
$ 39.99 US
£ 24.99 UK
€ 36.99 EU

Prices do not include
local sales tax or VAT
where applicable

Packt Publishing

Birmingham - Mumbai

www.packtpub.com

Building Websites with
VB.NET and DotNetNuke 4

Revised and updated for DotNetNuke 4, this renowned book is your indispensable guide to
creating content-rich websites with DotNetNuke, as quickly as possible. This book covers
virtually everything you need to know to get your DotNetNuke website up and running.
Concisely written and with clear explanations, this book covers installation, administration,
deployment, and for developers, chapters on the core architecture, skinning, and custom
modules give you the skills to customize and extend your site. You will also fi nd in-depth
coverage of the DAL+, an extended feature set of the DotNetNuke Data Access Layer (DAL)
introduced in version 4.3 of DotNetNuke, which makes developing custom modules fast and easy.
The book starts off by giving you a deep understanding of working with basic DotNetNuke sites,
guiding you through the features and giving you the confidence to create and manage your site.
After that, you will journey to the heart of DotNetNuke, and learn about its core architecture.
From there, you will be ready to customize DotNetNuke: developers will enjoy the detailed
walkthrough of creating a new custom module, and web designers will enjoy the material on
skinning, helping them to create a new look for their site.

What you will learn from this book
• Install and confi gure DotNetNuke
• Master the standard modules and features of DotNetNuke
• Understand the core architecture of DotNetNuke
• Extend DotNetNuke using the DAL and DAL+ to create powerful custom modules
• Create your own skin using an HTML Editor or Visual Web Developer Express

Who this book is written for
This book has been written for both the beginner wanting to set up a website and also
ASP.NET developers with a grasp of VB.NET who want a deeper understanding of how to work
with DotNetNuke. To work with the DotNetNuke code, you will need access to Visual Web
Developer Express or Visual Studio .NET 2005. No prior knowledge of DotNetNuke is assumed.

M
ichael A

. W
ashington

D
aniel N

. E
gan

S
teve Valenzula

B
uilding W

ebsites w
ith VB

.N
ET and

D
otN

etN
uke 4

F r o m T e c h n o l o g i e s t o S o l u t i o n s

Building Websites with VB.NET and

DotNetNuke 4
A practical guide to creating and maintaining your own DotNetNuke
website, and developing new modules and skins

Michael A. Washington Daniel N. Egan Steve Valenzula

Building Websites with VB.NET
and DotNetNuke 4

A practical guide to creating and maintaining your own
DotNetNuke website, and developing new modules
and skins

Daniel N. Egan
Michael A. Washington
Steve Valenzula

 BIRMINGHAM - MUMBAI

Building Websites with VB.NET and DotNetNuke 4

Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2006

Production Reference: 1290906

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-99-X

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Authors

Daniel N. Egan

Michael A. Washington

Steve Valenzula

Additional Material

Charles Nurse

Reviewers

Jerry Spohn

Jim Wooley

Development Editor

Douglas Paterson

Technical Editors

Mithil Kulkarni

Bhushan Pangaonkar

Editorial Manager

Dipali Chittar

Indexer

Mithil Kulkarni

Proofreader

Chris Smith

Layouts and Illustrations

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Authors

Daniel Egan has held a variety of positions in the information technology and
engineering fields over the last nine years. Currently, he is a System Development
Specialist for Automated Data Processing's Southern California region, working
extensively in database applications and web development. Daniel is an MCP
and MCSD.

In addition to his development work, he teaches a VB.NET Certification course at
California State University, Fullerton as well as serves on its .NET Advisory board.
He is also the founder and chief author of Dot Net Doc (www.DotNetDoc.com),
a .NET and DNN developer resource website built using the DotNetNuke framework.
He has written numerous articles on DotNetNuke and the underlying DNN
architecture. He is also the founder of the LA/Orange County DNN Usergroup
and is currenly working on two DNN-related projects: DNNUsergroup Online
(www.DNNUGOnline.com), a portal designed to allow usergroups to broadcast
their meetings online, and DotNetNuke Radio, a live internet radio show about
DotNetNuke.

Michael Washington is a website developer and an ASP.NET, C#, and Visual
Basic programmer. He is a DotNetNuke Core member and has been involved
with DotNetNuke for over three years. He is the author of numerous DotNetNuke
modules and tutorials. He is one of the founding members of the Southern California
DotNetNuke Users group (www.socaldug.org). He has a son, Zachary, and resides
in Los Angeles with his wife Valerie.

Steve Valenzula is the manager of the University Extended Education (UEE) IT
Department at California State University, Fullerton, where he has worked for the
last five years. Steve has worked specifically with DotNetNuke for over two years, in
that time re-designing and delivering various Extended Education websites on the
DotNetNuke portal framework as well as designing and delivering custom modules
that support the function of University Extended Education.

Charles Nurse has been developing software for more than 25 years. He is owner
of his own consulting business, Keydance Computer Services, and has been a
DotNetNuke developer for over three years, the last two years as a Trustee. He was
lead developer on the .NET 2 version of DotNetNuke (DNN 4.0).

A native of Bristol, England, he obtained a Bachelor of Arts in Chemistry from
Oxford University. In 1978, he moved to Canada to continue his studies at the
University of Bristish Columbia where he obtained a Ph.D. (also in Chemistry), and
where he met his wife Eileen. More recently (2003) he completed a Post Baccalaureate
Certificate in Object Technology Programming at Simon Fraser University.

He is in the process of developing his own DotNetNuke Developer Resource site
(www.dnndevzone.com) where he will be providing articles for developing for and
with DotNetNuke.

He lives in Langley, BC, Canada with his wife and two children, both students at
Simon Fraser University.

About the Reviewers

Jerry Spohn has been working with computers since the age of 11, at which he
first began learning programming on a Commodore VIC 20. Times have changed,
and he moved through the interesting world of IBM mainframes into PCs. After
taking numerous courses on database design, programming, and object-oriented
methodologies, he moved into Visual Basic and other Microsoft languages.

Jerry currently works as a Development Manager for a medium-sized software
company in Pennsylvania. He also manages over 25 different websites using
DotNetNuke, and is the owner of Spohn Software LLC, which does custom
development across the entire Microsoft development toolset.

Jim Wooley began working on portals by building his own engine base on XML
and XSLT. Just as he was about to release it, the IBuySpy Portal was released.

Promptly dumping his custom solution, he has been working on extending and
deploying a number of IBuySpy and DotNetNuke portals. He is always striving
to stay at the forefront of technology and enjoys the thrill of a new challenge. In
addition, he attempts to pass on the insights he has gained by being active in the
community, including leading the Atlanta VB Study Group and serving as INETA
NorAm Membership Manager for the Georgia region.

Table of Contents
Introduction 1
Chapter 1: What is DotNetNuke? 7

Open-Source Web Portals 7
What is a Web Portal? 7
Common Portal Features 8
Why DotNetNuke? 9

PHP-Nuke 10
Metadot 10
Rainbow 10
DotNetNuke 10

Benefits of Using an Established Program 13
The DotNetNuke Community 13

Core Team 13
The DotNetNuke Discussion Forum 14
The Bug Tracker 14
DotNetNuke Project Roadmap Team 15

The License Agreement 15
Coffee Connections 15

Determining Client Needs 16
What is a User Story? 16
Advantages of Using User Stories 17
Coffee Connections User Stories 17

Summary 18
Chapter 2: Installing DotNetNuke 19

Installing DotNetNuke (Local Version) 19
Clean Installation 20
Downloading the Code 20
Setting Up a Virtual Directory 21

Using Windows Explorer (the Easy Way) 22
Using the Virtual Directory Creation Wizard 23

Table of Contents

[ii]

Verifying Default Documents 26
Setting Security Permissions 28
Setting up the Database 28

Upgrading 34
Upgrade Checklist 35
Back Up Your Database 35
Back up Your DotNetNuke files 36

Logging In as Admin and Changing Passwords 36
Summary 38

Chapter 3: Users, Roles, and Pages 39
User Accounts 39

What is a User? 40
Creating User Accounts 40

Setting Required Registration Fields 42
Managing a Profile 45
Registering a User Manually 46

Understanding DotNetNuke Roles 48
Assigning Security Roles to Users 53

Understanding DotNetNuke Pages and tabIDs 55
Administering Pages 62

Summary 63
Chapter 4: Standard DotNetNuke Modules 65

DotNetNuke Modules 65
Adding a Module 66
Module Settings 67

Editing a Module 67
Importing and Exporting Content 68
Syndicate Information 68
Online Help and Documentation 68
Editing Module Functionality 68

Standard Modules 72
Account Login Module 72

Practical Purposes 73
Administration and Modification 73
Special Features 75

Announcements Module 75
Practical Purposes 76
Administration and Modification 76
Special Features 78

Banner Module 78
Contacts Module 78

Practical Purposes 79
Administration and Modification 79

Table of Contents

[iii]

Documents Module 80
Practical Purposes 80
Administration and Modification 80
Special Features and Additional Information 81

Events Module 82
Practical Purposes 83
Administration and Modification 83
Special Features and Additional Information 84

FAQs Module 84
Administration and Modification 85
Special Features and Additional Information 86

Feedback Module 86
Practical Purposes 87
Administration and Modification 87
Special Features and Additional Information 87

IFrame Module 87
Practical Purposes 88
Administration and Modification 88
Special Features and Additional Information 90

Links Module 90
Practical Purposes 90
Administration and Modification 90
Special Features and Additional Information 92

News Feed (RSS) Module 93
Practical Purposes 93
Administration and Modification 93
Special Features 95

Text/HTML Module 95
Practical Purposes 95
Administration and Modification 95
Special Features and Additional Information 96

User Accounts Module 96
Practical Purpose 96
Administration and Modification 97
Special Features and Additional Information 97

User Defined Table Module 98
Practical Purpose 98
Administration and Modification 98
Special Features and Additional Information 100

XML/XSL Module 100
Practical Purpose 101
Administration and Modification 101
Special Features and Additional Information 101

Summary 101

Table of Contents

[iv]

Chapter 5: Host and Admin Tools 103
The Difference between Host and Admin 103
Admin Tools 104

Site Settings 104
Basic Settings 104
Advanced Settings 106
Stylesheet Editor 108

Pages Menu 108
Security Roles 108
User Accounts 108
Vendors 109
Site Log 109
Newsletters 110
File Manager 112
Recycle Bin 115
Log Viewer 115
Skins 117
Languages 117

Host Tools 118
Host Settings 118

Basic Settings 118
Advanced Settings 120

Portals 124
Module Definitions 124
File Manager 125
Vendors 125
SQL 129
Schedule 129
Languages 129
Search Admin 129
Lists 130
Superuser Accounts 131
Extra Options on the Admin Menu 131
Common Tasks 132

Summary 132
Chapter 6: Understanding the DotNetNuke Core Architecture 133

Architecture Overview 133
Diving into the Core 136

Using the Context Object in Your Application 136
Working with the Configuration Files 140

Table of Contents

[v]

The web.config File 141
Application Settings 151

The Global Files 152
Global.aspx.vb 152
Application Start 152
Examining Application_BeginRequest 153

The Globals.vb File 154
Putting It All Together 156
Summary 160

Chapter 7: Custom Module Development 161
Setting up the Development Environment 161
The Coffee Shop Listing Module 162

Creating the View Control 164
Displaying the Module 170
What we have Accomplished 176

The Module Folder Structure 176
Inheriting from PortalModuleBase 176
Module Configuration 177
Diagnosing Errors using the Log Viewer 177

Navigation and Localization 177
Create EditShopList.ascx 177
Navigation 179
Localization 179
Update the Configuration 181
Navigate from ShopList to EditShopList 182
What we have Accomplished 183

IActionable 183
NavigateUrl 185
Adding Localization 186

Summary 186
Chapter 8: Connecting to the Database 187

DotNetNuke Data Access Layer (DAL) 187
Create the Database Elements 188

Execute the SQL Script 188
Create the Class Files 192
Insert the DAL+ Code 194
Create the Settings Page 196
Update the Configuration 199
View the Settings Page 200
What we have Accomplished 200

SQL Scripts 201
The DAL+ 201

Table of Contents

[vi]

The Business Logic Layer (BLL) 202
The Settings Page 204

Comparing the DAL to the DAL+ 205
A Close-up Look at the DAL 207

Create the DataProvider.vb 207
Create the SqlDataProvider.vb 209
Create the BLL Layer 214
DAL Summary 219

Complete the Presentation Layer 220
Alter and Complete ShopList 221
Alter and Complete EditShopList 227
Build and View the Module 232

Implementing Optional Interfaces 232
Implementing IPortable 232
Implementing ISearchable 235
Making IPortable and ISearchable Work 236
Testing Your Module 239

Packaging Your Module for Distribution 239
Installation Scripts 239
Create the Installation Scripts 240
The Install ZIP File 241
Testing Your Installation 243

Summary 244
Chapter 9: Skinning Your Site 245

What Are Skin Packages? 246
Uploading a Skin Package 248
Applying the Skin 250
Creating a Custom Skin 253
What Tools can we Use? 254
Creating a Skin Using HTML 255

Creating the HTML Files 257
Creating the Container 260
Creating the XML Support Files 263

Creating a Skin Using Visual Web Developer 266
Creating the Web User Controls 268
Placing the Skin Objects 271
Placing the Container Objects 273

Creating the Cascading Style Sheets 276
Creating the Skin Package 280
Summary 284

Table of Contents

[vii]

Chapter 10: Deploying Your DNN Portal 285
Acquiring a Domain Name 285
Finding a Hosting Provider 286
Preparing Your Local Site 287
Setting Up the Database 289

Backup and Restore Database 289
Build New Database 291

FTP Your Files 293
Summary 294

Chapter 11: Creating Multiple Portals 295
Multiple Portals 295
Parent Portals versus Child Portals 297

Setting up a Parent Portal 297
Registering Your Domain and Setting the DNS 298
Creating a Parent Portal 299

Setting Up a Child Portal 301
Creating Portal Templates 303
Using the Site Wizard 304
Managing Multiple Portals 309
Summary 310

Index 311

Introduction
DotNetNuke is a free, open-source evolution of Microsoft's celebrated ASP.NET
reference implementation, the IBuySpy portal solution kit. DotNetNuke began life as
a framework for constructing data-driven intranet and Internet portal applications,
and has now developed into an advanced web content management system with
tools to manage a dynamic and interactive data-driven website. The DotNetNuke
portal framework allows you to quickly create a fully featured community-driven
website, complete with standard modules, user registration, and integrated security.
This free open-source application puts a staggering range of functionality into your
hands, and, either by using it as is or by customizing it to your requirements, you are
giving your projects a great head start.

Supported and tested by thousands of developers in the DotNetNuke community
across the world, the DotNetNuke framework, on one hand, offers you the luxury of
a well-tested and proven architecture, and on the other, the ability to manage your
site through an easy web-based administration system.

The book is structured to help you understand, implement, and extend the
DotNetNuke framework; it will take you inside DotNetNuke, allowing you to
harness its power for easily creating your own websites.

What This Book Covers
Chapter 1 introduces DotNetNuke (DNN) and discusses the meaning and purpose of
web portals, and the common aspects of successful web portals. It looks at different
types of open-source web portals, and discusses why we selected DotNetNuke for
this book. We then meet our fictional client Coffee Connections and, using user
stories, gather the requirements needed to build this client's site.

In Chapter 2 we see how to install a local version of DotNetNuke with Microsoft SQL
Server and SQL Server 2005 Express, and cover setting the required permissions on
your machine to run DNN properly.

Introduction

[2]

In Chapter 3 we cover users, roles, and pages. Users are the individuals who visit or
administer your portal, and their power depends on the roles that they have been
assigned. We discuss how each page of your portal can be administered differently,
laying the foundation for the rest of the book. From defining users, to registration, to
security roles, this chapter will help you to begin administering a DNN portal.

In Chapter 4 we cover the standard modules that come pre-packaged with
DotNetNuke. We cover their basic uses as well as situations they may be used in.
You will use these modules to build your portal's content.

Chapter 5 introduces the administrative functions available to the host and admin
logins. These are special logins that have access to all areas of your portal, and are
used to secure your site and make changes to its content. This chapter takes you
through the tools to make sure you are comfortable with all that is available to you.

Understanding the core architecture of DNN is essential if you want to extend the
system or even modify the existing code. In Chapter 6 we learn how the DotNetNuke
framework builds the pages, and the major classes that drive it.

In Chapters 7 and 8 we take the knowledge we learned in the last chapter and use it to
build a custom module. You will learn everything you need to know to start building
your own modules so you can extend the capabilities of your portal. After creating
your user controls, you will create your data access and business logic layers. In
Chapter 8 you will learn about the DotNetNuke Data Access Layer (DAL) and the
DAL+, which take much of the routine work out creating custom modules. We finish
our look at development by seeing how to package your module for distribution.

Chapter 9 talks about skins. A skin is the outer layer of your site, and defines the
look and feel of the portal. In this chapter we design a custom skin for the Coffee
Connections site. You will learn the skills needed to skin both your portal and your
module containers.

When you finally have your portal the way you want it to look and function, you
are ready to deploy it, and that is what Chapter 10 shows you how to do. The chapter
advises on what you should look for in a web host and helps to steer you clear of
common deployment mistakes.

In Chapter 11 we show you how to take advantage of one of the most exciting
features of DotNetNuke: multiple portals. These are additional portals that use
the same underlying database, but can contain different content. So instead of just
having one website, you can create as many as you need using just one DotNetNuke
installation. From parent portals to child portals, this chapter gives you the
information necessary to create new portals from scratch or to use the new template
structure built into the framework.

Introduction

[3]

What You Need for Using This Book
This book has been written both for the beginner wanting to set up a website and
also for ASP.NET developers with a grasp of VB.NET. No prior knowledge of
DotNetNuke is assumed. To work with the DotNetNuke code, you will need access
to Visual Studio .NET 2005 or Visual Web Developer 2005 Express.

This book uses the DotNetNuke open-source project available from
http://www.DotNetNuke.com. To install and run DotNetNuke, you will need:

The .NET Framework 2.0
One of Windows Server 2003, Windows 2000, or Windows XP
operating systems
An installation of SQL Server 2005 or SQL Server 2005 Express Edition
Visual Web Developer 2005 Express

You can download SQL Server 2005 Express Edition for free from
http://msdn.microsoft.com/vstudio/express/sql/download/.
Visual Web Developer 2005 Express can be downloaded for free from
http://msdn.microsoft.com/vstudio/express/vwd/download/.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We then
use the Add method of this object to add an item to the menu ".

A block of code will be set as follows:

Label1.Text = "Hello World!"
 Throw New Exception("Something didn't work right.")
 Catch exc As Exception
 Exceptions.ProcessModuleLoadException(Me, exc)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

Label1.Text = "Hello World!"
 Throw New Exception("Something didn't work right.")
 Catch exc As Exception
 Exceptions.ProcessModuleLoadException(Me, exc)
 End Try

•

•

•

•

Introduction

[4]

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Tips, suggestions, or important notes appear in a box
like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to
use them.

Introduction

[5]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you could report this to us. By doing this you can save
other readers from frustration, and also help to improve subsequent versions of
this book.

If you find any errata, report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the Submit Errata link, and entering the details of
your errata. Once your errata have been verified, your submission will be accepted
and the errata added to the list of existing errata. The existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

What is DotNetNuke?
From company intranets to mom and pop shops to local chapters of the 4H club, most
organizations are looking to have a presence on the World Wide Web. Open-source
web portals answer this demand by providing easy-to-install-and-use websites that
are not only extremely functional but also free. Whether it is to sell services or to have
a place to meet, web portals play an important part in communications on the Web.

In this chapter, we will first discuss what web portals are and what successful web
portals have in common. We will explore different types of open-source web portals
and discuss why we selected DotNetNuke for our project over other available
portals. In addition, we will cover the benefits gained by using an established
program as a framework and the benefits of DotNetNuke specifically. We will then
introduce Coffee Connections, our fictional client. We will get a brief overview of
Coffee Connections, determine the specific requirements for its website, and gather
the requirements using user stories. This will give you a general overview of what to
expect from this book and how to best use it depending on your role and experience
with web portals and Visual Basic .NET.

Open-Source Web Portals
So what does it actually mean to have a web portal? We begin the chapter with an
explanation of what a portal is, and then go on to the features of a web portal and
reasons for selecting open-source web portals.

What is a Web Portal?
You have decided to start a portal and first need to find out what makes a web
portal. Does throwing up a few web pages with links to different topics make it a
web portal? A portal, in its most basic sense, aims to be an entry point to the World
Wide Web. Portals will typically offer services such as search engines, links to useful
pages, news, forums, and email, all in an effort to draw users to their site. In most

What is DotNetNuke?

[8]

cases, portals provide these services free in the hope that users will make the site
their home page or at least come back often. Successful examples include Yahoo!
and MSN. These sites are horizontal portals because they typically attract a wide
audience and primarily exist to produce advertising income for their owners. Other
web portals may focus on a specific group of users or be part of a corporate intranet.
They will most often concentrate on one particular subject, like gardening or sports.
This type of portal is a vertical portal because they focus inward and cater to a
selected group of people.

The type of portal you create depends on the target audience you are trying
to attract. You may discover that the portal you create is a combination of
both horizontal and vertical portals in order to address specific needs, while
simultaneously giving a broader range of services to your visitors. Whatever type
of portal you decide on, horizontal or vertical, they both will share certain key
characteristics and functionality that guarantee users will return to your site.

Common Portal Features
What makes a great portal? Is it a free prize giveaway, local weather forecasts, or
sports scores for the teams you watch? While this package of extras might attract
some users, you will certainly miss a large group of people who have no interest
in these offerings. There are as many web portals to choose from as programming
languages they are written in. However, one thing is for certain: there are particular
services your portal should incorporate in order for it to be successful and attract a
wide audience.

A Gateway to the World Wide Web: Web portals are the way we start our
day. Most of us have set up our home page to one web portal or another and
whether you start at MSN, Yahoo!, or Apple, you will notice some common
features. Local weather forecasts, movie reviews, or even maps of your
community are a few features that make the web portal feel comfortable and
tailored for you. Like reading the morning newspaper with a cup of coffee, it
gives you a sense of home. Web portals attempt to be the place where all of
your browsing starts.
Content Management: Content management has come a long way from the
days of paper memos and sticky notes. Computers have done away with
the overflowing file cabinets holding copies of every document that crossed
our desks. Little did we realize that even though we would be solving one
problem, another one would rise in its place. How many times have you
searched your computer wondering where you saved the document your
boss needs right now? Then once you find it, you need to make sure that it
is the correct version. Alternatively, if you run a Soccer Club, how do you
ensure that all of your players can get a copy of the league rules? One of the

•

•

Chapter 1

[9]

commonest uses for a web portal is content management. It allows users to
have one place to upload, download, and search for a file that is important
to them or their company. It also alleviates the problem of having more than
one copy of a document. If the document is stored only in one location, you
will always have the current copy.
Community Interaction: People have always found a place to meet. From
the malt shop on Main Street to your local church, people like to find others
who have the same interests. This is one of the main drawing powers of a
web portal. Whether you are a Christian looking for other Christians
(http://www.christianwebsite.com/) or someone who is interested in
Personal Digital Assistants (PDAs) (http://www.pdabuzz.com) there is a
web portal out there for you. Web portals offer different ways for users to
communicate. Among these are discussion forums that allow you to either
post a question or comment to a message board or comment on the posts of
others. Chat rooms take this a step further with the ability to talk to one or
more persons "live" and have your questions answered immediately.
One of the most interesting ways to express your opinions or communicate
your ideas to others on a web portal is to use a blog. A blog (also known as a
weblog) is sort of like a diary on the Web, except you do not lock it when you
are done writing in it. Instead, you make all your thoughts and observations
available to the world. These blogs range in topic from personal and
comical (http://weblog.herald.com/column/davebarry/) to technical
(http://weblogs.asp.net/scottgu) and, in recent years, have exploded
on the scene as the de facto way to communicate on the Internet. Most web
portals will offer at least one of these ways to communicate.
Security & Administration: Web portal security not only manages who can
access particular sections of the site but also enables administrators to access,
add, and change content on the site. Most web portals use a WYSIWYG
(what you see is what you get) style editor that allows users to add and edit
content without needing to know programming or HTML. It is as simple
as adding content to a text file. Having users authenticate with the portal
allows you to tailor the site to individuals so that they can customize
their experience.

Why DotNetNuke?
When the time comes to decide how you want to build your portal, you will have to
make many decisions: Do I create my portal from scratch? If not, which web portal
framework should I use? What type of hardware and software do I have available to
me? Moreover, what is my skill level in any particular platform? In this section, we
will discuss some of the better-known portals that are available.

•

•

What is DotNetNuke?

[10]

For our portal, we have decided that it would be counter-productive to start from
scratch. Instead, we will be using an already developed framework in designing our
portal. We will have many options from which to select. We will discuss a few of our
options and determine why we believe DotNetNuke fits us best.

PHP-Nuke
Most likely the grandfather of DotNetNuke (in name at least) is PHP-Nuke
(http://www.phpnuke.org). PHP-Nuke is a web portal that uses PHP (a recursive
acronym for Hypertext Preprocessor) pages to create dynamic web pages. You
can use it in a Windows environment but it is most comfortable in a Linux/Unix
environment. PHP is an open-source, HTML-embedded scripting language,
which is an alternative to Microsoft's ASP (Active Server Pages) the precursor to
ASP.NET, which is the programming language used in DotNetNuke. PHP-Nuke,
like DotNetNuke, is a modular system that comes with pre-built standard modules
and allows you to enhance the portal by creating custom modules. Since we will be
using a Windows platform, and are more comfortable using ASP.NET, this choice
would not fit our needs.

Metadot
Metadot Portal Server is another open-source portal system available to those
looking to create a web portal. Metadot states that "its user friendly environment"
allows non-technical individuals to create powerful websites with just a "few clicks
of the mouse". Like PHP-Nuke, Metadot runs primarily on the Linux operating
system (although, it supports Windows as well), Apache web server, and a MySQL
database. It uses Perl as its scripting language. For the same reasons as PHP-Nuke,
this framework will not fit our needs.

Rainbow
Similar to DotNetNuke, the Rainbow project is an open-source initiative to
build a CMS (content management system) based on the IBuySpy portal using
Microsoft's ASP.NET. In contrast to DotNetNuke, the Rainbow Project used the C#
implementation of IBuySpy as its starting point. It does run on Windows and uses
ASP.NET, but our language of choice for this project is VB.NET so we will rule
out Rainbow.

DotNetNuke
So why did we select DotNetNuke as the web portal of choice for this book? Well
here are a few reasons for selecting DotNetNuke:

Chapter 1

[11]

Open-source web portal written in VB.NET: Since we wanted to focus
on building our web portal using the new VB.NET language, this was an
obvious choice. DotNetNuke was born out of a best-practice application
called IBuySpy. This application, developed for Microsoft by Scott Stanfield
and his associates at Vertigo Software, was created to highlight the
many things that .NET was able to accomplish. It was supposed to be an
application for developers to use and learn the world of .NET. IBuySpy was
an application by the original author of DotNetNuke (formerly IBuySpy
Workshop), Shaun Walker of Perpetual Motion Interactive Systems Inc. He
originally released DotNetNuke 1.0 as an open-source project in December
2002. Since then DotNetNuke has evolved to version 4.x and the code base
has grown from 10,000 to over 120,000 lines of managed code and contains
many feature enhancements over the original IBuySpy Starter Kit.
Utilizes the new ASP.NET 2.0 Provider Model: With the release of
ASP.NET version 2.0, Microsoft debuted a new provider pattern model.
This pattern gives the developer the ability to separate the data tier from
the presentation tier and provide the ability to specify your choice of
databases. The DotNetNuke framework comes pre-packaged with an SQL
Data Provider (Microsoft's SQL Server, MSDE, or SQLExpress). You can
also follow this model to create your own data provider or obtain one from
a third-party vendor. In addition, the DotNetNuke framework also uses
many of Microsoft's building-block services like the Data Access Application
Block for .NET (http://www.microsoft.com/downloads/details.
aspx?FamilyID=F63D1F0A-9877-4A7B-88EC-0426B48DF275&displaylang=
en) introduced by Microsoft in its Patterns and Practices articles.
Contains key portal features expected from a web portal: DotNetNuke
comes pre-packaged with modules that cover discussions, events, links, news
feeds, contact, FAQs, announcements, and more. This gives you the ability to
spend your time working on specialized adaptations to your site. In addition
to this, the DotNetNuke core team has created sub-teams to maintain and
enhance these modules.
Separates page layout, page content, and the application logic: This allows
you to have a designer who can manage the "look and feel" of the site, an
administrator with no programming experience who can manage and change
the content of the site, and a developer who can create custom functionality
for the site.
Ability to "skin" your site: Separating the data tier from the presentation
tier brings us to one of the most exciting advancements in recent versions of
DotNetNuke, skinning. DotNetNuke employs an advanced skinning solution
that allows you to change the look and feel of your site. In this book, we will
show you how to create your own custom skin, but you will also find many

•

•

•

•

•

What is DotNetNuke?

[12]

custom skins free on websites like core team member Nina Meiers' eXtra
Dimensions Design Group (http://www.xd.com.au), and Snowcovered
(http://www.snowcovered.com). These give you the ability to change the
look and feel of your site without having to know anything about design,
HTML, or programming.
Supports multiple portals: Another advantage of using DotNetNuke as your
web portal of choice is the fact that you can run multiple portals using one
code base and one database. This means you can have different portals for
different groups on the same site but still have all of the information reside
in one database. This gives you an advantage in the form of easy access to all
portal information, and a central place to manage your hosting environment.
The framework comes with numerous tools for banner advertising, site
promotion, hosting, and affiliate management.
Designed with an extensible framework: You can extend the framework in
a number of ways. You can modify the core architecture of the framework
to achieve your desired results (we will discuss the pratfalls of doing this
in later chapters) and design custom modules that "plug in" to the existing
framework. This would be in addition to the pre-built modules that come
with DotNetNuke. These basic modules give you a great starting point and
allow you to get your site up and running quickly.
Mature portal framework: As of the writing of this book, DotNetNuke is
on version 4.2. It means that you will be using an application that has gone
through its paces. It has been extensively tested and is widely used as a web
portal application by thousands of existing users. What this affords you is
stability. You can be comfortable knowing that thousands of websites already
use the DotNetNuke framework for their web portal needs.
Active and robust community: Community involvement and continuing
product evolution are very important parts of any open-source project and
DotNetNuke has both of these. The DotNetNuke support forum is one of the
most active and dynamic community forums on the ASP.NET website. There
are currently over 280,000 users registered on the DotNetNuke website. At
the time of writing, the much-anticipated DotNetNuke version 4.2 had just
been released, and has brought about a significant number of improvements
over its previous releases. The core team continues to move forward, always
striving towards a better product for the community.
Recognized by the Microsoft team as a best-practices application: In March
2004 at the VSLive conference in San Francisco, the premiere conference for
Visual Studio .NET Developers, DotNetNuke 2.0 was officially released,
and showcased for the public. This gave DotNetNuke a great leg up in the
open-source portal market and solidified its position as a leader in the field.

•

•

•

•

•

Chapter 1

[13]

Benefits of Using an Established Program
Whether you are building a website to gather information about your soccer club or
putting up a department website on your company's intranet, one thing is certain—
to write your web portal from the ground up, you should plan on "coding" for a long
time. Just deciding on the structure, design, and security of your site will take you
months. After all this is complete, you will still need to test and debug. At this point,
you still have not even begun to build the basic functionality of your web portal.

So why start from scratch when you have the ability to build on an existing structure?
Just as you would not want to build your own operating system before building a
program to run on it, using an existing architecture allows you to concentrate on
enhancing and customizing the portal for your specific needs. If you are like me and
use Visual Studio to do your development, then you already adhere to this concept.
There is no need for you to create the basic building blocks of your application
(forms, buttons, textboxes, etc.); instead you take the building blocks already there for
you and assemble (and sometimes enhance) them to suit your needs.

The DotNetNuke Community
The DotNetNuke community has one of the most active and dynamic support
forums on the ASP.NET website and has over 280,000 users registered on the
DotNetNuke website.

Core Team
The core team comprises individuals invited to join the team by Shaun Walker,
whom they affectionately call the "Benevolent Dictator". Their invitations were based
on their contributions and their never-ending support of others in the DotNetNuke
forum. Each team member has a certain area of responsibility based on his or her
abilities. From database functionality and module creation to skinning, they are the
ones responsible for the continued advancement of the framework. However, not
being a member of the core team does not mean that you cannot contribute to the
project. There are many ways for you to help with the project. Many developers
create custom modules they make freely available to the DotNetNuke community.
Other developers create skins they freely distribute. Still others help answer the
many questions in the DotNetNuke forum. You can also be a contributor to the core
architecture. You are welcome to submit code improvements to extend, and/or
expand the capabilities of DotNetNuke. These submissions will be evaluated by the
core team and could possibly be added to the next version.

What is DotNetNuke?

[14]

The DotNetNuke Discussion Forum
When the DotNetNuke project started, one of the things that helped to propel
forward its popularity was the fact that its forums were housed on the ASP.NET
forums website (http://www.asp.net/forums/showforum.aspx?forumid=90).
With well over 200,000 individual posts in the main DotNetNuke forum alone, it
was, and continues to be one of the most active and attentive forums on the ASP.NET
forums website (http://www.asp.net/forums/). Beginning sometime after the
version 3.x release, the DotNetNuke team puts its finishing touches on its own
forum module. It now utilizes this module for most new DotNetNuke questions
(http://www.dotnetnuke.com/tabid/795/Default.aspx). In both forums, you
will find help for any issue you may be having in DotNetNuke.

The main forum is where you will find most of the action, but there are also
sub-forums covering topics such as Core Framework, Resources, Getting Started,
and Custom Modules. You can search and view posts in any of the forums but will
need to register if you want to post your own questions or reply to other users' posts.
The great thing about the forums is that you will find the core team hanging out
there. Who better to answer questions about DotNetNuke than those who created it?
However, do not be shy, if you know the answer to someone else's question feel free
to post an answer. That is what the community is all about: people helping people
through challenging situations.

The Bug Tracker
Like any application there are bound to be a few bugs that creep into the application
now and then. To manage this occurrence, the DotNetNuke core team uses a
third-party bug tracking system called Gemini, by CounterSoft. The bug tracker is
not for general questions or setup and configuration errors; questions of that nature
should be posted in the discussion forum. You can view the status of current bugs at
the Gemini site (http://support.dotnetnuke.com), but will not be able to add new
bugs to the system. Reporting a bug is currently done by posting to the DotNetNuke
forum. Follow the guidelines currently posted there (http://www.asp.net/forums/
ShowPost.aspx?tabindex=1&PostID=752638). To summarize: you need to first
search the bug tracker to make sure that it has not already been reported. If you
cannot find it in the system you will need to supply the forum with exactly what you
did, what you expected to have happen, and what actually happened. Verified bugs
will be assigned to core team members to track down and repair.

Chapter 1

[15]

DotNetNuke Project Roadmap Team
If you want to find out what is in the works for future releases of
DotNetNuke then you will want to check out the DotNetNuke Project Roadmap
(http://www.dotnetnuke.com/Development/Roadmap/tabid/616/Default.
aspx). The main purpose of this document is as a communication vehicle to inform
users and stakeholders of the project's direction. The Roadmap accomplishes this by
using User Stories. User Stories are closely related to Use Cases with the exception
that they take the view of a fictitious customer requesting an enhancement. The
priority of the enhancements depends on both the availability of resources (core
team) and the perceived demand for the feature.

The License Agreement
The license type used by the DotNetNuke project is a modified version of the BSD
(Berkeley Software Distribution) license. As opposed to the more restrictive GPL
(GNU General Public License) used by many other open-source projects, the BSD
license is very permissive and imposes very few conditions on what a user can do
with the software; this includes charging clients for binary distributions, with no
obligation to include source code. If you have further questions on the specifics of
the license agreement, you can find it in the documents folder of the DotNetNuke
application or on the DotNetNuke website.

Coffee Connections
Wherever your travels take you, from sunny Long Beach, California, to the
cobblestone streets of Hamburg, Germany, chances are that there is a coffee shop
nearby. Whether it is a Starbucks (located on just about every corner) or a local coffee
shop tucked neatly in between all the antique stores on Main Street, they all have one
thing in common, coffee, right? Well yes, they do have coffee in common, but more
importantly, they are places for people with shared interests to gather, relax, and
enjoy their coffee while taking in the environment around them. Coffee shops offer
a wide variety of services in addition to coffee, from WiFi to poetry readings to local
bands; they keep people coming back by offering them more than just a cup o' Joe.

But how do you find the coffee shops that have the type of atmosphere you are
looking for? In addition, how do you locate them in your surrounding area? That's
where Coffee Connections comes in; it is its desire to fill this void by creating a
website where coffee lovers and coffee shop regulars can connect and search for
coffee shops in their local area that cater to their specific needs. Coffee Connections
has a vision to create a website that will bring this together and help promote coffee
shops around the world. Users will be able to search for coffee shops by zip code,

What is DotNetNuke?

[16]

types of entertainment, amenities, or name. It will also allow its customers to purchase
goods online and communicate with others through chat rooms and forums.

Determining Client Needs
In any project, it is important to determine the needs of the client before work begins
on the project. When designing a business-driven solution for your client your
options range from an extensive Request for Proposal (RFP) and case modeling, to
user stories and Microsoft Solutions Framework (MSF). To determine the needs and
document the requirements of Coffee Connections we will use user stories.

We selected User Stories as our requirements collection method for two reasons.
First, the DotNetNuke core team uses this method when building enhancements and
upgrading the DotNetNuke framework. Thus using user stories will help to give you
a better understanding of how the core team works, the processes team members
follow, and how they accomplish these tasks in a short amount of time. Second, it is a
very clean and concise way to determine the needs of your client. We will be able to
determine the needs of Coffee Connections without the need for pages and pages of
requirement documents.

What is a User Story?
User stories were originally introduced as part of Extreme Programming.
Extreme Programming is a type of software development based on simplicity,
communication, and customer feedback. It is primarily used within small teams
when it is important to develop software quickly while the environment and
requirements of the program rapidly change. This fits the DotNetNuke project and
the DotNetNuke core team well.

User stories provide a framework for the completion of a project by giving a
well-designed description of a system and its major processes.

The individual stories, written by customers, are features they wish the program
to possess. Since the user stories are written by the customer, they are written in
the customer's terminology and without much technical jargon. The user stories
are usually written on index cards and are approximately three sentences long.
The limited space for detail forces the writer to be concise and get to the heart of
the requirement. When it is time to implement the user story, the developer will
sit down with the customer—in what is referred to as an iteration meeting—to go
over particular details of each user story. Thus, an overview of a project is quickly
conceptualized without the developer or customer being bogged down in
minor details.

Chapter 1

[17]

User stories also help in the creation of acceptance tests. Acceptance tests are
specified tests performed by the user of a system to determine if the system is
functioning correctly according to specifications the user presented at the beginning
of the development process. This assures that the product performs as expected.

Advantages of Using User Stories
There are many different methods of defining requirements when building an
application, so why use user stories? User stories fit well into Rapid Application
Development (RAD) programming. Software and the computer industry in general
change on a daily basis. The environment is fast moving and in order to compete in
the marketplace it is important to have quick turn around for your product. User
stories help to accomplish this in the following ways:

Stressing the importance of communication: One of the central ideas
behind user stories is the ability to have the users write down what exactly is
expected from the product. This helps to promote communication by keeping
the client involved in the design process.
Being easily understandable: Since user stories are written by the customer
and not by the developer, the developer will not have the problem of "talking
over the head" of the customer. User stories help customers know exactly
what they are getting because they personally write down what they want in
terms that they understand.
Allowing for deferred details: User stories help the customer as well as the
developer understand the complete scope of a project without being bogged
down by the details.
Focusing on project goals: The success of your project depends less on
creative coding strategies and more on whether you were able to meet the
customer's goals. It is not what you think it should do but what the customer
thinks it should do.

Coffee Connections User Stories
Below you will find the user stories for Coffee Connections. From these stories, we
will use DotNetNuke to build the customer's website. The title of the card is followed
by a short description of what is needed. Throughout the book, we will refer back to
these as we continue to accomplish the project goals for Coffee Connections.

•

•

•

•

What is DotNetNuke?

[18]

Title Description
Web Store Users will be able to purchase coffee and

coffee-shop-related merchandise through the website.
Coffee Shop Search Users will be able to find coffee shops in their area by

searching a combination of zip code, coffee shop name,
amenities, or atmosphere and rating.

Coffee Finder Additions Users will be able to post coffee shops they find and give
a description of the coffee shop for other users to see.

Coffee Shop Reviews Users will have the ability to rate the coffee shops that are
listed on the website.

Site Updates Administrators will have the ability to modify the site
content easily using a web-based interface.

Coffee Chat Users will be able to chat with people from other coffee
shops on the site.

Coffee Forum Users will be able to post questions and replies in a
Coffee Shop Forum.

When referring back to the user stories later in the book, we will use a card to
compare and determine if we have met the customer's needs.

Summary
In this chapter, we have discussed the meaning and purpose of web portals,
and what successful web portals have in common, looked at different types of
open-source web portals, and discussed why we selected DotNetNuke. We then
met our fictional client Coffee Connections, and using user stories, gathered the
requirements to build its site.

The next chapter will cover the always-enlightening task of installing the software.
We will cover what we need to run DotNetNuke and describe the process of
installing the framework.

Installing DotNetNuke
In previous versions of DotNetNuke (version 3.0), whether you were a developer
or just wanted to set up a quick and easy website, you needed to download the
entire code base and install all of it up to your server. While the ability to download
the code has not disappeared, the core team also allows you to download a
slimmed-down version that only contains the files that are needed to upload
and work with a basic DotNetNuke site.

In this chapter, we will cover the steps necessary to set up a non-developer version of
the website on your local machine. We will show you how to set up the DotNetNuke
portal and database by using Microsoft SQL Server 2005 Express Edition. Finally, we
will log in as an administrator and change the default passwords.

Installing DotNetNuke (Local Version)
Before you begin installing DotNetNuke, you will need to determine if you have the
.NET 2.0 Framework installed. The easiest way is to browse to the following location
C:\WINDOWS\Microsoft.Net\Framework and look for a folder that starts with
V2.0 (for example: v2.0.50727). If you do not see this folder, then you will have to
download the 2.0 version of the .NET Framework. You can find the files at the .NET
Framework home site (http://msdn.microsoft.com/netframework/). For our
examples, we will be using Windows XP Professional, IIS 5.1, and version 2.0 of the
.NET Framework.

Installing DotNetNuke

[20]

In this section of the book, we will only be using the Install
Package, which only contains the items that are needed to
deploy to a web host: we will be using IIS to host our site.
IIS stands for Internet Information Services and is the web
server application that will run our web portal. If you have
downloaded the Source Package and use Visual Studio
2005 then you do not need IIS to work with DotNetNuke.
We will also be using SQL Server 2005 in this discussion.
DotNetNuke will work easily with SQLExpress. We will
discuss installing and working with the Source Package and
SQLExpress when we discuss building custom modules. If
you haven’t installed IIS then make sure that it is installed
prior to the .NET Framework.

Clean Installation
If this is the first time you are installing DotNetNuke, or you do not want to upgrade
from a previous version, then you will want to perform a clean installation. This
means that you will have to build your DotNetNuke instance from scratch. This
chapter will walk you through all the steps necessary to accomplish this task. If you
wish to upgrade DotNetNuke from a previous version, please refer to the Upgrading
section towards the end of the chapter.

Downloading the Code
Before we start installing our web portal, we need to download the source code. Go
to the DotNetNuke website http://www.DotNetNuke.com. You will be required
to register before you can download the code. This step is simple, just click on the
Register link in the upper right-hand corner, and fill in the required information.
Provide a working email address, as the registration process will send an email that
includes a verification code.

Once you receive the email you may continue to the DotNetNuke site, log in,
and download the code. You will find the DotNetNuke source by clicking on the
Downloads icon. If you want the documentation that comes with DotNetNuke, you
will need to download both the Install Package and the Documentation Package.
While the file is downloading, take time to explore what the DotNetNuke site has to
offer. You will find information that will help you as you build your portal.

Chapter 2

[21]

When you are downloading, you will also see a Starter
Kit for DotNetNuke. The Starter Kit is used to help Visual
Studio Developers work with DotNetNuke. We will discuss
this download in the Module Development chapter.

Once you have the Install Package downloaded from the site, you can double-click
on the ZIP file to extract its contents. Where you extract the file is entirely up to you.
Most of the documentation you come across will assume that you extract it to
C:\DotNetNuke so for consistency's sake we will do the same.

Setting Up a Virtual Directory
After you unzip the files, you will need to set up a virtual directory in IIS. If IIS is
not already installed on your system, you can install it by going to Control Panel |
Add Remove Programs | Add Remove Windows Components.

For more information on installing and using IIS,
http://www.IISFaq.com, (which utilizes the
DotNetNuke framework for its portal) should suffice.

A virtual directory is a friendly name, also called an alias, that allows you to
separate a physical folder from a web address and defines the application's
boundaries. A virtual directory is needed if your files are not located in the home
directory. The home directory for IIS is found at C:\Inetpub\wwwroot (if installed at
the default location). The virtual directory, or alias name, is used by those accessing
your website. It is the name they type in the browser to bring up your portal so select
a simple name.

The following table shows examples of mapping between physical folders and
virtual directories. As you can see, we will need to set up a virtual directory for
DotNetNuke since its location is outside the home directory, in C:\DotNetNuke.

Installing DotNetNuke

[22]

Physical Location Alias URL
C:\Inetpub\wwwroot home directory

(none)
http://localhost

\\AnotherServer\
SomeFolder

Customers http://localhost/Customers

C:\DotNetNuke DotNetNuke http://localhost/DotNetNuke

C:\Inetpub\wwwroot\
My WebSite

None http://localhost/MyWebSite

There are two different ways of setting up the virtual directory:

Using Windows Explorer (the Easy Way)
If you are using Windows XP then the easiest way for you to set up you virtual
directory is to go to C:\DotNetNuke, right-click on the folder, and select Sharing
and Security.

This will open up the DotNetNuke Properties dialog. Click on the Web Sharing tab
and select Share this folder.

This will present you with the Edit Alias dialog box. The dialog box will default to the
name of the folder it is in, so if you extracted your file to C:\DotNetNuke, then your
virtual directory will be called DotNetNuke. Leave all the default permissions and
click OK to save the settings.

Chapter 2

[23]

Using the Virtual Directory Creation Wizard
In this first step, you will set up your virtual directory using the IIS Manager and
the Virtual Directory Creation Wizard. You will find the IIS Manager in the Control
Panel | Administrative Tools section. Once you have IIS open, drill down until you
see Default Web Site, right-click and select New | Virtual Directory.

Click Next to begin the wizard. Then, enter an alias for your website. Type in
DotNetNuke and then click Next.

Installing DotNetNuke

[24]

The next dialog box will ask you for the physical location of your DotNetNuke files.
This is how IIS matches the virtual directory alias name to the web application files.

Type C:\DotNetNuke in the Directory: field and click Next. On the Access

Chapter 2

[25]

Permissions page, leave all the default permissions and click Next to save the settings.

Click Finish to exit the wizard.

Installing DotNetNuke

[26]

Verifying Default Documents
Default documents allow you to access a web page by typing in just the folder name.
DotNetNuke uses default.aspx as its default page when running the portal. To
ensure default.aspx is specified as a default document for your virtual directory,
scroll down in IIS until you find the DotNetNuke Virtual Directory. Right-click and
select Properties.

Select the Documents tab and confirm that you see default.aspx (in addition to
default.asp) in the box. If you see it, click OK to close the properties box.

Chapter 2

[27]

If default.aspx does not exist, click on the Add button to type it into the Default
Document Name box and click OK. This will successfully complete the setup of the
virtual directory for DotNetNuke.

If you have both versions of the .NET framework (1.x and
2.x) installed on your computer, you will need to tell IIS
which framework to use with this website. On the ASP.NET
tab you will need to change the ASP.NET version to the 2.x
version of the framework as shown below.

Installing DotNetNuke

[28]

Setting Security Permissions
ASP.NET web applications will usually run using the built-in ASPNET account. To
allow the extensive file uploading and skinning features in DotNetNuke, you will
have to set some security permissions before they start working correctly. To change
these permissions, open up Windows Explorer and browse to your DotNetNuke
folder (usually C:\DotNetNuke). Right-click the folder, select Sharing and Security
from the menu, and click on the Security tab. Add the appropriate user account and
set permissions as discussed below.

If you are using Windows 2000 (IIS5) the account that needs permissions on the
DotNetNuke folder is the {Server}\ASPNET user account, where {Server} is the
name of your machine running the DotNetNuke installation. It must have read
and write permissions for the DotNetNuke folder. If you are using Windows 2003
(IIS6), then instead of the ASPNET account you will need to give permissions to the
NT AUTHORITY\NETWORK SERVICE user account. Again, it must have read and write
permissions for the folder. Also, if you use Windows authentication, you need to
give the full control permissions to the local user.

On an XP machine formatted to NTFS that is not part of
a domain, the security tab may not be visible by default.
To reveal the Security tab, open Windows Explorer, and
choose Folder Options from the Tools menu. On the View
tab, scroll to the bottom of the Advanced Settings and clear
(click) the checkbox next to Use Simple File Sharing. Click
OK to apply the change. You should now have a Security tab
when viewing the properties of a file on an NTFS volume.

Setting up the Database
With DotNetNuke 4.3.3, you have a few options available to you when creating your
database. If you are using SQL Server 2005 Express edition, you do not need to set
up the database manually, since the DotNetNuke database will be attached during
the installation process. In the Custom Module Development chapter we will be using
SQLExpress as our datastore. To create the database for DotNetNuke to store data
about our site, we will be using Microsoft SQL Server 2005 Express Edition. We
will be using the SQL Server Management Studio to accomplish this task. For the
Management Studio, click on the Start button, and go to Programs | Microsoft SQL
Server 2005 | SQL Server Management Studio. Sign on to your server and drill
down the (local) server by clicking on the plus (+) signs, right-click on Databases,
and select New Database.

Chapter 2

[29]

Type DotNetNuke into the Database name field and click OK.

It will take a few moments for your database to be created. This will generate the
system tables and stored procedures. The actual tables and procedures needed to run
DotNetNuke will be created when you run the program for the first time. Once you
create your database shell, you will need to rename and modify your web.config
file to connect to SQL Server. Browse to C:\DotNetNuke and find a file named
release.config. Select this file and rename it to web.config.

Installing DotNetNuke

[30]

In earlier versions of DotNetNuke the web.config
file could be found in the main DotNetNuke folder
(C:\DotNetNuke in our setup) but to avoid the accidental
overwriting of this file when doing an upgrade, you
will find that the file will be given an initial filename of
release.config.

When renaming is complete, use Notepad to open up the web.config file. We will
explore this file in detail while discussing the DotNetNuke architecture; for now
we are only concerned with a few sections of the code. The web.config file is an
XML-based file so be careful while working with this file.

Within the web.config file, locate the <connectionStrings> section. In this section
you will notice that there are two <add> tags, which are both named SiteSqlServer.
The first one (the default) is for SQL Server Express. To use SQL Server Express, you
would need to comment out the second key. Commenting in the web.config file is
done using the opening tag <!-- and the closing tag -->. The example below shows
the original <connectionStrings> section in the web.config.

 <connectionStrings>
 <!-- Connection String for SQL Server 2005 Express -->
 <add
 name="SiteSqlServer"
 connectionString="Data Source=.\SQLExpress;Integrated
 Security=True;User
 Instance=True;AttachDBFilename=|DataDirectory|Database.mdf;"
 providerName="System.Data.SqlClient" />

Chapter 2

[31]

 <!-- Connection String for SQL Server 2000/2005
 <add
 name="SiteSqlServer"

 connectionString="Server=(local);Database=DotNetNuke;uid=;pwd=;"
 providerName="System.Data.SqlClient" />
 -->
 </connectionStrings>

We then need to enter the data for our SQL Server. Add the server name (Server=),
database name (Database=), user ID (uid=), and the password (pwd=) so that our
application knows how to connect to our server. This information will be based on
how you have set up your SQL Server.

For additional help, please refer to the following websites:
http://www.connectionstrings.com/
http://www.sqlstrings.com/
http://aspnet101.com/aspnet101/tutorials.
aspx?id=23

Next, we need to find the <appSettings> section and modify some more keys. The
first thing you will notice is that the SiteSqlServer key is in this section as well.
In order for our modules to connect to the database, you will need to fill out the
information in these keys as well. For SQL Server Express 2005 you will again need
to comment out the SQL Server 2005 version. Make sure you add the server name
(Server=), database name (Database=), user ID (uid=), and the password (pwd=) so
that our application knows how to connect to our server.

<appSettings>
 <!-- Connection String for SQL Server 2005 Express - kept for
backwards compatability - legacy modules -->
 <add key="SiteSqlServer" value="Data Source=.\
SQLExpress;Integrated Security=True;User Instance=True;AttachDBFilenam
e=|DataDirectory|Database.mdf;"/>
 <!-- Connection String for SQL Server 2000/2005 - kept for
backwards compatability - legacy modules
 <add key="SiteSqlServer" value="Server=(local);Database=DotNetNuke
;uid=;pwd=;"/>
 -->

The next set of keys in the <appSettings> section is for the template that is used
when setting up your site for the first time. A template is used to create the default
look and feel of your site. By default, the base DotNetNuke template is used to

Installing DotNetNuke

[32]

create your site. If you would like to use any of the other templates, you will need to
replace (comment/uncomment) the appropriate key.

 <add key="InstallTemplate" value="DotNetNuke.install.config" />
 <!-- Alternative Install Templates (included in package)
 <add key="InstallTemplate" value="Club.install.config" />
 <add key="InstallTemplate" value="Personal.install.config" />
 <add key="InstallTemplate" value="SmallBusiness.install.config" />
 -->

We will be using the default DotNetNuke template so we will not modify this section.

There are a few other optional settings that we may be concerned about at this time:

The AutoUpgrade key: This is set to true by default and is used to determine
if the upgrade/install process will run automatically.
The UseDNNConfig key: This key is set to true by default and tells the
installation if it should look in the database or the install file located in the
install folder to determine if it should upgrade. This is implemented to
reduce the number of calls to the database and improve performance.
The InstallMemberRole key: This key is set to true by default and is used to
determine whether or not to install the Membership Provider database tables
for our installation. If you are sharing a database with another application
that uses these tables then you would want to set this to false. We will leave
it set to true for our installation.

There are many other settings located in the web.config file but for our basic
implementation, we only need to be concerned with the items above. We will look
at more of this information when we discuss the DotNetNuke architecture later in
this book.

Once this is complete save the web.config file and you are ready to run
DotNetNuke for the first time.

To do this, navigate to http://localhost/DotNetNuke in your browser. The first
time you access your portal it might take a few moments to come up. This is because
it is running the database scripts required to set up your SQL Server database.

While the install process is proceeding, you will see a step-by-step explanation of the
process appear on your screen.

•

•

•

Chapter 2

[33]

Once all the scripts have run, you will see the message below:

Once you click on the Click Here To Access Your Portal link you should finally see
your DotNetNuke Portal.

Installing DotNetNuke

[34]

Upgrading
If you already have a DotNetNuke portal and would like to upgrade from version
3.x to version 4.x, a few steps are required. The amount of modification you have
made to your installation will affect the amount of time required to complete your
upgrade. Since there are distinct changes to the structure of the DotNetNuke files,
the best resource for upgrading your site is the DotNetNuke Installation Guide, which
can be found on the downloads page once you download the Documents Package.
This will walk you through the steps necessary to upgrade your site.

Chapter 2

[35]

Upgrade Checklist
While upgrading, there are a couple of things you will need to be aware of:

Do you have any custom modules, either built by you or purchased? Since
versions of DotNetNuke above version 4.0 employ a few changes to the
module structure, some of these custom modules may no longer work. You
will need to check to see if an updated version of the module is available and
upgrade each module.
Have you made any modifications to the core architecture in the previous
version? Since we will be using the code from the new ZIP file, any changes
you made to the old code will no longer be available. You will need to redo
those changes in the updated framework after you update the files. For this
reason, it is strongly recommended that you make no modifications to the
core architecture itself.
Make sure you DO NOT overwrite your old web.config file! One of
the reasons that the web.config file is named release.config in the
install package when it is downloaded is so that you do not accidentally
overwrite your current web.config file. You will need to make sure that
the MachineKeys in your new web.config file are exact copies of the
MachineKeys in your old web.config file. If these are incorrect, your site will
not work.

So if you have not done much to your site except use the standard modules then the
steps to upgrade are fairly straightforward.

Back Up Your Database
1. For the Management Studio, click on the Start button, and go to Programs

| Microsoft SQL Server 2005 | SQL Server Management Studio. Sign on to
your server and drill down the (local) server by clicking on the plus (+) signs,
right-click on Databases, look for DotNetNuke, and right-click on it to bring
up the menu. Select Tasks and Backup to begin the backup procedure.

•

•

•

Installing DotNetNuke

[36]

2. On the General tab, leave all the default settings and click on Add. In the File
Name box, enter the location where you would like the backup saved and fill
in a name for your backup.

3. It is common to put an extension of .bak at the end of the file name, but here
it is not necessary. Click the OK button on the Select Backup Destination
dialog and then click OK again on the General tab. You will receive a
message box when the backup completes successfully.

Back up Your DotNetNuke files
Whenever you are about to make changes to your site it is always a good idea to
back up the physical files located at C:\DotNetNuke. Make a copy of this folder and
store it in a safe place. This will allow you to revert back to your old site if something
goes wrong.

Logging In as Admin and Changing
Passwords
There are two user accounts that allow you to maintain your portal. They are the
admin account and host account. This makes changing the default passwords for the

Chapter 2

[37]

admin and host accounts one of the most important steps to take once you have your
site up and running. The first page you see when you start up DotNetNuke gives
you all the information you need to sign on.

First, we will log in as admin. For this, click on the Login icon in the upper right
portion of the site. This will give you the Account Login screen. Enter admin for the
username and dnnadmin as the password. When you do this, you will notice a few
changes to the site.

There is now an admin tool pane, and most text has a pencil icon next to it. You will
now be able to edit the site. All the options available to you as an admin or host user
will be covered in Chapter 5; for now we only want to change the default password.
In the upper right corner, just below where you clicked the login icon, you will see a
link for Administrator Account. Click on this to bring up the account screen for the
admin account.

To change the password, click on the Manage Password link.

Installing DotNetNuke

[38]

Fill out the Current Password, the New Password, the Confirm New Password, and
all the other sections that are required (marked with an *). When finished filling out
the information, click on the Change Password link to save your changes.

You may remove some of the required registration items
by unchecking the boxes next to them. Note this means
that these items will no longer be required for any user of
your portal.

When you are finished, log out of the admin account by clicking on the logout icon in
the right-hand corner of the page. You can then change the host password by signing
in as host, and following the same steps we followed to change the admin password.

Summary
In this chapter, we have installed a local version of DotNetNuke using Microsoft SQL
Server 2005 Studio and covered how to set the correct permissions on our machine
as well as where to find the procedures needed to upgrade from previous versions
of DotNetNuke. We finished by changing the default passwords for the Host and
Admin accounts. In the chapters that follow, we will explore all the features that are
available to you as an admin or host user of the site. We will cover the modules and
standard features that make DotNetNuke one of the fastest-growing web portals on
the market today.

Users, Roles, and Pages
One of the most important and time-consuming aspects of running a DotNetNuke
portal is trying to figure out how to administer the portal. From adding modules to
working with users, it will take time before you start feeling comfortable with all
the administration tasks associated with running a portal. The next few chapters are
designed to give you a general understanding of how things work, and also to act
as a reference for the tasks you have to perform only once or twice in a year. This
chapter will familiarize you with managing users and pages within your portal.
When you are done with this chapter you will possess a better understanding of the
following areas:

Creating and modifying user accounts
How user accounts tie into the security of your site
What DotNetNuke pages are and how to create and administer them
How to structure your site using pages
The new Membership Provider Model

User Accounts
If you are used to working within a network environment, or have worked with
different portals in the past, then you are probably comfortable with the term "users",
and how they interact with your portal. Everything that takes place on your portal
revolves around users and user accounts. Whether users are required to register in
order to use your services or you only need a few user accounts in order to manage
the functionality and layout of your site, you will need to understand how to create
and manage user accounts. Let's start with a general description of a user, and then
you will see how to create and manage your users. In order to work through the
examples, you will need to bring up your portal and sign in as admin.

•

•

•

•

•

Users, Roles, and Pages

[40]

What is a User?
The simplest definition of a user is an individual who consumes the services that
your portal provides. However, a user can take on many different roles; from a
visitor who is just browsing (unregistered user) or a person who registers to gain
access to your services (registered user), to the facilitator (Administrator or Host)
who is responsible for the content and design of your portal. Just about everything in
DotNetNuke revolves around the user, so before we can do anything else, we need
to learn a little about user accounts.

Creating User Accounts
Before you create the user accounts you must set how users will be able to register
on the site. You have the choice of four different types of registrations: None, Private,
Public (default), and Verified. To set the registration type for your portal go to the
Site Settings link found on the Admin menu.

The User Registration section can be found under
Advanced Settings | Security Settings:

Chapter 3

[41]

The type of registration you use depends on how you will be using your portal.
What follows is a brief explanation of the different User Registration types.

Registration Setting Description
None Setting up user registration as None will remove the Register link

from your portal. In this mode, users can only be added by the
Admin or Host users. If you plan to have all sections of your site
available to anyone then selecting none as your registration option
is a good choice.

Private If you select Private, the Register link will reappear. When users
attempt to register, they will be informed that their request
for registration will be reviewed by the administrator. The
administrator will decide whom to give access to the site.

Public Public is the default registration for a DotNetNuke portal. When this
is selected, the users will be able to register for your site by entering
the required information. Once the registration form is filled out,
they will be given access to the site.

Verified If you select Verified as your registration option, the users will be
sent an e-mail with a verification code once they fill out the required
information. This ensures that the e-mail address they enter in the
registration process is valid. The first time they sign in, they will be
prompted for the verification code. After they have been verified
they will only need to type in their login name and password to
gain access to the site.

Users, Roles, and Pages

[42]

Setting Required Registration Fields
The administrator has the ability to decide what information the user will be
required to enter when registering. If you are logged in as an administrator, you can
accomplish this through a combination of User Settings and Profile Properties.

To manage the Profile Properties for your site, select the User Accounts link on the
Admin menu.

In this screen, select Manage Profile Properties, either by selecting the link at the
bottom of the module container or by selecting the link in the Action menu. When
you select this link you will be redirected to a screen that displays a list of the
currently configured Profile Properties.

You can manage some attributes of the Profile Properties from within this screen. For
instance you can delete a property by clicking on the X icon in the second column.
Alternatively, you can change the display order of the properties by clicking on one

Chapter 3

[43]

of the Up or Down icons in the third and fourth columns. (If you do change the order
this way, make sure you click the Update link at the bottom of the page to save
any changes.)

If you want even more control you can edit a single property by clicking on the
Pencil icon in the first column. You can also add a new property, by selecting the
Add New Profile Property action from the Action menu. In either case you will be
redirected to another page, where you can enter information about the property.

Note that if you are editing an existing property the first two fields cannot be
changed, so make sure you get it right first time. Most of these fields are
self-explanatory, but we will describe a couple of the fields.

The Visible checkbox controls whether the user can see the property. You can hide
a property from the user by making sure that this checkbox is left unchecked — the
important thing to remember is that the Administrator can still see this property.
This feature allows the Administrator to record private confidential information
about a user.

The Required checkbox controls whether the user is required to enter information
for this property. If it is set the user will not be able to proceed without entering
anything, although there are some settings that affect how this works in practice.

In addition to configuring the Profile Properties for the site there are some User
Settings that control the Registration Process. In the User Accounts screen, you can
access the User Settings by clicking on the link at the bottom of the pane or the link
in the Action menu. This will bring you to the User Settings page.

Users, Roles, and Pages

[44]

There are a lot of settings on this page. We will be focusing in this discussion on the
settings that relate to Registration, towards the bottom of the page. In our discussion
of the Profile Properties we indicated that you can make some properties required,
by checking the Required checkbox. The normal registration behavior is that only
the information required for validating the user's credentials is collected.

If the Require a valid Profile for Registration checkbox is checked then the
registration page also contains the list of Profile Properties and the registration will
not complete unless all the required properties have valid values.

Furthermore if the Require a valid Profile for Login checkbox is checked, a user will
be required to update his or her profile on login if it is no longer valid. This can happen
if an Administrator decides to make a profile property required after users have
already registered, or if the Administrator decides to add a new required property.

Chapter 3

[45]

Managing a Profile
When you log in as Admin, you will see the title Administrator Account in the
upper right-hand corner of the current page (if you are using the default skin). Click
this link to bring you to the Manage Profile page.

All users can access this screen in a similar way. There are four tabs (hyperlinks) at
the top of this screen. A user can manage their own profile properties by clicking on
the Manage Profile link.

Users, Roles, and Pages

[46]

Note the red arrow icon indicates that a property is required, while the visibility
radio buttons indicate who can view this profile property. By default this is set to
Administrators only, but users can allow their profile information to be available to
other users (members) or all users including unauthorized users (public).

Registering a User Manually
As we discussed earlier, you can set your portal registration to None. This will
remove the Registration link from your site. So the only way to add users to your
portal is to register them manually. To do this, go to Admin | User Accounts on the
main menu. This will bring you to the Manage Users screen. There are actually two
ways to add a new user from this screen. You can select Add New User from the
drop-down menu on the left of the module or click on the Add New User link at the
bottom of the module.

Chapter 3

[47]

We will be setting up a user to help us administer the Coffee Connections site. We fill
in the required information and click on the Update link.

When we are done, we will test the account we just created. To do this we need to
log off as admin by clicking on the Logout link in the upper right-hand corner of the
current page. Then click on the Login link. Enter in the username and password of
the user we just created. You will notice that while you are logged in as this user you
lose access to all the updating functionality that the administrator account possesses.

Users, Roles, and Pages

[48]

'

The ability to update the portal is not available to our new user because they do not
have the authority to make the changes. Put another way, they do not belong to the
right security role.

Understanding DotNetNuke Roles
We have just looked at how to add a user to your site, but are all users created
equal? To understand how users are allowed to interact with the portal we will need
to take a look at what a Role is and how it factors into the portal. There are plenty
of real-world examples of roles we can look at. A Police station, for example, can
have sergeants, patrol cops, and detectives and with each position come different
responsibilities and privileges. In a police station there are multiple people
filling those positions (roles) with each sharing the same set of responsibilities
and privileges.

Roles in our portal work the same way. Roles are set up to divide the responsibilities
needed to run your portal. If we refer to the user stories we created in Chapter 1, we
will see that one of them falls into the area of users and roles.

Chapter 3

[49]

We want our portal to be easy for the administrators to manage. To do this we will
need to settle on the different user roles needed for our site. To determine this we
first need to decide on the different types of user that will access the portal. We will
detail these user types below.

Administrator: The Administrators will have very high security. They will be
able to modify, delete, or move anything on the site. They will be able to add
and delete users and control all security settings. (This role comes built into
DotNetNuke.)
Home Page Admin: The home page admins will have the ability to modify
only the information on the home page. They will be responsible for
changing what users see when they first access your site. (We will be adding
this role.)
Forum Moderator: The forum moderators will have the ability to monitor
and modify posts in your forum. They will have the ability to approve or
disapprove messages posted. (We will be adding this role.)
Registered User: The registered users will be able to post messages in the
forum and be able to access sections of the site set aside for registered users
only. (This role comes built into DotNetNuke.)
Unauthenticated User: The unauthenticated user is the most basic of the
user types. Any person browsing your site will fall under this category.
This user type will be able to browse certain sections of your portal but
will be restricted from posting in the forum and will not be allowed in the
Registered Users Only section. (This role comes built into DotNetNuke.)

Once you formulate the different user roles that will access the site, you will need to
restrict users' access. For example; we only want the Home Page Admin to be able
to edit items on the home page. To accomplish this DotNetNuke uses role-based
security. Role-based security allows you to give access to portions of your website
based on what role the user belongs to. The benefit of using a role-based security
method is that you only have to define the access privileges for a role once. Then you

•

•

•

•

•

Users, Roles, and Pages

[50]

just need to add users to that role and they will possess the privileges that the role
defines. The diagram below gives you an idea of how this works.

Looking at the diagram, we notice two things:

Users can be assigned to more than one role.
More than one user can be assigned to a single role.

This gives us great flexibility when deciding on the authorization that users will
possess in our portal.

To create the roles we have detailed, sign in as admin, and select Admin | Security
Roles on the main menu.

•

•

Chapter 3

[51]

Notice that DotNetNuke comes with three roles already built into the system, the
Administrators role (which we have been using), the Registered Users role, and the
Subscribers role. We want to create an additional role for Home Page Admin. To do
this you again have two choices. Either select Add New Role from the dropdown in
the upper left or click on the Add New Role link. This will bring up the Edit Security
Roles page. We will use this page to create the Home Page Admin role that we need.

The basic settings shown in the screenshot are:

Role Name: Make the name of your role short but descriptive. The name
should attempt to convey its purpose.

•

Users, Roles, and Pages

[52]

Description: Here you may detail the responsibilities of the role.
Role Group: A Role Group is a collection of roles. This is usually only used
in large sites with a large number of roles, as a way of managing the roles
more effectively. For most sites this should be left at the default setting
"Global Roles".
Public Role?: Checking Public Role will give registered users of your site the
ability to sign up for this role themselves. We will be creating a Newsletter
Role and will demonstrate how this works when that is created.
Auto Assignment?: If Auto Assignment is checked then users will
automatically be assigned to this role as soon as they register for your portal.

Since we want to decide who will be the able to modify our home page we will leave
both of these unchecked. To save settings click on the Update link.

The advanced settings section allows you to set up a fee for certain security roles.
Depending on what you are offering on your portal, you can ask for a fee for a user
to register for your portal or just to access particular sections.

Now to complete the roles that we will require for Coffee Connections, we will add
two more security roles.

The first role will be called Newsletter. We will be using this role to allow users to
sign up for the newsletter we will be hosting at the Coffee Connections site. Set up
the security role with the following information:

Name: Newsletter
Description: Allows users to register for the Coffee Connections Newsletter
Public Role: Yes (checked)
Auto Assignment: No (unchecked)

Click on the Update link to save this role.

The second role will be called Forum Admin. We will be using this role to administer
the forums at the Coffee Connections site. Set up the security role with the following
information:

Name: Forum Admin
Description: Allows user to administer Coffee Connections Forum
Public Role: No (unchecked)
Auto Assignment: No (unchecked)

Click on the Update link to save this role.

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3

[53]

The security roles, by themselves, do not determine the security on your portal. As
the diagram showed, users and roles work together to form the basis of the security
in your site.

Assigning Security Roles to Users
Security roles can be assigned to users by an administrator or, if Public Role is
checked, can be assigned by the users themselves. To show you how users can sign
up for security roles, log out as admin and log in as our sample user, JonnyA.

When signed on as JonnyA, in order to modify your user information, click on the
user name in the upper right-hand corner of the portal. This will bring you to the
Manage Profile screen shown below. This is the same as screen we looked at when
signed on as the administrator previously.

Note that when logged in as a regular user there is no information on the right-hand
side of the page. Only an Administrator can see this information. A user can change
their password by clicking on the Manage Password tab, they can mange their
profile by clicking on the Manage Profile tab, or they can unregister from the site by
clicking on the UnRegister link.

The Manage Services tab allows the user to manage the public security roles
available to them. These are the roles for which we checked the Public Role
checkbox. To subscribe to the role, click on the Subscribe link.

Users, Roles, and Pages

[54]

After you have subscribed to a service, you can unsubscribe by clicking on the
Unsubscribe link. Since security roles such as Home Page Admin allow the user to
modify the portal, they should not be assigned in this manner. As the administrator
of the site, we want the ability to decide who is assigned to this role. To do this we
will again need to sign off as JonnyA and sign back in as Admin.

Once logged in, select Admin | Security Roles on the main menu. Once there, click
the pencil icon next to the Home Page Admin security role. Click on the Manage
Users link that is located near the bottom of this screen. You will then be presented
with the User Roles administration page.

Chapter 3

[55]

To add a user to a role, select them from the User Name dropdown. If you would
like the role to expire after a specific date you may enter a date in the Expiry Date
textbox or click on the Calendar link to select a date from a calendar. When you are
done, click on the Add Role link to add the role to the user.

You can add as many users to the role as you wish. To remove a role from a user,
click on the delete icon () next to the user's name. If the Send Notification checkbox
is checked, the portal will send an e-mail notification to the users when they are
added or removed from the role.

Up to this point, we have added security roles, and added users to roles both as
an admin and by allowing users to add themselves through membership services.
However, the security role authorizations still need to be set. To do this we will
introduce you to the page architecture of DotNetNuke and in the process show you
how to add security roles to sections of our portal.

Understanding DotNetNuke Pages and
tabIDs
As we have been navigating through to different pages you may have noticed
that the page name shown in your browser's address bar has not changed. Although
the tabID portion of the address changes, every time you click on another item
on the menu, it keeps showing Default.aspx. This is because DotNetNuke
uses dynamic page generation to render the correct information for each page
(e.g. http://localhost/DotNetNuke/tabid/39/Default.aspx).

Users, Roles, and Pages

[56]

You will see that some of the screenshots in this book as
well as other pages you will find on your DotNetNuke
portal refer to something called a tab. In previous versions
of DotNetNuke the word 'tab' was used instead of the
word 'page'.

I am sure in time, that all of these references will be changed
inside the portal. Until then be aware that the words tab and
page are interchangeable.

In traditional web applications, pages are created in an application like Front
Page, Dreamweaver, or Visual Studio .NET. The designer decides where to place
the text, inserts images, saves the page, and then posts it to the website. Navigating
the traditional web application takes you from one "physical" page to another
"physical" page.

In DotNetNuke web portal, there is only one "physical" page used in the application.
Instead of placing the information directly on the page, DotNetNuke holds the
information for each page in the database. When a page is then requested on a
DNN portal, the application looks in the database to determine what information
should be on the page and displays it on Default.aspx. The database knows
what information to pull from the database by looking at the tabID in the URL
(e.g. http://localhost/DotNetNuke/tabid/39/Default.aspx).

Chapter 3

[57]

When users navigate to different items on the menu, they will see different
information and will be presented with the illusion of multiple physical pages.

When you create new pages in DotNetNuke, you are not only creating the page
information for the database but this same step will also build the navigation menu
for your site.

To better understand the pages and menu structure we will create some new pages.
To create a new page, we first need to log in as an admin. When you do you will see
the Page Functions pane at the top of your portal.

To add a page, click on the Add link on the left side of the pane. We will be adding
a page that will hold our Coffee House Search engine as well as a page that will
eventually hold our forums. This admin screen is broken up into three different
sections, Basic Settings, Copy Page, and Advanced Settings.

Users, Roles, and Pages

[58]

We will start with the Basic Settings:

This is where we enter the following information to set up our page:

Page Name: This is the name that will show up on the menu. You want to
keep this name short in order to save space on the menu.
Title: This is used to display the name of the page on the Internet Explorer
title bar. This can be more descriptive than the page name.
Description: Enter a short description of what the page will be used for.
Key Words: This section is used to enter key words that will be picked up by
search engines.
Parent Page: As we discussed earlier, this information not only creates a page
dynamically but is also used to create your site menu. If you would like this
page to be positioned under another page in the menu select the parent page
from the dropdown.
Permissions/View Page: Roles that are selected in this column will have the
ability to view the page. This means that only those roles checked will be
able to see this page. If you are not in one of these roles you will not see the
page. This can be used to restrict portions of your portal to certain groups
of people.

•

•

•

•

•

•

Chapter 3

[59]

Permissions/Edit Page: Roles that are selected in this column will have the
ability to administer this page. This means that a user who belongs to any of
the roles checked will have the ability to edit, modify, and delete information
on this page. Remember these privileges apply to this page only.

Under the Copy Page section you can select whether you would like to copy
information from an existing page to create a new page.

To copy a page, select the page you would like to copy from the dropdown. This
then results in a list of the modules on that page. You can select whether to copy each
module by checking the checkbox on the left of the list. You also have the ability to
rename the module, or change its title, by changing the text in the text box. Finally,
there are three options that relate to how the module is copied.

New — An empty module of the same type is created on the new page.
Copy — An exact duplicate of the module is created on the new page
(with a new ID).
Reference — A new instance of the module is created on the new page
(with the same ID).

Initially there appears to be no difference between the last two options as the
resulting modules look the same. However, a copied module is not related in any
way to the original module, so modifying the contents of a copied module does not
change the original module. A referenced module, on the other hand is the "same"
content displayed on a different page. Changing the content in a referenced module
will affect both pages.

The Advanced Settings section is broken up into three subsections, Appearance,
Security Settings, and Other Settings.

•

•

•

•

Users, Roles, and Pages

[60]

The Icon drop-down box allows you to add an icon next to the page name on the
menu. You can see an example of this on the Admin menu.

In the Admin menu the Admin page is the parent for Security Roles, as well as the
others in the list. As you can see, if you use an icon it will be placed on the left of the
page name.

The next portion of the Page Management panel deals with skinning. For now we
will leave <Not Specified> selected. We will cover how these items work when we
discuss skinning in Chapter 9.

Chapter 3

[61]

If you don't want the page to be displayed on the menu, check the Hidden checkbox.
You can still access this page by creating a link to it in your portal. Administrators
will be able to see and modify hidden pages using the page management section.

Checking the Disabled checkbox will allow a page to show up on the menu but will
not allow the page to be shown. This is used to help with navigation for your site.
The Admin page again is an example of this. It is used only as a parent page to allow
you to navigate to the other pages beneath it. If you click on the admin menu item,
no page will appear. If you check both hidden and disabled, you will only be able
to access the page from Admin | Pages on the main menu. This can be useful if you
would like to navigate to a page in a non-traditional way. For example, you can add
a link to specific page using the links module that we will discuss in Chapter 4.

Finally, at the end of this section, you have the ability to add a Refresh Interval and
Page Header Tags. The Refresh Interval will automatically refresh this page after
the time (in seconds) that you specify. The Page Header Tag section allows you to
interject Meta Tags into the header of this page. This is helpful because since DNN
builds pages dynamicity, you can use this to modify the header. We will be leaving
these sections blank.

Users, Roles, and Pages

[62]

In the Others Settings section you can administer when your page appears and how
its menu item is utilized.

Start Date: This will determine the start date that your page will become
visible to your users.
End Date: This will determine the start date that your page will no longer be
visible to your users.
Link Url: If you would like a menu item to link to information that already
exists on your site you can fill in the Link Url information. You can link to
an external resource (a page or file on another site), a page on your site (an
existing "physical" page on your website), or a file on your site. This can be
used to incorporate existing ASP or HTML files you may already have.

To save your settings for this page, click on the Update link. When it is complete,
you will see your new page on the menu bar. Therefore, when you build a page you
are creating both a page to add content to and an item for your menu.

Administering Pages
You have now seen how you can create a page using the Page Management Pane.
Next you will see how to work with all of your pages to build your menus in
a straightforward manner. To get to the Page Administration section select
Admin | Pages on the main menu.

By using the icons on the Page Admin pane you will be able to create a new page,
edit or view an existing page, or modify where the link to the page appears on
your menu. You will notice that neither the Host nor Admin menu items appear
on this page. You are not able to modify those menus in this context. To test this,

•

•

•

Chapter 3

[63]

highlight the Coffee House Search menu item and click on the View Selected
Page icon (magnifying glass). This will bring us right back to the page that we just
created. Notice that the page is separated into three distinct panes. The LeftPane,
ContentPane, and RightPane (you may need to click on the Preview icon in the Page
Functions pane if the panes are not visible).

Take time to try out the functionality on this page and get comfortable with how you
can edit, move, and modify your pages. Once we have created our page we will want
to add information to it. To do this we need to add modules to our new page.

Summary
In this chapter, we covered the concepts of users, roles, and pages. This should lay a
foundation for the rest of the information we will be covering in this book. Most of
the concepts we will cover will deal with one or all of these items. In the next chapter
we will introduce you to the concept of modules and discuss the sample modules
that come prepackaged with DotNetNuke.

Standard DotNetNuke
Modules

As we discovered in the last chapter, DotNetNuke dynamically builds its pages
using the tabID to retrieve the information for each page from the database. This
includes the modules that are located on each page as well as the content in those
modules. In this chapter we will cover the following:

The basic concepts of the module
How to add modules to a page and how to remove them
The standard modules that come pre-packaged with DNN

Shortly before the book went to print, a number of new modules were added to the
standard DotNetNuke installation, such as Blog, Forum, Gallery etc. Details of these
new modules are not included here. However, please check the book page on our
website, www.packtpub.com/DNN4/book, for news of when the updated version of
this chapter will be available for you to download from our site.

DotNetNuke Modules
Adding content to DotNetNuke is done using modules. Modules are used as
building blocks for your portal. Each module is designed to perform a given task.
From providing links, to storing contacts, to adding a simple welcome message for
your users, modules are what make your portal buzz. We will first discuss modules
in general, discussing the features that all modules have in common. Then, we will
discuss how to add, delete, and set properties on modules. Finally, we will cover all
the standard modules that come prepackaged with DotNetNuke. We will discuss
their practical purposes and any administration or modification needed to work with
each module.

•

•

•

Standard DotNetNuke Modules

[66]

Adding a Module
To begin, make sure you are logged in as admin and then navigate to the Coffee
Connections Search tab we created earlier. We will then turn our attention to the
Module Admin pane at the top of the page. We will be using this pane to work with
the modules on our page.

To demonstrate the common module features we will be using the Text/Html
module. Select Text/Html in the module dropdown.

The Pane dropdown allows you to decide in which pane (or section) of the page
you would like to place the module. Our choices for a default skin are Left,
Right, Content, Top, or Bottom. These choices will vary depending on the skin
you are using on your portal. We will be placing the Text/HTML module in the
ContentPane. The Align dropdown allows you to left-, center-, or right-justify the
module within the pane you select and the Title box allows you to create a title for
the module. The Visibility dropdown allows you to decide on who is allowed to see
the module (same as page or administrators) and the Insert dropdown allows you to
tell it where to insert the module into the page (on top or below other modules).

To add the module to the tab, just click on the Add link located to the right of the
Align dropdown. This will place the Text/HTML module into the content pane.

Chapter 4

[67]

Module Settings
To access a module's settings you need to access the settings menu. To do this, use
the drop-down icon in the right-hand corner of the module.

From this menu you will be able to do the following:

Access the Edit page for the module
Import or Export content
Syndicate the information in the module using RSS
Access online Help and documentation
Change module Settings
Print the contents of the module
Delete the module
Move the module

Editing a Module
The first item on the menu allows you to modify the content of the module. The Edit
page as well as the name of the link may be different for each module depending on
its functionality. The module developer can decide what shows up on the menu. We
will cover how to use this option on each of the standard modules.

•

•

•

•

•

•

•

•

Standard DotNetNuke Modules

[68]

Importing and Exporting Content
DotNetNuke 4.0 allows you to export the content from one module and import it
into another module. You can test this by going to the home page and using the
export function on the Welcome to DotNetNuke Text\HTML box. If you then go to
the Text/HTML box we placed on our Coffee House Search page, you can use the
import function to import the information into this page.

Syndicate Information
You can also syndicate the information contained in your module allowing others to
pull your information using RSS Readers. (We will discuss this further when we look
at the News Feeds module.)

Online Help and Documentation
This item allows the developer of the module to have online help available to help
users of the module.

Editing Module Functionality
The Settings menu item allows you to edit the basic functionality of each module.
This will be the same for all modules. Let's take a look at this section. On the Text/
HTML module, select Settings from the Edit menu.

This will bring up the Module Settings page. This section is divided up into three
sections: general settings, security settings, and page settings.

When creating a module, you have the choice of adding
custom settings to the Settings section. We will cover this
when we learn how to develop custom modules later in
this book.

Basic Settings
The first item on this page allows you to set a title to show at the top of your module.
The title will default to the name of the module (in this case, Text.html). This is
followed by the permissions for the module, which work in the same way as the role
privileges on the page. Note that these permissions override the ones set on the
page. So, you can, for example, keep a tab available to the All Users role but only
allow users in the "registered users" role to see the modules on that tab. Keep in
mind that the overriding only works one way. If you restrict the page to registered
users and then try to give All Users access to the modules on the tab, they won't see

Chapter 4

[69]

the module because they will never see the page. The default permissions will be
inherited from the page.

Advanced Settings
The Header and Footer sections allow you to enter information that will appear
at the top and bottom of your module. Just as you did with the page, you can also
decide on showing this module during a specific date range. In addition, you can
also make a module show up on all the tabs (pages) that you create. You might want
to do this if you have a set of links that you want on every tab.

Standard DotNetNuke Modules

[70]

Page Settings
This final section deals mostly with the appearance of the module.

If you would like an icon to appear before the title, select one from the File Name
dropdown or upload a new icon by clicking on the Upload New File link.

The next section allows you to modify the look and feel of your module. Although
any formatting to the module should be done in the module skin, you can change
the alignment of the text by selecting Left, Right, or Center from the list. Change the
background color by entering a color code into the Color box, or add a border by
entering a thickness in the Border box.

Chapter 4

[71]

When you looked at the Text/HTML module, you may have noticed a small minus
(-) sign in the upper left-hand corner next to the title. This gives the users of your site
the ability to show or hide the content of each module.

You can set the default setting to Minimized, Maximized, or None, which will allow
users to hide the content.

The next section allows you to determine whether you would like the title displayed
on your module, whether you will allow users to print the contents and if RSS
syndication is allowed. Just check the boxes to enable these features.

In addition, you may select a module container to skin your individual modules.
Module containers are discussed in Chapter 9.

The Cache Time is used to speed up the rendering of your page. Caching stores a
representation of the data contained in your module for the number of seconds that
you place in this box. That means that subsequent attempts to access this page (even
by other users) will show the same data. If the text in this module does not change
very often then set this to a high number like 360. If this data is dynamic, or changes
frequently, then set it to a low number or leave it at zero.

Standard DotNetNuke Modules

[72]

You can make the settings for this module the default settings and/or apply the
settings to all modules in your site. The final option is to move your module to
another page by selecting the page name from the dropdown. When you are finished
with your modifications click the Update link to save your settings.

Standard Modules
The previous versions of DotNetNuke came prepackaged with nineteen standard
modules for you to use on your portal. To further help the DotNetNuke core team
focus on the core architecture, it was decided that the standard modules were to
be broken out into separate sub-projects. Each of these sub-projects is managed by
different team member. A list of the projects can be found on the DotNetNuke site by
clicking on the Projects icon.

In this section, we will briefly go over each of the sub-project modules. As we
cover each module, we will first give you the official description for the module as
stated on the DotNetNuke main website. We will then discuss the modules in the
following context:

Practical purposes
Administration and modifications
Special features

Account Login Module
The Account Login module permits users to log in to your portal. It features a
Register button that a user can use to become a registered user of your portal, and a
Forgot Password? link.

•

•

•

Chapter 4

[73]

There is a bug in the Account Login module, so that if
you don't have the Visibility set to Maximized, the "Enter"
key does not fire the Login button. It instead fires the
Min/Max image.

Practical Purposes
The Account Login module is a unique standard module. It is used to allow user
login for your site. The site will come pre-loaded with this module already working
on the site.

The default login will appear on a page all by itself. You may find that you want to
add other modules or images when a user is logging into the portal. To accomplish
this you will need to use the Account Login module.

Administration and Modification
To show you how this works we will need to add a new page to the site. Create a
page with the following attributes:

Name: Login
Title: Login Tab
Hidden: Checked
View Tab Roles: Administrators; Unauthenticated Users

We do not want users to be able to navigate here so we make it a hidden page. We also
want to make it available to unauthenticated and administrator roles. Since we are not
able to navigate to this page, we will need to access it from the Admin | Pages menu.

•

•

•

•

Standard DotNetNuke Modules

[74]

Highlight the Login tab we just created and click on the viewing icon (magnifying
glass). Once on the Login tab, select Account Login in the Module drop-down
section of the Module pane and add it to the ContentPane by clicking on the Add
icon. Your tab should look like the following screenshot.

Next, we want to modify some settings on the Login module. Hover your mouse
cursor over the Edit icon and select Settings. Modify the following properties:

Visibility: None
Permissions (View): Administrators; Unauthenticated Users

We change the Visibility to None to avoid users inadvertently minimizing the
module and not seeing it when they attempt to log in.

•
•

Chapter 4

[75]

To use this tab for logging in instead of the default login we will need to go to the
Admin | Site Settings tab. We will need to change two properties:

Login page (Under Advanced Settings | Page Management): Login
Setting this property to our login tab will tell DotNetNuke to use our new tab
instead of the default tab. Just select our tab from the drop-down.
Home page (Under Advanced Settings | Page Management): Home
The default behavior of the login control is to stay on the current page once
a user is authenticated. Since we have made this page available only to
administrators and unauthenticated users, after users log in successfully,
they will see an error on the page. To change this behavior we will set the
Home Tab Property to our Home tab. This will direct users to the home page
once they have been authenticated.

Once you have set these properties click on the Update link to save your settings. We
now have the ability to add further content to the Admin tab. We will show you how
this is done as we talk about other standard modules.

Special Features
Registration is built into the login control. Clicking on the Register button will bring
the user to a registration page to create an account.

The login control gives users the ability to have the portal remember their login
name and password. If the Remember Login checkbox is selected it will save the
users' information in a cookie on their machine. The next time they navigate to the
site they will automatically be authenticated.

If the users forget their password, they will be able to enter their username and click
on the Password Reminder button. This will email their login information to the
email account they used when they registered.

Announcements Module
The Announcements module produces a list of simple text announcements
consisting of a title and brief description. Options include a "read more" link to a file,
tab, or other site, announcement publish date, and expiration date.

•

•

Standard DotNetNuke Modules

[76]

Practical Purposes
What's New Section: This is a great use for the Announcements module. It
is usually put on the home page of your site. It gives a headline with a short
description of the content. It allows you to show a lot of information in a
short amount of space by giving the users a Read More link for the items
they want to read about more.
Article Listing: The Announcements module allows you to link to pages
internally and externally. This allows you to link to either articles you write
or those that you have found on the Internet.

Administration and Modification
To create an announcement, click on the Add New Announcement link.

•

•

Chapter 4

[77]

This will bring up the Edit Announcements page. The properties of an
announcement are as follows:

Title: Type in a short title for the announcement; this will be displayed in
bold at the top of the announcement.
Publish Date: You can choose the publish date by clicking on the Calander
option; the date will be added to the title of the announcement.

•

•

Standard DotNetNuke Modules

[78]

Description: The description is what allows you to give a short teaser of
the full announcement. You can also use this to give a short announcement
without giving a link to a larger article.
Link: You have three choices as to where to link your announcement; you
can link to any Internet URL, as we have done above, link to a tab on your
site, or link to a file located in your folders. The last option allows you to link
to any PDF, HTML, or Word document file located on your portal.
Track: If this is checked, the module will track the number of times the link
has been clicked.
Log: If this is checked, the module will track who clicks on the read more link
and when.
Open Link in a New Browser Window?: As the title explains, this will cause
a new browser window to open when a user clicks on the read more link.
View Order: By default, announcements are ordered by the date that they are
added or updated to the module. You can override this by placing a number
in the view order box. The announcements will then be ordered numerically
by the view order. If no number is entered, the order will be zero.

Special Features
Once you save your announcement, you will have the ability to track which
announcements have the greatest interest to your users. To see this information, click
on the pencil icon next to a particular announcement. (This option will be available
only if the Preview option is unchecked.) At the bottom of the Edit Announcement
page you can see how many times this announcement has been clicked and a log of
who has clicked on it (if the Log option is checked).

Banner Module
For a discussion on how to use the Banner module in conjunction with vendor
advertising, see the Vendors sub-section under the Host Tools section in Chapter 5.

Contacts Module
This module renders contact information for a particular group of people. You could,
for example, use it for a project team or a certain department. A contact includes an
Edit page, which allows authorized users to edit the contacts data stored in the
SQL database.

•

•

•

•

•

•

Chapter 4

[79]

Practical Purposes
Storing a list of contacts on your portal for all users
Storing internal company phonebook information protected by security roles

Administration and Modification
To add a new contact, sign on as admin, hover the mouse cursor over the pencil icon
by the Contacts title, and click on the Add New Contact link.

Name: Enter a name for the contact.
Role: Enter the role for this contact; this is not a security role, this should be
the title of the contact (Manager, Owner, Partner, etc.).
Email: Enter the email address for this contact.
Telephone 1: Enter a primary phone number for this contact.
Telephone 2: Enter a secondary phone number for this contact.

Click Update to save your settings.

•

•

•

•

•

•

•

Standard DotNetNuke Modules

[80]

Special Features
Mailto hyperlink created by contacts' email address is cloaked by creating a
JavaScript function utilizing String.fromCharCode to keep spambots from
harvesting email addresses.
Call link available if page is browsed by a wireless telephone.

Documents Module
The Documents module produces a list of documents with links to view (depending
on users' file associations) or download the document.

Practical Purposes
Can be used as a document repository for Word, Excel, PDF, and so on.
Can be used to give access to programs, modules, presentations, and so on
contained inside a ZIP file.
Can be used as a resource section by adding links to downloads on
other sites.

Administration and Modification
To add a new document, sign on as admin and click on the Add New Document link.

•

•

•

•

•

Chapter 4

[81]

Title: Fill in the title of the document.
Link: Select a URL or file. Use a URL for content located on another site.
Specify the file location for content located on this site. Either select the file
from the dropdown or enter the URL for the download. You can use the
upload link to upload new content to the portal.
Track and Log: Check the Track and Log checkboxes if you would like this
module to track downloads for this content. It will give you a detailed list
at the bottom of the Edit screen showing you the date and time each user
downloads this item.
Category: Enter in a category for this download. The category is used to help
organize the downloads.

Click on Update to save your settings.

Special Features and Additional Information
The owner of the download, as listed in the module, will be the user who adds
the download to the module. Also, items will sort by when you added them to the
module. There is no way to re-sort this information other than by removing and
re-adding the items in the order that you would like them.

•

•

•

•

Standard DotNetNuke Modules

[82]

Events Module
The Events list/calendar module produces a display of upcoming events as a list
in chronological order or in calendar format. Each event can be set to automatically
expire on a particular date or to re-occur after a specified number of days, weeks,
months, or years.

Chapter 4

[83]

Practical Purposes
Listing upcoming events for an organization
Keeping track of upcoming deadlines in a calendar format
Listing recurring appointments or reminders

Administration and Modification
The Events module is the first standard module that we have discussed that utilizes
the module-settings page for additional options. To see the custom options for this
module, hover the cursor over the Edit menu and click on the Settings menu item.

You have the option to have the events displayed as a list or inside a calendar. The
Calendar display is the default but List is a better-looking display format for the
data. If you choose to use Calendar, you can modify the size of each date cell. To do
this, enter the cell height and cell width in pixels. To save your settings click on the
Update link.

To add a new event, sign on as admin, and click on the Add Events link.

•

•

•

Standard DotNetNuke Modules

[84]

Title: Enter a title for the event. This will be displayed in bold on the first line
of the event for the list view or inside the cell for the calendar view.
Description: Enter a description for the event. This will be displayed in
regular text under the title in list view and inside the cell for the calendar
view. If you are using calendar view you will want to keep the description
short. This will give you a better presentation of the data.
Image: If you would like an icon to show up on the left of the event title
select one from the dropdown or click on the Upload New File link to
upload a new one.
Start Date: This is the date when the pattern will start if this is a recurring
event. For a one-time event, this is the date of the event.
Time: Enter the time for the event either using military time or with an AM
or PM at the end of the time.
End Date: This is the date that the event will stop showing up on the
calendar if this is a recurring event.

Special Features and Additional Information
The alternative text will not show when not using an icon. It will also not show when
logged in as an admin. To view the alternative text select an icon for the event, save
the event, log out as admin, and hover over the icon.

FAQs Module
The FAQs module produces a list of linked frequently asked questions. The
corresponding answer is displayed when a question is clicked.

•

•

•

•

•

•

Chapter 4

[85]

Practical Purposes
List product FAQs
Display special contact information

Administration and Modification
To add a new FAQ, sign on as admin and click on the Add New FAQ link.

Question: Enter the FAQ Question.
Answer: Enter the FAQ Answer.

Click on Update to save your changes.

•

•

•

•

Standard DotNetNuke Modules

[86]

Special Features and Additional Information
The question is presented as a hyperlink. When the question is clicked, the answer
will be shown. This helps to save space on your page by only showing the answers to
the questions when they are requested.

Feedback Module
The Feedback module produces a form for visitors to send messages to a specific
email address. If users are already logged in, their name and email address will be
automatically placed into the form.

Chapter 4

[87]

Practical Purposes
Have users request content or changes on your portal
Use as a Contact Us section
Allow users to give general feedback about your portal

Administration and Modification
The Feedback module is a simple but extensively used standard module.

By default, all Feedback modules send the email to the administrator of the site. If
you would like to send the feedback to a specific email address, log on as admin, go
to Module Settings on the Module Edit menu, and add the email address into
the Send To box found in the Feedback Settings section. Click on the Update link
when finished.

Special Features and Additional Information
When we discussed the general features of modules earlier in this chapter we looked
at an option that would put a module on every tab. The Feedback module would
be a good candidate for this action. It fits nicely on either the left or the right pane
and allows your users to contact you with questions without having to go to any
particular tab to use the module.

IFrame Module
IFrame is an Internet Explorer browser feature that allows you to display content
from another website within a frame on your portal.

•

•

•

Standard DotNetNuke Modules

[88]

IFrame did not work on Netscape browsers prior to version 6.0.

Practical Purposes
Display dynamic content from another website
Keep users up to date on information on other sites

Administration and Modification
To modify the IFrame module, sign on as admin and click on Edit IFrame Options.

•

•

Chapter 4

[89]

Source: Enter a source for the IFrame (the source is the web page you would
like to be displayed in the IFrame). The IFrame captures a web page from
another site like a mini browser.
Width: Enter the width for the IFrame in pixels. This is how much of the
page will show in your module.
Height: Enter the height of the IFrame in pixels. This is how much of the
page will show in your module.
Title: Enter the title for your IFrame. This title will not change the title
of your module. To change the title of the module you will need to go to
Module Settings.
Scrolling: Select a scrolling option. Since you are only showing a portion
of the web page as determined in the Width and Height options, you will
determine whether you would like to allow users to scroll the page for more

•

•

•

•

•

Standard DotNetNuke Modules

[90]

information. Your options are Auto (Scrollbars will appear when needed),
Yes (Scrollbars will be shown at all times), and No (Scrollbars will not
be available).
Border: Select whether you would like a border. Yes will display a border
around your IFrame, No will not.

Click Update to save your settings.

Special Features and Additional Information
Since the IFrame allows you to show content from other websites, you must make
sure that you have permission to do this before setting up the IFrame. Contact the
webmaster of the site to find out if this is allowed.

Links Module
The Links module produces a list of hyperlinks to any tab, image, or file on the
portal or to a web page, image, or file on the Web. The links can be set to display as a
vertical or horizontal list or as a drop-down box. The links appear alphabetically
by default. An indexing field facilitates custom sorting. A supplemental description
can be set to appear either on mouse rollover or on the click of a dynamically
generated link.

Practical Purposes
Link to resources connected to your portal
Link to pages on your site
Link to internal site documents

Administration and Modification
To add a new link to the Links module, sign on as admin and click the Add Link link.

•

•

•

•

Chapter 4

[91]

Title: Enter the title for the link. The title is what the users see in the module
and it is what they click on to open the link.
Link Type: The Links module allows you to link in three different ways:

URL: Allows you to link to an external web page (like Yahoo
or MSN).
Page: Allows you to link to a page on your site. With this option
you can create a Quick Links menu that allows users to quickly
navigate to particular pages without having to navigate the
main menu.
File: Acts as an option to the Documents module and allows you
to give your users access to documents on your site.

Link: Enter the destination of the link. Your options here will depend on
what type of link you are using. If you are using URL, you can enter the
address into the textbox. If using Page, you will be presented with a
dropdown of all your pages. If you are using File, you will be shown a
dropdown displaying the files on your portal.

•

•

°

°

°

•

Standard DotNetNuke Modules

[92]

Log and Track boxes: Check these options. This will allow you to see how
many users have used the links you provided.
Open Link In New Browser Window: Check this box if you want your link
to open in a new window (for example, when you link to another website
or file).
Description: The description section describes what the link is used for. You
will be able to see this depending on the options you select.
View Order: This will be used to sort your links numerically. If nothing is
entered, this will default to zero and the links will be sorted by when they
were added.

Special Features and Additional Information
The Links module gives you a choice of how you would like to view the content. To
edit these options, sign on as admin and go to Settings on the Module Edit menu.
You will find the settings under Link Settings.

Control Type: Select the control type you would like to use for your links.
The default view for the Links module is to display them in a List, but you
can choose to have them displayed in a Dropdown.
List Display Format: Select the format in which you want to display your
links—vertically or horizontally.
Display Info Link: If Yes is selected, an ellipsis will be placed next to the
link. When it is clicked it will show the description of the link that you
entered when you created the link.

•

•

•

•

•

•

•

Chapter 4

[93]

News Feed (RSS) Module
The News Feed module provides visitors with up-to-date, topical, information on a
wide range of topics (see http://w.moreover.com/categories/category_list_
rss.html for one of the more comprehensive selections). Information includes a title
linked to the source document, source, and publication date.

Practical Purposes
Supply users with information updates on other sites
View favorite blogs directly on your portal

Administration and Modification
RSS (Rich Site Summary or Really Simple Syndication) is an XML-based format
for syndicated content. It is designed to allow individuals to distribute news or
articles in a format that is easy for programs to read (XML). This allows you to gather
relevant content from other sites without needing to rewrite the content or update
articles on your site. There are many places to get RSS-syndicated content. One of the
better known is http://www.moreover.com.

•

•

Standard DotNetNuke Modules

[94]

To add an RSS feed to your site, sign in as admin and click on the
Edit Newsfeed link.

News Feed Source: You can select a news feed generated from your portal or
from an external source. Type in the URL location for the news feed.
News Feed Style Sheet: XSL style sheets allow you to determine how the
data appears in your module. If none is selected it will use the default XSL
RSS91.xsl, which is located in the DesktopModules/News folder. You can
leave the default, or link to an XSL style sheet on the Internet or on your site.
Security Options (optional): Some news feeds are not free and will require
you to give a username and password to use them.

Click Update to save your changes.

•

•

•

Chapter 4

[95]

Special Features
RSS feeds are a great way for you to add important and relevant information to your
site with very little effort.

Text/HTML Module
The Text/HTML module provides for the input of simple or HTML-formatted
text. Simple text is input in a standard textbox and a filter converts carriage returns
(paragraph breaks) to HTML breaks. HTML-formatted text can be input directly
or generated by an alternative rich-text input utility that provides a number of
advanced WYSIWYG features as well as a gallery of all uploaded images.

Practical Purposes
Adding welcome information to your home page
Creating short tutorials with bolding, highlighting, and images
Building professional-looking ads to place on your site

Administration and Modification
To edit the Text/HTML module, sign in as admin and select the module's
Edit menu.

When adding content, you have two options: you can add text to the module using
the basic textbox, or you can use the Rich Text Editor.

•

•

•

Standard DotNetNuke Modules

[96]

You are able to edit the text in many different ways. You can use tables to organize
data, insert images, and modify the color, type, and size of the font. To accomplish
this DotNetNuke uses FreeTextBox version 3.0. FreeTextBox is a freely available
control that can be used with ASP.NET. To save your data click on the Update link.

Special Features and Additional Information
Because of its versatility, the Text/HTML module is probably the most widely used
module on a DotNetNuke site. Most tabs are filled with static data and this module
fits the bill.

User Accounts Module
The User Account module permits registered users to add, edit, and update their
user account details. Membership services are also managed here.

If you use the Accounts Module for your user registration
instead of the default you will need to create a page to hold
the module and set the "User Tab" option in "Site Settings"
in order for this to work. It is also important to note that if
you set the "User Tab" option to a page that does not have a
User Accounts Module on it, you will be unable to sign in to
your portal.

Practical Purpose
This module can be used to create a page that has many different user modules on it.

Chapter 4

[97]

Administration and Modification
By default, the user account module is found when a users click on their name in the
header. You are not allowed to modify this page. So if you want to combine the User
Accounts module with other modules you can add it to any tab you would like.

Special Features and Additional Information
There are two sections to the User Account module. The first section is used to edit
and update the user's information.

Here you are able to change your password and personal information, or unregister
from the portal completely. The bottom section holds all the available member
services. These services are set up by the admin when creating user roles. If the role
is set up as a public role it will show up in this section.

Standard DotNetNuke Modules

[98]

User Defined Table Module
User Defined Table allows you to create a custom data table for managing
tabular information.

Practical Purpose
This module can be used to display relevant user information.

Administration and Modification
When using the User Defined Table module, the first thing you must do is to decide
what columns you would like in your table. To do this, sign on as admin, hover
over the pencil icon next to the User Defined Table title, and click on Manage User
Defined Table.

Chapter 4

[99]

Click on Add New Column. This will present you with the dialog boxes necessary to
create a new column for your table.

Visible: If you don't want the column to be visible to non-admin roles,
uncheck the Visible checkbox.
Title: Enter a title for the column.
Type: Enter a type for the data. You can choose from Text, Integer,
True/False, Date, and Decimal. Select the appropriate type from the
dropdown. Data will be validated according to the type you select.

•

•

•

Standard DotNetNuke Modules

[100]

Sort Order: You may choose to sort any of the columns as Ascending or
Descending.

Click on the Save icon to save the current column to the database.

Repeat the previous steps for each of the columns you require. Use the arrows to
determine the order of the columns.

When you are finished adding columns, click Save Settings and Return.

After you have created your columns, you can add rows of data. To do this, make
sure you are signed on as admin, hover the cursor over the pencil icon next to the
User Defined Table title, and click on Add New Row.

Enter the data for the row. The data you enter will be validated from the type
you selected when setting up the columns. If the data you enter is not valid,
you will be shown an error message at the top of the page.
Click on Update to save your row.
Repeat these steps for additional rows.

Special Features and Additional Information
Since it is impossible to predict the different types of data that portal administrators
may want on their site, the User Defined Table module gives you the ability to
customize your site with data that is pertinent to you and your users.

XML/XSL Module
The XML/XSL module renders the result of an XML/XSL transform. The XML and
XSL files are identified by their UNC paths in the xmlsrc and xslsrc properties
of the module. The XML/XSL module includes an Edit page, which persists these
settings to the SQL database.

•

•

•

•

Chapter 4

[101]

Practical Purpose
You can use this module for presenting XML data in a readable format.

Administration and Modification
News feeds are not the only application to use XML to deliver data. Whether you
have a program on your local intranet or you are trying to access a web service, the
XML/XSL module allows you to translate the XML data to a readable format fit for
your web page.

Special Features and Additional Information
Like the User Defined module, the XML/XLS module gives you tremendous
flexibility on the type of information you can present to your users. Using standard
XML data, you can create different XLS style sheets to present the data differently for
different users.

Summary
In this chapter, we covered the standard modules that come prepackaged with
DotNetNuke. We covered their basic uses as well as situations they may be used in.
You will use these modules to build the content of your portal. In the next chapter
we will cover the administration options you have available to you as well as the
differences between the admin and host login.

Host and Admin Tools
Running a DotNetNuke site requires someone to administer the site. There are two
built-in roles for accomplishing the tasks associated with this. The host and admin
roles are very similar in nature and ability, but possess some important differences.
In this chapter, we will learn the following:

The difference between host and admin
How to access and use the admin tools
How to access and use the host tools

The Difference between Host and Admin
There has always been a bit of confusion about what differentiates the admin and
host roles. To understand the difference, you first have to look into how DotNetNuke
works. An implementation of DotNetNuke is not restricted to one portal.
DotNetNuke has the ability to run multiple portals from one database. This is where
the difference between the roles comes in.

The host has the responsibility of, for lack of a better word, hosting the portals.
The host will have access to any parent and/or child portals that are created, as
well as all the administrative functions. This user is sometimes called a superuser.
In previous versions of DotNetNuke, you were only allowed one superuser per
installation. Starting with DotNetNuke 3.0, and continuing with DotNetNuke 4.0,
you can add additional users with superuser abilities. This really helps to divide the
tasks needed to run a portal.

The admin role on the other hand is responsible for only one portal. There can be
more than one admin for every portal, but unlike the superusers, they only have the
ability to access one portal. While the superuser has access to both host tools and the
admin tools, the admin will only see the admin tools.

•

•

•

Host and Admin Tools

[104]

Admin Tools
When you sign on to your DotNetNuke portal using an admin login, you will see an
admin menu item appear on the menu bar. In this section we will cover these menu
items in detail.

The first admin menu item is Site Settings. The Site Settings cover a wide range of
services for a site. Because of this, we cannot cover this in one section of the book.
We will walk through each item on the Site Settings page and either describe its
functionality or point you to where you can find the information in this book.

Site Settings
Like the other admin screens we have seen, the Site Settings page lays out several
options that allow the administrator to customize the portal experience. These
settings are divided into three sections: Basic Settings, Advanced Settings, and
StyleSheet Editor. We will begin with the Basic Settings section.

Basic Settings
The Site Details are used to tailor your portal with the information that describes
what your site is used for:

Title: The title or name for your website. This will be displayed in the top bar
of your browser along with the current tab information.
Description and Key Words: Used by search engines when describing your
site. The key words should be entered in a comma-separated format.

•

•

Chapter 5

[105]

The Appearance section controls the basic look and feel of your site.

Logo: If you are using the default look of DotNetNuke, you can change the
logo from the DotNetNuke logo.gif to one of your choice.
Body Background: As an alternative to skinning your site, you can choose to
change the background of your site to any image you would like. To do this,
select the image from the dropdown. You will need to upload the image to
your site first. The ease of using skins makes this option almost obsolete.
Portal Skin, Portal Container, Admin Skin, and Admin Container: This
section allows you to select a skin for your portal. There are different sections
for Admin and Portal skins because Admin sections of the site usually use
only one frame and portal sections use three or more. You can find out more
about skinning your portal in Chapter 9.

•

•

•

Host and Admin Tools

[106]

Advanced Settings
The advanced settings are divided into three different sections: Page Management,
Payment Settings, and Other Settings. We will first look at Page Management.

Splash Page: Lets you choose from a dropdown a splash page that will load
before your site is shown (if you want your site to begin with a splash page).
Home Page: Determines where users are redirected to when they first
navigate to, register, or log in to your portal. The default is the Home page.
You may select any page on your portal from the dropdown. This is also
the page where the user will be re-directed once they have completed the
registration or the login process.
Login Page: This is the page where the user will be directed to when they
attempt to log in to the portal.
User Page: By default, administrators can't edit the user account information
page, but can place the User Accounts Module on a separate page along with
other modules of their choosing. To change the default user accounts page
to a different tab, you can select the page from the drop-down box. The user
will be re-directed to this page if he or she is registering on the site.
Home Directory: The physical path of your portal's location.

•

•

•

•

•

Chapter 5

[107]

The Payment Settings section, as the name implies, allows you to add payment
processing to your portal:

Currency, Payment Processor, Processor UserId, and Processor Password:
DotNetNuke gives you the ability to charge users for subscribing to a service
on your site (see Understanding DotNetNuke Roles in Chapter 3). The only
payment processor fully integrated into DotNetNuke at this time is PayPal.

The Other Settings section helps you customize your portal to fit the
company's identity.

Copyright: The copyright notice that appears on the footer of each page on
the portal. Change this to reflect your portal name.
Banner Advertising: Allows you to decide whether you want banner
advertising to be on a single site or on all the sites under the host.
Administrator: The default administrator for this site. You can select anyone
who has been added to the administrator role.
Default Language: Beginning with DotNetNuke 3.0, localization has been
integrated into the DotNetNuke portal. At the time of writing, only English
and German were available, but many more are on the way. You can set the
default language of your portal by selecting it from the dropdown.
Portal Time Zone: Allows you to localize your portal's time zone.

•

•

•

•

•

•

Host and Admin Tools

[108]

Stylesheet Editor
The Stylesheet Editor section is the final portion of the Site Settings.

Edit Style Sheet: This will allow you to edit the CSS stylesheet for the
DotNetNuke site. You can change the look and feel of the site by modifying
the styles located in the stylesheet. This section has been made somewhat
obsolete because of the new skinning solution for DotNetNuke.

Pages Menu
You will find a discussion on pages under the Understanding DotNetNuke Pages and
tabIDs section in Chapter 3.

Security Roles
You will find a discussion on Security roles under Understanding DotNetNuke Roles
in Chapter 3.

User Accounts
You will find a discussion of user accounts under User Accounts in Chapter 3.

•

Chapter 5

[109]

Vendors
You will find a discussion of vendors under the Host Tools section in this chapter.

Site Log
The site log gives you access to log files that keep track of most things that happen
on your portal.

To use the site report, select one of the following options from the dropdown, select a
Start Date and End Date, and click on the Display link.

Affiliate Referrals: You can track when users enter your site from sites that
are affiliated with you. To make this work, the link coming from the affiliate
site must add a querystring to the URL. For example, instead of pointing
the link to http://www.CoffeeConnections.net, you would point it to
http://www.CoffeeConnections.net?AffililiateID=108. You would
need to give different IDs to different affiliates. When someone logs in using
one of those links, it is recorded into the database and you then have the
ability to view reports of this data.
Detailed Site Log: This report gives you the name of the user, the date and
time they entered your site, the website they came from (referrer), the type of
browser they are using (user agent), their IP address (UserHostAddress), and
the name of the tab they entered on.
Page Popularity: This report gives you the Page Name, number of times the
page has been visited, and when the tab was last visited.
Page Views By Day, Week, Month, Hour: The report gives you summarized
views of how many visitors have been on your site.
Site Referrals: This report gives you the website that referred users to the
site (referrer), the number of times users came from the site, and the last time
a user was referred by the site. Unlike the Affiliate Referral, this tracks users
from any website, and not just those with which you have a relationship.

•

•

•

•

•

Host and Admin Tools

[110]

User Agents: This report gives the types of browsers (user agents) used to
browse your site as well as the number of times each browser was used.
User Frequency: This report gives you the number of times each user has
logged onto your site. It also displays the last time users logged on.
User Registration by Country: This report details what country your users
come from. The report depends entirely on the country the users select when
registering on your portal.
User Registrations by Date: This report sorts the registrations on your site by
the date the users registered. It provides you with the date and the number
that registered on each date.

Newsletters
As an administrator, you can send out bulk emails to your users. The Newsletter
section contains all that you need to send newsletters to your users.

User Roles: You can send an email to a select group of users based on the
user roles you set up for your portal. (For more information on user roles, see
Understanding DotNetNuke Roles in Chapter 3.)

•

•

•

•

•

Chapter 5

[111]

Email List: Optionally, you can send emails to email addresses in this email
list. You will need to make sure that you separate each email address with a
semi-colon.
Subject: This will appear on the subject line when the email is received.
Message: The body of the message that you want to send. You may use
either a Basic Text Box or the Rich Text Editor (FreeTextBox).

Attachment: You can add an attachment to be sent out in the email. Select
the attachment from the drop-down box or upload a new file. For more
information on uploading files, see the File Manager section in this chapter.
Priority: You can set the priority of your email to Low, Normal, or High.
Send Method: You have two choices on how to send your message. The first
method will send a separate email to each user that will be personalized with
their user name. The second method will send one email with all the users
entered into the BCC (Blind Carbon Copy) section of the email. The email
will not be personalized, and all users will see the same message.
Send Action: Selecting Synchronous will have your web page wait while the
emails are sent. Selecting Asynchronous will send the emails on a new thread
behind the scenes. Use this option when sending a personalized email.
Click Send Email when your message is complete.

•

•

•

•

•

•

•

•

Host and Admin Tools

[112]

File Manager
The file manager allows the administrator to upload files to the portal. This control
has been upgraded from previous versions. It gives the user much more flexibility
for working with files.

One of the nicer new features is the ability to upload files to folders other than the
default Portal Root folder.

Version 4.3 of DotNetNuke introduced the concept of secure folders. Thus there are
now three types of folder you can create.

Standard or Insecure File System — this is the normal folder type. Files in
this folder are accessible to anybody that knows the correct URL of the file.
Secure File System — this folder type also exists on the server's file system but
adds a level of security. This is achieved by renaming files that are uploaded to
the folder, by adding a protected file extension. This file extension stops
the server from serving the file to anybody who happens to know the correct
URL. The file can still be processed through the DotNetNuke File Handler,
thus achieving a level of security, in that only users with permissions to the

•

•

Chapter 5

[113]

file can access it. The only limitation in the use of this folder type is if a server
administrator decides to change the protected file extension used to be an
allowed file extension.
Database — this option creates a Database Folder. Files in a database folder
are actually stored in the database itself. This is the most secure type of
storage, as it requires the file to be processed through the DotNetNuke
File Handler.

To create a new folder, select the folder type from the drop-down list, type a name
into the folder box and click on the Add Folder icon (the folder icon with a down
arrow in the corner). This will then allow you to upload files to this folder. To upload
a new file to the portal, from within the file manager, click on the Upload icon.

Click on the Browse button to select the file to upload. This will open
the Choose File dialog box. Navigate to the location of the file you would
like to upload and select it. This will place the location of the file in the
browse textbox.
Select the folder where you would like to upload the file. Notice that the
folder we created in the last exercise is now available to us.
Click on the Add button to add the file to the list of files to be uploaded. The
file must first be added to the list before it can be uploaded to the portal.
Decompress ZIP Files: If you have selected a ZIP file to be uploaded to
your portal, you can either have the files inside the ZIP file extracted (box is
checked) or upload the ZIP file in its entirety (box is unchecked).
Repeat these steps for all files to be uploaded.
Click on Upload New File to finish the procedure.

•

•

•

•

•

•

•

Host and Admin Tools

[114]

On the right of the Folders toolbar is a Synchronize Folder icon as well as a checkbox
labeled Recursive. DotNetNuke stores information about each folder and file in the
database, and throughout the application if a list of folders or files is required the
list is generated from the information in the database, rather than the actual list of
files on the server's file system. Clicking this button ensures that any files that may
have been uploaded using an FTP (File Transfer Protocol) Client are added to the
database. Checking the Recursive checkbox before clicking the Synchronize icon will
cause any child folders of the current folder to also be synchronized.

On the bottom of the admin File Manager page are some options you can set to
allow other users to upload files.

Check the boxes next to the roles allowed to upload files.
Click on Update to save your settings.

•

•

Chapter 5

[115]

Recycle Bin
The Recycle Bin allows you to recover modules or tabs that you deleted.

To restore a page or module to its original location highlight it and click on
the restore icon (). Note, a module cannot be restored if the page it was on
has also been deleted. Restore the page before restoring the module.
To delete a page or module permanently, highlight it and click on the delete
icon ().

Log Viewer
The log viewer gives the administrator of the portal the ability monitor all
transactions that occur on the portal.

General Exception Errors will only show up in the log
viewer when you are signed on as a superuser (host).

•

•

Host and Admin Tools

[116]

The log will track many different pieces of information; among the most useful is the
Exception. To view the details for any log entry just click on the row. This will give
you a detailed explanation of the log entry.

This information is very helpful when attempting to track down errors generated by
your portal. To alert you to errors happening to other users, DotNetNuke gives you
the ability to send error notices to any email address. To set this up, expand the Send
Exceptions section at the bottom of the log viewer.

It is important to note that the emails will not be encrypted
when sent. So be careful if sensitive data is involved.

Chapter 5

[117]

Email Address: The email address of the person you would like the error
notification to be sent to. This will send the addressee the detailed error
message, including the stack trace. To send to more than one address,
separate them with a semi-colon (;).
Message: A message to accompany the exception.
Click on Send Selected Exceptions link to save your settings.

Skins
This section allows you to browse through all of the skins and containers that have
been uploaded to your portal. You can find a discussion on skins in Chapter 9.

Languages
Starting with DotNetNuke version 3.x you have the ability to localize your portal to
the language of you choice. Clicking on the Language Editor link from the context
menu or the bottom of the module will bring you to the following screen.

•

•

•

Host and Admin Tools

[118]

Currently only English and German are supported by default but many more
language packs have been created and are available from third parties.

Host Tools
To access the host tools, you will first need to log on as the host for your portal. Once
you have done this you will see the host menu. We will cover each of the tools that
are available to you as a superuser.

Host Settings
The first menu item on the host menu is Host Settings. They are separated into
Basic Settings and Advanced Settings. The host settings cover a very wide range of
services for your portal. Because of this, we will walk through each item on the host
settings page and either describe its functionality or point you to where you can find
the information in this book.

Basic Settings
As we have seen when we looked at the admin Site Settings, the Basic Settings on
the Host Settings page give you the ability to customize your hosting environment.

The Site Configuration section covers information about your current
implementation of DotNetNuke, like the DNN Version Number, .NET Framework
Version Number, Data Provider, Host Name, and so on.

The Host Details section covers the contact information for your portal.

Chapter 5

[119]

Host Portal: The portal that serves as the host for all other parent or child
portals that you create.
Host Title: The text for the hyperlink that is displayed. The Host Title is
located on the footer of every tab in your portal.
Host URL: The location to which the user will be taken to when the Host
Title hyperlink is clicked.
Host Email: The email address used when sending out certain
administration emails.

The Appearance section controls the basic look and feel of the site:

Show Copyright Credits: Unchecking this box will remove the DotNetNuke
copyright from the footer and the (DNN 4.X) from the IE header.
Use Custom Error Message: DotNetNuke uses a custom provider for its
error handling. If you would like to turn this feature off and use the default
ASP.NET error handling, uncheck this box.
Host Skin, Host Container, Admin Skin, and Admin Container: This
section allows you to select a skin for your portal. There are different sections
for admin and portal skins, because admin sections of the site usually use
only one frame and portal sections utilize three or more. You can find out
more about skinning your portal in the Chapter 9.

•

•

•

•

•

•

•

Host and Admin Tools

[120]

Payment Settings: This section allows you to set up a payment processor
for your site and gives you the ability to charge for hosting multiple
DotNetNuke sites.

Advanced Settings
The Advanced Settings section is used to make configuration changes to your portal
to enable it to work in certain restricted environments.

Checking the Use Friendly Urls box (default) will create URLs that are search-engine
friendly. Search engines, for the most part, prefer URLs without query strings. This
option will create the URL in a friendlier version, allowing your site to perform
better on search sites.

•

Chapter 5

[121]

The screenshot above displays a list of Registered Expressions that are used to
configure how to rewrite the Urls. A discussion of Regular Expressions is beyond the
scope of this book, but if you do know how to write regular expressions then you can
provide very precise control over how this feature works.

Some intranet or Internet configurations need to use a proxy server to allow modules
to make web requests to the Internet. An example of this is the RSS NewsFeed
module, which requests data from a news feed source on the Internet. This next
section allows you to configure DotNetNuke to use a proxy server:

Proxy Server: The IP address of the proxy server
Proxy Port: The port that the proxy server uses to fulfill web requests
Proxy Username: The username needed to connect through the proxy server
Proxy Password: The password needed to connect through the proxy server
Web Request Timeout: The time, in seconds, for which DotNetNuke will
attempt to fulfill a web request

For the email functionality to work on your portal, you will need to configure your
SMTP (Simple Mail Transfer Protocol) server. Once the correct information has been
entered, you can click on the Test link to determine whether it is working. If the test
succeeds, you will receive a message that says Email Sent Successfully. If there is
an error, it will say Could not access 'CDO.Message' object. This is a generic error
message; look in the log viewer for specific details.

•

•

•

•

•

Host and Admin Tools

[122]

SMTP Server: The address of your mail server. This can be obtained from
your ISP. It is usually your domain name with mail replacing the www.
SMTP Authentication: The type of authentication to use for your site.
Starting with version 4.0 you now have the ability to use Active Directory to
manage your users.
SMTP Username: The username for your SMTP server, if required.
SMTP Password: The password for your SMTP server if required.

The Other Settings section is set up to hold all the information that does not fit into
any particular group.

Control Panel: When signed on as host or admin, you will see a control panel
at the top of the screen. If you prefer a slimline version of the control panel,
you can choose the Classic option.

•

•

•

•

•

Chapter 5

[123]

Site Log Storage: You can select whether you would like the site logs to be
stored in your database or in the file system.
Site Log Buffer (Items): The site log buffer is a setting for the number of
Sitelog records that have to be reached before DotNetNuke writes them
to the database. They are held in memory before they are written to the
database. This can help to speed things up on a busy site. Be careful when
increasing this number, because if the application is reset you will loose the
records in the buffer. Setting the number to 1 before you reset the application
will prevent this from happening.
Site Log History (Days): This tells the system how many days of history to
keep for your site log. The default is 60 days.
Disable Users Online and Users Online Time (Minutes): This setting allows
the administrator to disable users and show the time period for which users
have been online (in minutes) respectively.
Auto-Unlock Accounts After (Minutes): If a user is locked out because of
successive unsuccessful logins, they will have to wait X number of minutes
until they can attempt again.
File Upload Extensions: This setting restricts the files that users are able to
upload to your site. This is done for security purposes so that users are not
able to upload malicious script files to the server. Separate file extensions
(without a period) by using a comma.
Skin Upload Permissions: This setting determines who has the authority to
upload new skins to the site. Setting it to Portal allows portal administrators
to upload skins.
Module Caching Method: This setting allows you to decide weather to use
memory caching or disk caching for your portal.
Performance Settings: The performance settings are used to speed up the
rendering of your portal. Caching stores a representation of the data contained
in your page. This means that subsequent attempts to access this page (even by
other users) will show the same data. Setting this to Heavy Caching will keep
the cached data the longest. To clear the cache click on the Clear link.
Authenticated Cacheability: This setting controls how the output content
is cached. Caching can improve performance as either the client or the
server retains a copy of the content in its buffer. For the most part this
setting should be left at its default value. Only host users with considerable
experience configuring web-servers should modify this setting. The settings
available include:

NoCache — no client-side caching – the browser should fetch
a new copy each request.

•

•

•

•

•

•

•

•

•

•

°

Host and Admin Tools

[124]

Public — allows the output to be cached by both the client
and server (including proxy Servers).
Private — allows the output to be cached on both the client
and server (but not Proxy Servers).
Server — the output is only cached on the server.
ServerAndNoCache (default) — a comination of the Server
and NoCache settings.
SerberAndPrivate — a combination of the Server and private
settings.

Scheduler Mode: This setting is used to let you set how the scheduler
is activated and used. You can choose between Timer Method, Request
Method, and Disabled.
Enable Event Log Buffer: This setting allows you to decide if you want the
event log to be stored in memory or to be stored to disk.
Help URL: The URL used for online help your site will provide. By default it
is set to the DotNetNuke online help.
Enable Module Online Help: This option allows you to decide if you would
like to use the DotNetNuke online help for your module help. Otherwise you
will have to provide this in each module setting section.

The last item on the Host Settings tab is the Upgrade Log For Version section. When
you upgrade DotNetNuke from one version to the next, it keeps a log file. To view
the log files for a particular version, select the version from the dropdown and
click on Go.

Portals
For a discussion on running multiple portals, please refer to Chapter 11 on Creating
Multiple Portals.

Module Definitions
For a discussion of modules and module definitions, please see Chapter 7 Custom
Module Development.

°

°

°
°

°

•

•

•

•

Chapter 5

[125]

File Manager
The file manager under the host settings functions just like the file manager under
the Admin menu (see the Admin Tools section in this chapter). The only difference is
that the host, by default, is able to upload not only content files, skin packages, and
container packages, but also custom modules.

Vendors
DotNetNuke comes equipped with vendor and banner advertising integration. To
set up a new vendor for your site, click on the Add New Vendor link at the bottom
of the page:

Fill out the vendor information and click on Update to save the vendor. Once you
have saved the vendor information, you can add banners to this vendor by editing
the vendor record.

To add a banner to a vendor, edit the vendor, open the Banner Advertising section,
and click on Add New Banner:

Host and Admin Tools

[126]

This allows you to add the specifications necessary to associate banner ads with
your vendors.

Banner Name: Enter the name of the banner. This can be anything you want.
Make it descriptive to help organize your banners.
Banner Type: This refers to the size of the banner. Banners can be anything
from large skyscraper banners to tiny micro banners.
Banner Group: To better organize your banners, type in a banner group.

The next section determines where the banner ad is located. You can choose between
a file on your site and a URL to a file located on another site.

Once you make your selection, you will be able to point to the correct file. Select the
location and the name of the banner ad file:

You can set the Width and Height of the banner in this section.

•

•

•

Chapter 5

[127]

If you selected URL, you would need to enter the URL of the file.

Next you will want to determine what happens when the user clicks on a banner.

Text/Script: The alternative text to be displayed with the banner.
URL: The URL that users will be redirected to when they click on a banner
ad. If no URL is listed here, the URL in the vendor setup will be used.

CPM/Cost: The amount you will charge for every 1000 impressions. An
impression is how many times the banner is displayed on the site.
Impressions: The number of impressions the vendor has paid for.
Start Date and End Date: Start and end dates for the ad campaign.
Criteria: Used to determine whether to stop the ads after the date has expired
or the number of impressions has been reached.

When you are done adding the banner details, click on the Update link to save
your data.

•

•

•

•

•

•

Host and Admin Tools

[128]

To view your banners on the portal, you will need to add a banner module to one of
your pages. Once you have added a banner module, select Banner Options from the
module drop-down menu.

To edit the banner, enter the Banner Source and Banner Type to display your
banner. Since the vendor was created from the Host tools, you will need to select
Host for the source. By using the information you used to set up your banner in
the vendor section, you can decide the types or groups of banners you would like
displayed. When you are finished adding the information, click on the Update link to
save your settings.

Chapter 5

[129]

SQL
Use the SQL host option to run simple SQL queries against the DotNetNuke database.

Simply type in your SQL statement and click on the Execute link. You will then be
presented with a simple tabular representation of your data. Since this is part of the
DotNetNuke framework, you can also run scripts that use the <objectQualifier>
and <databaseOwner> tags by checking the Run As Script checkbox.

Schedule
With the addition of users online and site log in DotNetNuke 2.0, there arose a need
to schedule recurring tasks. To address this, the core team developed the scheduler.
The scheduler allows you to perform recurring actions on the portal.

Languages
Starting with DotNetNuke version 3.x, and continuing in version 4.x, you can
localize your portal to the language of you choice. Currently only English and
German are supported, but many more are on the way.

Search Admin
You may have noticed in the upper right-hand corner of your screen, a box with a
Search button.

Host and Admin Tools

[130]

DotNetNuke gives the portal visitors the ability to search the portal for relevant
information. The administration for the functionality is found on the Host menu.

In this section, you can set parameters for the search engine to follow. You can set
the maximum and minimum word length to follow as well as decide if you want to
ignore common words (and, or, the, etc.) and/or numbers. We will look further into
the search functionality when we discuss custom modules in Chapter 7.

Lists
Many of the controls in DotNetNuke use lists to populate the information need to
fulfill a task. A good example of this is the user account registration control.

When users register for your site, they are presented with drop-down lists that allow
them to select their country and region/state. This section allows the Host to add
items or remove items from the list. This allows you to customize the items show in
the list.

Chapter 5

[131]

Superuser Accounts
In previous versions of DotNetNuke, only one Host (superuser) account was
available. This restriction was eliminated version 3.0 onwards with the addition of
the SuperUser section. From here, you can create additional user accounts that will
have the same abilities as the host.

Remember that these users will have the freedom to control access to every part of
your portal, from creating portals to deleting users, so be careful when issuing these
sign-ons.

Extra Options on the Admin Menu
When you are signed on as a superuser, you may notice a few extra items on the
Admin menu. If you look at the Site Settings, you will see an extra section called
Host Settings that allows a superuser to control certain aspects of the portal. In
addition, if you view the Log Viewer on the Admin menu when signed on as a
superuser, you will see exceptions generated by the portal. These exceptions are
logged here by the framework, but are only available to the superuser. Finally, at the
bottom of the Site Settings pane, you will see an extra section for Portal Aliases.

Host and Admin Tools

[132]

The portal alias of the site must be located in this section. When you first set up your
site on a local machine, it will be added for you, but when you upload your site to
a remote server, you will need to add the URL of your site to this section. We will
cover deploying to a remote server in Chapter 10.

Common Tasks
So far we have used the icon bar at the top of the portal to work with pages and
to install modules. The last section of the icon bar is used to perform common
administrative tasks.

These are shortcuts to common tasks that you can find on the administrative menus
and are meant to help you be more productive. The only item on the Common Tasks
bar that we have not yet talked about is the Wizard. We will discuss this in more
detail in Chapter 11 on running multiple portals.

Summary
This chapter has covered a variety of information. It should have given you, as the
administrator of a DotNetNuke portal, the skills needed to maintain your website.
In the next chapter, we will delve deep into the core of the DotNetNuke architecture
and find out what really makes our portal run.

Understanding the
DotNetNuke Core

Architecture
In this chapter, we will be exploring the core functionality of the DotNetNuke
architecture. We will be using the source code version of DotNetNuke 4.3.3 that can
be downloaded from the DotNetNuke website. We will start with an overview of
the architecture, touching on key concepts employed by DotNetNuke. After this, we
will examine some of the major sections that make up the framework. Finally, after
we learn about the objects that make up the core, we will follow a request for a page
through this process to find out how each page is dynamically created.

Architecture Overview
As opposed to traditional web applications that may rely on a multitude of web
pages to deliver content, DotNetNuke uses a single main page called Default.
aspx. The content for this page is presented dynamically by using a tabID value to
retrieve from the DotNetNuke database the skins and modules needed to build the
page requested. Before we move on, we should discuss what is meant by a tab and a
page. As you read this chapter, you will notice the word tab is sometimes used when
referring to pages in your DotNetNuke portal. In the original IBuySpy application,
pages were referred to as tabs because they resembled tabs when added to the page.

Understanding the DotNetNuke Core Architecture

[134]

This continued in the original versions of the DotNetNuke project. Starting with
version 3.0, and continuing with version 4.3.3, an effort has begun to rename most of
these instances to reflect what they really are: pages. Most references to "tabs" have
been changed to "pages", but the conversion is not complete. For this reason, you will
see both—tabs and pages—in the database, in the project files, and in this text. We
will use these terms interchangeably throughout this text as we look into the core
architecture of DNN.

We will begin with a general overview of what happens when a user requests a page
on your DotNetNuke portal. The process for rendering a page in DotNetNuke works
like this: a user selects a menu item; this calls the Default.aspx page, passing the
tabid parameter in the querystring to let the application identify the page being
requested. The example http://www.dotnetnuke.com/Default.aspx?tabid=476
demonstrates this.

DotNetNuke 3.2 introduced something called URL
Rewriting. This takes the querystring shown above and
rewrites it so that it is in a format that helps increase
search-engine hits. We will cover the HTTP Module that is
responsible for this later in this chapter. The rewritten URL
would resemble http://localhost/DotNetNuke/calhost/DotNetNuke/
tabid/476/Default.aspx/Default.aspx.

While referring to URLs in this chapter we will be using the
non-rewritten version of the URL. URL Rewriting can be
turned off at the Host Settings page.

The querystring value (?tabid=476) is sent to the database, where the information
required for the page is retrieved.

The portal that the user is accessing can be determined in a number of ways, but as
you can see from the Tabs table, each page/tab contains a reference to the portal

Chapter 6

[135]

it belongs to in the PortalID field. Once the server has a reference to the page that
the user requested (using the tabID), it can determine what modules belong on
that page.

Although there are many more tables involved in this process, you can see that
these tables hold not only the page and modules needed to generate the page, but
also what pane to place them on (PaneName) and what container skin to apply
(ContainerSrc).

Understanding the DotNetNuke Core Architecture

[136]

All of this information is returned to the web server, and the Default.aspx page is
constructed with it and returned to the user who requested it along with the required
modules and skins.

Now, this is of course a very general overview of the process, but as we work
through this chapter, we will delve deeper into the code that makes this process
work, and in the end show a request work its way through the framework to deliver
a page to a user.

Diving into the Core
There are over 80,000 lines of code in the DotNetNuke application. There is no
practical (or even possible) way to cover the entire code base. In this section, we
will go in depth into what I believe are the main portions of the code base: the
PortalSettings as well as the companion classes found in the portals folder; the
Web.Config file including the HTTP Modules and Providers; and the Global.aspx
and Globals.vb files.

We will start our discussion of the core with two objects that play an integral part
in the construction of the architecture. The Context object and the PortalSettings
class will both be referred to quite often in the code, and so it is important that you
have a good understanding of what they do.

Using the Context Object in Your Application
ASP.NET has taken intrinsic objects like the Request and the Application objects
and wrapped them together with other relevant items into an intrinsic object
called Context.

The Context object (HttpContext) can be found in the System.Web namespace.
Below you will find some of the objects that make up the HttpContext object.

Title Description
Application Gets the HttpApplicationState object for the current HTTP request.
Cache Gets the Cache object for the current HTTP request.
Current Gets the HttpContext object for the current HTTP request.
Items Gets a key-value collection that can be used to organize and share

data between an IHttpModule and an IHttpHandler during an
HTTP request.

Request Gets the HttpRequest object for the current HTTP request.
Response Gets the HttpResponse object for the current HTTP response.

Chapter 6

[137]

Title Description
Server Gets the HttpServerUtility object that provides methods used in

processing web requests.
Session Gets the HttpSessionState instance for the current

HTTP request.
User Gets or sets security information for the current HTTP request.

Notice that most of the descriptions talk about the "current" request object, or the
"current" response object. The Global.aspx file, which we will look at soon, reacts
on every single request made to your application, and so it is only concerned with
whoever is "currently" accessing a resource.

The HttpContext object contains all HTTP-specific information about an individual
HTTP request. The HttpContext.Current property in particular can give you
the context for the current request from anywhere in the application domain. The
DotNetNuke core relies on the HTTPContext.Current property to hold everything
from the Application Name to the Portal Settings and through this makes it available
to you.

The PortalSettings Class
The portal settings play a major role in the dynamic generation of your pages and
as such will be referred to quite often in the other portions of the code. The portal
settings are represented by the PortalSettings class, which you will find in the
Components\Portal\PortalSettings.vb file. As you can see from the private
variables in this class, most of what goes on in your portal will at some point need
to access this object. This object will hold everything from the ID of the portal to the
default language, and as we will see later, is responsible for determining the skins
and modules needed for each page.

Private _PortalId As Integer
Private _PortalName As String
Private _HomeDirectory As String
Private _LogoFile As String
Private _FooterText As String
Private _ExpiryDate As Date
Private _UserRegistration As Integer
Private _BannerAdvertising As Integer
Private _Currency As String
Private _AdministratorId As Integer
Private _Email As String
Private _HostFee As Single
Private _HostSpace As Integer
Private _AdministratorRoleId As Integer

Understanding the DotNetNuke Core Architecture

[138]

Private _AdministratorRoleName As String
Private _RegisteredRoleId As Integer
Private _RegisteredRoleName As String
Private _Description As String
Private _KeyWords As String
Private _BackgroundFile As String
Private _SiteLogHistory As Integer
Private _AdminTabId As Integer
Private _SuperTabId As Integer
Private _SplashTabId As Integer
Private _HomeTabId As Integer
Private _LoginTabId As Integer
Private _UserTabId As Integer
Private _DefaultLanguage As String
Private _TimeZoneOffset As Integer
Private _Version As String
Private _DesktopTabs As ArrayList
Private _ActiveTab As TabInfo
Private _PortalAlias As PortalAliasInfo

The Portal class itself is simple. It is filled by using the only instance method of
the class, the GetPortalSettings method. The method is passed a tabID and a
PortalAliasInfo object. You already know that the tabID represents the ID of
the page being requested, but the PortalAliasInfo is something new. This class
can be found in the same folder as the PortalSettings class and contains the
following information:

PortalID: This is the ID the portal is assigned in the database.
PortalAliasID: Since each portal can have more that one alias, this ID
references the specific alias used for the portal.
HTTPAlias: This is the actual alias used to access the portal
(www.MyPortal.com, localhost/dotnetnuke, etc.).

From this object, we can retrieve all the information associated with the portal. If
you look past the initial declarations, you can see that the portal settings are saved in
cache for the time that is specified in on the Host Settings page.

A drop-down box on the Host Settings page (admin\host\hostsettings.ascx) is
used to set the cache.

No Caching: 0
Light Caching: 1
Moderate Caching: 3
Heavy Caching: 6

•

•

•

•

•

•

•

Chapter 6

[139]

The value in this dropdown ranges from 0 to 6; the code above takes the value set
in the dropdown and multiplies it by 20 to determine the cache duration. Once the
cache time is set, the method checks if the portal settings object already resides there.
Retrieving these settings from the database for every request would cause your site
to run slowly, so placing them in a cache for the duration you select helps increase
the speed of your site.

 PortalId = objPortalAliasInfo.PortalID
' get portal settings
 objPortal = CType(DataCache.GetPersistentCacheItem _
 ("GetPortalSettings & PortalId.ToString, _
 GetType(PortalInfor)), PortalInfo)

If the object is not already cached, it will use the PortalId passed to the GetPortal
method to retrieve the portal settings from the database. This method is located in
the PortalController class (components\Portal\PortalController.vb) and is
responsible for retrieving the portal information from the database.

If objPortal Is Nothing Then
 ' get portal settings
 objPortal = objPortals.GetPortal(PortalId)

This will fill a PortalInfo object (components\Portal\PortalInfo.vb), which, as
the name suggests, holds the portal information. This object in turn is used to create
the PortalSettings object. In this section (code not shown) some custom properties
are set, the application version is determined, and the administrator email address is
discovered. Once this is complete, the object is then cached.

' cache object
If intCacheTimeout <> 0 Then
 DataCache.SetCache("GetPortalSettings" & PortalId.ToString, _
 objPortal, TimeSpan.FromMinutes(intCacheTimeout), True)
End If

After the portal settings are saved, the tabs are retrieved. Like the portal settings
themselves, the tabs are saved in cache to save resources. In the get portal tabs
section, the code will loop through all of the non-host tabs on the site.

' get portal tabs
 arrTabs = CType(DataCache.GetCache("GetTabs" & _
 Me.PortalId.ToString),
ArrayList)
 If arrTabs Is Nothing Then
 arrTabs = objTabs.GetTabs(Me.PortalId)
 If Not arrTabs Is Nothing Then

Understanding the DotNetNuke Core Architecture

[140]

After all the portal tabs are iterated through and added to an ArrayList, the host
tabs are collected. Again, you can change the default behavior of the host tabs in
this section.

' host tab
 objTab = objTabs.GetTab(Me.SuperTabId)
 If Not objTab Is Nothing Then
 ' set custom properties
 objTab.StartDate = Date.MinValue
 objTab.EndDate = Date.MaxValue
 objTab.Url = NavigateURL(objTab.TabID, Null.NullString, _
 "portalid=" & objTab.PortalID.ToString)
 arrTabs.Add(objTab)
 End If

' host child tabs
 Dim arrHostTabs As ArrayList = _
 objTabs.GetTabsByParentId
 (Me.SuperTabId)

 If Not arrHostTabs Is Nothing Then
 For Each objTab In arrHostTabs
 ' set custom properties
 objTab.StartDate = Date.MinValue
 objTab.EndDate = Date.MaxValue
 objTab.Url = NavigateURL _
 (objTab.TabID, Null.NullString, "portalid=" & _
 objTab.PortalID.ToString)
 arrTabs.Add(objTab)
 Next
 End If

The method ends by taking the lists of tabs that were just created and uses them to
call the GetSkin and GetPortalTabModules, which will apply both the skins and
modules that are associated with each tab. You will see the PortalSettings class
referenced many times as we work through the rest of the code, so gaining a good
understanding of how this class works will help you as you move along.

Working with the Configuration Files
Next, we will continue our exploration of the DotNetNuke architecture by looking
at a couple of files in the main DotNetNuke folder. The DotNetNuke source code
version download is broken up into many different projects. This has been done so
that you can open up only the files that you are concerned with. In this section, we

Chapter 6

[141]

will work with the website project along with the Providers used by the core. If you
open up the solution file in the source code download, you will find that the website
project will start with http://localhost/DotNetNuke.

Expand the website project to expose two very important files, the web.config file,
and the Global.aspx file. You will need to rename the release.config file to web.
config before we begin.

If this is the first time you have worked with the download,
you will notice that there is no web.config file. The
web.config file will originally be called release.
config. This has been done to help ensure that during an
upgrade you don’t overlay the original web.config. Since
DotNetNuke uses encryption keys to store user passwords
in the database, if you overlay this file your users will not
be able to log in.

The web.config File
The web.config file is an XML-based file that contains configuration information
specific to your web application. At run time, ASP.NET stores this configuration
information in cache so that it can be easily retrieved by your application. If changes
are made to this file, ASP.NET will detect the changes and automatically apply the
new configuration. The web.config file is very extensible: it allows you to define
new configurations and write handlers to process them. DotNetNuke takes full
advantage of this ability, as we will discover as we move through this file.

We will only touch on the areas of the web.config file that are specifically used
in DotNetNuke. In the DotNetNuke project, open up the web.config file. The first
section in the file is the local configuration settings. Here we find the settings for our
provider models. For our providers to work, we need a configuration section and
configuration section handler.

Configuring the Providers Used in DotNetNuke
<configSections> is broken into two separate groups. The first group,
<dotnetnuke>, describes the providers that are available to the application.

<sectionGroup name="dotnetnuke">
 <section name="data" requirePermission="false" type="DotNetNuke.
Framework.Providers.ProviderConfigurationHandler,DotNetNuke"/>
 <section name="logging" requirePermission="false"
type="DotNetNuke.Framework.Providers.ProviderConfigurationHandler,
DotNetNuke"/>

Understanding the DotNetNuke Core Architecture

[142]

 <section name="scheduling" requirePermission="false"
type="DotNetNuke.Framework.Providers.ProviderConfigurationHandler,
DotNetNuke"/>
 <section name="htmlEditor" requirePermission="false"
type="DotNetNuke.Framework.Providers.ProviderConfigurationHandler,
DotNetNuke"/>
 <section name="navigationControl" requirePermission="false"
type="DotNetNuke.Framework.Providers.ProviderConfigurationHandler,
DotNetNuke"/>
 <section name="searchIndex" requirePermission="false"
type="DotNetNuke.Framework.Providers.ProviderConfigurationHandler,
DotNetNuke"/>
 <section name="searchDataStore" requirePermission="false"
type="DotNetNuke.Framework.Providers.ProviderConfigurationHandler,
DotNetNuke"/>
 <section name="friendlyUrl" requirePermission="false"
type="DotNetNuke.Framework.Providers.ProviderConfigurationHandler,
DotNetNuke"/>
 <section name="caching" requirePermission="false"
type="DotNetNuke.Framework.Providers.ProviderConfigurationHandler,
DotNetNuke"/>
 <section name="authentication" requirePermission="false"
type="DotNetNuke.Framework.Providers.ProviderConfigurationHandler,
DotNetNuke"/>
 <section name="members" requirePermission="false"
type="DotNetNuke.Framework.Providers.ProviderConfigurationHandler,
DotNetNuke"/>
 <section name="roles" requirePermission="false"
type="DotNetNuke.Framework.Providers.ProviderConfigurationHandler,
DotNetNuke"/>
 <section name="profiles" requirePermission="false"
type="DotNetNuke.Framework.Providers.ProviderConfigurationHandler,
DotNetNuke"/>
</sectionGroup>

This custom configuration section handles the different providers integrated into the
framework. Providers give the developer the ability to have a pluggable architecture.
The data provider, for example, lets us decide which data store to use (Access or SQL
Server), while the logging provider allows us to decide what logger we would like
to use for our web application. The framework separates the act of logging from the
type of logger being used. To change the logging, or any of the other providers, you
would need to write your own provider to handle the functions as you see fit.

The first declaration states the name that you will use when you refer to this section
in your configuration file. In other words, this is the tag you need to look for in your
web.config file in order to see the providers that will handle this functionality:

name="data"

Chapter 6

[143]

It also includes the type, which is the configuration section handler. This should
include the Global Assembly Cache location information for the class.

type="DotNetNuke.Framework.Providers.ProviderConfigurationHandler,
 DotNetNuke"

The type declaration follows the following configuration.

type="configuration section handler class, assembly"

The providers serve some of the following functions:

The data Provider: Gives the ability to decide which datastore type you
would like to use. The DotNetNuke framework is prepackaged with SQL
Server and Access (default), but there are others, such as MySQL and Oracle,
which are in development by third-party providers.
The logging Provider: Used for all logging associated with the core
framework. This handles, among other things, exception handling.
The scheduling Provider: One of the newer features, along with the logging,
this provider helps to facilitate reoccurring functionality.
The htmlEditor Provider: The default HTML WYSIWYG editor is the
FreeTextBox. This configuration setting allows you to substitute other rich
textbox components for the FreeTextBox.
The searchIndex Provider: The default provides, if implemented, the ability
to search the content of the modules located on your portal.
The searchDataStore Provider: The default provides the ability to search
for information inside the datastore you have selected as your data provider.
The friendlyUrl Provider: The default provides the ability to rewrite the
URL in a manner that is friendly to search engines.

Handling the Providers
The configuration section only tells the application where each provider will be
handled. The configuration section has a companion section in the web.config file.
This defines the configuration section handlers. You will find two handler sections in
the web.config file, one for each group we described above. The first handler section
we will look at is the <dotnetnuke> section. This corresponds to the sectionGroup
name in the configuration section.

The <dotnetnuke> Group
Within the <dotnetnuke> section, we see the handlers for our individual providers,
beginning with the HTML provider. The first node in this section defines the default

•

•

•

•

•

•

•

Understanding the DotNetNuke Core Architecture

[144]

provider. The defaultProvider attribute is advised, but is optional. If it's left out,
the first provider in the list will serve as the default. The default as well as the only
provider for the htmlEditor is the Ftb3HtmlEditorProvider.

The next node starts the provider section; it is followed by a <clear/> node. This
node is used to clear out the providers from the configuration settings that may have
been added in the machine.config file. The final node is the <add/> node. This node
is used to add our provider to the list of available providers. This list is used by the
DotNetNuke core to tell it what is handling each section that uses a provider. Inside
this node, we need to define a few attributes:

name: This is the friendly name of our provider. This will be the name of the
class you create to handle this functionality.
Type: This again follows the [namespace.class],[assembly name] format.
providerPath: This attribute points to where the provider class can be found
within the application structure.

After the end of the <add/> node, the structure is completed with the closing tags for
add, providers, and htmlEditor.

<dotnetnuke>
 <htmlEditor defaultProvider="FtbHtmlEditorProvider">
 <providers>
 <clear/>
 <add name="Ftb3HtmlEditorProvider"
 type="DotNetNuke.HtmlEditor.Ftb3HtmlEditorProvider,
 DotNetNuke.Ftb3HtmlEditorProvider"
 providerPath="~\Providers\HtmlEditorProviders\
 Ftb3HtmlEditorProvider\" toolbarStyle="Office2003"
 enableProFeatures="false" spellCheck=""/>
 </providers>
 </htmlEditor>

This is followed by the <navigationControl> handler. This allows you to decide
what control you would like to use for your menu navigation. The default is
SolpartMenu.

The next two configuration handlers are for the search facility built into the
DotNetNuke framework. The searchIndex and searchDataStore follow the same
configuration as the htmlEditor. We will look further into these providers when we
create a custom module in Chapter 7.

This is followed by the data provider.

<data defaultProvider="SqlDataProvider">
 <providers>

•

•

•

Chapter 6

[145]

 <clear/>
 <add name="SqlDataProvider" _
 type="DotNetNuke.Data.SqlDataProvider, _
 DotNetNuke.SqlDataProvider"
 connectionStringName="SiteSqlServer"
 upgradeConnectionString=""
 providerPath="~\Providers\DataProviders\SqlDataProvider\"
 objectQualifier=""
 databaseOwner="dbo"/>
 </providers>
</data>

The data provider has some additional attributes we did not see in the
HTML provider.

connectionStringName: This provides the name of the connection string
you will use for your portal. This string can be found in the <appSettings>
section of the web.config file.
upgradeConnectionString: This connection string is used for installation
and updates. It is only used to run the upgrade scripts. This can be used to
run the updates using a database user with more privileges.
objectQualifier: The objectQualifier is used to allow multiple
installations to run inside the same database. If for example you added CC1 in
the object qualifier before you installed DotNetNuke, all the tables and stored
procedures would be prefixed with CC1. This would allow you to run another
DotNetNuke implementation inside the same database by setting the object
qualifier in the second one to CC2. Inside the database, you would have two
of every stored procedure and table. Each pair would be named according to
the pattern CC1_users, CC2_users, which would keep them separate.
databaseOwner: The databaseOwner is set to dbo. This is the default
database owner in SQL Server. Some hosting companies will require you to
change this to reflect your user.

The next configuration handler is for the logging provider. The logging provider
handles all logging, including errors, associated with the portal.

<logging defaultProvider="DBLoggingProvider">
 <providers>
 <clear/>
 <add name="XMLLoggingProvider"
 type="DotNetNuke.Services.Log.
 EventLog.XMLLoggingProvider,
 DotNetNuke.XMLLoggingProvider"
 configfilename="LogConfig.xml.resources"

•

•

•

•

Understanding the DotNetNuke Core Architecture

[146]

 providerPath="~\Providers\LoggingProviders\
 XMLLoggingProvider\"/>
 <add name="DBLoggingProvider"
 type="DotNetNuke.Services.Log.
 EventLog.DBLoggingProvider.DBLoggingProvider,
 DotNetNuke.Provider.DBLoggingProvider"
 providerPath="~\Providers\LoggingProviders\
 Provider.DBLoggingProvider\"/>
 </providers>
 </logging>

This is followed by the handler for the DNNScheduler:

 <scheduling defaultProvider="DNNScheduler">
 <providers>
 <clear/>
 <add name = "DNNScheduler"
 type = "DotNetNuke.Scheduling.DNNScheduler,
 DotNetNuke.DNNScheduler"
 providerPath = "~\Providers\SchedulingProviders\
 DNNScheduler\"
 debug="false"
 maxThreads="-1"
 />
 </providers>
 </scheduling>
</dotnetnuke>

The scheduler has a few additional attributes we have not seen so far.

debug: When this is set to true, it will add additional log entries to aid in
debugging scheduler problems.
maxThreads: This sets the maximum number of thread-pool threads to be
used by the scheduler (1-10). Setting it to -1 tells the scheduler to determine
this on its own.

The next handler for this section is for handling friendly URLs. We will be
looking further into this functionality when we discover the HTTP Modules that
DotNetNuke employs later in this chapter.

<friendlyUrl defaultProvider="DNNFriendlyUrl">
 <providers>
 <clear/>
 <add name="DNNFriendlyUrl" type="DotNetNuke.Services.Url.
 FriendlyUrl.DNNFriendlyUrlProvider,
 DotNetNuke.HttpModules.UrlRewrite"

•

•

Chapter 6

[147]

 includePageName="true"
 regexMatch="[^a-zA-Z0-9 _-]"/>
 </providers>
 </friendlyUrl>

The final handler for this section is for handling authentication. We will also be
looking further into this functionality later in this chapter.

The <system.web> Group
The <system.web> section of the web.config file is where most of the configuration
of your ASP.NET web application is placed. We will be discussing most of the
information contained in this section (including the HTTP Modules) but for now,
we'll concentrate on the providers that are defined in this section. As we saw in
the <dotnetnuke> section earlier, here we see the information needed to handle
our provider. The first provider we find in the <system.web> section is the
AspNetSqlMembership Provider. The setup is similar to those we have already seen
with the exception of the additional attributes.

You will also find the members, roles, and profile, providers in the
<system.web> section of the web.config. They all follow the same pattern as
the Membership provider, inheriting the Microsoft provider and overriding the
ApplicationName property.

HTTP Modules
Located at the beginning of the <system.web> section is the HTTPModule section.

HTTP Modules give you the ability to intercept the request for a page and modify
the request in some way. In DotNetNuke, they have been added to abstract some
of the code that used to reside inside the Global.asax.vb file. This gives a greater
degree of modularity and allows developers to change behavior without affecting

Understanding the DotNetNuke Core Architecture

[148]

the core architecture. An HTTP Module is a class that implements the IHTTPModule
interface. This interface has two methods you need to implement.

Init: This method allows an HTTP Module to register its event handlers to
the events in the HttpApplication object.
Dispose: This method gives the HTTP Module an opportunity to perform
any cleanup before the object gets garbage-collected.

These methods are called when they are hooked into the HTTP Pipeline. The HTTP
Pipeline refers to the path followed by each request made to your application. The
following diagram shows the path a typical request takes through the pipeline.

For more information on how HTTP Modules work within
the HTTP Pipeline, check out this great MSDN article by
George Sheperd at http://msdn.microsoft.com/
msdnmag/issues/02/05/asp/.

HTTP Modules plug themselves into the ASP.NET request process by adding
entries into the web.config file. This allows them to intercept the request before it is
returned in order to modify the request to perform certain actions. DotNetNuke uses
this process for a number of things.

To see an example of this we will look at the Exception module. It is first declared in
the web.config file.

•

•

Chapter 6

[149]

 <add name="Exception"
 type="DotNetNuke.HttpModules.ExceptionModule,
 DotNetNuke.HttpModules.Exception"/>

This will place the ExceptionModule in the HTTP Pipeline, allowing it to
intercept each request. Let's take a look at the ExeptionModule class found in the
HttpModule.Exception project. As we learned earlier, the Init method is called
when the module is hooked into the pipeline with a declaration in the web.config
file. In this method, we add an event handler to the application.Error event that is
thrown whenever an error happens in your application:

Public Class ExceptionModule

 Implements IHttpModule
 Public ReadOnly Property ModuleName() As String
 Get
 Return "ExceptionModule"
 End Get
 End Property

 Public Sub Init(ByVal application As HttpApplication) _
 Implements IHttpModule.Init
 AddHandler application.Error, AddressOf Me.OnErrorRequest
 End Sub

The OnErrorRequest method is then called and the error is passed to the Error
provider designated in the web.config file. The actual logging of the error is done
by the logging provider. The default implementation of DotNetNuke comes with a
both a XMLLoggingProvider, and a DBLoggingProvider, but you may write your
own provider to fit your needs.

Public Sub OnErrorRequest(ByVal s As Object, ByVal e As EventArgs)

 Dim Context As HttpContext = HttpContext.Current
 Dim Server As HttpServerUtility = Context.Server

 Dim lex As New Exception("Unhandled Error: ",
 Server.GetLastError)
 Dim objExceptionLog As New _
 Services.Log.EventLog.ExceptionLogController
 objExceptionLog.AddLog(lex)

End Sub
 Public Sub Dispose() Implements IHttpModule.Dispose
 End Sub

End Class

Understanding the DotNetNuke Core Architecture

[150]

As opposed to the first two HTTP Modules you have seen, the UrlRewrite module
is quite extensive. Just like the others, the first thing that is needed is a designation in
the HTTPModules section of the web.config file.

<add name="UrlRewrite"
 type="DotNetNuke.HttpModules.UrlRewriteModule,
 DotNetNuke.HttpModules.UrlRewrite"/>

You can view the UrlRewrite HTTPModule by looking in the HTTPModule.
UrlRewrite project. This class is responsible for taking a querystring that looks
like this:

http://www.dotnetnuke.com/Default.aspx?tabid=476

and converting it to look like this:

http://localhost/DotNetNuke/tabid/476/Default.aspx

There are a few reasons why you would want to rewrite your URLs; among them
are a cleaner appearance or hiding the physical page names, but probably the
most important reason for DotNetNuke is to increase traffic to your site. Search
engines crawl your site with bots that look to catalog your pages. Search bots prefer
non-dynamic web pages. By using URL rewriting, you can increase the popularity of
your links on the major search engines.

As you look at this module, you can see that although the code that does the URL
rewriting is extensive, it is hooked into the pipeline in the same fashion as the
other modules. The Init method is used to add an event handler to Application.
BeginRequest, which fires every time a user requests a page on your site, so that
on every request to your site the OnBeginRequest method is called and the URL is
rewritten before it is sent on its way.

Public Sub Init(ByVal application As HttpApplication) _
 Implements IHttpModule.Init

 AddHandler application.BeginRequest, _
 AddressOf Me.OnBeginRequest

End Sub

The rest of the HTTP Modules follow this same pattern, and although they differ in
complexity, they all accomplish their task by intercepting the request. We will visit a
few of these again when we develop a custom module in the next chapter.

Chapter 6

[151]

Application Settings
Let's look at one of the remaining sections of web.config. Below <configSettings>
you will find a section called <appSettings>. This section holds three items that are
of interest to us: SiteSqlServer, InstallProcedure, and InstallTemplate:

<appSettings>
 <add key="SiteSqlServer"
 value=" Data Source=.\SQLExpress;Integrated Security=True;User
Instance=True;AttachDBFilename=|DataDirectory|Database.mdf;"/>

 <add key="InstallTemplate" value="DotNetNuke.install.config"/>
 <add key="AutoUpgrade" value="true"/>
 <add key="InstallMemberRole" value="true"/>
 <add key="ShowMissingKeys" value="false"/>
 <add key="EnableWebFarmSupport" value="false"/>
 <add key="EnableCachePersistence" value="false"/>
 <!-- Host Header to remove from URL so
 "www.mydomain.com/johndoe/Default.aspx" is treated as
 "www.mydomain.com/Default.aspx" -->
 <add key="RemoveAngleBrackets" value="false"/>
 <!--optionally strip angle brackets on public login and
 registration screens-->
 <add key="InstallationDate" value="7/22/2006"/>
</appSettings>

The SiteSqlServer is used for backwards compatibility for older modues. It holds
the connection string for your datastore. In .NET 2.0 these setting are now held in the
<connectionStrings> section. The next few keys help you decide how your portal
is installed. IntallTemplate allows you to set which template to use when your
portal is created.

The AutoUpgrade key allows you to determine if the application will automaticly
upgrade your portal if the database version is different than your file version.
If this is set to false, it will only alert you that an upgrade is needed but will not do
the upgrade.

So if the hosting environment will not allow you to run the scripts necessary to
install the membership provider on your own, you can use this key to turn this off so
that the scripts can be run by your hosting provider manually.

The rest of the keys allow you to customize your portal to work in special
environments.

Understanding the DotNetNuke Core Architecture

[152]

The Global Files
The Global.aspx.vb and Globals.vb files share similar names but the parts
they play in DotNetNuke are vastly different. The Global.aspx.vb is used by
DotNetNuke to handle application-level events raised by the ASP.NET runtime. The
Globals.vb file, on the other hand, is a public module that contains global utility
functions. Before we take a look at these files, we first want to look at what object is
being passed around in these transactions.

Global.aspx.vb
Much of the logic that used to reside in the Global.aspx.vb file has now been
abstracted to the HTTP Modules. We will look into the code that remains.

Application Start
When the first request is made to your application (when the first user
accesses the portal), a pool of HttpApplication instances are created and
the Application_Start event is fired. If you have a very busy site, this will
(theoretically) fire just once and on the first HttpApplication object in the pool.
When there is inactivity on your portal for a certain amount of time the application
(or worker process aspnet_wp.exe) will be recycled. When this happens, your
application will restart (and this event will fire again) when the next request is made
for your application.

Since the new version of DotNetNuke uses the .NET
website structure, you will find the Global.asax.vb file
in the App_Code folder.

In the Application_Start, we are using the Context object and the System.
Reflection namespace to initialize some global variables. As we will see shortly,
the global variables reside in the Globals.vb file. In addition to this, we use the
AutoUpgrade method to determine if an upgrade is needed for the site as well as
to start the scheduler. These are performed in the Application_Start because we
want them to be called only once.

Private Sub Application_Start(ByVal Sender As Object, _
 ByVal E As EventArgs)

 Dim Server As HttpServerUtility = _
 HttpContext.Current.Server

 'global variable initialization
 ServerName = Server.MachineName

Chapter 6

[153]

 If HttpContext.Current.Request.ApplicationPath = "/" Then
 ApplicationPath = ""
 Else
 ApplicationPath = HttpContext.Current.Request.ApplicationPath
 End If
 ApplicationMapPath =
 System.AppDomain.CurrentDomain.BaseDirectory.Substring(0,
 System.AppDomain.CurrentDomain.BaseDirectory.Length - 1)
 ApplicationMapPath = ApplicationMapPath.Replace("/", "\")

 HostPath = ApplicationPath & "/Portals/_default/"
 HostMapPath = Server.MapPath(HostPath)

 AssemblyPath = ApplicationMapPath & "\bin\dotnetnuke.dll"

 'Check whether the current App Version is the same as the DB
 'Version
 CheckVersion()

 'Cache Mapped Directory(s)
 CacheMappedDirectory()

 'log APPLICATION_START event
 LogStart()

 'Start Scheduler
 StartScheduler()

 'Process any messages in the EventQueue for the
 'Application_Start event
 Dim oEventController As New EventQueue.EventQueueController
 oEventController.ProcessMessages("Application_Start")

 End Sub

Examining Application_BeginRequest
The Application_BeginRequest is called for each request made to your application.
In other words, this will fire every time a page (tab) is accessed in your portal.
This section is used to implement the scheduler built into DotNetNuke. Starting in
version 2.0, two items, "users online" and "site log", require recurring operations. You
can find out more about the scheduler by looking at the DotNetNuke Scheduler.doc
document found in the C:\DotNetNuke\Documentation\Public folder. (only if you
download the documentation pack).

Private Sub Application_BeginRequest(ByVal sender As Object, ByVal e
 As EventArgs)

Understanding the DotNetNuke Core Architecture

[154]

 'First check if we are upgrading/installing
 If Request.Url.LocalPath.EndsWith("Install.aspx") Then
 Exit Sub
 End If

 Try

 If Services.Scheduling.SchedulingProvider.SchedulerMode = _
 Scheduling.SchedulerMode.REQUEST_METHOD _
 AndAlso
 Services.Scheduling.SchedulingProvider.ReadyForPoll Then

 Dim scheduler As Scheduling.SchedulingProvider = _
 Scheduling.SchedulingProvider.Instance
 Dim RequestScheduleThread As Threading.Thread
 RequestScheduleThread = New
 Threading.Thread(AddressOf scheduler.ExecuteTasks)
 RequestScheduleThread.IsBackground = True
 RequestScheduleThread.Start()
 Services.Scheduling.SchedulingProvider.
 ScheduleLastPolled _
 = Now

 End If

 Catch exc As Exception
 LogException(exc)
 End Try

 End Sub

The Globals.vb File
As part of the namespace-reorganization effort associated with DotNetNuke version
3.0, general utility functions, constants, and enumerations have all been placed in a
public module named Globals. Since items in a .NET module are inherently shared,
you do not need to instantiate an object in order to use the functions found here. In
this module, you will find not only global constants:

Public Const glbAppVersion As String = "04.00.03"
Public Const glbAppTitle As String = "DotNetNuke"
Public Const glbAppDescription As String =
 "DotNetNuke Web Application Framework"
Public Const glbAppCompany As String =
 "Perpetual Motion Interactive Systems Inc."
Public Const glbAppUrl As String = "http://www.dotnetnuke.com"
Public Const glbLegalCopyright As String = "DotNetNuke® is copyright
 2002-YYYY by Perpetual Motion Interactive Systems Inc."

Chapter 6

[155]

Public Const glbTrademark As String = "DotNetNuke"
Public Const glbHelpUrl As String = "http://www.dotnetnuke.com/
 default.aspx?tabid=787"

Public Const glbRoleAllUsers As String = "-1"
Public Const glbRoleSuperUser As String = "-2"
Public Const glbRoleUnauthUser As String = "-3"

Public Const glbRoleAllUsersName As String = "All Users"
Public Const glbRoleSuperUserName As String = "Superuser"
Public Const glbRoleUnauthUserName As String = "Unauthenticated Users"

Public Const glbDefaultPage As String = "Default.aspx"
Public Const glbHostSkinFolder As String = "_default"
Public Const glbDefaultSkinFolder As String = "/DNN-Blue/"
Public Const glbDefaultSkin As String =
 "Horizontal Menu - Fixed Width.ascx"
Public Const glbDefaultAdminSkin As String =
 "Horizontal Menu - Fixed Width.ascx"
Public Const glbDefaultContainerFolder As String = "/DNN-Blue/"
Public Const glbDefaultContainer As String =
 "Image Header - Color Background.ascx"
Public Const glbDefaultAdminContainer As String =
 "Image Header - Color Background.ascx"
Public Const glbDefaultControlPanel As String =
 "Admin/ControlPanel/IconBar.ascx"
Public Const glbDefaultPane As String = "ContentPane"
Public Const glbImageFileTypes As String =
 "jpg,jpeg,jpe,gif,bmp,png,swf"
Public Const glbConfigFolder As String = "\Config\"
Public Const glbConfigFile As String = "\Install\dnn.config"
Public Const glbAboutPage As String = "about.htm"

Public Const glbSuperUserAppName As Integer = -1

but a tremendous number of public functions to help you do everything, from
retrieving the domain name:

Public Function GetDomainName(ByVal Request As HttpRequest) As String

to setting the focus on a page:

Public Sub SetFormFocus(ByVal control As Control)

This one file contains a wealth of information for the developer. Since there are more
than 1600 lines in this file and the methods are fairly straightforward, we will not be
stepping through this code.

Understanding the DotNetNuke Core Architecture

[156]

The Globals.vb file can now be found in the
DotNetNuke.Library project in the
\Components\Shared folder.

Putting It All Together
We have spent some time looking at some of the major pieces that make up the
core architecture. You might be asking yourself how all this works together. In this
section, we will walk you through an overview version of what happens when a user
requests a page on your portal.

When a user requests any page on your portal, the HTTP Modules that have been
declared in the web.config file are hooked into the pipeline. Some of the modules,
like the LoggingModule, run their code when the Init method is called. Others
such as the UrlRewriteModule use the Init method to attach event handlers to
application events.

The request then goes through the Global.aspx page. As just mentioned, some of
the events fired here will be intercepted and processed by the HTTP Modules, but
the authentication of the user will be done in this file.

Next, the page that was requested, Default.aspx, will be processed. As we stated
at the beginning of this chapter, all requests are sent to the Default.aspx page and
all the controls and skins needed for the page are created dynamically by reading the
tabID from the querysting. So let's begin by looking at the HTML for this page.

Chapter 6

[157]

The HTML of the page is pretty simple and straightforward. The attributes at the top
of the page tell us that the HTML page inherits from the DotNetNuke.Framework.
CDefault class, which is found in the Default.aspx.vb code-behind page. We will
be examining this class soon.

<%@ Page Language="vb" AutoEventWireup="false" Explicit="True"
Inherits="DotNetNuke.Framework.DefaultPage" CodeFile=
 "Default.aspx.vb" %>
<%@ Register TagPrefix="dnn" Namespace="DotNetNuke.Common.
 Controls" Assembly="DotNetNuke" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

The title and meta-tags are populated with variables we will find in the
code-behind file:

<HTML>
 <HEAD id="Head">
 <META NAME="DESCRIPTION" CONTENT="<%= Description %>">
 <META NAME="KEYWORDS" CONTENT="<%= KeyWords %>">
 <META NAME="COPYRIGHT" CONTENT="<%= Copyright %>">
 <META NAME="GENERATOR" CONTENT="<%= Generator %>">
 <META NAME="AUTHOR" CONTENT="<%= Author %>">
 <META NAME="RESOURCE-TYPE" CONTENT="DOCUMENT">
 <META NAME="DISTRIBUTION" CONTENT="GLOBAL">
 <META NAME="ROBOTS" CONTENT="INDEX, FOLLOW">
 <META NAME="REVISIT-AFTER" CONTENT="1 DAYS">
 <META NAME="RATING" CONTENT="GENERAL">

After the meta-tags, placeholders are set to hold CSS and Favicons. These are
declared in this manner so that the actual files can be determined by the skin being
used on the site. This is followed by a script declaration for the file; this declaration is
responsible for the module drag-and-drop capability of DotNetNuke 3.0.

 <style id="StylePlaceholder" runat="server"></style>
 <asp:placeholder id="CSS" runat="server"></asp:placeholder>
 </HEAD>

The body of the HTML is relatively bare. The important code in this section is the
SkinPlaceholder, used to inject the selected skin into the body of the page.

 <BODY ID="Body" runat="server" BOTTOMMARGIN="0" LEFTMARGIN="0"
 TOPMARGIN="0" RIGHTMARGIN="0" MARGINWIDTH="0" MARGINHEIGHT="0">
 <noscript></noscript>
 <dnn:Form id="Form" runat="server" ENCTYPE="multipart/form-data"
 style="height:100%;>
 <asp:Label ID="SkinError" Runat="server" CssClass="NormalRed"
 Visible="False"></asp:Label>

Understanding the DotNetNuke Core Architecture

[158]

 <asp:placeholder id="SkinPlaceHolder" runat="server" />
 <input id="ScrollTop" runat="server" name="ScrollTop"
 type="hidden">
 <input id="__dnnVariable" runat="server"
 name="__dnnVariable" type="hidden">
 </dnn:Form>
 </BODY>
</HTML>

Now we will venture into the code-behind class for this file. If you look past the
Imports statements, you will see that this class is declared MustInherit and itself
inherits from the DotNetNuke.Framework.PageBase class.

Partial Class DefaultPage
 Inherits DotNetNuke.Framework.CDefault

Its base class handles the localization for the page and of course, since this is a web
page, inherits from System.Web.UI.Page.

The first procedure that is run in the page is the Page_Init method. Most of the
action required to generate our request resides in this section. The first few lines of
the method call the InitializeComponent method, which is a default web-form
designer procedure, the InializePage, which generates the information to fill the
meta-tags, and the ManageRequest, which collects the affiliate information and
updates the site log.

If you look at a couple of pieces of code in, we can see some of the files we
looked at earlier in use. In the InitializePage method, we make use of both the
PortalSettings class and the Current property of the HTTPContext object to
retrieve the TabName:

objTab = objTabs.GetTabByName(Request.QueryString("TabName"), _
CType(HttpContext.Current.Items("PortalSettings"), _
PortalSettings).PortalId)

The ManageRequest method on the other hand makes use of the Globals class to
find the SiteLogStorate setting:

If Convert.ToString(Common.Globals.HostSettings("SiteLogStorage")) _
 <> "" Then

Chapter 6

[159]

 strSiteLogStorage = _
 Convert.ToString(Common.Globals.HostSettings("SiteLogStorage"))
End If

When these two methods complete, the process of loading the skin begins. The
process starts by creating a user control to hold the skin and a SkinControler that
will do the work of loading the skin.

After determining whether the request is a skin preview, the code moves on to
load the skin. There are three possible outcomes when loading the skin: it is for
an admin page, it is for a regular page, or there was an error and it loads the
default skin. Regardless of which section is invoked, the skin is loaded using the
LoadSkin method.

ctlSkin = LoadSkin(PortalSettings.ActiveTab.SkinSrc)

This method reads the physical path of the skin control and loads it into our ctlSkin
variable. And finally, after calls to ManageStyleSheets and ManageFavicon, the
control is added to the page by using the SkinPlaceholder that we looked at earlier
in the HTML page:

' add skin to page
SkinPlaceHolder.Controls.Add(ctlSkin)

At this point, you may be thinking to yourself, "I understand how the skin is
dynamically added to the page for a user's request, but how are the modules
dynamically added?" Well, to get the answer to that question, we will need to look
at the skin control itself. You can find the skin control (skin.vb) in the admin\Skins
folder. We will not look at this entire class, but if you look closely at the Page_Init
method, which is called when the control is instantiated, you will see how the
modules are created. The method first determines the number of panes available on
the skin and then dynamically populates the modules assigned to each pane. It will
check for the authorization of the user as it goes and then finally inject the module
into the skin (found in Skin.vb).

Understanding the DotNetNuke Core Architecture

[160]

' inject the module into the skin
InjectModule(parent, objModule, PortalSettings)

This procedure will be repeated for all of the modules associated with that page, and
the request is finally completed and presented to the user. We did not, of course,
cover every piece of code that is called in the process, but hopefully have given you a
path to follow to continue researching the core architecture on your own.

Summary
In this chapter we have taken a look at how the core of DotNetNuke works. We
looked at a general overview, examined important pieces of the framework, and
finally followed a request through its paces. We will be expanding on this knowledge
as we venture into the world of custom-module creation in Chapter 7.

Custom Module Development
In this chapter, we will be creating a custom module for the Coffee Connections
portal. A custom module can consist of one or more custom web controls. The areas
that will be covered are:

Setting up the development environment
Creating a "Hello World!" View Control
Creating a "Hello Edit" Edit control

Setting up the Development Environment
To develop modules for DotNetNuke you must first have a DotNetNuke installation
running on the computer on which you intend to develop them.

DotNetNuke comes in two versions, a source version, and an install version. The
install version is also packaged as the DotNetNuke Starter Kit. They are functionally
the same. Surprisingly, it is recommended that you use the install version to develop
modules. The reason for this is that the source version should only be used if you
intend to change the DotNetNuke core code. This is not recommended as it may not
allow you to upgrade your installation in the future.

In this chapter, Visual Web Developer Express 2005 will be used (hereafter referred
to as Visual Studio); however, the instructions are the same for all versions of Visual
Studio 2005.

Download and install the DotNetNuke Starter Kit. Then open Visual Studio and
from the File menu select New Web Site.

•

•

•

Custom Module Development

[162]

Select the DotNetNuke Web Application Framework template that was installed by
the DotNetNuke Starter Kit. Ensure that the Location is set to File System.

Follow the directions on the page that will appear after installation to complete any
configuration and launch your DotNetNuke website.

DotNetNuke is constantly changing as it evolves and the
best way to get up-to-date help and information is to use
the DotNetNuke message board at DotNetNuke.com. There
are installation documents available at DotNetNuke.com
that you can download that will assist you.

The Coffee Shop Listing Module
In this chapter, we will go through the process of creating a DotNetNuke module
from top to bottom. Although we will go through quite a bit of code in this chapter,
we do not cover every single line. To help you as you work through the chapter,
the complete source code is available for download from the publisher's site
(http://www.PacktPub.com/support).

Chapter 7

[163]

One of the main attractions for the Coffee Shop Listing module is that users will be
able to search, by zip code, for coffee shops in their area. After searching, the users
will be presented with the shops in their area. This will be accomplished using the
View control.

In addition, the module will be configurable to allow certain users to add coffee
shops using the Edit control.

The administrator of the site will be able to configure which users are allowed to add
coffee shops using the Settings control.

Custom Module Development

[164]

To allow the focus of this chapter to be on module
development, we will not spend time on validation of the
various controls, instead we will focus only on what is
necessary to create the module.

Creating the View Control
Our first example will be the traditional Hello World! example. Later, we will alter
this control to complete the Coffee Shop Listing module.

1. Open Visual Studio and select File from the toolbar, then click
Open Web Site.

2. Next, select the root directory of the DotNetNuke website and click the
Open button.

Chapter 7

[165]

The website will open and display in the Solution Explorer window.

Custom Module Development

[166]

3. To ensure that your development environment is configured properly, from
the toolbar select View, then click Output to display the output window,
then from the toolbar select Debug, and then click Start Without Debugging.

You might have a long wait while Visual Studio builds the website. When the build
is complete the output windows should show no errors (failed should be 0).

Chapter 7

[167]

When the build is complete the website will automatically launch.

4. Now close your web browser and return to Visual Studio. In the Solution
Explorer, right-click on the DesktopModules folder and select New Folder.

5. Name the folder CoffeeShopListing

Custom Module Development

[168]

6. Next, right-click on the CoffeeShopListing folder and select Add New Item.

7. When the Add New Item menu appears, select the Web User Control and
enter ShopList.ascx in the Name box and check the box next to Place code
in separate file. Also, ensure that Visual Basic is selected in the Language
dropdown.

The ShopList.ascx file will now appear under the CoffeeShopListing folder.

The source for the ShopList.ascx will also appear in the main window. If it is in the
design view, click the Source button in the lower left-hand corner of the window to
switch to the Source view.

Chapter 7

[169]

8. Replace all the code with this code:
 <%@ Control language="vb" AutoEventWireup="false"
 Inherits="EganEnterprises.CoffeeShopListing.ShopList"
 CodeFile="ShopList.ascx.vb"%>
 <asp:Label ID="Label1" runat="server" Text="Label"></asp:Label>

You will see wavy blue lines that indicate errors. These
errors will be cleared up when we replace the code in the
code-behind file.

9. Now, right-click on the ShopList.ascx file and select View Code.

10. Replace all the code with the following code:
 Imports DotNetNuke
 Imports DotNetNuke.Security.Roles
 Imports System.Collections.Generic

 Namespace EganEnterprises.CoffeeShopListing
 Partial Class ShopList
 Inherits Entities.Modules.PortalModuleBase
 Protected Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Try
 Label1.Text = "Hello World!"
 Catch exc As Exception
 Exceptions.ProcessModuleLoadException(Me, exc)
 End Try
 End Sub
 End Class
 End Namespace

Custom Module Development

[170]

11. Select File then Save All to save the changes. Now, from the toolbar select
Build, then click on Build Page.

If you have build errors it is best to download the code using the link noted at the
beginning of the chapter and compare it to your own.

Displaying the Module
We will now walk through the steps needed to configure the module and view it in
your DotNetNuke website.

1. In Visual Studio, select Debug then Start Without Debugging. When the site
comes up click the Login link.

2. Log in as the host user.

The password for the host account is usually dnnhost. However, refer to the first page
of your DotNetNuke website as this may change.

Chapter 7

[171]

3. Click on the Host menu and select Module Definitions.

4. From the Module Definitions menu (click on the small black down-pointing
arrow in the upper left-hand corner) select Add New Module Definition.

5. When the Module Definition screen comes up:
Enter CoffeeShopListing for Module Name.
Enter CoffeeShopListing for Folder Name.
Enter CoffeeShopListing for Friendly Name.
Enter CoffeeShopListing for Description.
Enter 01.00.00 for Version.
Click the Update button.

°

°

°

°

°

°

Custom Module Development

[172]

6. Near the bottom of the Edit Module Definitions form, enter
CoffeeShopListing in the New Definition box and click the Add
Definition link.

7. Click the Add Control link.

8. When the Edit Module Control form appears:
Enter CoffeeShopListing for Title.
Use the dropdown to select DesktopModules/
CoffeeShopListing/ShopList.ascx for Source.

°

°

Chapter 7

[173]

Use the dropdown to select View for Type.
Click the Update button.

9. On the Admin menu select Pages.

10. On the Pages form click Add New Page.

11. On the Edit Page form:
Enter Coffee Shop Listing for Page Name.
Enter Coffee Shop Listing for Page Title.
Enter Coffee Shop Listing for Description.
Check the box for All Users under View Page.
Then click the Update button.

°

°

°

°

°

°

°

Custom Module Development

[174]

The Coffee Shop Listing tab will now appear on the toolbar.

12. Click on it to navigate to that page.
13. From the administration bar at the top of the site, select CoffeeShopListing

from the Module dropdown and click Add.

The module will now appear.

Chapter 7

[175]

Next, we will intentionally generate an error to explore the functionality of the Log
Viewer. Leave the website open and return to Visual Studio. In Visual Studio, add
the following, highlighted line into your code as shown:

 Label1.Text = "Hello World!"
 Throw New Exception("Something didn't work right.")
 Catch exc As Exception
 Exceptions.ProcessModuleLoadException(Me, exc)
 End Try

Save the page and return to the site in the web browser and click on the Coffee Shop
Listing tab to refresh the page. The page will now show an error message.

Select Log Viewer from the Admin menu. Locate the most recent entry for Module
Load Exception and click on it to expand it. We can see it indicates that the error is in
the ShopList.ascx.vb file and indicates the line number.

Custom Module Development

[176]

You may see multiple General Exceptions errors for
System.IO.Path.NormalizePathFast. To prevent this,
develop DotNetNuke in a much shorter physical path
folder to reduce the total number of characters that
compose the path and filename (for instance
C:\DotNetNuke).

Return to Visual Studio and remove the Throw New Exception("Something didn't
work right.") line. Save the page and return to the site in the web browser and click
on the Coffee Shop Listing tab to refresh the page.

What we have Accomplished
We have just explored a few core concepts of DotNetNuke module development:

The DotNetNuke module folder structure
Inheriting from PortalModuleBase
Module configuration
Diagnosing errors using the Log Viewer

The Module Folder Structure
A DotNetNuke module is made up of User Controls and their associated code-behind
files that reside in folders in the DesktopModules directory. Optionally, other code files
for the module that are not associated with a User Control (for example, Data Access
Layer and Business Logic Layer code) reside in the App_Code directory. In later steps
we will create code that will reside in the App_Code directory.

Inheriting from PortalModuleBase
The most important item for making your User Control integrate well with the
DotNetNuke framework is this:

Inherits Entities.Modules.PortalModuleBase

•

•

•

•

Chapter 7

[177]

Inheriting from PortalModuleBase is essential because it is the base class for all User
Controls in DotNetNuke. Using the base class is what gives our control consistency
in its appearance with the portal it resides in, and provides functionality such as the
menu and portal access security.

This class also gives us access to useful items such as the current user and the current
ModuleId. In later steps you will see how these items allow the User Control to
interact with the DotNetNuke framework to provide most of the functionality you
would desire.

Module Configuration
Adding module definitions makes the module appear in the control panel module
dropdown when you are signed on as host or admin. It connects your controls to the
portal framework. In the walk-through we configured the module to have one User
Control. In later steps, we will create and configure two additional User Controls.

Diagnosing Errors using the Log Viewer
The ProcessModuleLoadException method of the DotNetNuke.Services.Exceptions
class offers a simple way to send errors to the Log Viewer.

Catch exc As Exception
 Exceptions.ProcessModuleLoadException(Me, exc)

This is useful during module development as well as to assist an administrator in
diagnosing problems when the module is deployed to production.

Navigation and Localization
At this stage you can see that creating a module from a User Control is relatively
straightforward. Programming multiple User Controls to interact with each other
is not as straightforward. The next walk-through will be devoted to this subject as
well as demonstrating Localization, which allows your module to display its text in
multiple languages.

We will create an Edit User Control. For now it will just say Hello Edit! Later we will
alter it to complete the Coffee Shop Listing module.

Create EditShopList.ascx
1. In Visual Studio, right-click on theright-click on the on the CoffeeShopListing folder and select Add

New Item.

Custom Module Development

[178]

2. When the Add New Item menu comes up, select Web User Control and
enter EditShopList.ascx in the Name box. Ensure that the Place code in
separate file box is checked and click the Add button.

3. When the page comes up in source view, replace all the code with the
following code:

 <%@ Control language="vb" AutoEventWireup="false"
 Inherits="EganEnterprises.CoffeeShopListing.EditShopList"
 CodeFile="EditShopList.ascx.vb"%>
 <asp:Label ID="Label1" runat="server" Text="Label"></asp:Label>

 <asp:LinkButton id="cmdReturn" runat="server" Text="Return"
 BorderStyle="none" CssClass="CommandButton"
 CausesValidation="False"></asp:LinkButton>

4. Right-click on on EditShopList.ascx in the Solution Explorer and selectSolution Explorer and select select View
Code. When the source code is displayed, replace all the code with the
following code:

 Imports DotNetNuke
 Namespace EganEnterprises.CoffeeShopListing
 Partial Class EditShopList
 Inherits Entities.Modules.PortalModuleBase
 Protected Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Label1.Text = "Hello Edit!"
 End Sub
 Protected Sub cmdDelete_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdReturn.Click
 ' Redirect back to the portal
 Response.Redirect(NavigateURL())
 End Sub
 End Class
 End Namespace

5. Save and build the page.

Chapter 7

[179]

Navigation
The EditShopList.ascx page doesn't do much at this point. For now, it is being
used to demonstrate how to navigate between User Controls (or pages) of your
module. Now we will place a link and a menu item on the ShopList page that will
navigate to the EditShopList page.

1. Right-click on on ShopList.ascx and select View Code.
2. When the source code is displayed, add the highlighted line as shown:add the highlighted line as shown::
 Inherits Entities.Modules.PortalModuleBase

 Implements Entities.Modules.IActionable

3. Next, insert the following code above the line: End Class.
 #Region "Optional Interfaces"
 Public ReadOnly Property ModuleActions() As _
 DotNetNuke.Entities.Modules.Actions.ModuleActionCollection _
 Implements DotNetNuke.Entities.Modules.IActionable.
 ModuleActions
 Get
 Dim Actions As New _
 Entities.Modules.Actions.ModuleActionCollection
 Actions.Add(GetNextActionID, Localization.
 GetString(Entities.Modules.Actions.ModuleActionType.
 AddContent, LocalResourceFile), Entities.Modules.Actions.
 ModuleActionType.AddContent, "", "", EditUrl(), False,
 Security.SecurityAccessLevel.Edit, True, False)
 Return Actions
 End Get
 End Property

 #End Region

4. Save and build the page.

Localization
In the final step for this section we will create a resource file that can be used to
replace the text of one of the links (for example to change the language). For now
the link will be in English and we will only localize one link. Normally you would
localize all the text elements of your module so that it can be used in any language.

Custom Module Development

[180]

1. Right-click on the CoffeeShopListing folder and select the CoffeeShopListing folder and select Add ASP.NET Folder
and then App_LocalResources.

2. When the App_LocalResources folder appears, select Add New Item.

3. When the Add New Item box comes up, select Resource File as the template,
enter ShopList.ascx.resx in the Name box, and click the Add button.

Chapter 7

[181]

4. When the resource editor window appears, enter AddContent.Action in the
Name column and Add Coffee Shop in the Value column.

5. Save the file and close it.

Update the Configuration
In Visual Studio, press Ctrl+F5 to start the DotNetNuke site.

1. Log in as host.
2. From the Host menu select Module Definitions.
3. From the Module Definitions click the edit symbol next to the

CoffeeShopListing module to select it.
4. Click the Add Control link toward the bottom of the CoffeeShopListing

module definition.
5. When the control configuration screen appears, configure it with the

following settings:
Enter Edit for Key.
Enter Edit Shoplist for Title.
Use the dropdown to select DesktopModules/
CoffeeShopListing/EditShopList.ascx for Source.
Use the dropdown to select Edit for Type.
Click the Update button.

°

°

°

°

°

Custom Module Development

[182]

Navigate from ShopList to EditShopList
Next, click the Coffee Shop Listing link on the menu bar in the DotNetNuke site.
On the CoffeeShopListing module, you will see that there is now a link to Add
Coffee Shop.

Click on the link and you will navigate to the Edit page.

Chapter 7

[183]

Click the Return button and you will navigate back to the ShopList page. Click the
menu icon in the corner of the Coffee Shop Listing module and notice that there is
also an Add Coffee Shop link there.

What we have Accomplished
We have explored a few additional concepts of DotNetNuke module development:

IActionable
NavigateURL
Localization

IActionable
We only implemented the IActionable interface in one place in the code yet the
Add Coffee Shop link shows up in two places on the module. It shows up on the
ShopList page and on the modules menu. This demonstrates the benefit of the
DotNetNuke API. The link and the menu item not only show up in standardized
places, but they also show up based on the security roles that you indicate. For
example, currently the Add Coffee Shop link will only show up if you are logged in
as the host or administrator account.

To add an action menu item to the module actions menu, we create an instance of a
ModuleActionCollection. This is done in the ModuleActions property declaration.

Public ReadOnly Property ModuleActions() As _
DotNetNuke.Entities.Modules.Actions.ModuleActionCollection _
Implements DotNetNuke.Entities.Modules.IActionable.ModuleActions

Get
 Dim Actions As New _
 Entities.Modules.Actions.ModuleActionCollection

We then use the Add method of this object to add an item to the menu.

 Actions.Add(GetNextActionID, _
 Localization.GetString(_
 Entities.Modules.Actions.ModuleActionType.AddContent, _
 LocalResourceFile), _

•

•

•

Custom Module Development

[184]

 Entities.Modules.Actions.ModuleActionType.AddContent, _
 "", _
 "", _
 EditUrl(), _
 False, _
 Security.SecurityAccessLevel.Edit, _
 True, _
 False)
 Return Actions
End Get
End Property

The parameters of the Actions.Add method are:

Parameter Type Description
ID Integer The GetNextActionID function (found in the

ActionsBase.vb file) will retrieve the next available ID
for your ModuleActionCollection. This works like
an auto-increment field, adding one to the previous
action ID.

Title String The title is what is displayed in the context menu form
your module.

CmdName String If you want your menu item to call client-side code
(JavaScript), then this is where you will place the name
of the command. This is used for the delete action on the
context menu. When the delete item is selected, a message
asks you to confirm your choice before executing the
command. For the menu items we are adding we will
leave this blank.

CmdArg String This allows you to add additional arguments for the
command.

Icon String This allows you to set a custom icon to appear next to
your menu option.

URL String This is where the browser will be redirected to when your
menu item is clicked. You can use a standard URL or use
the EditURL function to direct it to another module. The
EditURL function finds the module associated with your
view module by looking at the key passed in. These keys
are entered in the Module Definition.

ClientScript String As the name implies, this is where you would add the
client-side script to be run when this item is selected.
This is paired with the CmdName attribute above. We are
leaving this blank for your actions.

Chapter 7

[185]

Parameter Type Description
UseActionEvent Boolean This determines if the user will receive

notification when a script is being executed.
Secure SecurityAccessLevel This is an Enum that determines the access

level for this menu item.
Visible Boolean Determines whether this item will be visible.
New Window Boolean Determines whether information will be

presented in a new window.

NavigateUrl
If you want to create a link that you do not want to appear as a menu item, you can
simply use code such as Response.Redirect(NavigateURL()).

The NavigateURL function works in conjunction with DotNetNuke URL rewriting.
URL rewriting is a function DotNetNuke performs to create URL's that are more
easily indexed by search engines.

If we run the code in Debug mode we can see that NavigateURL() resolves to
http://localhost:1545/DotNetNuke/CoffeeShopListing/tabid/53/Default.
aspx. Your instance will certainly have a different URL, but the result will be the
same that directs the user back to the default page of your module, which in this case
is the ShopList User Control.

We can see in the Visual Studio object browser that the NavigateURL() method has
multiple overloads.

Custom Module Development

[186]

Adding Localization
You will notice that the second parameter of the Add() method in the IActionable
interface asks for a title. This is the text that will be displayed. In our code you will
notice that instead of using a string, we use the Localization.GetString() method
to get the text from the local resource file.

 Actions.Add(GetNextActionID, _
 Localization.GetString(_
 Entities.Modules.Actions.ModuleActionType.AddContent, _
 LocalResourceFile), _
 Entities.Modules.Actions.ModuleActionType.AddContent, _
 "", _
 "", _
 EditUrl(), _
 False, _
 Security.SecurityAccessLevel.Edit, _
 True, _
 False)

This allows the portal administrator to set the language of their choice by simply
replacing the resource file. For further discussion of localization refer to the
localization document available at DotNetNuke.com.

Summary
The module is not complete, however, we have covered many important
concepts that you will most likely use in every module you create. Essentially a
DotNetNuke module is made up of web controls that inherit from Entities.Modules.
PortalModuleBase. Navigation and localization were covered because their proper use
will allow you to create modules that integrate well into your portal. In addition, we
also covered exception handling that will aid you in your module development.

In the next chapter we will cover connecting to the database. We will also cover
optional interfaces that will allow you to import and export module data and to
integrate the module into the DotnetNuke portal search.

Connecting to the Database
In this chapter, we are going to complete the custom module for the Coffee
Connections portal. In the previous chapter, we set up our development
environment, and created custom web controls. In this chapter, we will cover the
methods used to connect to the database. The areas that will be covered are:

Using the DAL+ — a simplified data access method that still allows your
module to support multiple data sources.
Using the DAL — a more robust data access method that allows your
modules to have 100% portability.
Implementing optional interfaces

ISearchable

IPortable

Packaging and uploading the module

DotNetNuke Data Access Layer (DAL)
We are now ready to create code that will communicate with the database. To do
this we will create a Settings page for the module that will use the DotNetNuke Data
Access Layer (DAL).

The DAL's purpose is to allow DotNetNuke (and its modules) to communicate with
any data source. It consists of an Abstract Data ProviderAbstract Data Provider and a Concrete ProviderConcrete Provider.

For the Settings page we will use the DAL+. The DAL+ is an alternative method of
communicating with the database. With the DAL+ you will not need to write code
for an Abstract Data ProviderAbstract Data Provider or a Concrete Provider. Instead, you use a subset ofConcrete Provider. Instead, you use a subset of. Instead, you use a subset of
methods that are a part of the DAL. These methods will still allow you to create
modules that can communicate with an alternative database. However, unlike the
traditional DAL the DAL+ is not 100% portable to other data sources.portable to other data sources. to other data sources.

•

•

•

°

°

•

Connecting to the Database

[188]

The reason it is not 100% portable is that a situation can exist where one storedportable is that a situation can exist where one stored is that a situation can exist where one stored
procedure or SQL statement is needed to perform an action using one data source
(for example Microsoft SQL Server), but more than one is needed for another data
source (for example, MySQL). In cases such as this, the DAL+ will not work. The
traditional DAL will work in all situations with all data sources.

The DAL+ is best used for modules that will not need to run on a database other
than the database you develop the module on.

The traditional DAL will be covered later in this chapter.

Create the Database Elements
First, we will execute a SQL script that will create all the tables and stored
procedures needed for the module. Only some of the database elements will be used
in the Settings page. The remaining database elements will be used by the module
code that will be covered later in this chapter.

Execute the SQL Script
1. Log in as host.
2. From the Host menu select SQL.
3. Check the Run As Script box.
4. Enter the following code sections in the main window (only enter the code,

not the narration that explains each section) and click the Execute link
(remember you can obtain this script and all the code from http://www.
packtpub.com/support):

First we create the two tables that the module will use. One table will be used to hold
the listings of coffee shops and the other will be used to hold the information on the
security roles that will be allowed to add coffee shops.

CREATE TABLE {databaseOwner}{objectQualifier}
 [EganEnterprises_CoffeeShopInfo] (
 [coffeeShopID] [int] IDENTITY (1, 1) NOT NULL ,
 [moduleID] [int] NOT NULL ,
 [coffeeShopName] [varchar] (100) NOT NULL ,
 [coffeeShopAddress1] [varchar] (150) NULL ,
 [coffeeShopAddress2] [varchar] (150) NULL ,
 [coffeeShopCity] [varchar] (50) NULL ,
 [coffeeShopState] [char] (2) NULL ,
 [coffeeShopZip] [char] (11) NULL ,
 [coffeeShopWiFi] [smallint] NOT NULL ,

Chapter 8

[189]

 [coffeeShopDetails] [varchar] (250) NULL
) ON [PRIMARY]
GO
CREATE TABLE {databaseOwner}{objectQualifier}
 [EganEnterprises_CoffeeShopModuleOptions] (
 [ModuleID] [int] NOT NULL ,
 [AuthorizedRoles] [varchar] (200) NULL
) ON [PRIMARY]
GO

Next, we will create the stored procedures.

CREATE procedure {databaseOwner}{objectQualifier}EganEnterprises_
AddCoffeeShopInfo
@moduleID int,
@coffeeShopName varchar(100) ,
@coffeeShopAddress1 varchar(150),
@coffeeShopAddress2 varchar(150),
@coffeeShopCity varchar(50) ,
@coffeeShopState char(2),
@coffeeShopZip char(11),
@coffeeShopWiFi bit,
@coffeeShopDetails varchar(250)

AS
insert into EganEnterprises_CoffeeShopInfo (
 moduleID,
 coffeeShopName,
 coffeeShopAddress1,
 coffeeShopAddress2,
 coffeeShopCity,
 coffeeShopState,
 coffeeShopZip,
 coffeeShopWiFi,
 coffeeShopDetails
)
values (
 @moduleID,
 @coffeeShopName,
 @coffeeShopAddress1,
 @coffeeShopAddress2,
 @coffeeShopCity,
 @coffeeShopState,
 @coffeeShopZip,
 @coffeeShopWiFi,

Connecting to the Database

[190]

 @coffeeShopDetails
)

select SCOPE_IDENTITY()
GO
CREATE procedure {databaseOwner}{objectQualifier}
 EganEnterprises_AddCoffeeShopModuleOptions
@moduleID int,
@authorizedRoles varchar(250)

AS
 INSERT INTO
 EganEnterprises_CoffeeShopModuleOptions
 (moduleId, AuthorizedRoles)
 VALUES
 (@moduleID, @authorizedRoles)
GO
create procedure {databaseOwner}{objectQualifier}
 EganEnterprises_DeleteCoffeeShop
@coffeeShopID int
AS
delete
from EganEnterprises_CoffeeShopInfo
where coffeeShopID = @coffeeShopID
GO
CREATE procedure {databaseOwner}{objectQualifier}
 EganEnterprises_GetCoffeeShopModuleOptions
@moduleId int
AS
select *
from EganEnterprises_CoffeeShopModuleOptions
where
 moduleID = @moduleID
GO
CREATE procedure {databaseOwner}{objectQualifier}
 EganEnterprises_GetCoffeeShops
@moduleId int
AS
select coffeeShopID,
 coffeeShopName,
 coffeeShopAddress1,
 coffeeShopAddress2,
 coffeeShopCity,
 coffeeShopState,
 coffeeShopZip,

Chapter 8

[191]

 coffeeShopWiFi,
 coffeeShopDetails
from EganEnterprises_CoffeeShopInfo
where
 moduleID = @moduleID
GO
CREATE procedure {databaseOwner}{objectQualifier}
 EganEnterprises_GetCoffeeShopsByID
@coffeeShopID int
AS
select coffeeShopID,
 coffeeShopName,
 coffeeShopAddress1,
 coffeeShopAddress2,
 coffeeShopCity,
 coffeeShopState,
 coffeeShopZip,
 coffeeShopWiFi,
 coffeeShopDetails
from EganEnterprises_CoffeeShopInfo
where
 coffeeShopID = @coffeeShopID
GO
CREATE procedure {databaseOwner}{objectQualifier}
 EganEnterprises_GetCoffeeShopsByZip
@moduleID int,
@coffeeShopZip char(11)

AS
select coffeeShopID,
 coffeeShopName,
 coffeeShopAddress1,
 coffeeShopAddress2,
 coffeeShopCity,
 coffeeShopState,
 coffeeShopZip,
 coffeeShopWiFi,
 coffeeShopDetails
from EganEnterprises_CoffeeShopInfo
where
 coffeeShopZip = @coffeeShopZip AND moduleID = @moduleID
GO
CREATE procedure {databaseOwner}{objectQualifier}
 EganEnterprises_UpdateCoffeeShopInfo

Connecting to the Database

[192]

@coffeeShopID int,
@coffeeShopName varchar(100),
@coffeeShopAddress1 varchar(150),
@coffeeShopAddress2 varchar(150),
@coffeeShopCity varchar(50),
@coffeeShopState char(2),
@coffeeShopZip char(11),

@coffeeShopWiFi int ,
@coffeeShopDetails varchar(250)

AS
update EganEnterprises_CoffeeShopInfo
set coffeeShopName = isnull(@coffeeShopName,coffeeShopName),
 coffeeShopAddress1 =
 isnull(@coffeeShopAddress1,coffeeShopAddress1),
 coffeeShopAddress2 =
 isnull(@coffeeShopAddress2,coffeeShopAddress2),
 coffeeShopCity = isnull(@coffeeShopCity,coffeeShopCity),
 coffeeShopState = isnull(@coffeeShopState,coffeeShopState),
 coffeeShopZip = isnull(@coffeeShopZip,coffeeShopZip),
 coffeeShopWiFi = isnull(@coffeeShopWiFi,coffeeShopWiFi),
 coffeeShopDetails = isnull(@coffeeShopDetails,coffeeShopDetails)
where coffeeShopID = @coffeeShopID
GO

CREATE procedure {databaseOwner}{objectQualifier}EganEnterprises_
UpdateCoffeeShopModuleOptions
@moduleID int,
@authorizedRoles varchar(250)

AS
 UPDATE
 EganEnterprises_CoffeeShopModuleOptions
 SET AuthorizedRoles = @AuthorizedRoles

 WHERE moduleID = @moduleID
GO

Create the Class Files
Now, we will create the module Settings page. This page will allow you to indicate
the user roles that will be able to add Coffee Shops.

Chapter 8

[193]

First, we will create two class files. We will create methods that the Settings page will
use to connect to the database. These two classes will be placed in the App_Code
folder because they are classes that are not code behind for User Controls.code behind for User Controls. for User Controls.

1. In the Solution Explorer in Visual Studio, right-click on the App_Code folder
and create a new folder called CoffeeShopListing.

2. Now, right-click on the CoffeeShopListing folder and select Add New Item.
3. When the Add New Item menu appears, select the Class template and enter

CoffeeShopListingOptionsInfo.vb in the Name box. Also, ensure that
Visual Basic is selected in the Language drop-down and click the
Add button.

4. Repeat the same process to create a CoffeeShopListingOptionsController.
vb file.

Connecting to the Database

[194]

Insert the DAL+ Code
We will now insert the code for the two class files. The
CoffeeShopListingOptionsInfo class is a simple class that exposes
fields that will be used to pass data between the Setting page and the
CoffeeShopListingOptionsController. It will use the DAL+ methods to
communicate with the database.

1. In Visual Studio, in the Solution Explorer, right-click on theright-click on the the
CoffeeShopListingOptionsInfo.vb file and select Open.

2. When the source code is displayed, replace all the code with theWhen the source code is displayed, replace all the code with the
following code:

 Namespace EganEnterprises.CoffeeShopListing
 Public Class CoffeeShopListingOptionsInfo
 Private m_RoleID As Integer
 Private m_AuthorizedRoles As String
 Private m_moduleID As Integer

 Public Property RoleID() As Integer
 Get
 Return m_RoleID
 End Get
 Set(ByVal Value As Integer)
 m_RoleID = Value
 End Set
 End Property
 Public Property AuthorizedRoles() As String
 Get
 Return m_AuthorizedRoles
 End Get
 Set(ByVal Value As String)
 m_AuthorizedRoles = Value
 End Set
 End Property
 Public Property moduleID() As Integer
 Get
 Return m_moduleID

Chapter 8

[195]

 End Get
 Set(ByVal Value As Integer)
 m_moduleID = Value
 End Set
 End Property
 End Class
 End Namespace

3. Save the file.
4. Right-click on the CoffeeShopListingOptionsController.vb file and

select Open.
5. When the source code is displayed, replace all the code with theWhen the source code is displayed, replace all the code with the

following code:
 Imports System
 Imports System.Data
 Imports System.Collections.Generic

 Namespace EganEnterprises.CoffeeShopListing
 Public Class CoffeeShopListingOptionsController
 Public Function EganEnterprises_GetCoffeeShopModuleOptions(_
 ByVal ModuleId As Integer) _
 As List(Of CoffeeShopListingOptionsInfo)
 Return CBO.FillCollection(
 Of CoffeeShopListingOptionsInfo)(CType(_
 DotNetNuke.Data.DataProvider.Instance(). _
 ExecuteReader(
 "EganEnterprises_GetCoffeeShopModuleOptions", ModuleId), _
 IDataReader))
 End Function
 Public Function
 EganEnterprises_UpdateCoffeeShopModuleOptions(_
 ByVal objShopListOptions As EganEnterprises. _
 CoffeeShopListing.CoffeeShopListingOptionsInfo) _
 As Integer
 Return CType(DotNetNuke.Data.DataProvider.Instance(). _
 ExecuteScalar(
 "EganEnterprises_UpdateCoffeeShopModuleOptions", _
 objShopListOptions.moduleID, _
 objShopListOptions.AuthorizedRoles), _
 Integer)
 End Function
 Public Function EganEnterprises_AddCoffeeShopModuleOptions(_
 ByVal objShopListOptions As EganEnterprises. _
 CoffeeShopListing.CoffeeShopListingOptionsInfo) _

Connecting to the Database

[196]

 As Integer
 Return CType(DotNetNuke.Data.DataProvider.Instance(). _
 ExecuteScalar(
 "EganEnterprises_AddCoffeeShopModuleOptions", _
 objShopListOptions.moduleID, _
 objShopListOptions.AuthorizedRoles), Integer)
 End Function
 End Class
 End Namespace

6. Save the page.

Create the Settings Page
We will now create the Settings page. Unlike the ShopList.ascx and
EditShopList.ascx pages, this will be the final code that will be used in the final
Coffee Shop Listing module (we will update and complete the ShopList.ascx and
EditShopList.ascx pages later in this chapter).

1. In Visual Studio, right-click on theright-click on the on the CoffeeShopListing folder and select Add
New Item.

2. When the Add New Item menu comes up, select Web User Control and
enter Settings.ascx in the Name box. Ensure that the Place code in a
separate file box is checked and click the Add button.

3. When the page comes up in source view, replace all the code with the
following code:

 <%@ Control language="vb" AutoEventWireup="false"
 Inherits="EganEnterprises.CoffeeShopListing.Settings"
 CodeFile="Settings.ascx.vb"%>
 <%@ Register TagPrefix="Portal" TagName="DualList"
 Src="~/controls/DualListControl.ascx" %>
 <TABLE id="Table1" cellSpacing="1" cellPadding="1"
 width="100%" border="1">
 <TR>
 <TD>
 <P align="center">ShopListOptions</P>
 </TD>
 </TR>
 <TR>
 <td><portal:duallist id="ctlAuthRoles" runat="server"
 ListBoxWidth="130"
 ListBoxHeight="130" DataValueField="Value"
 DataTextField="Text" /></td>

Chapter 8

[197]

 </TR>
 </TABLE>

4. Right-click on the on the Settings.ascx file and select View Code. When the source
code is displayed, replace all the code with the following code:

 Imports System.Web
 Imports DotNetNuke.Security.Roles
 Imports System.Collections.Generic
 Imports System.Web.UI.WebControls

 Namespace EganEnterprises.CoffeeShopListing
 Partial Class Settings
 Inherits DotNetNuke.Entities.Modules.ModuleSettingsBase
 #Region "Base Method Implementations"
 Public Overrides Sub LoadSettings()
 Try
 ' declare roles
 Dim arrAvailableAuthRoles As New ArrayList
 Dim arrAssignedAuthRoles As New ArrayList
 ' Get list of possible roles
 Dim objRoles As New RoleController
 Dim objRole As RoleInfo
 Dim arrRoles As ArrayList = _
 objRoles.GetPortalRoles(PortalId)

 'String of roles for shoplist
 Dim objShopRoles As New CoffeeShopListingOptionsController
 Dim objShopRole As CoffeeShopListingOptionsInfo
 Dim arrShopRoles As List(Of CoffeeShopListingOptionsInfo) =
 objShopRoles.EganEnterprises_GetCoffeeShopModuleOptions _
 (ModuleId)
 'Put roles into a string
 Dim shopRoles As String = ""

 For Each objShopRole In arrShopRoles
 'If it makes it here then we will be updating
 shopRoles = objShopRole.AuthorizedRoles.ToString
 Next

 'Now loop through all available roles in portal
 For Each objRole In arrRoles
 Dim objListItem As New ListItem
 objListItem.Value = objRole.RoleID.ToString()
 objListItem.Text = objRole.RoleName.ToString()

Connecting to the Database

[198]

 'If it matches a role in the ShopRoles string put
 'it in the assigned box
 If shopRoles.IndexOf(objRole.RoleID & ";") _
 <> -1 Or objRole.RoleID = _
 PortalSettings.AdministratorRoleId Then
 arrAssignedAuthRoles.Add(objListItem)
 Else ' put it inthe avalible box
 arrAvailableAuthRoles.Add(objListItem)
 End If
 Next
 ' assign to duallist controls
 ctlAuthRoles.Available = arrAvailableAuthRoles
 ctlAuthRoles.Assigned = arrAssignedAuthRoles
 Catch exc As Exception 'Module failed to load
 ProcessModuleLoadException(Me, exc)
 End Try
 End Sub

 Public Overrides Sub UpdateSettings()
 Try
 Dim objShopRoles As New CoffeeShopListingOptionsController
 Dim objShopRole As New CoffeeShopListingOptionsInfo
 Dim item As ListItem
 Dim strAuthorizedRoles As String = ""
 For Each item In ctlAuthRoles.Assigned
 strAuthorizedRoles += item.Value & ";"
 Next item
 objShopRole.AuthorizedRoles = strAuthorizedRoles
 objShopRole.moduleID = ModuleId
 Dim intExists As Integer
 intExists = objShopRoles. _
 EganEnterprises_UpdateCoffeeShopModuleOptions(
 objShopRole)
 If intExists = 0 Then 'New record
 objShopRoles.
 EganEnterprises_AddCoffeeShopModuleOptions _
 (objShopRole)
 End If
 Catch exc As Exception 'Module failed to load
 ProcessModuleLoadException(Me, exc)
 End Try
 End Sub

 #End Region

Chapter 8

[199]

 End Class
 End Namespace

13. Save the page.

Update the Configuration
In Visual Studio, press Ctrl+F5 to build the code and start the DotNetNuke site.

1. Log in as host.
2. From the Host menu select Module Definitions.
3. From the Module Definitions click the edit symbol next to the

CoffeeShopListing module to select it.
4. Click the Add Control link toward the bottom of the CoffeeShopListing

module definition.
5. When the control configuration screen appears, configure it with the

following settings:
Enter Settings for Key.
Enter CoffeeShop Settings for Title.
Use the dropdown to select DesktopModules/
CoffeeShopListing/Settings.ascx for Source.
Use the dropdown to select View for Type.
Click the Update button.

°

°

°

°

°

Connecting to the Database

[200]

View the Settings Page
Click the Coffee Shop Listing link on the menu bar in the DotNetNuke site to on the menu bar in the DotNetNuke site to
display the Coffee Shop Listings module, then click on the Coffee Shop Listing
module's menu and select Settings.

Now expand the CoffeeShop Settings section.

The form will allow you to configure the roles that will be allowed to add Coffee
Shop listings.

What we have Accomplished
We have explored a few additional concepts of DotNetNuke module development:

SQL scripts
DAL+

Info class
CBO
Controller class

•

•

°

°

°

Chapter 8

[201]

Module Settings page
Inheriting from ModuleSettingsBase
Overriding LoadSettings and UpdateSettings
Built-in DotNetNuke User Controls

SQL Scripts
We ran an SQL script that created the tables and the stored procedures. You will
notice that the script is written in this syntax:

CREATE TABLE {databaseOwner}{objectQualifier}[EganEnterprises_
CoffeeShopInfo]

Rather than the normal SQL syntax such as:

CREATE TABLE [dbo][EganEnterprises_CoffeeShopInfo]

The script tokens {databaseOwner} and {objectQualifier} indicate that they
are to be replaced by configuration settings in the web.config file. Normally
{databaseOwner} is set to .dbo and {objectQualifier} is set to nothing (it would
not have a setting). However, if alternative settings were indicated in the web.
config file, those settings would be inserted into the script.ose settings would be inserted into the script.

You must have the Run as Script box checked for this replacement to happen.

The DAL+
The purpose of the DAL+ is to simplify module development by a reduction in code
and complexity. The DAL+ allows you to make calls to the database directly from the
controller class. This means that you do not have to code a separate data provider,
yet you will still be able to support different data sources in most situations.

The DAL+ achieves this by providing the following generic methods:

ExecuteNonQuery — Used to execute a stored procedure that will not return
a value.
ExecuteReader — Used to execute a stored procedure that will return
multiple records.
ExecuteScalar — Used to execute a stored procedure that will return a
single value.
ExecuteSQL — Used to execute an SQL statement.

•

°

°

°

•

•

•

•

Connecting to the Database

[202]

The explanation of the format used to implement the DAL+ is given below. The
ExecuteReader method is used in the example to call a stored procedure named
EganEnterprises_GetCoffeeShopModuleOptions:

The Business Logic Layer (BLL)
The DAL+ code resides in the Business Logic Layer (BLL). The BLL is code that sits
between the DAL+ (or the DAL that will be presented later) and the presentation
layer. The BLL has three main components:

Info Class (CoffeeShopListingOptionsInfo)
Custom Business Objects (DotNetNuke.Common.Utilities.CBO)
Controller Class (CoffeeShopListingOptionsController)

The CoffeeShopListingOptionsInfo class
The CoffeeShopListingOptionsInfo class is a very simple class that holds the
information used to pass information to the database layer. It is used to pass a
hydrated (populated with data) object instead of individual parameters.

Custom Business Objects (CBO)
To help minimize the task of populating custom business objects from the data layer,
the DotNetNuke core API offers a generic utility class to help hydrate your business
objects, the CBO class found in the DotNetNuke.Common.Utilities namespace.

This class primarily performs two functions; hydrating a single object instance
(FillObject) and hydrating a collection of objects (FillCollection). As you can
see, the CBO class contains a number of overloaded methods for FillCollection
and FillObject.

•

•

•

Chapter 8

[203]

The FillCollection method is used in the
CoffeeShopListingOptionsController class to hydrate the
CoffeeShopListingOptionsInfo class.

Return CBO.FillCollection(
 Of CoffeeShopListingOptionsInfo)(CType(_
 DotNetNuke.Data.DataProvider.Instance(). _
 ExecuteReader("EganEnterprises_
GetCoffeeShopModuleOptions", ModuleId), _
 IDataReader))

Using these methods allows you to write less code to hydrate your custom business
objects (info classes) than you would have to without them.

For more information on custom business objects refer to
DotNetNuke Data Access.doc available for download at
DotNetNuke.com.

The CoffeeShopListingOptionsController Class
The CoffeeShopListingOptionsController class provides methods for the
Settings page (the Settings page is in the presentation layer) that allow it to connect
to the database.

EganEnterprises_GetCoffeeShopModuleOptions(_
 ByVal ModuleId As Integer) _
 As List(Of CoffeeShopListingOptionsInfo)
EganEnterprises_UpdateCoffeeShopModuleOptions(_
 ByVal objShopListOptions As EganEnterprises. _
 CoffeeShopListing.CoffeeShopListingOptionsInfo) _

Connecting to the Database

[204]

 As Integer
EganEnterprises_AddCoffeeShopModuleOptions(_
 ByVal objShopListOptions As EganEnterprises. _
 CoffeeShopListing.CoffeeShopListingOptionsInfo) _
 As Integer

As you can see, other than the tables and stored procedures that also make up the
Data Access layer, the DAL+ is comprised of very minimal code.

The Settings Page
The Settings page is in the presentation layer. The code covered in the walk-through
covers these concepts and controls:

Inheriting from ModuleSettingsBase
Overriding LoadSettings and UpdateSettings
Built-in DotNetNuke User Controls

Inheriting from ModuleSettingsBase
Unlike the other User Controls, the Settings page inherits from
ModuleSettingsBase. ModuleSettingsBase inherits from PortalModuleBase and
contains all of its useful properties such as ModuleId but it also has two abstract
methods that we implement: LoadSettings and UpdateSettings.

Overriding LoadSettings and UpdateSettings
LoadSettings is called when the module settings page is accessed, and
UpdateSettings is called when the update button is clicked on the module settings
page. In the LoadSettings method in the Settings.ascx.vb page, we load all the
user roles and bind them to a Dual List Control. In the UpdateSettings method we
save any changes.

Built-in DotNetNuke User Controls
In our implementation we use the Dual List Control to move the roles between the
lists to give or remove the ability to add coffee shops. The Dual List Control is one
of many built-in DotNetNuke User Controls that are available in the /controls
directory. Using the object browser we can browse the definitions of the various
controls in the DotNetNuke.UI.UserControls namespace.

•

•

•

Chapter 8

[205]

In addition, there are useful Web Controls such as DNNLabelEdit and
DNNTextSuggest that are available in the DotNetNuke.WebControls assembly.

Using these controls saves a lot of code and provides a consistent look that better
integrates your module into the DotNetNuke framework.

Comparing the DAL to the DAL+
We will now cover the traditional DotNetNuke DAL. This is the coding pattern thattraditional DotNetNuke DAL. This is the coding pattern that DotNetNuke DAL. This is the coding pattern that
the core DotNetNuke code uses. First, let us compare the DAL+ we have just covered
to the DAL.

Connecting to the Database

[206]

As you can see in the graphic above, the difference is the inclusion of an Abstract
Data Provider in the DAL. However, an additional difference is that the Concrete
Data Provider of the DAL+ is created by the database provider that the DotNetNuke
installation is running on, and not the module developer. For example, a MySQL
Concrete Data Provider that allowed you to run DotNetNuke on the MySQL server
would implement the four methods of the DAL+. The module developer would only
have to write the code for the BLL.

With the DAL, both the Abstract Data Provider and the Concrete Data Provider are
written by the module developer. For example, for MySQL you would have to write
all the code that connected to the database yourself.

While this would seem to make the DAL+ more desirable, it actually highlights its
weakness. The Concrete Data Provider of the DAL+ only exposes four methods. For
most cases this is enough, however, in those situations where it is not (for example
when running a module on a different database than the one it was developed on)
the DAL provides the only solution that will work 100% of the time.

The DAL allows your module to run on different data sources by simply replacing
the Concrete Data Provider. This is how the DotNetNuke core code is written.
Developers have created providers to allow DotNetNuke to run on Oracle, Firebird,
and MySQL by simply creating a Concrete Data Provider for those data sources. In
some cases a method that only needs a single stored procedure in Microsoft SQL
Server needs two stored procedures in Firebird. This is not a problem with the DAL
because the Concrete Data Provider for Firebird simply specifies two calls to the
database to support the method in the BLL. This would not be possible with
the DAL+.

Chapter 8

[207]

A Close-up Look at the DAL
The following diagram shows how the pages that we will alter and create will fit
in the DAL structure. The Settings page and its supporting classes will remain as
they are in the DAL+ format so that you will have a module that has both coding
examples for reference.

Create the DataProvider.vb
We will now insert the code for the DataProvider.vb class. This abstract class
will be used as the base class for our provider, so we will declare this class as
MustInherit. This means we will not be able to instantiate this class; it can only be
used as the base class for our provider.

1. In Visual Studio, in the Solution Explorer, right-click on theright-click on the the
CoffeeShopListing folder that is under the App_Code directory and select
Add New Item.

2. When the Add New Item menu appears, select the Class template and enter
DataProvider.vb in the Name box. Also, ensure that Visual Basic is selected
in the Language drop-down and click the Add button.

3. When the source code is displayed, replace all the code with the followingdisplayed, replace all the code with the following, replace all the code with the following
code (only enter the code, not the narration that explains each section):(only enter the code, not the narration that explains each section)::

 Imports System
 Imports DotNetNuke

 Namespace EganEnterprises.CoffeeShopListing
 Public MustInherit Class DataProvider
 #Region "Shared/Static Methods"
 ' singleton reference to the instantiated object
 Private Shared objProvider As DataProvider = Nothing

Connecting to the Database

[208]

 ' constructor
 Shared Sub New()
 CreateProvider()
 End Sub

The CreateProvider method uses reflection to create an instance of the data
provider being created. We pass it the provider type, the namespace, and the
assembly name.

 Private Shared Sub CreateProvider()
 objProvider = _
 CType(Framework.Reflection.CreateObject _
 ("data", "EganEnterprises.CoffeeShopListing", ""), DataProvider)
 End Sub

The Instance method is used to actually create the instance of our data provider.

 Public Shared Shadows Function Instance() As DataProvider
 Return objProvider
 End Function

#End Region

The following methods are created as MustOverride because we will need to
implement them in our provider object.

Since any data source may be used, the implementation of these methods will reside
in the provider created in the next step. Here we will only create the signature of the
methods. The parameter names match those in our stored procedures (minus the @).

#Region "Abstract methods"
 Public MustOverride Function EganEnterprises_GetCoffeeShops(_
 ByVal ModuleId As Integer) _
 As IDataReader
 Public MustOverride Function
 EganEnterprises_GetCoffeeShopsByZip(_
 ByVal ModuleId As Integer, _
 ByVal coffeeShopZip As String) _
 As IDataReader
 Public MustOverride Function EganEnterprises_GetCoffeeShopsByID(_
 ByVal coffeeShopID As Integer) _
 As IDataReader
 Public MustOverride Function EganEnterprises_AddCoffeeShopInfo(_
 ByVal ModuleId As Integer, _
 ByVal coffeeShopName As String, _
 ByVal coffeeShopAddress1 As String, _

Chapter 8

[209]

 ByVal coffeeShopAddress2 As String, _
 ByVal coffeeShopCity As String, _
 ByVal coffeeShopState As String, _
 ByVal coffeeShopZip As String, _
 ByVal coffeeShopWiFi As System.Int16, _
 ByVal coffeeShopDetails As String) _
 As Integer
 Public MustOverride Sub EganEnterprises_UpdateCoffeeShopInfo(_
 ByVal coffeeShopID As Integer, _
 ByVal coffeeShopName As String, _
 ByVal coffeeShopAddress1 As String, _
 ByVal coffeeShopAddress2 As String, _
 ByVal coffeeShopCity As String, _
 ByVal coffeeShopState As String, _
 ByVal coffeeShopZip As String, _
 ByVal coffeeShopWiFi As System.Int16, _
 ByVal coffeeShopDetails As String)
 Public MustOverride Sub EganEnterprises_DeleteCoffeeShop(_
 ByVal coffeeShopID As Integer)
#End Region
 End Class
End Namespace

Create the SqlDataProvider.vb
We will now insert the code for the SqlDataProvider.vb class. This class will serve
as our Concrete Data Provider and override the methods in theConcrete Data Provider and override the methods in the and override the methods in the DataProvider.vb
file we have just created. This is the class that is specific to our data source.

Most of the Imports statements in this class should be familiar, but one that stands
out is Microsoft.ApplicationBlocks.Data. This is an assembly created by
Microsoft to help with the connections and commands needed to work with SQL
Server. It is used to facilitate calls to the database without having to create all of the
ADO.NET code manually.

1. In Visual Studio, in the Solution Explorer, right-click on theright-click on the the
CoffeeShopListing folder that is under the App_Code directory and select
Add New Item.

2. When the Add New Item menu appears, select the Class template and enter
SqlDataProvider.vb in the Name box. Also, ensure that Visual Basic is
selected in the Language dropdown and click the Add button.

3. When the source code is displayed, replace all the code with the following
code sections from Imports System to End Namespace (only enter the code,
not the narration that explains each section) :

Connecting to the Database

[210]

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports Microsoft.ApplicationBlocks.Data
Imports DotNetNuke
Imports DotNetNuke.Common.Utilities
Imports DotNetNuke.Framework.Providers

Namespace EganEnterprises.CoffeeShopListing
 Public Class SqlDataProvider

As you can see, we will inherit from the DataProvider base class created earlier:

 Inherits EganEnterprises.CoffeeShopListing.DataProvider
#Region "Private Members"

We also need to declare a constant variable that will hold the type of the provider.
There are many different providers used in DotNetNuke so we need to specify the
type. This is done by assigning it the simple lowercase string data.

 Private Const ProviderType As String = "data"

We then use this type to instantiate a data provider configuration:

 Private _providerConfiguration As _
 ProviderConfiguration = _
 ProviderConfiguration.GetProviderConfiguration _
 (ProviderType)

Next, we declare variables that will hold the information necessary for us to connect
to the database:

 Private _connectionString As String
 Private _providerPath As String
 Private _objectQualifier As String
 Private _databaseOwner As String
#End Region
#Region "Constructors"

In the constructor for the class we read the attributes that we set in the web.config
file to gather the database-specific information like connection string and
database owner.

 Public Sub New()
 ' Read the configuration specific information for this provider
 Dim objProvider As Provider = _
 CType(_providerConfiguration.Providers _

Chapter 8

[211]

 (_providerConfiguration.DefaultProvider), _
 Provider)
 ' Read the attributes for this provider
 If objProvider.Attributes("connectionStringName") <> "" _
 AndAlso _
 System.Configuration.ConfigurationManager.AppSettings _
 (objProvider.Attributes("connectionStringName")) <> "" _
 Then
 _connectionString = _
 System.Configuration.ConfigurationManager.AppSettings _
 (objProvider.Attributes("connectionStringName"))
 Else
 _connectionString = _
 objProvider.Attributes("connectionString")
 End If
 _providerPath = objProvider.Attributes("providerPath")
 _objectQualifier = _
 objProvider.Attributes("objectQualifier")
 If _objectQualifier <> "" And _objectQualifier.EndsWith("_") _
 = False Then
 objectQualifier += ""
 End If
 _databaseOwner = objProvider.Attributes("databaseOwner")
 If _databaseOwner <> "" And _databaseOwner.EndsWith(".") _
 = False Then
 _databaseOwner += "."
 End If
 End Sub
#End Region
#Region "Properties"

 Public ReadOnly Property ConnectionString() As String
 Get
 Return _connectionString
 End Get
 End Property

 Public ReadOnly Property ProviderPath() As String
 Get
 Return _providerPath
 End Get
 End Property

Connecting to the Database

[212]

 Public ReadOnly Property ObjectQualifier() As String
 Get
 Return _objectQualifier
 End Get
 End Property

 Public ReadOnly Property DatabaseOwner() As String
 Get
 Return _databaseOwner
 End Get
 End Property

#End Region

As you recall, in the base provider class we declared our methods as MustOverride.
In this section, we are doing just that. We override the methods from the base class
and use the Microsoft.ApplicationBlocks.Data class to make the calls to
the database.

The GetNull function is used to convert an application-encoded null value to a
database null value that is defined for the datatype expected. We will be utilizing this
throughout the rest of this section.

 ' general
 Private Function GetNull(ByVal Field As Object) As Object
 Return Null.GetNull(Field, DBNull.Value)
 End Function
 Public Overrides Function EganEnterprises_GetCoffeeShops(_
 ByVal ModuleId As Integer) _
 As IDataReader
 Return CType(SqlHelper.ExecuteReader(ConnectionString, _
 DatabaseOwner & _
 ObjectQualifier & _
 "EganEnterprises_GetCoffeeShops", _
 ModuleId), _
 IDataReader)
 End Function
 Public Overrides Function EganEnterprises_GetCoffeeShopsByZip(_
 ByVal ModuleId As Integer, _
 ByVal coffeeShopZip As String) _
 As IDataReader
 Return CType(SqlHelper.ExecuteReader(ConnectionString, _
 DatabaseOwner & _
 ObjectQualifier & _
 "EganEnterprises_GetCoffeeShopsByZip", _

Chapter 8

[213]

 ModuleId, _
 coffeeShopZip), _
 IDataReader)
 End Function
 Public Overrides Function EganEnterprises_GetCoffeeShopsByID(_
 ByVal coffeeShopID As Integer) _
 As IDataReader
 Return CType(SqlHelper.ExecuteReader(ConnectionString, _
 DatabaseOwner & _
 ObjectQualifier & _
 "EganEnterprises_GetCoffeeShopsByID", _
 coffeeShopID), _
 IDataReader)
 End Function
 Public Overrides Function EganEnterprises_AddCoffeeShopInfo(_
 ByVal ModuleId As Integer, _
 ByVal coffeeShopName As String, _
 ByVal coffeeShopAddress1 As String, _
 ByVal coffeeShopAddress2 As String, _
 ByVal coffeeShopCity As String, _
 ByVal coffeeShopState As String, _
 ByVal coffeeShopZip As String, _
 ByVal coffeeShopWiFi As System.Int16, _
 ByVal coffeeShopDetails As String) _
 As Integer
 Return CType(SqlHelper.ExecuteScalar(ConnectionString, _
 DatabaseOwner & _
 ObjectQualifier & _
 "EganEnterprises_AddCoffeeShopInfo", _
 ModuleId, _
 coffeeShopName, _
 GetNull(coffeeShopAddress1), _
 GetNull(coffeeShopAddress2), _
 coffeeShopCity, _
 coffeeShopState, _
 coffeeShopZip, _
 coffeeShopWiFi, _
 coffeeShopDetails), _
 Integer)
 End Function
 Public Overrides Sub EganEnterprises_UpdateCoffeeShopInfo(_
 ByVal coffeeShopID As Integer, _
 ByVal coffeeShopName As String, _
 ByVal coffeeShopAddress1 As String, _

Connecting to the Database

[214]

 ByVal coffeeShopAddress2 As String, _
 ByVal coffeeShopCity As String, _
 ByVal coffeeShopState As String, _
 ByVal coffeeShopZip As String, _
 ByVal coffeeShopWiFi As System.Int16, _
 ByVal coffeeShopDetails As String)
 SqlHelper.ExecuteNonQuery(ConnectionString, _
 DatabaseOwner & _
 ObjectQualifier & _
 "EganEnterprises_UpdateCoffeeShopInfo", _
 coffeeShopID, _
 coffeeShopName, _
 GetNull(coffeeShopAddress1), _
 GetNull(coffeeShopAddress2), _
 coffeeShopCity, _
 coffeeShopState, _
 coffeeShopZip, _
 coffeeShopWiFi, _
 coffeeShopDetails)
 End Sub
 Public Overrides Sub EganEnterprises_DeleteCoffeeShop(_
 ByVal coffeeShopID As Integer)
 SqlHelper.ExecuteNonQuery(ConnectionString, _
 DatabaseOwner & _
 ObjectQualifier & _
 "EganEnterprises_DeleteCoffeeShop", _
 coffeeShopID)
 End Sub
 End Class
End Namespace

Create the BLL Layer
We will now insert the code for the two class files of the BLL layer. The
CoffeeShopListingInfo class is a simple class that exposes fields that will
be used to pass data between the Shoplist and EditShopList pages and theShoplist and EditShopList pages and the and EditShopList pages and theEditShopList pages and thepages and the
CoffeeShopListingController. The CoffeeShopListingController will connect. The CoffeeShopListingController will connectCoffeeShopListingController will connect will connect
to the dataprovider class, which contains methods that are overridden by the
SqlDataProvider class, which then connects to the database.

1. Right-click on the on the CoffeeShopListing folder that is under the App_Code
directory and select Add New Item.

Chapter 8

[215]

2. When the Add New Item menu appears, select the Class template and enter
CoffeeShopListingInfo.vb in the Name box. Also, ensure that Visual Basic
is selected in the Language dropdown and click the Add button.

3. When the source code is displayed, replace all the code with the following
code:

 Imports System
 Imports System.Configuration
 Imports System.Data
 Namespace EganEnterprises.CoffeeShopListing

 Public Class CoffeeShopListingInfo
 #Region "Private Members"

 Private m_moduleID As Integer
 Private m_coffeeShopID As Integer
 Private m_coffeeShopName As String
 Private m_coffeeShopAddress1 As String
 Private m_coffeeShopAddress2 As String
 Private m_coffeeShopCity As String
 Private m_coffeeShopState As String
 Private m_coffeeShopZip As String
 Private m_coffeeShopWiFi As System.Int16
 Private m_coffeeShopDetails As String

 #End Region
 #Region "Constructors"
 Public Sub New()
 End Sub

 #End Region
 #Region "Properties"
 Public Property moduleID() As Integer
 Get
 Return m_moduleID
 End Get
 Set(ByVal Value As Integer)
 m_moduleID = Value
 End Set
 End Property
 Public Property coffeeShopID() As Integer
 Get
 Return m_coffeeShopID

Connecting to the Database

[216]

 End Get
 Set(ByVal Value As Integer)
 m_coffeeShopID = Value
 End Set
 End Property
 Public Property coffeeShopName() As String
 Get
 Return m_coffeeShopName
 End Get
 Set(ByVal Value As String)
 m_coffeeShopName = Value
 End Set
 End Property
 Public Property coffeeShopAddress1() As String
 Get
 Return m_coffeeShopAddress1
 End Get
 Set(ByVal Value As String)
 m_coffeeShopAddress1 = Value
 End Set
 End Property
 Public Property coffeeShopAddress2() As String
 Get
 Return m_coffeeShopAddress2
 End Get
 Set(ByVal Value As String)
 m_coffeeShopAddress2 = Value
 End Set
 End Property
 Public Property coffeeShopCity() As String
 Get
 Return m_coffeeShopCity
 End Get
 Set(ByVal Value As String)
 m_coffeeShopCity = Value
 End Set
 End Property
 Public Property coffeeShopState() As String
 Get
 Return m_coffeeShopState
 End Get
 Set(ByVal Value As String)
 m_coffeeShopState = Value
 End Set

Chapter 8

[217]

 End Property
 Public Property coffeeShopZip() As String
 Get
 Return m_coffeeShopZip
 End Get
 Set(ByVal Value As String)
 m_coffeeShopZip = Value
 End Set
 End Property
 Public Property coffeeShopWiFi() As System.Int16
 Get
 Return m_coffeeShopWiFi
 End Get
 Set(ByVal Value As System.Int16)
 m_coffeeShopWiFi = Value
 End Set
 End Property
 Public Property coffeeShopDetails() As String
 Get
 Return m_coffeeShopDetails
 End Get
 Set(ByVal Value As String)
 m_coffeeShopDetails = Value
 End Set
 End Property
 #End Region
 End Class
 End Namespace

4. Next, right-click on theright-click on the on the CoffeeShopListing folder that is under the App_
Code directory and select Add New Item.

5. When the Add New Item menu appears, select the Class template and enter
CoffeeShopListingController.vb in the Name box. Also, ensure that Visual
Basic is selected in the Language dropdown and click the Add button.

6. When the source code is displayed, replace all the code with the
following code:

 Imports DotNetNuke.Services.Search
 Imports DotNetNuke.Common.Utilities.XmlUtils
 Imports System.Collections.Generic
 Imports System
 Imports System.Configuration
 Imports System.Data
 Imports System.XML

Connecting to the Database

[218]

 Namespace EganEnterprises.CoffeeShopListing

 Public Class CoffeeShopListingController
 #Region "Public Methods"
 Public Function EganEnterprises_GetCoffeeShops(_
 ByVal ModuleId As Integer)
 As List(Of CoffeeShopListingInfo)
 Return CBO.FillCollection(
 Of CoffeeShopListingInfo)(CType(_
 DataProvider.Instance(). _
 EganEnterprises_GetCoffeeShops _
 (ModuleId), IDataReader))
 End Function
 Public Function EganEnterprises_GetCoffeeShopsByZip(_
 ByVal ModuleId As Integer, _
 ByVal coffeeShopZip As String) _
 As List(Of CoffeeShopListingInfo)
 Return CBO.FillCollection(Of CoffeeShopListingInfo)(CType(_
 DataProvider.Instance(). _
 EganEnterprises_GetCoffeeShopsByZip _
 (ModuleId, coffeeShopZip), _
 IDataReader))
 End Function
 Public Function EganEnterprises_GetCoffeeShopsByID(_
 ByVal coffeeShopID As Integer) As CoffeeShopListingInfo
 Return CType(CBO.FillObject _
 (EganEnterprises.CoffeeShopListing. _
 DataProvider.Instance(). _
 EganEnterprises_GetCoffeeShopsByID(_
 coffeeShopID), GetType(CoffeeShopListingInfo)), _
 CoffeeShopListingInfo)
 End Function
 Public Function EganEnterprises_AddCoffeeShopInfo(_
 ByVal objShopList As _
 EganEnterprises.CoffeeShopListing.CoffeeShopListingInfo) _
 As Integer
 Return CType(EganEnterprises.CoffeeShopListing. _
 DataProvider.Instance(). _
 EganEnterprises_AddCoffeeShopInfo(_
 objShopList.moduleID, _
 objShopList.coffeeShopName, _
 objShopList.coffeeShopAddress1, _
 objShopList.coffeeShopAddress2, _
 objShopList.coffeeShopCity, _

Chapter 8

[219]

 objShopList.coffeeShopState, _
 objShopList.coffeeShopZip, _
 objShopList.coffeeShopWiFi, _
 objShopList.coffeeShopDetails), Integer)
 End Function
 Public Sub EganEnterprises_UpdateCoffeeShopInfo(_
 ByVal objShopList As _
 EganEnterprises.CoffeeShopListing.CoffeeShopListingInfo)
 EganEnterprises.CoffeeShopListing. _
 DataProvider.Instance(). _
 EganEnterprises_UpdateCoffeeShopInfo(_
 objShopList.coffeeShopID, _
 objShopList.coffeeShopName, _
 objShopList.coffeeShopAddress1, _
 objShopList.coffeeShopAddress2, _
 objShopList.coffeeShopCity, _
 objShopList.coffeeShopState, _
 objShopList.coffeeShopZip, _
 objShopList.coffeeShopWiFi, _
 objShopList.coffeeShopDetails)
 End Sub
 Public Sub EganEnterprises_DeleteCoffeeShop(_
 ByVal coffeeShopID As Integer)
 EganEnterprises.CoffeeShopListing. _
 DataProvider.Instance(). _
 EganEnterprises_DeleteCoffeeShop(coffeeShopID)
 End Sub
 #End Region
 End Class
 End Namespace

DAL Summary
The CoffeeShopListingController makes calls to the data source much like theCoffeeShopListingController makes calls to the data source much like the makes calls to the data source much like the
CoffeeShopOptionsController made with the exception that it does not invoke a made with the exception that it does not invoke a
DAL+ method. Instead it simply calls a method in the DataProvider.

Connecting to the Database

[220]

The purpose of the DAL is to allow a module to run on an alternative data source
by only replacing the Concrete Data provider. TheConcrete Data provider. The. The DataProvider is an abstract
class that defines a contract that the Concrete Data provider fulfils by overriding thecontract that the Concrete Data provider fulfils by overriding the that the Concrete Data provider fulfils by overriding theConcrete Data provider fulfils by overriding thefulfils by overriding the
methods that it defines.

Complete the Presentation Layer
We will now alter ShopList.ascx and EditShopList.ascx (and their code-behind
files ShopList.ascx.vb and EditShopList.ascx.vb) with their final code.

Chapter 8

[221]

Alter and Complete ShopList
1. In Visual Studio, right-click on ShopList.ascx in the Solution Explorer and

select Open. When the page is displayed in the editing window, ensure that
you are in source mode and replace all the code with the following code:

 <%@ Control language="vb" AutoEventWireup="false"
 Inherits="EganEnterprises.CoffeeShopListing.ShopList"
 CodeFile="ShopList.ascx.vb"%>
 <asp:Panel id="pnlGrid" runat="server">
 <TABLE id="Table1" cellSpacing="1"
 cellPadding="1" width="100%" border="1">
 <TR>
 <TD>
 <P align="center">Enter Zip code
 <asp:TextBox id="txtZipSearch"
 runat="server"></asp:TextBox>
 <asp:LinkButton id="lbSearch"
 runat="server">Search By Zip</asp:LinkButton></P>
 </TD>
 </TR>
 <TR>
 <TD>
 <P align="center">
 <asp:linkbutton id="lbAddNewShop"
 runat="server">Add New Shop</asp:linkbutton></P>
 </TD>
 </TR>
 </TABLE>
 <asp:datagrid id="dgShopLists" runat="server"
 AutoGenerateColumns="False"
 BorderColor="Blue" BorderWidth="2px"
 Width="100%">
 <AlternatingItemStyle BackColor="Lavender"></
 AlternatingItemStyle>
 <HeaderStyle BackColor="Silver"></HeaderStyle>
 <Columns>
 <asp:TemplateColumn>
 <ItemTemplate>
 <asp:HyperLink id=hlcoffeeShopID
 runat="server" Visible="<%# IsEditable %>"
 NavigateUrl='<%# EditURL("coffeeShopID",
 DataBinder.Eval(Container.DataItem,
 "coffeeShopID")) %>' ImageUrl="~/images/edit.gif">
 </asp:HyperLink>
 </ItemTemplate>

Connecting to the Database

[222]

 </asp:TemplateColumn>
 <asp:BoundColumn DataField="coffeeShopName"
 ReadOnly="True" HeaderText="Coffee Shop Name"></
 asp:BoundColumn>
 <asp:BoundColumn DataField="coffeeShopAddress1"
 ReadOnly="True" HeaderText="Address"></
 asp:BoundColumn>
 <asp:BoundColumn DataField="coffeeShopCity"
 ReadOnly="True" HeaderText="City"></asp:BoundColumn>
 <asp:BoundColumn DataField="coffeeShopZip" ReadOnly="True"
 HeaderText="Zip Code"></asp:BoundColumn>
 </Columns>
 </asp:datagrid></asp:Panel>
 <asp:Panel id="pnlAdd" runat="server">
 <TABLE id="Table2" cellSpacing="1"
 cellPadding="1" width="100%" border="1">
 <TR>
 <TD align="center" bgColor="lavender" colSpan="2">
 Enter A New
 Coffee Shop</TD>
 </TR>
 <TR>
 <TD>
 <P align="center">ShopName</P>
 </TD>
 <TD>
 <asp:textbox id="txtcoffeeShopName"
 runat="server"></asp:textbox></TD>
 </TR>
 <TR>
 <TD>
 <P align="center">Address1</P>
 </TD>
 <TD>
 <asp:textbox id="txtCoffeeShopAddress1"
 runat="server"></asp:textbox></TD>
 </TR>
 <TR>
 <TD>
 <P align="center">Address2</P>
 </TD>
 <TD>
 <asp:textbox id="txtCoffeeShopAddress2"
 runat="server"></asp:textbox></TD>
 </TR>

Chapter 8

[223]

 <TR>
 <TD>
 <P align="center">City</P>
 </TD>
 <TD>
 <asp:textbox id="txtcoffeeShopCity" runat="server"></
 asp:textbox></TD>
 </TR>
 <TR>
 <TD>
 <P align="center">State</P>
 </TD>
 <TD>
 <asp:textbox id="txtcoffeeShopState" runat="server"></
 asp:textbox></TD>
 </TR>
 <TR>
 <TD>
 <P align="center">zip</P>
 </TD>
 <TD>
 <asp:textbox id="txtcoffeeShopZip" runat="server"></
 asp:textbox></TD>
 </TR>
 <TR>
 <TD height="31">
 <P align="center">WiFi Yes or No</P>
 </TD>
 <TD height="31">
 <asp:RadioButtonList id="rblWiFi" runat="server"
 RepeatDirection="Horizontal">
 <asp:ListItem Value="1">Yes</asp:ListItem>
 <asp:ListItem Value="0">No</asp:ListItem>
 </asp:RadioButtonList></TD>
 </TR>
 <TR>
 <TD>
 <P align="center">Extra Details</P>
 </TD>
 <TD>
 <asp:TextBox id="txtcoffeeShopDetails" runat="server"></
 asp:TextBox></TD>
 </TR>
 <TR>
 <TD>

Connecting to the Database

[224]

 <P align="center"> </P>
 </TD>
 <TD>
 <P>
 <asp:LinkButton id="cmdAdd" runat="server"
 Text="Update" BorderStyle="none"
 CssClass="CommandButton">Add</
 asp:LinkButton>
 <asp:LinkButton id="cmdCancel" runat="server"
 Text="Cancel" BorderStyle="none"
 CssClass="CommandButton"
 CausesValidation="False"></asp:LinkButton>
 </P>
 </TD>
 </TR>
 </TABLE>
 </asp:Panel>

2. Next, right-click on on ShopList.ascx.vb and select View Code. When the
source code is displayed, replace all the code with the following code:

 Imports DotNetNuke
 Imports DotNetNuke.Security.Roles
 Imports System.Collections.Generic

 Namespace EganEnterprises.CoffeeShopListing
 Partial Class ShopList
 Inherits Entities.Modules.PortalModuleBase
 Implements Entities.Modules.IActionable
 Dim coffeeShopID As Integer = -1
 Protected Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'If we are not adding show the grid
 If (Request.Params("Add") Is Nothing) Then
 'Grid panel is visible
 pnlAdd.Visible = False
 pnlGrid.Visible = True

 'Then fill the grid
 If Not Page.IsPostBack Then
 Dim objCoffeeShops As New CoffeeShopListingController
 Dim myList As List(Of CoffeeShopListingInfo)
 myList = objCoffeeShops.EganEnterprises_GetCoffeeShops _
 (ModuleId)
 Me.dgShopLists.DataSource = myList
 Me.dgShopLists.DataBind()

Chapter 8

[225]

 End If
 'Check roles to see if the user can add items to the listing
 'String of roles for shoplist
 Dim objShopRoles As New CoffeeShopListingOptionsController
 Dim objShopRole As CoffeeShopListingOptionsInfo
 Dim arrShopRoles As List(Of CoffeeShopListingOptionsInfo) =
 objShopRoles.EganEnterprises_GetCoffeeShopModuleOptions _
 (ModuleId)
 'Put roles into a string
 Dim shopRoles As String = ""
 For Each objShopRole In arrShopRoles
 shopRoles += objShopRole.AuthorizedRoles.ToString
 Next

 '
 Dim bAuth = False
 If UserInfo.UserID <> -1 Then
 If UserInfo.IsSuperUser = True Then
 bAuth = True
 Else
 Dim objRoles As New RoleController
 Dim Roles As String() = objRoles.GetRolesByUser _
 (UserInfo.UserID, PortalSettings.PortalId)
 Dim maxRows As Integer = UBound(Roles)
 Dim i As Integer
 For i = 0 To maxRows
 Dim objRoleInfo As RoleInfo
 objRoleInfo = objRoles.GetRoleByName(PortalId, Roles(i))
 If shopRoles.IndexOf(objRoleInfo.RoleID & ";") <> -1 Then
 bAuth = True
 Exit For
 End If
 Next
 End If
 End If
 If bAuth Then
 lbAddNewShop.Visible = True
 Else
 lbAddNewShop.Visible = False
 End If
 Else ' If we are adding...
 'Add panel is visible
 pnlAdd.Visible = True
 pnlGrid.Visible = False

Connecting to the Database

[226]

 End If
 End Sub
 Protected Sub lbAddNewShop_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles lbAddNewShop.Click
 Response.Redirect(NavigateURL(TabId, "", _
 "Add=YES"), True)
 End Sub
 Protected Sub cmdAdd_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdAdd.Click
 Dim objShopList As New CoffeeShopListingInfo
 With objShopList
 .moduleID = ModuleId
 .coffeeShopID = coffeeShopID
 .coffeeShopName = txtcoffeeShopName.Text
 .coffeeShopAddress1 = txtCoffeeShopAddress1.Text
 .coffeeShopAddress2 = txtCoffeeShopAddress2.Text
 .coffeeShopCity = txtcoffeeShopCity.Text
 .coffeeShopState = txtcoffeeShopState.Text
 .coffeeShopZip = txtcoffeeShopZip.Text
 .coffeeShopDetails = txtcoffeeShopDetails.Text
 .coffeeShopWiFi = rblWiFi.SelectedValue
 End With

 Dim objShopLists As New CoffeeShopListingController

 coffeeShopID = _
 objShopLists.EganEnterprises_AddCoffeeShopInfo(objShopList)
 ' Redirect back to the portal
 Response.Redirect(NavigateURL())
 End Sub

 Protected Sub cmdCancel_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdCancel.Click
 ' Redirect back to the portal
 Response.Redirect(NavigateURL())
 End Sub

 Protected Sub lbSearch_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles lbSearch.Click
 Dim objCoffeeShops As New CoffeeShopListingController

Chapter 8

[227]

 Dim myList As List(Of CoffeeShopListingInfo)
 myList = _
 objCoffeeShops.EganEnterprises_GetCoffeeShopsByZip _
 (ModuleId, txtZipSearch.Text)
 Me.dgShopLists.DataSource = myList
 Me.dgShopLists.DataBind()
 End Sub

 #Region "Optional Interfaces"
 Public ReadOnly Property ModuleActions() As _
 DotNetNuke.Entities.Modules.Actions.ModuleActionCollection _
 Implements DotNetNuke.Entities.Modules.
 IActionable.ModuleActions
 Get
 Dim Actions As New _
 Entities.Modules.Actions.ModuleActionCollection
 Actions.Add(GetNextActionID,
 Localization.GetString(Entities.Modules.Actions.
 ModuleActionType.AddContent, LocalResourceFile),
 Entities.Modules.Actions.ModuleActionType.AddContent,
 "", "", EditUrl(), False, Security.SecurityAccessLevel.
 Edit, True, False)
 Return Actions
 End Get
 End Property
 #End Region
 End Class
 End Namespace

Alter and Complete EditShopList
1. Right-click on on EditShopList.ascx and select Open. When the page is

displayed in the editing window, ensure that you are in source mode and
replace all the code with the following code:

 <%@ Control language="vb" AutoEventWireup="false"
 Inherits="EganEnterprises.CoffeeShopListing.EditShopList"
 CodeFile="EditShopList.ascx.vb"%>
 <TABLE id="Table1" cellSpacing="1"
 cellPadding="1" width="100%" border="1">
 <TR>
 <TD>
 <P align="center">ShopName</P>
 </TD>
 <TD><asp:textbox id="txtcoffeeShopName" runat="server">

Connecting to the Database

[228]

 </asp:textbox></TD>
 </TR>
 <TR>
 <TD>
 <P align="center">Address1</P>
 </TD>
 <TD><asp:textbox id="txtCoffeeShopAddress1" runat="server">
 </asp:textbox></TD>
 </TR>
 <TR>
 <TD>
 <P align="center">Address2</P>
 </TD>
 <TD><asp:textbox id="txtCoffeeShopAddress2" runat="server">
 </asp:textbox></TD>
 </TR>
 <TR>
 <TD>
 <P align="center">City</P>
 </TD>
 <TD><asp:textbox id="txtcoffeeShopCity" runat="server">
 </asp:textbox></TD>
 </TR>
 <TR>
 <TD>
 <P align="center">State</P>
 </TD>
 <TD><asp:textbox id="txtcoffeeShopState" runat="server">
 </asp:textbox></TD>
 </TR>
 <TR>
 <TD>
 <P align="center">zip</P>
 </TD>
 <TD><asp:textbox id="txtcoffeeShopZip" runat="server">
 </asp:textbox></TD>
 </TR>
 <TR>
 <TD height="31">
 <P align="center">WiFi Yes or No</P>
 </TD>
 <TD height="31">
 <asp:RadioButtonList id="rblWiFi" runat="server"
 RepeatDirection="Horizontal">

Chapter 8

[229]

 <asp:ListItem Value="1">Yes</asp:ListItem>
 <asp:ListItem Value="0">No</asp:ListItem>
 </asp:RadioButtonList></TD>
 </TR>
 <TR>
 <TD>
 <P align="center">Extra Details</P>
 </TD>
 <TD>
 <asp:TextBox id="txtcoffeeShopDetails" runat="server">
 </asp:TextBox></TD>
 </TR>
 <TR>
 <TD>
 <P align="center"> </P>
 </TD>
 <TD>
 <P>
 <asp:LinkButton id="cmdUpdate" runat="server"
 Text="Update" BorderStyle="none"
 CssClass="CommandButton"></asp:LinkButton>
 <asp:LinkButton id="cmdCancel" runat="server"
 Text="Cancel" BorderStyle="none"
 CssClass="CommandButton"
 CausesValidation="False"></asp:LinkButton>
 <asp:LinkButton id="cmdDelete" runat="server"
 Text="Delete" BorderStyle="none" CssClass="CommandButton"
 CausesValidation="False"></asp:LinkButton></P>
 </TD>
 </TR>
 </TABLE>

2. Next, right-click on EditShopList.ascx.vb and select View Code. When
the source code is displayed, replace all the code with the following code:

 Imports DotNetNuke
 Namespace EganEnterprises.CoffeeShopListing
 Partial Class EditShopList
 Inherits Entities.Modules.PortalModuleBase
 Dim coffeeShopID As Integer = -1
 Protected Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' get parameter
 If Not (Request.Params("coffeeShopID") Is Nothing) Then
 coffeeShopID = _
 Integer.Parse(Request.Params("coffeeShopID"))

Connecting to the Database

[230]

 Else
 coffeeShopID = Null.NullInteger
 End If
 If Page.IsPostBack = False Then
 cmdDelete.Attributes.Add("onClick", _
 "javascript:return confirm('Are You Sure You Wish To
 Delete This Item ?');")
 If Not DotNetNuke.Common.Utilities.Null.IsNull(coffeeShopID) Then
 Dim objCoffeeShops As New CoffeeShopListingController
 Dim objCoffeeShop As CoffeeShopListingInfo = _
 objCoffeeShops.EganEnterprises_GetCoffeeShopsByID(_
 coffeeShopID)
 If Not objCoffeeShop Is Nothing Then
 txtcoffeeShopName.Text = objCoffeeShop.coffeeShopName
 txtCoffeeShopAddress1.Text = objCoffeeShop.coffeeShopAddress1
 txtCoffeeShopAddress2.Text = objCoffeeShop.coffeeShopAddress2
 txtcoffeeShopCity.Text = objCoffeeShop.coffeeShopCity
 txtcoffeeShopState.Text = objCoffeeShop.coffeeShopState
 txtcoffeeShopZip.Text = objCoffeeShop.coffeeShopZip
 If objCoffeeShop.coffeeShopWiFi Then

 rblWiFi.Items(0).Selected = True
 Else

 rblWiFi.Items(1).Selected = True
 End If
 txtcoffeeShopDetails.Text = objCoffeeShop.coffeeShopDetails

 Else
 ' security violation attempt to access item not related to this
 ' Module
 Response.Redirect(NavigateURL())
 End If
 Else
 ' This is new item
 cmdDelete.Visible = False

 End If
 End If
 End Sub
 Private Sub cmdCancel_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdCancel.Click
 ' Redirect back to the portal
 Response.Redirect(NavigateURL())
 End Sub

Chapter 8

[231]

 Protected Sub cmdUpdate_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdUpdate.Click
 Try
 Dim objShopList As New CoffeeShopListingInfo
 objShopList.moduleID = ModuleId
 objShopList.coffeeShopID = coffeeShopID
 objShopList.coffeeShopName = txtcoffeeShopName.Text
 objShopList.coffeeShopAddress1 = txtCoffeeShopAddress1.
 TextobjShopList.coffeeShopAddress2 =
 txtCoffeeShopAddress2.Text
 objShopList.coffeeShopCity = txtcoffeeShopCity.Text
 objShopList.coffeeShopState = txtcoffeeShopState.Text
 objShopList.coffeeShopZip = txtcoffeeShopZip.Text
 objShopList.coffeeShopDetails = txtcoffeeShopDetails.Text
 objShopList.coffeeShopWiFi = rblWiFi.SelectedValue
 Dim objShopLists As New CoffeeShopListingController
 If Null.IsNull(coffeeShopID) Then
 coffeeShopID = _ objShopLists.
 EganEnterprises_AddCoffeeShopInfo(objShopList)
 Else
 objShopLists.EganEnterprises_UpdateCoffeeShopInfo(_
 objShopList)
 End If

 ' Redirect back to the portal
 Response.Redirect(NavigateURL())
 Catch ex As Exception
 ProcessModuleLoadException(Me, ex)
 End Try
 End Sub
 Protected Sub cmdDelete_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdDelete.Click
 If Not Null.IsNull(coffeeShopID) Then
 Dim objShopLists As New CoffeeShopListingController
 objShopLists.EganEnterprises_DeleteCoffeeShop(_
 coffeeShopID)
 End If
 ' Redirect back to the portal
 Response.Redirect(NavigateURL())
 End Sub

 End Class
 End Namespace

Connecting to the Database

[232]

Build and View the Module
In Visual Studio, press Ctrl+F5 to start the DotNetNuke site. When it starts, log in as
host. Next, click the Coffee Shop Listing link on the menu bar in the DotNetNuke on the menu bar in the DotNetNuke
site to navigate to the module.

You will now be able to explore the functionality of the working module.

Leaving fields blank when submitting data using the forms
in the module could cause various run-time errors; in a
real-world application it would be necessary to add
validation to all user input. You could use ASP.NET
validation controls to accomplish this task.

Implementing Optional Interfaces
In the final step we will complete the Coffee Shop Listing module by implementing
two optional interfaces, IPortable and ISearchable.

Implementing IPortable
The IPortable interface can be implemented to allow a user to transfer data from
one module instance to another. This is accessed on the context menu of the module.

Chapter 8

[233]

To use this interface, you will need to implement two different methods,
ExportModule and ImportModule. The implementation of these methods will be
slightly different depending on the data that is stored in the module. Since we will
be holding information about certain coffee shops in our module this is the
information we need to import and export. This is accomplished using the
.NET System.XML namespace.

The ExportModule method uses our EganEnterprises_GetCoffeeShops stored
procedure to build a collection of CoffeeShopListingInfo objects. The objects are
then converted to XML nodes and returned to the caller. We don't need to call the
ExportModule function ourselves; the DotNetNuke framework adds the Import and
Export options to the module's context menu and performs this function when the
Export link is clicked, and the data is exported to a physical file.

1. Add the following line of code to the CoffeeShopListingController class
under the line Public Class CoffeeShopListingController.

 Implements Entities.Modules.IPortable

Visual Studio will create "stubs" for the ExportModule and ImportModule
methods when the "Implements" line is added.

2. Update the module code so that the code appears as below:
 Public Function ExportModule(ByVal ModuleID As Integer) _
 As String Implements _
 DotNetNuke.Entities.Modules.IPortable.ExportModule
 Dim strXML As String = ""
 Dim arrCoffeeShops As List(Of CoffeeShopListingInfo) = _
 EganEnterprises_GetCoffeeShops(ModuleID)
 If arrCoffeeShops.Count <> 0 Then
 strXML += "<coffeeshops>"
 Dim objCoffeeShop As CoffeeShopListingInfo
 For Each objCoffeeShop In arrCoffeeShops
 strXML += "<coffeeshop>"
 strXML += "<name>" & XMLEncode(_
 objCoffeeShop.coffeeShopName) & "</name>"

Connecting to the Database

[234]

 strXML += "<address1>" & XMLEncode(_
 objCoffeeShop.coffeeShopAddress1) & "</address1>"
 strXML += "<address2>" & XMLEncode(_
 objCoffeeShop.coffeeShopAddress2) & "</address2>"
 strXML += "<city>" & XMLEncode(_
 objCoffeeShop.coffeeShopCity) & "</city>"
 strXML += "<state>" & XMLEncode(_
 objCoffeeShop.coffeeShopState) & "</state>"
 strXML += "<zip>" & XMLEncode(_
 objCoffeeShop.coffeeShopZip.ToString) & "</zip>"
 strXML += "<wifi>" & XMLEncode(_
 objCoffeeShop.coffeeShopWiFi.ToString) & "</wifi>"
 strXML += "<details>" & XMLEncode(_
 objCoffeeShop.coffeeShopDetails) & "</details>"
 strXML += "</coffeeshop>"
 Next
 strXML += "</coffeeshops>"
 End If
 Return strXML
 End Function

The ImportModule method does just the opposite; it takes the XML file created by
the ExportModule method and creates CoffeeShopListingInfo items. Then it uses
the EganEnterprises_AddCoffeeShopInfo method to add them to the database,
thus filling the module with transferred data.

3. Update the module code so that the code appears as below:
 Public Sub ImportModule(ByVal ModuleID As Integer, _
 ByVal Content As String, ByVal Version As String, _
 ByVal UserID As Integer) _
 Implements DotNetNuke.Entities.Modules.IPortable.ImportModule
 Dim xmlCoffeeShop As XmlNode

Chapter 8

[235]

 Dim xmlCoffeeShops As XmlNode = _
 GetContent(Content, "coffeeshops")

 For Each xmlCoffeeShop In xmlCoffeeShops
 Dim objCoffeeShop As New CoffeeShopListingInfo
 objCoffeeShop.moduleID = ModuleID
 objCoffeeShop.coffeeShopName = _
 xmlCoffeeShop.Item("name").InnerText
 objCoffeeShop.coffeeShopAddress1 = _
 xmlCoffeeShop.Item("address1").InnerText
 objCoffeeShop.coffeeShopAddress2 = _
 xmlCoffeeShop.Item("address2").InnerText
 objCoffeeShop.coffeeShopCity = _
 xmlCoffeeShop.Item("city").InnerText
 objCoffeeShop.coffeeShopState = _
 xmlCoffeeShop.Item("state").InnerText
 objCoffeeShop.coffeeShopZip = _
 xmlCoffeeShop.Item("zip").InnerText
 objCoffeeShop.coffeeShopWiFi = _
 xmlCoffeeShop.Item("wifi").InnerText
 objCoffeeShop.coffeeShopDetails = _
 xmlCoffeeShop.Item("details").InnerText
 EganEnterprises_AddCoffeeShopInfo(objCoffeeShop)
 Next
 End Sub

4. Save the page.

Implementing ISearchable
To allow your modules to be searched, you need to implement the ISearchable
interface. This interface has only one method you need to implement:
GetSearchItems.

This method uses a SearchItemCollection, which can be found in the
DotNetNuke.Services.Search namespace, to hold a list of the items available in
the search. In our implementation, we use the EganEnterprises_GetCoffeeShops
method to fill a collection with the coffee shops in our database. We then
use the objects returned to the collection to add to a SearchItemInfo object.
The constructor for this object is overloaded and it holds items such as Title,
Description, Author, and SearchKey. What you place in these properties depends
on your data. For our coffee shop items we will be using coffeeShopName,
coffeeShopID, and coffeeShopCity to fill the object.

Connecting to the Database

[236]

Each time it loops through the collection it will add a search item to the
SearchItemCollection. The core framework takes care of all the other things
needed to implement this on your portal.

1. Add the following line of code to the CoffeeShopListingController class
under the line Implements Entities.Modules.IPortable.

 Implements Entities.Modules.ISearchable

Visual Studio will create a "stub" for the GetSearchItems method when the
"Implements" line is added.

2. Update the module code so that the code appears as below:
 Public Function GetSearchItems _
 (ByVal ModInfo As DotNetNuke.Entities.Modules.ModuleInfo) _
 As DotNetNuke.Services.Search.SearchItemInfoCollection _
 Implements _
 DotNetNuke.Entities.Modules.ISearchable.GetSearchItems
 Dim SearchItemCollection As New SearchItemInfoCollection
 Dim CoffeeShops As List(Of CoffeeShopListingInfo) = _
 EganEnterprises_GetCoffeeShops(ModInfo.ModuleID)
 Dim objCoffeeShop As Object
 For Each objCoffeeShop In CoffeeShops
 Dim SearchItem As SearchItemInfo
 With CType(objCoffeeShop, CoffeeShopListingInfo)
 SearchItem = New SearchItemInfo _
 (ModInfo.ModuleTitle & " - " & .coffeeShopName, _
 .coffeeShopName, _
 Convert.ToInt32(10), _
 DateTime.Now, ModInfo.ModuleID, _
 .coffeeShopID.ToString, _
 .coffeeShopName & " - " & .coffeeShopCity)
 SearchItemCollection.Add(SearchItem)
 End With
 Next
 Return SearchItemCollection
 End Function

3. Save the page.

Making IPortable and ISearchable Work
In Visual Studio, press Ctrl+F5 to start the DotNetNuke site. When it starts, log in as
host. Next, click the Coffee Shop Listing link on the menu bar in the DotNetNuke on the menu bar in the DotNetNuke
site to navigate to the module.

Chapter 8

[237]

Click on the menu link for the module and you will not see the Import Content and
Export Content options..

Navigate to the configuration settings for the Coffee Shop Listing module (Host |
Module Definitions | CoffeeShopListing) and you will see the reason. Portable and
Searchable are not indicated in our module configuration.

Upgradable is also an optional interface called
IUpgradable, but its use is beyond the scope of
this discussion.

Connecting to the Database

[238]

Normally, we would indicate these settings in the module definition when we
initially create it. However, there are instances, such as now, where we decide to
implement the optional interfaces after we have created the module definition and
begun development.

In the module definition, click the Update link. The module definition will be
updated and Portable and Searchable will be checked.

Now return to the menu for the Coffee Shop Listing module and you will see that
the Import Content and Export Content options are available (the module is now
also implementing the searchable interface).

Chapter 8

[239]

Testing Your Module
Throughout the development process you should use all of Visual Studio's
debugging capabilities to make sure that your code is working correctly.

You will be able to set breakpoints and view your code in the various watch
windows. When you have finished debugging your module, you are ready to
package it and get it ready for distribution.

Packaging Your Module for Distribution
You now have a finished module. It is advisable to develop your module on
a separate development machine then deploy it to production using a Private
Assembly package (called a PA).

This PA package is a .zip file that contains all the elements needed to install the
module on a DotNetNuke installation. These elements include the code and the
installation scripts.

Installation Scripts
The first step in preparing your module for distribution is to create the installation
scripts needed to create the tables and stored procedures required by your module.
There should be at least two files: an installation script and an uninstallation script.
You should name your scripts in the following manner.

Type of Script Description Example
Installation Script Concatenate the version

number of your module
with the type of provider the
script represents eg. Sql.

01.00.00.SqlDataProvider

Uninstallation Script Concatenate the word
Uninstall with the type
of provider the script
represents.

Uninstall.SqlDataProvider

Connecting to the Database

[240]

These scripts are similar to the code run for creating your tables at the beginning of
this chapter. The scripts for your PA installation should use the databaseOwner and
objectQualifier variables as well as including code to check if the database objects
you are creating already exist in the database. This will help to ensure that uploading
your module will not overwrite previous data. The full scripts can be found in the
code download for this chapter.

The version number for your scripts is very important. If a version of the module is
already installed on your portal, the framework checks the version number on the
script file to determine whether to run the script. If the number on the file matches
the number in the database then the script will not be run. In this way, you can have
one package work as an installation and upgrade package.

Create the Installation Scripts
The first step of creating the installation scripts will be to create the folder that will
contain them. We will place them in the CoffeeShopListing folder that is under the
DesktopModules folder.

1. In Visual Studio, in the Solution Explorer, right-click on the
CoffeeShopListing folder that is under the DesktopModules folder and
select New Folder.

2. Name the folder Providers.
3. Now, right-click on the Providers folder that you have just created and select

New Folder.
4. Name the folder DataProviders.
5. Next, right-click on the DataProviders folder that you have just created and

select New Folder.
6. Name the folder SqlDataProvider.

The reason we have created the multiple folders is because you may want to create
additional data providers for your module. This is the recommended way of
organizing them.

Chapter 8

[241]

Now we will create the installation scripts. We will create an install script (01.01.00.
SqlDataProvider) and an uninstall script (uninstall.SqlDataProvider). The install
script will be processed by the DotNetNuke installation when the module is installed,
and the uninstall script will be processed by the DotNetNuke installation when the
module is uninstalled.

The complete scripts can be found in the code download for this chapter.

1. Right-click on the SqlDataProvider folder and select Add New Item.
2. Select Text File as the template and enter 01.01.00.SqlDataProvider in the

Name field.
3. Right-click on the 01.01.00.SqlDataProvider and select Open.
4. When the file opens in the editor window, place the contents of the script file

(that can be found in the code download for this chapter) and save the file.
5. Right-click on the SqlDataProvider folder and select Add New Item.
6. Select Text File as the template and enter uninstall.SqlDataProvider in the

Name field.
7. Right-click on the uninstall.SqlDataProvider and select Open.
8. When the file opens in the editor window, place the contents of the script file

(that can be found in the code download for this chapter) and save the file.

The Install ZIP File
Now it is time to package all of the files into a PA .zip file to enable them to be
uploaded and installed on another DotNetNuke installation.

1. In Visual Studio, press Ctrl+F5 to start the DotNetNuke site. When it starts,
log in as host.

2. Navigate to the configuration settings for the Coffee Shop Listing module
(Host | Module Definitions | CoffeeShopListing) and select Package
Module from the module configuration menu:

Connecting to the Database

[242]

3. Name the package CoffeeShopListing_PA.zip and click the Create link.

A screen will appear indicating that the module elements have been successfully
placed in the .zip file.

Chapter 8

[243]

You can retrieve the .zip file by navigating to the root of the portal (usually at
\Portals_default) using the Windows File Manager.

Testing Your Installation
This is the final step. At this stage, all of your coding should work fine because you
have tested it in your Visual Studio .NET environment. Now you need to test if
uploading your module will work for you. You have a couple of options. Since you
have already set up this module manually in your Visual Studio environment you
would have to remove the module code and delete the tables in your database to fully
test whether your PA package works. However, it is recommended that you set up a
separate instance of DotNetNuke that is only used for testing uploads of modules.

Uploading the module is simple. Sign in as host and select Module Definitions on the
host menu. Hover the cursor over the context menu and select Upload New Module.

Click the Browse button to browse to your .zip file and add it to the file
download box by clicking the Add link. Next, click on Upload New File link to
load your module.

Connecting to the Database

[244]

This will create a file-upload log, which will then be displayed. Search the log for any
errors that may have occurred and fix the errors.

Add your module to a tab and put it through its paces. Make sure to try out all the
features. It is advisable to have others test it. You will be surprised at the things that
users will do with your module. When all features have been tested, you are ready to
distribute it to the DotNetNuke world.

Summary
We have covered a lot of code in the last two chapters, including setting up our
development environment, creating controls, the business logic layer, and the data
access layer. We then showed how to package the module so it can be distributed.

Since this code was very extensive, we broke it into sections and advised you to
build your project at regular intervals. Doing this should give you the ability to solve
any issues you come across while building your module. We then took things a bit
further and showed you how to use a few extra items like the settings page, the dual-
list box, and the optional interfaces. This should give you a sound understanding of
how all the different parts work together.

Skinning Your Site
Skinning your site can be one of the most rewarding aspects of your portal
administration process. It is your chance to be visually creative and personalize
your DotNetNuke installation. Literally speaking, a skin is a collection of physical
files that, together, form a skin package. This package contains all of the files and
information needed to completely describe the look and feel of your site. When this
complete package is uploaded into the portal framework, it is put through a parsing
process that places the skin, as well as any containers, into the list of available
display choices for your site. At the heart of the upload process is the DotNetNuke
4.0 skinning engine, which maintains the same level of separation between the
presentation layer and application layer of your site as the previous version while
exposing additional enhancements that leverage the flexibility of the DotNetNuke
Provider Model.

Whether you are a user who has downloaded a third-party skin package or a
developer looking to develop your own skin, this abstraction of the presentation
layer from the logic layer provides a great deal of freedom. In the case of a third-
party skin package, it provides you with the freedom to upload and apply a skin
package that changes the look and feel of your site without worrying about breaking
any existing modules. Similarly, when developing a custom skin from scratch, this
abstraction provides you with the freedom to use an editor of your choice while you
to focus on the design of your site. In this chapter, we will cover:

An overview of Skin Packages
How to upload a Skin Package
How to apply your Skin
An overview of the concepts involved in Custom Skinning
How to create your Custom Skin using HTML, Tokens, and XML
How to create your Custom Skin using ASP.NET User Controls

•

•

•

•

•

•

Skinning Your Site

[246]

How to create the Cascading Style Sheets to support your Skin
How to create your Skin Package

What Are Skin Packages?
Let us begin with the basic concept of what a skin package is and how it works.
A skin package contains a collection of many different files. These include HTML
layout files, Cascading Style Sheets, Images, .NET User Controls and XML layout
files. These all work together to form the foundation of the skin, which can be further
divided into two basic components, skins, and containers. The role the skin plays
in the package is directly related to the general structure of your site. Think of it in
terms of an outer layer for your pages that provides information about how each
page will look while not affecting the way the page functions. In order to illustrate
this concept, let us take a look at an example. This first example is a screenshot of a
page with the default DotNetNuke installation skin applied.

.

Notice the layout of the page has the main menu aligned along the left edge of the
page with what should be a familiar banner right above it. There is a single Links
module placed on the left side of the page with a Content area to the right. The next
screenshot shows how the very same page would look with a custom skin applied.
Pay particular attention to the placement and alignment of the main menu as well as
the look of the Links module in the left content pane.

•

•

Chapter 9

[247]

With this package applied, the main menu is now centered on the page and there is a
different banner image across the top. In this example, the banner images and main
menu are elements of the skin. The rounded borders around the Links module and
Content area are the containers. Notice that while the look of the page has changed a
great deal, the function of the page remains identical. The Links module still resides
on the left-hand side of the page with the content area to the right. All we have done
is change the structure of the page, the skin, and the borders around the modules, the
containers. Now let us take a look specifically at how the Links module is displayed
in both examples.

Notice how only the border is changing while the data, the list of site links in this
case, does not change. The example on the left is meant to fit within a very different
skin theme than the one on the right. For this reason, containers are frequently
packaged along with skins so that the containers support the overall look and feel of
the skin within which they are meant to fit.

Skinning Your Site

[248]

Uploading a Skin Package
Now that we understand the contents of a skin package and how they are meant
to work, we can now discuss the specifics of how we use the package. Before we
can apply the skin package to our site, we must first upload the package into the
DotNetNuke framework. The upload can be performed either using Administrator
or Host-level access. Uploading the package using Administrator access would
restrict us to using the skin on a single portal while uploading as Host would grant
us a greater degree of flexibility since we would be able to apply the skin to any
parent or child portal we later create. For this reason, we will be using Host-level
permission and we start by logging into our DotNetNuke installation with this
higher level of access.

Now that we are logged in with Host access, we have two options that allow us
to upload our skin. The first involves hovering over the Host menu and clicking
on Host Settings in the dropdown. By default, this will be the first menu selection
under the Host sub-menu. Under the Appearance section of our Host Settings page,
we find the following:

This is the section of the Settings page that deals with the look and feel of our site.
We then click on the Upload Skin link, which will take us to the following file
upload interface.

Chapter 9

[249]

We first click on the Browse button to bring up a file dialog box that allows us to
navigate to our skin project root directory. We then select our skin package ZIP
file and click the Add link. At this point, the name of our skin package ZIP file will
be displayed in the textbox above. At this point, we are ready to upload the new
skin. We now click on the Upload New File link at the bottom of the Upload Skin
Package page and let the DotNetNuke skinning engine do its work. At the end of
the file upload process, we will be presented with a log of the actions that the engine
performed in parsing and creating the skin objects similar to the following image.
We will also see any errors that may have occurred.

Skinning Your Site

[250]

Applying the Skin
Now we get to apply our skin package. For the application of our skin, we have a
couple of options. We can apply the skin at either the site level, or at the individual
page and container level. Let us first examine the method by which we apply
our skin at the site level. Under the Host Settings page, we again focus on the
Appearance section.

Now, rather than clicking on the Upload Skin link, we choose our skin and container
with the dropdowns. Our skin choices will appear in these drop-down lists as
items prefixed by the name of our skin package such as in the case of the default
DotNetNuke skins, which are all prefixed by "DNN". Making these selections will
set the default skin and container for our entire site. What this means is whenever a
specific skin and container are not specified for a page in our site, they will default to
the values we set here. We are given the ability to set a default skin and container for
the public section of our site that is different than the one we set for the display of the
administrative elements.

The second way we could apply our skin at the site level is via the Skins page
accessible from the Host main menu dropdown.

Chapter 9

[251]

From this interface, we first scroll to the bottom and make sure the appropriate
checkboxes are checked, which correspond to where we would like to apply the skin.
The choices are Host and Admin and they function the same way as the set of four
dropdowns in our previous example, which allow us to define a default skin for the
user areas of our site that is different than the default skin for the administrative
areas. Once we have decided on where we want to apply our skin, we then simply
click the Apply link below the thumbnail preview image.

To apply the skin at a page and container level, we first make sure that we are
logged in with administrator or host-level access then navigate to the page we wish
to work with. We access the page settings from the icon bar on the left side of the
administration panel at the top of the page.

Skinning Your Site

[252]

By clicking on the Settings link, we are taken to the page administration page.
By expanding the Advanced section, we are able to interact with the page
Appearance settings. Here again we have a dropdown for specifying both the
Skin and Container.

There is one additional layer of customization that is available to us for our site.
Obviously there must be a way to specify individual container skins since the above
dropdown will set the default container for the whole page. What if our skin calls for
three different containers? Or what if we wanted to use a really nice container from a
different skin package that has been previously uploaded to our site? The answer to
both these questions is accessible via the action menu dropdown associated with the
DotNetNuke module object. By hovering over the action menu icon in the upper left
of our Links module, we are presented with the following drop-down selection.

From this list, we select the Settings option, which takes us to the settings page
for our Links module. We then expand the "Page Settings" section and look for the
following section.

Chapter 9

[253]

From this dropdown list, we can choose the container to display around our
Links module.

Creating a Custom Skin
At this point, you should be able to take any skin package, upload it, and apply it
to your site. But what would you do if you wanted to create your own skin package
from scratch? The act of creating a custom skin package is referred to as skinning.
We begin our custom skinning process by first taking a step backward and
re-examining the question of what a skin is; but this time let us answer the question
from more of a conceptual point of view.

Imagine that a close friend is in dire need of a creative individual to help build a new
home. Since you are a close friend and have the utmost faith in your creative ability,
you approach your friend and agree to lend a hand. Imagine that you are then
presented with a floor plan that describes in painstaking detail not only where all the
rooms will be placed, but also how all of the furniture will be arranged. You might
be tempted to make the assumption that your friend left no room for creativity. That
is, of course, until you realize that the floor plan contains no detail describing how
the exterior will look. You are free to be as creative as you like with the exterior of
the new home provided you can cover all the rooms in the floor plan.

Buoyed by your renewed enthusiasm, you then set out to design the exterior of the
new home with your floor plan in hand. You obviously have to design the placement
of doors in the exterior because your friend would have to enter and exit somehow.
You also have to decide where to place windows on the exterior to allow people
to see from the outside in as well as vice-versa. Having become comfortable with
where the doors and windows are placed, you then decide on the colors for the walls
and the trim. Maybe you add decorations above the front door or design ornate
trimmings around the roof. All these choices have no bearing on the rooms and the
furniture that will ultimately reside within the new home, but they each make a big
difference to the individual walking by on the street. You choose obnoxious colors
and place no windows around the first floor and chances are your friend will grow
old and lonely and never get any visitors.

The choices you make in terms of the use of colors and the placement of such things as
the doors and windows are all examples of what DotNetNuke skinning really means.
You are given a very detailed floor plan that covers all of the inner-workings of the
architecture itself as well as the placement of the objects within and then you are left

Skinning Your Site

[254]

with an enormous amount of flexibility in terms of how you can make the walls look.
You can choose where to place doors and windows and how to decorate the outside so
that it is as appealing as possible to people walking by on the street provided that you
include three required elements. You need a door that the owner will use to enter, at
least one window for the display of content, and a directory, consisting of a menu, that
describes how to get from room to room while inside.

What Tools can we Use?
Now that the basics are out of the way, let us dig a little deeper and start to
understand the materials we are provided to build our exterior. Let us start with the
building blocks we use to develop the skin structure. Depending on our choice of
method, our structure will either take shape within HTML files or .NET .ASCX User
Controls. In either case, within this structure, we will insert directions that will be
used by the DotNetNuke 4.0 skinning engine to create and format the skin objects
that will be presented visually to the user. Skin objects, as we will see illustrated
later, consist of big things such as our main menu and content panes, as well as
little things like the frame or border around our various modules. These building
blocks form the foundation of a skin package and work together to control the visual
presentation of your site. All we need to do now is decide on a way that we will
create the structure and insert the skin object information. This leads us to the first
really important question we have to ask ourselves; what editor will we use?

Making our decision easy are two very significant qualities of the DotNetNuke
skinning engine. The first significant quality revolves around the ability to use
HTML to create the skin structure. Suddenly this opens up a world of possibilities
for us. Anything that can create HTML formatting can be used to create the structure
of the skin, but what about the formatting directions for the skin objects? The answer
to that question leads us to the next significant quality of the skinning engine.

The skin objects we will use are implemented as Web User Controls within the
DotNetNuke architecture. In the HTML designer method of creating the skin, this
quality may not seem that important, but to those with a programming background,
the Web User Control implementation means we have the option of creating our skin
in an editor such as Visual Web Developer Express, which will allow us to simply
drag the chosen skin objects onto our skin structure.

Together, we will go through both methods of skin creation. In the end, the skins
that emerge will be identical. The choice of what method will work for you depends
largely on the background you bring with you to the project. If you come from a web
designer background, the example using Macromedia's Dreamweaver will seem
very comfortable to you. If you come from a programming background and are

Chapter 9

[255]

comfortable with working with web user controls, then you will probably prefer the
example using Visual Web Developer Express.

Creating a Skin Using HTML
We begin the HTML method by creating a new site in Macromedia's Dreamweaver.
The first elements we create are folders that will contain the resource elements of
our skin project. To simplify the process of creating more skins, we start with a Skin
Packages site to which we add a folder named BBS that will contain our first skin.
Within this BBS folder, we create a folder named Containers and another named
Skins. The following figure illustrates how our project looks at this point.

We start with the Skins folder and begin by adding the required file resources for
our project. It is a good idea to begin with a page that has the highest degree of
flexibility. All DotNetNuke portals have distinct user pages and Admin/Host pages.
We will want a generic page with a single content pane to apply to the Admin/Host
pages of our site. With this in mind, we well start with the files for an Admin skin
page. These include an Admin.htm file that will contain the HTML structure of our
skin page, an Admin.xml file that will be used by the DotNetNuke skinning engine
to format the skin objects we use, and a Skin.css file that will be responsible for
the style formatting on our page. By naming the .CSS file in this way, the styles
in the stylesheet will be used on all of the pages we later create in our package.
Alternatively, we could have named this file Admin.css. This results in a .CSS file
that is specific to a skin page, Admin.htm in our current example. We will dig deeper
into the .CSS inclusion chain later in the chapter; for now, let us continue setting up
our skin folder. We then add, to this folder, any additional image files that we will
use in our skin.

Skinning Your Site

[256]

Within the Containers folder we add similar file resources. These include a
BlueHeader.htm file that will hold the HTML structure of our container, a file to
be used to format the skin objects called BlueHeader.xml, and a stylesheet for our
container called Container.css. Just as in our skin folder, we could have named our
container stylesheet BlueHeader.css so that it would be applied specifically to our
container. We will, however, start with a generic .CSS file that will be applied to all
of our containers. Now we add any additional image files that we will need for the
display of our container.

The following figure illustrates how our project will look with the Skins folder
expanded. Notice the inclusion of an Admin.jpg file in the directory. This file will be
used by the skinning engine as a thumbnail preview of our page. We will discuss this
file in greater detail when we are ready to create our deployment package.

Chapter 9

[257]

Creating the HTML Files
For the first page of our skin project, we have a specific goal in mind. We want our
skin package to be applied to the entire site, including the administrative pages.
In order to allow the DotNetNuke portal the greatest flexibility in rendering the
administrative modules without breaking our skin, we will use a simple page layout
consisting of a banner at the top with a single content area beneath.

The following is the complete source code for the Admin.htm file that renders the
page above:

<table cellpadding="0" cellspacing="0" border="0" width="100%">
 <tr>
 <td>
 <table cellpadding="0" cellspacing="0" border="0" width="100%">
 <tr>
 <td width="50%" bgcolor="#FFFFFF"> </td>
 <td width="760" height="70">

 </td>
 <td width="50%" bgcolor="#73ABE4"> </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td background="bg_navigation.gif" height="30">
 <table cellpadding="0" cellspacing="0" border="0"
 align="center">
 <tr><td>[SOLPARTMENU]</td></tr>
 </table>
 </td>
 </tr>
 <tr>

Skinning Your Site

[258]

 <td background="shadow.gif" height="30">

 </td>
 </tr>
 <tr>
 <td>
 <table cellpadding="0" cellspacing="0" border="0" width="760">
 <tr>
 <td width="5"><img src="spacer.gif"
 width="5" height="5" /></td>
 <td colspan="2">[CONTENTPANE:1]</td>
 <td width="5"><img src="spacer.gif"
 width="5" height="5" /></td>
 </tr>
 <tr>
 <td height="10" colspan="4">

 </td>
 </tr>
 <tr>
 <td width="5" height="32"
 background="bg_copyright.gif" align="left">

 </td>
 <td width="375" height="32" background="bg_copyright.gif">
 [COPYRIGHT]
 </td>
 <td width="375" height="32"
 background="bg_copyright.gif" align="right">
 [LOGIN]
 </td>
 <td width="5" height="32"
 background="bg_copyright.gif" align="right">

 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td height="10"></td>
 </tr>
</table>

Chapter 9

[259]

The bulk of the file, as you can see, is simply HTML used to layout the structure of
our page. Notice how images are referenced via a relative path indicating that they
are found in the same directory as the HTML file. Going back to the home exterior
analogy, think of the HTML contained above as the frame over which we are placing
our nice wall. Of significance to our framing structure above, is the use of an image
file called spacer.gif. This is a single transparent pixel image used to simply space
out table cells and ensure that when the page is rendered by a web browser, it retains
a rigid structure that preserves our desired look and feel. Within the structure, we
then place our three required elements needed to make our skin work; the door, the
window, and the directory.

 <td width="375" height="32" background="bg_copyright.gif"
 align="right">
 [LOGIN]
 </td>

The code segment above illustrates how skin objects are placed using our HTML
designer approach. [LOGIN] is called a token and is used during the package
deployment process to tell the skinning engine to inject a login Web User Control
into our page. The formatting of the controls is accomplished via our associated XML
file that we will discuss later. Without the login user control on the skin, you will
nearly lock everyone out of the DotNetNuke back-end interface, including yourself.
If this ever happens to you, simply add "default.aspx?ctl=login" at the end
of your base URL. For example, if you are running your DotNetNuke portal
from your local web server, your direct URL to the login control would be
http://localhost/website/default.aspx?ctl=login.

 <tr>
 <td width="5"><img src="spacer.gif"
 width="5" height="5" /></td>
 <td colspan="2">[CONTENTPANE:1]</td>
 <td width="5"><img src="spacer.gif"
 width="5" height="5" /></td>
 </tr>

The next required element is a window. In the above code segment, notice how we
use a similarly formatted token to indicate a content pane. The content pane is where
modules will be rendered allowing users to see and interact with the data within
the site. In this example, [CONTENTPANE:1] illustrates how we can designate more
than one content pane within a page. Creating additional pages with more than one
content area would be accomplished by adding tokens such as [CONTENTPANE:2]
and [CONTENTPANE:3].

 <table cellpadding="0" cellspacing="0"
 border="0" align="center">
 <tr><td>[SOLPARTMENU]</td></tr>
 </table>

Skinning Your Site

[260]

The last required element for our skin is a directory. In the code segment above, we
indicate where we want the skinning engine to inject the main menu by using the
[SOLPARTMENU] token. This is not only how users will navigate within the site, but
also how site administrators will get to the control panels. The following illustrates
how our skin file looks with the tokens in place.

Creating the Container
Now we turn our attention to the creation of the BlueHeader.htm container file.
Just as we did in the previous file, we begin by deciding on a look for our container
that will fit within the overall look and feel of our skin. The following illustrates the
container we will create:

Remember that we are dealing only with the frame that will be displayed around
the modules in our site. In this case, we are decorating our frame with a colored
background behind the area where we will render our module title, and surrounding
it with a square border with rounded edges. The following is the source for our
BlueHeader.htm file.

<table cellpadding="0" cellspacing="0" width="100%" border="0">
 <tr>
 <td valign="top" colspan="5"><img src="spacer.gif"
 height="10" width="5"></td>
 </tr>
 <tr>
 <td width="12" height="30" align="left">

Chapter 9

[261]

 </td>
 <td height="20" valign="middle"
 background="top_blue_bg.gif" nowrap>
[SOLPARTACTIONS]
 </td>
 <td height="20" valign="middle" background="top_blue_bg.gif"
 width="100%" align="center" nowrap>[TITLE]</td>
 <td width="12" height="30" align="right">

 </td>
 </tr>
 <tr>
 <td width="12" background="left_tile.gif">

 </td>
 <td colspan="2" bgcolor="#FFFFFF">

 </td>
 <td width="12" background="right_tile.gif">

 </td>
 </tr>
 <tr>
 <td width="12" background="left_tile.gif">
 </td>
 <td colspan="2" bgcolor="#FFFFFF">[CONTENTPANE]</td>
 <td width="12" background="right_tile.gif">

 </td>
 </tr>
 <tr>
 <td width="12" height="10">

 </td>
 <td colspan="2" background="bottom_tile.gif">

 </td>
 <td width="12" height="10">

 </td>
 </tr>
 <tr>
 <td valign="top" colspan="5"><img src="spacer.gif"
 height="5" width="5"></td>
 </tr>
</table>

Skinning Your Site

[262]

Again, the majority of the content of this file is HTML mark-up. The elements that
are significant to the DotNetNuke skinning structure are the tokens we use. There
are skin object elements that are required for a container to function, just as in our
skin; however, unlike in our skin, there are only two. Viewing the container as a
window frame, we need to include a latch with which we can open the window if we
ever need to change something on the inside. The following code segment provides
the latch.

 <td height="20" valign="middle"
 background="top_blue_bg.gif" nowrap>
 [SOLPARTACTIONS]
 </td>

The [SOLPARTACTIONS] token refers to the icon element that will generate the
administrator drop-down menu allowing us to change the settings of the modules
contained within. Without including this token, the container would restrict access to
module customization features. Needless to say, this would result in a very inflexible
module. The second thing we need is a region where the module contents will be
rendered. We accomplish this with the following segment.

<td colspan="2" bgcolor="#FFFFFF">[CONTENTPANE]</td>

With the action menu in place and the content area defined, our container is now
ready to provide the required functionality. There are a number of optional token
elements that we could choose to include in our container. For our example, let us
assume we would like to display the title of the module that will be rendered within
our container in the blue region at the top. We accomplish this with the following
code segment.

<td height="20" valign="middle" background="top_blue_bg.gif"
width="100%" align="center" nowrap>[TITLE]</td>

The following table lists the tokens that are provided for defining skin objects in
our containers.

Token Description
[SOLPARTACTIONS] Popup module actions menu (formerly [ACTIONS])
[DROPDOWNACTIONS] Simple drop-down combo box for module actions
[LINKACTIONS] Links list of module actions
[ICON] Displays the icon related to the module
[TITLE] Displays the title of the module
[VISIBILITY] Displays an icon representing the minimized or maximized

state of a module
[PRINTMODULE] Displays a new window with only the module content displayed

Chapter 9

[263]

Creating the XML Support Files
Now that we have our HTML file created with our required tokens in place, we turn
our attention toward creating the XML support file that will tell the skinning engine
how to format our skin objects. The following is the source for the Admin.xml file
that formats the skin elements of our Admin.htm page.

<Objects>
 <Object>
 <Token>[SOLPARTMENU]</Token>
 <Settings>
 <Setting>
 <Name>separatecss</Name>
 <Value>true</Value>
 </Setting>
 <Setting>
 <Name>display</Name>
 <Value>horizontal</Value>
 </Setting>
 <Setting>
 <Name>menucontainercssclass</Name>
 <Value>MainMenu_MenuContainer</Value>
 </Setting>
 <Setting>
 <Name>menubarcssclass</Name>
 <Value>MainMenu_MenuBar</Value>
 </Setting>
 <Setting>
 <Name>menuitemcssclass</Name>
 <Value>MainMenu_MenuItem</Value>
 </Setting>
 <Setting>
 <Name>menuiconcssclass</Name>
 <Value>MainMenu_MenuIcon</Value>
 </Setting>
 <Setting>
 <Name>menuitemselcssclass</Name>
 <Value>MainMenu_MenuItemSel</Value>
 </Setting>
 <Setting>
 <Name>submenucssclass</Name>
 <Value>MainMenu_SubMenu</Value>
 </Setting>
 <Setting>
 <Name>rootmenuitemactivecssclass</Name>

Skinning Your Site

[264]

 <Value>MainMenu_ItemActive</Value>
 </Setting>
 <Setting>
 <Name>usearrows</Name>
 <Value>false</Value>
 </Setting>
 </Settings>
 </Object>
 <Object>
 <Token>[LOGIN]</Token>
 <Settings>
 <Setting>
 <Name>Text</Name>
 <Value>Login</Value>
 </Setting>
 <Setting>
 <Name>CssClass</Name>
 <Value>FooterText</Value>
 </Setting>
 <Setting>
 <Name>LogoffText</Name>
 <Value>Logoff</Value>
 </Setting>
 </Settings>
 </Object>
 <Object>
 <Token>[COPYRIGHT]</Token>
 <Settings>
 <Setting>
 <Name>CssClass</Name>
 <Value>FooterText</Value>
 </Setting>
 </Settings>
 </Object>
 <Object>
 <Token>[CONTENTPANE:1]</Token>
 <Settings>
 <Setting>
 <Name>ID</Name>
 <Value>ContentPane</Value>
 </Setting>
 </Settings>
 </Object>
</Objects>

Chapter 9

[265]

As you can see from the source, the format of the XML file consists of a single
collection of items surrounded by the <Objects></Objects> tags. The format
of each of the individual object elements is illustrated in the following example
focussing on the object associated with our content pane.

 <Object>
 <Token>[CONTENTPANE:1]</Token>
 <Settings>
 <Setting>
 <Name>ID</Name>
 <Value>ContentPane</Value>
 </Setting>
 </Settings>
 </Object>

Each object has a <Token> node that corresponds to the token we placed in our
HTML file. In this case, our object corresponds to the [CONTENTPANE:1] token.
In addition to the token node, we have another collection of items designated by
the <Settings></Settings> tags. Each setting consists of a name and value pair
corresponding to an attribute of the skin object. These attributes are pre-defined by
the available editable attributes of the user controls that will render our skin object
on the page. In our example above, we have a single setting for our pane which
indicates that an attribute called ID will be set equal to ContentPane as a result of
the skinning engine parsing the XML file and injecting the user control. Similarly,
the [LOGIN] token has three attributes corresponding to the text that a user will see
displayed both before and after they log in as well as the CSS style that will be used
to format the text.

For a list of available tokens that can be used in the creation of your supporting XML
files as well as the editable attributes associated with them, refer to the DotNetNuke
Skinning Guide by Shaun Walker available at http://www.dotnetnuke.com.

The creation of the BlueHeader.xml support file for our container follows a similar
design pattern with fewer elements. The following is the source code for our
BlueHeader.xml file.

<Objects>
 <Object>
 <Token>[TITLE]</Token>
 <Settings>
 <Setting>
 <Name>CssClass</Name>
 <Value>BBSHead</Value>
 </Setting>
 </Settings>

Skinning Your Site

[266]

 </Object>
 <Object>
 <Token>[CONTENTPANE]</Token>
 <Settings>
 <Setting>
 <Name>ID</Name>
 <Value>ContentPane</Value>
 </Setting>
 </Settings>
 </Object>
</Objects>

Again, we define the content pane that will be used to render modules within our
container, with an identical structure as before. It contains a single ID attribute
to which we set the value ContentPane. Notice that we omit an object node
corresponding to our [SOLPARTACTIONS] token. There are no editable attributes
of the [SOLPARTACTIONS] skin object and, as a result, we can omit any supporting
XML attribute definitions. The skinning engine will recognize our token and inject
the appropriate icon that will generate the module actions drop-down menu when
a user hovers over it. Our [TITLE] token contains a settings node named CssClass.
This attribute of the user control allows us to set the name of the CSS style that will
be used to format the display of our module title text. In our container project, we
set it to BBSHead rather than the default value, Head. The reason we do this, is so that
we can define a custom style solely for the purpose of formatting the display of a
module title within our container.

This leads to the next step in our skin creation process, which deals with the Skin.
css and Container.css files that will format our skin elements. The creation of
these CSS files is identical for both the HTML and web user control methods of skin
development and, as a result, will be treated seperately following the Visual Web
Developer example.

Creating a Skin Using Visual Web
Developer
To create our skin project using Microsoft's Visual Web Developer Express, we start
by opening our DotNetNuke 4.0 local web project. With the project open, we then
right-click on the root of our web project and select New Folder as illustrated in the
following image.

Chapter 9

[267]

At this point, you will be creating a place for not only this project, but also for all
future skin projects, so you will want to give a generic name to this first folder. For
example, this folder is named SkinProjects and it will be placed at the root directory
level of our local web project. Within this folder, we will create another folder that
will contain the actual skin project and, to keep our example consistent with the
previous method, we will again name the folder BBS. Next, we create the standard
folders named Skins, into which we will place the files and supporting images that
manage the look and feel of our pages, and Containers, which will hold the files
and supporting images that will control the look and feel of the borders around our
modules. The following image illustrates how our project will look in Visual Web
Developer at this point.

Just as we did in the HTML example, we now fill the Skins folder with all the
required elements that we will need and then perform the same process for our
Containers folder. We include all the images that we need as well as our two CSS
files named Skin.css and Container.css, which we place into the Skins and
Containers folders respectively.

Skinning Your Site

[268]

Unlike in our previous HTML example where we dealt with HTML files, with XML
formatting, we will be creating our skin structure within the context of a web user
control named Admin.ascx. For our Container, we create another web user control
named BlueHeader.ascx and place it into our Containers folder. The following
image illustrates how our project would look with the Skins folder expanded.

At this point, we are ready to begin working with our web user controls to create
our skin structure. We will first walk through the steps of creating the Admin.ascx
control and then we will turn our attention to the creation of the container web user
control, BlueHeader.ascx.

Creating the Web User Controls
We will begin process of creating our structure by focussing on a layout that includes
a banner at the top with a single content area beneath, just as we did in the example
in which we created our skin in an HTML file.

Chapter 9

[269]

With our target skin in mind, we start by expanding the HTML section of our
toolbox on the left side of our interface and select the Table tool as illustrated in the
following image.

We then drag the Table tool onto our page and lay out the cells that will hold our
skin objects. Think of this in terms of the home exterior analogy since all we are
doing at this point is framing the areas where our skin objects will be placed. Since
we are going for a simple layout with a banner across the top, the first part of our
layout will handle the placement of the banner image. Immediately following the
banner placement, we will create a cell where we will place the menu. Finally, we
will create a cell that will serve as the content pane.

The following is the complete source of our Admin.ascx file once we have completed
the HTML layout and the placement of our skin images.

<%@ Control language="vb" CodeBehind="~/admin/Skins/skin.vb"
AutoEventWireup="false" Explicit="True" Inherits="DotNetNuke.UI.Skins.
Skin" %>
<table cellpadding="0" cellspacing="0" border="0" width="100%">
 <tr>
 <td>
 <table cellpadding="0" cellspacing="0" border="0" width="100%">
 <tr>
 <td width="50%" bgcolor="#ffffff"> </td>
 <td width="760" height="70">
 <img src="<%= SkinPath %>banner.jpg"
 width="760" height="70">
 </td>
 <td width="50%" bgcolor="#73abe4"> </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>

Skinning Your Site

[270]

 <td background="<%= SkinPath %>bg_navigation.gif" height="30">
 <table cellpadding="0" cellspacing="0"
 border="0" align="center">
 <tr><td></td></tr>
 </table>
 </td>
 </tr>
 <tr>
 <td background="<%= SkinPath %>shadow.gif" height="30">
 <img src="<%= SkinPath %>spacer.gif" width="5" height="30">
 </td>
 </tr>
 <tr>
 <td>
 <table cellpadding="0" cellspacing="0" border="0" width="760">
 <tr>
 <td width="5">
 <img src="<%= SkinPath %>spacer.gif" width="5" height="5">
 </td>
 <td colspan="2"></td>
 <td width="5"><img src="<%= SkinPath %>spacer.gif"
 width="5" height="5"></td>
 </tr>
 <tr>
 <td height="10" colspan="4">
 <img src="<%= SkinPath %>spacer.gif"
 height="10" width="5">
 </td>
 </tr>
 <tr>
 <td width="5" height="32" background="<%= SkinPath
 %>bg_copyright.gif" align="left">
 <img src="<%= SkinPath %>bg_copyright_left.gif"
 width="5" height="32">
 </td>
 <td width="375" height="32"
 background="<%= SkinPath %>bg_copyright.gif"></td>
 <td width="375" height="32"
 background="<%= SkinPath %>bg_copyright.gif"></td>
 <td width="5" height="32" background="<%= SkinPath
 %>bg_copyright.gif" align="right">
 <img src="<%= SkinPath %>bg_copyright_right.gif"
 width="5" height="32">
 </td>
 </tr>
 </table>

Chapter 9

[271]

 </td>
 </tr>
 <tr>
 <td height="10"><img src="<%= SkinPath %>spacer.gif"
 height="10" width="5"></td>
 </tr>
</table>

While the format of our web user control is very similar to the HTML file that we
created in our previous example, there are a couple of notable differences that should
be mentioned. One occurs at the very first line of our Admin.ascx file.

<%@ Control language="vb" CodeBehind="~/admin/Skins/skin.vb"
AutoEventWireup="false" Explicit="True" Inherits="DotNetNuke.UI.Skins.
Skin" %>

In an ordinary web user control, this line would refer to the specific Visual Basic
code-behind page associated with the control itself. In this case, it refers to a generic
skin.vb class, which provides the glue between the portal architecture and our
Admin.ascx web user control. This directive is required for our page to be able to
interact with the DotNetNuke 4.0 portal framework.

Another difference is the inlusion of the <%= SkinPath %> server variable associated
with every image in the file. This variable is evaluated as the path to the skin's
directory and it allows us to use the relative image source path just like our previous
HTML example.

Placing the Skin Objects
Once we are happy with the layout of our file and the placement of our images, we
are ready to actually place the skin objects into the cells of our web user control. In
our DotNetNuke web project, we expand the ~/admin/skins folder as shown in the
following illustration.

Skinning Your Site

[272]

Within this folder, we find the physical web user controls that correspond to the skin
objects we wish to use in our skin. Since we have created our Admin.ascx file within
the DotNetNuke web project in Visual Web Developer, we are able to simply drag
the chosen controls from the Skins folder into the desired cells in our layout.

Beginning with the Admin.ascx file, we start dragging our required elements onto
our layout. We need the door that allows for access to the administrative interface
of our site so we drag the login.ascx web user control onto our layout. We also
need a directory that tells our visitors how to navigate within our site, so we drag
the solpartmenu.ascx web user control from the ~/admin/skins folder and place it
into the desired cell on our layout. The following illustrates how our file looks at
this point.

Also notice that we have placed an additional skin object on our page that
corresponds to a copyright. This control will allow a site administrator to change
the copyright display on the site via the back-end interface.

We still have one last required element to place within our file. We need a window
in which to render content. Scanning the list of files in our ~/admin/skins directory
reveals that our content pane does not exist as a formal web user control. So how do
we add it? The following code segment illustrates how we indicate the location of
our content pane within our skin.

 <table cellpadding="0" cellspacing="0" border="0" width="760">
 <tr>
 <td width="5">
 <img src="<%= SkinPath %>spacer.gif" width="5" height="5">
 </td>
 <td colspan="2" id="ContentPane" runat="Server"></td>
 <td width="5"><img src="<%= SkinPath %>spacer.gif"
 width="5" height="5"></td>
 </tr>

Chapter 9

[273]

Once we have established where we would like the content to go, we add two
attributes to the table cell. We add the runat="Server" attribute so that the server
can inject content into the cell and we add the id="ContentPane" attribute so that
our portal application has a way to reference our pane.

At this point, we have completed our Admin.ascx file and can now turn our attention
to creating the container that will fit within the look and feel of our custom skin.

Placing the Container Objects
Again we start with a basic layout for our BlueHeader.ascx file that corresponds to
the following image.

The web user controls corresponding to the skin objects that we can place in our
container reside in the ~/admin/containers folder. Using that same method we
used for our skin elements, we drag our container user controls from the ~/admin/
containers folder and place them into the desired table cells in our BlueHeader.
ascx file. This time, let us examine the contents of the BlueHeader.ascx file after
our skin objects have been added to better understand what is going on behind the
scenes when we drag and drop our skin object onto our web user control.

<!--<%@ Control language="vb"
 CodeBehind="~/admin/Containers/container.vb"
 AutoEventWireup="false" Explicit="True"
 Inherits="DotNetNuke.UI.Containers.Container" %>-->
 <%@ Register TagPrefix="uc1" TagName="Title"
 Src="admin/Containers/Title.ascx" %>
 <%@ Register TagPrefix="uc1" TagName="SolPartActions"
 Src="admin/Containers/SolPartActions.ascx" %>
 <table style="BORDER-COLLAPSE: collapse" cellpadding="0"
 cellspacing="0" width="100%" border="0">
 <tr>
 <td valign="top" colspan="5"><img src="<%= SkinPath
 %>spacer.gif" height="10" width="5"></td>
 </tr>
 <tr>
 <td width="12" height="30" align="left">

Skinning Your Site

[274]

 <img src="<%= SkinPath %>top_left_blue.gif"
 width="12" height="30">
 </td>
 <td height="20" valign="middle" background="<%= SkinPath
 %>top_blue_bg.gif" nowrap>
 <uc1:SolPartActions id="SolPartActions1"
 runat="server"></uc1:SolPartActions>
 </td>
 <td height="20" valign="middle" background="<%= SkinPath
 %>top_blue_bg.gif" width="100%" align="center" nowrap>
 <uc1:Title id="Title1" runat="server"></uc1:Title>
 </td>
 <td width="12" height="30" align="right">
 <img src="<%= SkinPath %>top_right_blue.gif"
 width="12" height="30">
 </td>
 </tr>
 <tr>
 <td width="12" background="<%= SkinPath %>left_tile.gif">
 <img src="<%= SkinPath %>spacer.gif" width="12"
 height="5" border="0">
 </td>
 <td colspan="2" bgcolor="#ffffff">
 <img src="<%= SkinPath %>spacer.gif" height="10"
 width="5" border="0">
 </td>
 <td width="12" background="<%= SkinPath %>right_tile.gif">
 <img src="<%= SkinPath %>spacer.gif" width="12"
 height="5" border="0">
 </td>
 </tr>
 <tr>
 <td width="12" background="<%= SkinPath %>left_tile.gif">
 <img src="<%= SkinPath %>spacer.gif" width="12"
 height="5" border="0">
 </td>
 <td colspan="2" bgcolor="#ffffff" id="ContentPane"
 runat="server"></td>
 <td width="12" background="<%= SkinPath %>right_tile.gif">
 <img src="<%= SkinPath %>spacer.gif" width="12"
 height="5" border="0">
 </td>
 </tr>
 <tr>
 <td width="12" height="10">
 <img src="<%= SkinPath %>bottom_left_corner.gif"
 width="12" height="10">

Chapter 9

[275]

 </td>
 <td colspan="2" background="<%= SkinPath %>bottom_tile.gif">
 <img src="<%= SkinPath %>spacer.gif" height="10" width="5">
 </td>
 <td width="12" height="10">
 <img src="<%= SkinPath %>bottom_right_corner.gif"
 width="12" height="10">
 </td>
 </tr>
 <tr>
 <td valign="top" colspan="5"><img src="<%= SkinPath
 %>spacer.gif" height="5" width="5"></td>
 </tr>
</table>

Recall that in our HTML example, we used a combination of HTML and XML to
format the look of our skin objects. In our Visual Web Developer example, dragging
the skin objects directly onto our container structure means we are able to interact
directly with the attributes that contribute to the display of the skin objects without
the need for a corresponding XML file. The following code segment illustrates how
we can add a custom CSS style, named BBSHead just as in our HTML example, to our
title control. The name and value pair that we used to create nodes in our XML file
previously now becomes a more direct attribute name and value pair as seen below.

 <td height="20" valign="middle" background="<%= SkinPath
 %>top_blue_bg.gif" width="100%" align="center" nowrap>
 <uc1:Title id="Title1" cssclass="BBSHead"
 runat="server"></uc1:Title>
 </td>

In addition to the title control, we need to place the control that will allow us to
interact with the administrative settings of any module rendered within our container.
The following code segment illustrates how this is accomplished in our source.

<td height="20" valign="middle"
 background="<%= SkinPath %>top_blue_bg.gif" nowrap>
 <uc1:SolPartActions id="SolPartActions1"
 runat="server"></uc1:SolPartActions>
</td>

Now that we have a control placed that will render module titles and a way to access
the module settings, we still need to designate a spot for the actual module contents.
We accomplish this by editing the source of our BlueHeader.ascx file so that the
code segment containing the table cell that will be our content pane looks like
the following.

Skinning Your Site

[276]

 <td colspan="2" bgcolor="#ffffff"
 id="ContentPane" runat="server"></td>

The following image illustrates how our BlueHeader.ascx web user control will
look in design mode.

Our container now has all of the required elements in place. This leads us to the final
step in the process before packaging and deployment. It is the step in which we
fine-tune the visual presentation of our skin and add the last bit of customization.

Creating the Cascading Style Sheets
At this point, whether you have used the HTML method of creating your skin project
in Dreamweaver, or you have used Visual Web Developer to interact with the skin
objects directly, you now need to format the various text elements so that they look
visually appealing and support the overall look and feel of your site. The best way
that we can approach the daunting task of creating styles for all the various default
administrator elements and content panes as well as our skin objects, is by agreeing
on a common starting point upon which we can add our customizations. To that end,
we copy the contents of the CSS file found within the ~/portals/_default/Skins/
default.css file into our own Skin.css file.

The default.css file contains all the necessary formatting for the DotNetNuke
framework to display the administrative controls and default objects. This simplifies
our development process a great deal by allowing us to focus only on the styles that
concern our skin. In both our Admin.htm and Admin.ascx files, we included a login
object, a main menu, and a single content pane. The following is a portion of the
source code from our Skin.css file, which deals specifically with our skin objects.

.Normal {
 Font-weight: normal;
 Font-size: 12px;
 COLOR: #000000;

Chapter 9

[277]

 Line-height: 16px;
 Font-style: normal;
 Font-family: Arial, Helvetica, sans-serif;
}
.MainMenu_MenuContainer {
 background-color: #4D75A3;
}
.MainMenu_MenuBar {
 cursor: pointer;
 cursor: hand;
 height:30;
 background-color: #4D75A3;
 background: url(bg_navigation.gif) repeat-x;
}
.MainMenu_MenuItem {
 cursor: pointer;
 cursor: hand;
 color: #FFFFFF;
 font-family: Tahoma, Arial, Helvetica, sans-serif;
 font-size: 11px;
 font-weight: bold;
 font-style: normal;
 background-color: #4D75A3;
}
.MainMenu_MenuIcon {
 cursor: pointer;
 cursor: hand;
 background-color: #4D75A3;
 border-left: #4D75A3 1px solid;
 border-bottom: #4D75A3 1px solid;
 border-top: #4D75A3 1px solid;
 text-align: center;
 width: 15;
 height: 30;
}
.MainMenu_SubMenu {
 z-index: 1000;
 cursor: pointer;
 cursor: hand;
 background-color: #4D75A3;
 filter:progid:DXImageTransform.Microsoft.Shadow(color='DimGray',
 Direction=135, Strength=3);
 border-bottom: #294363 1px solid;
 border-left: #294363 1px solid;

Skinning Your Site

[278]

 border-top: #294363 1px solid;
 border-right: #294363 1px solid;
}
.MainMenu_MenuItemSel {
 cursor: pointer;
 cursor: hand;
 color: #FFFFFF;
 height: 30;
 font-family: Tahoma, Arial, Helvetica, sans-serif;
 font-size: 11px;
 font-weight: bold;
 font-style: normal;
 background-color: #4D75A3;
 background: url(bg_navitem_on.gif) repeat-x;
}
.MainMenu_ItemActive {
 cursor: pointer;
 cursor: hand;
 color: #FFFFFF;
 height: 30;
 font-family: Tahoma, Arial, Helvetica, sans-serif;
 font-size: 11px;
 font-weight: bold;
 font-style: normal;
 background-color: #4D75A3;
 background: url(bg_navitem_on.gif) repeat-x;
}
.FooterText {
 height: 30px;
 padding-left: 10px;
 font-family: Tahoma, Arial, Helvetica, sans-serif;
 font-size: 10px;
 color: #454545;
 line-height: 28px;
}
A.FooterText:link, A.FooterText:visited, A.FooterText:active {
 text-decoration: none;
 color:#454545;
}
A.FooterText:hover {
 text-decoration: underline;
 color:#454545;
}

Chapter 9

[279]

The .normal CSS class is used to format all the default text in our site. Therefore, it is
important that we define a text class that supports the overall look of our site. In our
case, we define our default text to be preferrably Arial.

The next group of CSS classes deal with our main menu skin object. The real beauty of
the main menu provided as a skin object in DotNetNuke lies in its enormous level of
customizability. As can be seen in the CSS source file, we have the ability to control the
display of the menu as a whole, via the .MainMenu_MenuContainer and .MainMenu_
MenuBar classes, as well as the the sub-menu, via the .MainMenu_SubMenu class. In
addition, classes like .MainMenu_MenuItem and .MainMenu_MenuItemSel give you the
ability to customize the look of each individual menu element.

The last group of CSS styles deals with the display of our login skin object. In our
example, we create a custom class called FooterText that is not included in the
default CSS file. This gives us the freedom to alter the text style of our login control
without worrying that we are inadvertantly changing other elements in our skin.

To really explore the power of CSS styles, we would have to spend a great deal of
time discussing the nature of the connection between CSS and the way our pages
are rendered. For our purposes, however, we will focus on the concepts that pertain
to DotNetNuke's interaction with CSS and how this interaction is involved in our
skinning project.

If you recall, in our Admin.xml file, we included setting nodes that associated the
attributes of the SolPartMenu Web User Control with these CSS styles. By associating
the attributes of the Web User Control this way, or by setting the attributes directly
if we are working with the .ASCX files, we gain the ability to manipulate the look of
our skin via these style classes. The next concept we need to be aware of is the way
DotNetNuke utilizes the cascading nature of CSS styles. In our package, we created a
Skin.css file but could have just as easily created an Admin.css file specifically for
our page. But what would happen if we created and included both?

To answer that question, we need to examine DotNetNuke's inclusion chain.
Assuming we had a Skin.css file and an Admin.css file, the hierarchy of CSS files
that would be included into our page would be Default.css | Skin.css | Admin.
css | Portal.css. What this means is that the first set of class definitions our page
sees are contained in Default.css, the file we used to start our Skin.css in our
example. The next thing that DotNetNuke will place in the chain is the generic Skin.
css file if one exists followed by the page-specific CSS file named Admin.css. In this
way, specific CSS files for pages supersede the generic Skin.css definitions since the
styles in Admin.css are seen after those in generic CSS file and therefore are applied
after those in Skins.css. The last CSS file in the chain is an important one. If we
had styles we wanted to preserve throughout all of our portals in our DotNetNuke
installation, then we would define them here. The file, itself, is found in the same

Skinning Your Site

[280]

directory as Default.css, but unlike Default.css, it is included at the very end of
the chain and is therefore seen and applied last to our pages. To start out with, the
Portal.css file is empty just like Default.css.

Now let us turn our attention to our container. We follow a similar process for
creating the Container.css file associated with our BlueHeader container. The
complete source code for the Container.css file is presented here.

.BBSHead {
 font-family: Tahoma, Arial, Helvetica;
 font-size: 11px;
 font-weight: bold;
 color: #FFFFFF;
}

In both the BlueHeader.htm and BlueHeader.ascx files, we define a custom
style called BBSHead for the formatting of the module title that will reside in our
container. Alternatively, we could have defined this style within our Skin.css file
and ommitted our Container.css file from our project entirely. Functionally, the
end result would be the same; however, when a skin package starts to include many
different custom styles, it is easier to distinguish the styles that deal with our skin
from those that deal with our container if they are in separate files.

Just as in our Skin example, the CSS files associated with our container are included
in a standard sequence. Let us assume we included both a generic Container.css
file along with a specific BlueHeader.css file in our package. The full stylesheet
sequence we would have rendered on our page, inlcuding our files from our Skin
exmaple, would be Default.css | Skins.css | Admin.css | Containers.css
| BlueHeader.css | Portal.css. This allows specific container stylesheets to
supersede generic stylesheets.

Creating the Skin Package
Now we have arrived at the stage where we can bring it all together and build a
package to be uploaded into our DotNetNuke portal application. Before we get to
the packaging, however, we still have one last item to include in order to fully flesh-
out our skin package. We will need an image to serve as a thumbnail preview for
both our skin and our container. The thumbnail file is not required, but if we really
want to let our users know that the skin is well made, then we probably would not
want them to see a generic Image not available graphic when they try to choose our
new skin. We associate thumbnail images to the pages and containers they represent
by following a consistent naming convention. In our project, we will include two
files, one in our Skins folder named Admin.jpg, while the other will reside in the
Containers folder and be named BlueHeader.jpg. The Admin.jpg image serves

Chapter 9

[281]

as a preview of our Admin.htm or Admin.ascx file. Similarly, the BlueHeader.jpg
image serves a preview of our BlueHeader container. The most common method
of creating these thumbnail images is to preview the skin in a browser and grab a
desktop screen capture. The thing to keep in mind as you create your thumbnail
images is the fact that in the end, it will be rendered as a 150x112 image.

So, now we truly have all the pieces to our skinning puzzle complete. The following
figure illustrates how both of our projects look at this point.

The next step is the actual physical packaging process. We begin this process by
browsing our computer and navigating to the directory where our skin project is
located. Once we arrive at our skin project root directory, we open up the Skins
folder and send all of the contents to a ZIP file named Skins.

This step is illustrated in the following image. Pay particular attention to the fact
that the files within the directory are being zipped rather than zipping the entire
Skins folder.

Skinning Your Site

[282]

Once the new ZIP file is created, we go back and change the name to Skins.zip.
In order to keep our project well organized we will then cut and paste this ZIP
file one level higher in our folder hierarchy. This Skins.zip file is one of the two
components that will make up our complete skin deployment package.

To create the second component of our skin deployment package, we perform a
similar process with the files within our Containers folder. Again, we take special
care to ensure that we zip the contents of the directory rather than zipping the actual
folder. Once the ZIP file is created and renamed to Containers.zip, we cut and
paste the file one level higher into the root directory of our project.

The last step we take before we are ready to deploy our skin is the creation of the
complete skin package. To do this we create a new ZIP file within the root directory
of our project and give it a name. This is the name that will be used to refer to our
skin when users are presented with a list of skin choices to apply to the whole site
or an individual page. In our example, we will call our skin package BBS.zip. We
then drag and drop both the Skins.zip file and Containers.zip file onto our
package file. While placing ZIP files within ZIP files is uncommon, the DotNetNuke
skinning engine was designed to handle packages created in this way. The following
illustrates how our project root directory will look at this point.

Chapter 9

[283]

Now we have a complete skin package that is ready to be uploaded and applied to
our DotNetNuke portal. We begin by hovering over the Host main menu selection;
notice that there is an entry titled Skins at the very bottom of the sub-menu
dropdown. Clicking on this selection brings up the following display.

Skinning Your Site

[284]

By hovering over the module action menu, we can choose Upload Skin from the list
of available actions. This will take us to the Upload Skin Package display illustrated
in the following image.

Now we can Browse for our skin package and Add it to the file list box as shown.
We then click on Upload New File and check the status report for any errors in the
upload. If all goes well, we can now return to the Skins page under our host menu
and apply our skin just as we did earlier in the chapter.

Summary
In preceding chapters, you learned how to administer your portal and create custom
modules. Now you not only know how to upload and apply a custom skin package
to your site, but you now have also been exposed to the entire skin creation process
both from the point of view of a web designer using Dreamweaver, and from that
of a programmer working in the Visual Web Developer design environment. The
skinning building blocks are simple and straightforward in terms of structure, but
allow for an endless amount of variation in terms of how your site can look.

Deploying Your DNN Portal
Once your portal is looking the way you want it to, it is time to share your creation
with the rest of the world. We want to transfer our site from our local computer and
set it up on the World Wide Web.

When you are done with this chapter, you will know the following:

How to obtain a domain name for your site
What to look for in a hosting provider
How to modify your files to prepare for moving to a host
How to set up your database on a hosted site
What file permissions are needed for your site to run

Acquiring a Domain Name
One of the most exciting parts of starting a website is acquiring a domain name. When
selecting the perfect name, there are a few things that you need to keep in mind:

Keep it brief: The more letters that a user has to type in to get to your site the
more difficult it is going to be for them to remember your site. The name you
select will help to brand your site. If it is catchy then people will remember it
more readily.
Have alternative names in mind: As time goes on, great domain names are
becoming fewer and fewer. Make sure you have a few alternatives to choose
from. The first domain name you had in mind may already be taken so
having a backup plan will help when you decide to purchase a name.
Consider buying additional top-level domain names: Say you've
already bought www.DanielsDoughnuts.com. You might want to purchase
www.DanielsDoughnuts.net as well to protect your name.

•

•

•

•

•

•

•

•

Deploying Your DNN Portal

[286]

Once you have decided on the name you want for your domain, you will need to
register it. There are dozens of different sites that allow you to register your domain
name as well as search to see if it is available. Some of the better-known domain-
registration sites are Register.com and NetworkSolutions.com. Both of these have
been around a long time and have good reputations. You can also look into some of
the discount registers like BulkRegister (http://www.BulkRegister.com) or Enom
(http://www.enom.com).

After deciding on your domain name and having it registered, you will need to find
a place to physically host your portal. Most registration services will also provide the
ability to host your site with them but it is best to search for a provider that fits your
site's needs.

Finding a Hosting Provider
When deciding on a provider to host your portal, you will need to consider a
few things:

Cost: This is of course one of the most important things to look at when
looking for a provider. There are usually a few plans to select from. The basic
plan usually allows you a certain amount of disk space for a very small price
but has you share the server with numerous other websites. Most providers
also offer dedicated (you get the server all to yourself) and semi-dedicated
(you share with a few others). It is usually best to start with the basic plan
and move up if the traffic on your site requires it.
Windows servers: The provider you select needs to have Windows Server
2000/2003 running IIS (Internet Information Services). Some hosts run
alternatives to Microsoft like Linux and Apache web server.
.NET framework: The provider's servers need to have the .NET framework
version 2.0 installed. Most hosts have installed the framework on their
servers, but not all. Make sure this is available because DotNetNuke needs
this to run. If they only have the 1.1 framework installed then you will need
to use a 3.x version of DotNetNuke.
Database availability: You will need database server availability to run
DotNetNuke and Microsoft SQL Server is the preferred back end. If the
hosting provider supports it, SQL Express is also an option, although it will
be limited to 4GB and 1 CPU.
FTP access: You will need a way to post your DotNetNuke portal files
to your site and the easiest way is to use FTP. Make sure that your host
provides this option.

•

•

•

•

•

Chapter 10

[287]

Email server: A great deal of functionality associated with the DotNetNuke
portal relies on being able to send out emails to users. Make sure that you
will have the availability of an email server.
Folder rights: The ASPNET or NetworkService Account (depending on
server) will need to have full permissions to the root and subfolders for your
DotNetNuke application to run correctly. Make sure that your host either
provides you with the ability to set this or is willing to set this up for you. We
will discuss the exact steps later in this chapter.

The good news is that you will have plenty of hosting providers to choose from and
it should not break the bank. Try to find one that fits all of your needs. There are even
some hosts (www.WebHost4life.com) that will install DotNetNuke for you free of
charge. They host many DotNetNuke sites and are familiar with the needs of the portal.

Preparing Your Local Site
Once you have your domain name and a provider to host your portal, you will need
to get your local site ready to be uploaded to your remote server. This is not difficult,
but make sure you cover all of the following steps for a smooth transition.

1. Modify the compilation debug setting in the web.config file: You will need
to modify your web.config file to match the configuration of the server to
which you will be sending your files. The first item that needs to be changed
is the debug configuration. This should be set to false. You should also
rebuild your application in release mode before uploading. This will remove
the debug tokens, perform optimizations in the code, and help the site to run
faster:

 <!-- set debugmode to false for running application -->
 <compilation debug="false" />

2. Modify the data-provider information in the web.config file: You will need
to change the information for connecting to the database so that it will now
point to the server on your host. There are three things to look out for in
this section:

First, if you are using MS SQL, make sure SqlDataProvider is
set up as the default provider.
Second, change the connection string to reflect the database
server address, the database name (if not DotNetNuke), as well as
the user ID and password for the database that you received from
your provider. This can be found in the <connectionStrings>
section and in the <appSettings> section of the web.config file.
Make sure you change it in both places.

•

•

°

°

Deploying Your DNN Portal

[288]

Third, if you will be using an existing database to run the
DotNetNuke portal, add an objectQualifier. This will append
whatever you place in the quotations to the beginning of all of the
tables and procedures that are created for your database.

 <data defaultProvider="SqlDataProvider">
 <providers>
 <clear/>
 <add name = "SqlDataProvider"
 type = "DotNetNuke.Data.SqlDataProvider,
 DotNetNuke.SqlDataProvider"
 connectionStringname = "SiteSqlServer"
 providerPath =
 "~\Providers\DataProviders\SqlDataProvider\"
 objectQualifier = "DE"
 databaseOwner = "dbo"
 upgradeConnectionString = ""
 />

3. Modify any custom changes in the web.config file.
4. Add your new domain name to your portal alias: Since DotNetNuke has

the ability to run multiple portals we need to tell it which domain name is
associated with our current portal. To do this we need to sign on as Host (not
Admin) and navigate to Admin | Site Settings on the main menu. If signed
on as Host, you will see a Portal Aliases section on the bottom of the page.
Click on the Add New HTTP Alias link:

5. Add your site alias into the HTTP Alias box and click on Update to finish:

°

Chapter 10

[289]

6. Configure your application to work with the.NET framework 1.1: If you enter
HTML into a textbox while using the 1.1 version of the .NET framework,
you may get an error message "A potentially dangerous Request.Form
value was detected...". To stop this from occurring, set the validateRequest
attribute in the web.config file to false:

 <pages enableViewStateMac="true" validateRequest="false" />

Now the code files for your DotNetNuke installation are ready to post to your hosted
server. Before that can happen, you need to set up the database on the server.

Setting Up the Database
Many hosting services still use SQL Server 2000, so we will be using Microsoft's
Enterprise Manager to accomplish this task.There are a few ways to get your database
set up on the remote server. It all depends on how you want to start your site on
the hosted server. If you have set up your localhost site by applying skins, adding
modules, and installing forums, generally setting it up how you want to see it on the
Web, you probably do not want to have to recreate this information when you post it
to your hosted account. On the other hand, you may want to just get DotNetNuke up
and running on the hosted server and then set it up how you want it.

We will cover both methods. We covered this when we set up our site locally, but
if you set up a fresh install of DotNetNuke on the hosted server, it is important that
you change the default Admin and Host passwords as soon as you have it running.

Backup and Restore Database
Since most hosting services still use SQL 2000, we will be using Microsoft’s
Enterprise Manager to accomplish this task. If you do not have access to these tools
or if you have been using MSDE for you local server there are tools that you can
use to accomplish the same tasks. You can use free tools such as DbaMgr
(http://www.asql.biz/DbaMgr.shtm) or the command-line interface with
Microsoft’s osql utility (http://msdn.microsoft.com/library/default.asp?url
=/library/en-us/coprompt/cp_osql_1wxl.asp). Either way, the basic concepts of
this procedure will be the same.

If you want to keep the information and setup that is located in your local database,
you will need to make a backup copy of the database. To begin, open Enterprise
Manager, drill down on the (local) server, and open up the Databases folder. Look
for DotNetNuke and right-click on it to bring up the menu. Select All Tasks and
Backup Database to begin the back-up procedure.

Deploying Your DNN Portal

[290]

On the General tab, leave all the default settings and click on Add. In the File Name
box, enter the location where you would like the backup saved and fill in a name for
your backup. It is common to put an extension of .bak at the end of the file name,
but it is not necessary. Click on the OK button on the Select Backup Destination
dialog and then click on OK again on the General tab. You will receive a message
when the backup completes successfully.

Chapter 10

[291]

What you do with the backup file will depend on your hosting provider. Some
providers give you the ability to do backup and restore operations on your own;
other providers will do the restore for you. Contact your provider to find out how
you can restore the database on its server.

Build New Database
If you would like to start your site from scratch on your hosted web server, you
will need to manually create the database that will hold the tables and stored
procedures needed to run DotNetNuke. This procedure will differ depending on
your provider. Some may give you web access to your database; others will allow
you to use Enterprise Manager to connect to your database server. We will be using
the Enterprise Manager to accomplish this task. To get to Enterprise Manager, click
on the Start button, go to Programs | Microsoft SQL Server | Enterprise Manager.
Drill down on the (local) server by clicking on the plus (+) signs, right-click on
Databases, and select New Database.

Deploying Your DNN Portal

[292]

Type DotNetNuke into the name field and click OK.

Chapter 10

[293]

It will take a few moments for your database to be created. This will generate the
system tables and stored procedures. The actual tables and procedures needed to run
DotNetNuke will be created when you navigate to your portal for the first time.

Note that the web.config connection strings that we
discussed earlier will need to be set properly for this
to work.

FTP Your Files
The easiest way to transfer your files from your local computer to the hosted server is
to use File Transfer Protocol (FTP). You will need to obtain the location of your FTP
account from your hosting provider. Once you have this information, you can use
any number of tools to send your files. FrontPage XP and Macromedia Dreamweaver
both have tools available to FTP files. You can also find free FTP programs
such as FTP Commander (http://www.vista.ru/2inter.htm) or SmartFTP
(http://www.smartftp.com/download/), which will also help you transfer
your files. Once you have uploaded your files to the server, you need to give the
appropriate file permissions for your portal to work correctly.

The file permissions needed for your portal will differ slightly depending on the type
of server on which your account will be hosted.

If your portal will be hosted on a Windows 2000 server using IIS5, the
{NameOfServer}/ASPNET user account must have read, write, and change control
of the root application directory (this allows the application to create files and
folders). This will be the directory that holds all of your files. Your provider will
know the folder that needs permissions as it'll be setting up the virtual directory.

If your portal will be hosted on a Windows 2003 server using IIS6, the
{NameOfServer }/NetworkService user account must have read, write, and change
control of the root application directory.

Some providers give you the ability to set these permissions yourself; others will
need to set the permissions for you.

Once the file permissions are set, all that is needed to complete the setup is to
navigate to your site. If you are starting from scratch, your database tables and
stored procedures will be created and you are ready to start adding content to your
portal. As with any software installation, we have not covered all the issues that
can arise. If you run into any issues during installation, make a descriptive post
in the DotNetNuke forums for additional help (http://www.asp.net/forums/
showforum.aspx?forumid=90).

Deploying Your DNN Portal

[294]

Summary
In this chapter, we covered the steps necessary to take the site you created from your
local machine and post it for everyone to see on the World Wide Web. The tasks
needed to accomplish this are not difficult, but may require the assistance of your
host provider. With our portal up and running, we will discuss how to run multiple
portals from one DotNetNuke installation.

Creating Multiple Portals
One of the more compelling reasons to use DotNetNuke is the capability to create
multiple portals off one installation of DotNetNuke. All of the portals will share
one database, which makes portal backup easy. In this chapter, you will learn the
following:

Why you would want to create multiple portals
How child portals differ from parent portals
How to set up multiple portals
How to create a portal template
How to use the Site Wizard to update your site

In this chapter, you will see what different types of portals are available to you, how
to use the wizard to set up your portal, and how to create templates so you never
have to duplicate your work.

Multiple Portals
Before we get into how to set up multiple portals, let's understand what is meant by
multiple portals and why they are important. In a typical web-hosting environment,
you purchase a domain name and contact a hosting provider to host your site. In
normal situations, this is a one-to-one arrangement. If you then want to host another
website, you follow the process again, creating another hosting account, with
additional fees, and set up your site.

•

•

•

•

•

Creating Multiple Portals

[296]

This can become time-consuming and expensive. Although this can be avoided by
either spending more money to get a dedicated hosting account (you have full access
to the server) or by creating sub-domains and pointing to subfolders on your site,
it will take some technical knowledge on your part, and, if you use sub-domains,
could get kind of messy. DotNetNuke solves this dilemma by allowing you to create
multiple portals easily using a single hosting account.

Chapter 11

[297]

So why would you need multiple portals? Well let's say that you have your portal
up and running, and then get a great idea for a second site dedicated to the "World
of Chocolate". And then your spouse decides to sell hand-made crafts and needs a
website to do it. Finally, during a family dinner you decide you want to put up a
website dedicated to your family tree.

Normally you would need to create separate hosting accounts, build the site, design
the look and feel, add the needed functionality, set up the database, and finally post
your site on the Web. This could take you weeks or months to set up, and the costs
would be proportional to the number of sites you needed.

When you have a DotNetNuke portal up and running, there are no additional
costs to create additional portals, and with the help of wizards and templates in
DotNetNuke, you could have these sites up in a matter of hours or days.

It is important to note that when considering the costs of
multiple portals, you need to take into account the amount
of traffic each one will have. Most web-hosting services sell
plans based on the disk usage of your site. This may require
you to purchase a plan that accommodates more traffic.

Parent Portals versus Child Portals
Parent portals are sites that are defined by a unique URL (www.CoffeeConnections.
net, www.e-coffeehouse.com, etc.). Parent portals allow you to run multiple sites
from the same host and same DotNetNuke installation. This means that each domain
name is unique but points to the same location. DotNetNuke handles how to route
the requests depending on which domain name is entered.

Child portals, on the other hand, are sub-portals related to your main portal and
share the domain name of their parent. A directory is created on your web server
allowing the portal to be accessed through a URL address that includes a
parent name and the directory name combined
(say www.CoffeeConnections.net/TestingPortal).

Setting up a Parent Portal
The first thing that needs to be done before you attempt to set up a parent portal is
to purchase a domain name. As discussed in the previous chapter, this can be done
through many different providers. In working with CoffeeConnections.net, we
have realized that the sale of coffee-unique coffee beans has grown into a
nice-sized side business. To help this part of the company grow without

Creating Multiple Portals

[298]

overshadowing the original concept, we have decided to have a companion portal
called e-Coffeehouse.com.

Registering Your Domain and Setting the DNS
Setting up multiple portals on a DNN site does not mean that we have to share the
same name as the original portal. So, to give our new portal its own name, we need
to purchase a domain name. When you purchase the domain name, you will need to
tell it which domain name server (DNS) to point to. You will need to set up a primary
and secondary DNS. The following screenshot shows an example of this when
registering a domain name on the Network Solutions website.

To get your domain server information, you will need to contact the company that
is hosting your site to find out the name of your DNS server as well as adding your
new domain name to your hosting account.

Most hosting providers will have a control panel that will allow you to add your
domain names and find your DNS. The next screenshot shows an example of this
type of screen.

Chapter 11

[299]

Once you set the DNS, you will need to wait a few days for it to propagate. On
completing these tasks, you will be ready to set up your portal within DotNetNuke.

Creating a Parent Portal
In the previous chapter, we moved our local implementation of DotNetNuke to our
hosting provider. Now we are going to create a parent portal from this installation.
For this, log in as host and navigate to Host | Portals. This will bring up a list of the
portals that have already been set up. To add another portal, access the context menu
next to the Portals icon and select Add New Portal.

Creating Multiple Portals

[300]

You will then be presented with the Portal Setup dialog box.

Select the type of portal you want to create: In this instance we will, of
course, be creating a Parent portal.
Enter the portal alias: This is the website address of your portal (excluding
the http://).
Home directory: If desired, you can change the location where the
framework will save portal-specific information. This includes skin and
container files.
Enter the name for your portal.
Select a template for your portal: You can create templates for your portal so
that when they are created, all the skins, containers, modules, and tabs will
be created for you. You will find a sample file under the portals/default
folder of your installation. Select DotNetNuke, which will create an empty
shell for you.
Enter the administrator information for this portal. This will create a user
that will act as the administrator for this new portal.
When finished, click on Create Portal.

•

•

•

•

•

•

•

Chapter 11

[301]

This will create a new empty portal all ready for you to modify.

As mentioned earlier in this chapter, in order to create a
Parent Portal, you will need to make sure that a domain
name has been purchased and that the DNS is pointed to the
server hosting this parent portal. If this is not completed, the
parent portal will not work.

It is important to note that your new portal will use the default properties defined in
the Host Settings module. Once the portal is created, these settings can be modified
in the Admin Site Settings module.

Setting Up a Child Portal
Child portals, as opposed to parent portals, give you a way to create separate
portals without having to set up separate domain names. For this, log in as host and
navigate to Host | Portals. This will bring up a list of the portals that have already
been set up. To add another portal, hover the cursor over the pencil icon next to the
Portals icon and select Add New Portal.

Creating Multiple Portals

[302]

You will be presented with the Portal Setup dialog box:

Select the type of portal you want to create. In this instance, we will be
creating a Child portal.
Enter the portal alias. Since this is a child portal, it is run off a directory on
you main site. When you select Child portal, it will fill in the name of your
domain with a forward slash (/). Just add the directory name for your portal.

•

•

Chapter 11

[303]

Enter a title for your portal.
Enter a description and key words for your portal.
Select a template for your portal. You can create templates for your portals so
that when they are created, all of the skins, containers, modules, and tabs will
be created for you. You will find a sample file under the portals/default
folder of your installation. Select DotNetNuke, which will create an empty
shell for you.
Enter the administrator information for this portal. This will create a user
that will act as the administrator for this new portal.
When finished click on Create Portal.

This will create a new empty portal all ready for you to modify.

The new portal will use the default properties defined in the Host Settings
module. Once the portal is created, these settings can be modified in the Admin Site
Settings module.

Creating Portal Templates
In the previous examples, we created our sites using the default DotNetNuke
template. While this is helpful if you want to create a site from scratch, you usually
wouldn't want to have to add all of the common functionality you would like on
your portal each and every time you create a new one. Fortunately, DotNetNuke
makes creating a portal template easy.

•

•

•

•

•

Creating Multiple Portals

[304]

When you previously created new portals by going to Host | Portals, you may have
noticed a section called Export Template at the bottom.

This section allows you to save your portal configuration into a template. This
includes your menu navigation, modules, and module content.

Portal: Just select the portal you would like to export.
Template File Name: Enter a file name for this template.
Template Description: Enter a description of the kind of information this
template contains.
Include Content: If you would like the content of the modules to be saved,
check this box.

Click on the Export Template link to save your template.

This will save your template into an XML-formatted file. If you would like to see the
file that is created, navigate to the location presented on the screen. When setting up
future portals, you can use this portal as a template.

Using the Site Wizard
The site wizard will allow you to customize your site by walking you through an
easy-to-understand step-by-step process. To access this wizard, sign on as host and
click on the Wizard icon in the top panel of the screen:

•

•

•

•

Chapter 11

[305]

This will bring you to the first step in the site wizard. The first page asks you if you
would like to apply a template to your site. If you did not do this when the site was
set up, you can accomplish this now. If you already have content on your site, it will
ask you how you want to deal with duplicate entries. For example, if you already
have a Home page with modules and the template has a Home page with modules,
how would you like to resolve this conflict? You have three choices:

Ignore: This will ignore any items that already exist on your site.
Replace: This will replace anything on your site with what is contained in
the template.
Merge: This will merge the content in the template with what is already on
your site. This may produce multiple menu items or modules, but these can
be deleted later.

Click on Next to proceed to the next screen in the wizard.

•

•

•

Creating Multiple Portals

[306]

The following screen allows you to apply any skin that you have available to your
portal. If you would like to apply a certain skin, select the radio button next to the
skin and click on the Next button.

The following screen allows you to set any container that you have available to your
portal as the default. If you would like to set a container skin, select the radio button
next to the container and click on the Next button.

Chapter 11

[307]

The following screen allows you to add a description and keywords for your portal.
Click on the Next button to continue.

Creating Multiple Portals

[308]

The last screen allows you to select the logo you would like to use for your site. In
the default DotNetNuke skin, this would show up in the header of your portal.

Click on the Finish button to save your settings.

Chapter 11

[309]

To view the changes, click on the Home menu item. Any changes that you made will
now be reflected on your site.

Managing Multiple Portals
As the host user, you will have access to every portal you create. To manage your
portals, you just need to navigate to the Portals page by going to Host | Portals from
the main menu.

You can access each site by clicking on the Portal Aliases link or edit each site by
clicking on the pencil icon next to the portal. You will notice that next to each portal
there are columns for the following:

Users: The number of users registered for the particular portal.
Disk Space: Since each separate portal shares the same hosting environment,
you can set the disk space allowed to each. This will limit the amount each
admin will be able to upload to their particular site.
Hosting Fee: If you are charging a hosting fee for each site, you can place
that fee in this section.
Expires: You can enforce the fees that you charge for each portal.

•

•

•

•

Creating Multiple Portals

[310]

It is important to note that even though users of each portal
are kept in the same database, they are only assigned to the
portal that they registered on. In a default implementation
of DotNetNuke, a user would have to register for each portal
they would like to be a part of. If you need to manage users
in a multi-portal environment, I suggest the ITSCS Manage
Users PRO available on Snowcovered.com. It allows you
to manage users from all portals as well as replicate user
credentials to multiple portals.

All of these items can be accessed by clicking on the pencil icon next to the portal
name. This will bring up the portal settings page. We have seen most of these in the
administration chapter of this book. We will just look at the Host Settings section:

This is where you can set the information found on the Portals page. Only the
superuser (Host) sign on is able to see all of the portals that have been created. The
administrators of each portal will only be able to see the information related to
their portal.

Summary
In this chapter, we learned how to create multiple portals that can all be hosted from
one account. We have seen how to create and use templates, and how to use the
Site Wizard to upgrade your site. We then finished this off by showing you how to
manage these portals once they have been set up. Not only will this functionality
allow you to create multiple portals, but since all of the information is stored in one
database, backing them up is simple.

Index
A
acceptance tests 17
Account Login module

about 72
administration 75
modification 75
new page, adding 73
practical purpose 73
special features 75

admin role and host role, difference 103
admin tools. See also host tools

about 104
advanced settings, other settings 107
advanced settings, page management 106
advanced settings, payment settings 107
basic settings 104
basic settings, appearance 105
file manager 112
languages 117
log viewer 115-117
newsletters 110, 112
recycle bin 115
site log 109
site settings 104
skins 117
stylesheet editor 108

alias. See virtual directory
Announcements module

about 75
administration 76, 77
modification 76, 77
practical purposes 76
special features 78

B
BLL. See Business Logic Layer
blog 9
Business Logic Layer

components 202
controller class 203
DAL+ code 202
DAL code 202
Info class 202

C
cascading style sheets

creating 276, 279
child portals

about 297
adding 301-303
modifying 303
setting up 301-303

coffee connections
about 15
child portals 297
controller class 203
custom business objects 202
custom module 161, 187
database elements, creating 188
Info class 202
module 163
modules, adding 66
module, configuring 163
module, creating 167, 168
module, displaying in DotNetNuke website

170, 172, 174

[312]

module settings page, creating 192
multiple portals 295
optional interfaces 232
parent portal, DNS setting up 298
parent portals 297
roles, creating 51
settings page, viewing 200
site customization 304
site wizard 304
site wizard, applying a template 305
site wizard, skinning 306
site wizard, using 304
user stories 16
user stories, advantages 17
user stories for coffee connections 17

Coffee Shop Listing module
about 162
configuring 163, 177
displaying 170-174
errors, diagnosing using Log Viewer 177
folder structure 176
inheriting from PortalModuleBase 177
view control, creating 164, 165, 167-169

configuration files, DotNetNuke
about 140
web.config file 141

Contacts module
about 78
administration 79
modification 79
new contact, adding 79
practical purposes 79
special features 80

Context object
about 136
HttpContext object 136

custom module. See also DotNetNuke
modules

about 161
additional concepts for module

development 200
building the module 232
Business Logic Layer 202
database elements, creating 188
for coffee connection 187
installation, testing 243, 244
installation scripts, creating 239-241

IPortable, working 236, 238
ISearchable, working 236, 238
module settings page, creating 192
optional interfaces 232
packaging module for distribution 239
PA zip file, installing 241, 242
presentation layer, completing 220
settings page 204
settings page, creating 196, 198, 199
testing 239
viewing 232

D
DAL

about 187, 207
BLL layer, creating 214, 215, 217, 219
DataProvider.vb class, creating 207-209
settings page 207
SqlDataProvider.vb class, creating 209, 210,

212, 214
summary 219

DAL+
about 187, 201
Business Logic Layer 202
code for creating database elements 194,

196
generic methods 201
portability 187, 188

DAL and DAL+, comparison 205, 206
data access application block 11
Data Access Layer. See DAL
database

backup 35, 289, 291
elements, creating 188
restoring 289, 290
setting up 28-30
setting up, optional settings 32
setting up, web.config file 30, 31
setting up on remote server 289

database elements, creating
about 188
Business Logic Layer 202
class files, creating 192, 193
configuration, updating 199, 200
custom business objects 202
DAL+ code, inserting 194, 196

[313]

module settings page, creating 192, 193
settings page 204
settings page, creating 196, 198, 199
settings page, viewing 200
SQL script, executing 188, 190, 192
stored procedures, creating 189-192
tables, creating 188

data provider, attributes 145
Documents module

about 80
additional information 81
administration 80, 81
modification 80, 81
new document, adding 80, 81
practical purposes 80
special features 81

domain name
acquiring 285
registering 286
selecting 285

DotNetNuke
advantages 10, 12
architecture 133
coffee connections 15
community 13
configuration files 140
custom module 161
Data Access Layer 187
default installation skin 246
extreme programming 16
files, backup 36
home page admin role, creating 51, 52
installing 19, 20
license 15
modules 65, 161
pages 55
role based scrunity 49, 50
roles, creating 51
selection criteria 10, 12
skinning 11
skin package, uploading 248, 249
tabID 55
tools for creating skin 254
upgrading 34-36
user accounts 39
user roles 48
user stories 16

user stories for coffee connections 17
versions 161

DotNetNuke architecture
configuration files 140
Context object 136
Global.aspx.vb file 152
Globals.vb file 154
overview 133
page request by user 134, 136, 157, 159
providers, configuring 141
web.config file 141
Web User Controls 254

DotNetNuke community
about 13
bug tracker 14
core team 13
DotNetNuke Project Roadmap 15
forum 14
Gemini site 14

DotNetNuke installation
clean install 20
connecting to SQL server 29
default documents, verifying 26, 27
local version 19
security permissions, setting 28
source code, downloading 20
upgrading 34-36
upgrading checklist 35
virtual directory, setting up 21
web.config file 30

DotNetNuke modules. See also standard
modules, DotNetNuke;
See also custom module

about 65
adding 66
additional concepts for module

development 183, 200
additional localization 186
advanced settings 69
basic settings 68
coffee shop listing module 163
configuration 177
creating 164, 166
development environment, setting up 161
DotNetNuke website, creating 161
editing 67
errors, diagnosing using Log Viewer 177

[314]

folder structure 176
inheriting from PortalModuleBase 176
Log Viewer, functionality 175
new page, adding 73
page settings 70, 71
settings 67
SQL scripts 201
standard modules 72
Text/HTML module 66
viewing in DotNetNuke website 170-174

DotNetNuke modules, settings
about 67
advanced settings 69
basic settings 68
content, impoting and exporting 68
content, modifying 68
module, editing 68
module functionality, editing 68
page settings 70, 71
syndicate information 68

DotNetNuke portal
page request by user 134, 136

E
edit user control

configuration, updating 181
creating 177
language, changing 179
localizing 179-181
navigation 179, 182, 183

Events module
about 82
administration 83, 84
modification 83, 84
new event, adding 83, 84
practical purposes 83
special features 84

extreme programming 16

F
FAQs module

about 84
administration 86
modification 85
new FAQ, adding 85

practical purposes 85
special features 86

Feedback module
about 86
administration 87
modification 87
practical purposes 87
special features 87

FreeTextBox tool 96

G
Global.aspx.vb file

about 152
Application_BeginRequest event 153
Application_Start event 152

global files, DotNetNuke
about 152
Global.aspx.vb 152
Globals.vb file 154, 156

Globals.vb file
about 154, 156

H
host role banner advertizing 125, 126
host tools. See also admin tools

about 118
advanced settings 120
banner advertizing 125-127
basic settings 118
basic settings, appearance 119
basic settings, host details 118, 119
basic settings, site configuration 118
common tasks 132
extra admin options 131
file manager 125
host settings 118
languages 129
lists 130
other settings 122-124
payment settings 120
proxy settings 121
scheduler 129
search admin 129
SMTP settings 121
SQL queries, running 129

[315]

superuser accounts 131
vendors 125

HTML
containers, creating 260, 262
HTML files for skin, creating 257, 259
skin, creating 255, 256
source code for containers 260, 262
source code for XML support files 263, 265,

266
token 259
XML support files, creating 263, 265, 266

HttpContext object
about 137
Application object 136
Cache object 136
Current object 136
Items object 136
Request object 136
Response object 136
Server object 137
Session object 137
User object 137

HTTP modules
about 147
Exception module 148
ExceptionModule class 149
HTTP pipeline 148
IHTTPModule interface 148
system.web section 147
UrlRewrite module 150
working 147

I
IActionable

about 183
additional localization 186
menu item, adding to menu 183
parameters, Action.Add method 184

IFrame module
about 87
administration 90
modification 88, 90
practical purposes 88
special features 90

IIS
about 20

IIS Manager 23
installing 21
virtual directory 21

Internet Information Services. See IIS
IPortable optional interface

implementing 232-235
using 233

ISearchable optional interface
implementing 235, 236

L
Links module

about 90
administration 90, 91
content view, options 92
modification 90, 91
new link, adding 90, 91
practical purposes 90
special features 92

M
Metadot portal server 10
Microsoft Solutions Framework 16
Microsoft SQL Server 2005

database, setting up 28
modules. See DotNetNuke modules
MSF 16
multiple portals

about 295-297
child portal, adding 301
child portal, modifying 303
child portal, setting up 302
child portals, modifying 303
child portals, setting up 302, 303
DNS, setting up 298
management 309
managing 309
need 297
parent portal, creating 299
parent portal, modifying 301
parent portal, setting up DNS 298
parent portal, setting up within

DotNetNuke 299
parent portals, creating 300, 301
parent portals, modifying 301

[316]

portals, setting up in DotNetNuke 299
portal templates 303
site customization 304
site wizard, using 304
templates, creating 303, 304

N
NavigateUrl

about 185
multiple overloads 185

New Feed module
about 93
administration 94
modification 94
practical purposes 93
RSS feed, adding to website 94
special feature 95

P
pages, DotNetNuke

adding 57, 58
administering 62, 63
copying 59
creating 57, 58
hiding 61
physical page 56, 57
refreshing 61
skinning 60

PA package
about 239
for custom module 241
install zip file 241

parent portal 297-301
parent portals

about 297
creating 300, 301
DNS, setting up 298
modifying 301
setting up 297

parent portals and child portals, difference
297

PHP-Nuke 10
Portal class

about 138
HTTPAlias 138

Portal AliasID 138
Portal ID 138

portal deployment
application, configuring for .NET frame-

work 289
database, backup 289, 291
database, restoring 291
database, setting up 289
data provider information 287
domain name, acquiring 285
domain name, adding to portal alias 288
file transfer to hosted server, FTP used 293
hosting provider, finding 286, 287
local site, preparing 287
new database, creating 291
new database, creation using Enterprise

Manager 291, 293
portals. See also multiple portals

child portals 297
multiple portals 295
parent portals 297
Portal class 138
PortalSettings class 137
settings 137-140
setting up in DotNetNuke 299
templates, creating 303, 304

portals, multiple. See multiple portals
PortalSettings class

about 137
private variables 137

portal templates 303
presentation layer, completing

about 220
EditShopList, altering 227, 229, 231
EditShopList, completing 227, 229, 231
ShopList, altering 221, 224, 226, 227
ShopList, completing 221, 224, 226, 227

providers, DotNetNuke
about 142
attributes, data provider 145
attributes, scheduling provider 146
configuring 141
data provider 143, 144
dotnetnuke group 144
friendlyUrl provider 143, 146
handling 143

[317]

htmlEditor provider 143, 144
logging provider 143, 145
scheduling provider 143, 146
searchDataStore provider 143
searchIndex provider 143
system.web group 147

R
Rainbow project 10
roles

about 48
administrator roles 49
admin role 103
admin role, tools 104
creating 50
forum moderator roles 49
home page admin role, creating 51, 52
home page admin roles 49
host role 103
host role, tools 118
host role, vendors 125
registered users roles 49
role based scrunity 49, 50
security roles, assigning to users 53, 55
unauthenticated users roles 49

RSS
about 93
RSS feed, adding to website 93

S
scheduling provider, attributes 146
settings page, DotNetNuke module

inheriting from Module SettingsBase 204
LoadSettings 204
UpdateSettings 204
user controls, built-in 204, 205

site wizard
about 304
container skin, setting 306
site details, adding description 307
site details, adding keywords 307
site details, description adding 308
site details, keywords adding 308
site details, logo selecting 309
skin, applying 305, 306
template, applying 305

skin
applying at container level 251, 252
applying at page level 251, 252
applying at site level 250, 251
creating 253
creating, HTML used 255
creating, Visual Web Developer Express

used 266-268
custom skin, creating 253
default DotNetNuke installation skin 246
site wizard, applying skin 306
skinning engine 254
tools for creating skin 254
Web User Controls 254

skin, creating
container, creating 260, 262
container objects, placing 273, 275, 276
content pane 259
content pane, location within skin 272
files for Admin skin page 255
HTML files for skin, creating 257, 259
HTML used 255, 256
skin objects, placing 271, 272
token 259
tokens for defining skin objects 262
Visual Web Developer Express used

266-268
web user controls, creating 268
XML support files, creating 263, 266

skinning 253
skin package

about 245, 246
applying 250
creating 280
packaging 281, 282
third-party skin package 245
uploading 248, 249, 283, 284
uploading, Administrator access used 248
uploading, Host access used 248, 249

skins
site wizard, applying skin 306

standard modules, DotNetNuke
about 72
Account Login 72
Announcements module 75
Banner module 78
Contacts module 78

[318]

Documents module 80
Events module 82
FAQs module 84
Feedback module 86
IFrame module 87
Links module 90
New Feed module 93
Text/HTML module 95
Use Accounts module 96
User Defined Table module 98
XML/XSL module 100

superuser
about 103
accounts 131

T
tab, DotNetNuke 56, 133
tabid 134
Text/HTML module

about 95
editing 95
modification 95
practical purposes 95
special feature 96

U
URL rewriting 134
User Accounts module

about 96
administration 97
modification 97
practical purpose 96

user
about 40
admin registration 45
profile, managing 45
registering manually 46
registration 40
registration, settings 40
registration fields, setting up 42
registration types 41
roles 48
security roles, assigning 53, 55
superuser 103
types 49

User Accounts module, standard
DotNetNuke module 96

user accounts
about 39
creating 40

User Defined Table module
about 98
administration 98
data rows, adding 100
modification 98
new column, adding 99, 100
practical purpose 98
special features 100

user stories
about 16
acceptance tests 17
advantages 17

V
virtual directory

about 21
mapping with physical folders 21
setting up using Virtual Directory Creation

Wizard 23, 24, 26
setting up using Windows Explorer 22

Virtual Directory Creation Wizard 23

W
web.config file

about 141
application settings 151
AutoUpgrade key 151
dotnetnuke group 143
dotnetnuke section 141
Exception module 148
ExceptionModule class 149
InstallProcedure, appSettings 151
InstallTemplate, appSettings 151
nodes, dotnetnuke group 144
providers 142
providers, configuring 141
providers, handling 143
providers, system.web group 147
SiteSqlServer, appSettings 151
system.web group 147
UrlRewrite module 150

[319]

weblog 9
web portal

about 7
admin account 36
creating, tools and options 10
features 8, 9
horizontal portals 8
host account 36
passwords, changing 37, 38
user accounts 36
vertical portals 8

web user controls
about 254
creating 268, 269
source code 269, 271

X
XML/XSL module

about 100
administration 101
modification 101
practical purpose 101
special features 101

	Building Websites with VB.NET and DotNetNuke 4
	Table of Contents
	Introduction
	Chapter 1: What is DotNetNuke?
	Open-Source Web Portals
	What is a Web Portal?
	Common Portal Features
	Why DotNetNuke?
	PHP-Nuke
	Metadot
	Rainbow
	DotNetNuke

	Benefits of Using an Established Program

	The DotNetNuke Community
	Core Team
	The DotNetNuke Discussion Forum
	The Bug Tracker
	DotNetNuke Project Roadmap Team

	The License Agreement
	Coffee Connections
	Determining Client Needs
	What is a User Story?
	Advantages of Using User Stories
	Coffee Connections User Stories

	Summary

	Chapter 2: Installing DotNetNuke
	Installing DotNetNuke (Local Version)
	Clean Installation
	Downloading the Code
	Setting Up a Virtual Directory
	Using Windows Explorer (the Easy Way)
	Using the Virtual Directory Creation Wizard

	Verifying Default Documents
	Setting Security Permissions
	Setting up the Database

	Upgrading
	Upgrade Checklist
	Back Up Your Database
	Back up Your DotNetNuke files

	Logging In as Admin and Changing Passwords
	Summary

	Chapter 3: Users, Roles, and Pages
	User Accounts
	What is a User?
	Creating User Accounts
	Setting Required Registration Fields
	Managing a Profile
	Registering a User Manually

	Understanding DotNetNuke Roles
	Assigning Security Roles to Users

	Understanding DotNetNuke Pages and tabIDs
	Administering Pages

	Summary

	Chapter 4: Standard DotNetNuke Modules
	DotNetNuke Modules
	Adding a Module
	Module Settings
	Editing a Module
	Importing and Exporting Content
	Syndicate Information
	Online Help and Documentation
	Editing Module Functionality

	Standard Modules
	Account Login Module
	Practical Purposes
	Administration and Modification
	Special Features

	Announcements Module
	Practical Purposes
	Administration and Modification
	Special Features

	Banner Module
	Contacts Module
	Practical Purposes
	Administration and Modification

	Documents Module
	Practical Purposes
	Administration and Modification
	Special Features and Additional Information

	Events Module
	Practical Purposes
	Administration and Modification
	Special Features and Additional Information

	FAQs Module
	Administration and Modification
	Special Features and Additional Information

	Feedback Module
	Practical Purposes
	Administration and Modification
	Special Features and Additional Information

	IFrame Module
	Practical Purposes
	Administration and Modification
	Special Features and Additional Information

	Links Module
	Practical Purposes
	Administration and Modification
	Special Features and Additional Information

	News Feed (RSS) Module
	Practical Purposes
	Administration and Modification
	Special Features

	Text/HTML Module
	Practical Purposes
	Administration and Modification
	Special Features and Additional Information

	User Accounts Module
	Practical Purpose
	Administration and Modification
	Special Features and Additional Information

	User Defined Table Module
	Practical Purpose
	Administration and Modification
	Special Features and Additional Information

	XML/XSL Module
	Practical Purpose
	Administration and Modification
	Special Features and Additional Information

	Summary

	Chapter 5: Host and Admin Tools
	The Difference between Host and Admin
	Admin Tools
	Site Settings
	Basic Settings
	Advanced Settings
	Stylesheet Editor

	Pages Menu
	Security Roles
	User Accounts
	Vendors
	Site Log
	Newsletters
	File Manager
	Recycle Bin
	Log Viewer
	Skins
	Languages

	Host Tools
	Host Settings
	Basic Settings
	Advanced Settings

	Portals
	Module Definitions
	File Manager
	Vendors
	SQL
	Schedule
	Languages
	Search Admin
	Lists
	Superuser Accounts
	Extra Options on the Admin Menu
	Common Tasks

	Summary

	Chapter 6: Understanding the DotNetNuke Core Architecture
	Architecture Overview
	Diving into the Core
	Using the Context Object in Your Application
	Working with the Configuration Files
	The web.config File
	Application Settings

	The Global Files
	Global.aspx.vb
	Application Start
	Examining Application_BeginRequest

	The Globals.vb File

	Putting It All Together
	Summary

	Chapter 7: Custom Module Development
	Setting up the Development Environment
	The Coffee Shop Listing Module
	Creating the View Control
	Displaying the Module
	What we have Accomplished…
	The Module Folder Structure
	Inheriting from PortalModuleBase
	Module Configuration
	Diagnosing Errors using the Log Viewer

	Navigation and Localization
	Create EditShopList.ascx
	Navigation
	Localization
	Update the Configuration
	Navigate from ShopList to EditShopList
	What we have Accomplished…
	IActionable
	NavigateUrl
	Adding Localization

	Summary

	Chapter 8: Connecting to the Database
	DotNetNuke Data Access Layer (DAL)
	Create the Database Elements
	Execute the SQL Script
	Create the Class Files
	Insert the DAL+ Code
	Create the Settings Page
	Update the Configuration
	View the Settings Page
	What we have Accomplished
	SQL Scripts
	The DAL+
	The Business Logic Layer (BLL)
	The Settings Page

	Comparing the DAL to the DAL+
	A Close-up Look at the DAL
	Create the DataProvider.vb
	Create the SqlDataProvider.vb
	Create the BLL Layer
	DAL Summary

	Complete the Presentation Layer
	Alter and Complete ShopList
	Alter and Complete EditShopList
	Build and View the Module

	Implementing Optional Interfaces
	Implementing IPortable
	Implementing ISearchable
	Making IPortable and ISearchable Work
	Testing Your Module

	Packaging Your Module for Distribution
	Installation Scripts
	Create the Installation Scripts
	The Install ZIP File
	Testing Your Installation

	Summary

	Chapter 9: Skinning Your Site
	What Are Skin Packages?
	Uploading a Skin Package
	Applying the Skin
	Creating a Custom Skin
	What Tools can we Use?
	Creating a Skin Using HTML
	Creating the HTML Files
	Creating the Container
	Creating the XML Support Files

	Creating a Skin Using Visual Web Developer
	Creating the Web User Controls
	Placing the Skin Objects
	Placing the Container Objects

	Creating the Cascading Style Sheets
	Creating the Skin Package
	Summary

	Chapter 10: Deploying Your DNN Portal
	Acquiring a Domain Name
	Finding a Hosting Provider
	Preparing Your Local Site
	Setting Up the Database
	Backup and Restore Database
	Build New Database

	FTP Your Files
	Summary

	Chapter 11: Creating Multiple Portals
	Multiple Portals
	Parent Portals versus Child Portals
	Setting up a Parent Portal
	Registering Your Domain and Setting the DNS
	Creating a Parent Portal

	Setting Up a Child Portal

	Creating Portal Templates
	Using the Site Wizard
	Managing Multiple Portals
	Summary

	Index

