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Preface

Infrared (IR) spectroscopy strongly attracted the attention of theoretical physicists
from the 1930s until the 1970s, and most of the important fundamentals were
comprehensively organized in terms of molecular vibrations and rotations along
with the rapid progress of quantum mechanics and chemistry. For experimental
chemists, commercial IR spectrometers played a great role in the latter half of the
twentieth century, and theoretical fundamentals were confirmed quantitatively by
using a spectrometer. For example, the theoretical prediction of the Fermi resonance
was experimentally recognized for many organic compounds.

At this early stage of IR spectroscopy, theoretical and experimental chemists
made great efforts to establish fundamentals for analyzing IR spectra for chemistry.
Some textbooks were devoted to summarizing IR bands characteristic of chemical
groups in many organic and inorganic compounds in various chemical environ-
ments involving solvents and temperature. Correlations of some IR bands to
hydrogen bonding, molecular conformation, and crystallinity were also studied, and
IR spectroscopy was thus recognized as one of the most powerful analytical tools
for discussing chemical compounds.

The accurate measurements of IR spectra were boosted by introducing the
Fourier transform infrared (FT-IR) spectrometer, which guarantees both accuracy
and precision in principle for both ordinate and abscissa axes thanks to the
laser-based interferometer and stable digital electric circuits. Since FT-IR has great
sensitivity, which can be used even for a monolayer analysis, many optical con-
figurations were proposed, represented by the transmission, reflection–absorption
(RA), attenuated total reflection (ATR), external reflection, and specular reflection
techniques, so that the molecular orientation in an ultrathin film would be discussed
by comparing it to the spectrum of a bulky sample. The great sensitivity of this
“surface spectroscopy” is still outstanding in our current age. The power of
molecular orientation analysis is also outstanding since it can be performed no
matter how the crystallinity is in the film.

During the progress of FT-IR applications, another important theoretical
framework was established in electrodynamics for surface spectroscopy. Since most
of the analytical targets of FT-IR are condensed matter, electrodynamics
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considering electric permittivity plays many crucial roles for revealing the surface
selection rules of surface spectroscopies. The theoretical expressions of the surface
spectrometry are particularly important for a strong absorbing matter represented by
the carbonyl, nitrile, and perfluoroalkyl groups.

Unfortunately, education of electrodynamics in school is very far from popular
in chemistry, and the aspect of “science of measurements” is not widespread even
among vibrational spectroscopists. As a result, the overall picture of IR spec-
troscopy has long been oriented to quantum chemistry only, and surface spec-
troscopy has been forgotten except for some simple surface selection rules.

In recent years, nonlinear spectroscopic technique represented by the
sum-frequency generation has rapidly been recognized even by a non-spectroscopist
to be a powerful technique for discussing a detail of an interface. The problem is that
such a user blindly relying on nonlinear spectroscopy alone is not aware of the
intrinsic power of linear spectroscopy. The lack of an overall picture of IR spec-
troscopy is one of the reasons for the problem.

The goal of this book is, therefore, to summarize the overall picture of IR
spectroscopy with respect to quantitative understanding of condensed matter. In
particular, surface spectroscopy based on electrodynamics is described in detail in
Chap. 3, so that a physical logic would not be omitted. In addition, the concept of
convolution and the Kramers–Kronig relations are also described from a funda-
mental concept in Chap. 4. These concepts should not be introduced as formulae,
since they comprise the essence of linear spectroscopy.

For a quantitative study using IR spectroscopy, in recent years multivariate
analysis, i.e., chemometrics, is quite often employed. Therefore, the theoretical
framework of chemometrics is presented in Chap. 5.

In Chap. 6, application studies of IR spectroscopy are presented. In particular,
chemometrics and surface spectroscopy are merged to yield a new spectroscopic
technique of p-polarized multiple-angle incidence resolution spectrometry
(pMAIRS). This technique enables us to discuss the molecular orientation of each
chemical group as well as the polymorph in a very thin film even with a surface
roughness. As a good example to get beyond the analytical limit constrained by
Maxwell equations, pMAIRS is introduced to provide an overall picture of IR
spectroscopy.

In addition, quantitative discussion of IR spectra of perfluoroalkyl (Rf) compounds
is added. An Rf compound has long been regarded as a compound similar to a normal
hydrocarbon, and the particularity of an Rf compound in vibrational spectroscopy has
been missed. As presented in detail in Chap. 6, the overall picture of IR spectroscopy
works very powerfully to discuss an Rf compound. Moreover, the knowledge from
factor group analysis based on quantum chemistry to surface spectroscopy in elec-
trodynamics is necessary for fully discussing Rf compounds.

This book is a summary of my IR study with my colleagues, whom I thank
greatly and appreciate deeply. In particular, the core part of Chap. 3 is the result of
an invaluable contribution of a former student, Dr. Yuki Itoh.
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I would be most happy if many scientists and engineers in the coming generations
re-recognize the great intrinsic power of IR spectroscopy. Since FT-IR is widespread
in laboratories, its power will help very much in studying material chemistry. What
we need is only the overall picture of IR spectroscopy.

Kyoto, Japan Takeshi Hasegawa
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Chapter 1
Infrared Spectroscopy as a Vibrational
Spectroscopy

1.1 Molecular Vibrations

Atoms are connected by chemical bonds to generate a molecule. Let us consider
covalently bonded atoms like an organic molecule. If the molecule were hit by a
hammer to be vibrated, the molecular vibration would be highly complicated in
shape because a polyatomic molecule (having more than two atoms) mostly has
multiple numbers of natural vibrations. IR spectroscopy measures the natural
vibrations as “normal modes” by exciting the molecular vibrations via the inter-
action between a dipole moment and an oscillating electric field of light instead of
hitting the molecule.

To explain the concept of normal modes, let us take a look at an IR spectrum of
polyethylene (PE) in Fig. 1.1. PE has a primary chemical structure of a series of the
methylene groups (�CH2�) terminated with the methyl groups at both ends. Since
the number of the methylene groups is much larger than that of the methyl groups,
the end groups can be ignored. In other words, PE can roughly be approximated to
comprise methylene groups only. Although only one kind of a chemical group is
measured, the spectrum has at least four peaks apparently. Why does the single
group yield the many absorption bands?

Since a molecule comprises a number of atoms connected with each other via a
covalent bond, the molecule can be recognized to be a “coupled oscillator.” When a
molecule is vibrated at various frequencies, multiple numbers of natural vibrations
appear as the resonance vibrations.

When an alkyl chain is externally vibrated at a certain resonance frequency, each
methylene group is excited to be vibrated with a symmetric shape simultaneously
while the terminal methyl groups are not vibrated significantly. If the vibration
frequency is made higher, the resonance vibration would soon be stopped. Of
course, the entire molecule is moved at the externally added vibrational motion, but
the motion is in phase with the external motion, which does not absorb vibrational
energy and no resonance happens (as discussed in Sect. 4.4). If another faster
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vibrational motion matches the next resonance frequency of the molecule, each
methylene group would exhibit the anti-symmetric shaped vibration. As mentioned
in Sect. 4.4, at the moment, the phase of the resonance vibration is delayed from the
external vibration, which is a physical situation that a portion of the external energy
is absorbed by the molecular vibration.

In this manner, a coupled oscillator has multiple numbers of resonance vibra-
tions having different vibrational shapes, which yield many absorption bands in an
IR spectrum. Therefore, if a chemical group has different shapes of vibrations, they
are good candidates for appearance of absorption bands.

When the molecular vibrations are excited by irradiating an IR ray, each normal
mode is excited on a rule of the “selection rule (see Sect. 1.4),” which determines
which mode could appear in the spectrum. In practice, a compound is measured by
a broadband IR ray, which excites all the possible normal modes at a time. To
understand the reason of why the normal modes separately appear in the spectrum,
the concept of “normal coordinate” should be known.

1.2 Normal Coordinate and Normal Modes

To discuss the concept of normal mode on a normal coordinate, a polyatomic
molecule having three or more atoms should be taken into account, since a diatomic
molecule has only one resonance vibration, which is not suitable for describing a
coupled oscillator.

To simply understand the theory, a linear oscillator (Fig. 1.2) having weights
(closed circles) with an identical mass, m, connected by springs with an identical
spring constant, k, is modeled.
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Fig. 1.1 IR absorption
spectrum of low-density
polyethylene
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Fig. 1.2 A physical model of a linear oscillator
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When the position of each weight with an index of j is denoted as xj, the
Lagrange equation of motion can be written using the kinetic energy, T, and the
potential energy, V, which are described as:

T ¼ 1
2

_q1
2 þ _q2

2 þ _q3
2 þ � � �� � ð1:1Þ

V ¼ k
2m

q2 � q1ð Þ2 þ q3 � q2ð Þ2 þ � � �
h i

: ð1:2Þ

A dot on a parameter denotes the time derivative operation. Here, another def-
inition of qj �

ffiffiffiffi
m

p
xj is introduced for making the equations simplified.

Equation (1.1) has a very simple form, in which each position is separated and
no interference with another weight is found. On the other hand, Eq. (1.2) is
complicated by cross terms, e.g., qjqjþ 1. The cross term indicates that the motions
of the neighboring weights are interfered with each other, and discussion of an
individual weight is difficult, which is a largely different situation from that in the
kinetic energy. In this manner, the coupled oscillator may have a highly compli-
cated motion for vibrational analysis at each weight due to the potential term, V.

To tell the truth, this equation is a poor expression based on an inappropriate
coordinate, and the intrinsic physical phenomena are much simpler as shown soon
later. For making the equations simpler and more general, the equations are
rewritten using a vector as follows.

A vector, q; is defined as

q �
q1
q2
q3
..
.

0BBB@
1CCCA:

By introducing this vector, Eqs. (1.1) and (1.2) are simply rewritten as:

T ¼ 1
2
_qT _q ð1:3Þ

V ¼ 1
2
qTBq ð1:4Þ

Here, the superscript, T, indicates the transpose of the vector. This expression has a
great benefit that the equation is impervious to the number of weights. The newly
introduced matrix, B, is necessary to express the cross terms via the off-diagonal
elements, and it involves all the parameters except qj. In other words, if the equation
could be cross-term free, B should become a diagonal matrix, which can be
removed out from the equation as found in Eq. (1.3). This further means that it
would be great to remove B from Eq. (1.4) by making B a diagonal matrix.

1.2 Normal Coordinate and Normal Modes 3



To do the diagonalization, the unitary transformation is employed. The unitary
transformation is a general technique used for a complex vector. In the present case,
only the direction of a vector of real numbers is rotated in space without changing
the norm, the unitary transformation can thus be simplified to be an orthogonal
matrix. An orthogonal matrix, U, consists mutually orthogonal vectors, which
satisfies the following simple relationship [Eq. (1.5)], since it is equivalent to
UUT ¼ UTU ¼ 1 (1 is the identity matrix).

U�1 ¼ UT ð1:5Þ

Here, �1 denotes the inverse matrix.
With the simplified unitary transformation, a new coordinate, Q, is defined as:

q � UQ: ð1:6Þ

By putting this transformation into Eqs. (1.3) and (1.4), the following equations
are obtained by considering Eq. (1.5).

T ¼ 1
2

U _Q
� �T

U _Q
� � ¼ 1

2
_QTUTU _Q ¼ 1

2
_Q
T _Q ð1:7Þ

V ¼ 1
2

UQð ÞTB UQð Þ ¼ 1
2
QTUTBUQ ð1:8Þ

We find that Eq. (1.7) has the same form as Eq. (1.3) even after the coordinate
transformation. If Eq. (1.8) could readily be transformed to the same form of
cross-term free, the motion of each weight could then be separated. In other words,
the coupled oscillator would be treated as a combination of separated oscillation
localized on each weight.

To reach this aim, UTBU involved in Eq. (1.8) must be a diagonal matrix, K :

UTBU ¼ K:

The sequence of U and K is exchangeable when only the diagonal component is
considered, which results in Eq. (1.9).

BU ¼ KU ð1:9Þ

This equation is an eigenvalue problem, which can be solved for any B: Since U is
obtained as eigenvectors of B; the new coordinate, Q, is simultaneously determined.
In this manner, the coupled oscillation can be decomposed into each constituent
vibration.

The new coordinate is called “normal coordinate,” and each localized vibration
is called “normal mode.” To a practical molecule, this concept is applied using a
molecular coordinate, which is generally put on the valence bonds and the valence
angles. This analytical technique is accomplished by Wilson et al. [1], and the
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method is called the Wilson GF-matrix method. Recently, quantum chemical cal-
culation has replaced this technique in many chemistry fields, and the GF-matrix
method is employed by vibrational spectroscopists only. Regardless, the physical
concept of the normal mode is apparently involved in the method, which cannot be
ignored for understanding the principle of vibrational spectroscopy.

On a practical molecule, a normal coordinate is placed along the chemical bonds.
Cartesian coordinate (blue arrows in Fig. 1.3a) having the three degrees of freedom
is recombined to have two axes on the two O–H bonds and an angle between the
two bonds (red arrows in Fig. 1.3b), which is called molecular coordinate. This
coordinate set is quite convenient for depicting molecular stretching and defor-
mation vibrations, in fact.

The total number of normal modes of a small molecule (not a polymer of repeat
units) is easily counted by considering the degree of freedom of each atom. To
modify a normal mode, the original molecular shape is changed by displacing the
atoms. The movement can be achieved by moving each atom with the use of an ‘x,
y, z-switches’ fixed on the atom. This three-direction switch is a schematic image of
the degree of freedom of an atomic movement, i.e., an atom has three degrees.
Therefore, a molecule having N atoms has 3N degrees of freedom in total.

Regardless, if all the atoms are displaced in the x-direction, for example, the
molecule moves in the direction without vibration (translational motion). In addi-
tion, the molecule can be rotated about the x-axis without vibration. These trans-
lational and rotational motions about the x, y and z axes must be removed to leave
“vibrational” motions only. As a result, the number of the normal modes can easily
be counted as

3N � 6: for a nonlinear moleculeð Þ

When the molecule has a linear shape, the rotational motion about the linear axis
should be excluded from the molecular rotations, the number should be corrected to
be

3N � 5: for a linear moleculeð Þ

(b)

sym. str. (νsOH2)

(a)

anti-sym. str. (νaOH2)

(c)

deformation (δOH2)

z1

y1x1

Fig. 1.3 Normal modes of a water molecule. sym. and str. stand for symmetric and stretching,
respectively
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For example, a diatomic (N ¼ 2) molecule such as N2 and HCl is a linear
molecule, which results in only one normal mode. This means that the number of
absorption bands in an IR spectrum is only one “at most”. As shown later
(Sect. 1.4), N2 does not yield an absorption band at all, and the number of bands
can be different from that of the normal modes. The number of bands appeared in a
spectrum obeys the “selection rule of IR spectroscopy,” which is deduced from
quantum mechanics (Sect. 1.4).

Precisely speaking, a normal mode is a molecular vibration over the molecule. In
practice, however, the mode can roughly be regarded as a vibration localized at a
chemical group such as CH2, N–H and C=O, and the localized vibration is called
the “group vibration,” which is chemically quite useful (Table 1.1).

In many chemical discussions, the group vibration is conveniently used in place
of the normal mode. As found in Table 1.1, the stretching and deformation
vibrations are represented by the symbols of m and d, respectively. The asymmetric
(degenerate) and anti-symmetric (non-degenerate) vibrations are both represented
by the same subscript, a; whereas the symmetric one is denoted by s. An aromatic
ring like benzene and thiophene has the out-of-plane deformation vibration of the
C–H group, which is denoted as cC–H as well as the in-plane one (dC–H). cC–H is
quite useful to discuss the molecular orientation of the ring thanks to the very strong
IR absorption [2].

For example, polyethylene yields the methylene group-related bands in Fig. 1.1:
the maCH2 (at 2918 cm−1), msCH2 (at 2850 cm−1), dCH2 (at 1471 and 1463 cm−1)
and rCH2 (at 718 cm−1) bands appear. When the dCH2 mode appears as doublet
peaks, the molecular packing is known to have the orthorhombic subcell packing
[3]. If the packing is monoclinic and hexagonal, the band becomes a singlet peak at
ca. 1467 cm−1.

In this manner, the band position sensitively responds to the molecular con-
formation, the neighboring chemical group and inter-molecular interactions. In

Table 1.1 Representative group vibrations corresponding to the normal modes represented by the
symbols

Group vibration Symbol Band position (cm−1)

O–H stretching (str.) vib. mOH 3150–3700 (broad)

N–H str. vib. mNH about 3200

CH3 asymmetric str. vib. maCH3 2955

CH3 symmetric str. vib. msCH3 2875

CH2 anti-symmetric str. vib. maCH2 2915–2927

CH2 symmetric str. vib. msCH2 2848–2856

C=O str. vib. mC=O 1620–1750

CH2 def. (scissoring) vib. dCH2 1462–1472

C–H in-plane def. vib. of benzene dC–H 1000–1200

C–H out-of-plane def. vib. of benzene cC–H 760–810

CH2 rocking vib. rCH2 720

6 1 Infrared Spectroscopy as a Vibrational Spectroscopy



other words, a fine analysis of chemical details can be performed through the band
shift.

As another example, an IR absorption spectrum of dodecanol in a gas phase [4]
is presented in Fig. 1.4. Dodecanol consists of the methyl group and hydroxyl
group as well as the methylene groups. As found in Fig. 1.1, the CH2 stretching
vibration bands appear in the same range of 2800–3000 cm−1. The band positions
are, however, apparently higher than those in Fig. 1.1. The position of the CH2

stretching vibration bands sensitively responds to the molecular conformation as
found in Table 1.2.

The extraordinarily high wavenumber position of the CH2 stretching vibration
bands in Fig. 1.4 indicate that the dodecanol molecule in the gas phase is highly
flexible, which has disordered (gauche) conformation. In a similar manner, the
gauche conformation is found for a melted sample even in a condensed matter.
A gas molecule is not involved in a crystal, of course, and therefore the dCH2 band
appears as a singlet band at 1463 cm−1.

Since dodecanol has the CH3 group, the methyl-related bands are found at 2970
(maCH3) and 1385 (dsCH3) cm

−1. The msCH3 is unfortunately hidden by the two tall
mCH2 bands. In addition, the mO–H band is sharply found at 3667 cm−1, which is
very specific to the gas phase. In a condensed matter, the band appears as a broad
band as a result of complicated molecular interactions mostly due to various
hydrogen bondings. In other words, the mO–H band is quite useful to discuss the
hydrogen bonding.

Another useful band is found at 1052 cm−1, which is assigned to the C–O
stretching vibration. If the molecular orientation of an alcohol is discussed, this
band plays an important role, since the transition moment is along the bond.
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Fig. 1.4 IR spectrum of
dodecanol in a gas phase

Table 1.2 Band position depending on molecular conformation in a condensed matter (except
hexane or shorter alkanes)

Normal mode All-trans Gauche

msCH2 ca. 2850 cm−1 2855 cm−1 or higher

maCH2 ca. 2917 cm−1 2924 cm−1 or higher

1.2 Normal Coordinate and Normal Modes 7



Figure 1.5 presents an IR spectrum of stearic acid in solid. At an ambient
temperature, stearic acid is generally in a crystallite having the orthorhombic
subcell packing.

In fact, the dCH2 band appears as “doublet peaks” at 1473 and 1462 cm−1

(Fig. 1.5b) as mentioned above near Table 1.1. Another key point is that the alkyl
chains of solid stearic acid are highly packed with the all-trans zigzag conformation,
which yields the maCH2 and msCH2 bands at a low wavenumber position as
expected from Table 1.2.

On closer inspection, the mC–H band region of Fig. 1.5 is complicated [3],
which needs magnification as presented in Fig. 1.6. The msCH3 band is found at
2870 cm−1. Since only one methyl group is at the end of the alkyl chain of the 16
methylene groups, this band is relatively weak. The maCH3 band is, on the other
hand, split into two bands at 2962 and 2952 cm−1, which are respectively known as
the “in-skeleton (is)” and “out-of-skeleton (os)” asymmetric stretching vibration
bands [3]. The “skeleton” means the molecular plane of the all-trans zigzag skeleton
(Fig. 1.7).The band at 2938 cm−1 is known to be a Fermi-resonance band, which is
a combination band of the overtone of the daCH3 mode and the msCH3 band [3, 5, 6]
(see Sect. 1.5). This band often overlaps the adjacent maCH2 band deeply, which
makes the band position inaccurate.
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The carboxylic group yields the mC=O and mOH bands. The mOH band is largely
broadened at about 3100 cm−1 because of complicated molecular interactions.

When stearic acid is reacted with dicationic metal ions, such as calcium, mag-
nesium, and cadmium ions in an aqueous solution, the carboxylic group is changed
to be the �COO� group by releasing a proton in the solution, which thus requires
basic environment at about pH 8. For example, stearic acid readily reacts with
cadmium ion (Cd2+) at about pH 7.5 to generate a salt of cadmium stearate, which
yields an IR spectrum as presented in Fig. 1.8.

Since this spectrum is measured using the KB-pellet technique (Sect. 3.16), the
adsorbed water band is apparently found (at about 3440 cm−1). A notable difference
from Fig. 1.5 is that the mC=O at ca. 1700 cm−1 is completely lost, which indicates
that the C=O bond is readily changed to another chemical bond at the pH. In fact,
instead, a new set of two bands at 1543 and 1426 cm−1 are observed. These two
bands are assigned to the maCOO

− and msCOO
− bands, respectively. The spectrum

shows that the symmetric vibration of this group in an isotropic sample (randomly
oriented) has a weaker intensity than the anti-symmetric one, which corresponds to
the a-spectrum. In other words, the a-spectrum corresponds to the intrinsic
absorption spectrum of the compound, which can be a standard to discuss
molecular orientation when employing surface spectroscopy (Chap. 3).

In both Figs. 1.5 and 1.8, a series of bands having nearly equal intervals are
found in the region of 1150–1350 cm−1, which is called “band progression,” which
is visually recognized in a magnified spectrum in Fig. 1.9. This series of bands are a
result of vibrational coupling of the CH2 wagging vibrations on an alkyl chain

HOOC

skeletal plane

is

osaCH3

aCH3

sCH3

Fig. 1.7 The three CH3 stretching vibration modes with respect to the molecular skeleton
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(having a finite length) with the same vibrational phase. This in-phase vibration
occurs only when the alkyl chain has the all-trans conformation. In other words, the
band progression is a very useful marker to conclude the orderliness of the alkyl
chain.

When an aromatic ring is involved, the spectral pattern becomes highly com-
plicated. An example spectrum of p-bromotoluene is presented in Fig. 1.10. The
methyl group yields the maCH3 and msCH3 bands at 2923 and 2877 cm−1, respec-
tively. On the other hand, the mC–H band of the benzene ring appears at a higher
position than 3000 cm−1, which is a marker of a C–H bond on an unsaturated
carbon represented by an aromatic ring. The C–H bond yields another useful band
in the range of 1000–1200 cm−1, which are attributed to the C–H in-plane defor-
mation vibration (dC–H) mode. The same group has an additional band near
800 cm−1, which is known as the C–H out-of-plane deformation vibration (cC–H)
mode. This band is quite useful to discuss the molecular orientation of the aromatic
ring thanks to the strong IR absorption [2].

The strong peaks near 1500 cm−1 are due to the skeletal vibrations of the
benzene ring, which is also an important marker of aromatic compounds.

Another important compound for IR spectroscopy is “amino acid.” Figure 1.11
presents an IR spectrum of leucine ((CH3)2CH(CH2)CH(NH2)COOH) in solid. The
CH2 stretching vibration bands appear at higher positions than those of stearic acid
because the length of the alkyl part is very short.
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The NH2 group exhibits the maNH2 and msNH2 bands at ca. 3365 and 3285 cm−1,
which are missing in Fig. 1.11a. This suggests that the amine group is cationized to
be NH3

+ by adding a proton dissociated from the carboxylic group (Fig. 1.11b). In
fact, the msNH3

+ band appears at 2955 cm−1, and no mC=O band (ca. 1700 cm−1) is
found in the spectrum, and instead the daNH3

+ band is available at 1607 and
1580 cm−1 as well as the dsNH3

+ band at 1511 cm−1 (Fig. 1.11b).
When amino acids are polymerized to be a peptide, the amide bond-related

bands appear instead. Figure 1.12 presents an IR spectrum of a compound having a
peptide unit of (Leu)6. Since the Leu residues are covalently connected to generate
the amide bonds, the N–H and C=O related bands appear in the spectrum. For
example, the mN–H mode appears at 3262 cm−1, which is called “amide A” band.
This band responds to the hydrogen bonding, and it appears at about 3450 cm−1, if
the N–H group is hydrogen bonding free. Therefore, the band at 3262 cm−1

strongly suggests that the N–H group is involved in hydrogen bonding.
The band at 1627 cm−1 is a quite useful band known as “amide I” band. This

band mainly corresponds to the C=O stretching vibration and it is quite sensitive to
the hydrogen bonding. Especially for a peptide, this band is conveniently used for
determination of the secondary structure of an oligomer, polymer and in molecular
aggregate as summarized in Table 1.3.
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The spectrum in Fig. 1.12 has the amide I band at 1627 cm−1 accompanying a
small characteristic band at 1690 cm−1, which strongly tells us that the secondary
structure should be anti-parallel b-sheet.

Accompanying this band, ‘amide II’ band is also referred. This band is mainly
due to the dN–H vibration mixed with a minor mC–N vibration. The transition
moment of ‘amide II’ has roughly perpendicular to that of “amide I.”

1.3 Light Absorption by a Molecule: 1. Understanding
by a Quantum Mechanical Approach

Molecular vibrations are excited via light absorption. Light absorption by a
molecule is physically modeled by an interaction of the electric field of light with a
dipole moment of the molecule. Light comprises two mutually orthogonal oscil-
lations of the electric and magnetic fields, both of which are orthogonal to the
traveling direction of the light, i.e., the wavenumber vector. Except a
spin-excitation spectroscopy, represented by NMR, the interaction of the magnetic
field with a molecule is ignorable, and only the influence of the electric field is
considered for the light absorption.

The interaction between the electric field oscillation and the vibrating dipole
moment is theorized in two ways: quantum mechanics and electrodynamics. To
discuss the selection rule of spectroscopy, quantum mechanics is the only way. The
treatment by electrodynamics is described in Sect. 1.6.

In the framework of quantum mechanics, the electric field oscillation is treated as
a perturbation of the wave function of the steady state. Therefore, the steady state,
which means that the molecule is not excited by light, is described first by using the
time-independent (steady) Schrödinger equation.

Ĥ0w ¼ E0w

Here, Ĥ0 is a Hamiltonian operator corresponding to the total molecular vibra-
tions, E0 is the total energy of the vibrations, and w is a wave function of the
molecular vibration comprising all the normal modes.

Since the Hamiltonian operator is a Hermitian, all the eigenfunctions are
mutually orthogonal, that is

Table 1.3 Amide bands and the secondary structures of a peptide

Secondary structure Amide I (cm−1) Amide II (cm−1)

a-helix 1652 1548

b-sheet (parallel) 1634 1547

b-sheet (anti-parallel) 1628 and 1686 1537

31-helix [7] Doublet at ca. 1650 1550
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Z
/i

�/jds � ih j ji ¼ dij: ð1:10Þ

Here, ih j ji is a bracket representation of the integral with respect to space, s, and
dij is Kronecker’s delta. In a similar manner, in terms of energy, the following
relation holds.

E0 ¼ E1 þE2 þE3 þ � � �

As a result, each component of a normal mode can be individually formulated as

bH0 jj i ¼ Ej jj i: ð1:11Þ

On a steady state, the molecular vibration, w, is the product of the normal modes,
w ¼ /1/2/3/4 � � �, since this satisfy the Schrödinger equation on the total energy.

bH0w ¼ bH/1

� �
/2/3/4 � � �

n o
þ /1

bH/2

� �
/3/4 � � �

n o
þ � � �

¼ E1/1ð Þ/2/3/4 � � �f gþ /1 E2/2ð Þ/3/4 � � �f gþ � � �
¼ E1 þE2 þE3 þ � � �ð Þw
¼ E0w

ð1:12Þ

In this manner, the energy conservation holds. Since this solution is for a steady
state, the solution can be written as a product of two independent terms in terms of
r and t.

j r; tð Þj i ¼ j rð Þj i exp �i
Ej

�h
t

� �
ð1:13Þ

When an IR ray is irradiated on the molecule, the steady state is perturbed in the
following manner:

i�h
d
dt

Wj i ¼ bH0 þ bH 0
� �

Wj i ð1:14Þ

Here, the first-order perturbation operator is represented by bH 0, and the time evo-
lution is expressed by the time-dependent Schrödinger equation.

The framework of the mutually orthogonal functions (complete system) has
already been generated by Eq. (1.13). On the perturbation, a new state is generated
on the complete system as an expansion with the weight factors, aj:

Wj i ¼
X1
j¼1

aj jj i exp �i
Ej

�h
t

� �
: ð1:15Þ
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Therefore, a new aim of using this theory is now revealing the composition pattern,

aj
		 		2, which can experimentally done by absorption spectroscopy.

Since the wave function of Eq. (1.15) is a solution of Eq. (1.14), they can be
merged to have:

i�h @
@t

P
j
aj tð Þ/j rð Þ exp �i Ej

�h t
� �					

+

¼ bH0 þ bH 0
� � P

j
aj tð Þ/j rð Þ exp �i Ej

�h t
� �					

+
:

ð1:16Þ

The left-hand side of this equation is deformed as:

i�h
X
j

@aj tð Þ
@t

/j rð Þ exp �i
Ej

�h
t

� �					
+

� i
Ej

�h
w

 !

¼ i�h
X
j

@aj tð Þ
@t

/j r; tð Þ exp �i
Ej

�h
t

� �					
+
þEjw:

When this is compared to the right-hand side of Eq. (1.16) considering Eq. (1.11),
the next equation is obtained.

X
j

@aj tð Þ
@t

/j r; tð Þ exp �i
Ej

�h
t

� �					
+

¼ � i
�h
bH 0 X

j

aj tð Þ/j r; tð Þ exp �i
Ej

�h
t

� �					
+

When h/k r; tð Þj is operated from the left side, the next equation is obtained.

dak tð Þ
dt

¼ � i
�h

X
j

h/k r; tð ÞjbH 0 aj tð Þ/j r; tð Þ		 

exp ixkjt
� �

� � i
�h

X
j

aj tð ÞH0
kj exp ixkjt

� �
Here, H0

kj ¼ h/k r; tð ÞjbH 0 aj tð Þ/j r; tð Þ		 

is an matrix element, and xkj is also newly

introduced as xkj � Ek � Ej
� �

=�h.
If the initial state has the energy state of E0 and only the first excited state is

considered, the sigma operator is removed to have

dak tð Þ
dt

¼ � i
�h
ak tð ÞH0

0 exp ixk0tð Þ: ð1:17Þ

Let us consider that the perturbation can be represented by a simple cosine
function:
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H0 r; tð Þ ¼ H0
0 rð Þ eixt þ e�ixt� � ð1:18Þ

Here, 1=2 is incorporated in H0
0. After Eq. (1.18) is put in Eq. (1.17), the

equation is integrated with regard to time to have:

ak tð Þ ¼ hkjH0
0 0j i
�h

1� ei xk0 þxð Þt

xk0 þx
þ 1� ei xk0�xð Þt

xk0 � x

� �
:

At the light-absorbing frequency (x � xk0), the first term in the parenthesis can be
ignored. Therefore, the following approximation is allowed:

ak tð Þj j2¼ 4 hkjH0
0 0j i		 		2

�h2
sin2 xk0�x

2 t

xk0 � xð Þ2 :

If the sinc function [cf. Eq. (2.8)] is replaced by Dirac’s delta function (Chap. 4),
we have finally reached Fermi’s golden rule [Eq. (1.19)].

d ak tð Þj j2
dt

¼ 2p
�h

hkjbH 0 jj i
			 			2d Ek � Ej � �hx

� � ð1:19Þ

The left-hand side is proportional to the absorbance or the band area; whereas
the right-hand side consists of the squared transition integral and Dirac’s delta
function. The delta function means that the light energy of �hx is absorbed only
when it perfectly matches the difference of the energy levels of the states k and
j (energy conservation). As a result, the absorbance is proportional to squared

transfer integral, hkjbH 0 jj i
			 			2.

The transfer integral should be discussed by considering the second quantization
strictly speaking, but IR spectroscopy can more intuitively be modeled by con-
sidering the physical interaction between the dipole moment, p ¼ qr; and the
oscillating electric field, E; of the IR light:

bH 0 ¼ p � E:

Through this interaction, the molecule is excited to have normal modes. Since
the wavelength of IR light (*lm) is much larger than the size of the dipole, E can
be regarded as a constant in the integral range. Therefore, the transfer integral is
rewritten as:

hkjbH 0 jj i ¼ qhkjr jj i � E: ð1:20Þ

As a result, the dot product of the transition moment, hkjr jj i , and the electric field,
E, is found to govern the absorbance. This is the principle to discuss the
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molecular orientation, since the direction of the transition moment is the same as
that of the normal mode as described later (Sect. 1.5).

Here, we have to note that the electric field is not of the IR source, but of the “IR
light at the molecule.” When a molecule is at (or near) an interface, in practice, the
molecule is often oriented, and the orientation is the key for understanding the
material properties at the interface. For the analysis, the electric field vector “at the
interface” must be calculated (Chap. 3). In this manner, the principle of the
molecular orientation analysis is given by Fermi’s golden rule as a result of the
quantum dynamics approach, but the practical analysis requires another analysis of
the electric field on electrodynamics, since the optical interface can be treated by the
electrodynamics approach only.

1.4 Selection Rule of IR Spectroscopy

Fermi’s golden rule is the most important milestone of the quantum mechanical
discussion of absorption spectroscopy. In fact, the rule is the starting point to
understand the principles of various spectroscopic techniques.

At the beginning of Sect. 1.1, we imagined the molecular vibration caused by
hitting the molecule using a hammer. In this case, all the normal modes are excited
at once. On spectroscopy, however, the molecular vibration is caused via the
interaction between the dipole moment of the transition moment and the electric
field. Therefore, a theoretical treatment of the interaction can be started from
Fermi’s golden rule, which generally provides a spectroscopic rule: only limited
normal modes are excited by the light absorption. This rule is called selection rule.
In other words, the maximum number of IR bands is given by the 3N � 6 rule
(Sect. 1.2).

The vibration of a molecule comprising the normal modes looks a highly
complicated motion. As presented by Eq. (1.12), however, each normal mode can
separately be discussed. Therefore, only a normal mode is good enough as a
physical model for deducing the selection rule. Since the selection rule is for a
dipole moment, the simplest case is employed to deduce the rule, i.e., a diatomic
molecule.

When two atoms aligned along the x-axis giving a reduced mass of l are
connected by a spring with a spring constant of k, the Hamiltonian of the steady
state of the molecule is represented as:

bH0 ¼ p̂2x
2l

þ bV xð Þ ¼ � �h2

2l
d2

dx2
þ 1

2
kx2 ð1:21Þ

Here, the potential term is written on the harmonic oscillator approximation. The
solving process of the Schrödinger equation with the Hamiltonian is found in many
textbooks of physical chemistry, and the eigenfunctions, /v, and eigenvalues, Ev,
are obtained as:
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/v ¼ NvHv a1=2x
� �

e�ax2=2 where a ¼ lx
�h

Ev ¼ �hx vþ 1
2

� �
v ¼ 0; 1; 2; � � �ð Þ:

Here, v is the vibrational quantum number.
The selection rule of a spectroscopy is deduced from Fermi’s golden rule, which

can be calculated by putting the wave functions into Eq. (1.20). At the moment,
however, no explicit function is available for the dipole moment, p. Since the
molecular vibration considered for IR spectroscopy is fairly small in comparison to
the bond length, the dipole moment is represented by Taylor’s expansion near
x ¼ 0 leaving the first two terms.

p xð Þ ¼ p0 þ dp
dx

� �
0
xþO x2

� �
Here, a one-dimensional coordinate along x-axis is taken into account for making
the discussion simpler, and therefore a scalar parameter is used in the equation.
With these equations, the transition moment is calculated after a variable trans-
formation (u � a1=2xÞ.

hkjp jj i

¼ a�1=2
Z1
�1

NkHk uð Þe�u2=2 p0 þ dp
du

� �
0
u

� �
NjHj uð Þe�u2=2du

ð1:22Þ

When the orthogonality of the Hermite functions [Eq. (1.23)] is taken into
account,

Z1
�1

Hk xð ÞHj xð Þe�x2dx ¼ dk;j2k
ffiffiffi
p

p
k!; ð1:23Þ

Equation (1.22) is then deformed to be:

hkjp jj i ¼ a�1=2NkNj
dp
du

� �
0

Z1
�1

Hk uð ÞuHj uð Þe�u2du: ð1:24Þ

Since the Hermite polynomials satisfy the recurrence relation [Eq. (1.25)]:

xHn xð Þ ¼ 1
2
Hnþ 1 xð Þþ nHn�1 xð Þ; ð1:25Þ
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Equation (1.24) can be reduced to (u is got back to x):

hkjp jj i ¼ a�1=2NkNj
dp
dx

� �
0

Z1
�1

Hk xð ÞxHj xð Þe�x2dx

¼ a�1=2NkNj
dp
dx

� �
0

Z1
�1

Hk xð Þ 1
2
Hjþ 1 xð Þþ jHj�1 xð Þ

� �
e�x2dx

¼ C
dp
dx

� �
0

1
2

Z1
�1

Hk xð ÞHjþ 1 xð Þe�x2dxþ j
Z1
�1

Hk xð ÞHj�1 xð Þe�x2dx

24 35
¼ dp

dx

� �
0
C1dk;jþ 1 þC2dk;j�1
� �

Constants are involved in C1 and C2 to make the equation visually clearer.
To make this transition moment nonzero (IR active), as a conclusion, the next

conditions must both be satisfied.

dp
dx

� �
0
6¼ 0 ð1:26Þ

k ¼ jþ 1 or j� 1 ð1:27Þ

Another notice is that the transition moment itself can be zero, if the symmetry
of the wave function product is “odd.” To analyze the symmetry of the function
product, the group theory is often conveniently employed. These three conditions
are called the selection rules of IR spectroscopy.

Equation (1.26) implies that IR absorption does not occur, if the dipole moment
is not changed on a vibration (dx 6¼ 0Þ. For example, a homo-nuclear diatomic
molecule has no permanent dipole moment, and no dipole is induced by the
stretching vibration, which results in no IR absorption. In fact, nitrogen and oxygen
that occupies a great part of ambient air do not provide IR bands at all. In other
words, these two gas components do not interfere IR measurements.

On the other hand, water vapor is a strong interference to IR spectroscopy, since
a water molecule has a large permanent dipole over the molecule. Unfortunately,
water molecules yield many fine peaks due to a coupled motion of vibration and
rotation (vibrotational) in the range of 1200–1700 cm−1. This region is called
“fingerprint region,” since many IR key bands appear in the region, which char-
acterize the molecule. Therefore, the air-purge in the spectrometer using dry air is
crucial for IR spectroscopy.

Equation (1.27) is another important fundamental rule implying that the vibra-
tional energy transition is strictly limited by the change of vibrational quantum
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number of “one” for both upward and downward transitions. A schematic diagram
of energy transition is presented in Fig. 1.13. The electronic and vibrational
quantum states are denoted by the quantum numbers of n and v, respectively.
Therefore, Eq. (1.27) can be denoted as Dv ¼ �1, which corresponds to the
schematic transitions of (a)–(c).

IR “absorption” occurs as the upward transition with Dv ¼ þ 1; whereas IR
“emission” is a downward transition denoted as Dv ¼ �1. Most of the IR
absorption is governed by the transition of Fig. 1.13a, which is called “funda-
mental” transition. Although the excited fundamental mode emits IR light with the
same energy absorbed (Fig. 1.13b), the spontaneous emission is generated from the
excited dipole vibration, and the radiation occurs for a large solid angle. As a result,
an ignorable portion of the emitted light attains the detector, which makes it pos-
sible to measure the absorption process only, fortunately.

Another IR absorption band due to an upward transition from an excited state
(Fig. 1.13c) is called “hot band.” Since the scheme in the figure is within a har-
monic approximation, the vibrational states have equal space. A practical molecule
has an anharmonic vibrational potential, however, and a hot band occurs within a
narrower space, which results in a lower wavenumber shift than the fundamental
mode. Regardless, the intensity of the hot band is very small, since the probability
of the initial state is much less than the ground state due to the Boltzmann distri-
bution. Therefore, this process is generally ignored in mid-IR spectroscopy.

The harmonic oscillator approximation strictly prohibits a transition other than
Dv ¼ �1; and therefore the transition of Fig. 1.13d can also be ignored within the
approximation. In practice, however, the harmonicity breaks a little bit, which
makes the transition possible, although the absorption is extremely small. The
energy nearly double of the fundamental energy corresponds to the “near IR”
(NIR) region. This explains that many organic materials exhibit high transparency
to NIR light, and absorbance is very small.

As a result, the processes of (b)–(d) can be ignored within a very good
approximation leaving the process of (a) only. This is the reason IR absorption
spectroscopy is performed using a relatively simple measurement apparatus. In
addition, thanks to this simplicity, the discussion based on the group theory also
becomes very simple as found in the next section.

v = 0
v = 1
v = 2

n = 1

n = 2

(a) (b) (c) (d)

Fig. 1.13 Schematic diagram within a harmonic approximation of energy transitions for
vibrational (v) and electronic (n) quantum states: a IR absorption, b IR emission, c hot transition,
and d prohibited transition or NIR absorption
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1.5 Another Selection Rule on the Group Theory

Even if the interaction of IR light with a molecule satisfies Eqs. (1.26) and (1.27),
the transition moment, hkjr jj i, still can be zero depending on the symmetry of the
molecular skeleton: the parity of the integrand of the transition moment is another
key to discuss the selection rule. Since the integral is calculated in the range from
�1 to þ1, the integral is nonzero if the integrand has an even function; whereas
it becomes zero for an odd function.

To determine the parity of the integrand of a three-dimensional function, the
group theory in mathematics works powerfully. On group theory, “symmetry
operations” of a chemical group or a molecule can be represented by matrix
operators, and the operators are involved in a “group,” on which independent
symmetry species are built. “Independent” means that the symmetry species as a
function of the operators are mutually orthogonal. In other words, a normal mode is
classified into a symmetry species using the matrix operator, and the expression is
obtained by “expanding” the reducible representation using mutually orthogonal
irreducible species.

The analysis of molecular vibration on the group theory is a sophisticated
technique, and the expansion using the matrix operator is carried out in a very
simple manner. The matrix operators are “reduced” into a scalar when the sym-
metry species is not degenerated by considering the characteristic of the “trace” of
the representation matrix.

A water molecule is employed as an example to roughly explain the concept.
Cartesian coordinates are attached to each atom as in Fig. 1.14. Each atom “posi-
tion” is indexed by a number with underline as n. When the molecule is rotated by
180° about the z2-axis, the vector of “y1” on the atom of “1” is displaced to “−y1”
on “3”, which is marked as “y1” and “−y1” in Eq. (1.28). In the same manner, all
the vectors are operated by the C2 rotation. As a result, the operator of C2 can be
represented by a 9 � 9 matrix as follows:

z1

y1x1

1

2

3

C2 z3

-y3

-x3

1

2

3C2z2

y2x2

z3

y3x3

z2

-y2 -x2

z1

-y1

-x1

Fig. 1.14 Cartesian coordinates fixed at each atom of water. C2 represents a rotation operation by
180° about the z2 axis. The operation-independent absolute positions are indexed by 1, 2 and 3
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�y3
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�y2
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�x1
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z1

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
¼

�1 0 0
0 0 0 �1 0

0 0 1
�1 0 0

0 0 �1 0 0
0 0 1

�1 0 0
0 �1 0 0 0
0 0 1

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA

x1
y1
z1
x2
y2
z2
x3
y3
z3

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
; ð1:28Þ

where 0 represents a 3 � 3 matrix of zero. Here, an issue comes up that the matrix
representation depends on a coordinate system. Matrix algebra has, fortunately, a
useful character that the summation of diagonal of the matrix, which is called
“trace,” is impervious to the unitary transformation of the coordinate. Therefore, it
would be great, if the trace would conveniently be used in place of the matrix. In
group theory, the trace is denoted as v.

In the present case, the trace is calculated to be v ¼ �1; which characterizes the
C2-operation matrix for water. As apparently found in Eq. (1.28), the trace is
calculated using a small matrix due to the “unmoved atom” after the symmetric
operation. If all the atoms are moved by the operation, the trace becomes zero, since
no nonzero matrix remains on the diagonal. This implies that the trace should be
calculated by summing up traces of small matrices of unmoved atoms. This cal-
culation can readily be performed by using a character table that belongs to the
point group, which represents the symmetry of the molecular skeleton. For
example, water belongs to the point group of C2v, and its character table is referred
as Table 1.4.

The character table first definitely says that the point group of C2v has only four
independent symmetry species (A1, A2, B1 and B2) as long as the molecule belongs
to C2v. This is a very apparent conclusion made on the group theory, which means
that any normal mode can be classified into only the four patterns. For each pattern,
the symmetry operation is represented by the trace. For example, let us consider the
unit vector, y2, in Cartesian coordinate on an unmoved atom, 2, (Fig. 1.14), which
is marked by “y” in the “linear” column in Table 1.4. When this unit vector is
operated by C2, for example, the direction is overturned from right to left, which is
represented by “−1,” as presented in the C2 column. This corresponds to the change
from “y2” to “−y2” in Fig. 1.14, which is represented as “y2” and “−y2” in
Eq. (1.28). In a similar manner, E, rv and rv’ are applied to the same unit vector of

Table 1.4 The character
table of the point group of C2v

C2v E C2 rv rv′ Linear Quadratic

A1 1 1 1 1 z x2, y2, z2

A2 1 1 −1 −1 Rz xy

B1 1 −1 1 −1 Ry, x xz

B2 1 −1 −1 1 Rx, y yz
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y, and the results are presented by 1, −1, and 1, respectively. In this fashion, the unit
vector, y, is thus assigned to the symmetry species of B2. In the same manner, x,
z and rotational axes, Rx, Ry and Rz are all assigned as presented in Table 1.4.

These characteristic numbers are regarded as the elements of a small matrix of
an unmoved atom. Therefore, the trace can be calculated by summation of the
numbers without using a huge matrix. In fact, in the C2 column, x, y, and z corre-
spond to −1, −1, and 1, respectively, which perfectly reproduce the matrix elements
of the small matrix on the diagonal line in Eq. (1.28). In short, the trace of the small
matrix can simply be calculated by summation of the numbers at the rows of x,
y and z in the character table, which is denoted as vR. If the number of unmoved
atoms is denoted as NR, the trace of the huge matrix can very simply be calculated
as NRvR � v. The calculation process is emphasized by the italic figures in
Table 1.5. In the case of C2 operation, the trace of the huge matrix, −1, is thus
simply calculated as presented by the thick characters in the table.

One of the most important characteristics of “character table” is that the rows
and columns are both in a mutually orthogonal system. For example, the dot
product of the symmetry species of A1 and A2 is zero

1 1 1 1ð Þ � 1 1 �1 �1ð Þ ¼ 0:

In a similar manner, E and C2 are also mutually orthogonal as the next
calculation.

1
1
1
1

0BB@
1CCA �

1
1
�1
�1

0BB@
1CCA ¼ 0

Table 1.5 Normal-mode analysis of H2O on C2v (g = 4)

R

C2v E C2 σv σv’ linear quadratic
A1 1 1 1 1 z x2, y2, z2

χ
i

A2 1 1 -1 -1 Rz xy
B1 1 -1 1 -1 Ry, x xz
B2 1 -1 -1 1 Rx, y yz
NR 3 1 1 3
χ

R
3 -1 1 1

χ 9 -1 1 3
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These characters are mathematically proved, which is called the wonderful (or
great/grand) orthogonal theorem. This characteristic is quite useful to expand any
molecular vibration using independent symmetry species. We have to note, how-
ever, that the orthogonality is not normalized. In the case of C2v, the norm of the
row-wise vector is 4 (denoted as g ¼ 4Þ, which corresponds to the number of
operators.

When the original huge size matrix in Eq. (1.28) is considered, for example, a
symmetry operator of E is represented by a unit matrix with a size of 9 � 9, which
yields the trace of 9, since all the three atoms are unmoved. This can easily be
calculated by using the character table as found by the bold-and-italic characters in
Table 1.5. The operators are denoted by a parameter, R, and the unmoved atoms are
counted to be NR for each R. In the case of a water molecule, by referring the
molecular skeleton (Fig. 1.3), the counted number of the unmoved atoms is filled in
the row of NR. For the operator of E, NR is 3 as filled in the table. The trace of each
small matrix can be calculated by adding the numbers “in the rows of x, y, and z (in
the ‘linear’ column),” which is filled in the row of vR, i.e., vR ¼ 1þ 1þ 1 ¼ 3: As a
result, the trace of the huge matrix, v, can readily be calculated by simply multi-
plying NR and vR, which is also filled in the row of v (v ¼ 9Þ. After calculating the
v components for all the operators, the “vector” of v is obtained as
9 �1 1 3ð Þ for a molecular water.
Now, we are ready to expand the huge matrix with the mutually orthogonal

symmetry species using the wonderful orthogonality theorem. When the row vector
of the symmetry species, i (for example B2), is denoted as vi (i.e.,
1 �1 �1 1ð ÞÞ the number of normal modes belonging to i, ai, is calculated

using the orthogonal character

ai ¼ 1
g

X
R

vi Rð Þv Rð Þ ¼ 1
g
vi � v:

The dot represents the inner product of the two vectors. For example, the number of
the totally symmetric A1 mode, aA1 , is calculated as

aA1 ¼
1
4

1 1 1 1ð Þ � 9 �1 1 3ð Þ ¼ 3:

In a similar manner, other components are calculated, and the total modes, C, are
expressed as:

C ¼ 3A1 þA2 þ 2B1 þ 3B2:

This means that the total 9 (= 3 + 1 + 2 + 3) modes are categorized into the four
symmetry species. Nevertheless, some of the molecular “motions” do not contribute
to molecular “vibrations.” The translational and rotational motions must be
removed to leave the vibrations only. To do that, the linear motions (x, y, z, Rx, Ry,

and Rz) in the character table are referred, and the corresponding symmetry species
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are removed out. As a result, the total vibrational modes, Cvib, are expressed by the
next equation.

Cvib ¼ 2A1 þ 0A2 þ 0B1 þ 1B2 ¼ 2A1 þB2

This result straightforwardly implies that the water molecule has three (2 + 1)
normal modes as molecular vibrations, and two of them are assigned to the A1

mode, and the rest one goes to B2.
For the analysis of the anti-symmetric OH2 stretching vibration (ma(OH2);

Fig. 1.3a), for example, the “arrows” in the figure are necessary. When the C2

operation is applied to the figure, the arrows are turned over, which yields �1 in the
character table. Therefore, only B1 and B2 remain as the candidates. Next, the rv
operation is applied. Since the “mirror” overturns the arrows, the operation yields�1.
As a result, B2 is chosen as the symmetry species for the mode. Just in case, the rest
rv0 operation is also applied to the arrows, which results in no change yielding 1.
In this manner, the vibration fully satisfies the B2 symmetry. In a similar manner,
other two modes satisfy A1.

All the normal modes are thus fully assigned to the symmetry species, which is
called spectral analysis on group theory. The total number of “three” exactly agrees
with the number predicted by the 3N � 6 rule, which can be used as a check of the
results of the group theory analysis.

Next, the parity of the product of wave functions is readily revealed by the direct
product of the irreducible representation of the symmetry species. In the case of the
transition moment, the three wave functions involved in the integral ( jj i, rj i and
kj i) are to be considered.
As discussed in Sect. 1.4 (near Fig. 1.13), only the transition from the ground

state (v ¼ 0Þ to the first excited state (v ¼ 1Þ is enough to consider the IR
absorption in a good approximation, which means that jj i corresponds to v ¼ 0. At
v ¼ 0, no arrow representing vibration is available on the molecule, which is the
“totally symmetric.” Therefore, in the case of C2v, jj i takes the symmetry species of
A1. To look for the symmetry species of r, the column of “linear” is referred to find
x, y, and z. As an example of the excited state corresponding to kj i, the ma(OH2)
mode is considered. As mentioned above, the B2 species is referred, which is at the
same row of y. Therefore, the reduced representations of kj i and rj i are found to be
both B2. Therefore, the parity of the product in the transition moment is obtained as:

B2 	 B2 	 A1 ¼ A1; ð1:29Þ

since the direct product (denoted by 	) of the same symmetry species always
becomes A1, so that the product of the three functions in the transition moment has a
totally symmetric species. This confirms that the ma(OH2) mode is IR active.

Through this process, we find that the excited state and r must have the same
symmetric species for being IR active when the ground state belongs to A1. This
means that the direction of a transition moment is the same as that of the vibrational
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motion illustrated on the molecule. This simplicity is a great benefit of IR spec-
troscopy, with which the molecular orientation analysis can easily be performed.

Factor group analysis
For a molecule that has a repeat structure of a simple unit represented by a polymer
molecule or a molecule in a crystal [8, 9], factor group analysis is necessary;
otherwise an unreasonably great number of normal modes are generated. If the
3N � 6 rule is simply employed for considering a polymer, the number of normal
modes becomes huge, which makes the IR analysis impossible. As a matter of fact,
however, this problem never occurs as found in Fig. 1.1, which implies that another
theoretical concept should be added for treating a repeating structure.

Polyethylene (Fig. 1.1) has an alkyl chain of (CH2)n that is a repeated part
consisting of a (CH2)2 unit. In this case, the symmetry of the alkyl part is entirely
considered instead of considering a methylene group unit only. Figure 1.15 presents
schematic images of the msCH2 mode on different coupled oscillations, which is
denoted as d+: d and + corresponds to the methylene group and the symmetric
vibration, respectively.

As illustrated schematically in the figure, the entire chain has various vibrational
shapes as a coupled oscillator. The top and bottom schemes are characterized by
different phases, d, between the adjacent methylene groups in a dashed parallelo-
gram, i.e., d = 0 and p, respectively [10]. Therefore, the two schemes are denoted
as d+(0) and d+(p) [11–13]. If a repeat unit is the ethylene group [(CH2)2], the
adjacent red and blue parallelogram units exhibit no wavy curve (k ¼ 1), which is

Fig. 1.15 A coupled oscillator of a (CH2)15 chain with different wavenumber vectors
(k) describing the msCH2 mode (d+). If k is defined using a unit of (CH2)2, both d = 0 and p
patterns correspond to k = 0, which is IR active
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represented by k ¼ 0 (Brillouin-zone center) for both d+(0) and d+(p). Since the
wavelength of IR and visible light is much longer than the unit length, only the
vibrational modes of k ¼ 0 are selectively observed by IR and Raman spectroscopy
within a good approximation. As a result, only the d+(0) and d+(p) patterns can be
the candidates for IR and Raman spectroscopy.

Both d+(0) and d+(p) patterns belong to the point group, D2h. The normal-mode
analysis of a compound consisting of a repeat unit is called “factor group analysis.”
The character table of D2h is available in Table 1.6. In a factor group analysis, the
repeat unit is referred for filling the matrix. The Cartesian coordinate and a repeat
unit of two methylene groups [5] are presented in Fig. 1.16. Factor group analysis
needs some additional symmetry operations: the glide plane and the screw axis,
which are denoted as rg and CS, respectively. The glide plane is an operation of
mirror imaging followed by translation along the chain by a half unit length. The
screw axis is another operation of rotation as C followed by the translation.

Note that, in the factor group analysis, Cn and r operations are performed twice
at each dashed vertical line in the figure. Therefore, as marked by bold in
Table 1.6, the number of unmoved atoms is doubled. As a result, the irreducible
representation is readily calculated to be

C ¼ 3Ag þAu þ 2B1g þ 3B1u þB2g þ 3B2u þ 3B3g þ 2B3u:

In factor group analysis, we have to take another care that the rotation about the y
and z axes cannot be removed for leaving the vibrational modes only (Ry and Rz are
deleted in Table 1.6). In short, the number of the normal modes is ruled by 3N � 4
for a nonlinear molecule. Therefore, the irreducible representation of vibrational
modes is [14]:

Table 1.6 Factor group analysis using D2h for polyethylene (g = 8)

D2h E C2(y) C2(z) C2
S(x) i r(xy) r(yz) rg(xz) Linear

Ag 1 1 1 1 1 1 1 1

Au 1 1 1 1 −1 −1 −1 −1

B1g 1 −1 1 −1 1 1 −1 −1

B1u 1 −1 1 −1 −1 −1 1 1 z

B2g 1 1 −1 −1 1 −1 −1 1

B2u 1 1 −1 −1 −1 1 1 −1 y

B3g 1 −1 −1 1 1 −1 1 −1 Rx

B3u 1 −1 −1 1 −1 1 −1 1 x

NR 6 2 0 0 0 2 6 0

vR 3 −1 −1 −1 −3 1 1 1

v 18 −2 0 0 0 2 6 0
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Cvib ¼ 3AgþAuþ 2B1g þ 2B1u þB2g þ 2B2u þ 2B3g þB3u:

The total number of the normal modes, 14 (=3+1+2+2+1+2+2+1), agrees with
3� 6� 4 ¼ 14:

Of note is that two different msCH2 modes are available in the molecules having
the repeat units as marked in Fig. 1.15 corresponding to Ag and B2u. By referring
Eq. (1.29), the IR active modes are obtained as:

CIR ¼ 2B1u þ 2B2u þB3u:

The IR active msCH2 mode is thus assigned only to B2u. In fact, in the discarded
coupled oscillator of Ag, the summation of all the dipole moments becomes nearly
zero, which makes IR inactive; whereas it is Raman active [14]. Note that this is the
reason why the msCH2 mode appears at different positions in IR and Raman spectra
at 2851 and 2848 cm−1, respectively.

Since all the symmetry species are not degenerated, the number of IR bands is
five. In Fig. 1.1, only four modes are found, since the rest CH2 wagging mode (at
ca. 1170 cm−1 [12, 13]) is split into many band progression, which is too many and
too weak to find [15].

Fermi resonance
An overtone band is generally very weakly appeared because of the selection rule
represented by Fig. 1.13. Nevertheless, when the energy of the overtone is coin-
cidently close to another normal mode, they are talked to each other, and the
overtone band receive energy to develop significantly. The coupling of the acci-
dentally degenerated modes was first recognized by Fermi [16].

An example is presented in Fig. 1.17, which is an IR spectrum of benzoyl
chloride. The most intense band of the carbonyl group at 1772 cm−1 accompanies a
satellite band at 1732 cm−1, which is attributed to the Fermi resonance. The res-
onance occurs between the mC=O and 2mPh–O (2 � 869 cm−1) [17]. The overtone,
2mPh–O, couples with the strong fundamental mC=O mode, since the energies are
coincidentally close to each other. As a result, the overtone band, which is

C2(y)

C2(y)

C2
S(x) x

z

y

σ (yz)

σ (yz) i
C2(z)

σg(xz)

Fig. 1.16 The Cartesian coordinate and a repeat unit of (CH2)2 between the two wavy vertical
lines [5]
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intrinsically very weak, receives energy from the strong mC=O band, which results
in an apparently found satellite peak.

The cross talk between two different modes is theorized via an off-diagonal
element in the eigenvalue matrix [18, 19]. If two modes, w Qnð Þ and w Qmð Þ, are in
resonance, Schrödinger equation of the steady state,

bHwvib ¼ Ewvib;

is described in an explicit manner

bH
w Q1ð Þ
w Q2ð Þ

..

.

w Qnð Þ
w Qmð Þ

..

.

w Qkð Þ

266666666664

377777777775
¼

E Q1ð Þ 0 0 0 0 0 0
0 E Q2ð Þ 0 0 0 0 0
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.

0 0 0 En Enm 0 0
0 0 0 Enm Em 0 0
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.

0 0 0 0 0 0 E Qkð Þ
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w Q2ð Þ

..

.

w Qnð Þ
w Qmð Þ

..

.

w Qkð Þ

266666666664

377777777775
:

The off-diagonal element, Enm , is generated as a result of an interaction of the two
modes, i.e.,

Enm ¼ hw Qnð ÞjbH 0 w Qmð Þj i:

If the small matrix is taken from the large matrix, the following equation holds.

Enm � E Enm

Enm Enm � E

				 				 ¼ 0

As a result, the energy in resonance is found to be split into two states.
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Fig. 1.17 IR spectrum of
benzoyl chloride [1]
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E ¼ 1
2

En þEmð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 Enmj j2 þ d2

q
ðd � En � EmÞ

Here, d is the energy difference of the un-perturbed levels. Of course the two mixed
states, wþ and w� , are described as

wþ ¼ 1
N

awm þ bwn½ 
 and w� ¼ 1
N

awm � bwn½ 
:

In this manner, Fermi resonance yields doubly split two bands. In many cases, one
of them is overlaid on another band to be invisible.

In a spectrum of a paraffin (alkyl group), a Fermi-resonance band is often found
at ca. 2935 cm−1. For example, stearic acid yields the band at 2938 cm−1 as pre-
sented in Fig. 1.6. This is a result of a coupling of 2daCH3 with ms(CH3) [20]. Since
the fundamental band of the daCH3 mode is at 1453 cm−1, the overtone
(<2906 cm−1) is coincidentally close to the position of the ms(CH3) band at
2870 cm−1. The rest of the two Fermi-resonance bands should appear at ca.
2880 cm−1, but it is hidden in other crowded bands.

Note here that not only the energy agreement, but the symmetry matching is also
necessary for generating Fermi resonance. Since the methyl group has the sym-
metry of C3v, the character table of C3v is referred (Table 1.7).

The asymmetric deformation vibration of the methyl group (daCH3) is degen-
erated, and the fundamental mode thus belongs to the symmetric species of E. Then,
the overtone has the symmetric species of

E 	 E ¼ 4 1 0ð Þ:

Therefore, the overtone can be decomposed by considering the great orthogonal
theorem to have

E 	 E ¼ A1 þA2 þE:

In this manner, in the case of C3v, the overtone of the E mode can be interacted
with all the IR active modes to have a Fermi resonance band, if the energies are
close to each other.

Table 1.7 Character table of
C3v for analyzing the methyl
group (g = 6)

C3v E 2C3(z) 3rv Linear Quadratic

A1 1 1 1 z x2 + y2, z2

A2 1 1 −1 Rz

E 2 −1 0 (x, y) (Rx,
Ry)

(x2 − y2, xy)
(xz, yz)
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1.6 Light Absorption by a Molecule: 2. Understanding
on Electrodynamics for a Bulk Matter
Toward Beer’s Law

Quantum mechanics yields many important rules for understanding absorption
spectroscopy, but another framework of spectroscopic theory is necessary, which is
electrodynamics. In particular for taking an optical interface account, electrody-
namics is definitely necessary. One of the beautiful benefits of making discussion
on electrodynamics is that the predicted results reproduce the experimental ones
quantitatively. Another great benefit is that light absorption by a “bulk matter” that
is a collection of many dipoles can easily be theorized, which is quite suitable to
theorize IR spectroscopy.

In a limited case that an optical interface can be ignored, the system can easily be
modeled. Such a system with no interface is defined as “bulk” in this book, which
means that thin films and small particles are excluded at the moment. Let us
imagine a dispersed sample in a KBr pellet, which is a good analytical target as a
bulk matter, since the thickness of the pellet is much longer than the wavelength of
IR light to readily ignore an interface. In this situation, only the interaction between
a matter and light can be theorized without considering the optical configuration.

Since the IR light can be approximated as a plane wave, the light can be
represented by Maxwell equations.

r � D ¼ 0 ð1:30Þ

r � B ¼ 0

r� Eþ _B ¼ 0
ð1:31Þ

r �H � _D ¼ 0 ð1:32Þ

The dot indicates the derivative in terms of time. These equations accompany the
two constituent equations:

B ¼ l0H ðlr � 1Þ ð1:33Þ

and

D ¼ eE: ðe ¼ e0erÞ ð1:34Þ

Since these two equations are on linear approximations, these are not involved in
Maxwell equations, and they are put aside. By putting Eq. (1.33) into Eq. (1.32),
the next relationship is obtained.
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r� B ¼ l0 _D ð1:35Þ

On the other hand, another rotation operator is applied to Eq. (1.31),

r�r� E ¼ �r� _B

is obtained, which can be combined with Eq. (1.35) to have:

r�r� E ¼ �l0 €D: ð1:36Þ

When a formula of

r�r� A ¼ r r � Að Þ � r2A

is applied to Eq. (1.36) considering Eq. (1.30), then we have:

r2E ¼ l0 €D ¼ l0e€E: ð1:37Þ

Since this derivative equation has a particular solution of:

E ¼ E0 exp i k � r� xtð Þ: ð1:38Þ

the following dispersion relation is obtained.

k2 ¼ l0ex
2 ¼ l0e0erx

2 ¼ erx
2=c2 ð1:39Þ

Here, c is the phase velocity of light. When the refractive index, n, is introduced by
considering the phase velocity, V ¼ x=k ¼ c=

ffiffiffiffi
er

p
:

n ¼ c
V
¼ ffiffiffiffi

er
p

: ð1:40Þ

The dispersion relation [Eq. (1.39)] can be modified to be

k2 ¼ n2

c2
x2 , k ¼ nx

c
: ð*x� 0Þ

Since the refractive index is a complex (Chap. 4), n � n0 þ in00 is incorporated
into Eq. (1.38) with the modified dispersion relation to have:

E ¼ E0 exp ikz� ixtð Þ ¼ E0 exp i
xnz
c

� ixt
� �

¼ E0 exp �xn00z
c

� �
exp i

xn0z
c

� ixt
� �

:
ð1:41Þ
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Here, the equation is changed to be a one-dimensional one (along z) for sim-
plicity. Since the light intensity is proportional to Ej j2¼ E�E; we have:

I ¼ I0 exp � 2xn00z
c

� �
: ð1:42Þ

If the definition of absorbance, A, is introduced [see Eq. (3.1)], A can be written
as:

A � � log10
I
I0

� �
¼ � 1

ln 10
ln

I
I0

� �
¼ 1

ln 10
2xn00

c
z ¼ 1

ln 10
4pn00

k
z � 1

ln 10
az :

ð1:43Þ

In this manner, an absorbance spectrum has a shape of a (absorptivity), which
depends on n00 and k. Equation (1.43) presents the detail of Beer’s law. Note again
that this holds only when no interface is involved in the system, since no interface
is taken into account in the deduction process.

The KBr pellet technique is quite important to obtain the a spectrum dominated
by n00. This is because the influence of the interface can be ignored due to the large
thickness of the pellet to the wavelength. To obtain the physical parameter specific
to a material, n00, the KBr technique is thus the first choice. Due to a similar reason,
the Nujol technique, and transparent measurement through an IR transparent sol-
vent such as chloroform are also very important.

Because of Eq. (1.40), the physical insights of electric permittivity should be
described, so that the light absorption mechanism via the interaction between
dipoles and the electric field of light would readily be understood via the complex
refractive index.

In electrodynamics, the coupling of light and a matter is theorized by a simple
classical equation of an electron motion oscillated by electric field, E tð Þ; in which
the electron with the charge of e is under constraint by the electromagnetic potential
of an atomic core. Therefore, the electron motion is modeled by an electron con-
strained by a spring connected to the core, and the oscillation is damped with time,
which can be written by a simple Newton equation.

m�€r tð Þþm�c_r tð Þþm�x2
0r tð Þ ¼ �eE tð Þ ð1:44Þ

Here, the effective mass of electron is denoted by m�, and c is the damping
factor. The constraint is modeled by a spring with a spring constant, j, which is
involved in the resonance angular frequency, x0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
j=m�p

.

Equation (1.44) is Fourier transformed (
dn

dtn
g tð Þ ! �ixð ÞnG xð ÞÞ to have the

frequency domain equation [Eq. (1.45)].
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r xð Þ �x2 � icxþx2
0

� � ¼ �e
m� E xð Þ

, r xð Þ ¼ �eE xð Þ
m� x2

0 � x2 � icx
� � ð1:45Þ

Here, the polarization, P, is introduced to involve N induced dipole moments,
p � �er; in an averaged manner where r is the distance of the two poles of the
dipole. (For the details of P, refer to Sect. 7.1.)

P xð Þ � Np ¼ �Ner xð Þ ¼ e2NE xð Þ
m� x2

0 � x2 � icx
� � ð1:46Þ

In this manner, the one-electron theory has been bridged to a bulk matter. In
addition, the definition of the electric flux density, D ¼ eEð Þ (see Sect. 7.1), and
Eq. (1.34) are considered to have Eq. (1.47).

D � e0EþP , eE ¼ e0EþP , e0er ¼ e0 þ P
E

ð1:47Þ

Here, er is the relative electric permittivity. When Eqs. (1.45)–(1.47) are merged,
the next equation is obtained.

e0er xð Þ ¼ e0 þ e2N

m� x2
0 � x2 � icx

� � ¼ e0 þ
e0x2

p

x2
0 � x2 � icx

ð1:48Þ

This equation has a problem that er equals to unity for a high frequency (x ! 1).
The problem occurs since the physical model is too simple to quantitatively discuss
the permittivity. Therefore, the first term is conveniently replaced by an empirical
value, e0er;1, yielding the refractive index, n, of the material (er;1 ¼ n2).

In addition, the plasma frequency, xp, defined as Eq. (1.49) is newly introduced
to make the equation simpler.

x2
p �

e2N
e0m� ð1:49Þ

For a spectrum having a multiple number of absorption bands, Eq. (1.48) is
expanded such as:

er xð Þ ¼ er;1 þx2
p

P
j

fj
x2

j � x2 � icjx
ð1:50Þ

The oscillator strength, fj, denotes the number of electrons characterized by xj and
cj, which are delivered from the total Z electrons in the matter [Eq. (1.51)].
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X
j

fj ¼ Z ð1:51Þ

Equation (1.50) is conveniently used as a physical expression of the electric
permittivity as a function of the angular frequency, on which numerical simulations
can be performed as presented in Fig. 1.18.

Through Eq. (1.40), the permittivity provides the corresponding complex
refractive index, which is presented in Fig. 1.19.

The shape of permittivity is fairly similar to that of refractive index for each real
and imaginary part. The imaginary part of both permittivity and refractive index
looks an absorption band; whereas the real part has a derivative shape. Since the
derivative shape has an opposite increase trend to the entire dispersion, the
derivative-shaped region is sometimes called “anomalous dispersion.” When the
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imaginary part peak is large, the anomalous dispersion is fairly enhanced, which
can make the absorption band distorted when an optical interface plays an important
role in measurement (Chap. 3). This is a very important key to quantitatively dis-
cuss the band positions and relative band intensity; otherwise the shift and intensity
change may be attributed to a chemical reason in a wrong manner.

The upper panel of Fig. 1.20 presents IR spectra of methanol measured by the
transmission (Tr) and ATR techniques (Chap. 3), which exhibits a large band shift
[21]. Of note is that the complex refractive index spectra (lower panel) are common
to the two spectra.

Since the peak position of the imaginary part (n00) of the refractive index is very
close to that of the Tr one, the ATR spectrum is largely influenced by the
anomalous dispersion of the real part (n0).

As described in detail in Chap. 3, the KBr pellet spectra have the same trend as
the “thick” Tr spectrum, since it is free from an optical interface, and it reflects only
n00 as presented in Eq. (1.43). When a spectrum of a thin film is analyzed, on the
other hand, we have to pay an attention on the matter, since the spectrum is
influenced not only by n00, but also by n0.

Fig. 1.20 IR “thick”
transmission and ATR spectra
of methanol in the C–O
stretching vibration region
(upper panel). The complex
refractive index spectra (lower
panel) accounts for both
measured spectra [21]
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Chapter 2
Fundamentals of FT-IR

2.1 Principle of Spectral Measurements

A schematic of IR spectroscopy is illustrated in Fig. 2.1, which presents the
physical fundamental of spectroscopy. The IR source emits IR ray, and a portion of
the ray through the slit is made a parallel light by mirrors (omitted in the figure),
I tð Þ, going to the prism.

At the moment, the light has an image of the plane wave of electric and magnetic
fields as a function of time, t, and the intensity, I, is proportional to the squared
electric field (Eq. 3.17). The prism is an optical element working as the heart of the
spectrometer: the refraction angle depends on the wavelength of the light. In this
manner, the straight parallel light becomes a “dispersed” light. If the light is visible
light, a rainbow pattern appears on the screen. Since the IR light is invisible, an IR
detector must be used to have a spectrum instead of the visible pattern.

The spectrum appears as a graph developed by two axes of wavelength, k, and
intensity, S. Since the wavelength is directly interrelated with a more useful
parameter, angular frequency (x), the spectrum is denoted as S xð Þ in the figure. In
this manner, the optical element works to transform the time-domain function, I tð Þ,
to the frequency-domain one, S xð Þ, which corresponds to Fourier transform in
mathematics. In other words, the role of the optical element is Fourier transform the
light to a spectrum very quickly with the light velocity. Regardless, this type of
spectrometer using an optical dispersive element is not called a Fourier transform
spectrometer, but a dispersion-type spectrometer.

Fourier transform is represented by a pair of equations.

S xð Þ ¼
Z1

�1
I tð Þe�ixt dt ð2:1Þ
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I tð Þ ¼ 1
2p

Z1

�1
S xð Þeixt dx ð2:2Þ

Equation (2.2) is especially easy to understand intuitively. Since eixt represents
an oscillation like a cosine wave, the summation of the waves with the weighting
function of S xð Þ for all frequencies yields the time-domain representation of the
broadband wave, I tð Þ. This equation is called “inverse Fourier transform.” The role
of the prism in Fig. 2.1 is represented by the Fourier transform: I tð Þ is transformed
to S xð Þ. If I tð Þ is readily measured, the spectrum is thus obtained by calculation
using Eq. (2.1) without using an optical element like a prism, which is called
Fourier transform spectrometry.

A dispersion-type spectrometer has experimental limitations as follows.

(1) If the refraction (or diffraction) angle-variance is highly limited by using a
narrow slit, the wavenumber resolution becomes high. This spatially limited
light is, however, very dark, which results in a poor quality spectrum.

(2) Toobtain a spectrum, amechanical scanningofwavelength is necessary.Aperfect
reproducibility of mechanical scanning cannot be expected, and the calibration of
the abscissa axis is necessary for each measurement. Therefore, reliable accu-
mulation of spectra for improving spectral quality is generally difficult.

(3) The spectral quality depends on the speed of the mechanical scanning. To have
a high-quality spectrum, a slow scanning is required, which takes much time. In
other words, only a stable sample can be measured.

These intrinsic matters specific to a dispersive-type spectrometer can totally be
overcome by introducing the Fourier transform (FT) technology in theory.

Nevertheless, a direct measurement of I tð Þ requires a very high technique, since
ultrafast measurements are necessary. Mid-IR light is generally recognized as the
wavenumber range of 4000–400 cm−1, which corresponds to the wavelength region
of ca. k ¼ 10 lm, which further corresponds to m ¼ 30 THz = 3� 1013 Hz
(c ¼ mk). To measure the IR light in the time-domain, therefore, an ultrafast
spectrometer having a time resolution of ca. 3� 10�14 s (femtosecond region) is
necessary. In other words, a femtosecond pulse laser must be employed for
obtaining an IR spectrum to straightforwardly employ the FT principle, which
needs much cost and a very high measurement skill.

To get over the technical difficulty, an alternative great idea is employed using
an interferometer.

Fig. 2.1 Schematic of a
dispersion-type spectrometry
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2.2 Introducing an Interferometer: FT-IR

For IR measurements, a unique optics is introduced to realize the FT spectrometry
preventing the ultrafast measurements. The optics is an interferometer represented
by Michelson’s one as illustrated in Fig. 2.2.

The interferometer consists of a beam splitter and two plane mirrors. The beam
splitter allows a half of the light pass through it, and the rest half is reflected on the
surface. One of the mirrors is placed at a fixed position with a distance of x1 to the
splitting point, whereas the other mirror is on a rail to change the distance, x2, which
is called the “moving mirror.” The moving mirror is moved very smoothly with an
electronically controlled highly constant velocity, vm.

When the moving mirror is displaced from the initial position of x2 ¼ x1 with the
constant velocity of vm, the position of the moving mirror, x2 tð Þ is represented as

x2 tð Þ ¼ x1 þ vmt:

A parallel IR ray is led to the interferometer, a half of the light goes to the fixed
mirror, and the reflected light is half reflected on the splitter to go as output. In a
similar manner, the rest half is reflected to go to the moving mirror, and the
reflected light goes through the splitter to go as output. As a result, the two lines of
light are overlaid in the output path, which generates interference.

The superposition of the two electric field oscillation waves, E tð Þ, can simply be
expressed by considering three facts. (1) the amplitudes, A, of the two waves are the
same as each other, since the beam splitter splits the light for the transmission and
the reflection half-and-half, (2) the angular frequency, x, is common to the two
waves, and (3) a round trip between the beam splitter and a mirror influences the
phase change. The superposition is thus simply expressed by Eq. (2.3).

Moving
mirror

x1

x2

vm

Fixed
mirror

Beam
splitter

Input:
Parallel IR light

Output:
Modulated IR light

Fig. 2.2 A top-view
schematic image of
Michelson’s interferometer
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E tð Þ ¼ A exp i 2kx1 � xtð ÞþA exp i 2kx2 � xtð Þ
¼ A exp i 2kx1 � xtð Þþ exp i 2k x1 þ vmtð Þ � xtf g½ �
¼ A exp i 2kx1 � xtð Þf g 1þ exp i2kvmtð Þ

ð2:3Þ

The light “intensity” measured by the detector is the energy flow of the elec-
tromagnetic wave (Poynting vector in Sect. 3.3), which is proportional to the
squared absolute value of the electric field. Therefore, the light intensity is calcu-
lated using Eq. (2.3) as:

Ej j2 ¼ E�E ¼ A2 1þ exp �i2kvmtð Þð Þ 1þ exp i2kvmtð Þ
¼ 2A2 1þ cos 2kvmtð Þ
¼ 2A2 1þ cos 2pftð Þ

ð2:4Þ

Here, the frequency, f, is obtained by considering k ¼ 2p=k ¼ 2p~m:

2pf ¼ 2kvm , f ¼ 2~mvm : ð2:5Þ

This frequency is called “modulation frequency.”
Here, ~m is the wavenumber of the original IR light, which has a wide range from

400 to 4000 cm−1. To consider the modulation frequency simpler, the wavenumber
of He–Ne laser is conveniently used “as a constant” instead of using that of
broadband IR. Since the wavelength of the laser is 632.816 nm in air, the
wavenumber is calculated to be:

~m ¼ 1=k ¼ 15;802:4 cm�1:

When the mirror velocity is vm ¼ 1:8984 cm s−1, for example, the modulation
frequency is thus calculated to be f = 60.0 kHz. In other words, by introducing the
wavenumber as a constant, the mirror velocity can be interpreted to be the mod-
ulation frequency. The scientific community of FT-IR has a tradition to write the
modulation frequency instead of mirror velocity in a research paper.

When a wavenumber of IR light is put in Eq. (2.5), the modulation frequency
becomes about 1 kHz, which is significantly smaller than the original IR frequency
by about 1 � 1010 Hz. Therefore, the very fast oscillation of the electric field of IR
light is invisible on the modulated IR light. Thanks to the low frequency of the
modulated light, high-sensitive IR detectors are readily employed for FT-IR.
Pyroelectric and semiconductor sensors are the representatives.

(1) Pyroelectric sensor

Deuterated triglycine sulfate (DTGS) has a character that the polarity on the surface
changes on irradiation of IR light (or heat) via a molecular orientation change. Since
the molecular orientation change happens in a millisecond range, a DTGS detector
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responds to an electric oscillation at most a kHz order. The modulated IR light is
quite suitable to employ the detector fortunately.

Since a thermal “variation” induces the surface charge, the background stable
heat (ambient temperature) does not influence the output. Therefore, a DTGS
detector works at an ambient temperature. This is a great benefit of using this
detector. On the other hand, the sensitivity depends on the rate of molecular ori-
entation change. In other words, the modulation frequency (or mirror velocity) is a
dominant factor to influence the sensitivity. In general, a lower modulation fre-
quency yields a high sensitivity, although the measurement time becomes longer.
This technique is particularly useful to measure a very weakly absorbing sample.
5 kHz (i.e., vm ¼ 0:15820 cm s−1) is a representative modulation frequency for
high-sensitive measurements, although one scan needs a long time of about 4 s.

Since this detector is inferior to the MCT detector in sensitivity, DTGS is often
selected for a bright (high throughput) measurement represented by reflection
absorption (RA) and transmission spectrometries (Chap. 3).

(2) Semiconductor sensor

An alloy of mercury, cadmium, and telluride (MCT) works as a semiconductor
sensor for IR light: an electron in the valence band is excited to be a free electron in
the conduction band by absorbing the IR light. Since the ambient temperature
contributes to the excitation, the detector must be cooled down to a working
temperature using liquid nitrogen (LN2). The container of LN2 is covered by a
Dewar bin, which must be vacuumed adequately; otherwise the duration time
becomes very short.

An MCT detector has a wide frequency range, and the sensitivity does not
respond to the modulation frequency significantly. The sensitivity is much higher
than that of a DTGS one by one order of magnitude and it is thus suitable for
detecting a low throughput measurement such as external reflection (ER) and
attenuated total reflection (ATR) measurements (Chap. 3). Although MCT can also
be used for RA and transmission measurements, a metal-mesh filter (light attenu-
ator) must be placed in the light path to prevent the signal saturation of the detector.

Let us get back to Eq. (2.4). A ~mð Þ2 is the observed light intensity, and therefore it
can be replaced by a spectral pattern, S ~mð Þ. In addition, another replacement of
x � 2vmt is introduced, with which the time-domain measurements are converted to
the measurements on the mirror position. Since the mirror position is precisely
controlled electromecanically, the position is accurately read. In this manner, the
following measurements at a wavenumber of ~m are readily carried out.

A2 cos 2p2~mvmt ¼ S ~mð Þ cos 2p~mx

In practice, this measurement is performed for a broadband IR light, which
results in I xð Þ as:

2.2 Introducing an Interferometer: FT-IR 41



I xð Þ � 2
p

Z1

0

S ~mð Þ cos 2p~mx d~m: ð2:6Þ

An example of the observed interferogram, I xð Þ, is presented in Fig. 2.3. Note that
the interferogram is the “raw experimental data” on FT-IR. Equation (2.6) has a
formation of the even-function part of the Fourier transform, and thus S ~mð Þ is pulled
out by performing the FT calculation as Eq. (2.7).

S ~mð Þ ¼ 2
Z1

0

I xð Þ cos 2p~mx dx ð2:7Þ

In this fashion, an ultrafast measurement in the time domain is readily avoided
by introducing the interferometer. This technique is accomplished thanks to a good
detector working in a low-frequency range, which fortunately corresponds to the
modulation frequency.

This lucky holds for the mid- and near-IR regions. In other words, the FT
technology employing the interferometer is not used for the UV-vis region. This is a
reason why no FT-Vis is commercialized, which is another reason why no
FT-Raman spectrometer with a visible excitation-laser is available.

2.3 Laser and FT Spectrometer

In an FT-IR spectrometer, a He–Ne laser optics is equipped as well as the IR optics:
the laser-beam path is parallel to the IR path in the interferometer, and a laser
detector is also available near the exit of the interferometer (Fig. 2.4). As described
for the modulation frequency, a He–Ne laser is conveniently used to determine the
frequency of the modulated IR light. To understand the necessity of the laser, the
interrelationship between the time- and frequency-domain functions should be
understood.
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Fig. 2.3 An interferogram
measured by FT-IR. This
curve is subjected to the
inverse FT calculation to
obtain an IR spectrum
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(1) When I xð Þ is the interferogram of IR broadband light:

The IR source emits broadband IR light that covers entire wavenumber range of
mid-IR (4000–400 cm−1). To make the discussion simpler, no intensity variation is
assumed, and a simple boxcar function is considered.

The boxcar function, SðxÞ, illustrated in Fig. 2.5 is mathematically described as:

SðxÞ ¼ 1 ð0�x�x0Þ
0 ðx\0; x[x0Þ

�

To apply this function to Eq. (2.6), the complex FT calculation is performed and
the real part is extracted.

Fig. 2.4 A schematic view of
the optics of IR (solid line)
and laser (dashed line) light
paths
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Fig. 2.5 Fourier transform of a box function to have an interferogram
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Re
Z1

�1
S xð Þe�ixtdx

2
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5 ¼ Re

Zx0

0

e�ixtdx
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3
5 ¼ Re

i
t
e�ixt� �x0

0

� �

¼ Re
i
t
e�ix0t � 1
� �	 


¼ sinx0t
t

¼ x0 sinc x0t

ð2:8Þ

This calculated result, which can be expressed using the “sinc” function
(Eq. 2.8), is plotted in the right panel of Fig. 2.5. The sinc function provides a
typical shape of a “wave packet,” which has a center burst and decreasing envel-
opes for both sides. In this manner, the origin (center position) of the interferogram
is accurately determined experimentally using the center burst after the measure-
ments of the IR broadband light.

Note that even a simple calculation yields a fairly similar interferogram to the
observed one presented in Fig. 2.3.

(2) When I xð Þ is the interferogram of the He–Ne laser light:

On the contrary, what would happen, if the input light is given by a laser that has
a single frequency? This case is expressed as: S xð Þ has a needle-like peak at
x ¼ x0 only. This situation is approximately theorized by using Dirac’s delta
function. On referring to a character of the Delta function (Eq. 4.9), the cosine
function is obtained as the Fourier transform of Dirac’s delta function (Eq. 2.9).

Re
Z1

�1
d x� x0ð Þe�ixtdx

2
4

3
5 ¼ Re e�ix0t

� � ¼ cosx0t ð2:9Þ

This means that the interferogram of a laser light becomes a cosine curve.
In short, when a laser light is input into the interferometer, a cosine-shaped wave

is generated as the interferogram, as already shown by Eq. (2.4). This cosine shape
can be used as graduation marks of the interferogram.

With the characteristics of (1) and (2), the origin and the graduation marks of the
interferogram are both accurately determined by the simultaneous measurements of
IR broadband light and a laser. Therefore, a laser light is a necessary item for
FT-IR, and we need no calibration for the abscissa axis of the final output (cm−1).
This high accuracy of abscissa is a great benefit of using FT spectroscopy.

As shown in Fig. 2.4, the laser detector is placed near the exit of the interfer-
ometer “before” the sample room. In general, the laser detector allows a portion of
the laser light pass through the laser detector, which attains the sample room. Since
the IR light is invisible, this “leaked” red laser light is quite useful to consider the
light path especially for optical alignment. Note that the laser light has already been
detected, and the leaked red light can be interrupted by an opaque sample.
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2.4 Apodization Function

The inverse FT calculation is, in theory, performed using Eq. (2.7). Here, we have
to pay an attention to the integral range from 0 to þ1. Since the integral is carried
out in terms of x (mirror position), the integral range means that the moving mirror
moves over an infinitely large distance. In practice, however, a long retardation
(i.e., x2 � x1) is a technically difficult, and it is not necessary for a practical
wavenumber resolution for a condensed matter. Although a single molecule in
vacuum exhibits a very sharp absorption band, a condensed matter yields a rela-
tively broad band due to the variety of molecular interactions. In practice, the
resolution of 4 cm−1 is adequate, which needs a retardation of 0.25 cm (=1/4 cm−1)
in theory. In this manner, the moving mirror moves in a distance of ca. 5 mm,
which is significantly smaller than the length theoretically expected. This dis-
crepancy between the theory and the practical measurements is expressed using the
truncation function, D xð Þ.

DðxÞ ¼ 1 ð0� x� LÞ
0 ðx[ LÞ ða boxcar windowÞ

�

With this window function, the integral in a limited range up to L can be written
as in the original form.

SD ~mð Þ ¼ 2
ZL

0

I xð Þ cos 2p~mx dx

¼ 2
Z1

0

I xð ÞD xð Þ cos 2p~mx dx

ð2:10Þ

In other words, the observed FT-IR spectrum, SD ~mð Þ, involving the truncation
function is different from the ideal spectrum, S ~mð Þ. Equation (2.10) has a form of FT
of a function product of I xð Þ and D xð Þ, which is a convolution (see Sect. 4.2) of
F IðxÞ½ � and F D xð Þ½ � where ‘F’ is the Fourier transform operator.

Z1

0

I xð ÞD xð Þ cos 2p~mx dx � F I xð ÞD xð Þ½ �

¼ F I xð Þ½ ��F D xð Þ½ �

¼ 1
2p

Z1

�1
F I uð Þ½ � �F D x� uð Þ½ �du

Here, * denotes the convolution.
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As shown by Eq. (2.8) and Fig. 2.5, F D xð Þ½ � (sometimes called “instrumental
line shape (ILS) function”) has a shape of the sinc function that has a many
fringe-like tails on both sides of the main peak. Therefore, the fringes of the sinc
function should influence the final spectrum, SD ~mð Þ.

To remove the fringes, the boxcar function, D xð Þ, is modified to have another
window function, A xð Þ. By replacing D xð Þ with A xð Þ, the fringe-like oscillations
can largely be reduced, and this fringe-reduction effect is called “apodization,” and
therefore A xð Þ is called an “apodization function.” An apodization function has a
side effect that the wavenumber resolution and intensity linearity are degraded [1].
The suppression of the oscillation and the degradation are trade-off with each other.

At any rate, the selection of an apodization function is necessary to use FT-IR.
Many apodization functions have been proposed thus far. The representative
functions are: triangular, trapezoidal, cosine and Happ–Genzel functions. For the
detail, the reader is referred to the literature elsewhere [1]. Once an apodization
function is selected, the user should not change the function for a series of mea-
surements; otherwise the spectra lose consistency.

Reference

1. P.R. Griffiths, J.A. de Haseth, Fourier Transform Infrared Spectroscopy, 2nd edn. (Wiley,
Hoboken, NJ, 2007)
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Chapter 3
Surface Spectroscopy Using FT-IR

3.1 Fundamentals of Ordinate Scale of FT-IR Spectra

IR spectroscopy is one of the absorption spectroscopies, and the fundamentals of
the quantitative ordinate scale are common to other absorption spectrometries such
as UV–Vis. Since the measurements of IR spectra are mostly performed on FT-IR,
we do not have to pay attention to a double beam spectrometry, and only the
single-beam spectrometer is taken into account.

To obtain an absorption spectrum on FT-IR, two spectral measurements are
needed: the sample and background measurements. As the simplest case, the
sample is imagined as a thin film deposited on an IR-transparent substrate, and the
background measurement needs the substrate only without a film. When a
single-beam measurement is performed on FT-IR, a light intensity spectrum, I ~mð Þ,
as a function of wavenumber, ~m, is obtained, which is called “single-beam spec-
trum.” The wavenumber is defined as ~m � 1=k and it usually has a unit of cm−1.
Before treating a thin film sample, let us consider a bulk sample first to make the
logic simpler as follows.

Figure 3.1 presents IR single-beam spectra of the sample (Isample ~mð Þ) and back-
ground (IBG ~mð Þ) measurements. The sample is a polystyrene film. The shape of
IBG ~mð Þ is a results of the IR lamp function based on the black-body radiation, U ~mð Þ,
and the apparatus function as a result of the optics after the IR light source as well
as the detector function, W ~mð Þ.

IBG ~mð Þ ¼ U ~mð ÞW ~mð Þ

In a similar manner, the shape of Isample ~mð Þ can be denoted as:

Isample ~mð Þ ¼ U ~mð ÞW ~mð ÞT ~mð Þ:

© Springer Japan KK 2017
T. Hasegawa, Quantitative Infrared Spectroscopy for Understanding
of a Condensed Matter, DOI 10.1007/978-4-431-56493-5_3
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T ~mð Þ stands for the transmittance after the light absorption by the sample. This
simple formulation is possible because the spectrometer is built on a single-beam
optics, which requires no correction function as needed for a double beam spec-
trometer. Since the refractive index of polystyrene is different from that of air, the
two single-beam spectra exhibit an apparent mismatch even for the no absorption
regions. The transmittance is obtained by making the ratio of the two single-beam
spectra:

T ~mð Þ ¼ Isample ~mð Þ
IBG ~mð Þ :

T ~mð Þ is an exponential function of the light absorption (cf, Eq. 1.42), but it is
defined by using a base of 10 due to a historical reason.

T ~mð Þ ¼ 10�e ~mð Þcd

Here, c and d are the sample concentration and the optical path length, respectively,
and e kð Þ is the absorption spectrum at a virtual concentration of 1 mol dm−3, which
is understood as the molar extinction. In this manner, T ~mð Þ is not proportional to the
concentration, which is inconvenient for a quantitative analysis.

To overcome this inconvenience, another definition of absorbance, A ~mð Þ, is
introduced.

A ~mð Þ � � log10 T ~mð Þ ¼ e ~mð Þcd ð3:1Þ

The equation is known as Beer–Lambert’s law, which holds only for a bulk
sample, as mentioned in Sect. 1.6. Equation (3.1) involves logarithm, and therefore
absorbance has no unit (dimensionless), since a logarithm is defined as an integral
of dx=x having no unit.

Figure 3.2 presents IR transmission and absorbance spectra of polystyrene cal-
culated from the single-beam spectra in Fig. 3.1. These two spectra are two dif-
ferent representations of an identical spectrum. A straight line having no absorption
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band is named the “baseline” of the spectrum. In principle, the baseline appears at
the position of 1.0 (or 100%) for a transmission spectrum, and 0 for an absorbance
spectrum. The actual shift of the baseline from the theoretical position is due the
height mismatch of the single-beam spectra in Fig. 3.1.

Note that “band height” measured from the baseline has a chemical meaning
only for an absorbance spectrum, since absorbance is obtained via logarithm. In
other words, the band height of a transmittance spectrum from the baseline has no
meaning directly, and it cannot be used for a quantitative discussion.

Since absorbance spectra are useful for a quantitative analysis, the reader may
consider that transmittance spectra are no longer necessary. Absorbance spectra,
however, have an intrinsic problem that they are not suitable for a strongly
absorbing material that yields T � 0. This condition generates a quantitative
problem because the logarithm of nil cannot be calculated in principle, which is
found for some strong peaks in Fig. 3.2a.

One of the representative samples of a strongly absorbing material is an optical
filter. Figure 3.3 presents UV–Vis spectra of an identical glass filter in the trans-
mittance and absorbance representations. The transmittance spectrum apparently
shows that this glass cut the wavelength region below 400 nm, which works as an
optical filter. On the other hand, the absorbance spectrum gives an artifact due to the
largely inaccurate calculation via log 0.
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This is a reason why the transmittance representation is preferred by organic
chemists, since a newly synthesized material may exhibit an unexpectedly strong
absorption at an important peak.

Note that, however, the absorbance scale has, in general, a much better benefit
that a relative band intensity ratio can be discussed. For a physicochemical or a
quantitative analytical discussion, IR spectra should always be presented the in
absorbance scale; otherwise the spectral shape would be influenced by the con-
centration. For obtaining a subtracted spectrum, the absorbance representation is
also necessary.

3.2 Absorbance Spectra of a Weakly Absorbing Matter

The deduction process of Beer’s law from Maxwell equations (Sect. 1.6) involves
no optical interface. In fact, Beer’s law holds only for a bulk matter thanks to a fact
that the influence of the sample cell can be ignored within a good approximation.
This approximation is broken for thin film measurements on a substrate, since an
influence of the optical interface figures out significantly.

In this chapter, a “thin film” is defined as a film deposited on a substrate, and the
film thickness, d, is adequately thinner than the wavelength of the IR light, i.e.,
dk= � 1 (thin film approximation). On this condition, the absorption of the thin
film becomes very minor. For example, if the thin film is measured by using the
transmission optical geometry, the single-beam intensity of the sample measure-
ment, Isample, is very close to that of the background one, IBG:

Isample ¼ IBG � DI

where DI is a very minor difference. With the newly introduced parameter, the
absorbance is calculated as:
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A ¼ � log10
Isample

IBG
¼ � 1

ln 10
ln
IBG � DI

IBG
¼ � 1

ln 10
ln 1� DI

IBG

� �
:

Since DI=IBG � 1 holds, the natural logarithm term can be expanded by using
Taylor’s expansion, so that ln is readily removed. As a result, a simple approxi-
mated equation of:

A � 1
ln 10

DI
IBG

¼ 1
ln 10

IBG � Isample

IBG
¼ 1

ln 10
1� Isample

IBG

� �
ð3:2Þ

is obtained. In this manner, an absorbance spectrum of a thin film (or a weakly
absorbing film) can readily be calculated by using DI=IBG or making a simple ratio
of Isample =IBG.

What we have to do next is the calculation of Isample and IBG on electrodynamics,
in which an interface can explicitly be introduced. To incorporate an interface into a
physical model, the continuous conditions of the electric and magnetic fields at an
interface must be used, which are deduced from Maxwell equations.

3.3 Boundary Conditions in Electrodynamics

Figure 3.4 presents a schematic side view of an optical interface when the inci-
dental light comes from the lower part of the x–z plane with an angle of incidence of
hi. In optics, the angle of incidence is defined as the angle measured from the
surface normal (z-axis). A, T, and R represent electric (or magnetic) field amplitudes
of the incident, transmitted and reflected rays, respectively. p and s represent p- and
s-polarizations, respectively. The definitions of p- and s-polarizations are that the
amplitude vector is involved (parallel) in the incidental plane and perpendicular
(senkrecht in German) to the plane, respectively.

As described in Appendix 7.2, an important conclusion is obtained at an inter-
face from Maxwell equations:

n12 � E2 � E1ð Þ ¼ 0:
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Fig. 3.4 A schematic optical
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Here, n12 is the surface normal vector to the interface. Therefore, this means that
the tangential component of the electric field to the interface must be continuous at
a discontinuous boundary. Therefore, by referring to Fig. 3.4, the following
equations hold.

Ei
x þEr

x ¼ Et
x ð3:3Þ

Ei
y þEr

y ¼ Et
y ð3:4Þ

Hi
x þHr

x ¼ Ht
x ð3:5Þ

Hi
y þHr

y ¼ Ht
y ð3:6Þ

Here, the subscripts, x and y, indicate the tangential components in the directions of
x and y, respectively. In this manner, the superposition principle holds in an
identical phase as well as the field continuity at the boundary.

Note that the tangential component of Ap is driven by the angle of p=2� hi, i.e.,

Ap sin
p
2
� hi

� �
¼ Ap cos hi

Therefore, Eqs. (3.3) and (3.4) can be rewritten as:

cos hi Ap � Rp
� �

¼ cos htTp ð3:7Þ

and

As þRs ¼ Ts: ð3:8Þ

Besides, the wavenumber vector, k, which has the traveling direction of light, is
introduced.

k ¼ ka ¼ k
sin hi
0

cos hi

0
@

1
A � k

ax
ay
az

0
@

1
A

Here, the scaler, k, is the amplitude of the wavenumber vector. With this definition,
r and @ =@t in Maxwell equations can be replaced by ika and �ix, respectively, to
have:
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a�H ¼ �x
k
D , H � a ¼ x

k
D

a� E ¼ x
k
B

D � a ¼ 0

H � a ¼ 0

ð3:9Þ

Since the incidental plane is identical to the x–z plane, ay ¼ 0 holds irrespective
of the polarization. By taking B ¼ l0lrH into account, Eq. (3.9) becomes:

a� E ¼ x
k
B ¼ x

k
l0lrH:

This equation can further be rewritten by considering k ¼ nx=c (Eq. 1.34) and
c ¼ 1 =

ffiffiffiffiffiffiffiffiffi
e0l0

p
as:

H ¼
ffiffiffiffi
er

p

Z0
a� E: ð3:10Þ

Here, Z0 � l0 =e0. By taking this equation into account, Eqs. (3.5) and (3.6) can be
rewritten as:

ffiffiffiffiffiffi
er;1

p
cos hi As � Rsð Þ ¼ ffiffiffiffiffiffi

er;2
p

cos htTs ð3:11Þ

and

ffiffiffiffiffiffi
er;1

p
Ap þRp
� �

¼ ffiffiffiffiffiffi
er;2

p
Tp: ð3:12Þ

Equations (3.7), (3.8), (3.11) and (3.12) yield the following four equations
considering n ¼ ffiffiffiffi

er
p

.

Tp ¼
2n1 cos hi

n2 cos hi þ n1 cos ht
Ap � tpAp ð3:13Þ

Ts ¼
2n1 cos hi

n1 cos hi þ n2 cos ht
As � tsAs ð3:14Þ

Rp ¼
n2 cos hi � n1 cos ht
n2 cos hi þ n1 cos ht

Ap � rpAp ð3:15Þ

Rs ¼
n1 cos hi � n2 cos ht
n1 cos hi þ n2 cos ht

As � rsAs ð3:16Þ

The coefficients of t and r are called Fresnel’s amplitude transmission and
reflection coefficients, respectively. In practice, the amplitude is not measured, but
instead the energy flow of the light is measured by the detector of the spectrometer.
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The energy flow is represented by Poynting’s vector, S, which is calculated by
using Eq. (3.10) to be proportional to squared electric field as follows:

S ¼ E�H

¼
ffiffiffiffi
er

p

Z0
E� a� Eð Þ

¼
ffiffiffiffi
er

p

Z0
E � Eð Þa� E � að ÞE½ �

¼
ffiffiffiffi
er

p

Z0
E2a

ð3:17Þ

where the next mathematical formula is referred.

a� b� cð Þ ¼ a � cð Þb� a � bð Þc

If the time factor is involved in the equation to make the discussion more
practical, S can be calculated as follows:

S ¼ E�H

¼ Re Eeixt
� �

� Re Heixt
� �

¼ 1
2

Eeixt þE	e�ixt� �
� 1
2

Heixt þH	e�ixt� �
¼ 1

4
E�H	 þE	 �HþE�Hei2xt þE	 �H	e�i2xt� �

¼ 1
4

E�H	 þ E�H	ð Þ	 þE�Hei2xt þ E�Hei2xt
� �	� �

¼ 1
2
Re E�H	ð Þþ 1

2
Re E�Hei2xt
� �

ð3:18Þ

Since the time average is known to be:

Sh i ¼ 1
T

Z T

0
S tð Þdt;

the second term in the last line of Eq. (3.18) becomes nil on the time average. As a
result, the next equation is obtained.

Sh i ¼ 1
2
Re E�H	ð Þ ð3:19Þ
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This means that the time average of Poynting’s vector is easily obtained by simply
multiplying a factor of 1=2.

If a unit area is imaginably set on the boundary through which the energy of
J flows, the perpendicular component of S to the unit area is represented as:

Incidence flow: J ij ¼ Sij
			 			 cos hi (j = p or s)

Reflected flow: Jrj ¼ Srj
			 			 cos hi

Transmitted flow: J tj ¼ Stj
			 			 cos ht

With these equations, the reflectivity, R, can easily be obtained:

Rj �
Jrj
J ij

¼
Rj

		 		2
Aj

		 		2 ¼ rj
		 		2; ð3:20Þ

since
ffiffiffi
ei

p ¼ ffiffiffiffi
er

p
and hi ¼ hr hold. In this manner, R can simply be obtained by

calculating the absolute square of r. This works powerfully when a specular
reflection spectrum is converted to a transmission spectrum (Sect. 6.1).

As an example, when the normal incidence ðhi ¼ hr ¼ ht ¼ 0Þ is considered, the
following equation is deduced, which is common to both polarizations.

R ¼ rj j2¼ n2 � n1
n2 þ n1

				
				
2

ð3:21Þ

If the incidence phase is air (n1 ¼ 1:0), the equation becomes further simpler.

R ¼ n2 � 1
n2 þ 1

				
				
2

ð3:22Þ

This indicates that the reflectance becomes down to nil when the refractive index of
the material (n2) is close to 1.0. On the contrary, a high refractive index material
exhibits a high reflectance. For example, an IR light is incident on a germanium
(Ge; n2 ¼ 4:0) substrate normally, the reflectance increased up to 0.36. In other
words, the transmittance through a Ge substrate is decreased down to 0.64 although
Ge is transparent (nonabsorbing) to IR light.

On the other hand, the transmittance, T , is obtained to be complicated, since the
light goes in the two different phases across the boundary.

T j �
J tj
J ij

¼ n2
n1

cos ht
cos hi

Tj
		 		2
Aj

		 		2 ¼ n2
n1

cos ht
cos hi

tj
		 		2 ð3:23Þ
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3.4 A Model-Based Approach to Generate the TO Energy
Loss Function

As an example study using the amplitude transmission/reflection coefficients, let us
calculate an s-polarization reflection spectrum on a three-phase sample: air/thin
film/dielectric substrate, which is most easy to deduce a mathematical expression of
an absorbance spectrum. Let us put indices of 1, 2 and 3 for the air, film and
substrate phases, respectively (Fig. 3.5). Here, the thickness of the first and third
phases are both infinity, and that of the second phase is a thin thickness of
d (d =k � 1).

As found in many references, the multiple reflection model is conveniently
employed in the thin film (Fig. 3.5a). Since the wavelength is much larger than the
thickness, the reader may be concerned whether the multiple reflections occur in a
very thin layer or not. Fortunately, however, this intuitively understandable model
works properly limitedly when the light can be recognized to be a ‘plane wave’ [1,
2]. This can be proved by using a model-free theory, i.e., Abeles’ transfer matrix
method (Sect. 3.12).

When a light comes from the first phase of the three-phase system, the amplitude
of the reflected light, r123, is theorized by the summation of the reflected rays of the
multiple reflections (Fig. 3.5a) using the amplitude transmittance and reflection
coefficients at each interface considering the traveling direction of the light
(Fig. 3.5b).

r123 ¼ r12 þ t12t21r23 exp 2ibð Þþ t12t21r23r21r23 exp 4ibð Þþ � � �

¼ r12 þ
t12t21r23 exp 2ibð Þ
1� r21r23 exp 2ibð Þ

ð3:24Þ

Incidence: 1

t 12

r 12

t123
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3rd

d
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r 23

t 23

r 21

t 21

r 123

Fig. 3.5 Schematics of the three-phase system with a multiple reflection model (a). Each
amplitude transmittance and reflection coefficient is defined in (b)
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Here, b is the phase difference due to the path length in the second layer, which is
expressed as:

b ¼ 2pdn2 cos h2
k

:

n2 � n02 þ in002 is the complex refractive index of the second layer. h2 is the light
direction measured from the interface normal.

When referring to Eqs. (3.13)–(3.16), in addition, the following relations are
obtained.

r21 ¼ �r12
t12 ¼ 1þ r12
t21 ¼ 1þ r21 ¼ 1� r12

With these relations, Eq. (3.24) can be simplified as:

( )2
12 12 23

123

exp 2ir r r
r

β+
=

( ) ( )2
23 12 23exp 2i exp 2ir r rβ β+ −

( )
( )
( )

12 23

12 23

12 23

1 exp 2i

exp 2i

1 exp 2i

r r

r r

r r

β
β
β

+

+
=

+

ð3:25Þ

Here, the thin film approximation (b � 1) is employed to perform the Taylor
expansion of the exponential function. As a result, the exponential part is removed
to have a simple form:

r123 �
r12 þ r23 1þ 2ibð Þ
1þ r12r23 1þ 2ibð Þ : ð3:26Þ

This coefficient enables us to calculate the “single-beam spectrum” of a single-sided
film sample on a substrate. What we have to do next is, therefore, the calculation of
the two-phase system without the film, r12, which corresponds to the background
single-beam spectrum. r12 can simply be obtained by putting d ¼ 0 (i.e., b ¼ 0) in
Eq. (3.25).

r12 ¼
r12 þ r23
1þ r12r23

� b
1þ a

where a � r12r23 and b � r12 þ r23

By using these new parameters, Eq. (3.26) is rewritten as:
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r123 �
bþ 2ir23b
aþ 1ð Þþ 2iab

� aþ 1ð Þ � 2iab
aþ 1ð Þ � 2iab

¼ b
aþ 1

1þ 2ib
r23
b

� a
aþ 1

� �
 �
:

Therefore, the ratio of r123 to r12 is calculated to be:

r123
r12

¼ 1þ 2ib
r23 r212 � 1
� �

r12 þ r23ð Þ 1þ r12r23ð Þ


 �
:

Thanks to the simple and useful relationship of Eq. (3.20), the observable is
easily obtained as:

Rsample

RBG
¼ r123

r12

				
				
2

: ð3:27Þ

Here, the very convenient weakly absorbing approximation (Eq. 3.2) is referred
to have the next equation.

A ¼ 1
ln 10

1� Rsample

RBG

� �
ð3:28Þ

When Eq. (3.27) is put into Eq. (3.28), Eq. (3.16) is referred to take the
polarization into account. Since the refractive index of the first layer (air) is real
(n00 ¼ 0; no absorption), the next equation is deduced.

rs123
rs13

¼ 1þ 4pidn1 cos h1
k

n22 cos
2 h2 � n23 cos

2 h3
n021 cos2 h1 � n23 cos2 h3

� �

Therefore, Eq. (3.27) is calculated by ignoring the b2 terms:

Rs
sample

Rs
BG

¼ rs123
rs13

				
				
2

¼ rs123
rs13

� �	rs123
rs13

� 1� 8pdn1 cos h1
k

Im
n22 cos

2 h2 � n23 cos
2 h3

cos2 h1 � n23 cos2 h3

� �
:

ð3:29Þ

Here, n01 ¼ 1 (air phase) is used. In addition, Snell’s law [appearing later at
Eq. (3.42)] is taken into account under an assumption of isotropic media, and the
numerator of the fraction part can be simplified as:
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n22 cos
2 h2 � n23 cos

2 h3

¼ n22 1� sin2 h2
� �

� n23 1� sin2 h3
� �

¼ n22 � n23

¼ e2 � e3:

In a similar manner, the denominator is also simplified. As a result, Eq. (3.29) can
largely be simplified to be:

Rs
sample

Rs
BG

¼ 1� 8pdn1 cos h1
k

Im
e2 � e3
1� e3

� �
: ð3:30Þ

If the substrate does not absorb an IR ray (e3 ¼ e03 [ 1), the imaginary part of
Eq. (3.30) can further be simplified as:

Im
e2 � e03
1� e03

� �
¼ Im

e02 � e03
1� e03

þ i
e002

1� e03

� �
¼ � 1

e03 � 1
Im e2ð Þ:

As a result, we finally obtain the absorbance spectrum of the thin film sample by
using Eqs. (3.2) and (3.28),

As
reflection ¼

1
ln 10

1�
Rs
sample

Rs
BG

� �

¼ � 1
ln 10

8pdn1 cos h1
k e03 � 1
� � Im e2ð Þ

ð3:31Þ

This equation apparently implies that the s-polarized external reflection spectrum
(Sect. 3.12) always exhibits ‘negative absorbance’ irrespective of the angle of
incidence. Of another note is that the spectrum is governed by a function of Im e2ð Þ
that is specific to the thin film layer only. This imaginary part is called “TO energy
loss function [3–6].” Although TO reminds us of the TO phonon, but the definition
of the energy loss function is totally different from the TO phonon in the solid-state
physics. In fact, “TO function” is used for a spectrum of an amorphous film. Details
are found later below Eq. (3.68).

One of the great benefits of building an absorbance spectrum “on electrody-
namics” is that the spectrum shape is explicitly obtained, and the band intensity is
quantitatively predicted. Note that the theoretically predicted absorbance always
agrees with the observed one very accurately.

This example study is performed on an explicit layer model with a
multiple-reflection assumption, which is intuitively understandable. For a broader
versatility, however, a model-free theorization is more preferred. A great theo-
rization framework for the purpose is Abeles’ transfer matrix method in Sect. 3.6.
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3.5 Fresnel Equation and Optical Anisotropy

In the previous section, the electric permittivity is recognized to be a scalar (iso-
tropic) to make the logic simpler. As shown later, however, the isotropic system has
a big problem that the p-polarization light cannot be taken into account. To expand
the concept of permittivity to both s- and p-polarizations, in this section, the per-
mittivity is treated as a tensor.

Here, the light is conveniently considered to be a plane wave, which is a very
good approximation, when the light source is very far from the interface. Since the
particular solution involves a term of exp i k � r� xtð Þ, the derivative operators in
Maxwell equations are simplified as:

k � D ¼ 0

k � B ¼ 0

k�H ¼ �xD

k� E ¼ xB

ð3:32Þ

To take an optical anisotropy into account, the constituent (or material) equa-
tions are separately prepared as always.

D ¼ eE
B ¼ l0H

Here, the electric permittivity (e ¼ e0er) consists of a constant, e0, and the rel-
ative permittivity, er, and a practically good approximation of lr ¼ 1 is used. In this
manner, the material response to the light is introduced. Of note is that the electric
permittivity is not a molecular character, but a characteristic of a bulk matter.
Electrodynamics thus enables us to consider the light absorption by a bulk matter.

If the coordinates are common to both laboratory and permittivity systems, i.e.,
the light comes parallel to the material axis, the permittivity tensor can largely be
simplified as:

e ¼
ex 0 0
0 ey 0
0 0 ez

0
@

1
A ¼ e0

er;x 0 0
0 er;y 0
0 0 er;z

0
@

1
A � e0er:

If er;x ¼ er;y ¼ er;z holds, the system is called “isotropic,” which corresponds to a
system of randomly oriented molecules. If er;x ¼ er;y 6¼ er;z or er;x 6¼ er;y 6¼ er;z holds,
the system is called “anisotropic,” and the former and latter correspond to the
uniaxial and biaxial systems, respectively.

Here, let us simplify the theory using the uniaxial system with er;x ¼ er;y.
Uniaxial means that the orientation distribution is governed by only an angle about
one axis (mostly z axis). When the axis of z is perpendicular to the interface, the
axis corresponds to the optical axis (described at Fig. 3.6).
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On the plane wave approximation, the electric and magnetic waves (E and H,
respectively) are expressed as follows.

E ¼ E0 exp i k � r� xtð Þ
H ¼ H0 exp i k � r� xtð Þ

Here, let us consider the p-polarization. Since the incidental plane of the
p-polarization involves only x and z axes, the wavenumber vector, k, is written as:

k ¼
kx
0
kz

0
@

1
A ¼ k

ax
0
az

0
@

1
A; ð3:33Þ

where ax � sin h and az � cos h. Here, the scalar, k, is the length of k.
Now, let us introduce a new index set of o and e, so that the calculation can

comprehensively be visualized.

E ¼
Ee
x

Eo
y

Ee
z

0
@

1
A and H ¼

Ho
x

He
y

Ho
z

0
@

1
A ð3:34Þ

When Eq. (3.34) put into the fourth equation of Eq. (3.32), which is:

k� E ¼ xB ¼ xl0H: ð3:35Þ

Then, the following relationship is obtained.

�kzEo
y

kzEe
x � kxEe

z
kxEo

y

0
@

1
A ¼ xl0

Ho
x

He
y

Ho
z

0
@

1
A ð3:36Þ

Fig. 3.6 Light reflection in
the incidental plane (x–z) at an
interface (x–y) whose optical
axis is in the z direction
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This equation should be noted that each row is categorized into o or e. In a
similar manner, Eq. (3.34) is put in the next equation:

k�H ¼ �xD ¼ �xe0erE;

then, Eq. (3.37) is obtained.

�kzHe
y

kzHo
x � kxHo

z
kxHe

y

0
@

1
A ¼ �xe0er

Ee
x

Eo
y

Ee
z

0
@

1
A ¼ �xe0

er;xEe
x

er;yEo
y

er;zEe
z

0
@

1
A ð3:37Þ

This equation also has a character that each row is driven by either o or e. In other
words, o and e are separated readily. With this character, Eqs. (3.36) and (3.37) can
be merged in terms of “o,” by putting the first and third equations of Eq. (3.36) in
the second equation of Eq. (3.37) by referring Eq. (3.33).

�
k2z
xl0

Eo
y �

k2x
xl0

Eo
y ¼ �xe0er;xE

o
y

, k2z þ k2x ¼ x2l0e0er;x

, k2 ¼ x2

c2
er;x

This straightforwardly indicates that the light indexed with “o” depends only on
the permittivity of er;x, which is independent of the traveling direction. This light is
called “ordinary light,” which is applicable for isotropic materials.

When Eqs. (3.36) and (3.37) are merged in terms of “e,” in a similar manner, on
the other hand, two equations are generated as follows.

�k2z E
e
x þ kxkzEe

z
kxkzEe

x � k2xE
e
z

� �
¼ �x2

c2
er;xEe

x
er;zEe

z

� �
ð3:38Þ

Here, a new parameter, �e, is introduced.

�e � c2k2

x2 or �n � ck
x

ð3:39Þ

Then, Eq. (3.38) can be organized to be:

��ea2z þ erx axaz�e
axaz�e ��ea2x þ erz

� �
er;xEe

x
er;zEe

z

� �
¼ 0;

when considering kx =k ¼ ax and kz=kz ¼ az ð* k2 ¼ k2z þ k2x Þ. To make this equa-
tion have a nontrivial solution for Ee

x and Ee
z , the next relationship must be held.
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��e er;za2z þ er;xa2x
� �

þ er;xerz ¼ 0

, 1
�e
¼ a2x

er;z
þ

a2z
er;x

ð3:40Þ

Equation (3.40) is called Fresnel’s equation [4, 7]. For the s-polarization case, a
very similar result is obtained, but the result is for an isotropic one. Equation (3.40)
apparently implies that the material constant (permittivity; �e) depends on the
traveling direction (ax and az). This light indexed by “e” is called “extraordinary
light.” If er;x ¼ er;z is put in Eq. (3.40), �e ¼ er;x ¼ er;z is obtained, which means that
Eq. (3.40) is a general equation that can involve the ordinary light. This further
means that the ordinary light corresponds to the s-polarization.

In other words, if light is incident into an anisotropic medium, the light is split
into two paths, i.e., the ordinary and extraordinary light paths. Regardless, there is a
specific angle exhibiting no light splitting. The direction along this specific angle is
called “optical axis.” For a thin film with the uniaxial molecular orientation, the
optical axis is mostly parallel to the z axis, which makes the theory very simple.

Now, let us consider a light reflection within the incidental plane at an interface
having the optical axis parallel to the z axis (Fig. 3.6).

As found in Sect. 3.3, the tangential component of the electric field to the
boundary is continuous at an optical interface. Since xt is a common part in the
phase part of the plane wave functions, the rest part must be continuous at the
interface [1].

ki � r
� �

z¼0¼ kr � rð Þz¼0¼ kt � rð Þz¼0

When Eq. (3.33) and r ¼ x; 0; zð Þz¼0 are taken into account, another form is
available:

kix ¼ krx ¼ ktx
kiz ¼ �krz:

ð3:41Þ

When Eq. (3.39) is taken into account, the next equation is obtained:

kix ¼ krx

, �n1x
c

aix ¼
�n1x
c

arx

, sin hi ¼ sin hr

, hi ¼ hr;

which means that the reflection angle is equal to the angle of incidence no matter
what material is chosen for the interface. In a similar manner,
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kix ¼ ktx

, �n1x
c

aix ¼
�n2x
c

atx

, �n1 sin h
i ¼ �n2 sin h

t

ð3:42Þ

is obtained in terms of refraction. The last line is called Snell’s law. Snell’s
equation is often used for an isotropic system, but Eq. (3.42) is the general formula
using �nj. If an absorbing material is chosen, the refractive index becomes a complex
and the refraction angle would also become a complex, which is different from the
observed refraction angle. Therefore, the representation of kix ¼ ktx is better than
Snell’s law to generally express the refraction phenomenon.

Now, let us consider the p-polarization, whose electric field is within the x–
z plane (incidental plane), i.e, the magnetic field is exactly parallel to the y-axis. To
consider the field continuity, therefore the magnetic field, H, is more convenient to
be theorized in this case.

As found in Eq. (3.35), H � k ¼ xD is employed to have [8]:

0

Hy

0

0
B@

1
CA� k

ax
0

az

0
B@

1
CA ¼ x

exEx

eyEy

ezEz

0
B@

1
CA

, Hy
k
x

az
0

�ax

0
B@

1
CA ¼

exEx

eyEy

ezEz:

0
B@

1
CA:

This can be rewritten in terms of the electric field as:

E ¼ Hy
k
x

e�1
x az
0

�e�1
z ax

0
@

1
A: ð3:43Þ

Since Eq. (3.39) can be rewritten as:

k
x
¼

ffiffi
�e

p

c
¼ �n

c
;

then Eq. (3.43) can be another form as:

E ¼ Hy
�n
c

e�1
x az
0

�e�1
z ax

0
@

1
A:

Then, the tangential component of the electric field, Ex, of the p-polarization is
correlated with Hy as:
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Ex ¼
�naz
cex

Hy: ð3:44Þ

In the same manner, the tangential component of the magnetic field, Hx, for the
s-polarization is correlated with Ey, since the electric field of the s-polarization is
perpendicular to that of the p-polarization, and it obeys the isotropic system, i.e.,
�n ¼ nx. (In other words, the s-polarization is not interacted with nz.)

Hx ¼ � nxaz
cl0

Ey ð3:45Þ

3.6 Transfer Matrix Method

The multiple-reflection model used in Sect. 3.4 is intuitively quite understandable.
Nevertheless, no one knows whether multiple reflections occur or not in a very thin
film for a long-wavelength light such as IR light, whose wavelength is much larger
than the film thickness. To calculate the transmittance and reflectance at an interface
without using an intuitive model, Abeles’ transfer matrix method works powerfully
[4, 5, 7, 8]. This general method is free from an intuitive model, and instead only
the continuities of the electric and magnetic fields are sophisticatedly theorized.
Here, a generalized theoretical framework of electrodynamics for calculating
transmittance and reflectance at an interface is described.

Abeles’ method is significant that no physical model is needed, and instead, only
the electric field parameters at each interface are prepared as presented in Fig. 3.7,
which can be employed for any stratified layers.

Light goes across obliquely at the interface indexed with j, which accompanies
the electric field of Ei

j . Some of the incident light is reflected and the rest transmits
the interface accompanying Er

j and Et
j , respectively. Of note is that the Et

j is
influenced by another reflected light coming from the interface indexed with j + 1
via Erb

j . In this manner, in this theoretical framework, only the electric field com-

ponents of Ei
j; E

r
j ;E

t
j and E

rb
j at an interface are simply correlated with each other by

Ej
rb Ej

t

Ej
i Ej

r
Phase j

Phase j+1

Phase j+2

Interface j

Interface j+1
Ej+1

rb Ej+1
t

Ej+1
i Ej+1

r

Fig. 3.7 Definitions of
electric field parameters at an
interface in stratified layers.
The arrow indicates the light
propagation direction. The
light goes upward across the
interfaces

3.5 Fresnel Equation and Optical Anisotropy 65



using the continuous condition. In other words, we don’t have to be care of a
multiple-reflection in the film [8].

Ei
j þEr

j ¼ Et
j þErb

j

Hi
j þHr

j ¼ Ht
j þHrb

j

ð3:46Þ

Here, the phase number index of j is added to �naz=cex found in Eq. (3.44)
(p-polarization), which is defined in mj:

mj �
�njaz;j
cex;j

ð3:47Þ

When the second equation of Eq. (3.41) (reflection law) is taken into account,
the four electric field components are written with the use of this new parameter as:

Ei
j ¼ mjH

i
j

Er
j ¼ �mjH

r
j

Et
j ¼ mjþ 1H

t
j

Erb
j ¼ �mjþ 1H

rb
j

Note that the t and rb components are influenced by the j + 1th phase. When these
components are put in Eq. (3.46), the following equation holds.

QjNj ¼ Qjþ 1Fj

where

Qj �
mj �mj

1 1

� �
; Nj �

Hi
j

Hr
j

� �
and Fj �

Ht
j

Hrb
j

� �
: ð3:48Þ

At the moment, nothing is taken care for the phase retardation when the com-
ponents go across a phase with a thickness. When a component travels from the jth

interface to the j + 1th interface, the retardation of dj � kz;jdj must be taken into
account such as:

Ht
j exp idjþ 1

� �
¼ Hi

jþ 1

Hr
jþ 1 exp idjþ 1

� �
¼ Hrb

j :
ð3:49Þ

Since only the surface tangential component is considered for the continuity at the
interface, only the surface-perpendicular (z) component of the wavenumber vector,
kz;j, is necessary.

Equation (3.49) can simply be represented by using a matrix of:
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Pj �
exp idj
� �

0
0 exp �idj

� �� �
ð3:50Þ

to be:

Njþ 1 ¼ Pjþ 1Fj

With this equation, all the representation of the field continuity and the phase
retardation are summarized as:

QjNj ¼ Qjþ 1Fj

Njþ 1 ¼ Pjþ 1Fj
: ð3:51Þ

This equation set is the fundamental of the thin-film optics, which is called “transfer
matrix method.” With this set, the magnetic fields at the first and last interfaces are
directly interrelated with each other.

For example, when j ¼ 1 is put in the equation set, we have:

Q1N1 ¼ Q2F1 , N1 ¼ Q�1
1 Q2F1

N2 ¼ P2F1 , F1 ¼ P�1
2 N2

The two equations are merged to hide F1 resulting in:

N1 ¼ Q�1
1 Q2P

�1
2 N2 ð3:52Þ

When j ¼ 2 is put in the first equation of Eq. (3.51), we have:

Q2N2 ¼ Q3F2 , N2 ¼ Q�1
2 Q3F2;

which can further be put into Eq. (3.52) to hide N2 resulting in:

N1 ¼ Q�1
1 Q2P

�1
2 Q�1

2 Q3F2: ð3:53Þ

Here, note that Hrb
2 ¼ 0, since the interface of j ¼ 2 is the last boundary to receive

no back reflection. Therefore, we have the vector set as:

N1 ¼
Hi

1
Hr

1

� �
and F2 ¼

Ht
2
0

� �
:

In this manner, the magnetic fields at the first and second interfaces are directly
connected.

If we consider a double-sided thin film sample such as a Langmuir–Blodgett
(LB) film in a five-phase system of air/film/substrate/film/air, in a similar manner,
the next equation is built.
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N1 ¼ Q�1
1 Q2P

�1
2 Q�1

2 Q3P
�1
3 Q�1

3 Q2P
�1
2 Q�1

2 Q1F4 ð3:54Þ

This equation accompanies the two vectors:

N1 ¼
Hi

1
Hr

1

� �
and F4 ¼

Ht
4
0

� �
: ð3:55Þ

Here, Hi
1;H

r
1 andH

t
4 are magnetic fields of incident, reflected and transmitted light,

respectively. Since Eq. (3.17) can be rewritten by using the magnetic field, the light
intensity is calculated by using the magnetic fields. For our purposes, the absolute
intensity is not needed, and thus the light intensity is calculated via a normalization
by Hi

1, as shown later at Eq. (3.61).

3.7 Calculation of Single-Beam Spectra of the Background
and the Sample Measurements

In the previous section, the fundamental for calculating the magnetic field inten-
sities is presented. In the present section, the same procedure is employed for
calculating the background and sample single-beam spectra.

Let us calculate the “sample” spectrum first, since the result would soon be
applied to the calculation of the background spectrum. If the double-sided thin film
sample consists of the optical phases of air/thin film/substrate/thin film/air, the
5-phase system must be taken into account.

Since Q�1
i Qj repeatedly appears in Eq. (3.54), this term is calculated first by

using Eq. (3.48).

Q�1
i Qj ¼

1
2mi

1 mi

�1 mi

� �
mj �mj

1 1

� �

¼ 1
2mi

mi þmj mi � mj

mi � mj mi þmj

� �

¼ t�1
ij

1 rij
rij 1

� �
ð3:56Þ

Here, the phases indexed by i and j are adjacent to each other, and the next new
definitions are used.

tij �
2mi

mi þmj

rij �
mi � mj

mi þmj

ð3:57Þ
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In a similar manner, the inversed matrix of Pj is also calculated in advance.

P�1
j ¼ exp �idj

� �
0

0 exp idj
� �� �

ð3:58Þ

Although the 3-phase system is easily calculated, the 5-phase system needs a
technical modification as follows:

N1 ¼ Q�1
1 Q2P

�1
2 Q�1

2 Q3P
�1
3 Q�1

3 Q2P
�1
2 Q�1

2 Q1F4

¼ uAP
�1
3 uBF4;

ð3:59Þ

where

uA ¼ Q�1
1 Q2P

�1
2 Q�1

2 Q3

uB ¼ Q�1
3 Q2P

�1
2 Q�1

2 Q1

Each of which can easily be calculated to have:

uA ¼ t�1
13

1 �r31
r13 R

� �

uB ¼ t�1
13

1 �r13
r31 R

� �

These newly introduced parameters have a character that several amplitude
transmittance and reflection coefficients on ‘un-neighboring phases’ are involved.
Each of which has an explicit form as follows:

t13 �
t12t23

r12r23 exp id2ð Þþ exp �id2ð Þ

t31 �
t32t21

r32r21 exp id2ð Þþ exp �id2ð Þ

r13 �
r12 exp �id2ð Þþ r23 exp id2ð Þ
r12r23 exp id2ð Þþ exp �id2ð Þ

r31 �
r32 exp �id2ð Þþ r21 exp id2ð Þ
r12r23 exp id2ð Þþ exp �id2ð Þ

R ¼ r12r23 exp �id2ð Þþ exp id2ð Þ
r12r23 exp id2ð Þþ exp �id2ð Þ :

ð3:60Þ

By putting Eq. (3.55) into Eq. (3.59), the next equation is readily obtained after
an easy calculation.
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Hi
1

Hr
1

� �
¼ Ht

4

t13t31
exp �id3ð Þ � r231 exp id3ð Þ
exp �id3ð Þþ r31R exp id3ð Þ

� �

As a result, an important ratio that connects the both end phases can soon be
obtained.

Ht
4

Hi
1
¼ t13t31

exp �id3ð Þ � r231 exp id3ð Þ

¼ t13t31 exp id3ð Þ
1� r231 exp 2id3ð Þ :

Since the light intensity is the energy flow of the electromagnetic wave
(Poynting vector), the transmitted light intensity spectrum, i.e., the single-beam
spectrum of the sample is thus readily obtained as:

Ht
4

Hi
1

				
				
2

¼ t13t31
1� r231 exp 2id3ð Þ

				
				
2

:

This equation involves a vibration as a function of the film thickness represented
by exp 2id3ð Þ, which is called optical fringe. When the thickness of the substrate
ðd3 of d3 ¼ kz;3d3Þ is large enough, the fringe interval becomes too large to find. As
a result, spectral averaging occurs, which is obtained as [4]:

Tsample �
Ht

4

Hi
1

				
				
2

* +
¼ t13t31j j2

1� r31j j4
: ð3:61Þ

Here, Tsample is the transmitted light intensity of the 5-phase system (double-sided
thin-film sample). In this manner, the single-beam spectrum of the sample is
calculated.

In a similar manner, the single-beam spectrum of the background (3-layer sys-
tem) is calculated by using Eqs. (3.53) and (3.60).

Ht
2

Hi
1
¼ t12t23

r12r23 exp id2ð Þþ exp �id2ð Þ ¼ t13

Therefore, the experimentally observed single beams spectrum of the background,
TBG, is formulated as:

TBG ¼ Ht
2

Hi
1

				
				
2

* +
¼ t13j j2
D E

:
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In the 3-layer system of air/substrate/air, t23 ¼ t21 and r12 ¼ �r23 hold.
Therefore, TBG can be simplified to be:

TBG ¼ t12t21j j2

1� r12j j4
: ð3:62Þ

In this manner, single-beam spectra of both sample and background have readily
been calculated analytically. To obtained the final form of absorbance spectrum, an
additional mathematical step is needed, i.e., the thin-film approximation.

3.8 TO and LO Energy Loss Functions: Introduction
of the Thin-Film Approximation

In the deduction process of the absorbance spectrum by making the ratio of Tsample

and TBG, the parameters defined at Eq. (3.60) have exponential functions, which
makes the calculation highly complicated. If the thickness of the thin-film layer is
adequately thinner than the wavelength of the IR light, i.e., d =k � 1, the expo-
nential term can largely be simplified by using Taylor’s expansion.

By considering Eqs. (3.33) and (3.39), the wavenumber in dj � kz;jdj can be
rewritten as:

kz;j ¼ kaz;j ¼
x
c
�njaz;j:

Therefore, the phase, dj, can be obtained as:

dj ¼
x
c
�njaz;jdj ¼

2p
k
�njaz;jdj:

Let us define the thickness of the second thin-film layer of the 5-layer system as b,

b � d2 ¼
2p
k
�n2az;2d2

Since b is small enough to unity, t13 can be simplified by Taylor’s expansion. In
addition, higher terms of b2 or more are ignored, and replacements of a � t12t23 and
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b � r12r23 are used.
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⎛ ⎞−

= +⎜ ⎟+ +⎝ ⎠
⎛ ⎞−

≡ +⎜ ⎟+⎝ ⎠

ð3:63Þ

With the use of this result, t31 is easily obtained as:

t31 ¼
t32t21

1þ r32r21
1þ i

1� r32r21
1þ r32r21

b

� �

� t310 1þ i
1� r32r21
1þ r32r21

b

� �
:

Here, the fraction part is represented by aij such as:

a13 �
1� r12r23
1þ r12r23

;

and Eq. (3.57) is referred to have:

a13 ¼
m1m3 þm2

2

m2 m1 þm3ð Þ ¼ a31 � a

72 3 Surface Spectroscopy Using FT-IR



With this replacement parameter, t13 and t31 can be written as:

t13 � t130 1þ iabð Þ
t31 � t310 1þ iabð Þ:

Since both a and b are complex, the conjugate is multiplied to have the squared
intensity.

t13t31j j2 ¼ t2130t
2
310 1þ iabð Þ2
		 		2

� t2130t
2
310 1þ 2iabj j2 þO b2

� �
¼ t2130t

2
310 1þ 2iabð Þ 1� 2ia	b	ð Þ

� t2130t
2
310 1þ 2i ab� a	b	ð Þf gþO b2

� �
¼ t2130t

2
310 1� 4Im abð Þð Þ

ð3:64Þ

Since, t2130t
2
310 has nothing to do with the IR absorbing (second) phase, the

spectral shape depends on only Im abð Þ. Now, ab has thus to be calculated. This
product is a function of mj (see Eq. 3.47), and refractive index is needed.
Remember that the refractive index to the extraordinary light depends on the
traveling direction of the light (below Eq. 3.40). In this case, the expanded Snell
law using complex refractive indices is conveniently used to be connected to the
first phase. Thus, the expanded Snell law and the Fresnel equation are resolved as a
matter of simultaneous equations.

n1ax;1 ¼ �n2ax;2 � X Expanded Snell
0
s law

� �
1
�e2

¼
a2x;2
ez;2

þ
a2z;2
ex;2

ðFresnel equationÞ

X is newly defined to make the calculation simpler. Note that X is a function of
the angle of incidence in the phase 1, and thus a real parameter. When Eq. (3.42) is
taken into account, the next equations are obtained (see also Eq. 3.33).

ax;2 ¼
X
�n2

and a2z;2 ¼ 1� X2

�n22

These are conveniently used to calculate the Fresnel equation as:
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1
�e2

¼ 1
ez;2

X2

�n22
þ 1

ex;2
1� X2

�n22

� �

¼ 1
ez;2

X2

�e2
þ 1

ex;2
1� X2

�e2

� �

, 1 ¼ X2

ez;2
þ 1

ex;2
�e2 � X2� �

, ex;2ez;2 ¼ ex;2X
2 þ ez;2 �e2 � X2

� �
¼ X2 ex;2 � ez;2

� �
þ ez;2�e2

, �e2 ¼
1
ez;2

ex;2ez;2 � X2 ex;2 � ez;2

� �n o

¼ ex;2 þ 1�
ex;2
ez;2

 !
X2

ð3:65Þ

In this manner, the complex electric permittivity of �e2 (corresponding to the IR
absorbing phase) is now directly related to the angle of incidence. Next, b =m2 in

ab ¼ m1m3 þm2
2

m2 m1 þm3ð Þ b

is partially simplified by introducing a replacement of:

b ¼ 2p
k
�n2az;2d2 ¼ g�n2az;2 g � 2pd2

k

� �

to have:

b
m2

¼ g�n2az;2
�n2az;2
ex;2

¼ gex;2:

Note that c in mj (Eq. 3.47) is removed, since it does not influence rij and tij, either.
Then, ab is a little simplified to be:

ab ¼ m1m3 þm2
2

m1 þm3
gex;2: ð3:66Þ

Since the first and third phases are unabsorbing layers, both m1 and m3 are real. g
is also real. Only ex;2 is complex. Therefore, the next equation is obtained.
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Im abð Þ ¼ Im
m1m3 þm2

2

m1 þm3
gex;2


 �

¼ g
m1 þm3

Im m1m3 þm2
2

� �
ex;2

� 
¼ g

m1 þm3
m1m3Im ex;2

� �
þ Im m2

2ex;2
� �� 

In this equation, m2
2ex;2 is calculated in detail by considering Eq. (3.33) as

follows.

m2
2ex;2 ¼

�n2az;2
ex;2

� �2

ex;2

¼ �e2
ex;2

1� a2x;2
� �

¼ �e2 � X
ex;2

2

Here, Fresnel’s equation is modified by using X.

1 ¼
�e2a2x;2
ez;2

þ
�e2a2z;2
ex;2

¼ X2

ez;2
þ

�e2 1� a2x;1
� �

ex;2

, ez;2 ¼ X2 þ
ez;2
ex;2

�e2 � X2� �

, �e2 � X2

ex;2
¼

ez;2 � X2

ez;2
¼ 1� X2

ez;2

Therefore, the next equation is obtained by considering that X is real.

Im m2
2ex;2

� �
¼ Im 1� X2

ez;2

 !
¼ X2Im � 1

ez;2

 !
ð3:67Þ

As a result, the next formulation is obtained.

Im abð Þ ¼ g
m1 þm3

m1m3Im ex;2
� �

þX2Im � 1
ez;2

� �
 �

With this organized formulation, t13t31j j2 (cf. Eqs. 3.61 and 3.64) is finally obtained
as:
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t13t31j j2 ¼ t2130t
2
310 1� 4Im abð Þð Þ

¼ t2130t
2
310 1� 4

g
m1 þm3

m1m3Im ex;2
� �

þX2Im � 1
ez;2

� �
 �� �

� t2130t
2
310 1� 4

g
m1 þm3

m1m3 � TOþ n21sin
2h � LO

� � � ð3:68Þ

The impressive two functions of Im ex;2
� �

and Im �1 =ez;2
� �

are the TO and LO
energy loss functions, respectively [3–6]. The names of the functions are derived from
a fact that the TO and LO spectra reveals the transverse optic (TO) and longitudinal
optic (LO) phonon modes of a thin crystallite layer. In the thin film spectrometry,
however, the “TO and LO functions” are conveniently used for describing the spectral
shape regardless of whether the TO and LOmodes are available or not. In fact, TOand
LO functions are also used for amorphous films [9]. In short, TOand LO functions are
used for explaining the spectral shape depending on the optical configuration. As
found in the case of the s-polarization ER measurements (Eq. 3.31), the
surface-parallel electric field observes the TO function spectrum only.

For example, as the simplest case, the normal incidence transmission mea-
surements are easily formulated by putting X ¼ 0, since the angle of incidence is
zero. As a result, the spectrum is driven by the TO energy loss function only.

To calculate the single-beam spectrum of the sample, Tsample (Eq. 3.61), r31j j4
has to be calculated. As found in the thin-film approximation, r31 is calculated.
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ð3:69Þ

Here, some replacements are conveniently used such as:
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a � r32r21; b � r32 þ r21; and A � r21
b

� a
aþ 1

:

In this manner, the analytical expression of the transmission measurements is fig-
ured out. To explicitly calculate r31j j4, r31j j2 is first calculated as:

r31j j2 ¼ r2310 1þ i2bAð Þ 1� i2b	A	ð Þ
¼ r2310 1þ 4Im bAð ÞþO b2

� �� �
Therefore, r31j j4 is calculated in a good thin-film approximation as:

r31j j4¼ r4310 1þ 8Im bAð ÞþO b2
� �� �

ð3:70Þ

If the refractive index of the thin-film phase is assumed to be 1.5, and the angle
of incidence is less than Brewster’s angle for a transmission measurement, then
r4310 � 1 holds. In this practical situation, the next equation holds.

Tsample ¼
t13t31j j2

1� r31j j4
� t13t31j j2 1þ r31j j4

� �

The single-beam spectrum of the background, TBG, is also calculated in a similar
manner by using Eq. (3.62) to have:

TBG ¼ t12t21j j2

1� r12j j4
� t2130t

2
310 1þ r4310
� �

:

3.9 Analytical Expression of a Transmission Spectrum

A long story is coming to the end. Every part necessary is available to have the
absorbance spectrum of transmission measurements. Although the absorbance is
defined by using the natural logarithm as:

A � � log10
Tsample

TBG
¼ � 1

ln 10
ln
Tsample

TBG
; ð3:71Þ

it is good enough to have ln Tsample=TBG
� �

. The ratio part is calculated by using the
analytical expressions obtained in the previous section. To visualize Eq. (3.68)
simpler, a new parameter of U is introduced.
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t13t31j j2¼ t2130t
2
310 1� 4

g
m1 þm3

m1m3TOþX2LO
� � �

� t2130t
2
310 1� Uð Þ

Then, the ratio is calculated by using this new parameter and Eq. (3.70).

Tsample

TBG
¼

t13t31j j2 1þ r31j j4
� �

t2130t
2
310 1þ r4310
� �

¼ t2130t
2
310 1� Uð Þ
t2130t

2
310

� 1þ r4310 1þ 8Im bAð Þf g
1þ r4310

¼ 1� Uð Þ 1þ r4310 1þ 8Im bAð Þf g
1þ r4310

When the common logarithm is applied to this ratio, the next equation is obtained.

� ln
Tsample

TBG
¼ � ln 1� Uð Þ � ln

1þ r4310 1þ 8Im bAð Þf g
1þ r4310

� �
� U

¼ 4
g

m1 þm3
m1m3TOþX2LO
� 

Here, two approximations of ln 1� xð Þ � �x and r4310 � 1 are used. As a result of
the long deduction process, an explicit function of the p-polarized transmission
measurements in the absorbance scale, ATr, is finally obtained.

ATr;p ¼ 1
ln 10

� 4g
m1 þm3

m1m3Im ex;2
� �

þX2Im � 1
ez;2

� �
 �

¼ 1
ln 10 � k �

8pd2
m1 þm3

m1m3Im ex;2
� �

þ n21 sin
2 h1Im � 1

ez;2

� �
 �

� 8pd2
ln 10 � k CpTO � TOþCpLO � LO

� �
ð3:72Þ

In the case of the p-polarization, Eq. (3.72) cannot be simplified further. For the
normal incidence as a particular case,

ATr
h1¼0 ¼

1
ln 10 � k �

8pd2m1m3

m1 þm3
Im ex;2
� �

¼ 1
ln 10 � k �

8pd2
n1 þ n3

Im ex;2
� � ð3:73Þ

is obtained, which is apparently driven by the TO energy loss function only.
In other words, normal incidence transmission spectrometry is a good technique

for retrieving the TO function only from a thin film sample. Since the TO function
is a function of e2;x, only the surface-parallel molecular vibration is observed in the
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spectrum. This characteristic is called surface selection rule of the transmission
spectrometry (Sect. 3.15) [5].

Another notable point is that ATr
h1¼0 apparently depends on the refractive index of

the substrate (n3). This is an intuitively surprising result, since the absorbance
spectrum is obtained via Tsample =TBG (Eq. 3.71), which makes us have an
impression that the influence of the background has been canceled. As a matter of
fact, the absorbance is indeed influenced apparently by choice of the substrate as
found in Table 3.1 [10]. The reason occurring the discrepancy from the intuitive
speculation is that both Tsample and TBG are related to the electric field of IR ray “far
from the sample surface.” In practice, however, ATr

h1¼0 is driven by the electric field
“in the film on the substrate,” which is significantly influenced by the optical
interface, and totally different from the far field. In this manner, we understand that
a normal incidence transmission spectrum cannot be understood by simply
changing the sample thickness only. All the surface spectroscopies that are influ-
enced by an optical interface are thus out of Beer’s law considering no optical
interface.

To check Eq. (3.72), p-polarized Tr spectra are simulated by using example
optical parameters presented in Fig. 3.8, which is experimentally obtained from a
5-monolayer LB film of cadmium stearate after fitting analysis using the in-plane
and out-of-plane dielectric functions to the external reflection spectra measured at
two angles of incidence [11].

By using the refractive index ðn2 ¼ erÞ, Eq. (3.72) is calculated to have the blue
curve in Fig. 3.9. Since the angle of incidence of 45° is employed, both n00 xð Þ and
n00 zð Þ characters are found in the p-polarization spectrum.

The coefficients of CpTO and CpLO in Eq. (3.72) are calculated and plotted in
Fig. 3.10 by the red and blue curves, respectively.

Table 3.1 Absorbance at
2900 cm−1 of a thin film
deposited on various
substrates having different
refractive index, n3 [10]

Substrate n3 Absorbance/10−3

CaF2 1.42 3.43

ZnSe 2.46 2.40

Si 3.43 1.88

Ge 4.03 1.65
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Fig. 3.8 Complex refractive
indices of a 5-monolayer LB
film of cadmium stearate in
the in-plane (x) and
out-of-plane (z) directions
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In the case of a silicon substrate, the two coefficients are almost the same as each
other at the angle of incidence of 30°. When the angle is large, the TO component
gradually decreased while the LO component becomes significantly large rapidly.

For s-polarization:

When Eq. (3.45) is referred for the s-polarization, Eq. (3.47) has to be changed
to be:

ms
j �

nx;jaz;j
cl0

:

Note that ex;j does not appear in the denominator. Since the constants of c and l0 are
disappeared by making a ratio in t and r, these parameters are removed out in the
following deformation, i.e.,

ms
j � nx;jaz;j :

Then, Eq. (3.66) can be modified to be for the s-polarization:

abð Þs¼ ms
1m

s
3 þms2

2

ms
1 þms

3
g
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Then, the imaginary part becomes:

Im abð Þs½ � ¼ g
ms

1 þms
3
Im(ms

1m
s
3 þms2

2 Þ ¼
g

ms
1 þms

3
Im (ms2

2 Þ:

Here,

ms2
2 ¼ n2x;2a

2
z;2

¼ ex;2 cos2 h2

¼ ex;2 1� sin2 h2
� �

¼ ex;2 � X2

Since X is real,

Im absð Þ ¼ g
ms

1 þms
3
Im ex;2
� �

holds. Therefore, we reach the following result.

ATr;s ¼ 1
ln 10 � k �

8pd2
ms

1 þms
3
Im ex;2
� �

¼ 8pd2
ln 10 � k �

n1 � n3
e1 � e3

Im ex;2
� �

� 8pd2
ln 10 � kCsIm ex;2

� �
ð3:74Þ

where nj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ej � e1 sin2 h1

q
is used. In this manner, only the surface-parallel

component of a transition moment is observed.
With the use of Eq. (3.74), the s-polarization spectrum is simulated by using the

complex refractive indices presented in Fig. 3.8 in the same manner as the
p-polarization, which is presented by the red curve in Fig. 3.9. Since the
s-polarization spectra are influenced by the TO energy loss function only, an
apparent difference from the p-polarization spectrum is found especially at about
1440 cm−1. If the normal incidence (h1 ¼ 0) measurement is performed, the s- and
p-polarization spectra are identical to each other, of course.

The coefficient, Cs, in Eq. (3.74) is plotted in Fig. 3.10 by the black curve,
which is a moderate change to the angle of incidence. This is striking that the
s-polarization absorbance does not simply reflect the path length (see the dotted
line) in the thin-film phase. Therefore, the molecular orientation analysis based on
an intuitive model considering the path length only leads you to an incorrect
conclusion especially when a larger angle than 40° is taken.
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3.10 Preparation for the Analytical Expression
of a Reflection Spectrum

We have already shown a deduction process of the analytical form of an s-polarized
ER spectrum (Eq. 3.31) using the intuitive multiple-reflection model in Sect. 3.4.
Here, let us calculate the analytical form of a p-polarized reflection spectrum using a
model-free technique, i.e., Abeles’ transfer matrix method. Reflection spectra are
largely influenced by the dielectric property of the substrate, and they are catego-
rized into two representative spectrometries: reflection absorption (RA) on a
metallic surface, and external reflection (ER) on a nonmetallic surface. Since both
RA and ER techniques are performed on a 3-phase system, the first steps of cal-
culations are commonly involved as follows.

On Abeles’ transfer matrix method, the 3-phase system can be formulated as:

N1 ¼ Q�1
1 Q2P

�1
2 Q�1

2 Q3F2

where the next two parameters are defined as shown before.

N1 �
Hi

1
Hr

1

� �
and F2 �

Ht
2
0

� �

In the case of a reflection spectrum analysis, the ratio of Hr
1 to Hi

1 is necessary.
By introducing Eqs. (3.56)–(3.58), the following calculation can be done.

Hi
1

Hr
1

 !
¼ t�1

12 t
�1
23

1 r12
r12 1

� �
e�id2 0

0 eid2

 !
1 r23
r23 1

� �
Ht

1

0

� �

¼ t�1
12 t

�1
23

e�id2 þ r12r23eid2 r23e�id2 þ r12eid2

r12e�id2 þ r23eid2 r12r23e�id2 þ eid2

 !
Ht

1

0

� �

,
Hi

1 ¼ t�1
12 t

�1
23 e�id2 þ r12r23eid2
� �

Ht
1

Hr
1 ¼ t�1

12 t
�1
23 r12e�id2 þ r23eid2
� �

Ht
1

, Hr
1

Hi
1
¼ r12e�id2 þ r23eid2

e�id2 þ r12r23eid2

¼ r12 þ r23e2id2

1þ r12r23e2id2
� r13

Of note is that this conclusion calculated on the model-free Abeles method is
exactly the same as that obtained at Eq. (3.25) by using the intuitive
multiple-reflection model. This perfect agreement paradoxically implies that the
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multiple-reflection model works well in the stratified layers irrespective of the film
thickness in the plane wave approximation. In this manner, we have experienced
that Abeles’ method works powerfully to theorize the light propagation about an
optical interface.

The single-beam spectrum of the reflected light, R, is simply obtained by the
squared ratio:

Rsample ¼
Hr

1

Hi
1

				
				
2

¼ r13j j2: ð3:75Þ

r13 is calculated in a similar manner to the calculation of r31 (Eq. 3.69) by
exchanging the indices of 1 and 3.

r13 � r130 1þ 2ib
m1 m2

2 � m2
3

� �
m2 m2

1 � m2
3

� �
( )

þO b2
� �

� r130 1þ 2ibBf g
ð3:76Þ

Here, r130 and B are defined as:

r130 ¼
r12 þ r23
r12r23 þ 1

¼ m1 � m3

m1 þm3

and

B �
m1 m2

2 � m2
3

� �
m2 m2

1 � m2
3

� � :
As a result, the single-beam spectrum of the sample measurements is obtained as:

Rsample ¼ r13j j2

� r130j j2 1þ 2ibBj j2

� r130j j2 1þ 4iIm bBð Þf gþO b2
� �

:

For the single-beam spectrum of the “background,” r13 is immediately obtained
by putting d2 ¼ 0 into b ¼ 2p

k �n2az;2d2 in Eq. (3.76) to be:

r13 ¼ r130 1þ 2ibBf g ! r130

As a result, the single-beam spectrum of the background is:

RBG ¼ r130j j2

Then, the absorbance spectrum of the reflection measurements is calculated via:
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A � � log10
Rsample

RBG
¼ � ln 1� 4Im bBð Þð Þ

ln 10
: ð3:77Þ

Note that the 1st and 3rd phases can be considered to be optically isotropic in
practice, i.e., �nj ¼ nj and ex;j ¼ ej, although the 3rd phase can be IR absorbing phase
(especially for RA spectrometry). By considering the isotropic character, mj can be
simplified as:

mj ¼
�njaz;j
�ex;j

! az;j
nj

: ðj ¼ 1 or 3Þ

Therefore, a simpler form of

b ¼ 2p
d2
k
n2az;2 � gn2az;2

is obtained. With a newly introduced parameter of g � 2pd2 =k,

b
m2

¼ gex;2 ð3:78Þ

is obtained by using the permittivity in the x direction. Therefore, the following
deformation can be done.

Im bBð Þ ¼ Im b
m1 m2

2 � m2
3

� �
m2 m2

1 � m2
3

� �
 !

¼ gm1Im
m2

2 � m2
3

m2
1 � m2

3
ex;2

� � ð3:79Þ

As noted above, m3 can be a complex, which should not be remained in the
denominator in the fraction. To remove the light absorbing parameter from the
denominator, the next deformation is carried out.

m2
3 ¼

a2z;3
n23

¼
n23 1� a2x;3
� �

n43

¼
e3 � n23a

2
x;3

e23

¼
e3 � n21a

2
x;1

e23
:

84 3 Surface Spectroscopy Using FT-IR



The last deformation is done by using Snell’s law. By using this formulation, a little
bit tricky deformation is also carried out.

m2
1 � m2

3

m2
1

¼ 1� m2
3

m2
1

¼ 1�
e1 e3 � n21a

2
x;1

� �
e23a

2
z;1

¼ 1
e23

e23 �
e1e3
a2z;1

þ e21 tan
2 h1

( )

¼ 1
e23

e23 � e1e3 1þ tan2 h1
� �

þ e21 tan
2 h1

� �
¼ 1

e23
e3 � e1ð Þ e3 � e1 tan2 h1

� �

With this formulation, the next equation is obtained.

Im bBð Þ ¼ gm1Im
m2

2 � m2
3

m2
1 � m2

3
ex;2

� �

¼ g
m1

Im
ex;2e23 m2

2 � m2
3

� �
e3 � e1ð Þ e3 � e1 tan2 h1ð Þ

� �
:

ð3:80Þ

Now, we are ready to consider both RA and ER cases. The RA case is discussed
in the following section, since it is especially important to retrieve the LO energy
loss function spectrum.

3.11 Analytical Expression of an RA Spectrum

When the substrate (3rd phase) is metallic, i.e., e3 is complex, the reflection mea-
surements are called reflection absorption (RA) spectrometry. Metal has a signifi-
cantly large electric permittivity for both real and imaginary parts in the IR range
[12]. Therefore, in the case of the metallic surface, an approximation of e3j j 
 e1 is
practically useful. If the angle of incidence is set at 85° or less, e3j j 
 e1 tan2 h1 also
holds in a good approximation. Then, the next approximation can be done.

Im bBð Þ ¼ g
m1

Im
ex;2e23 m2

2 � m2
3

� �
e3 � e1ð Þ e3 � e1 tan2 h1ð Þ

� �

� g
m1

Im ex;2 m2
2 � m2

3

� �� � ð3:81Þ
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If we recall Eq. (3.67), then Eq. (3.81) can further be deformed.

Im bBð Þ � g
m1

Im 1� X2

ez;2
� ex;2m

2
3

� �

¼ g
m1

Im 1� X2

ez;2
� ex;2m

2
3

� �

¼ g
m1

X2Im � 1
ez;2

� �
� ex;2m

2
3

� �

The last term in the parenthesis can be calculated by considering Snell’s law as (c is
omitted as stated above):

ex;2m2
3 ¼ ex;2

n23a
2
z;3

e23

¼ ex;2
n23 1� a2x;3
� �

e23

¼ ex;2
n23 � n23a

2
x;3

e23

¼ ex;2
e3 � n21a

2
x;1

e23

¼ ex;2
e3

�
ex;2n21a

2
x;1

e23
:

When e3j j 
 e2j j is also taken into account, this term can totally be ignored. As a
result, the ratio can be calculated as:

Rsample

RBG
¼ 1� 4Im bBð Þ

¼ 1� 4
g
m1

X2Im � 1
ez;2

� �

¼ 1� 8pd2
m1k

n21 sin
2 h1Im � 1

ez;2

� �

¼ 1� 8pd2
k

n31
sin2 h1
cos h1

Im � 1
ez;2

� �
:

With this ratio, the analytical representation of an RA spectrum measured by
using the p-polarization is calculated by referring Eq. (3.77) to be:
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ARA ¼ � ln 1� 4Im bBð Þð Þ
ln 10

¼ 8pd2
ln 10 � k n

3
1
sin2 h1
cos h1

Im � 1
ez;2

� � ð3:82Þ

Note that this representation is for p-polarization measurements on a metallic
surface. The RA spectrum is thus found to be driven by the LO energy loss function
only. In other words, the RA technique employing the p-polarization is an important
technique to retrieve the pure LO function spectrum. Since the LO function
involves ez;2 only, the surface-perpendicular component of a transition moment in
the thin film is selectively observed. This rule is called the surface selection rule
(SSR) of the RA measurements [5].

Another important note is that this representation involves no parameter of the
3rd phase, which straightforwardly implies that the RA spectra are impervious to
the choice of the substrate as long as the substrate is metallic.

As done for the Tr spectra, a p-polarized RA spectrum is also simulated by using
the same complex refractive indices in Fig. 3.8, which is presented by the blue
curve in Fig. 3.11. As mentioned above, no optical parameter of the metallic
substrate is necessary for the calculation, and of course, the spectrum shape agrees
with the n00 zð Þ function.

In addition, we have to pay attention to the angle of incidence, too. When h1 is
close to 90°, ARA rapidly runs up monotonously because of sin2 h1

�
cos h1, which

seems good for a high-sensitive measurement. Regardless, the assumption of e3j j 

e1 tan2 h1 is broken for a too large h1, with which pure LO function is not obtained.
Therefore ca. h1 ¼ 80� is practically the best angle for the incidence to keep both
the SSR and high sensitivity.

Figure 3.12a presents a p-polarized IR RA spectrum of 5-monolayer Langmuir–
Blodgett film of cadmium stearate deposited on a gold surface with an angle of
incidence of 80°. The shape of the spectrum is largely different from the KBr-pellet
spectrum in Fig. 1.7: both maCH2 and msCH2 bands are largely suppressed to be
comparative to the maCH3 and msCH3 bands. In the multilayered film, the molecules
stand almost perpendicularly to the surface. With the molecular stance, both maCH2

and msCH2 modes have a nearly parallel transition moment to the surface, which
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yield fairly weak absorbance peaks, since the LO function is driven by ez;2 only. In
this manner, the relative band intensity is directly influenced by the molecular
orientation. By the comparison of the RA and KBr spectra, in this manner, the
orientation of each transition moment can be discussed. The intrinsic IR spectral
pattern [a spectrum; Eq. (1.43)] is obtained by using an unoriented sample, which
is obtained by the KBr-pellet technique (Sect. 3.16A).

In the case of RA spectrometry, the s-polarization measurements are not used
practically. Here, just in case, the analytical expression for the unusual measure-
ments is presented. As found in the transmission case, ms

j � nx;jaz;j is used. Then,
Eq. (3.78) is simplified as:

b
ms

2
¼ gnx;2az;2

nx;2az;2
¼ g:

Therefore,

Im bBð Þs ¼ Im b
ms

1 ms2
2 � ms2

3

� �
ms2

2 � ms2
3

� �
 !

� gms
1Im

e2 � X2 � e3 þX2

�e3

� �

� gms
1Im

e2 � X2 � e3 þX2

�e3

� �

¼ 2pd2n1 cos h1
k

Im � e2
e3

� �

) ARA;s¼ 8pd2 cos h1
ln 10 � k Im � e2

e3

� �
: ð3:83Þ
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In the case of the s-polarization, e2 ¼ ex;2 (isotropic) holds, which means that
only the surface-parallel component of a transition moment is observed. Since
e3j j 
 e2j j holds on a metallic surface, the absorbance of the s-polarization on a
metallic surface becomes very minor. Another concern is that the polarizer yields an
impurity a little bit, and the leaked minor impurity polarization contributes to the
high-sensitive p-polarization measurements, which hides the weak s-polarized
spectrum. If you do need the surface-parallel information on a metallic surface,
double polarizers should be put in series to remove the impurity as possible, or a
small angle of incidence should be chosen to make the contribution of the leaked
p-polarization as small as possible.

The simulated s-polarized RA spectrum at the angle of incidence of 25° is
overlaid on the p-polarized spectrum in Fig. 3.11. Note that the ordinate scale is
100 times magnified for the better visibility. In this manner, the s-polarization
largely loses the sensitivity making the signal-to-noise ration very poor, but instead
the n00 xð Þ spectrum (TO function) can readily be obtained.

Figure 3.12b presents an actually measured s-polarized IR RA spectrum of the
same sample as used for the p-polarized one. To earn the sensitivity, a low angle of
incidence of 25° is chosen considering Eq. (3.83). As mentioned above about
Fig. 3.12, a very much suppressed TO energy loss function appears, which has a
common shape to a transmission spectrum.

3.12 Analytical Expression of an ER Spectrum

When the substrate is nonmetallic and unabsorbing, e3 is real. Reflection mea-
surements on this condition are called external reflection (ER) spectrometry [5, 13,
14]. In this case, Eq. (3.80) for the p-polarization is a little bit deformed.

Im bBð Þ ¼ g
m1

Im
ex;2e23 m2

2 � m2
3

� �
e3 � e1ð Þ e3 � e1 tan2 h1ð Þ

� �

¼
ge23Im ex;2 m2

2 � m2
3

� �� �
m1 e3 � e1ð Þ e3 � e1 tan2 h1ð Þ

Here, ex;2m2
2 ¼ 1� X2=ez;2 is taken into account, the ratio of RSample=RBG can be

simplified by using the TO and LO functions.
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Rsample

RBG
¼ 1� 4Im bBð Þ

¼ 1�
4ge23Im ex;2 m2

2 � m2
3

� �� �
m1 e3 � e1ð Þ e3 � e1 tan2 h1ð Þ

¼ 1�
4ge23Im 1� X2=ez2ð Þ � ex;2m3

2

� �
m1 e3 � e1ð Þ e3 � e1 tan2 h1ð Þ

¼ 1þ
4ge23 m2

3 � TO� X2 � LO
� �

m1 e3 � e1ð Þ e3 � e1 tan2 h1ð Þ

Therefore, the p-polarized ER spectrum in the absorbance scale is obtained as:

AER;p ¼ � ln 1� 4Im bBð Þð Þ
ln 10

� � 1
ln 10

4ge23 m2
3TO� X2LO

� �
m1 e3 � e1ð Þ e3 � e1 tan2 h1ð Þ

¼ 8pd2
ln 10 � k

sin2 h1 � e3
� �

� TOþ e23 sin
2 h1 � LO

cos h1 e3 � 1ð Þ e3 � tan2 h1ð Þ

� 8pd2
ln 10 � k CpTO � TOþCpLO � LO

� �
;

ð3:84Þ

where the incident light comes from the air phase (e1 ¼ 1).
This conclusion implies that AER;p measured on a nonmetallic surface is a linear

combination of both TO and LO function spectra. In addition, the weighting
coefficients strongly depend on the permittivity of the substrate yielding negative
and positive absorbance depending on the angle of incidence and the molecular
orientation, which is totally different from RA spectrometry. Since TO and LO
function spectra respond to the surface-parallel and -perpendicular components of
the permittivity, respectively, the p-polarization ER spectra respond to the
molecular orientation very sensitively.

The coefficients of CpTO and CpLO are calculated and plotted in Fig. 3.13. Since
the TO and LO function does not exhibit the same peak intensity for an identical
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permittivity, the coefficients exhibit schematic variations. For example, at h1 ¼ 0,
CpLO is nil; whereas CpTO is negative. Therefore, if the angle of incidence is nearly
zero, the p-polarized ER spectrum is driven by the TO function only, and the
absorption peak should appear as a negative peak. In other words, the
surface-parallel component of a normal mode is selectively observed by the neg-
ative bands.

When the angle of incidence is close to 60°, CpLO and CpTO have a large
intensity with positive and negative signs, respectively. This means that the
surface-perpendicular and –parallel components appear as positive and negative
peaks, respectively, and the intensity is much higher than the normal incidence
measurements. In this manner, the p-polarized ER measurements reveal the
molecular orientation, and the sensitivity largely depends on the angle of incidence.
For the detail, refer to Sect. 3.15C.

It is of interest that the band signs overturn when the angle of incidence goes
across a specific angle. According to Eq. (3.84), in fact, the sign of the spectra
depends on h1, since e3 � e1 tan2 h1 can be zero when h1 satisfies:

e3 � e1 tan2 h1 ¼ 0

, tan2 h1 ¼
n23
n21

:
ð3:85Þ

This specific angle is called Brewster’s angle. In short, the surface selection rule of
the p-polarized ER spectrometry is a function of the molecular orientation and the
angle of incidence, which will be mentioned later in Sect. 3.15C. As a matter of
fact, this surface selection rule is quite useful to retrieve the molecular orientation in
a thin film deposited on a nonmetallic substrate.

The discussion made above is readily recognized by looking at a simulated ER
spectrum (blue curve in Fig. 3.14) using the complex refractive indices in Fig. 3.8.
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In the p-polarization ER spectrum, TO and LO functions appear as negative and
positive peaks, respectively, as predicted by the discussion about Fig. 3.13. Details
about the molecular orientation will be discussed in Sect. 3.15C.

In the case of the s-polarized ER spectrometry, the substrate has no absorption
(e3 is real), Eq. (3.83) can be further simplified to have:

Im bBð Þs ¼ gms
1Im

ms2
2 � ms2

3

ms2
1 � ms2

3

� �

¼ gms
1Im

e2 � e03
1� e03

� �

¼ � 8pd2n1 cos h1
k e03 � 1
� � Im e2ð Þ:

Therefore,

AER;s ¼ � ln 1� 4Im bBð Þsð Þ
ln 10

� � 1
ln 10 � k

8pd2n1 cos h1
e03 � 1

Im e2ð Þ

� 8pd2
ln 10 � kCs � TO

ð3:86Þ

This result perfectly agrees with Eq. (3.31). In this manner, the analytical repre-
sentation deduced by using Abeles’ transfer matrix method readily reproduces the
result obtained by using the intuitive multiple-reflection model. This agreement
confirms in a paradoxical manner that an ultrathin film has multiple reflections of
the IR light indeed, although the wavelength is much longer than the film thickness.

Equation (3.86) apparently implies that the absorption peak is always negative
irrespective of the angle of incidence, since e03 � 1[ 0. In fact, as found in
Fig. 3.13, Cs is negative. In contrast to the p-polarization, the absorption ‘intensity’
is getting larger when the angle of incidence is smaller.

3.13 Analytical Expression of an Attenuated Total
Reflection (ATR) Spectrum

When the incident IR light goes in a high refractive index material to an interface
with a lower refractive index material, the measurements are categorized into the
internal reflection measurements. The intrinsic difference from the ER measure-
ments is only the order of the phases. In the new optical configuration, e3 is unity
for the ER measurement, since the IR light is incident to the sample from the air
phase in many cases. In ATR measurements, however, another matter than air can
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occupy the 3rd phase, e3 is thus remained as is in the equation. In short, the ER and
ATR measurements are very similar to each other from the viewpoint of
electrodynamics.

For the p-polarization,
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is obtained. Although ATR spectrometry yields a spectrum having a similar shape
to that of a KBr pellet spectrum in practice, note that Eq. (3.87) is largely different
from Eq. (1.43): the ATR spectrum is driven by both TO and LO energy loss
functions; whereas the KBr pellet spectrum is influenced by only n00. Since the TO
and LO functions are influenced not only by n00, but also n0, the band position can
be shifted from the KBr spectrum by the anomalous dispersion of n0 (Fig. 1.7). As a
conclusion, we have to carefully note that an ATR spectrum cannot be a substitute
of a KBr spectrum.

To show this important comment explicitly, the calculated ATR spectra of an
isotropic sample are compared to a calculated KBr-pellet spectrum by dotted curve
in Fig. 3.15. Since an isotropic sample is considered, both s- and p-polarized ATR
spectra have a similar spectral shape. On closer inspection, however, the peak
positions of the strong absorption (the COO− antisymmetric stretching vibration)
band are found different from each other: p- and s-polarization exhibit the peak at

130013501400145015001550160016501700
0

0.002

0.004

0.006

0.008

0.01

0.012

R
ef

le
ct

io
n

-A
b

so
rb

an
ce

Wavenumber / cm-1

s-polp-pol1
 = 45o

KBr

isotropic sample
Fig. 3.15 Simulated ATR
spectra of a thin film having
isotropic structure. The dotted
spectrum represents a KBr
pellet spectrum

3.13 Analytical Expression of an Attenuated Total Reflection … 93



1549.4 and 1548.5 cm−1, respectively. In addition, we have to note that the
KBr-pellet spectrum yields the same band at 1546.1 cm−1. This complicated situ-
ation has already been found at the example shown by Fig. 1.19. In this manner, a
strongly absorbing band needs a special attention.

As done for other spectrometries, simulated p-polarized ATR spectrum of an
oriented thin film is presented by the blue curve in Fig. 3.16. The angle of incidence
is set to 45°, which is most commonly employed for ATR measurements. It should
be noted that Eq. (3.87) that is intrinsically the same as Eq. (3.84) yields the ATR
spectra by only exchanging the optical parameters between n1 and n3.

As shown later in Sect. 6.3, an ATR spectrum can be converted to an a spectrum
(Eq. 1.43) that describes the KBr spectrum. If the ATR spectrum is discussed by
comparing to a KBr spectrum, the ATR spectrum must be converted to an a
spectrum.

When the angle of incidence is larger than the critical angle that is defined as
n3 � n1 sin h1\0; both coefficients of the TO and LO functions ðCpTO and CpLOÞ
are negative. For a high refractive index substrate ðn21 
 1Þand n3 ¼ 1; at the
critical angle of the total reflection, tan hc � sin hc holds because of:

tan hc ¼
sin hc
cos hc

¼ 1=n1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=n1ð Þ2

q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � 1

p � 1
n1

¼ sin hc:

Therefore, the term of e3 � e1 tan2 h1 becomes negative for h[ hc Since e1 � e3 ¼
n21 � n23 [ 0 holds, AATR;p is always positive when the 3rd phase is air. Some
representative simulation curves are available in Fig. 3.17. For the analysis of a thin
film deposited on the ATR prism, refer to Fig. 3.17a. On the other hand, if a bulky
sample is pressed onto the prism, refer to Fig. 3.17b.

As plotted in Fig. 3.17b, CpLO and CpTO are both positive irrespective of the
angle of incidence as long as it is greater than the critical angle. In contrast to the
intuitive speculation, however, the ratio of CpLO=CpTO is impervious to the angle of
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incidence as plotted in Fig. 3.18.When the angle of incidence is apart from the
critical angle by 10° or larger, the variation of the ratio is very minor. This implies
that an accurate molecular orientation analysis is difficult even with p-polarized
spectra dependent on the angle of incidence.

If the ATR measurements are performed by using the s-polarization, a simpler
spectrum is obtained, which can directly be compared to the normal incidence
transmission spectrum, since the spectrum is governed by the TO energy loss
function only.
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AATR;s ¼ � 1
ln 10 � k

8pd2n1 cos h1
e03 � e1

Im ex;2
� �

� 8pd2
ln 10 � kCs � TO

ð3:88Þ

As e03 � e1\0 holds, the s-polarization ATR spectra have positive absorbance
peaks only as found in Fig. 3.17.

3.14 Specular Reflection Spectrum

When no film is on the surface of a weakly absorbing (nonmetallic) bulk matter,
and IR light is directly incident on the surface, the reflection measurements are
called specular reflection spectrometry. In this case, the concept of the background
measurements is ambiguous, and only the reflectivity is considered.

If the incidental phase is assumed to be air, Eq. (3.22) can simply be used for the
normal incidence measurements. In practice, small angle incidence (less than 15°) is
used in place of the normal incidence within a good approximation.

R ¼ n2 � 1
n2 þ 1

				
				
2

¼ n2 � 1
n2 þ 1

� �
n	2 � 1
n	2 þ 1

� �

¼ 1þ n2j j2�2Re n2ð Þ
1þ n2j j2 þ 2Re n2ð Þ

¼ 1þ n022 þ n0022 � 2n02
1þ n022 þ n0022 þ 2n02

¼
1þ n02
� �

þ n002 � 4n02
1þ n02
� �2 þ n0022

� ð1þ n02Þ
2 � 4n02

1þ n02
� �2

¼ 1� 4Re n2ð Þ
A

;

where A � ð1þ n02Þ
2. Since the anomalous dispersion of n02 is also weak (Fig. 1.7),

and therefore A can roughly be approximated to be a constant. As a result, the
spectrum is driven by the real part of the refractive index of the bulk material, which
requires a spectral conversion technique to have an absorbance-like spectrum. The
details will be mentioned later in Sect. 6.1.

3.15 Surface Selection Rules of IR Surface Spectroscopy

In the former sections, analytical procedures and expressions of practically useful
IR surface spectroscopy are studied on electrodynamics using Abeles’ transfer
matrix method. Through the techniques, we have found that the surface
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spectroscopy for a thin-film analysis is theorized by using the TO and LO energy
loss functions only. Since TO and LO functions are a function of ex;2 and ez;2,
respectively, they retrieve the surface-parallel and -perpendicular components of a
transition moment, which is a quite useful rule to discuss the average molecular
orientation in a thin film.

The analytical expressions can thus be summarized to be simple and practical
rules for conveniently discussing the molecular orientation in a thin layer. The
simplified rules are called the surface selection rules (SSRs) [5, 15, 16], which are
summarized in Table 3.2.

The SSRs are highly useful for discussing the molecular orientation in a thin
film. The practical aspects are described as follows:

Table 3.2 Surface selection rules depending on measurement techniques and polarizations

Measurement
techniques

Pol. Surface selection rules

(A) Transmission s Irrespective of angles of incidence, only the
surface-parallel component of a transition moment appears
in the spectrum. All the bands appear as positive peaks

p When IR light is normally incident on the surface, only the
surface-parallel component of a transition moment is
observed. When the angle of incidence is increased, the
surface normal component appears and increased with the
angle

(B) Reflection
Absorption (RA)

s Practically useless because of a poor SN ratio. If this
spectrum is needed, a small angle of incidence should be
chosen. In addition, the band intensities respond to choice
of the substrate material

p A grazing angle of incidence (at near 80°) is chosen for
high-sensitive measurements of a thin film on a metallic
surface. Only the surface normal component of a transition
moment is observed. This spectrum is impervious to choice
of the substrate material as long as the substrate is metallic

(C) External Reflection
(ER)

s Irrespective of angles of incidence, only the
surface-parallel component of a transition moment appears
in the spectrum. All the bands appear as negative peaks,
and the peak intensity decreases with an angle of incidence

p When the angle of incidence is less than Brewster’s angle
of the substrate, the surface-parallel component of a
transition moment yields a negative absorbance peak;
whereas the surface normal component yields a positive
peak. When the angle of incidence is larger than Brewster’s
angle, the relationships are overturned

(D) Attenuated Total
Reflection (ATR)

s As long as the angle of incidence is greater than the critical
angle, only the surface-parallel component of a transition
moment appears in the spectrum. All the bands appear as
positive peaks

p All the bands appear as positive peaks. Both surface
normal and parallel components of a transition moment
appear in the spectrum
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(A) Transmission spectrometry

When an IR ray is irradiated on a thin film deposited on an IR-transparent
substrate and the transmitted light is measured by the spectrometer (Fig. 3.19), this
measurement technique is called transmission spectrometry. In most cases, the
angle of incidence is set to be zero. In the case of the normal incidence, no
discrimination is available for the s- and p-polarizations.

As found in the figure, for the normal incidence, the oscillating direction of the
electric field is parallel to the film surface. As a result, only the surface-parallel
component of a transition moment appears in a transmission spectrum. This intu-
itive understanding agrees with the Eq. (3.73) that the light absorption is governed
by ex;2 that is the surface-parallel component of the permittivity of the thin film,
which is the SSR of transmission spectrometry.

Note that the absorbance is a function of Im ex;2
� �

¼ 2n0x;2n
00
x;2 (TO energy loss

function), which is influenced not only by n00x;2 but also by n0x;2. Therefore, the direct
comparison with a KBr pellet spectrum (Eq. 1.36) makes us go to a wrong direction
on an inaccurate band position and relative band intensity especially for a strongly
absorbing band (Fig. 1.20). If we need a direct comparison, the KBr pellet spectrum

n00x;2
� �

should be converted by using the Kramers–Kronig relationship (Sect. 4.4) to

have the corresponding Im ex;2
� �

spectrum. In this case, note that the concentration
diluted by the KBr powder must be taken into account.

In Fig. 3.20, an IR transmission (Tr) spectrum of a 7-monolayer Langmuir–
Blodgett (LB) film of cadmium stearate deposited on a calcium fluoride substrate is
presented on the bottom.

Electric
field

Thin films

IR ray

Fig. 3.19 Schematic of transmission spectrometry with a normal incidence
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Both antisymmetric and symmetric CH2 stretching vibration [ma(CH2) and
ms(CH2)] bands appear strongly at 2916 and 2850 cm−1 in the Tr spectrum,
respectively. The strong appearance straightforwardly indicates that both modes are
nearly parallel to the substrate surface judging from the SSR. These vibrational
modes respond to the molecular conformation, and both positions are specific to the
all-trans zigzag conformation within a planer skeleton (Fig. 3.21), which implies
that the molecules are highly packed. With this ordered conformation, the two
modes and the molecular axis are mutually orthogonal to each other. As a result, the
strong appearance of the two bands implies a nearly perpendicular orientation of the
molecular axis to the substrate surface (Fig. 3.20).

The terminal methyl (CH3) group yields three normal modes of the asymmetric
in-skeleton, asymmetric out-of-skeleton, and symmetric CH3 stretching vibrations,
which are denoted as ma(CH3)

is, ma(CH3)
os and ms(CH3), respectively (see Fig. 3.21),

appeared at 2962, 2956 and 2872 cm−1. Since the ma(CH3)
os mode is highly parallel

orientation to the surface, this band appears in the Tr spectrum only; whereas the rest
two bands appear in both Tr and RA spectra. Note that the ms(CH3) band is relatively
much weaker than the ma(CH2) and ms(CH2) bands in the Tr spectrum.

If the molecular axis has a perpendicular stance, the ionized carboxylic group
would also have a nearly perpendicular stance to the surface (Fig. 3.21). In fact, the
antisymmetric COO− stretching vibration [ma(COO

−)] mode appears strongly at
1544 cm−1, while the symmetric COO− stretching vibration [ms(COO

−)] mode
appears weakly at 1423 cm−1, which confirms the orientation model proposed by
the analysis of the ma(CH2) and ms(CH2) bands.

In this manner, a small chemical group such as CH2 and COO− has multiple
number of normal modes, which totally depict a molecular picture, which is one of
the great benefits of using vibrational spectroscopy with an aid of SSR.
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Fig. 3.20 IR Transmission (Tr) and RA spectra of a 7-monolayer Langmuir–Blodgett film of
cadmium stearate deposited on a CaF2 (Tr) and silver (RA) substrate, respectively
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(B) Reflection absorption (RA) spectrometry

When a thin film is deposited on a metallic surface, and the IR spectrum is
measured by using the reflection geometry with a grazing angle of incidence, the
technique is called reflection absorption (RA) spectrometry [17] (Fig. 3.22).

In RA spectrometry, only the p-polarization is employed as shown in Eq. (3.82).
The RA spectra are defined as:

ARA;p � � log10
Rp
sample

Rp
BG

: ð3:89Þ

This reflection-specific absorbance via reflectance is defined as “reflection absor-
bance.” Nevertheless, the direct observable on FT-IR is not reflectance, but the
single-beam spectra on the sample and background surfaces (Isample and IBG;
respectively) are measured. The reflectance spectra are defined as:

Rp
sample ¼

Isample

I0
and Rp

BG ¼ IBG
I 00

O O

νs(COO-)

νa(COO-)

νa(CH2) νs(CH2)

νs(CH3)

νa(CH3)
is

νa(CH3)
osFig. 3.21 Schematic of a

cadmium stearate molecule in
an LB film

p

Electric

metallic substrate

field

thin film

Fig. 3.22 Schematic of RA
spectrometry with a grazing
angle of incidence
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where I0 and I 00 are the IR single-beam spectra before irradiating on the surface.
Since I0 � I 00 holds within an acceptable approximation,

ARA;p ¼ � log10
Rp
sample

Rp
BG

¼ � log10
Isample

IBG

is conveniently obtained. Therefore, the reflection absorbance can be regarded as
the normal absorbance.

As illustrated in Fig. 3.22, the electric fields of the incident and reflected rays are
interfered with each other to generate an RA specific electric field in the vicinity of
the surface, whose direction is perpendicular to the substrate surface. Therefore,
only the surface normal component of normal modes appears in the RA spectra,
which is called the SSR of RA spectrometry.

The SSR is theorized by Eq. (3.82), in which only the surface normal component
the electric permittivity of the thin film phase ðez;2Þ is measured via the LO energy
loss function Im �1=ez2ð Þð Þ. To obtain the pure LO function of an ultrathin film,
therefore, RA spectrometry is an important technique, which is complimentary with
the transmission spectrometry.

When we compare an RA spectrum to a spectrum obtained by another technique,
such as Tr andKBr techniques, we have to pay a special attention to the band shift and
change of the relative band intensities. This is because a direct comparison between
the LO function to the TO and a (Eq. 1.36) functions can mislead the scientific
discussion to a wrong direction. For practical details, please refer to Sect. 6.3.

In Fig. 3.20, an RA spectrum of an identical thin film deposited on a silver
surface is presented with a corresponding Tr spectrum. Although the stearic acid
has only one methyl group, the ms(CH3) band appears apparently thanks to the SSR
with the perpendicular orientation. The ma(CH2) and ms(CH2) bands are largely
suppressed when considering the number (sixteen) of methylene groups. The reason
why even the suppressed bands have a comparable intensity with the Tr bands is
that the RA spectrum is enhanced. Indeed, RA spectrometry is known as a high-
sensitive technique, whose enhancement factor is ca. 10, which is quite powerful for
studying a thin film or molecular adsorbates on a metallic surface.

If unpolarized light is used for the RA measurements, the contribution of the
s-polarization component is ignorable, which does not matter significantly for a
practical analysis. In this sense, the polarizer can be removed. In this simplified
experiments, however, we have to note that half absorbance is obtained because of
the following reason (see also Eq. 3.2).

s
samplesampleRA,un-polarized 1

ln10

pI I
A

Δ + Δ
≈

RA,p
sample

pp s
BGBG BG

1

ln10 22

pI A

I I I

Δ
≈ =

+

Here, IpBG � IsBG holds on a highly reflective metallic surface, and the polarization
dependence of FT-IR is ignored. Of course, the un-polarized light intensity is twice as
large as the p-polarization, whichmakes the SN ratio better. As a result, in terms of the
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spectral quality, ignorable difference is found between the un-polarized and
p-polarized measurements. Regardless, the p-polarization measurements should be
employed, since we don’t have to take care about the polarization dependence of
FT-IR with the single polarization. In short, if you want to discuss the RA spectra
quantitatively based on an electromagnetic theory, p-polarizationmeasurements is the
only choice.

(C) External reflection (ER) spectrometry

When the analyte thin film is deposited on a nonmetallic surface (Fig. 3.23), the
reflection measurements are categorized into external reflection (ER) spectrometry,
which is strictly discriminated from RA spectrometry. The ordinate scale of an ER
spectrum is reflection absorbance, whose definition is the same as that of RA
spectrometry (Eq. 3.89).

The analytical expressions of the p- and s-polarized ER spectrometries are
presented in Sect. 3.12. These equations are quite convenient to understand that a
p-polarized ER spectrum comprises TO and LO energy loss functions; whereas an
s-polarized ER spectrum is governed by the TO function only. Since the TO and
LO functions involves ex;2 and ez;2, respectively, the ER spectra should respond to
the molecular uniaxial orientation in the thin film via the anisotropic permittivity.

To understand the equations more intuitively, Hansen’s approximated equations
(Eqs. 3.90–3.91) are highly useful. He expanded the equations of reflectance
(Eq. 3.75) in Taylor’s manner in terms of the film thickness. With the use of the
thin-film approximation (Eq. 3.2), the following equations are obtained.

Asy ¼ � 4
ln 10

cos hi
n23 � 1

� �
n2xa2xd2 ð3:90Þ

Asz ¼ 0

Apx ¼
4

ln 10
cos hi

n23=n
4
3 � cos2 hi

 !
n23
n43

n2xa2xd2

Apz ¼
4

ln 10
cos hi

n23=n
4
3 � cos2 hi

 !
sin2 hi

n2
2z
þ k22z

� �2 n2za2zd2 ð3:91Þ

surface

normal

i

p

s

non metallic substrate

Fig. 3.23 Schematic of ER
spectrometry for both s- and
p-polarizations
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Here, a2r � 4pk2r~m r ¼ x; zð Þ; and nj � nj cos hj: In his original paper, two equa-
tions of As and ApxþApz are obtained by the expansion. Very fortunately, however,
Apx þApz can simply be separated for the surface-parallel and -perpendicular
components. In a similar manner, As can be recognized as Asy þAsz which is also
separated. Hansen’s equations are very much user friendly, which holds well when
(1) the thickness of the film is adequately thin d=k � 1ð Þ. and (2) the substrate does
not absorb IR light. Therefore, these equations cannot be used for RA spectrometry.

k2x ¼ k2y
� �

and k2z reflects the orientation of a transition moment, which are
related to the bulk (un-oriented) absorption coefficient, kbulk; by [13]:

k2x þ k2y þ k2z
3

¼ kbulk:

For the surface-parallel orientation, k2z ¼ 0 is put in this equation to have k2x ¼
3kbulk=2: In a similar manner, the surface-perpendicular orientation is expressed by
k2z ¼ 3kbulk after putting k2z ¼ k2y ¼ 0: Therefore, for an orientation of / , the
following relationships are obtained.

k2x ¼ k2y
� �

¼ 3
2
kbulk sin2 / ð3:92Þ

k2z ¼ 3kbulk cos2 / ð3:93Þ

An example simulation curves using the equations are presented in Fig. 3.24
[13]. This figure has the same trends as the coefficients of the TO and LO functions
in Fig. 3.13. These curves are for the ms(CH2) band at 2850 cm−1 of a thin film with
a thickness of 22.5 nm (corresponding to a 9 monolayer LB film of stearic acid)
having the optical parameters of n2x ¼ 1:48, n2x ¼ 1:56, and kbulk ¼ 0:3. In this
manner, the curves are easily calculated by using Hansen’s equations, if the optical
parameters are available.
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When a surface-parallel transition moment is measured by the s-polarization, all
the bands (Asx) are found to be negative irrespective of the angle of incidence,
which is apparently expressed by Eqs. (3.88) and (3.90). The negative bands
develop with an increase of the angle of incidence as found in Fig. 3.25 [13].
Therefore, a low angle of incidence should be selected for high-quality
measurements.

On the other hand, the p-polarized reflection absorbance changes the sign at
Brewster’s angle that is defined by Eq. (3.85), which is apparently observed as
presented in Fig. 3.25. For example, the ms(COO

−) band at 1433 cm−1 having the
surface-perpendicular transition moment appears as a positive band and it develops
with increasing the angle of incidence. When the angle goes across Brewster’s
angle (ca. 73°), the band suddenly changes its sign, and a negative band appears.
The complicated variation is perfectly theorized by both Eqs. (3.84) and (3.91).

Since the band intensity drastically increases when the angle of incidence is
close to Brewster’s angle, an angle near 73° looks good for high-sensitive mea-
surements. As a matter of fact, however, this idea should be reconsidered, since it is
an extremely dark measurement.

Figure 3.26 presents calculated ‘reflectance’ for both polarizations at the
air/silicon interface. Since the reflectance of the p-polarization near Brewster’s
angle is close to zero, which makes the optical throughput terribly poor resulting in
dark measurements with a poor signal-to-noise ratio. Therefore, for the

Fig. 3.25 IR s- (left panel) and p-polarized (right panel) ER spectra of a 9-monolayer LB film of
cadmium stearate deposited on a single-side polished GaAs wafer as a function of the angle of
incidence
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p-polarization measurements, the angle of incidence should be chosen at an angle a
little bit far from Brewster’s angle [18], i.e., 60° or 80° is a good choice for the
p-polarized ER measurements on a silicon surface (n ¼ 3:42).

(D) Attenuated total reflection (ATR) spectrometry

The ATR technique is becoming a standard IR measurement technique for a bulk
sample, which is squeezing out the KBr pellet technique, since the operation of
ATR spectrometry is much easier than the KBr technique. Nevertheless, this situ-
ation can make the scientific discussion on the ATR spectra go to a wrong direction.
Since ATR spectroscopy is based on a reflection measurement at an optical inter-
face, no a-spectrum cannot be obtained, to which we have to pay special attention.

ATR is one of the internal reflectionðn1 [ n2 in Fig. 3.27) spectrometries, and
the angle of incidence, h1, is set at an angle greater than the critical angle, hc, which
satisfies ðn1=n02Þsinhc ¼ 1 On this condition, the incident IR light is totally reflected
at the ATR prism surface and going to the detector.

When the electric field of the incidental light is expressed as:
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Fig. 3.26 Polarization-dependent reflectance with an angle of incidence at the air/silicon interface

Fig. 3.27 Optical
configuration of ATR
spectrometry. An image of the
electric field decay of the
evanescent wave is overlaid
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E ¼ E0exp i k � r � xt½ �f g;

the z-component of the penetrated electric field into the sample phase (2nd phase)
with an isotropic refractive index of n2 is (see Eq. 1.36):

Ez / E0exp i n2kcosh2z� xt½ �f g ð3:94Þ

because of the continuity of the wavenumber vector across an interface (Eq. 3.41).
When Snell’s law is employed thanks to the isotropic system, the time-averaged
(Eq. 3.19) electric field intensity decay is calculated by considering that both n2 and
cos h2 are complex (Eq. 3.42).

1
2
Ezj j2 ¼ 1

2
EzE	

z

¼ 1
2
E2
0exp �2kz Im n2cosh2ð Þf g

¼ 1
2
E2
0exp �2kz Im n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n21=n

02
2

� �
sin2h1

q� �� �

¼ 1
2
E2
0exp �2kzn02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21=n

02
2

� �
sin2h1 � 1

q� �
ð3:95Þ

The last deformation was done by considering that the angle is greater than hc with
a condition of n1 [ n2. In this manner, on the total reflection, the electric field of the
evanescent wave decays exponentially with z.

If the real penetration depth, dintensityp , is determined as the depth where the

intensity is decreased by a factor of e�1, dintensityp is obtained as:

� 2kdintensityp n02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21=n

02
2

� �
sin2 h1 � 1

q
¼ �1

, dintensityp ¼ k

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 sin

2 h1 � n022

q

If the sample thickness is smaller than dintensityp , n02 is replaced by unity (air phase).
In fact, as found in Eq. (3.87), the 3rd (air) and 1st (prism) phases are directly
interrelated with each other for a thin sample. When the thickness is large enough,
on the other hand, n02 is set to the refractive index of the sample. In general, an
organic compound has n02 ¼ 1:5.

If dp is defined in terms of amplitude of electric field (not ‘intensity’ [18]) by
using Eq. (3.94), the factor of 2 is removed to have another more popular definition
[11]:
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dp ¼
k

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 sin

2 h1 � n022

q :

Of course, the purposes of the two definitions are common, but we have to pay
attention when we use it for a quantitative purpose.

Figure 3.28 presents a plot dp=k against the angle of incidence for a general
organic compound having n02 ¼ 1:5 contacted on an ATR prism of germanium
(n1 ¼ 4:0). In general, the angle of incidence is taken a little bit far from the critical
angle, for example 30° or larger. We find that the penetration depth reaches about
one-tenth as large as the wavelength. Therefore, in the C–H stretching vibration
region (ca. 3000 cm−1, i.e., 3.3 lm), the IR light is expected to penetrate into the
sample with a depth of ca. 300 nm.

Of interest is that this curve has a shape of convex downward, which is different
from that of absorbance change (Fig. 3.17). This implies that the ATR intensity is
not driven by the penetration depth.

Some researchers involving Harrick and Hansen reported in a similar time [19–
21], the actual penetration depth, dact, is represented by a more complicated
equation. For example, for the s-polarization, dact, is expressed by using Hansen’s
notation as:

dact ¼
k=n2ð Þn221 cos h

p n221 � 1
� �

n221 � sin2 h
� �1=2 ; ð3:96Þ

which is presented in Fig. 3.29. Here, n1 and n2 corresponds to the refractive
indices of the ATR prism and a bulky sample, respectively. n21 is a ratio of n2 to n1.
The calculated curve is found quite similar to the Cs curve in Fig. 3.17b, which
indicates that Eq. (3.96) works well.

Hirschfeld [21] tried to correlate dact with dp by considering Goos-Hänschen’s
shift. This shift is quite intuitively understandable as presented in Fig. 3.30: the
reflected light is shifted by D, and the length of the virtually penetrated ‘light’
represented by the red curve with a length of ds is correlated with the light
absorption.
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Fig. 3.28 dp/k is plotted
against the angle of incidence
calculated for n1 = 4.0
(Ge) and n2 = 1.5
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Unfortunately, however, the intuitive correlation does not work at all except the
angle at the critical angle [22]. In this manner, the illustrative understanding of ATR
spectrometry is quite difficult.

The ATR technique can be used for two purposes. The first one is for reducing
the absorbance to measure an IR spectrum of strongly absorbing thick sample, such
as a rubber. Since a rubber or water absorbs IR light too strongly, the transmission
technique cannot be employed. ATR works powerfully for this case, since only the
evanescent wave contributes to the IR absorption.

The second purpose is, on the contrary, for enhancing the sensitivity. Figure 3.31
presents a schematic of a side view of a trapezoidal-shaped ATR prism for multiple
reflections. Because of the total reflections, only the absorption by the sample via
the evanescent wave on both sides of the prism contributes to the IR spectrum,
which is five times greater than the single reflection type in Fig. 3.27. The
multiple-reflection type ATR is sometimes used for measurements of a
monolayer-level thin film particularly in an aqueous solution as schematically
shown in Fig. 3.32 [23]. In other words, in this case, the ATR prism is used, as if it
were an optical fiber.

The SSR of ATR is available for only the s-polarization. As found in Eq. (3.88),
an s-polarized ATR spectrum retrieves only the TO energy loss function of ex.
Therefore, only the surface-parallel component (along x) of normal modes is
observed in the spectrum. If a stretched polymer film is measured by this technique,
in-plane orientation can be discussed.
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If the p-polarization is employed, both TO and LO functions appear in an
overlaid manner. Since the surface-perpendicular component of a transition moment
is observed by the p-polarization only, however, the difference from the
s-polarization spectrum is useful for discussing the orientation in a thinly adsorbed
layer.

Tripp et al. [24] employed a similar optical configuration for studying the
molecular orientation of cetyltrimethylammonium bromide (CTAB) adsorbed at the
silica/solution interface over the pH range from 2 through 10 using both s- and
p-polarizations. The dichroic ratio of the two polarizations is defined by using the
surface electric fields as:

As

Ap
¼

E2
y

E2
x þE2

z
:

They employ the electric field intensities derived by Harrick [19], which correspond
to the coefficients appeared in Eqs. (3.87) and (3.88), to propose an order param-
eter: 1.22 and 0.65 for perpendicular and random orientations, respectively.

Fig. 3.32 An ATR prism made of germanium is used as an IR optical fiber to monitor molecular
adsorbates from an aqueous solution [22]
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3.16 Sampling Techniques

Practically useful sampling techniques for FT-IR are described. To analyze the
molecular structure and orientation, comparison of an isotropic sample with an
oriented sample is necessary, since the isotropic sample provides a spectrum of the
intrinsic relative band intensities.

Isotropic sample

(A) KBr pellet technique (solid samples)

When an IR spectrum of a solid sample is measured by FT-IR, the KBr pellet
technique is the most fundamental one. Note that IR spectra database is mostly
constructed on the KBr pellet spectra. This technique is usually employed for a
solid sample. To make a pellet with a diameter of 1 cm, for example, ca. 100 mg of
dried KBr powder is taken, which is subjected to grind in an agate mortar
(Fig. 3.33) to obtain a very fine powder. The ground KBr powder is pressed to have
a visually transparent disk, which is called ‘pellet.’ Recently, a simple press without
vacuuming is conveniently used, and 7 mm- or 5 mm disk is also used. The KBr
disk involving no sample is used for the background measurement.

On the other hand, another KBr powder containing a sample disk is prepared.
The sample is diluted by the KBr powder during the grinding with a concentration
of ca. 1 wt% or lower. A high concertation disk results in too strong absorbance
peaks more than 0.5, which would inaccurate relative band intensities because of
the apodization function (Sect. 2.4). If the most intense band is more than 0.5, the
sample disc should be remade by adding KBr powder for dilution.

Grinding usually keeps the crystallinity of the sample, i.e., the crystallite is
crushed by the grinding into many micro crystallites with random orientations.
Figure 1.5 presents an IR KBr pellet spectrum of stearic acid. The mCH2 bands at
2918 and 2849 cm−1 apparently indicate that the hydrocarbon chains have the

Fig. 3.33 Agate mortar and a
micro spatula on a Kimwipes
paper
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all-trans conformation (Table 1.2), which strongly implies that the molecules are
involved in a crystallite. In fact, the dCH2 band is split into two peaks at 1473 and
1462 cm−1 accompanying the band progression, which confirms that the molecules
with the planer-zigzag molecular skeleton are packed with the orthorhombic subcell
packing, i.e., crystallite. In this manner, the crystallinity is kept even after the find
grinding. Therefore, the key points of the KBr pellet technique are summarized
briefly.

1. Crystallite of the sample compound is crushed into minute parts, but crys-
tallinity is not lost in many cases.

2. The molecular orientation is disordered as a result of the random orientation of
the micro crystallites, which yields an “a spectrum (Eq. 6.4).”

3. Water vapor in ambient air is absorbed in the KBr powder because of the
hygroscopicity.

(B) Nujol mull method (mostly solid samples)

Another sampling technique for a solid sample is the Nujol mull method. Nujol is
liquid paraffin, which consists of only the methylene chain terminated with the
methyl group. If the sample is reacted with potassium or bromide ions, the KBr
pellet technique cannot be employed, and instead the Nujol method is employed.

Since Nujol is a paraffin, most of organic compounds having an alkyl chain is
dissolved to be a liquid, which is subjected to an IR transmission spectrometry
using IR-transparent windows such as NaCl, CaF2 and KBr.

Note that the solubility is quite high, and the crystallinity of the sample would be
lost during the mixing process. Another notable point is that useful IR window
region is limited except some regions related to the C–H stretching, and defor-
mation bands, i.e., 2950–2800, 1475–1450 and 1380–1370 cm−1.

(C) Solvent soluble samples

If the sample is soluble in chloroform or carbon tetrachloride, an IR spectrum of
the sample can be measured by using a liquid film jacket that consists of two
IR-transparent windows sandwiching a spacer ring.

To suppress IR absorption, a low concentration sample should be used, and path
length should also be small such as 10 lm. Unfortunately, however, this liquid
thickness sometimes generates optical fringes in the spectrum. Therefore, the
thickness must be changed by replacing a spacer ring. Another note is that too small
thickness would not yield an a-spectrum.

As a solvent, carbontetrachloride (CCl4) and chloroform are conveniently used,
since they are good solvent for many organic compounds, and many band regions
are useful as IR window regions. As presented in Fig. 3.34a, in particular, car-
bontetrachloride has a very wide window region having no absorption band.

Oriented sample

When an oriented sample is measured by FT-IR, the angle of incidence must be
fixed at an accurate position. In addition, the reflected light must be led to the
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detector, as if no reflector were present in the sample room. To do that, a specially
designed reflector should be used as presented in Fig. 3.35.

The modulated IR light coming from the right window passes through the
polarizer, and the polarized IR light is reflected three times to attain the sample
surface. The sample is held on the angle adjusting stage, which determines the angle
of incidence accurately. The reflected light on the sample goes to the detector via
three bounces on mirrors, which are necessary to adjust the light path and the
focusing on the detector, as if a transmission measurement were performed.

When the angle of incidence is changed by rotating the angle adjusting stage, the
irradiating point on the sample often changes. If the sample thin film is not
homogeneous on the substrate, we should keep the irradiating point by adjusting the
concave mirror. For the light alignment, the leaked He–Ne laser light should be
used as a convenient marker, since the IR light is invisible. As mentioned in
Sect. 2.3, the laser light had already been measured by a small detector near the
interferometer, the red laser light can be intercepted by the sample or polarizer.
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Fig. 3.34 IR spectra of
a carbontetrachloride and
b chloroform
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To detector
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Fig. 3.35 A sample stage for
reflection measurements,
which can commonly be used
for RA, ER and specular
reflection measurements. The
red line is the path of invisible
IR light
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Chapter 4
IR Absorption of a Dielectric Matter:
Phase Retardation of the Polarization
Density

4.1 Dielectric Matter and Electric Permittivity

We have already found through Sect. 1.6 and Chap. 3 that IR light is absorbed by a
dielectric matter, which is theorized by using complex optical parameters within a
framework of electrodynamics. One of the great benefits of using electrodynamics
is that a dielectric matter that is a collection of dipoles is easily characterized by
using the polarization density, P.

If the molecular induced-dipoles, p, are fully organized with a common orien-
tation, P can simply be correlated with N dipoles such as P ¼ P

p ¼ Np. In
practice, however, the distribution of the molecular dipoles is not simple in a matter
other than crystals, and thus we have to find a way to construct a physical
framework to discuss the light absorption of a dielectric matter using a concept of
polarization density, not a dipole.

When the intensity of IR light is not strong, the generated polarization density
can linearly be written in a good approximation as [1]:

P ¼ vee0E: ð4:1Þ

Here, ve is the electric susceptibility, and spectroscopy on this equation is called
linear spectroscopy. Fundamental spectroscopies represented by IR and UV–vis
spectroscopies are mostly categorized into the linear spectroscopy. Details are
discussed in Sec 4.3.

As described in Sect. 7.1 in Appendix, the induced polarization generates
apparent new charge on the surface of the dielectric matter. To keep the genuine
charge in the matter unchanged, a new parameter, D, is defined (Eq. 7.3) and
introduced.

D � e0EþP ð4:2Þ

© Springer Japan KK 2017
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D is called “electric flux density” or “electric displacement.” Note that this is a
definition. If Eqs. (4.1) and (4.2) are merged, the next equation is obtained.

D ¼ e0Eþ vee0E ¼ e0 1þ veð ÞE ð4:3Þ

D is thus also linearly related to the electric field. When Eq. (7.5) or a constituent
equation (Eq. 1.34) is referred, the following simple relationship is deduced:

er ¼ 1þ ve; ð4:4Þ

where er is the relative electric permittivity. The generation of the polarization in the
dielectric matter theorized by Eq. (4.1) is the intrinsic physical phenomenon
induced by the IR absorption. Note that, however, the equation holds only for a
“static” electric field. In other words, we cannot write:

( ) ( ) ( )e 0t t tχ ε=P E ð4:5Þ
as described in Sect. 4.3, to which we have to pay attention.

4.2 Electric Susceptibility and Linear Convolution

The generation of the “polarization oscillation” in a matter by an externally applied
electric field oscillation via irradiating IR light is easily understood by considering a
simple physical model that a polarization is induced by applying an electric field
“pulse,” which occurs one after another. In other words, a pulse is “input” to a
“system” of a dielectric matter, which works as a black box to “output” a signal as a
polarization, and the continuous phenomena are overlaid to have the
time-dependent result.

To theorize the continuous black-box phenomena, the following three conditions
should be satisfied; otherwise the system would highly be complicated to consider.

(1) Causality,
(2) Linearity and
(3) Time-invariance

Causality is very easy to understand: “a result never occurs before the reason,”
which gives the origin of the time scale for considering the phenomenon. Of course,
causality always holds for every physical phenomenon, and we don’t have to take
care about it too much at the moment. Causality plays an important role in
deduction of the Kramers–Kronig relation (Sect. 4.4). The other conditions may
need some explanations below.

Linearity: A pulse signal, x tð Þ, is input to a “system,” and the output signal, y tð Þ,
is recorded. If two different pulses of x1 tð Þ and x2 tð Þ are input to the system
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simultaneously with intensities of a and b, respectively, the output signal is gen-
erated as:

a � x1 tð Þþ b � x2 tð Þ ! system ! a � y1 tð Þþ b � y2 tð Þ:

Since the output responds to the input as a linear combination, the system is called
“a linear system.”

Fortunately, the generation of polarization by an electric field pulse is a linear
system, as long as the IR light intensity is moderate.

Time-invariance: This condition guarantees a constant time-shift. If an input
signal is given to the system with a time delay of u, the output signal is generated
with the same delay.

x t � uð Þ ! system ! y t � uð Þ

This system is called a “time-invariant” system. In our case of IR absorption by a
condensed matter to generate the polarization density, both linear and time-invariant
conditions are satisfied.

To predict the output signal without knowing details of the system, the response
of the system to an external input should be theorized by using a many cosine
waves having various frequencies. When the many cosine waves are overlaid, a
wave packet is generated as found in Eq. (2.8), which is denoted by a sinc function.
If infinite number of cosine waves are overlaid, the sinc function would be con-
verged, which is represented by Dirac’s delta function, d tð Þ. In other words, when a
pulse of the delta function is input to the system, this experiment corresponds to
inputting various cosine waves in a very short period of time. Therefore, the
response to the delta function is critical to predict the output signal to any input
signal to the system.

According to Dirac, the definition of d tð Þ is given by the couple of the two
equations as follows [2]:

Z1

�1
d tð Þ dt ¼ 1 ð4:6Þ

d tð Þ ¼ 0 ðt 6¼ 0Þ ð4:7Þ

This definition is generally rewritten as an intuitive form:

d tð Þ ¼ 0 t 6¼ 0ð Þ
1 t ¼ 0ð Þ:

�

This type of discontinuous “function” is recognized as “distribution.” As mentioned
above, the delta “function” can also be considered to be a wave packet that is a
result of summation of infinite number of cosine waves having different
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frequencies. This is another representation of the delta function, which can be
understood as the inverse Fourier transform of f xð Þ ¼ 1 (i.e., broadband spectrum).

d tð Þ ¼ 1
2p

Z1

�1
eixtdx ð4:8Þ

The proportional constant, 1=2p, is necessary to satisfy the definition of Eq. (4.6),
which exactly matches the definition of the inverse Fourier transform.

By using the inverse Fourier representation, another important property of the
delta function is introduced. Any time-domain function, f tð Þ, can be written via the
Fourier transform as follows.

f tð Þ ¼ 1
2p

Z1

�1

Z1

�1
f sð Þe�ixsds

0
@

1
Aeixtdx

¼
Z1

�1
f sð Þ 1

2p

Z1

�1
eix t�sð Þdx

0
@

1
Ads

, f tð Þ ¼ R1
�1

f sð Þd t � sð Þds

ð4:9Þ

In the equation deformation, an exchange of the integral order and Eq. (4.8) are
used considering the time invariance. Equation (4.9) with the wave line is an
important representation of the delta function.

Now, let us consider that the delta function is used for probing the impulse
response function, h tð Þ, of the black-box system, which is schematically presented
as:

d tð Þ ! system ! h tð Þ:

As mentioned above, the use of the delta function means that a light comprised
of various angular frequencies (broadband) is input the system, and the response is
collected. If the role of the system is denoted by a linear and time-invariant oper-
ator, Ŝ, the scheme is simply represented by the next equation:

Ŝ d tð Þ½ � ¼ h tð Þ: ð4:10Þ

If a function, x tð Þ, is input to the system, the output signal, y tð Þ, is obtained by
considering Eq. (4.9) as:
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y tð Þ ¼ Ŝ x tð Þ½ � ¼ Ŝ
Z1

�1
x sð Þd t � sð Þds

2
4

3
5

¼
Z1

�1
x sð ÞŜ d t � sð Þ½ �ds

, y tð Þ ¼ R1
�1

x sð Þh t � sð Þds � x � hð Þ tð Þ:

In this deformation, Eq. (4.10) is taken into account. The integral on the wave line
is called “convolution,” and the asterisk is the symbol of the convolution operation.
In this manner, once the impulse response function of the black-box system to the
delta function is obtained, the output signal responding any input function through
the system can be predicted, as long as the linear and time-invariant conditions are
both satisfied.

Since the delta function corresponds to broadband light (cf. Eq. 4.8), let us next
consider a light with a single angular frequency like laser as the input. If a cosine
wave with a single frequency, x, is input to the system, the frequency would be
kept unchanged; whereas the amplitude and phase can be changed, which can be
expressed as:

Ŝ eixt
� � ¼ H xð Þeixt: ð4:11Þ

Note that H xð Þ is a complex function, so that any phase retardation can be
considered.

Equation (4.11) can be integrated in terms of the angular frequency:

Z1

�1
Ŝ eixt
� �

dx ¼
Z1

�1
H xð Þeixt dx: ð4:12Þ

The left-hand side can be deformed by considering the linearity of Ŝ and Eq. (4.10):

ðLefthandÞ ¼ Ŝ
Z1

�1
eixt dx ¼ 2pŜ d tð Þ½ � ¼ 2ph tð Þ:

The right hand side of Eq. (4.12) is 2pF�1 H xð Þ½ � where F�1 indicates the inverse
Fourier transform. Therefore, the following equation can be obtained.
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F h tð Þ½ � ¼ H xð Þ ð4:13Þ

Here, F denotes the Fourier transform. Equation (4.13) reveals the general rela-
tionship between the “impulse response function (h tð Þ)” and the “frequency
response function (H xð Þ).”

4.3 Electric Susceptibility and Green’s Function

Now, let us consider an apparatus of “dielectric matter,” and an external electric
field oscillation, E tð Þ, is applied to the matter to generate a polarization density,
P tð Þ. If the operator of the apparatus is denoted as Â, then the response can
schematically be written as:

Â E tð Þ½ � ¼ P tð Þ: ð4:14Þ

Of course, Â is a linear and time-invariant operator. By using Eq. (4.9), the electric
field oscillation is expressed via the delta function as:

E tð Þ ¼
Z1

�1
E sð Þd t � sð Þds: ð4:15Þ

Equations (4.14) and (4.15) are merged to have the next equation.

Â
Z1

�1
E sð Þd t � sð Þds

2
4

3
5 ¼

Z1

�1
E sð ÞÂ d t � sð Þ½ �ds ¼ P tð Þ ð4:16Þ

This implies that the conversion mechanism from the electric field to the polar-
ization density would fully be revealed, if we have Â d t � sð Þ½ � in detail. As
described in the previous section, this term is the impulse response function of the
apparatus to the delta function. Since this term can be solved later as a solution of
an inverse problem, it is recognized as Green’s function. Due to the time-invariant
character of Â, the Green function can be expressed as:

Â d t � sð Þ½ � ¼ G t � sð Þ:

Green’s function is conveniently used as if it had already been “solved,” and the
polarization density is expressed by referring Eq. (4.16) as follows:
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P tð Þ ¼
Z1

�1
E sð ÞG t � sð Þds

¼ E � Gð Þ tð Þ:
ð4:17Þ

When Eq. (4.17) is compared to Eq. (4.1) on considering Eq. (4.13), the electric
susceptibility corresponds to the Green function or the impulse response function.

ve tð Þ ¼ G tð Þ ð4:18Þ

Therefore, Eq. (4.17) straightforwardly implies that the 1st-order electric suscep-
tibility works as the impulse response function of a dielectric matter. In this manner,
ve is revealed to play a central role to absorb the IR light to yield the induced
polarization in a dielectric matter. This is the nature of IR absorption by a con-
densed matter. In this sense, the linear spectroscopy driven by ve is most important
and fundamental to understand the light absorption.

When a mathematical formula of

F f � g½ � ¼ F f½ � �F g½ � ð4:19Þ

is referred, Fourier transform of Eq. (4.17) can easily be calculated to have:

P xð Þ ¼ E xð Þ � G xð Þ : ð4:20Þ

This relationship holds only for the angular frequency domain. As already noted at
Eq. (4.5) for a ‘static field,’ this relationship cannot be expanded to a time-domain
equation because ‘phase retardation’ occurs in the response.

In this manner, the theory for a static electric field has readily been developed to
that of interaction with IR light by using the Green function. The detail of the Green
function is, however, not available at the moment. Before revealing the details of
the Green function, Eq. (4.17) is calculated by using the electric field oscillation at a
single angular frequency:

E tð Þ ¼ E0 exp ðix0tÞ:

Since this time-domain equation can be Fourier transformed to have the
frequency-domain equation:

E xð Þ ¼ E0d x� x0ð Þ;

Equation (4.17) can be rewritten as:
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P tð Þ ¼
Z1

�1
G xð ÞE0d x� x0ð Þeixtdx

¼ G x0ð ÞE0eix0t

This equation apparently implies that the frequency of the polarization-density
oscillation is the same as that of the incidental IR light, as noted at Eq. (4.11).

If this fact that the polarization density is oscillated at the same frequency as the
light is simply taken into account, is the light absorbed by the matter at any
frequency? Of course, the answer is no. To answer this question in more detail, we
have to know the property of the Green function.

4.4 Complex Electric Permittivity

In the former sections, the causality does not seem to play an important role. If a
fact that a physical phenomenon occurs after a trigger is taken into account, a very
important physical law is built by using the convolution.

The causality is simply expressed by the step function as Eq. (4.21).

s tð Þ ¼ 1 t� 0ð Þ
0 t\0ð Þ

�
ð4:21Þ

Then, G tð Þ having the causality is readily expressed as:

G tð Þ ¼ G tð Þs tð Þ: ð4:22Þ

When the next mathematical formula is referred,

F fgð Þ ¼ 1
2p

F f½ � �F g½ �

Equation (4.22) can be Fourier transformed as:

G xð Þ ¼ 1
2p

G xð Þ �F s tð Þ½ �: ð4:23Þ

Since F s tð Þ½ � is mathematically known to be:

F s tð Þ½ � ¼ pd xð Þþ i
x
;
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Equation (4.23) is rewritten as:

G xð Þ ¼
Z1

�1
G -ð Þ 1

2
d x� -ð Þþ i

2p x� -ð Þ
� �

d-

¼ 1
2
G xð Þþ i

2p

Z1

�1

G -ð Þ
x� -

d-

, G xð Þ ¼ i
p

Z1

�1

G -ð Þ
x� -

d-:

ð4:24Þ

If G -ð Þ is a complex, G -ð Þ � G0 -ð Þþ iG00 -ð Þ is put in Eq. (4.24) to have

G0 -ð Þþ iG00 -ð Þ ¼ � 1
p

Z1

�1

G00 -ð Þ
x� -

d-þ i
1
p

Z1

�1

G0 -ð Þ
x� -

d-:

As a result, the two equation set is obtained as follows.

Re G xð Þð Þ ¼ � 1
p

Z1

�1

Im G -ð Þð Þ
x� -

d-

Im G xð Þð Þ ¼ 1
p

Z1

�1

Re G -ð Þð Þ
x� -

d-

ð4:25Þ

Here, the integral indicates Cauchy’s principal value. Of course, G xð Þ can be
replaced by ve xð Þ because of Eq. (4.18). Equation (4.25) explicitly indicates that
the frequency-domain electric susceptibility, G xð Þ, is a complex in fact. In addition,
the real and imaginary parts of G xð Þ are dependent on each other.

When G xð Þ is divided into the real and imaginary parts as:

G xð Þ ¼
Z1

�1
G tð Þe�ixtdt

¼
Z1

�1
G tð Þ cos xt dt � i

Z1

�1
G tð Þ sin xt dt ;

then the next relationships hold for the inversion of angular frequency.
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G �xð Þ ¼
Z1

�1
G tð Þ cos xt dtþ i

Z1

�1
G tð Þ sin xt dt

This implies that Re G xð Þ½ � and Im G xð Þ½ � are even and odd functions in terms of x,
respectively. With these characteristics, Eq. (4.25) can further be deformed as
follows (�- ¼ r).

�
Z1

�1

Im G -ð Þð Þ
x� -

d-¼
Z0

�1

Im G -ð Þð Þ
-� x

d-þ
Z1

0

Im G -ð Þð Þ
-� x

d-

¼
Z1

0

Im G rð Þð Þ
-þx

drþ
Z1

0

Im G -ð Þð Þ
-� x

d-

¼
Z1

0

2-Im G -ð Þð Þ
-2 � x2 d-

Therefore, the integration range (�1toþ1) can readily be changed to be the
positive range only. Therefore, the following relations are obtained after replacing
G by ve.

Re ve xð Þð Þ ¼ 2
p

Z1

0

-Im ve -ð Þð Þ
-2 � x2 d-

Im ve xð Þð Þ ¼ � 2x
p

Z1

0

Re ve -ð Þð Þ
-2 � x2 d-

ð4:26Þ

This equation set is known as the Kramers–Kronig (KK) relation. Here,
remember er tð Þ ¼ 1þ ve tð Þ (Eq. 4.4). Since ve xð Þ is obtained by Fourier transform
of ve tð Þ, then er xð Þ � 1 ¼ ve xð Þ holds, which makes the KK relation to have
another form (cf. Eq. 1.45) [3].

Re e xð Þð Þ � e1 ¼ 2
p

Z1

0

-Im e -ð Þð Þ
-2 � x2 d-

Im e xð Þð Þ ¼ � 2x
p

Z1

0

Re e -ð Þð Þ � e1
-2 � x2 d-

ð4:27Þ
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This is one of the variations of the KK relation [1–4]. Since the electric permittivity
is directly appeared, this KK relation is more conveniently used. In this manner, the
electric permittivity also proves to be complex, and the real and the imaginary parts
are dependent on each other. Of course, the relation can further be rewritten for the
complex refractive index.

The deduction process of the KK relation is mathematically written by using the
complex integration, which requires the regular condition satisfying the Cauchy–
Riemann equations. Equation (4.27), for example, when x ¼ x1 þ ix2 is defined,
the real and imaginary parts are rewritten as:

Re e x1;x2ð Þð Þ ¼ e1 þ
Z1

0

G -ð Þcosx1- e�x2-d-

Im e x1;x2ð Þð Þ ¼
Z1

0

G -ð Þsinx1- e�x2-d- ;

which satisfy the Cauchy–Riemann equations (Eq. 4.28).

@ReðeÞ
@x1

¼ @ImðeÞ
@x2

and
@Re eð Þ
@x2

¼ � @Im eð Þ
@x1

: ð4:28Þ

In this manner, e proves to satisfy the KK relation.
When referring Eq. (4.20), the following relationship is obtained.

P xð Þ ¼ e0 er xð Þ � 1½ �E xð Þ
¼ e0 Re e xð Þð Þ � 1ð Þþ iIm e xð Þð Þ½ �E xð Þ ð4:29Þ

Equation (4.29) apparently implies that the imaginary part of the electric permit-
tivity is the reason to cause the phase retardation.

Equation (1.43) in Chap. 1 shows that the spectral shape is governed by the
imaginary part of the refractive index, n00. At the baseline of an absorbance spec-
trum where no absorption occurs, n00 ¼ 0 holds. Therefore, Im e xð Þð Þ ¼ 2n0n00 also
becomes nil at the baseline. In this manner, the light absorption by a condensed
matter depends on whether the imaginary part of the permittivity is nil or not. This
further means that no absorption of the IR light induces “no phase retardation” of
the polarization, even if the polarization oscillates at the same frequency. This is the
intrinsic nature of light absorption by a condensed matter.

In short, if the oscillation of the polarization perfectly pursues the IR light, no
absorption occurs in the matter; whereas the light is absorbed when the phase
retardation occurs. When the retardation reaches p=2, the absorption reaches the
maximum.

Application studies using the KK relations are available in Chap. 6.
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Chapter 5
Chemometrics for FTIR

5.1 Beer’s Law and a Single-Constituent System

In Chap. 3, we have learned that absorbance spectrum of a ‘thin film’ deposited on
a substrate can accurately be reproduced by considering the optical configuration
and optical parameters of each phase. Regardless, this accurate electrodynamic
approach is inconvenient for calibrating a ‘bulky matter.’ One of the reasons is that
the molecular density (or concentration) is not explicitly involved in the optical
parameters. For the purpose of concentration calibration of a bulky matter, an
analytical technique based on Beer’s law (Eq. (5.1)) works conveniently:

Að~vÞ ¼ eð~vÞc: ð5:1Þ

Here, the path length, d, is fixed at d = 1 cm, so that d is removed from the
equation. This equation apparently indicates that the shape of an absorbance
spectrum, A ~mð Þ, is determined by e ~mð Þ. If the wavenumber is fixed at a position, e ~mð Þ
becomes a scalar, e, which is called molar extinction coefficient.

Equation (5.1) is apparently used for the calibration curve method, which is a
classical and most fundamental method for quantitatively analyzing absorbance
spectra. In Fig. 5.1a, schematic UV–vis absorbance spectra depending on con-
centration are presented. Since the spectral shape is kept unchanged within the
concentration range, the spectral variation is recognized to be derived from a single
chemical constituent system. If the solution involves two different chemical species,
the shape-invariant results imply that the two species increase simultaneously as if
they were coupled to be a single species. In this manner, anyway, the
shape-invariant intensity change is spectroscopically recognized as a
single-constituent system.

When we have spectra of a calibration sample set (concentrations are known a
priori) as found in Fig. 5.1a, the peak intensity is measured at the most intensive
band as presented by the red-dashed line, and the intensities are plotted against the
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concentration to have the calibration curve (straight line though) as shown in
Fig. 5.1b. Reflecting instability and noise, the plots represented by the open circles
are generally not on a line perfectly. Since the absorbance is theoretically governed
by Beer’s law (Eq. (5.1)), a calibration curve (red straight line) can be drawn on the
data as the least squares solution (see Sect. 5.3). Since the ordinate and abscissa of
the figure are absorbance and concentration, respectively, Fig. 5.1b is a represen-
tation of Eq. (5.1), and therefore the slope of the calibration curve corresponds to
the molar extinction coefficient, e.

Once e is obtained, the concentration of an unknown sample, cu, is easily ana-
lyzed using the calibration curve as presented by the black arrow in the figure. Here,
Au is the band intensity of the unknown sample at the same band position as used
for building the calibration curve. Note that, however, the concentration prediction
can be performed without using the figure, but by a simple calculation as:

cu ¼ Au=e: ð5:2Þ

This conventional technique implies a very important fundamental: once e or a
conceptually same parameter is obtained, concertation prediction can be per-
formed, even if we cannot draw the calibration figure. This idea can be used for
extending Beer’s law to chemometrics.

The conventional quantitative calibration on Beer’s law has an intrinsic limita-
tion as follows. The peak intensity only at a single wavelength is used, and the rest
spectral information is discarded. Therefore, only a single-constituent system can be
calibrated, and a mixture cannot be analyzed, which is a big barrier for most
analytical purposes. In addition, the peak intensity is directly influenced by noise.
Therefore, for multi-constituent and multi-wavelength analysis, a more sophisti-
cated analytical technique is needed. To make the best use of all the spectral data,
e ~mð Þ should be reconsidered.
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Fig. 5.1 a Schematic concentration-dependent absorbance spectra of a single-constituent system,
and b the calibration curve measured at 660 nm
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e ~mð Þ is obtained by normalizing spectra in terms of concentration.
Að~vÞ
c

¼ eð~vÞ:

e ~mð Þ is thus found to be a “spectrum at the concentration of 1 mol dm−3.” In
practice, the measurements at such a high concentration are impossible, since the
solution would absorb the IR light too much, and the IR light would also be
scattered in such a dense medium. Therefore, e ~mð Þ is a concentration-normalized
spectrum.

When we measure a spectrum on a modern spectrometer, the spectrum is
recorded as digital data, and it can be output as text data as presented in Fig. 5.2.
Although the absorbance spectrum appears as a continuous curve as the thick curve
in Fig. 5.3a, it is a collection of discrete data points. In this meaning, the spectrum
is not a ‘function’ of wavelength, and it should be written as a ‘vector.’ If the
absorbance column has N numeric values, the spectrum can be stored in a vector, a:

a � ða1 a2 a3 . . . aN�1 aNÞ:

For this example, the spectrum, a, is synthesized to have two bands at 420 and
660 nm as found in the figure.

No matter how the spectral shape is complicated, the spectrum can be written as
“a vector” in N-dimensional space as schematically illustrated in Fig. 5.3b. The
N-dimensional space is schematically illustrated using a three-dimensional image.
In the multivariate (or multidimensional) space, the vector can be recognized as “a
point” as shown by the open circle in Fig. 5.3b. In this manner, any spectrum can
be converted to be a point in multivariate space. This is the most important fun-
damental of chemometrics.

When the spectrum develops with increasing the concentration without changing
its shape as found in Fig. 5.3a, what would happen in the multivariate space?
Invariance of the shape means that the vector, a, is simply multiplied by a scalar
factor, k, such as

3.500000e+002,4.350000e-002
3.520000e+002,4.460000e-002
3.540000e+002,4.634000e-002
3.560000e+002,4.861000e-002
3.580000e+002,5.037000e-002
3.600000e+002,5.159000e-002
3.620000e+002,5.409000e-002
3.640000e+002,5.606000e-002
3.660000e+002,5.760000e-002

Fig. 5.2 An example of text
data of a UV–vis spectrum.
The left and right columns
store the wavelength and
absorbance data, respectively,
and the two columns are
separated by comma
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a ! ka:

This means that ka must appear on an extended line of the original vector, a, as
drawn by the solid circles in Fig. 5.3b.

As a result, a very important concept of the multivariate space representation of
spectra is found as follows [1]:

1. The direction of a vector in multivariate space represents the spectral
shape in the normal representation, and

2. The norm (magnitude) of the vector represents the spectral intensity.

5.2 Extended Beer’s Law for a Multi-Constituent System:
CLS Regression

What would happen, if another chemical constituent is added to the system to have
a ‘two-constituent’ system? Since a chemically different species yields a
different-shape spectrum, the added species must yield another vector with a ‘dif-
ferent direction’ in the multivariate space representation judging from the conclu-
sion in the previous section. In other words, the points in the multivariate space
cannot be on a line passing through the origin.

In Fig. 5.4a, schematic spectra of a ‘two-constituent’ system are presented. The
spectral shape is changed by using two components: a having the peak position at
490 nm and b having the peak position at 600 nm:
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a � ða1 a2 a3 . . . aN�1 aNÞ
b � ðb1 b2 b3 . . . bN�1 bNÞ:

In this example, the concentration of b increases while that of a decreases syn-
chronously. When two species change the quantities in the opposite directions
synchronously, an isosbestic point appears, at which all the spectra go across.

Then, what is going on in the N-dimensional space? Since the spectrum of b has
a different shape from that of a, the vector b must have a different direction from the
vector a as schematically presented in Fig. 5.4b. The mixture spectra vector, m,
should be expressed as a linear combination of the two vectors as long as no
chemical interaction occurs between the two species:

m ¼ caaþ cbb: ð5:3Þ

Therefore, the points, m, in the N-dimensional space must be involved in the plane
spanned by the two vectors (see Fig. 5.4b). In other words, the point variance needs
two-dimensional space.

This suggests another very important conclusion that the dimension needed for
involving the points equals to the number of chemical constituents in the system. In
other words, the dimension analysis of the point variance is the analysis of the
number of constituents in the system. This is a basis for analysis of the number of
independent chemical species involved in the system via spectroscopy.

As an example study, let us consider the isosbestic point using Eq. (5.3). As
mentioned above, the spectra in Fig. 5.4a are synthesized by changing the con-
centrations of the spectra of a and b synchronously, but the directions are opposite
to each other. This situation is expressed using a parameter of t as:
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m ¼ taþð1� tÞb ð0� t� 1Þ:

In fact, the points in Fig. 5.4b are on this line. This equation is organized in terms of
t to have:

m ¼ tða� bÞþ b:

The isosbestic point is an unmoved position irrespective of t, which is achieved
when a� b ¼ 0 holds. Since the spectra of a and b are different from each other,
however, a 6¼ b holds except the isosbestic point. In other words, only at the
crossing points of the two spectra, m becomes invariant to any t. In this manner, the
reason for the isosbestic point is easily understood using the vector representation.

If we prepare two or more mixture samples with various concentrations for a and
b, Eq. (5.3) is inconvenient to denote the concentration systematically; instead, two
indices (i and j) should be introduced for labeling the concentration:

m1 ¼ c11k1 þ c12k2
m2 ¼ c21k1 þ c22k2

..

.

mM ¼ cM1k1 þ cM2k2:

ð5:4Þ

By introducing cij, M samples comprising any components can thus be written
systematically. Equation (5.4) can further be summarized using matrix.

m1

m2

..

.

mM

0
BBB@

1
CCCA ¼

c11 c12
c21 c22
..
. ..

.

cM1 cM2

0
BBB@

1
CCCA k1

k2

� �
, A ¼ CK: ð5:5Þ

Here, A is a matrix comprising M vectors of mj. C is, of course, the concentration
matrix. In the row-wise vector, the concentration of each constituent of a mixture
sample is stored; whereas the column-wise vector indicates the concentration
‘profile’ on changing the sample. K involves the ‘pure-component spectra’ of the
independent chemical species. The generalized form of A ¼ CK is recognized to be
an expanded form of Beer’s law in terms of both row- (wavelength) and
column-wise (constituents) directions [2]. A benefit of using the general form is that
it holds for any numbers of constituents and wavelengths.

By comparing Eq. (5.5) to Eq. (5.1), the matrix of K is found to correspond to e.
When referring to the previous section, once K is obtained, the calibration should be
carried out using the concentration-dependent spectra.

Equation (5.5) has a form that the mixture spectra matrix, A, is calculated by
multiplying the concentration and the pure-component matrices. In practice,
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however, the mixture spectra are obtained by measurements using a spectrometer.
What we want do is, therefore, decomposing the observed spectra into the con-
centration and pure-constituent matrices.

In chemometrics, the decomposing is called “modeling,” i.e., the spectra matrix,
A, is “modeled” (not theorized) by linear combination of the two matrices of C and
K. Here, we have to note that the modeling accompanies some inaccuracy, since
A involves some noise and experimental error. Therefore, such an inaccuracy is to
be discarded in a residual term, R:

A ¼ CKþR : ð5:6Þ

This equation accompanying the residual term is called the classical least squares
(CLS) regression. The term of “regression” is used for meaning “prediction” due to
a historical reason in the field of genomics.

Here, for a better understanding, the seed spectra and concentration are disclosed
in Fig. 5.5, which are used to construct the mixture spectra in Fig. 5.4.

The red, green, and blue spectra in Fig. 5.5a are the first-, second-, and third-row
spectra, which are collected to yield a matrix of K, and the corresponding con-
centration column vectors stored in C are presented in Fig. 5.5b. For the con-
struction of the spectra of the two-component system, only the first two spectra and
concentration vectors are used. With the use of these two matrices, model spectra,
A, are synthesized using A ¼ CK, which are presented in Fig. 5.4a.

5.3 Least Squares Solution of a Regression Equation

As already mentioned, ‘obtaining K’ using a calibration sample set corresponds to
‘making a calibration curve.’ If we have a calibration sample set, i.e., the con-
centrations in C are all known for the measured spectra of the mixture sample, A,
how do we calculate K? If the parameters are all scalars, a simple division as found
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in Eq. (5.2) can be employed. What if all the parameters are matrices? Here we
have to note that all the three matrices need not be square matrices in practical
cases. This means that the inverse matrix cannot be calculated for the CLS
regression, either.

To overcome this dilemma, in an intuitive understanding, a transpose matrix is
multiplied to make a square matrix. For example, to solve K in Eq. (5.6), the
transpose matrix of C ðCTÞ is multiplied to C from the left side:

CTA ¼ CTCK:

R is ignored because of the reason mentioned later. Since CT and C have matrix
sizes of c�Mð Þ and M � cð Þ, respectively, CTC has a size of c� cð Þ, which is
smaller than the original size where ‘c’ is the number of chemical constituents. Note
that the ‘rank’ of C is the same as that of CTC, that is c. This situation guarantees
that the inverse matrix of CTC can be calculated with no problem. Therefore, K can
readily be calculated as:

K ¼ ðCTCÞ�1CTA: ð5:7Þ

This solution is called the least squares solution. To understand why this is the
‘least squares’ solution, we should consider the normal least squares solution of
several points in a graph.

Figure 5.6 presents a schematic image of a calibration curve to an experimental
plot of four points. The linear calibration curve is obtained as the least squares
(LS) solution of y ¼ axþ b. The slope and the intercept are calculated as follows.

y = ax + b
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0.7Fig. 5.6 A schematic of
linear calibration curve
obtained by the least squares
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In the LS analysis, the difference between the line and the jth experimental point
measured along the y-axis (indicated by the red line) is squared, and all the squared
differences are summed up to have s:

s ¼
Xn
j¼1

ðyj � axj � bÞ2:

The LS analysis finds the optimal set of a and b to make s minimum. To do that, s is
partial-differentiated in terms of a and b, which must be equal to zero:

@s
@a

¼ �2
Xn
j¼1

ðyj � axj � bÞxj ¼ 0

@s
@b

¼ �2
Xn
j¼1

ðyj � axj � bÞ ¼ 0:

These equations are readily organized to have the following equation set:

Xn
j¼1

x2j

 !
aþ

Xn
j¼1

xj

 !
b ¼

Xn
j¼1

xjyj

Xn
j¼1

xj

 !
aþ nb ¼

Xn
j¼1

1 � yj:
ð5:8Þ

Since the summations of xj, x2j , and xjyj are easily carried out using computer, these
simultaneous linear equations are easily solved to have the optimized a and b. This
is the normal LS method. Here, however, we note coefficients in Eq. (5.8). For
example, right-hand side can be decomposed as

Pn
j¼1

xjyj

Pn
j¼1

1 � yj

0
BB@

1
CCA ¼ x1 x2 � � � xn

1 1 � � � 1

� � y1
y2
..
.

yn

0
BBB@

1
CCCA ¼ nTY:

Here, two parameters are newly introduced as:

n ¼
x1 1
x2 1
..
. ..

.

xn 1

0
BBB@

1
CCCA and Y �

y1
y2
..
.

yn

0
BBB@

1
CCCA:

The new parameters represent a line, which runs through all the experimental
points:
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Y ¼ n
a
b

� �
,

y1
y2
..
.

yn

0
BBB@

1
CCCA ¼

x1 1
x2 1
..
. ..

.

xn 1

0
BBB@

1
CCCA a

b

� �
,

y1 ¼ ax1 þ b
y2 ¼ ax2 þ b
y3 ¼ ax3 þ b

:

In this manner, n and Y readily express the straight line in Fig. 5.6. With the use of
n, the coefficients in the right-hand side of Eq. (5.8) can readily be expressed in a
very simple manner:

nTn ¼ x1 x2 � � � xn
1 1 � � � 1

� � x1 1
x2 1
..
. ..

.

xn 1

0
BBB@

1
CCCA ¼

Pn
j¼1

x2j
Pn
j¼1

xj

Pn
j¼1

xj n

0
BB@

1
CCA:

Therefore, the two equations in Eq. (5.8) can simply be rewritten as:

nTn
a

b

� �
¼ nTY

, a

b

� �
¼ nTn
� ��1

nTY :

ð5:9Þ

Thus, a and b are found to be solved in the same way as Eq. (5.7), which is exactly
the same as the solving process of the LS solution. This is the reason why the
solution via Eq. (5.9) is called the LS solution.

5.4 Intrinsic Limitation of CLS Regression

To understand the concept of CLS regression in a more familiar manner, some
simulated spectra are prepared.

Let us consider that the spectra, A, in Fig. 5.7a are obtained for a calibration
sample set. The concentrations of the calibration sample set (see c1 and c2 in
Fig. 5.5b) are:

C ¼ c1 c2ð Þ ¼

5 1
4 2
3 3
2 4
1 5

0
BBBB@

1
CCCCA:

With the use of A and C, the rest matrix of the CLS regression, K, is calculated
as presented in Fig. 5.8a. As mentioned above, K has a meaning of
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“pure-constituent spectra.” Therefore, calculation of K has an important meaning of
spectral decomposition from the mixture spectra, A, as well as another meaning of
the calibration curve. The decomposed spectra accompany less noise than that
involved in the original spectra (Fig. 5.7a), since some of the noise has been
discarded into R (Eq. (5.6)) as a result of the LS calculation.
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In this manner, if we have full information of the concentration of the calibration
samples (i.e., the number of the constituents is exactly the same as expectation) a
very accurate spectral decomposition is achieved, which means that the ‘calibration
curve’ is accurately obtained.

Once K is obtained as the LS solution from the spectra of the calibration sam-
ples, prediction of the concentration of an unknown sample can be performed, since
K works as the calibration curve. If the ‘spectra of the unknown samples’ are stored
in a matrix of au, the concentration of each chemical constituent in every sample is
simultaneously predicted as another LS solution as:

cu ¼ auKTðKKTÞ�1 � auKcal: ð5:10Þ

The calibration matrix of Kcal � KTðKKTÞ�1 is thus conveniently used for the
simultaneous determinations of concentrations of a multi-constituent system.

For a better understanding, an “unknown” spectrum, au, is synthesized using the
two seed of spectra, k1 and k2, with concentrations of ð2:5 1:5Þ, which is presented
in Fig. 5.9.

By putting the vector, au, into Eq. (5.10), the concentrations are calculated to be
2.50 and 1.50 with an analytical error below 1 � 10−12%, which is extremely great
when we remember that the artificial noise is about 1% of the signal. This is
achieved because the majority of noises are attributed to the nonlinear response to
the concentration change, which are discarded into R of Eq. (5.6). This is, indeed, a
great benefit of using CLS regression, and the conventional ‘calibration curve’
method cannot attain such a super result.

We have to note again, however, that this beautiful spectral calibration can be
performed only when the number of constituents is exactly the same as the real
constituents involved in the system.

What would happen, if the expected number of constituents is incorrect? Even if
only two constituents are dissolved in the solvent, a new product would be gen-
erated after some reaction and association, which results in three-constituent
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system. This situation is presented in Fig. 5.7b. The spectra are synthesized using
all the seed spectra in Fig. 5.5a with the three concentration profiles in Fig. 5.5b.
By adding the third component, the ‘isosbestic point’ in Fig. 5.7b becomes
ambiguous. If we have the spectra as experimental data at hand, however, what do
we make a decision about the number of constituents? One may consider that the
ambiguous isosbestic point is due to an experimental error, and the system can be
recognized to have two constituents. On the other hand, one cannot ignore the
ambiguous crossing, and consider an additional constituent. In any case, making an
appropriate decision is quite difficult, but calculation of Eq. (5.7) is readily carried
out.

Let us put the three-constituent spectra in A, and K is calculated by using the
two-constituent concentration matrix, C, since we have only the two-constituent
data for the calibration sample set. Although the three-constituent information is
involved in A, the matrix size of A is kept unchanged. Therefore, calculation of
Eq. (5.7) has no problem. The results are presented in Fig. 5.8b. When we take a
look at the difference spectra between the predicted spectra and the seed one (upper
panel), the calculated spectra, K, are found to be a little bit different from the seed
spectra, which is not found in Fig. 5.8a. This suggests that the ‘calibration curve’ is
inaccurate. In fact, using the matrix of K, the concentrations of the unknown
spectrum, au, in Fig. 5.9 are calculated using Eq. (5.10). The predicted concen-
trations are 2.40 and 1.43 having analytical errors of 3.97 and 4.64%, respectively
(depending on the random noise). The error level is apparently degraded when
comparing to the exactly two-constituent case.

In this manner, the analytical accuracy becomes largely degraded when the
number of constituents is different from the actual one. In practice, having
knowledge of the exact number of constituents a priori is impossible, which should
be an analytical purpose (Sect. 5.6). Therefore, CLS intrinsically has a big problem
of an inaccurate calibration on a wrong number of constituents, although it has
another great function of ‘spectral decomposition’ as well as the highly accurate
calibration in principle, which is a dilemma of CLS.

5.5 Inverse Beer’s Law: ILS Regression (or MLR)

The reason why the calibration accuracy is largely degraded on a wrong number of
constituents should be attributed to a fact that “rich information of A having the full
constituents is modeled by using a less number of constituents in C.” As found in
Fig. 5.8b, an error is found as a result of modeling the three-constituent spectra
using only two pure-component spectra. This is schematically presented as:

A ! ck;

where the capital letter is used for involving rich information, whereas small letters
involve inadequate information. Once an inadequate matrix of k is calculated, a
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portion of the spectral information is lost, and as a result, reconstruction of A is
impossible as schematically expressed as below.

ð5:11Þ

This implies that CLS requires a very strict constraint that all the information of
every factor influencing the spectral variation must explicitly be quantified in C,
which indicates a limit of CLS. The influencing factor involves the experimental
error of the spectrometer, baseline drift, and unexpectedly generated chemical
species such as associated molecular species. Since the quantitative prediction of
the chemical information is nearly impossible, CLS is not practically used for
calibration purposes. Only the exception is found in MAIRS technique (Sect. 6.2),
which makes the best use of CLS in terms of spectral decomposition.

To overcome the intrinsic limit of CLS, the direction of modeling (Eq. (5.11)) is
focused, i.e., the concentration matrix having inadequate information should be
modeled using the spectral matrix having full information. In short, A and C are
exchanged [2] as schematically presented by:

c ! Ap:

Here, another correlation matrix, p, is used instead of using k to discriminate the
new concept from CLS. The new regression equation is, therefore, represented by

C ¼ APILS þR : ð5:12Þ

Since P is used for PCA later, PILS is used for ILS. This regression equation is
based on a concept of the inverse Beer’s law, and the equation is thus officially
named inverse least squares (ILS) regression. Due to a historical reason, the same
technique is often called as multiple linear regression (MLR). In this technique, PILS

has no apparent physical meaning, and it works as only a correlation matrix.
Therefore, ILS (or MLR) is sometimes called “P-matrix method.” In the same
fashion, CLS is rarely called “K-matrix method.”

For the same calibration sample set used for CLS, PILS can be calculated as
follows:

PILS ¼ ðATAÞ�1ATC: ð5:13Þ

Once PILS is calculated, which corresponds to the calibration curve of ILS, the
concentrations of unknown samples, cu, are very easily calculated as:

cu ¼ AuPILS: ð5:14Þ
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Nevertheless, if we perform the calculation of PILS using Eq. (5.13), the cal-
culation stops with an error saying “Matrix is close to singular or badly scaled.”

This means that the calculation of ATA
� ��1

cannot be performed.
In general, the matrix of A very often has a landscape shape ðM � NÞ, since the

number of wavelength positions (N) is larger than the number of samples (M). As
shown in Fig. 5.10a, the product of ATA has a size of ðN � NÞ, which is a large
square matrix.

Here, we have to note that the large square matrix still has a ‘rank’ of M, since
the original spectra matrix, A, has a rank of M. When the matrix size is larger than
the rank of the matrix, according to linear algebra, the determinant of the matrix
becomes nil ðdetðATAÞ ¼ 0Þ. Since the inverse of a matrix is a product of the
reciprocal determinant and the cofactor matrix:

ðATAÞ�1 ¼ 1

detðATAÞ ðcofactor matrixÞ;

The large matrix makes the calculation of the inverse matrix impossible. In this
manner, the LS calculation of ILS is difficult to perform, although the idea is great
to overcome the analytical inaccuracy of CLS caused by the inaccurate estimation
of the number of constituents.

To get over the problem, the spectral matrix, A, must be square or portrait
(vertically long). This is achieved by two strategies:

1. The number of samples is increased.
2. The number of wavelength points is decreased.

The first strategy may be impractical to prepare hundreds of samples with var-
ious concentrations. Therefore, in general, the second strategy is taken for the ILS
analysis. In short, only limited data on several wavelength points are taken out from
the spectra, and the rest data are discarded. This spoils a great benefit of the
multivariate analysis, and the analytical results depend on the selection of the data

AT A ATA

= =

(a) (b)
ATA AAT

Fig. 5.10 Matrix size depends on the order of A and AT
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points. This intrinsic problem involved in ILS will be improved by introducing
PCA (Sect. 5.6). Before moving to PCA, the benefit of ILS is confirmed as below
by using the spectra in Fig. 5.7b.

1. Only one point at 600 nm is used:

One ‘column’ of A ð5� 1Þ is input into Eq. (5.12) with C ð5� 2Þ, and P
ð1� 2Þ is calculated using Eq. (5.13). With the calculated P and only one column
of au (Fig. 5.9) at 600 nm, the unknown concentrations are calculated to be 0.9751
and 1.4921. Since the correct concentrations are 2.5 and 1.5, the analytical error
becomes 60.9948 and 0.5250%, respectively (depending on the random noise). In
this manner, the ILS analysis on only one point yields a very poor result.

2. Two points at 420 and 600 nm are used:

Another point at 420 nm is added for the ILS analysis. Two columns of A
ð5� 2Þ are used for the same procedure. As a result, the unknown concentrations
are calculated to be 2.4358 and 1.4483 with analytical errors of 2.5681 and
3.4466%, respectively. In this manner, the analytical errors have significantly been
reduced by adding only one point.

3. Three points at 420, 540, and 600 nm are used:

Another point at 540 nm is added, and three columns of A ð5� 3Þ are used for
the same procedure. The unknown concentrations are calculated to be 2.5000 and
1.5000, which exactly match the correct concentrations. In this case, therefore,
three-point analysis reaches the ideal results. In principle, the number of points can
be increased up to five, in this case, but no improvement is found even if two
additional points are added.

In this fashion, ILS exhibits a surprisingly powerful performance on spectral
calibration with a very few points extracted from the spectra as theoretically
expected. In other words, ILS is quite robust in comparison to CLS. One problem
remains, however, that the ILS results depend on the selection of the points;
whereas CLS can take full spectra without artificial selection of wavelength points.
To solve the dilemma, PCA is necessary.

5.6 Principal Component Analysis (PCA)

The regression equation of CLS can be ‘expanded’ by the use of ‘vectors’ taken
from the C and K matrices as presented by the third row of the next equation.
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A ¼ CKþR

¼
c11 c21 � � � cr1

..

. ..
. . .

. ..
.

c1M c2M � � � crM

0
BB@

1
CCA

k11 � � � k1N
k21 � � � k2N

..

. . .
. ..

.

kr1 � � � krN

0
BBBB@

1
CCCCAþR

¼
c11

..

.

c1M

0
BB@

1
CCA k11 � � � k1Nð Þþ

c21

..

.

c2M

0
BB@

1
CCA k21 � � � k2Nð Þ

þ � � � þ
cr1

..

.

crM

0
BB@

1
CCA kr1 � � � krNð ÞþR

¼
Xr
j¼1

cjkj þR

This expanded form implies that the number of expansion terms, r, is limited by the
number of pure-component spectra that are known a priori. Therefore, if the spectra
are influenced by unexpectedly generated chemical species such as molecular
associates, the new constituent and its quantity are missed in the CLS analysis.

To fully cover all the constituents involving the unexpected species, the number
of the expanded terms should not be limited. In place of using the pure-component
spectra known a priori, therefore, mutually orthogonal vectors should be used to
expand the spectra matrix as follows:

A ¼ t1p1 þ t2p2 þ � � � þ tcpc ¼
Xc
j¼1

tjpj � TP: ð5:15Þ

Here, c is the lesser one of M or N, and pj represents the mutually orthogonal
vectors satisfying Eq. (5.16), which is called “loading” vector:

pi � pj ¼ pipj
T ¼ dij: ð5:16Þ

The dot represents the inner product, and dij denotes Kronecker’s delta. Since pi is a
row-wise vector, pj is transposed for the calculation.

If a vector, a, is involved in two-dimensional space (plane) spanned by mutually
orthogonal two unit vectors, p1 and p2, as illustrated in Fig. 5.11, the vector, a, can
be expressed as:
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a ¼ ap1
T� �
p1 þ ap2

T� �
p2: ð5:17Þ

When Eq. (5.17) is compared to Eq. (5.15), tj is found to be

tj ¼ apj
T , T ¼ APT ð5:18Þ

The coefficient vector, tj, is often called ‘score’ vector. When all the score and
loading vectors are put together to have T and P, they are called score and loading
matrices.

The loading vectors are calculated, so that the variance of the points in multi-
variate space should be maximized along a loading vector, which is schematically
illustrated in Fig. 5.12.

If each spectrum has N absorbance data as a function of wavelength, the spectra
need N-dimensional space. To visualize the space intuitively understandable, a
cross-sectional image spanned by two orthogonal axes of xj and xk is presented in
the figure. If the plot has an ellipsoidal variation as found in Fig. 5.12, the 1st
loading vector, p1, is determined, so that the loading vector should span the largest
variance of the plot. This loading vector works as the new axis for positioning the
points.

At the moment, only the p1-parallel component is revealed for the plot, and the
perpendicular component is left un-positioned, which requires the second loading
vector, p2. The second loading vector is also determined to make the rest variance
largest. If the points are within a plane, as in this example case, p2 is determined as
illustrated in the figure.

To explain the calculation procedure of the loading vectors, some statistical
variables must be introduced to discuss the variance of points. Let us use
two-dimensional space for convenience. First of all, average is defined in terms of
the two axes of x1 and x2:

Fig. 5.11 A schematic
concept of vector projection
onto mutually orthogonal
vectors. The projection is
calculated by the inner
product between a and pj
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�x1 � 1
n

X
j

x1j and �x2 � 1
n

X
j

x2j:

Here, ðx1j; x2jÞ denotes the position of the jth point on the x1–x2 coordinate. With
the use of the averages, variance is defined as follows:

V1 � 1
n

X
j

ðx1j � �x1Þ2; V2 � 1
n

X
j

ðx2j � �x2Þ2:

In this discussion, the variance is not used for evaluating the population, and
therefore 1= n� 1ð Þ is not necessary to be taken into account for the constant of
proportion. Next, covariance, Vc, is also defined in a similar manner:

Vc � 1
n

X
j

ðx1j � �x1Þðx2j � �x2Þ:

We are finding a new coordinate, which more appropriately spans the variance of
the plot. To do that, a new coordinate, n1−n2, is considered with related to the
original x1–x2 coordinate by rotating the relative angle, h, i.e., unitary
transformation:

cos h � sin h
sin h cos h

� �
x1j
x2j

� �
¼ cos h � x1j � sin h � x2j

sin h � x1j þ cos h � x2j
� �

� n1j
n2j

� �
:

Therefore, the new coordinate is expressed using h:

Fig. 5.12 Relationship
between the points and the
loading vector, p1, which
maximizes the variance of the
plot, k1. The loading vectors
are calculated for the
mean-centered data
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n1j ¼ cos h � x1j þ sin h � x2j � a1x1j þ a2x2j: ð5:19Þ

Here, cos h and sin h are replaced by a1 and a2, respectively, for making the
following equations visually simpler. Now, we have to mind the constraint:

a21 þ a22 ¼ 1: ð5:20Þ

On the newly defined coordinate, the variance of the plot along the n1 axis,
V n1ð Þ, is expressed as:

V n1ð Þ ¼ 1
n

X
j

n1j � �n1
� �2

:

The coordinate transformation (Eq. (5.19)) is put in this equation to have the
next equation:

V n1ð Þ ¼ 1
n

X
j

a1x1j þ a2x2j
� �� a1�x1 þ a2�x2ð Þ� �2

¼ 1
n

X
j

a1 x1j � �x1
� �� a2 x2j � �x2

� �� �2 ¼ a21
1
n

X
j

x1j � �x1
� �2 !

þ 2a1a2
1
n

X
j

x1j � �x1
� �

x2j � �x2
� �þ a22

1
n

X
j

x2j � �x2
� �2 !

¼ a21V1 þ 2a1a2Vc þ a22V2:

ð5:21Þ

In this manner, the ‘new variance’ on the new axis (loading vector) is simply
expressed by using the variance and covariance on the original coordinate.

Now, we have a problem “how to make the new variance largest” by changing
the slope (h) of the new axis. In other words, this is the maximum-value problem
with a constraint of Eq. (5.20). To solve a stationary-value problem involving the
maximum-value problem under a constraint, Lagrange’s method of undetermined
multipliers works powerfully.

This method requires a modification of the constraint as:

a21 þ a22 � 1 ¼ 0;

and this is subtracted from the analytical target, V n1ð Þ, with a undetermined mul-
tiplier, k, to have F:

F � a21V1 þ 2a1a2Vc þ a22V2 � k a21 þ a22 � 1
� �

:

To search for the best couple of a1 and a2 for maximizing F, the partial derivatives
in terms of a1, a2 and k must be nil as follows:
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@F
@a1

¼ 2a1V1 þ 2a2Vc � 2a1k ¼ 0

@F
@a2

¼ 2a1Vc þ 2a2V2 � 2a2k ¼ 0

@F
@k

¼ � a21 þ a22 � 1
� � ¼ 0:

The third equation definitely holds because of the constraint. Therefore, we are
considering the first two equations only. The two equations can be organized to be:

a1V1 þ a2Vc ¼ a1k

a1Vc þ a2V2 ¼ a2k:
ð5:22Þ

These equations can be organized to be a more generalized form:

V1 Vc

Vc V2

� �
a1
a2

� �
¼ k

a1
a2

� �
: ð5:23Þ

This has a typical form of an eigenvalue problem. Of interest is that the undeter-
mined multiplier, k, has been changed to be the eigenvalue of a matrix consisting of
variances and covariance. Equation (5.23) can be deformed as:

V1 Vc

Vc V2

� �
a1
a2

� �
¼ k 0

0 k

� �
a1
a2

� �
;

which can further be simplified as:

V1 � k Vc

Vc V2 � k

� �
a1
a2

� �
¼ 0:

This equation has nontrivial solutions for a1 and a2, if the next condition is satisfied
(Cramer’s solution):

det
V1 � k Vc

Vc V2 � k

� �
¼ 0

, V1 � kð Þ V2 � kð Þ � V2
c ¼ 0:

This equation yields two eigenvalues, k1 and k2. When one of the eigenvalues is put
into the original simultaneous equations (Eq. (5.22)), the following equations hold:

a1V1 þ a2Vc ¼ a1k1
a1Vc þ a2V2 ¼ a2k1:

ð5:24Þ
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After multiplying a1 and a2 respectively to the two equations, the summation of the
equations yields:

a21V1 þ 2a1a2Vc þ a22V2 ¼ a21 þ a22
� �

k1:

Since the left-hand side equals to V n1ð Þ (Eq. (5.21)), the next very simple con-
clusion is obtained:

V n1ð Þ ¼ k1 :

This conclusion implies a very important fact that the eigenvalue is a measure of
variance along the newly generated axis (loading vector) as illustrated in Fig. 5.12.
This is one of the most fundamental natures of linear algebra about matrix.

Once the eigenvalue is calculated, the corresponding eigenvector can easily be
obtained by referring to Eq. (5.24) as follows:

a2 ¼ k� V1

Vc
a1:

Due to the constraint of Eq. (5.20), a1 and a2 are readily calculated as (double-sign
correspond)

a1 ¼ � Vcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
c þ k1 � V1ð Þ2

q
a2 ¼ � k1 � V1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
c þ k1 � V1ð Þ2

q :

ð5:25Þ

In this manner, the coefficients of n1j (Eq. (5.19)) are determined, which means that
the loading vectors are calculated from the matrix of variances and covariance.

Note that the double sign of Eq. (5.25) means the loading vector can have two
opposite directions. Our analytical purpose is, however, calculating an ‘axis’ and
the direction of the axis is for nothing. In other words, both directions can be
accepted. Regardless, the score vector, tj, depends on the direction (sign) of the
loading vector, pj, via Eq. (5.18). If the score vectors are discussed quantitatively,
therefore, we have to take care of the sign of the loading vector.

In this manner, once the variance–covariance matrix is obtained, both loading
vectors, eigenvalues and score vectors are soon calculated. In practice, some useful
algorithms to calculate the values have already been established involving the QR
decomposition, Jordan decomposition, Gram–Schmidt process, NIPALS, and sin-
gular-value decomposition (SVD) [4]. SVD is particularly famous, since it is
applicable to non-square matrix, and it is thus quite often found in computer
software represented by MATLAB, Scilab, and Igor.
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The variance–covariance matrix is easily generated using the spectra matrix,
A. To do that, the mean-centered matrix, Ac, is calculated such as:

Ac ¼
x11 � �x1 x12 � �x2 x13 � �x3 � � � x1N � �xN
x21 � �x1 x22 � �x2 x23 � �x3 � � � x2N � �xN

..

. ..
. ..

. . .
. ..

.

xM1 � �x1 xM2 � �x2 xM3 � �x3 � � � xMN � �xN

0
BBB@

1
CCCA:

This corresponds to displacement of the origin to that of the loading coordinate.
Then, the transposed matrix is multiplied from the left-hand side, which generates
the variance–covariance matrix on one step for any case:

Ac
TAc ¼

x11 � �x1 x21 � �x1 � � � xM1 � �x1
x12 � �x2 x22 � �x2 � � � xM2 � �x2
x13 � �x3 x23 � �x3 � � � xM3 � �x3

..

. ..
. . .

. ..
.

x1N � �xN x2N � �xN � � � xMN � �xN

0
BBBBBBB@

1
CCCCCCCA

�

x11 � �x1 x12 � �x2 x13 � �x3 � � � x1N � �xN
x21 � �x1 x22 � �x2 x23 � �x3 � � � x2N � �xN

..

. ..
. ..

. . .
. ..

.

xM1 � �x1 xM2 � �x2 xM3 � �x3 � � � xMN � �xN

0
BBBB@

1
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¼ n �

V11 covð1; 2Þ � � � covð1;NÞ
covð2; 1Þ V22 � � � covð2;NÞ

..

. ..
. . .

. ..
.

covðN; 1Þ covðN; 2Þ � � � VNN

0
BBBB@

1
CCCCA:

The calculation procedure is summarized as:

Ac
TAcP ¼ KP;

where K is a matrix involving the eigenvalues on the diagonal elements.
Note that the mean-centering is not necessary for the purpose of PCA expansion.

If the mean-centering is omitted, the origin of the loading vectors stays at the origin
of the original coordinate. In other words, the origin of the original coordinate is
added to the plot as represented by the dotted ellipsoid in Fig. 5.13.

In general, the points of the measured spectra are relatively far from the origin,
and the ellipsoid often has a long shape. In this case, the first loading vector, p1,
passes near the center of gravity of the points. Since the center of gravity is the
average of the spectra, p1 intrinsically shows a spectrum similar to the average
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spectrum. In other words, it is no surprise to have an average-like spectrum as the
first loading vector.

Since the loading vectors are generated to make the variance maximized along
each loading, the eigenvalues are definitely generated in the decreasing order. For
example, the three-component spectra in Fig. 5.7b are put in the spectra matrix of
A, and the eigenvalues are calculated as plotted in Fig. 5.14.

Since the number of spectra (or rank) is five, five eigenvalues are calculated as
presented by the solid circles. As theoretically expected, they are in a decreasing
order. When the mean-centering is applied to the data as a pretreatment, as found in
Fig. 5.14a, only the first two eigenvalues are significant, which is inconsistent with
the synthesized three-component spectra. This is because the pretreatment of
mean-centering decreases the degree of freedom of the data. This is confirmed by

Fig. 5.13 Loading vectors calculated for ‘non-mean centered’ data. The origin of the new axes
(green solid circle) stays at the original position

Factor

E
ig

en
va

lu
e

mean-centered data(a) mean-centered data

1e-15

1e-12

1e-09

1e-06

0.001

1

Factor

E
ig

en
va

lu
e

basis factors

noise factors

bo
un

da
ry

(b) raw data

1 2 3 4 5 1 2 3 4 5

1e-15

1e-12

1e-09

1e-06

0.001

1

Fig. 5.14 Eigenvalues against factor (j) calculated from the spectra in Fig. 5.7b in semi-log scale
calculated on a mean-centered data, and b raw data
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take a look at the loading vectors in Fig. 5.15: the first loading vector of
mean-centered data corresponds to the second loading of the raw data. In other
words, the average-like spectrum (should be the 1st loading) is missed by the
pretreatment.

On the other hand, on the raw data without mean-centering, the three con-
stituents are correctly figured out by the significant eigenvalues in Fig. 5.14b. To
analyze the number of constituents, in this manner, the raw data must be applied to
the PCA expansion. The significant three eigenvalues imply that the points of
spectra are mostly involved in three-dimensional space. Therefore, in the present
case, the PCA expansion is expressed as:

ð5:26Þ

The first three factors are called “basis factors”whereas the rest ones are called “noise
factors.”Analysis of criteria between the basis and noise factors can be difficult, since
the boundary often becomes ambiguous. Many analytical techniques such as
Malinowski’s IND function and ‘cross validation,’ which is most useful technique.
For the details of the criteria analysis, the reader is referred to literature [4].
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raw data (right column)
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As stated at Eq. (5.25), the sign of the loading vector can be changed. The first
loading ‘spectrum’ of the raw data in right column of Fig. 5.15 exhibits an over-
turned shape, which is because the sign of the loading vector is opposite to our
expectation. If you want to discuss the spectrum, therefore, the spectrum can be
multiplied by −1 to overturn it. In this case, note that the corresponding score vector
must also be multiplied by −1.

The influence by the mean-centering can be visualized by magnifying the point
variation in the multidimensional space (for example, see Fig. 5.12). To efficiently
visualize a cross-sectional (two-dimensional) image of the point variation, of
course, a mutually orthogonal axis set should be chosen, which should also capture
the maximum variance of the plot. If loading vectors are used, therefore, this
magnification can effectively be achieved, which is called “score–score plot.” In
other words, point projections onto a two-dimensional plane spanned by two
loading vectors are used to discuss the spectral variation in shape.

Figure 5.16 presents score–score plots calculated (Eq. (5.18)) for the raw and
mean-centered spectra. The spectral variation in shape is represented by the curved
plot in the figures. Of interest is that a similar curve appears in different factor sets:
(a) is for the first to second set while (b) is for the second to third set. This
apparently implies that (1) the factor level goes down by one because of the
mean-centering, and (2) the variation of the spectral shape is kept even after a
different loading set (Fig. 5.15) is chosen.

In this manner, score–score plot is found to be useful to discuss a minute change
of the spectral shape. This powerful character is conveniently employed to dis-
criminate agricultural products via the measurements of IR spectra especially when
the spectral quality is not good enough.

The left panel of Fig. 5.17 presents IR ATR spectra of strawberry, raspberry, and
apple purees [3]. Since the major chemical constituents are common to the three
fruits, the IR spectra are very similar to each other, which is highly difficult to

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-1.5 -1 -0.5 0 0.5 1 1.5

2n
d

 s
co

re
s

1st Scores

(a)  on mean-centered data

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

-1.5 -1 -0.5 0 0.5 1

3r
d

 s
co

re
s

2nd Scores

(b)  on raw data

Fig. 5.16 Score–score plots of a the mean-centered spectra and b the raw spectra corresponding
to the loadings in Fig. 5.15
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discriminate visually. Regardless, the very minute differences in spectral shape are
reflected by the positions of the points in multidimensional space.

The right panel of Fig. 5.17 presents the score–score plot between the first and
third loading vectors. The three symbols (□, ○, and ▲) are separated from each
other, although the boundary is not sharp. In this manner, the score–score plot
technique based on PCA works powerfully when the spectral change in shape is
very minor and high spectral quality measurement cannot be expected.

5.7 Merge of ILS and PCA: PCR

The intrinsic problem of CLS that the analytical accuracy is largely degraded on a
wrong number of constituents is overcome by introducing ILS (or MLR).
Nevertheless, the number of absorbance data must largely be reduced to have an LS
solution as found in a previous section. This is a big dilemma to perform ILS, since
the reduction of the absorbance data spoils the great benefit of multivariate analysis
that the spectral data are fully used for calibration. To get over this dilemma, PCA
works powerfully.

As found in Eq. (5.12), ILS correlates the concentration, C, with the spectra, A,
via the correlation matrix of PILS. This can be understood in another way that the
points of spectra in the original coordinate (xj and xk) in Fig. 5.13 are correlated to
the concertation matrix. Even if the coordinate is unitary transformed to have p1 and
p2 (PCA loadings), the points of spectra are kept unchanged. Therefore, “the scores
on the PCA loadings” fully possesses the quantity information of the spectral
variation, and they can thus be used in place of the absorbance spectra [1, 2].

Since the matrices A and P have a size of M � Nð Þ and M � Nð Þ, the size of T is
revealed to be M �Mð Þ via the next matrix-size analysis:

Fig. 5.17 IR spectra of strawberry, raspberry, and apple (left), and the score–score plot between
the first and second loadings (right) [3]
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A ¼ TP $ M � Nð Þ ¼ M �Mð Þ M � Nð Þ:

In this manner, the score matrix of T is a ‘square’ matrix. As mentioned in Sect. 5.5,
if the spectra matrix of ILS is square, the LS solution would be calculated with no
problem. Therefore, the PCA scores, T, should be used in place of the raw spectra,
A, in the ILS regression, which is represented as:

C ¼ TPILS þR :

This merged technique of PCA and ILS is called principal component regression
(PCR), which is quite often used for calibration purposes as well as the PLS
technique in the next section. PCR has both benefits of CLS and ILS that the
spectral data are fully used for calibration even if the proper number of constituents
is not known.

The procedure of PCR is as follows:

1. The PCA score matrix, T, is calculated using Eq. (5.18).
2. PILS is calculated using T via Eq. (5.13)
3. A concentration-unknown sample is calibrated by using the measured spectra,

Au, as

cu ¼ AuPPCA
T� �
PILS:

As emphasized by the parenthesis, do not forget to convert the unknown spectra
to PCA scores using PPCA, which is the ‘PCA loading’ matrix.

In practice, the same spectra (Figs. 5.7b and 5.9) as those used for CLS and ILS,
and the two-component concentration matrix are employed for checking PCR. As a
result, the concentrations are predicted as 2.5000 and 1.5000, which perfectly agree
with the correct concentrations.

If the spectra are very noisy, the noise can selectively be reduced by discarding
the noise factors in the PCA process (Eq. (5.26)). This PCA noise reduction is quite
powerful when the number of spectra is large as found in Sect. 5.9.

5.8 Independent Residual Terms: PLS

All the regression models mentioned previously are based on an assumption that the
analytical and experimental errors are all attributed to the residual term, R. This
means that the errors are involved only in the objective variable, i.e., A in CLS and
C in ILS. Theoretically, however, experimental errors independently occur in both
A and C, although they are correlated with each other via the spectra measurements.
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To keep the independency of the two errors [2], the equations having the residual
terms of RA and RC should be separated from each other as found in the equations
below:

A ¼
X
h

thph þRA ¼ TPþRA ð5:27Þ

C ¼
X
h

uhqh þRC ¼ UQþRC: ð5:28Þ

The regression technique based on the separated equations is called partial least
squares (PLS) regression [5]. The equations are intrinsically the same as the for-
mulation of PCA: both A and C are expanded by the use of mutually orthogonal
loading vectors, ph and qh, respectively.

Since A and C have individual experimental errors, there is no common loading
vector that simultaneously explains the points in A and C spaces. One of the
characteristics of PLS is, therefore, that a latent variable of weight loading, wh, is
implicitly used as an optimal common loading. Once a weight loading is obtained,
it is used to calculate score vectors step by step by changing h. For h ¼ 1,
Eqs. (5.27) and (5.28) are roughly approximated by only one factor:

A � t1w1

C � u1q1
: ð5:29Þ

As found in Eq. (5.29), the spectral loading vector, p1 is replaced by the ‘tempo-
rary’ weight loading, w1. In PLS, unlike PCA, the weight-loading vector is cal-
culated by maximizing the variances of both scores of A and C. Since the scores are
calculated as a projection on the loading vector, they are approximately calculated
using the weight loading:

t1 � Aw1
T ð5:30Þ

u1 � Cq1
T: ð5:31Þ

To maximize the correlation of the two score vectors, the covariant matrix

t1Tu1 ¼ Aw1
T� �T

Cq1
T ¼ w1

T ATC
� �

q1

should be maximized [6]. According to Manne [7], this calculation can be carried
out by performing the SVD calculation of the ‘covariant’ matrix, S � ATC. By
choosing this order of multiplying, the size of S becomes very small having the
same size as the rank, which makes the calculation speed very fast. In this case, the
first weight-loading vector is obtained by:
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w1 ¼ Sq1
T=

ffiffiffiffiffi
k1

p
:

Here, q1 and k1 are eigenvector and eigenvalue, which are both directly obtained by
SVD. With the use of the weight loading, the score, t1, is calculated by Eq. (5.30).
u1 is also calculated by Eq. (5.31). Then, the spectral loading, p1, is calculated as

p1 ¼ t1TA= t1k k2:

Once the first set of the parameters are obtained, the rest data being modeled by
t2w2 are calculated as ðh	 2Þ:

thwh ¼ A�
Xh�1

j¼1

tjpj:

The proportionality matrix, b, between t and u is defined as:

bj ¼ ujTtj:

With the use of this parameter, in a similar manner to the spectral matrix, the rest
concentration matrix is represented as:

uhqh ¼ C �
Xh�1

j¼1

bjtjqj: ð5:32Þ

This procedure is repeated between Eqs. (5.30) and (5.32) by adding one to h,
which yields the PLS modeling at Eqs. (5.27) and (5.28).

To predict the concentrations of unknown samples, Cu, the spectra of the
samples stored in Au and the weight loadings are used to calculate tu;j. Using bj, uu;j
is soon obtained. By employing qj obtained in the PLS calibration, the concen-
trations are summed up to have:

Cu ¼
X
j

ujqj:

This basic concept of PLS is sometimes called PLS2, where multiple con-
stituents are simultaneously calibrated. If a single component is calibrated, on the
other hand, such a PLS is called PLS1. Intrinsically, PLS1 and PLS2 are the same as
each other, and no discrimination is needed. In former days, PLS1 was preferred
because a computer program of PLS1 is simply coded, which was suitable for a
low-power computer. A single component requires a single-column concentration
“vector,” c, instead of using a matrix of C, which further results in making the score
vector of uh changed to a scalar, uh.
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c ¼
X
h

uhqh þRC ¼ UQþRC:

This characteristic was favored when an iteration algorithm such as NIPALS and
Gram–Schmidt ones [4] was employed for the calculation instead of using SVD,
since a scalar score do not need an iteration algorithm. In a modern PLS analysis,
the discrimination is not needed, since a high-power computer is available to run
SVD at a low cost.

5.9 Efficient Removal of Spectral Noise Using PCA

In Sect. 5.6, PCA is introduced to bridge ILS and PCR. PCA is intrinsically a
matrix expansion technique using mutually orthogonal vectors, which is repre-
sented by Eq. (5.15). As found in Fig. 5.14, major constituents that contribute
apparent spectral changes are reflected by some limited factors having significant
eigenvalues, which are called the “basis factors.” Since the rest factors belong to
the “noise factors” (Sect. 5.6), Eq. (5.26) would be quite useful to make the
spectral quality better, if the noise factors are discarded.

This noise-discarding technique works powerfully especially when the number
of the noise factors is much larger than that of the basis factors. Imaging analysis
after mapping measurements satisfies this condition [8], and another good case is
the time-resolved measurements.

Figure 5.18a presents selected IR ATR spectra in a time course of mixing of
ethylene glycol (EG) and water [9]. Since the mixing occurs very quickly, the
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Fig. 5.18 a IR ATR spectra of an aqueous solution of EG in the mixing process measured by the
rapid-scan technique, and b the noise reduced spectra by PCA
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interval of the measurements was set to 0.18 s, which can be performed by
choosing the “rapid scan” mode of FT-IR. As a result, 360 IR spectra are recorded
in about only 64 s.

Of course, each spectrum is obtained without accumulation, which results in a
poor signal-to-noise ratio as found in the figure. Regardless, this is a good situation
that the number of the constituents would be only a few, whereas the total number
of the spectra is 360 that is very many.

In fact, the eigenvalue plot of the 360 spectra shows that only three factors are
important to explain the series of spectra (Fig. 5.19) [9].

This situation can be summarized using the next PCA equation:

A ¼ t1p1 þ t2p2 þ � � � þ tbpb þ tbþ 1pbþ 1 þ � � � þ tMpM : ð5:33Þ

The subscript, b, in Eq. (5.33) is the number of the basis factors, i.e., 3, and M is
360. If only the basis factors are kept remained by discarding the rest 357 noise
factors, the reconstructed spectra, Arec, would become much better in quality:

Arec ¼ t1p1 þ t2p2 þ � � � þ tbpb:

The reconstructed spectra are shown in Fig. 5.18b. The noise on spectra is readily
removed significantly.

An appropriate PCA noise reduction is quite powerful, since the chemically
important signal is kept unchanged for both qualitative and quantitative characters.
As shown in the next section, this can be used as a useful ‘pretreatment’ for
a further spectral decomposition, which needs quantitative reliability and
accuracy.
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Fig. 5.19 An eigenvalue plot for the first 40 factors calculated for the time-resolved 360 IR ATR
spectra
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5.10 Alternative Least Squares (ALS) for Spectral
Decomposition

As found in Sect. 5.4, the CLS regression technique has an intrinsic powerful
function that a collection of spectra of multiple constituents can be decomposed to
yield individual pure-constituent spectra, if a correct concentration matrix with an
appropriate number of constituents is known in advance. This is in fact a uniquely
powerful characteristic of CLS, which should be used for physicochemical dis-
cussion. We have already learned, fortunately, that the number of chemically
independent components can be analyzed by using PCA.

With the accurate number of constituents, the principle of CLS can be employed
in an expanded manner to decompose the spectra matrix, A, into C and K without
using a priori knowledge at all, which seems a magic. This technique is called
alternative least squares (ALS) regression, which is one of the multivariate curve
resolution (MCR) techniques.

In principle, two matrices of CLS must be known to have a least squares
(LS) solution. To calculate K, for example, A and C must be available at hand.
In ALS, however, only A is needed, and the LS solution is calculated using a
tentative matrix consisting of random numbers. If C made of random numbers is
used, then a tentative matrix of K0 is calculated as:

K0 ¼ CTC
� ��1

CTA:

Since random numbers are used, K0 involves negative numbers for some elements.
Considering that a normal absorbance spectrum has no negative band, the negative
numbers are replaced by nil (or very small negative values for a quick conver-
gence). This is called “non-negative constraint.” The renewed K is used for cal-
culating a tentative C0:

C0 ¼ AKT KKT� ��1
:

In a similar manner to K0, the negative values in C0 are replaced by nil (or very
small negative values). These calculations are repeated until no negative value
appears in both C and K, which is the final convergence.

In this manner, ALS is an application of CLS, and C and K are dependent on
each other quantitatively. In other words, ALS is not used for quantitative analysis.
Regardless, ALS is still powerful, since it reveals the shape of vectors in
both C and K.

Here, an example study using ALS is presented. ALS is employed for decom-
posing the concentration-dependent IR ATR spectra of ethyleneglycol (EG)/water
solutions. Figure 5.20 presents selected IR spectra of the series [9]. Since two
constituents of EG and water are mixed, isosbestic points appears at several points.
On a closer inspection, however, some band shifts are found especially in the mC–H
region, which cannot be explained by only the two constituents. In fact, the
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eigenvalue plot of the spectra after PCA revealed that ‘three’ constituents were
necessary to fully account for the spectral changes [9].

Next what we have to do is that C and K matrices having ‘three’ columns and
rows, respectively, are prepared for running ALS. The converged results are pre-
sented in Fig. 5.21.

The decomposed spectra of the blue and red curves in Fig. 5.21b perfectly
reproduce the IR spectra of neat water and EG, respectively, which straightfor-
wardly implies the powerful character of ALS. Of more interest is, however, found
at the green spectrum. The third spectrum looks to have both characters of water
and EG, but the band positions of the mC–H at about 2900 cm−1 and dOH2 modes

Fig. 5.20 Concentration-dependent IR ATR spectra of EG/water solutions [9]

Fig. 5.21 Converged a C and b K obtained by ALS calculation [9]
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at about 1640 cm−1 are both different from the neat ones. As a matter of fact, this
spectrum is assigned to the complex of water and EG [9]. In this manner, the
accuracy of the shape of the analytical results is a powerful character of ALS to
discuss the decomposed IR spectra.

In fact, the concentration variation in Fig. 5.21a is of interest. When EG is added
to water, at the initial stage, no bulky EG is found, and instead the complex
increases rapidly. The maximum of the complex is found at xEG ¼ 0:3, which
corresponds to 60 wt%. Conventionally, the EG/water solution has long been
known to exhibit the best anti-freezing effect at 60 wt%, which agrees with the
maximum of the complex. In this manner, spectral decomposition by ALS is quite
useful for quantitative physicochemical discussion.

5.11 Factor Analytical Resolution of Minute Signals
(FARMS)

In principle, the PCA loading vectors have no explicit chemical meaning, since they
are calculated, so that they would only be orthogonal to each other. In a limited
case, however, a PCA loading can be a meaningful spectrum.

The limited case is that a constituent exits with an extremely minute quantity to
the rest constituents. In other words, if the mixture comprises with a significantly
large concentration ratio, the individual spectrum of the minute constituent would
readily be revealed as a PCA loading. This unique character of PCA is named factor
analytical resolution of minute signals (FARMS) [10].

If you find a loading spectrum like a pure-component spectrum, you are
encouraged to consider whether the quantity would be very minor or not. If the
quantity can be very minor, the PCA loading spectrum should be attributed to the
minor species, and the spectrum can be discussed chemically, as if the component is
readily separated from the mixture.

As an example study using FARMS, molecular structure of “the interfacial
water” at the solid/bulk water interface is analyzed via IR ATR measurements at
various angles of incidence [11]. At an interface, the structure of water is different
from that of bulk water, but the interfacial water is very minute buried in bulky
water.

As shown in Sect. 3.15D, the penetration depth of the electric-field amplitude
into the water phase is decreased by making the angle of incidence larger as
schematically presented in Fig. 5.22. The observed IR ATR spectra are presented in
Fig. 5.23.

The intensity changes mostly reflect Harrick–Hansen’s actual penetration depth
of Eq. (3.96), which implies that the intensity ratio of the minute interfacial water to
the bulky water changes on the angle of incidence. Since the thickness of the
interfacial water is much lesser than that of the bulky water, this situation is good
for the analysis using FARMS.
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The first three PCA loadings of the nine ATR spectra are presented in Fig. 5.24.
As mentioned near Fig. 5.13, the first loading vector is close to the average
spectrum in principle. In fact, the first loading corresponds to the spectrum of bulky
water.

The next second loading spectrum of interest: no negative peak appears in it,
which is the FARMS case. Since the first and second eigenvalues are 8.4074 � 100

and 2.6068 � 10−3, respectively, the second loading vector should have a suffi-
ciently weak intensity, which satisfies the FARMS condition in fact. The peak
position of 3217 cm−1 agrees with a predicted position by quantum chemical
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(a)Fig. 5.22 Schematic of
IR ATR measurements of
water at a a small angle of
incidence and b a large angle.
The Goos–Hänschen shift (D;
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illustrate the electric-field
decay
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calculation for the interfacial water. In this manner, by employing PCA, only FT-IR
spectra provide sufficiently useful molecular information without an unnecessarily
high technique such as nonlinear optic-based spectroscopy.
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Chapter 6
Applications: Various Techniques to Make
the Best Use of IR Spectroscopy

6.1 Specular Reflection and KK Analysis

As found in Eq. (3.22), Fresnel’s amplitude reflection coefficient, r, for the normal
incidence from the air phase is represented as:

r ¼ n0 þ in00 � 1
n0 + in00 þ 1

¼
ffiffiffi
R

p
ei/; ð6:1Þ

since R ¼ rj j2 holds (Eq. (3.20)). Here, the observable using FT-IR is the reflec-
tance, R, and note that r cannot directly be measured, since FT-IR observes light
intensity only and the phase, /, is discarded. If n � n0 þ in00 and ê � ei/ are
introduced, Eq. (6.1) can be deformed as follows:

r ¼ n� 1
nþ 1

¼
ffiffiffi
R

p
ê , n� 1 ¼ nþ 1ð Þ

ffiffiffi
R

p
ê , n ¼

ffiffiffi
R

p
êþ 1

1� ffiffiffi
R

p
ê

When ê ¼ cos/þ i sin/ is put back in this equation, the following deformation
can be done.

n ¼
ffiffiffi
R

p
cos/þ i sin/ð Þþ 1

1� ffiffiffi
R

p
cos/þ i sin/ð Þ

¼
ffiffiffi
R

p
cos/þ 1

� �þ i
ffiffiffi
R

p
sin/

1� ffiffiffi
R

p
cos/

� �� i
ffiffiffi
R

p
sin/

� 1� ffiffiffi
R

p
cos/

� �þ i
ffiffiffi
R

p
sin/

1� ffiffiffi
R

p
cos/

� �þ i
ffiffiffi
R

p
sin/

¼ 1� R cos2 /� R sin2 /þ i2
ffiffiffi
R

p
sin/

1� ffiffiffi
R

p
cos/

� �2 þR sin2 /

¼ 1� R

1þR� 2
ffiffiffi
R

p
cos/

þ i
2
ffiffiffi
R

p
sin/

1þR� 2
ffiffiffi
R

p
cos/
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As a result, the following representations are obtained.

n0 ¼ 1� R

1� 2
ffiffiffi
R

p
cos/þR

and n00 ¼ 2
ffiffiffi
R

p
sin/

1� 2
ffiffiffi
R

p
cos/þR

ð6:2Þ

These equations imply that both real and imaginary parts of the complex refractive
index can be obtained, if R and / are both available. As mentioned above, the direct
measurements of / by FT-IR is impossible in principle. Fortunately, however, the
Kramers–Kronig (KK) relation solves this analytical matter as follows.

In Chap. 4, we have learned that a complex physical parameter, which is driven
by the causality, has a useful characteristic that the real and imaginary parts are
interrelated with each other by the KK relation. Since the causality corresponds to
the complex integration in the upper half of the Gauss plane, r xð Þ can also be
treated in a similar manner. If logarithm is taken to Eq. (6.1), the next equation is
obtained.

ln r xð Þ ¼ 1
2
ln R xð Þþ i/ xð Þ

When Eq. (4.26) is referred, another KK relation is readily obtained [1, 2].

/ xð Þ ¼ �x
p

Z1
0

lnR -ð Þ
-2 � x2 d- ð6:3Þ

This straightforwardly implies that the observable reflectance, R xð Þ, yields the
latent phase, / xð Þ.

An IR reflectance measurements, R xð Þ, are conveniently used for obtaining an
IR spectrum of a matt bulk matter. For a matt material, the ATR technique is also
employed, but the ATR prism must directly be pressed onto the sample. If we need
to measure the matt sample “without any physical contact.” the measurement of
R xð Þ is much more useful, which is called “specular reflection” measurements (cf.
Sect. 3.14).

Once an R xð Þ spectrum is obtained, it can be converted to be the n0 and n00

spectra via Eqs. (6.2) and (6.3). Since the KBr pellet transmission spectrum is
driven by “a spectrum” (Eq. (1.43)):

a ¼ 4pn00

k
z; ð6:4Þ

the R xð Þ spectrum can finally be converted to be a KBr method-like spectrum.
This is a big benefit of using the KK relation, since the R xð Þ is driven by the real

part of the refractive index, n0 (Sect. 3.14) , whose shape is far from the absorption
spectrum we need. As an example, a raw IR specular reflection spectrum of LDPE
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without modification is presented in Fig. 6.1a by the blue curve. Details of the
measurement procedure are described below.

Specular reflection measurements require a high skill for obtaining an accurate
R xð Þ spectrum. Since the reflectance spectrum is obtained as:

R xð Þ ¼ ssample xð Þ
sBG xð Þ ;

two single-beam spectra of sample and background have to be collected (Fig. 6.2).
An issue comes up here that the sample of a bulk matter has no concept of the
background, which is largely different from the ordinary measurements of a thin
film or a solution. At last, a mirror surface (Fig. 6.2a) is placed to bring back the IR
light in the same light path as that on the sample surface, which is used as the
background.

To keep the path length accurately the same, some reflection equipment is
commercialized. An example is presented in Fig. 6.3, which has a double-reflection
optical path on the sample surface. On the background measurement, the mirror
position is changed by rotating it about the rotational axis indicated by the dot mark
in Fig. 6.3a. As a result, the path length is common for both Fig. 6.3a and b. The
reflectance spectrum in Fig. 6.1a is measured on this equipment.

In general, a dielectric (nonmetallic) matter has a much smaller refractive index
than a metallic one, and the reflectance is thus very small (Eq. (3.21)). In the case of
LDPE having the refractive index of ca. 1.5, the reflectance is calculated to be 4 and
0.16% for a single- and double-reflections, respectively, under an approximation
that the angle of incidence of 12° can roughly be recognized to be normal inci-
dence. The spectrum of the double-reflection measurement is presented in Fig. 6.1a
(blue), which is located at about 0.2% as predicted by calculation. Note that such a
“dark” measurements needs an MCT detector to have a good signal-to-noise ratio.
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Here, we have to pay attention to the significant difference between the reflec-
tance on the sample and mirror surfaces. On the background measurements, a very
bright light with a reflectance of nearly 100% on the mirror reaches the detector,
which definitely makes the MCT detector saturated. Therefore, a mesh filter must
be placed in the light path to reduce the light intensity. If the filter has an apparatus
function of Tfilter xð Þ, the measurements are represented by Eq. (6.5).

R xð Þ½ �n¼ ssample xð Þ
sBG xð Þ ¼ ssample xð Þ

sfilterBG xð Þ � Tfilter xð Þ ð6:5Þ

The second term corresponds to the observed “raw” spectrum. Here, n is the
number of reflections on the sample surface, and sfilterBG xð Þ is the “corrected”
single-beam spectrum of the background measurement by using the filter function.
In the case of Fig. 6.3b, n ¼ 2 is used.

Tfilter xð Þ is the transmittance spectrum of the mesh filter using the background of
air, which should be measured by using a TGS detector, since the “air” measure-
ment should be too bright for MCT (Fig. 6.4).
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The corrected spectrum (red), sfilterBG xð Þ, by the use of Tfilter xð Þ is presented by the
red curve in Fig. 6.1b. The finally obtained spectrum of R xð Þ considering n ¼ 2 is
also presented by the black curve in Fig. 6.1c, which exhibits ca. 3% as roughly
predicted above by the calculation considering the refractive index.

As theoretically predicted in Sect. 3.14, the corrected spectrum, R xð Þ, has a n0-
driven shape, which is characterized by the derivative-shaped peaks. As a result, the
band positions appear very inaccurately. For example, the msCH2 mode exhibits two
positive and negative “peaks” at 2846 and 2855 cm−1, which are both inaccurate
for LDPE having the all-trans zigzag conformation when compared to the spectrum
in Fig. 1.1.

Then, R xð Þ is converted by the KK relation at Eq. (6.3) to have / xð Þ. Via
Eq. (6.2), the complex refractive index spectra are finally obtained as presented in
Fig. 6.5: the real and imaginary parts are presented by the black and blue spectra,
respectively.
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The real part spectrum has a similar shape to that of the reflectance spectrum.
Since the baseline of this spectrum should be ca. 1.5, the accuracy along the
ordinate axis is found poor. This is because the absolute value along the ordinate
axis is not determined as found at Eq. (4.27).

On the other hand, the imaginary part spectrum has an accurate “shape” of
normal absorption spectrum as expected. In fact, the band position is accurately
obtained: the msCH2 and msCH2 bands appear at 2850 and 2919 cm−1, which is
acceptable for the nearly all-trans zigzag conformation of the hydrocarbon chains in
LDPE (Table 1.2). The dCH2 band is split into two peaks at 1471 and 1462 cm−1,
which apparently indicates that the molecular packing is in the orthorhombic
subcell structure (mentioned near Table 1.1).

The imaginary part spectrum is, however, not satisfying for understanding the
spectrum, as if it was measured by a transmission technique. To do that, “a spec-
trum” represented by Eq. (6.4) has to be taken into account. Figure 6.6 is the a
spectrum calculated from the n00 spectrum in Fig. 6.5. The band positions are not
changed from the n00 spectrum, but the relative band intensity ratio changes. For
example, the maCH2 band develops relative to the msCH2 band, which is close to the
transmission spectrum of LDPE in Fig. 1.1. In fact, a spectrum can directly be
compared to “an IR spectral database”, which is traditionally collected by the use of
KBr and Nujol techniques (see Sect. 3.16).

6.2 IR pMAIRS Technique: Quantitative Molecular
Orientation Analysis in a Thin Film

In Chap. 3, various kinds of measurement techniques of a thin film supported by a
substrate are discussed based on electrodynamics, which are represented by the
transmission (Tr), reflection-absorption (RA), and ATR techniques. One of the
important points of these techniques is that they are all driven by only two func-
tions, i.e., the TO and LO energy-loss functions. In particular, we have to note that

the normal incidence Tr ATr
h1¼0

� �
and the p-polarized grazing angle incidence
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Fig. 6.6 a spectrum of LDPE
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RA ARAð Þ spectra are driven by the pure TO Im ex;2
� �� �

and LO Im �1
�
ez;2

� �� �
functions, respectively (see Sects. 3.9 and 3.11).

ATr
h1¼0 ¼

8pd2
ln 10 � k �

1
n1 þ n3

Im ex;2
� � ð6:6Þ

ARA ¼ 8pd2
ln 10 � k n

3
1
sin2 h1
cos h1

Im � 1
ez;2

� 	
ð6:7Þ

To calculate the molecular orientation angle of a transition moment, the intensity
ratio of a band in the Tr and RA spectra would be useful, since the angle is defined
in the x–z plane. If a weak absorption approximation (n022 � n0022 ) and isotropic real
part approximation (n02;x ¼ n02;z) are employed [3], the ratio for is calculated to be

ATr
h1¼0

ARA ¼ cos h1
n31 sin

2 h1

1
n1 þ n3

n042 n
00
2;x

n002;z
:

If we have the angle of incidence, h1, of the RA measurement, and the refractive

indices of the phases 1 and 3, then we have n042 n
00
2;x

.
n002;z from the observed spectra

set. Since the orientation angle, /, is roughly obtained as [4]:

/ ¼ tan�1

ffiffiffiffiffiffiffiffiffi
2n002x
n002z

s
;

the angle can be obtained, if accurate n02 is available at hand in theory. In practice,
however, determination of n02 for every band is a difficult task, which makes the
accurate orientation analysis close to impossible. To get over the limitation, a big
change of the analytical concept should be necessary, which is presented in the next
section.

• Basic concept of MAIRS

To totally change the analytical concept, a chemometric technique is introduced.
As mentioned in Sect. 5.4, CLS has a powerful character that chemically (or
physically) independent spectra are individually drawn from a collection of spectra,
if the appropriate number of the independent constituents is known a priori. The
constraint of “appropriate number” is generally too tough for a chemical analysis. If
the concept of “chemical constituent” is expanded to “polarization,” however, the
situation largely improves. The polarization is characterized by the direction of
oscillating electric field, and thus the direction has only two degrees of freedom:
parallel and perpendicular to the film surface. In other words, the number of con-
stituents is always exactly two without any exceptions. Therefore, if polarizations
are taken as the constituents, the CLS would work powerfully to decompose the
collected spectra into the x (surface parallel) and z (surface normal) spectra.
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To measure the x and z components of transition moments in a thin film on this
concept, a unique polarization schematic is considered as illustrated in Fig. 6.7.
One of the important key points of this technique is that both x and z components
are measured by “transmission” optical geometry with “normal incidence” to
measure the transmitted light intensities of sIP and sOP. The light having the z-
component electric field oscillation is a virtual light, which is a schematic light. If
we have the virtual light, no metallic substrate is needed even for the z component
measurements. Of course, the z measurements using the virtual light cannot be
performed actually.

In practice, as illustrated in Fig. 6.8, unpolarized IR ray is incident on the
substrate (or film-covered substrate) with an angle of incidence of h, and the
transmitted light, sobs, is measured by the detector. Since the jth single-beam
spectrum, sobs;j, is composed of sIP and sOP at the jth angle of incidence of hj, the
following regression equation holds.

S �
sobs;1
sobs;2

..

.

0
B@

1
CA ¼

rIP;1 rOP;1
rIP;2 rOP;2
..
. ..

.

0
B@

1
CA sIP

sOP

� 	
þU � R

sIP
sOP

� 	
þU

Here, U receives un-modeled factors rejected by the CLS modeling, and R is a
matrix of weighting coefficients of sIP and sOP, which is represented by [1, 5].

(a) transmission using
ordinary light

(b) transmission using
virtual light

sIP sOP

Fig. 6.7 Schematic concept of MAIRS measurements of a the in-plane (IP) and b out-of-plane
(OP) components of transition moments of surface adsorbates

Un-polarized IR ray

Substrate with or
without a film

Sobs
θ

Fig. 6.8 Measurement schematic of the IR MAIRS technique
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R ¼
1þ cos2 hj þ sin2 hj tan2 hj tan2 hj

..

. ..
.

 !
:

Therefore, if several single-beam spectra at various angles of incidence are mea-
sured, both S and R are experimentally available at hand. Then, sIP and sOP are
calculated as the least-squares solution of the CLS regression.

sIP
sOP

� 	
¼ RTR
� ��1

RTS

In this manner, even the virtual measurement, sOP, can be carried out by using the
measurement theory within the chemometric framework. This measurement tech-
nique of a thin film on an IR transparent substrate is called “Multiple-Angle
Incidence Resolution Spectrometry” or MAIRS.

After the MAIRS analysis for the sample- and background-measurement set, the
explicit absorbance spectra are calculated as:

AIP ¼ � log sSIP=s
B
IP

� �
and AOP ¼ � log sSOP=s

S
OP

� �
:

An example spectrum of a 5-monolayer Langmuir–Blodgett (LB) film of cadmium
stearate deposited on a germanium (Ge; IR transparent) substrate is presented in
Fig. 6.9, which reproduces the Tr and RA spectra in Fig. 3.21.

In fact, both IP and OP spectra perfectly correspond to the Tr and RA spectra,
respectively, in shape and band positions. Discussion of the ordinate scale will be
made later in the section of “pMAIRS.”

Of interest is that the symmetric COO− stretching vibration mode appears at
1423 and 1433 cm−1 in the IP and OP spectra, respectively, which has already been
found in the Tr and RA spectra (Fig. 3.21). On the conventional results, the band
shift was sometimes attributed to the difference of the substrates. The MAIRS
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Fig. 6.9 IR MAIRS spectra of 5-monolayer Langmuir–Blodgett film of cadmium stearate on Ge
(n = 4.0)
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results, however, apparently denies the substrate dependency, since both IP and OP
spectra are from an identical sample. MAIRS has, in this manner, unique charac-
teristics, which cannot be realized on the conventional electrodynamics only.

MAIRS has already been analyzed theoretically on accurate electrodynamics by
Itoh et al. [6], and the physical expression is obtained as follows.

ð6:8Þ

For details of the parameters in the coefficients, refer to a reference [6]. These
equations apparently imply that AIP would be driven by the IP function only, if the
coefficient of hIPz is adequately smaller than hIPx . In a similar manner, AOP would be
driven by the OP function only, if hOPx is adequately smaller than hOPz . In fact, these
relations hold well for an IR transparent substrate having a high refractive index
such as Ge (n = 4.0), Si (n = 3.4), and ZnSe (n = 2.4). When a refractive index, n,
of the substrate is small, on the other hand, these relations no longer hold [7]. For
example, a substrate of CaF2 having n = 1.4 cannot be used for the MAIRS
measurements, which requires pMAIRS.

• Moving to pMAIRS

To overcome the problem, the s-polarization should be removed [7]. The
p-polarized MAIRS technique is called “pMAIRS”. For pMAIRS, the R matrix must
be changed to be Rp by removing the s-polarization component.

Rp ¼
cos2 hj þ sin2 hj tan2 hj tan2 hj

..

. ..
.

 !

IR pMAIRS has a great benefit that the quantitative analysis of molecular ori-
entation can be done more accurately, since the polarization dependency of FT-IR
can be ignored.

In addition, pMAIRS overcomes a big limitation of the original MAIRS. As
shown in Fig. 6.10a, the single-beam spectra for the original MAIRS are very
impervious to the angle of incidence in a low wavenumber region especially below
ca. 1100 cm−1. In fact, in the low wavenumber region, MAIRS spectra have a lot of
artifacts, and the 1100 cm−1 is thus the analytical lower limit. On the other hand,
the single-beam spectra of “pMAIRS” have no problem until 700 cm−1 as pre-
sented in Fig. 6.10b, which almost covers the full MCT range [8]. Thanks to the
great improvement, the C–H out-of-plane bending (cC–H) mode of an aromatic
ring, which appears in the range of 700–850 cm−1 can readily be used for the
orientation analysis.
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As an application study using pMAIRS, a spin-coated thin film of a polythio-
phene having an alkyl tail with a different length is presented in Fig. 6.11 [8].

Polythiophene having a benzyl chain is named P3BT, while that having a hexyl
chain is named P3HT (see a chart in Fig. 6.13). Most impressive band is found at
ca. 825 cm−1, which is the cC–H mode at a thiophene ring. This band of P3BT
appears stronger in the IP spectrum than that in the OP one; whereas P3HT yields
the overturned result only for the cC–H band. This clearly shows that the thiophene
ring has an “edge-on” and “face-on” orientations for P3BT and P3HT films,
respectively (Table 6.1). In this manner, only by changing the tail length by C2, the
orientation of the thiophene rings is totally changed. The clear visibility of the
molecular orientation is an outstanding benefit of using pMAIRS.
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Fig. 6.11 IR pMAIRS spectra of a thin film of a P3BT and b P3HT spin-coated on a Si substrate
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Fig. 6.10 Single-beam spectra at various angles of incidence by 7° steps measured on a Si
substrate using a an unpolarized and b a p-polarized IR light

6.2 IR pMAIRS Technique … 175



Since no significant difference is found for the mC=C band at ca. 1510 cm−1

between the two samples, the main chain (long axis) of the polythiophene is sug-
gested to lie randomly to the substrate for both samples. In fact, the orientation
angle of the long axis (/C=C) is nearly random as found in Table 6.1.

Of another interest is that the face-on oriented samples has a nearly 90° for the
summation of /C–H and /C=C; whereas only BT exhibits a largely different value.
This implies a very important fact on the molecular orientation of the long chain. If
the short axis of the chain is fixed parallel to the surface, the rest mutually
orthogonal transition moments have a simple relationship of /C–H + /C=C = 90°
[8] as illustrated in Fig. 6.12.

In this manner, the face-on orientation of P3AT in a thin film has quantitatively
been revealed to have a random orientation for the long axis, while a highly parallel
orientation for the short axis as illustrated in Fig. 6.13 [8].

This example study indicates that the quantitative orientation analysis can easily
be performed by using IR pMAIRS even for a film having a surface roughness
prepared by the spin-coating technique. Of another note is that the films used in the
study has very poor crystallinity, i.e., amorphous. pMAIRS on IR spectroscopy is
thus found to be quite powerful for polymer thin film analysis.

Another significant result using pMAIRS is shown for a thin film of a
porphyrin-derivative. Zinc tetraphenylporphyrin (ZnTPP) presented in Fig. 6.14 is
a promising chemical compound satisfying both a good semiconductor character-
istic and the good processability using a wet process due to a good solubility in an
organic solvent [9]. Since porphyrin alone exhibits no solubility, the solubility is
attributed to the four phenyl rings hanging on the porphyrin ring.

Fig. 6.12 Schematic side
view of a polythiophene chain
having a parallel orientation
of the short axis to the
substrate

Table 6.1 Molecular orientation in a spin-coated thin film analyzed by IR pMAIRS. B, H, O and
DD stand for buthyl, hexyl, octhyl, and dodecyl, respectively

P3AT /C–H / ° /C=C / ° /C–H + /C=C / ° Orientation

P3BT 59 76 135 Edge-on

P3HT 28 63 91 Face-on

P3OT 30 53 83 Face-on

P3DDT 38 52 90 Face-on
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Molecular arrangement in a thin film of ZnTPP on a silicon surface depends on a
combination of two film preparation parameters: solvent and a preparation tech-
nique. As listed in Table 6.2, chloroform (Chl) and 1,2,4-trichlorobenzene
(TCB) are selected as a fast and slowly evaporating solvents, respectively, and
two representative wet-process techniques, spin-coating (SC), and drop-casting
(DC) techniques, are chosen. As a result, the four combinations controls the
“evaporation time” of the solvent, which is directly correlated with the molecular
arrangement [9].

Figure 6.15 presents IR pMAIRS spectra of a thin film of ZnTPP on silicon as a
function of the combination of the film preparation parameters [9]. The IP and OP
spectra are presented by the red blue curves, respectively.

When Chl-SC is employed without annealing, the film exhibits an isotropic
result: the IP and OP spectra are identical to each other in terms of shape and
intensity. In other words, this preparation condition yields randomly oriented

Fig. 6.13 Schematic molecular orientation image of P3HT in a spin-coated film on a silicon
surface [8]

Fig. 6.14 Chemical structure of ZnTPP
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molecules in the film. On the other hand, when the film is prepared most slowly by
employing TCB-DC followed by annealing, a surprisingly highly oriented molec-
ular arrangement is obtained as shown at the bottom in Fig. 6.15. For example, the
bands at 798 and 718 cm−1, both of which are assigned to the c(C–H) modes of
“porphyrin” ring (c(C–H)por; see Fig. 6.16a), are strong for OP, while it is nearly
zero for IP. This straightforwardly implies that the porphyrin ring is aligned parallel
to the surface.

On the other hand, c(C–H) bands of the “phenyl” ring (c(C–H)ph; Fig. 6.16b) at
about 700 cm−1 between the IP and OP spectra exhibits an opposite ratio.
Therefore, all the phenyl rings are found to have the nearly perpendicular orien-
tation to the surface as illustrated in Fig. 6.16.

In this manner, IR pMAIRS is quite powerful for discussing the orientation of
each chemical group even for a drop-coated film having a large surface roughness.

• Optimization of pMAIRS for high accuracy

Table 6.2 Combinations of film preparation parameters correlated with the evaporation time of
the solvent

solvent preparation technique evaporation time
Chl SC short
Chl DC

TCB SC
TCB DC long

Fig. 6.15 IR pMAIRS spectra of a ZnTPP film prepared by different combinations of solvents
and film preparation techniques. Only the top spectrum is a result for a sample without thermal
annealing
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For the quantitative analysis, the “optimal angle set” must be employed for the
pMAIRS measurements [10]. The optimal angle set consists of the starting and
ending angles of incidence as well as the angle steps, which depend on the
refractive index of the substrate. In other words, the optical parameter of the
substrate is readily considered for obtaining the optimal angle sets. For example,
for a Ge substrate, the angle of incidence should be from 9° to 44° by 5° steps
(Table 6.3), which needs 8 (= (44–9)/5 +1) single-beam spectra [10].

The optimization has already been done for representative IR transparent sub-
strates [10] as listed in Table 6.3. Fortunately, the angle set of 9°–44° with the step
of 5° is common for a substrate with a refractive index of 2.4 or higher. For only a
low-refractive index substrate such as CaF2, we have to pay attention to switch the
experimental condition by referring to the table. Once the optimal condition is
employed, the optical parameter of the substrate is readily taken into account, and
quantitatively useful results are obtained without considering optical parameters.

Since pMAIRS yields the x/z ratio of a transition moment via the IP/OP spectra,
the orientation angle, /, is defined as a uniaxial orientation angle of the transition
moment, p, from the surface normal as found in Fig. 6.17.

Table 6.3 Optimal angle sets
for accurate IR pMAIRS

Substrate Refractive index Angle set Angle step

Ge 4.0 9°–44° 5°

Si 3.4 9°–44° 5°

ZnSe 2.4 9°–44° 5°

CaF2 1.4 8°–38° 6°

Fig. 6.16 Schematics of vibrational modes and the angle between the substrate surface normal
and the direction of a transition moment. The angles of /por and /ph correspond to the /(C–H)por
a and /(C–H)ph b modes, respectively
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Under the uniaxial distribution where the orientation angle is determined by
only one parameter, /, the distribution in the x–y plane is averaged to have px ¼ py.
Therefore, tan/ is simply obtained as

tan/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2x þ p2y

q
pz

¼
ffiffiffi
2

p
px

pz
¼

ffiffiffiffiffiffiffiffiffi
2AIP

AOP

r
; ð6:9Þ

since “absorbance” is proportional to the “squared transition moment” on Fermi’s
golden rule.

To check the accuracy of the orientation angle, a pentacene film having a
thickness of 100 nm was analyzed by IR pMAIRS. Pentacene is a fused-ring
compound of five benzene rings (Fig. 6.18), which is relatively stiff.

This compound yields three vibrational modes along x, y, and z directions, which
are highly maintained due to the stiff skeleton. In other words, the three directions
are always mutually orthogonal to each other. The three bands are found in
Fig. 6.19 at separated positions.

x
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pz

(px2 + py2)1/2

φ

Fig. 6.17 A schematic of a
transition moment in
Cartesian coordinate

Fig. 6.18 Pentacene and
Cartesian coordinate

0

0.02

0.04

0.06

0.08

0.1

0.12

900100011001200130014001500

A
b

so
rb

an
ce

Wavenumber / cm-1

OP

IP

ν rin
g(Y

)

ν rin
g(X

)

γ(
C

-H
)

φ X
 =

 6
8.

4o

φ Y
 =

 3
4.

3o

φ Z
 =

 6
4.

5o

Fig. 6.19 IR pMAIRS
spectra of an evaporated
pentacene film with a
thickness of 100 nm on a
silicon substrate

180 6 Applications: Various Techniques …



By using Eq. (6.9), the orientation angles are easily obtained as found in
Fig. 6.19. Since the three directions are kept to have the mutually orthogonal
relations, the three angles should satisfy the “direction cosine” relationship theo-
retically [4].

cos2 /x þ cos2 /y þ cos2 /z ¼ 1

When the calculated three angles are put in this equation, the summation is obtained
to be 1.00, which straightforwardly proves that the analyzed angles are quantita-
tively acceptable.

• For more accurate analysis using a refractive index of the sample

As presented above, IR pMAIRS is quite powerful for analyzing the molecular
orientation in a thin film even with a surface roughness such as a spin-coated film
irrespective of the crystallinity. Regardless, it still has an unresolved matter, that is,
the ordinate scale of the OP spectrum.

Since the OP spectrum is measured by using the conceptual longitudinal-wave
light with the normal incidence to the surface (Fig. 6.8), it is unclear whether the
absorbance scale is common to the IP one or not. In addition, if the refractive index
of the sample thin film is largely apart from 1.5, which is for a normal organic
compound, the electric field near the film/substrate interface should largely be
influenced by the index. Therefore, the refractive index of the film layer would
become another factor to change the ordinate scales of the IP and OP spectra.

According to Fermi’s golden rule, the absorbance ratio of the IP and OP spectra
is expressed as:

AIP

AOP
¼ lxEx

lzEz

� 	2

:

The matter of the ordinate scale is thus directly related to Ex=Ez, which is difficult to
calculate, since Ez is of the conceptual longitudinal-wave light. Thus far, this
electric field ratio has been approximated to be unity. If an ideally isotropic sample
is employed for making lx

�
lz ¼ 1 hold, which reveals Ex=Ez experimentally via

the pMAIRS measurement of AIP=AOP.
For that purpose, poly(2-perfluorobutyletyl acrylate) (C4FA; Fig. 6.20) is

employed [11]. Since the side chain of the polymer has a short perfluoroalkyl
group, molecular interaction between the side chains is weak [12], and as a result,
the material is liquid at ambient temperature having an ideally random orientation.

Here, two approximations are introduced [11]:

(1) the real part of the refractive index of the sample, n02q (q ¼ x; y and z), is
isotropic to have n having no dispersion, and
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(2) the film is a weak IR absorber: n022 � n0022 .

The second condition holds for many organic compounds, with which Eq. (6.8) can
be simplified to have:

AIP ¼ 8pd2
k

hIPx 2n02xn
00
2x


 � � 8pd2
k

hIPx 2nn002x

 �

AOP ¼ 8pd2
k

hOPz
n02zn

00
2z

n022z þ n0022z
� �2 � 8pd2

k
hOPz

1
n4

2nn002z

 �

:

With the two equations, the dichroic ratio of pMAIRS is simplified as:

AIP

AOP
¼ hIPx n

00
2x

hOPz
1
n4 n

00
2z
� n4H

n002x
n002z

H � hIPx
hOPz

� 	
: ð6:10Þ

Since n02q is approximated to have no dispersion, absorbance can simply be
regarded as being proportional to n002q. As a result, Eq. (6.10) implies that the

pMAIRS dichroic ratio can be corrected by introducing n4H, which corresponds to
Ex=Ez. Note that H is a substrate specific constant by pulling out n. As mentioned
above, this constant can be obtained by measuring a thin film of C4FA considering
its refractive index, 1.35.

In Table 6.4, the obtained constants are listed. For a substrate having a high
refractive index, H is found at about 0.14; whereas only the low-refractive index
substrate has an outstandingly high value.

By using H, correction factors of n4H are calculated for some representative
compounds having various refractive indices (Table 6.5).

Normal compounds having ca. n ¼ 1:55, e.g., P3HT and polyethylene (PE), on a
germanium substrate are found to have n4H near unity as marked by bold. This is
the reason why pMAIRS with no correction works well for the quantitative ori-
entation analysis of a normal organic compound.

On the other hand, the compounds having an abnormal refractive index such as
fullerene and polytetrafluoroethylene (PTFE) exhibit a value far from unity even on

Fig. 6.20 Primary chemical
structure of C4FA
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the same germanium substrate. In addition, when the substrate is changed to be a
low-refractive index substrate, e.g., CaF2, this correction becomes necessary for all
the film materials.

Since the current commercial pMAIRS equipment takes this correction factor
into account, we do not have to take care about this matter too much. If we choose a
substrate tab, both optimal angle set and correction factors are automatically set. For
the refractive index of the sample film, n ¼ 1:55 is set as a default value, but we can
change it as needed for the material.

Figure 6.21 presents a corrected pMAIRS spectrum of a thin film of fullerene
deposited on silicon prepared by vacuum evaporation. Since C60 has a spherical
shape, the molecular orientation can be regarded as perfectly random. After the
correction of the intensity ratio using n4H, both IP and OP spectra exhibit the same
shape and intensity as expected.

The same intensity spectra straightforwardly yield the orientation angle of 54.7°
using Eq. (6.9). In other words, pMAIRS is quite useful for determining the per-
fectly random orientation quantitatively, which can apparently be discriminated
from an oriented sample having the orientation angle of 54.7°.

Table 6.5 n4H calculated for
some organic compounds
having various refractive
indices measured on Ge and
CaF2

Sample Refractive index of
“sample”

n4HGe n4HCaF2

C60 1.83 1.68 2.52

P3HT 1.60 0.98 1.47

PE 1.52 0.82 1.23

PTFE 1.35 0.50 0.75

Table 6.4 A correction
factor, H, depending on the
substrate

Substrate Refractive index of substrate H

Ge 4.0 0.15

Si 3.4 0.14

ZnSe 2.4 0.11

CaF2 1.4 0.21
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Fig. 6.21 Corrected IR
pMAIRS spectra by n4H of a
thin film of C60 evaporated on
silicon
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6.3 Fluorocarbon-Specific IR Spectroscopy

As a vibrational spectroscopy, IR spectroscopy is on the concept of a normal mode
that is roughly regarded as a localized vibration on a chemical group (Sect. 1.2). As
presented in Table 1.1, this “local vibration” approximation, i.e., a normal mode is
regarded as the corresponding “group vibration”, is conveniently used for analyzing
IR spectra (Fig. 1.1 and 1.4–1.9) with no problem. However, this approximation
breaks down for perfluoroalkyl compounds.

Figure 6.22 presents schematic molecular structures of normal alkyl (R) and
perfluoroalkyl (Rf) groups. They may seem to have similar structures, but they have
largely different characteristics from each other in terms of the following three
points:

(1) The mass of H is smaller than that of C; whereas the mass of F is larger than
that of C.

(2) An R group has a planer skeleton, in which the conformation is the all-trans
zigzag, if the molecules are in crystal. This structure exhibits the even–odd
effect on the melting point against the chain length (� in Fig. 6.23) [13, 14]. On
the other hand, an Rf group has a helical (twisted) structure about the

Fig. 6.22 Schematics of a normal alkyl group and b perfluoroalkyl group. The gray, light blue,
and orange denote carbon, hydrogen, and fluorine atoms, respectively
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Fig. 6.23 Melting point of normal (○) and perfluoro (●) alkanes as a function of the number of
CH2 or CF2 groups [17]
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molecular axis [15, 16], which exhibits continuous melting point with the Rf
length (● in Fig. 6.23) of n = 7 or longer.

(3) Spectrum distortion induced by a strong absorption must be taken into account.
Since the C–F bond has a fairly large dipole moment due to the large elec-
tronegativity of F, the IR absorption of an Rf group is very strong due to
Eq. (1.22), which induces changes of the band position and the relative band
intensities [12].

These Rf-specific characters are discussed in detail as below.

• The mass of F is larger than that of C:

The characteristic of (1) influences the normal mode significantly. For example,
let us consider the msCH3 mode of an R group (Fig. 6.22a). This mode is mainly
due to the symmetric CH3 stretching vibration, which can be regarded to be lo-
calized at the terminal methyl group, although the rest part is also vibrated to some
extent. Therefore, the concept of “group vibration” of the methyl group can con-
veniently be used, and the transition moment is expressed by the red arrow in
Fig. 6.22a.

On the other hand, in the case of an Rf group, the situation totally changes.
Because of the larger mass of F than that of C, the F atoms relatively stay unmoved;
whereas the C atoms are apparently vibrated. Since the C atoms are directly
connected, the vibration cannot be localized at a chemical group, but it spreads
over the Rf group (Fig. 6.22b) [18].

Figure 6.24 presents IR “a-spectra (cf. Eq. (1.43) or [12])” of some
Rf-containing myristic acids (bulk) after a conversion from ATR spectra (Sect. 3.13
and 3.15D). This wavenumber region is for the C–F stretching vibration region. As
mentioned in Sect. 3.16(A), an a-spectrum can be a substitute of a KBr pellet
spectrum. A portion of the molecule is replaced by an Rf group with a different
length, n (the number of the CF2 groups). The molecule presented in Fig. 6.24 is an
example of n = 9.

Since a normal mode is spread over the Rf group, the band position of the msCF3
mode is totally different from an image of a normal hydrocarbon. In fact, the band is
located at an extraordinarily higher position than that found for the msCH3 band.
Remember that the msCH3 band is always found between the maCH2 and msCH2

bands. The significantly higher position is thus due to the helical structure of the Rf
group [15]. In addition, this band position is largely dependent on the Rf length
because the band is influenced by the coupled oscillation of the carbon chain. As a
result, the msCF3 band exhibits a significantly large shift by more than 50 cm−1

when the Rf length is changed from 3 to 9.
Because of the unique normal mode spread over the Rf group, the direction of

the transition dipole moment of the msCF3 mode is along the Rf group, which is
indicated by an arrow in Fig. 6.22b. This characteristic enables us to easily discuss
the molecular orientation of an Rf group in a thin film on a surface [12, 18].

Figure 6.25 presents IR RA spectra (Sect. 3.11 and 3.15B) of single-monolayer
Langmuir–Blodgett films on gold transferred at the surface pressure of 15 mN m−1
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[12], which consists of the same compounds as those for Fig. 6.24. This surface
pressure is a specific pressure where the molecules are spontaneously aggregated
for n = 7 and 9. Note that RA spectrometry has the RA-specific surface selection
rule (Sect. 3.15B), i.e., only the surface-perpendicular component of a transition
moment appears in the RA spectrum. Therefore, the strongly appeared msCF3 band
for n = 9 means that the Rf group (not the msCF3 group) has a nearly
surface-perpendicular orientation; whereas the almost disappeared band for n = 3
straightforwardly implies that the short Rf group is entirely lying parallel to the
surface.

In a similar manner, the msCF2 mode also exhibits a large band shift depending
on the Rf length. Since the Rf chains are spontaneously aggregated when the Rf

Fig. 6.24 IR “a spectra” obtained via ATR measurements of myristic acids involving an Rf group
with different length. n represents the number of CF2 groups
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length is n = 7 or longer [12], the aggregation-sensitive msCF2 band is particularly
shifted between n = 5 and 7.

• An Rf group has a helical (twisted) structure about the molecular axis:

The most important characteristic of an Rf group in terms of chemical structure
is that the skeleton has a helical structure about the molecular axis. This is often
called molecular “conformation” for convenience. Although the conformation of a
normal hydrocarbon chain is the planer zigzag, the conformation of an Rf group has
157 or 136 helix depending on temperature. A representative Rf polymer is poly
(tetrafluoroethylene) (PTFE) that is known as Teflon®, a product name of DuPont.
PTFE has a transition temperature at 19 °C under an ambient pressure, and the 136
and 157 helices appear below and above 19 °C, respectively [15, 16], which are in
the phase II and IV, respectively [19].

Details of the helical structure of 157 are schematically illustrated in Fig. 6.26
[15]. As found in the figure, “157” means that the helix has 7 turns over 15 chemical
units of (CF2)15. Since an Rf chain consists of a repeat unit, the vibrational analysis
should be done by using the factor group analysis (Sect. 1.5) [20]. The factor group

Fig. 6.25 IR RA spectra of single-monolayer Langmuir–Blodgett films on a gold surface. The
compounds are the same as those for Fig. 6.12
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of the line group has the C30 skeleton, which belongs to the point group of D15

(Table 6.6).
To count the unmoved atoms on a symmetry operation, the schematic presented

in Fig. 6.27 is referred. Note that h ¼ 	nw as defined by Higgs [21], in which the
integer, n, varies from 1 to n� 1. w is a phase shift between the adjacent two units,
which is simply defined by

w ¼ 2p
m
n
;

for representing the nm helix, which is m helical rotations along n units. Therefore,
h ¼ 	nw is proportional to 2mp, which is equivalent to the k ¼ 0 condition for the
units (see about Fig. 1.14). In this manner, an Rf group yields a limited number of
mCF2 bands.

Fig. 6.26 Schematics of the
157-helix conformation of
PTFE

Table 6.6 Character table of D15 (g = 30)

D15 E 2C1
15 2C2

15 � � � 2C7
15 15C2

A1 1 1 1 � � � 1 1 x2 + y2, z2

A2 1 1 1 � � � 1 −1 z
E1 2 2 cos h 2 cos 2h � � � 2 cos 7h 0 (x, y) (xz,

yz)

E2 2 2 cos 2h 2 cos 4h � � � 2 cos 14h 0 (x2 − y2, xy)

..

. ..
. ..

. ..
. � � � ..

. ..
.

E7 2 2 cos 7h 2 cos 14h � � � 2 cos 49h 0

NR 45 0 0 � � � 0 1

vR 3 1þ 2 cosw 1þ 2 cos 2w � � � 1þ 2 cos 3w −1

v 135 0 0 � � � 0 −1

188 6 Applications: Various Techniques …



Thanks to a fact that the Cm
15 operation makes all the atoms moved, the reducible

representation, v, is very easily calculated as found in Table 6.6. Note that, in
addition, the C2 operation influences only one carbon atom irrespective of the
conformation numbers, m and n.

In this manner, the irreducible representation is easily calculated as:

C ¼ 4A1 þ 5A2 þ 9E1 þ 9E2 þ 9 E3 þE4 þE5 þE6 þE7ð Þ:

By removing the translational and rotational modes, we finally have the represen-
tation of the vibrational modes as:

Cvib ¼ 4A1 þ 3A2 þ 8E1 þ 9E2 þ 9 E3 þE4 þE5 þE6 þE7ð Þ:

If this representation is separated in terms of spectroscopic activity, the fol-
lowing easy-to-use representations are soon obtained by referring Table 6.6.

CIR ¼ 3A2 þ 8E1

CRaman ¼ 4A1 þ 8E1 þ 9E2

CInactive ¼ 9 E3 þE4 þE5 þE6 þE7ð Þ

The analytical procedure for the 136 helix conformation is available in Appendix
(Sect. 7.3), which shows that both 157 and 136 conformations yield the same
irreducible representation. As a result, IR spectroscopy should commonly have 11
bands on PTFE for both phases II and IV.

In the mCF region, three bands appear at ca. 1251, 1226, and 1141 cm−1, which
are roughly assigned [22] to the maCF2 mode, the chain stretching vibration mode
and the msCF2 mode, respectively. Note that these modes are not solely assigned to
a specific pure group vibration, but a mixture of some group vibrations. In fact, the
chain stretching vibration should not be IR active in general, but it is observable
because this mode is largely influenced by C–F stretching vibration [22]. In a
similar manner, the maCF2 mode is also impure “group vibration,” which is largely

Fig. 6.27 The schematic top view of the nm helix of PTFE [20]
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influenced by the wagging vibration. On the other hand, the msCF2 band is, for-
tunately, useful, since it is relatively largely by the C–F stretching vibration as
expected intuitively.

• Spectrum distortion induced by strong absorption must be taken into account:

The msCF2 band cannot be used for the molecular orientation analysis in a thin
film on a surface [12]. Since the CF2 groups are located on a twisted line because of
the helical structure, the msCF2 groups have various tilt angles to the surface normal
when the Rf group is tilted.

This band is, on the other hand, quite useful to discuss the molecular packing.
For n = 7 or higher, the molecules are two-dimensionally aggregated spontaneously
because of the dipole–dipole interaction [12], which is much stronger than the
dispersion force [23]. The two-dimensional strong dipole–dipole interaction makes
the msCF2 band move to a lower wavenumber position.

To discuss the molecular packing in the monolayer on gold, the corresponding
IR spectra of un-oriented samples must be referred. The ATR spectra in Fig. 6.24
can be used for this purpose, but we have to take great care that IR spectra of a thin
film at an interface measured by different techniques cannot directly be compared
with each other. In short, the RA and ATR spectra cannot be compared in terms of
the band position and relative band intensity. To understand this point, we have to
go back to Fig. 1.19 in Chap. 1.

When an absorption band has a large absorbance, which corresponds to a large
peak of n00 (Fig. 1.19b), the corresponding n0 exhibits a large anomalous dispersion
(Fig. 1.19a). As a result, a strong absorber results in an apparent band shift between
the TO (Im eð Þ) and LO (Im �1=eð Þ) energy-loss function spectra as presented in
Fig. 6.28.

This means that no concerns are necessary for a weak absorber such as normal
hydrocarbon chain even when spectra measured by different techniques are com-
pared. On the other hand, a strong absorber represented by an Rf compound needs
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Fig. 6.28 Simulated TO (red) and LO (blue) energy-loss function spectra calculated by using the
electric permittivity in Fig. 1.19 for a a weak and b strong IR absorber. The ordinate scale is
normalized, so that the TO and LO functions are readily compared in (a)
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an appropriate spectral conversion. To understand the conversion, representative
IR spectrometries are summarized in Fig. 6.29.

For details of the mathematical representations, refer to Chap. 3. This figure
clearly indicates that all the “surface spectrometries” are driven by only the TO and
LO energy-loss functions. As shown in Chap. 3, reflection measurements except
the RA technique, i.e., p-polarized ER and ATR spectrometries, are represented by
a linear combination of the TO and LO spectra. On the other hand, Tr and RA
spectrometries yield pure TO and LO spectra, respectively, which correspond to
pMAIRS-IP and -OP spectra individually. This is the reason why a raw ATR
spectrum cannot be compared to a spectrum measured by another spectrometry
especially for a strong IR absorption band.

Fortunately, the Kramers–Kronig (KK) relationship (Sect. 4.4) considering the
angle of incidence [2, 24, 25] can be employed to convert the raw ATR spectrum to
the complex refractive index via Eq. (6.2). In recent years, some FT-IR spec-
trometers accompany a conversion program to yield an a-spectrum considering the
refractive indices of the sample and the prism as well as the angle of incidence. In
this case, only the n00-spectrum of the sample is obtained as well as n0. The entire
shape of the complex refractive index spectra are thus obtained, with which we
readily have the complex electric permittivity, er (Fig. 6.29). As a result, a thin-film
spectrum of an isotropic sample can be predicted from the bulk spectrum measured
by ATR [12, 18].

Once the ATR spectra in Fig. 6.24 are converted to be the LO energy-loss
function spectra (Fig. 6.30), they are ready to be compared to the RA spectra in
Fig. 6.25 [12].

Fig. 6.29 Correlation of representative spectrometries via the mathematical representations
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When the LO spectra are compared with the original ATR spectra, we find that
both relative band intensity and band position are largely changed. For example, the
compound of n = 9 has the msCF2 band at 1149 cm−1 in the ATR spectrum;
whereas the same mode appears at 1153 cm−1 in the LO spectrum. Of interest is
that the LO band position is the same as that of the RA spectrum (see also
Table 6.7). This implies that the spontaneously aggregated molecules are in the
same molecular packing as in a bulk solid used for the ATR measurements.
Table 6.7 summarizes the comparison between the converted LO band position and
the RA band position [12]. For a short n, the difference between the LO and RA
positions becomes significantly large, which implies that a compound involving a
short Rf group exhibits a weak molecular aggregation property.

In this manner, the spectrum conversion considering the TO and LO energy-loss
functions works quite powerfully to discuss the Rf-related IR spectra quantitatively.
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Table 6.7 Band positions of the LO function calculated from the infrared ATR spectra, and those
of the RA spectra of the monolayer LB films

n ms(CF2)/cm
−1

Bulk (raw ATR) Bulk (ATR-LO) Monolayer (RA) D/cm−1

3 1126 1128 1138 10

5 1133 1138 1147 9

7 1146 1149 1153 4

9 1149 1153 1153 0
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Chapter 7
Appendix

7.1 Fundamental Parameters in Electrodynamics

To understand the light absorption by a condensed matter, the most important
physical parameter is polarization density, which is the charge polarization in the
matter induced by the externally applied electric field of the light.

The most fundamental principle of electric field, E, is defined by the measured
force, FE, of a probe charge, q, put in the field [1].

FE ¼ qE

Now, let us take a situation that the electric field is yielded by a point charge in
vacuum. Since the field is emitted radially from the point, the field ‘intensity’ is
defined as the density of electric lines of force per a unit area, through which the
lines go perpendicularly.

The schematic picture of a point charge emitting the electric lines of force is
represented by Gauss’ rule:

ZZ
�

A
e0E � dS ¼

ZZZ
V
qdV ¼ q0: ð7:1Þ

A closed sphere about the charge, q0, is imagined, and the number of the electric
lines of force is counted by summation of the perpendicular component to the
minute area, dS. In this manner, the electric-line density corresponds to E. e0 is
necessary for adjusting unit. The schematic of a point charge can be expanded to be
charged space with a charge density of q. In any case, this model is for un-polarized
space.

Next, let us consider a dielectric matter that is composed of many dipoles. The
dipole is categorized into the permanent dipole and the induced dipole by external
electric field. Since the induced dipole has an electric field with the opposite
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direction to the external one, this can be regarded as if another charge, dq, is
generated in the matter such as

ZZ
�

A
e0E � dS ¼q0 þ dq: ð7:2Þ

If the additional electric field density by the induced dipoles only is denoted as:
P, Gauss’ rule can be written as:

dq ¼ �
ZZ
�

A
P � dS;

by considering the direction of the induced field to the external field. P is called
polarization density. With this parameter, Eq. (7.2) can be rewritten as:

ZZ
�

A
e0E � dS ¼ q0 �

ZZ
�

A
P � dS:

To make the net charge, q0, remained in the equation, therefore the next
deformation would be convenient:

ZZ
�

A
ðe0EþPÞ � dS ¼ q0

Here, the integrand is newly defined as:

D � e0E + P, ð7:3Þ

which is called “electric flux density” or “electric displacement.” Note that, in this
manner, Eq. (7.3) is not an equation, but a definition.

At this moment, P is not physically clear, but it is apparently induced by the
external field, E. Therefore, if E is not strong, e0E and P would approximately be
correlated with each other by a linear equation as:

P ¼ e0veE: ð7:4Þ

The proportional coefficient, ve, is called electric susceptibility. As found in
Chap. 4, this equation becomes a very important fundamental for the linear spec-
troscopy. Equations (7.3) and (7.4) can be merged to be:

D ¼ e0ð1þ veÞE � e0erE � eE: ð7:5Þ

D is thus linearly correlated with E using a newly defined parameter:
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er � 1þ ve;

which is called electric relative permittivity. Once the unit adjustment constant, e0,
is multiplied, the product, e � e0er, is called electric permittivity or dielectric
constant.

7.2 Continuity of Electric and Magnetic Fields
at an Interface

One of the most significant benefits of using electrodynamics for spectroscopy is
that an optical interface, which is a junction of two phases with different electric
permittivities, can readily be taken into account [1]. In electrodynamics, an interface
is treated as continuity of the electric and magnetic fields at the interface, which is
deduced from Maxwell equations. Here, the deduction process of the continuity is
presented below.

Equations (7.1) and (7.3) are merged to have the derivative representation of
Gauss’ rule as Eq. (7.8). Since no magnetic monopole (corresponds to “charge”) is
available for magnetic field, Eq. (7.9) is obtained. Equation (7.6) is known as
Maxwell–Ampere’s rule: motion of electric charge involving electric current gen-
erates magnetic field. Equation (7.7) is for Faraday’s electromagnetic induction
rule:

r�H � _D ¼ j ð7:6Þ

r � Eþ _B ¼ 0 ð7:7Þ

r � D ¼ q ð7:8Þ

r � B ¼ 0 ð7:9Þ

In these equations, E and H are not directly correlated with each other, but via
D and B, which are defined as the constituent (or material) equations:

j ¼ rE;

D ¼ eE and

B ¼ lH:

As mentioned at Eq. (7.5), the linear relation between D and E is an approximation,
and therefore the correlations are put aside the main four equations.
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Now, let us imagine a very thin cylinder involving a part of the interface with a
thickness of dh (Fig. 7.1a). The top and bottom surfaces have areas of
dA1 ¼ dA2ð� dAÞ, respectively. Here, a mathematical formula of Gauss’ theorem
is employed on considering Eq. (7.9):

Z
r � B dV ¼

Z
B � n dS ¼ 0; ð7:10Þ

which conveniently correlates a surface integral to a volume integral. The surface
normal vectors to the cylinder top and bottom surface are represented by n1 and n2,
respectively. If the thickness of the cylinder has no contribution at the limit of
dh ! 0, the right-hand side of Eq. (7.10) is written as:

0 ¼ B1 � n1 dA1 þB2 � n2 dA2 þwall

� B1 � B2ð Þ � n12dA
, n12 � B1 ¼ n12 � B2;

ð7:11Þ

since n1 ¼ �n2 � n12 and dA1 ¼ dA2 � dA can hold within a good approximation.
Equation (7.11) is a very important conclusion that the normal component of the

magnetic flux density is continuous at an optical interface. A very similar discussion
can be made for the electric field to have:

n12 � D2 � D1ð Þ ¼ q

If no charge is available in the vicinity of the interface, i.e., the interface region is
electrically neutral, the following relation is available.

n12 � D2 � D1ð Þ ¼ 0 , n12 � D1 ¼ n12 � D2 ð7:12Þ

The normal component of the electric flux density is continuous at an optical interface.
Note that the continuity holds for flux density, not for electric/magnetic field.

Fig. 7.1 Schematic image of a boundary between two phases. a A thin cylinder and b the thin
square are used to consider the Gauss and Stokes theorems about the boundary
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On the other hand, the continuity along the interface is discussed by considering
a thin square involving a part of the interface in a cross-sectional image (Fig. 7.1b).
A mathematical formula of Stokes’ theorem is employed to consider Eq. (7.7).
Stokes’ theorem correlates a surface integral to a line integral [Eq. (7.13)].

Z
r� E � b dS ¼ �

Z
_B � b dS ¼

Z
E � dr ð7:13Þ

The vector, b is defined as:

n12 � t ¼ b

where n12 is a vector perpendicular to the interface and t is a vector along the rim.
Then, the second and third terms of Eq. (7.13) are written for the thin square:

� _B � bdrdh ¼ E1 � t1 dr1 þE2 � t2 dr2 þwall:

At the limit of dh ! 0, the left-hand side goes to zero, and as a result,

E1 � t1 þE2 � t2ð Þdr ¼ 0 , E1 � t1 þE2 � t2 ¼ 0

is obtained by considering the approximation of dr1 ¼ dr2 � dr.
If t1 ¼ �b� n12 and t2 ¼ b� n12 are taken into account, the next equation is

obtained:

b � n12 � E2 � E1ð Þð Þ ¼ 0

Since the vector, b, can have any direction on the selection of the thin square, the
following relation is the necessary and sufficient condition:

n12 � E2 � E1ð Þ ¼ 0 : ð7:14Þ

In this manner, we have reached another important conclusion that the tangential
component of the electric ‘field’ is continuous at an optical interface.

7.3 Factor Group Analysis of PTFE Having the 136 Helix
Conformation

When the temperature is below 19 °C, PTFE is in the phase II, in which the helix
conformation takes 136 [2]. This conformation belongs to the point group of D13 for
the factor group analysis [3]. Details are found in Table 7.1.

As a result, the irreducible representation is the same as that for the 157 helix.
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Table 7.1 Character table of D13 (g = 26)

D13 E 2C1
13 2C2

13 � � � 2C6
13 13C2

A1 1 1 1 � � � 1 1 x2 + y2, z2

A2 1 1 1 � � � 1 −1 z

E1 2 2 cos h 2 cos 2h � � � 2 cos 6h 0 (x,y) (xz,yz)

E2 2 2 cos 2h 2 cos 4h � � � 2 cos 12h 0 (x2 − y2, xy)

..

. ..
. ..

. ..
. � � � ..

. ..
.

E6 2 2 cos 6h 2 cos 12h � � � 2 cos 36h 0

NR 39 0 0 � � � 0 1

vR 3 1þ 2 cos w 1þ 2 cos 2w � � � 1þ 2 cos 6w −1

v 117 0 0 � � � 0 −1
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