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Chapter 1
Introduction

Clusters are agglomerates of several similar atoms or molecules [1, 2]. These objects
show size and composition dependent properties, which can not be explained by the
well-known properties of the corresponding atoms or solids. Therefore, a variation of
the size and composition of these clusters allows the fabrication of small aggregates
with interesting and new material properties for possible future applications, like
nano-electronics, nano-optics or catalysis [3, 4].

Particularly the dielectric properties of clusters are of major importance, since
they determine cluster-cluster interactions, the optical properties and are a probe
for the geometric and electronic structure. In order to rule out the influence of the
surrounding (surface, ligands), which might affect the dielectric behaviour, the best
way is to study clusters isolated in the gas phase. Since the purpose of the experiments
is to investigate the size dependent evolution of these properties, a size sensitive
method is required. Furthermore, it has to be taken into account, that several structural
isomers can exist and their number is dramatically increasing with cluster size and
compositional complexity. Therefore, isolated and mass selected clusters have to be
analyzed by structure sensitive methods in order to study the dielectric properties.
The best way to determine the dielectric behaviour is to measure the influence of
an electric field on the potential energy of a neutral particle, i.e. the Stark effect
[5–8]. The investigation of the Stark effect of clusters is done with molecular beam
electric deflection experiments [9] and offers an universal approach to determine the
dielectric properties of neutral particles in the gas phase as a function of size and
composition.

The dielectric properties can be divided into two parts. The first is the so-called
induced electric dipole moment which is a function of the applied electric field
strength. The second part is field independent and is known as the permanent electric
dipole moment. Both can be used as sensitive probes for the geometrical, as well as
for the electronic structure of a cluster [8]. The induced dipole moment results from
the field induced distortion of the electron density and it manifests in the strength
of the electronic polarizability. The polarizability α is connected to the electronic
energy levels of the corresponding molecules or clusters [8]. Therefore, it is sensitive
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2 1 Introduction

to the electronic structure of the investigated particles. This becomes clear when
considering a 2-state model. In this model the polarizability depends on the transition
dipole moment μ01 connecting the two states with energy ε0 and ε1 [10]

α = 2 |μ01|2
ε1 − ε0

. (1.1)

In the one-electron approximation these two states are mainly associated with the
highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO), indicating the sensitivity of the polarizability on the electronic
structure of the cluster. For clusters for which the dielectric response is exclusively
due to the field induced part of the dipole moment, i.e. non-polar clusters, the value
of the polarizability is in a straight forward fashion obtained from the deflection
of the clusters in an electric field. The size and composition dependence of the
dielectric and electronic properties of non-polar clusters is, therefore, easily derived
from electric deflection experiments. The obtained values of the polarizability are
valuable benchmarks to test the accuracy of theoretical calculations, i.e. electronic
structure calculations employing quantum chemical methods [14, 15].

This behaviour is to a very good approximation found for sodium clusters, for
which the magnitude of the permanent dipole moments and consequently the influ-
ence on the beam deflection is very small. In Fig. 1.1 the polarizabilities per atom
α/N are shown as a function of the cluster size N .1 The values of α/N have been
obtained from the deflection of a molecular beam in an inhomogeneous electric field
[11]. Distinct variations are observed which correspond to spherical shell closings,
i.e. in dependence of the valence electron count (= number of sodium atoms N
in the cluster) degenerate molecular orbitals are completely filled with electrons.
This results in minima and maxima of the polarizability indicating the exceptional
electronic structure of clusters with shell closings. The overall decrease of the po-
larizability is explained by representing the sodium clusters as a conducting sphere
with a spill-out enhanced radius. This explanation is also supported by density func-
tional calculations using the spherical jellium model (SJM) [12]. The observations
for sodium clusters highlight that clusters having 200 atoms still exhibit different
dielectric properties when compared to bulk sodium.

For clusters that possess a permanent dipole moment, the analysis of the electric
deflection experiments is much more demanding. The permanent dipole moment µ0
results from an imbalanced distribution of the electrons around the charged nuclei
of the particle. It depends for neutral clusters on the distances of the electrons and
nuclei with respect to an arbitrarily chosen origin

μ0 =
∫

r p(r)dr +
∑

M

RM Z M . (1.2)

1 In order to convert the polarizability from Å3 (most commonly used in this book) to SI units
(Cm2/V) or atomic units (a.u.), the values have to be multiplied by 4πε010−30 or 10−30a−3

0 , re-
spectively. Here, a0 is the Bohr radius and ε0 is the vacuum permittivity.
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Fig. 1.1 Polarizability per atom α/N for NaN (N = 10–200) [11]. The observed behaviour is
explained by treating the electrons as independent particles, which are confined to a spherical
box. The radius of the box is given by the number of atoms and the density of bulk sodium.
Shell closings have been marked by specifying the principal and the angular momentum quantum
number. They qualitatively coincide with extrema observed in experiment, while the overall decay
of the experimental polarizability agrees with the conducting sphere model. The cluster Na200
surprisingly still exhibits a significantly increased α/N value when compared to a polarizability
value of 9.4 Å3 of a metallic sphere with bulk sodium properties. Shown for comparison are the
predicted polarizabilities from spherical jellium model (SJM) calculations [12] taking a Wigner
Seitz radius rs = 2.1 Å [13] into account. Reprinted figure with permission from Bowlan et al.
[11]. Copyright 2011 by the American Physical Society

In Eq.1.2, p(r) represents the electron density which depends on the position
vector r and RM are the position vectors of the nuclei with charge · Z M . If the nuclei
of the particle can be treated as rigid, the permanent electric dipole moment is closely
connected to the geometrical structure of the cluster. In particular, the dipole moment
with respect to the shape of the cluster, described by the moments of inertia, affects
the Stark effect. Therefore, the knowledge of the cluster’s geometry is necessary
in order to analyze the electric beam deflection experiments and extract permanent
dipole moments. If, on the other hand, a theoretically predicted geometrical isomer
is able to reproduce the experimentally measured Stark effect, beam deflection mea-
surements allow to obtain cluster sensitive information. This enables discussion of
size and composition dependent dielectric properties of clusters based on their geo-
metric structure. The ultimate goal of these measurements is, therefore, to answer
the question: How do dielectric properties of solids emerge during the growth of the
clusters from atoms? It is the major aim of this review to explain the principles of
this methodology in detail and to demonstrate that this approach is indeed possible
and practical in addition to answering the previously posed question.
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In extension to the experimental considerations, theoretical predictions of
structural isomers with lowest energy will also be described. These calculations
are far from trivial and necessary if an in-depth analysis of the beam deflection re-
sults is performed. The difficulty in finding cluster structure arises mainly due to
the fact that clusters are able to form chemical bonds and geometrical arrangements
that are not known from molecules or solids. Therefore, a simple general model
of the connectivity of the atoms in space is missing for clusters. In order to avoid
structural predictions to be influenced by common empirical model potentials, such
as those from bulk properties, unbiased search routines like Basin-Hopping [16],
coalescence kick [17] or genetic algorithms [18] must be used in conjunction with
electronic structure calculations. These routines are able to perform unbiased geom-
etry optimizations and predict putative global minimum cluster structures if the atom
type and composition is specified. In a next step, the dielectric properties for these
cluster structures are obtained from accurate quantum chemical calculations and the
Stark effect for each individual isomer can be calculated. In the following, exper-
imental and theoretical aspects for the determination and calculation of the Stark
effect are discussed. It will be demonstrated that a careful analysis of experimental
data with respect to quantum-chemically predicted structural isomers allows to ex-
tract the geometric structure and the dielectric properties of isolated clusters in the
gas phase.

This book is organized in such a way that experimental and theoretical aspects are
described in detail, so that the experimental results discussed at the end of the book
can easily be understood. Therefore, an experimental realization of the molecular
beam electric deflection method is first introduced. This is followed by an in-depth
theoretical description and modeling of the Stark effect and a discussion of the ca-
pabilities of using the Stark effect to discriminate between different cluster isomers.
This includes the description of unbiased structure search routines [19], a brief expla-
nation of quantum chemical methods and themodeling of the Stark effect by classical
and quantum mechanics. Then, in the next section various applications of the tech-
nique to molecular clusters and complexes, to metal and semiconductor clusters of
group 14 and to core-shell clusters and nanoalloys are presented. It is shown how
molecular beam electric deflection experiments in combination with quantum chem-
istry are used to extract geometrical and dielectric properties of these complexes and
clusters. In the final chapter, two novel experimental tools are described, which are
also based on the Stark effect, allowing to determine frequency-dependent dielectric
properties and to manipulate the motion of large neutral molecule and clusters in the
gas phase. A short summary finishes the considerations.
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Chapter 2
Molecular Beam Electric Field Deflection:
Experimental Considerations

To understand the electric beam deflection method and the possibility to extract the
dielectric properties of isolated clusters from these measurements, the essential com-
ponents of the molecular beam apparatus are explained first. The experimental setup
of a molecular beam apparatus build for beam deflection studies allows many vari-
ations and differs according to the kind of the studied cluster system. However, for
the sake of simplicity we will introduce the basic experimental procedure with the
help of an apparatus developed in our group. Possible modifications or instrumental
variationswill be indicated in the corresponding sub-chapters. First, the experimental
procedure will be described to give the reader an idea how to experimentally realize
these measurements and what components are required. Furthermore, we will phe-
nomenologically introduce themeasurement principle by discussing the observations
madewhen performing a beamdeflection experiment (Sect. 2.1). It will become clear,
that the intensity distribution in the molecular beam differs between the field free
measurements and those experimental runs when an electric field is applied. We will
see that this difference can only be explained by a deflection of the clusters due to
the electric field and that this deflection can qualitatively understood when taking the
Stark effect of the cluster into account. A more detailed and quantitative discussion
of this observation will be given in Chap.3. In the subsequent sections the different
components of the experiment are discussed in more detail. This includes the neces-
sary vacuum setup (Sect. 2.2), the cluster generation in a cluster source (Sect. 2.3),
the electric deflection unit (Sect. 2.4) and the mass spectrometer used to ionize and
detect the neutral clusters (Sect. 2.5).

2.1 Experimental Setup and Measurement Principle

A schematic overview of the molecular beam apparatus which is used to study the
dielectric properties of isolated clusters is shown in Fig. 2.1. First, the general experi-
mental setup and themeasuring principle is described. Important experimental details
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8 2 Molecular Beam Electric Field Deflection: Experimental Considerations

Fig. 2.1 Schematic setup of the molecular beam apparatus developed in our group: Cluster source
with cooled expansion nozzle (1), double skimmer (2), shutter unit (3), collimatores (4), electric
deflection unit (5), movable slit aperture (6), F2-Excimer laser (7), pyro-electric detector (8), time-
of-flight mass spectrometer (9). The molecular beam is highlighted in yellow and the laboratory
coordinate system is shown in the upper left part of the figure

are discussed in more detail in the following sections. Parts of the experimental setup
have been described in references [1–3]. The experiment, which is repeated with a
rate of 10Hz, starts with the production of clusters in a laser vaporization source (1)
(see also Sect. 2.3). Clusters are formed in a helium atmosphere after a laser pulse hits
the target and are subsequently expanded through a nozzle into high vacuum. The
cluster-helium mixture is thereby supersonically expanded and a molecular beam
(Fig. 2.1, yellow) is formed [4], which is narrowed by two skimmers (2) with circu-
lar openings of 2 and 3mm, respectively. In a molecular beam all particles exhibit
a directed translation motion.1 As a consequence of this directed motion and the
absence of collision processes due the low pressure (see also Sect. 2.2), the clusters
can be considered as isolated particles [4]. The molecular beam passes a home-built
shutter unit (3) [5]. At this point, it is possible to interrupt the particle beam at a
well defined point in time, in order to measure the flight time of the clusters. The
additional knowledge of the flight path (3.38m) enables the determination of the
particle speed v with an accuracy of (2–3)%. Next, the molecular beam passes a
double collimator unit (4) resulting in a collimated 0.50-mm-wide (z-direction) and
3.00-mm-long (y-direction) rectangular beam shape. This rectangular beam enters
the electric deflection unit (5) which will be described in Sect. 2.4. After leaving of
the deflection unit (5) the clusters enter a 1.59-m-long area of free flight.

1 This is in contrast to a thermal velocity distribution for which < vx > = < vy > = < vz > [4].
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Subsequently, a, in z-direction, movable slit (6), which is 0.35mm in width and
20.00mm in height, is reached. The aperture exclusively allows a small portion of the
molecular beam to proceed towards the ionization laser. These clusters are ionized
by a F2-Excimer laser (7), whose fluence is monitored during a measurement by a
pyro-electric detector mounted in the apparatus (8). The generated cluster ions are
detected in a self-built time-of-flight mass spectrometer (9) and a photo-ionization
mass spectrum is obtained (Sect. 2.5). Consequently, the described experiment allows
the mass-resolved investigation of neutral clusters.

To be able to detect the influence of an inhomogeneous electric field on the clusters
experimentally, it is necessary to record cluster intensities as a function of themovable
slit position (6) and the electric field strength (5). First the position of the slit aperture
is changed keeping the electric field constant. With the help of the before described
collimators the molecular beam owns a predetermined intensity distribution along
the z-axis, defined in the laboratory coordinate system.

The particle density is not constant along the z-axis, but will exhibit a maxi-
mum on the molecular beam axis2 and will decrease when moving away from this
position.3 This distribution of the particle density as a function of the z-position is
called a molecular beam profile ψ(z). Because the slit of the aperture is smaller than
the dimensions of the molecular beam, only a small part of the beam is detected
in the mass spectrometer. The actual number of clusters which can pass the slit
depend on the aperture position. The particle density distribution of the molecular
beam and, therefore, ψ can be measured sequentially by shifting the slit along the
z-axis. Schematically, a beam profile without electric field (ψ0, dashed line) is shown
in Fig. 2.2c. When applying a voltage to the deflection unit, the molecular beam
profile is influenced by the electric field. This is schematically shown in Fig. 2.2c.
In this example, the beam profile with field ψ1 (black) is shifted and broadened
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(a) (b) (c)

Fig. 2.2 a Schematic trajectory of the molecular beam with switched off and switched on electric
field. b Mass spectra obtained for the two experiments shown in a. c Integrated signal intensity
with the electric field switched off and on, respectively. The corresponding beam profiles ψ0 (gray
sketched) and ψ1 are shown (black), too

2 This position is chosen to be z0. Hence, it is convenient to use the relative z-scale p = z − z0.
3 Furthermore, we note that for this experimental setup the particle density must be symmetric
around z0. The observed intensity distribution can be described with a Gaussian function, what will
be done in all what follows.
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when compared to ψ0. In order to qualitatively understand this result, we want to
discuss the experimental data acquisition and processing for a single cluster at a given
slit position. If no electric field interacts with the clusters in the molecular beam, a
photo-ionization mass spectrum is obtained as it is schematically shown in Fig. 2.2b
for SiN clusters (N is the number of atoms in the aggregate). In a next step, the mass
spectrometric signal for an arbitrarily chosen cluster, e.g. Si11 (highlighted in green),
is integrated and is plotted as a function of the slit position. As a consequence, the
value of the molecular beam profileψ0 at this specific slit position is obtained (green
circle in Fig. 2.2c). In the next step, the electric field is switched on and the intensity
of the same cluster at the same slit position is measured again. A drop in intensity
can be observed in Fig. 2.2b and a modified value for ψ1 (orange square in Fig. 2.2c)
is obtained.4 The only possible explanation that can rationalize this observation, is
a deflection of the clusters in the molecular beam due to the applied electric field
(see Fig. 2.2a). When deflected less clusters can pass the movable slit and the signal
intensity will decrease. This effect can qualitatively be understood, if the dielectric
response of the cluster in the electric field is taken into account. The applied electric
field interacts with the electric moments of the neutral cluster (also called dielectric
properties) and will influence the energy levels of the cluster, what is known to be
the Stark effect [6]. Since the electric field is inhomogeneous (see Sect. 2.4) this
interaction will lead to a net force acting on the cluster, resulting in the observed
deflection. Therefore, the deflection is a measure of the Stark effect experienced by
the cluster and is connected to the cluster’s dielectric properties. By rationalizing
the beam deflection we can, therefore, extract the dielectric properties from beam
deflection experiments. A detailed theoretical description of the Stark effect and the
beam deflection is given in Chap.3.

2.2 Vacuum System

The experiments described in Sect. 2.1 require a high vacuum (HV) apparatus,
ensuring the formation of a molecular beam of isolated clusters. At the pressure
of below ∼ 10−6 mbar collisions between the clusters and the background gas can
be avoided if the overall length traveled by the particles is small compared to the
mean free path5 [4].

The experimental realization of the vacuum system is shown schematically in
Fig. 2.3. In principle four chambers can be distinguished. The pressure realized dur-
ing operation is described in the following. The laser vaporization source, in which
helium pulses are introduced, is located in the source chamber (1). The working

4 To obtain the whole beam profiles the described experiment with and without field, needs to be
repeated for several slit positions.
5 A rough estimate based on hard sphere collision cross section of N2 shows that at 300 K and
∼ 10−5 mbar the mean free path is still about 10 m. Hence, for the described operating conditions
collisions can be ruled out.

http://dx.doi.org/10.1007/978-94-007-7866-5_3
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Fig. 2.3 Schematic view from the +y direction on the molecular beam apparatus: Source vacuum
chamber (1) with Nd:YAG laser beam (red, with prism) and He cryostat (blue and red arrow, cold
and heated He stream), first differentially pumped chamber (2), flight tube (3) with collimators
(bronze-colored), vacuum chamber for deflection electrodes (4), flight tube (5), vacuum chamber
(6) with F2-Excimer laser beam (cyan), slit aperture (gray-black) and time-of-flight (TOF) mass
spectrometer. The high-vacuum (HV) valves (V) are shown in green. The pressure scale below the
apparatus indicates the pressure during the experiment

pressure of ∼5 · 10−5 mbar is reached by a diffusion pump (Leybold Heraeus,
12000L/s) which itself is pre-pumped by a roots pump and an oil rotary vane pump.
The source chamber (1) is connected by a double skimmer to the next differentially
pumped chamber (2). The vacuum chamber (2) which among other things houses the
shutter unit (see Sect. 2.1 and Fig. 2.1) is evacuated by a pumping stage consisting of a
rotary vane and a diffusion pump (Leybold Heraeus, 1200L/s) resulting in a pressure
of ∼8 · 10−6 mbar under operating conditions. The next vacuum chamber, in which
the double collimator (3) and the deflection unit (4) as well as the first flight tube is
located (5), can be separated from chamber (2) and (6) by means of two HV valves
(V, green). The whole vacuum chambers (3), (4) and (5) are equipped with a rotary
vane pump in combination with a diffusion pump (Edwards Diffstack 250/2000 m,
2000L/s) achieving a base pressure below 10−6 mbar. The last vacuum chamber
(6) contains the movable slit aperture, a MgF2 window which allows the F2-Excimer
laser light to enter the vacuum chamber and the time-of-flight mass spectrometer.
A pressure of less than 10−6 mbar is generated by a turbo molecular pump (Varian
turbo-V 3K-T, 2050L/s), pre-evacuated by a rotary vane pump.

2.3 Cluster Source Design

For the generation of clusters a whole series of sources have been developed. Beside
sputter [7] and gas aggregation sources [8, 9], the laser vaporization technique is of
special importance because clusters of very hard, non-conducting but also conducting
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Fig. 2.4 Cross section
of the laser vaporization
source: Inert gas entries
(1a and 1b, inert gas
shown in blue), rotating and
translating material rod (2),
Nd:YAG-laser beam (red)
focused by lens (3), cluster
aggregation zone (4), radiation
shield (5) and expansion
nozzle (6)

(1a)

(1b)

(2)

(3)

(5)

(6)

(4)

materials can be generated. Therefore, most of the deflection experiments have been
performed using laser vaporization sources andwewill describe the source developed
and used in our group in more detail.

The cluster source, which is shown in Fig. 2.4, is a home-built laser vaporization
source based on the design of Smalley [10] and deHeer [11]. For the generation
of clusters, helium, with a background pressure of ∼8 bar, is injected through of
a pulsed valve (typical opening times 350–1000μs) in the source via the open-
ings (1a) or (1b). The variable helium flow permits to modify the dwell time of the
helium in the source. If gas enters through (1a) the formation of small clusters is
preferred, while the use of (1b) is benificial for the formation of larger aggregates.
Typically 400–800μs after the helium pulse a Nd:YAG (yttrium aluminum garnet,
pulse length 10ns @ 1064nm) laser with an energy between 40 and 100mJ per
pulse is focused by a lens (3) on a rotating and translating material rod (2). A few
mono-layers of the material (2) are ablated by the intense laser pulse and a plasma
is formed [12], which is rapidly cooled in the helium atmosphere, followed by the
formation of clusters (4) by three-body collisions [7]. The pressure of some mbar
helium in the source and the background pressure of 5 · 10−5 mbar in the source
chamber results in a supersonic expansion of the cluster-helium mixture through the
nozzle with a 2mm orifice and a total length of 61mm (6). The first 36mm of the
nozzle is made of Teflon™, while copper was used for the remaining 25mm. In
the copper block a heating element (max. 20W) is integrated which is controlled
by a PID regulator (proportional-integral-derivative, LakeShore 325). Plates made
from oxygen-free high thermal conductivity cooper have been used to connect the
copper block of the nozzle with a Helium closed cycle cryostat (Sumitomo Heavy
Industries, 1W@4.2K). The temperature of the Teflon™ part of the nozzle remains
close to room temperature,6 while the temperature of the copper block can be varied
between 12 and 350K. To minimize heat looses by radiation, a copper heat shield (5)
surrounding the nozzle is precooled by the first cooling stage of the helium cryostat,
which is held at 75–300K. As a consequence of the high pressure in the source, the
cluster-helium mixture frequently collides with the nozzle wall [7] and, therefore,

6 Hence, the cluster source and the cooled part of the nozzle are thermally isolated.
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thermalizes with the copper nozzle. After supersonic expansion, the temperatures of
the different degrees of freedom of the clusters in the molecular beam are not longer
in thermal equilibrium [4, 7]. Thereby, the rotational temperature (Trot) can be lower
than the nozzle temperatures, since the rotational degrees of freedom are cooled
more effectively by cluster-wall and cluster-gas collisions (see [4, 7, 13, 14] for an
in-depth discussion of supersonic expansions and the observed rotational, vibrational
and translational temperatures and [15] for an example of typically observed rota-
tional temperatures in supersonic jets). However, the vibrational temperature (Tvib)
of the clusters in the molecular beam stays close to the nozzle temperature [16]. Con-
sequently, by changing the nozzle temperature, the thermal excitation of the cluster
skeleton can be influenced. For very low temperatures clusters can be considered as
rigid, while at high nozzle temperatures clusters are thermally excited. These two
limiting cases and the influence on the interpretation of the experimental results will
be discussed in Chap.3.

2.4 Deflection Unit

The determination of the electric susceptibilities of clusters requires an inhomoge-
neous electric field. In general static or dynamic fields can be used. First wewill focus
only on static deflection units. A more detailed description of the determination of
dynamic dielectric properties with the help of time-dependent fields will be given in
Sect. 5.1. For the generation of a static electric field, in principle, various electrode
geometries can be used. Nevertheless, the by far most often used electrode geometry
generates a so called “two-wire” field and we will focus our discussion on this elec-
trode geometry [17, 18]. However, a couple of other electrode geometries have been
used to perform deflection studies and some examples can be found in [19, 20].

The electrode geometry that generates an electric “two-wire” field and the cor-
responding coordinate system are shown in Fig. 2.5a. In analogy to the magnetic
“two-wire” field [21] a convex electrode with radius a and a concave electrode with
radius b are used. The z-component of the electric field strength is given by

Ez = K√
(a − y)2 + z2

√
(a + y)2 + z2

, (2.1)

and the corresponding field gradient

∂ Ez

∂z
= 2 · K · z · (a2 + y2 + z2)[

(a − y)2 + z2
]3/2 [

(a + y)2 + z2
]3/2 (2.2)

can be obtained by deriving with respect to z. The parameter K present in Eqs. 2.1
and 2.2 is determined by the electrode radii a = 3.8 and b = 4.0mm, as well as the
potential difference U between the two electrodes [1]

http://dx.doi.org/10.1007/978-94-007-7866-5_3
http://dx.doi.org/10.1007/978-94-007-7866-5_5
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Fig. 2.5 a View from +x direction on the deflection electrodes with a “two-wire” geometry. The
molecular beam axis is highligthed in orange. The diameter of the concave and convex electrodes are
given by 2a and 2b, respectively.bElectric field strength (Ez ), field gradient (∂ Ez/∂z) and product of
both quantities (Ez ·∂ Ez/∂z) for the “two-wire” field geometry in arbitrary units as a function of y/a
and z/a. c Typical experimental result for the beam deflection of barium atoms (speed ∼1420m/s,
blue dots without field, red squares with field, Gaussian functions with the corresponding color are
fitted to the data points) at room temperature (RT) and an applied deflection voltage of 28kV. The
position of aperture is abbreviated by p. A deflection of (238 ± 25) μm was observed

U = K

a

[
arctan

(a

b

)
− π

4

]
. (2.3)

A special feature of the “two-wire” field is that the gradient ∂ Ez/∂z as well as the
product of the electric field Ez with the electric field gradient, which are responsible
for the effects described in Sect. 2.1, remain nearly constant over the spatial dimen-
sions of molecular beam (orange, Fig. 2.5a). In Fig. 2.5b Ez , ∂ Ez/∂z and Ez ·∂ Ez/∂z
are shown as a function of y/a and z/a. The position of the molecular beam relative
to the electrodes is indicated in Fig. 2.5a in orange. Typically the molecular beam is
located at (1.1−1.2)a in z- and (−0.35−0.35)a in y-direction for which ∂ Ez/∂z as
well as Ez ·∂ Ez/∂z change only about∼5%. Therefore, the force experienced by the
particles is to a good approximation independent of their position in the molecular
beam (see Eq.3.3). In order to quantify the observed beam deflection it is necessary
to introduce an apparatus constant (Eq.2.4). It turns out to be useful to introduce the
constant

γ = σ

U 2 Ez = l21 + l1l2
U 2

∂ Ez

∂z
Ez, (2.4)

http://dx.doi.org/10.1007/978-94-007-7866-5_3
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which is independent of the applied deflection voltage. The quantities l1 and l2 in
Eq.2.4 are the electrode length (150mm) and the distance of free flight (1590mm,
see Sect. 2.1), respectively. Furthermore, the constant σ is introduced which depends
on U but often it is more convenient to use σ when discussing the beam deflection or
the force experienced by particles (see Eqs. 3.3 and 3.5). The calibration constant can
be determined bymeasuring the beam deflection of a particle with well characterized
dielectric properties. For our experimental setup we used the barium atom [22, 23].
A typical beam profile obtained for Ba is shown in Fig. 2.5c. The average of five
measurements gave a value of γ = (2.8 ± 0.2) · 107m−1 in very good agreement
with theoretical predictions taking Eqs. 2.1 and 2.2 into account [1].

2.5 Position-Sensitive Mass Spectrometry

For the size selected detection of clusters a mass spectrometer (MS) is required. In
principle all types of mass spectrometers can be used to perform beam deflection
measurements. Nevertheless, in practicemostly time-of-flight (TOF)mass spectrom-
eters are used but also several studies with quadrupole MS [8, 19] are known. The
advantage of a TOF-MS is that all cluster species in a molecular beam can be probed
at the same time. If the molecular beam profiles are recorded serially by scanning
the molecular beam with the help of a aperture, a TOF-MS with space focusing is
used [24]. In our setup the neutral clusters pass the aperture and are subsequently
ionized by a F2-excimer laser (wavelength 157nm, see Fig. 2.1). The laser intensity
profile shows a rectangular cross section from 20× 10mm2 with an average energy
per pulse of 150μJ. The pulse energy can be measured during the experiment by a
pyro-electric detector (see Fig. 2.1). The ionized clusters enter the acceleration region
of the TOF-MS, in which the clusters are deflected orthogonal to their original flight
direction by applying voltages of 3–4kV in about hundred nanoseconds by high volt-
age switches. After a 35cm-long region of free flight the clusters are post-accelerated
on an Even cup [25]. The secondary electrons generated are converted in photons
by a fluorescence plate. The photons are detected and multiplied by photomultiplier
stage. Typically a mass resolution of better than 100 is reached. If a TOF-MS with a
reflectron is used the mass resolution could be further enhanced [26].

For the determination of the molecular beam profiles ψ0 and ψ1, about 60 exper-
iments are performed at 20 randomly selected slit positions. This means at each slit
position on average three experiments are performed. One experiment consists of
measuring the photo-ionization mass spectrum with and without electric deflection
field at a given slit position, while each mass spectrum is the average of 100–200
pulses.

As an alternative to serially scanning the molecular beam, position sensitive TOF-
MS techniques have been used [27–29]. In this approach, the molecular beam is
not scanned with the help of aperture, but the molecular beam profile is recon-
structed from the flight time. For that purpose the space focusing conditions must be
slightly altered, so that different starting positions manifest in different flight times,

http://dx.doi.org/10.1007/978-94-007-7866-5_3
http://dx.doi.org/10.1007/978-94-007-7866-5_3
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i.e. a molecular beam deflection and broadening manifests in a deflection and broad-
ening of the time-of-flight signal, respectively. The big advantage of this method is
that molecular beam profiles are measured at the same time for all positions without
scanning a slit aperture, thereby increasing the signal-to-noise ratio and decreasing
the duration of the experiment. However, the serial scanning mode is, in compar-
ison to the position sensitive TOF-MS, more sensitive to small deflections, allow-
ing the investigation of clusters with a small Stark effect or with very high mass.
Whether position sensitive detectors will unify the advantages of both operation
modes, remains open to future investigations [30].
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Chapter 3
Molecular Beam Electric Field Deflection:
Theoretical Description

After having explained the basic experimental components and the measurement
principle in Chap.2 a qualitative and quantitative description of the experimen-
tal observations for beam deflection studies employing the two-wire field setup is
developed in this chapter. First, the physics behind the observed deflection, which
is connected to the dielectric properties and consequently to the Stark effect, of the
clusters in a molecular beam is discussed. Second, from these basic considerations it
will become apparent that beside some experimental parameters only one molecular
quantity needs to be known in order to quantitatively describe the deflection behavior
of a rotating object in an electric field. This quantity will be called dipole moment
distribution function and depends on various parameters of the deflected particle, e.g.
the permanent electric dipole moment and the rotational temperature. Hence, in most
of the sections of this chapter different models and approaches are introduced and
discussed which aim to calculate the dipole moment distribution function. First, an
atomistic model of the cluster structure needs to be developed and its dielectric prop-
erties are inferred from quantum chemical calculations. The basic concept of these
computations will be described in Sect. 3.2. In Sect. 3.3 the characteristics of the dis-
tribution function are derived from perturbation theory (PT) considerations, i.e. in the
limit of a particle interacting only weakly with the applied electric field. Thereafter, a
description of the classical (Sect. 3.4) and quantum mechanical (Sect. 3.5) treatment
of a rotor with variable shape in an electric field of arbitrary field strength follows. All
models developed up to this point make use of the rigid rotor assumption and hence
the moment of inertia of the particle does not change with time. In Sect. 3.6 the case
of a “floppy” cluster which undergoes fast vibrational motions and/or isomerizations
on the time scale of the deflection experiment is discussed.

3.1 Particles in an Inhomogeneous Electric Field: Force
and Deflection

A good starting point in order to understand the deflection of a beam of neutral
clusters by an inhomogeneous electric field is to solve the problem for a single
particle, indexed i , first. The first step is to separate the translational motion from the

S. Heiles and R. Schäfer, Dielectric Properties of Isolated Clusters, SpringerBriefs in 17
Electrical and Magnetic Properties of Atoms, Molecules, and Clusters,
DOI: 10.1007/978-94-007-7866-5_3, © The Author(s) 2014
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internal vibrations and rotations.While the rest of the chapter deals with the adequate
description of the rotational and partially the vibrational motion, we start with only
considering the translation. We will assume that the translation of the cluster in a
molecular beam can be treated classically. Additionally, the following considerations
are only valid for the “two-wire” field geometry introduced in Sect. 2.4 and the choice
of the coordinate system refers to Fig. 2.1. In this special case, the experiment can
be divided into three sections.

In the first segment, the particle is generated and travels freely on the molecular
beam axis. Subsequently, the aggregate interacts with the inhomogeneous electric
field,while being between the electrodes of length l1. Finally, the cluster travels freely
over the distance l2 until it is detected as described in Sect. 2.5. To account for the
influence of the electric field on the particle’s trajectory, some approximations need
to be introduced. Until the particle reaches the electrodes, it travels with the velocity
vi = vx,i in the direction of themolecular beam axis x . All other velocity components
are assumed to be zero.1 It is important to note that the coordinate system with the
axes {x, y, z}, is the space-fixed reference frame. At a later stage another body-fixed
coordinate system and its connection to the space-fixed frame will be introduced. In
the electric field the energy of the cluster αi consists of the internal energy α(0)

i , i.e.
rotational, vibrational and electronic contributions, and the interaction energy αInti
which depends on the electric dipole moment

µ = µ0 + µind = µ0 + α̂E + . . . (3.1)

and the electric field E. The permanent electric dipole moment µ0 originates from
the non-uniform, non-centrosymmetric charge distribution within the cluster (with-
out applied electric field). The second term describes the field induced deformation
of the charge density resulting in an additional contribution to the dipole moment.
This quantity is called the induced dipole moment µind. In general, the expression
Eq. (3.1) can viewed as a Taylor expansion of µ as function of E near E = 0.
Therefore, the induced dipole moment includes all orders of field induced charge
density deformations. In beam deflection experiments the field strength is typically
∼107 V/m (Sect. 2.4) and

∣∣µ0

∣∣ is of the order of 1 D or 3.33·10−30 Cm. The contribu-
tion of the first term of µind (using the typical values for α of 50–200Å3) compared
to the permanent dipole moment is typically (2− 6) %whereas the other summands
are at least three orders of magnitude smaller. Consequently, only the term linear in
E is important and all other terms (O(E2)) can safely be neglected. For a discussion
of the higher order contributions to µind see for example [1, 2]. The factor α̂ in the
expression Eq. (3.1) is called the polarizability and is a tensor of second rank [1, 3].
Again we want to make use of the experimental conditions in order to simplify the

1 This is a very good approximation for collimated clusters obtained from hard supersonic
expansions. In particular, for our experimental setup vx is typically ∼1200m/s at 300 K. After
collimation to 250 µm the clusters expand freely for ∼2.5m and a typical full width at half max-
imum of 1.5mm is measured (see molecular beam profiles). This corresponds to vy and vz on the
order of ≈ 1 m/s.

http://dx.doi.org/10.1007/978-94-007-7866-5_2
http://dx.doi.org/10.1007/978-94-007-7866-5_2
http://dx.doi.org/10.1007/978-94-007-7866-5_2
http://dx.doi.org/10.1007/978-94-007-7866-5_2
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discussion. The α̂-tensor is a symmetric tensor whose trace is much larger than the
off-diagonal elements2 [3]. Hence, the experiment is only sensitive to the diagonal
elements, which additionally average during the experiment due to the fast rotational
motion. As a consequence, an averaged scalar quantity α = (αxx + αyy + αzz)/3 is
probed in experiment, which will be called polarizability from here on unless other-
wise stated. If we further take into account that the “two-wire” field is aligned along
the z-axis the expression for the energy

αi = α
(0)
i −

∫ Ez

0
µ · E ′

zd E ′
z = α

(0)
i + αInti = α

(0)
i − μz,i Ez − α

2
E2

z (3.2)

including the interaction contribution αInti between the i th cluster and electric field can
easily be derived. The quantity μz,i is the (mean) z-component of the dipole moment
of particle i . Its importance and significance will become clear in the following.
Moreover, in an inhomogeneous “two-wire” field the energy αi is not only a function
of the electric field strength but additionally of the the particle’s z-coordinate. As a
result, a cluster i will experience a force

Fz,i = −παi

πz
= −παInti

πEz

πEz

πz
(3.3)

which depends on the field gradient πEz/πz and more importantly the Stark effect
παInti /πEz [4]. Due to the force acting on the particle in the inhomogeneous field, a
deflection is observed which is connected to the field induced energy change and,
consequently, to µ. To quantify this qualitative statement the overall deflection di

in z-direction needs to be known. For the “two-wire” field configuration, Ez and
Ez ·πEz/πz are fairly constant in a small area around a given z (Sect. 2.4). Therefore, a
cluster in a properly aligned beamwill experience a constant force Fi . The deflection
Δi,1 of the cluster with mass mi during the period τi,1 within the electric field is
given by Δi,1 = Fi/mi · τ2i,1/2. Behind the electric field the momentum in z is
not longer zero but is given by Fiτi,1. Hence, the deflection in the field-free region
before detection is described by Δi,2 = Fi/mi · τi,1τi,2 where τi,2 is the period
of field-free flight. As a result of this two contributions and taking the relations
vi = l1/τi,1 = l2/τi,2 and Eq. (3.3) into account, the overall deflection

di =
(

τ2i,1
2

+ τi,1τi,2

)
Fi

mi
= −

(
l21/2 + l1l2

)
mi v2i

πEz

πz

παInti

πEz
(3.4)

can be derived. Hence, di depends on some experimental parameters, the particle
mass as well as velocity and the Stark effect. The apparatus specific quantities can
be grouped in an apparatus constant σ and calibrated by using well characterized
polarizability values [5, 6]. Introducing σ and using Eq.3.2 in Eq.3.4 the deflection

2 At least for atoms and non-linear molecules.
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di = − σ

mi v2i

(
παInti

πEz

)
= σ

mi v2i
(μz,i + αEz) (3.5)

can directly be related to the dielectric properties.
In experiment not a single particle is probed but an ensemble of particles is

investigated. Consequently, we need to connect Eq.3.5 to the experimentally mea-
surable quantity. In our case, this is themolecular beam profileψ (Sect. 2.1). First, we
need to know how to determine mi and vi . Since every beam deflection experiment is
coupled to a mass spectrometer, the cluster mass is inferred from the mass spectrum.
Consequently, particles with identical mass are analyzed and the index i for m can
be omitted. For vi the most general approach is to measure the velocity distribution
of the particles in the molecular beam. However, in supersonic molecular beams or
by using velocity selectors this velocity distribution is very narrow 3 and a very good
approximation is to replace vi (in Eq.3.5) by the mean velocity v. This mean value
v is accessible by standard molecular beam techniques [5, 8, 9].

At this point we have introduced all necessary quantities and approximations in
order to connect di with ψ1. Due to the presence of the electric field the original
beam profile ψ0(z) is shifted by di . For a hypothetical beam of identical i-particles
the molecular beam profile with applied electric field will be given by ψi,1(z) =
ψ0(z − di ). In the case of an ensemble, the molecular beam profile with electric field

ψ1(z) =
∑

i

ρiψi,1(z) =
∑

i

ρiψ0(z − di ) (3.6)

is a result of the weighted summation over all ensemble members. Here, ρi is the
deflection distribution function, describing the probability of finding the deflection
di . When Eq.3.6 is viewed as a convolution of the shifted ψ0-profiles with ρi , it
becomes apparent that all information about the dielectric response of the cluster is
contained in ρi and the corresponding di values. Therefore, we need to develop a
scheme that theoretically predicts ρi and di , in order to fully understand electric beam
deflection experiments. Another easy transformation shows, that by using Eq.3.5,
each of the di values can be connected with a corresponding μz,i value. In the same
way ρi and ρ(μz,i ) are easily interconvertible. Thus, the derived quantity ρ(μz,i )will
be called dipole moment distribution function and its theoretical predictions will be
the task of the rest of this chapter.

In order to emphasize this important result, a schematic representation of the con-
nection between ρ(μz,i ) andψ1 is shown in Fig. 3.1. A description of the beam profile
ψ1 is possible if the beam profile without electric field ψ0 is measured experimen-
tally and convoluted with a predicted dipole distribution function (see for example
the smoothed distribution function in Fig. 3.1). If the dielectric properties used to cal-
culate ρ(μz,i ) adequately describe the properties of the investigated cluster the sim-
ulated and measured ψ1-profiles will coincide. In principle, it is possible to directly

3 An in-depth discussions on the influence of the velocity distribution on the experimental results
can be found in [7, 8].
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Fig. 3.1 Interpretation scheme of electric beam deflection experiments for the case of a rigid
rotor. (upper left) An atomistic model of the clusters is developed by identifying candidate isomers
employing quantum chemical methods (see Sect. 3.2). The moments of inertia, permanent dipole
moment components in the molecular coordinate system (see Sect. 3.4) and polarizabilities for
these isomers are inferred from these calculations. (lower left) These parameters are used to predict
beam deflection profiles employing different methods like perturbation theory, classical or quantum
mechanical simulationswhich are extensively discussed in Sects. 3.3–3.5, respectively. (lower right)
As a result the dipole distribution function ρ(μz,i ) is obtained. (upper right) The beam profile with
applied electric field ψ1(z) is calculated using ψ0(z), di and ρ(μz,i ) according to Eqs. 3.5 and 3.6

calculate ρ(μz,i ) from experiment by deconvolution and compare the predicted and
extracted distribution function. Consequently, as shown in Fig. 3.1 the connection
between ρ(μz,i ) and ψ1 is reversible. Until now this has only been achieved for mag-
netic deflection experiments and is mentioned here for completeness [10]. So far, we
have discussed the basic experimental and theoretical quantities, in order to calcu-
late ρ(μz,i ). To give an idea how to compute ρi a first step is to discuss the variables
that the distribution function depends on. First, we will assume that all clusters are
in the same electronic state and only the rovibrational degrees of freedom will be
considered explicitly. Therefore, in general ρi will be a function of the energy stored
in the rotational and vibrational degrees of freedom characterized by Trot and Tvib
called the rotational and vibrational temperature,respectively. In order to describe
the rotational and vibrational motion and their influence on ρi further quantities that
characterize these motions, i.e. the principle moments of inertia I and the harmonic
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oscillator frequencies ν0, are needed. Second, ρi depends on µ0, α and Ez (Eq. 3.5).
This tremendous number of variables illustrate, that it is a difficult task to predict ρi

from first principles. In particular, excited vibrations and interactions between the
rotational and vibrationalmotion are difficult to incorporate in amodel (see Sect. 3.6).
Fortunately, in experiment the clusters can be cooled by cryogenic supersonic expan-
sions (see Chap. 2) resulting in a nearly rigid particle skeleton. Within this so called
rigid rotor assumption, the problem of predicting ρ(μz,i ) is simplified and only the
rotational motion of a cluster in an electric field needs to be considered. Depicted
in Fig. 3.1 are the various methods that can be used to achieve this task for a rigid
cluster. However, if the particles are not longer rigid and undergo vibrations and/or
isomerizations the presented methodology breaks down. Therefore, the description
of molecular beam profiles for these “floppy” clusters will be presented separately
in Sect. 3.6 and all what follows is only valid for rigid clusters. In the scenario of a
rigid rotor, the influence of the electric field on the rotational motion of the cluster
can either be modeled by using perturbation theory, classical or quantum mechanics
(see Fig. 3.1). The different methods will be discussed in detail in Sects. 3.3–3.5. In
order to perform the simulations, there is only one ingredient missing (Fig. 3.1). This
is an atomistic model of the cluster and its corresponding properties. It is a separate
problem to correctly predict energetically low-lying cluster structures and have ade-
quate µ0, α and I values available to simulate the electric beam deflection behavior.
Therefore, the following Sect. 3.2 briefly deals with state-of-the-art methods used
to locate cluster structures and introduces the essentials to extract the needed set of
parameters from quantum chemical computations.

3.2 Quantum Chemical Prediction of Cluster Structures
and Dielectric Properties

3.2.1 Predicting Cluster Structures Using Global Optimization
Techniques

The prerequisite for every beam deflection simulation that aims to investigate the
structures of gas phase clusters, is to deduce the parametersµ0,α and I fromquantum
chemical calculations. However, what is the structure of the corresponding gas-phase
species? This is one of the most essential questions in cluster physics and the answer
is not trivial. The simplest idea is to guess the structures of the clusters based on the
structural motifs of molecules or solid-state compounds. This approach of educated
guessing can lead to erroneously wrong ground state (GS) structure predictions. One
of the best documented examples is the structure of the fullerene C60. Before the
discovery of C60 the modifications graphite and diamond were known [11]. Based
on thesemodifications the structure ofC60 should either be a truncated graphite-sheet,
only containing hexagons, or a dense nearly spherical aggregate with sp3 coordinated
atoms like in diamond. Today it iswell known that C60 is a hollow structure consisting

http://dx.doi.org/10.1007/978-94-007-7866-5_2
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12 pentagons and 20 hexagons [12]. Another idea is to create all possible structures
by hand. While this approach is widely used for very small particles, the number
of possible isomers roughly increases exponentially with the number of atoms N ,
making this procedure intractable for larger clusters [13, 14]. The situation is further
complicated for multi-metallic particles, so called nanoalloys. Beside the structural
isomers a huge number of homotops, describing the permutational isomerism, for
every nanoalloy cluster structure exist [13, 15].

Hence, a rational approach must be used in order to systematically locate possi-
ble isomers. In the recent years, several so called global optimization routines were
developed.While, all of the methods employ different searching algorithms the over-
all goal is to locate the global minimum (GM) or GS structure on the potential energy
surface (PES) for a given size and composition. The two most widely used methods
are called basin-hopping (BH) and genetic algorithm (GA) [14]. The principle of
these two routines are depicted in Fig. 3.2. First, the PES is modeled by some inter-
atomic potential (black line). We will come back to the issue of a proper modeling
of the PES at a later stage. In general, the energy is a function of 3 · N Cartesian
coordinates X. For simplicity, the PES in Fig. 3.2 is shown in dependence of the
generalized coordinates {X}. Each of the minima is assigned to a corresponding
structure. Some of these structures are schematically shown as ellipses and circles.
How the PES can be systematically explored locating the lowest energy isomers? In
the BH approach, introduced by Li and Scheraga [16] and formulated more strictly
by Wales and Doyle [17], this is done by creating a trial structure (randomly or by
hand) and in a first step this structure is energetically optimized. Hence, the search
starts from one of many possible minima. The main idea of this method is to ran-
domly change the coordinates of one or several atoms of the initial cluster within
a predefined trust radius. This avoids dissociation or vaporization of the cluster.
The newly generated structure is again energetically relaxed. In the case, that the
geometrical change was sufficient to at least overcome one of the transition states
surrounding the initial structure, the new structure will correspond to another isomer,
located in a nearby minimum. Due to the local geometry optimization not the PES
(Fig. 3.2, solid black line) is studied but it is the transformed PES that is explored
(Fig. 3.2, broken black line) [17]. The energy difference Δα between the new and
old isomer are compared by the Metropolis Monto-Carlo (MC) criterion, in order
to decide if the new structure is accepted [18]. The random BH-move is accepted,
if Δα < 0 or for Δα > 0 if exp[−Δα/(kBT )] is larger than a randomly generated
number. Here kB is the Boltzmann constant and T is the simulation temperature.
Therefore, this procedure is equivalent to hopping (see Fig. 3.2) from one minimum
to another. However, an intrinsic problem of the BH algorithm is that the code tries
to move between minima by random changes of the geometry but, if a local basin is
considerably lower in energy than all surrounding minima and is surrounded by high
transition state barriers, it is very unlikely that the search can escape this minimum
and, hence, it is trapped. Recent research efforts resulted in strategies which can
overcome this problem [19, 20]. A simple example is the so called jumping move
(see Fig. 3.2) [19]. In the case the structure of the particle does not change for several
MC steps the temperature is raised to ∞, equivalent to always accepting this move,
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Fig. 3.2 Illustration of the
basic principles of the BH
and GA global optimization
strategies. The PES (solid
line) is shown as a function
of the generalized coordinates
{X}. For some minima
the corresponding cluster
structures are represented as
ellipses and circles. Since
the energy is optimized in
every global optimization
step, it is the transformed
PES (broken line) that is
searched. The basic searching
strategies of the BH
and GA are included
in the figure and are
highlighted by arrows and
letters, respectively. a, b
Graphical representation of
mating and mutation. The
effect of these operations is
shown in the upper part of the
figure
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and the structure is changed several times without further geometry optimization.
This allows to jump out of a deep basin. After this jumping move the BH routine
continuous with normal hoping steps. The energetically lowest structure located after
finishing the predefined number of MC steps is the putative GM.

A somewhat different approach is used in GA searches. The GA uses evolutionary
principles in order to locate the GM [13]. The cluster structure is represented by
a certain set of coordinates or variables defined as genes. The task is to globally
optimize the values (alleles) for the complete set of genes (forming a chromosome).
Contrary to the BH search, not a single starting structure is used but a number of
isomers, called individuals, are grouped to form the initial population. Each structure
is energetically optimized and the fitness value fi (ηi ) of the individual i with energy
αi depending on the relative energy scale

ηi = αi − αmin

αmax − αmin
(3.7)

is assigned to each structure. Here αmin and αmax is the lowest and highest energy
value in the population, respectively.4 A systematic energetic improvement of the
cluster structure is possible if different genetic operators are applied to the cluster
chromosome. There are several ways of deciding which cluster should be used in a

4 For possible functional forms of fi (ηi ) see for example Ref. [13].
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genetic operation. Most of these routines are based on fi (ηi ) [13]. The higher the
fitness value, the more likely the structure is used in a genetic operation. The two
most important genetic operations are depicted in Fig. 3.2. For mating or crossover,
two individuals of the population are chosen. In the simplest form of the so called
“cut-and-splice” operation introduced by Deaven and Ho [21], each cluster is cut at
a single random position (and orientations) and the two fragments are spliced with
random orientations, leaving the total number of atoms and the composition constant
(see Fig. 3.2a). In this way, energetically beneficial fragments of the parent clusters
are transfered to an offspring isomer. Another genetic operation, which is shown in
Fig. 3.2b, is the mutation. The chromosome of the individual is changed randomly,
i.e. the translation of a single atom, the rotation of fragments, the interchange of atom
types or the generation of a completely new structure. Subsequent to these operations
offspring and mutants are locally optimized with respect to the energy. Therefore, it
is the transformed PES (see Fig. 3.2, broken black line) that is investigated in most
GA searches. Now, the total number of individuals exceeds the predefined population
size. In order to decrease the number of clusters to the allowed population size, some
isomers are deleted based on their fitness-value and structuralmotif [22]. This process
is a natural selection step and is inspired by selection strategies found in nature. All
the described processes of fitness evaluation, genetic operations, natural selection
and relaxation are defined to form a generation. All processes are repeated until a
predefined convergence criterion, for example the energy of the lowest lying isomer,
does not change for a certain number of generations. The lowest isomer in the last
generation is predicted to be the putative GM. The herein presented description of
the BH and GA approach is only intended to briefly introduce the basic working
principles of some global optimization strategies. For a more detailed description
of the BH and GA methods and possible variants, the reader is referred to Refs.
[13, 19, 20, 22–24].

As shown above, in principle it is possible to use one of thementioned (or another)
global optimization techniques to systematically locate the GM or energetically low-
lying isomers. However, an interatomic potential model is needed to describe the
bonding within the cluster and, hence, to model the corresponding PES. The simplest
way is to use some kind of model or empirical potential. For larger metallic clusters
(N ≥ 30) the Gupta [25] or Sutton-Chen [26] potential is used to perform these kind
of global optimizations. It is expected that clusters of this size behave very similar to
the bulk, justifying the use of these potential energy functions. By decreasing the total
number of atoms it will become possible to use tight-binding approaches [27] or ab
initio calculations [28–30] in order to study the PES. This is particularly important
for clusters for which the chemical bonding massively differs from the bulk. No
matter what method is used to describe and search the PES, all will lead to putative
GM and energetically low-lying isomers. Certainly, the more realistic the modeling
of the interatomic bonding, the better these structures will correlate with the isomers
studied in experiments. How to extract the required properties from the theoretically
predicted isomers, will be discussed in the next paragraph.
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3.2.2 Quantum Chemical Predictions of the Dielectric Properties

At this point, we come back to the original problem of computing α, µ0 and I. This
can be done for the candidate structures located with one of the above mentioned
methods. In order to calculate all three necessary properties, the best way is to use
an ab initio method which will give the best possible description of the geometric
and electronic structure. Hence, structures found by global optimization routines are
in a next step used as starting structures for Hartree-Fock (HF) [31], other wave
function based [31–33] or density functional theory (DFT) [34, 35] calculations
[36, 37].5 A good general overview on how to calculate various properties using
quantum chemical methods is given in Ref. [38].

For wavefunction based methods the problem is to solve the time-independent
Schrödinger equation ĤΨ = αΨ taking the exact spin-free, non-relativistic Hamil-
tonian

Ĥ = − �
2

2me

∑
j

∇2
j −

∑
j

∑
M

Z M e2

4πα0r j M
+
∑

j

∑
k> j

e2

4πα0r jk
+
∑

L

∑
M>L

ZL Z M e2

4πα0RL M

(3.8)
within the Born-Oppenheimer approximation [39] for n interacting electrons in an
N atom molecule without and with the presence of an external field E into account.
For convenience, Eq.3.8 is given without incorporating the influence of E. The exact
electronic ground state energy is given by α, ∇ is the Nabla operator, Ψ is the n-
electron ground state wavefunction,me, e, � and α0 are the electronmass, unit charge,
the Planck constant h divided by 2π and the permittivity in vacuum, respectively. The
corresponding atomic number is represented by Z M , the electron-nuclei, electron-
electron and nuclei-nuclei separation are given by r j M , r jk and RL M , respectively.
Since this equation cannot be solved exactly for more than one electron due to the
presence of the electron-electron interaction term, quantum chemists have introduced
various approximations to solve this problem numerically. The most basic approxi-
mation that conserves the antisymmetric character of the fermionic wavefunction is
called HF method. Within this approximation it is assumed that the n-particle wave-
function can be written as an anti-symmetric product of one-electron functions, i.e.
orbitals. The resulting wavefunction

Ψ HF = 1√
n!

∣∣∣∣∣∣∣∣∣

χ j (r1) χk(r1) · · · χl(r1)
χ j (r2) χk(r2) · · · χl(r2)

...
...

...

χ j (rn) χk(rn) · · · χl(rn)

∣∣∣∣∣∣∣∣∣
(3.9)

5 Some of the properties can be deduced from simple model calculations which maybe give an
reasonable agreement with experimental findings. Here, we will concentrate on the most generally
applicable approach using ab initio methods. For the prediction of α by simple model calculations
see Refs. [3, 34].
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called Slater determinant consists of the spin-orbitals χ j .6 Since the choice of χ j is
not unique, the basic idea is to chose a set of spin-orbitals and optimize these orbitals
by minimizing the HF energy αHF according to the variational principle. This will
result in a set of effective one-electron eigenvalue equations

f̂ (r)χ j (r) = α jχ j (r) (3.10)

with the orbital energy α j and the Fock operator defined as

f̂ j = − �
2

2me
∇2

j −
∑

M

Z M e2

4πα0r j M
+ vHFj (3.11)

which are solved self-consistently. In Eq.3.11, vHFj is the averaged effective electro-
static potential experienced by electron j , originating from all other electrons. It is
known that there are two possibilities for the spin-state of each electron but how can
the spatial part of φ j be described? For atoms, φ j is expanded as a superposition of
known functions called basis functions, whereas for molecular systems the so called
molecular orbitals (MOs) are used which are chosen to be a linear combination of
atomic orbitals (LCAO) [31]. The variational freedom is given by the expansion
coefficients used in the basis set. Since the basis set will only be finite in real compu-
tations, the size of the basis set may introduce a source of error.7 After having solved
the above outlined HF problem for a given set of nuclear coordinates the atomic posi-
tions are changed and the HF procedure is repeated until the change of the electronic
and nuclear energy, i. e. the force acting on each atom, is smaller than a predefined
convergence criterion.8 For this step, standard minimization techniques discussed in
Ref. [40] are used. After this whole procedure we have found the optimal geometry
and wavefunction using the HF approximation for a given basis set expansion with-
out electric field. Certainly, the HFmethod is an approximation and, in particular, the
effective potential and the use of a single Slater determinant do not account for all
of the exchange and correlation effects. A systematic improvement of the HF wave-
function and energy is achieved byMøller-Plesset (MP) perturbation theory [31, 41],
coupled cluster (CC) calculations [33] or multi-determinant approaches [32]. We do
not intend to introduce all of these methods since the basic principles of calculating
the required parameterswill be very similar, even if the implementation and the actual
numerical calculations can be tremendously more difficult. However, we must keep
inmind that only the parameters extracted from advanced quantummethods will give
acceptable values for α, µ0 and I (see Table. 3.1). The actual level of theory that is
needed depends on the system under investigation. Additionally, relativistic effects

6 All following considerationswill only be valid for closed shell atoms andmolecules. The procedure
is very similar for open-shell systems but the resulting equations are somewhat more complicated.
For open shell systems the reader is referred to Ref. [31].
7 The larger the basis the smaller will be αHF. If αHF does not change when the basis set is increased
the HF limit is reached, i.e. the best result the HF approximation can offer. In a similar way,
predictions from other quantum chemical methods can be improved.
8 This is only of importance for molecular systems.
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Table 3.1 Comparison of theoretical and experimental α and μ0 values in Å3 and D, respectively,
for various atomic, molecular and cluster systems

αtheo/Å3 αexp/Å3 μ0,theo/D μ0,exp/ D

He/QEDa 0.21j 0.21 ± 0.01%j LiF/MP4f 6.25 6.28 ± 0.01j

Na/CCSDTb 24.14j 24.11 ± 0.12 3-Aminophenol/CASPT2g 2.16 2.33 ± 0.01j

Ba2/HFc 111.53 103.20 ± 10% 3-Aminophenol/B3LYPg 2.49 2.33 ± 0.01j

Ba2/CCSD(T)c 97.88 103.20 ± 10% Na14/B3LYPh 1.17 0.02 ± 0.02
Na20/PW91LDAd 293.20 304.4 ± 7.60 Na14/vdW−DFTh 0.03 0.02 ± 0.02
Anthracene/B3LYPe 26.29 25.93 ± 10% Pb18/MP2i 0.40 0.59 ± 0.11
a Quantum electrodynamic (QED) calculations and dielectric constant measurements [53, 54]
b CCSDT (coupled cluster with single double and triple excitations) and interferometry results [55,
56]
c Scalar relativistic calculations and beam deflection results [5]
d DFT calculations and beam deflection measurements [57, 58]
e DFT and Stark-modulated laser spectroscopy results [59, 60]
f MP4 theory and molecular beam electric resonance results [61, 62]
g Stark-modulated rotational spectroscopy and the corresponding CASPT2 (second order perturba-
tion complete active space method) and B3LYP calculations for the cis isomer [63]
h B3LYP and van-der-Waals (vdW) corrected DFT calculations and beam deflection measurements
[58, 64, 65]
i MP2 calculations and beam deflection results [66, 67]
j This value is more precise than stated in the table

may play a crucial role for these properties [42]. Regardless of these limitations we
can assume that the computed geometry and wavefunction using the HF approach
gives a first approximation to the exact value of the molecular properties. Improved
results maybe further obtained from sophisticated wave function based methods.

The quantity that is easily extracted from the calculations, is the moment of inertia
tensor

Î =
⎛
⎝

∑
M m M (y2M + z2M ) −∑M m M xM yM −∑M m M xM yM

−∑M m M xM yM
∑

M m M (x2M + z2M ) −∑M m M yM zM

−∑M m M xM zM −∑M m M yM zM
∑

M m M (x2M + y2M )

⎞
⎠ ,

(3.12)
that is, after transformation in the center of mass coordinate system, deduced from
the final cluster geometry. Here the sum runs over all atoms N , mM is the mass
of the corresponding nucleus and the set {xM , yM , zM } are the coordinates of all
atoms. In the next step we transform Î into the principle coordinate system giving
a diagonal matrix. This new matrix is in short written I = (Ia, Ib, Ic) and only
contains the principle moments of inertia.9 The coordinate system corresponding to
this principle axis system defines the body-fixed coordinate system. Its axis are given
by {a, b, c} and all molecular properties will be given in this coordinate system.

9 For all what follows we define the principle moments of inertia to fulfill the relation Ia ≥ Ib ≥ Ic.
Please note that this different from the definition most commonly used. In terms of moments of
inertia a spherical rotor will have Ia = Ib = Ic. Breaking this symmetry will lead to a prolate
(Ia = Ib > Ic) and an oblate (Ia > Ib = Ic) rotor which both are classified to be symmetric tops.
Note that the symmetry axis of a prolate top is c and for an oblate rotor it is a. For an asymmetric
rotor the moments of inertia fulfill the relations Ia 	= Ib 	= Ic.
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The next task is to calculate the polarizability. In order to computationally extract
this property from quantum chemical considerations, Eq. (3.2) can be rewritten and
integrated with respect to the electric field, giving

α = α(0) −
∫ E

0
µ · E′dE′ = α(0) − πα

πE
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E = 0

E − 1

2

π2α

πE2
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E = 0

E2 + . . . . (3.13)

This illustrates, by comparison with Eq. (3.2), that α̂ can be connected with
−π2α/πE2

∣∣
E = 0 (including all possible derivatives with respect to the electric field).

Consequently, the task is to find the second-order energy derivatives with respect to
the electric field, in order to calculate α̂ and therefrom α. The most straightforward
way is to include the operator Ĥ ′ = −eE

∑
j r j (r j indicates the coordinates of

electron j) in the quantum chemical calculations and repeating the HF calculations
for a set of finite field strength. By numerical differentiation the corresponding deriv-
atives can easily be calculated [43]. Two more commonly used methods are uncou-
pled and coupled perturbed calculations. For these calculations Ĥ ′ is interpreted as
perturbation operator and is used within the HF procedure. By expanding the corre-
sponding set of wavefunctions in the form Ψ = Ψ (0)Ψ (1) for the unperturbed and
Ψ = Ψ (0) + Ψ (1) + . . . for the perturbed approach, where Ψ (0) is equivalent to
Eq. (3.9) and Ψ (1) is the first perturbation correction of Ψ (0), a set of uncoupled and
coupled equations are obtained, respectively. These are solved to obtain the energy
derivatives with respect to the electric field and, hence, α̂. For a review on the devel-
opment of these methods see Ref. [44]. On the one hand, the unperturbed method is
easier to solve but on the other hand, present days computations can readily solve
the more accurate perturbed equations, which include the electron correlation effects
due to the interaction between different orbitals in the presence of the electric field.
For higher-order correlation methods like MP, CC or configuration interactions (CI)
similar finite field and perturbation methods (see Ref. [45] for high accuracy calcula-
tions) are availablewhilemodern quantumchemical approaches use (linear) response
theory calculations to evaluate the time-dependent and -independent properties. A
description of the more complex linear-response calculations is beyond the scope
of this manuscript but these methods have been reviewed recently [46]. The final
method introduced here is the so called sum-over-states approach which is based on
the second order perturbation theory expression

αkl = 2e2
∑

m

〈Ψ (0) |k| Ψm〉〈Ψm |l| Ψ (0)〉
αm − α(0)

(3.14)

for the klth α̂-component [47]. The GS wavefunction Ψ (0) in this expression is
perturbatively influenced by the excited states Ψm via the kth and lth electron coor-
dinate operators. The difference of the GS energy α(0) and the energies of the excited
states αm are inversely proportional to the polarizability component αkl . Therefore,
excited states which are close in energy to the GS, contribute most significantly to the
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polarizability.10 Beside the qualitative understanding Eq.3.14 can offer, quantum-
chemical methods that predict αm and Ψm can be used to calculate the polarizability
via this equation [3, 45].

The final quantity we have to predict is µ0. From Eq.3.13 it is obvious, that
−µ0E is a first order correction to the field free energy. As a consequence and in the
spirit of perturbation theory, the dipole moment is given by µ0 = 〈Ψ (0)

∣∣ µ̂ ∣∣Ψ (0) 〉.
This expression is equivalent to the expectation value of the dipole moment operator
ˆ̄μ = −e

∑
j r j + e

∑
M Z M RM of the electronic ground state. The indices of the

summation are identical to the definition introduced before. By using µ̂ and the fact
that electrons are indistinguishable the dipole moment is given by

μ̄0 =
∫

p(r)rdr + e
∑

M

Z M RM (3.15)

in which p(r) represents the electron density. The dipole moment is directly inferred
from the GS wavefunction and geometry without further computations. We have to
stress that the computed value ofµ0 is unique. This is in contrast to the problems aris-
ing when calculating partial charges [31]. Hence, dipole moments calculated from
Eq.3.15 and from partial charges are in most cases different. The discussion above
was based on methods using a n-electron wavefunction. The advantage of these
methods is that a systematic procedure exists to improve the calculation results. This
is done by systematically improving the description of exchange-correlation effects
and by increasing the basis set size. Unfortunately, this procedure becomes compu-
tationally very expansive and is only used for very small or light cluster systems.

Therefore, at the end of this Section we briefly want to introduce another very
widely used technique called DFT [34, 35]. In DFT calculations not the time-
independent Schrödinger equation or the ground state wavefunction is used, but
the energy is expressed as a functional of the electron density

α[p(r)] = T [p(r)] + 1

2

∫
p(r)p(r′)

4πα0(|r − r′|)drdr′

+
∫

p(r) [vi(r) + vext(r)] dr + αxc[p(r)] (3.16)

depending on the kinetic energy functional T [p], the electron-electron repulsion
term, the ionic and possible external potential vi and vext as well as the exchange
correlation functional αxc[p]. It was shown by Hohnberg and Kohn that p(r) is fully
sufficient to describe all desired properties of the electronic ground state and that the
best result is found byvariationaly changing p(r) in order tominimize the energy α[p]
[48]. There are various approximations to Eq.3.16 [3, 34] but at present the obtained
results are not accurate enough. Hence Eq.3.16 is mainly used to perform model
calculations. A practicable solution is found by expanding the electron density in the
finite basis of well behaved functions {φ j }. By adopting ideas of HF computations,
α[p(r)] is minimized by optimizing {φ j } and a set of single-particle equations of the

10 For a system with only two energy levels Eq.3.14 simplifies to Eq.1.1.
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form [
− �

2

2me
∇2

j + vKSj

]
φ j = α jφ j (3.17)

are obtained. These so called Kohn-Sham (KS) equations [49] can be solved self-
consitently.11 In analogy to Eq.3.11, α j is the energy of the KS orbital φ j . By com-
parison with Eq.3.10, this expression is very similar to the HF result, apart form
the potential vKSj = vKS0,j + vext + δαxc[p]/δ p(r), which consists of three sum-

mands. The first two being the effective electron repulsion term vKS0,j and the exter-
nal potential vext due to the nuclei or other applied fields. Most importantly, the
effective potential in KS-DFT contains the δαxc[p]/δ p(r) term, which is related to
the chosen exchange-correlation functional. While we have learned that vHFj does
not incorporate all exchange-correlation (xc) effects and can only be improved by
more demanding calculations, the strength of DFT is that a proper choice of the
xc-functional, in principle, allows to include all xc-effects with the computational
expanse very similar to HF calculations. Unfortunately, αxc[p] is not known and
various approximations and semi-empirical models for this functional have been
developed and used over the last decades [51, 52]. All of these functionals have their
disadvantages and benefits but the biggest problem is that a general and system-
atic approach to improve these methods is missing.12 Nevertheless, the benefits in
computational cost compared to wavefunction based methods, which perform sim-
ilarly, outrun these drawbacks, especially for larger cluster systems. After a proper
experimental or theoretical calibration, DFT is a very widely and successfully used
method [34, 35, 51]. Since Eqs. 3.10 and 3.17 are very similar, nearly all methods
introduced above for geometry optimization, calculation of I, α and µ0 exist for
DFT, too. For example there are finite field [68], coupled perturbed KS [69, 70] and
linear response theory calculations (mostly within time-dependent DFT) [70, 71] in
order to compute α. Furthermore, the optimized DFT geometry is used to deduce I
and the final p(r) is employed to compute µ0 via Eq. (3.15).

Therefore, a broad variety of quantum chemical methods exist which will yield
the parameters I,α andµ0. In Table3.1 some calculation results forα and

∣∣µ0

∣∣ = μ0
for a selection of atomic, molecular and cluster systems are presented to highlight
the accuracy and problems of present day computations of dielectric properties. The
quality of predicted I values is, in general, satisfying and, hence, the major problem
in determining the principle moments of inertia is to find the GM.13 The situation is

11 In cluster physics a well known approximation to these equations is the Jellium model. In this
model, the valence electrons are treated explicitly and the nuclear charge that balances the valence
electrons is assumed to be distributed uniformly. While this approximation is not restricted to DFT
it was mainly used in this scientific community. For an in-depth review of this method see [50].
12 A systematic improvement of the results is achieved by increasing the basis set size but so far
there is no strict way to systematically account for xc effects.
13 In order to compare to experiments like beam deflection measurements this conclusion is valid.
In the case of high resolution spectroscopy techniques, highly correlated methods and large basis
sets have to be used in order to obtain the accuracy needed to describe the experimental findings.
See Ref. [72] for an example.
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very similar for computations of α. No matter if open- or closed-shell atoms, heavy
element dimers, clusters or hydrocarbons with delocalized electrons, the computa-
tional findings agree with experiments (see Table3.1). Particularly interesting is the
fact that even HF and CCSD(T) calculations for the heavy element dimer Ba2 only
differ by ∼10 %. Therefore, the value of α can safely be exctracted from nearly
all quantum chemical calculations, resulting in a fairly good agreement with exper-
imental observations. In terms of comparing with beam deflection measurements,
for which typically uncertainties between 3 and 10 % are observed (Chap. 4), the
results of the computations are adequate. A different observation is made by closely
inspecting the μ0 values of Table3.1. For a small molecule like LiF the experimental
high precission results are nearly reproduced by MP4 calculations. However, the
experimental dipole moment from microwave spectroscopy investigations for the
molecule cis-3-Aminophenol, only containing first and second row elements, is not
reproduced by different computational approaches [63]. Much more problematic, as
highlighted with the two values in Table3.1, is the fact that results from different
methods can differ by 10 and 15 % and so far there is no strict correlation between the
quality of the theoretical method and the obtained μ0 value. For cluster systems this
discrepancy between theoretical and experimental dipole moments can even become
worse as shown in Table3.1 for Na14. Though, the interpretation of beam deflection
measurements, from which nearly all μ0 values for larger clusters are extracted, is
not straightforward, the difference with theory can not only be caused by experi-
mental inaccuracies. The theoretical reason for the massive differences between the
various computational methods is not clear at the moment and this subject is a topic
of current research [73]. So far the theoretical methods that aimed to describe the
dielectric properties were benchmarked by using polarizability values but this can
be problematic as outlined above [74].

Nevertheless, we have introduced the methods required to develop an atomistic
cluster model and calculate I, α and µ0. In the next Sections this knowledge is used
to adequately describe the rotational motion of a rigid cluster in an electric field,
thereby introducing different interpretation schemes.

3.3 Rigid Rotor in a Weak Electric Field: Beam Deflection
and Distribution Function

Before we start to discuss the behaviour of clusters in an electric field in much detail
and describe the methodologies which allow an accurate calculation of ρ(μz) [or
the corresponding ψ1], we want to develop a simple physical model for the electric
beam deflection and dipole moment distribution function. In this way, we will be
able to identify the most important characteristics of ρ(μz) and the corresponding
deflection profiles ψ1. This, hopefully, will enable the reader to easily interpret most
of the results discussed in the literature and assist the understanding of all following
sections and chapters.
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For this purposewewant to consider a rigid cluster in aweak electric field [74–76].
Thismeans that the ratio of the interaction energywith the electric field and the energy
stored in the rotational degrees of freedom is very small, i.e. µE/(kBTrot) � 1.
Hence, the energy αi consists of the field free energy α(0)

i and the field interaction
energy αInti (see Eq.3.2). In a weak electric field αInti will be small, too. Consequently,
the rotational motion will not be influenced by the applied electric field. Therefore,
a first approximation is found by simply including a first order energy correction
to α(0)

i , i.e. first oder perturbation theory (FOPT) is applied so that αInti ≈ α(1)
i . To

further simplify our model, we will make the unphysical assumption that the cluster
is spherically symmetric. This assumption implies that the particle can not possess
a permanent electric dipole moment, due to the presence of an inversion center.
However, it will become clear at a later stage of the discussion, that clusters with
finite μ0 only show a very small deviation from the spherical symmetry and, hence,
the model is a good starting point to analyze experimental findings.

To assess to classical FOPT energy a very simple model is shown in Fig. 3.3. The
dipole moment µ0 that is aligned along the symmetry axis of the particle, rotates
around J. In addition, the angular momentum vector J itself rotates around the labo-
ratory z-axis and can, in the discussed classical limit, point in all possible directions.
The influence of α is not included in the Fig. 3.3 for the sake of clarity. The effec-
tive first interaction energy of the permanent dipole moment with the electric field is
obtained by projectingµ0 on z and averaging over the rotational motion, which is fast
compared to the experimental time span (Eq.3.34). Since the symmetry axis of cluster
rotates around J the projected dipole moment along the J-axis is μ0 cosβ = μ0K/J
(see Fig. 3.3). Here, K� is the projection of J along the symmetry axis of the parti-

Ez

J
Ez J

µ 0

M

K

µ0 -h

-h

(a) (b)

Fig. 3.3 Simple geometrical construction for a classical rigid rotor in a weak electric field. a The
angular momentum J precess around the electric field axis z, while at the same time the permanent
electric dipole moment µ0, which is aligned along the symmetry axis of the cluster, nutates around
the angular momentum vector. bDue to this pression-nutationmotion the permanent dipolemoment
is averaged along the J-axis which then is projected onto Ez . K � and M� are the components of J
along the cluster symmetry axis and Ez , respectively, and β and γ are the enclosed angels of J with
the corresponding axes
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cle and |J| = J�.14 Furthermore, J is precessing around z, resulting in a effective
permanent dipole component of

μz,i = μ0 cosβ cos γ = μ0
K · M

J 2 (3.18)

along the laboratory z-axis for the i th particle (called μz from here on), with M�

being the projected component of J along the electric field axis (see Fig. 3.3). The
FOPT interaction energy is obtained by increasing the electric field strength to a
finite value and including the dipole polarizability contribution (see Eq.3.2), giving

α
(1)
i = −μ0

K · M

J 2 Ez − α

2
E2

z . (3.19)

With Eq.3.19 the relation Eq.3.5 can be used to find the corresponding deflection
di of the i th particle. This calculation could be repeated for all clusters in order
to calculate the FOPT ψ1-profile from Eq.3.6. This, however, is of little use in
order to assist the understanding of the experimental observations. Therefore, we
rather calculate the ensemble averaged influence of the applied electric field on the
field free beam profile ψ0. Within the weak field approximation this can easily be
done, since we expect only little change in ψ0 when turning on the electric field.
As mentioned earlier (see Sect. 2.4) the field free profile ψ0 can be described by
a Gaussian-type intensity distribution. This distribution only shows a first and a
second central moment and, hence, the change of these moments between ψ1(Ez)

and ψ0(Ez = 0) is investigated first. In order to calculate the ensemble average we
need to know the partition function of the clusters in the electric field. In general,
this is a difficult task, when not considering a thermalized ensemble in the electric
field. However, in the considered case, the clusters in the molecular beam can not
equilibrate with the surrounding due to the absence of collisions with the buffer gas,
other clusters or the surrounding walls. Therefore, upon creation in the cluster source
with Tnozzle, a canonical ensemble is formed. The clusters in the ensemble are further
cooled by the expansion nozzle and the subsequent supersonic expansion. Due to
the fact that we study a rigid cluster, Trot is temperature of interest for calculating
the partition function. After forming the molecular beam we will assume that this
partition function will not change during the experiment. This is called the adiabatic
ensemble assumption and will be qualitatively validated and discussed in some more
detail in Sect. 3.4.

Since we know α
(1)
i , the corresponding Stark-effect (see Eq.3.3) and the partition

function we can determine the mean beam deflection

14 Even though we are introducing �, we are still using the classical approximation, since J , K ,
and M are not restricted to be integers. We only have the restrictions, J ≥ 0, −J ≤ M ≤ J and
−J ≤ K ≤ J .
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d = 〈d〉 =
∫∞
0

∫ J
−J

∫ J
−J diexp[−B J 2/(kbTrot)]d K d Md J∫∞

0

∫ J
−J

∫ J
−J exp[−B J 2/(kbTrot)]d K d Md J

(3.20)

= σ

mv2

∫∞
0

∫ J
−J

∫ J
−J (μ0

K M
J 2 + αEz)exp[−B J 2/(kbTrot)]d K d Md J∫∞

0 4J 2exp[−B J 2/(kbTrot)]d J

by simply calculating the classical average of the observable di . For this purpose the
rotational constant B is introduced.15 The first summand in Eq. (3.20) contains the
antisymmetric functions K and M whose contributions will cancel when integrating
in the interval [J ;−J ]. The polarizability term does not depend on J , K or M
resulting in the simple relation

d = σ

mv2
αEz = σ

mv2
〈μz〉 (3.21)

connecting the average deflection (or average dipole moment in z-direction 〈μz〉)
of the molecular beam profile with the electric dipole polarizability α. The same
calculation is easily performed for the second moment of di giving

〈d2〉 = σ2

(mv2)2

∫∞
0
∫ J
−J
∫ J
−J (μ0

K M
J 2 + αEz)

2exp[−B J2/(kbTrot)]d K d Md J∫∞
0 4J2exp[−B J2/(kbTrot)]d J

(3.22)

= σ2

(mv2)2

(
μ20
9

+ α2E2
z

)

and in a next step the second central moment

b2 = 〈d2〉 − 〈d〉2 = σ2

(mv2)2
μ2
0

9
= σ2

(mv2)2

(
〈μ2

z 〉 − 〈μz〉2
)

(3.23)

is obtained with the help of Eq. (3.21).16 The expression
(〈μ2

z 〉 − 〈μz〉2
)
is equal to

the variance of the dipolemoment in z-direction. Consequently, the broadening of the
molecular beam profile indicates the presence of a permanent electric dipole moment
μ0. Even if higher central moments exist, the beam deflections are that small, in the
weak field limit, that no substantial alteration of the Gaussian-type shape of ψ1 is
observed. Therefore, we can conclude that the change of the molecular beam profile
within the weak field approximation is dominated by an average beam deflection d
(Eq. 3.21) and the beam broadening b2 (Eq.3.23). These can easily be used to extract
the dielectric properties from experimental results. However, dielectric properties
calculated from Eqs. 3.21 and 3.23 must be considered as a first estimate. For a more
complete picture the effect of the cluster shape, Trot and Ez have to be taken into
account. Before doing this, it is instructive to derive the dipole distribution function

15 Throughout the book the rotational constants have the dimension of an energy. A conversion into
wavenumbers, commonly used for rotational constants, is possible by multiplying with 100/(h · c).
16 The same result is obtained when using quantum mechanical instead of classical FOPT calcula-
tions [74].
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that gives rise to the beam deflection Eqs. 3.21 and 3.23. The deflection part of the
distribution function is easily found, since we saw that only deflections proportional
to αEz are allowed and, hence, the overall beam profile will be shifted proportional
to αEz . For the broadening part of the distribution function originating from the
permanent electric dipole moment, we follow the approach of Bertsch et al. who
derived this for a magnetic moment in a weak magnetic field [75]. As mentioned
earlier the dipole moment can point in any direction as long as μz is between ±μ0.
However, not all of these states are equally populated and we must calculate

ρ(μz) =
∫∞
0

∫ J
−J

∫ J
−J δ(μ − μz)exp[−B J 2/(kbTrot)]d K d Md J∫∞

0 4J 2exp[−B J 2/(kbTrot)]d J
(3.24)

where μz are the allowed dipole moment values from Eq.3.18 and δ(μ − μz) is the
δ-function, giving one when μ = μz and otherwise zero. Substituting Eq.3.18 for M
into Eq.3.24 and performing a variable transformation will give an easily integrable
expression, resulting in the FOPT distribution function

ρ(μz) = 1

2μ0
ln

(
μ0

|μz |
)

(3.25)

originating from a permanent electric dipole moment.17 This result is illustrated in
Fig. 3.4a and compared to numerical calculationswhichwill be described in Sects. 3.4
and 3.5. Both distribution functions are very similar, only near μz = 0 the FOPT
approximation exhibits a singularity, which is due to the used classical (continuum)
approximation. Hence, at least in the weak field limit, the simple FOPT approach is
able to describe the rotational motion of a cluster in a electric field.

However, this simple FOPT analysis in general fails to describe experimental
results for clusters under cryogenic expansion conditions [77–80]. Especially, the
average beam deflection d can irregularly overshoot the predictions of Eq.3.21 by
a factor of up to two and as a consequence the obtained polarizability values from
the measured beam deflections will be (erroneously) increased. This is due to the
permanent electric dipole moment of some clusters for which the FOPT approach
breaks down.Whenwe use the typical experimental values ofα ∼ 200Å3,μ0 ∼ 1D,
Ez = 1 · 107 V/m (see Chap.2) and Trot = 5K [81] the reader easily can verify that
the ratio between interaction energy and rotational energy for the polarizability is
only 0.02 while for a cluster with a permanent dipole moment it can become ∼0.5.
For FOPT we have assumed that the interaction energy is small compared to the
rotational energy, so that the rotational motion is not influenced by the electric field.
For the described situation this is not longer the case and the electric field induced
alignment of a cluster with μ0 	= 0 must be taken into account. This can be done by
a second order perturbation theory (SOPT) energy correction

17 An analytic dipole moment distribution function for a symmetric rotor in the low field limit can
be obtained, too (Sascha Schäfer, private communications). However, the influence of this shape
correction is rather small.
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Fig. 3.4 Deflection properties of a rigid spherical rotor (μ0 = 1 D, α = 200 Å3 and
Ez = 1 ·107 V/m) in the weak field approximation derived from perturbation theory considerations.
a Comparison between the analytic solution for the FOPT dipole moment distribution function (red
solid line) and numerical calculations (gray bars, Trot = 100 K , see Sect. 3.5). The origin of the
x-axis is highlighted by a dashed black line. b Normalized average dipole moment 〈μz〉/μ0 as a
function of Trot according to SOPT (Eq.3.27, red solid line) vis-a-vis with rotational dynamics
simulations (blue circles, see Sect. 3.4). c FOPT predicts a nearly Trot-independent behavior of
the normalized standard deviation std(μz)/μ0 (red solid line) in good agreement with numerical
simulations (blue circles)

α(2)
i = μ2

0E2
z

2B

[[
J 2 − K 2

] [
J 2 − M2

]
J 3(2J + 1)(2J − 1)

−
[
(J + 1)2 − K 2

] [
(J + 1)2 − M2

]
(J + 1)3(2J + 1)(2J + 3)

]

(3.26)
for a symmetric rotor [82]. From this expression, obtained from quantummechanical
PT, the classical expression is found in the limit J � 1 [83] and gives

αeff Ez =
(

α + ζ(κ)
μ2
0

kbTrot

)
Ez = 〈μz〉 (3.27)

in which the function ζ(κ) can take values between (−1/3 + π/6) and 1/318 and
depends on κ = Ia/Ic − 1 (see Sect. 3.2 for the definition of the moments of inertia)
[84, 85]. Hence, the experimentally measured effective polarizability αeff consists
of the electronic polarizability α and an additional term originating from the align-
ment of the cluster in the electric field. The latter is proportional to μ2

0 and 1/Trot
making this effect especially important for low rotational temperatures and high
permanent dipole moments. In Fig. 3.4b the Trot-dependence of a spherical rotor pre-
dicted by Eq.3.27 and for numerical calculations (see Sect. 3.4) are compared. This

18 For a spherical cluster the value of ζ(κ) is 2/9 and not 1/3 what would be expected in a canonical
ensemble in thermal equilibrium.
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clearly demonstrates the importance to incoorperate this Trot-dependent effect for an
analysis of the experimental beam deflections d. A similar SOPT analysis of the
beam broadening is not possible since some of the integrals diverge [83]. However,
if we compare the predictions from FOPT with numerical simulations (see Fig. 3.4c)
it is obvious that for the extracted dipole moments and consequently for the beam
broadening such a second order effect is only of minor importance.

Another effect that can be taken into account to correct the dipole moment value
extracted from the experimental beam broadening, is the influence of the cluster
structure. This means, the FOPT analysis can be performed for a symmetrical rotor
in a weak electric field. The calculations are somewhat cumbersome and not really
instructive. The main result is given by

b2 =
( σ

mv2

)2 μ2
0

3
[1 − 3ζ(κ)] (3.28)

where ζ(κ) is the same function as found for Eq. (3.27) [83, 86]. The effect of this
correction changes the spherical FOPT result for typical cluster moments of inertia
ratios by 5–30% and can safely be neglected for most situations. A more detailed
discussion of the influence of Trot and the cluster shape on and the extracted dipole
momemts from perturbation theory considerations can be found in Refs. [83, 86].

Here, we have shown that characteristic effects of electric beam deflection results
can be understood by performing a perturbation theoretical analysis of a rigid almost
spherical cluster in a weak electric field. Within this model a beam deflection d is
connected to the polarizability α (Eq. 3.21) or to αeff if a permanent dipole moment
exists and Trot is small. A beam broadening can be assigned to the presence of a
permanent electric dipole moment μ0. Furthermore, we have discussed the analytic
dipole distribution function ρ(μz) (Eq. 3.24), which can serve as a guide for other
more accurate methods. These methods will be described in the following sections.

3.4 Classical Rigid Rotor in an External Field

In Sect. 3.1 we have derived the force and deflection (Eqs. 3.3 and 3.5) in order to
describe the experimental findings (Chap.2). By doing that, we learned that beam
deflection experiments at cryogenic temperatures probe the Stark effect of a rigid
cluster with energy αi (Eq. 3.2) and that approximate solutions of the problem are
found by applying perturbation theory (PT) methods (Sect. 3.3). From these consid-
erations we were able to deduce the main characteristics of beam deflection experi-
ments. Now, we want to find an (numerically) exact solution to the problem.

Therefore, the rotational motion of the rigid cluster in the electric field needs
to be described. The most general way is to use quantum mechanics (Sect. 3.5)
but here we want to treat the problem classically first. That the use of classical
mechanics is justified for beam deflection experiments becomes clear by taking
typical experimental conditions into account. Most beam deflection experiments are
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Fig. 3.5 Definition of the
Euler-angels {ϕ, θ,ψ} used
in this manuscript. The
b Euler-angels ϕ, θ and
ψ connect the space-fixed
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{a, b, c} coordinate systems
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performed in supersonic jets (Sect. 2.3). For these beams, it is well documented that
the energy of the particle is not longer distributed equally over the different degrees
of freedom [87, 88]. Hence, in supersonic beams Ttrans (translation temperature), Tvib
and Trot are introduced to describe the amount of energy stored in the corresponding
degree of freedom. In particular, the rotation is cooled effectively and Trot is of the
order of typically 5 K [81]. We assume that the mean moment of inertia value is of
the order of I = (10−43–10−44) kg ·m2 and a semi-classical estimate

J ≈
√
3kBT I

�2
≈ (13 − 40) (3.29)

shows that states up to high rotational quantum numbers Jare occupied. Taking
the correspondence principle into account, which states that classic mechanics is
reproduced in the limit of large quantum numbers, the classical description of the
rotational motion seems adequate. Only for very low temperatures or compounds
with small I this approximation breaks down (see Sect. 4.1).

The first problem we encounter is that we observe and measure an object rotating
in the laboratory frame (see Fig. 3.5) but we have defined the molecular properties,
which describe the rotational motion and the interaction with the electric field, in
the body-fixed coordinate system (Sect. 3.2). How can we connect the two coordi-
nate systems? This is done by the Euler-angels {ϕ, θ,ψ} as shown in Fig. 3.5. By
rotations around z, the intermediate axis q and c the two coordinate systems are
interconverted.19 These successive rotations can be used to transform a vector from
the space-fixed into the body-fixed coordinate system via

Ŝ =
⎛
⎝cosϕ cosψ − sinϕ cos θ sinψ − cosϕ − sinϕ cos θ cosψ sinϕ sin θ
sinϕ cosψ + cosϕ cos θ sinψ cosϕ cos θ cosψ − sinϕ sinψ − cosϕ sin θ

sin θ sinψ sin θ cosψ cos θ

⎞
⎠

(3.30)

19 There are different definitions of the Euler-angels. Here we follow the definitions used in [89].

http://dx.doi.org/10.1007/978-94-007-7866-5_2
http://dx.doi.org/10.1007/978-94-007-7866-5_4
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or the other way around by using the inverse of Ŝ. By taking the transformation
matrix Eq.3.30 into account, we can describe the rotational motion and all molecular
quantities in the laboratory coordinate system. For the most general solution wemust
try to describe the rotation of a cluster of arbitrary shape, i.e. an asymmetric rotor,
in an electric field of variable strength.20 The equations describing this motion are
called Euler-equations and are given by

Da = IaΩ̇a + (Ic − Ib)ΩbΩc

Db = IbΩ̇b + (Ia − Ic)ΩaΩc (3.31)

Dc = IcΩ̇c + (Ib − Ia)ΩaΩb

in which (Da, Db, Dc) and (Ωa,Ωb,Ωc) are the components of the torque and
angular velocity in the body-fixed coordinate system, respectively [89, 90].21 Fur-
thermore, we define D = µ0 × E (neglecting α at this and adding its influence later)
and in this way introduce µ0 and E into Eq.3.31. So far these equations are given
in the {a, b, c} coordinate system but experimentally observed are quantities in the
space-fixed frame. By using Eq. (3.30), the Eq. (3.31) can be transformed but due
to the rotational motion the angular momenta will change with time when observed
from the laboratory coordinate system. Therefore, the three equations

ϕ̇ = Ωa
sinψ

sin θ
+ Ωb

cosψ

sin θ

θ̇ = Ωa cosψ − Ωb sinψ (3.32)

ψ̇ = Ωc − Ωa
sinψ cos θ

sin θ
− Ωb

cosψ cos θ

sin θ

that connect the angular velocity in the moving frame with the time derivatives of
the Euler-angles, are required. Thus, the task is to solve these six coupled differ-
ential equations numerically.22 The situation is further complicated by the fact that
these equation diverge for θ equal to 0 and π (see Eq.3.32). This last mentioned
problem is easily resolved by using quaternions [93]. Hence, this system of differ-
ential equations transformed into quaternions can be solved numerically by using a
predictor-corrector algorithm or the Runge-Kutta method applying a static or varying
electric field [83, 90, 94]. By choosing a set of initial values for (Ωa,Ωb,Ωc) as well
as {ϕ, θ,ψ} and using the parameters obtained from quantum chemical computations
(Sect. 3.2) these calculations will yield a time-averaged electric dipole moment along
the z-axis 〈μz,i 〉t .23 This result can be used to rewrite Eq. (3.5) to

20 The same approach can easily be applied to spherical and symmetric rotors by making use of the
symmetry of the moment of inertia tensor. Hence, this discussion can be considered as universally
valid.
21 The dot represents the time derivative of the corresponding quantity.
22 In case of a symmetric rotor an analytical solution is found as described in [91, 92].
23 The simulation time employed must be sufficient so that all quantities have converged.
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di = σ

mi v2i

(〈μz,i 〉t + αEz
)

(3.33)

which directly connects the deflection di with the calculated quantity 〈μz,i 〉t and the
parameter α, obtained from quantum chemistry. As described before the experiment
probes a whole ensemble of clusters. To account for this situation, a large but finite
set of initial conditions is needed. In order to generate these states that adequately
represent the experimental ensemble, we have to introduce an assumption that is
crucial to all that follows. We will assume that the population of the different rota-
tional levels is given by a canonical distribution formed in the cluster source with
Trot and that the distribution does not change when the clusters enter the electric
field. Particularly, the second part of this statement needs further explanation. If the
state of the cluster is assumed to be unchanged when entering the electric field the
process is defined to be adiabatic. Hence, the change of the electric field must be
slow compared to a typical time period of motion, in our case the rotational period
τ [89]. An estimate for this period can be deduced from

τ ≈
√

4π2 I

3kBTrot
(3.34)

which gives 30–100 ps for the parameters used in Eq. (3.29). For a cluster traveling
with v = 103 m/s and a field entrance region of 1 cm the penetration of the field will
last 10µs. Therefore, the field entrance is slow compared to the time scale of a typical
rotation and the assumption of an adiabatic behavior of the cluster ensemble is fully
justified. Consequently, the states required to perform the above outlined simulations
are selected by an MC-Metropolis algorithm, creating a canonical ensemble for the
chosen Trot [18]. It is important to notice that no electric field is used for the MC
search but this still yields the desired rotational level distribution as outlined above.
Typically, this is done for 103–104 states. For each state the Eqs. 3.31 and 3.32 are
solved to give 〈μz,i 〉t and the statistical weight is extracted from theMC calculations.
This procedure yields the dipole moment distribution function ρ(〈μz,i 〉t ) which is
calledρ(μz,i ) for clarity.ByusingEqs. (3.33) and (3.6) the beamprofileψ1 is obtained
and the simulated profile can be compared to experimental findings.

For a discussion of typical results and the main characteristics of the obtained
beam profiles Trot-dependent simulations for a prolate, symmetric rotor with a per-
manent dipole moment of μc = 1 D are shown in Fig. 3.6. An electric field of
107 V/m, a velocity of v = 600 m/s, a mass of 1200 amu, 4000 ensemble members
and Ia/Ib = 1 as well as Ib/Ic = 2 have been used to perform the simulations.
The position in the z-direction is called p = z − z0 were z0 is the maximum of
the beam profile without field. From the discussion in Sect. 3.3 we know that α is
responsible for a single sided deflection of the whole profile. The effect of α is eas-
ily incorporated by shifting the simulated profiles. However, in order to separate
the effect of α and µ0 we will discuss the hypothetial case α = 0. In Fig. 3.6a
the simulated profiles without (dashed line) and with electric field for a rotational
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Fig. 3.6 Beam deflection profile simulation for a prolate, symmetric rotor with μc = 1 D,
m = 1200 amu, v = 600 m/s, Ez = 107 V/m and Ia/Ib = 1 as well as Ib/Ic = 2 for two
Trot . a Beam profile without (dashed line) and with electric field for 2 K (solid line) and 100 K
(gray solid line). b Dipole moment distribution function for 2 K compared to predictions from PT
for a spherical rotor. c, d Normalized mean value 〈μz〉 (c, circles) and standard deviation std(μz) (d,
circles) of the dipole moment as a function of T −1

rot in comparison to predictions from PT (Sect. 3.3,
solid line)

temperature of 2 K (solid line) and 100 K (gray solid line) are compared. For the
high temperature simulation only a beam broadening is observed, while for the low
temperature beam profile a deflection and broadening is recognizable. Furthermore,
beside the broadening the shape of the 100 K-profile is very similar to ψ0, which is
described by a Gaussian function. In contrast to this observation is the form of the
simulated low temperature profile. A clear deviation from the Gaussian profile shape
is observed. The profile tails asymmetrically towards the direction of higher field
strength. This can be rationalized if the corresponding dipole moment distribution
functions are taken into account. Depicted in Fig. 3.6b is the low temperature profile
(bars) for the symmetric rotor and the PT prediction (solid line) for a spherical rotor
which is very similar to the numerical result for ρ(μz,i ) at 100 K (not shown). For
100 K, ω = μ0Ez/(kBTrot) ≈ 0.02 and, hence, much smaller than one. A simi-
lar calculation for 2 K gives ω ≈ .1.21. From this estimate it becomes apparent,
that the dipole moment distribution function at 100 K is reproduced by predictions
from PT but for 2 K the influence of the electric field on the rotational motion is
not longer described accurately by PT but numerical results have to be taken into
account. Shape-corrections of the PT distribution function as introduced in Sect. 3.3
are only responsible for a marginal variation of the herein shown results and do not
change the main conclusion of the discussion. Furthermore, a close inspection of
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the dipole moment distribution functions shown in Fig. 3.6b, reveals the connection
between ρ(μz,i ) andψ1.While the PT distribution function exclusively gives rise to a
symmetric broadening, the 2 K simulation exhibits an asymmetric beam broadening
and beam shift towards higher field strength. Hence, in order to further study the
Trot-dependence it is laborious to inspect more simulated beam profiles for various
temperatures. It is more instructive to inspect the dipole moment distribution func-
tion and its corresponding characteristics as a function of Trot. In particular, the mean

value 〈μz〉 and the standard deviation std(μz) =
√

〈μ2
z 〉 − 〈μz〉2 of ρ(μz,i ) give valu-

able information. These quantities can directly be compared to the PT-expressions
describing the adiabatic polarization (Eq.3.27) and magnitude of µ0 (Eq.3.23). The
mean value and the standard deviation are depicted in Fig. 3.6c, d as a function of
T −1
rot . The numerical simulations for 2, 3, 5, 10, 50 and 100K are shown as open cir-

cles while the PT predictions for a symmetric rotor (Eq.3.27) are represented by solid
lines. The smallest and largest x-data points correspond to the before discussed 2 and
100 K simulations, respectively. For the simulation at 100 K, 〈μz〉 is close to zero,
what is in good agreement with our previous qualitative discussion of the problem.
With increasing inverse rotational temperature, the value of 〈μz〉 increases linearly,
too, consistent with predictions from SOPT given in Eq.3.27 (Fig. 3.6c, solid line).
Only at 2 K the predictions from PT and the simulation results differ. This is due to
the large interaction energy between the dipole moment and electric field compared
to the rotational temperature. Nevertheless, over a wide range of rotational temper-
atures the PT description of the adiabatic field polarization is sufficient to describe
〈μz〉.

A somewhat different picture emerges from Fig. 3.6d for std(μz). As we have
noted, the high temperature (100 K) results agree with predictions from PT (solid
line) but for lower temperatures (around 5 K) the standard deviation from PT under-
estimates the broadening extracted from the numerical simulations. This is also in
qualitative agreement with the observation we have made for the 2 K beam profile,
for which ρ(μz,i ) significantly differs from the ln(μ0/μz,i ) behavior obtained from
FOPT (Fig. 3.6b). Therefore, we conclude that the rotational motion of a symmetric
rotor in an electric field at high rotational temperatures can be reproduced by PT.
For the mean dipole moment 〈μz〉 the SOPT theory prediction agrees over a wide
range of rotational temperatures with the results of the classical deflection simula-
tions. However, at low rotational temperatures std(μz) clearly differs between PT and
numerical classical calculations. Therefore, for these conditions the above outlined
methodology must be used, in order to interpret the experimental results.

In a next step, we do not onlywant to assess the dependence of themolecular beam
profile on ω but also on the shape of the cluster. In particular, the beam deflection
profiles of asymmetric rotors are studied. For this purpose three model calculations
are presented in Fig. 3.7. All simulation parameters are similar to those discussed
previously for the symmetric rotor calculations with two exceptions. The ratio of
the principle moments of inertia have been changed in order to study an asymmetric
top. Here Ia/Ib = 3/2 and Ib/Ic = 2 were arbitrarily chosen. Additionally, the
orientation of the dipole moment of 1 D is changed from μc = 1 D (Fig. 3.7a, b)
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through μb = 1 D (Fig. 3.7c, d) and finally to μa = 1 D (Fig. 3.7e, f). The simu-
lated beam profile of these asymmetric rotor calculations are shown in Fig. 3.7 for
2 K (solid line) and 100 K (gray solid line). In these model calculations all simu-
lated 2 K beam profiles marginally depend on the dipole moment orientation and are
qualitatively very similar. All show an asymmetric broadening which tails towards
high field strength and a single sided deflection comparable with the 2 K symmetric
rotor results (Fig. 3.6). Certainly, there is a quantitative difference between the 2 K
beam profiles in Fig. 3.7a, c, e highlighting the sensitivity of the beam deflection
method on the orientation of the permanent dipole moment. Nevertheless, qualita-
tively the simulated beam profiles show similar basic features. This is in vast contrast
to the 100 K beam profile simulations. The three profiles are dramatically different.
While the simulation for μc = 1 D24 shows a nearly symmetric broadening with
only soft tailing and marginal beam deflection, similar to the case of a symmetric
rotor (Fig. 3.7, a), the beam broadening for μa = 1 D is clearly reduced and no
single sided deflection is recognizable (Fig. 3.7e). Even more drastic is the effect
when the dipole moment is aligned along the body-fixed b axis (Fig. 3.7c). In this
case the beam broadening nearly disappears completely. Consequently, the orienta-
tion of the dipole moment onlymarginally influence the shape of the low temperature
beam profiles but massively change the appearance of the 100 K results. In order
to inspect this phenomenon in more detail the corresponding 100 K dipole moment
distribution functions are depicted in Fig. 3.7b, d, f. For μc = 1 D (Fig. 3.7b) ρ(μz,i )

exhibits a shape comparable to the PT distribution function for a spherical rotor
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Fig. 3.7 a, c, e Beam profiles and b, d, f dipole moment distribution functions for an asymmetric
rotor with Ia/Ib = 3/2 and Ib/Ic = 2 as well as (a, b) μc = 1 D, (c, d) μb = 1 D and (e, f)
μa = 1 D. a, c, e Beam profiles without (dashed line) and with electric field for 2 K (solid line) and
100 K (gray solid line). b, d, f ρ(μz,i ) for 100 K. The rest of the parameters are identical to those
used for Fig. 3.6

24 For a symmetric rotor this would be the symmetry axis.
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(Sect. 3.3 and Fig. 3.6b). This is not quite surprising as the only difference to the
above discussed symmetric rotor case are the principle moments of inertia. Above,
we have shown that in the limit of ω → 0 the rotational motion of a symmetric
rotor can be reproduced by PT. Unfortunately, this is not longer the case for the
two other dipole moment orientations. As expected from the reduced broadening of
the beam profiles, the dipole moment distribution functions clearly have reduced in
width (Fig. 3.6d, f). An effect that is more dramatic for μb = 1 D. What is the reason
for this dipole moment orientation dependence, which additionally is influenced by
ω? A simple picture that is able to explain this observation in the limit of ω → 0
emerges when the energy and angular momentum conservation

αrot = J 2
a

2Ia
+ J 2

b

2Ib
+ J 2

c

2Ic
and J 2 = J 2

a + J 2
b + J 2

c (3.35)

are taken into account [89]. In Eq.3.35, J = |J| represents magnitude of the angular
momentum vector and {Ja, Jb, Jc} its vector components. In the {Ja, Jb, Jc} coor-
dinate system, the Eq.3.35 define an ellipsoid and a sphere, respectively. For both
equations to be simultaneously fulfilled, only the intersections of the ellipsoid and
the sphere are allowed solutions to the problem.

These intersections produce closed loops as schematically depicted in Fig. 3.8 for
the case of a symmetric prolate (a) and asymmetric (b) top. Since the permanent
dipole moment is closely connected to the motion of the angular momentum vector
for a rigid cluster, Fig. 3.8 can be used to qualitatively interpret the influence of the
rotational motion on 〈μz,i 〉t . For the symmetric rotor case (Fig. 3.8a) only orbits
around the symmetry-axis c are allowed. Hence, a rotation according to this orbits
will result in time-averaged quantities. Since there are no stable loops for the a- and
b-axis, all properties defined along these directions will be zero. Only properties
along the c-axis will be finite. This was expected for an symmetric top with μ0 = μc.
The situation changes significantly when examining the asymmetric rotor (Fig. 3.8b).
Again orbits around c but additionally loops around a exist. The number of stable

Jb

Jc

Ja

(a) (b)

Fig. 3.8 Schematic representation of allowed rotational orbits for a prolate symmetric a and an
asymmetricb rotor in the {Ja, Jb, Jc} coordinate system. The allowed loops that follow from solving
Eq.3.35 simultaneously are shown as dark lines and the corresponding coordinate system is depicted
in the lower left partof the figure
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orbits around c and a depend on the ratio Ic/Ia and they determine how strongly
a quantity defined along one of those axes averages over time. According to this
qualitative discussion, a dipole moment along c as well as a does not average to zero
and should be observable in experiment in the limit ofω → 0.25 On the other hand, no
orbits around theb-axis are allowed and, consequently, the dipolemoment component
μb along this directionwill always average to zero. Therefore,μb can not be observed
in beam deflection experiments in which ω → 0. Comparing these predictions to the
presented 100 K results in Fig. 3.7 gives an intriguingly good agreement between the
simple model and the numerical calculations. For the dipole moment aligned along
c, a beam broadening is observed (Fig. 3.7a) whereas the beam profile for μa = 1 D
(Fig. 3.7e) is reduced in width. This clearly indicates the time-averaging effect of the
rotationalmotion.Nevertheless, a reducedbeambroadening is still observable. This is
not longer the case when the dipole moment is oriented along the b-axis (Fig. 3.7c).
Since no stable orbits around b exist, μb averages to zero and the resulting beam
profile only shows a marginal drop in intensity. With this simple picture in hand we
can qualitatively rationalize the beam deflection behavior of asymmetric rotors in the
low field or high temperature limit. When Ez is increased or Trot is lowered, as done
in the 2 K simulations (Fig. 3.7a, c, e), this simple picture breaks down. The beam
broadening is not longer determined by the rotational dynamics but an alignment
of the rotor due to the increased interaction energy between the dipole moment and
electric field takes place. Consequently, the 2 K beam profiles cannot be understood
by only considering the magnitude of the dipole moment but its orientations in the
body-fixed coordinate system and a numerically exact treatment of the rotational
motion needs to be taken into account.26

The above discussed basic considerations highlight that beam deflection experi-
ments not only depend on the magnitude of α and μ0 but are sensitive to the dipole
moment orientation, the cluster shape and the rotational dynamics. So far we only
have considered the classical picture of a rigid rotor in an electric field. In a next
step we want to treat the problem by means of quantum mechanics and compare
the herein presented findings with the picture that emerges from the treatment in
Sect. 3.5.

3.5 Quantum Mechanical Rigid Rotor
in an External Field

A quantum mechanical description of the rotational motion of a rigid cluster with
variable shape and in an electric field of arbitrary strength is, in general, possible by
taking the Hamiltonian

Ĥ = Ĥrot + ĤStark (3.36)

25 Situations exist in which the time-average of μa will be zero. However, this will be due to a
special choice of Ic, Ia , J and αrot and is not true in general.
26 These observations for an asymmetric rotor will be discussed in Sect. 4.2 for the case study of
Ge-Clusters.

http://dx.doi.org/10.1007/978-94-007-7866-5_4
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into account. The first term in Eq.3.36 accounts for the rotational motion without
electric field, while the electric field/cluster interaction is included in the ĤStark-
operator [82, 95]. To describe the rotational motion quantum mechanically, the
angular momentum operators { Ĵa, Ĵb, Ĵc} need to be introduced into the classical
expression for the rotational energy (see Eq.3.35 and Ref. [89]), giving

Ĥrot = Ĵ 2
a

2Ia
+ Ĵ 2

b

2Ib
+ Ĵ 2

c

2Ic
(3.37)

for the Ĥrot-operator. Similarly, the dipole moment in the classical Stark interaction
term, of the form −µ · E, could be replaced by the corresponding dipole moment
operator. The dipolemoment, however, is defined in themolecular coordinate system.
Hence, in order to calculate an experimentally measurable quantity, we need to
transform the dipole moment operator into the laboratory coordinate system. In
contrast to Eq.3.37, where this can easily be achieved by using the basic relation
Ĵ 2

a + Ĵ 2
b + Ĵ 2

c = Ĵ 2
x + Ĵ 2

y + Ĵ 2
z = Ĵ 2 and the shift operators [82], the transformation

operators Ŝi j (i and j can be {a, b, c} and {x, y, z}, respectively) are required. These
are the quantum mechanical analog of the matrix elements in Eq.3.30. Taking this
fact into account and constraining the discussion to cases in which the electric field
is exclusively aligned along z, the expression

ĤStark = −μa Ez Ŝaz − μb Ez Ŝbz − μc Ez Ŝcz (3.38)

is obtained. The task is to find the Eigenvalues and Eigenfunctions for the operator
defined by the Eqs. 3.36–3.38. This, however, is not possible analytically, even for
Ez = 0 [82, 95]. Therefore, we need to expand the unknown Eigenfunction in the
basis of symmetric rotorEigenfunctions |J, K , M〉. These functions are characterized
by the quantum numbers J , K and M . The first can be connected to the length of
the angular momentum vector. The latter two correspond to the projected angular
momentum component along the c- and z-axis, respectively. In order to construct
the Hamilton-matrix in this basis, the corresponding matrix elements are required.
From the basic relations [82]

〈J, K , M | Ĵ 2 |J, K , M〉 = J (J + 1)�2

〈J, K , M | Ĵc |J, K , M〉 = K� (3.39)

〈J, K , M | Ĵz |J, K , M〉 = M�

〈J, K ± 1, M | ( Ĵa ∓ i Ĵb) |J, K , M〉 = √
J (J + 1) − K (K ± 1)�

the only non-zero matrix elements for the Ĥrot-operator are given by
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〈J, K , M | Ĥrot |J, K , M〉 = �
2

4

(
1

Ia
+ 1

Ib

)[
J (J + 1) − K 2

]
+ �

2

2Ic
K 2

〈J, K ± 2, M | Ĥrot |J, K , M〉 = �
2

8

(
1

Ia
− 1

Ib

)
[J (J + 1) − (K ± 1)(K ± 2)]1/2

[J (J + 1) − K (K ± 1)]1/2 . (3.40)

More elaborate but still straightforward algebraic calculations will give the matrix
elements of ĤStark. All non-zero matrix elements, resulting from the interaction
between the permanent dipole moment and the electric field along z, are given by

〈J, K , M | ĤStark |J, K , M〉 = − K · M

J (J + 1)
μc Ez

〈J + 1, K , M | ĤStark |J, K , M〉 = −
√

(J + 1)2 − K 2
√

(J + 1)2 − M2

(J + 1)
√

(2J + 1)(2J + 3)
μc Ez

〈J, K ± 1, M | ĤStark |J, K , M〉 = − M
√

J (J + 1) − K (K ± 1)

2J (J + 1)
μa Ez

±i
M

√
J (J + 1) − K (K ± 1)

2J (J + 1)
μb Ez (3.41)

〈J + 1, K ± 1, M | ĤStark |J, K , M〉 = −
√

(J + 1)2 − M2
√

(J ± K + 1)(J ± K + 2)

2(J + 1)
√

(2J + 1)(2J + 3)
μa Ez

−i

√
(J + 1)2 − M2

√
(J ± K + 1)(J ± K + 2)

2(J + 1)
√

(2J + 1)(2J + 3)
μb Ez

and the corresponding formulas where the plus sign has been replaced with a minus
[82]. For an in-depth discussion of this topic and derivation of all matrix elements,
the reader is referred to Refs. [82, 95].

By inspecting the Eqs. 3.40 and 3.41 the qualitative difference between a symmet-
ric and asymmetric rotor becomes apparent. In the symmetric rotor case, the dipole
moment is exclusively aligned along the symmetry axis c and Ia = Ib.27 Without
electric field only the first term in Eq.3.40 is non-zero and |J, K , M〉 is an Eigen-
function of Ĥ , as expected. Switching on the electric field will result in a shift in
energy of the |J, K , M〉 states and a mixing of states with J and J ± 1 (first two
terms in Eq.3.41). For an asymmetric rotor, their are two distinct cases that need to be
considered. The first is when the dipole moment is still fixed along the c-axis but all
principle moments of inertia are different. For this case, K and K ±2 states interact,
only changing the absolute energy of the rotational levels but not the behavior in
the electric field. However, if μa and μb are not zero, the rotational motion of the

27 Here we only consider the case of a prolate symmetric rotor. For an oblate top similar relations
can be obtained but the moment of inertia relation Ic = Ib must be used.
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cluster in an electric field will change (see last two terms in Eq.3.41) compared to
the symmetric rotor case.

After this qualitative discussion we want to find the numerically exact solution
of Ĥ in the |J, K , M〉-basis, in order to compare the results for quantum mechan-
ical symmetric and asymmetric rotors as well as to the prediction from classical
mechanics (Sect. 3.4). The procedure is briefly described in the following. A detailed
description can be found in Refs. [83, 96, 97]. For the most general case of an asym-
metric rotor, only M remains as a “good” quantum number in the electric field, since
the different J and K states can mix. Hence, for a fixed M value the Ĥ -matrix is
constructed using different J -states (a maximum value Jmax = M +20 is used here)
in the |J, K , M〉-basis and all (2J + 1) possible K -states. The resulting matrix is
diagonalized for different field strength Ez and therefrom Eigenvalues and Eigen-
functions are obtained as a function of Ez . For the symmetric rotor case, the problem
is simplified due to the fact that only J and J ± 1 states interact. In this case, the
quantum numbers K and M remain valid. The Ĥ -matrix will have a tridiagonal
form, what allows to use a basis set including all J -states up to 100 × kbTrot. After
diagonalizing the matrix, the Eigenvalues can be extracted. No matter if a symmetric
or asymmetric rotor is considered, both procedures will give αi (Ez), i.e. the energy of
the state |i〉 as a function of the electric field Ez . When changing the electric field to
Ez +ΔEz , the energy will change to αi +Δαi . For sufficiently smallΔEz (equivalent
to ΔEz/Ez � 1), the relative energy change Δαi/αi will be smaller than one28 and
the relation Δαi/ΔEz = −μz,i will hold true. Hence, from calculating αi (Ez), the
dipole moment μz,i of the state |i〉 in the direction of the z-axis is obtained. Com-
bined with α, obtained from quantum chemical computations (see Sect. 3.2), and by
using Eq. (3.5), the prediction of the corresponding di values is possible. In order to
simulate the beam profile ψ1 using Eq. (3.6), we need to calculate the distribution
function ρ(di ) or equivalently ρ(μz,i ). This is done by using the energy of the state |i〉
without electric field α

(0)
i , in a Boltzmann-type distribution function, taking Trot into

account. This procedure will allow to fully describe the beam deflection behavior of
a rigid cluster by means of quantum mechanics.

However, we want to start with a discussion of the field dependence of the ener-
gies αi , so called Stark-diagrams, from which the dipole moment distribution func-
tions can be extracted. In particular, this will help to qualitatively understand the
differences between symmetric and asymmetric rotors. First, we want to inspect the
Stark-diagram of a symmetric rotor shown in Fig. 3.9. Tomake the discussion univer-
sally valid, the reduced quantities δ = μ0Ez/B (where B is the rotational constant),
α/B and χ = 1/B · dα/dδ have been used. As a starting point, we can compare the
numerically exact results for the arbitrarily chosen |2, 2,−1〉-state as a function of δ,
shown in Fig. 3.9a+b, with predictions from PT (see Sect. 3.3). In the electric field
this state mixes with |1, 2,−1〉 and |3, 2,−1〉. For the sake of simplicity we will
continue to call this state |2, 2,−1〉. Some approximate energy expressions of the
Stark-diagram of |2, 2,−1〉 are given by FOPT (Eq.3.19), SOPT (Eq.3.26), third
order perturbation theory (TOPT, Eq.3.42) or the high field pendulum approximation
(Eq.3.43) [98]. The TOPT and pendulum energy expressions are given by

28 This is an assumption which breaks down for some asymmetric rotors as discussed below.
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respectively [98]. While the FOPT approximation is able to describe the δ → 0
behavior of α/B (Fig. 3.9a), it completely fails for χ and for α/B at higher δ. By
adding higher order PT terms to the FOPT approximation, the prediction from PT
can gradually be improved. SOPT (Eq.3.26) reproduces the α/B andχ behavior over
awide range of field strength, with only introducing small deviations from the numer-
ical result. The TOPT (Eq.3.42) method is more accurate than SOPT up to δ ≈ 6 (the
difference between SOPT and TOPT is small in this range) but then the curvature
of the state is overestimated. The results from the Stark pendulum (Fig. 3.9a+b)
asymmetrically approaches the numerical results for high δ but of course fails to
reproduce the Stark-diagram at low field strength. Hence, the different regimes of
the Stark-diagram of the |2, 2,−1〉-state can be approximated by employing different
PT methods. In order to understand how the dipole moment distribution functions
can be extracted from these diagrams, the reduced energy and χ of the 15 states with
lowest energy and M = −1 are shown in Fig. 3.9d, e. First, we note from a close
inspection of Fig. 3.9d, that crossings of the energy levels are allowed, since K and
M states do not mix for a symmetric rotor. Hence, the energetic sequence of the rota-
tional levels can change. In order to extract the dipole moment distribution function,
χ = 1/B · μz,i/(μ0) needs to be considered, since this quantity is proportional to
μz,i . By extracting the different χ-values from Fig. 3.9e at δ = 10 (dotted line) a
small part of ρ(χ) is accessible, when the corresponding α(0)

i -values (adiabatic field
entrance) are taken into account. In Fig. 3.9f, the distribution function ρ(χ) (gray)
from all states with up to an energy of 2500 · B at δ = 10 and for kBTrot = 250 · B is
shown as a histogram. If we compare this distribution function with the predictions
from spherical FOPT (Sect. 3.3), shown in the same figure as a red line, an intriguing
agreement between the numerical and PT results becomes apparent. However, this
is not surprising, since by choosing kBTrot to be 250 · B we set ω to 1/25 and thus
much smaller than one. Hence, we are discussing the high temperature or low field
limit in Fig. 3.9f, for which FOPT is still valid. In this respect it is expected, that
classical and quantummechanical predictions of the distribution function are similar
(see Sect. 3.4) in the ω → 0 limit. So far we have learned, how to infer all required
information from Stark-diagrams and construct the distribution function ρ(χ). At
least in the high temperature limit this quantum mechanical ρ(χ) is in agreement
with predictions from PT (Sect. 3.3) and classical simulations (Sect. 3.4).

For low temperatures or high electric fields it has been shown that classical and
quantummechanical simulations give similar resultswithin the numerical uncertainty
but that the PT approach breaks down [83]. This again is expected, since ω becomes
larger and PT is no longer an appropriate approximation.

What about the treatment of an asymmetric rotor by means of quantum mechan-
ics? Can we rationalize the behavior of an asymmetric rotor in an electric field by
inspecting the Stark-diagram? A Stark-diagram of an asymmetric rotor is shown
in Fig. 3.10. By inspecting this picture, a dramatic difference to the symmetric rotor
case (Fig. 3.9) becomes clear. Due to the mixing of all J and K states close in energy,
no rotational states are allowed to cross. If two state come close in energy, they will
repeal each other due to a strongmixing of the corresponding Eigenstates. In the case
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Fig. 3.10 a α/B and b χ of the 20 lowest energy states of an asymmetric rotor with M = −1 as a
function of δ = |µ0|Ez/B. c Dipole moment distribution function for the asymmtric rotor (gray) at
δ = 10 and kBTrot = 250 · B in comparison to predictions from FOPT (red). The 5th quantum state
is highlighted by an attached label. The orientation of the dipole moment was fixed to μa = √

2/3 D
and μc = √

1/3 D. All other parameters are identical to those used in Sect. 3.4 for an asymmetric
rotor

of a symmetric rotor, where crossings are allowed, the crossing behavior is called
diabatic. This is in contrast to the avoided or adiabatic crossings of the rotational
levels of an asymmetric rotor, which characterize its Stark-diagram [47]. Even more
dramatic is the effect of the avoided crossings on χ(δ), as shown in Fig. 3.10b. Close
to the avoided crossings, α/B considerably change in a small δ-interval. This leads
to irregular variations and discontinues of χ at these points and also influences ρ(χ),
what is illustrated in Fig. 3.10c for δ = 10 and kBTrot = 250 · B (gray histogram).
The distribution function seems to consist of two components. One component is
very similar to the symmetric rotor results, where the same temperature and electric
field have been used in the simulations (Fig. 3.9f), and to the FOPT predictions (red).
The second component seems to result from states with χ ≈ 0, i.e. states that have a
small or zero dipole moment along the z-axis. Interestingly, this is very similar to the
predictions of the classical high temperature simulations presented in Fig. 3.7. We
can qualitatively rationalize this behavior by taking the effect of the avoided cross-
ings into account. As shown in Fig. 3.10a, b some states undergo several avoided
crossings. These states bounce back and forth and on average exhibit a small χ.29

The effect of too many avoided crossings is a quenching of the Stark-effect of this
state. This is in contrast to the diabatically crossing states of a symmetric rotor, which
show no Stark-effect quenching. This statement is qualitatively confirmed by com-
paring the Figs. 3.9f and 3.10c. For this small selection of states contributing to ρ(χ),
the density of states for most δ with −0.1 ≤ χ ≤ 0.1 is higher in the asymmetric
than in the symmetric rotor case. This is very similar to the observations of Xu et al.,

29 At the point were the states cross this is not true, since the χ-values can vary considerably.
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who discuss the behavior of clusters in magnetic fields [99]. Hence, the increased
number of states with low χ originates from the avoided crossings, while the most
states with large χ did not undergo many avoided crossings. For small Trot or large ω
mainly low J states are populated. These can exhibit large χ-values due to the small
number of avoided crossings and, hence, a beam broadening is observable. This is
in tune with the simulations presented in Sect. 3.4. By increasing Trot more states
with high J will be populated which are more likely to undergo avoided crossings,
due to the increased density of rotational levels. Some of these states will show a
quenched χ and, hence, the number of states with χ ≈ 0 will increase and the beam
broadening will be reduced. This is in qualitative agreement with the classic beam
profile simulations (Sect. 3.4) and serves as a simple model to explain the differences
between the beam profiles of symmetric and asymmetric rotors.

Lastly, we will compare the qualitative model for the field free rotation of a classic
rotor (Sect. 3.4) with numerical results for a quantum mechanical rotor. For this
purpose the probability density of the z-axis in the molecular coordinate system for
the symmetric rotor |2, 2,−1〉-state and the 5th-state of a asymmetric rotor (Fig. 3.10)
are shown in Fig. 3.11 as a function of δ.30 For the symmetric rotor at δ = 0, the
probability density is concentrated in a closed smeared out loop around the −c-axis.
This is in accordance with the classic picture without electric field. On average,
the c- and z-axis are opposing each other as expected for an M = −1 state. By
increasing the electric field strength the closed loop around c is still present but the
relative orientation is gradually inverted. Due to the applied electric field a brute
force orientation [101] of the rotor takes place, until the c- and z-axis, on average,
point in the same direction. This is in complete contrast to the arbitrarily chosen
asymmetric rotor state. The shown 5th-state (Fig. 3.11) exhibits a probability density
that is symmetric with respect to the a- and c-axis but no closed loops, neither around
a or c, are present. This will result in a zero Stark-effect at δ = 0 (see Fig. 3.10c). In
our simplified classic picture (Sect. 3.4), however, an asymmetric rotorwithμc and/or
μa 	= 0 shows a finite Stark-effect at very low field strength. This contradiction is

0
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0 10 50 100

2,2,-1
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c

b

Fig. 3.11 Probability density of the z-axis in the molecular coordinate system for (upper) the
symmetric |2, 2,−1〉-state (Fig. 3.9) and (lower) the 5th-state of an asymmetric rotor (Fig. 3.10) as
a function of δ. The color code for of the probability density and the orientation of the molecular
coordinate system are depicted on the right side of the figure

30 See Ref. [100] for an in-depth discussion and definition of the |J, K , M〉-Eigenfunctions.
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resolved for finite field strength (see for example Figs. 3.10c and 3.11). Under the
influence of the electric field, the appearance of the probability density starts to
change. From an opposed relative orientation of the c- and z-axis, giving rise to a
positive Stark effect. The situation changes to an field induced orientation of the
z-axis along the orientation of the dipole moment (μa = √

2/3 D, μc = √
1/3 D) of

the asymmetric rotor.
Besides the behavior of an asymmetric rotor at very low field strength, the classic

and quantum mechanical description of a rigid rotor in an electric field give similar
results. Additionally, in the high temperature or low field limit these numerical pro-
cedures give results that are in tune with PT calculations. Which method actually
can be used for a particular problem strongly depends on the experimental condi-
tions and the system under study. While PT methods should only be used to interpret
experiments with nearly effusive molecular beams, i.e. high rotational temperatures,
or low electric fields, the time consuming numerical procedures are required for hard
supersonic expansions, i.e. low rotational temperatures, and can be applied to any
field strength. In the case of very low rotational temperatures or light elements, only
the quantum chemical procedures presented above can provide a reliable description
of the rotational motion [102]. However, the above presented picture can break down
if either the vibrational motions have to be taken into account or if the behavior of
the cluster in the electric field becomes chaotic [96, 97].

3.6 Floppy Clusters

All above considerations deal with rigid clusters. The situation, however, changes
dramatically when vibrations are excited or isomerizations take place. A general
description of these non-rigid clusters is very demanding and, hence, we want to
start the discussion with the limiting case of a “fluxional” or “floppy” cluster [76]. In
this simplemodel, the permanent electric dipolemoment rotates rapidly (compared to
the typical experimental time scale of several μs) in the molecular coordinate system
(without applied electric field) due to vibrations and isomerization processes.31 In
an electric field, the orientations of the dipole moment along the electric field are
energetically favored (compare to the expression −µ · E). These orientations have
a larger statistical weight and an overall polarization of the polar clusters will take
place. This situation is very similar to a Langevin-Debye (LD) behavior, a text book
example in statistical physics [105, 106]. Therefore, a first idea is to use LD-type
expression of the form

αeff = α + 〈μ2
0〉

3kBTint
(3.44)

31 Additionally, the polarizability will change due to an thermal expansion of the cluster [103, 104].
However, as we will see this effect is small compared to the influence of μ0 and only is important
for non-polar clusters.
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to describe the deflection behavior of “floppy” clusters. In Eq. (3.44) the effective
polarizability αeff , that can be probed in experiment, consists of the electronic polar-
izability α and a contribution 〈μ2

0〉/(3kBTint) originating from the partial alignment
of the polar clusters in the ω → 0 limit. The internal energy Tint is a measure for the
energy available for vibrations and isomerization processes and 〈μ2

0〉 is the ensemble
average of the permanent electric dipole moment. Since it is difficult to characterize
Tint in experiment, commonly Tint = Tnozzle is assumed (Tnozzle is the temperature
of the expansion nozzle) [107, 108]. Mostly, Tnozzle is in a next step set equivalent
to Tvib. Therefore, the low field behavior of “floppy” clusters roughly scales with
Tvib and must not be confused with the adiabatic polarization model of rigid clusters
(Sect. 3.3), which scales with Trot. Unfortunately, there is a significant flaw of this
model. In contrast to the LD model, in which polar molecules in an electric field
equilibrate with the surrounding, the polar clusters in a molecular beam, even if the
assumption of a canonical ensemble prior to the field entrance is valid, enter the
electric field adiabatically and are not able to redistribute the internal energy due to
the lack of collisions. Hence, we have to deal with a cluster non-equilibrium ensem-
ble, for which no simple analytic solution has been found so far. On dimensional
grounds the low field behavior still should scale with μ0Ez/Tint but this is not as
universally valid as the LD expression for gases of polar molecules [84]. Therefore,
we have to emphasize again, that this model is only valid if the orientations of the
dipole moment in the molecular coordinate system change rapidly compared to the
typical experimental time scale ([10−5–10−4] s). What deflection behavior will be
observed for “floppy” clusters in experiment? From Eq. (3.44) it is obvious that the
polarizability, i.e. the shift of the molecular beam profile, will increase when the
clusters posses a permanent electric dipole moment. On the other hand, we have
assumed that the orientations of the dipole moment will readjust so that on average it
will point in the same direction as Ez . Therefore, in high temperature experiments, in
which the discussed approximation is valid, the molecular beam profiles only exhibit
an increased beam deflection but no beam broadening. This has been demonstrated
in various case studies (for some examples see Chap. 4) and it has been shown that a
connection between the increased beam deflection and the presence of a permanent
electric dipole moment exist (which additionally scales with Tnozzle) [6, 109–111].

How can we quantitatively understand the beam deflection behavior of clusters
with excited vibrations and isomerization for all temperatures and field strength?
The simple answer is: A generally applicable methodology for clusters and at all
temperatures does not exist, yet! However, several case studies have demonstrated
how to access the dynamic behavior of clusters in molecular beam deflection exper-
iments to extract the time or ensemble averaged polarization in the electric field. By
using numerical search routines (like MC) the populated isomers and their statisti-
cal significance can be identified. These can be used in conjunction with Eqs. (3.5)
and (3.6) to simulate the molecular beam profile [112–114]. All these investigations
deal with organic compounds. Hence, the use of force fields can give reliable results
with only littlecomputational cost. For most cluster systems no reliable empirical

http://dx.doi.org/10.1007/978-94-007-7866-5_4
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potentials exist (see the discussion in Sect. 3.2) and, hence, similar calculations for
clusters need to be performed employing quantum chemical methods. At present
these calculations are computationally too time consuming, what complicates the
interpretation of high temperature beam deflection experiments of clusters. In a first
attempt that tries to overcome these limitations for clusters, an empirical potential
that has been fitted to quantum chemical results is employed for the isomer identifi-
cation, followed by quantum chemical calculations to deduce the permanent electric
dipole moments [115]. Nevertheless, this method can only be applied to small clus-
ters. Besides the lack of sufficiently effective numerical routines to interpret the high
temperature beam profile of clusters, a qualitative understanding of the adiabatic
field entrance of vibrational excited clusters (apart from the “floppy” cluster approx-
imation) is still missing. This is the reason why high temperature beam profiles are
very often only interpreted within the “floppy” cluster model. Hence, at the moment,
the only way to directly extract the molecular properties α and μ0 or structural
information from these experiments is to perform low temperature beam deflection
measurements.

References

1. Hohm U (2000) Vacuum 58:117
2. Maroulis G (ed) (2006) Atoms, molecules and clusters in electric fields. Imperial College Press,

London
3. Bonin K, Kresin VV (1997) Electric-dipole polarizabilities of atoms, molecules and clusters.

World Scientific Publishing company, Singapore
4. Scheffers H, Stark J (1934) Phys Z 35:625
5. Schäfer S, Mehring M, Schäfer R, Schwerdtfeger P (2007) Phys Rev A 76:052515
6. Moro R, Rabinovitch R, Xia C, Kresin VV (2006) Phys Rev Lett 97:123401
7. Kremens R, Bederson B, Jaduszliwer B, Stockdale J, Tino A (1984) J Chem Phys 81:1676
8. Tikhonov G, Wong K, Kasperovich V, Kresin VV (2002) Rev Sci Instrum 73:1204
9. VollmerM, SelbyK, KresinV,Masui J, KrugerM,KnightWD (1988) Rev Sci Instrum 59:1965
10. Xu X, Yin S, Moro R, de Heer WA (2005) Phys Rev Lett 95:237209
11. Kittel C (2005) Einführung in die Festkörperphysik. Oldenburg Verlag, München
12. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162
13. Johnston RL (2003) Dalton Trans 22:4193–4207
14. Wales DJ (2003) Energy landscapes. Cambridge University Press, Cambridge
15. Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev 108:845
16. Li Z, Scheraga HA (1987) Proc Natl Acad Sci U S A 84:6611
17. Wales DJ, Doye JPK (1997) J Phys Chem A 101:5111
18. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys

21:1087
19. Iwamatsu M, Okabe Y (2004) Chem Phys Lett 399:396
20. Zhan L, Chen JZY, Liu WK (2006) Phys Rev E 73:015701
21. Deaven DM, Ho KM (1995) Phys Rev Lett 75:288
22. Sierka M (2010) Prog Surf Sci 85:398
23. Heiles S, Johnston RL (2013) Int J Quantum Chem 113:2091



References 57

24. Wales DJ, Scheraga HA (1999) Science 285:1368
25. Cleri F, Rosato V (1993) Phys Rev B 48:22
26. Sutton AP, Chen J (1990) Phil Mag Lett 61:139
27. Ho KM, Shvartsburg AA, Pan B, Lu ZY, Wang CZ, Wacker JG, Fye JL, Jarrold MF (1998)

Nature 392:582
28. Jiang D, Walter M (2011) Phys Rev B 84:193402
29. Kwapien K, Sierka M, Döbler J, Sauer J, Haertelt M, Fielicke A, Meijer G (2011) Angew

Chem Int Ed 50:1716
30. Heiles S, Logsdail AJ, Schäfer R, Johnston RL (2012) Nanoscale 4:1109
31. Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic

structure theory. Dover Publication Inc, New York
32. Szalay PG, Müller T, Gidofalvi G, Lischka H, Shepard R (2012) Chem Rev 112:108
33. Lyakh DI, Musiał M, Lotrich VF, Bartlett RJ (2012) Chem Rev 112:182
34. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford Science

Publications, Oxford
35. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793
36. Ferrando R, Fortunelli A, Johnston RL (2008) Phys Chem Chem Phys 10:640
37. Heiles S, Hofmann K, Johnston RL, Schäfer R (2012) ChemPlusChem 77:532
38. Bast R, Ekstrom U, Gao B, Helgaker T, Ruud K, Thorvaldsen AJ (2011) Phys Chem Chem

Phys 13:2627
39. Born M, Oppenheimer R (1927) Ann Phys 389:457
40. Jensen F (2007) Computational Chemistry. Wiley, Chichester
41. Møller C, Plesset MS (1934) Phys Rev 46:618
42. Dyall KG, Knut Fægri J (2007) Relativistic quantum chemistry. Oxford Univsersity Press,

Oxford
43. Cohen HD, Roothaan CCJ (1965) J Chem Phys 43:S34
44. Dalgarno A (1962) Adv Phys 11:281
45. Mitroy J, Safronova MS, Clark CW (2010) J Phys B At Mol Opt Phys 43:202001
46. Helgaker T, Coriani S, Jørgensen P, Kristensen K, Olsen J, Ruud K (2012) Chem Rev 112:543
47. Landau LD, Lifschitz EM (2007) Lehrbuch der theoretischen physik: quantenmechanik. Verlag

Harri Deutsch, Frankfurt am Main
48. Hohenberg P, Kohn W (1964) Phys Rev 136:B864
49. Kohn W, Sham LJ (1965) Phys Rev 140:A1133
50. Brack M (1993) Rev Mod Phys 65:677
51. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111:10439
52. Cohen AJ, Mori-Sanchez P, Yang W (2012) Chem Rev 112:289
53. Łach G, Jeziorski B, Szalewicz K (2004) Phys Rev Lett 92:233001
54. Gugan D, Michel G (1980) Mol Phys 39:783
55. Thakkar AJ, Lupinetti C (2005) Chem Phys Lett 402:270
56. Ekstrom CR, Schmiedmayer J, Chapman MS, Hammond TD, Pritchard DE (1995) Phys Rev

A 51:3883
57. Kümmel S, Berkus T, Reinhard PG, Brack M (2000) Eur Phys J D 11:239
58. Bowlan J, Liang A, de Heer WA (2011) Phys Rev Lett 106:043401
59. Soos Z, Tsiper E, Pascal R Jr (2001) Chem Phys Lett 342:652
60. Bendkowsky V, Heinecke E, Hese A (2007) J Chem Phys 127:224306
61. Diercksen GH, Sadlej AJ (1988) Chem Phys Lett 153:93
62. Hebert AJ, Lovas FJ, Melendres CA, Hollowell CD, Story TL Jr, Street K Jr (1968) J Chem

Phys 48:2824
63. Filsinger F, Wohlfart K, Schnell M, Grabow JU, Küpper J (2008) Phys Chem Chem Phys

10:666
64. Solov’yov IA, Solov’yov AV, Greiner W (2002) Phys Rev A 65:053203



58 3 Molecular Beam Electric Field Deflection: Theoretical Description

65. Aguado A, Vega A, Balbás LC (2011) Phys Rev B 84:165450
66. Lei Y, Zhao L, Feng X, Zhang M, Luo Y (2010) J Mol Struc Theochem 948:11
67. Schäfer S, Heiles S, Becker JA, Schäfer R (2008) J Chem Phys 129:044304
68. Jackson K, Yang M, Jellinek J (2007) J Phys Chem C 111:17952
69. Colwell SM, Murray CW, Handy NC, Amos RD (1993) Chem Phys Lett 210:261
70. Neese F (2009) Coord Chem Rev 253:526
71. Jensen L, Autschbach J, Schatz GC (2005) J Chem Phys 122:224115
72. Merritt JM, Bondybey VE, Heaven MC (2009) Science 324:1548
73. Aguado A, Largo A, Vega A, Balbás LC (2012) Chem Phys 399:252
74. Schäfer S, Assadollahzadeh B, Mehring M, Schwerdtfeger P, Schäfer R (2008) J Phys Chem

A 112:12312
75. Bertsch GF, Yabana K (1994) Phys Rev A 49:1930
76. de Heer WA, Kresin VV (2010) Handbook of nanophysics: clusters and fullerenes. Taylor and

Francis, Boka Raton
77. Knickelbein MB (2001) J Chem Phys 115:5957
78. Schäfer R, Schlecht S, Woenckhaus J, Becker JA (1996) Phys Rev Lett 76:471
79. Knickelbein MB (2003) J Chem Phys 118:6230
80. Beyer MK, Knickelbein MB (2007) J Chem Phys 126:104301
81. Lenzer T, Bürsing R, Dittmer A, Panja SS, Wild DA, Oum K (2010) J Phys Chem A 114:6377
82. Kroto HW (2003) Molecular rotation spectra. Dover Publications Inc., New York
83. Heiles S, Schäfer S, Schäfer R (2011) J Chem Phys 135:034303
84. Schnell M, Herwig C, Becker JA (2003) Z Phys Chem 217:1003
85. Bulthuis J, Becker JA, Moro R, Kresin VV (2008) J Chem Phys 129:024101
86. Bulthuis J, Kresin VV (2012) J Chem Phys 136:014301
87. Haberland H (1995) Clusters of atoms and molecules I. Springer, Berlin
88. BergmannL, SchaeferC (1992)Experimentalphysik 5: vielteilchen-systeme.Walter deGruyter

Verlag, New York
89. Landau LD, Lifschitz EM (2007) Lehrbuch der theoretischen physik: mechanik. Verlag Harri

Deutsch, Frankfurt am Main
90. Dugourd P, Antoine R, El Rahim MA, Rayane D, Broyer M, Calvo F (2006) Chem Phys Lett

423:13
91. Bertsch G, Onishi N, Yabana K (1995) Z Phys D 34:213
92. Dugourd P, Compagnon I, Lepine F, Antoine R, Rayane D, Broyer M (2001) Chem Phys Lett

336:511
93. Evans DJ (1977) Mol Phys 34:317
94. Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Oxford Science Publications,

Weinheim
95. Townes CH, Schawlow AL (1975) Microwave spectroscopy. Dover Publications Inc., New

York
96. Abd El RahimM,Antoine R, BroyerM, RayaneD,Dugourd P (2005) J Phys ChemA109:8507
97. Antoine R, El RahimMA, Broyer M, Rayane D, Dugourd P (2006) J Phys Chem A 110:10006
98. Maergoiz AI, Troe J (1993) J Chem Phys 99:3218
99. Xu X, Yin S, Moro R, de Heer WA (2008) Phys Rev B 78:054430
100. Zare R (1988) Angular momentum: understanding spatial aspects in chemistry and physics.

Wiley, New York
101. Friedrich B, Herschbach D (1991) Z Phys D 18:153
102. Moro R, Bulthuis J, Heinrich J, Kresin VV (2007) Phys Rev A 75:013415
103. Kümmel S, Akola J, Manninen M (2000) Phys Rev Lett 84:3827
104. Gamboa GU, Calaminici P, Geudtner G, Koster AM (2008) J Phys Chem A 112:11969
105. Langevin P (1905) J Phys Theor Appl 4:678
106. Hill TL (1986) An introduction to statistical thermodynamics. Dover Publications Inc, New

York
107. Hopkins JB, Langridge-Smith PRR, Morse MD, Smalley RE (1983) J Chem Phys 78:1627
108. Collings BA, Amrein AH, Rayner DM, Hackett PA (1993) J Chem Phys 99:4174



References 59

109. Carrera A, Mobbili M, Marceca E (2009) J Phys Chem A 113:2711
110. Götz D, Heiles S, Schäfer R (2012) Eur Phys J D 66:293
111. Rayane D, Antoine R, Dugourd P, Benichou E, Allouche AR, Aubert-Frécon M, Broyer M

(2000) Phys Rev Lett 84:1962
112. Antoine R, Compagnon I, Rayane D, Broyer M, Dugourd P, Breaux G, Hagemeister FC,

Pippen D, Hudgins RR, Jarrold MF (2002) J Am Chem Soc 124:6737
113. Compagnon I, Antoine R, Rayane D, Broyer M, Dugourd P (2002) Phys Rev Lett 89:253001
114. Dugourd P, Antoine R, Breaux G, Broyer M, Jarrold MF (2005) J Am Chem Soc 127:4675
115. Kast SM, Schäfer S, Schäfer R (2012) J Chem Phys 136:134320



Chapter 4
Case Studies

After discussing the theoretical fundamentals of the methodology in Chap. 3, it is
time to introduce the various analysis procedures by means of some examples. The
incentive is to demonstrate howelectric deflection techniques can be utilized to under-
stand the dielectric properties of clusters as a function of their size and composition.
For now, molecular clusters and complexes are discussed, with particular interest
towards such aggregates that are linked via hydrogen bonding. Since such systems
often exhibitweak vibrationalmodes, their internal dynamicswill not freeze out, even
in the seeded supersonic beam. Thus, as a general rule, only an effective polarizability
can be observed which is significantly increased due to a dipolar contribution com-
pared to the electronic polarizabililty. In contrast, metal-organic complexes exhibit a
much more rigid atomic framework and can therefore be regarded within reasonable
approximation as rigid. The same is also applicable for metal and semiconductor
clusters, especially in such supersonic beams, where the carrier gas is pre-cooled.
Hence, during the analysis of the electric beam deflection profiles of these aggre-
gates one can compare the different perturbative approaches with the classical or
the quantum-mechanical simulations of a rigid rotor quite well. Thereby, one can
not only determine the electronic polarizabilities and permanent dipole moments of
the cluster, but can also track in many cases the geometric structure as a function
of the cluster size. For the element clusters of group 14, however, greater deviations
from the characteristics of a rigid atomic framework are noticeable with increasing
nozzle temperature and also atomic mass. The influence of chemical composition on
the dielectric properties will be discussed in the last section, which introduces both
alloyed metal clusters and core-shell-particles. By examining the dielectric proper-
ties one can, in particular, determine the growth pattern of such aggregates more
precisely alongside with their electronic structure. All subsequent experiments were
carried out with a “two-wire” field geometry.

S. Heiles and R. Schäfer, Dielectric Properties of Isolated Clusters, SpringerBriefs in 61
Electrical and Magnetic Properties of Atoms, Molecules, and Clusters,
DOI: 10.1007/978-94-007-7866-5_4, © The Author(s) 2014
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4.1 Molecular Clusters and Complexes

(a) The study of the p-aminobenzoic acid dimer denotes a particularly interesting
example for the application of electric deflection experiments. The dimer is intro-
duced by means of a matrix supported laser desorption into a pulsed molecular beam
using helium as a carrier gas [1]. Detection is carried out via two-photon ionization at
266nm in a position sensitive time-of-flight mass spectrometer. The two monomers
are held together via a double hydrogen bond, yielding a centro-symmetric, planar
complex in its electronic ground state. Therefore, one expects for the rigid dimer in
the molecular beam only a one-sided deflection, which is proportional to the square
of the electric field strength and depends on the electronic polarizability. Indeed,
only a deflection of the molecular beam in direction of higher field strengths is
observed in the experiment (see Fig. 4.1). However, the observed susceptibilities are
significantly larger than the quantum-chemically predicted value for the electronic
polarizability. This result can be explained by considering that the complex loses its
centro-symmetric geometry through thermal excited vibrations, which will induce a
dipole moment. Interestingly, this dipolar contribution to the susceptibility is tem-
perature independent. This unusual temperature behavior can be explained by means
of a simple model, in which the complex of N atoms is described by 3N − 6 (inde-
pendent) classic, harmonic oscillators. To do this, the dipole moment is expanded as
a function of the normal coordinates Qi

µ =
∑

i

[(
ψµ

ψQi

)
Qi

]
, (4.1)

and further one has to take into account that in the experiment an average value
∼μ2≈ over all possible displacements, which are accessible at the corresponding tem-
perature, is observed (see Eq.3.44). A temperature independent contribution ∼μ2≈
to the susceptibility arises due to the fact that the mean square displacements ∼Q2

i ≈
increases proportionally with the temperature T in the canonical ensemble. This
interpretation is confirmed by Monte-Carlo simulations, where it is shown that the
average value ∼μ2≈ does not necessarily increase strictly linear with the temperature
[1]. This is presumably due to mechanical anharmonicities, but overall an approxi-
mately temperature-independent effective polarizability is obtained. Thus, the com-
bination of Monte-Carlo simulations and experimental results give rise to a virtually
quantitative agreement and a qualitative confirmation of the simple oscillator model
(Fig. 4.1).

(b) The by far most important hydrogen bridge forming substance is water. For
this reason, electric deflection experiments on water clusters are particularly impor-
tant in order to understand how dielectric properties of water aggregates change as
a function of their size. In spite of this interest, corresponding experiments on water
clusters as well as on the water molecule have only recently been performed. There
are different reasons for this: The ionization potential of the water molecule is so
large that investigation can only be performed by utilizing the relatively insensitive

http://dx.doi.org/10.1007/978-94-007-7866-5_3
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Fig. 4.1 The molecular beam profile of the p-aminobenzoic acid without (filled squares) and with
(open squares) an applied electric field (here called F) is depicted on the left hand side of the figure
[1]. The electrical field strength is 1.71 · 107 V/m. An one-sided deflection without broadening is
evident. The deflection d is proportional to the effective polarizability with a quadratic field strength
dependency as shown in the inset. On the right hand side, the experimentally observed susceptibility
is illustrated as a function of the nozzle temperature (filled circles). In addition, it is shown that
values of the electric susceptibility obtained via Monto-Carlo simulations only depend marginally
on the internal temperature of the dimer. Reprinted figure with permission from Compagnon et al.
[1]. Copyright 2002 by the American Physical Society

method of electron impact ionization. Further, with H2O being an asymmetric rotor,
a quantitative analysis of the deflection profiles is only possible by using non-
perturbative procedures. Moreover, since H2O exhibits the largest values of rota-
tional constants of all stable molecules and thus even at room temperature only a few
rotational states are occupied, a quantum mechanical description of the rotational
dynamics within the electric field is necessary. Kresin et al. carried out a correspond-
ing analysis assuming H2O to be a rigid, asymmetric rotor [2]. They compared the
resulting dipole moment distribution function with the measured deflection profiles.
It was concluded that in the case of an asymmetric rotor, clusters which adiabat-
ically enter the field experience an electric polarization, quite similar to what has
previously been shown by second order perturbation theory for spherical and sym-
metric rotors (Eq.3.27). The same research group investigated, for the first time, the
electric deflection characteristics of (H2O)N clusters (n = 3–18) (see Fig. 4.2) [3].
The water clusters were produced by a continuous gas aggregation source, where-
upon supersonic cluster beams with and without helium as carrier gas were formed.
Cluster detection was performed via electron impact ionization in a quadrupole mass
spectrometer, where beam profiles were collected by using a movable slit. It is espe-
cially important to be sure that mass spectra are not contaminated by fragmentation
processes. While the water molecule can still be regarded as a rigid rotor, this is not
feasible in the case of water clusters, which exhibit very weak vibrational modes that
are already thermally excited even in supersonic beam experiments. The structure
of the water clusters in an electric field is therefore not rigid and the alignment of
the electric dipole moment follows a random walk. The probability for the occur-
rence of a specific orientation is thus given in the statistical limit of the canonical

http://dx.doi.org/10.1007/978-94-007-7866-5_3
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Fig. 4.2 The dependence of the effective polarizability ∂eff as a function of cluster size N for
(H2O)N -clusters and different expansion conditions [3]. Clusters formed with helium as a seeding
gas show considerably larger values for ∂eff in comparison to aggregates produced via expansion of
the pure water vapor. This is due to a lower internal temperature of the seeded clusters. It is peculiar
that in both cases the values of the effective polarizability increase almost linearly as a function
of cluster size, that is each water molecule contributes, independent of cluster size, a very specific
electronic and dipolar contribution to the electric susceptibility. Reprinted figure with permission
from Moro et al. [3]. Copyright 2006 by the American Physical Society

distribution and influenced by the internal temperature of the clusters. Indeed, this
behavior has been observed experimentally. The internal temperature of the clus-
ters is a result of the expansion conditions and the subsequent cooling to 200K by
monomer vaporization. The observed effective polarizabilities are mostly identified
by the additional dipolar contribution, where dipole moments averaged over all ori-
entations are on the order of (1.3 − 1.6) D. This behavior is qualitatively found
in experiments with helium-seeded water cluster beams, too. Here, lower internal
temperatures can be achieved and consequently the dipolar contribution to the sus-
ceptibility is further increased. A quantitative interpretation of the observed values
for the averaged dipole moments bymeans of, for instance, Monte-Carlo simulations
like in the case of the p-aminobenzoic acid dimer is still pending (Fig. 4.2).

(c)Marceca et al. carried out experimentswith sodiumdoped (H2O)N -clusters [4].
The doped clusters were produced by means of a “pick-up” cell, where water cluster
absorb sodium atoms while flying through a corresponding vapor atmosphere. Beam
profiles were obtained by spatially scanning the molecular beam using an ionization
laser. It is particularly interesting to analyze how the absorption of an additional
atom influences the dielectric properties of small water clusters. It is known that
during doping of small water clusters with sodium atoms an electron transfer occurs,
and that the resulting sodium ion is surrounded in its first coordination shell by four
water molecules and the electron is delocalized outside of this cavity. The addition
of sodium gives therefore rise to a modified configuration of the water molecules
within the cluster and induces an internal dipole. This behavior is also predicted
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quantum-chemically and has been observed for the first time in electric deflection
experiments. The effective polarizabilities of the clusters doped with sodium are
increased by about 100Å3 in comparison to pure water clusters. On the one hand,
this is due to an increased electronic polarizability owing to the delocalized electron
and on the other to an increased dipolar contribution, since the averaged dipole
moments are now about (2.5−3.4)D. Thus, despite of the restructuring influences of
sodium, these observed clusters cannot be regarded as rigid under these experimental
conditions.

(d) Electric deflection methods can also be used to investigate the dielectric prop-
erties of metal-organic complexes. For example, Broyer et al. performed deflection
experiments to analyze transition metal complexes comprising of two benzene lig-
ands [5, 6]. These complexes were produced via laser ablation of the transition
metal in a helium atmosphere that contained a small quantity of benzene. This gas
mixture was subsequently expanded to form a pulsed molecular beam containing
the respective metal organic complexes. Two families of structures are observed
here, depending on the transition metal: symmetric sandwich structures (D5h) with-
out a permanent electric dipole moment in the electronic ground state and polar,
asymmetric complexes (C2v) exhibiting dipole moments between (1 − 2) D. Mea-
sured flight times obtained by using a position sensitive mass spectrometer with and
without an electric field reveal instantly that while Ti(C6H6)2 forms a symmetric
sandwich compound, Co(C6H6)2 is asymmetric and possesses a permanent electric
dipole moment (see Fig. 4.3). The small and uniform shift of the flight times in the
case of Ti(C6H6)2 is caused by the electronic polarizability. The broadening of the
flight times in the case of Co(C6H6)2 indicates that the orientation of the dipole
moment in the electric field is preserved at least in part. Therefore, the broaden-
ing of the flight times was simulated presuming that the complex can be regarded
as a rigid rotor. Since Co(C6H6)2 is a weak asymmetric rotor (Ia ≈ Ib), its dipole
moment is essentially only non-zero along the main axis a, and the broadening of the
flight time distribution can be classically simulated employing an oblate, symmetric
rotor model. The classical description is justified, since the experiment is carried
out at room temperature and all rotational constants are smaller than 0.1 cm−1. Tak-
ing quantum-chemically calculated rotational constants into account, a very good
agreement with experimental data is obtained (solid curve). The dipole moment
(0.7 ± 0.3) D extracted from the simulation is, however, significantly smaller than
the value of 1.6 D obtained from density functional theory calculations (exchange-
correlation functional B3LYP). Possible causes for this discrepancy are on the one
hand an inadequate level of quantum chemistry and, more likely, on the other hand
that the clusters are not entirely rigid, resulting in an observed broadening of the
flight time distribution that is too small (Fig. 4.3).
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Fig. 4.3 The time-of-flight mass spectra of a symmetric and asymmetric metal-organic complex
comprising of a transition metal and two benzene ligands, respectively a symmetric Ti(C6H6)2, b
asymmetric Co(C6H6)2) [5, 6]. Structures predicted by quantum-chemical calculations (level of
theory: B3LYP [7] with SDD-basis [8]), including some bonding distances in Å and the orientation
of the electric dipolemoment, are depicted in (c) for Ti(C6H6)2 (a = 2.29Å) and in d forCo(C6H6)2
[5, 6]. In both time-of-flight spectra, open circles denote measurements without an electrical field
and filled circles with an electric field strength of 1.51 · 107 V/m. In a, only a slight shift of the
flight time is observed for Ti(C6H6)2 consistent with a theoretically predicted symmetric structure.
In b, a broadening of the profile is also found for Co(C6H6)2 which is a result of the polar structure.
The time of flight profile with an electric field is simulated (continuous line) in b, presuming a
rigid, symmetric rotor (A = B = 0.0190 cm−1, C = 0.0502 cm−1) with a dipole moment of
0.7D. Here, the limiting case of small electric fields and high rotational temperatures, respectively,
(π = μE/kBTrot ∞ 0 and 1/Trot ∞ 0) is used. While the time-of-flight profile can be nicely
reproduced, the theoretically predicted value of 1.6D is more than twice as large as the value of
(0.7± 0.3) D observed in experiment. Reprinted with permission from Broyer et al. [5]. Copyright
2007, Institute of Physics

4.2 Metal and Semiconductor Clusters (Group 14)

The application of electric deflection methods to determine the dielectric properties
of metal and semiconductor clusters is showcased for the clusters of group 14.Within
group 14 the strongest changes of the physical-chemical properties take place from
the typical non-metal carbon to the heavy metal lead and thus the analysis of such



4.2 Metal and Semiconductor Clusters (Group 14) 67

clusters is specifically interesting to determine to what extent the properties of the
macroscopic solids are reproduced in the small clusters.

(a) The deflection behavior of the fullerenes, that is the clusters of the lightest
homologue of group 14, was studied for the first time by Broyer and coworkers [9]. A
suitable target was vaporized by employing a Nd:YAG laser, the produced fullerenes
were then expanded with helium as a carrier gas and were detected by photoioniza-
tion in a position sensitive mass spectrometer. Only an electronic contribution to the
polarizability is expected for the centro-symmetric C60 and C70 molecules and cor-
responding deflection profiles were also observed in the experiment. Polarizability
values extracted from the beam shift are within themargin of error in good agreement
with quantum-chemical predictions ((76.5 ± 8) Å3 for C60 and (102 ± 12) Å3 for
C70, respectively). Since, there are only weak intermolecular interactions between
individual fullerene molecules in the solid state of C60 and C70, respectively, and
since their charge densities only change insignificantly in comparison to the free
molecules, the Claussius-Mosotti-relation [10]

∂

4γσ0
= 3V

4γ

σ(0) − 1

σ(0) + 2
(4.2)

can be used together with the dielectric constants to determine the molecular polariz-
abilities. This is done by using the lattice constants of the fcc unit cells 14.17 Å (C60)
and 15.01 Å (C70) to calculate the volume V of a free fullerene molecule. The val-
ues for the static dielectric constants σ(0) were obtained from optical experiments
on thin fullerene films and are 3.61 (C60) and 3.76 (C70), respectively. Using these
constants, values of 79 and 97 Å3 are obtained for the polarizabilities. These agree
within the uncertainty of measurement with the results of electric deflection exper-
iments. Indeed, this illustrates that the intermolecular interactions between discrete
fullerene molecules in the solid state are very weak, and on the other hand that the
dielectric properties of the bulk can be predicted via observed polarizabilities of the
isolated fullerenes.

(b) The chemistry of carbon is in view of the pronounced tendency to form double
bonds drastically different from that of silicon compounds. Thus, one can expect
that in the case of small silicon clusters a free surface with unsaturated valence
electrons does not lead to multiple bonds but that instead the coordination sphere
must reconstruct itself to minimize the surface (free) energy. Furthermore, small
silicon clusters should neither exhibit fullerene-type structures, nor such structural
motifs that are present in the bulk. Exactly this is experimentally observed (Fig. 4.4)
and one is therefore inclined to presume that the dielectric properties of the silicon
clusters are different from those of the macroscopic bulk. Units with trigonal prism
symmetry represent a characteristic structural motif. For example, the structure of
the Si18 isomer with the lowest energy is comprised of a trigonal prism and an
antiprism that are each tricapped and interconnected with each other (inset, Fig. 4.4).
Considering the elongated structure of this cluster it comes to no surprise that a huge
dipole moment of more than 4 D is formed along the three-fold axis of rotation.
This dipole moment becomes noticeable in the effective polarizability measured at
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Fig. 4.4 Effective polarizabilities per atom of SiN -Cluster at room temperature as a function of
cluster size (filled squares) [11]. The silicon clusters were produced utilizing a pulsed laser vapor-
ization source and were seeded with helium as a carrier gas. Beam profiles were obtained by means
of a variable slit with and without an applied electric field. Effective polarizabilities are determined
via the shift of beam profiles when the electric field is turned on employing the Langevin-Debye
model (see Sect. 3.6 and Eq.3.44). Larger error bars for clusters with N > 60 are a result of a
smaller data set. The dashed line represents the polarizability of a small, dielectric sphere with the
properties of ∂-Si (see Eq.4.2). It is peculiar that some clusters exhibit values that are significantly
larger than the mere electronic polarizability expected from the bulk. This can be attributed to the
existence of polar cluster structures. As an example, the inset shows the theoretically predicted
structure of Si18, the blue arrow indicate the direction of the electric dipole moment. A markedly
good agreement with experiment is obtained when theoretically calculated dipole moments are
taken into account to calculate the additional dipolar contribution to the electronic polarizability.
The theoretical predictions are shown for some cluster sizes by colored symbols (Ref. [12]: fig
(a), Ref. [13]: fig (b), Ref. [14]: fig (c) [prolate structures] and fig (d) [compact structures]).
Moreover, the transition from rather elongated to spherical structures is easily noticeable for silicon
clusters with N > 30, since the polarizabilities per atom do not strongly fluctuate and are not
increased significantly compared to the bulk value. Reprinted with permission fromGötz et al. [12].
Copyright 2012, European Physical Society and Springer

room temperature (see Fig. 4.4). While an electronic polarizability of about 4 Å3

per atom is predicted theoretically, a value of more than 12 Å3 is observed [11].
Moreover, the existence of a permanent dipole moment for other cluster sizes is
also evident from such increased effective polarizabilities. This behavior can be
interpreted quantitatively by an additional dipolar contribution to the polarizability.
The observed polarizabilities can therefore be explained by means of theoretically
predicted dipole moments, if the silicon clusters are regarded as flexible particles and
the nozzle temperature is used as the internal temperature (seeEq.3.44). Interestingly,
strong variations in the values of polarizabilities are observed for cluster sizes up to
about 30 atoms, while for larger clusters these values are both far less fluctuating
and are no longer significantly increased [11, 15, 16]. This is due to the fact that
at about 30 atoms the growth behavior changes. Clusters up to this size exhibit

http://dx.doi.org/10.1007/978-94-007-7866-5_3
http://dx.doi.org/10.1007/978-94-007-7866-5_3
http://dx.doi.org/10.1007/978-94-007-7866-5_3
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elongated structures while for N > 30 a spherical growth behavior is observed. The
observed effective polarizabilities show impressively that the larger, more spherical
clusters do not possess pronounced dipole moments. Further cooling of the silicon
clusters leads to the freezing of a dedicated structural configuration. In such a case,
observed beam profiles need to be characterized via a simulation of the rotational
dynamics of an, in general, asymmetric rotor [12]. Thus, in an ideal case, the structure
of silicon clusters can be determined by identifying the corresponding isomer that
describes the beam profiles best. By employing such an approach, it was shown that
for example the (global minimum) structure of Si8 consists of a centro-symmetric
bicapped octahedron.

(c) The structures of silicon and germanium are closely related in the solid state
which explains why the structural motifs of silicon and germanium clusters are often
alike. Nevertheless, differences are also observed. For instance, Ge8 exhibits a polar
structure, a single capped pentagonal bipyramid, in contrast to Si8 [12, 18]. In order
to explore to what extent electric deflection methods can be applied to determine
the electric dipole moment and ultimately even the geometric structure of clusters,
detailed studies were undertaken for some GeN -clusters to assess the differences
that arise from applying perturbative methods in comparison to an exact classical
and quantum mechanical treatment of the rotational dynamics in the electric field,
respectively [17]. Thereby, it was possible to study in more detail the deviations
from the symmetry of a spherical rotor as well as the influence of finite rotational
temperatures. For example, the shift and broadening of the beam profile as a function
of field strength were showcased for one asymmetric isomer of Ge9 and Ge10 (see
Fig. 4.5). First order perturbation theory predicts independent of the structure, that
the shift increases linearly, while the broadening should remain independently of the
electric field strength. The exact, classical treatment of the rotational dynamics shows
that the polarizability can be obtained with good accuracy by applying perturbative
methods, while, depending on the structure of the examined cluster, a determina-
tion of the dipole moment is definitely not possible with perturbation theory. The
limitations of the method to determine the structure arise at the moment mainly
from the fact that the dipole moment distribution function cannot be reconstructed
explicitly from the beam profile. For example, it should be possible to differenti-
ate the two Ge9 isomers with the lowest energy via their different dipole moment
distribution functions. This has not been achieved experimentally, even though the
orientation of the dipole moment within a molecule-fixed coordinate system is sub-
stantially different for both structures. This is because the dipolemoment distribution
function must be obtained by deconvoluting the beam profile. This deconvolution
process is, however, ambiguous since too few measuring points are available for the
beam profile, and thus reflects in essence only the magnitude of the dipole moment,
which is approximately the same for both isomers. Hence, with the deflection profiles
determined so far, no clear differentiation between the two Ge9-isomers is possible
(Fig. 4.5).

(d) The electric deflection behavior of small tin clusters were analyzed at low noz-
zle temperatures, too. By simulating the corresponding beam profiles of the energet-
ically lowest-lying isomers it was possible to identify the structural isomers present
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Fig. 4.5 Simulation of the deflection behavior of two asymmetric rotors, whose structures are
depicted in the right part of the figure [17]. Ge9 and Ge10 are severe asymmetric rotors where the
dipole moment of Ge9 is orientated along the molecular internal c-axis and that of Ge10 along
the b-axis. The dependence of the average value of the projection of the dipole moment (left
graph) to the laboratory z-direction and the square root of the variance of the dipole moment
(right graph) are plotted as a function of π = μ0E/kBTrot . Both quantities are normalized to the
magnitude of the dipole moment. Non-perturbative classical results (Ge9: blue circles, Ge10: red
squares) are compared to predictions employing spherical FOPT and SOPT. It can be seen that the
average values ∼μz≈ obtained from SOPT agree well with those obtained from a non-perturbative
molecular dynamics (MD) simulation, i.e. same values for the polarizability are obtained. The
variance (∼μ2

z ≈−∼μz≈2) can also be satisfactorily predicted for Ge9 using FOPT, but the perturbative
approach breaks down in the case of Ge10, where FOPT would yield completely wrong values for
the dipole moment. This is due to the fact that the dipole moment is orientated along the molecular
internal b-axis for Ge10 and that in the case of small field strengths the rotational motion of an
asymmetric rotor averages out and the contribution of the b-component to the dipole moment
completely vanishes. The alignment of the dipole moment in the electric field becomes stronger
and stronger at higher field strength, resulting in increasing values of the normalized variance.
Reprinted with permission from Heiles et al. [17]. Copyright 2011, American Institute of Physics

in the molecular beam [19]. A strong similarity between silicon, germanium and tin
clusters was revealed [19, 20]. The influence of the internal temperature of the clus-
ters was investigated in detail for tin clusters (see Fig. 4.6). The deflection behavior
of Sn10 is now showcased as an example. The ground state structure of Sn10 con-
sists of a tetra-capped trigonal prism with a theoretically predicted dipole moment
of 0.6 D. The observed beam profile at low temperatures can be perfectly described
by the rotational dynamics of a prolate, symmetric rotor by taking the theoretically
predicted values of the inertia tensor and the molecule-fixed dipole moment into
account. When the nozzle temperature and therefore also the internal temperature of
the cluster is increased, the beam broadening gradually disappears due to the perma-
nent dipole moment until at a nozzle temperature of 100 K only a one-sided shift of
the beam profile can be observed. The derived effective polarizability is, however,
still significantly higher than the theoretically predicted value of 7.02 Å3. Obviously,
increasing the nozzle temperature leads to a thermally stronger excited cluster whose
dipolemoment can fully relax in the electric field. The continued presence of an addi-
tional dipolar contribution can be quantitatively explained by a Langevin-Debye-like
behavior if the internal temperature is set equal to the nozzle temperature. The inter-
esting question is how the relaxation of the dipole moment takes place? To answer
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(a) (b)

Fig. 4.6 Influence of the nozzle temperature on the deflection behavior of Sn10. In a molecular
beam profiles for Sn10 without (red squares) and with an electric field (blue circles) are depicted
at a deflection voltage of 28 kV and a nozzle temperature of 100 K [19]. In addition, molecular
dynamics simulations of a rigid symmetric rotor with the theoretically predicted value of the elec-
tronic polarizability of 7.02 Å3 and a dipole moment of 0 and 0.63 D, respectively, are shown as
blue solid curves. The broadening of the observed deflection profile can be perfectly described by
a classical simulation of the rigid rotor dynamics at a nozzle temperature of 40 K [19]. At 100 K
no broadening can be observed, which indicates that the cluster can no longer be treated as a rigid
rotor. However, the susceptibility is increased compared to the purely electronic polarizability. Due
to the additional dipolar contribution, the simulated beam profile with a dipole moment of 0 D
exhibits a too small shift. By calculating the dipolar contribution with a Langevin-Debye approach
(Eq.3.44), a good agreement with experiment is obtained, when the nozzle temperature is used as
the internal temperature. b A possible mechanism leading to the loss of the beam broadening in
the case of Sn10 was identified by a quantum-chemical study of the potential energy hypersurface.
In addition to the ground state 10s0 an almost degenerate transition state 10T (Πσ = 0.08 eV)
exists, so that during thermal excitation an isomerization dynamics (10s0 ∞ 10T ∞ 10s0≥) takes
place, and thus the dipole moment rotates within the laboratory-fixed coordinate system. Due to
successive isomerizations the time-averaged dipole moment and the beam broadening disappear.
Reprinted with permission from Schäfer et al. [19]. Copyright 2008, American Chemical Society

this question, the potential energy surface was analyzed in detail and it was found that
a transition state exists which is almost degenerate to the ground state. Therefore,
an isomerization dynamics is thermally instigated which resembles a pseudorota-
tion and thus yields a corresponding fluctuating dipole moment. By estimating the
frequency of this process with a simple Arrhenius-Ansatz

ν = ν0 · e−Ea
kBT ,

one obtains transition times of 20 ns if theoretically calculated activation energy Ea of
0.08 eV and the value for the imaginary frequency ν0 of 500 GHz along the reaction
coordinate at T = 100 K are considered. This is already significantly shorter than the
residence time of the clusters in the electric field. Therefore, it is quite possible that
the probability of the occurrence of a dipole moment orientation under the present
experimental conditions are given in the statistical limit of a canonical distribution,
thus justifying the Langevin-Debye approach. It is interesting in this context that,
at elevated internal temperatures, the two centro-symmetric clusters Sn6/7 have an

http://dx.doi.org/10.1007/978-94-007-7866-5_3


72 4 Case Studies

8

12

16

20

28

352510 15 20 30
0

10

20

30

40

50

352510 15 20 30

3

0

(a) (b)

Fig. 4.7 Size dependence of the dielectric properties of PbN clusters [22]. a Effective polarizabil-
ities per atom (blue circles connected by blue line) as a function of cluster size, obtained from first
order perturbation theory (FOPT) from the deflection of the beam profile (see Eq.3.21) in an elec-
tric field with deflection voltages between 10 and 28 kV at a nozzle temperature of 50 K [22]. The
experimentally obtained values are significantly larger than the polarizabilility of a small metallic
sphere having the properties of solid lead (black, solid line). This discrepancy remains even when a
realistic value for the electronic “spill-out” length of 0.5 Å (black, dashed line [23]) is considered.
Particularly striking are the large susceptibilities of N = 12, 14 and 18, which are accompanied by a
distinct observed beam broadening and indicate the presence of a permanent dipole moment. Dipole
moments per atom also obtained via FOPT from the beam broadening (see Eq.3.18) are plotted in
b [22]. It is striking that large values of the dipole moment correlate with corresponding anomalies
of the susceptibility. Therefore, the increased effective polarizabilities can be explained at least in
part by an additional dipole contribution (red, dashed line in a), by accounting for an additional
adiabatic polarization of the cluster via second order perturbation theory (SOPT, see Eq.3.27). A
rotational temperature of 3 K is best suited to describe the experimental values. Reprinted with
permission from Schäfer et al. [22]. Copyright 2008, American Institute of Physics

additional vibration-induced contribution to the polarizability [21]. The microscopic
mechanism for this behavior is, however, not yet fully understood.

(e) The heaviest stable element of group 14 is significantly different in its behavior
from the lighter homologues. Thus, it can be expected that lead clusters have other
structural and dielectric properties. The accurate theoretical prediction of the cluster
structure and the electric dipolemoment is in these heavy element containing clusters
more difficult since relativistic effects play a major role. A non-perturbative simula-
tion of the deflection behavior is, therefore, not easily possible, so that the observed
deflection profiles at a nozzle temperature of 50 K had to be evaluated within the
framework of first order perturbation theory (see Fig. 4.7) [22]. It is assumed that the
clusters can be described by rigid, approximately spherical tops and that the inter-
action energy with the electric field is small compared with the rotational energy.
Effective polarizabilities determined by means of the beam shift are for almost all
lead clusters substantially larger than the polarizability of a small metallic sphere
with the properties of macroscopic lead. This discrepancy remains apparent, even
if a realistic “spill-out” is taken into account. It is noteworthy that for some clus-
ter sizes like Pb12/14/18 a significant beam broadening is observed, which implies a
permanent electric dipole moment. A small beam broadening can be detected for all
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other cluster sizes. Therefore, it seems likely that the increased effective polarizabil-
ities are related to the permanent dipole moments. Second order perturbation theory
(Eq.3.27) can take this into account, i.e. a polarization occurs to the clusters entering
the electric field adiabatically. Assuming that lead clusters can still be described as
spherical, rigid rotors, the additional contribution to the polarizabilitiy can be con-
sidered by employing the values of the electric dipole moment which were obtained
from the beam broadening via first order perturbation theory. In doing so, the trend of
the observed polarizabilities can be described remarkably well. The obvious, exist-
ing discrepancies in the case of, for instance, Pb12, Pb14 or Pb25 may have different
causes: The clusters can be asymmetric or non-rigid, or the perturbative approach
fails altogether. For Pb14 it was shown that a non-perturbative approach can perfectly
describe the beam profile, if one still adheres to a rigid, spherical structure. However,
this was not the case for Pb12 and Pb25. Reliable theoretical predictions of the iner-
tia tensor and the dipole moment would be necessary in order to conduct classical
simulations of the rotational dynamics in an electric field. In addition, it must be
noted that the somewhat larger lead clusters like Pb25 are probably not completely
rigid, since weak vibrational modes are associated with heavy element containing
clusters and these modes are already thermally excited at a nozzle temperature of
50 K. This would result in a smaller polarizability than expected from an adiabatic
polarization model and ultimately observed in the experiment. For a quantitative
understanding of the dielectric properties of lead clusters one experimental require-
ment beside detailed quantum-chemical studies are even lower nozzle temperatures.
Nevertheless, realizing that a typical metal cluster like PbN does not possess shielded
electric dipole moments is remarkable and thus underlines the dramatic difference
between condensed matter and small clusters.

4.3 Core-Shell Clusters and Nanoalloys

In this subsection, we will show how the dielectric properties of clusters are influ-
enced by the chemical composition. For a start we consider as an example clusters
of group 14 that were doped or alloyed with a secondary metal.

(a) The addition of the electropositive metal magnesium to lead clusters is dis-
cussed first. The bimetallic species are brought into the pulsed molecular beam by
means of laser vaporization of a mixed target, are then photoionized using an ion-
ization laser (157nm) and finally detected via a time-of-flight mass spectrometer
[24]. Interestingly, lead clusters that are singly doped with magnesium are formed
predominantly. The fact that the lead clusters must have a size of at least 8 or 9 atoms
before singly doped clusters can be detected in the mass spectrum indicates that the
magnesium atoms do not just attach to the surface of the lead cluster, but that they are
placed in cagesmade out of lead atoms. This endohedral inclusion has been predicted
theoretically, i.e. magnesium is incorporated in highly symmetric cluster structures
[25]. For example, the inclusion of a Mg-atom in Pb12 yields an icosahedral cluster
of the type Mg@Pb12. The influence of doping on the structure of the lead cluster
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can be determined particularly well with the aid of electric deflection experiments.
While the beam profile of Pb12 with its polar (i.e. non-icosahedral) structure exhibits
a strong broadening in the electric field, this beam broadening disappears completely
after insertion of a Mg-atom. If the magnesium atom would be incorporated on the
surface or within the skeleton of the lead cluster, then the doped cluster would also
be polar and should still exhibit a strong beam broadening. No or only very small
dipole moments have been observed for the other singly doped clusters, which is
another indication for an inclusion of the magnesium atom into a cage of lead atoms.
The endohedral position of the dopant atom can be justified by a charge transfer
taking place between the magnesium atom and the lead cage, so that the cluster is
better described by the ionic resonance structure Mg2+@Pb2−12 . The corresponding
doubly negatively charged lead cluster cages thus represent particularly stable Zintl
species, which according to the Wade-Mingos rules are closo-clusters and should
form corresponding close-cage structures [26, 27] (Fig. 4.8).

(b) A completely different behavior is obtained if, instead of an electropositive
metal, the doping process is carried out with a more electronegative element, such
as bismuth for instance [28, 29]. For that purpose, tin clusters doped with bismuth
atoms were studied. In this case, there is only little charge transfer between the orig-
inal cluster cage and the dopant atom, but instead bismuth is included into the cage
of tin atoms. However, it can cause a severe reconstruction of the cage structure, as
the substitution of a tin atom with bismuth changes the number of valence electrons
in the cluster. Thus, the number of valence electrons can be increased sequently by
successive substitution. Electric deflection experiments can therefore be utilized, to
monitor the influence of the doping level (i.e. the number of valence electrons) on
the dielectric properties. For this purpose, clusters with a total number of 9 atoms are
considered: For the cluster species Sn9,Sn8Bi,Sn7Bi2 molecular beam broadening

(a) (b)

Fig. 4.8 Molecular beam deflection profiles (signal intensity i is plotted against the position p of
the moveable slit) for Pb12 (a) and MgPb12 (b) without (filled circles) and with (open squares)
an applied electric deflection field of 1.9 · 107 V/m at a nozzle temperature of 50 K [24]. In the
case of Pb12 beam broadening is obvious, indicating the presence of an electric dipole moment. For
MgPb12, on the other hand, only a one-sided deflection is evident and thus no permanent dipole
moment is observed. The theoretically predicted structure of MgPb12, shown in the right part of
the figure, is consistent with the observed deflection experiments, as a permanent dipole moment
is ruled out due to the inversion symmetry [24]. With permission from Schäfer et al. [24]. © 2008
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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is observed in the electric field, i.e. polar aggregates are present. The exchange of
another tin atom with Bi, i.e. Sn6Bi3, leads to the disappearance of the broadening,
thus indicating a non-polar cluster. In order to explain this behavior, the ground state
structures of these doped clusters were searched and optimized bymeans of a genetic
algorithm. It is found that doping tin with bismuth yields cluster structures with a
trigonal prism as a main motif, which are tricapped and completely analogue to the
corresponding structures of the tin cluster anions. That is, the inclusion of bismuth
transfers formally a neutral tin cluster into the cluster anion with the correspond-
ing structure. This means that for Sn6Bi3 a nonpolar, centro-symmetric structure
is obtained, just like it is observed in the experiment. A quantitative comparison
between theory and experiment can be made via a classical simulation of the rota-
tional dynamics in the electric field. This reveals an excellent agreement between the
simulated beam profiles for the ground states and the experimental data (Fig. 4.9).

(c) Other effects result from doping fullerenes with electropositive metals of the
first main group. Here, neither an endohedral inclusion of the metal atom into the
carbon cage, nor a modification of the cage structure takes place, but the dopant atom
is adsorbed on the cluster surface [31]. Depending on the internal temperature of the
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Fig. 4.9 (Top) Molecular beam deflection profiles (signal intensity is plotted against the position
p of the variable slit) for tin clusters doped with bismuth without (filled circles) and with (open
squares) an applied electric deflection voltage of 15 kV for Sn8Bi1 (I) and Sn7Bi2 (II), and 25 kV for
Sn6Bi3 (III) at a nozzle temperature of 33 K [28]. The simulations of the deflection profiles (solid
curves) were performed with a non-perturbative method using the theoretically predicted ground
state structures at a rotational temperature of 6 K (bottom). The calculated structures of (a) Sn9, (b)
Sn8Bi1, (c) Sn7Bi2, (d) Sn6Bi3, (Sn gray, Bi blue) are depicted together with their molecular point
groups on the bottom part of the figure, and are compared to the corresponding structures of the
valence-isoelectronic anions (e) Sn−

9 , (f) Sn
2−
9 , (g) Sn3−9 [28]. The blue arrows show the electric

dipole moments, the numbers indicate the bond lengths in Å along the (pseudo)-C3-axis. With
permission from Heiles et al. [28]. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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cluster, the metal atom is during its residence time in the electric field either localized
or mobile. The clusters were synthesized using a dual-laser vaporization source.
Deflection profiles were measured after photoionization with a position-sensitive
time-of-flight mass spectrometer. For example, in low-temperature experiments a
strong broadening of the beam profile was observed for NaC60, while in the high
temperature limit only a one-sided shift was observed (see Fig. 4.10) [32]. The strong
broadening at low temperatures is due to the large dipolemoment of the doped cluster
of 13.93 D, which was determined by quantum-chemical calculations and can be
traced back to an almost complete charge transfer between the sodium atom and
the C60 cage. The observed beam profile can be perfectly reproduced by means of
a classical simulation when the symmetric structure of NaC60 and its theoretically
predicted dipolemoment are taken into account. The adsorbed sodium atom becomes
increasingly mobile by rising the temperature, and the deflection profiles, hence, can
no longer be described by a rigid rotor model. The additional dipolar contribution to
the effective polarizability which is still present can be described within a classical
model considering the thermally activated hopping movement of Na on the C60
surface. The dipole moment and, in addition, the relaxation time for the hopping
dynamics were determined via adjusting to the observed beam profiles. The dipole
moment is in good agreement with the value that resulted from the simulations of
the low-temperature experiments. The relaxation time exhibits an Arrhenius-like

Fig. 4.10 Molecular beam deflection profiles for NaC60 at two different nozzle temperatures
of 85 K (a) and 300 K (b), respectively [5]. The data points were obtained without (filled cir-
cles and squares) and with (open squares) an applied deflection voltage of 3 kV (85 K) and
20 kV (300 K), respectively. The low-temperature experiments exhibit a significant broadening
of the beam profile, although only a relatively low deflection voltage was applied. This indicates
the presence of a large permanent dipole moment. At room temperature, only a one-sided shift of
the beam profile is observed, and this can be explained by a fluctuating dipole moment. The beam
profiles at 85 K were simulated using a rigid, symmetric rotor with a dipole moment of 14.8 D
(solid curves), where the limiting case of small electric fields and high rotational temperatures are
assumed (π = μE/kBTrot ∞ 0 and 1/Trot ∞ 0). The value of the dipole moment used is in good
agreement with quantum-chemical predictions (B3LYP [7] with LANL2DZ [30] and SDD-Basis
[8]). The room temperature behavior can be explained by a rapid movement of the sodium atom
on the surface of C60. This results in an additional dipolar contribution to the susceptibility which
can be correctly predicted by means of a Langevin-Debye approach with an internal temperature
of 300 K. Reprinted with permission from Broyer et al. [5] Copyright 2007, Institute of Physics
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behavior, where the activation energy for the hopping process is a mere 0.02eV.
This confirms the already known behavior that alkali metal atoms are highly mobile
on the graphite surface, even at room temperature. The dipole moments of other
clusters MC60 with M = Li, K, Rb and Cs were also determined [32]. It is found
that the dipole moment increases with increasing atomic number of the alkali metal,
indicating a greater distance between the positively charged alkali metal and the
negatively charged C60 cage (Fig. 4.10).

(d) Taking a step further, the question of what would happen if more than one
sodium atom is adsorbed on the fullerene surface comes to mind. Are the carbon
atoms going to be coated by the sodium atoms or are the metal atoms going to form
their own cluster on the fullerene surface? Theoretical studies suggest that up to 8
Na atoms can adsorb onto the surface, but that thereafter sodium cluster formation
occurs on the fullerenes [33]. Deflection profiles were observed experimentally for
NaNC60 with n = 1–34, which exhibit no broadening but a significant one-sided
shift. Values for the effective polarizability obtained from the broadening are in the
region of 700 and 2500 Å3, and are well above the polarizability of C60 (76.5Å3)
and the isolated NaN clusters (≈N · 16Å3) (see Fig. 4.11) [5, 34]. The enormously
enlarged polarizabilities indicate the presence of a large electric dipole moment,

Fig. 4.11 The left part of the figure depicts quantum-chemically optimized ground state structures
of NaNC60 clusters with N = 3 (a), 6 (b), 8 (c), 10 (d) and 20 (e) atoms (Na—big blue; C—small
green) [5, 33]. It is evident that after a certain number of sodium atoms the fullerene cage is not
coated uniformly any more, but that sodium clusters are formed on the C60 surface. The right part
illustrates susceptibilities obtained from room temperature deflection experiments for N = 1–34
(filled squares) [5, 34]. Only a one-sided shift of the molecular beam is observed in the electric
deflection profiles. The resulting values of the effective polarizability are significantly larger than for
a single C60 molecule plus an isolated NaN cluster. This is due to the fact that a charge transfer takes
place between the electropositive Na atom and the fullerene. This results in clusters that possess a
permanent dipole moment which fluctuates strongly at room temperature. Thus, a very large dipolar
contribution to the susceptibility arises. The observed size dependence of the susceptibility is in
agreement with the theoretically predicted growth mechanism that predicts the formation of sodium
clusters on the C60 surface (solid line). The change of the effective polarizability as a function of the
number of Na atoms, if sodium were to coat the carbon surface uniformly, is also denoted (dashed
line) (right). Reprintred with authors permission. We also thank F. Calvo for providing the colored
cluster structures (left). Reprinted with permission from Broyer et al. [5]. Copyright 2007, Institute
of Physics
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which can statistically align with the electric field, thus leading to an additional
dipolar contribution to the observed electric susceptibility. Hence, the observed val-
ues of the susceptibility eliminate the possibility of a uniform coating of the fullerene,
as such structures would exhibit no or only a weak dipole moment and one would
therefore not observe such strongly increased values for the effective polarizability.
A structural model where the fullerene is at first coated with Na atoms, reducing the
effective polarizability, is in accordance with the observed trend of the susceptibility.
From a size of about 8 atoms, sodium clusters are formed which donate electrons to
the fullerene cage, thus giving rise to a large dipole moment. This dipole moment
can be estimated from the geometric structure of the sodium-fullerene composite in
order to calculate the dipolar contribution to the effective polarizability. This results
in a very good agreement between the model and experimental values, as shown in
Fig. 4.11.
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Chapter 5
Novel Experimental Tools

In the first chapters the experimental (Chap. 2) and theoretical (Chap.3) essentials
of the electric field deflection methods were discussed. The improvements of cluster
sources, detectors and acquisition systems combined with quantum chemistry and
the more realistic modeling of the beam deflection results have given detailed insight
of numerous cluster systems as it was showcased in the previous chapter (Chap. 4).
Despite the described improvements and outstanding opportunities of the electric
field deflection method, several limitations exist. Due to the static electric field used
in all investigations, no charged cluster can be investigated, since they would be
extracted from the molecular beam. This, furthermore, does not allow to individu-
ally probe the frequency-dependent response of the polarizability and electric dipole
moment, since both quantities will be studied simultaneously with a static electric
field. These shortcomings can not be resolved by further improvements of the exper-
imental setup but a completely new experimental approach needs to be introduced.
Beside this interest in experimental methods for basic research, there is more to the
investigation of the dielectric properties. Nearly all basic but also applied methods
in the gas phase, in particular, mass spectrometry and spectroscopy, investigate ions.
The trajectories of ions can be manipulated easily by electric or magnetic fields. On
the other hand, many interesting substances and molecules are neutral and introduc-
ing a charge in order to study these intrinsic properties could alter the outcome of the
experiments. Therefore, it is highly desirable to be able to manipulate the movement
of neutral objects in a similar way as done for ions.

Based on these ideas, the upcoming section will contain the description of newly
developed experimental tools, which can overcome some of the intrinsic limitations
of the electric field deflection method. These methods use static and varying electric
fields, enabling the experimental determination of dynamic polarizabilities (Sect. 5.1)
or the manipulation of the motion of neutral species in the desired way (Sect. 5.2).
This description does not intend to be complete but rather to introduce the basic
experimental and theoretical principles using different instructive examples.
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5.1 Light Force and Near Field Interferometry

As mentioned in the introductory part of this chapter the usage of a static electric
field gives rise to various experimental limitations like the inability to investigate
charged clusters, the fact that the influence of the permanent can not be separated
from the induced dipole moment and the insensitivity for any frequency-dependent
dielectric information. The at first sight quite obvious solution of the problem is
to use an AC electric field E(r, t). But what frequency of the AC field should be
used? This question is easily answered if one takes the processes, which need to be
eliminated, into account. First, the experiment should be able to discriminate between
the permanent and the induced electric dipolemoment. Sinceµ0 for a rigid compound
is coupled to the atomic framework and this itself undergoes a rotationalmotion in the
gas phase the frequency of the AC field should be larger than the rotational frequency
of the cluster. Thus, with using frequencies larger than ∼1011 Hz, the clusters and
hence µ0 can not adapt to the rapidly oscillating electric field strength. Second, all
kind of photo-physical processes like absorption or ionization, which are resonance
enhanced, should be omitted in order to mainly detect the dielectric response of the
polarizability to the electric field. From these pre-requirements it can be concluded
that frequencies in the range of 1013–1015 Hz are most promising to undertake this
experiment. Consequently, this leaves only light as a possibly source of the electric
AC field. The light needs to be coherent and additionally periodic since otherwise
the effect of the oscillating electric field would cancel. Based on these ideas Nairz et
al. designed the experimental setup schematically shown in Fig. 5.1 [1]. The layout
of the molecular beam apparatus is very similar to classic experiments of Knight [2]
or Kresin [3]. A beam of clusters, in this case C60 and C70, is produced in an oven,
the clusters are velocity selected, collimated and detected after passing a region of
free flight. The innovative part of the setup is replacing the deflection electrodes
by a continuous Ar+-Laser system together with some optical components. The up
to 27W from the laser with various lines in the visible light region are split up in
two parts by dichroic mirrors. In order to ionize the clusters for detection, multiple
colors with 17W are used. The second part of the laser beam used in the experiment
contains only light of ψL = 514.5nm and its intensity P0 can be varied continuously
between 0 and 9.5W by rotating a ψ/2-plate (Fig. 5.1). This laser beam is focused
through a cylindrical lens on a plane mirror and the incoming and reflected laser
beam form a standing light wave with a period of ψL/2. What will happen with
clusters that interact with this standing wave? The experimental results for C60 using
different laser powers are shown in Fig. 5.1. It is clearly seen that no shift and no
simple broadening is detected but depending on P0 a periodic deflection pattern is
observed. In order to qualitatively understand this observation wewill assume that no
absorption of photons takes place. Hence, in a very simple picture only the ground
state electron density will respond to the electric field. The interaction potential
between the cluster and the standing laser wave can be expressed by an induced
dipole potential of the form
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Fig. 5.1 (Schematic experimental setup, left) C60 and C70 clusters are expanded from an oven
forming a molecular beam. After a slotted disk velocity selector (SDVS) stage and collimation
the clusters interact with a standing light wave (514.5nm, with the corresponding wave vector kL )
of variable power. Due to the high laser power used in the experiment a polarizing beam splitter
(PBS) is required to prevent laser light to be back-reflected. About L = 1.2m behind the interaction
region the fullerenes are ionized and detected by scanning the detector over the molecular beam
in 2µm steps. (Experimental results, right) The periodically deflected molecular beam profiles of
C60 (black squares) with the corresponding momentum in the z direction, called p, show a drastic
influence of the laser power P0 (the first profile is recorded without [w/o] applied deflection laser).
A simulation (solid line) taking the polarization forces and absorption processes into account gives
an excellent agreement with the experimental observations [1]. Reprinted figure with permission
from Nairz et al. [1]. Copyright 2001 by the American Physical Society
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Here, ∂(ψL) is the electronic ground state polarizability for ψL,
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the time averaged square magnitude of the electric field, I (x, y, z) is the local laser
intensity, c is the speed of light and the axis x , y and z are defined in Fig. 5.1. Arndt
and co-workers [1] used an elliptic Gaussian laser profile of the form
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and assumed that the clusters travel along y = 0 what is a very good approximation
when the molecular beam is collimated adequately in the y-direction. In Eq.5.2 the
laser power enters as P0 and thewidth of the profile in y and z direction is given bywy

and wz , respectively. Having an expression for the potential and the laser intensity,
the force and, consequently, the deflection easily can be derived as it was shown in
Chap.2 for classical beam deflection experiments. But for what follows it is much
more instructive to look at the problem from another perspective. The clusters can be
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viewed as propagating matter waves, which interact with a periodic light structure.
This, of course, is completely analogue to classic interferometry experiments [4, 5]
but instead of a mechanical an optical grating is used. In interferometry experiments,
the incoming matter waves, which are characterized by their de Broglie wavelength
ψdB (for all described experiments ψdB ≈ (1− 5) pm), diffract from the grating and
each scattering center serves as a source of new spherical matter waves. Behind the
grating, the matter wave interfere constructively or destructively depending on their
relative phase σ(x) and form an interference pattern. When the aperture width (here
related to the standing light wave) squared is small compared to the distance to the
detector plane (1.2m) times the deBrogliewavelength of the particle beam, thewaves
have stopped to interfere with each other before they are detected. Hence, the waves
arriving at the detection plane are plane waves which have been modulated by the
transmission function t (x) = exp(−iσ(x)) (far field approximation). Consequently,
the function t (x) which describes the transmission properties of the grating and the
corresponding phase σ(x), are the only things needed in order to rationalize the
experiment. Generally speaking, the phase change of the matter wave must depend
on the local field experienced by the cluster at position x and this effect needs to be
integrated over the interaction length z = vz · t , where vz is the mean cluster velocity
and t is the duration of the interaction (employing the eikonal approximation). By
taking into account that t is much bigger than ψL/c and using Eq.5.1 as well as
Eq.5.2, the expression

σ = −1

�

∫ ∞

−∞
V (x, 0, vz · t)dt = −σ0 cos

2
(
2γ

ψL
x

)
(5.3)

with the maximum phase shift

σ0 = 2

√
2

γ

∂

�π0c

P0

wyvz
(5.4)

is obtained. It is important to note, that based on an expansion of Eq.5.3 up to first
order, the original beam profile will be modulated periodically. This is in qualita-
tive agreement with the observation made in Fig. 5.1. Furthermore, from Eq.5.4 it
becomes clear, that the profile will change with the laser power and depend on the
polarizability of the cluster. This is in tunewith experiment. A quantitative simulation
of the experiment can be performed if absorption processes and the free propagation
of the clusters behind the light structure are considered [1]. This was done by Nairz
et al. (Fig. 5.1, simulation shown as solid line [1]) and an overall excellent agreement
between theory and experiment has been achieved. Consequently, these experiments
allow to measure the polarizability ∂(ψL) if all other quantities are determined pre-
cisely. This was not only done by Arndt and co-workers but the AC polarizabilities
of Rb [6], U [7] and C60 [8] were determined for ψL = 1064nm, too. The described
method enables to determine the AC polarizability and can in general be used to
study ionic clusters. On the other hand, for more complex systems only small par-
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ticle densities are experimentally realized and, hence, a larger velocity distribution
must be used in experiment. For these systems, a single light grating is not sufficient
in order to study the dielectric properties in the described way.

In order to overcome this limitation Gerlich et al. used a so called Kapitza-Dirac-
Talbot-Lau interferometer (KDTLI) [9, 12]. The experimental setup of the inter-
ferometer is schematically depicted in Fig. 5.2 [9]. Two new elements have been
introduced in front and behind the standing light wave. These SiN gratings with a
period of 266.38nm are separated 105mm from the light structure. In this experi-
ment, all particles have to pass the optical and the two mechanical gratings before
they are detected. What is the difference in this compared to the previously described
experiment? Obviously, the clusters will not only diffract from the light but also from
the mechanical gratings. Since the length of free flight is much smaller than in the
previously described case, the waves emerging from each scattering center have not
stopped to interfere. Therefore, the far field approximation used up to this point is
not valid and the so called near field or Fresnel diffraction needs to be considered.
Thus, the incoherent beam of molecules will diffract from the first mechanical grat-
ing. From each of its slits spherical matter waves will emerge which will propagate
towards the light structure and will again be diffracted. For this kind of two grating
interferometer Talbot and Laue have made a very important observation. At defined
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Fig. 5.2 (Left) Experimental setup of the KDTLI interferometer [9]. The different gratings and the
standing light wave mirror can be rotated and translated in order to fine adjust the interferometer.
In a typical experiment only the third grating is translated along the x-axis. The clusters passing
all three gratings are ionized by 18W of 532nm laser light and are detected subsequently. (Upper
right) Typical near field interferogram of C70 traveling with vz = 146m/s (±16%) and P0 = 6W.
The black line is a sinusoidal fit to the recorded blue data points. (Lower right) Fringe visibility
(Eq.5.5) for several laser powers (blue dots) for C70. The experiment can be reproduced if the dipole
force due to the standing light wave and absorption processes are taken into account (red curve).
We are thankful to Prof. Markus Arndt (Vienna Center for Science and Technology, Vienna) for
providing the shown figures
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distances from the second grating (but not too far away from it) the diffraction pat-
tern images the intensity profile directly behind the second grating. This phenomenon
was called Talbot-Laue effect and originates from the interference between different
matter waves in the near field [13, 14]. The typical length for which this phenomenon
is observed is called (integer) Talbot length LT . Different waves, which emerge from
two different points separated by the grating period d, will interfere constructively if
the path difference is equal toψdB. Thus, a self imaging of the gratingwill be observed
at LT = d2/ψd B . The experiment, schematically shown in Fig. 5.2, uses this effect
by setting the distance between the gratings equal to LT resulting in a self imaging
of the light grating periodicity onto the second mechanical grating. This grating is
used as a in x movable aperture which let parts of the diffracted molecules reach
the detection region. By sequential movement of this last interferometry element the
intensity for various x positions can be used in order to reconstruct the interference
pattern. A typical near field interferogram for C70 is shown in Fig. 5.2. As expected a
sinusoidal intensity profile is observed which is a magnified self image of the stand-
ing light wave. In order to come back to the original problem ofmeasuring the optical
polarizability the influence of the laser power on the fringe visibility

V = Imax − Imin

Imax + Imin
(5.5)

needs to be evaluated [15]. Here, Imax and Imin are the maximum and mini-
mum intensity of the interferogram, respectively, which are extracted from fitting a
sinusoidal function to the data points (red curve in Fig. 5.3). The results for power
dependent measurements are shown in Fig. 5.2. By taking the phase shift due to the
optical grating (Eqs. 5.3 and 5.4) and possible absorption processes into account,
the experimental visibility values can be reproduced. Hence, this experiment can be
used to extract the optical polarizability from the measured visibility curves. This
approach has the advantage that very large molecules with low particle fluxes, low
degree of coherence and acceptable velocity distributions can be investigated, which
is not possible by other methods [9].

A last modification is combining the information of the so far described inter-
ferometry with the classic beam deflection experiments. For this experiment, an
additional deflection electrode is introduced in front of the optical light grating,
schematically shown in Fig. 5.3. When the particles travel on the molecular beam
axis and pass the three gratings a sinusoidal intensity pattern is detected. This is
shown in Fig. 5.3a for C60 and C70. Depending on the initial velocity distribution,
different fringe visibility values are observed for the two clusters. When a voltage
of 14kV is applied to the newly introduced electrodes, the inhomogeneous electric
field will give rise to an additional force Fx = −dVx/dx which of course is identical
to the force introduced in Chap.2. Consequently, this will result in an deflection of
the traveling matter waves. In the case of floppy clusters with isomers possessing
non-zero dipole moments (see for example [16]) this will give rise to a single sided
deflection of all diffracted waves and in consequence to a deflection of the whole
interference pattern. This is shown in Fig. 5.3b for the investigated fullerenes. Hence,

http://dx.doi.org/10.1007/978-94-007-7866-5_2
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Fig. 5.3 (Left) Setup of the combinedKDTLI/beam deflection experiment [10]. Similar to the setup
shown in Fig. 5.2, the particles have to pass three gratings before they are detected. In contrast to this
experiment, electrodes are placed in front of the light grating. By applying a deflection voltage to this
electrodes the whole interference pattern is shifted. Reprinted with permission from Eibenberger
et al. [10]. Copyright 2011, Institute of Physics. (Right) The interferences patterns without (a) and
with (b) deflection voltage (14kV) for C60 (blue circles) and C70 (red squares) show distinct fringe
shifts [11]. Reprinted with permission fromUlbricht et al. [11]. Copyright 2008, Institute of Physics

this method reintroduces the influence of the permanent electric dipole moment as
an experimental parameter but without loosing the benefits of the interference tech-
nique. If only light would be used to probe the dielectric properties of the clusters,
μ0 can not respond to the fast oscillating motion of the electric field, even if it would
rapidly fluctuate. On the other hand, the shift of the matter waves caused by the per-
manent electric field depend onμ0. Consequently, from the fringe shift the effective,
static polarizability and from the fringe visibility the optical polarizability can be
deduced [10]. This can be done for various complex molecules or clusters [10, 16]
but so far no rigid cluster with a permanent dipole moment was measured employing
this technique.

5.2 Stark-Modulation of Neutral Molecule Trajectories

In the last section of this chapter we will not introduce a new technique to measure
the dielectric properties of an isolated molecule or cluster but rather methods that
make use of these precisely determined properties and the discussed methodologies
in order to modulate the trajectories of neutral molecules. The ultimate goal of these
methods is to manipulate the trajectories of neutral molecules in a somewhat similar
fashion as for charged particles and store them, for example, in a neutral molecule
trap. These techniques then allow to study neutralmolecules at very low temperatures
or defined collision conditions giving deep insight in low temperature physics and
chemistry. Here, we want to concentrate on the most basic of these techniques, the
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so called Stark deceleration, and only briefly mention other possible manipulation
experiments.

A possible experimental realization of a Stark deceleration apparatus is shown
in Fig. 5.4a [17]. In a rare gas seeded molecular beam of HNO3, neutral OH mole-
cules in the X 2Π3/2 electronic state are formed by a ArF-Excimer Laser (193nm)
induced photodissociation of HNO3. The carrier gas of the beam determines the
average translation velocity1 of the OH radicals while the supersonic expansion
cools the rotational and vibrational degrees of freedom resulting in a predominant
population of the lowest rotational state. This molecular beam enters a hexapole
unit and an electric hexapole field is applied (not applied) by a high voltage switch
when the molecules enter (leave) the electrodes. Since for a diatomic molecule K
is not defined, at first only a second order Stark effect is expected (Eq.3.19). How-
ever, since the radical possesses a finite orbital and electronic angular momentum,
the total angular momentum N = J + L + S has to be taken into account. The
J component is the so far exclusively considered rotational contribution to the angu-
lar momentum, while L and S result from the finite orbital and electronic angular
momentum. The molecular energy levels of the OH radical can be treated within the
Hund coupling case (a)2 which means that the energy levels with different orbital
momentum and resulting from spin-orbit coupling are well separated. Additionally,
L and S are strongly coupled to the symmetry axis of the molecule and the projection
of L + S on this axis is characterized by the quantum number ν . Hence, for this
special case, the quantum number ν plays the same role as K does for closed-shell
polyatomic molecules. During the supersonic expansion the OH radicals are cooled
to the rotational and vibrational ground state but due to the 2Π3/2 electronic ground
state N is still 3/2 (which in this special case is equal to |ν|). Therefore, depending
on the quantum number M a first order Stark effect (Eq.3.19) can still be observed.
As described in [21] this will result in a focusing of the low-field seeking (those
states with increasing energy in the electric field and are consequently accelerated
towards lower fields, Eq.3.3) but a defocussing of the high-field seeking states in the
hexapole deflection unit (see Fig. 5.4). In this particular case that means that only
|ν| = 3/2 and |M | = 1/2, 3/2 with opposite signs of ν and M ( f -parity states)3

are low-field seeking states, which will be focused and relevant for the experiment.
As shown in Fig. 5.4a, at about 17mm behind the hexapole the 102 equidistantly
spaced deceleration stages with a center-to-center distance of L = 11mm are placed
in the molecular beam apparatus. The distance between the rods is 6mm while
the orientation of the stages alternate by 90∞. With the help of fast high voltage
switches ±20kV are applied to the opposing electrodes, creating a electric field
strength of 1.15 · 107 V/m. The radicals are subsequently state-selectively detected
by laser induced fluorescence (detection wavelength 282nm, laser beam orthogonal
to molecular beam) [22]. From these measurements the population of the different
low-field seeking states can be inferred. The velocity distribution is extracted from the

1 For example the use of Kr and Xe result in a velocity of 450m/s and 360m/s, respectively [17].
2 For more details see [18–20].
3 See [20] for a discussion parity labels of diatomic molecules.

http://dx.doi.org/10.1007/978-94-007-7866-5_3
http://dx.doi.org/10.1007/978-94-007-7866-5_3
http://dx.doi.org/10.1007/978-94-007-7866-5_3
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Fig. 5.4 Schematic setup of the molecular beam apparatus developed for Stark deceleration of
OH radicals [23]. a The OH radicals are generated by an ArF-Excimer Laser (193nm), expanded
through a skimmer and the low-field seeking states are focused in a hexapole lens.After the hexapole,
the Stark deceleration unit is passed and the time-of-flight (TOF) distribution is state selectively
measured with laser induced fluorescence (LIF). The collected photons are detected in a photo
multiplier tube (PMT). b In the Stark decelerator every even (odd) electrode is switched on (off)
creating a periodic Stark potential energy surface W (z) for a low-field seeking state with periodicity
of 2L . The maximum voltage difference is 40kV. After every period ∆T the situation is changed
and a voltage is applied to the previously grounded electrodes and the other electrodes are switched
to ground and vice versa. Reprinted figure with permission from van de Meerakker et al. [23].
Copyright 2005 by the American Physical Society
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time-of-flight (TOF) profiles, recorded by scanning the timing of the detection rela-
tive to the photodissociation laser.

The principle of the Stark deceleration experiment is illustrated in Fig. 5.4b. The
voltage applied to the opposing electrodes is alternated between ground and ±20kV
(the higher the voltage the more efficient the deceleration will be) creating a Stark
potential described by

W (γ z/L) = a0
2

+
∞∑

n=1

an cos (n(γ z/L + γ/2)) (5.6)

with periodicity 2L . Due to the periodicity of the problem the potential can be
described by a Fourier series given in Eq.5.6 with the corresponding Fourier coeffi-
cients an . For convenience the phase ϕ = γ z/L is introduced which has the period-
icity 2γ (z is the axis of the longitudinal molecule motion) and can be used instead
of the position to describe the motion of the molecules. When a molecule travels
through an electrode configuration with the static electric fields as shown in Fig. 5.4b
the net deceleration effect will be zero. For example we will assume that the shown
OH radical populates a low-field seeking state. At the position shown in Fig. 5.4b
the molecule will gain some potential (or Stark) energy in the electric field and
consequently slow down. However, when moving towards lower field strength, the
potential energy will decrease and the molecule will speed up again. Therefore, in
a static setup no net deceleration is observed. The main idea of the Stark accelera-
tion/decelerator is to switch the applied voltages from the electrodes so far used to
create the electric field to the grounded electrodes and vice versa. When the electric
field is switched while the molecule is within the field the molecule will lose the
amount of kinetic energy that was changed into potential energy in the electric field.
Consequently the molecule will slow down.

The simplest way to quantify the effect of switching the voltages is to define a
synchronous molecule with velocity v0 which will always have the same phase ϕ0
with respect to the Stark energy when switching of the electrodes takes place. Hence,
it will exactly travel the distance L in the switching time period ∆t . Therefore, this
molecule will always be at the same position with respect to the closest electrodes
and will lose the same amount of kinetic energy per stage. Molecules with a slightly
different phase ϕ or velocity will experience a correction towards to values of the syn-
chronous molecule.4 This ensures that molecules are kept together during the Stark
deceleration [24]. The kinetic energy ∆K (ϕ0) = −∆W (ϕ0), that is lost per stage
can be calculated at a given switch time by the difference in the potential energy at
the positions γ z/L = ϕ0 and γ z/L = ϕ0+γ and is given up to second order by [17]

∆W (ϕ0) = W (ϕ0 + γ) − W (ϕ0) = 2a1 sin ϕ0. (5.7)

4 When for example a molecule has a larger phase than ϕ0 it will lose more kinetic energy and
will lack behind ϕ0. Hence, in the next stage it will lose less kinetic energy. This will lead to an
oscillation of the phase and velocity relative to the synchronous molecules.
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Even though in the experiment the applied electrode voltages are switched between
two static situations, an equation of motion requires continuous variables. Since the
deceleration per stage is small compared to the kinetic energy of the molecule, we
can assume that the deceleration of the synchronous molecule is due to a continu-
ously acting average force ≥F∇ = −∆W (ϕ0)/L = −2a1 sin ϕ0/L . In this picture
the static switching between the fields is similar to a potential well that travels with
L/∆t and slows down the molecules (defined as traveling wave approximation).
The motion of all non-synchronous molecules with the same velocity but a different
phase ϕ = ϕ0 + ∆ϕ as the synchronous molecule can be described relative to the
molecules with ϕ0. Subtracting the force corresponding to Eq. 5.7 for molecules with
ϕ and ϕ0 results in the equation

mL

γ

d2∆ϕ

dt2
+ 2a1

L
[sin(ϕ0 + ∆ϕ) − sin(ϕ0)] = 0, (5.8)

which describes the motion of the molecules in a traveling potential well to a
very good approximation [17]. When inspecting Eq.5.7 it becomes clear that in the
traveling wave approximation the operation conditions to decelerate molecules are
0 < ϕ0 < 90∞, while for−90∞ < ϕ0 < 0 the molecules will be accelerated. That this
theory of the Stark decelerator is able to describe the experiments is demonstrated for
the special case of ϕ0 = 0 in Fig. 5.5a. For this phase, the Stark decelerator should
only guide the molecules through the molecular beam apparatus. For OH radicals
with an initial velocity of 450m/s (Kr) the TOF profile with an intense peak at about
2.9ms shown in Fig. 5.5a is measured.5 This peak can be explained by taking the
length through the molecular beam apparatus of 1.31m (Fig. 5.4) into account and
highlights that the molecules are only guided but not decelerated. The Monte-Carlo
simulations employing Eq.5.8 for the different low-field seeking states are shown in
the same figure as gray lines (details for the simulations can be found in [17, 25, 26])
and nicely reproduce the experimental observations, when both low-field seeking
states are taken into account. When now the phase of the experiment is chosen to
allow deceleration of the radicals (ϕ0 = 50∞), the TOF profile shown in the upper
part of Fig. 5.5b is obtained [27]. A peak at about 3.8ms in the TOF profile indicates
that the deceleration of the OH molecules was successful. For this particular case
the molecules were slowed down from 465m/s to 305m/s. The fraction of molecules
that are slowed down and are missing in the distribution of the fast molecules, is
indicated by an arrow in all figures of Fig. 5.5b. Increasing the phase to ϕ0 = 70∞
slows down the OH radicals from 440m/s to 170m/s (Fig. 5.5b, middle part) or even
further from428m/s to 21m/s (Fig. 5.5b, bottom)when usingϕ0 = 77∞. Additionally
an influence of the switched electric fields on all other not slowed down molecules
becomes visible by the highly structured TOF profile (expanded bottom part of
Fig. 5.5b). For more details see [17]. In the last mentioned case the radicals become
that slow that they could be trapped with the help of electrostatic fields. For this

5 The small sidebands in the TOF profile are molecules that are not trapped by the traveling potential
well but experience the switched electric fields.
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Fig. 5.5 a The none state resolved TOF profiles of OH with an initial velocity of 450m/s (coex-
pandedwithKr) andϕ0 = 0 [23]. The radicals are only guided through theStark decelerator resulting
after 1.31m in the intense arrival time peak at 2.9ms. Consequently, the velocity did not change.
Reprintedfigurewith permission fromvan deMeerakker et al. [23]. Copyright 2005 by theAmerican
Physical Society. b For ϕ0 = 50∞ (top), ϕ0 = 70∞ (middle) and ϕ0 = 77∞ (bottom), however, some
of the molecules are slowed down to 305, 170 and 21m/s, respectively [27]. The fraction of mole-
cules missing in the distribution of the non-decelerated molecules is indicated by an arrow. For
the case shown at the bottom an additional electrostatic trap was used, trapping the slowed down
neutral molecules by using static electric fields of about −15kV [27]. This results in an effective
trapping of the molecules, as seen in the inset of the figure. Reprinted figure with permission from
van de Meerakker et al. [27]. Copyright 2005 by the American Physical Society
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purpose a molecular trap can be placed behind the Stark decelerator, allowing to trap
the radicals while at the same time measuring their LIF spectra (for more details see
[22, 27]). The effect of introducing such a trap on the TOF distribution can be seen
in the bottom part of Fig. 5.5b. At about 7ms a LIF signal is observed that reaches a
constant value after some initial oscillations. This indicates the effective trapping of
the OH molecules. Over a longer time period (Fig. 5.5b, inset) this intensity decays
due to background gas induced losses of OH molecules. These results, therefore,
clearly demonstrate that neutral molecules can be slowed down and trapped using
their dielectric properties.

Similar experiments have not only conducted with OH [28] but also for NH3,
[22, 24] metastable CO [25, 29] and YbF [30] and many more small molecules
[31]. A possible experimental application of the decelerated molecules is to per-
form scattering experiments. A crossed molecular beam experiment was performed
investigating the inelastic collision of Xe with OH using a modified version of the
apparatus shown in Fig. 5.4a [32]. The slowed down OH radicals are intersected by
a beam of Xe atoms and the change of the state selectively recorded TOF profiles
with and without Xe scattering was used to infer the inelastic scattering probability
as a function of the OH radical velocity. Due to the variable velocity and the nar-
row velocity distribution very accurate inelastic state resolved low energy collision
cross sections were obtained [32]. A comparison with theoretical modeling of the
scattering process, furthermore, gave an excellent agreement with the experimental
data, highlighting the possibilities that the Stark deceleration method offers. These
experiments have just recently be extended in order to study state selective reactive
scattering with very high resolution [33].

So far we have only discussed Stark deceleration (for which also other experi-
mental realizations exist [34]) but other methods have been developed in order to
manipulate the motion of neutral molecules. Very similar to the electric beam deflec-
tion studies are, for example, conformer selectors, that separate different conformers
in space based on their differing dielectric properties enabling conformer selective
studies [35]. Additionally other traps for neutral molecules have been developed
which allow to trap the neutral species for several seconds [36]. In terms of focusing
elements, it was demonstrated recently that a microwave lens allows to focus mole-
cules in high- and low-seeking quantum states [37]. A much more detailed overview
of all these experiments can be found in several review articles [17, 31, 35, 38].
However, all these results show that the manipulation of polar neutral molecules
in the gas phase is possible, as long as their dielectric properties are well known.
Therefore, the determination of the dielectric properties of isolated molecules and
clusters is crucial to broaden the applicability of the herein described methods.
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Chapter 6
Summary

The method to deflect molecules or clusters isolated in the gas phase by an applied
electric field, has a longstanding tradition in physical and chemical science. Since the
first discovery of Johannes Stark that energy levels can be influenced by electric fields
(1913) [1, 2], over ErwinWrede performing the first beam deflection experiments on
alkali halides (1927) [3] to present day experiments on complex systems likemetallic
Na [4], molecular H2O [5] or bimetallic clusters [6], electric beam deflection studies
are awell establishedmethod for over the past 80years. Despite the fact that dielectric
properties have an outstanding significance for chemical and physical processes of
neutral clusters andmolecules, it is surprising that beamdeflection studies (combined
with near light force techniques for frequency dependent studies) are still one of the
view generally applicable methods to deduce polarizabilities and permanent electric
dipole moments from experiment.

Therefore, in the above presented chapters and sections we devoted ourselves to
explaining the underlaying physical phenomena, experimental realization and theo-
retical background of the beam deflection method to every interested reader. Com-
pared with the early beam deflection studies, the experimental accuracy, the general
understanding of the experimental phenomena and the theoretical interpretation of
the results of present day investigations have been improved successively over the
years. Hence, position sensitive mass spectrometry or long deflection distances al-
low to record the mass and deflection information simultaneously or to investigate
systems exhibiting very small mass weighted susceptibilities, respectively. Further-
more, the improvement and development of cluster sources [7–9] which give the
desired particle densities and available ionization laser sources enable to study of
complex cluster systems [10]. Additionally, two major factors have improved the
interpretation of the experimental observations. First, due to working with cold clus-
ter sources the experiments can be interpreted within the rigid rotor approximation
allowing a simple and intuitive understanding of the experimental results using per-
turbation theory [11–13]. Only in the last couple of years it became clear that an even
more in-depth interpretation is possible using classical or quantum mechanical sim-
ulations [14–16]. The second development in terms of interpreting the experimental
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results is the use of quantum chemical methods to find possible cluster structures
and the corresponding properties. This then allowed, for the first time, to connect the
experimental resultswith theoretical predictions for various cluster structures.Hence,
a very careful analyses of the experimental observations to discriminate between dif-
ferent cluster isomers.

Beside all these improvements, still a large number of unsolved problems
remain. For rigid clusters this especially influences asymmetric rotors for which
under special circumstances a chaotic rotational motion was observed in experiment
[5, 16–18]. However, more problematic is the influence of excited vibrational mo-
tions or isomerization processes on the interpretation of the experimental results.
While experiments are readily performed for various temperatures of the cluster
source, the effect of increasing the internal temperature of the cluster is yet not well
understood.

In future beam deflection investigations, the successive improvement of the
accuracy of cryogenic experiments and availability of interpretation models will
allow to study not only the dielectric properties of isolated clusters in the gas phase
but additionally learn more about their geometric structure. Especially, position sen-
sitive mass spectrometer detectors [19] could enable to decrease experiment times
and the accuracy compared to present day setups. Furthermore, an general under-
standing of beam deflection measurements at moderate temperatures could not only
broaden the applicability of the method but additionally is a prerequisite to perform
Stark deceleration experiments on more complex aggregates.
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