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Preface

The historic discoveries in 1991 that fragile X syndrome (FXS) is caused by
dynamic expansion of a d(CGG) trinucleotide repeat sequence in the 5′-UTR
region of the FMR1 gene (Fu et al. 1991, Oberlé et al. 1991, Pieretti et al.
1991, Verkerk et al. 1991, Yu et al. 1991) and that Spinal and Bulbar Muscular
Atrophy (SBMA) results from a d(CAG) expansion in the androgen receptor
gene (LaSpada et al. 1991), launched a broad new area of human molecular
genetics. It was soon appreciated that many repeats at different loci in the
human genome are subject to dynamic expansion and that this novel type
of mutation results in a diverse class of neurological, neuromuscular and
neurodegenerative disorders known as the Nucleotide Expansion Disorders or
Repeat Expansion Disorders. While many disorders can be caused by changes
in the size of a nucleotide or amino acid repeat tract (Pearson, Edamura
and Cleary 2005), some of these repeat tracts are meiotically stable. To date
only 20 or so disorders are attributable to dynamic mutations such as those
responsible for FXS and SBMA, and it is these disorders that are the subject of
this book.

Efforts of many research teams world-wide have led to the identification
of the genes affected by nucleotide repeat expansions. In parallel, advances
have been made in elucidating the underlying molecular mechanisms of repeat
expansions and the pathological consequences of these mutations. The insights
gained into the molecular, cellular and organismal bases of some disorders have
already generated initial ideas and experimental approaches to their therapy
(Di Prospero and Fischbeck 2005).

Unlike static mutations that are stably transmitted, nucleotide repeats are
dynamically expanded both upon transmission to offspring and in some in-
stances also within different tissues of an individual. Longer repeat stretches
are more prone to expansion than shorter tracts and, in most cases where
the disease is not congenital, repeat length is correlated with an earlier age of
onset and an increased disease severity. As a result, the expansion disorders
are characterized by genetic anticipation in which each successive generation
presents a more severe form of the disease.

Different disorders are characterized by differences in the sequence and
length of the nucleotide repeat unit as well as by its location within the gene.
The largest number of disorders is linked to expansion of trinucleotide re-
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peat sequences. Fewer diseases are associated with expansions of four, five
or 12 nucleotide repeat sequences (Table 1). The location of expanded repeats
within or outside coding regions of genes is arguably their most instructive
characteristic – indicative of a likely pathological mechanism of the disease. As
schematically shown in Fig. 1, several disorders are linked to the expansion of
different repeats in the promoter, the 5′ or 3′ untranslated regions or in introns
of various genes. A different class of diseases is coupled to expansions of repeat
tracts in exon sequences. The largest group within this class is associated with
expansion of d(CAG) triplet repeat sequences that results in the accumulation
of product proteins with abnormally long polyglutamine tracts.

Identification of affected genes, the location of the position of expanded
tracts outside or within the coding regions of the genes and characteriza-
tion of their protein products, has shed light in many cases on the resulting
pathologies. Expansions can result in either a loss-of-gene function or a gain-
of-function. Loss-of-function mutations result in reduced or abolished pro-
tein function. Gain-of-function mutations confer abnormal properties on the
protein or mRNA. Most, if not all, of the expansion mutations occurring in
coding regions of genes result in a gain-of-function, while many expansions
in non-coding regions result in a loss-of-function. Although the underlying
mechanism of a number of nucleotide expansion disorders is still unknown,
those diseases that were characterized as being associated with loss- or gain-
of-function, opened new vistas into the diverse pathological processes that are
at the basis of repeat expansion disorders. Thus, some disorders develop as
a result of gene silencing (i.e. fragile X syndrome), others are due to aberrant
protein function (polyglutamine disorders such as Huntington and a large
number of Spinocerebellar ataxias), whereas another set of disorders results

Fig. 1 Location of disorder-associated expandable nucleotide repeats. Schematically shown
are locations of disease-causing nucleotide repeats and their location within coding or non-
coding regions of affected genes. The repeat unit sequences are of the DNA strands that are
considered to be relevant to the pathology of each disorder
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VIII Preface

from RNA toxicity (Myotonic dystrophies types 1 and 2 and possibly additional
nucleotide expansion diseases).

This volume presents an updated survey of the current knowledge on
a number of human nucleotide repeat expansion disorders. It is not, however,
a comprehensive compilation of every known disease. Rather, the different
chapters review well defined disorders whose mechanism is either already un-
derstood or is close to being elucidated. We were fortunate indeed to have
leading researchers contribute chapters on the state-of-the-art of their respec-
tive areas of expertise. The different chapters cover nearly every aspect of
major human nucleotide repeat expansion disorders including the molecular
mechanisms of expansion, the mode of inheritance of the individual diseases
and discussion of their clinical presentation, pathological mechanisms, animal
models and prospective therapeutic strategies.

A volume on a group of highly divergent disorders and their different
molecular and cellular mechanisms can, of course, be organized according to
different criteria. We chose to dedicate one section to the general molecular
mechanisms of repeat expansion and then to group different diseases in sep-
arate sections based on whether the repeat occurs in non-coding or coding
regions of the affected gene. The last chapter is devoted to diseases whose
location in the affected gene is as yet unresolved. Thus, the opening section
of this volume consists of a comprehensive survey by R. R. Sinden and M. J.
Pytlos (Texas A&M University) of the current understanding of the varied
types of secondary structures of repeat DNA tracts and their roles in expan-
sion. The second section is dedicated to disorders that result from expansion
of repeat sequences in non-coding regions. Expert authors review the diver-
gent cases of Fragile X syndrome (F. Tassone and P. J. Hagerman, University
of California, Davis), FRAXE MR (D. L. Nelson, Baylor College of Medicine),
Friedreich Ataxia (M. Pandolfo, Université Libre, Brussels), Progressive My-
oclonus Epilepsy (M. D. Lalioti, S. E. Antonarakis and H. S. Scott, Yale and
Geneva Universities and Walter and Eliza Hall Institute, Australia) Myotonic
dystrophies 1 and 2 (P. Teng-umnuay and M. S. Swanson, University of Florida,
Gainsville) and Spinocerebellar ataxia 10 (X. Lin and T. Ashizawa, University
of Texas, Galvston). The third section is devoted to disorders that are linked
to repeat expansion in protein-encoding regions of genes. Included is a review
on the large body of data that is now available on the diverse group of polyg-
lutamine expansion disorders, (M. J. Friedman, S.-H. Li and X.-J. Li, Emory
University). Also in this section, M. Frontali (Institute of Neurobiology and
Medicine, Rome) discusses Spinocerebellar ataxia 6 and the unresolved issue
of its pathological mechanism. The fourth section deals with expansion disor-
ders whose precise mechanisms are still under investigation This part consists
of surveys of our current understanding of Spinocerebellar ataxia 8 (K. A.
Dick, J. W. Day, and L. P. W. Ranum, University of Minesota) and of Spinocere-
bellar ataxia 12 and Huntington disease like 2 (R. L. Margolis, S. E. Holmes,
E. O’Hearn, D. D. Rudnicki, J. Hwang, N. Cortez-Aperza, O. Plenikova and J. C.
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Troncoso, Johns Hopkins University). In a final postscript we briefly summa-
rize the main unanswered questions concerning the molecular mechanisms of
the nucleotide repeat disorders and point to future directions of research.

Many individuals made the publication of this book possible. First and
foremost, we are thankful to the authors of the different chapters for their
comprehensive and lucid reviews. We are grateful to the series editor, Professor
H. J. Gross for recognizing the importance of the subject matter of this book,
for initiating its compilation and for his steady support. Last, but not least,
we gratefully acknowledge the contribution of Ursula Gramm, Editor Springer
Life Sciences whose dedicated work was vital in bringing the volume to press.

Haifa, Michael Fry
Bethesda, Karen Usdin
June 2006
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1
Introduction:
Repeat Expansion and Deletion Associated
with Human Neurodegenerative Disease

Since 1991, many genetic neurodegenerative diseases and six fragile sites
have been associated with the expansion of trinucleotide d(CTG)n · d(CAG)n ,
d(CGG)n · d(CCG)n , or d(GAA)n · d(TTC)n repeats, a d(CCTG)n tetranu-
cleotide repeat, a d(ATTCT)n · d(AGAAT)n pentanucleotide repeat, or
a d(CCCCGCCCCGCG)n · d(CGCGGGGCGGGG)n dodecamer repeat. Models
proposed for the expansion of these repeats involve the formation of al-
ternative DNA structures which differ from the canonical B-form DNA.
Alternative structures that can form in the disease-related nucleotide repeats
include hairpins in single-stranded DNA, slipped-stranded DNA, triplex
DNA, quadruplex DNA, parallel-strand DNA, and unwound DNA (Table 1).

Expansions of DNA repeats are a unique hallmark of a group of neurode-
generative diseases that now number more than 30 (reviewed in Sinden et al.
2002; Parniewski and Staczek 2002; Pearson 2003; Cleary and Pearson 2003,
2005; Lenzmeier and Freudenreich 2003; Brown and Brown 2004; Mirkin
2004; Ranum and Day 2004). Both small and large changes in repeat lengths
are associated with human neurodegenerative diseases. Variation in repeat
number is a classic type of mutation. The molecular mechanism explaining
this type of genetic mutation was first suggested by Streisinger in 1966 in
which primer-template misalignment during replication of DNA repeats can
lead to addition or deletion mutations (Streisinger et al. 1966). This mechan-
ism is widely accepted and supported by a large body of experimental data.
In the case of neurodegenerative diseases, small repeat length changes are fre-
quently observed in somatic cells throughout the life of an individual (Wong
et al. 1995; Martorell et al. 1998). These changes could easily occur by primer-
template misalignment during DNA replication associated with cell division.
For many repeats, the slipped-out strands can form alternative structures that
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Table 1 DNA repeat expansion diseases and

Disease Gene Repeat Alternative Repeat length
structure Normal Disease

Fragile X FRAXA d(CGG)n Hairpins 6–52 230–2000
syndrome Slipped-strand

DNA quadruplex

Myotonic DMPK d(CTG)n Hairpins 5–37 80–2000
dystrophy Slipped-strand DNA
type 1 (DM1)

Friedreich frataxin d(GAA)n Hairpins 6–29 200–2000
ataxia Intramolecular
(FRDA) triplex

Biduplex
Parallel-strand DNA

Spinocerebellar SCA10/E46L d(ATTCT)n Denatured bubble 9–23 750–4500
ataxia
type 10 (SCA10)

Myotonic ZNF9 d(CCTG)n Hairpin < 26 75–11 000
dystrophy Slipped-strand DNA
type 2 (DM2)

Progressive cystatin b d(CCCCGC Hairpins 12–17 80
myoclonus CCCGCG)n Quadruplex
epilepsy

can further direct or escape repair in a sequence and strand-specific orien-
tation with respect to the leading or lagging strand of replication. However,
repeat length changes can also occur in nondividing cells where it is believed
that the removal of spontaneous DNA damage by mismatch or other DNA re-
pair systems may be responsible for small repeat length changes (Kovtun and
McMurray 2001; Pearson 2003; McMurray and Kortun 2003; Gomes-Pereira
et al. 2004).

Certain diseases are associated with very large intergenerational changes
in repeat tract length. First identified with fragile X syndrome (Fu et al. 1991;
Kremer et al. 1991) and myotonic dystrophy type 1 (DM1) (Fu et al. 1992;
Brook et al. 1992; Mahadevan et al. 1992), expansion from an unstable length
of typically 30 to 100 repeats to more than 1000 copies has now been identified
in several other neurodegenerative diseases (Table 1), including spinocerebel-
lar ataxia type 10 (SCA10) and myotonic dystrophy type 2, where expansion
to 4500 and 11 000 copies of the repeat, respectively, can occur. These repeat
length changes are believed to occur during germ cell development (reviewed
in Pearson 2003; Cleary and Pearson 2003). They could also potentially occur
during the first few cell divisions following fertilization. Prior to their dis-
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covery, massive intergenerational expansion had not been identified in the
experimental systems, including bacteriophage T4, Escherichia coli, yeast and
Drosophila, that have provided the fundamental knowledge of the types and
mechanisms of mutations in DNA (Drake 1970, 1991a,b, 1999; Drake et al.
1983). Large repeat expansions are observed in some DNA repeats in mice
(Bois et al. 2001); however, disease-associated repeats introduced into mice
do not show the large intergenerational changes that are observed in humans
(Gomes-Pereira et al. 2001; Libby et al. 2003; Gomes-Pereira and Monckton
2004b).

There remains no confirmed mechanism that explains expansion from 30
to 100 repeats to lengths of 1000, or even 4000 to 11 000 repeats. Here we re-
view the roles alternative DNA structures may play in both short and long
expansion of repeating DNA sequences. We will also discuss possible models
for repeat deletion, because once the expansion has occurred in Friedreich
ataxia and SCA10 repeat deletions may be the predominant event (Bidichan-
dani et al. 1999; Matsuura et al. 2000, 2004; Sharma et al. 2002; Pollard et al.
2004).

2
DNA Structures Formed by Disease-Associated DNA Repeats

Most of the time DNA exists as a double-stranded structure called B-DNA,
where nucleobases form hydrogen-bonded base pairs stacked into a right-
handed helix. Rearrangements into other DNA forms, such as structures with
locally unpaired strands and four-way junctions, may occur in any DNA se-
quence during cellular events, such as DNA replication, transcription, and
recombination. Several non-B-DNA (also called unusual or alternative) struc-
tures can only form in DNA sequences that possess appropriate symmetry
elements, such as direct or inverted repeats, segregation of purine (Pu) and
pyrimidine (Py) bases in complementary strands, etc. An extensive know-
ledge base of the formation of non-B-DNA structures, which include hairpins,
cruciforms, slipped-strand DNA, triplex DNA, quadruplex DNA, and un-
wound DNA, has been used for the development of various polynucleotide
expansion models. These are summarized in the following and are shown in
Fig. 1.

2.1
Inverted Repeats, Hairpins

Duplex DNA in which the sequence reads the same from the 5′ to 3′ direction
in both strands is called an inverted repeat. In a single-stranded DNA with
inverted repeat symmetry, nucleobases of the two halves of the inverted re-
peat may form canonical AT and CG base pairs, thus forming a hairpin with
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Fig. 1 Alternative DNA structures associated with unstable DNA repeats. A.1 Hairpins can
form in single-stranded tracts of repeats with the sequence motif d(CXG)n, where n = T,
A, G, or C, forming AA, TT, GG, or CC mismatches every third base pair. A.2. Atomic force
microscope (AFM) image of a d(CTG)23 hairpin in a heteroduplex molecule with duplex-
flanking DNA (Sinden et al. 2002). B.1 Models of slipped-strand DNA (S-DNA) with
a d(CTG)n hairpin and a d(CAG)n unstructured loopout (left) and folded S-DNA (right)
stabilized by base pairing between the loops (Sinden et al. 2002). B.2 AFM images of pu-
rified S-DNAs formed from a fragile X d(CCG)54 · d(CGG)54 repeat (top) and a myotonic
dystrophy type 1 d(CTG)50 · d(CAG)50 sequence (bottom) (Sinden et al. 2002). C.1 PyPuPy
intramolecular triplex DNA can form from the Friedreich ataxia d(GAA)n · d(TTC)n re-
peats, where n ≥ 9. C.2 AFM image of plasmid containing a human d(GAA)9 · d(TTC)9
repeat with flanking sequence from the frataxin gene showing the triplex structure (ar-
row) (Potaman et al. 2004). D Model of quadruplex DNA that may be formed by (GGC)n
repeats. E.1 Model of unwound or unpaired DNA. E.2 AFM images of unpaired bubbles
formed from a d(ATTCT)23 · d(AGAAT)23 tract with a flanking human sequence from the
SCA10 gene (Potaman et al. 2003). Pu purine, Py pyrimidine

three unpaired bases at the tip. Upon hairpin formation in an imperfect in-
verted repeat, structural destabilization due to a deficit of hydrogen-bonded
base pairs in the stems may be compensated by adjustments in base stacking
(Chou et al. 2003). Hairpin formation can impede the progression of tracking
enzymes such as DNA and RNA polymerases, as discussed later.
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The d(CTG)n · d(CAG)n and d(CGG)n · d(CCG)n repeat tracts do not con-
tain perfect inverted repeat symmetry; however, they possess sufficient in-
verted repeat symmetry to fold into hairpins that are not identical in the two
complementary repeat tracts. In such hairpins, every two out of the three
bases of the triplet are involved in a canonical base pair with the complemen-
tary bases of another triplet (Fig. 1, panels A.1, A.2) (reviewed in Mitas 1997;
Darlow and Leach 1998a,b; Pearson and Sinden 1998a). d(CTG) and d(CAG)
repeats can each form only one hairpin structure with a T · T or A · A base pair
mismatch (Mitas 1997; Pearson and Sinden 1998a; Darlow and Leach 1998b).
d(CTG)n hairpins are more stable than d(CAG)n hairpins because the smaller
T · T mispairs are better stacked in the DNA helix than are bulky A · A mi-
spairs (Petruska et al. 1996; Mitas 1997; Gacy and McMurray 1998). In fact,
in a duplex DNA single-stranded d(CAG)n loopouts of about 20 repeats form
an unstructured loop rather than an intrastrand base-paired hairpin (Pearson
et al. 2002). d(CGG) and d(CCG) strands can each fold into hairpin structures
in two ways involving either a G · G or a C · C mismatch. Hairpins formed by
the d(CGG)n repeat sequence are more stable than those formed by d(CCG)n
(Mitas 1997). In this case, the smaller C · C mismatch may be more destabiliz-
ing than the larger G · G mismatch because in a long d(CCG) tract the duplex
forms an e-motif (Gao et al. 1995) in which C · C mispairs are not well stacked
in the helix and cytosines become extrahelical.

If the hairpin folding patterns are not dictated by flanking sequences, loops
with even numbers of unpaired bases may be somewhat more stable than
those with an odd number of unpaired bases because they each have one
more base pair stabilizing the hairpin bend (Darlow and Leach 1995, 1998b;
Petruska et al. 1998; Hartenstine et al. 2000). The pronounced preference of
the even-numbered loops results in a more frequent polymerization slippage
by two triplets than by one triplet (Petruska et al. 1998).

Single-stranded d(GAA) repeats and long d(CTT) repeats may also fold
into hairpins with G · A pairs and A · A mismatches (Suen et al. 1999; Hei-
denfelder et al. 2003). Hairpin formation was initially studied in the relatively
short d(GAA)15 and d(TTC)15 fragments. Self-annealing to form the hairpin
was only detected by chemical and enzymatic probing in d(GAA)15 at low
temperature (Suen et al. 1999). In later studies with d(GAA)n and d(TTC)n
(n = 17, 33), electron microscopy and enzymatic probing revealed that at
longer repeat lengths the propensity of hairpin formation increased so that
they could be detected at physiological temperature and salt concentrations
(Heidenfelder et al. 2003).

The d(CCTG)n · d(CAGG)n repeats are also prone to hairpin formation
(Heidenfelder and Topal 2003; Dere et al. 2004). Thermal melting, native
gel electrophoresis, as well as chemical and enzymatic probing indicate that
hairpins formed by the d(CAGG)n strand are much more stable than those
formed by the d(CCTG)n strand. The d(CAGG)n hairpin is stabilized by two
Watson–Crick G · C and two unusual G · A pairs per tetranucleotide repeat.
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2.2
Slipped-Strand DNA Structures and Slipped Intermediate DNA Molecules

Slipped-strand DNA structures can form within directly repeated DNA se-
quences (Sinden 1994). To form slipped-strand DNA, the DNA duplex must
unwind and the complementary strands then reanneal in an out-of-register
alignment within the repeat region. Such misalignment will result in the
formation of loops in the complementary strands. Three-way junctions are
formed at the sites where the loops connect to the rest of duplex DNA (Fig. 1,
panels B.1, B.2). In the case of d(CTG)n · d(CAG)n and d(CGG)n · d(CCG)n
repeats, the looped-out regions can form hairpins, as described before, al-
though some loops can remain unstructured, as does a d(CAG)20 loopout
(Pearson et al. 2002).

Slipped-strand DNA formed by d(CTG)n · d(CAG)n or d(CGG)n · d(CCG)n
repeats has been extensively characterized (Pearson and Sinden 1996, 1998b;
Sinden et al. 2002; Pearson et al. 2002; Tam et al. 2003). Following denat-
uration and renaturation of DNA molecules containing d(CTG)n · d(CAG)n
or d(CGG)n · d(CCG)n repeats in vitro, a high proportion of the DNA pop-
ulation adopted alternative three-way junction-containing conformations as
indicated by the retarded mobility of molecules in polyacrylamide gels. The
amount of slipped-strand DNA structure formed was proportional to the re-
peat tract length and homogeneity (Pearson et al. 1998a; Pearson and Sinden
1998b). Sequence interruptions within the repeat tract reduced the over-
all amount of the alternative DNA structure and the heterogeneity of the
products formed. Although loopouts of different sizes can potentially form
anywhere within a triplet repeat tract, typically only several major prod-
ucts were observed (Pearson and Sinden 1996, 1998b; Pearson et al. 1998b,
2002). Biochemical, electron microscopy, and atomic force microscopy ex-
periments mapped the site of the unusual structures within the triplet repeat
region (Pearson and Sinden 1998b; Sinden et al. 2002; Pearson et al. 2002).
The slipped-strand structures were stable and little conversion into the cor-
rectly annealed duplex DNA was observed (Pearson and Sinden 1996). This
stability may result from the combination of base pairing within the hairpin
loop and in the duplex DNA between the loopouts, which would all have to
unpair for the structure to convert back to the linear form (Pearson and Sin-
den 1996). In some slipped-strand DNA molecules, multiple short loopouts
can occur at variable sites throughout the repeat tract (Pearson et al. 2002).
The stability may additionally result from loop–loop interactions which can
occur between d(CTG)n and d(CAG)n hairpins (Sinden et al. 2002). In slipped
intermediate DNA molecules [d(CTG)30 · d(CAG)50 or d(CAG)30 · d(CTG)50],
the excess d(CAG)20 loopout remains unpaired, while the d(CTG)20 loopout
forms a hairpin (Pearson et al. 2002). Both the junctions and the d(CTG)n
and d(CAG)n loopouts are recognized by DNA-processing proteins (see later).
Finally, recent experiments have shown that the myotonic dystrophy type 2
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(DM2) d(CCTG)n · d(CAGG)n repeats can also form slipped-strand DNA
structures (Edwards and Sinden, unpublished results).

2.3
Triplex DNA

After the formation of the canonical A · T and G · C base pairs in B-form
DNA, several hydrogen bond donor and acceptor groups in nucleobases re-
main unused. Each Pu base has two such groups on the major groove-exposed
edges. These groups can be used to form base triads that are unit blocks of
triple-stranded (triplex) DNA that consist of the B-form double helix and the
third strand bound in the major groove (Soyfer and Potaman 1995; Frank-
Kamenetskii and Mirkin 1995). Energetically favorable triplexes have duplex
Py and Pu bases segregated in complementary strands (Py · Pu duplex). Bases
of the third strand form the so-called Hoogsteen-type hydrogen bonds with
Pu bases in the B-form duplex. For a snug fit in the duplex major groove,
the third strands must contain either only Py bases (Py · Pu · Py triplex) or
mostly Pu bases with a fraction of Py bases (Py · Pu · Pu triplex) (the third
strand is shown in italics). In the Py · Pu · Py triplex, the common base tri-
ads are T · A · T and C · G · C+ (cytosine is protonated, and this is favored
by pH < 5). The Py · Pu · Pu triplex includes the T · A · A and C · G · G, and
less frequently T · A · T triads. Triplex DNA may form intermolecularly, be-
tween a duplex target and a third oligonucleotide strand. It may also form
intramolecularly within a Py · Pu sequence of mirror-repeat symmetry. For
this, half of the mirror-repeat Py · Pu sequence must unpair and one of the
unpaired strands must fold back and bind as a third strand to Pu bases in
the repeat’s double-stranded half. The resulting local structure contains three
notable features: a triple-stranded region; an unpaired fourth strand; and
a short (3–4-nt) loop of unpaired bases in the loop of the fold-back strand.
The presence of single-stranded regions provides the DNA molecule with
local increased flexibility akin to a hinge. The triplex/single-strand combi-
nations are termed H (H′)-DNA for the Py · Pu · Py and Py · Pu · Pu triplexes,
respectively. Energy to support stable formation of H (H′)-DNA comes from
the torsional stress in a topologically closed DNA. Other factors that pro-
mote H (H′)-DNA are longer lengths of Py · Pu mirror repeats, the presence
of multivalent cations, and cytosine protonation in the C · G · C+ triads in
H-DNA. Protein–DNA interactions significantly change at sites of triplex for-
mation. In particular, activities of restriction and polymerization enzymes
are inhibited, as discussed later.

Out of several disease-associated triplet repeats, only d(GAA)n · d(TTC)n
has the potential to form triplexes. H-DNA forms in short d(GAA)n · d(TTC)n
tracts under the influence of negative supercoiling and low pH (Hanvey et al.
1988). Characterization of alternative structures in long d(GAA)n · d(TTC)n
stretches proved more difficult. Unidentified alternative structures were de-
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tected in long d(GAA)n · d(TTC)n tracts at neutral pH (Ohshima et al. 1996b;
Bidichandani et al. 1998). Structures formed by very long d(GAA)n · d(TTC)n
tracts (n > 75) in negatively supercoiled DNA were interpreted as a bi-triplex
structure, formed either by the association of the two Py · Pu · Pu triplexes
(Sakamoto et al. 1999) or a single long Py · Pu · Pu triplex (Vetcher et al. 2002).
Length-dependent triplex structures were found in d(GAA)n · d(TTC)n tracts
from n = 9–23, which at longer lengths, n = 42, formed bi-triplex structures
of the Py · Pu · Py type (Fig. 1, panels C.1, C.2) (Potaman et al. 2004). These
structures were stabilized at neutral pH by additional T · A · T triads formed
by A and T bases flanking the repeats.

2.4
Quadruplex DNA

The Hoogsteen-type hydrogen bonding between guanine bases may result in
the formation of square guanine tetrads (Fig. 1, panel D). Stacking of sev-
eral such tetrads produces a four-stranded tetraplex (quadruplex) DNA which
is usually stabilized by potassium ions (reviewed in Sinden 1994). Appropri-
ate DNA sequences include repeating tracts of guanine nucleotides that may
be interrupted by one or two other nucleotides as occurs in the sequences
at the chromosomal ends (telomeres) or in some trinucleotide repeats. Short
d(CGG)n oligonucleotides, where n = 4–7, associate to form intermolecular
quadruplex structures (Fry and Loeb 1994). A block to DNA polymerase in
the d(CGG)20 template was also interpreted as a consequence of quadru-
plex formation (Usdin and Woodford 1995). Similarly, replication blocks in
d(CGG)n , d(AGG)n, and d(TGG)n repeats, as well as pure poly(G) sequences
were interpreted as resulting from quadruplex structure formation (Usdin
1998). Although longer d(CGG) repeat tracts (n = 8, 11, 16) may preferen-
tially form hairpins rather than a quadruplex structure (Nadel et al. 1995;
Fojtik et al. 2004), the association of two hairpins may lead to a quadruplex
(Weisman-Shomer et al. 2000). Such an association may potentially occur
owing to interactions of two d(CGG)n loopouts formed in one DNA strand.
The d(CGG)n quadruplex may be weakened by d(AGG) triplets in spite of
the latter being also capable of quadruplex formation (Usdin 1998; Weisman-
Shomer et al. 2000).

2.5
Unwound DNA

A+T rich DNA sequences form a less thermodynamically stable DNA du-
plex compared with that formed by random sequences. This is the reason
for a relatively easy strand separation (DNA unwinding) in A+T rich se-
quences by increasing temperature, torsional stress in supercoiled DNA, and
potentially by proteins. The propensity for easy unpairing of A+T rich se-
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quences has been identified in 30–100-bp-long DNA unwinding elements
(DUE) in bacterial and some eukaryotic replication origins as well as in
base-unpairing regions (BUR) in chromosomal matrix attachment regions
(Sheflin and Kowalski 1985; Umek and Kowalski 1988; Kowalski et al. 1988;
Bode et al. 1992). In cells, two major factors determine the structures of
DUEs/BURs. Under torsional stress, unwinding of the double helix occurs
first in A+T-rich sequences, whose unpaired state can be supported by nega-
tive supercoiling. However, in the presence of Mg2+, DUEs/BURs tend to
remain double-stranded and other regions (such as inverted repeats) unwind
to partially relieve superhelical tension (Sheflin and Kowalski 1985). Thus,
the ability of DUEs to form denaturation bubbles may depend on the level of
unrestrained supercoiling and the local ionic environment in cells.

Several experimental approaches have provided evidence of stable super-
coil-induced DNA unpairing in SCA10 d(ATTCT) · d(AGAAT) repeats (Fig. 1,
panels E.1, E.2) (Potaman et al. 2003). At moderate physiological levels of
negative superhelical densities, unpaired regions have well-separated strands
which are visible in the atomic force microscope as denatured bubbles at
lengths of 11 to 29 repeats. Below lengths of 11 repeats, other A+T-rich
blocks in the plasmid melted before melting of the SCA10 repeats. Chem-
ical probe analysis also showed reactivity expanding from the center of the
d(ATTCT) · d(AGAAT) tract into the flanking human A+T-rich DNA sequence
as the superhelical energy increased, consistent with unpairing of an in-
creasingly large DNA region. Finally, two-dimensional gel analyses showed
a structural transition characteristic of DNA melting at a DUE.

At high superhelical densities, long unpaired repeat tracts (29 repeats)
“collapse” and probably form structures with loosely intertwined strands.
Unpaired single strands in the bubbles and even in the collapsed structures
are accessible for normal interactions with small CAA and larger oligonu-
cleotide molecules. These bubbles may also be accessible to proteins involved
in DNA replication, including helicase, primase, and DNA polymerase.

2.6
Parallel-Strand DNA

DNA typically exists as a right-handed helix in which the orientation of
the two complementary strands is antiparallel. That is, the 5′-to-3′ po-
larity runs in opposite directions (Sinden 1994). In an alternative par-
allel orientation, the polarity of the complementary DNA strands runs
in the same direction. The biological implications for this alternative
DNA structure are, at present, not known. Using a variety of methods
including NMR, LeProust et al. (2000) have shown that the Friedreich
ataxia short oligonucleotides of d(GAA) · d(TTC) repeats adopt a parallel
d(GAA) · d(TTC) duplex in equilibrium with the antiparallel d(GAA) · d(TTC)
duplex.
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3
Effects of Alternative DNA Conformations on Biology

The formation of alternative structures may have profound effects on cell
biology by changing the ways the DNA interacts with other cellular compo-
nents, most importantly with proteins, during DNA replication, transcription,
recombination, and repair. Interference with the normal activity of DNA
polymerases is the most notable effect of alternative structures, and it is one
of the key elements in the trinucleotide expansion phenomenon.

3.1
Replication Blockage by Hairpins, Triplex, Quadruplex, and Triplet Repeats

Stable DNA structures that DNA polymerases encounter while tracking on
a single-stranded template may present blocks of different potency for DNA
polymerization. Phage, viral, and eukaryotic polymerases pause and can even
be completely inhibited by the hairpin-forming template sequences and by
premade hairpins (Kaguni and Clayton 1982; Weaver and DePamphilis 1982;
Hacker and Alberts 1994; Suo and Johnson 1998). Similar to polymerase dis-
sociation from a lagging template when it reaches the 5′ end of the next
Okazaki fragment, polymerase quickly dissociates from the hairpin block-
age site (Klarmann et al. 1993; Hacker and Alberts 1994). The 3′ end of the
nascent strand may potentially dissociate from the template when polymerase
encounters a hairpin or during replication of a perfect or imperfect inverted
repeat that can potentially form a hairpin. This may induce mutations in
a DNA sequence, as documented in many systems (Gordenin et al. 1993;
Rosche et al. 1997, 1998; Viswanathan et al. 2000; Yoshiyama and Maki 2003).

Inhibition of DNA polymerization has been shown for preformed d(CGG)n
hairpins (Kamath-Loeb et al. 2001). The in vivo effects of d(CGG)n · d(CCG)n
and d(CTG)n · d(CAG)n repeats, cloned into plasmids, have been studied by
two-dimensional electrophoretic analysis of replication intermediates in bac-
teria and yeast (Samadashwily et al. 1997; Pelletier et al. 2003; Krasilnikova
and Mirkin 2004). Replication fork stalling, albeit often at a low level, occurs
within the repeats and is dependent on repeat length, repeat orientation rela-
tive to the replication origin, and the status of protein synthesis in cells. One
interpretation of these results is that the formation of unusual DNA struc-
tures (likely hairpins) by trinucleotide repeats in the lagging-strand template
causes the observed replication blockage.

As mentioned already, additional folding of the long d(CGG)n hair-
pins or side-by-side interaction of shorter d(CGG)n hairpins may result in
quadruplex formation and concomitant replication blockage. Replication of
d(CGG)n , d(AGG)n , and d(TGG)n templates by bacterial and phage DNA
polymerases is most likely blocked owing to the quadruplex formation (Us-
din and Woodford 1995; Usdin 1998). Preformed quadruplex structures in
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the d(CGG)n template were efficient blocks for eukaryotic replicative DNA
polymerases α, δ, and ε (Kamath-Loeb et al. 2001).

Triplex structures are also strong blocks for DNA synthesis. This was first
observed in vivo from slow DNA replication at the Py · Pu sites (Rao et al.
1988; Baran et al. 1991). Replication fork blockage was consistent with the
folding of unreplicated template DNA onto the nascent duplex in the repli-
cated half of the Py · Pu repeat to form a triplex. DNA polymerase was unable
to unwind an unreplicated template strand from its position as a third strand
and polymerization stalled. Such a structural block that forms during DNA
polymerization is very thermodynamically stable, as the template folding has
been detected at temperatures up to 80 ◦C (Baran et al. 1991; Krasilnikov et al.
1997; Potaman and Bissler 1999). Strong blocks to DNA replication were also
observed when triplex structures were formed prior to polymerization (Dayn
et al. 1992). In this case, DNA polymerase tracks on the template that becomes
part of the triplex. Depending on the particular H (H′)-DNA isomer, it be-
comes either a part of the Py · Pu duplex or a third strand. In both cases, DNA
polymerase cannot unfold the structure and stalls.

A wealth of data shows that d(GAA)n · d(TTC)n repeats may form triple-
stranded structures (Hanvey et al. 1988; Ohshima et al. 1996b; Bidichandani
et al. 1998; Sakamoto et al. 1999; Spiro et al. 1999; Vetcher et al. 2002; Pota-
man et al. 2004). Suppression of DNA replication in vitro and pause sites at
the d(TTC)n template (Spiro et al. 1999) were in agreement with the template
fold-back as in other triplex-forming sequences (Baran et al. 1991; Krasil-
nikov et al. 1997; Potaman and Bissler 1999). Downregulation of frataxin gene
expression was interpreted as a result of RNA becoming trapped in a triple-
stranded structure formed between the d(GAA)n · d(TTC)n duplex and the
d(GAA)n transcript (Ohshima et al. 1998; Bidichandani et al. 1998), or be-
tween the d(GAA)n · d(TTC)n duplex and the nontranscribed d(GAA)n single
strand of the transcription bubble (Grabczyk and Usdin 2000).

3.2
Aberrant Polymerization Associated with DNA Repeats:
Slippage During Primer Template Misalignment and Strand Switching

Many reports have indicated that aberrant replication events can occur at
DNA repeats. These certainly result in part from the direct repeat and the
imperfect inverted repeat (quasipalindromic) sequence organization. The
sequence allows DNA directed mutations, including slippage and strand
switching.

DNA slippage during replication in vitro has been reported by several
groups. Primer template slippage during replication of disease-associated re-
peats has been observed in vitro with several enzymes, including E. coli
polymerase I Klenow fragment and human polymerase β (Petruska et al.
1998; Hartenstine et al. 2000; Heidenfelder et al. 2003; Heidenfelder and Topal
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2003; Ruggiero and Topal 2004). The propensity and length of slippage and
the number of bases that adopt a preferred loop vary with the repeat sequence
[d(CAG) versus d(CTG)] (Petruska et al. 1998; Hartenstine et al. 2000; Rug-
giero and Topal 2004).

Differences in repeat instability as a function of the orientation of the re-
peat with respect to the direction of replication were first shown in E. coli
(Kang et al. 1995a) and subsequently in yeast (Maurer et al. 1996; Freuden-
reich et al. 1997, 1998; Miret et al. 1997, 1998). Replication slippage has
also been observed in an SV40 viral replication system in HeLa cell ex-
tracts containing the replication initiator protein large T-antigen, where re-
peat instability recapitulated the instability seen in humans in terms of re-
peat length (Panigrahi et al. 2002). Repeat expansion was observed when
d(CAG)79 comprised the lagging template strand and deletions predominated
when d(CTG)79 comprised the lagging template strand (Panigrahi et al. 2002).
Using the SV40 replication origin system, Cleary et al. (2002) were the first
to demonstrate an origin distance dependence on instability in mammalian
cells.

Intramolecular strand switching (snap-back synthesis) at d(CTG) · d(CAG)
repeats, resulting in hairpin molecules, has been observed in vitro during
replication by E. coli polymerase I Klenow fragment on plasmid DNA fol-
lowing alkali denaturation and renaturation (Kang et al. 1995b; Ohshima and
Wells 1997). DNA polymerase may pause and dissociate during replication
of the repeat, or it may encounter an alternative DNA secondary structure
formed during denaturation and renaturation. Hairpin products resulting
from snap-back synthesis during replication of inverted repeats cloned at
a distance from the ColE1 origin where the transition between replication by
Pol I and Pol III occurs has been observed in E. coli cells (Backman et al.
1978).

In Sect. 4.2, complex expansion mutations are described which involve
intermolecular and intramolecular strand switching during replication of
SCA10 d(ATTCT)n · d(AGAAT)n repeats in E. coli.

3.3
Helicase Activity at Hairpins, Triplex DNA, Quadruplex DNA, and Triplet Repeats

The formation of alternative DNA structures can be deleterious to cellular
events that require DNA unwinding, such as DNA replication and transcrip-
tion; therefore, eukaryotic cells might have developed some protective means,
e.g., certain proteins that specifically recognize and unwind specific DNA al-
ternative structures. Certain helicases, whose normal function is to unwind
double-stranded DNA, can also unfold alternative DNA structures. The bac-
teriophage T4 DNA polymerase holoenzyme, which includes DNA helicase
(T4 gene 41 protein) rather than polymerase alone, alleviates pausing on
a hairpin-containing template (Bedinger et al. 1989). DNA helicases T4 dda
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protein and SV40 large T-antigen can unwind DNA triplexes (Maine and Ko-
dadek 1994; Kopel et al. 1996), and SV40 large T-antigen, the human Werner
and Bloom syndrome proteins and Saccharomyces cerevisiae Sgs1p DNA heli-
cases can unwind quadruplexes (Baran et al. 1997; Fry and Loeb 1999; Huber
et al. 2002).

Knowledge of helicase effects on alternative structures formed in trinu-
cleotide repeated sequences is mostly limited to quadruplex unwinding. He-
licases that may unwind the (CGG)n quadruplex include S. cerevisiae Sgs1p,
human Werner syndrome helicase/exonuclease (WRN), the CArG-box bind-
ing protein A (CBF-A), and others (Khateb et al. 2004). It should be noted,
however, that only the natural helicase/polymerase partnerships may prove
efficient. In the early experiments on DNA replication by the bacteriophage
T4 DNA polymerase holoenzyme, it was recognized that the presence of
DNA helicase (T4 gene 41 protein) eliminated detectable polymerase pausing.
However, another protein with helicase activity (T4 dda protein) was ineffec-
tive (Bedinger et al. 1989). While quadruplex structure can be unwound by
a number of helicases, in combination with DNA polymerases, Werner heli-
case could only alleviate a polymerization block for DNA polymerase δ, but
not α and ε (Kamath-Loeb et al. 2001). This likely suggests a requirement for
a proper helicase–polymerase interaction, so that a concerted action of DNA
unwinding by the helicase and DNA synthesis by polymerase result in an effi-
cient progression of the replication complex.

3.4
Recombination Associated with DNA Repeats

Increased levels of genetic recombination at unstable d(CTG) · d(CAG) and
d(GAA) · d(TTC) DNA repeats has been extensively studied in E. coli by Wells
and colleagues (Jakupciak and Wells 1999, 2000a; Pluciennik et al. 2002;
Napierala et al. 2002, 2004). Both intermolecular and intramolecular recombi-
nation between d(CTG) · d(CAG) repeats that occurs in E. coli was elevated 1–
2 orders of magnitude relative to the case for nonrepeated control sequences
(Pluciennik et al. 2002; Napierala et al. 2002). Longer repeats recombined
more frequently than short ones (Napierala et al. 2002). The recombina-
tion frequency was higher when the d(CTG)n repeats comprised the lagging
strand template as shown by both intermolecular and intramolecular assays
(Pluciennik et al. 2002; Napierala et al. 2002). Although recombination was
also stimulated by the d(GAA)n · d(TTC)n repeats, the frequency diminished
at longer lengths, possibly owing to the sticky DNA formation (Napierala
et al. 2004). Assuming that recombination may be initiated at single-strand
and double-strand DNA breaks when the replication fork stalls at secondary
structures formed in the repeat tracts, Hebert et al. (2004) developed an as-
say to study the influence of double-strand breaks on repeat stability. The
recombinational repair of double-strand breaks within the repeats stimu-
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lated deletions in both d(CTG)n · d(CAG)n and d(CGG)n · d(CCG)n repeats.
Double-strand break repair has also been studied in mammalian cells where
slipped DNA structures generally underwent deletion upon repair (Marcadier
and Pearson 2003). As discussed later, recombination can result in increases
and decreases in repeat lengths. Recombination at DNA repeats has also been
reported in yeast during meiosis, where it can be associated with the intro-
duction of double-strand breaks (Jankowski et al. 2000; Jankowski and Nag
2002; Nag et al. 2004).

3.5
Interaction of DNA Replication, Repair, and Recombination Proteins
with DNA Repeats

Many proteins, including UvrA, hMSH2, RecG, PriA, cruciform bind-
ing proteins, anti-Z-DNA antibodies, and anti-DNA antibodies exhibit al-
tered, unexpected, and often differential binding to structures formed by
d(CTG)n · d(CAG)n repeats. These interactions can provide insight into the
biology that might be responsible for pathways to repeat instability in human
cells.

DNA excision repair proteins. The bacterial damage-recognition protein
UvrA binds to heteroduplex substrates containing (CAG)n repeat loops,
where n = 1, 2, or 17, with a Kd of about 10–20 nM, about 2 orders of magni-
tude higher than that for binding to duplex d(CTG)n · d(CAG)n (Oussatcheva
et al. 2001). Moreover, when plasmid containing a d(CTG)23 or a d(CAG)23
heteroduplex loop was introduced into E. coli cells, the loops were effec-
tively excised in cells containing functional UvrA. Loops were less effectively
excised in cells deficient in UvrA (Oussatcheva et al. 2001). These results
imply a more comprehensive role for UvrA, in addition to the recognition
of DNA damage, in maintaining the integrity of the genome. These results
demonstrate that excision repair proteins can bind and mediate deletion of
looped-out triplet repeats in cells.

DNA mismatch repair proteins. Because hairpins formed by d(CXG) repeats
contain an X · X mismatch every 2 bp (Fig. 1, panels A.1, A.2), DNA mismatch
repair proteins might be expected to recognize features of these mismatched
hairpins. The human mismatch repair system involves a wide variety of pro-
teins that may be specialized for different mismatches; proteins that can
recognize mismatches and mismatched loops as long as 5–15 nt (Kunkel and
Erie 2005). Purified hMSH2 protein binds differentially to heteroduplexes
containing d(CTG)n and d(CAG)n loops in slipped-strand DNA (Pearson et al.
1997, 2002). The d(CAG)n loopout was preferentially bound by the human
mismatch repair protein MSH2 and bacterial single-strand binding protein
compared with the d(CTG)n loopout (Pearson et al. 1997, 2002). In add-
ition, both loopouts were hypersensitive to cleavage by the junction-specific
T7 endonuclease I (Pearson et al. 2002). Recently, Owen et al. (2005) have
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shown that the mismatch repair Msh2–Msh3 heterodimer binds to a d(CAG)n
loopout containing an A · A mismatch that is critical for binding, leading to
the suggestion that mismatch repair mediated stabilization of the hairpin
could promote expansion. The binding alters the catalytic properties of the
enzyme complex, resulting in inhibition of the repair activity, which might
then stabilize the alternative DNA structure and prevent repair (Owen et al.
2005; Mirkin 2005). This differential binding may result in differential re-
pair efficiencies of DNA intermediates in a process of mutagenesis. In mice,
short expansions are dependent on functional Msh2, Msh3, or Pms2, as dis-
cussed later (Manley et al. 1999; Kovtun and McMurray 2001; van Den Broek
et al. 2002; Watase et al. 2003; Savouret et al. 2003, 2004; Wheeler et al. 2003;
Gomes-Pereira et al. 2004).

Replication restart–recombination proteins: RecG and PriA. The bacterial
proteins PriA, which is required for restarting replication on the lagging
strand following collapse, and RecG, which can drive fork reversal and branch
migration forming a four-stranded chicken-foot structure, bind to various
model DNA structures containing d(CTG)n · d(CAG)n repeats (Kim et al.
2006). PriA binds to D-loops, duplex DNA molecules with an unpaired sin-
gle strand at one end, and forked DNA molecules containing nascent leading
or lagging strands (McGlynn et al. 1997). RecG binds structures recognized
by PriA but also binds to Holliday junctions and forked DNAs containing
a nascent lagging strand. PriA and RecG, however, both bind poorly to single-
stranded and duplex DNA molecules (McGlynn et al. 1997; Kim et al. 2006).
In band-shift assays, PriA and RecG bound strongly to pure d(CTG)n or
d(CAG)n hairpins, as well as to single-stranded and duplex DNA molecules
containing d(CTG)n and/or d(CAG)n loopouts.

RecG and PriA also showed unexpected binding properties to forked
DNA structures that represent potential intermediates formed during repli-
cation pausing and restart (Kim et al. 2006). Both PriA and RecG bound to
a forked DNA structure, but with a surprising leading/lagging strand asym-
metry when a d(CTG)7 or a d(CAG)7 loopout was present upstream of the
fork. PriA and RecG bound when a d(CTG)7 or a d(CAG)7 loopout occurred
in the lagging template strand, but neither protein bound when the loopout
occurred in the leading strand. Binding of both proteins to a forked DNA
structure containing an upstream slipped-strand structure was very strong.
Thus, secondary DNA structures including hairpins and slipped-strand struc-
tures formed within the repeats influence the binding of PriA and RecG to
single-stranded, duplex, and forked DNA molecules. This result was unex-
pected and extends the range of structures known to be bound by these
proteins, and is consistent with a role for replication restart pathways in re-
peat instability.

Flap endonuclease (FEN-1). In 1997 Gordenin et al. (1997) proposed
a model for repeat expansion that suggested the involvement of human flap
endonuclease FEN-1 (reviewed in Liu et al. 2004a), which generally digests the
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RNA primer from the 5′ end of an Okazaki fragment prior to ligation to a 3′
terminus of an adjacent Okazaki fragment. The model proposed that DNA re-
peats at the 5′ end of an Okazaki fragment formed a hairpin that could resist
digestion by FEN-1 and subsequently become ligated into an expansion prod-
uct. This prompted extensive work in vitro and in vivo, in yeast and mice, to
understand the potential role of this enzyme in repeat instability.

The initial Gordenin FEN-1 model has been remarkably well validated.
Numerous studies have shown that 5′ hairpins composed of different triplet
repeats resist digestion by FEN-1 in a length- and sequence-dependent fash-
ion that presumably reflects d(CXG)n hairpin stability (Spiro et al. 1999; Lee
and Park 2002; Henricksen et al. 2002). An in vitro replication system with
human polymerase β can generate very large d(GAA)n expansions when initi-
ation occurs within a repeat tract if FEN-1 is omitted from the reaction, while
addition of FEN-1 prevents this expansion (Ruggiero and Topal 2004). Liga-
tion of a 3′ end to the 5′ end of a hairpin flap can occur if the hairpin loop is
6 nt away from the point of ligation (Veeraraghavan et al. 2003).

In yeast, mutations in the FEN-1 homologue, Rad27, cause increased rates
of expansion and higher rates of chromosome breakage (Spiro et al. 1999;
Callahan et al. 2003; Liu et al. 2004b). A Huntington disease model mouse het-
erozygous for FEN-1 showed a small preference for expansions over deletions
(Spiro and McMurray 2003), although mutations in FEN-1 are not linked to
the expansions associated with Huntington disease (Otto et al. 2001).

4
Pathways for Repeat Expansion

4.1
Primer-Template Misalignment During Replication
Can Account for Repeat Length Changes Less Than Twofold in Length
in Disease-Associated DNA Repeats

As first proposed by Streisinger, primer-template misalignment can occur
within a run of direct repeats (Streisinger et al. 1966). Mutations associated
with primer-template misalignment have been established in many model
systems (Kunkel and Soni 1988; Ripley 1990; Kunkel 1990; Papanicolaou and
Ripley 1991; Rosche et al. 1998; Sinden et al. 1999; Bebenek and Kunkel
2000; van Noort et al. 2003). Misalignment can occur within runs of repeats
(Streisinger et al. 1966; Wierdl et al. 1997; Kroutil and Kunkel 1999; Hashem
et al. 2002) or between distant direct repeats (Drake et al. 1983; Ripley et al.
1986) (Fig. 2). In the case of triplet repeats, a simple slippage may result in
a 3-nt loopout (Fig. 2, panel A). In cells, a 3-nt slippage, and/or repair of the
loopout, can be very different for opposite orientations of the repeat with re-
spect to the origin of replication (Hashem et al. 2002). Large slippage events
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Fig. 2 Replication slippage can result in deletions and duplications (expansions). A A 3-bp
misalignment can occur by unwinding of the primer end of the nascent strand from the
template (step 2), followed by reannealing 3 nt to the 5′ side on the template, resulting
in a 3-nt loopout in the nascent strand (step 3). Continued synthesis would result in
a 3-bp expansion in the nascent strand, if not repaired by mismatch or excision repair-
type activities. B Primer-template misalignment between short direct repeats can also
occur over large distances. In the case of disease-associated repeats, misalignment can
occur anywhere within the repeat tract. When DNA repeats can form stable hairpins, they
can promote slippage in the nascent strand leading to expansion (steps 2, 3), or in the
template strand leading to deletion (steps 4, 5)

may occur within a long repeat tract, resulting in a backwards slippage and
the formation of a hairpin in the leading nascent strand (Fig. 2, panel B,
pathway to expansion), and continued replication would lead to expansion
by the length of the slippage. A forward slippage, perhaps directed by hair-
pin formation in the lagging template strand, could lead to deletion in the
lagging nascent strand (Fig. 2, panel B, pathway to deletion). This type of mu-
tation can be influenced dramatically by DNA symmetry elements, especially
inverted repeats. Inverted repeats can fold into hairpins that can promote
deletion between flanking direct repeats in the lagging template strand (Trinh
and Sinden 1991, 1993; Rosche et al. 1995), or direct duplications when hair-
pins form in the leading nascent strand (Hashem and Sinden 2005).

For primer-template misalignment to occur, DNA polymerization must
stop and the polymerase must presumably dissociate from the DNA. It is not
known what feature of DNA, either sequence or structure, might be involved
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in mediating this pausing or stopping. Polymerase may pause at random, or
exhibit preferred pause sites, as occurs in vitro, where pause sites are asso-
ciated with misalignment mutations (Papanicolaou and Ripley 1989, 1991).
In the case of disease-associated DNA repeats, pausing might be enhanced
or promoted by the formation of an alternative DNA structure, of the types
discussed before. Moreover, as leading and lagging strand replications are
believed to be coordinated, structure formation in the lagging strand may
stop leading strand synthesis, and vice versa. Once the nascent 3′ terminus
dissociates from the template, it is free to anneal at any location containing
complementary base pairs. Essentially nothing is known about the events and
mechanics associated with polymerase dissociation. Similar frequencies of
duplication and deletion between direct repeats spaced 17 bp apart lead to
the suggestion that at least 20 bp become unpaired in the initial dissociation
event (Trinh and Sinden 1993).

Because the size of potential expansion or deletion is limited to the length
of the repeat tract minus the length of the segment used as a template, ex-
pansion by this model is necessarily less than the length of the repeat; thus,
only expansion by less than a factor of 2 is possible. In previous reviews, we
have discussed the possibility of reiterative DNA synthesis (Kornberg et al.
1964), perhaps caused by an alternative DNA structure block to DNA replica-
tion in the leading or lagging strand (Sinden and Wells 1992; Wells and Sinden
1993; Sinden 1999). Repeated slippage during replication has been observed
in vitro with several enzymes, including human polymerase β (Petruska et al.
1998; Hartenstine et al. 2000; Kobayashi et al. 2002; Heidenfelder et al. 2003;
Heidenfelder and Topal 2003; Ruggiero and Topal 2004).

Instabilities occurring throughout life in certain tissues in humans and
in mice are consistent with the possibility that simple slipped misalignment
occurs during replication. In humans, the expanded d(CTG) repeat is unsta-
ble and shows a bias toward continued expansion in germline and somatic
tissues during life (Wong et al. 1995; Martorell et al. 1998). Mice also show re-
peat instabilities throughout life (Mangiarini et al. 1997; Monckton et al. 1997;
Sato et al. 1999; Seznec et al. 2000; Fortune et al. 2000). Repeat heterogene-
ity in E. coli, especially in mismatch repair deficient strains, is consistent with
slipped misalignment during replication of repeats in bacteria (Schumacher
et al. 1998; Schmidt et al. 2000; Parniewski et al. 2000). Thus, slipped misalign-
ment may be the simplest mechanism for repeat instability and it could be
operable for all repeats.

4.2
Strand Switching During Synthesis of d(ATTCT) · d(AGAAT) DNA Repeats
Can Result in Complex Expansion Mutations

Primer-template misalignment can occur forward or backward along the
same template strand, resulting in duplications and deletions, respectively;
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however, misalignment within a palindromic or quasi-palindromic sequence
can also occur on a different template strand. This can occur in an in-
termolecular fashion within a single replication fork from the leading to the
lagging strand (or from the lagging to the leading strand) or between two
different chromosomes (Fig. 3). Strand switching can also occur in an in-
tramolecular fashion when the nascent strand snaps back on itself, forming

Fig. 3 Intermolecular strand switching can occur within quasi-palindromic repeats
forming perfect inverted repeats. A quasi-palindromic sequence, including d(CXG)n,
d(CCTG)n · d(CAGG)n, and d(ATTCT)n · d(AGAAT)n repeats can form various degrees
of mispaired hairpin structures in one or both strands. The self-complementary base-
pairing potential can lead to an intramolecular or an intermolecular strand switch. For
the intramolecular strand switch, during leading-strand synthesis the nascent strand can
unpair (step B) and form a mispaired hairpin region (denoted by the shaded region of the
helix) (step C). Continued synthesis down the hairpin can lead to the formation of a per-
fect inverted repeat (denoted by the thicker line) (step D). For the intermolecular strand
switch, following unwinding (step E), the 3′ end of the nascent strand pairs with the re-
peat in the lagging template strand (step F). Continued synthesis also leads to a perfect
inverted repeat in the leading nascent strand
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Fig. 4 Complex expansion mutation associated with an intermolecular strand switch dur-
ing replication of d(ATTCT)n · d(AGAAT)n repeats. The A+T-rich spinocerebellar ataxia
type 10 (SCA10) repeat undergoes both intermolecular and intramolecular strand switch
events in Escherichia coli, creating an inverted repeat region associated with complex ex-
pansion mutations. In addition, the plasmid containing the expansion is a dimer. A model
is presented for the expansion, inversion, and plasmid dimerization. An intermolecular
strand switch from the leading to the lagging template occurs (step B). The dark line
represents the d(ATTCT)n strand, while the light line represents the d(AGAAT)n strand.
Arrow heads at the ends of lines represent the 3′ end of a nascent DNA strand. Arrow
tails at the ends of lines represent the 5′ end of a DNA strand. Replication following the
strand switch results in the formation of an inverted repeat region (contiguous dark and
light line) (step C). Dissociation of the nascent 3′ end from the lagging template strand
and reassociation with the leading template strand results in an unpaired 3′ end inher-
ent with the expansion (step D). Primer-template pairing within flanking direct repeats,
used for cloning the repeats, occurs concomitant with the formation of a hairpin or a
loop (step E). A strand exchange occurs (step E) with the nascent lagging strand (synthe-
sized in step D). Following introduction of a nick (at the large arrow) a Holliday junction
is formed (steps E–G). Branch migration occurs (step G) and a nick is introduced into
the lagging template strand (step H). The lagging template then becomes joined to the
leading nascent strand (step I). Synthesis from the 3′ end of the lagging template strand
restores the crossover replication fork and continued replication leads to plasmid dimer-
ization (step I). This complex molecular event provides a good example of the degree
to which the properties of a simple DNA repeat sequence can direct complex genetic
alterations
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a hairpin on continued DNA synthesis. Replication that follows the strand
switch within a quasi-palindrome results in the formation of a perfect in-
verted repeat (Ripley 1982; Sinden et al. 1999; van Noort et al. 2003).

Results for one quasi-palindrome correction mutation in E. coli indicated
that an intermolecular strand switch specific for the leading strand occurred
(Rosche et al. 1997), while an intramolecular strand switch was implicated
to explain another mutation (Viswanathan et al. 2000). Therefore, quasi-
palindrome corrections occurring in either the leading or the lagging strands
have been identified in different mutational systems (Rosche et al. 1997, 1998;
Viswanathan et al. 2000; Yoshiyama et al. 2001; Yoshiyama and Maki 2003).
During replication of plasmid in E. coli containing the SCA10 repeat tract,
which contains weak quasi-palindromic repeat symmetry, similar complex ex-
pansion mutations with the general sequence, d(TATTC)5–11 · d(GAATA)9–35,
were observed regardless of the initial orientation of the repeat tract (ei-
ther d(AGAAT)23 · d(ATTCT)23 or d(ATTCT)24 · d(AGAAT)24). This muta-
tion was also coupled with plasmid dimerization (Hashem VI, Edwards SF,
Klysik EA, Pytlos MJ, Sinden RR, unpublished). Insight into an explana-
tion for this result stems from the fact that only a strand switch of the
nascent Py-rich strand can produce the inverted repeat found in the com-
plex expansion mutations. For the two different orientations of the repeat
tract, the nascent Py-rich strand comprises the leading nascent strand for the
d(AGAAT)23 · d(ATTCT)23 orientation, while it comprises the lagging nascent
strand for the d(ATTCT)24 · d(AGAAT)24 orientation. Thus, to form the in-
verted repeat in the two different repeat orientations, the strand switch must
occur in the leading strand for one orientation and in the lagging strand for the
other orientation (Hashem VI, Edwards SF, Klysik EA, Pytlos MJ, Sinden RR,
unpublished). In the d(ATTCT)24 · d(AGAAT)24 orientation, a simple slippage
to lengthen the repeat tract must occur prior to the strand switch to gener-
ate the observed product (Fig. 4). This is the first example of a DNA sequence
that can support both an intermolecular and an intramolecular strand switch
during leading or lagging strand synthesis. The instability associated with
d(ATTCT) · d(AGAAT) repeats, and even disease-associated triplet or tetranu-
cleotide repeats, in human cells may be linked to aberrant replication. In the
following a model is presented in which aberrant replication initiation leading
to amplification may result in repeat expansion (as well as repeat deletion).

4.3
DNA Mismatch Repair May, or May Not, Participate
in Small Repeat Length Changes During Replication
in Dividing Cells or During Gap Repair in Nondividing Cells

As discussed already, the ability to form hairpins of various degrees of stabil-
ity, coupled with the potential for replication slippage within direct repeats,
certainly contributes, in a major way, to the potential for variation in the
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length of triplet and possibly other types of repeats. d(CTG)n , d(CAG)n ,
d(CGG)n , and d(CCG)n repeats form hairpins with a GC · GC dinucleotide
interspersed with a T · T, A · A, G · G, or C · C mismatch, respectively (Fig. 1,
panels A.1, A.2). The involvement of mismatch repair in repeat instability in
E. coli has recently been reviewed (Parniewski and Staczek 2002). The sta-
bility of these hairpins decreases in the order listed. As discussed already,
human mismatch repair proteins bind to d(CAG)n hairpins better than to
d(CTG)n hairpins (Pearson et al. 1997; Owen et al. 2005). DNA mismatch
repair systems are designed to recognize noncanonical base pairs or mis-
matches following errors in DNA replication and repair them in the nascent
strand when not corrected by polymerase proofreading activities. Tradition-
ally, mismatch repair activities are thought to operate in dividing cells that
are actively undergoing DNA replication. Interestingly, mice deficient in mis-
match repair proteins show reduced rates of repeat instability (Manley et al.

Fig. 5 Gap repair associated with expansion, deletion, or DNA repair. A Gap repair with
expansion. Strand displacement synthesis at a nick leads to a flap that is normally di-
gested by the flap nuclease FEN-1 (step 2). However, the formation of a hairpin or other
DNA secondary structure can interfere with digestion (step 3). The hairpin may be sta-
bilized by Msh2–Msh3 and subsequent ligation would lead to expansion in the nascent
strand (step 4). If the hairpin escapes subsequent mismatch repair, nucleotide excision-
type repair, or other repair events, it will lead to expansion in one DNA molecule upon
the next round of replication (step 5). B Gap repair with deletion. If a hairpin-forming
sequence is present within a gap that may be formed during repair of spontaneous or ex-
traneous DNA damage, it may fold into a hairpin (step 2). Slipped misalignment across
a hairpin during DNA replication would lead to the loss of repeats in the nascent strand
(step 3), which would lead to deletion in one DNA molecule following the next round of
replication (step 4)
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1999; Kovtun and McMurray 2001; van Den Broek et al. 2002; Watase et al.
2003; Savouret et al. 2003, 2004; Wheeler et al. 2003; Gomes-Pereira et al.
2004). These proteins have also been suggested to participate in repair of
spontaneous or endogenous DNA damage in quiescent cells, even in sperm
(Kovtun and McMurray 2001; McMurray and Kortun 2003; Kovtun et al.
2004).

In nondividing cells, mismatch repair proteins have been implicated in
small repeat length changes, where it has been proposed they participate in
the stabilization of slipped, hairpin-containing structures formed during gap
repair (Fig. 5) that may be associated with spontaneous DNA damage (Kov-
tun and McMurray 2001; McMurray and Kortun 2003; Kovtun et al. 2004).
A recent demonstration of inhibition of enzymatic activity of the Msh2–Msh3
heterodimer when bound to d(CAG)n hairpins is consistent with recognition,
binding, and stabilization of loopouts that then could be ligated into an ex-
pansion event (Owen et al. 2005). Panigrahi et al. (2005), however, recently
demonstrated clearly that d(CAG)n and d(CTG)n loopouts can be repaired in
an orientation- and sequence-dependent fashion although mismatch repair
proteins may not be involved.

4.4
DNA Repair of Slipped-Strand Intermediates
Containing (CTG)n Hairpins or (CAG)n Loopouts

Evidence suggests that repair of loopouts in E. coli may involve excision re-
pair proteins UvrA, UvrB, and SbcC (Parniewski et al. 1999; Oussatcheva et al.
2001). d(CTG)n and d(CAG)n loopouts in plasmids were repaired (removed)
when introduced into E. coli, and repair was less effective, but not prevented,
in cells lacking certain excision repair proteins (UvrA, SbcC) (Oussatcheva
et al. 2001). The binding of UvrA to d(CAG)n loopouts in vitro supports the
hypothesis that loopout structures can be repaired in E. coli by excision repair
functions. Panigrahi et al. (2005) have carefully characterized the ability of
plasmid DNA containing a slipped intermediate DNA with a d(CAG)n loopout
or a d(CTG)n hairpin in a continuous template or nicked nascent strand to
be repaired in mammalian cell extracts. These templates mimic products of
replication slippage or strand exchange during replication restart or during
double-strand break repair. The stability of the repeats was analyzed in sit-
uations where the nicks were 3′ or 5′ to the loopouts. Different substrates
were repaired, or not repaired, with remarkably different efficiencies (Pani-
grahi et al. 2005). First, repair required a nick. Second, a substrate containing
d(CAG)50 on the continuous strand opposite d(CTG)30 on the nicked strand
was repaired to d(CAG)50 · d(CTG)50. Third, when d(CTG)50 was opposite
d(CAG)30 in the nicked strand, no repair occurred in cell extracts. Fourth,
when the excess d(CAG) or d(CTG) slipped-out repeats were present on the
nicked strand, variable-sized products corresponding to all possible lengths
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from 30 to 50 repeats were observed. These events did not require mismatch
or excision repair proteins or DNA polymerase β. This work clearly shows
that different DNA repeat structures at various positions relative to the direc-
tion, and strand, of replication can have very different consequences.

4.5
Recombination at Disease-Associated DNA Repeats
Can Lead to Deletions and Expansions

Genetic recombination between two repeat tracts occurring either as crossing
over, with exchange of flanking markers, or as gene conversion can generate

Fig. 6 Recombination associated with expansion or deletion. Recombination (gene con-
version) within repeats can lead to expansion (left) or deletion (right) depending on the
position within the repeat tract the strand exchange occurs. Expansion (left). Following
a break within a DNA repeat (step A), strand invasion of the 3′ ends at the 3′ side of the
complementary strands of a second chromosome (step B) would lead to expansion fol-
lowing DNA synthesis (step C). Reannealing of the complementary strands of the second
duplex will displace the nascent strands, whereupon the 3′ ends of the newly synthesized
strands could anneal (step D). Additional synthesis could lead to more than a doubling
of the length of the repeat (step E). Deletion (right). If a break occurs to one side of the
repeat and the strand invasion occurs near the opposite end of the repeat in the second
chromosome (step B), following synthesis, strand displacement, and ligation, a deletion
will occur in one chromosome (steps C–E)
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variation in the lengths of repeats depending on where the invading strand
of one DNA molecule pairs along the length of the second duplex (Fig. 6).
As with simple replication slippage during synthesis of a repeat tract, re-
combination would be expected to generate expansions of less than a factor
of 2 or 3.

A large body of evidence has been presented to show that recombina-
tion occurs at high rates at disease-associated repeats cloned into bacte-
rial plasmids and that, as expected, this will generate variation in repeat
lengths following recombination (Jakupciak and Wells 1999, 2000a,b; Plucien-
nik et al. 2002; Napierala et al. 2002, 2004; Vetcher and Wells 2004). The DM1
d(CAG) · d(CTG) repeats and the Friedreich ataxia d(GAA) · d(TTC) repeats
stimulate either intramolecular recombination between two repeat tracts in
the same plasmid or intermolecular recombination between two repeat tracts
in different plasmids in the same cell. In contrast, some reports indicate that
recombination does not appear to be stimulated by d(CTG) · d(CAG) repeats
in yeast (Miret et al. 1997), while other reports suggest that recombination-
related instability can occur in yeast (Jankowski et al. 2000; Jankowski and
Nag 2002; Nag et al. 2004). d(CAG) · d(CTG) repeats have been shown to
promote deletions and rearrangements when cloned into the APRT gene in
Chinese hamster ovary cells (Meservy et al. 2003). Genetic recombination in
the classic sense of gene conversion or crossing over, however, does not seem
to be a major source of repeat expansion in humans, although rare instances
associated with recombination have been reported (Brunner et al. 1993; van
den Ouweland et al. 1994; Krahe et al. 1995; Brown et al. 1996; Losekoot et al.
1997). Recombination is an integral part of restart of paused replication forks
and will be discussed in the next section in this context with respect to repeat
instability.

4.6
Double-Strand Break Repair, Replication Restart,
and Checkpoint Control Associated with Repeat Replication

A widely accepted model for repeat instability suggests that deletions result
from primer-template misalignment, as discussed already. Large deletions
have been suggested to occur by replication slippage across d(CTG)n hair-
pins in the lagging template strand when it is single-stranded (as shown in
Fig. 2) (Kang et al. 1995a; Freudenreich et al. 1997; Schweitzer and Livingston
1998, 1999; Miret et al. 1998; Sinden 1999; Ireland et al. 2000; Rolfsmeier et al.
2001; Hashem et al. 2002; Panigrahi et al. 2002; Lee and Park 2002; Mar-
cadier and Pearson 2003; Bhattacharyya and Lahue 2004; Liu et al. 2004b).
However, functional RecA and RecB are required for the high rates of repeat
instability in E. coli (Hashem et al. 2004b), and a simple model of replica-
tion slippage across a hairpin in the lagging template strand cannot account
for the involvement of RecA and RecB. Rather, repeat deletions may result
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from errors occurring during replication restart following the collapse of the
replication fork during synthesis of the repeats (Hashem et al. 2002, 2004b;
Kim et al. 2006). At present, the molecular events responsible for replica-
tion pausing are uncertain; however, hairpins, slipped mispaired DNA, or
other secondary structures may play a role in blocking or pausing replication
fork progression in d(CTG)n · d(CAG)n or d(CGG)n · d(CCG)n repeats (Usdin
and Woodford 1995; Kang et al. 1995b; Sinden 1999; Hartenstine et al. 2000;
Kamath-Loeb et al. 2001; Heidenfelder et al. 2003), while triplex DNA for-
mation could participate in replication pausing in d(GAA)n · d(TTC)n repeats
(Gacy et al. 1998; Grabczyk and Usdin 2000; Potaman et al. 2004; Krasilnikova
and Mirkin 2004). Double-strand breaks are often, but not always, associated
with recombination and they can result in repeat deletion when they occur
within repeats, as shown in both bacteria and mammalian cells (Marcadier
and Pearson 2003; Hebert et al. 2004).

Several pathways are available for restarting a collapsed or paused fork.
Here, these are described with respect to repeat deletion as understood
for E. coli (Kim et al. 2006), but they also act in eukaryotic cells and
may be responsible for spontaneous, as well as drug-induced deletion in
d(CTG)n · d(CAG)n deletion in DM1 lymphoblasts (Hashem et al. 2004a).
Replication restart of stalled replication forks requires DNA replication, re-
combination, and repair proteins (Cox et al. 2000, 2001; Marians 2000;
McGlynn and Lloyd 2002). A pathway for the orientation when d(CAG) com-
prises the leading template strand is shown in Fig. 7. Leading-strand synthesis
may be spontaneously paused during synthesis of the repeats, stalled by
a short (3-bp) misalignment, or may be blocked by a stable DNA secondary
structure in the leading template strand (the pause site is denoted by the as-
terisk in Fig. 7, step A). Following leading-strand blockage, lagging-strand
replication continues (Fig. 7, step B). After fork collapse, the unwinding of
stalled forks by RecG or RuvABC in E. coli leads to fork reversal and forma-
tion of a Holliday junction (here called a “chicken-foot” structure) through
annealing of the leading and lagging nascent strands (Fig. 7, step D). Cleav-
age of the Holliday junction by RuvABC resolvase generates a duplex DNA
(Fig. 7, step E) in which the 5′ end can be resected by RecBCD nuclease (Fig. 7,
step F). RecA can then initiate recombination and restore the fork (Fig. 7,
steps G–J) (Hashem et al. 2004b; Kim et al. 2006). This may be the major path-
way for repeat deletion, as mutations in recA and recB can decrease deletion
rates by factors of more than 1000 (Hashem et al. 2002, 2004b). The potential
for d(CTG) hairpin formation when single-stranded (Fig. 7, steps G–I), and
a preference for restart via the RecA- and RecBC-dependent pathway may ex-
plain the generally observed bias for deletions in this orientation, as discussed
previously (Hashem et al. 2004b; Kim et al. 2006).

The stalled fork may also be rescued by other pathways. One pathway em-
ploys an exonuclease to trim the lagging nascent strand (Fig. 7, steps C–K).
Alternatively, the stalled fork (Fig. 7, step A) could simply collapse (Fig. 7,
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Fig. 7 Replication restart can explain orientation dependence for repeat instability. Repli-
cation restart following a block to DNA replication and fork collapse is required to
complete duplication of the chromosome to ensure cell viability. Several pathways are
available for this process. A major pathway involves fork reversal (step D) and the intro-
duction of a double-strand break (step E), which is repaired by recombination functions
within a cell (steps F–I). A high rate of repeat instability in E. coli is dependent on RecA
and RecBC, which precludes a simple replication-based model (as shown in Fig. 2) for
their participation in repeat instability. The pathways shown may account for a high
rate of repeat deletion in E. coli and explain the orientation-dependent greater instabil-
ity when the d(CTG)n tract comprises the lagging template strand. These pathways are
described in detail in the text

steps A–K). During digestion, or following collapse, a hairpin may form in
the d(CTG)n strand (Fig. 7, step K). Reannealing of the leading and lag-
ging template strands would then drive the formation of slipped-strand DNA
(Fig. 7, step M). Fork reversal could occur (Fig. 7, step L), which would
move the slipped-strand DNA away from the Holliday junction, making
it available for DNA repair, as observed in several systems (Oussatcheva
et al. 2001; Panigrahi et al. 2005), and leading to changes in repeat length.
Resolution of the junction shown in step L would create the double-strand
break, similar to molecules shown in step F, but with slipped-strand DNA
in one molecule.
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Samadashwily et al. (1997) have reported the strength of replication fork
pausing in E. coli during lagging-strand synthesis to be in the order d(CGG)
> d(CCG) > d(CTG) > d(CAG). Pausing during synthesis of d(CGG) · d(CCG)
tracts between 14 and 31 repeats was clearly evident; however, replication fork
pausing in a d(CAG)70 · d(CTG)70 tract was only detected following chloram-
phenicol treatment to induce plasmid amplification. Moreover, pausing was
only detected when d(CTG) comprised the lagging template strand. Biochem-
ical detection of pausing in E. coli and yeast has been interpreted to be ini-
tiated by DNA secondary structure formation in the lagging template strand
(Samadashwily et al. 1997; Pelletier et al. 2003; Krasilnikova and Mirkin 2004).
The pathway shown in Fig. 7 discusses pausing as a leading strand event be-
cause DNA secondary structure in the lagging strand may not be expected to
permanently block fork progression since lagging-strand replication can start
on either side of the structure.

The restart of stalled forks is also important for mammalian cells, and
pathways analogous to those discussed for E. coli may be important for insta-
bility in human cells. Human cells respond rapidly to DNA damage, including
stalled replication forks, UV-light-induced photoproducts, and chemothera-
peutic drug lesions, by arresting cells in the S phase (intra-S phase check-
point) and allowing repair of the damage (Kastan and Bartek 2004). DNA
damage caused by various exogenous factors leads to the activation of the
DNA damage checkpoint pathways (reviewed in Melo and Toczyski 2002).
These pathways are essential for preventing irreversible breakdown of repli-
cation forks stalled at the sites of DNA damage (Tercero et al. 2003). Intra-S
checkpoints have also been shown to be involved in normal DNA replica-
tion (Cha and Kleckner 2002). The S. cerevisiae genome contains about 1500
sites where DNA replication slows, and mutations in the MEC1 gene, a human
ataxia telangectasia-related and Rad 3 related (ATR) homologue, accentuate
stalling at those sites, resulting in chromosomal breakage (Cha and Kleck-
ner 2002). Thus, intra-S checkpoints may stabilize stalled replication forks
even in the absence of DNA damage. Consistent with the expectation that
fork blockage during replication of repeats, or double-strand breaks gen-
erated as a consequence of replication fork restart or DNA repair events,
might activate the DNA damage checkpoint response, d(CAG) · d(CTG) re-
peats can activate the DNA damage response in S. cerevisiae (Lahiri et al.
2004). Mutations in the MEC1, RAD9, or RAD53 genes increased the rates
of chromosome breakage associated with a (CAG) · (CTG) repeat tract. De-
ficiencies in Mec1, Ddc2, Rad17, Rad24, or Rad53 resulted in an increase
in the frequency of repeat deletions. Interestingly, expansions were also in-
creased in cells deficient in Rad24, Rad17, and Rad53. These results suggest
that replication or repair events are altered when normal checkpoint controls
become compromised.
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4.7
DNA Amplification Provides a Facile Means for Repeat Expansion
for SCA10 d(ATTCT) · d(AGAAT) Repeats

With the exception of repeated replication slippage or reiterative DNA syn-
thesis, all the models described so far can account for small changes in repeat
lengths, as observed in somatic cells, but not expansions of tenfold or greater
in length. DNA amplification provides a simple, reasonable model for the
large repeat expansions that occur on intergenerational transmission in some
diseases. The amplification of specific DNA regions by repeated replication
occurs in several systems, including the amplification of chorion genes dur-
ing normal Drosophila development, puff II/9A in Sciara, and drug-resistance
genes in tumor cells (Schimke 1988; Liang et al. 1993; Spradling 1999; Calvi
and Spradling 1999; Tower 2004). For amplification to occur, the normal con-
trols that limit replication to once per cell cycle must be abrogated (Spradling
1999; Calvi and Spradling 1999). Amplification has been proposed to occur
by an onion-skin mechanism in which repeated initiation leads to multiple
replication forks (Baran et al. 1983; Stark et al. 1989; Schimke 1992; Spradling
1999), followed by recombination, or nonhomologous end joining, to gener-
ate linear tandem arrays (Fig. 8, left panel) from the amplified DNA (Syu and
Fluck 1997).

Amplification is frequently associated with replication origins, A+T-rich
regions, inverted repeats, or polypurine · polypyrimidine tracts (Baran et al.
1987; Kirschner 1996; Spradling 1999). Fragile sites have also been implicated
as a causative factor in oncogene amplification (Hellman et al. 2002). While
commonly thought to arise by strand breakage, reinitiation at an aberrant
origin could also generate abnormal DNA ends, leading to recombinational
amplification (Syu and Fluck 1997).

Potaman et al. (2003) proposed that unwound DNA structures in long
d(ATTCT) · d(AGAAT) repeats drive repeat amplification. The formation of
an unwound DNA structure from superhelical energy in DNA may bypass
the steps of pre-RC assembly that normally require the low cyclin depen-
dent kinase (CDK) activity environment of the G1 phase, and allow poly-
merase α/primase to initiate replication in the high CDK environment of
the S phase without the association of origin-bound checkpoint proteins.
The observation that the binding affinity of the Drosophila replication ini-
tiator origin recognition complex (ORC) is 30-fold higher for supercoiled
DNA compared with relaxed DNA (Remus et al. 2004) suggests that a topo-
logical equivalence between superhelical and unwound states could allow
DUEs to act as replication switches. In addition, an increasing body of ev-
idence suggests that transcription is a critical component of a replication
origin (Ghosh et al. 2004; Kouzine et al. 2004; Jenke et al. 2004; MacAlpine
et al. 2004; Danis et al. 2004; Casper et al. 2005; Nieduszynski et al. 2005).
Perhaps transcription supplies the superhelical energy required to unwind
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Fig. 8 Amplification models for repeat expansion. Models for repeat instability based on
the utilization of an unstable DNA repeat as an aberrant replication origin initially de-
scribed for the A+T-rich SCA10 d(ATTCT)n · d(AGAAT)n repeats by Potaman et al. (2003)
are shown. Amplification with the generation of DNA ends (left). A+T-rich repeats can
unwind and replication may start within the unwound bubble (step 2). The DNA repeats
are denoted by the lighter shaded line. Nascent strands are shown in intermediate shad-
ing. Following synthesis (step 3), DNA unwinding again occurs within the repeats (step 3)
and replication again starts at the unpaired regions (step 4). The second nascent strands
are shown as the darker dashed lines. In step 5.A, lagging-strand replication from the first
replication event is shown as the lighter dashed lines. When the nascent strand from the
second origin firing reaches the 3′ end of the first nascent strand, the strand will become
displaced. This results in the formation of a branched molecule with free ends (step 6.A).
The DNA ends may participate in recombination leading to expansion (Cromie et al.
2001). Onion-skin amplification (right). The DNA molecule shown in step 5.B follows
from step 4. Onion-skin replication can occur by repeated initiation within the A+T-rich
repeat. An eightfold amplification is shown in step 7.B. When fork movement ceases or
slows at the first and second forks, a requirement for amplification, continued replication
from the third fork will lead to a displacement of four DNA molecules consisting of pure
repeats, (if synthesis is limited to the repeat tracts) (step 8.B). Pairs of these molecules
have complementary single-strand ends that can drive hybridization into longer repeat
tracts. These can then be joined by homologous recombination into even longer repeat
tracts (step 9.B). These molecules can become integrated into the repeat tracts in the
original chromosome, leading to massive expansion (step 10.B). The length of the re-
peat expansion would be dependent on the number of cycles of amplification. This model
alone can easily explain very large repeat expansion using a well documented biological
phenomenon. Although this model was described for the A+T-rich SCA10 repeat, other
DNA repeats may possibly act in a similar fashion
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the DNA, allowing for the assembly of replication proteins (Gilbert 2004).
The fact that unstable disease-associated repeats are associated with tran-
scriptionally active genes suggests that transcription may reflect a significant
cis-acting factor for repeat expansion driving aberrant replication initiation
events. Alternatively, supercoiling-induced structures may be recognized as
distortions by proteins involved in DNA repair (e.g., RPA, XPA, XPC, MSH2)
(Pearson et al. 1997; Patrick and Turchi 1999; Wakasugi and Sancar 1999;
Volker et al. 2001; Panigrahi et al. 2005; Owen et al. 2005), and may generate
a 3′– OH primer by strand breakage or enzymatic nicking. Repetitive rounds
of slipped mispairing during replication could then lead to repeat amplifica-
tion and recombination (Cromie et al. 2001). These events may occur even
more frequently during early embryogenesis or gametogenesis, where chro-
matin structure and replication differ from that in somatic cells, and dynamic
epigenetic modifications are occurring (Fuentes-Mascorro et al. 2000; Santos
et al. 2005).

Aberrant replication initiation could also be responsible for the instabil-
ity observed in somatic cells. Unrestrained superhelical tension measured at
active genes in living cells is sufficient to support DNA unwinding (Ljung-
man and Hanawalt 1992; Kramer and Sinden 1997; Kramer et al. 1999). The
easily unwound pentanucleotide repeat sequence d(ATTCT)n · d(AGAAT)n is
located at the transcribed SCA10 locus, and plasmids containing d(ATTCT)n ·
d(AGAAT)n repeats supported initiation and replication in HeLa cell extracts
without the addition of a specific initiation protein (Potaman et al. 2003).
In cells, unwinding of d(ATTCT)n · d(AGAAT)n repeats may support repet-
itive initiation of DNA replication and amplification of the repeat tract. If
d(ATTCT)n · d(AGAAT)n acts as a replication origin, fractious DNA replica-
tion and amplification could lead to repeat expansion as shown in Fig. 8.

4.8
Influence of the Direction of Replication, Origin Proximity, Origin Activity,
and Transcription on Repeat Instability

A minimal repeat length (usually more than 30 repeats) of defined purity is
a critical factor for repeat expansion. Mutations in many genes can influence
repeat expansion or contractions; however, deficiencies in replication, repair,
or recombination functions are not required, a priori, for repeat instability.
In one instance, a d(CTG) · d(CAG) repeat integrated at a specific site in one
mouse showed many different rates of instability in different cell types, un-
related to the state of cell proliferation. In addition, when cells from different
tissues from this mouse were cultured the propensity for instability persisted
(Gomes-Pereira et al. 2001). In contrast, cells from other mice with repeats
integrated at different locations did not show this variation (Fortune et al.
2000). Complex cis- and trans-acting factors effecting these differences are
only beginning to be revealed.
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Given the clear role for replication in repeat instability, as evidenced by
differences in stability as a function of orientation with respect to the di-
rection of replication (Kang et al. 1995a; Maurer et al. 1996; Freudenreich
et al. 1997; Miret et al. 1997; Hashem et al. 2002; Cleary et al. 2002; Pani-
grahi et al. 2002), and a role for transcription (Bowater et al. 1997; Mochmann
and Wells 2004), the distance and orientation of repeats with respect to repli-
cation origins might be a critical cis-acting factor in repeat instability. In
mammalian cells and yeast genetically defined replication control regions, or
replicators, overlap with biochemically defined replication initiation zones,
or origins (DePamphilis 2003; Schwob 2004; Gilbert 2004; Aladjem and Fan-
ning 2004). Though generally more expansive and less well-defined in terms
of structural and functional modules than those of their yeast counterparts,
several mammalian replicators have been identified (Dijkwel et al. 1991; Little
et al. 1993; Aladjem et al. 1995; Kobayashi et al. 1998; Liu et al. 2003; Aladjem
2004; Paixao et al. 2004). The initiation zone neighboring the hamster DHFR
gene encompasses more than 55 kb of DNA comprising multiple start sites fir-
ing with different efficiency in a cell population. Replication also initiates at
multiple sites within the human endogenous ribosomal RNA, β-globin, and c-
myc origins (Little et al. 1993; Malott and Leffak 1999; Liu et al. 2003; Aladjem
2004), and a zone of initiation accompanies translocation of the DHFR, β-
globin and c-myc replicator elements to ectopic sites (Malott and Leffak 1999;
Altman and Fanning 2001; Liu et al. 2003; Aladjem 2004). Origin specifica-
tion results from the poorly understood interplay of sequence-directed DNA
structures, histone and non-histone protein binding, and epigenetic modifi-
cation of chromatin (Anglana et al. 2003; Debatisse et al. 2004; Schwob 2004;
Gilbert 2004; Danis et al. 2004). Differential origin specification in murine
cells provides one explanation for the variable repeat instability observed in
mice and cultured cells (Fortune et al. 2000; Gomes-Pereira et al. 2001).

Numerous recent reviews have discussed the cis effects of origin proxim-
ity and the direction of replication of the repeat tracts on repeat instability
(Mirkin and Smirnova 2002; Mirkin 2004, 2005; Cleary and Pearson 2005).
Because the location and utilization of initiation sites within human ori-
gins can vary, the strand of the repeat tract that constitutes the leading or
lagging strand can also vary. This has been termed the “ori switch” model
(Mirkin and Smirnova 2002). This is shown in Fig. 9, panel A, as alterna-
tive directions of fork progression, defined by the site of replication initiation
within an origin. Opposite polarities of replication are analogous to revers-
ing the orientation of repeats in bacteria or yeast, with respect to their defined
origins. DNA repeats that exhibit differential DNA secondary structure stabil-
ities [e.g., d(CAG)n · d(CTG)n or d(CCTG)n · d(CAGG)n], may behave in this
way because structures may form in the lagging strand, given initiation from
one side of the repeat (Fig. 9, panel A, 1), but not in the leading strand, given
replication from the other direction (Fig. 9, panel A, 3). As discussed already,
repeat instability varies depending on the direction of replication in virtually



Mechanisms of DNA Repeat Expansion 35

all experimental systems examined. In addition, the distance is variable be-
tween a DNA repeat and alternate potential initiation sites within an origin
zone (Fig. 9, panel A, 2). This has been termed the “ori shift” model (Mirkin
and Smirnova 2002). Using the SV40 viral replication origin system, Cleary
et al. (2002) showed that expansions were favored when replication initiated
103 bp 3′ of a d(CTG)79 tract, but that deletions predominated when initia-
tion occurred 230 or 536 bp away. To complicate matters, both deletions and
duplications were observed when initiation took place 667 bp away.

Several factors may be important for the ori shift (Mirkin and Smirnova
2002), also called the “fork shift” (Cleary and Pearson 2005), model. First,
the neighborhood of the viral SV40 origin could be unusual in that the DNA
structure, torsional stress, chromatin organization, and amount of single-
stranded DNA may be unusual or unique directly adjacent to the site of
replication initiation (termed replication initiation site in Fig. 9, panel A).
Whether the SV40 viral replication origin is representative of the more com-
plex human origins is not known. Unlike human replication forks, the SV40
replication fork contains T-antigen, the initiator protein and a potent replica-
tive helicase (Borowiec et al. 1990). It is not known whether polymerases
working in conjunction with endogenous human helicases will act differ-
ently during unwinding of DNA repeats. In vitro evidence indicates that
the SV40 replication fork does not require ORC-dependent prereplicative
complex formation, minichromosome maintenance, Cdc45, ATR proteins, or
other factors that may assist in replicating alternative DNA structures (Waga
and Stillman 1998). Moreover, the exact positioning of the 3′ or the 5′ end
of the Okazaki fragment within the repeat tract and the length of the repeat
tract may have significant consequences for repeat instability, as described
by Richards and Sutherland (1994). As evident from Fig. 5, a hairpin flap
would have a good opportunity to form if the 5′ end of the Okazaki frag-
ment began within the repeat tract (Fig. 9, panel B, model 1, fragment set 2;
model 2, fragment set 2,3). This is because the opportunity for DNA sec-
ondary structure formation at the 5′ end is greater than at the 3′ end, which
is bound by the polymerase. Another factor is the length of the repeat tract
with respect to the size of the Okazaki fragment. As the length of the repeat
tract becomes longer than the length of the Okazaki fragment (approximately
140 nt), the number of nicks to be ligated increases, and this may increase
the probability of structure formation and repeat instability (Richards and
Sutherland 1994) (Fig. 9, panel B). The sequences of repeats may have im-
portant consequences for Okazaki fragment initiation given preferred sites
for RNA synthesis (Cleary and Pearson 2005). In many DNA repeats, only one
strand might easily support generation of primers by RNA primase. Thus, de-
pending on the direction of replication, the forks could become unbalanced
with the generation of an unusually long tract of single-stranded DNA in the
lagging template strand. In summary, experimental evidence suggests that
in addition to repeat sequence and length, the spatial relationship between
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Fig. 9� Cis effects of replication on repeat instability: location and proximity of the origin
and positioning of Okazaki fragments. In metazoan cells replication origins encompass
regions ranging from about 2 kb to as much as 55 kb DNA. Within this region the ini-
tiation DNA synthesis requires unwinding of the DNA and binding of helicases and
polymerase α/primase to lay down the RNA primer for extension by DNA polymerases.
This occurs at multiple sites within the origin where the selection of specific sites for ini-
tiation may be a stochastic process. Site utilization may be different in different cell types.
This variation can influence repeat instability. A Positional effects of the replication ini-
tiation site (RIS) on repeat instability. Replication is shown starting from RIS 1, RIS 2, or
RIS 3, in parts 1, 2, and 3, respectively. The DNA repeat tract is denoted by the shaded sec-
tion; an unstable situation is denoted by the gradient of shading over the unstable strand.
See text for details. B Positional effects of Okazaki fragments on repeat instability. The
relative localization of an Okazaki fragment can vary with respect to a DNA repeat tract,
as shown. Model 1 shows three different positions of Okazaki fragments across a repeat
tract, where the length of the tract is shorter than the Okazaki fragment. In set 1, the 3′
end of the middle fragment is positioned within the repeat. In set 2, the 5′ end of the
leftmost fragment is positioned within the repeat, and in set 3, the Okazaki fragment
straddles the repeat. It is not known if in a cell population only one set or multiple sets
of positions will occur. Nevertheless, the number of nicks that need to be ligated within
a repeat tract would range from 0 to 1. As the repeat tract lengthens the probability of
nicks falling within the repeat tract increases as shown in models 2 and 3

a DNA repeat and its origin of DNA replication may be critically important
in determining repeat instability. Understanding all the factors that govern
instability will require additional investigation.

5
Concluding Remarks:
Mutation Mechanisms, DNA Repeats, and Human Disease—
Where Have We Come in 15 Years?

An appreciation for mutations associated with DNA repeats and the impact
on human health (Cooper and Krawczak 1993) predates the excitement over
the massive expansion associated with many neurodegenerative diseases. The
mutations associated with many diseases caused by small changes in repeat
length can be easily explained by replication slippage or, in the cases of
polyalanine diseases, recombination. Both are classic, long-known mutation
mechanisms (Drake 1970). Not unexpected are additional repeat destabiliz-
ing effects of mutations in genes involved in DNA replication, repair, and
recombination. Though much is known, a remarkable and exciting question
remains unanswered: how does a repeat expand to lengths of 1000 to 11 000
copies from an initial length of 100 copies or less during a single intergener-
ational transmission? The field may be only slightly closer to understanding
this question now, compared with 15 years ago. Early reviews discussed many
of the same models for repeat instability presented here, before there was sup-
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portive experimental data. While expandable human repeats are unstable in
mice, their behavior does not accurately recapitulate the patterns of intergen-
erational transmission seen in humans. Human gametogenesis and early em-
bryogenesis, where expansive instability may occur, are simply not tractable
experimental systems. In the absence of a model experimental system that re-
capitulates intergenerational massive expansion, progress in understanding
mechanisms for massive expansion may be slow.

While mysteries remain, much has been learned. One important take-
home lesson is that the standard model systems, bacteriophage, bacteria,
yeast, mice, and human cells, exhibit different and variable responses to
long repeats. Human cells can maintain thousands of d(CGG) · d(CCG) and
d(CTG) · d(CAG) repeats in quite stable fashion, while showing greater in-
stability with d(ATTCT) · d(AGAAT) and d(GAA) · d(TTC) repeats. Bacterial
cells, on the other hand, have great difficulty maintaining several hundred
repeats. Different experimental systems exhibit different patterns of repeat in-
stability, and conclusions learned from one system may not always apply to
another. One must also keep in mind that during intergenerational transmis-
sion in humans a unique “window of opportunity” must exist for expansion
from about 100 to thousands of repeats, and that once that window has closed,
the repeats become complacent, so to speak. Either the window is missing in
other systems, or it cannot be pried open. Therefore, we must continue to uti-
lize model systems, keeping in mind the limitations and implications of each,
with the ultimate goal of understanding processes that explain expansion.

A second take-home lesson is that all disease-expanding repeats are unique
with their own personalities and peculiarities in terms of alternative DNA
conformations (Table 1). Moreover, there is not a simple feature that corre-
lates with expansion. In addition, different repeats can behave differently in
a model system. For example, d(CTG) · d(CAG) repeats associated with DM1
or d(CGG)n · d(CCG)n repeats associated with fragile X syndrome can form
slipped mispaired structures (Pearson and Sinden 1996) that may block repli-
cation, and they undergo rapid deletion in E. coli (Kang et al. 1995a; Bowater
et al. 1996; Ohshima et al. 1996a; Hashem et al. 2002). Conversely, SCA10
d(ATTCT) · d(AGAAT) repeats do not form a structure that can block repli-
cation, but rather may support replication in human cells, and they are quite
stable in E. coli at lengths at which d(CTG) or d(CGG) repeats are very unsta-
ble. The point to be made here is that a single pathway for massive expansion
may not exist, although it cannot be presently excluded. Likewise, multiple
pathways exist for the small changes in repeat length observed in somatic
cells throughout life. Alternative DNA conformations associated with certain
repeats are probably very important for repeat instability in some pathways;
however, they may be less important for other repeats.

In summary, repeat instability remains a major problem for human health
and no simple mechanism or biochemical pathway may direct massive ex-
pansion for all repeats. Moreover, given the interdependence of replication,
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repair, and recombination, under the global regulation and coordination of
checkpoint control, many players and pathways will be expected to have an
influence on repeat instability. Maybe in the last 15 years we have learned
enough to know where to begin to address in new ways this complex biologi-
cal phenomenon.

An additional goal is to learn how to manipulate repeat length in a ther-
apeutic fashion to delay or prevent disease-causing expansion, or to reverse
the expansion process, preventing or alleviating the genetic source of the
problem. Initial investigations related to this question have recently been
described (Gorbunova et al. 2003; Yang et al. 2003; Pineiro et al. 2003; Gomes-
Pereira and Monckton 2004a; Hashem et al. 2004a).
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1
Overview

The fragile X mental retardation 1 (FMR1) gene, responsible for fragile X syn-
drome (FXS), is a paradigm for trinucleotide repeat expansion disorders.
A particularly intriguing and important aspect of the FMR1 gene is that it
gives rise to diverse clinical syndromes, affecting different groups of people,
depending on the size of the d(CGG) repeat expansion in the 5′ untrans-
lated region (5′-UTR) of the gene. On the basis of the repeat expansion,
individuals are classified as having normal alleles [5–44 d(CGG) repeats], in-
termediate or gray zone alleles [45–54 d(CGG) repeats], premutation alleles
[55–200 d(CGG) repeats], or full-mutation alleles [more than 200 d(CGG) re-
peats]. Whereas full-mutation expansions generally result in FXS, and often
in autism, smaller repeat expansions in the premutation range give rise to
at least three separate forms of clinical involvement: (1) behavioral, physi-
cal, emotional, and cognitive problems in some children who are premutation
carriers; (2) premature ovarian failure (POF) in approximately one fifth of all
carrier women; and (3) fragile X-associated tremor/ataxia syndrome (FXTAS)
in some older adults (predominantly, although not exclusively men). These
forms of clinical involvement will be addressed in a brief clinical perspective
in the first section of this chapter; the pathogenic mechanisms underlying
these forms of clinical involvement will be presented in subsequent sections.

In particular, we will discuss a novel mechanism for the adult-onset FXTAS
among adult carriers. It now appears that FXTAS, and perhaps POF as well, may
be due to a toxic “gain of function” of the expanded r(CGG) messenger RNA
(mRNA) itself. Evidence for this RNA-based mechanism, as well as associated
aspects of FMR1 expression from premutation alleles, will be presented.

The dynamic d(CGG) repeat instability associated with the FMR1 gene is
emblematic of the instability that underlies the genetic anticipation associ-
ated with many of the other trinucleotide repeat disorders. Moreover, the epi-
genetic mechanisms that lead to transcriptional silencing, for d(CGG) repeats
exceeding approximately 200 trinucleotide units, give rise to the leading in-
herited form of mental retardation (FXS), and the leading known single-gene
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form of autism. Nevertheless, many aspects of both the expansion process
per se and the resultant gene silencing remain obscure. These issues will be
discussed in the middle section of this chapter.

Although the emphasis of this chapter is on the expression of the gene it-
self, we will also discuss several aspects of FMR1 protein (FMRP) function,
including a unifying model for the role of FMRP in synaptic plasticity, the
“metabotropic glutamate receptor (mGluR) hypothesis”.

2
Introduction and Clinical Perspective

2.1
Fragile X Syndrome

FXS is the leading heritable form of mental retardation (Hagerman and
Hagerman 2002a), with a prevalence for cognitive impairment of approxi-
mately 1 : 4000 men and 1 : 6000 women (Turner et al. 1992; Sherman 2002).
FXS is almost always due to expansion of a trinucleotide d(CGG) repeat in the
5′-UTR of the FMR1 gene (Verkerk et al. 1991; Pieretti et al. 1991; Oberlé et al.
1991; Yu et al. 1991; Fu et al. 1991). FMR1 alleles with more than 200 d(CGG)
repeats generally become hypermethylated in the promoter region, with con-
sequent transcriptional silencing and loss of the FMRP (Pieretti et al. 1991).
Although FXS is typically described as a mental retardation syndrome (with
mild physical features generally thought to reflect connective/elastic tissue
laxity; Hagerman 2002), it is actually a spectrum disorder, with associated
disorders of mood, behavior, and socialization. Patients with the most se-
vere clinical involvement tend to be autistic and nonverbal (Hagerman 2002).
However, not all individuals with FXS have mental retardation; approximately
15% percent of men, and 70% of women, have IQs greater than 70. Among
this latter group, many women, and some men, may suffer from anxiety dis-
order, selective mutism, or Asperger syndrome (Hagerman 2002; Freund et al.
1993; Hagerman et al. 1999). A significant portion of fragile X children are
autistic, with early estimates of approximately 15–25% (Brown et al. 1982;
Hagerman et al. 1986; Reiss and Freund 1990; Bailey et al. 1993), increasing to
approximately 30–35% in more recent studies (Rogers et al. 2001; Kau et al.
2004; Philofsky et al. 2004; Kaufmann et al. 2004) as better diagnostic tools
have become available.

Mild clinical involvement (IQ > 70) generally occurs with FMRP levels that
are only moderately reduced, as is often the case for individuals with alle-
les in the high premutation range (Hagerman and Hagerman 2004), or for
individuals with alleles in the low full-mutation range that remain transcrip-
tionally active (Tassone et al. 2000c). Thus, since the spectrum of involvement
of FXS is quite broad, including individuals who do not meet the formal cri-
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terion for mental retardation (IQ < 70), the prevalence of FXS is likely to
be much greater than 1 : 4000. Carrier frequencies in the general population
range from 1 : 260 to 1 : 110 for women (Rousseau et al. 1995; Pesso et al.
2000; Toledano-Alhadef et al. 2001), and are approximately 1 : 800 for men
(Dombrowski et al. 2002).

On the basis of the emerging phenotype and the spectrum of involvement
for FXS, it is perhaps most correct to think of the disorder as a primary pro-
tein (FMRP) deficiency disorder, with other genetic modifiers contributing to
the more variable features of the disorder, such as autism. In this view, FXS
can occur for alleles that are either in the premutation or in the full-mutation
ranges whether or not they are fully methylated, provided that FMRP levels
are reduced.

2.2
Clinical Involvement Among Carriers of Premutation Alleles of the FMR1 Gene

It is now clear that some carriers of premutation alleles do experience various
forms of clinical involvement on the fragile X spectrum; such involvement can
include mild physical features (prominent ears, hyperflexible finger joints)
(Riddle et al. 1998; Hagerman and Hagerman 2002b) and/or emotional prob-
lems (Loesch et al. 1994; Franke et al. 1998; Hagerman and Hagerman 2002b,
Sobesky et al. 1996). These problems, which are more likely to occur for
FMR1 alleles exceeding 100 d(CGG) repeats (Johnston et al. 2001), probably
reflect the moderately reduced FMRP levels found in the upper half of the
premutation range (Tassone et al. 2000a, b; Kenneson et al. 2001). The asso-
ciation between lowered FMRP levels and mental retardation (and/or autism)
in the premutation range was first noted by Tassone et al. (2000). Not sur-
prisingly, these forms of mental impairment appear to be more common in
male carriers, likely due to the presence of a second X chromosome and ran-
dom X-inactivation in female carriers (Berry-Kravis et al. 2005; Jacquemont
et al. 2005; Aziz et al. 2003). Taken together, these observations suggest that
the cognitive impairment and behavioral/emotional involvement are on the
FXS clinical spectrum.

In contrast to FXS, which spans both the premutation and the full-
mutation ranges, two disorders that are unique to the premutation range
are POF, seen in approximately 20% of women who carry premutation alle-
les (Allingham-Hawkins et al. 1999; Marozzi et al. 2000), and FXTAS, which
may affect as many as one third of older adult men with premutation alleles
(Hagerman et al. 2001; Brunberg et al. 2002; Berry-Kravis et al. 2003; Jacque-
mont et al. 2003, 2004a, b; Leehey et al. 2003). Over the last 10–15 years, it
has become clear that the women carriers of the FMR1 premutation have an
increased likelihood of having POF, defined as the complete cessation of men-
struation before 40 years of age (Cronister et al. 1991; Schwartz et al. 1994;
Murray et al. 1998; Allingham-Hawkins et al. 1999; Sullivan et al. 2005 – latest
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paper on POF). This association does not appear to be related to the parental
origin of the premutation (reviewed in Sherman 2000). Despite the clear as-
sociation of the FMR1 premutation with abnormal ovarian development and
function, the molecular basis for this association is still unknown.

More recently, the neurodegenerative disorder, FXTAS, has been described
in older (primarily male) carriers of the fragile X premutation (Hagerman
et al. 2001; Brunberg et al. 2002; Jacquemont et al. 2003). The core features
of FXTAS include progressive intention tremor, gait ataxia, and parkinson-
ism; associated features include peripheral neuropathy as well as cognitive
deficits involving loss of memory and executive function. Approximately 60%
of carriers with clinical features of FXTAS display symmetric hyperinten-
sities on T2-weighted magnetic resonance images of the middle cerebellar
peduncles (Brunberg et al. 2002; Jacquemont et al. 2004b). Furthermore,
Greco et al. (2002, 2006) identified ubiquitin-positive intranuclear inclusions
in both neurons and astrocytes, broadly distributed throughout the brain,
in postmortem brain tissue from adult male premutation carriers with FX-
TAS. Although female premutation carriers tend to be spared from FXTAS
(Berry-Kravis et al. 2003; Jacquemont et al. 2004a), some do suffer from this
disorder (Berry-Kravis et al. 2005; Jacquemont et al. 2005; Hagerman et al.
2004). Although FXTAS exists within the premutation range, where the FMR1
gene is active, it has not been observed in the full-mutation range (Tas-
sone et al. 2004), where the gene is generally silent. This observation has
led us to propose that FXTAS is due to an RNA toxic “gain of function”, by
analogy to the RNA toxic gain of function proposed for myotonic dystrophy
(reviewed in Ranum and Day 2004) whereby the excess, r(CGG)-expanded
mRNA itself leads to cellular dysregulation (Hagerman et al. 2001; Greco et al.
2002, 2006). The molecular basis for FXTAS will be discussed in more detail
in a subsequent section.

3
Expression of the FMR1 Gene

3.1
Mechanisms of CGG Repeat Expansion

One of the most striking features of genetic anticipation associated with
the FMR1 gene is the propensity for large expansions of the d(CGG) repeat,
and the occurrence of such expansions almost exclusively through mater-
nal transmissions (Nolin et al. 2003; Rife et al. 2004); any model for repeat
instability/expansion must explain this fundamental observation. Further-
more, models for d(CGG) repeat expansion must account for both the relative
stability of repeat size in differentiated somatic tissues (Wohrle et al. 1993;
Reyniers et al. 1999; reviewed in Pearson 2003; Cleary and Pearson 2003) and



Molecular Correlates of Fragile X Syndrome and FXTAS 61

the near-certainty of transmitting the expanded allele as a full mutation if
the carrier mother has a premutation allele that exceeds approximately 100
d(CGG) repeats. To date, no animal or in vitro model has successfully recapit-
ulated the large expansions observed in humans in association with germline
transmission.

A number of different animal models have been utilized to study the be-
havior of exogenous d(CGG) repeat elements. In a study of premutation-sized
alleles [81 and 160 d(CGG) repeats] in the yeast Saccharomyces cerevisiae, Bal-
akumaran et al. (2000) placed the repeat tracts onto a yeast chromosome in
both orientations with respect to nearest replication origin. They observed an
orientation bias for deletions, with a C-rich continuous (sense) strand (repli-
cation proceeding through the repeat element in the 5′-to-3′ direction with
respect to the sense strand) more stable than the G-rich orientation. Not sur-
prisingly, for both orientations, deletions were more common with the larger
repeat; expansions were rare for either repeat, with no expansions observed
for the larger repeat. In addition, they noted that both repeat tracts were re-
combinogenic, although in no cases were large expansions observed. More
recently, Peier and Nelson (2002) examined the effects of sequences flank-
ing the d(CGG) repeat by constructing yeast artificial chromosomes (YACs)
with a 400-kb region surrounding the entire human FMR1 locus [92 d(CGG)
repeats including d(AGG) interruptions]. Length-dependent instability was
observed in YAC transgenic mice as small expansions and contractions in
both male and female transmissions over five generations; however, no large
expansions were detected.

Several mouse models have been generated to investigate repeat tract in-
stability in a mammalian host. Bontekoe et al. (2001) created a knockin
transgenic animal in which a 98 d(CGG) repeat element was placed in the
context of the mouse Fmr1 gene, replacing the native d(CGG)8 tract. Over
several generations, moderate repeat instability was observed for both ma-
ternal and paternal transmissions. Such instability included small deletions
and expansions; however, no large expansions have been observed to date. To
examine the possible roles of trans-acting factors in modifying repeat stabil-
ity, and the host-specificity of such factors, Fleming et al. (2003) examined
the influence on d(CGG) repeat stability of two human trans-acting factors,
the Werner’s syndrome helicase and p53, in the mouse context. The frequen-
cies of small/large deletions were independent of the presence of either the
helicase or the p53 gene product. Thus, the lack of large d(CGG) repeat ex-
pansions in the mouse does not appear to be due to more efficient helicase- or
p53-mediated error-correction mechanisms. Those investigators noted con-
tractions occurring in the absence of expansions, which suggest that different
mechanisms are operating for the two types of event. Finally, a single report
by Baskaran et al. (2002) did describe transgenic mouse lines with dramatic
increases in the size of the repeat element (from 26 to more than 300 repeats)
in three generations. These authors speculated that the presence of an SV40
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origin in the transgene might facilitate repeat expansion, perhaps through
exclusion of nucleosomes from the region of the origin. If confirmed, the re-
ported observations would be an exciting development. However, it will be
important to directly demonstrate that the expanded sequence element is,
indeed, a d(CGG) sequence. The surprising and unusual aspect of the find-
ings of Baskaran et al. (2002) is that, following the massive expansion in two
generations, the expanded alleles apparently become quite stable.

Several models have been proposed for the physical basis for repeat in-
stability, including slippage/mispairing due to the formation of higher-order
structure within the d(CGG) repeat (Weisman-Shomer et al. 2000, 2002; Uliel
et al. 2000; Bowater and Wells 2001). Although there is currently debate as to
the participation of specific structural motifs (Fojtik et al. 2004), it is plausi-
ble that the intrinsic propensity for d(CGG) repeat tracts to form secondary
structures, such as hairpins, renders sequence elements more prone to minor
degrees of genetic instability, like those observed within the gray zone and
low premutation ranges. However, such models cannot readily account for the
large expansions that occur during transmissions from FMR1 premutation al-
leles, since the models cannot account for the relative stability of large alleles
in somatic tissues.

In a recent study of d(CGG) repeat instability in primate cells, with d(CGG)
replication templates under the control of the SV40 promoter, Edamura et al.
(2005) made several important observations that bear on the issue of cis fac-
tors that control repeat instability, at least for somatic tissues. They noted that
instability was nearly always in the direction of deletions from a 53 d(CGG)
starting repeat element; rare expansions were always relatively small, and were
not larger than equivalent expansion/instability directed by a bacterial origin.
They found that the number of deletions depended both on the orientation
of the d(CGG) repeat with respect to the SV40 origin [greater number of
deletions with d(CGG) as the lagging strand template] and on the distance
separating the origin from the repeat element, with more deletions generated
for a 74-nucleotide (nt) separation versus 497-nt separation. Interestingly, the
promoter-proximal repeat element, with the largest number of deletions, was
the most efficiently replicated. Premethylation of the replication template re-
duced both the number of deletions and the efficiency of replication of the
template, supporting the general observation that hypermethylated alleles in
fragile X patients tend to be more stable than unmethylated alleles (Wohrle
et al. 2001). One of the most significant observations of this study is that there
is no block in the replication fork as it encounters the d(CGG) repeat, a find-
ing that is consistent with earlier observations in cells from patients with FXS
(Hansen et al. 1993). This result stands in contrast to the d(CGG)-mediated
replication blocks observed in both yeast and bacterial systems (Samadashwily
et al. 1997; Pelletier et al. 2003), and also the in vitro studies of Kamath-Loeb
et al. (2001), suggesting that the model systems may not possess all of the trans
factors required to properly replicate through a d(CGG) repeat element.
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In aggregate, studies of repeat instability using model systems suggest that
either recombination/repair or replication pathways (or both) are capable of
generating the moderate germline and somatic instability that is observed
in mammalian systems. However, the absence of any model system in which
large expansions have been clearly established suggests that (1) such expan-
sions are likely to occur exclusively during meiotic recombination, (2) the
large expansions may occur only in primates, which normally harbor long
d(CGG) repeat tracts (Garcia Arocena et al. 2003) and may possess the appro-
priate trans-acting factors, and (3) the propensity for expansion may depend
on genomic context. Finally, a model for expansion that involves meiotic re-
combination needs to account for two related observations: the rarity of cases
where large deletions are transmitted, and the generally large magnitude of
the expansions [e.g., from approximately 100 to 1000 d(CGG) repeats] in
a single transmission.

3.2
Regulation of Expression of the FMR1 Gene in the Normal and Premutation Ranges

The FMR1 gene (L29074) spans approximately 38 kb of genomic DNA, and
contains 17 exons and an unusually large (9.9-kb) first intron; such introns
have been implicated in both transcriptional and splicing regulation (Liu et al.
2000; Morishita et al. 2001). The gene is widely expressed in both neural and
nonneural tissues, although at different levels in different tissues. High ex-
pression of a 4.4-kb transcript is observed by Northern blot analysis in brain,
placenta, testis, lung, and kidney (Hinds et al. 1993). Lower expression is ob-
served in liver, skeletal muscle, and pancreas. Multiple truncated transcripts
of 1.4 kb have been observed in human heart (Hinds et al. 1993). In fetal hu-
man brain, FMR1 expression has been observed early in the development in
proliferating and migrating cells of the nervous system, while in older brain
tissues higher expression levels were detected in cholinergic and pyramidal
neurons (Abitbol et al. 1993).

Extensive alternative splicing of the FMR1 gene, demonstrated by reverse
transcription PCR (RT-PCR) analysis, can give rise to as many as 20 possible
protein isoforms, which differ in various internal segments. Several of these
isoforms have been observed on Western blots of both human and mouse
tissues, including fetal brain neurons (Ashley et al. 1993; Verheij et al. 1993;
Verkerk et al. 1993; Sittler et al. 1996; Huang et al. 1996). Alternative splic-
ing has not been found in the amino-terminal half of the FMR1 gene, and
the splice isoforms do not appear to be tissue-specific; similar ratios of tran-
scripts were found in several fetal tissues, including brain and testis (Verkerk
et al. 1993).

The FMR1 promoter, encompassing a GC-rich island, possesses consensus
binding sequences for multiple transcription factors, including several Sp1
sites, AP2, αPAL/Nrf-1, Myc, and H4TF1/Sp1-like, which are generally char-
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acteristic of housekeeping genes (Drouin et al. 1997). In vitro and functional
experiments have indicated that four of these sites, including the αPAL/Nrf-
1 site, two GC boxes (Sp1 and Sp3), and an E box (USF1/2), may serve as cis
elements for the regulation of normal FMR1 promoter activity (Kumari and
Usdin 2001; Kumari et al. 2005). DNA binding of Nrf-1 and USF1/USF2 tran-
scription factors is influenced by CpG methylation (Kumari and Usdin 2001),
while binding of both Sp1 and Sp3 does not appear to be affected (Harrington
et al. 1988; Holler et al. 1988).

The binding of these transcription factors has been observed in normal
human cells in vivo (Drouin et al. 1997; Schwemmle et al. 1997); however,
the binding of Sp1 and Nrf-1 to the human FMR1 promoter in vivo appears
to be disrupted in fragile X human cells, suggesting that the expansion and
the methylation of the d(CGG) repeat element within the 5′-UTR can pre-
vent the transcriptional activation of the FMR1 gene (Smith et al. 2004). More
recent studies have demonstrated that Sp1 and Sp3 proteins play an import-
ant role in the regulation of the FMR1 promoter. Kumari et al. (2005) have
suggested that these two proteins, together with USF1, USF2, and Nrf-1, can
induce bending of free DNA. They propose that such helix distortions may
bring the 5′ and the 3′ ends of the promoter into closer proximity, thus al-
lowing distally located factors, important for transcription initiation, to more
easily interact with other components of the transcriptional machinery. The
significance of this observation, in the context of native chromatin, remains
to be determined.

3.3
Regulation of Transcription Start Site Selection

The promoter region of the FMR1 gene is very CG-rich and lacks the canon-
ical TATA box (Kumari and Usdin 2001). A single transcription initiation
site was originally identified using a primer-extension approach (Hwu et al.
1993). The initiation site was located at position – 264 (+ 1 indicates the trans-
lational start site) upstream of the d(CGG) repeat element and downstream
of a TATA-like sequence d(TTACA). More recent studies, using RNA ligase-
mediated rapid amplification of 5′ complementary DNA ends, demonstrated
that the FMR1 promoter region possesses multiple initiator regions (Inr) that
are active start sites for transcription (Beilina et al. 2004). Three of these
sites, designated sites 1, 2, and 3, are active in normal and premutation lym-
phoblastoid lines. The presence of multiple start sites is not surprising, since
multiple start sites have been observed for many other TATA-less promoters
with long, GC-rich 5′-UTRs (Kawai et al. 2003). However, what is surpris-
ing is that the choice of the initiation site for the FMR1 gene appears to be
modulated by the size of the d(CGG) repeat.

Site 1, which is close to the start of the previously reported 5′-UTR (Hwu
et al. 1993), represents the major transcription start site in normal FMR1 al-



Molecular Correlates of Fragile X Syndrome and FXTAS 65

leles, whereas site 3, approximately 50 nt upstream of site 1, is the major start
site for large premutation alleles [e.g., 160 d(CGG) repeat units]. Thus, alle-
les with a high number of d(CGG) repeats preferentially express the longer
FMR1 mRNA. The nucleotide sequence of all three transcriptional initiation
sites was found to be highly similar to the consensus sequence of pyrimidine-
rich initiator (Inr) elements [consensus sequence YYAN(T/A)YY] (Javahery
et al. 1994) that are usually located near the start site and have been impli-
cated in transcription initiation in TATA-less genes (Chow et al. 1995). The
sequence between site 1 and site 2 contains another Inr sequence, which is
active in human hippocampus and cerebellum from both normal and carrier
men (Carosi et al. 2004); thus, this fourth Inr may have a brain-specific regu-
latory function. An important implication of Inr selection, based on d(CGG)
repeat size and tissue type, is that the downstream d(CGG) repeat element
in the FMR1 gene directly modulates transcription initiation and, therefore,
influences not only the level of transcription, but also the type of transcript
expressed.

3.4
Increased Transcription in the Premutation Range

Although FMR1 mRNA and FMRP levels were initially reported to be nor-
mal in the premutation range (Pieretti et al. 1991; Devys et al. 1993; Feng
et al. 1995a, b; Hmadcha et al. 1998), it recently demonstrated that FMR1 tran-
scription is elevated for premutation alleles. Specifically, levels of abnormal
[expanded r(CGG) repeats] FMR1 mRNA are elevated by as much as five-
fold to tenfold in the upper premutation range in peripheral blood leukocytes
(Tassone et al. 2000a, c) of both female and male carriers of the fragile X pre-
mutation, despite the presence of normal or near-normal detectable FMRP
levels (Tassone et al. 2000a, b; Kenneson et al. 2001). Higher levels of mRNA
are due to higher transcription rates of the FMR1 gene (Tassone et al., unpub-
lished results), with reduced FMRP levels being due to decreased translational
efficiency (Primerano et al. 2002). While the basic mechanisms leading to
increased transcription of premutation alleles are not known, the presence
of such an abnormal molecular phenotype appears to be associated with
POF and FXTAS (reviewed in Hagerman and Hagerman 2004), two unique
pathological phenotypes observed only in individual carriers of the FMR1
premutation.

3.5
Mechanisms of Silencing/Reactivation of the FMR1 Gene

Approximately 50–60% of all genes, including FMR1, contain a CpG island
in the 5′-UTR region (Antequera and Bird 1993a, b; Pieretti et al. 1991). With
some exceptions, CpG dinucleotides in CG-rich islands are normally un-
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methylated, while most CpGs outside of the CpG islands are methylated (Bird
1992); thus, patterns of methylation appear to be important for creating zones
of transcriptional activity (or inactivity) within the genome.

In the case of the FMR1 gene, expansions of over approximately 200
d(CGG) repeats in the 5′-UTR region of the gene are generally accompanied
by hypermethylation of the d(CGG) repeat element and of the upstream CpG
island. This hypermethylation usually results in transcriptional silencing of
the FMR1 gene, absence of FMRP and, as a consequence, the fragile X phe-
notype. Methylation of full-mutation FMR1 alleles occurs early in embryonic
development, and is believed to mitotically stabilize the expansion (Devys
et al. 1992). Because of the assumed (causal) association between methy-
lation and silencing, it is generally believed that methylation of the FMR1
gene causes transcriptional silencing at that locus. Evidence in support of this
notion comes from the demonstration that treatment of fragile X cells with
the DNA methylation inhibitor 5′-azadeoxycytidine (5′-aza dC) leads both
to a loss of methylation at expanded FMR1 DNA and to a partial reactiva-
tion of the gene (Chiurazzi et al. 1998, 1999; Coffee et al. 1999). However,
transcription is not always repressed on hypermethylated FMR1 alleles, as
transcriptional activity has been observed in men with a full mutation (Tas-
sone et al. 2000c, 2001). It is not clear why some methylated full-mutation
alleles continue to produce mRNA, despite their resistance to cleavage by
methylation-sensitive restriction enzymes, whereas others do not; nor is it
clear why some full-mutation alleles remain unmethylated and, therefore,
transcriptionally active (Tassone et al. 2000c, 2001).

In addition to hypermethylation of the FMR1 promoter region, hypoacety-
lation of associated histones and chromatin condensation—all characteristics
of transcriptionally inactive genes—are also observed; however, the basic
mechanisms underlying the specificity of the FMR1 transcriptional silenc-
ing are not known. There is abundant evidence that an interplay exists be-
tween cytosine methylation and histone modifications, although the nature
of this association is still being defined. Such modifications include acety-
lation/deacetylation and methylation of target lysine residues of the histone
tails (Kuo and Allis 1998; Kouzarides 2002).

One of the consequences of these posttranslational modifications may
be to modulate the binding of various regulatory factors through their
chromatin-binding domains (chromodomains) to the histone tails (Turner
2000; Strahl and Allis 2000). Recent work has underscored the importance
of posttranslational modification of histone proteins as another epigenetic
mechanism in the organization of chromosomal domains and gene regulation
(Litt et al. 2001; Nakayama et al. 2001).

Acetylation of lysine residues within the N-terminal tails of H3 and H4
(e.g., acetylation of H3-Lys9) is associated with the normal (active) FMR1 al-
lele, but not with fragile X full-mutation alleles (Coffee et al. 1999). The H3-K9
residue appears to be particularly important for epigenetic regulation, as it
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can be both acetylated in active chromatin and methylated in inactive chro-
matin (Lachner et al. 2003; Grewal and Moazed 2003). Methylation of H3-Lys4
appears to be associated with active chromatin; whereas, methylation of H3-
Lys9 is considered to be a marker of condensed, inactive chromatin of the
form associated with the inactive X-chromosome and pericentromeric hete-
rochromatin (Heard et al. 2001; Boggs et al. 2002; Maison et al. 2002). There
is also evidence that histone methylation can direct DNA methylation, which
leads to gene silencing (Tamaru and Selker 2001). In fragile X cells in culture,
there is a decrease in methylation of histone H3-Lys4, with a large increase in
methylation at H3-Lys9 (Coffee et al. 2002). However, partially deacetylated
histones and methylated H3-K9 were reported in one case of a fragile X cell
line with an unmethylated FMR1 allele, consistent with silent chromatin, but
which also had high levels of methylation at H3-Lys4, characteristic of nor-
mal (active) FMR1 alleles (Pietrobono et al. 2005). This last observation raises
an intriguing possibility; namely, that the methylation state, and the state of
modifications in the chromatin associated with the FMR1 gene, may be at
least partially uncoupled.

Treatment of cultured cells from fragile X patients with 5′-aza dC only par-
tially reactivates hypermethylated FMR1 full-mutation alleles (Chiurazzi et al.
1998; Pietrobono et al. 2002). The level of FMR1 expression following reacti-
vation reaches only 15% of the normal level; thus, more complex interactions
between epigenetic factors must exist in mediating the organization of chro-
matin structure and for the regulation of gene expression.

One of the mechanisms by which methylation leads to transcriptional si-
lencing involves the CpG binding protein MeCP2, which can indirectly inhibit
the binding of transcription factors by limiting the access to regulatory elem-
ents (Nan et al. 1998; Bird 1999). It has been shown that MeCP2 associates
with methylated histones, specifically, with histone H3 at Lys9 (Fuks et al.
2003). This association provides a link between DNA methylation and histone
methylation. MeCP2, is part of a corepressor complex involving the human
Brahma (Brm), a component of the SWI/SNF-related chromatin remodeling
family. MeCP2 and Brm are assembled on the promoter of methylated genes,
including the FMR1 gene, promoting silencing (Harikrishnan et al. 2005). The
resulting corepressor complex is recruited to the inactive FMR1 gene, but is
released upon treatment with 5′-aza dC, which partially restores transcrip-
tional activity (Harikrishnan et al. 2005). The association of this complex is
markedly reduced in normal cells, and knockdown of Brm and MeCP2 gene
activity relieves transcription repression (Harikrishnan et al. 2005). Thus, the
recruitment of the SWI/SNF complexes appears to facilitate transcriptional
repression at the FMR1 gene. In addition, MeCP2 represses gene activity by
recruiting Sin3A, which interacts with histone deacetylase 1 (HDAC1), again
resulting in chromatin remodeling and silencing. Thus, MeCP2 reinforces
a repressive chromatin state by acting as a bridge between two global epige-
netic modifications: DNA methylation and histone methylation.
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It is thus clear that several related and perhaps sequential events take
place so that histone deacetylation, followed by methylation of H3-Lys9, leads
to transcriptional silencing in a manner that is mediated by MeCP2 (Rea
et al. 2000). MeCP2 then recruits proteins such as heterochromatin protein 1
(HP1) (Lachner et al. 2001; Bannister et al. 2001), which selectively recog-
nizes H3-Lys9 tails through its chromodomain (Fischle et al. 2003; reviewed
in Eissenberg and Elgin 2000).

3.6
Regulation of Translation of the FMR1 mRNA

Elevation of FMR1 mRNA levels occurs for unmethylated alleles both within
the premutation range and extending into the full-mutation range (Tassone
et al. 2000a–c; Salat et al. 2000; Kenneson et al. 2001). The concomitant deficit
in FMRP was originally suggested to be the stimulus for increased FMR1
mRNA production, in the absence of any increase in mRNA stability, essen-
tially as a feedback response to lowered protein (FMRP) levels (Tassone et al.
2000a). Recently, increased levels of run-on transcription in a premutation
cell line (compared with a normal control) have been observed, providing dir-
ect evidence of transcriptional activation for expanded (premutation) alleles
(Tassone et al., unpublished results). Moreover, using both quantitative RT-
PCR and RNA in situ hybridization experiments, Tassone et al. (unpublished
results) demonstrated that higher FMR1 mRNA levels are not due to nuclear
sequestration. In particular, FMR1 mRNA is not retained in the nucleus, but
is mainly localized in the cytoplasm of lymphocytes carrying either normal
or premutation alleles.

As noted already, although FMR1 mRNA levels are increased in the pre-
mutation range, FMRP expression is decreased. The FMRP deficit is r(CGG)-
dependent and is due to decreased translational efficiency (Primerano et al.
2002). Reduced translational efficiency was observed both in cell lines and in
transient transfection experiments using expanded alleles spanning the entire
premutation range (Primerano et al. 2002; Chen et al. 2003). Particularly for
premutation alleles, a smaller fraction of FMR1 mRNA was found to be asso-
ciated with polysomes, while the majority of the expanded-repeat mRNA was
associated with inactive ribonucleoprotein particles. These findings, namely,
increased FMR1 mRNA expression levels and deficit in translation efficiency
in premutation alleles, have also been confirmed by in vivo translation ex-
periments using a reporter (luciferase) mRNA with the 5′-UTR of the FMR1
gene, the latter harboring varying numbers of r(CGG) repeats. Interestingly,
the decreased translation efficiency, evident in the premutation range, was
also observed for an allele near the gray zone (45–54 CGG repeats). Transla-
tion efficiency gradually decreased with an increasing r(CGG) repeat number
(Chen et al. 2003).
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The precise mechanism by which the expanded r(CGG) repeat impedes
translation is not understood at present. What is surprising is that translation
occurs at all for larger premutation alleles, since the predicted free energies of
stabilization of the r(CGG) repeat element would be expected to completely
block translation. In this regard, an internal ribosome entry site (IRES) was
identified near the 5′ end of the 5′-UTR, upstream of the r(CGG) repeat (Chi-
ang et al. 2001). FMR1 IRES activity was found to be of moderate strength
compared with that of other known IRESs (Chiang et al. 2001); its role in the
regulation of FMRP expression is not known at present. Interestingly, cellular
IRESs have been shown to increase the translational efficiency of several den-
dritically localized mRNAs, including the microtubule-associated protein 2
(MAP2), the α-subunit of the Ca2+/calmodulin-dependent protein kinase II
(α-CaMKII), cytoskeleton-associated protein, arc, dendrin, and neurogranin
(RC3) (Pinkstaff et al. 2001). IRESs that can mediate cap-independent trans-
lation could be used for a rapid and local synthesis of proteins in dendrites.
Although translation at dendrites occurs by both cap-dependent and cap-
independent mechanisms, the translation mediated by IRES in the RC3 gene
is relatively more efficient in dendrites than in the cell body (Pinkstaff et al.
2001). The finding that five different neuronal mRNAs are translated in den-
drites by an IRES-mediated mechanism suggests that IRES sequences may
control translation in specific neuronal regions.

4
Function of the FMR1 Protein

Central to our understanding of the pathogenesis of FXS is a detailed de-
scription of the role(s) played by FMRP, the protein product of the FMR1
gene. This subject will only be touched on in this chapter, since a number
of excellent reviews have detailed the properties of FMRP (Jin and Warren
2000; Bardoni et al. 2001; O’Donnell and Warren 2002; Bardoni and Mandel
2002; Bagni and Greenough 2005), including its structural organization, its
interacting partners, and its putative functional role(s). The principal clini-
cal features of FXS are caused by the absence of functional FMRP. Absence of
the protein is almost always due to transcriptional silencing, although in rare
instances its absence results from mutations within the coding portion of the
FMR1 gene (Gedeon et al. 1992; Wohrle et al. 1992; Tarleton et al. 1993; Gu
et al. 1994; Meijer et al. 1994; Trottier et al. 1994; Hirst et al. 1995; Quan et al.
1995; Wang et al. 1997).

FMRP is known to be an RNA binding protein with at least three recog-
nized RNA binding motifs; two hnRNP K-homology (KH) domains, and an
arginine–glycine-rich domain (Siomi et al. 1993). There is also a carboxy-
terminal RNA binding region that is relatively non-sequence-specific for RNA
binding (Adinolfi et al. 1999). These features of FMRP, coupled with the
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presence of nuclear localization and nuclear export signals (Liu et al. 1996;
Eberhart et al. 1996; Fridell et al. 1996; Tamanini et al. 1999), suggest that the
protein is involved with nuclear export and/or transport of a subset of mR-
NAs (Bassell and Kelic 2004); however, a specific functional role of FMRP in
nuclear export has not been demonstrated. Over the past several years, most
attention has been focused on the role of FMRP as a translational modula-
tor/repressor of specific mRNAs that are important for synapse maturation
and plasticity (Rudelli et al. 1985; Weiler et al. 1997; Irwin et al. 2000; Nim-
chinsky et al. 2001). In particular, FMRP may modulate the function of the
mGluR in synaptic function and plasticity (mGluR hypothesis) (Bear et al.
2004; see later).

4.1
FMRP Can Function as a Negative Regulator of Translation

Two studies (Laggerbauer et al. 2001; Li et al. 2001) provided evidence for at
least one function of FMRP, namely, the repression of translation of a subset
of mRNAs. In the first of these studies, Laggerbauer et al. (2001) demon-
strated that recombinant FMRP strongly inhibited the translation of selected
mRNAs in both rabbit reticulocyte lysates and Xenopus laevis oocytes. Al-
though the focus placed on this study is usually the observed effect of FMRP
on translation, perhaps equally important is the authors’ observation that nei-
ther of the two FMRP paralogs, FXR1P and FXR2P (reviewed in Hoogeveen
et al. 2002), is capable of inhibiting translation of the mRNAs inhibited by
FMRP. This finding is significant in that the latter two proteins both contain
the KH domains found in FMRP. Further, the archetypal KH protein, hn-
RNP K (Siomi et al. 1994), which is also capable of binding to the test mRNA,
nevertheless does not inhibit translation. Finally, although a mutant form of
FMRP with an I304N substitution, associated with severe clinical involvement
(De Boulle et al. 1993), retains its RNA binding capacity, it has lost the ability
to inhibit translation. This failure to repress translation appears to be due to
abnormal protein–protein interactions involving the second KH domain, not
loss of RNA binding.

The second study, by Li et al. (2001), also used recombinant FMRP (pro-
duced in baculovirus) to demonstrate that FMRP is capable of substantial,
relatively nonspecific suppression of translation. Utilizing the rabbit reticulo-
cyte lysate assay, Li et al. (2001) showed that recombinant FMRP was capable
of up to 90% suppression of all brain- or liver-derived (rat) poly(A) mRNA
for protein levels comparable to those found in peripheral blood leucocytes.
FMRP did not suppress translation from specific mRNAs (e.g., globin) that
do not display direct FMRP binding; an observation that militates against
a role for FMRP in global translation suppression as might occur through
pathways involving phosphorylation of eIF2α. Li et al. (2001) also observed
that nearly all inhibition could be reversed by the addition of the 3′-UTR
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portion of Fmr1 mRNA, suggesting that a major point of FMRP–mRNA inter-
action is the 3′-UTR. The broad suppression of translation, coupled to a direct
FMRP–mRNA interaction, would appear to be at variance with the obser-
vation that FMRP appears to bind only about 4% of brain-derived poly(A)
mRNAs (Brown et al. 1998, 2001). Li et al. (2001) speculate that the rela-
tively nonspecific inhibition found in their in vitro assay may reflect more
widespread, weaker interactions that also occur in vivo. However, an alter-
native interpretation is that the suppression observed in the in vitro studies
simply reflects the absence of one or more additional trans-acting factors that
may further modulate the effects of FMRP. Thus, it may be that, in vivo, FMRP
could be either a suppressor or an inducer of translation, depending on the
message as well as on the cell type and/or developmental stage. In this re-
gard, it is interesting that evidence for both upregulation and downregulation
has come from the expression-profiling study of Brown et al. (2001). More
recent in vivo studies have also demonstrated that FMRP can facilitate the
trapping of mRNAs into cytoplasmic granules with concomitant suppression
of translation (Mazroui et al. 2002).

4.2
A Possible Role for FMRP in Regulating Actin Cytoskeletal Dynamics

Castets et al. (2005) have reported a very exciting set of observations that
may provide a link between FMRP and the actin dynamics likely to deter-
mine the shape of dendritic spines. In particular, they have demonstrated
that FMRP appears to bind directly to the 5′-UTR of mRNA for phosphoser-
ine/threonine phosphatase (PP2A; Zolnierowicz 2000), thus diminishing its
translation. PP2A is a mediator of Rac1-coupled actin remodeling (Hall 1998;
Janssens et al. 2005), which operates by shifting the balance from the inactive
(phospho) to the active (dephospho) form of cofilin, an actin depolymerizing
protein (Ambach et al. 2000; Meberg and Bamburg 2000; Samstag and Nebl
2003; Paavilainen et al. 2004). The principal finding of Castets et al. (2005) was
that Rac1-induced actin remodeling was enhanced in cells that either lacked
FMRP or possessed mutant forms of FMRP in which either the KH1 or KH2
domains were altered. These observations provide a possible basis for the
altered dendritic spine morphology found in individuals with FXS.

4.3
The mGluR Hypothesis as a Specific Example
of How FMRP Could Regulate Synaptic Function/Plasticity

Another exciting discovery relates to the function of FMRP is its role in
regulating long-term depression (LTD) of synaptic strength in hippocampal
neurons (reviewed in Bear et al. 2004). LTD is associated with a decrease in
the number of ionotropic (AMPA) glutamate receptors on the postsynaptic
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surface through internalization of the receptors. This form of LTD, involv-
ing stimulation of the mGluR, requires protein synthesis (Huber et al. 2002).
A key finding by Huber et al. (2002) is that mGluR-coupled hippocampal LTD
is enhanced in Fmr1 knockout mice. In this model, enhanced AMPA recep-
tor internalization in the knockout mouse is due to the absence of FMRP
inhibition of the synthesis of one or more as-yet-undefined proteins that fa-
cilitate receptor internalization. Thus, FMRP, by virtue of its postulated role
as a translational inhibitor, would normally be acting as a “governor” to mod-
ulate the degree of LTD. This model is quite powerful inasmuch as it links the
function of FMRP to dendritic function and clinical outcome. In the simplest
form of the model, FMRP is proposed to act as a translational inhibitor; how-
ever, this hypothesis is based in part on in vitro data (Laggerbauer et al. 2001;
Li et al. 2001), as well as on reports of inhibition of specific mRNAs (Zhang
et al. 2001; Zalfa et al. 2003; Paavilainen et al. 2004). It is entirely possible
that the function of FMRP in this instance may be to stimulate translation of
selected mRNAs, as may be the case with the synaptic protein PSD95 (Todd
et al. 2003). Thus, what is needed at this point is a concerted effort to identify
the targets of FMRP function that modulate mGluR-coupled LTD.

5
The Molecular Basis of FXTAS

Although the precise molecular mechanism of FXTAS is not known, two ob-
servations led to the proposal of an RNA toxic gain-of-function model for
disease pathogenesis in FXTAS (Hagerman et al. 2001; Greco et al. 2002;
Jacquemont et al. 2003; Hagerman and Hagerman 2004). First, (expanded-
repeat) FMR1 mRNA levels are elevated by up to eightfold in premutation
carriers, even though FMRP levels are normal to slightly reduced in the pre-
mutation range (Tassone et al. 2000a, b; Kenneson et al. 2001). Second, FXTAS
has not been reported in adults who harbor hypermethylated (silenced) full-
mutation alleles, where little or no FMR1 mRNA is produced. In support of
this RNA toxicity model, Jin et al. (2003) demonstrated that an expanded
approximately 90 r(CGG) repeat, when expressed in the 5′-UTR context of
an unrelated reporter gene, was still capable of inducing neuropathology
(including inclusion formation) in the eye of the fly (Drosophila). This obser-
vation provided a direct demonstration that the expanded r(CGG) repeat in
mRNA is capable of inducing neuropathology. The principal neuropathologic
feature of FXTAS is the presence of ubiquitin-positive intranuclear inclusions,
in both neurons and astrocytes, broadly distributed throughout the brain and
spinal cord (Greco et al. 2002, 2006). The inclusions are immunohistochemi-
cally negative for tau isoforms, α-synuclein, and polyglutamine peptides, and
appear to reflect a new class of inclusion disorder (reviewed in Hagerman and
Hagerman 2004). Much of the focus of recent research efforts have been on
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the composition of the inclusions, which should provide important clues as to
the pathogenesis of the disease itself.

Myotonic dystrophy (DM) is another noncoding, trinucleotide d(CTG)
repeat-expansion disorder that is thought to result from an RNA toxic gain of
function (Finsterer 2002; Mankodi and Thornton 2002), where the expanded
r(CUG) repeat, located in the 3′-UTR of the DM protein kinase (DMPK)
mRNA, sequesters one or more protein mediators of the disease process.
Thus, in DM, the RNA “toxicity” arises as a result of dysregulation of the func-
tion(s) of those proteins owing to their excessive binding to the expanded
r(CUG) repeat. One such mediator is believed to be MBNL1, the human
homolog of Drosophila muscleblind (Miller et al. 2000; Fardaei et al. 2001;
Ranum and Day 2004). Both DMPK mRNA and MBNL1 are found within
intranuclear foci in DM, the sequestration of MBNL1 protein in turn lead-
ing to dysregulation of the splicing of several other mRNAs. Consistent with
this RNA toxicity model, we have recently found FMR1 mRNA itself within
the intranuclear inclusions of FXTAS patients (Tassone et al. 2004). This last
observation gives added impetus to study the protein complement of the
inclusions, since, by analogy with DM, one or more (potential) protein medi-
ators should be present within the inclusions themselves.

An analysis of the protein composition of the inclusions in FXTAS, through
a combination of fluorescence-based particle sorting of inclusions from post-
mortem tissue and mass spectroscopic and immunochemical approaches for
protein identification, has revealed more than 20 protein species to date
(Iwahashi et al. 2006). At least one of the identified proteins, hnRNP A2, is
a well-known RNA binding protein (Dreyfuss et al. 2002) that could serve
as a mediator of the expanded-repeat FMR1 mRNA in FXTAS. MBNL1 was
also identified within the inclusions; however, the roles played by these two
proteins await further investigation. Iwahashi et al. (2006) did not observe
a dominant protein species within the inclusions, which argues against the
simple accretion of specific, abnormal proteins that is thought to occur with
many other inclusion disorders (Paulson 1999; Zoghbi and Orr 2000; Tarlac
and Storey 2003; Taylor et al. 2002; Ross and Poirier 2004). No FMRP was de-
tected within the inclusions. Interestingly, the inclusions do appear to contain
several intermediate filament proteins, including lamin A/C. Although the
lamin A/C isoforms are not believed to interact directly with FMR1 mRNA,
they are believed to be involved with the regulation of RNA synthesis and pro-
cessing (Hutchison and Worman 2004; Zastrow et al. 2004). Thus, the lamins
could also be involved in mediating the effects of the expanded-repeat FMR1
mRNA (Arocena et al. 2006).
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Abstract The first triplet-repeat mutation to be reported was the large d(CGG) repeat ex-
pansion found in individuals with Fragile X syndrome (Verkerk et al. 1991). Significant
attention has been paid to this common disease, the dynamics of its d(CGG) repeat, and
the function of its associated gene, FMR1 (Bagni and Greenough 2005). However, two
other folate-sensitive fragile sites in the region have received much less attention since
they were found to be distinct from the sequence affected in Fragile X syndrome. These
sites, FRAXE and FRAXF are reviewed here. FRAXE expansion results in a mild learning
deficit, can lead to more severe mental retardation, and has been associated with other
mental disorders. FRAXF is apparently benign when expanded despite affecting at least
one nearby gene. Interestingly, each of the fragile site loci contains a d(CGG) or d(CCG)
repeat that is expressed in the 5′ untranslated portion of a neuronally expressed gene.
Each expanded repeat sequence exhibits similar properties of instability, methylation and
extinction of gene expression resulting in a loss of function of the associated genes. Ad-
vances in understanding the role of the repeat expansions in FRAXE and FRAXF and
associated genomics and models are presented.

1
History of the Xq27-q28 Fragile Sites

The identification (Lubs 1969) and characterization (Sutherland and Ash-
forth 1979) of a cytogenetically visible fragile site located at the distal end of
the long arm of the X chromosome in families with X-linked mental retar-
dation led to extensive use of cytogenetics to characterize individuals with
reduced cognitive capacity. Many additional families with cytogenetically
defined Fragile X syndrome were identified and studied for their clinical fea-
tures throughout the 1970s and 1980s. These analyses led to a broad clinical
picture of this common disorder, suggesting reduced penetrance for many of
the common features of the syndrome. With the identification of the FMR1
gene and CGG repeat expansion leading to the FRAXA fragile site in 1991 (Fu
et al. 1991; Kremer et al. 1991; Oberlé et al. 1991; Pieretti et al. 1991; Verkerk
et al. 1991; Yu et al. 1991), it became apparent that some individuals with cy-
togenetically identical fragile sites in Xq27.3-q28 did not have the expanded
d(CGG) repeats at FMR1. Two additional fragile sites were found nearby, and
these were termed FRAXE and FRAXF for the fifth and sixth fragile sites
described on the X chromosome.
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Fig. 1 Map of the Xq27.3-q28 region containing the three folate-sensitive fragile sites,
FRAXA, FRAXE and FRAXF, showing relevant genes in the vicinity (FMR1, FMR2 and
FAM11A) are associated with the three fragile sites, and IDS is the iduronate sulfatase
gene, defective in Hunter syndrome. Numbers indicate position (in thousands) from the
P-terminus of the reference X chromosome sequence

The FRAXE site was subsequently identified (Flynn et al. 1993; Knight et al.
1994), and found to be 600 kb distal to the FRAXA/FMR1 site. Similar to the
FRAXA site, a d(CCG) repeat sequence was found to have increased in length
at the FRAXE locus in patients with mental handicap, and to have caused
a loss-of-function mutation in its associated gene (FMR2) (Gecz et al. 1996;
Gu et al. 1996). A third fragile site (FRAXF) likewise showed d(CGG) repeat
expansion in rare individuals who had been identified by cytogenetics (Hirst
et al. 1993; Parrish et al. 1994; Ritchie et al. 1994). FRAXF is located 1.72 Mb
distal to FRAXA, and is also associated with a gene, FAM11A (Shaw et al.
2002). This tight cluster of folate-sensitive fragile sites is so far unique in the
human genome. No adequate explanation has been proposed for the pres-
ence of three loci capable of undergoing repeat expansion to form fragile
sites in such a short interval. The complication with clinical definition of pa-
tients with these three distinct fragile sites was solved with the development
of DNA-based tests for each of the repeat expansions.

The recognition that a subset of patients diagnosed with Fragile X syn-
drome actually carried repeat expansions at FRAXE and FRAXF provided
a more consistent clinical description of the disorder caused by FRAXA. Since
Fragile X syndrome resulting from loss of FMR1 function was by far the most
prevalent form of the disorder, it has retained the name of the clinical entity.
The disorder caused by expansion at FRAXE is now termed FRAXE disease or
FRAXE mental retardation. Since it is unclear whether expansions of FRAXF
lead to disease, there is not yet a name for this clinical entity. Fragile X syn-
drome is reviewed elsewhere in this volume. Below, we discuss the current
state of knowledge for repeat expansions and disease at FRAXE and FRAXF.
A graphical representation of the region is provided in Fig. 1.
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2
Clinical features of FRAXE disease

Patients with the expanded FRAXE repeats show mild to borderline men-
tal retardation, with delays in language development a common problem.
Some FRAXE patients also exhibit behavioral abnormalities, such as at-
tention deficit, hyperactivity, autistic-like behavior, even schizophrenia and
obsessive-compulsive disorder (OCD) (Gecz 2000b; Wang et al. 2003). Most
patients with FRAXE are not easily distinguished from the general popula-
tion as there are no consistent physical features in these patients, and FRAXE
is considered to be a “non-syndromic” form of mental retardation. However,
among FRAXE patients, reports of a long, narrow face, mild facial hypoplasia,
a high-arched palate, irregular teeth, hair abnormalities, angiomata, clin-
odactyly, thick lips and nasal abnormalities can be found (Barnicoat et al.
1997; Biancalana et al. 1996; Carbonell et al. 1996; Hamel et al. 1994; Knight
et al. 1996; Mulley et al. 1995; Russo et al. 1998). In addition, in some fami-
lies, the FRAXE fragile site does not clearly segregate with mental retardation
(IQ < 70) and some cytogenetically positive FRAXE males carrying an ex-
panded and fully methylated allele have been reported to not display intellec-
tual disability (Lo Nigro et al. 2000; Murgia et al. 1996; Sutherland and Baker
1992). These observations have made it difficult to demonstrate a clear causal
relationship between FRAXE and non-syndromic mental retardation, leading
some to term the consequences of the disorder as a mild mental handicap
(Knight et al. 1994).

FRAXE repeat expansion is much less frequent than FRAXA, with esti-
mates of the frequency in the 1/50 000 to 1/100 000 range (Crawford et al.
1999; Holden et al. 1996a; Murray et al. 1996; Youings et al. 2000). Recent data
from a mouse model of loss of Fmr2 function suggest that the lesion in the
FMR2 gene is likely to be involved in the MR found in FRAXE patients, and
that variation in background genetics of families, and/or in the timing of loss
of gene expression play significant roles in the phenotypic effect (Gu et al.
2002). These findings are discussed in more detail below.

In addition, a patient with an FMR2 loss-of-function mutation that does
not involve repeat expansion has been described (Gecz et al. 1996). He has
mild learning disabilities and speech delay, supporting a role for FMR2 in
these functions, but his phenotype does not exclude the possibility that the
repeat expansion mutation can affect additional genes or functions of the
locus. In this respect, a transcript has been identified that is expressed in
the opposite orientation from FMR2 from the same promoter (Gecz 2000a).
Gecz and colleagues termed this transcript FMR3, and suggested that it may
also play a role in the FRAXE phenotype. It is not clear what the function
of the FMR3 transcript might be, but with the growing appreciation of the
importance of RNA molecules in the control of numerous cell functions, the
possibility for involvement must be considered.
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3
Repeat Dynamics in Patients and Families

As with FRAXA, the FRAXE triplet repeat is polymorphic in the general pop-
ulation. Lengths ranging from as few as three to as many as 40 d(GCC) ·
d(CCG) repeats have been reported in studies of either the general population
or in targeted populations (learning disabled or retarded individuals). The
most common alleles in European individuals range from six to 25 repeats,
with 15 repeats being predominant (Hamel et al. 1994; Knight et al. 1993,
1994). Affected individuals may have repeats ranging from ∼ 130 to over 1000
triplets, but there is significant variability both between patients and within
any individual patient with a full mutation. Methylation can also be variable,
but appears to become likely once the repeat reaches the 100–130 d(GCC)
range (Gecz 2000b). This contrasts with the situation at FRAXA, where the
methylation threshold is between 200 and 230 repeats. Large repeats with only
partial methylation have also been reported (Gecz 2000b).

Premutation alleles have been less well characterized in FRAXE, in part
due to the scarcity of the mutation, and lack of extended pedigrees. Thus,
the dynamics of this repeat are not as clearly defined as they are in FRAXA.
However, some family transmission data have been reported, and these find-
ings generally support the repeat’s similarity to FRAXA. There appears to be
a maternal bias for expansion from the premutation to the full mutation, as in
FRAXA (Hamel et al. 1994; Mulley et al. 1995), yet full mutations appear to be
transmitted by males as full mutations to their daughters (Hamel et al. 1994);
a phenomenon that is never observed for FRAXA full mutations.

For FRAXF, the repeat dynamics are even less well known. In the general
population, the repeat ranges from six to 38 triplets, with 14 found to be the
most common length (Holden et al. 1996b; Parrish et al. 1994; Ritchie et al.
1994). Only four families with large expansions have been characterized. The
expansions are large, similar to FRAXA and FRAXE, and there appears to be
an intermediate expanded length that escapes methylation in parents of in-
dividuals with the fully methylated and expanded version. Since it appears
unlikely that repeat expansion at FRAXF results in any pathology, and that the
repeat expansion appears rare, collection of individuals with large repeats and
studies of the behavior of the repeats have not been carried out.

An extensive survey of mammals demonstrated that the FRAXA d(CGG)
repeat was conserved in the FMR1 gene, with significant variation amongst
species (Eichler et al. 1995). In the mouse, the FRAXE repeat is not conserved
as a block of triplet repeat, although there are d(CCG) elements with inter-
ruptions in the same region of the 5′ untranslated (UTR) portion of the Fmr2
gene (Chakrabarti et al. 1998). The FRAXF locus has recently demonstrated
a gene (FAM11A) in humans that contains the d(CGG) repeat in its 5′ UTR
(Shaw et al. 2002). The FAM11A gene is highly conserved between human and
mouse at the amino acid level, but the d(CGG) repeat is not well conserved, al-
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though a hexamer sequence d(GCCGTC) that is typically repeated three times
in humans and d(CGG) triplets can be found in the same position.

4
The FMR2 Locus

FRAXE expansion and methylation eliminate expression of FMR2, named as
the second fragile X-associated mental retardation gene in the region. Identi-
fication of the full gene was complicated by the presence of a very large first
intron, which extends some 140 kb toward the Xq telomere; the fragile site
was found rapidly after FRAXA, but determination of the full extent of the
affected gene was slowed by the gene’s size (500 kb). From its sequence the
FMR2 gene predicts a large protein (up to 1311 amino acids) with a long 3′
untranslated section of the cDNA. Message length varies, with forms ranging
between 8.7 and 9.5 kb. There is also a shorter form (approximately 1/3 the
full length) that appears to be developmentally regulated (Chakrabarti et al.
1996).

FMR2 is not similar to FMR1, and the predicted protein is very rich in pro-
line, serine and threonine residues, with weak similarity (∼ 25% identity) to
three other proteins, forming a small family. The other members of the fam-
ily include AF4, LAF4 and AF5q31. AF4 was initially described as a frequent
chromosome fusion partner in mixed lymphocytic leukemia rearrangements
involving MLL, a homolog of the Drosophila trithorax gene. AF4 has been
studied in some detail, and appears to be a nuclear protein with features of
a transcriptional activator. FMR2 has proven to be similar, with nuclear lo-
calization and transcriptional activation properties (Hillman and Gecz 2001).
With the completion of the human genome sequence, it is now clear that the
AF4/FMR2 gene family has four members, and nomenclature has been ad-
justed to reflect this. The new gene name for FMR2 is AFF2, for AF4/FMR2
family, member 2. AF4 is now referred to as AFF1. For this review, the initial
name of FMR2 will be used to reduce confusion.

With the four members completely determined, it is now possible to de-
fine more highly conserved domains among the members. As depicted in
Fig. 2, members share a conserved N-terminal domain of 90 amino acids,
a 175 amino acid ALF domain, a 64 amino acid serine rich activation domain,
a 20 amino acid consensus bipartite nuclear localization sequence and a con-
served C-terminal domain that is 240 amino acids in length. The family also
has similarity to a protein found in Drosophila known as Lilliputian, which
has a similar activation domain, nuclear localization signal and C-terminal
sequence, but lacks the N-terminal and ALF domains (Fig. 2). Effects of Lil-
liputian mutations are discussed below.

FMR2 expression can be found in abundance in brain and placenta of
adults, but is not easily detected in other tissues (Chakrabarti et al. 1998;
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Fig. 2 Graphical representation of the protein sequences of the four paralogous genes
in the AF4/FMR2 family, along with the Drosophila orthologue Lilli. Numbers between
each protein indicate percentage of identical amino acids conserved in each domain be-
tween the two proteins compared pairwise. Numbers in parentheses indicate percentage of
similar amino acids conserved in each domain

Gecz et al. 1996; Gecz and Mulley 1999; Gu et al. 1996). This led to diffi-
culties in determining the effects of FRAXE expansion, since transformed
lymphoblasts do not express the gene normally. However, fibroblasts express
sufficient RNA, and this tissue was used to demonstrate that repeat expan-
sion and methylation reduce or eliminate expression of the gene (Gecz et al.
1996; Gu et al. 1996). Within the brain, the structures with the highest levels
of expression are the amygdala and hippocampus.

Investigation of the FMR2 gene product has been hampered by the absence
of sensitive and specific antibodies (Miller et al. 2000). As a result, most inves-
tigation has relied on expression patterns of the FMR2 RNA, and these studies
have largely been carried out in mouse. The mouse Fmr2 gene is highly simi-
lar to the human gene, with ∼ 77% identity at the nucleotide sequence level
and 86% identity at the amino acid level (Chakrabarti et al. 1998). The mouse
gene is slightly larger than the human (510 kb), and is also near the mouse
Fmr1 gene, but at a similar distance (658 kb). The human exon 5 is not found
in the mouse genome, otherwise, the exons are well conserved, as are their
boundaries. The two large introns found in the human gene (introns 1 and 3)
are similarly large in the mouse. Thus, it is likely that the mouse and human
genes overlap in expression and function, and suggest that the mouse may be
a reasonable model for study of the human gene and disease.
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5
Mouse Model of Fmr2 Deficiency and Drosophila Lilli

Gu et al. (2002) reported a mouse model for Fmr2 deficiency where the gene
had been disrupted in the first exon with an expression cassette that allowed
the E. coli lacZ gene to be expressed under control of the Fmr2 promoter.
This provided the ability to follow expression of the gene through staining for
beta-galactosidase activity, and was used to define the expression pattern of
Fmr2 in early embryos. Fmr2 is expressed in neurons early in development;
expression can be seen as early as 10.5 days post coitum (pc), and is found
at the ganglionic eminences of the telencephalon, in regions where the first
groups of neuroblast cells differentiate. By 12.5 days pc, expression is found in
early differentiating and migrating neuroblasts that form the primitive plex-
iform layer. The highest levels of expression are found at 15.5 days pc, with
the cerebral cortex staining intensely along with other parts of the developing
CNS and other regions of the developing fetus (bone, cartilage, hair follicles,
lung, cardiac muscle and others). These expression data suggest a role for
Fmr2 in neuronal differentiation, as expression correlates with regions where
the neurons are “born” and begin to assume their ultimate identities.

Absence of Fmr2 in male mice leads to a small increase in the rate of
spontaneous death, with 15% of knockout mice dead in the first 13 months
compared with none of the normal littermates. This excess death is unex-
plained, and is not found in heterozygous females. No evidence for loss of
embryos was found after genotyping offspring, and the animals that died
early had no obvious pathology after histological examination.

Behavioral testing did reveal differences between Fmr2 knockout mice and
their control littermates. Fmr2 deficient mice showed reduced fear condi-
tioning in both contextual and conditioned fear paradigms that was delay
dependent suggesting a memory consolidation defect. They were also more
sensitive to painful stimulus in a hot plate test, suggesting a role for Fmr2 in
development of nociception. In the Morris water maze, the Fmr2 knockout
mice were slower to find the hidden platform, but were found to use a spa-
tially biased search pattern in the probe test. Other measures of behavior
were not found to be significantly different between the knockouts and their
normal littermates.

Electrophysiological studies of the hippocampus of the Fmr2 knockout
mice revealed an enhancement of long-term potentiation (LTP) when meas-
ured in the CA1 region. While it is more common to find reduced LTP in
mouse models of mental retardation, enhancement of LTP has also been de-
scribed in mouse knockouts, and it is likely that disturbance of the balance of
LTP in either direction can be debilitating to neuronal function.

Overall, the Fmr2 mouse model shows significant defects in both behav-
ioral and electrophysiological profiles, confirming the likely role for loss of
function of this gene in the phenotypes found in patients with FRAXE ex-
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pansion. Curiously, mice missing Fmr2 appear to be more debilitated than
knockouts of Fmr1 in both behavioral and electrophysiological profiles (Kooy
2003). This is not the result expected from comparison of human patients
with the two disorders—FRAXA patients are typically more affected than
those with FRAXE deficiency. One possible explanation for this finding may
lie in the mechanisms of mutation. The repeat expansion mutations at FRAXA
and FRAXE ablate gene expression through methylation and down-regulation
of the respective loci. While there are no data regarding the timing of these
events in FRAXE expansion, for FRAXA, it is clear that early in fetal develop-
ment, there is a substantial fraction of expanded (full mutation) alleles that
are not methylated. This complicates diagnostic testing using amniocentesis
since methylation status is not a reliable predictor of affected status at this
time in development (Kallinen et al. 2000). From the mouse data, the major-
ity of FMR2 expression is found early in fetal development, suggesting that for
human FRAXE patients, expression may be quasi-normal until methylation is
established. In this case, by the time the gene has been turned off by methy-
lation, it may have accomplished much of its early work. In contrast, since
FMR1 is expressed robustly throughout life, loss of function later in develop-
ment may be more deleterious. Of course in both mouse models, the genes are
turned off from conception, and this might exaggerate the phenotype beyond
that found in the human repeat-expansion disorders.

Another confounding feature for both FMR1 and FMR2 models is the pres-
ence of related gene products that could compensate for loss of function. For
FMR1, two paralogs, FXR1 and FXR2 are being studied for overlapping func-
tion (Bontekoe et al. 2002; Mientjes et al. 2004; Zhang et al. 1995). For FMR2,
the other AFF family members may compensate for some of the FMR2 func-
tion in early development. For example, double knockout mice missing Fmr2
and Af5q31 show significantly increased mortality compared to either single
knockout (Gu and Nelson, 2006, personal communication).

Some significant insight into FMR2 function has come from study of the
fruit fly. In 2001, three groups independently identified an ortholog of the
AF4/FMR2 family in Drosophila melanogaster. Lilliputian (Lilli) is the only
member of the FMR2/AF4 gene family found in the Drosophila genome (Su
et al. 2001; Tang et al. 2001; Wittwer et al. 2001). The Lilli protein has a C-
terminal homology region (CHD) (Tang et al. 2001; Wittwer et al. 2001) that is
31–37% identical to the corresponding sequences of the human AFF proteins.
Remarkably, the position of intron/exon boundaries within this region is con-
served between Lilli and the human gene family. Like other family members,
Lilli is rich in proline and serine residues (9.0% and 12.7% of all amino acids,
respectively) and serines are found in Lilli at the same relative positions in
FMR2/AF4 family members. This indicates that the putative transactivation
domain is conserved in Lilli although some domains in humans (NTD and
ALF domains) are not present in Lilli. These data suggest that the function of
Lilli should be similar to the function of the FMR2/AF4 gene family and that
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elucidating its function in Drosophila should help us understand the function
of this family in humans.

Lilli is essential for proper cellularization, gastrulation and segmentation
during Drosophila embryogenesis (Tang et al. 2001). Most embryos deficient
in Lilli, fail to hatch and subsequently die. A small percentage of embryos
hatch and die as first or second instar larvae. Examination of these dead
embryos shows two classes of phenotypes. One is involved with defects in
segmentation and germband extension. The other defect is failure to secrete
cuticle properly. These phenotypes are variable among individuals. Consider-
ing that genes known as pair-rule genes are required for segmental patterning
and germband extension, Tang et al. (2001) examined the expression patterns
of several of these genes in Lilli mutant embryos. Two genes: fushi tarazu
and huckebein display a change in expression patterns in Lilli mutant em-
bryos. Failure to secrete cuticle properly is associated with specific defects in
the maintenance of the actin network and defects in transport of organelles
during cellularization. In the mutants, actin filaments showed uneven distri-
bution in nuclei, ranging from abnormally large bundles to multinucleated
cells lacking filaments. These findings suggest potential targets for FMR2 and
family members in vertebrates, and studies are currently underway to define
potential mis-regulated targets in the mouse models (Gu and Nelson 2003).

6
The FMR3 Transcript

In 2000, Gecz reported the identification of a 3.8 kilobase transcript expressed
in the opposite orientation from the FMR2 gene, using the same promoter
region, with a 5′ end a mere 3 nucleotides from the transcriptional start of
FMR2 (Gecz 2000a). The transcript is spliced, composed of two exons, but
without a lengthy open reading frame, suggesting it does not encode a pro-
tein. Expression of FMR3 is extinguished by repeat expansion and methyla-
tion at FRAXE, thus absence of its expression could contribute to the FRAXE
phenotype, but a mechanism for this awaits further analysis of potential func-
tion for the FMR3 transcript.

7
FRAXF and FAM11A

The FRAXF repeat expansion is rare, but has not been surveyed in detail. In-
dividuals with expansions were identified in cytogenetic fragile site studies
among patients with MR prior to molecular testing for FRAXA and FRAXE.
Since such studies are much less frequent now, and since the phenotype
caused by FRAXF expansion (if any) does not appear to encompass cognitive
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disabilities, no surveys for FRAXF expansions have been carried out. In the
general population, the repeat is found to be composed of a variable d(CGG)
triplet along with a d(GCCGTC) hexamer repeat that can vary. The most com-
mon allele is d(GCCGTC)3d(GCC)8, and the total length varies from 36 to 114
base pairs in the general population (12 to 38 triplet equivalents) (Holden
et al. 1996b; Ritchie et al. 1997).

The scarcity of repeat expansion at FRAXF, coupled with the apparent ab-
sence of phenotype in individuals with expanded and methylated repeats led
to little interest in the locus among the medical genetics community. With the

Fig. 3 Alignment of the amino acid sequences of mammalian FAM11A proteins predicted
from mouse, rat, dog, bovine, orangutan and human. Shading indicates identical amino
acids, and the bottom line represents a consensus sequence
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completion of the sequence of the human genome, however, it has become
clear that the FRAXF repeat, like those at FRAXA and FRAXE, is embedded
in the 5′ untranslated region of a gene. Shaw et al. reported the sequence of
FAM11A, a gene of unknown function that is transcribed from the FRAXF
CpG island in a telomere to centromere direction and contains the FRAXF
repeat in its mRNA (Shaw et al. 2002). Moreover, the gene’s expression is
extinguished by repeat expansion at FRAXF. FAM11A is most abundantly ex-

Fig. 4 Alignment of the human FAM11A protein with the most similar proteins identified
from Drosophila melanogaster, C. elegans, Xenopus laevis, and Zebrafish (Danio rerio).
Shading indicates identical amino acids, and the bottom line represents a consensus se-
quence
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pressed in heart and skeletal muscle, along with placenta, while other tissues,
such as brain and kidney, show reduced levels of expression.

Remarkably, the predicted amino acid sequence of FAM11A (350 amino
acids) is 99.7% identical between the human and mouse proteins. Other
mammals show similarly high identity (dog, cow, orangutan, and rat), Xeno-
pus is 94% identical, chicken is 95% identical and orthologs can be found in
both Drosophila and C. elegans (Figs. 3 and 4). An intronless autosomal para-
log (FAM11B) that is found in humans (2q14) and mice (and other mammals)
is 88% identical to FAM11A in the human, and is very highly conserved in
evolution. It may be the case that the functions of FAM11A that are absent in
individuals with FRAXF expansion can be compensated by FAM11B.

Maurer and coauthors (2004) described the identification of a transcript
termed ee3 that is increased in abundance in mouse brain in animals that
were transgenic for increased expression of erythropoietin. The ee3 transcript
is identical to FAM11A. These authors recognized that the predicted protein
sequence was similar to a G-protein coupled receptor, with the typical seven
membrane spanning domains. They studied expression of the transcript and
protein in adult brain, and found neuronal specificity with an enhanced pres-
ence in dendrites. Yeast two-hybrid studies demonstrated association with
microtubule associated protein 1b (Map1b) and Map1b knockout mice were
found to no longer express detectable levels of ee3. Their study also suggests
an association with the 5-hydroxytryptamine 2a receptor in neurons. These
findings suggest a possible role for the FAM11A gene and could point to pos-
sible areas of clinical investigation into individuals with FRAXF expansions.

8
Future Prospects

While research efforts at FRAXA/FMR1 have continued at a blistering pace,
with exciting new understanding of the potential function of FMR1 and even
the potential for treatment (Bear et al. 2004), the fragile sites and their associ-
ated genes and diseases at FRAXE and FRAXF have received much less atten-
tion. For FRAXF, this is likely appropriate since individuals lacking FAM11A
expression due to FRAXF full mutations are apparently normal and this mu-
tation is therefore not known to be pathogenic. FRAXE has received more
attention, and numerous studies demonstrated that the repeat expansion mu-
tation is rare in individuals with mental retardation or learning disabilities,
with estimates of the frequency in the general population in the 1/50 000 to
1/100 000 range. While this is vastly less common than the FRAXA/FMR1
Fragile X syndrome (∼ 1/3500), it is not significantly less common than some
of the other triplet repeat disorders. In addition, the size of the FMR2 gene
suggests it may be a reasonable target for mutations that do not involve triplet
repeat expansion. Thus far, no systematic surveys of mutation at FMR2 have
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been carried out, but as sequencing technology improves, it should be pos-
sible to contemplate a more comprehensive screen for FMR2 mutations in
learning disabled populations. It may also be worthwhile to contemplate other
phenotypes as candidates for FMR2 mutations. Association of FRAXE with
obsessive-compulsive disorder suggests that there may be additional areas for
understanding the role of this gene in neuronal development and function
(Wang et al. 2003).

Models for FMR2 are suggesting new avenues for determining function of
the FMR2 gene family. Additional mouse knockouts for the family should al-
low determination of functions that overlap and those that are unique to each
member. Identification of gene targets for FMR2 will allow a more complete
catalog of the genetic pathways in which it participates, and will suggest pos-
sible alterations in neuronal function that could lead to the clinical picture
of FRAXE patients. This knowledge will in turn lead to possible therapeutic
interventions that may lead to improved lives for these rare but fascinating
patients.
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1
Clinical Features and Pathology

Friedreich ataxia (FA) is the most common of the early-onset hereditary atax-
ias in Indo-European and North African populations. The disease was first
described in 1863 by Nickolaus Friedreich, Professor of Medicine at Hei-
delberg. Although Friedreich’s papers described the essential clinical and
pathological features of the disease as “degenerative atrophy of the posterior
columns of the spinal cord” leading to progressive ataxia, sensory loss and
muscle weakness, often associated with scoliosis, foot deformity and heart
disease, subsequent descriptions of atypical cases and of clinically similar
diseases clouded classification for many years. Diagnostic criteria were es-
tablished in the late 1970s, after a renewed interest in the disease prompted
several rigorous clinical studies (Geoffroy et al. 1976; Harding 1981). The
following clinical features were considered essential to establish the diag-
nosis: (1) autosomal recessive inheritance, (2) onset before 25 years of age,
(3) progressive limb and gait ataxia, (4) absent tendon reflexes in the legs,
(5) electrophysiologic evidence of axonal sensory neuropathy, followed within
5 years of onset by (6) dysarthria, (7) areflexia at all four limbs, (8) dis-
tal loss of position and vibration sense, (9) extensor plantar responses, and
(10) pyramidal weakness of the legs. The associated neuropathology is char-
acterized by atrophy of the sensory pathways, with early loss of large neurons
in the dorsal root ganglia (DRG), sensory axonal neuropathy, and degen-
eration of the posterior columns of the spinal cord. The cerebellum shows
atrophy of the deep dentate nucleus, but its cortex is relatively preserved
(Koeppen 2003).

The eventual identification of the FA gene (FRDA) and its most common
mutation, the unstable hyperexpansion of a d(GAA) triplet repeat sequence
(Campuzano et al. 1996), has allowed the clinical and pathological spectrum
of the disease to be defined better. While the aforementioned criteria cer-
tainly identify the typical cases of FA, it is now clear that the disease shows
a remarkable clinical variability, sometimes even within the same sibship,
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a rather uncommon finding for recessive disorders. Variability involves age
of onset, rate of progression, and overall severity (Dürr et al. 1996; Monter-
mini et al. 1997a). Cardiomyopathy, kyphoscoliosis, pes cavus, optic atrophy,
hearing loss and diabetes mellitus only occur in some patients. Atypical cases
with an overall FA-like phenotype but missing some of the essential diag-
nostic features can be identified. These include late-onset FA, which develops
after the age of 25, sometimes as late as the sixth decade, and FA with re-
tained tendon reflexes. The molecular basis for such a variability is only
partially understood. Germ-line and somatic instability of the d(GAA) triplet
repeat sequence certainly plays a role (Montermini et al. 1997a), but addi-
tional genetic and environmental factors are clearly involved. One example
of a possible modifier genetic factor is the effect of mitochondrial DNA hap-
logroups (Giacchetti et al. 2004).

2
Gene Structure and Expression

The FRDA locus is in the proximal long arm of chromosome 9 (Chamberlain
et al. 1988). The gene contains seven exons spanning 95 kb of genomic DNA.
It is transcribed in the cen-tel direction. The major, and probably only func-
tionally relevant messenger RNA (mRNA), has a size of 1.3 kb, corresponding
to the first five exons, numbered 1–5a. The encoded protein, predicted to con-
tain 210 amino acids, was designated frataxin (Campuzano et al. 1996).

The gene is expressed in all cells, but at variable levels in different tissues
and at different times during development (Campuzano et al. 1996; Jiraler-
spong et al. 1997; Koutnikova et al. 1997). In adult humans, frataxin mRNA
and protein are most abundant in the heart, brain and spinal cord, followed
by liver, skeletal muscle, and pancreas. In mouse embryos, expression starts
in the neuroepithelium at embryonic day 10.5 (E10.5), then reaches its highest
level at E14.5 and into the postnatal period (Jiralerspong et al. 1997; Kout-
nikova et al. 1997). In developing mice, the highest levels of frataxin mRNA
are found in the spinal cord, particularly at the thoracolumbar level, and in
the DRG. The developing brain is also very rich in frataxin mRNA, which is
abundant in the proliferating neural cells in the periventricular zone, in the
cortical plates, and in the ganglionic eminence. Robust expression is also de-
tected in the heart, in the axial skeleton, and in some epithelial (skin, teeth)
and mesenchymal (brown fat) tissues (Jiralerspong et al. 1997; Koutnikova
et al. 1997).

Overall, frataxin expression is generally higher in mitochondria-rich cells,
such as cardiomyocytes and neurons. There is, however, a still-unexplained
additional cell specificity, which in the nervous system is reflected in a higher
abundance of frataxin in specific neuronal types, such as primary sensory
neurons.
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3
The d(GAA) Triplet Repeat Mutation

The most common mutation causing FA (98%) is the hyperexpansion of
a d(GAA) triplet repeat in the first intron of the FRDA gene (Campuzano et al.
1996). FA is the only known disease to be caused by an expansion of d(GAA)
triplets. Repeats in normal chromosomes contain up to approximately 40
triplets; disease-associated repeats contain from approximately 70 to more
than 1000 triplets, most commonly 600–900 (Campuzano et al. 1996; Mon-
termini et al. 1997b). Because of the recessive nature of the disease, affected
individuals have expansions in both homologues of chromosome 9. Heterozy-
gous carriers are clinically normal. This is the most common disease-causing
triplet repeat expansion identified so far with 1 : 90 Europeans being a car-
rier. A small minority of patients (approximately 5%) are heterozygous for
a d(GAA) expansion and a missense or nonsense point mutation disrupting
the frataxin coding sequence (Campuzano et al. 1996; Cossée et al. 1999). No
patients have been identified so far that carry point mutations in both copies
of the frataxin gene.

3.1
Instability of Expanded Repeats

The FA-associated expansion shows instability when transmitted from parent
to child (Campuzano et al. 1996; Dürr et al. 1996; Filla et al. 1996; Monter-
mini et al. 1997a). Expansions and contractions of expanded d(GAA) repeats
can both be observed. Expanded repeats are equally likely to further expand
or contract during maternal transmission, but they most often contract dur-
ing paternal transmission (Pianese et al. 1997; Monros et al. 1997), a result
also supported by sperm analysis (Pianese et al. 1997). In this regard, FA
resembles the other diseases associated with very large expansions in non-
coding regions, such as fragile X syndrome and myotonic dystrophy, while
smaller expansions of d(CAG) repeats in coding regions, such as those found
in dominant ataxias and Huntington disease, are more likely to undergo size
increases during paternal transmission.

Mitotic instability, leading to somatic mosaicism for expansion sizes, can
be observed in FA (Montermini et al. 1997c). Analysis of d(GAA) expansions
reveals ample variations in different cell types or tissues from the same pa-
tient. Furthermore, heterogeneity among cells occurs to a variable degree in
different tissues. For instance, cultured fibroblasts and cerebellar cortex show
very little heterogeneity of expansion size among individual cells, lympho-
cytes are more heterogeneous, and most brain regions show a rather complex
pattern of allele sizes, indicating extensive cellular heterogeneity (Montermini
et al. 1997c). While some of these differences could be accounted for by a ma-
jor period of instability during the first weeks of embryonic development,
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expanded d(GAA) repeats may be inherently more stable in some cell types
(Montermini et al. 1997c). In general, it is clear that determining the size of
a patient’s expansions in peripheral blood lymphocytes, from which DNA is
usually obtained, only provides a single sample of the overall repeat size dis-
tribution occurring within that patient, and therefore only an approximate
estimate of expansion sizes in affected tissues.

3.2
Origin and Mechanisms of Expansion of the Repeat

The d(GAA) repeat associated with FA is localized within an Alu sequence
(GAA – Alu). Alu sequences are a heterogeneous group of primate-specific in-
terspersed repetitive DNA elements with an estimated frequency of 5×1055–
1 × 106 copies per genome. They may serve as functional polIII-transcribed
genes and are probably derived from 7SL genes. Their pervasiveness and vari-
ability are the result of constant amplification and retrotranposon-mediated
reinsertion throughout the genome over 65 million years of primate evolu-
tion. Despite their diversity, Alu sequences can be grouped into subfamilies
whose members share a few, common diagnostic base changes. By com-
paring differences between these sequences, Alu elements can be used as
molecular clocks to estimate the age of a particular subfamily or member of
a subfamily. GAA – Alu is assigned to the AluSx subfamily. Identity between
GAA – Alu and the AluSx consensus sequence is 89%, in agreement with the
overall 92 ± 3% identity between individual AluSx subfamily sequences and
the consensus sequence. On the basis of sequence similarity, the average age
of the AluSx subfamily has been estimated to be 37 million years (Kapitonov
and Jurka 1996). The FA-associated d(GAA) repeat is situated in the middle
of GAA – Alu, preceded by a stretch of an average of 16 adenine residues,
apparently derived from an expansion of the canonical A5TACA6 sequence
linking the two halves of Alu sequences. GAA – Alu is flanked by a 13-bp
perfect direct repeat d(AAAATGGATTTCC), suggesting a recent Alu retropo-
sition/insertion event, an idea supported by the estimated age of the AluSx
subfamily.

Alleles at the d(GAA) repeat site can be subdivided into three classes de-
pending on their length: short normal alleles (SN, approximately 82% in
Europeans), long normal alleles (LN, approximately 17% in Europeans), and
pathological expanded alleles (E, approximately 1% in Europeans) (Cossée
et al. 1997; Montermini et al. 1997b). The length polymorphism of the
d(GAA) repeat in normal alleles suggests that it was generated by two types
of events. Small changes, plus or minus one trinucleotide, may have caused
limited size heterogeneity. Such small changes were likely to be the conse-
quence of occasional events of polymerase “stuttering” during DNA repli-
cation, i.e., slippage followed by misrealignment of the newly synthesized
strand by one or, rarely, a few repeat units (Richards and Sutherland 1994).
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This basic polymorphism-generating mechanism has been postulated for all
simple-sequence repeats (Wells 1996). By comparison, the jump from the SN
to the LN group was probably a singular event. Linkage disequilibrium studies
were carried out in European and also in Yemenite and North African fami-
lies, with single nucleotide polymorphisms spanning the FRDA gene and with
polymorphisms of the polyalanine sequence adjacent to the d(GAA) repeat.
These studies indicate that E and LN alleles appear genetically homogeneous
and likely related, while SN represents a more heterogeneous class of alleles
(Monticelli et al. 2004).

Possibly, the event that created LN alleles was the sudden duplication
of an SN allele containing eight or nine d(GAA) triplets, creating an LN
allele with 16 or 18 d(GAA) triplets. This occurred presumably in Africa,
leading to a population of chromosomes with LN alleles sharing the same
background haplotype. Single repeat insertion/deletions, resulting from DNA
polymerase stuttering, gave rise to the spectrum of stable d(GAA) repeats
ranging from 12 to about 25 triplets. One or a few of these chromosomes
subsequently migrated to Europe and/or to the Middle East, but not to
East Asia, where no LN (or E) alleles are found. It is hard to speculate
about the mechanism leading to such a sudden doubling of the repeat; how-
ever, similar events have been shown to occur in triplet repeats cloned into
bacterial plasmids (Pluciennik et al. 2000). Recombination-based mechan-
isms such as unequal sister-chromatid exchange and gene conversion have
been proposed as generators of variability in tandem repeats (Wells 1996)
and in microsatellites (Jakupciak and Wells 2000), but alternative hypothe-
ses such as the occurrence of an exceptionally large slippage event cannot
be excluded. The passage from LN to E alleles probably involved a sec-
ond genetic event of the same kind, which generated “very long” LN alleles
containing 32–36d(GAA)triplets still on the same haplotype background as
the “shorter” LN alleles from which they derived. By reaching the insta-
bility threshold, estimated as 34 d(GAA)triplets (Montermini et al. 1997b),
they form a reservoir for expansions. The occurrence of a second dupli-
cation event is suggested by the lack of both E and LN alleles with more
than 21 d(GAA) triplets alleles in Africans. The ethnic–geographic distri-
bution of FA could be explained if the second event occurred prior to the
divergence of Indo-Europeans and Afro-Asiatic speakers. According to the
previously described scenario, the extent of linkage disequilibrium between
LN alleles and linked marker loci on chromosomes of African descent is ex-
pected to be lower than that between LN and E alleles and the same marker
in Europeans (Labuda et al. 1997; Harpending et al. 1998), as is in fact ob-
served (Labuda et al. 2000). Accordingly, LN chromosomes in Africa appear
to be 3.2 times older than the LN chromosomes in Europe, and these ap-
pear to be 1.27 times older than E chromosomes. Assuming the age of LN
African chromosomes to be about 100 000 years, one would date the ori-
gin of European LN chromosomes at about 30 000 years ago and that of the
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E chromosomes at about 25 000 years ago, i.e., following the Upper Paleolithic
population expansion.

It was possible to directly observe the hyperexpansion of “very long” LN
premutation alleles containing more than 34 d(GAA) triplets. This length is
close to the instability threshold for other triplet repeat associated disorders,
such as those involving d(CGG) and d(CAG) repeats (Eichler et al. 1994).

Strand displacement during DNA replication is thought to be the mechan-
ism that leads to reiterative synthesis and expansion. For this phenomenon
to occur, the displaced strand has to form some kind of secondary structure
(Parniewski and Staczek 2002). A single DNA strand containing a d(GAA) re-
peat is able to form different types of secondary structure (LeProust et al.
2000), which may be involved in instability. A single d(CTT) strand seems
structureless (LeProust et al. 2000), and this difference may play a role in
determining whether deletions or expansions are favored according to the di-
rection of the replicating fork. Strand displacement is promoted by stalling of
DNA polymerase caused by an alternate DNA structure, or by tightly bound
proteins, or both (Wells 1996). The triplex-forming ability of long FA d(GAA)
repeats, discussed next, may be involved in repeat instability by causing DNA
polymerase stalling as well as by forming a target for protein binding.

4
Pathogenic Mechanisms: Triplexes and Sticky DNA

FA is due to frataxin deficiency. Frataxin levels in pathology specimens and
in cultured cells from FA patients are markedly lower than in normal controls
(Campuzano et al. 1997). The decrease in frataxin protein and mRNA is pro-
portional to the size of the expanded d(GAA) repeats, particularly the smaller
one, indicating a direct etiologic role of these repeats in suppressing frataxin
gene expression (Campuzano et al. 1997). How can an intron-located repeti-
tive sequence have such an effect? The currently prevailing hypothesis is that
the d(GAA) repeat adopts an unusual DNA structure that interferes with tran-
scription of the frataxin gene. An effect on transcription was first suggested
by transfection experiments in which the expression of a two-exon reporter
gene was inhibited by the insertion of a d(GAA) repeat of pathological length
in the intron. Those experiments did not reveal splicing abnormalities and
provided evidence in favor of a transcription block between the two exons
(Ohshima et al. 1998). The frataxin repeat is a tract of oligopurines (R) and
oligopyrimidines (Y). It has been proposed that the pathological structure
adopted by disease-causing lengths of this repeat is a triplex (Ohshima et al.
1996, 1998; Bidichandani et al. 1998; Filla et al. 1996; Grabczyk and Usdin
1998; Gacy et al. 1997). Triplexes are three-stranded nucleic acid structures
that can form at such RY sequences (Wells 1996). The third strand occupies
the major grove of the DNA double helix, forming Hoogsteen pairs between R
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or Y bases of the Watson–Crick base pairs. In intramolecular triplexes, as can
be observed in vitro in supercoiled plasmid DNA, the RY DNA folds back
onto itself to form the triple-helical structure. Four different isomers may
form, two based on RRY and two on YRY structures. Intermolecular triplexes
are formed between oligonucleotides or polynucleotides (DNA or RNA) and
target RY sequences on duplex DNA. Extensive investigations of triplexescon-
ducted in the 1980s and 1990s provided substantial information on the type of
sequence required, the effects of pH and methylation of the cytosine residues,
the effect of interposing non-RY sequences, the influence of environmental
factors on the stabilization of the four triplex isomers, and stabilization by
factors like intercalating agents (Wells et al. 1988; Frank-Kamenetskii and
Mirkin 1995; Soyfer and Potaman 1996; Sinden 1994; Guieysse et al. 1996; Ba-
colla et al. 1995; Xu and Goodridge 1996; Hanvey et al. 1988, 1989a, b; Shimizu
et al. 1989, 1990; Kang et al. 1992a, b; Ohshima et al. 1996). RRY triplexes
are more versatile than YRY triplexes since they tolerate more diverse pairing
schemes and their stability does not depend on lower pH for hemiproto-
nation of the cytosine residues, but rather requires the presence of divalent
metal ions; however, in vitro short repeat tracts formed by the FA d(GAA)
repeat at neutral pH are of the YRY type. Bimolecular YRY triplexes form
when the repeat tract approaches the premutation range and the amount of
negative supercoiling is higher (Potaman et al. 2004). A new type of DNA
structure, consistent with intramolecular triplex formation, was shown to be
adopted by lengths of d(GAA) as found in FA. This structure, called “sticky
DNA”, was first demonstrated in plasmids containing long tracts of d(GAA)
where it appeared as an anomalously retarded band in agarose gels in which
linearized plasmids containing d(GAA) repeats were separated (Sakamoto
et al. 1999). Such slow-migrating bands were shown to have a number of
physicochemical properties that are typical of intramolecular RRY triplexes.
In particular, the retarded band appeared only if the plasmid was nega-
tively supercoiled prior to linearization, and it was sensitive to divalent ion
concentration and temperature as is typical for RRY triplexes. An excellent
correlation was found between the lengths of d(GAA) and the formation of
this novel conformation: FA patients have 66 or more repeats; sticky DNA was
found only for repeats longer than 59 units. In vitro transcription studies of
d(GAA)n repeats (n = 9–150) using T7 or SP6 RNA polymerase showed that,
when a gel-isolated sticky DNA template was transcribed, the amount of full-
length RNA synthesized was significantly reduced compared with the amount
synthesized by transcription of the linear template. Surprisingly, transcrip-
tional inhibition was observed not only for the sticky DNA template but also
for another DNA molecule used as an internal control in an orientation-
independent manner. The molecular mechanism of transcriptional inhibition
by sticky DNA was a sequestration of the RNA polymerases by direct bind-
ing to the complex DNA structure (Sakamoto et al. 2001a). A d(GAAGGA)65
sequence, also found in intron 1 of the frataxin gene, does not form sticky
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DNA nor does it inhibit transcription in vivo and in vitro and it does not as-
sociate with the FA disease state (Ohshima et al. 1999). This finding suggests
that interruptions in the d(GAA) sequence may destabilize its structure and
facilitate transcription. Systematic analysis of the effects of introducing inter-
ruptions into a d(GAATTC)150 repeat by substituting an increasing number of
adenines with guanines has confirmed that the sticky DNA/triplex structure
is progressively destabilized and fails to form when the sequence becomes
d(GAAGGA)75. As the tendency to form a sticky DNA/triplex structure de-
creases, less and less inhibition of transcription is observed in vivo and in
vitro (Sakamoto et al. 2001b).

5
Genotype–Phenotype Correlation

5.1
d(GAA) Triplet Repeat Expansion

As expected by the experimental finding that smaller expansions allow
a higher residual gene expression (Campuzano et al. 1997), expansion sizes
have an influence on the severity of the phenotype. A direct correlation has
been firmly established between the size of d(GAA) repeats and an earlier age
of onset, earlier age of confinement to a wheelchair, more rapid rate of disease
progression, and presence of nonobligatory disease manifestations indicative
of more widespread degeneration (Dürr et al. 1996; Montermini et al. 1997b).
However, differences in d(GAA) expansions account for only about 50% of the
variability in the age of onset, indicating that other factors influence the phe-
notype. These may include somatic mosaicism for expansion sizes, variations
in the frataxin gene itself, modifier genes, and environmental factors.

5.2
Point Mutations

About 2% of the FA chromosomes carry d(GAA) repeat tracts of normal
length, but have missense, nonsense, or splice-site mutations ultimately af-
fecting the frataxin coding sequence (Campuzano et al. 1996; Cossée et al.
1999). All affected individuals with a point mutation identified so far are
heterozygous for an expanded d(GAA) repeat on the other homologue of
chromosome 9. It is possible that homozygotes for point mutations have not
yet been found just because point mutations are rare, but it is more likely that
homozygosity for frataxin point mutations would cause a lethal phenotype, as
suggested by the recent observation that frataxin knockout mice (Cossée et al.
2000) and mice homozygous for a frataxin missense mutation (P. Ioannu, per-
sonal communication) die during embryonic development.
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A few missense mutations are associated with milder atypical phenotypes
with slow progression, suggesting that the mutated proteins preserve some
residual function. Patients carrying the G130V mutation have early onset
but slow progression, no dysarthria, mild limb ataxia, and retained reflexes.
A similar phenotype occurs in individuals with the mutations D122Y and
R165P. For reasons that are not yet clear, individuals with frataxin point mu-
tations have a much higher frequency of optic atrophy (50%) than individuals
with repeat expansions (Cossée et al. 1999).

6
Frataxin Structure and Function

The FA gene (FRDA) (Chamberlain et al. 1988; Campuzano et al. 1996) en-
codes a small mitochondrial matrix protein, frataxin that is highly conserved
in evolution. A single frataxin gene is found in all eukaryotes, including fungi
and plants. A homologue, CyaY, is present in Gram-negative bacteria and
in other prokaryotes like Rickettsia prowazeckii, thought to be related to the
hypothetical mitochondrial precursor. FRDA is expressed in all cells, but at
variable levels in different tissues and during development (Koutnikova et al.
1997; Jiralerspong et al. 1997). In adult humans, frataxin mRNA is most abun-
dant in the heart, brain, and spinal cord, followed by liver, skeletal muscle,
and pancreas.

FA patients have a profound but not complete frataxin deficiency, with
a small residual amount of normal protein as a result of the d(GAA) triplet
repeat expansion.

Structural studies have been carried out on frataxin (Dhe-Paganon et al.
2000; Musco et al. 2000) and its bacterial homologue, CyaY (Cho et al. 2000)
by nuclear magnetic resonance and by crystallography. The structure is com-
pact, overall globular, containing an N-terminal α-helix, a middle β-sheet
region composed of seven β-strands, a second α-helix, and a C-terminal coil.
On the outside, a ridge of negatively charged residues and a patch of hy-
drophobic residues are highly conserved.

Knockout of the yeast frataxin homologous gene (YFH1) in yeast (∆yfh1)
causes the loss of oxidative phosphorylation and of mitochondrial DNA (Bab-
cock et al. 1997; Wilson and Roof 1997). Iron accumulates in mitochondria
of ∆yfh1 to more then tenfold its level in wild-type yeast. Loss of respi-
ratory competence requires the presence of iron in the culture medium,
and occurs more rapidly as the iron concentration in the medium is in-
creased, suggesting that permanent mitochondrial damage is the conse-
quence of iron toxicity (Radisky et al. 1999). Formation of the highly toxic
hydroxyl radical through the Fenton reaction is suggested by the enhanced
sensitivity of ∆yfh1 to H2O2 (Babcock et al. 1997). In ∆yfh1 yeast, there
is a marked induction (tenfold to 50-fold) of the high-affinity iron trans-
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port system on the cell membrane, normally not expressed in yeast cells
that are iron-replete (Babcock et al. 1997). This induction has been re-
cently related to a deficit in mitochondrial synthesis of iron–sulfur clusters
(ISCs), rather than cytosolic iron depletion as previously thought (Chen
et al. 2004). ISC-containing enzymes, such as respiratory chain complexes I,
II, and III, and aconitase, are impaired in ∆yfh1 yeast (Rötig et al. 1997).
Frataxin appears to be involved in an early step of ISC synthesis (Muh-
lenhoff et al. 2003), through its interaction with the scaffold protein Isu1,
where the first ISC assembly takes place, probably facilitating iron incorpo-
ration (Yoon and Cowan 2003). This finding suggests that frataxin may be
a mitochondrial iron chaperone, protecting this metal from reactive oxygen
species and making it bioavailable. Recent data support this view, suggest-
ing that frataxin also acts as an iron chaperone in heme synthesis (Yoon
and Cowan 2004), and in the modulation of aconitase activity (Bulteau et al.
2004). A much higher affinity of frataxin for the heme-synthesis enzyme
ferrochelatase than for Isu1 (Yoon and Cowan 2004) would explain why
heme synthesis is resistant to low frataxin levels and is essentially unaffected
in FA patients.

7
Animal Models

A mouse model of FA has been difficult to generate because a complete loss
of frataxin, such as in frataxin knockout mice, causes early embryonic lethal-
ity (Cossée et al. 2000). Viable mouse models have been obtained so far only
through a conditional gene targeting approach. The first two models utilized
Cre transgenes under the control of the muscle creatine kinase (MCK) and of
the neuron-specific enolase (NSE) promoters to induce striated muscle- and
neuron-restricted exon deletion, respectively. NSE mutants have a low birth
weight and develop a progressive neurological phenotype with an average
onset of ataxia at 12 days, hunched stance, and loss of proprioception (Puc-
cio et al. 2001). MCK mutants show cardiac hypertrophy with thickening of
the walls of the left ventricle, and show myocardial degeneration with cyto-
plasmic vacuolization in the myocytes, evidence of necrosis, and postnecrotic
fibrosis (Puccio et al. 2001). Loss of activity of ISC-containing enzymes is an
early finding in these models. The MCK mutants accumulate iron in heart mi-
tochondria at later stages. Using a similar conditional knockout approach, but
with a tamoxifen-inducible Cre recombinase under the control of a neuron-
specific prion protein promoter, Simon et al. (2004) developed two different
lines developed which exhibit a progressive neurological phenotype with slow
evolution that recreates the neurological features of the human disease. An
autophagic process was detected in the DRG, leading to removal of mitochon-
drial debris and the appearance of lipofuscin deposits.
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8
Pathogenic Mechanisms in Friedreich Ataxia

Altered iron metabolism, free-radical damage, and mitochondrial dysfunc-
tion all occur in FA patients, suggesting that information derived from inves-
tigations on frataxin function and from the yeast and animal models is rel-
evant for the pathogenesis of the human disease. Oxidative stress is revealed
by increased plasma levels of malondialdheyde, a lipid peroxidation prod-
uct (Emond et al. 2000), increased urinary 8-hydroxy-2′-deoxyguanosine,
a marker of oxidative DNA damage (Schulz et al. 2000), decreased plasma-
free glutathione (Piemonte et al. 2001) and elevated plasma glutathione S-
transferase activity (Tozzi et al. 2002). Increased free-radical production
could be directly demonstrated in cultured cells engineered to produce re-
duced levels of frataxin (Santos et al. 2001). In addition, H2O2 induces apop-
tosis in patients’ fibroblasts at lower doses than in control fibroblasts (Wong
et al. 1999), suggesting that even nonaffected cells are at risk for oxidative
stress as a consequence of the primary genetic defect. FA fibroblasts also
show abnormal antioxidant responses, in particular a blunted increase in
mitochondrial superoxide dismutase triggered by iron and by oxidants in
control cells (Jiralerspong et al. 2001). Mitochondrial dysfunction has been
proven to occur in vivo in FA patients. Phosphorus magnetic resonance spec-
troscopy analysis of skeletal muscle and heart shows a reduced rate of ATP
synthesis (Lodi et al. 1999). Finally and most importantly, the same multi-
ple ISC-containing enzyme dysfunctions found in ∆yfh1 yeast and in mouse
models are also found in affected tissues from FA patients (Rötig et al. 1997).

Activation of stress pathways, triggered by mitochondrial dysfunction, oc-
curs in FA and is likely to play an important role in cell atrophy and death.
Studies on cultured PC12 cells, rat pheochromocytoma cells that can be dif-
ferentiated into neurons by adding nerve growth factor, showed in particular
an increased expression and activity of the MKK4-JNK kinase pathway, which
may be at first a protective response but eventually triggers apoptosis. Differ-
ent vulnerable cell types may activate different pathways, as suggested by the
observation of the specific occurrence of autophagic vacuoles only in primary
sensory neurons in the inducible conditional knockout mouse model (Simon
et al. 2004).

9
Perspectives for Treatment

All FA patients carry at least one allele with an expanded d(GAA) repeat
and therefore make an insufficient amount of otherwise normal frataxin. If it
were possible to increase their frataxin production to levels that are similar to
those of healthy carriers, one could possibly stop the course of the disease and
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maybe even induce some improvement. Increased frataxin production could
be obtained:

1. Through gene replacement therapy, i.e., by introducing a frataxin gene
without the d(GAA) expansion into the patient cells.

2. By giving frataxin directly. The protein should, however, be modified such
that it will be able to reach the nerve cells affected by the disease and the
mitochondria within these cells.

3. By using molecules that can destabilize the triple-helical structure formed
by the d(GAA) repeat and shift the equilibrium toward the physiological
double helix that allows frataxin expression.

Though still in their infancy, all these approaches are under study. Re-
cently, encouraging results have been obtained for gene replacement ther-
apy, with partial correction of the oxidative stress hypersensitivity of FA
fibroblasts by frataxin-encoding adeno-associated virus and lentivirus vec-
tors (Fleming et al. 2005).

Additional ways to treat the disease may become apparent from studies
on the function of frataxin. On the basis of these findings, therapeutic ap-
proaches aimed at controlling the levels of free radicals and regulating respi-
ratory chain activation may be proposed. Concerning antioxidant molecules
and respiratory chain stimulants, some coenzyme Q derivatives (idebenone,
CoQ-10) have already yielded promising results, not only in experimental
models (Seznec et al. 2004), but also in clinical trials, at least with respect to
FA cardiomyopathy (Buyse et al. 2003; Mariotti et al. 2003). Automated high-
throughput tests to evaluate a large number of molecules for their ability to
correct the functional consequences of frataxin deficiency are under way. An
intriguing possibility would be the identification of small molecules capable
of effectively replacing frataxin by binding mitochondrial iron and increasing
its bioavailability.

Last, cellular therapies, in particular the use of stem cells, could be useful
in the treatment of FA. However, the widespread nature of neurodegenera-
tion in FA is a major obstacle to this approach since it would require the
widespread delivery of cells in the central nervous system of the patients.

Remarkable progress has been made in understanding the pathogenesis of
FA since the gene responsible was discovered in 1996. In addition, investigat-
ing the pathogenesis of FA has stimulated research on numerous basic areas
of biology, from DNA structure and biochemistry to iron metabolism. How-
ever, most excitingly perhaps is the now realistic perspective of developing
a treatment for this so far incurable neurodegenerative disease.
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1
Introduction and Disease Features

Progressive myoclonus epilepsy of the Unverricht–Lundborg type (EPM1;
OMIM no. 254800) is an autosomal recessive disorder originally described by
Unverricht (1891) and Lundborg (1903). EPM1 is a rare disorder in the gen-
eral population but is relatively more common in Finland (1 : 20000) and the
western Mediterranean, and is thus also known as Baltic and Mediterranean
myoclonus (Norio and Koskiniemi 1979; Eldridge et al. 1983; Genton et al.
1990; Labauge et al. 1997). However, affected families have been described in
various areas around the world, e.g., the USA or the eastern Mediterranean
(Eldridge et al. 1983; Mazarib et al. 2001).

The disease is characterized by severe stimulus-sensitive myoclonus, gen-
eralized tonic–clonic seizures, and a characteristic electroencephalogram
(Berkovic et al. 1991; Canafoglia et al. 2004). The onset of the disease is
between 6 and 18 years of age, and the progression, the severity, and sur-
vival vary between and within families (Koskiniemi et al. 1974a, b; Norio
and Koskiniemi 1979; Lehesjoki 2002). Mental deterioration, dementia, and
cerebellar ataxia develop late in the course of the disease, which is usually
10–20 years in duration (Koskiniemi et al. 1974a; Eldridge et al. 1983). Cogni-
tive functions are only mildly if at all affected and the patients do not present
psychotic symptoms; they are emotionally labile, however, and show a higher
rate of suicide.
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The symptoms are now efficiently managed using antiepileptic drugs,
mainly valproic acid alone or in combination with clonazepam and pirac-
etam.

Histologically, the brain shows degenerative changes which can be easily
distinguished from Lafora bodies, the characteristic acid mucopolysaccharide
inclusions found in EPM2 (Carpenter and Karpati 1981). The most consis-
tent finding in EPM1 is the marked loss of Purkinje cells in the cerebellum,
neuronal loss in medial thalamus and spinal cord, and most likely cell loss in
the granular cell layer (Haltia et al. 1969; Koskiniemi et al. 1974a, b; Eldridge
et al. 1983; Meldium and Bruton 1992; Mascalchi et al. 2002; Takuma et al.
2003). Extracellular and occasionally intracellular periodic acid–Schiff posi-
tive granulations were found in neurons and glial cells and in the liver, spleen,
heart, lungs, renal tubules, and posterior lobes of the pituitary gland in a large
consanguineous Swiss family (Klein et al. 1968; Klein and Rabinowicz 1980).
Membrane-bound vacuoles with clear contents in eccrine cells have also been
reported in some EPM1 patients (Cochius et al. 1994).

The molecular genetics findings described herein have allowed EPM1 to
be distinguished from other epilepsies using genetic diagnosis, and have shed
light on the cause and pathophysiology of the disease.

2
Linkage Analysis and Positional Cloning of the EPM1 Gene

EPM1 was originally mapped to the terminal band of human chromosome
21q22.3 in Finnish patients (Lehesjoki et al. 1991). An identical linkage
mapping was confirmed for EPM1 patients from other parts of the world
(Malafosse et al. 1992). With the refinement of the genetic maps, as a result of
the human genome project, the availability of more efficient linkage methods,
and the recruitment of more families, the disease was finally mapped to
a 175-kb interval on chromosome 21 (Cochius et al. 1993; Lehesjoki et al.
1993a, b; Lalioti et al. 1995; Virtaneva et al. 1996). The Finnish population
showed strong linkage disequilibrium, predicting a founder effect and a com-
mon mutation (Lehesjoki et al. 1993b; Virtaneva et al. 1996). A founder effect
was also described in other parts of the world (Parmeggiani et al. 1997;
Moulard et al. 2002, 2003).

Since the biochemical defect in EPM1 remained undiscovered, positional
cloning approaches were undertaken. Complete arrays of overlapping clones
covering the area were constructed (Lafreniere et al. 1995; Stone et al. 1996), and
were extensively used to identify candidate genes through complementary DNA
selection and exon trapping. Candidate genes were tested in a trial-and-error
fashion, and excluded if no mutation was found. This approach led to the iden-
tification of point mutations on the cystatin B (also named stefin B or CSTB)
gene on a small subgroup of patients with EPM1 (Pennacchio et al. 1996).
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3
Cystatin B

Cystatin B is a member of the cysteine proteinase inhibitor superfamily
(PROSITE PDOC00259; reviewed in Turk and Bode 1991; Turk et al. 1997,
2002b). This name was first used to describe an inhibitor of papain and re-
lated endopeptidases isolated from chicken egg white (Barrett 1981).

Cysteine proteinases constitute a group of proteolytic enzymes that cleave
peptide bonds using a catalytic cysteine residue. Their inhibitors are classi-
fied into three distinct groups:

1. Type 1 cystatins (also named stefins) are molecules of approximately
100 amino acid residues and molecular size of 11 kDa, with no disulfide
bonds or carbohydrate groups. Cystatins A and B belong in this category.
They are stable at neutral and alkaline pH and resist heat. These proteins
are potent and reversible competitive inhibitors of cysteine proteinases,
with highest inhibition constants for papain, and cathepsins B, H, and L.
In addition to animal cystatins, two cystatins have been described in rice
that were found to inhibit insect digestive cysteine proteinases, therefore
acting as plant-resistance mechanisms (Liang et al. 1991).

2. Type 2 cystatins are slightly larger molecules of 115 amino acids and a mo-
lecular size of 13 kDa. In contrast to type 1 cystatins, proteins of this group
contain one or two disulfide loops near their C-terminus. Cystatin C is the
best-characterized member of this category. It was isolated from serum
of patients with autoimmune diseases (Brzin et al. 1984). A mutant cys-
tatin C, with a Q68L substitution is a major constituent of amyloid fibrils
in patients with hereditary cerebral hemorrhage with amyloidosis, de-
scribed in Ireland (Ghiso et al. 1986).

3. Type 3 cystatins or kininogens are much larger plasma glycoproteins of
68–120 kDa.

Residues 46–50 of cystatin B constitute the so-called QVVAG domain, which
is highly conserved in type 1 and plant cystatins. This region is deleted in
some EPM1 patients with splice site mutations as discussed later. In type 2
cystatins only Q46 and G50 are consistently present. Kininogens contain three
QVVAG domains and are predicted to have arisen from type 1 cystatins by
gene triplication (Muller-Esterl et al. 1985; Rawlings and Barrett 1990).

The other highly conserved residue among all cystatins (except rice II) is
Gly4. One EPM1 patient was found to be homozygous for a G4R mutation
(vide infra).

Human cystatin B (NM_000100) is a small gene of three exons and a total
genomic size of 3 kb (Fig. 1a). The coding region which is 297-bp long en-
codes a protein of 98 amino acids (Swiss-Prot P04080). In human and mouse,
cystatin B is expressed in all tissues tested (Pennacchio et al. 1996; Pennacchio
and Myers 1997). In the brain, cystatin B is present in neural stem cells and
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in mature neurons and glial cells. However, there are some differences in the
subcellular localization: in stem cells it is localized in the nucleus and in as-
trocytes in nucleus and cytoplasm (Riccio et al. 2001; Brannvall et al. 2003).
In the cytoplasm, cystatin B is present in lysosomes. The Purkinje cells of the
cerebellum, which are affected in EPM1, express cystatin B and its distribu-
tion is developmentally regulated (Riccio et al. 2005). Cystatin B is present
in the nucleus of proliferating primary myoblasts and COS-1 cells (Alakurtti
et al. 2005). In differentiated myotubes cystatin B is excluded from the nucleus
and is detected in punctate cytoplasmic structures, some of which are lyso-
somes. In embryonic liver cells, cystatin B is diffusely distributed throughout
the cytoplasm (Calkins et al. 1998). Although mainly an intracellular protein,
cystatin B has also been isolated from extracellular fluids (Abrahamson et al.
1986).

Human cystatin B forms inactive disulfide-linked dimers of 25 kDa. Under
reducing conditions, these dimers are converted into active monomers
(Wakamatsu et al. 1984). The crystal structure of human cystatin B in
stoichiometric complex with papain has been determined to 2.4-Å reso-
lution (Stubbs et al. 1990), (Fig. 2a). X-ray crystallography revealed that
the molecule consists of five-stranded β-sheets wrapped around a five-turn
α-helix. Crystallography also verified, as is the case in general with cystatins,
that the main interactions with papain are provided by the amino terminal

Fig. 1 a Schematic representation of the cystatin B gene structure and the nucleotide
variations found. Polymorphic variants of cystatin B are shown above the gene. Muta-
tions causing EPM1 are shown below the gene. Numbers preceded by “c” correspond to
position in the complementary DNA (cDNA), A of the ATG being 1. The underlined muta-
tions are the first ones described by Pennacchio et al. (1996). b Agarose gel and sequence
of PCR-amplified normal alleles containing two or three copies of the dodecamer. The
genotype is showing above each lane
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domain and the first hairpin loop, containing the highly conserved QVVAG
motif, with minor contributions from the second hairpin loop. The carb-
oxyl terminus of cystatin B is an additional site of interaction, dominated
by hydrophobic contacts. Gly4 is close to but not in direct contact with the
Cys25 in the active site of papain. Amino-terminal deletions of recombinant
chicken cystatin provided functional support to the crystallographic data. In
particular, a protein starting at Gly9 (equivalent to Gly4 of human cystatin B)
exhibited 5000-fold to 10 000-fold weaker inhibition of papain (Machleidt
et al. 1989, 1991). Directed mutagenesis, deletions, and elongations identified
regions of cystatin B involved in its biological activity that are consistent with
data for chicken cystatin (Abrahamson et al. 1987; Thiele et al. 1990; Jerala
et al. 1994; Pol and Bjork 2003).

In vitro, cystatin B is a tight-binding reversible inhibitor of papain and
cathepsins B, H, L, and S (Green et al. 1984; Popovic et al. 1988; Bromme
et al. 1991). Except for cathepsin B, which is also present at the cytoplasm,
the others are lysosomal proteinases responsible for protein degradation
(Schwartz and Barrett 1980; Barrett and Kirschke 1981; Bohley and Seglen

Fig. 2 a Ribbon representation of the cystatin B (blue)–papain (gray) complex. b, c Mag-
nification of the active site in the wild type and the G4R mutant cystatin C. The location
of Gly4 in the wild-type protein is shown with a magenta sphere, and that of Arg4 with
a group of red spheres. This side chain is in steric conflict with the binding site on papain,
and is likely to reduce the inhibitory activity of the G4R cystatin B mutant
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1992). Some cathepsins conduct nonselective protein degradation, while
others have tissue- and substrate-specific functions.

4
Point Mutations and Polymorphisms of the Cystatin B Gene

Only seven point mutations in the coding region of the cystatin B gene have
been identified to date, accounting for approximately 10% of the EPM1 alle-
les examined (Pennacchio et al. 1996; Bespalova et al. 1997a, b; Lalioti et al.
1997a; Kagitani-Shimono et al. 2002; de Haan et al. 2004), (Fig. 1, Table 1).
These alterations include two splice-site variants (IVS1-1 G > C, and IVS2-2
A > G), one glycine-to-arginine change (G4R), a silent c168G > C change at
the last nucleotide of exon 2, an arginine to termination (R68X), a glutamine
to termination (Q71X), and a deletion of two nucleotides resulting in protein
truncation (214-215delTC).

A few polymorphisms have also been described in cystatin B (Fig. 1A,
Table 1). These include a dodecamer repeat [d(CCCCGCCCCGCG)n ] in the
5′ upstream region of the cystatin B gene, located approximately 70 bp up-
stream of the transcription initiation site, and 174 nucleotides upstream of
the ATG translation initiation codon (Lalioti et al. 1997b). Normal individuals
contain two to three copies of the repeat. The frequency of the two-copy allele
was 34–47% and that of the thee-copy allele was 66–53% in different popula-
tions (Lalioti et al. 1997b). While alleles with four to 11 repeats have not been
described to date, two related CEPH families (102 and 104) had alleles con-
taining 12 to 17 repeats. Since the carriers of these alleles are unaffected and
EPM1 is a fully penetrant disease, these alleles were considered normal.

5
Effect of Point Mutations on Cystatin B Expression

Normal and mutant proteins expressed in vitro provided evidence for the
effect of the mutations in the normal protein function. The splice-site muta-
tions result in abnormal splicing of the affected exon (Bespalova et al. 1997b;
Lalioti et al. 1997b). The truncated R68X cystatin B protein is very rapidly
degraded and therefore unable to function (Alakurtti et al. 2005). This is
consistent with the lack of cystatin B staining in cells of patients with this
mutation.

The amino acid substitution G4R occurs in a highly conserved residue of
all cystatins. The crystal structure of the cystatin B–papain complex has been
resolved and shown that the amino terminal of cystatin B, including Gly4, in-
teracted with papain (Bode et al. 1988; Stubbs et al. 1990). Three-dimensional
modeling suggested that the G4R mutation is a large and charged side chain
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Table 1 Mutations and polymorphisms of the cystatin B gene

Position Nucleotide changea Amino acid Inheritance References
change

Mutations
Promoter c-174 None Homozygosity Lalioti et al. (1997b)

d(ccccgccccgcg)30–80 Heterozygosity
g207

Exon 1 c10G > C G4R Homozygosity Lalioti et al. (1997a)
g426G > C

Intron 1 IVS1-1G > C Exon 2 Heterozygosity Pennacchio et al. (1996)
g1925G > C Skippingb Bespalova et al. (1997b)

Lafreniere et al. (1997)
Lalioti et al. (1997a)

Exon 2 c168G > C Aberrant Heterozygosity Kagitani-Shimono
g2027G > C Splicing?c et al. (2002)

Intron 2 IVS2-2A > G Aberrant Heterozygosity Lalioti et al. 1997a
g2353A > G splicingd

Exon 3 c202C > T R68X Heterozygosity Pennacchio et al. (1996)
g2388C > T Lafreniere et al. 1997

Exon 3 c212A > C Q71P Heterozygosity deHaan et al. (2004)
g2398A > C

Exon 3 c214-215delTC K73fsX2 Heterozygosity Bespalova et al. (1997b)
gdel2400-2401TC Truncation Lafreniere et al. (1997)

Lalioti et al. 1997a

Polymorphisms

Promoter c-174 None Homozygosity Lalioti et al. (1997a,b)
d(ccccgccccgcg)2–3;12–17 Heterozygosity
g207

Exon 1 c15G > T None Unknown Lalioti et al. (1997a)
g431G > T

3′UTR c371T > C None Homozygosity dbSNP/HapMap
g2557T > C heterozygocity rs6385

3′UTR c390A > G None Unknown Lalioti et al. (1997a)
g2576A > G

UTR untranslated region
aMutation nomenclature is according to Dunnen and Antonarakis (2000). “g” in front of
a nucleotide position indicates the position in the genomic sequence U46692. “c” indi-
cates the position in the complementary DNA sequence NM_000100, assuming the A of
the ATG (start codon) as 1.
bComplete exon skipping demonstrated by Bespalova et al. (1997b). Aberrant splicing uti-
lizing cryptic splice sites flanking the exon 2 acceptor splice site also detected using RNase
protection (Lalioti et al. 1997b)
cc168G is the last nucleotide of exon 2. This mutation was found in heterozygocity in a pa-
tient with a dodecamer repeat expansion in the other allele. The splicing of the cystatin B
RNA carrying the point mutation was not examined, but it is possible to be affected.
dSplicing is likely to be affected because of the nonconservative nucleotide change within
the critical nucleotides of the splice site. However, it has not been tested yet.
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and is, therefore, likely to jeopardize and reduce or abolish the interaction of
the two proteins (Fig. 2) (Lalioti et al. 1997a). The 214-215delTC mutation re-
sults in frameshift and subsequent truncation of the COOH terminal of the
cystatin B protein, two amino acids downstream of the mutation (K73fsX2).
When expressed in vitro in cell lines, the normal protein is located in the nu-
cleus, in cytoplasmic granular structures, and in lysosomes (Alakurtti et al.
2005). In contrast, the G4R, K73fsX2, and Q71P mutants show a diffuse distri-
bution in the nucleus and the cytoplasm but fail to colocalize with a specific
marker of the lysosomes. However, it is currently unknown whether the loss
of lysosomal association is related to loss of inhibitory function of cystatin B.
In summary, the point mutations eliminate cystatin B function by deleting
important domains, perturbing subcellular localization, or shortening pro-
tein half-life.

6
A Dodecamer Repeat Expansion is the Most Common Mutation in EPM1

Southern blot analysis revealed that all EPM1 alleles devoid of a point muta-
tion were larger than normal alleles or alleles with a point mutation (Lafre-
niere et al. 1997; Lalioti et al. 1997b; Virtaneva et al. 1997) (Fig. 3a). Sequenc-
ing of these larger fragments revealed large uninterrupted expansion of the
dodecamer repeat 5′-d(CCCCGCCCCGCG)-3′ to more than 50 copies (Lalioti
et al. 1997b) (Fig. 3c). Development of optimized PCR methods have led to
the accurate measurement of the expansion size in all patients (Lalioti et al.
1998). Normal alleles contain two to three copies of the dodecamer. EPM1 al-
leles contain 30 to 80 repeats (Lalioti et al. 1998; Larson et al. 1999). More
recently, a method combining DNA deamination and PCR greatly improved
the accuracy of amplification of large alleles (Weinhaeusel et al. 2003).

The dodecamer repeat expansion is the most common mutation found in
EPM1, accounting for 90% of the EPM1 alleles (Fig. 3c).

A similar unit, which contains two identical dodecamers d(gccgccccccgc)
and a third differing by a T, is expanded in canine EPM2b (Lohi et al. 2005).
The histology of the dogs’ brains shows degenerations similar that of to
Lafora bodies. Unaffected dogs contain two dodecamers, while affected dogs
contain 19 to 26 dodecamers. Unlike the dodecamer repeat in EPM1, the ca-
nine repeat is within the coding region of the gene. In human and mouse, the
nucleotide sequence of this region is different from that of the dog.
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Fig. 3 a Southern blot analysis of patients homozygous or compound heterozygous for
the repeat and another mutation. DNA is digested with EcoRI (see Fig. 1a) and probed
with the cystatin B cDNA. Compound heterozygotes carry a normal-size and a larger-
size allele. The large allele varies between patients. b Sequence of dodecamer repeat area
from a normal individual with three repeats and from a patient with more than 50 un-
interrupted repeats of the dodecamer. c The point mutations account for only a small
percentage of the mutant alleles (10%). The repeat expansion in the promoter is the
most common defect in progressive myoclonus epilepsy of the Unverricht–Lundborg type
(EPM1) even in patients with different haplotypes. N normal individual

7
Instability of the Dodecamer Repeat

Meiotic instability is one of the characteristic features of repeat expansions. In
EPM1, the common two-copy to three-copy alleles show no mitotic or meiotic
instability. The large EPM1 alleles containing 30 to 80 copies of the repeat unit
show meiotic instability, including both expansions and contractions (Fig. 4)
(Lalioti et al. 1998; Larson et al. 1999; Mazarib et al. 2001). These are both ma-
ternally and paternally transmitted. Patients with the same haplotype share
different allele sizes, providing further evidence of meiotic instability. The
intermediate, no-EPM1 causing alleles containing 12 to 17 repeats are also
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Fig. 4 Meiotic instability of the dodecamer repeat pedigree of the Swiss EPM1 family de-
scribed by Klein et al. (1968). Carrier and affected status is indicated for the last three
generations. All EPM1 alleles share the same haplotype around cystatin B. The number
of repeats in the two alleles of tested individuals is shown. Disease alleles are shown in
bold. Underlined alleles were subject to meiotic instability. For example, one of the af-
fected children in the far-right branch of the family has two different expanded alleles
from both of his siblings

unstable during meiosis (Lalioti et al. 1997b). In particular, from the 21 ex-
pansions of 12-copy and 13-copy alleles, there are six expansions to alleles
with 13, 14, 15, and 17 copies, with the largest expansion being four dode-
camers. Although these alleles do not cause EPM1, they can be considered
premutation alleles on the basis of their instability. The largest addition ob-
served during transmission of EPM1 alleles is three repeats (Larson et al.
1999). Therefore, large expansions do not seem to be more prone to size in-
crease than premutation alleles.

There is no apparent somatic mosaicism of the repeat in blood DNA from
EPM1 patients, excluding extensive mitotic instability. In contrast, three out
of six lymphoblastoid cell lines from EPM1 patients showed different alleles
from blood of the corresponding patients (Larson et al. 1999).

The dodecamer repeat expansion forms more secondary structures than
any of the other triplet repeat expansions, including hairpins, tetraplexes and
I-motifs (Jithesh et al. 2001; Pataskar et al. 2001a,b; Saha and Usdin 2001).
Tetraplexes, which seem to be the predominant structures of the EPM1 repeat,
are stable at physiological temperatures, pH, and ionic strength (Saha and
Usdin 2001). These secondary structures formed by intrastrand folding are
likely to affect DNA replication and repair and to contribute to the instability
of these sequences (Usdin and Grabczyk 2000).
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8
Size of the Repeat and Age of Onset of the Epilepsy

Unlike many other repeat expansion disorders, the size of the EPM1 repeat
does not correlate with the age of onset of the disease (Lalioti et al. 1998). This
suggests that once the repeat extends beyond a critical threshold, cystatin B
expression is repressed to pathological levels. Thus, the age of onset and the
severity of the disease must depend on modifier genes and/or environmental
factors. The critical threshold for cystatin B repression due to repeat expan-
sion is at the 12–29 copy range, because an individual with 12/17 copies in his
two alleles was unaffected and an individual with 30 copies in his smallest al-
lele was affected (Lalioti et al. 1997b, 1998). Reporter gene assays have shed
some light on the cystatin B expression under the control of the expanded
dodecamer repeat, and are described in the next section.

9
Effect of Expansion on Cystatin B Expression

The cystatin B gene is ubiquitously expressed with high levels of expression
comparable to housekeeping genes in both human and mouse (Pennacchio
et al. 1996; Lalioti et al. 1997b; Pennacchio and Myers 1997; Hsiao et al. 2001).
Sensitive RNase protection experiments showed that the expression of cys-
tatin B is greatly reduced in blood leukocytes from patients homozygous for
the repeat expansion (Lalioti et al. 1997b) (Fig. 5). Antibody staining for cys-
tatin B in the brain of EPM1 patients also showed reduced expression (Kinne
et al. 2002). Some lymphoblastoid and fibroblast cell lines from EPM1 patients
display reduced cystatin B expression, whereas in others normal cystatin B
expression was restored following growth in culture (Pennacchio et al. 1996;
Bespalova et al. 1997a; Lafreniere et al. 1997; Lalioti et al. 1997b). It is possible
that the dodecamer repeat downregulates cystatin B expression in primary
cells but occasionally fails to do so after the cells are transformed and/or
cultured. Culture conditions and other unknown factors cause cell lines to
acquire phenotypes different from those of the cells of origin. In these cell
types, cystatin B expression, as a response to dodecamer expansion regula-
tion, may vary. This is supported by further in vitro promoter assays showing
that the dodecamer repeat shuts down expression of reporter genes in some
cell types but not in others (Lalioti et al. 1999). Lymphoblastoid cell lines from
the CEPH family, carrying the intermediate dodecamer expansions with 12
to 17 copies of the repeat also show reduced cystatin B expression (Alakurtti
et al. 2000). The expression of cystatin B in primary cells of these unaffected
individuals has not been examined; therefore, it is not known whether the ex-
pression in their cell lines is at all modified by growth in culture. As a result, it
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Fig. 5 Quantitation of cystatin B expression in EPM1 and normal samples. a Schematic
representation of the plasmid used RNase protection experiment to produce the ribo-
probe. The transcribed (probe) and protected fragments are shown with arrows under
the plasmid. b Autoradiogram showing the cystatin B (CSTB) expression relative to that
of TATA binding protein (TBP, control probe) in blood leukocyte RNA from patients
and controls (N), or in lymphoblastoid cell lines. EPM1-11d, EPM1-11e, EPM1-11a, and
EPM1-11c are siblings; EPM1-11d and EPM1-11e are homozygous for the expansion;
EPM1-11a and EPM1-11c are unaffected. In blood leukocytes, there is a marked reduction
of cystatin B RNA in patients, compared with that in controls. In cell lines the expression
is either normal or slightly reduced. For patients 11d, and 12, there are both blood and
lymphoblastoid cell lines data (asterisks). The bold arrow and bracket on the side highlight
the aberrant protected products in patient EPM1-05, who is a compound heterozygote for
a repeat expansion and a splicing mutation (IVS1-1G > C)

has not yet been determined beyond what threshold of cystatin B expression
EPM1 symptoms are initiated.

Sensitive and quantitative in vitro reporter assays have shown that a repeat
as short as 19 copies results in tenfold downregulation of the gene (Alakurtti
et al. 2000).

10
Mechanism of Transcriptional Repression

The experiments already outlined provide evidence that the dodecamer re-
peat expansion has a direct effect on cystatin B transcription. Possible ex-
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planations for the reduced transcription include altered spacing of promoter
elements, hypermethylation, altered chromatin structure, and recruitment of
transcription repressors to the repeat sequence.

The cystatin B minimal promoter was mapped using reporter gene assays
and serial deletions of upstream sequences (Lalioti et al. 1999; Alakurtti et al.
2000). This approach demonstrated that there are important transcription
factor binding sites or other regulatory sequences upstream of the dodecamer
repeat. It was hypothesized that the insertion of a large DNA fragment could
alter the spacing of transcription factor binding sites and/or the transcription
initiation complex and result in gene suppression (Lalioti et al. 1999) (Fig. 6).
This hypothesis was supported by the finding that a different sequence of the

Fig. 6 Transcriptional repression of the expanded cystatin B promoter. a Schematic repre-
sentation of the constructs. A 3.1-kb fragment of the cystatin B promoter containing three
dodecamer repeats was cloned upstream of the luciferase reporter gene. A similar con-
struct containing 50 copies of the repeat or heterologous DNA insertions instead of the
repeat was also engineered. b Relative promoter activity in two different neuroblastoma
cell lines. The activity of the wild-type promoter is set at 100%. Asterisks indicate loss of
promoter activity in the SK-N-BE cell line due to expansion or introduction of heterol-
ogous DNA. c Model of cystatin B transcriptional repression due to spacing of promoter
elements or recruitment of repressors. For simplicity, all other regulators are referred as
a basal transcription complex and are shown as vertically striped ovals. The dodecamers
are shown as hatched boxes. An “activator” is shown as a dotted ball, and can normally in-
teract with the complex. When the distance is increased the activator is no longer able to
interact with the complex and activate transcription. Alternatively, the repeat may be able
to bind transcriptional repressors gray octagons. The position of the critical AP1 binding
site (Lalioti et al. 1999; Alakurtti et al. 2000) is shown
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same size inserted in the cystatin B promoter instead of the dodecamer repeat
could suppress expression in a similar manner (Lalioti et al. 1999).

Methylation of CpG sites is a characteristic feature of the fragile X repeat
(Oberle et al. 1991; Knight et al. 1993); however, both the HpaII/MspI CpG is-
lands throughout the cystatin B genomic area and the dodecamer repeat are
unmethylated (Lalioti et al. 1997b; Weinhaeusel et al. 2003).

Secondary structures such as hairpins, tetraplexes, and I-motif structures
of the expanded dodecamer repeat (Pataskar et al. 2001a,b; Saha and Usdin
2001) are likely to play a role in repeat instability. It is plausible that such
structures also modify chromatin, making it inaccessible to transcription fac-
tors or other regulatory proteins, thus diminishing transcription (Li et al.
2004).

Recruitment of transcriptional repressors to the expanded repeat is an-
other appealing, yet untested possibility. The repeat sequence contains several
binding sites for the SP1 transcription factor (Lalioti et al. 1999; Alakurtti
et al. 2000), which are multiplied upon expansion.

While spacing of promoter elements was shown to downregulate cystatin B
expression, the reduction seen in EPM1 patients may be due to the synergistic
effect of more than one mechanism.

11
Loss of Cystatin B Function and Disease Pathophysiology

As discussed already, despite the different types of EPM1 mutations, they all
have as a consequence the loss of cystatin B function through three appar-
ent mechanisms: lack of the protein, abnormal localization, and deletion of
critical residues. Consistently, lymphoblastoid lines from EPM1 patients show
enhanced activity of those proteinases that are normally inhibited by cys-
tatin B: cathepsins B, L, and S (Kinne et al. 2002).

A mouse model of EPM1 with a deletion of the cystatin B gene was engi-
neered to mimic the human condition (Pennacchio et al. 1998). Like patients
with the disease, the mice show no cystatin B expression and develop pro-
gressive ataxia, myoclonus, and seizures. In addition, these mice have a pro-
nounced granule cell loss in the cerebellum due to apoptosis (Pennacchio
et al. 1998). Neuronal atrophy, gliosis, and apoptosis are present also outside
the cerebellum (Shannon et al. 2002).

As expected with loss of cystatin B inhibitory activity, brains from Cstb–/–
mice show an upregulation of genes involved in proteolysis, apoptosis, and
glial activation (Lieuallen et al. 2001). To identify which symptoms of EPM1
were due to excessive proteolysis of the normally inhibited proteinases,
cathepsins B, L, and S were selectively deleted from the Cstb knockout mice.
Applying this approach it was shown that cathepsins L and S have no con-
tribution to the phenotype. In contrast, the double-knockout mouse for
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cathepsin B and cystatin B has a greatly reduced neuronal cell death owing
to apoptosis (Houseweart et al. 2003a). Surprisingly, the ataxia and seizures
are not ameliorated in these mice, suggesting that these symptoms are not
a consequence of neuronal apoptosis and that cathepsin B is not the only
downstream affector leading to the epilepsy. The exact mechanism by which
increased cathepsin activity leads to apoptosis has not yet been identified
(Houseweart et al. 2003b). It is possible that increased unspecific proteolysis
might initiate cellular apoptotic pathways (Williams and Henkart 1994; Turk
et al. 2002a). Alternatively, cathepsins might directly cleave caspases, the pro-
teins responsible for cellular degradation and apoptosis, and thus play a direct
role in this well-defined cellular pathway.

In the EPM1 mouse, ataxia and seizures do not seem to be the consequence
of neuronal cell death. It is possible that a different mechanism leads to the
neurological symptoms. Whether this is mediated through a different func-
tion of cystatin B is unknown. For example, in rats, seizures have been shown
to upregulate cystatin B (D’Amato et al. 2000), implying that cystatin B may
play some role in neuronal protection. The localization of cystatin B in the
nucleus of certain cell types is intriguing and supports the possibility of an
additional, yet unknown function. Moreover, cystatin B in brain cells can in-
teract and form a complex with other proteins such as RACK-1, β-spectrin
and NF-L, none of which is a proteinase (Di Giaimo et al. 2002).

In contrast to humans, the Cstb knockout mice did not develop tonic–
clonic seizures, showed no photosensitivity, and had seizures only during
sleep. Whether these differences indicate additional contributing disease fac-
tors in humans, or reflect the differences between human and mouse biology,
brain development, or a background strain effect, remains to be investigated.
For example, cerebellar granule cells in humans are produced during em-
bryonic life and in mice only postnatally. Interestingly, the symptoms of the
EPM1 mouse model depended on the genetic background, implicating modi-
fier genes in the development or severity of the phenotype.

The Cstb mutant mouse has similar a phenotype to the human patients
lacking cystatin B protein and has been used to elucidate the pathophysiol-
ogy and explore the progressive nature of the disease. It is a unique tool for
validating in vitro data, and most importantly for testing new therapeutic
approaches.
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1
The Myotonic Dystrophies: an Overview

Myotonic dystrophy (dystrophia myotonica, DM) is a dominantly inherited
neuromuscular disease that is characterized by a distinctive combination of
clinical features, including skeletal muscle myotonia and weakness/wasting,
cardiac muscle arrhythmias and conduction defects, unusual ocular cataracts,
insulin insensitivity, male hypogonadism, balding and hypogammaglobuline-
mia (Harper 2001). Moreover, the genetic basis of DM is novel because this
disease is caused by the expansion of different, but structurally similar, mi-
crosatellite repeats in two unrelated genes. Type 1 DM (DM1) is associated
with the expansion of a d(CTG)n repeat [poly r(CUG)] positioned in the
3′-untranslated region (UTR) of the DMPK gene, while type 2 disease (DM2)
results from a d(CCTG)n expansion [poly r(CCUG)] in the first intron of ZNF9
(Brook et al. 1992; Liquori et al. 2001). Congenital DM (CDM), which is the
most severe form of this disease, is exclusively associated with very large
d(CTG) expansions in the DMPK gene.

The focus of this review is to highlight recent studies which examine
the mechanistic question of how microsatellite expansions in the noncoding
regions of different genes cause the multisystemic DM phenotype. We be-
gin by comparing the genetics and clinical features of DM1 and DM2. The
striking similarities between these two disease forms has led to the prevail-
ing view that DM is an RNA-mediated disease in which mutant DMPK and
ZNF9 transcripts accumulate in the nucleus and affect the normal activities
of precursor messenger RNA (pre-mRNA) splicing factors during postna-
tal development. This RNA-mediated pathogenesis model predicts that the
characteristic constellation of clinical features associated with this neuro-
muscular disease result from the retention of specific fetal protein isoforms
which fail to function properly in adult tissues. While this model provides
a reasonable explanation for many of the characteristic features of the ju-
venile and adult-onset forms of DM, it fails to account for the underlying
cause of the congenital disease in which the embryonic development of brain
and muscle is severely affected. Therefore, we will also reexamine an ear-



144 P. Teng-umnuay · M.S. Swanson

lier disease model which emphasizes a central role for the DMPK gene locus
in pathogenesis.

2
Genetics and Clinical Presentation of the Myotonic Dystrophies:
DM1 Versus DM2 Disease: Many Similarities but Significant Differences

Prior to discussing disease models for DM pathogenesis, it is important to
distinguish between the clinical presentations of types 1 and 2. Another re-
lated disorder with severe frontotemporal dementia, myotonia and DM-type
cataracts, but no genetic linkage to DMPK or ZNF9, has been suggested as
a candidate for DM type 3 (DM3) (Le Ber et al. 2004). However, the mo-
lecular basis for this disease, and its relationship to DM1 and DM2, is still
obscure and therefore discussion of this disease will be reserved for a future
review.

Both DM1 and DM2 are characterized by a distinguishing pattern of mul-
tisystemic abnormalities, including myotonia, muscle weakness, distinctive
particulate cataracts, cardiac conduction defects and insulin insensitivity
(Table 1) (reviewed in Finsterer 2002; Mankodi and Thornton 2002; Day et al.
2003; Meola and Moxley 2004; Day and Ranum 2005; Machuca-Tzili et al.
2005). Nevertheless, there is a consensus that DM1 is a more severe disease
with earlier onset, severe neonatal hypotonia and mental retardation in the
congenital form, prominent facial weakness and ptosis, more pronounced
distal muscle weakness/wasting, readily apparent genetic anticipation, hy-
persomnia and dysphagia (Table 1). Therefore, pathogenesis models must
account for both the similarities and the differences between DM1 and DM2.
Interestingly, homozygosity of either the DM1 or the DM2 mutant alleles
has little or no effect on disease severity (Schoser et al. 2004). Additional
information on DM1 and DM2 clinical presentations, and the discovery of
DMPK and ZNF9 as the genes mutated in DM1 and DM2, respectively, may
be found in previous reviews (Harper 2001; Finsterer 2002; Nykamp and
Swanson 2004; Ranum and Day 2004; Day and Ranum 2005; Machuca-Tzili
et al. 2005).

A particularly striking difference between DM1 and DM2 is the age at
onset. DM1 has congenital, juvenile and adult-onset forms, while DM2 gen-
erally appears in the fourth or fifth decade and may not appear until age 70
with proximal weakness and very mild myotonia (van Engelen et al. 2005).
Although early reports indicated that DM1 was primarily, if not exclusively,
a disease of adults, subsequent studies revealed a form of the disorder that
is present at birth (Harper 2001). CDM is associated with a high (17–41%)
neonatal mortality rate and is characterized by profound immobility and
hypotonia at birth (floppy baby), bilateral facial weakness and difficulties
with suckling/swallowing, moderate to severe respiratory insufficiency, de-
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Table 1 Characteristic features associated with myotonic dystrophy type 1 (DM1) versus
myotonic dystrophy type 2 (DM2)

Category Clinical feature DM1 DM2

Genetics

Inheritance Dominant Dominant
Congenital onset Yes No
Anticipation Yes Infrequent
Gene DMPK ZNF9
(chromosome) (19q13.3) (3q31.3)

Protein function Ser-Thr Transcription,
protein kinase translation

Expansion mutation d(CTG)37→>3000 d(CCTG)75→∼11 000

Mutation position 3′ untranslated Intron 1
region

Clinical presentation

Brain Mental retardation + –
(congenital only)
Hypersomnia + –
White matter + +
abnormalities a

Endocrine/other Frontal balding + +/–
hypogammaglobulinemia + +
Hypogonadism (male) + +
Insulin insensitivity + +

Eye Iridescent cataracts + +

Muscle—cardiac Arrhythmia + +/–
Conduction defect b + +/–

Muscle—skeletal Distal weakness/wasting + +/–
Neonatal hypotonia and + –
respiratory insufficiency
Myotonia + +
Proximal +/– +
weakness/wasting

Muscle—smooth Constipation + +/–
Dysphagia + –

Skeleton Talipes + –

Clinical features are graded as + (characteristic/routinely observed), +/– (less common)
and – (infrequently/never observed)
a Determined by cranial magnetic resonance imaging
b Determined by electrocardiography
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layed motor development and mental retardation (Campbell et al. 2004).
Clinically, CDM infants are extremely floppy with a “tented” or myopathic
mouth and often require respiratory support in combination with tube feed-
ing (Johnston 2003). Interestingly, the other major cause of extreme neona-
tal hypotonia is an imprinting disease, Prader–Willi syndrome (Tsai et al.
1999). In contrast to myotonia congenita, clinical myotonia is not present
in CDM although electrical myotonia may be detectable at an early age.
CDM is generally transmitted maternally and the mother is often mildly
affected and generally unaware that she is a carrier. Male transmission is
rare, possibly because very large d(CTG)>1000 expansions associated with
CDM might impair spermatogenesis and/or sperm viability. If the CDM in-
fant survives, the hypotonia resolves by age 3–4 years. Thus, an import-
ant feature of CDM is that the differentiation and maturation of muscle
is delayed during embryonic development but can proceed following birth
although motor development remains abnormal. The partial respite from
these muscle effects is temporary since adult-onset DM1 emerges in the
second decade with the development of myotonia and progressive muscle
weakness/wasting. The very large d(CTG) repeat expansions in CDM pa-
tients are also associated with earlier onset and more severe symptoms at
this stage. Smooth muscle is also affected in CDM with colonic dilatation
and poor intestinal motility. Additional clinical features unique to CDM in-
clude severe mental retardation, talipes (clubfoot) and strabismus (eyeball
muscle imbalance). Why CDM is unique to large d(CTG)n expansions in
the DMPK gene is unclear but might be due to differences in embryonic
expression between DMPK and ZNF9 or to an unusual property of very
large d(CTG) repeats.

3
RNA Gain-of-Function Model for Myotonic Dystrophy

3.1
Myotonic Dystrophy Associated Microsatellite Expansions Are Toxic
at the RNA Level

Although unstable microsatellite expansions can influence gene expression at
multiple levels, several observations suggest that adult-onset DM is an RNA
gain-of-function disease. The first clue that mutant DM RNA molecules are
unusual was based on computer modeling which predicts that these d(CTG)
expansions form stable double-stranded (ds) RNA structures or RNA hair-
pins (Zuker et al. 1999). Indeed, the existence of these RNA structures was
demonstrated using chemical and enzymatic structure probing, thermal de-
naturation, magic angle spinning solid-state NMR and visualization of rod-
like RNA duplexes in the electron microscope (Napierala and Krysysosiak
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1997; Michalowski et al. 1999; Tian et al. 2000; Sobczak et al. 2003; Leppert
et al. 2004). The r(CCUG) repeats in mutant ZNF9 transcripts also form RNA
hairpin structures (Sobczak et al. 2003). However, there are significant dif-
ferences in the stability of ds r(CCUG) versus ds r(CUG) with tandem C : U
and U : C mismatches and a larger terminal loop for ds r(CCUG) hairpins
compared with U : U mismatches for ds r(CUG).

Although DM repeat expansions affect both DNA and RNA structures, an-
other distinguishing attribute of DMPK and ZNF9 mutant allele transcripts is
that they are retained in nuclear foci while normal transcripts are exported to
the cytoplasm. These ribonuclear foci, which were originally detected by RNA
fluorescence in situ hybridization (FISH) analysis, do not colocalize with any
known nuclear structures, including splicing factor compartments or speck-
les, Cajal bodies, the perinucleolar compartment and promyelocytic leukemia
nuclear bodies (Taneja et al. 1995; Davis et al. 1997). RNA FISH also indi-
cates that DM2 ribonuclear foci in skeletal muscle are more intense and larger
than DM1 ribonuclear foci, perhaps reflecting higher ZNF9 expression lev-
els (Mankodi et al. 2003). The discovery of these novel nuclear structures
was particularly striking in light of concurrent studies on coding-region mi-
crosatellite expansion diseases, such as Huntington’s disease (HD) and the
spinocerebellar ataxias (SCAs). In HD and the SCAs, d(CAG)n expansions
result in the synthesis of proteins containing a toxic polyglutamine (polyQ)
region which accumulates in intranuclear inclusions (reviewed in Landles and
Bates 2004; Taroni and DiDonato 2004).

Do the DM1 and DM2 expansion mutations affect the processing of their
host transcripts? In contrast to an earlier report, mutant DMPK transcripts
are correctly spliced and polyadenylated (Wang et al. 1995; Davis et al. 1997).
FISH analysis indicates that these mRNA molecules remain intact even within
RNA foci since hybridization signals using probes against the first seven
DMPK exons and the d(CTG)n repeat colocalize to these foci (Taneja et al.
1995). This result is in agreement with the majority of expression studies
which have reported only modest changes in DMPK RNA levels while DMPK
protein levels decline (reviewed in Nykamp and Swanson 2004). In contrast,
recent work suggests that ZNF9 RNA and protein levels are unaffected in
DM2 heterozygous and homozygous individuals (L. Ranum, personal com-
munication). The processing of ZNF9 pre-mRNA is probably not adversely
influenced by the DM2 expansion mutation because it is positioned in the first
intron approximately 850 nucleotides upstream of the 3′ splice site of ZNF9
exon 2.

Although these observations suggested that poly r(CUG) and poly r(CCUG)
exist as dsRNAs which accumulate in ribonuclear foci, transgenic mouse
studies were required to confirm RNA-mediated pathogenesis as a viable
disease model (reviewed in Wansink and Wieringa 2003). Transgenic mice
carrying a greater than 45 kb fragment from the DM1 locus, which contains
the DMWD, DMPK and SIX5 genes as well as a DMPK d(CTG)300 expansion,
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develop myotonia and DM-associated muscle histopathology (Seznec et al.
2001). Interestingly, other effects of transgene expression that are unrelated
to DM disease, such as elongated crossed teeth, were also present. The possi-
bility that d(CTG)n expansions alone are toxic independent of gene context
was tested by creating mouse lines carrying a human skeletal actin (HSA)
transgene with either a d(CTG)5 (HSASR) or a d(CTG)250 (HSALR) repeat tract
inserted into the HSA 3′-UTR (Mankodi et al. 2000). While the HSASR mice
are indistinguishable from normal sibs, HSALR mice develop skeletal muscle
myotonia, centralized myonuclei and split myofibers characteristic of DM dis-
ease. Notably, several lines were created which express different levels of the
transgene and HSALR mice with no, or relatively low levels of, transgene ex-
pression are not affected by myotonia, while high expressers develop robust
myotonia. This result, together with the discovery that DM1 and DM2 are
caused by structurally related repeat expansions in unrelated and unlinked
genes, provides strong support for the conclusion that DM is an RNA gain-of-
function disease which results from the expression of pathogenic ds r(CUG)
and ds r(CCUG) RNA molecules.

3.2
Toxic RNAs Molecules Sequester Muscleblind-like Proteins

While the minimal microsatellite expansions associated with disease vary
between DM1 and DM2, the predicted stability of the respective dsRNAs
is remarkably similar [approximately 70 kcal/mol for both r(CUG)50 and
r(CCUG)75]. Why are poly r(CUG) and poly r(CCUG) RNA molecules toxic
above a certain repeat length? One possibility is that these RNA molecules are
high-affinity binding sites for cellular factors. Binding of these factors might
be proportional to the number of repeats and thus they are effectively se-
questered above a certain length threshold. As the name implies, CUGBP1
was the first r(CUG)-binding protein identified and it is the founding mem-
ber of the mammalian CELF family of RNA-binding proteins that contain
three RNA recognition motifs (Caskey et al. 1996; Timchenko et al. 1996;
Good et al. 2000; Ladd et al. 2001). However, several properties of this protein
make it an unlikely candidate for a sequestered factor in DM. While disease-
associated r(CUG) and r(CCUG) repeats form RNA hairpins, CUGBP1 is
a single-stranded (ss) RNA-binding protein that recognizes r(CUG) trinu-
cleotide and UG dinucleotide repeats (Timchenko et al. 1996; Michalowski
et al. 1999; Takahashi et al. 2000). Although r(CUG)8 binding activity and
protein levels increase in DM1 cells and skeletal muscle, CUGBP1 does not
colocalize with ribonuclear foci. Thus, CUGBP1 activity appears to be indi-
rectly influenced by poly r(CUG) and poly r(CCUG) expression (Timchenko
et al. 1996; Savkur et al. 2001; Ho et al. 2004).

In contrast to CUGBP1, considerable evidence now suggests that the
muscleblind-like (MBNL) proteins are the sequestered factors in DM (Fig. 1a).
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Fig. 1 Muscleblind-like (MBNL) loss-of-function model for myotonic dystrophy (DM).
a Expression of mutant DMPK messenger RNA [mRNA; coding region, black box; 3′
and 5′ untranslated regions (UTRs), line; poly(A) tail, (A)n] or ZNF9 precursor mRNA
(pre-mRNA, exons, black boxes; 3′- and 5′-UTRs, open boxes; introns, lines) leads to
sequestration of the MBNL proteins (ovals) on double-stranded (ds) r(CUG) and ds
r(CCUG) RNAs, respectively. The arrows indicate that the affinities of the MBNL proteins
for ds r(CUG) and ds r(CCUG) are relatively high. b Loss of MBNL, or upregula-
tion of CELF, proteins leads to retention of neonatal isoforms (exons, numbered black
boxes; introns, horizontal lines; splicing pattern, angled lines) in adult tissues, which, in
turn, results in distinct pathophysiological effects (e.g., myotonia). The connection be-
tween TNNT2 missplicing and DM-associated heart defects (cardiomyopathy, conduction
block) has not been established. c Missplicing of APP, GRIN1 (NMDA R1), MAPT, RyR1,
SERCA1, SERCA2 and TNNT3 in DM tissues results in neonatal exon retention in adults
but the phenotypic effects have not been determined
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The MBNL proteins were originally identified on the basis of their unusual
ability to bind and photo-cross-link to ds r(CUG), but not to ss r(CUG) or
other ds RNA molecules [ds r(CAG), HIV TAR ds RNA], in HeLa nuclear
extracts (Miller et al. 2000). MBNL binding to ds r(CUG) is proportional to
repeat length in vitro and these proteins colocalize with poly r(CUG) and
poly r(CCUG) RNA foci in cotransfected cells as well as DM skeletal mus-
cle and cortical neurons (Fardaei et al. 2001, 2002; Mankodi et al. 2001, 2003;
Jiang et al. 2004). While several additional nuclear RNA-binding proteins,
such as hnRNPs F and H, also accumulate in ribonuclear foci to a much
lesser degree, other ss RNA- and ds RNA-binding proteins (2′,5′-OAS, ADAR,
CUGBP1, CUGBP2/ETR3, FLAP-1/LRRFIP1, hnRNP A1, hnRNP I, hnRNP M,
KSRP, HuR, NF90/ILF3, PACT/RAX, PKR, RNA helicase A) and DNA-binding
proteins (Sp1, RARγ) do not (Mankodi et al. 2003; Jiang et al. 2004; Kim
et al. 2005). The observation that the ss r(CUG)-binding proteins CUGBP1
and CUGBP2/ETR3 do not colocalize with either DM1 or DM2 ribonuclear
foci supports previous suggestions that these nuclear structures contain pri-
marily ds r(CUG) and ds r(CCUG). Significantly, RNA FISH combined with
immunocytochemistry indicates that formation of ribonuclear foci in DM1
cortical neurons correlates with a decrease in the diffuse nuclear, or nu-
cleoplasmic, population (Jiang et al. 2004). Interestingly, three proteasome
subunits (20Sα, 11Sα, 11Sγ) also colocalize with neuronal ribonuclear foci,
suggesting that functional depletion of MBNL might result from targeted
protein turnover. Although it is tempting to speculate that the formation
of these ribonuclear foci is a primary event in the DM pathogenesis path-
way, complexes between MBNL and ds r(CUG) and ds r(CCUG) RNAs which
exist outside of these foci might also effectively sequester MBNL proteins
(Ho et al. 2005b).

3.3
Poly r(CUG) Toxicity Requires Expression of Specific Muscleblind-like Isoforms

Muscleblind proteins were originally identified as factors required for late-
stage development of muscle and eye tissues in Drosophila (Begemann et al.
1997; Artero et al. 1998). In humans, there are three MBNL genes (MBNL1,
MBNL2, MBNL3) (Miller et al. 2000; Fardaei et al. 2002; Squillace et al. 2002).
While MBNL1 and MBNL2 are expressed in a variety of tissues, MBNL1
mRNA levels are high in heart and skeletal muscle. MBNL3 expression ap-
pears to be restricted to only a few tissues, including placenta. All three
MBNL proteins colocalize with r(CUG) repeats in cells cotransfected with
d(CTG) repeat and green fluorescent protein (GFP)–MBNL expression plas-
mids (Fardaei et al. 2002; Ho et al. 2005). Moreover, MBNL1 and MBNL2
accumulate in ribonuclear foci in neurons (Jiang et al. 2004). Intriguingly,
MBNL1 proteins may play a fundamental role in ribonuclear foci forma-
tion and/or maintenance because small interfering RNA (siRNA)-mediated
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knockdown of MBNL1 mRNA leads to a substantial loss (approximately 70%)
of these foci (Dansithong et al. 2005). Similar reductions of CUGBP1 and
MBNL2 mRNA levels resulted in a smaller effect (approximately 20%) on the
number of ribonuclear foci.

Are ds r(CUG) and ds r(CCUG) RNA molecules, or ribonuclear foci, in-
herently toxic to metazoan cells or does toxicity result from MBNL protein
sequestration? In support of the latter possibility, a recent study suggests
that ds r(CUG) RNA chains are not toxic in Drosophila (Houseley et al.
2005). Transgenic flies expressing GFP–DMPK–(CTG)11–162 3′-UTR fusions
develop ribonuclear foci in some larval and adult muscles, but not in neu-
rons, only when d(CTG)162 is expressed. Although endogenous muscleblind
proteins colocalize with these foci, these flies are viable, overtly normal and
have extended lifespans. Interestingly, fly muscleblind proteins are not re-
quired for foci formation but coexpression of human MBNL1 results in the
appearance of neuronal ribonuclear foci. It is important to note that the
Drosophila muscleblind proteins vary from the vertebrate MBNL homologues
since they possess only two of the four CCCH (C3H) zinc-finger-related mo-
tifs which are required for high-affinity ds r(CUG) binding in vitro (Fig. 1)
(Miller et al. 2000; Yuan et al., unpublished data). These results support
the hypothesis that pathogenesis associated with d(CTG)n expression is me-
diated by interactions with specific MBNL proteins which are expressed
in vertebrate cells.

If DM disease results from loss of certain MBNL isoforms owing to se-
questration by toxic poly r(CUG) and poly r(CCUG) RNA molecules, then
disease-associated phenotypes common to DM1 and DM2 should be recapit-
ulated in Mbnl knockout mice. This possibility has been tested by generating
mice which fail to express the 40–43-kDa isoforms which utilize an initi-
ation codon in exon 3 of the Mbnl1 gene. These larger isoforms bind, and
photo-cross-link, to ds r(CUG), while the shorter 26–36-kDa Mbnl1 proteins
do not. Mice carrying a homozygous Mbnl1 exon 3 deletion (Mbnl1∆E3/∆E3)
are viable but develop the most characteristic features of adult-onset DM,
including myotonia, dustlike cataracts and heart conduction defects (Kana-
dia et al. 2003a, and unpublished data). Since the adult-onset disease can be
modeled in Mbnl1 knockout mice in the absence of toxic ds r(CUG) and ds
r(CCUG) RNA and ribonuclear foci, the striking conclusion is that DM is
an MBNL loss-of-function disease resulting from an RNA gain-of-function
mutation.

3.4
The Splicing Connection: DM is Associated with Fetal Exon Retention in Adults

Mutations associated with a large number of inherited diseases result in the
perturbation of normal patterns of pre-mRNA splicing (Faustino and Cooper
2003; Garcia-Blanco et al. 2004; Matlin et al. 2005). In humans, multiexon
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genes are generally alternatively spliced. During postnatal development, fe-
tal tissues are remodeled by a series of alternative splicing events to generate
specific isoform ratios. Generally, these splicing decisions are temporally co-
ordinated during the postnatal period so that tissues at various stages of
maturation are responsive to the specific physiological demands characteris-
tic of each developmental interval. How are these splicing decisions regulated
so precisely so that the correct protein isoforms are synthesized at the proper
time? Surprisingly, studies designed to reveal DM pathogenesis have provided
fundamental insights into the regulation of pre-mRNA alternative splicing
during the fetal-to-adult transition period.

In DM1 and DM2, the processing of DMPK and ZNF9 mutant allele tran-
scripts does not appear to be significantly affected by r(CUG)n and r(CCUG)n
expansions; however, the alternative splicing of other transcripts is influ-
enced. The discovery of misregulated splicing in DM1 resulted from studies
designed to define the RNA sequence elements, and the corresponding trans-
acting binding partners, which regulated the alternative splicing of exon 5 of
chicken cardiac troponin T (TNNT2/cTNT) (Phillips et al. 1998). The splic-
ing of TNNT2 exon 5 is developmentally regulated with inclusion favored in
embryonic tissues, while skipping of this exon is the predominant pattern in
adults. For chicken cTNT, exon 5 splicing is regulated by four muscle-specific
splicing enhancers (MSE1–MSE4) in intron 5 and MSE1 and MSE4 each con-
tain r(CUG)2 repeats. Human cTNT contains an r[CUG(N)9(CUG)2C(CUG)2]
repeat motif and exon 5 inclusion is favored in DM1, but not in normal, adult
heart muscle (Fig. 1b) (Phillips et al. 1998; Ladd et al. 2001). These results sug-
gest that retention of TNNT2 exon 5 in adults might contribute to the heart
conduction defects characteristically seen in DM. However, the connection
between aberrant TNNT2 RNA splicing and DM disease remains tenuous. In
DM1 and DM2, progressive cardiac conduction impairment, including atri-
oventricular (A-V) block, atrial fibrillation and ventricular/supraventricular
arrhythmias are the most common heart problems (Pelargonio et al. 2002;
Schoser et al. 2004b). Dilated cardiomyopathy has been documented for sev-
eral DM2 patients and cardiomyopathies also develop in some DM1 patients.
Interestingly, TNNT2 mutations are generally linked to hypertrophic car-
diomyopathy and dilated cardiomyopathy (DCM) and abnormal cTNT pre-
mRNA splicing also occurs in mammals prone to DCM (Watkins et al. 1995;
Biesiadecki et al. 2002; Pelargonio et al. 2002; Schoser et al. 2004b). Thus,
TNNT2 pre-mRNA missplicing may be one component of the heart conduc-
tion defect common to DM1 but additional contributing factors will probably
be uncovered in the future. Splicing of myotubularin-related 1 (MTMR1) is
also dysregulated in DM1 adult heart with enhanced retention of the fetal
A isoform (Ho et al. 2005a).

A more convincing argument for a direct role of disrupted RNA splicing in
DM pathogenesis is provided by the myotonia which is a characteristic feature
of DM1 and DM2. Mutations in both the skeletal muscle sodium (SCN5A)
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and chloride (CLCN1/ClC-1) channels cause myotonia in humans (Chen et al.
1997; Pusch 2002). DM-relevant myotonia has been linked to a defect in
the CLCN1 channel but in this disease CLCN1 missplicing is the underlying
pathogenic event (Fig. 1b) (Charlet-B et al. 2002; Mankodi et al. 2002). In nor-
mal adults, CLCN1 exons 6, 7 and 8 are spliced together directly to generate
functional chloride channels. During the fetal and neonatal periods and in ei-
ther HSALR or Mbnl1∆E3/∆E3 adult knockout mice, intron 2 and exons 6b, 7a
and 8a are frequently included (Mankodi et al. 2002). These intronic and ex-
onic sequences contain in-frame termination codons which make the result-
ing mRNA susceptible to turnover by the nonsense-mediated decay (NMD)
pathway. For mRNAs that escape NMD, translation of truncated CLCN1 pro-
teins has a dominant-negative effect on chloride channel function (Berg et al.
2004). Additionally, missplicing of skeletal muscle TNNT3 pre-mRNA has
been documented in DM1 as well as in the HSALR and Mbnl1∆E3/∆E3 mouse
models but the physiological effects, if any, of adult expression of fetal TNNT3
isoforms are unknown (Kanadia et al. 2003b). Missplicing of the skeletal
muscle ryanodine receptor RyR1 and sarcoplasmic/endoplasmic reticulum
Ca2+-ATPase (SERCA) 1 and 2 has also been reported and may account for
altered calcium homeostasis in DM myotubes (Fig. 1c) (Kimura et al. 2005).
The splicing of MTMR1 pre-mRNA is also abnormal in DM1 skeletal muscle
(Buj-Bello et al. 2002).

Insulin resistance, which is another characteristic pathological feature
of DM, is also caused by abnormal developmental regulation of splicing
(Savkur et al. 2001). The fetal splicing pattern for the insulin receptor (IR)
is inclusion of exon 11, which generates the lower signaling IR-A isoform.
While IR exon 11 is included in normal adults, this exon is skipped in
DM1 and DM2 adults (Fig. 1b). Thus, current evidence supports the con-
clusion that retention of the fetal TNNT2, CLCN1 and IR splicing pattern
is responsible for the cardiac, myotonia and insulin resistance characteristic
of DM disease.

DM has a significant effect on the function of the central nervous sys-
tem (CNS), with distinctive behavioral effects and hypersomnia in adults as
well as mental retardation in the congenital disease. As described previously,
DMPK is expressed in the CNS and r(CUG)n expansions accumulate in neu-
ronal nuclei. These CNS defects might result from abnormal splicing of sev-
eral pre-mRNAs, including amyloid precursor protein (APP), microtubule-
associated protein tau (MAPT) and the glutamate receptor, N-methyl-d-
aspartate 1 (GRIN1/NMDA R1) (Fig. 1c) (Sergeant et al. 2001; Jiang et al.
2004). In conclusion, expression of the DM1 and DM2 expansion mutations
clearly perturbs the regulation of RNA alternative splicing during postnatal
development. Nevertheless, the molecular events underlying additional man-
ifestations of DM disease (hypersomnia, mental retardation, muscle weak-
ness/wasting, testicular atrophy, hypogammaglobulinemia, cataracts) have
yet to be elucidated.
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3.5
MBNL and CELF Proteins are Splicing Antagonists
Which Regulate Fetal Exon Splicing

How are the expression of r(CUG) and r(CCUG) repeat expansions and se-
questration of the MBNL proteins related to aberrant splicing during devel-
opment? CUGBP1 was the first RNA-binding protein implicated in DM patho-
genesis and was initially characterized as an r(CUG)8-binding protein (Tim-
chenko et al. 1996). Enhanced r(CUG)-binding activity was observed using
extracts prepared from DM1 cells and subsequent analysis demonstrated that
CUGBP1 is a splicing factor. Cells cotransfected with cTNT minigene reporter
and CUGBP1 protein expression plasmids show enhanced cTNT exon 5 inclu-
sion and this effect is abolished by mutation of the r(CUG) repeats to r(CAG)
(Philips et al. 1998). Although CUGBP1 activity and steady-state protein levels
are elevated in DM1 muscle and myoblasts, the connection between increased
CUGBP1 splicing activity and expression of mutant DM1 and DM2 RNA was
obscure until recent results became available that linked CUGBP1 and MBNL
splicing activities (Savkur et al. 2001; Timchenko et al. 2001a; Dansithong
et al. 2005). Intriguingly, CELF and MBNL protein families are antagonis-
tic regulators of fetal exon splicing (Ho et al. 2004). Cotransfection analysis
was used to demonstrate that overexpression of MBNL1, MBNL2 or MBNL3
proteins results in either enhanced skipping of TNNT2 exon 5 or increased in-
clusion of IR exon, which is identical to the normal adult splicing pattern. Al-
ternatively, the DM splicing pattern is seen following siRNA-mediated knock-
down of MBNL1 in HeLa cells, which promotes TNNT2 exon 5 inclusion and
IR exon 11 skipping. Mutational analysis revealed that several MBNL1 bind-
ing sites (consensus is YGCUU/GY) exist immediately upstream of the 3′
splice site of TNNT2 exon 5 and mutation of these sites abolishes the effect
of MBNL overexpression on exon 5 splicing (Ho et al. 2004). The similarity in
Tnnt2 and Clcn1 pre-mRNA splicing patterns between Mbnl1∆E3/∆E3 knock-
out and CUGBP1 transgenic (MCKCUG-BP1) mice also indicates that the
MBNL and CELF protein families are antagonistic splicing regulators in vivo
(Kanadia et al. 2003a; Ho et al. 2005a). CELF–MBNL interactions may also
function in additional posttranscriptional regulatory pathways since CELF
proteins have been implicated in RNA editing as well as mRNA translation
and turnover (Anant et al. 2001; Timchenko et al. 2002, 2005; Mukhopadhyay
et al. 2003; Iakova et al. 2004; Baldwin et al. 2004).

3.6
Is Myotonic Dystrophy Caused by MBNL Loss, CUGBP1 Overexpression or Both?

O the basis of the results described in the preceding sections, the original MBNL
loss-of function model proposed for DM pathogenesis can be updated (Miller
et al. 2000). Certain genes implicated in tissue-specific effects in DM, includ-
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ing CLCN1 and IR, contain fetal exons and inclusion of these exons during
pre-mRNA splicing is promoted by CELF activity. In contrast, adult splicing
patterns are triggered by activation of MBNL sometime during the neonatal-
to-adult transition. Alternatively, CELF protein activity may decline during this
transition as suggested by a recent study which demonstrated that CUGBP1
and CUGBP2/ETR-3 protein levels are relatively high in embryos and low in
most adult somatic tissues, with the striking exception of brain (Ladd et al.
2005). Loss of MBNL activity, either by sequestration on ds r(CUG) and ds
r(CCUG) RNA molecules in DM tissues and HSALR skeletal muscle, or in all
tissues in Mbnl1 knockout mice, leads to fetal exon retention in adult mRNA
molecules because CELF splicing activity is unopposed. This simple model
is appealing since it accounts for the increase in CELF splicing activity in
DM tissues and cells due to loss of the MBNL splicing antagonist. However,
this MBNL1 loss-of-function model fails to explain the observed increase in
CUGBP1 steady-state tissue levels in DM1 skeletal muscle and myoblasts as
well as the elevated r(CUG)8 RNA-binding activity in vitro (Timchemko et al.
1996; Savkur et al. 2001; Dansithong et al. 2005). Unfortunately, these effects
on CUGBP1 protein levels may be specific to humans since they are not repro-
duced in either HSALR or Mbnl1∆E3/∆E3 mice. Another puzzling observation
argues against the MBNL loss-of-function model. Mutation of the CUGBP1
binding site downstream of TNNT2 exon 5 does not affect MBNL1 splicing
regulation since siRNA-mediated knockdown of MBNL1 levels still leads to en-
hanced exon 5 inclusion in transfected HeLa cells (Ho et al. 2004). In contrast
to the prediction of the model, this CUGBP1 mutant binding site minigene no
longer responds to expression of an r(CUG) repeat expansion RNA; therefore,
siRNA-induced depletion of MBNL1 may not be synonymous with loss due to
sequestration by r(CUG)n expansions. Nevertheless, this conclusion is tenta-
tive because we do not know how MBNL proteins interact with either precursor
RNAs or ds r(CUG). The r(CUG)n expansion (CUG960) used in this study con-
sisted of discontinuous r[(CUG)20CUCGA]48 repeats so the affinity of MBNL
proteins for these repeats might be low relative to that for the continuous DM
repeats. An alternative conclusion is that the TNNT2 intron 5 mutation creates
a higher-affinity binding site target for MBNL binding which effectively com-
petes with CUG960 binding activity. In summary, current evidence suggests
that both MBNL and CELF protein activities in RNA splicing, and potentially
other posttranscriptional regulatory steps, are adversely affected in DM.

4
Congenital Myotonic Dystrophy:
a Distinct Disease with a Different Molecular Etiology?

Why do shorter DM1-associated r(CUG)50–∼3500 expansions cause a more
severe disease phenotype than the more extended DM2 r(CCUG)75–∼11 000 ex-
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pansions and why is CDM linked exclusively to DM1? One hypothesis is that
the MBNL proteins have a higher affinity for r(CUG)n repeats, so free MBNL
levels are lower in DM1 cells. Several observations argue against this possibil-
ity. First, in vitro RNA binding experiments indicate that MBNL proteins have
a higher affinity for r(CCUG), as opposed to r(CUG), repeats and RNA FISH
and MBNL immunolocalization experiments indicate that ribonuclear foci
are larger in DM2 cells and tissues (Mankodi et al. 2003; Jiang et al. 2004; Kino
et al. 2004). Second, the congenital hypotonia and adult-onset muscle-wasting
phenotypes are not present in Mbnl1∆E3/∆E3 knockout mice, so MBNL loss
may not be directly involved in this aspect of CDM and DM1 disease. An-
other hypothesis is that the more severe DM1 phenotype reflects differences
in the expression patterns of DMPK and ZNF9. However, both genes show
overlapping expression patterns during mouse embryogenesis and they are
expressed in many of the adult tissues that are affected in DM (Kanadia et al.
2003b; Shimizu et al. 2003; Sarkar et al. 2004b). Indeed, ZNF9 is generally ex-
pressed at a significantly higher level in most tissues. A third hypothesis is
that DM2 disease results exclusively from poly r(CCUG) toxicity, while the
DM1 phenotype may reflect combinatorial effects of r(CUG)n toxicity and al-
tered expression of genes at the DM1 locus, particularly the tightly linked
DMWD, DMPK and SIX5 genes. To examine this last hypothesis, we will first
review the evidence for altered expression of genes at the DM1 locus and then
end with a discussion of studies assessing cell culture and transgenic mouse
models for CDM.

4.1
The DMPK (CTG)n Expansion Alters the Chromatin Structure and Expression
of the DM1 Locus

Early DM disease models invoked gene-specific effects, including DMPK hap-
loinsufficiency and chromatin structural effects induced by the d(CTG)n ex-
pansion, to explain DM1 pathogenesis (Otten and Tapscott 1995; Wang et al.
1994). Using normal, DM1 and CDM tissues and derived cell lines, multiple
studies reported that DMPK RNA and protein levels were depressed in DM
and CDM cells although there have also been a few reports of elevated DMPK
expression (Carango et al. 1993; Fu et al. 1993; Hofmann-Radvanyi et al. 1993;
Novelli et al. 1993; Sabouri et al. 1993; Bhagwati et al. 1996; Hamshere et al.
1997; Laurent et al. 1997; Eriksson et al. 1999, 2000, 2001; Narang et al. 2000;
Furling et al. 2001b, 2003; Frisch et al. 2001). The discovery of DMPK ribonu-
clear foci, and the technical problems associated with RNA extraction from
these foci, provided a reasonable explanation for loss of mutant DMPK cyto-
plasmic mRNA and correspondingly lower DMPK protein levels (Davis et al.
1997; Hamshere et al. 1997). It is noteworthy that Dmpk–/–, but not Dmpk+/–,
mice develop a late-onset progressive myopathy and muscle weakness, while
both homozygous and heterozygous Dmpk knockout mice show A-V conduc-
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tion blocks typically seen in DM (Jansen et al. 1996; Reddy et al. 1996; Berul
et al. 1999, 2000).

Although the DM1 expansion only affects the structure of the DMPK tran-
script, there is evidence that the expression of the downstream gene SIX5
decreases twofold to fourfold in DM fibroblasts, myoblasts, skeletal muscle
and myocardium as well as somatic cell hybrids (Klesert et al. 1997; Thorn-
ton et al. 1997; Inukai et al. 2000; Frisch et al. 2001). However, other reports
indicate that SIX5 expression is unaffected in DM cells and tissues (Hamshere
et al. 1997; Eriksson et al. 1999). In support of a role for SIX5 expression
changes in DM, heterozygous and homozygous Six5 knockout mice develop
progressive nuclear cataracts, perhaps resulting from increased expression
of the Atp1a1 gene encoding the Na+/K+-ATPase α-1 subunit (Klesert et al.
2000; Sarkar et al. 2000); however, the dustlike cataracts characteristic of
DM are structurally distinct from these nuclear cataracts. Hypogonadism is
another pathophysiological feature of both DM1 and DM2 and testicular at-
rophy, oligospermia and increased follicle-stimulating hormone levels have
been reported in Six5 knockout mice (Sarkar et al. 2004a). It is unlikely that
SIX5 expression is altered in DM2, although this has not been tested. Never-
theless, there is an intriguing coupling of gene expression at the DM1 locus.
The DMPK d(CTG) repeats are flanked by CTCF binding sites which form
a methylation-sensitive insulator element between the DMPK and SIX5 genes.
In CDM, the DMPK gene is hypermethylated and CTCF binding is impaired
and this might allow interactions between the SIX5 enhancer and the DMPK
promoter and increased levels of DMPK RNA (Sabourin et al. 1993; Laurent
et al. 1997; Steinbach et al. 1998; Filippova et al. 2001).

The DMWD gene is ubiquitously expressed in adult tissues, although the
highest levels are detectable in synapse-dense regions of the brain and in the
testes (Westerlaken et al. 2003). As with DMPK and SIX5, the effect of the
DMPK d(CTG)n expansion on the expression of DMWD has been a subject
of controversy with either no change or a 20–50% decrease in DM cyto-
plasmic RNA levels (Alwazzan et al. 1999; Eriksson et al. 2000; Frisch et al.
2001). These observations suggest that the expression profiles of the DMWD,
DMPK and SIX5 genes should be reevaluated using multiple CDM samples
and contemporary optimized techniques for subcellular fractionation and re-
verse transcription PCR.

4.2
Cell Culture Models for Congenital Myotonic Dystrophy

The presence of neonatal muscle hypotrophy and hypotonia suggests that
myogenic differentiation is delayed in CDM and that it might be possible to
model this phenomenon in cell culture systems. In support of this possibility,
histological analysis of CDM muscle shows myofiber immaturity with ele-
vated numbers of satellite cells. Nuclear RNA foci containing mutant DMPK
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transcripts are detectable in CDM quadriceps myoblasts which also show
reduced proliferative potential in cell culture (Furling et al. 2001a, b). In-
terestingly, CDM lymphoblast cell doubling is also compromised in culture,
suggesting that a reduced in vitro life span is characteristic of all CDM cells
(Khajavi et al. 2001). To address the specific step of myogenesis which is im-
paired by expression of CDM alleles, several groups have studied the effect
of expressing mutant DMPK minigenes during myogenic differentiation of
C2C12 cells (Sabourin et al. 1997; Amack et al. 1999; Bhagwati et al. 1999).
An early study reported that C2C12 differentiation was inhibited by trans-
genes which express full-length wild-type DMPK or just the DMPK 3′-UTR
alone (Sabourin et al. 1997). This fusion-inhibitory activity was mapped to
a 239-nucleotide fragment immediately upstream of the d(CTG) repeat and
loss of fusion correlated with a significant reduction in myogenin levels.
Other studies using GFP–DMPK 3′-UTR d(CTG)5 or 200 reporter constructs
have concluded that the d(CTG) repeat expansion is essential to inhibit my-
oblast fusion, although the same DMPK 3′-UTR upstream (or proximal)
region appears to be important for this inhibitory activity (Amack et al.
1999, 2001). Expression of GFP–DMPK 3′-UTR d(CTG)200, but not GFP–
DMPK 3′-UTR d(CTG)5, led to reduced MyoD expression levels and disrup-
tion of myoblast differentiation which was restored following infection with
a MyoD-expressing retrovirus (Amack et al. 2002). A potential problem is
that the longest repeat used in these studies was d(CTG)200 and CDM pa-
tients generally possess repeats in excess of 1000 trinucleotide repeat units,
so it is unclear if shorter repeat minigenes are replicating the molecular
events involved in CDM pathogenesis. One possibility is that the precipitat-
ing pathogenic event is the accumulation of mutant DMPK transcripts in the
nucleus beyond a threshold level, which leads to a loss of myogenic differen-
tiation. Perhaps the larger d(CTG) repeats associated with CDM are required
to attain this threshold in CDM patients, while minigene-induced overex-
pression of shorter repeats in cell culture replicates this pathogenic pathway.
Alternatively, myogenic differentiation is inhibited by overexpression and un-
derexpression of a variety of factors (e.g., TNFα, HuR), so DMPK 3′-UTR
d(CTG)200 minigene overexpression may cause deleterious effects that block
efficient myoblast function but these effects are unrelated to CDM pathogen-
esis (van der Giessen et al. 2003; Langen et al. 2004).

4.3
Mouse Transgenic and Knockout Models for Congenital Myotonic Dystrophy

Attempts to model CDM in transgenic and knockout mice have failed (re-
viewed in Wansink and Wieringa 2003). The HSALR transgenic mouse, which
expresses a d(CTG)250 in the 3′-UTR of the human skeletal actin gene, devel-
ops myotonia but does not show either muscle wasting or neonatal hypotonia,
possibly because the HSA transgene is expressed later than the endoge-
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nous Dmpk gene during myogenic differentiation. Additional transgenic lines
(Dmt-A–Dmt-E and DM300) have been generated in which the d(CTG) re-
peat expansions are driven by a human promoter, so the failure to show
neonatal hypotonia might also result from differences in developmental tim-
ing between human and mouse myogenesis (Seznec et al. 2001). Recently,
Storbeck et al. (2004) produced mice expressing a chimeric transgene com-
posed of a human DMPK promoter region, DMPK intron 1, a GFP reporter
open reading frame and the DMPK 3′-UTR containing either d(CTG)11 or
d(CTG)91 repeats. Both d(CTG)11 and d(CTG)91 transgenic mice show de-
layed myogenin expression and muscle development, and type I and II fiber
atrophy in 1–3-month-old animals which disappears by 6 months of age. Pri-
mary myoblasts obtained from these animals have reduced fusion potential
in culture. Although the relevance of these findings to delayed myogenic dif-
ferentiation in CDM is unclear since these mice were not born hypotonic,
the important result is that overexpression of a normal DMPK 3′-UTR with
a d(CTG)11 repeat has a similar effect on muscle development as a mutant
d(CTG)91. Interestingly, neither these d(CTG)91 transgenic mice nor “human-
ized” d(CTG)84 knockin mice, in which the human DMPK 3′-UTR containing
84 repeats is inserted into the mouse Dmpk gene, develop myotonia or de-
tectable RNA foci while HSALR mice with 250 r(CUG) repeats do (Mankodi
et al.; van den Broek 2002). This latter observation supports the idea of
a threshold effect for Mbnl protein recruitment resulting in postnatal patho-
genesis and suggests that it may be possible to model CDM in mice with
larger d(CTG) repeats independent of gene context. Alternatively, the gener-
ation of mouse knockout models might be appropriate if congenital disease
involves loss of both MBNL and unidentified factors that are linked to the
DM1 locus or which bind to DMPK RNA and are cosequestered with MBNL
proteins in nuclear RNA foci. Most importantly, studies designed to reveal
the molecular etiology of CDM will likely provide significant new insights
into biochemical pathways crucial for development of the brain and skeletal
muscle during embryogenesis.
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1
Introduction: Repeat Expansions and SCA8

Repeat expansion mutations are the underlying genetic mechanism of many
neurodegenerative disorders, including Huntington disease, fragile X syn-
drome (FXS), myotonic dystrophy types 1 and 2 (DM1 and DM2), and nine
forms of spinocerebellar ataxia (SCAs) (Warner et al. 1996; Zoghbi and Orr
2000; Ranum and Day 2002). The most common category of pathogenic
expansion involves d(CAG) trinucleotide repeats that are translated into ex-
tended polyglutamine tracts, which confer pathogenic effects through gain-
of-function mechanisms of their corresponding proteins. Repeat length is
generally inversely correlated with age of onset and progression, but varies
significantly between diseases (Warner et al. 1996; Zoghbi and Orr 2000;
Ranum and Day 2002). The SCAs variably affect limb coordination, speech,
swallowing, eye movements, and often shorten life span owing to ventilatory
problems, aspiration, and frequent pneumonia (Day et al. 2000).

SCA type 8 (SCA8) presents as a slowly progressive form of ataxia char-
acterized by dramatic repeat instability and a high degree of reduced pen-
etrance. Among the SCAs, SCA8 was the first example of a dominant SCA
not caused by the expansion of a d(CAG) polyglutamine encoding repeat
tract (Mosemiller et al. 2003). SCA8 belongs to a class of diseases in which
microsatellite repeat expansions are transcribed but do not appear to be
translated, which also includes SCA10, SCA12, DM1, DM2, and fragile X asso-
ciated tremor and ataxia syndrome (FXTAS) (Koob et al. 1999; Matsuura et al.
2000; Hagerman et al. 2001; Holmes et al. 2001; Liquori et al. 2001; Jacque-
mont et al. 2003). The pathogenic mechanism underlying several of these
disorders points to an RNA gain-of-function mechanism.
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2
Rapid Cloning of the SCA8 Repeat Expansion

In 1998, we used our RAPID cloning method to identify a previously un-
known form of ataxia, that we designated SCA8 and which is caused by a non-
coding d(CTG) repeat expansion within a gene of unknown function (Koob
et al. 1998, 1999). This novel cloning method eliminated the need for link-
age analysis or extensive clinical data, and allowed us to identify the mutation
using only a single DNA sample (Koob et al. 1999; Mosemiller et al. 2003).
Removing typical biases inherent in standard positional cloning approaches
allowed us to identify a mutation characterized by reduced penetrance.

We first performed the repeat expansion detection assay, to identify
d(CAG) repeat expansions, on DNA samples of patients with dominant but
unknown forms of ataxia (Schalling et al. 1993; Koob et al. 1998, 1999). This
screen identified an expansion of 80 repeats in an affected mother and daugh-
ter that was previously uncharacterized. We subsequently used RAPID to
clone the repeat expansion and to obtain the genomic sequence flanking the
repeat (Koob et al. 1998, 1999). Sequence analysis of the original SCA8 clone
revealed that the expansion consisted of 80 uninterrupted d(CTG)/d(CAG)
repeats preceded by a stretch of 11 d(CTA)/d(TAG) repeats. Although we
developed RAPID cloning expecting to identify a polyglutamine-encoding
ataxia gene, the only polyglutamine open reading frame (ORF) contained
a single methionine followed by a polyglutamine stretch and sequence analy-
sis did not reveal splice donor or acceptor signals that would allow a polyglu-
tamine ORF to extend through the expansion as part of a spliced transcript.
Furthermore, no transcripts spanning the repeat in the polyglutamine direc-
tion have been detected. These observations made it appear unlikely that the
SCA8 expansion could be translated into a polyglutamine tract (Koob et al.
1999).

3
The d(CTG) Repeat Cosegregates with a Novel Form of Ataxia

We used PCR analysis to screen the kindred from which the expansion had
been originally cloned, and found that both of the affected individuals and
two at-risk family members carried the expansion on one of their two alle-
les (Koob et al. 1999). We subsequently screened our ataxia family collection
(Moseley et al. 1998) and identified probands from 11 additional ataxia kin-
dreds with expanded alleles. From one of these individuals we were able to
identify and collect a seven-generation kindred with 92 members (Fig. 1).
Mutation analyses showed that all of the affected individuals in the family
had an expanded allele and linkage analysis between ataxia and the expansion
gave a maximum logarithm of the odds (LOD) score of 6.8 at Θ = 0.00.
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Fig. 1 The large spinocerebellar ataxia type 8 (SCA8) kindred (MN-A family). Filled
symbols indicate individuals with ataxia, symbols with a dot indicate individuals who
inherited the CTG expansion but are not clinically affected by ataxia. The CTG repeat
lengths of expanded alleles are indicated below the symbols. Haplotype analyses using
five short tandem repeat markers confirm that both branches of the family inherited the
expanded repeat from a common founder. Family members homozygous for the SCA8
expansion and their affected heterozygous sibling (individuals VI: 24–26) had similar
clinical features, with comparable ages of onset and rates disease of progression. (Re-
produced from Koob et al. 1999 with permission from © 1999 Nature Publishing Group
(http://www.nature.com/ng/index.html))

4
Organization of the SCA8 Gene

SCA8 transcripts are expressed at low levels in the d(CTG) direction with the
d(CTG) repeat located at the 3′ end of a highly alternatively spliced transcript
(Fig. 2). In humans, low steady-state transcript levels are found throughout the
CNS and in testis and kidney, but not in other tissues (Janzen et al. 1999; Koob
et al. 1999). The SCA8 d(CTG) repeat tract is conserved in chimpanzees, goril-
las, and orangutans, with humans having larger alleles than these other species
(Andres et al. 2003, 2004). At the genomic level, the SCA8 gene overlaps the
5′ end of a second gene, Kelch-like 1 (KLHL1), which encodes an actin binding
protein that is transcribed in the opposite direction (Koob et al. 1999; Nemes
et al. 2000). Although no functional relationship between the two transcripts
has been demonstrated, the genomic organization of the two genes and the evo-
lutionary conservation of a much shorter SCA8 mouse gene without the d(CTG)
repeat (Benzow and Koob 2002) suggests the possibility that one normal func-
tion of the SCA8 transcript may be to regulate KLHL1 transcripts through an
antisense mechanism (Koob et al. 1999; Nemes et al. 2000; Benzow and Koob
2002). Although reverse-transcription PCR shows that SCA8 is transcribed in
the d(CTG) orientation and sequence analysis shows a short ORF with 41 amino
acids plus the d(CTG) expansion, this ORF appeared unlikely to be translated
because of the relatively large number of upstream start and stop codons, lead-
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Fig. 2 SCA8 gene organization. Exons are shown as boxes and alternate splice forms are
indicated by dashed lines. The SCA8 repeat tract is located in exon A at the 3′ end of the
gene and is transcribed in the CTG orientation. The region of the SCA8 gene that overlaps
the 5′ end of KLHL1 is shown. Various alternative splice forms of the SCA8 transcript are
indicated. (Reproduced from Mosemiller et al. 2003, with permission from S. Karger AG,
Basel)

ing to our hypothesis that SCA8 is mediated by an RNA mechanism similar to
DM1 (Mosemiller et al. 2003; Koob et al. 1999).

5
Clinical Features of SCA8

On the basis of clinical evaluations of over 200 patients from 25 separate fam-
ilies, it is apparent that SCA8 presents as a slowly progressive ataxia that
largely spares brainstem and cerebral function (Koob et al. 1999; Day et al.
2000; Ikeda et al. 2000a; Juvonen et al. 2000; Silveira et al. 2000; Brusco et al.
2002; Topisirovic et al. 2002; Mosemiller et al. 2003). The disease is char-
acterized by gait and limb ataxia, speech and oculomotor incoordination,
dysarthria, and sensory loss. The onset of gait incoordination, commonly
one of the initial symptoms, ranged between 13 and 60 years of age within
the MN-A family, while the need for mobility aids ranged between 35 and
50 years—generally requiring at least 20 years of disease progression before
an aid was needed (Day et al. 2000).

Neurological examinations commonly reveal signs of oculomotor involve-
ment in moderate to severely affected patients (Day et al. 2000; Juvonen et al.
2000; Anderson et al. 2002). Additionally, speech is dysarthric with ataxic
and spastic components for all individuals examined (Day et al. 2000). Oc-
casionally, mild athetotic movements of extended fingers and intermittent
low-amplitude myoclonic jerks in the fingers and arms are detected. An elic-
itable Babinski sign is sometimes observed in severely affected individuals,
whereas hyperreflexia is a common finding (Day et al. 2000; Juvonen et al.
2000). Impaired vibratory perception, indicative of mild sensory loss, was an
intermittent clinical finding (Day et al. 2000).
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Fig. 3 Serial MRI scans of an affected individual. Horizontal (a1, b1) and sagittal (a2, b2)
MRI scans from an affected individual at ages 26 (a) and 35 (b) years. The earlier image
is 9 years after onset (17 years). There is marked cerebellar atrophy, minimal brainstem
atrophy, and no evidence of cerebral involvement. There is very little change over the 9-
year period between scans, which is consistent with the slow progression of the disease.
(Reproduced from Day et al. 2000 with permission from Lippincott Williams & Wilkins
(http://ww.com))

Atrophy of the cerebellar hemispheres and vermis is apparent on MRI
analysis of affected SCA8 individuals (Day et al. 2000; Ikeda et al. 2000a; Top-
isirovic et al. 2002), with brainstem involvement appearing minimal. A typical
SCA8 patient was tracked over a 9-year period with MRI; scans revealed lit-
tle change, characteristic of the slowly progressive course of the disease (Day
et al. 2000) (Fig. 3). The imaging also showed that the cerebral hemispheres,
white matter, and basal ganglia were spared. In contrast, Zeman et al. (2004)
reported a patient having had two MRI scans separated by 4 years—the ini-
tial scan was determined to be normal, while the second scan showed clear
cerebellar atrophy.

6
Disease Penetrance Affected by d(CTG) Repeat Length: the MN-A Family

In the MN-A family, 17 individuals ranging in age from 14 to 74 years car-
ried an expansion but were not clinically affected at the time of examin-
ation (Koob et al. 1999). These asymptomatic carriers had a mean age of 43
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(±17 years), which is comparable to the mean age of examination of affected
individuals. The expansion size for the carrier group was significantly smaller
(p < 10–8) than the size found in the affected individuals (mean 90 and 116 re-
peats, respectively) and all but one individual with an expansion greater than
107 repeats were clinically affected. The one exception was a 42-year-old indi-
vidual who carried an expansion of 140 repeats. Since SCA8 is an adult-onset
disorder with a documented age of onset as old as 65 years of age, an asymp-
tomatic status for this individual was not unanticipated. These data clearly
demonstrate that disease penetrance was affected by the d(CTG) repeat length
in the MN-A family (Koob et al. 1999).

7
Reduced Penetrance of SCA8 in Other Families

In the MN-A family, SCA8 is transmitted in an autosomal dominant pattern
with reduced penetrance of alleles less than 110 combined repeats. In other
families, SCA8 shows a complex inheritance pattern in which only a subset of
expansion carriers from a given family is affected (Koob et al. 1999; Day et al.
2000; Ikeda et al. 2000b; Cellini et al. 2001; Topisirovic et al. 2002). Representa-
tive SCA8 pedigrees are shown in Fig. 4 (Ikeda et al. 2004). Family A appears
to transmit ataxia in a dominant pattern with affected individuals in multi-
ple generations. Family B appears recessive with multiple affected individuals
in a single generation, while the affected individual in family C presents as
a sporadic case with no other affected family members. In contrast to the rela-
tively large number of affected patients in the MN-A family (n = 13), 25 of the
remaining 36 ataxia families had only a single affected individual, nine fam-
ilies had two affected individuals, and only two families had three affected

Fig. 4 SCA8 pedigrees with varying degrees of disease penetrance. Black symbols are for
individuals affected by ataxia, and unaffected expansion carriers are indicated by symbols
with a dot inside them. A diagonal line through a symbol denotes an individual who is de-
ceased. The size of the expanded SCA8 allele is shown below the individuals. (Reproduced
with permission from University of Chicago Press and Ikeda et al. (2004) Am J Hum
Genet 75:3–16. © 2004 by The American Society of Human Genetics. All rights reserved)
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individuals. Although only a subset of the expansion carriers in the MN-A
family developed ataxia (13/35), the penetrance of disease was significantly
higher in the MN-A pedigree than in the 36 smaller ataxia families we have
studied as well as families reported by other groups (Koob et al. 1999; Day
et al. 2000; Ikeda et al. 2000b, 2004; Juvonen et al. 2000; Cellini et al. 2001;
Topisirovic et al. 2002). Of note, MRI analysis of a 71-year-old patient, who
was clinically unaffected, showed mild cerebellar atrophy (Ikeda et al. 2000b),
indicating that asymptomatic individuals may still show signs of cerebellar
atrophy in imaging studies.

In summary, the tight correlation between repeat size and pathogenesis
found in the MN-A family is not found in other ataxia families that have been
reported (Ikeda et al. 2004). Among the additional SCA8 families examined,
repeat sizes among affected and unaffected expansion carriers overlap and of-
ten exceed the pathogenic threshold found in the MN-A family. These data
demonstrate that SCA8 expansions found among ataxia patients vary dramat-
ically in size and that the presence of an SCA8 expansion cannot be used
to predict whether or not an asymptomatic individual will develop ataxia
(Ranum et al. 1999; Moseley et al. 2000; Worth et al. 2000; Ikeda et al. 2004).

8
SCA8 Expansions on Control Chromosomes

Surprisingly, SCA8 expansions have also been found in control samples we
and others have screened (Vincent et al. 2000; Worth et al. 2000; Ikeda et al.
2004). Out of 2626 unrelated control chromosomes analyzed in Minnesota
and Canada, we identified ten SCA8 alleles (0.4%) larger than 74 combined
d(CTA)/d(CTG) repeats, which is the smallest expansion found in an ataxia
patient (Ikeda et al. 2004). One of the control expansions was from a CEPH
grandmother (family 1416) (Fig. 4). Medical histories indicate that neither
this woman nor her son (54 years old, 800 repeats) are affected by ataxia.
All six of the SCA8 expansion carriers in this family were asymptomatic at
the time of clinical evaluation, although the expansion-positive individuals in
generation III were children when they were clinically evaluated and thus it is
not yet clear whether they will be at higher risk of developing ataxia.

In our original collection of probands from genetically undefined ataxia
families, expansions containing more than 74 combined repeats occurred
on 12/292 (4%) independent chromosomes. Although this frequency is sig-
nificantly higher than in the general population (10/2626 chromosomes,
p = 4×10–25), the relative frequency of alleles with more than 74 combined
repeats in the general population (0.4%) is higher than that for all forms of
ataxia (approximately 1/10 000). Taken together, these data suggest that the
d(CTG) repeat can cause ataxia but that environmental or genetic modifiers,
including repeat length, affect disease penetrance (Ikeda et al. 2004).
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9
SCA8 Expansions Cosegregate with Ataxia in Small Families

In the MN-A family, previous studies have shown that the cosegregation of
the SCA8 expansion and ataxia is highly significant (LOD 6.8, Θ = 0.00) (Koob
et al. 1999). To distinguish between the possibility that the SCA8 expansions
are found by chance in the 36 additional smaller ataxia families versus the
possibility that the expansions predispose carriers to ataxia, we examined the
incidence of cosegregation of the expansion with ataxia in family members
other than the probands (Ikeda et al. 2004). For example, if the SCA8 expan-
sions do not predispose patients to ataxia but are merely found by chance in
these 36 families, then we would expect that the frequency of SCA8 expan-
sions in additional affected first-degree relatives would be 50%. In contrast,
we found that 12 of the 13 affected first-degree relatives available for analysis
also inherited the SCA8 expansion, indicating that the expansion cosegre-
gates with ataxia in these small families (p = 0.0038). Linkage analysis was
performed on the remaining small families with multiple affected individuals.
Although the highest LOD score for a single family was only 0.34 at a recom-
bination fraction of 0.00, the LOD scores were consistently positive and when
combined exceeded the threshold level of 2.0, considered significant for test-
ing linkage to a single specific locus (Ott 1991). The only exception was found
in a family in which two sisters were affected with a form of ataxia clini-
cally distinct from SCA8 by being a markedly more severe disease with rapid
disease progression, pronounced choreiform movements, a severe sensory
neuronopathy, and neuromyotonic discharges seen by electromyography. The
cosegregation of the SCA8 expansion among additional affected relatives in
the group of small ataxia families further indicates that the SCA8 expansion
directly predisposes individuals to developing ataxia (Ikeda et al. 2004).

10
Haplotype Analysis of SCA8 Expansion Chromosomes

To better understand the origin of the SCA8 expansion and the reduced pene-
trance of the disease, haplotype analysis was performed on a panel of 37 SCA8
families from the USA, Canada, Japan, and Mexico, 13 SCA8 expansion-
positive samples sent to Athena Diagnostics for ataxia testing, seven control
samples with expansions, and 14 expansion carriers with psychiatric diseases
(Ikeda et al. 2004). A total of 17 polymorphic short tandem repeat markers
were analyzed, including 13 newly developed markers that span an approxi-
mately 1 Mb region flanking the SCA8 d(CTG) repeat.

Two ancestrally related haplotypes (A and A′) were observed in the
Caucasian population, which included SCA8 and psychiatric patients, and
controls—indicating a common origin for the pathogenic and nonpathogenic
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Fig. 5 Proposed summary of the ancestral origins of the SCA8 expansion haplotypes
based on the analysis of 37 SCA8 families. The current haplotypes are likely to have arisen
from a small number of ancestral recombination and microsatellite instability events as
illustrated. R indicates a recombination event and the asterisk symbolizes an area with
microsatellite repeat instability. (Reproduced with permission from University of Chicago
Press and Ikeda et al. (2004) Am J Hum Genet 75:3–16. © 2004 by The American Society
of Human Genetics. All rights reserved)

expansions within the Caucasian population (Ikeda et al. 2004) (Fig. 5). Two
other distinct haplotypes were identified for the Japanese and Mexican ataxia
families (B and C, respectively) (Fig. 5). These results indicate that indepen-
dently arising SCA8 expansions are found in ataxia families with various
ethnic backgrounds, further supporting the direct role of the d(CTG) expan-
sion in disease pathogenesis.

11
Factors that May Influence SCA8 Disease Penetrance

Possible cis modifiers that could affect penetrance of the SCA8 expansion in-
clude d(CTG) repeat length, sequence interruptions within the repeat tract,
and the size of the d(CTA) tract preceding the d(CTG) repeat, all of which
show remarkable variation independent of haplotype (Ikeda et al. 2000a, b,
2004; Moseley et al. 1998, 2000, 2002).

11.1
The d(CTA) Repeat Tract

A polymorphic but stably transmitted d(CTA) repeat tract containing from
one to 21 repeats precedes the d(CTG) expansion, with the overall config-
uration d(CTA)nd(CTG)exp (Koob et al. 1999; Moseley et al. 2000; Stevanin
et al. 2000; Mosemiller et al. 2003). In most studies, a simple PCR assay that
detects the overall size of the combined repeats has been used to amplify
the SCA8 expansions, with the respective lengths of the d(CTA) and d(CTG)
repeat tracts not being determined. Although the SCA8 expansion in the MN-
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A and other Caucasian SCA8 expansion families descends from a common
founder mutation, a notable molecular difference in the repeat tract of the
MN-A family versus that of other families with lower disease penetrance is
that the d(CTA) tract is much smaller in the MN-A family (Ikeda et al. 2004),
suggesting that the length of the d(CTA) repeat may contribute to differences
in disease penetrance. The size variability of both the d(CTA) and d(CTG)
repeat tracts makes direct comparisons between repeat length and disease
penetrance difficult among families.

11.2
Interruptions Within the d(CTG) Expansion

An unusual feature of the SCA8 expansions is that the expanded alleles often
have triplet interruptions within the repeat tract, with one or more d(CCG),
d(CTA), d(CTC), d(CCA), or d(CTT) motifs found within the d(CTG) expan-
sion (Moseley et al. 2000; Mosemiller et al. 2003). These interruptions, which
are generally clustered at the 5′ end of the expansion, often duplicate during
transmission—resulting in offspring with alleles that vary from the affected
parent both in repeat tract length and sequence configuration. In general,
most normal d(CTG) repeat tracts do not have sequence interruptions, al-
though Sobrido et al. (2001) described a normal allele with 23 combined
repeats, in which the d(CTG) tract had a d(CAG) interruption. Although both
interrupted and pure d(CTG) repeat tracts are found in SCA8 ataxia fami-
lies, the high frequency of interruptions in the MN-A family suggests that
the d(CCG) interruptions in this family may play a role in the relatively high
disease penetrance (Moseley et al. 2000).

11.3
Repeat Instability During Transmission

In addition to changes in the sequence of the SCA8 expansion, the SCA8 ex-
pansion alleles also show dramatic intergenerational changes in repeat length
(Koob et al. 1999; Mosemiller et al. 2003). The changes in SCA8 expansion size
are generally larger than in the other dominantly inherited SCAs, but are typ-
ically not as large as for DM1 (Tsilfidis et al. 1992; Chung et al. 1993; Maciel
et al. 1995; Maruyama et al. 1995; Cancel et al. 1997; David et al. 1997; Jodice
et al. 1997; Zhuchenko et al. 1997; Koob et al. 1999). As a general rule, pater-
nal transmissions result in a contraction of the repeat tract (– 86 to + 7), while
maternal transmissions result in expansions (– 11 to + 900), with extreme ex-
amples of large maternally transmitted increases in repeat length including
+ 250, + 375, + 600, and + 900 (Koob et al. 1999; Corral et al. 2005). A his-
togram depicting the intergenerational changes in the repeat length, which
distinguishes between maternal and paternal transmission, is shown (Fig. 6).
The maternal bias for repeat tract expansion has not been observed for other
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SCAs, but is reminiscent of transmission tendencies for two other noncoding
expansion disorders—FXS and DM1 (Groenen and Wieringa 1998; Koob et al.
1999; Jin and Warren 2000; Mosemiller et al. 2003).

In the MN-A family the maternal expansion and paternal deletion bi-
ases affect disease penetrance, with 90% of the transmissions that resulted
in ataxia being maternally transmitted and the remaining 10% involving the
transmission of expanded alleles from both parents (Fig. 1) (Koob et al. 1999;
Mosemiller et al. 2003). In contrast, 16 of the 19 asymptomatic individuals
who carried repeat expansions received the SCA8 expansion from their father.
This maternal penetrance bias observed in the MN-A family is consistent with
a higher frequency of female transmissions resulting in expansions above the
pathogenic threshold of approximately 110 combined repeats, while paternal
transmissions tend to result in alleles in which the repeat tract has contracted
below the pathogenic threshold (Koob et al. 1999; Day et al. 2000). However,
this maternal penetrance bias seen in the MN-A family is not evident in many
of the SCA8 families examined (Juvonen et al. 2000).

Fig. 6 Intergenerational variation in repeat number for maternal and paternal trans-
missions. Repeat variation is shown as a decrease or an increase of CTG repeat units.
Maternal and paternal transmissions are represented by gray bars and black bars, respec-
tively. (Reproduced from Koob et al. 1999 with permission from © 1999 Nature Publishing
Group (http://www.nature.com/ng/index.html))
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11.4
En Masse d(CTG) Repeat Contractions in Sperm

To further investigate the SCA8 repeat instability and the paternal bias to-
wards d(CTG) repeat contraction, we examined sperm samples from men
who had expansions ranging in size from 80 to 800 repeats in the blood
(Moseley et al. 2000; Mosemiller et al. 2003). Southern blot analysis on sperm
DNA from two unrelated individuals showed that each expanded allele un-
derwent a massive contraction—into a size range less often associated with
ataxia (from 500 to approximately 90 and from 800 to approximately 110)

Fig. 7 En masse contraction of SCA8 alleles in sperm. a Dramatic repeat length changes
in patients 1 and 2 detected by Southern blotting. The repeat length of patients 1 and 2
contracts from 500 and 800 repeats in blood (B) to approximately 80 and 100 repeats
in sperm (S), respectively. The probe used did not contain the CTG repeat. b Southern
blots of blood and sperm DNA from patients with smaller expansions in their blood re-
veal the same trend of contractions of the expanded allele in sperm to repeat sizes that
are less often associated with ataxia (below approximately 100 repeats). Again, the equal
intensities of the bands representing the normal and expanded alleles indicate that re-
peat contractions occurred in all or nearly all of the sperm with expanded alleles. c PCR
analysis of SCA8 contractions in two patients from a family with paternal disease trans-
mission. Although contraction of repeats in sperm is again observed, the resulting alleles
remain within a more penetrant size range (more than 100 CTGs). (Reproduced from
Moseley et al. SCA8 CTG repeat: en masse concentrations in sperm and intergenerational
sequence changes may play a role in reduced penetrance. Human Molecular Genetics
(2000) 9(14):2125–2130 with permission from Oxford University)
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(Fig. 7a). A similar trend was also observed for individuals with smaller
somatic expansions; the expanded allele contracted in sperm to a non-
pathogenic range, generally below approximately 100 repeats (Fig. 7b). The
equal intensities of the bands representing the normal and expanded alleles
indicate that all or nearly all of the expanded allele in the sperm contracted.
The tendency for the SCA8 expanded allele to contract in sperm most likely
contributes to the reduced penetrance and maternal bias observed in some
SCA8 families (Moseley et al. 2000; Silveira et al. 2000).

12
Molecular Parallels with Myotonic Dystrophy

Similar to SCA8, DM1 is also caused by a d(CTG) repeat expansion that is
transcribed but not translated (Tapscott 2000). In 1992, the DM1 mutation
was identified as a d(CTG) expansion in the 3′ untranslated region of the
DMPK gene; however, the molecular mechanism underlying the pathogenesis
of this expansion was not clear. In 2001, we identified the mutation that causes
DM2, which is characterized by the same multisystemic features as DM1, but
results from a noncoding r(CCUG) expansion in intron 1 of the zinc finger
protein 9 (ZNF9) gene (Liquori et al. 2001). The DMPK and ZNF9 genes and
the surrounding regions bear no obvious similarity, but the fact that both
mutations involve similar expanded repeat motifs that are transcribed but un-
translated pointed to an RNA gain-of-function mechanism. The identification
of the DM2 mutation and experiments demonstrating ribonuclear foci forma-
tion and downstream alternative splicing of other genes have established that
the clinical features common to DM1 and DM2 are caused by an RNA gain-
of-function mechanism. Molecular parallels between SCA8, DM1, and DM2
mutations, along with the known toxic properties of transcripts containing
expanded r(CUG) repeats, suggest the possibility that a similar mechanism
may play a role in SCA8 pathogenesis (Mosemiller et al. 2003). The SCA8 gene
is almost exclusively expressed in the CNS but the DMPK and ZNF9 genes
are broadly expressed, consistent with the differing clinical features of the
diseases (Koob et al. 1999; Liquori et al. 2001).

13
Modeling SCA8 Pathogenesis in the Fly

Mutsuddi et al. (2004) have developed a Drosophila model of SCA8. These
investigators have shown that expression of SCA8 transcripts with both the
normal and the expanded repeat tracts in the Drosophila retina induces a late-
onset, progressive neurodegeneration. Using this neurodegenerative pheno-
type as a sensitized background for a genetic modifier screen, this group
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performed a targeted screen of a panel of available mutants in RNA binding
proteins to look for dominant modifiers of the SCA8 phenotype. Three en-
hancer mutations in muscleblind, split ends, and staufen and one suppressor
mutation in CG3249, which encodes a putative protein kinase A anchor pro-
tein (PKAAP) with a K-homology-type RNA binding motif, were identified.
All four of these genes encode neuronally expressed RNA binding proteins
that are conserved in Drosophila and humans. Although expression of both
normal and expanded repeat tracts causes neurodegeneration in this model,
the interaction between muscleblind and SCA8 varies in relation to d(CTG)
repeat size. These experiments suggest that the SCA8 expansion can alter
interactions with RNA binding proteins, which could in turn play a role in
disease pathogenesis (Mutsuddi et al. 2004).

14
Conclusion

The data summarized in this review describe various known pieces of a com-
plex puzzle—detailing the genetic features of the SCA8 expansion and vari-
ations in disease penetrance in the MN-A family and in other populations.
SCA8 differs in numerous respects from many of the other dominant SCAs
identified to date, most notably in the reduced penetrance of the d(CTG) ex-
pansion. Because the SCA8 mutation was isolated from a single ataxia patient
using our RAPID cloning method (Koob et al. 1998, 1999) instead of the posi-
tional cloning approaches used to identify the SCA1, SCA2, SCA3, and SCA6
mutations, all of which depend on the collection and characterization of large
families, it is not surprising that the genetic characteristics and disease pen-
etrance do not follow the pattern of previously defined SCAs. To date, not all
comparisons have taken into account the unprecedented genetic complexity
associated with SCA8; often the genetics are oversimplified and the focus is
only on the combined repeat size of the expansion rather than on examining
the d(CTA), d(CTG), and interruptions to the d(CTG) tract. While additional
molecular information from humans will help further define the sequence
variation at the SCA8 locus, additional experiments in cell culture and ani-
mal models will be needed to understand the molecular mechanisms of the
disease and the biology underlying the reduced penetrance.
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1
Introduction

Hereditary ataxias are a treasure trove for neurogeneticists. Numerous ge-
netic loci and mutations, the jewels and diamonds in the eyes of geneticists,
have been discovered in recent years. The reward is phenomenal and car-
ries far-reaching significance in many fields of biomedical science, ranging
from molecular biology and genetics, protein chemistry, to pathophysiology
of neurodegeneration. To date, 24 autosomal dominant ataxias (ADCA) have
been genetically defined, including spinocerebellar ataxias (SCA) 1–8, 10–19,
21–23 and 25–27, dentatorubral-pallidoluysian atrophy (DRPLA), and ataxia
caused by mutations in fibroblast growth factor 14 (FGF14) (Schols et al.
2004). Many of these are caused by abnormal expansion of d(CAG)/d(CTG)
trinucleotide repeats in the respective genes. Different pathogenic mechan-
isms have been uncovered, the most important of which is centered on the
toxicity of polyglutamine expansions encoded by d(CAG) repeats.

SCA10 is unique and caused by a novel microsatellite expansion primar-
ily composed of d(ATTCT) pentanucleotide repeats. The repeats are located in
intron 9 of a novel gene on chromosome 22q13.3, previously known as E46L
now designated as ATXN10. The molecular mechanisms of how such an ex-
pansion leads to the typical disease phenotypes in SCA10 remain unknown,
and pose a challenge, as well as opportunities, for neurogenetic research. Im-
portant questions include how d(ATTCT) expansion arises, what cellular and
molecular processes are preferentially affected and why the cerebellum is par-
ticularly susceptible to this mutation. Answers to these questions will help
us gain insight into some of the fundamental genetic processes, such as the
control of genetic stability and DNA replication. They are also likely to ad-
vance our understanding of the molecular and physiological properties of the
cerebellum.
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2
Clinical Presentations

Clinically, most ADCAs are poorly differentiated. Genetics has played an im-
portant role in dissecting this heterogeneous entity. Research development of
many dominantly inherited spinocerebellar ataxias unfolds in similar ways.
Large families are invaluable for the initial gene mapping and detection of
mutations. Subsequent identification of similar mutations in unrelated fam-
ilies and characterization of a full spectrum of signs and symptoms further
establishes a distinct entity and refines the genotype–phenotype relationship.

Studies of two large Mexican-American families were instrumental in the
initial recognition of SCA10, which has a relatively pure cerebellar ataxia typ-
ically accompanied by seizures (Grewal et al. 1998; Matsuura et al. 1999; Zu
et al. 1999). Linkage to chromosome 22q13.3 and identification of a d(ATTCT)
pentanucleotide repeat expansion were primarily based on data gathered
from these two families (Matsuura et al. 2000). Subsequent reports on four
unrelated families from Mexico further revealed more diverse phenotypes;
associated polyneuropathy, pyramidal signs, cognitive and neuropsychiatric
impairment were often associated with the classic pictures of cerebellar ataxia
plus seizures (Rasmussen et al. 2001). Recently, five Brazilian families were
diagnosed to have SCA10, and all the 28 patients have cerebellar ataxia with-
out seizures, representing one end of the whole spectrum of SCA10 pheno-
types (Teive et al. 2004).

2.1
Cerebellar Signs and Symptoms

All SCA10 patients have progressive cerebellar dysfunctions (Grewal et al.
1998, 2002; Lin and Ashizawa 2003; Matsuura et al. 1999, 2000; Rasmussen
et al. 2001). The function of the cerebellum is to continuously adjust, coor-
dinate and refine complex motor movements involving multiple muscles in
a smooth and integrated pattern. Fluidity and accuracy of movement is lost
with cerebellar dysfunction. Typical cerebellar signs include limb and gait
ataxia, dysarthria and ocular disturbances. The first sign of disease is usually
manifested as unbalanced gait and stance with variable degrees of limb ataxia,
which is characterized by jerky or uncoordinated movements unexplained
by motor weakness or sensory loss. On neurological examination, patients
show wide-based ataxic gait with impaired tandem-walk, dysdiadokinesia, in-
tention tremor and dysmetria. Ataxia is followed by speech difficulties and
dysarthria; the speech is slow and slurred, or explosive with frequent hes-
itations and inappropriate pauses; hence called “scanning” speech. Ocular
abnormalities common in SCA10 patients include ocular dyskinesia, most
commonly presented as intrusions of hypometric saccade during pursuit,
which may progress to overt ocular flutter with brief conjugate oscillations
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of the eyes during attempted fixation or movement (ocular dysmetria). Gaze-
evoked nystagmus may be seen in some patients with SCA10. Irregularity in
pursuit eye movements is often seen in early stages of the disease. Neuroimag-
ing studies with MRI or CT showed specific cerebellar atrophy involving the
vermis and both hemispheres, while other brain structures, such as the cere-
bral cortex and brain stem, were only minimally involved.

2.2
Seizures

Epileptic seizures are variably associated with SCA10. In the currently known
SCA10 families with over 100 affected members (two Mexican-American fam-
ilies, four Mexican families and five Brazilian families), seizures are present
only in families of Mexican origin, and the prevalence between families is also
significantly different, ranging from 25 to 80% (Grewal et al. 1998, 2002; Lin
and Ashizawa 2003; Matsuura et al. 1999, 2000; Rasmussen et al. 2001). The
epilepsy usually presents as generalized motor seizure and/or complex partial
seizures a few years after the start of cerebellar ataxia. Anti-epileptic drugs,
such as carbamazepine, phenytoin and valproic acid, are effective for most
cases. The interictal EEG is abnormal in many SCA10 patients with epilepsy
and in some without seizures. The most common findings were diffuse cor-
tical dysfunction with slow, fused and disorganized activities; focal cortical
irritability or slow activity was also observed in some individuals. Two pa-
tients developed status epilepticus, and one died as a direct result. It is likely
that the epileptic activities reflect the pathogenic effects of d(ATTCT) expan-
sion outside the cerebellum, particularly the cerebral cortex.

2.3
Other Extracerebellar Signs and Symptoms

Some SCA10 patients of Mexican origin have additional phenotypes beyond
cerebellar degeneration and epileptic seizures (Grewal et al. 1998, 2002; Lin
and Ashizawa 2003; Matsuura et al. 1999, 2000; Rasmussen et al. 2001). More
extra-cerebellar signs and non-neuronal involvement have been observed in
some families. Variable degrees of pyramidal signs, including hyperreflexia,
leg spasticity and Babinski’s sign, were reported. Affected individuals often
complain of mild sensory loss in distal lower extremities, and nerve con-
duction studies confirmed the presence of polyneuropathy. Some patients
have low intelligence quotient (IQ), and brief neuropsychiatric evaluation
by MMPI demonstrated depressive, aggressive and/or irritable traits. Again,
these extra-cerebellar phenotypes further suggested that other neural tissues
have different susceptibilities to the d(ATTCT) expansion in the SCA10 gene.
Interestingly, one family also showed hepatic, cardiac and hematological ab-
normalities in the affected members. But it is unclear whether these were
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a part of the SCA10 syndrome or due to another disease which happened to
co-segregate with SCA10. Investigation of more SCA10 families/patients and
better understanding of the molecular mechanisms of pathogenesis will be
important to answer this question.

3
Genetic Features

3.1
d(ATTCT) Pentanucleotide Repeat Expansion

By positional cloning, we identified an expansion of a d(ATTCT) pentanu-
cleotide repeat, which is located in intron 9 of the SCA10 gene in chromosome
22q13.3, as the disease-causing mutation for this disease (Matsuura et al.
2000). The SCA10 gene consists of 12 exons spanning 172.8 kb of genomic
DNA with an open reading frame of 1428 bp, encoding 475 amino acids. The
number of d(ATTCT) repeat units is polymorphic and ranges from 10 to 29
in the normal population, whereas the number of expanded allele ranges
from 800 (4 kb) to 4500 (22.5 kb). Thus, the SCA10 repeat expansion is one
of the largest microsatellite repeat expansions known to exist in the human
genome. Several lines of evidence support the notion that the expansion of
d(ATTCT) repeats is the pathogenic mutation for SCA10. First, the d(ATTCT)
repeat expansion co-segregates with the SCA10 phenotype in the affected
families, and was found to be absent in over 1000 normal chromosomes. Most
importantly, the size of the expanded repeat shows an inverse correlation
with the age of onset, arguing against the possibility of another closely linked
mutation as the direct cause of the disease. Moreover, SCA10 is strongly ex-
pressed in the brain; disruption of its expression might preferentially affect
the CNS, such as the cerebellum and cerebral cortex.

Since the mutation in SCA10 was identified, many families with autoso-
mal dominant cerebellar ataxia from different ethnic background have been
screened (Fujigasaki et al. 2002). All the currently known SCA10 families
originate in Latin America, including six Mexican families and five Brazil-
ian families. In collaborations with Astrid Rasmussen’s group at the National
Institute of Neurology and Neurosurgery in Mexico City, Mexico, and Hélio
Teive’s group at the University of Prana, Curitiba, Brazil, we have recently
identified additional five Mexican and two Brazilian families (unpublished
data). Thus, SCA10 is the second most common SCA in these populations,
secondary to SCA2 in Mexico and Machado–Joseph disease in southern
Brazil. In contrast, other ethnic populations, including those of their Euro-
pean ancestors, have no identifiable SCA10 families. The genealogical his-
tories and physical characteristics of these patients suggested an admixture
of Native American with Spanish/Portuguese ancestry in all SCA10 families.
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SCA10 mutation might have arisen in the New World as a result of a founder-
effect. To elucidate the basis for this disorder, haplotype analysis of short tan-
dem repeat polymorphisms and single nucleotide polymorphisms in regions
of linkage disequilibrium around the SCA10 gene should be informative.
However, it is still theoretically possible that the same mutation is preva-
lent across different ethnic populations. The mutation might be manifested
as dominant ataxia only in certain genetic backgrounds. Other phenotypes,
such as seizure or psychiatric disorders, might be predominant. Screening
for a d(ATTCT) repeat expansion in other hereditary neurological conditions
could be valuable.

3.2
Anticipation, Repeat Instability and Genotype–Phenotype Correlation

Anticipation is a clinical phenomenon, describing progressively earlier age of
onset and/or more severe phenotypes in successive generations. While it can
have non-biological components such ascertainment biases and phenotype-
copying among family members, anticipation frequently reflects the dynamic
nature of certain genetic mutations, which can change from generation to
generation. It is a characteristic finding in a number of neurological diseases
which are caused by trinucleotide repeat expansions, such as Fragile X syn-
drome, Huntington’s disease, myotonic dystrophy type 1 (DM1) and several
SCAs. The underlying mechanism is instability of repeat expansion during
DNA replication; the affected offspring tend to have longer repeats than the
parents, resulting in a more severe disease with earlier manifestation.

Multiple factors are potentially involved in determining how faithfully
the expanded repeats are replicated during meiosis and mitosis. These in-
clude the motif and configuration of different repeat units, the length of the
repeats, cis elements of surrounding DNA sequences and chromosomal struc-
tures, trans-acting factors involved in DNA repair and recombination, and the
gender of the transmitting parent (Lin and Ashizawa 2003). Analysis of the
stability of expanded d(ATTCT) repeats in SCA10 revealed a rather complex
picture (Matsuura et al. 2004). The repeats are highly unstable during pater-
nal transmission, whereas maternal transmission is relatively stable. Sperm
DNA has tremendous heterogeneity in the size of the expanded allele, indi-
cating high degree of instability in male germ line. Mosaicism of the repeat
size is also present in somatic tissues. It is of note that distinct patterns of
intergenerational changes in the repeat size were observed in different fam-
ilies, indicating family-dependent factors, such as those involved in repeat
stability as above (Grewal et al. 1998, 2002; Lin and Ashizawa 2003; Mat-
suura et al. 1999, 2000; Rasmussen et al. 2001). Moreover, different tissues
also seem to have different degrees of heterogeneity, suggesting a poten-
tial role of neuron-specific instability in the pathogenesis (Matsuura et al.
2004). It would be of great interest to see if d(ATTCT) repeats are longer
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in the CNS, particularly in the cerebellum, the principal target of SCA10
pathogenesis. On the other hand, this inter-tissue variability raises the issue
of DNA sampling, which is routinely done using peripheral blood leuko-
cytes (PBLs). Caution should be used in diagnosis and counseling when
the repeat length derived from PBL DNA is used to correlate with pathol-
ogy in the CNS and age of onset. Family-dependent intertissue variability
might provide an explanation for the paradox in one SCA10 family: an-
ticipation with apparent repeat contraction, which is based on the repeat
length in PBL.

4
Molecular Studies

4.1
DNA Structure

Normal SCA10 allele has 10–29 d(ATTCT) repeats, while the disease allele ex-
pands enormously, ranging from 800 to 4500 repeats (Matsuura et al. 2000).
d(ATTCT) repeats are unique in its high content of A-T. Structurally, it lacks
symmetric elements to form hairpins, intramolecular triplexes or quadru-
plexes. High A-T content is a feature of DNA sequences that form unpaired
structures when under torsional stress, called DNA unwinding elements
(DUE) (Potaman et al. 2003). DUE have been known to function as replica-
tion origins in both prokaryotes and eukaryotes (Berberich et al. 1995; Miller
et al. 1999). Indeed, when cloned into plasmids under superhelical torsion,
d(ATTCT) repeats form an unpaired DNA structure, which can be demon-
strated by two-dimensional gel electrophoresis and atomic force microscopy
(Potaman et al. 2003). Furthermore, the unpaired DNA structure formed by
d(ATTCT) repeats can support complete plasmid replication in a HeLa cell
extract, indicating that expanded d(ATTCT) repeats can function as an aber-
rant replication origin (Potaman et al. 2003). These observations may have
important implications for repeat instability and pathogenic mechanisms.

In the chromosomal environment, d(ATTCT) repeats would be subject to
variable torsional stress, as determined by the pattern of nuclear matrix at-
tachment and tracking of DNA and RNA polymerases (i.e. replication and
transcription status of the locus) (Kramer et al. 1999; Kramer and Sinden
1997; Ljungman and Hanawalt 1992). Expansion of d(ATTCT) repeats might
facilitate DNA unwinding and formation of unpaired structures, resulting
in aberrant replication initiation. With large expansion of the repeats, DNA
unwinding might reoccur at the still-extending, nascent double-stranded
d(ATTCT) repeats, and replication could re-initiate at the new unpaired struc-
ture. This anomalous replication may lead to both repeat expansion and
deletion by different mechanisms, such as strand breakage and recombina-
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tion, resulting in heterogeneity of the expanded allele (Potaman et al. 2003).
DNA replication in eukaryotes initiates from multiple replication origins.
There is a tight regulation of when and where to start DNA replication from
a multitude of origins. Different development stages and differentiation status
can have different temporal and spatial patterns of active replication origins,
since DNA replication initiates neither from all the potential origins nor at the
same time. This tight control is more relaxed and less selective during game-
togenesis and early embryogenesis (Martinez-Salas et al. 1988; Simon et al.
1999; Wiekowski et al. 1997). Therefore, expanded d(ATTCT) repeat-mediated
anomalous replication may be more likely to occur during sperm formation,
resulting in enhanced heterogeneity of SCA10 expanded alleles in male germ
line.

Different tissues have distinct rate of cell division, and SCA10 gene is dif-
ferentially expressed in various tissues. These properties reflect activities of
DNA and RNA polymerases, which may be important in determining the
torsional stress in SCA10 locus. Thus the frequency of d(ATTCT) repeat-
mediated aberrant replication may be variable in different tissues, resulting
in inter-tissue variability in d(ATTCT) repeat expansion. It is likely that in the
cerebellum, where SCA10 is abundantly expressed by potent transcription,
tracking of RNA polymerase along SCA10 DNA strands creates stronger tor-
sional stress, facilitating the d(ATTCT) repeat expansion to unwind and form
an unpaired structure. Subsequent aberrant DNA replication might lead to
further expansion of the repeats in cerebellar neurons. Alternatively, cell cycle
proteins can be recruited, resulting in aberrant cell cycle entry and neuronal
apoptosis/degeneration in the cerebellum.

4.2
Protein Function

SCA10 encodes a protein of 475 amino acids with an apparent molecular
weight of 53 000 (Marz et al. 2004; Matsuura et al. 2000). It is highly homol-
ogous to a mouse protein, E46, the function of which is unknown. Thus the
protein encoded by SCA10 is known as ataxin-10 or E46L (mouse E46-like
protein). Analysis of the amino acid sequence of the human E46L protein did
not reveal any transmembrane domain, nuclear localization signal or other
known functional motifs. However, in the carboxyl terminus, E46L contains
two armadillo repeat domains that have been found in membrane-associated
proteins such as β-catenin; thus E46L belongs to the family of armadillo re-
peat proteins. Related genes have also been found in flies, worms, plants and
yeast, suggesting that SCA10 and its homologues across different species are
evolutionarily conserved. E46L mRNA is abundantly expressed throughout
the brain. Outside the CNS, it is also highly expressed in the testis, heart,
kidney and skeletal muscles, with a medium level in the liver, and low level
in PBL.
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E46L is a cytoplasmic protein, which forms homotrimeric complexes via
a “tip-to-tip” contact with the concave sides of the molecules facing each
other (Marz et al. 2004). Immunostaining of mouse and human brain sec-
tions with an antibody against rat ataxin-10 revealed a predominantly cy-
toplasmic and perinuclear localization. “Knockdown” of SCA10 in primary
cerebellar and cortical neurons in culture by small interfering RNAs (siRNAs)
caused increased apoptosis (Marz et al. 2004). It is of note that cerebellar
neurons were significantly more sensitive to reduced level of ataxin-10. It
would be interesting to see (1) if ataxin-10 in SCA10 patients is reduced,
(2) if expanded d(ATTCT) repeats cause reduced ataxin-10 expression and
(3) if reduced expression in animal models results in cerebellar degenera-
tion. Answers to these questions will be important for establishing a loss-
of-function mechanism in SCA10 pathogenesis. If such a mechanism can
be established, a therapeutic approach can be designed to supplement E46L
expression.

To understand E46L function, we have identified several E46L-interacting
proteins by yeast two-hybrid screening (unpublished). One of these molecules
is a subunit of heterotrimeric GTP-binding protein (G-protein). Prelimi-
nary studies suggest that E46L potentiates heterotrimeric G-protein signaling,
leading to enhanced neurite formation. It would be interesting to investigate
if E46L is required for G-protein signaling and if reduced expression of E46L
causes dendritic degeneration.

4.3
RNA Gain of Function

A RNA gain of function has been proposed as a pathogenic mechanism for
several neurodegenerative disorders caused by repeat expansions (Liquori
et al. 2001; Mankodi et al. 2002; Miller et al. 2000; Ranum and Day 2004;
Savkur et al. 2001; Taneja et al. 1995; Timchenko et al. 1996, also reviewed
in this volume). In myotonic dystrophy type 1 (DM1), a large d(CTG) re-
peat expansion in the 3′ untranslated region (UTR) of the DMPK gene results
in a transcript containing expanded r(CUG) repeats. The r(CUG) repeats
at the 3′ UTR retain the DMPK messenger RNA (mRNA) in the nucleus,
forming distinct loci with reduced presence in the cytoplasm. The mutant
transcript interacts with a number of RNA binding proteins, such as CUG-
BP1, ETR3, MBLL, MBNL and MBXL. Some of these proteins are known
to be important in precursor mRNA processing, such as splicing and nu-
clear export. Accumulation of mutant DMPK transcript in the nucleus might
disrupt the normal functions of these RNA-binding proteins, affecting the
splicing efficiency and expression of other genes, such as cardiac troponin T,
insulin receptor and chloride channel. These contribute to cardiomyopathy,
myotonia and insulin resistance, phenotypes related to the multisystemic in-
volvement in DM1. A parallel mechanism was indicated in DM2; a large
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expansion of d(CCTG) repeats in the first intron of the zinc finger 9 (ZNF9)
gene results in accumulation of r(CCUG) repeat RNA. Like in DM1, the mu-
tant RNA transcript containing expanded r(CCUG) repeats accumulates in
nuclear foci, sequesters a similar array of RNA binding proteins, and results
in the multisystemic feature of pathogenesis. Thus, RNA containing an ex-
panded repeat transcribed from both intronic and extronic regions could play
a major role in the pathogenesis of neurodegenerative diseases caused by re-
peat expansions.

In SCA10, d(ATTCT) repeat expansion is located in intron 9 of the sca10
gene. Our preliminary studies suggest that both normal and mutant alleles
are expressed at similar level and RNA with expanded r(AUUCU) repeats
is present at detectable levels. When plasmids expressing a pure d(ATTCT)
repeat tract were transfected into cells in culture, RNA foci were observed
by in situ hybridization; thus overexpression of d(ATTCT) repeats can lead
to accumulation of r(AUUCU) RNA and formation of RNA foci. It is very
likely that RNA gain of function is an integral part of SCA10 pathogenesis.
A trans-dominant gain of function by a large expansion of the r(AUUCU) re-
peat in the E46L RNA might recruit RNA binding proteins and perturb their
normal cellular functions. An essential next step in establishing a potential
gain-of-function mechanism for SCA10 is the identification of proteins that
bind r(AUUCU) repeats.

5
Concluding Remarks

As more SCA10 families were identified, the complete phenotypic spectrum
is emerging. Central to this spectrum is cerebellar ataxia, with the extra-
cerebellar involvement being variable and dependent on different genetic
backgrounds. Perhaps the most exciting and important finding in the studies
of SCA10 is the novel mutation of d(ATTCT) repeat expansion which raises
several important questions for geneticists. Investigation of how d(ATTCT)
repeat expansion arises and maintains the stability in SCA10 families will
provide insight into the fundamentals of molecular genetics, such as DNA
structures, replication and stability. Equally exciting questions still remain to
be answered as to why the cerebellum is particularly susceptible and what the
pathogenic mechanism is. Analysis of the primary disease tissue and estab-
lishing a mouse model will surely pay off.
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1
Introduction

Dynamic mutations in the coding region of various genes can result in hu-
man pathology, including the polyglutamine (polyQ) and polyalanine dis-
eases. The molecular pathogenesis of the former group, comprising spinal
and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy
(DRPLA), Huntington’s disease (HD), and spinocerebellar ataxia (SCA) 1, 2,
3, 6, 7, and 17, has received considerable attention for more than a decade
(Zoghbi and Orr 2000; Li and Li 2004a,b). Trinucleotide repeat expansion was
first linked to the SBMA locus in 1991 (La Spada et al. 1991), and, 2 years later,
cloning of the HD locus by a large collaboration of researchers revealed the
same type of mutational event (Huntington’s Disease Collaborative Research
Group 1993). Although the proteins encoded by the nine polyQ disease genes
do not share sequence homology outside of the polyQ domain, there is some
overlap in the clinical phenotypes induced by repeat expansion. Moreover, the
tendency of the expanded proteins to self-associate results in the formation
of neuronal aggregates, which constitute a histopathological hallmark of the
polyQ diseases. However, each polyQ disease displays selective and distinct
neurodegeneration, which is not necessarily a feature of other trinucleotide
repeat diseases that arise from noncoding mutations but may also affect neu-
ronal function. Different regions of the brain or cell types within a particular
structure are affected in each polyQ disease (Fig. 1). Several mechanisms have
been invoked to explain the molecular pathogenesis of the polyQ diseases,
including defects in both nuclear and cytoplasmic functions that are cru-
cial to cell viability. Elucidation of the underlying molecular mechanisms will
prove valuable in the development of therapeutic strategies to counter polyQ-
induced neuropathology.
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Fig. 1 A cartoon of a sagittal brain section indicating regions that are prominently
affected in the various polyglutamine (polyQ) diseases. Although degeneration in the
cerebellum and brainstem is observed in all of the spinocerebellar ataxias (SCAs), the
members of this subgroup can be distinguished by characteristic neuropathology within
these structures. Notably, retinal degeneration occurs only in SCA7. (Modified from Ru-
binsztein et al. 2002)

2
Genetics of PolyQ Diseases

The genetic basis of polyQ disease is expansion of a d(CAG) trinucleotide re-
peat in the coding region of one of at least nine different genes (Table 1). The
d(CAG) repeat is translated into a polyQ domain that resides in different re-
gions of the disease proteins. Although these repeats are largely conserved
in the great apes, namely chimpanzees, gorillas, and orangutans, expansion
and the resulting pathology have only been observed in humans. At both ex-
panding and nonexpanding loci, the mean d(CAG) repeat tract size is not
markedly different between humans and their closest primate relatives. How-
ever, human alleles of disease genes demonstrate the greatest within-species
variance in repeat length. This high variance is characteristic of expanding
alleles alone, suggesting that the probability of expansion and repeat size
variability for a given gene may be correlated (Andres et al. 2004). Hetero-
geneity in the nucleotide composition of the repeat, due either to a mixture
of d(CAG)/d(CAA) codons or to the presence of non-glutamine codons, ap-
pears to be relevant to expansion. Notably, loss of these interruptions by
deletion or chromosomal rearrangement has been associated with intergen-
erational expansion (Maltecca 2003). Moreover, polyQ disease proteins often
harbor several homopeptide sequences outside of the glutamine tract. In hu-
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man huntingtin (htt), for example, the polyQ domain is immediately followed
by two polyproline tracts. The non-glutamine homopeptides are generally en-
coded by more than a single codon, presumably making them impervious to
expansion (Karlin and Burge, 1996).

With the exception of Kennedy’s disease, or SBMA, all of the polyQ dis-
eases are inherited as autosomal dominant traits. The causative mutation
in Kennedy’s disease is a polyQ expansion in the androgen receptor, which
is encoded by a gene that resides on the long arm of the X chromosome.
Because female carriers of a pathogenic allele are largely asymptomatic, as
a consequence of relatively low levels of circulating androgens (Katsuno et al.
2002), an X-linked recessive pattern of inheritance is observed for this dis-
ease (Everett and Wood 2004). Despite this discrepancy, and consistent with
the dominant transmission of the other polyQ diseases, there is tremendous
evidence that expansion of a polyQ tract has a gain-of-function effect. The
fact that the disease phenotypes can be largely recapitulated in transgenic
but not in knockout mice corroborates this idea. However, since the nor-
mal functions of only three of the polyQ disease proteins (androgen receptor,
TATA-box binding protein, (TBP), and the SCA6 protein) have been well char-
acterized (Table 1), the potential contribution of partial loss of function to
molecular pathogenesis remains unclear (Evert et al. 2003). Notably, com-
bined loss-of-function and gain-of-function effects have been reported for
the polyQ-expanded androgen receptor (Lieberman et al. 2002).

The clinical profiles of families affected by polyQ disease are primarily de-
termined by d(CAG) repeat length, but various genetic and environmental
factors are also influential. In general, the length of the d(CAG) repeat is pos-
itively correlated with disease severity and negatively correlated with age of
onset; however, the strength of these correlations can be undermined by clin-
ical heterogeneity between and even within families. In SCA17, for example,
reduced penetrance has been associated with pathogenic repeat lengths near
the disease threshold (Zuhlke et al. 2003a,b). In both human patients and
transgenic mice, the dosage of the polyQ-expanded protein is significant.
Although individuals homozygous for pathogenic d(CAG)-repeat alleles are
rare, there is evidence of incomplete dominance for some of the polyQ dis-
eases. In SCA3 (Lang et al. 1994), DRPLA (Sato et al. 1995), and SCA6 (Kato
et al. 2000), homozygosity results in an earlier age of onset and, although
there can be considerable variability (Lerer et al. 1996), a more severe mani-
festation of the disease. HD was originally considered an example of complete
dominance (Wexler et al. 1987), as the age of onset is not significantly dif-
ferent between homozygotes and heterozygotes; however, it is now clear that
disease progression is markedly enhanced in the former genotype (Squitieri
et al. 2003). The same phenomenon is observed in SCA17 (Toyoshima et al.
2004; Zuhlke et al. 2003a,b), thus, the molecular mechanisms responsible for
the age of onset and disease progression may be separable (Squitieri et al.
2003).
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The d(CAG) repeats in disease genes are vulnerable to both meiotic and
mitotic instability, allowing for somatic mosaicism and genetic anticipation,
respectively. The extent of both types of instability varies among the differ-
ent disease genes. Anticipation, defined by a decrease in the age of onset and
an increase in disease severity between generations, is characteristic of trinu-
cleotide repeat diseases in general. In the polyQ diseases, pathogenic alleles
tend to be more unstable, or prone to expansion, in paternal rather than
maternal transmission (Everett and Wood 2004). Examination of individual
sperm from a small number of male patients with different polyQ diseases has
suggested a direct relationship between the variance in the change in repeat
size and genetic anticipation. The highest variance was observed in sperm
from men with DRPLA, in which marked anticipation is typical, whereas
sperm from men with SBMA, a disease characterized by very limited inter-
generational instability, displayed a small variance in repeat size (Leeflang
et al. 1995; Zhang et al. 1995; Takiyama et al. 1997, 1999). Moreover, for at least
two diseases, namely, Machado–Joseph disease and DRPLA, there is molecu-
lar evidence of biased meiotic segregation in favor of the expanded mutant
allele in the sperm of affected men. Thus, meiotic drive might explain the
non-Mendelian transmission of the disease trait evident in some polyQ dis-
ease pedigrees (Ikeuchi et al. 1996; Takiyama et al. 1997).

As the correlation between the age of onset and d(CAG) repeat length can-
not account for all of the phenotypic variability observed in the different
polyQ diseases, the existence of various genetic and environmental modi-
fiers has been proposed. In HD, 69% of the variance in the age of onset can
be explained by d(CAG) repeat size. A candidate loci approach, based on
knowledge of pathways relevant to HD pathology, identified a specific allele
of the gene encoding the GluR6 kainate receptor, which has been renamed
GRIK2, as a genetic modifier of the age of onset (Rubinsztein et al. 1997).
A similar directed approach, in which variations in genes encoding either
htt-interacting proteins or apoptotic proteins were examined, revealed single
nucleotide polymorphisms in the genes for the transcription factor p53 and
human caspase activated DNase that could account for some of the remain-
ing variance in the age of onset (Chattopadhyay et al. 2004). Notably, a whole
genome scan for genetic modifiers has indicated strong linkage at a couple of
locations, including 4p16, where the HD locus happens to reside (J.L. Li et al.
2003).

3
Neuropathology of PolyQ Diseases

Most of the polyQ disease proteins are widely expressed within and outside
of the brain. However, expansion of the polyQ tract results in an essentially
neuronal-specific phenotype in patients. Moreover, each of the polyQ diseases
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is distinguished by a unique profile of selective neurodegeneration that can
be evinced radiographically or by postmortem analysis (Fig. 1). Although the
pathological relevance remains controversial, the polyQ disease brain is char-
acterized by the presence of aggregates or inclusions. These structures, the
subcellular localization of which depends on the polyQ disease protein, gen-
erally have not been observed outside the central nervous system. In SBMA
(Li et al. 1998) and SCA7 (Jonasson et al. 2002), however, there is evidence of
nuclear inclusions in certain peripheral tissues. Nuclear aggregation in neu-
ronal tissue is prominent in all of the polyQ diseases except SCA2 (Huynh
et al. 1999) and SCA6 (Ishikawa et al. 1999, 2001). Cytoplasmic aggregates are
present in some of the polyQ diseases, including SCA2 (Huynh et al. 2000),
SCA6 (Ishikawa et al. 1999), HD (DiFiglia et al. 1997; Gutekunst et al. 1999),
DRPLA (Hayashi et al. 1998a,b), and SMBA (Adachi et al. 2005). In HD, cy-
toplasmic aggregates, which primarily localize in neuronal processes such as
axons and dendrites, have been extensively characterized (DiFiglia et al. 1997;
Gutekunst et al. 1999).

Mouse models of polyQ diseases have proven valuable for study of nu-
clear accumulation of mutant polyQ proteins in neuronal tissues. In knockin
and transgenic mouse models, it is often possible to arrange these distinct
labeling patterns in a histochemical time course (Michalik and Broeckhoven
2003). Diffuse nuclear staining, which increases in intensity with age and
probably represents the presence of abundant microaggregates, is the ini-
tial histological event. Multiple puncta eventually become discernable within
the diffuse immunoreactive signal. Ultimately, loss of the diffuse staining
pattern is coincident with the emergence of, in most cases, a single neu-
ronal intranuclear inclusion (NII) (Yvert et al. 2000; Schilling et al. 2001).
The duration of each phase within this time course is directly related to
the length of the polyQ tract in the transgene-encoded protein. Compar-
ison of two different lines of SCA17 transgenic mice of the same genetic
background, which express TBP with a polyQ tract of either 71 or 105
residues under a prion protein promoter, demonstrates this relationship. At
2–2.5 months of age, NII are detected prominently in the cerebellum of 105Q
female mice, whereas immunoreactive cerebellar neurons in identically aged
71Q female mice are characterized by diffuse albeit intense nuclear stain-
ing with occasional puncta (M. Friedman and X.J.Li, unpublished data). In-
triguingly, a conditional mouse model of HD has provided evidence that
polyQ-mediated neuropathology may be reversible. In this model, aggregate
formation and pathology in striatal neurons are contingent on the continued
production of a mutant htt fragment (Yamamoto et al. 2000).

Although nuclear accumulation of mutant protein has received consid-
erable attention as a neuropathological feature of the polyQ diseases, the
relevance of this phenomenon to neurodegeneration is not entirely clear.
Neurons containing nuclear aggregates are not necessarily prevalent in the
brain regions that selectively degenerate in a given polyQ disease. Conversely,
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nuclear aggregates can be abundant in mildly affected or even unaffected
areas of the brain. In HD, for example, neuronal death is most prominent
in the caudate and putamen, but intranuclear inclusions are sparse in the
striatum of patients. Aggregates abound in the lesser-affected HD cortex,
however (Gutekunst et al. 1999). Moreover, within the striatum, aggregates
are rarely observed in medium spiny neurons, which are selectively degraded
in HD, but are prevalent in spared interneurons (Kuemmerle et al. 1999). Neu-
ropathological evaluation of postmortem brains from patients with SCA17
as well as other polyQ diseases has revealed similar discrepancies (Fuji-
gasaki et al. 2001; Adachi et al. 2005; Yamada et al. 2001). Interestingly, in
most transgenic mouse models, despite the rapid appearance of aggregates
due to overexpression of a particular polyQ disease protein or a fragment
thereof, neurodegeneration is absent or not obvious (Clark et al. 1997; Abel
et al. 2001; Schilling et al. 1999a,b; Mangiarini et al. 1996; Ordway et al.
1997). The short life span of mice may limit the extent of neurodegenera-
tion, which can precede symptom manifestation in patients with polyQ dis-
ease (Albin et al. 1992) but generally becomes pronounced in the late stages
of pathology.

4
PolyQ-Dependent Misfolding and Aggregation

The presence of an expanded polyQ tract invariably results in protein mis-
folding, but protein context modulates both repeat threshold and the kinetics
of aggregation. For example, the most common TBP allele in Caucasians con-
tains 38 polyQ-encoding d(CAG) repeats, while a polyQ stretch of this length
would be conducive to aggregation as well as pathogenic in five of the eight
remaining polyQ disease proteins (Reid et al. 2003). PolyQ aggregation has
been investigated intensively in vitro by use of synthetic polyQ peptides and
recombinant polyQ proteins as well as cellular models of polyQ disease (Pe-
rutz et al. 1994; Scherzinger et al. 1997; Hackam et al. 1999; Poirier et al. 2005).
Max Perutz, the esteemed structural biologist, provided some of the earli-
est theoretical insight as well as empirical data regarding the nature of polyQ
interactions. On the basis of molecular modeling, he suggested that polyQ do-
mains might self-associate as antiparallel β-strands that are connected by an
elaborate array of hydrogen bonds involving both main chain and side chain
amide groups. Thus, by analogy to leucine zippers that link α-helices, Perutz
envisioned a polar zipper structure for polyQ aggregates (Perutz et al. 1994).

PolyQ aggregates resemble amyloids in appearance in electron micro-
graphs and display some of the same histochemical and kinetics properties
in vitro (Scherzinger et al. 1997, 1999; Chen et al. 2001, 2002a,b). Aggregation
of synthetic polyQ peptides occurs by nucleation-dependent polymerization.
Specifically, an initial nucleation event, which may actually involve the mis-
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folding of a single polyQ monomer rather than the formation of an unstable
oligomer, is followed by the rapid addition of polyQ monomer in the elonga-
tion phase (Chen et al. 2002b). Whereas fast elongation ensures that a single
aggregate forms in vitro, multiple nucleation events may occur in the neu-
rons of patients or mouse models. Also, the elongation process is markedly
protracted in the context of the cellular environment. In neuronal nuclei, indi-
vidual aggregates, after slowly polymerizing as separate entities, may eventu-
ally fuse to form a single, large inclusion. Notably, this progression would be
consistent with the histochemical time course of nuclear polyQ accumulation
detailed already (Michalik and Broeckhoven 2003). Furthermore, as the rate
of nucleus formation is directly related to the length of the synthetic polyQ
tract, it has been suggested that polyQ aggregation kinetics may underlie the
correlation between repeat length and the age of onset in the polyQ diseases
(Chen et al. 2002b).

In a cellular model of HD, the cytoplasmic and nuclear environments are
not differentially conducive to aggregate formation. Moreover, the subcellu-
lar localization of aggregates, which can be manipulated by the attachment
of either a nuclear localization signal or a nuclear export signal to mutant
htt fragments, does not modulate the toxicity of expanded polyQ in cultured
cells (Hackam et al. 1999). Nevertheless, there are some differences in the na-
ture of nuclear and cytoplasmic aggregates. The latter are generally smaller
in size, at least when present in neuronal processes (Li et al. 1999). Addi-
tionally, whereas NII in all of the polyQ diseases colocalize with ubiquitin,
perikaryal aggregates in SCA2 (Huynh et al. 2000) and SCA6 (Ishikawa et al.
1999) neurons and neuropil htt aggregates lack this decoration (Gutekunst
et al. 1999; Li et al. 1999). The presence of ubiquitin as well as proteaso-
mal subunits in NII probably indicates the involvement of the ubiquitin–
proteasome system (UPS) in aggregate clearance (Everett and Wood 2004).
However, markedly reduced nuclear aggregation is observed in SCA1 trans-
genic mice that lack the E6-AP ubiquitin ligase (Cummings et al. 1999). This
paradoxical finding suggests that ubiquination may actually stabilize aggre-
gates in some fashion.

Whereas polyQ expansion in nuclear proteins can be sufficient to pro-
duce NII, the same is not true in large, cytoplasmic polyQ proteins, like htt
and atrophin-1. Rather, proteolytic processing may be a prerequisite for nu-
clear accumulation as well as intraceullular aggregate formation by the latter.
Loss of htt and atrophin-1 carboxy-terminal antigenicity in NII is consis-
tent with the occurrence of potentially extensive processing (Schilling et al.
1999a,b; Gutekunst et al. 1999), and cleavage sites for various proteases have
been identified in vitro (Kim et al. 2001; Gafni and Ellerby 2002; Wellington
et al. 2002; Lunkes et al. 2002; Zhou et al. 2003; Nucifora et al. 2003; Gafni
et al. 2004). Perikaryal and neuropil htt aggregates also consist of polyQ-
containing fragments (DiFiglia et al. 1997; Gutekunst et al. 1999). Similarly, in
vitro experiments (Wellington 1998) and immunhistochemical examination
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of NII in brains of patients have revealed evidence of proteolytic cleavage of
other polyQ-expanded proteins, including ataxin-3 (Goti et al. 2004), ataxin-7
(Garden et al. 2002), and androgen receptor (Li et al. 1998). It is possible
that conformational differences between soluble and aggregated proteins may
contribute to some of the discrepancies in immunoreactivity. Nevertheless,
comparison of transgenic mice expressing full-length mutant htt (YAC 46, 72,
and 128) and N-terminal htt fragments (N171 or R6/2 lines) demonstrates
that truncated polyQ proteins with an expanded polyQ tract are not only suf-
ficient to induce aggregation and neuropathology but may actually be more
toxic than their unprocessed counterparts (Mangiarini et al. 1996; Schilling
et al. 1999a,b; Hodgson et al. 1999; Slow et al. 2003).

In addition to various components of the UPS, polyQ aggregates are also
immunoreactive for a number of molecular chaperones, including, most no-
tably, Hsp40 and Hsp70 family members. The former, which are considered
cochaperones, recognize and deliver misfolded proteins to the latter. Hsp70
chaperones have an intrinsic ATPase activity that facilitates refolding; how-
ever, recalcitrant proteins are ubiquitinated and targeted to the proteasome
for degradation. In sum, the colocalization data, which have been collected
from cellular (Wyttenbach et al. 2000; Chai et al. 1999a,b; Stenoien et al.
1999; Jana et al. 2001) and mouse models (Jana et al. 2001; Hay et al. 2004;
Adachi et al. 2003; Cummings et al. 1998) as well as brain tissue of patients
(Chai et al. 1999a,b; Cummings et al. 1998), indicate that polyQ aggregates
trigger the normal cellular response to misfolded protein (Fig. 2). Screens
for genetic modifiers of polyQ-induced neurodegeneration have substantiated
the involvement of the protein folding machinery (Fernandez-Funez et al.
2000; Kazemi-Esfarjani and Benzer 2000). Although biochemical purifica-
tion of polyQ aggregates is indicative of sequestration (Suhr et al. 2001), live
cell imaging has demonstrated that the interaction between Hsp70 and these
structures can be dynamic (Kim et al. 2002).

The refolding and clearance of misfolded polyQ proteins by chaperones
and the UPS, respectively, may impact the subcellular distribution of mutant
polyQ. Biochemical analysis of brains from HD repeat knockin mice, in which
a 150 d(CAG) repeat is present in the endogenous mouse htt (Hdh) gene, in-
dicates that a collection of truncated htt fragments accumulate in neuronal
nuclei in association with an age-dependent decrease in proteasomal function
(Zhou et al. 2003). Most of these N-terminal htt fragments are smaller than
the size threshold for passive diffusion through the nuclear pore complex, and
recent evidence suggests that their entry into the nucleus occurs by a Ran
GTPase-independent process. PolyQ expansion decreases the interaction of
N-terminal htt with a component of the nuclear export machinery, which can
explain the accumulation and concomitant aggregation of mutant htt frag-
ments in the nucleus (Cornett et al. 2005). It is unclear if this mechanism
of nuclear accumulation applies to other polyQ disease proteins, particularly
those that normally localize to the nucleus.
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Fig. 2 Intracellular aggregation of expanded polyQ proteins. PolyQ aggregates can form in
both the cytoplasm and the nucleus, depending on the polyQ disease protein. The initial
step in aggregate formation is polyQ-mediated protein misfolding (black lines). Molecu-
lar chaperones recognize misfolded polyQ proteins and attempt to reintroduce the proper
conformation. Chaperone substrates that cannot be refolded are targeted to the protea-
some for degradation (light dashed line). Importantly, misfolded polyQ proteins that are
refractory to refolding can aggregate (dark dotted line) if not degraded. Moreover, age-
dependent decline in proteasome function would result in increased aggregation over
time. Proteolytic processing often precedes polyQ-mediated aggregate formation in both
the nucleus and the cytoplasm and may be a prerequisite for the nuclear accumulation
of mutant atrophin-1 and mutant huntingtin (htt). Nuclear entry (solid line) can be fa-
cilitated by classic nuclear localization signals or, at least in the case of htt fragments,
may occur by a Ran GTPase-independent process (see text for details). NPC nuclear pore
complex, HSP heat shock protein

5
Pathogenesis of the PolyQ Diseases

A variety of mechanisms have been proposed to explain the molecular patho-
genesis of the polyQ diseases, including, most prominently, transcriptional
dysregulation and disruption of intracellular trafficking. Contributions from
mitochondrial dysfunction, proteasomal impairment, and excitotoxicity are
probably important in HD pathogenesis and could be relevant to polyQ-
mediated pathology in general. It is now clear that disruption of critical



Polyglutamine Diseases 209

nuclear or cytoplasmic functions can be cytotoxic, and the involvement of ei-
ther may be contingent on the normal subcellular localization of the polyQ
disease protein.

5.1
PolyQ Diseases as “Transcriptionopathies”

When localized in the nucleus, polyQ-expanded proteins aberrantly inter-
act with a variety of transcription factors, many of which contain a polyQ
or glutamine-rich domain (Table 2). Certain transcription pathways, namely
those involving the cyclic AMP response element (CRE)-binding protein
(CREB) and specificity protein-1 (Sp1) have been implicated in the patho-
genesis of multiple polyQ diseases. Interestingly, the cofactor TBP-associated
factor 4 (TAF4; formerly TAFII130), which was independently identified in
a yeast two-hybrid screen for nuclear proteins that interact with polyQ tracts
(Shimohata et al. 2000), mediates transcriptional activation by both CREB
and Sp1 (Fig. 3, top). TAF4 is a component of the general transcription fac-
tor TFIID, a multi-subunit complex that comprises TBP and at least 12 TAFs
(Muller and Tora 2004). Different glutamine-rich subdomains in TAF4 facil-
itate its interaction with Sp1 and CREB (Saluja et al. 1998). Although CRE-
mediated transcription is constitutive at a subset of promoters (Conkright
et al. 2003), recruitment of the cofactor CBP (or the related protein p300),
which is contingent on the phosphorylation CREB at a single serine residue,
is generally a prerequisite for transcriptional activation (Johannessen et al.
2004).

Various members of the CREB and Sp1 transcription pathways have been
reported to interact with soluble and/or aggregated, mutant polyQ proteins
(Table 2). As these two possibilities are not mutually exclusive, both forms
of polyQ protein could contribute to transcriptional deregulation. Moreover,
the sequestration of a given transcription factor in NII would have the same
consequence as a soluble interaction of increased affinity. In either case,
the transcription factor would be effectively titrated from its cognate pro-
moter binding site (Schaffar et al. 2004; S.H. Li et al. 2002; Dunah et al. 2002)
(Fig. 3, bottom). Consistently, reporter assays carried out in cellular models of
certain polyQ diseases indicate that expanded polyQ antagonizes both CRE-
mediated (Shimohata et al. 2000; Nucifora et al. 2001) and Sp1-dependent
transcription (S.H. Li et al. 2002; Dunah et al. 2002). Overexpression of ei-
ther TAF4 (Shimohata et al. 2000) or CBP (Nucifora et al. 2001) can rescue
CRE-mediated transcription, while overexpression of both Sp1 and TAF4 is
required to attenuate the effects of mutant htt on Sp1-dependent reporter ac-
tivity (Dunah et al. 2002). Downregulation of CRE-mediated transcription
has been corroborated by expression profiling in both cellular (Wyttenbach
et al. 2001) and mouse (Luthi-Carter et al. 2000) models of HD. Unexpect-
edly, upregulation of the same transcriptional pathway was observed upon
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Fig. 3 Transcriptional dysregulation in the presence of nuclear, polyQ-expanded proteins.
Under normal circumstances (top), transcriptional activators bind upstream promoter
elements and interact (curved arrow) with various components of the RNA polymerase II
(Pol II) preinitiation complex (PIC). These interactions, which are important for PIC re-
cruitment to class II promoters, are often facilitated by polyQ or glutamine-rich domains
that are present in many activator proteins and some general transcription factors. How-
ever, in the polyQ diseases (bottom), both the soluble and the aggregated versions of
mutant polyQ can act as a sink for the same transcriptional activators, effectively titrat-
ing the latter from their cognate DNA binding sites (arrows). It should be noted that many
changes in gene expression are disease-specific and may also involve aberrant interactions
with transcriptional repressors or altered chromatin acetylation. Moreover, targeting of
expanded polyQ to the core promoter, as occurs in SCA17 but in none of the other polyQ
diseases, may have a unique transcriptional impact. IIA, IIB, IIE, IIF, and IIH represent
TFIIA, TFIIB, TFIIE, TFIIF, and TFIIH, respectively. CRE cyclic AMP response element,
CREB CRE binding protein, CTD carboxy-terminal domain of Pol II, P –– phosphoryla-
tion, Sp1 specificity protein-1, TAF4 TATA-box binding protein associated factor 4

introduction of a CRE-regulated reporter transgene into an HD mouse model
(R6/2) (Obrietan and Hoyt 2004). The basis of this discrepancy is currently
unclear.

Microarray experiments, utilizing brain messenger RNAs (mRNAs) from
various polyQ mouse models, have revealed some overlap in the expression
changes induced by the different polyQ disease proteins (Sugars and Ru-
binsztein 2003). Moreover, a comparison of cerebellar mRNAs derived from
a DRPLA (At-65Q) and an HD (N171-82Q) mouse model demonstrated that
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the transcriptional impact of expanded polyQ is partly context independent
(Luthi-Carter et al. 2002). Despite a difference in the length of the polyQ
tract, the two models have an identical genetic background and the respective
transgenes are driven by the same promoter. These data support the idea that
particular transcription pathways may be disrupted in polyQ disease.

In addition to changes in activated transcription, there is some evidence
that basal gene expression may also be dysregulated by expanded polyQ.
Aberrant interactions involving TBP, which is required for transcription by
all three nuclear RNA polymerases, have been documented in several of the
polyQ diseases (Table 2). TBP has been reported to colocalize in HD (Schaf-
far et al. 2004), DRPLA, and SCA3 aggregates (Shimohata et al. 2000), and
the transcription factor also preferentially coimmunoprecipitates with solu-
ble, mutant htt (Schaffar et al. 2004). Functional deactivation of TBP in the
presence of mutant htt has been demonstrated in vitro (Schaffar et al. 2004);
however, it is unlikely that a polyQ expansion in TBP, which is causative for
SCA17, abrogates its function. Heterozygous TBP knockout mice are pheno-
typically normal, but nullizygous embryos do not develop beyond the blas-
tocyst stage (Martianov et al. 2002). Consistently, below a certain pathogenic
repeat threshold, polyQ-expanded TBP upregulates a CRE-regulated reporter
gene in a cellular model of SCA17 (Reid et al. 2003).

Although the relevance of general transcriptional repression to polyQ-
mediated pathogenesis has not been firmly established, it is clear that histone
acetylation is disrupted in the presence of mutant polyQ (Bodai et al. 2003).
Three histone acetyltransferases (HATs), including CBP, p300, and p300/CBP-
associated factor (P/CAF), interact directly with ataxin-3 (F. Li et al. 2002).
htt exon 1 protein also binds CBP and P/CAF (Steffan et al. 2001). CBP physi-
cally interacts with the soluble and aggregated forms of various polyQ disease
proteins (Table 2). However, since p300 contains only a short polyQ tract
and P/CAF lacks this domain entirely, these interactions are not contingent
on the association of independent polyQ domains. Rather, mutant htt has
been reported to impair the HAT activity of CBP and P/CAF by binding to
their acetyltransferase domains (Steffan et al. 2001). Hypoacetylation of his-
tones H3 and H4, which has been documented in multiple polyQ disease
models (McCampbell et al. 2001; Steffan et al. 2001), could potentially have
widespread effects on transcription. It is well established that acetylation of
particular histone residues is associated with euchromatin and active genes.
Either local or global changes in acetylation could significantly impact the
expression of genes that are important for cell function and viability. Inter-
estingly, acetylation of two lysine residues on histone H3, namely, K9 and
K14, may be necessary for the recruitment of TFIID to promoters (Agalioti
et al. 2002). Accordingly, polyQ-induced histone deacetylation might antag-
onize this crucial step in preinitiation complex assembly on certain RNA
polymerase II promoters. Alternatively, it is noteworthy that HATs also modu-
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late the function of various non-histone proteins, like p53, by domain-specific
acetylation (Guand and Roeder 1997).

Although the outcome is not surprising, it is not entirely clear how tran-
scriptional dysregulation leads to neuronal cell death. Interestingly, mice that
lack CREB in the postnatal forebrain, as a result of conditional disruption,
display neurodegeneration in the hippocampus and striatum (Mantamadi-
otis et al. 2002). Nevertheless, changes in gene expression can be detected
in early symptomatic (Luthi-Carter et al. 2000) as well as presymptomatic
(Lin et al. 2000; Serra et al. 2004) transgenic polyQ mouse models, long be-
fore any evidence of neurodegeneration has emerged. Thus, in many cases,
neuronal dysfunction and not neuronal death may be responsible for the
polyQ-induced phenotype (Hientz and Zoghbi 2000).

5.2
Disruption of Cytoplasmic Activities in PolyQ Disease

As nuclear localization of mutant polyQ protein is limited at best in SCA2
(Huynh et al. 1999) and SCA6 (Ishikawa et al. 2001), any influence of ex-
panded polyQ on transcription or other nuclear activities in these two dis-
eases is probably indirect. In the polyQ diseases that are characterized by
soluble or aggregated, mutant protein in the cytoplasm, it is possible that
polyQ-mediated changes outside the nucleus are most relevant to pathology.
In particular, both disruption of axonal transport (Gunawardena et al. 2003)
and potentially related defects in synaptic function (Li et al. 2000; Usdin et al.
1999) have received considerable attention recently.

Similar to the situation in the nucleus, both soluble and aggregated polyQ
may contribute to cytoplasmic problems. Neuropil aggregates have been most
carefully examined in HD (Li et al. 2000), but, at least in cultured cells, expres-
sion of several polyQ disease proteins can induce their formation (Piccioni
et al. 2002; Gunawardena et al. 2003). These cytoplasmic structures, which
can localize to axons (Li et al. 1999), dendrites, or dendritic spines (Gutekunst
et al. 1999), may be an early maker of HD pathology, distinguishing them
from perikaryal and nuclear aggregates (Gutekunst et al. 1999; Sapp et al.
1999). In HD repeat knockin mice, neuropil aggregates form progressively in
the lateral globus pallidus (LGP) and substantia nigra pars reticulata (SNr).
These htt aggregates, distinct from the larger NII that abound in the nuclei
of striatal neurons, reside in the axons of medium spiny neurons that project
to both of these regions. The presence of neuropil aggregates, which actually
can be very large relative to the size of an axon terminal, has been associated
with axonal degeneration in electron micrographs. Consistent with the pos-
sibility of axonal occlusion, synaptic vesicles are less abundant in terminals
that harbor aggregates (Li et al. 2001). The neuropathology in this HD mouse
line recapitulates the selective neurodegeneration that occurs early in HD, as
loss of striatal projection neurons that target the LGP and SNr is evident in
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presymptomatic patients (Albin et al. 1990, 1992). Neuritic degeneration is
also observed in striatal neurons transfected with mutant htt (Li et al. 2000,
2001), and this event precedes nuclear fragmentation that is indicative of
apoptosis (Li et al. 2001).

In vitro experiments indicate that polyQ-expanded htt in axonal termi-
nals can undermine normal synaptic function. Mutant htt causes deficiencies
in both glutamate uptake by synaptic vesicles (Li et al. 2000) and glutamate
release into the synaptic cleft during high-frequency stimulation. The latter
phenomenon, which results in reduced long-term potentiation (Usdin et al.
1999), may contribute to cognitive impairments characteristic of HD patients.
Moreover, defects in synaptic transmission should ultimately impact neu-
ronal viability (J.Y. Li et al. 2003). Interestingly, the synaptic disturbances
might be explained by the direct binding of htt fragments to synaptic vesi-
cles, since the strength of the interaction is enhanced by polyQ expansion (Li
et al. 2000). As various proteins involved in synaptic activities interact with
normal htt (Li and Li 2004a), it is unclear if other polyQ diseases may also be
characterized as synaptopathies.

The presence of expanded polyQ in neuronal process also dramatically
affects fast axonal transport (FAT) (Morfini et al. 2005; Gunawardena and
Goldstein 2005). Several ideas have been proposed to explain the mechanism
by which mutant polyQ proteins block the movement of microtubule-based
molecular motors in axons (Fig. 4). Physical obstruction by neuropil aggre-
gates (Lee et al. 2004; Gunawardena et al. 2003), which increase in size with
disease progression (Gutekunst et al. 1999), is an attractive possibility. In
late-stage HD, neuropil aggregates in excess of 30 nm2 are not uncommon,
but even the smaller aggregates that predominate in early HD could at least
partially occlude a typical nonmotor axon. Alternatively, titration of mo-
tor proteins away from microtubules by aggregated (Trushina et al. 2004) or
soluble, mutant polyQ could undermine axonal trafficking; however, these ex-
planations are not supported by in vitro experiments carried out in squid
axoplasm with purified polyQ proteins (Morfini et al. 2005). Both polyQ-
expanded androgen receptor and mutant N-terminal htt, but not the normal
versions of these proteins, antagonize FAT in this context. Inhibition occurs
upon addition of either mutant protein to the isolated axoplasm at a con-
centration 100-fold lower than endogenous levels of trafficking motors and
in the absence of any detectable aggregation (Szebenyi et al. 2003; Morfini
et al. 2005).

It is now clear that normal htt, unlike the other polyQ disease proteins,
has a role in axonal transport (Gunawardena et al. 2003; Gauthier et al. 2004;
Trushina et al. 2004) (Table 2); thus, loss of normal htt function as a re-
sult of polyQ expansion might contribute to FAT inhibition in HD. There is
at present no evidence of diminished htt function in the presence of other
polyQ-expanded proteins. It is also conceivable that disruption of certain in-
tracellular signaling pathways could undermine FAT, but specific pathways
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Fig. 4 Disruption of microtubule-based transport by cytoplasmic, polyQ-expanded pro-
teins. Both soluble and aggregated versions of mutant polyQ can sequester trafficking
proteins. Also, aggregated polyQ may sterically hinder transport in narrow-diameter ax-
ons. As low concentrations of mutant polyQ are capable of antagonizing transport in
vitro, other possibilities may also account for observed disturbances in axonal trafficking

or kinases have yet to be directly implicated in this polyQ-mediated effect
(Morfini et al. 2005).

5.3
Other Contributors to Pathogenesis

Several alternative mechanisms have been invoked to explain the molecular
pathogenesis of HD, including mitochondrial defects and glial dysfunction.
While the contribution of the former to HD is more firmly established than
that of the latter, the relevance of either possibility to polyQ disease in gen-
eral is unclear. Altered mitochondrial function, which is a feature of several
neurodegenerative diseases, can result in cell death by more than one pathway
(Grunewald and Beal 1999). Mitochondria in the HD brain display both in-
creased oxidative stress (Browne et al. 1999) and defective calcium homeosta-
sis (Panov et al. 2002). Moreover, deficiencies in oxidative phosphorylation
presumably exacerbate the production of reactive oxygen species. Dramatic
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but selective reduction in the activity of certain mitochondrial enzymes, in-
cluding complex II/III of the electron transport chain and the tricarboxylic
acid cycle component aconitase, has been demonstrated in HD postmortem
brains (Tabrizi et al. 1999; Browne et al. 1997). Notably, administration of
3-nitropropionic acid or malonate, which are inhibitors of complex II, can re-
capitulate HD striatal pathology in wild-type mice (Ludolph et al. 1992; Beal
et al. 1993).

Glia, which serve several important functions, including the release of cy-
tokines and trophic factors as well as the removal of extracellular, excitotoxic
neurotransmitters, have been implicated in various neurodegenerative condi-
tions (Hirsch et al. 2003; Mrak and Griffin 2005). Mutant aggregates have been
observed in glia in DRPLA and HD patient brains (Hayashi et al. 1998a,b;
Singhrao et al. 1998). Additionally, expression of expanded-polyQ proteins in
glia alone results in aggregation and can impact both behavior and viability
in fly models (Kretzschmar et al. 2004; Lievens et al. 2005). Nevertheless, it
is currently unclear to what extent cytokine-induced inflammatory responses
or disruption of trophic support may be involved in polyQ-dependent pathol-
ogy. Moreover, decreased expression of glutamate transporters in glial cells,
or specifically astrocytes (Lievens et al. 2001, 2005; Behrens et al. 2002), could
contribute to N-methyl-d-aspartate receptor mediated excitotoxicty. Given
the overabundance of glia relative to neurons and the possible localization of
many of the polyQ proteins in the former, glial dysfunction may be proof that
polyQ pathogenesis is not necessarily a neuron autonomous event.

6
Potential Therapeutic Strategies

There is currently no effective treatment for polyQ-mediated pathology; how-
ever, numerous potential therapeutic targets have emerged from the study
of polyQ-dependent pathogenesis. Small molecule screening efforts, carried
out in various polyQ model systems, also have identified several interesting
candidates (Smith et al. 2001; Tanaka et al. 2004; Zhang et al. 2005; Pollitt
et al. 2003). In general, two major strategies, namely, attenuation of polyQ ag-
gregation and inhibition of histone deacetylation, have received considerable
attention by investigators in recent years.

Among the multitude of agents capable of modulating polyQ aggrega-
tion (Sanchez et al. 2003; Smith et al. 2001; Tanaka et al. 2004; Zhang et al.
2005; Pollitt et al. 2003), molecular chaperones have been the most inten-
sively investigated. There are numerous reports of reduced aggregation in
polyQ cell models that overexpress Hsp70 and/or its cochaperone Hsp40
(Cummings et al. 1998; Stenoien et al. 1999; Jana et al. 2000; Kobayashi et al.
2000), although variability between cell types has been observed (Wytten-
bach et al. 2000). Genetic manipulation of chaperone levels also can attenuate
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polyQ aggregation and toxicity in both Caenorhabditis elegans (Satyal et al.
2000) and Drosophila melanogaster (Warrick et al. 1999; Chan et al. 2000;
Kazemi-Esfarjani and Benzer 2000; Fernandez-Funez et al. 2000); however,
chaperone overexpression in mouse models of different polyQ diseases has
not been similarly efficacious. Overexpression of Hsp70 in R6/2 HD mice,
a well-characterized transgenic line that expresses htt exon 1 with 150 d(CAG)
repeats and displays rapid and pervasive neuronal aggregation (Davies et al.
1997; Li et al. 2001), had little or no effect on both neuropathology and
phenotype (Hansson et al. 2003; Hay et al. 2004). Similarly, simultaneous
overexpression of Hsp40 and Hsp70 in SCA7 transgenic mice did not pre-
vent NII formation or neuronal cell death (Helmlinger et al. 2004). In a mouse
model of SBMA, however, introduction of an Hsp70 transgene substantially
improved various phenotypic parameters, including survival rate. Amelio-
ration in the double transgenic mice coincided with a reduction in both
aggregated and soluble, mutant androgen receptor in muscle and spinal cord
tissue (Adachi et al. 2003). Additionally, mild improvements in neuropathol-
ogy and motor function without any change in nuclear aggregation have been
reported for SCA1 mice overexpressing Hsp70 (Cummings et al. 2001). Thus,
the benefit of elevated levels of molecular chaperones in vivo may depend on
the polyQ disease protein. With regard to therapy, activation of the heat shock
response by certain drugs may be a practical alternative to genetic manipula-
tion, but this strategy has only been tested in organotypic slice culture (Hay
et al. 2004).

The potential for histone deacetylase (HDAC) inhibitors in the treatment
of polyQ disease appears promising (Bodai et al. 2003), although limited
in vivo data are available at present. HDACs were first implicated in polyQ
pathology in a screen for genetic modifiers of SCA1 neurodegeneration.
Loss-of-function mutations in two HDAC proteins, namely, Rdp3 and the co-
factor Sin3A, suppressed a mutant ataxin-1-induced rough eye phenotype
(Fernandez-Funez et al. 2000). Subsequently, administration of the HDAC in-
hibitors butyrate and suberoylanilide hydroxamic acid (SAHA) was shown to
rescue polyQ-dependent neurodegeneration in the fly eye with efficacy com-
parable to that of Sin3A heterozygosity (i.e., a 50% reduction in Sin3A dose)
(Steffan et al. 2001). Similarly, sodium butyrate can ameliorate various dis-
ease phenotypes in a mouse model of SBMA (Minamiyama et al. 2004), while
SAHA improves motor function in R6/2 HD mice (Hockly et al. 2003). Nei-
ther compound has any effect on nuclear localization or aggregation of the
respective polyQ disease proteins. Notably, the efficacy of these drugs is tem-
pered by their toxicity, which is considerable outside of a limited dose window
(Minamiyama et al. 2004; Hockly et al. 2003).

Paradoxically, a recent report indicates that the antioxidant resveratrol,
a component of red wine and an activator of sirtuin deacetylases, can atten-
uate polyQ-mediated neuronal death. Resveratrol treatment was effective in
both a C. elegans HD model, which expressed an N-terminal htt fragment
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with 128 glutamines, and striatal neurons cultured from HD repeat knockin
mice (Parker et al. 2005). It is unclear how this finding can be reconciled with
the available data on HDAC inhibitors.

7
Concluding Remarks

Despite a common genetic basis and the well-defined neuropathology of the
polyQ diseases, the pathogenesis of each disorder remains to be fully eluci-
dated. All of the polyQ diseases display late-onset neurological symptoms and
neuropathology; however, each disease is characterized by distinct and se-
lective neurodegeneration despite the widespread expression of most polyQ
disease proteins. The controversial role of the polyQ aggregates notwithstand-
ing, investigation of these structures has been informative with regard to
possible pathological pathways mediated by polyQ proteins. It is now apparent
that the subcellular localization of polyQ disease proteins and the protein con-
text of expanded polyQ tracts are critically relevant to neuropathology. Mutant
polyQ proteins in the nucleus can impact gene transcription by abnormally
binding certain transcription factors. Large inclusions may exacerbate polyQ
toxicity by sequestering the same transcription factors. Alternatively, polyQ in-
clusions may recruit soluble, polyQ-expanded protein and thereby reduce the
availability of toxic polyQ. When present in axons and nerve terminals, mutant
polyQ proteins can disrupt intracellular transport and synaptic transmission.

PolyQ inclusions reflect abundant protein misfolding and impaired in-
tracellular clearance of toxic proteins, pathological scenarios that are not
necessarily associated with neurodegeneration but that are likely to mediate
neuronal dysfunction. As a result of differences in the subcellular localization
and function of polyQ disease proteins, multiple pathways may be involved
in polyQ-mediated pathology. This could explain why most therapeutic ap-
proaches, each of which may be effective against one of these pathways, have
limited efficacy in animal models of polyQ disease. Thus, although much
progress has been made in the study of the molecular pathogenesis of the
polyQ diseases, additional insight will prove critical in the development of
targeted therapies.
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1
Introduction

The enigma of spinocerebellar ataxia (SCA) type 6 stems from the uncertain-
ties about the disease pathogenesis. SCA6 shares the type of mutation, i.e. an
expansion of a polyglutamine repeat, with SCA types 1, 2, 3, 7, and 17, as well
as with other non-SCA disorders such as Huntington disease or spinal bulbar
muscular atrophy. This suggests a SCA6 pathogenesis based on a toxic gain of
function, similar to that of the aforementioned diseases. On the other hand,
unlike other SCAs, the gene codes for a well-known protein, forming the main
subunit of a calcium channel (Cav2.1) expressed in the brain and particularly
in the cerebellum. Point mutations in this gene are responsible for two dif-
ferent channelopathies, episodic ataxia type 2 (EA2) and familial hemiplegic
migraine type 1 (FHM1) (Ophoff et al. 1996), the former exhibiting striking
similarities with SCA6. EA2 mutations cause a partial or complete loss of the
channel function (Guida et al. 2001; Wappl et al. 2002). This raised the alter-
native hypothesis that polyglutamine expansions might have a role in channel
activity, thus assigning SCA6 to the ion channel disorders rather than to the
polyglutamine disorders.

2
Genetics

SCA6 is an autosomal dominant disorder due to small expansions of
a d(CAG) trinucleotide repeat located in the COOH terminus of the α1A sub-
unit of voltage-gated calcium channels type P/Q (Cav2.1) which is abundantly
expressed in cerebellum.

The normal allele size of the polymorphic d(CAG) repeat ranges from four
to 18 units (Zhuchenko et al. 1997; Shizuka et al. 1998a, b), while that of ex-
panded alleles is from 20 to 30 repeats (Jodice et al. 1997; Matsuyama et al.
1997; Shizuka et al. 1998a, b; Katayama et al. 2000). Data on the intermediate
allele with 19 repeats are contradictory. Both a homozygote and a heterozy-
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gote for a 19-repeat allele were found to be affected (Katayama et al. 2000;
Mariotti et al. 2001), the latter, however, with unusual clinical features, i.e. au-
tonomic and pyramidal characteristics and lacunar lesions in the pons and
basal ganglia. However, several other heterozygotes for a 19-repeat allele were
found to be unaffected even at old age (Ishikawa et al. 1997; Mariotti et al.
2001; Takahashi et al. 2004). Intermediate alleles with incomplete penetrance
were described in polyglutamine disorders (Rubinzstein et al. 1996). One pos-
sible alternative explanation is that the 19-repeat allele exerts a pathogenic
effect only when in double dose and the patient reported by Katayama et al.
(2000) is not affected by SCA6.

Compared with other d(CAG) expansion disorders, which typically have
more than 30 repeats, the size of SCA6 expanded alleles is significantly smaller,
overlapping their wild-type allele distribution (Margolis 2003). As expected
on the basis of the relatively low number of repeats, allele size is usually sta-
ble over successive generations, and no mosaicism is apparent in cells from
different parts of the brain (Ishikawa et al. 1999b) or in sperm (Shizuka et al.
1998b). However, some degree of meiotic instability should be assumed since
in three families an intergenerational jump of the expanded allele size has been
reported (Jodice et al. 1997; Matsuyama et al. 1997; Mariotti et al. 2001).

Homozygous patients for an expansion larger than 19 repeats were re-
ported to slightly differ from heterozygous ones, showing an earlier onset and
a more rapid course (Geschwind et al. 1997; Matsumura et al. 1997; Takiyama
et al. 1998; Kato et al. 2000; Fukutake et al. 2002); however, Ishikawa et al.
(1997) could not detect any difference. An extensive study of the age at on-
set among SCA6 patients found that in three out of four homozygotes it fell
within a 95% confidence interval with that of heterozygous patients (Taka-
hashi et al. 2004).

3
The Cav2.1 α1A Isoforms

The α1A protein, encoded by the CACNA1A gene on chromosome 19p13, is
the pore-forming subunit of voltage-gated Ca2+ channels type P/Q with a spe-
cific expression in neurons, in general, and in Purkinje and granule cells, in
particular. The channel is part of the neuronal calcium signalling involved in
neuron excitability, cell apoptosis and survival, release of neurotransmitters,
synaptic plasticity and gene transcription (Pietrobon and Striessnig 2003). It
responds to membrane depolarization with an influx of Ca2+ ions from the
extracellular to the intracellular compartment. Auxiliary subunits, β and α2δ,
interact with α1A to modulate the channel activity. The protein is predicted to
have four highly conserved homologous domains, each formed by six trans-
membrane segments connected through intracellular and extracellular link-
ers, and two intracytoplasmic, N-terminal and C-terminal, tails. The latter,
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containing the polyglutamine repeat in some of the isoforms, is actively in-
volved in the channel activity. By undergoing conformational changes, under
different states of the channel, it cooperates with the gating activity, par-
ticularly during the inactivation phase (Hering et al. 2000; Kobrinski et al.
2003). In addition, it contains the binding sites for calmodulin and other
Ca2+-sensing proteins, involved in the calcium-dependent regulation of the
channel (Weiss and Burgoyne 2002), as well as a site for interaction with the
β auxiliary subunit (Soong et al. 2002).

Alternative splicing generates several isoforms of the protein (Mori et al.
1991; Zhuchenko et al. 1997; Bourinet et al. 1999; Soong et al. 2002). In
particular, a five-nucleotide stretch, d(GGCAG), between exons 46 and 47,
is critical for the expression of the d(CAG) repeat stretch: when the five
nucleotides are spliced out, a stop codon is encountered upstream to the
d(CAG)n stretch and a short isoform is formed that is devoid of a polyglu-
tamine tract. However, when the five nucleotides are left in place, the d(CAG)
repeat is translated into a polyglutamine sequence and the 3′ tail is elongated
by 244 exon nucleotides (Zhuchenko et al. 1997). Both long and short pro-
tein isoforms have been found in the cerebellar cortex (Ishikawa et al. 1999a).
When expressed in cultured non-neuronal cells, the mouse long and short
isoforms do not appear to significantly differ at the functional level (Tsunemi
et al. 2002). So far, however, the functional characteristics of the different
isoforms, the location, timing and regulation of their expression in human
neurons are largely unknown.

4
Epidemiology

SCA6 is the second most frequent autosomal dominant cerebellar ataxia
(ADCA) in Germany (Riess et al. 1997) and the Netherlands (van de Warren-
burg et al. 2002), accounting for about 20% of all ADCAs. By contrast, it is
almost absent in Portugal (Silveira et al. 2002) and Spain (Pujana et al. 1999),
and has a low relative frequency (about 2%) in Italy and Finland (Brusco et al.
2004; Juvonen et al. 2005). Among non-Caucasian populations it is partic-
ularly frequent in Japan and is absent in India (Margolis 2003). Prevalence
estimates of SCA6 are few: in northeast England, where SCA6 accounts for
about 20% of all ADCAs, the minimum prevalence was found to be 1.59 in
100 000 subjects older than 16 years (about 1 : 60000) and 3.18 in 100 000
(about 1 : 30000) in adults over 45 years of age (Craig et al. 2004).

Sporadic SCA6 expansions have been detected in Caucasian and Japanese
populations that have a relatively high frequency of SCA6 (Ikeuchi et al. 1997;
Matsumura et al. 1997; Riess et al. 1997; Zhuchenko et al. 1997; Shizuka et al.
1998b). A new mutation, however, has been documented in only one patient
(Shizuka et al. 1998a). Should all the reported sporadic cases be new muta-
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tions, the mutability of normal alleles would be very high. Takano et al. (1998)
have proposed that the relative frequency of several SCAs, including SCA6,
is correlated with the frequency of large normal alleles in the Japanese and
Caucasian population, implying that a higher frequency is likely to be due to
new mutations arising from the reservoir of larger normal alleles. It should
be considered, however, that if a mutation/selection equilibrium is assumed,
a high frequency of SCA6 de novo mutations would be in disagreement with
the, presumably, small or absent selection against a disease such as this one,
with a late onset and a long life span.

A possible explanation for the different frequencies of SCA6 in different
countries arises from data showing a founder effect in Germany (Dichgans
et al. 1999), the Netherlands (van de Warrenburg et al. 2002; Verbeek et al.
2004), northeastern England (Craig et al. 2004) and Japan (Mori et al. 2001;
Terasawa et al. 2004). This would imply that the frequency of SCA6 does not
depend on the rate of new mutations, but rather on a founder effect. Accord-
ing to this hypothesis the high number of SCA6 sporadic cases is explained
either by incomplete penetrance or, more likely, by the presence of a neglected
mild expression of the disorder in relatives of probands.

5
Clinical Features

SCA6 was initially reported as a multisystem deficit including cerebel-
lum, brainstem and peripheral systems, similarly to SCA1, SCA2 and SCA3
(Zhuchenko et al. 1997; Geschwind et al. 1997; Stevanin et al. 1997). Later
studies, however, described it as pure cerebellar ataxia (Ikeuchi et al. 1997;
Ishikawa et al. 1997; Matsumura et al. 1997; Stevanin et al. 1997; Nagai et al.
1998; Watanabe et al. 1998; Garcia-Planells et al. 1999). Still other cases were
reported to be preceded by episodes of the same type as in EA2 (Calandriello
et al. 1996; Geschwindt et al. 1997; Jodice et al. 1997; Sinke et al. 2001; Koh
et al. 2001). The issue of the similarity between the SCA6 and EA2 phenotypes
has implications for their underlying pathologic mechanism. In fact, when
different mutations cause the same phenotype, it is far more likely that they
both lead to a loss-of-protein function rather than to the acquisition of new
toxic activity.

Table 1 summarizes the main clinical features observed in 315 SCA6 pa-
tients as described in 16 independent studies (Geschwind et al. 1997; Ca-
landriello et al. 1997; Jodice et al. 1997a; Ikeuchi et al. 1997; Ishikawa et al.
1997; Matsumura et al. 1997; Stevanin et al. 1997; Gomez et al. 1997; Jen et al.
1998; Nagai et al. 1998; Satoh et al. 1998; Shizuka et al. 1998b; Takiyama et al.
1998; Watanabe et al. 1998; Garcia-Planells et al. 1999; Kaseda et al. 1999),
and compares them with those reported for 138 EA2 patients with ascertained
CACNA1A point mutations. (Subramony et al. 1996; Yue et al. 1997, 1998; De-
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Table 1 Frequency of clinical features in spinocerebellar ataxia type 6 (SCA6) and episodic
ataxia type 2 (EA2) patients as reported in 16 and 12 studies respectively (see text for
references)

Signs and symptoms SCA6 N = 315 EA2 N = 138 a

Frequency Percentage Frequency Percentage

Cerebellar signs

Ataxia, slowly progressive 307/314 98 83/138 60
Nystagmus (often downbeat) 256/309 83 96/129 74
Dysarthria 274/305 90 12/138 9
Cerebellar atrophy 94/97 97 19/37 51

Vestibulo-cerebellar signs (episodic)

Vertigo/ataxia episodes 53/86 62 112/138 81
Sensitivity to acetazolamide 10/16 62 47/52 90
treatment

Extracerebellar signs

Sensory loss 48/268 18 0/138 0
Pyramidal signs 46/302 16 0/138 0
Brainstem signs 26/150 17 1/138 < 1
Peripheral neuropathy 5/168 3 0/138 0
Cognitive deficit 9/224 4 11/138 8
Brainstem atrophy 6/97 6 0/138 0

Mean (± SE) age at onset 46.3±1.2 46.75±4.7
of progressive ataxia b

Mean (± SE) age at onset 14.5±1.6
of episodes b

Mean age at examination ± SE c 58.5±2.0 39.8±2.8

SE standard error
a Only studies with a detailed phenotype were considered.
b Mean age at onset was calculated on the basis of studies that include reports for each
patient. Data were available for 82 SCA6 and 39 EA2 patients.
c The mean ± SE refers to 251 SCA6 patients and to 32 EA2 patients for whom data were
reported in the literature.

nier et al. 1999, 2001; Jen et al. 1999, 2004; Guida et al. 2001; Jouvenceau et al.
2001; Mantuano et al. 2004; Spacey et al. 2005; Imbrici et al. 2004; Kaunisto
et al. 2003; Matsuyama et al. 2003; Wan et al. 2004).

Almost all SCA6 patients show a slowly progressive cerebellar involvement
with trunk and limb ataxia, hypotonia, dysmetria, dysarthria, gaze-evoked
nystagmus with or without a downbeat component, dysmetric saccades, sac-
cadic pursuit, and hyperactive vestibulo-ocular reflex (Gomez et al. 1997).
A minority of patients show additional extracerebellar signs, such as decrease
in vibration sense, hyperreflexia with or without Babinski sign, dysphagia
and/or ophtalmoplegia, brainstem atrophy, as occurs in patients with other
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SCAs (Geschwind et al. 1997; Gomez et al. 1997; Ikeuchi et al. 1997; Kaseda
et al. 1999; Matsumura et al. 1997; Shizuka et al. 1998b; Takiyama et al.
1998; Watanabe et al. 1998). In some studies the authors explicitly state that
these latter features were found more frequently in older subjects (Ikeuchi
et al. 1997; Stevanin et al. 1997) or in patients with other coexisting disor-
ders, such as diabetes mellitus (Takiyama et al. 1998). In others, however,
no mention was made of the age at which these symptoms were observed.
Cognitive performance was found to be reduced in a small percentage of pa-
tients (Geschwind et al. 1997; Zhuchenko et al. 1997); however, Globas et al.
(2003) did not find any significant cognitive impairment in 12 SCA6 patients
as compared with normal controls.

A relatively high percentage of SCA6 patients may initially experience
episodes, very similar to those described in EA2 patients, characterized by
vertigo, gait and trunk ataxia, dysarthria, accompanied by visual disturbance
(such as dyplopia or blurred vision), and tinnitus, lasting from minutes to
days and triggered by head movements and physical or emotional stress (Ca-
landriello et al. 1996; Geschwindt et al. 1997; Jodice et al. 1997; Koh et al. 2001;
Sinke et al. 2001). These episodes, typically preceding the onset of progressive
ataxia, responded to treatment with acetazolamide, a carbonic anhydrase in-
hibitor widely used to treat EA2 patients, in the few SCA6 patients for whom
this therapy has been attempted. This early phase can have a variable dura-
tion, usually preceding the onset of progressive ataxia by a few years; however,
in some cases the disease never progresses to a full-blown clinical presenta-
tion and maintains an episodic character with mild non-progressive interictal
cerebellar signs (Calandriello et al. 1996; Jodice et al. 1997; Takiyama et al.
1998; Koh et al. 2001). In other patients the episodes may continue in the
progressive phase, exacerbating the cerebellar signs (Yabe et al. 1998).

Age at onset is on average between 40 and 50 years and the life span is nor-
mal. As in other polyglutamine disorders, an inverse correlation between age
at onset and the number of d(CAG) repeats has been consistently reported
(Geschwind et al. 1997; Ikeuchi et al. 1997; Matsuyama et al. 1997; Matsumura
1997; Zhuchenko et al. 1997). Less than 50% of variance is accounted for by
the expanded allele size, suggesting a major influence of other factors (van
de Warrenburg et al. 2005). Larger normal alleles were reported to contribute
to the age at onset (Takahashi et al. 2004; van de Warrenburg et al. 2005).
An interaction between wild-type and expanded alleles in determining the
age at onset was also suggested for Huntington disease (Djoussé et al. 2003).
The anticipation of the age at onset over successive generations that charac-
terizes expanded trinucleotide disorders was also reported in SCA6 families
(Ikeuci et al. 1997; Matsumura et al. 1997; Matsuyama et al. 1997; Watanabe
et al. 1998; Sinke et al. 2001). In this case, however, anticipation is rather sur-
prising, particularly in studies in which no intergenerational variation of the
expanded allele size was found. The phenomenon, hence, should be ascribed
to an ascertainment bias, since one is more likely to observe a parent–child
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pair with the offspring affected earlier than the parent, rather than vice
versa (Penrose 1948). Alternative explanations are exposure to different en-
vironmental factors affecting the age at onset in different generations, or the
difficulty of assessing the age at onset in older patients.

Neuroimaging in SCA6 patients reveals a cerebellar vermis atrophy pre-
dominating in the anterior portion, which might later extend to cerebellar
hemispheres, usually with preservation of brainstem (Calandriello et al. 1996;
Gomez et al. 1997; Jodice et al. 1997; Nagai et al. 1998; Satoh et al. 1998;
Shizuka et al. 1998a, b; Takiyama et al. 1998). Occasionally, on MRI a size re-
duction of the pons as well as of the red nucleus and the middle cerebellar
peduncle has been reported (Murata et al. 1998; Arpa et al. 1999; Nakagawa
et al. 1999). A widespread reduction of glucose metabolism on PET scan, with
particularly low values in the brainstem and cerebellar hemispheres, was ob-
served in a group of SCA6 patients as compared with normal controls (Soong
et al. 2001b). Unfortunately, however, in this study the control subjects were
younger than the patients, requiring further confirmation of these data.

6
Similar and Discrepant Clinical Features of SCA6 and EA2

As studies of patients with ascertained CACNA1A point mutations reveal,
the clinical presentation of SCA6 differs in several criteria from that of EA2.
A higher percentage of EA2 patients report vertigo/ataxia episodes which
are sometimes accompanied by muscular weakness (Jen et al. 2001), epilepsy
(Jouvenceau et al. 2001; Imbrici et al. 2004) or dystonia (Guida et al. 2001).
The latter features have not been described so far in SCA6 patients. Aceta-
zolamide treatment was found to be efficacious more frequently in treating
episodes in EA2 individuals than in SCA6 patients (Yue et al. 1998; Jen et al.
1999; Denier et al. 1999, 2001; Guida et al. 2001; Matsuyama et al. 2003; Kau-
nisto et al. 2004; Mantuano et al. 2004; Jen et al. 2005; Spacey et al. 2005; Wan
et al. 2005). The episodes, however, are not a hallmark of EA2 since a slowly
progressive cerebellar ataxia is present in the majority of patients, although at
a lower frequency than in SCA6 (Subramony et al. 1996; Yue et al. 1997, 1998;
Denier et al. 1999; Jen et al. 1999; Guida et al. 2001; Jouvenceau et al. 2001; Im-
brici et al. 2004; Kaunisto et al. 2004, 2005; Mantuano et al. 2004; Wan et al.
2005). Pyramidal, brainstem and peripheral deficits have not been reported
in EA2, except for one patient (Denier et al. 1999), while learning difficulties
and cognitive signs are present in a small percentage of patients, particularly
those carrying a protein-truncating mutation (Mantuano et al. 2004).

The aforementioned differences between EA2 and SCA6 may reflect dif-
ferent pathogenic processes. It should be noted, however, that the age at
examination in the two groups (Table 1) is markedly higher in the SCA6
group. This could influence many of the observed differences. An older age at
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examination may reveal the aspects of a more advanced phase of the disease
and hence explain the higher percentage of patients with a progressive ataxia.
In addition, in elderly patients other age-related neurological disorders could
account for the higher frequency of extracerebellar signs. This hypothesis is
consistent with the absence of extracerebellar signs in three studies of SCA6
patients with an age at examination below 70 years (Calandriello et al. 1997;
Ishikawa et al. 1997; Satoh et al. 1998), and with the presence of brainstem
signs in one EA2 patient over 70 (Denier et al. 1999).

Another discrepant finding in EA2, as compared with SCA6, is the age at
onset which is usually reported in the first or second decade of life, i.e. an age
markedly lower than that of SCA6 patients. In the latter case, however, the age
at onset is defined as the age at onset of progressive ataxia, whereas in EA2 it
refers to the age at onset of episodes. In the few EA2 patients for whom age at
onset of progressive ataxia is available, the data are strikingly similar to those
for SCA6 patients (Subramony et al. 1996; Kaunisto et al. 2004). The difference
in the age at onset between the two disorders might, therefore, be less marked
than appears at first glance.

The similarity between SCA6 and EA2 is further supported by the finding
in the same family, carrying a d(CAG)n repeat expansion and no CACNA1A
point mutation, of members with the typical episodic features of EA2 and
others with SCA6 progressive ataxia (Jodice et al. 1997a; Koh et al. 2001).

7
Neuropathology

The brains of SCA6 patients at autopsy show a marked atrophy of the cere-
bellar vermis and, to a lesser extent, of the hemispheres. Histologically, the
cerebellar cortex is characterized by a remarkable loss of Purkinje cells. Gran-
ule cells are also affected, although less severely (Subramony et al. 1996;
Gomez et al. 1997; Sasaki et al. 1998; Ishikawa et al. 1999b; Tashiro et al. 1999).
Loss of neurons in the dentate and inferior olivary nuclei was reported in one
study (Subramony et al. 1996) and atrophy of brainstem has been occasionally
described (Zhuchenko et al. 1997).

Non-ubiquitinated cytoplasmic protein aggregates were detected by anti-
α1A antibodies (Ishikawa et al. 1999a, 2001) both in transfected cells and
in cerebella of SCA6 patients. In addition, the cytoplasm and the nucleus of
Purkinje cells showed small aggregates immunoreactive with 1C2, an anti-
body that detects polyglutamine sequences larger than 40 repeats; however,
aggregates immunoreactive with the α1A subunit were not reactive with 1C2.
The interpretation of this finding is not straightforward. It should be noted
that protein aggregates in other polyglutamine disorders are most likely due
to the tendency of polyglutamine stretches to form β-sheets by linking to
one another through hydrogen bonds between their main chain and the
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side chain amides (Perutz 1994). This process is strongly dependent on the
number of repeat units: no aggregate formation is observed with polyglu-
tamine stretches below 27 repeats (Scherzinger et al. 1999). The structural
transition permitting aggregation begins at 32–37 glutamine residues, corres-
ponding to the lower limit of the expansion range seen in patients affected
with non-SCA6 polyglutamine expansion disorders. In light of these data, the
significance of aggregates in brains of SCA6 patients remains obscure. Are
the anti-polyglutamine reactive aggregates due to the SCA6 expansion in-
ducing the aggregation of other proteins with longer polyglutamine tracts,
and if so, which are these proteins? Are the aggregates non-specific byprod-
ucts of a neurodegenerative process of Purkinje cells caused by a dysfunction
of Ca2+ channels? On the other hand, the anti-α1A reactive aggregates are
hardly comparable with those found in patients with other SCAs, since they
are not ubiquitinated and are located only in the cytosol. It should be noted
that the α1A subunit has many isoforms, only some of which contain the poly-
glutamine stretch. Are the patterns of expression of protein isoforms, their
likelihood of being incorporated into the membrane or their turnover differ-
ent from the normal as a result of expansion of the polyglutamine stretch? If
this is the case, then these aggregates could be due to the degradation of un-
used or obsolete isoforms. The increased expression of the α1A subunit with
a polyglutamine expansion has indeed been reported (Ishikawa et al. 1999,
2001; Piedras-Renteria et al. 2001). This implies that SCA6 is completely dif-
ferent from other polyglutamine disorders for which a comparable expression
level was reported for wild-type and mutated genes (Persichetti et al. 1995;
Servadio et al. 1995).

8
Toxic Gain of Function Versus Abnormal Channel Activity

Expanded polyglutamine stretches confer gain of function to nuclear or cy-
toplasmic proteins that are encoded by genes responsible for polyglutam-
ine disorders. Although the pathogenic role of polyglutamine aggregates is
highly controversial (Michalik and van Broekhoven 2003), evidence shows
that the nuclear localization of the mutant proteins, or of part of them, plays
a pathogenic role (Klement et al. 1998; Sandou et al. 1998; Walsh et al. 2005).
The α1A subunit is a cell membrane protein that is unlikely to translocate into
the nucleus. It has recently been proposed, however, that its carboxy-terminal
polyglutamine-containing tail may undergo a proteolytic cleavage (Kubodera
et al. 2003) and recent evidence suggests that this tail might indeed translo-
cate into the nucleus (Agostoni et al. 2005; Kordasiewicz et al. 2006). These
data would be consistent with the hypothesis that the tail with small expan-
sions of the polyglutamine repeat exerts a toxic gain of function similar to
that of other polyglutamine disorders. In addition, such a hypothesis would
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require an accurate study of the different α1A isoforms, the regulation of their
expression and their functional roles.

Typically for polyglutamine disorders, the expression of the mutated pro-
tein in cultured cells leads to cell death (Suzuki and Koike 2005), supporting
the hypothesis of a toxic gain of function, whatever the underlying process.
Expression of the full-length mutated α1A subunit in cultured cells does not
lead to cell death (Matsuyama et al. 1999), but rather it weakens the ability
of the Ca2+ current through the P/Q channels to prevent cell death caused
by other factors, such as serum starvation (Matsuyama et al. 2004). These
data appear to indicate that the expansion, by reducing the calcium influx,
decreases its protective effect against cell death. Kordasiewicz et al. (2006) re-
ported, instead, an increased cell death when the C-terminal tail is expressed
and translocated into the nucleus.

A loss of channel function as a basis for SCA6, like that believed to result
from EA2-causing mutations (Guida et al. 2001), is also supported by elec-
trophysiological data obtained through patch-clamp recording of cultured
non-neuronal cells, usually renal embryonic HEK293 cells, transfected with
α1A subunit complementary DNA with different numbers of d(CAG) units. In
two studies, the mutated protein induced a hyperpolarizing shift in the volt-
age dependence of channel inactivation (Matsuyama et al. 1999; Toru et al.
2000). Such a change is predicted to exert a considerable decrease in channel
availability at resting potentials, approximately halving the Ca2+ influx, which
may in turn indirectly lead to cell death. This effect appears to be dependent
on the type of isoform and on the number of repeat units (Toru et al. 2000).
It is notable that in these experiments the current density in transfected cells
was not reduced, implying that the mutated protein was normally transported
to the membrane and is not sequestered into aggregates (Matsuyama et al.
1999).

However, other electrophysiological data, (Restituito et al. 2000), obtained
under a different experimental setting, suggested an increased calcium influx
as a consequence of a hyperpolarizing shift in the voltage-dependent channel
activation and a slowed rate of inactivation. This effect was not obtained when
the mutated protein had fewer than 30 glutamine units and when an auxil-
iary β subunit different from β4 was coexpressed. Still different results were
obtained by Piedras-Renterìa et al. (2001), who observed a sharp increase in
current density in cells expressing the mutated protein. The effect, however,
was not dependent on the number of polyglutamine residues. No significant
alteration of channel function was observed either in the activation or in
the inactivation kinetics. Although confirmation of the functional analysis
through single-channel recording is necessary, these data suggest that SCA6 is
induced by an abnormal expression or turnover of the mutated protein rather
than by a channel malfunction as previously suggested.

Although difficult to reconcile, most electrophysiological data favour the
hypothesis of a SCA6 pathogenesis based on a channel malfunctioning rather
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than on a toxic gain of function of the polyglutamine stretch per se, as envis-
aged for other d(CAG) expansion disorders.

9
Conclusions

Data favouring either one of the two hypotheses concerning the pathogenic
mechanism of SCA6 are few, often controversial and seldom replicated. On
one hand, gain of function is supported by analogies with expanded poly-
glutamine disorders that include the following: (1) polyglutamine aggregate
formation in brains of patients with SCA6, although these aggregates differ
from those found in patients with other SCAs; (2) cleavage of the α1A COOH
tail and its translocation into the nucleus; and (3) clinical features that, al-
though widely overlapping those resulting from channel loss of function in
EA2, may include some extracerebellar symptoms reminiscent of symptoms
of other SCAs. Such evidence should be weighted against contradicting evi-
dence such as the size of the expansion mutation being too small to produce
stable aggregates or the absence of cytotoxicity in cultured cells that express
the full-length mutated protein.

On the other hand, evidence in favour of loss of function as a result
of channel malfunction derives mainly from the similarities between clin-
ical phenotypes of SCA6 and EA2 and the electrophysiological analysis of
Ca2+ currents in non-neuronal cultured cells expressing the mutated channel.
However, the latter data consist of often-contradictory results demonstrating
either loss or gain of Ca2+ influx.

The enigma of SCA6, therefore, is far from being solved. Its solution must
await the gathering of less controversial and more consistent data. These will
hopefully come from the study of neuronal cellular models, which proved to
be essential in the electrophysiological analyses of the α1A subunit (Tottene
et al. 2002), and from SCA6 transgenic models.
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1
The Identification of Spinocerebellar Ataxia Type 12 and Huntington’s
Disease-Like 2

As part of the long-standing program in Huntington’s disease (HD) at Johns
Hopkins University, our group developed an interest in investigating the ge-
netic etiology and pathogenesis of disorders similar to HD. After the discov-
ery of the HD mutation in 1993 (Huntington’s Disease Collaborative Research
Group 1993), it became clear that a portion of the patients followed in our
clinic with presumed HD did not have the HD mutation. With careful re-
view of all available records, reexamination, and additional genetic testing,
four cases emerged that had a familial progressive neurodegenerative dis-
order resembling HD (Rosenblatt et al. 1998). Using a modified version of
the repeat expansion detection (RED) assay (Schalling et al. 1993), we found
a d(CAG)/d(CTG) repeat expansion in genomic DNA from one of these four
cases that could not be explained by any known repeat expansion, and that
segregated with disease in affected family members. The RED assay was
then used to isolate a clone of a section of genomic DNA containing the
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repeat (Holmes et al. 2001b), following a method similar to that used by
Ranum and colleagues (Koob et al. 1998). This technique allows isolation
of novel expansion mutations directly from DNA of a single patient with-
out the necessity of a positional cloning approach. From this clone, the locus
of the repeat expansion was readily apparent, and a simple PCR assay was
developed for examining repeat length in other individuals. We used the
PCR assay to determine that the repeat expansion segregated perfectly with
the illness. We also used the PCR assay to determine that one of the other
individuals from our clinic with an HD-like familial disorder was from an-
other branch of the proband’s family. The disorder was named HD-like 2
(HDL2).

Spinocerebellar ataxia type 12 (SCA12) was identified through a collabo-
rative arrangement between Johns Hopkins University and Athena Diagnos-
tics, a commercial laboratory providing genetic tests for neurodegenerative
and other diseases. After obtaining informed consent, DNA from patients
with ataxias for which no mutation was detected by Athena Diagnostics was
sent to our laboratory along with brief clinical descriptions. The RED assay
was applied to these cases, and a case was identified with an unexplained
d(CAG)/d(CTG) repeat expansion that, as in (HDL2), segregated perfectly
with affected status in family members. This expansion was cloned, and the
flanking sequence again revealed the locus of the expansion and enabled us
to develop a PCR assay of repeat length (Holmes et al. 1999). The pattern of
segregation was somewhat less clear than in HDL2, a function of the pheno-
type, which is relatively mild, variable, and often resembles essential tremor.
Though we were reasonably confident that the expansion mutation was the
cause of the disease, the proof that the mutation was causal only emerged with
the finding of multiple other families, as described below.

2
HDL2 and SCA12 Clinical Phenotype

At least at the level of individual patients, HDL2 is clinically indistinguish-
able from HD; most individuals with HDL2 were initially diagnosed as having
HD, often by clinicians experienced in the differential diagnosis of movement
disorders. HDL2 cases generally appear to have one of two presentations,
though these presentations probably reflect opposite ends of a continuum
rather than discrete disease subtypes (Table 1). The first HDL2 presentation
is similar to the juvenile onset or Westphal variant of HD, and was ob-
served in all affected members of the index family, and in some members
of another American HDL2 family (Walker et al. 2002, 2003). Onset, typ-
ically of weight loss (despite increased appetite) and poor coordination, is
usually in the fourth decade. Subsequently, a variety of movement abnormal-
ities develop, most prominently rigidity, dysarthria, hyperreflexia, bradyki-
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Table 1 Signs and symptoms in Huntington’s disease-like 2 (HDL2) and Spinocerebellar
ataxia type 12 (SCA12)

HDL2 SCA12

Cerebellar signs 0 +–++
Action tremor 0 +++
Parkinsonism +–+++ 0 –++
Chorea +–+++ 0
Dystonia 0 –++ 0 –+
Hyperreflexia ++ +
Dysarthria ++ +
Abnormal eye movements + +
Ataxia +–++ +–++
Sensory neuropathy 0 0 –++
Weight loss +–++ 0
Dementia +++ +
Psychiatric syndromes +++ +

nesia, and tremor. Most patients develop dystonia and/or chorea, though
chorea is typically quite mild. Cerebellar signs are absent, and eye move-
ments are minimally affected. All patients gradually become demented and
develop psychiatric disturbances such as depression, irritability, and apathy.
The disease is relentlessly progressive, resulting in a profound dementia and
rigidity in 10–15 years, with death from nonspecific complications following
thereafter.

The second presentation resembles typical HD. Onset may be somewhat
later than in the index family, perhaps by as much as 10 years, though with
interfamily variability. Chorea, as in most cases of HD, is quite pronounced,
while dystonia, bradykinesia, tremor, hyperreflexia, and dysarthria are less
prominent. Eye movement abnormalities, particularly dysmetric saccades,
seem more common. Psychiatric and cognitive disturbances may be milder or
at least slower to develop, and overall the disease may progress more slowly.

The similarity between HD and HDL2 certainly justifies the name HDL2.
In fact, given that HDL1 is a familial form of a prion disorder, stemming from
an insertion into the PRPN gene and with a pathology unlike HD (Moore et al.
2001), a more appropriate name for HDL2 might have been HD2. If the HDL2
mutation had been discovered prior to the HD mutation, the designations HD
and HDL2 would be reversed, and it is likely that more emphasis would now
be placed on the genotypic diversity of the HD phenotype.

The HDL2 phenotype is striking. Individuals from known HDL2 families
with even mild signs and symptoms can be diagnosed with a high degree
of confidence. When all affected individuals are considered, SCA12 has an
equally characteristic course, but in any one individual diagnosis may be
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more difficult. The mean onset age in the index American family was 34 years,
with a range of 8–55 years (Holmes et al. 1999; O’Hearn et al. 2001). In the
two published series of SCA12 patients from India, the mean onset age was
40 years (Bahl et al. 2005) and 38 years (Sinha et al. 2004). Most typically,
disease begins with an action tremor of the arms or head followed by de-
velopment of mild ataxia, limb dysmetria, and/or generalized hyperreflexia.
Some individuals develop action tremor (postural and/or intention tremor)
of the head, limbs, lips, or tongue. Some members of the index American
pedigree develop bradykinesia or dementia, and others have psychiatric syn-
dromes of uncertain relationship to the SCA12 mutation. Individuals from
India with SCA12 tend to develop less parkinsonism but more frequent pyra-
midal signs, and as many as 50% develop a sensory neuropathy. Signs of
cerebellar dysfunction tend to be less prominent and less disabling in individ-
uals with SCA12 than in individuals with other SCAs. While the designation
SCA12 was applied to the disease on the basis of particularly dramatic pre-
sentations of a few members of the index family, cerebellar involvement is
much less prominent than in the other SCAs. Overall, SCA12 is among the
least disabling of all the SCAs, and may not have a major impact on longevity
in many affected individuals. A few affected individuals have remained em-
ployed throughout adulthood.

3
HDL2 and SCA12 Pathological Phenotype

HDL2 neuroimaging consistently reveals prominent caudate atrophy, moder-
ate atrophy of the cerebral cortex, and little abnormality in other brain struc-
tures. HDL2 and HD MRI images cannot be distinguished from each other
(Fig. 1). Examination of the first autopsied HDL2 case (Fig. 2) was notable for
mild atrophy of cortical gray matter, ventricular dilatation, and severe atrophy
of the head of the caudate and the putamen. Severe neuronal degeneration
and reactive astrocytosis, with vacuolation of the neuropil, was observed
throughout the caudate, with more severe involvement of dorsal than ven-
tral regions and a selective loss of medium-sized neurons. Degeneration was
somewhat less marked in the putamen, with the same dorsal-to-ventral gradi-
ent. Neuronal loss and astrocytosis was more moderate in the globus pallidus,
and moderate neuronal degeneration accompanied by pigment incontinence
was observed in the substantia nigra, but no Lewy bodies. No β amyloid de-
posits or neurofibrillary tangles were detected. Immunohistochemically, the
key finding was the presence of intranuclear aggregates that stained with 1C2
(somewhat specific for expanded polyglutamine tracts) and anti-ubiquitin
antibodies, but not anti-huntingtin antibodies. Inclusions were more com-
mon in the cortex than in the striatum. TorsinA (Walker et al. 2002) and
TATA-box binding protein (TBP) have also been detected in these inclusions.
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Fig. 1 Huntington’s disease-like 2 (HDL2) is indistinguishable from Huntington’s disease
(HD) by MRI scan. a, d HDL2 case, MRI at age 36, 10-year disease duration. b, e Typical
HD case, age 48 years, 12-year disease duration. c, f Normal control, age 43 years. Note the
atrophy of the striatum and cerebral cortex in the HDL2 and HD cases, with relative spar-
ing of the cerebellum and brain stem. (Reprinted with permission, Annals of Neurology,
copyright 2001; Margolis et al. 2001)

Fig. 2 HDL2 pathology. a Gross pathology, with prominent striatal atrophy (arrow) and
moderate cortical atrophy. b Microscopic pathology of the caudate, with neuronal de-
generation, astrocytic gliosis, and vacuolization. c Intranuclear inclusions stained by the
1C2 antibody (arrow). (Reprinted with permission, Annals of Neurology, copyright 2001;
Margolis et al. 2001)

Recent evidence suggests that nuclear RNA inclusions may also be present in
HDL2 brain (see below). A total of four HDL2 brains have now been examined
in some detail, with consistent findings.
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Fig. 3 Spinocerebellar ataxia type 12 neuroimaging. MRI of a 59-year-old woman demon-
strating moderate cerebral cortical and cerebellar atrophy affecting the vermis and lateral
cerebellar hemispheres. (Reprinted with permission, Neurology, copyright 2001, Lippin-
cott Williams & Wilkins; O’Hearn et al. 2001)

The variability of SCA12 neuroimages is consistent with the variability in
the SCA12 phenotype. MRI of most affected individuals reveals atrophy of
the cerebral cortex and less marked atrophy of the cerebellum, with some-
what greater atrophy in the vermis than in the hemispheres; atrophy in other
brain regions is less consistent (Fig. 3). A single SCA12 brain has come to
autopsy. This brain was characterized by bilateral diffuse moderate atrophy
of the cerebral cortex, most prominent in the parietal lobe; mild atrophy of
the cerebellum, pons, and corpus calosum; and mild ventricular enlargement.
Microscopic examination revealed moderate loss of Purkinje cells and mild
neuronal loss in the substantia nigra, dentate nucleus, and inferior olivary
nucleus. Neuronal intranuclear inclusions staining for ubiquitin and resem-
bling Marinesco bodies were found in substantia nigra neurons and, more
rarely, in Purkinje cells and motor cortical neurons. No Lewy bodies, neuronal
tangles, or inclusions staining for tau or with 1C2 were detected (O’Hearn
et al. 2004).

4
Epidemiology

HDL2 and SCA12 are both rare diseases found in restricted ethnic groups.
In carefully examined individuals with an HD-like syndrome or pathology in
Europe and North America, as few as 1% do not have the HD mutation (An-
drew et al. 1994; Persichetti et al. 1994; Xuereb et al. 1996; Stevanin et al. 2003).
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In North America, a systematic examination of 538 individuals with HD-like
phenotypes who did not have the HD mutation found only six cases of HDL2
(Margolis et al. 2004a). Every case of known ethnicity was either of definite or
probable African origin, with preliminary indications that all cases have the
same haplotype (Krause et al. 2002). No cases have been detected in Japan
(Margolis et al. 2004a; Shimohata et al. 2004) or in Europe (Stevanin et al.
2002; Bauer et al. 2002). Most remarkably, among individuals with HD-like
syndromes in South Africa, preliminary evidence suggests that the frequency
of HDL2 is about 25%, nearly as common as HD (Krause et al. 2002). The
frequency of HDL2 in Asia outside of Japan remains unknown.

SCA12, unlike HDL2, has been detected in two separate populations. The
index family, American and said to be of German origin, is the only SCA12
pedigree ever detected in North America (Holmes et al. 1999; Cholfin et al.
2001; O’Hearn et al. 2001). No SCA12 cases of European (Holmes et al. 1999;
Fujigasaki et al. 2001; Worth and Wood 2001; Brusco et al. 2004; Hellenbroich
et al. 2004), Japanese (Maruyama et al. 2002; Matsumura et al. 2003; Sasaki
et al. 2003), or Chinese (Tsai et al. 2004; Zhao et al. 2002) origins have been
ascertained. The frequency of SCA12 in African populations has never been
examined. However, SCA12 has been detected in approximately 25 families
from India by two independent groups. SCA12 appears to be the second most
common form of SCA in India (though ascertainment has mostly been in
northern India), accounting for about 8% of all cases of ataxia (Srivastava
et al. 2001; Sinha et al. 2004; Bahl et al. 2005). All cases come from a single
endogamous ethnic group originating in Haryana state in northern India and
share a common haplotype, which differs from the haplotype of the Ameri-
can family (Bahl et al. 2005). It therefore appears that the SCA12 mutation has
arisen independently at least twice, compared with the single origin of HDL2.
Origins of each disease only once or twice in human history are consistent
with the low prevalence of each disease compared with HD or the other SCAs.

5
Phenotype–Genotype Relationship

Establishing the minimum length of expansion sufficient to cause disease in
SCA12 and HDL2 is certainly critical for providing accurate genetic diagno-
sis, but this information, in comparison with that for other repeat expansion
diseases, may also provide insight into pathogenic processes. In HDL2, nor-
mal allele length varies from six to 28 triplets, with a mode of 14 triplets.
Repeat lengths associated with disease range from 40 to 57 triplets. It is
possible that expansions in the 40–45 triplet range may be incompletely pen-
etrant, as one individual from an HDL2 pedigree did not have clear evidence
of HDL2 at the age of 65 despite a repeat expansion of 44 triplets, though
subtle manifestations of HDL2 may have been obscured by a stroke in this
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person. It is also not possible to exclude phenotypic manifestations of shorter
alleles. A 48-year-old woman with alleles of 12 and 33 triplets developed an
acute atypical cerebellar disorder after a hospitalization for uncontrolled dia-
betes mellitus type II (Margolis et al. 2004a). Five years later, cerebellar signs
had only minimally progressed. Her son, with alleles of 35 and 14 triplets,
developed Cogan’s syndrome at age 25, an autoimmune disease resulting
in complete hearing loss. Disease onset was notable for tinnitus, occasional
lapses of concentration, and difficulty with balance. A detailed neurologi-
cal examination at age 30 revealed only a lack of smoothness in horizontal
and vertical gaze and saccades, possible dysdiadochokinesis, and moder-
ate unsteadiness with tandem walk. While the relationship between repeat
expansion and disease is uncertain in these two individuals, they do pro-
vide evidence for unstable vertical transmission of repeat lengths as short as
33 triplets (Margolis et al. 2004a). In summary, the range of normal and ex-
panded repeat lengths in HDL2 is remarkably consistent with that seen in HD
and most of the other polyglutamine diseases.

Normal alleles at the SCA12 locus range in length from four to 32 triplets,
with a mode of ten triplets in all samples studied to date (Holmes et al. 1999;
Fujigasaki et al. 2000; Cholfin et al. 2001; Srivastava et al. 2001; Worth and
Wood 2001; Zhao et al. 2002; Brusco et al. 2004; Sulek et al. 2004; Tsai et al.
2004). Alleles associated with SCA12 range in length from 51 to 78 triplets
(Holmes et al. 1999; Bahl et al. 2005). Two northern Germans with ataxia had
repeats of 40 and 41 triplets, but family and phenotypic information was in-
sufficient to determine if these are coincidental findings (Hellenbroich et al.
2004). An Iranian woman with unipolar depression and her monozygotic
twin sons with schizophrenia each had an expansion of 53 triplets at the
SCA12 locus (Holmes et al. 2003). The implication was that expanded alle-
les exist in Iran, but a clear relationship between the repeat expansions and
the psychiatric disorders could not be established. An individual with typ-
ical Creutzfeld–Jacob disease (CJD) had an SCA12 allele of 49 triplets; the
relationship between the CJD and the expansion is unknown (Hellenbroich
et al. 2004). An asymptomatic individual from India who is homozygous for
SCA12 expansions (repeat lengths 52 and 59 triplets) suggests that homozy-
gosity does not lead to devastating disease or to very early disease onset (Bahl
et al. 2005). Overall, the repeat lengths typically associated with SCA12 are
somewhat longer than in the polyglutamine diseases (with the possible ex-
ception of SCA3). Also, repeat lengths over 70 triplets, seen in a number of
SCA12 patients, generally result in juvenile onset of polyglutamine diseases.
The combination of relatively mild phenotype and relatively long repeat ex-
pansions compared with the polyglutamine diseases suggests that SCA12 is
unlikely to be a polyglutamine disorder.

Repeat instability during vertical transmission and the correlation between
longer repeat length and younger age of onset are characteristic features of
repeat expansion diseases. In HDL2 there is now clear evidence that longer
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Fig. 4 Younger age of HDL2 onset is associated with longer repeat lengths. N = 24,
R = 0.62, r2 = 0.39, p = 0.0011. The relationship is quantitatively similar to that observed
in HD. (Reprinted with permission, Annals of Neurology, copyright 2004; Margolis et al.
2004)

repeat length correlates with an earlier onset age, with a relationship simi-
lar to that seen in HD (Fig. 4) (Margolis et al. 2004a). Preliminary evidence
suggests the same phenomenon occurs in SCA12 (Margolis et al. 2004b). The
few examples in which the length of an HDL2 expanded repeat is known in
both parent and child suggest a tendency towards a modest increase in repeat
length during vertical transmission, consistent with the suggestion of antici-
pation in the index pedigree (Margolis and Ross 2001; Margolis et al. 2004a).
While slight variations in repeat length among siblings with SCA12 suggest
some change in repeat length during vertical transmission, there is not a clear
direction to the change. This is somewhat surprising, given the relatively long
and variable repeat lengths observed in SCA12. As would be expected given
the minimal change in repeat length during vertical transmission, there is
little evidence for anticipation in SCA12.

6
The HDL2 and the SCA12 Repeats Do Not Encode Polyglutamine

Our immediate assumption after detection of expansions by the RED assay
was that HDL2 and SCA12 would be polyglutamine disorders. Most obviously,
in all previous neurodegenerative diseases associated with d(CAG)/d(CTG)
repeat expansions except SCA8 (and myotonic dystrophy, in which neurode-
generation is less prominent), the repeat is in-frame to encode polyglutamine.
Unlike SCA8, the length of the repeat expansions in HDL2 is in exactly the
same range as in the known polyglutamine diseases. The repeat length for
SCA12, as noted before, was less consistent with the that for the polyglu-
tamine disorders, but was not far from the range. Further, in HDL2, intranu-
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clear inclusions in brain from affected individuals, as noted before, stain with
an antibody with some specificity for polyglutamine expansions. However, for
each disease, this initial assumption appears to be wrong.

The HDL2 locus maps to 16q24.3. In the d(CAG) orientation, an open read-
ing frame exists in which the repeat is in-frame to encode polyglutamine, with
115 residues from the first d(ATG) to the repeat, and 27 amino acids from the
C-terminal end of the repeat before the first stop codon. However, there is no
known gene, predicted gene, or expressed sequence tag (EST) that contains
this open reading frame and the predicted protein sequence is not homol-
ogous to that of any known proteins. Our experimental efforts to identify
a transcript containing this open reading frame expressed in brain using re-
verse transcription (RT) PCR failed. In addition, multitissue Northern blots
using antisense oligonucleotide probes to sequence flanking either side of the
d(CAG) repeat failed to detect a transcript in brain tissue, as did comple-
mentary DNA (cDNA) library screening (Holmes et al. 2001b). Preliminary
Western blots of human brain, probed with polyclonal antibodies generated
against the putative sequence flanking the d(CAG) repeat, indicate that the
open reading frame is either untranscribed or untranslated.

In the d(CTG) orientation, the HDL2 repeat is located 760 nucleotides
downstream of the 3′ end of exon 1 of the gene junctophilin-3 (JPH3),
and more than 36 kb upsteam of exon 2 (Holmes et al. 2001b) (Fig. 5).
A polyadenylation signal is located 281 nucleotides 3′ to the end of the re-
peat, GENSCAN predicts a transcript in which exon 1 of JP-3 is spliced to an
exon containing the d(CTG) repeat, and multiple ESTs exist in which exon 1 is

Fig. 5 JPH3 genomic structure and transcripts. Several other exons 3′ to exon 2b may also
exist which are only infrequently included in transcripts. Additional transcripts missing
one or more middle exons also exist. Not to scale. See text for details
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spliced to an alternate terminal exon containing the repeat. We therefore con-
cluded that the d(CTG) repeat is contained within an alternate exon of JPH3,
which we refer to as 2A. The use of multiple different canonical splice accep-
tor sites in the various exon 1–exon 2A ESTs indicated that the repeat could
be alternatively in-frame to encode polyleucine or polyalanine, or could fall
in the 3′ untranslated region (UTR). Using RT-PCR, we experimentally con-
firmed the existence of these transcripts in cerebral cortex, and confirmed
the presence of multiple splice acceptor sites leading to different reading
frames.

In SCA12, unlike HDL2, there is little ambiguity about which strand is rel-
evant for disease pathogenesis, as there is no gene or open reading frame
predicted on the strand in which the repeat is in the d(CTG) orientation. In
the d(CAG) orientation, the repeat is 133 nucleotides upstream of the 5′ end
of a cDNA of the initially published version of the gene PPP2R2B (Mayer et al.
1991) on 5q31–33. However, the precise relationship between the repeat and
the PPP2R2B transcript remains ambiguous. A multiple start-site element
downstream-1 (MED-1) sequence d(GCTCCC) (Ince and Scotto 1995) exists
65 nucleotides 3′ to the repeat. This motif is typically found downstream of
transcription initiation sites in genes that contain multiple initiation sites.
Consistent with the presence of the MED-1 sequence, it appears that this
transcript has variable start sites. A combination of experimental and bioin-
formatic evidence places the repeat, alternatively, as close as nine nucleotides
upstream of the transcription initiation site or within the 5′ UTR region of
this exon. The structure of this exon is further complicated by an internal al-
ternative, variable intron, spliced out beginning 28 or 141 nucleotides 3′ of the
d(CAG) repeat.

The relationship between PPP2R2B and the SCA12 repeat locus is emerg-
ing as much more complicated than we had assumed when we first described
the SCA12 mutation. At least six exons have been detected upstream of the
5′ exon of the originally described PPP2R2B transcript. These upstream ex-
ons are spliced in a variety of combinations to exons 9–16, which appear to be
invariant. The result is multiple different N-terminal regions of the encoded
protein (Fig. 6).

Initially, no experimental or bioinformatic evidence suggested that the
SCA12 d(CAG) repeat might encode polyglutamine, either within an uniden-
tified open reading frame of PPP2R2B, or within another unidentified ad-
jacent or overlapping gene (Holmes et al. 1999, 2001a). However, recently
available ESTs indicate that a small fraction of PPP2R2B transcripts may con-
tain the d(CAG) repeat; several ESTs from human and mouse brain, as well as
other tissues, begin within the repeat or 5′ to the repeat. With excision of the
internal intron, the repeat is contained within an open reading frame contigu-
ous with the normal PPP2R2B open reading frame. These transcripts contain
various insertions and deletions, such that the actual reading frame for the
repeat is uncertain, and the repeat could encode polyglutamine, polyserine,
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Fig. 6 PPP2R2B genomic structure and splicing. Alternative splice variants of PPP2R2B
are shown in simplified form. Darkened areas of transcripts represent open reading
frames. Additional upstream exons are present in transcripts in which the open reading
frame begins with exon 2, 5, or 8. Exons 1 and 7 have multiple alternative splice accepter
sites. Not to scale. See text for details

or polyalanine. However, no transcripts were detected on Northern blots of
messenger RNA from brain and the LA-N-1 neuroblastoma cell line (which
expresses high levels of PPP2R2B) probed with antisense oligonucleotides tar-
geted to sequence immediately 5′ and 3′ to the d(CAG) repeat. Similarly, no
protein was detected on Western blots derived from lymphoblastoid cells of
affected SCA12 patients probed with the 1C2 antibody. The absence of 1C2-
positive inclusions in SCA12 brain is further evidence against a pathogenic
role of polyglutamine.

In sum, unlike most of the other neurodegenerative diseases caused by
a d(CAG)/d(CTG) repeat expansion, we hypothesize that neither the SCA12
nor the HDL2 repeat is likely to encode polyglutamine, at least at a signifi-
cant level. A similar conclusion has been reached for SCA8 (Koob et al. 1999).
One implication of this conclusion is that there is dissociation between the
nature of the mutation at the molecular level and the mode of disease patho-
genesis; the presence of a d(CAG)/d(CTG) repeat expansion does not neces-
sarily imply that disease is caused by a polyglutamine expansion. In addition,
the selective forces favoring the existence of expandable d(CAG)/d(CTG) re-
peats within the human genome must not operate only through pressure on
the length of polyglutamine tracts. It seems plausible that polymorphism
in d(CAG)/d(CTG) repeat length may function as a general mechanism for
introducing variability into the genome, affecting genomic DNA structure,
transcript expression, RNA splicing, or protein sequence, depending on the
context of the repeat.
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7
HDL2 and SCA12: Clues to Pathogenesis

7.1
HDL2 and Gain of Function

If the repeat expansions in SCA12 and HDL2 do not encode polyglutamine,
then what alternative pathogenic mechanisms may account for the develop-
ment of these diseases? One possibility is a toxic gain of function of a mutant
protein product, parallel to that of the polyglutamine diseases. In SCA12,
transcripts containing the repeat in an open reading frame are very un-
common, diminishing, though not completely eliminating, the potential for
a pathogenic role of an expanded amino acid repeat. In HDL2, the alternative
transcript of JPH3 containing exon 2A could potentially give rise to a pro-
tein containing expanded polyalanine or polyleucine. Both polyalanine and
polyleucine expansions are toxic in cell models (Rankin et al. 2000; Dors-
man et al. 2002), and the disease oculopharyngeal muscular dystrophy, an
adult onset neuromuscular degenerative disorder, is caused by an alanine
expansion (Brais et al. 1998). If HDL2 was the result of either polyalanine
or polyleucine toxicity, we would predict that the intranuclear inclusions in
HDL2 would stain with antibodies raised against epitopes flanking either
the polyalanine or polyleucine tract, and that Western blots of HDL2 brain
probed with these antibodies would show a band corresponding to the alter-
native form of JPH3 containing an expanded polyalanine or polyleucine tract.
Our preliminary data suggest that these predictions are false.

If not toxic gain of function at the protein level, is toxicity possible at the
RNA level? Here the precedent is myotonic dystrophy, types 1 and 2 (DM1,
DM2) (Ranum and Day 2004). DM1 is caused by a d(CTG) repeat expan-
sion in the 3′ UTR of the gene myotonic dystrophy protein kinase 1 (DMPK1)
(Brook et al. 1992; Mahadevan et al. 1992; Fu et al. 1992). Brain and muscle
tissue from patients with DM1, cell models in which DM1 is overexpressed,
and mouse models in which the d(CTG) repeat is overexpressed all indi-
cate that expression of the transcript containing the r(CUG) repeat results in
small nuclear RNA aggregates containing the expanded repeat (Taneja et al.
1995; Davis et al. 1997; Jiang et al. 2004; Mankodi et al. 2000, 2003). The ag-
gregates, or the unaggregated transcripts with the r(CUG) expansion, may
exert a dominant effect on RNA splicing through the dysregulation of RNA
binding proteins, most prominently CUG-BP1 and muscleblind (Timchenko
et al. 1996; Miller et al. 2000). DM2, with a very similar phenotype to DM1,
is caused by an intronic d(CCTG) repeat expansion in ZNF9 (Liquori et al.
2001). The findings that RNA nuclear aggregation and dysregulation of RNA
binding proteins are similar in DM1 and DM2 provides strong support for
a causal role of RNA transcripts in these diseases, and is a prime example of
how analysis of a rare form of a disease can shed light on a more common
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form (Liquori et al. 2001; Mankodi et al. 2001; Fardaei et al. 2002). There is no
evidence that expansions of repeats in the d(CAG) orientation result in RNA
toxicity or inclusions, so it seems less likely, though untested, that RNA toxi-
city is central to SCA12 pathogenesis. On the other hand, the HDL2 repeat is
found in alternate JPH3 transcripts. Preliminary data suggest that the HDL2
expansion can lead to RNA inclusions, with some properties similar to those
seen in DM1 and DM2. This finding provides tantalizing though unconfirmed
evidence that a toxic transcript may play a role in HDL2 pathogenesis.

7.2
The Function of JPH3 and PPP2R2B

Could the HDL2 or SCA12 repeats have an impact on gene expression?
This possibility is intriguing because of the known functions of JPH3 and
PPP2R2B. JPH3 encodes one member of a four protein family (Takeshima
et al. 2000; Nishi et al. 2000, 2003). Whereas JPH1 is expressed in skeletal mus-
cle and JPH2 is expressed in cardiac and skeletal muscle, JPH3, along with
JPH4 (Nishi et al. 2003), is expressed in brain and to a much lesser extent in
testes. While detailed studies of JPH3 expression have not been performed,
JP3 (the mouse orthologue of JPH3) is widely expressed in the brain, with
high density in hippocampus, cerebral cortex, striatum, and cerebellar cortex
(Nishi et al. 2003).

The N-terminus of each junctophilin contains a series of repeating tracts,
each 14 amino acids in length, termed membrane orientation and recog-
nition nexus (MORN) motifs that serve to anchor the N-terminus of the
protein to the plasma membrane. The junctophilins also have an endoplasmic
reticulum (ER)/sarcoplasmic reticulum (SR) transmembrane domain, which
serves to anchor the C-terminus to the ER or the SR (Takeshima et al. 2000).
This structure suggested that the junctophilins may tether plasma membrane
to the ER/SR, placing plasma membrane voltage sensors adjacent to ER/SR
ion channels, particularly ryanodine and IP3 receptor-gated calcium chan-
nels (Fig. 7). Consistent with this hypothesis, the junctional complexes in JP1
knockout mice (Ito et al. 2001), compared with controls, were fewer in num-
ber and structurally abnormal, muscle response to electrical stimulation was
impaired, and muscle response to calcium was abnormal. The implication is
that loss of JPH3 expression in brain could similarly impair neuronal func-
tion, and perhaps survival, through destabilization of calcium flux.

Like JPH3, the function of PPP2R2B has been partially established. It is
one of multiple alternative regulatory units of the ubiquitous enzyme pro-
tein phosphatase 2A (PP2A, also termed PP2). PP2A has been implicated in
a plethora of cellular processes, including oncogenesis, growth and differenti-
ation, DNA replication, morphogenesis and cytokinesis, regulation of kinase
cascades, ion channel function, neurotransmitter release, microtubule assem-
bly, and apoptosis (Janssens et al. 2005; Price and Mumby 1999; Santoro and
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Fig. 7 Junctophilin function. Putative role of junctophilin in bridging the gap between
the plasma membrane and the endoplasmic reticulum (ER), bringing plasma membrane
voltage sensors into the proximity of IP3 receptors that modulate calcium release from
the ER. Junctophilin membrane orientation and recognition nexus motifs (MORN), which
serve to anchor junctophilin to the inner plasma membrane, and the ER transmembrane
domain (TM) are indicated. (Adapted from Takeshima et al. 2000)

Grummt 2001; Virshup 2000). PP2A is trimeric in structure, and includes
a catalytic subunit (PP2Ac or subunit C; two known isoforms), a structural
subunit (PR65 or subunit A; two known isoforms), and a regulatory subunit
(more than 12 known isoforms divided into three families) (Fig. 8). The struc-
tural and catalytic subunits form a complex to which, in a highly regulated
process, one of the regulatory subunits is recruited. As many as 75 different
trimeric combinations may exist. The structural and catalytic subunits are
constitutively expressed in all mammalian cells, whereas expression of the
regulatory subunits is spatially and temporally restricted. It is the regulatory
subunits that confer much of the substrate specificity and intracellular target-
ing to the entire enzyme complex (McCright et al. 1996; Millward et al. 1999;
Tehrani et al. 1996; Virshup, 2000).

PPP2R2B encodes a protein usually termed PR55β or Bβ (Mayer et al. 1991)
that is widely and specifically expressed in neurons throughout the brain
(Strack et al. 1998). The PPP2R2 family of subunits, which includes PPP2R2B,
regulate PP2A dephosphorylation of, among other substrates, vimentin (Tur-
owski et al. 1999), histone-1 (Ferrigno et al. 1993), and tau (Sontag et al.
1996). Mutations of different PPP2R2 subunits produce deleterious effects in
yeast and Drosophila (Shiomi et al. 1994). Downregulation of PP2A contain-



268 R.L. Margolis et al.

Fig. 8 PP2A holoenzyme structure. After a complex forms between structural (A) and
catalytic (C) subunits, methylestification of the catalytic unit by a 38-kDa AdoMet-
dependent PP2A methyltransferase (PPMT) favors the incorporation of a regulatory
unit (B). Demethylation by a 46-kDa PP2A methylesterase (PPME) destabilizes the
trimeric structure (Tolstykh et al. 2000). The regulatory unit forms a β-propeller struc-
ture. The protruding N-terminus of the regulatory unit targets the PP2A holoenzyme to
intracellular domains and substrates. N-terminus variability among the multiple regula-
tory subunits provides spatial and temporal specificity for PP2A activity

ing either PPP2R2A or PPP2R2B in cultured mammalian brain slices results
in Alzheimer’s-like accumulation of hyperphosphorylated tau (Sontag et al.
1999; Gong et al. 2000).

Adding to the complexity of understanding the physiological role of
PPP2R2B, it, like other regulatory units, has multiple alternative splice forms.
In the mouse, at least three splice forms have been examined (Schmidt et al.
2002), each with a variable first exon spliced to invariant downstream exons
(our preliminary examination of human splice variants demonstrates an even
greater complexity). This is of particular interest because each alternative
first exon is under the control of a different promoter and encodes a differ-
ent N-terminal signal. Structurally, the N-terminal portion of each regulatory
subunit is exposed, with the functional consequence that this N-terminus
provides the targeting information for PP2A.

7.3
Expression Level and Pathogenesis

Could loss of expression of the mutated JPH3 allele lead to the HDL2 pheno-
type? So far, direct evidence of a decrease in expression of a full-length JPH3
transcript in HDL2 brain has proven elusive. On the other hand, Takeshima
and colleagues have generated JP-3 knockout mice. At 6–12 weeks of age, these
mice show motor incoordination but no gross brain abnormalities and no
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electrophysiological abnormalities of cerebellar function (Ito et al. 2001). Our
preliminary data suggest that even mice with one deleted copy of JP3 may have
motor abnormalities and a shorter life span than littermate controls. Overall,
however, the phenotype appears relatively mild compared with the severity of
HDL2, perhaps reflecting a redundancy in function between JP3 and JP4. It
seems reasonable to propose that loss of JPH3 expression may contribute to the
HDL2 phenotype, but that it is not sufficient to cause the disease.

Could SCA12 stem from an effect of the repeat expansion on PPP2R2B
expression? As noted before, the SCA12 expansion mutation is found immedi-
ately flanking, and at times within the 5′ UTR or even the open reading frame,
of one of the alternatively spliced first exons of the PPP2R2B transcript. Strack
and colleagues compared the transcript and protein product (termed Bβ1)
generated with the rat orthologue that includes this exon with the transcript
and protein product (termed Bβ2) generated by including an alternative first
exon located 150 kb upstream. Transcripts containing the alternative first ex-
ons are divergently regulated during development, with Bβ1 levels declining
from late fetal to adult stages, while Bβ2 levels increased. Bβ2, but not Bβ1,
localized to mitochondria, and increased cell death following serum depriva-
tion in a PC6-3 cell line (Dagda et al. 2003).

This line of investigation demonstrates that the ratio of Bβ species con-
taining alternative N-terminal regions might considerably affect cell function
and survival. The SCA12 repeat expansion could alter this ratio in a number
of ways. For instance, expansion could influence splicing, as exemplified by
the effect on exon skipping in bovine c-myb with and without an insertion
of a dodecamer repeat in exon 9 (Shinagawa et al. 1997). Such a mechanism
could be significant in HDL2 as well, as a shift from the full-length to a trun-
cated JPH3 transcript would result in less junctophilin-3 protein capable of
tethering plasma membrane to the ER. Alternatively, given its location, the
SCA12 repeat could affect transcriptional activity, as exemplified by the do-
decamer repeat expansion in the promoter of CTSB (encoding cystatin B) that
reduces gene expression in association with myotonic epilepsy type 1 (Lalioti
et al. 1997). Preliminary evidence from a reporter gene assay suggests, con-
trary to expectations, that SCA12 repeat expansions increase transcription of
the human equivalent of the Bβ1 isoform described by Strack. Should addi-
tional experiments confirm this result, it is possible that SCA12 may arise, at
least in part, from excess expression of PPP2R2B variant Bβ1 that results in
a shift in PP2A target specificity.

8
Conclusion

HDL2 and SCA12, the most recent of the d(CAG)/d(CTG) expansion diseases
to be discovered, share intriguing similarities. Each is rare, and primarily
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limited to one ethnic group, as one might expect for diseases identified after
the more common Mendelian causes of the HD and SCA phenotypes had
been determined. HDL2 and SCA12 both demonstrate the genetic factors
shared by most other repeat diseases: instability in vertical transmission,
association of longer repeat length with earlier onset age, intermediate re-
peat lengths of uncertain significance, and incomplete penetrance of shorter
expansions. Both, like all the other d(CAG)/d(CTG) disorders, are primar-
ily neurodegenerative (DM1 and DM2 less markedly so than the others). It
is not difficult to conceptualize a common mechanism through which any
protein with a polyglutamine expansion might selectively affect the brain;
however, it is less clear how the broader class of d(CAG)/d(CTG) expan-
sion mutations, several of which do not encode polyglutamine, might also
be relatively specific for neurodegeneration (again less so for DM1 and
DM2). One possibility is ascertainment bias, in that this type of mutation
has been sought in brain diseases but not others. Another explanation is
that neurons are selectively vulnerable to several different classes of in-
sults, including long polyglutamine tracts, long tracts of proteins encoded
by other reading frames, and transcripts with long r(CUG) or other re-
peating units. If this is the case, then the pathogenesis for SCA12, HDL2,
and SCA8 should be sought in abnormal transcripts or proteins that have
gained a toxic function, rather than (or in addition to) the effect of the
expansion on expression of the gene in which it is located. DM1 serves
as an illustrative example of this concept, as pathogenesis was illuminated
by the recognition that overexpressing transcripts with r(CUG) expansions
could recapitulate many of the features of the disease in various model
systems.

On the other hand, differences between SCA12 and HDL2 suggest other
conclusions. While the complete SCA12 syndrome does not resemble other
known disorders, the similarity of HDL2 to HD is striking. This presents
a golden opportunity to search for common mechanisms of disease pathogen-
esis, especially as played out in the medium spiny neurons of the striatum.
Perhaps HDL2 can serve a clarifying role for HD pathogenesis in the same
way that DM2 illuminated the pathogenesis of DM1. In addition, the possibil-
ity that HDL2 may arise from toxic transcripts with expanded r(CUG) repeats
raises important issues for the pathogenesis of DM: Why is the phenotype of
DM1 and DM2 so different from that of HDL2? Does this imply that the muta-
tion in each gene has other effects, or is it a matter of relative expression levels
in different brain regions?

The variability of the SCA12 phenotype, and its relatively benign course,
differ from those of HDL2 and most of the other d(CAG)/d(CTG) expansion
diseases. This is consistent with an effect of the mutation on gene expression
levels. If so, this will be one of the few diseases caused by a mutation di-
rectly affecting a phosphatase, and could therefore provide a portal into novel
mechanisms of neurodegeneration.
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Finally, HDL2 and SCA12 raise the question of the value of searching for
and characterizing rare disorders. Given the minimal public health impact
of such rare diseases, would scarce resources be better applied to the direct
study of more common diseases? Here we put forth a clear answer: rare dis-
eases provide unique opportunities to understand more common disorders.
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1
Current Issues

1.1
Mechanisms of Nucleotide Repeat Expansion

As discussed by Sinden and Pytlos in this volume, the disease-causing repeats
form a variety of unusual DNA structures, including hairpins, triplexes, and
tetraplexes. Formation of such structures by the repeats has informed much
of our current thinking about the expansion mechanism. Work in vitro and
in bacteria, yeast and mice has implicated a variety of enzymes in this pro-
cess, including those involved in DNA replication, recombination and repair.
Part of the lack of clarity of the underlying expansion mechanism proba-
bly arises from the overlapping role that many of these proteins have in the
maintenance of genome integrity. Contradictory evidence from different or-
ganisms also complicates the picture. An additional source of difficulty is that
to date no model system fully recapitulates expansion in humans. One school
of thought is that expansion is a uniquely human phenomenon; however,
the recent description of an expansion disease in dogs, a form of progres-
sive myoclonus epilepsy (Gredal et al. 2003), suggests that this is not the
case. In addition, since all known folate-sensitive fragile sites in human chro-
mosomes consist of long CGG · CCG-repeat tracts like those responsible for
fragile X syndrome and FRAXE mental retardation, it has been suggested
that this repeat might be a general feature of all such sites (Sutherland 2003).
These sorts of sites, which are also seen in mice (Djalali et al. 1987), may
thus be remnants of past repeat expansions. Their presence in mice raises
the possibility that mice may in fact be suitable animals for examining ex-
pansion mechanisms. Clearly much more work is still required to resolve
this question.
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1.2
Consequences of Repeat Expansion

As can be gathered from chapters in this volume, research is beginning
to clarify the relationship between nucleotide expansions and their conse-
quences. Perhaps not surprisingly, these consequences depend on some com-
bination of the properties of the repeat itself, its location in the affected gene,
and the function of that gene. When the repeat is located in an open reading
frame, the relationship between expansion and disease pathology is super-
ficially quite straightforward; nucleotide expansion causes an increase in the
length of a run of a particular amino acid, which in all instances to date
has been glutamine, and the resulting polyglutamine (polyQ) stretch is toxic.
However, the basis of the toxicity of the polyQ tract remains the subject of vig-
orous debate and, as discussed by Friedman et al. in this volume, mechanisms
still under consideration include mitochondrial dysfunction, transcriptional
dysregulation, axonal transport defects, and cytoskeletal abnormalities. The
role of protein context in toxicity is becoming increasingly apparent, and in
the case of SCA6 a lack of agreement exists as to how much of the pathology
is due to polyQ toxicity and how much results from loss of normal protein
function (Frontali, this volume).

The effects of expansion of repeats that are located outside the open read-
ing frame seem to be remarkably varied. Some expansions are thought to
constitute loss-of-function mutations, while others represent a gain of func-
tion. Loss-of-function expansions include those in which the primary pro-
moter structure is disrupted, repeat-induced epigenetic changes lead to gene
silencing, or blocks are formed to either transcription or translation. While
definitive proof of the actual disease mechanism is often lacking, in many
instances available evidence implicates unusual mechanisms. For example,
the transcription block that has been suggested to cause Friedreich ataxia
(FA or FRDA) may involve the formation of an unusual DNA structure, such
as a triplex or “sticky DNA”, that impedes RNA polymerase (Pandolfo, this
volume). All the known gain-of-function expansions involve a novel dis-
ease paradigm: RNA-mediated pathology (Teng-umnuay and Swanson, and
Tassone and Hagerman, this volume), which has just recently begun to be
elucidated.

It has also been appreciated recently that expansion can have different con-
sequences depending on the number of repeats. For example, as discussed
by Tassone and Hagerman in this volume, carriers of FMR1 alleles with 59–
200 repeats are at risk for fragile X associated tremor and ataxia syndrome
(FXTAS) and fragile X associated premature ovarian failure (FXPOF). How-
ever, carriers of alleles with more than 200 repeats have a completely different
disorder, fragile X mental retardation syndrome (FXS). FXTAS and FXPOF
are thought to represent gain-of-function disorders resulting from the effects
of the expanded repeats in the transcript, while FXS results from loss-of-
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gene-function, specifically the absence of FMRP, the protein product of FMR1
due to silencing of the gene. FXTAS has been suggested to be a functional
laminopathy resulting from sequestering of lamin A/C (Arocena et al. 2005);
however, it remains to be seen whether such an effect accounts for all FXTAS
symptoms and whether the same mechanism is responsible for FXPOF. The
mechanism of gene silencing in FXS is also unknown. Interestingly, the ex-
panded FMR1 alleles are transcribed in early embryogenesis and the r(CGG)
repeats form RNA hairpins that are substrates for the ribonuclease Dicer
(Handa et al. 2003). This raises the possibility (Handa et al. 2003; Jin et al.
2004) that silencing of FMR1 may be mediated in some instances through the
RNA interference pathway (Matzke and Birchler 2005).

RNA-mediated pathology is also thought to be responsible for most cases
of myotonic dystrophy (DM1) (Teng-umnuay and Swanson, this volume).
However, in congenital DM1, a very severe form of DM1 seen only when
the repeat tract is extremely large, another novel disease mechanism may
contribute to disease symptoms. In most cases of DM1, the repeats are hete-
rochromatinized owing to the antisense effect of a bidirectional promoter of
the downstream SIX5 gene. Heterochromatin spreading is blocked by a CTCF-
dependent insulator element. In congenital DM1, CTCF binding is lost, result-
ing in heterochromatin spreading into adjacent genes (Cho et al. 2005). The
heterochromatization may affect the expression of adjacent genes, thereby ac-
counting for some of the unusual features of this form of DM1. The cases of
FXS, FXTAS, and FXPOF and of the different types of DM1 raise the possi-
bility that other repeat expansions may also have more than one pathological
mechanism.

While the broad outlines of many nucleotide repeat disorders are begin-
ning to emerge, many of them are still bereft of molecular details. Large
gaps in our knowledge are most apparent for particular diseases. The rela-
tive rarity of spinocerebellar ataxias (SCA) types 8 and 10, and the limited
access to affected tissues has slowed progress toward elucidation of the dis-
ease mechanism (Dick et al., and Lin and Ashizawa, this volume). In the case
of Huntington disease-like 2 (HDL2) and SCA12, both of which involve ex-
pansions of the repeat CAG · CTG, whether the repeats are translated is not
even known (Margolis et al., this volume). While it is possible that the repeat
falls into an open reading frame in a subset of alternative transcripts, it is un-
likely that a polyQ tract is responsible for either disorder. It remains possible
in the case of HDL2 that a polyalanine- or a polyleucine-containing protein
is involved. Such amino acid tracts are toxic in cell models and a polyala-
nine tract has been shown to be responsible for oculopharyngeal muscular
dystrophy (Brais et al. 1998). RNA toxicity also remains a viable explana-
tion for both disorders, although in the case of SCA12 it would probably
have to involve CAG-RNA rather than CUG-RNA. If this turns out to be the
case, it would represent the first disease resulting from CAG-RNA-mediated
pathology. However, the muscleblind proteins thought to be involved in the
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pathology responsible for DM1 and DM2 bind to RNA containing CHHG and
CHG repeats, where H is A, U, or C (Kino et al. 2004). Thus, it is possible that
the net effect of the SCA12 repeat is very similar to that of DM1 and DM2.

A number of diseases whose genetic bases are not yet known show an-
ticipation, one of the hallmarks of the repeat expansion disorders. It may
thus be that other diseases will be added to this group as their genetic ba-
sis becomes known. Available evidence suggests that some of these diseases
may result from protein toxicity that is not associated with polyQ or RNA-
mediated pathology that involves repeats other than r(CGG) or r(CUG).

2
Therapeutic Prospects

Despite the large gaps in our understanding of the molecular details of the
nucleotide repeat disorders, what has been learned thus far is already paving
the way for rational approaches to treating these diseases. Some of these ap-
proaches are aimed at correcting the underlying genetic defect and might be
applicable for a wide range of repeat expansion disorders, whilst others target
the downstream consequences of expansion and may sometimes be disease-
specific.

2.1
Gene Correction/Replacement

Gene replacement strategies may be suitable for diseases resulting from loss-
of-function mutations. The introduction of a normal frataxin gene using
adeno-associated virus and lentivirus vectors had some positive effects in
cells from individuals with FRDA (Fleming et al. 2005). However, many tech-
nical problems would need to be overcome before this approach could be
effectively applied in patients. In disorders involving gain-of-function muta-
tions, strategies that eliminate the affected protein/messenger RNA are po-
tentially useful. Successful antisense knockdown of mutant huntingtin has
been achieved in cultured cells (Hasholt et al. 2003), and an RNA interfer-
ence strategy has been shown to slow disease progression in a mouse model of
Huntington disease (HD) (Rodriguez-Lebron et al. 2005). However, for such
therapy to be effective, expression of the normal allele would have to be main-
tained if the consequences of complete loss-of-gene expression are severe.
Otherwise, this approach would be limited to those disorders where haploin-
sufficiency could be tolerated.

Cell transplantation offers an alternate therapeutic avenue for diseases in-
volving neurodegeneration. Indeed, some success has been achieved in graft-
ing of fetal striatal tissue in mice and humans with HD (reviewed in Dunnett
and Rosser 2004).
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Certain small molecules may allow gene correction. For example, cytosine
arabinoside, ethidium bromide, 5-azacytidine, and aspirin facilitate contrac-
tion of repeat tracts in dividing DM1 cells (Gomes-Pereira and Monckton
2004). Ribozymes have also been used to remove expanded nucleotide re-
peats in DM cells (Phylactou 2004). However, it remains to be seen how these
findings can be translated into actual therapies. First, problems with drug
delivery and toxicity must be overcome. Second, in the case of disorders in-
volving postmitotic cells like neurons the feasibility of this approach needs to
be demonstrated in nondividing cells.

2.2
Targeting the Downstream Consequences of Expansion

2.2.1
Epigenetic Modification

Partial reversal of FMR1 gene silencing in fragile X syndrome cells has been
achieved using the DNA demethylating agent 5-azadeoxycytidine (Chiurazzi
et al. 1998). Furthermore, a synergistic effect was obtained when this com-
pound was used together with a histone deacetylase inhibitor (Chiurazzi et al.
1999). Histone deacetylase inhibitors have also been shown to reduce mo-
tor impairment in a mouse model of HD presumably because they reduce
the histone hypoacetylation seen in the polyQ disorders (Hockly et al. 2003).
Similar strategies might be useful in treating other disorders such as con-
genital DM where the most severe symptoms may also arise from aberrant
DNA methylation and heterochromatinization (Cho et al. 2005). However,
once again a number of obstacles remain in the way of translating such ap-
proaches into effective therapies. First, these drugs are relatively nonspecific
and 5-azadeoxycytidine, in particular, is highly toxic. Second, DNA demethy-
lation since it is thought to require DNA replication in postmitotic cells like
neurons provides an additional technical challenge. In addition, in the case
of fragile X syndrome increased FMR1 transcription may predispose patients
to the ovarian and cerebellar dysfunction that is thought to be due to toxicity
of RNA with long CGG-repeat tracks. Furthermore, to be effective, treatments
would have to overcome the block to translation posed by large numbers of
repeats in the transcripts. The development of less toxic DNA methyltrans-
ferase inhibitors that do not require DNA replication for their activity as well
as compounds that improve FMR1 translation is required.

2.2.2
Countering Protein Misfolding

Evidence suggests that both the polyQ disorders and FXTAS may result from
some sort of altered protein folding. For example, overexpression of heat
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shock protein 70, a chaperone protein, ameliorated symptoms of neurodegen-
eration in a fly model of FXTAS (Jin et al. 2003), and in a mouse model of
the polyQ disorder spinal and bulbar muscular atrophy (SBMA) (Adachi et al.
2003). Trehalose (Tanaka et al. 2004) and Congo red (Sanchez et al. 2003),
which both reduce protein misfolding, decrease disease severity in mouse
models of polyQ disorders. Thus, compounds that lower protein misfolding
may also be useful in treating FXTAS.

2.2.3
Stimulating Neurogenesis

Paroxetine (Paxil) (Duan et al. 2004), fluoxetine (Prozac) (Grote et al. 2005),
and FGF-2 (Jin et al. 2005) have shown some clinical promise in HD patients,
perhaps because of their ability to compensate for the impaired neurogen-
esis and increased neuronal death in this disorder. A similar effect may be
beneficial in countering the neuronal loss in FXTAS, while at the same time
providing some relief in the case of Paxil and Prozac from the symptoms of
depression commonly seen in affected individuals.

2.2.4
Reducing Oxidative Stress

Increased oxidative stress in response to expansion was reported in a var-
iety of disorders, including FRDA and the polyQ disorders. Clinical trials with
antioxidants such as idebenone, an analog of coenzyme Q (ubiquinone) have
led to decreased cardiac hypertrophy in a mouse model of FRDA (Seznec et al.
2004) and humans (Rustin 2003). However, additional double-blind placebo
controlled studies are needed to assess neurological outcomes. Antioxidants
also attenuate the HD phenotype in mouse models of this disorder (Beal
2002). Since in both disorders mitochondrial dysregulation is observed, the
development of agents targeted to the mitochondria might be desirable. One
such compound, mitoquinone, a ubiquinone derivative, has been shown to be
more effective in protecting cells from FRDA patients from oxidative stress
than idebenone (Jauslin et al. 2003), and is currently being tested in phase I
clinical trials.

2.2.5
Modulating Specific Downstream Targets

In some disorders very specific changes in gene expression have been no-
ticed that may be relevant for disease symptoms. For example, altered
group 1 metabotropic glutamate (mGluR) receptor signaling is seen in
both Fmr1 knockout mice (Huber et al. 2002) and in the polyQ disor-
ders (Anborgh et al. 2005). Accordingly, drugs that target these receptors
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may have promise in alleviating disease symptoms. An mGluR5 antagonist,
2-methyl-6-(phenylethynyl)pyridine (MPEP), decreased audiogenic seizures
and macroorchidism seen in Fmr1 knockout mice (Yan et al. 2005) and cor-
rected the neuroanatomical and behavioral defects resulting from an FMRP
deficit in the fly (McBride et al. 2005). MPEP also increased survival of HD
mice (Schiefer et al. 2004). However, while MPEP has high potency, it is
relatively nonselective and is not very soluble in cerebrospinal fluid. Better
outcomes may result from the use of more selective mGluR5 receptor antag-
onists such as 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) (Busse
et al. 2004).

In conclusion, while it is clear that much more remains to be understood,
enough has been learned in the relatively short time since the nucleotide re-
peat expansion disorders were first described to take the first steps toward
developing mechanism-based approaches to their treatment. Indeed, in some
instances, a very real possibility exists for the development of effective treat-
ments in the not too distant future.
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