, 3),
v({1, 2, 3}) = 5 + 2ε, v({1, 2, 4}) = 5 + ε, v({1, 3, 4}) = v({2, 3, 4}) = 2.

Then for sufficiently small positive ε this game 〈N , v〉 is convex, and DR(N , v) =
(2, 2, 1 + 2ε, 1 + ε).

Consider the Hart–Mas-Colell reduced game 〈N \ {1}, vDR〉 on the set {2, 3, 4}
with respect to the DR solution. Then
vDR({2}) = 2, vDR({3}) = 1/4, vDR({4}) = 1/2,
vDR({2, 3}) = 3 + 2ε, vDR({2, 4}) = 3 + ε, vDR({3, 4}) = 4/3, vDR({2, 3, 4}) =

4 + 3ε,
and for ε < 1/12, it holds

vDR({2, 3})+ vDR(v{3, 4}) = 4
1

3
+ 2ε > 4

1

4
+ 3ε = vDR({2, 3, 4})+ vDR({3}),

implying that the reduced game 〈{2, 3, 4}, vDE〉 is not convex.

��
However, it is possible to establish bilateral HMC-consistency of the interval DR

solution:

Proposition 6 The interval DR solution is bilateral HMC-consistent on the class
I GN for all N , |N | ≥ 3.

Proof Let 〈N , (w,w)〉 ∈ I Gc
N be an arbitrary game, y = DR(N , w), x =

DR(N , w), i, j ∈ N . Consider the reduced game 〈{i, j}, (wDR, wDR)〉 on the set
{i, j} with respect to the interval DR solution. Then by the definition of HMC-
consistency and population monotonicity of the classical DR solution:

wDR({i}) = DRi (N \ { j},w) ≤ yi ,

wDR({ j}) = DR j (N \ {i}, w) ≤ y j ,

wDR({i, j}) = yi + y j .

(15)

From (15) it follows that the reduced game is superadditive and, hence, convex.
Similarly, it is proved that the reduced game 〈{i, j}, wDR〉 and the length game
〈{i, j}, (wDR − wDR)〉 are both superadditive.

Let us show that wDR ≤ wDR. By Proposition 1 providing the existence of the
interval DR solution, we have

wDR({i}) = DRi (N \ { j}, w) ≤ DRi (N \ { j},w) = wDR({i}).

The same equalities and inequality hold when we interchange i with j . At last,

wDR({i, j}) = xi + x j ≤ yi + y j = wDR({i, j}).

Thus, the reduced game on the two-player set {i, j} belongs to the class I Gc
N .

Bilateral HMC-consistency of the classical DR solution on the class of convex TU
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games implies the equalities (xi , x j ) = DR({i, j}, wDR), (yi , y j ) = DR({i, j}, wDR)

proving the proposition. ��
It turns out that bilateral HMC-consistency of the interval DR solution together

with its coincidence with the CE solution on two-person convex interval games are
sufficient for the characterization of the interval DR solution on the class I Gc

N . To
establish this result, first, let us prove an auxiliary one.

Lemma 1 If a single-valued solution ϕ on the class Gc
N of convex TU games is

bilateral HMC-consistent and coincides with the solution of constrained egalitari-
anism on the class of two-person superadditive games, then it is efficient and belongs
to the core.

Proof First, let us show efficiency of ϕ. Let 〈N , v〉 ∈ Gc
N be an arbitrary game

and let y = ϕ(N , v). By efficiency of the solution of constrained egalitarianism,
bilateral consistency of ϕ, and the definition of the Hart–Mas-Colell reduced games
for any i, j ∈ N , we have

yi + y j = vϕ({i, j}) = v(N )−
∑

k∈N\{i, j}
ϕk(N , v) = v(N )−

∑

k �=i, j

yk , (16)

where 〈{i, j}, vϕ〉 is the Hart–Mas-Colell reduced game on the player set {i, j} with
respect to the solution ϕ. From (16) it follows

∑
i∈N yi = v(N ).

The next claim is to prove that y ∈ C(N , w). We will prove the claim by induc-
tion on the number of players.

For two-person games we have C E = ϕ and, hence, ϕ({i, j}, v) ∈ C({i, j}, v).
Assume that the claim is valid for all convex TU games whose number of players is
less than |N |.

By bilateral HMC-consistency of ϕ, for every i, j ∈ N ,

yi ≥ v
ϕ
{i, j}({i}) = ϕi (N \ { j}, v). (17)

By the inductive hypothesis equality (17) implies y(S) ≥ v(S) for all S, |S| ≤ n−1.
For S = N efficiency of ϕ gives y(N ) = v(N ) and we obtain y ∈ C(N , v). ��

Now we are ready to obtain an axiomatic characterization of the interval DR
solution on the class of convex interval games.

Theorem 1 For any universal set N the Dutta–Ray solution is the unique solution
on the class I Gc

N satisfying constrained egalitarianism for two-person games and
bilateral HMC-consistency.

Proof In view of Proposition 3 only the uniqueness should be proved. Let ϕ be an
arbitrary solution on the class I Gc

N satisfying the properties given in the Theorem,
and for an arbitrary interval game 〈N , (w,w)〉 ∈ I Gc

N let y = ϕ(N , w), x =
ϕ(N , w).

Let us prove the equalities y = DR(N , w), x = DR(N , w). It suffices to prove
only one equality, the second one is proved analogously. Note that by Lemma 1,
y ∈ C(N , w).
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Consider the following cases:
10. yi = y j = w(N )

|N | for all i, j ∈ N . Since y ∈ C(N , w), this vector Lorenz
dominates every other vector from the core, that yields y = DR(N , w).

20. There are i, j ∈ N such that yi > y j . Represent y in the form

y = (y1, . . . , y1︸ ︷︷ ︸
Q1

, y2, . . . , y2,︸ ︷︷ ︸
Q2

. . . yl . . . , yl︸ ︷︷ ︸
Ql

), where y1 > y2 > . . . > yl ,

and

DR(N , w) = z = (z1, . . . , z1︸ ︷︷ ︸
T1

, z2, . . . , z2,︸ ︷︷ ︸
T2

. . . zm . . . , zm︸ ︷︷ ︸
Tm

), where z1 > z2 . . . > zm .

Then by bilateral HMC-consistency of ϕ and the definition of constrained egali-
tarianism, for each i ∈ N \ Ql and j ∈ Ql ,

yi = w
ϕ
{i, j}({i}) = ϕi (N \ { j}, w), (18)

where 〈{i, j},wϕ{i, j}〉 is the Hart–Mas-Colell reduced game on the player set {i, j}.
By the inductive hypothesis equality (18) implies

yi = DRi (N \ { j},w) for each i ∈ N \ Ql , j ∈ Ql . (19)

Let us show that T1 ∩ Ql = ∅. In fact, equality (19) and the population mono-
tonicity of the DR solution imply yi ≤ z1 for all i ∈ N \ Q1, and y j < yi for such i
and j ∈ Ql . Therefore, if T1 ∩ Ql �= ∅, then y(T1) =∑i∈T1

yi < z1|T1| = w(T1),

that would contradict the membership of y = ϕ(N , w) to the core.
Thus, we have obtained the equalities

yi = ϕi (N \ { j}, w) = DRi (N \ { j},w) = DRi (N , w) = z1for all i ∈ T1, j ∈ Ql .

Consider the following possibilities:
20a. T1 ∪ Ql = N . If m = 2, then y = z, and the proof is complete.
If m > 2, then Ql = T2∪. . .∪Tm, and for i ∈ Tk, j ∈ Tl , k < l, k, l = 2, . . . ,m,

we have DRi (N , w) = zk > zl = DR j (N , w). Let k ∈ {2, . . . ,m} be a number
such that

zr > yl for r < k
zr ≤ yl for r ≥ k.

Such a k does exist because y(Ql) = z(Ql) and y j = yl for all j ∈ Ql . Denote
Zk = ⋃k

t=1 Tt . Then by the definition of the interval DR solution and by the equal-
ities y j = z j for j ∈ T1,

w(Rk) = z(Rk) = z1|T1| +
k∑

t=2

zt |Tt | > y(T1)+ yl

k∑

t=2

|Tt |,
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that again would contradict the membership of y to the core C(N , w), Thus, the
case T1 ∩ Ql = ∅,m > 2 is impossible and we return to the case m = 2.

20b. T1 ∪ Ql � N . Repeat the procedure for the set T2. First, let us show that
T2 ∩ Ql = ∅. As in the proof of the previous case, equality (19) and population
monotonicity of the interval DR solution imply yi ≤ z1 for all i ∈ N \ Q1, and
y j < yi for such i and j ∈ Ql . Therefore, if T2∩Ql �= ∅, then y(T2) =∑i∈T2

yi <

z2|T2|, and this inequality together with the proven equality y(T1) = z(T1) yield

y(T1 ∪ T2) < z(T1 ∪ T2) =
∑

i∈T1∪T2

DRi (N , w) = w(T1 ∪ T2),

that would contradict the membership of y to the core C(N , w).
Hence, T2 ∩ Ql = ∅, implying that for any i ∈ T2, j ∈ Ql ,

yi = ϕ(N \ { j},w) = DRi (N \ { j}, w) = DRi (N , w) = z2,

and we obtain the equality zT2 = yT2 . If m = 3, then the process finished and z = y.
If m > 3, then we again repeat the procedure, and in the (m − 1)-th step we obtain
y = z, that completes the proof. ��

6 Concluding Remarks and Perspectives

Our main contribution in this paper regards the constrained egalitarian solution for
convex interval games, which we refer to as the Dutta–Ray solution. We have intro-
duced this solution, studied its basic properties, and provided an axiomatic charac-
terization which is a special generalization of the characterization of the constrained
egalitarian solution for classical convex games by Dutta (1990), using the con-
strained egalitarianism for two-person games and consistency in the sense of Hart
and Mas-Colell (1987). A central role for our findings has been played by special
monotonicity properties of the constrained egalitarian solution for classical convex
games. Alternative axiomatic characterizations of the interval Dutta–Ray solution
for convex interval games may be obtained by extending to the interval setting the
characterizations of the constrained egalitarian solution for classical convex games
by Klijn, Slikker, and Zarzuelo (2000).
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