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Preface

During the last 50 years our understanding of thermodynamics has achieved
considerable progress, particularly in relation to irreversible or non-equilibrium
phenomena. The principal approaches were reviewed in the book by [1] and are
briefly summarized at the beginning of Chap. 1. An important role has been played
by phenomenological thermodynamics (or nonlinear thermomechanics) called
rational thermodynamics, as developed by Truesdell and others. It has been shown
that similarly as in other classical disciplines (e.g. mechanics or electromagne-
tism), the thermodynamics may be described through general postulates valid in all
disciplines (e.g. First Law of thermodynamics (balance of energy), balance of
mass, etc., or Second law of thermodynamics). Then special models of materials
can be studied which are formulated by constitutive equations (e.g. uniform
classical thermodynamics, mixtures with transport phenomena). As a result it has
been not necessary to be confined to equilibrium phenomena only, and it has been
possible also to describe the non-equilibrium phenomena, at least in principle.

This book aims at providing consistent and integrated thermodynamic
description of chemically reacting systems which are often encountered in practice
based on methodology developed within the framework of continuum, rational
thermodynamics. Because of the extent and understanding of such a broad goal we
limit the discussion to one phase, mostly fluid (gas or liquid) systems, pure sub-
stance or (even chemically reacting) fluid mixtures, which seem to cover the most
important cases of applications. Although such modern thermodynamics is a
mathematical theory established mainly by mathematicians, this book is focused
on non-mathematicians—physicists, chemists and engineers. They are usually and
typically studying systems where thermodynamic and transport phenomena and
chemical reactions are running together (e.g. processes in industrial chemical
reactors) using properties of these phenomena obtained from their separate and
independent research. In other words, their approach is driven by (mostly tacit)
assumption, that these separate knowledges are often also valid in such complex
systems. For example, the oldest theory of non-equilibrium thermodynamics is
based on a hypothesis called the ‘‘local equilibrium’’, i.e. the validity of classical
thermodynamic relations in systems with (space) gradients is assumed even though
they were obtained in a uniform equilibrium system without such gradients.

In this book we discuss models of traditional and industrially important situa-
tions in chemically reacting mixtures, which confirm (in accordance with
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experience), the validity of such a hypothesis, together with its limits. All the
methodology has clearly and explicitly given all starting axioms, all applied
assumptions and simplifications; therefore the range of its validity as well as of
derived models can be easily estimated and tested. Specifically, we show that
rational thermodynamics applied to a model of ‘‘chemically reacting mixture of
fluids with linear transport properties’’ (the linear fluids in brief) fulfils these
‘‘separated’’ properties, even in complex systems, where all these processes take
place together—thermodynamic relations are the same as in classical equilibrium
thermodynamics (i.e. the ‘‘local equilibrium’’ is proved to be valid)—classical
linear transport laws are valid (e.g. Fick or Fourier laws)—classical chemical
kinetics is valid (typically, the reaction rate depends (nonlinearly) on concentra-
tions and temperature only), i.e. the mass action kinetics is proved as well.

Thus, from the point of view of modern phenomenological thermodynamics,
the current outputs of classical equilibrium thermodynamics (e.g. the description
of thermochemistry of mixtures) and the tasks of irreversible thermodynamics, like
the description of linear transport phenomena and nonlinear chemical kinetics, are
valid much more generally, e.g. even when all these processes run simultaneously.
As we noted above, these properties are not expected to be valid in any material
models: in some models the local equilibrium may not be valid, reaction rates may
depend not only on concentrations and temperature, etc.

We believe that the physical content and inner structure of this theory is not less
interesting than its mathematical formalism and therefore in this book we stress the
physical meaning omitting mathematical technicalities wherever possible and try
to be consistent and self-contained. Nevertheless, familiarity with calculus, vectors
and tensors at introductory level, at least, is supposed; as suitable and concise
study references the books by [2] or [3] can be recommended.

The book is divided into four chapters containing 27 sections in total. The text
starts with general concepts and develops and simplifies them progressively to the
model of mixture of linear fluids for which explicit formulations can be derived
and which is the model closest to common experience in chemistry and related
fields. Chapter 1 states the general framework—besides others, it introduces
general variables, explains the conception of primitive variables and states the two
basic thermodynamic laws in a very general form as the relationships between heat
and work. In this chapter, we demonstrate that general formulation enables a
construction (or the proof of existence) of quantities which are specific and basic
for thermodynamics—internal energy, entropy (even non-equilibrium) and abso-
lute temperature. Although in this generality the laws, variables or quantities are
not directly used in the subsequent development Chap. 1 justifies their existence
and applicability also in non-equilibrium states.

Chapters 2 through 4 develop modern continuum (rational) thermodynamics in
its standard and most elaborated form. The most simple example or model—
uniform systems (without space gradients of properties)—is discussed in Chap. 2
which also serves as a basic and relatively simple introduction to the methodology
(Sects. 2.1 and 2.2 in this chapter) which is not complicated by the description of
spatial distribution. Four examples—models of uniform materials with increasing
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complexity are used to explain various aspects of the methodology and to stress the
significance of constitutive equations and application of the Second Law in this
approach. Section 2.3 gives basic information about the limitations of the validity
of material models (constitutive equations). Section 2.4 shows how chemical
reactions and their kinetics enter into the methodology and constitutive equations,
whereas Sect. 2.5 illustrates the description of equilibrium between phases by our
approach. Chapter 2 thus gives an explanation of principles of how the non-
equilibrium is treated, without complicating it by spatial description, and dem-
onstrates how equilibrium is naturally incorporated as a final state of non-equi-
librium development.

Chapter 3 adds also the description of spatial distribution (gradients). Only
single fluid is considered for the sake of simplicity and preparation of the basics
for the subsequent treatment of mixtures. Mathematics necessary for the spatial
description is introduced in Sect. 3.1. Section 3.2 in the same chapter stresses the
importance of the referential frame (coordinate system) and its change in the
mathematical description. Sections 3.3–3.6 shows the development of final
material model (of a fluid) within our thermodynamic framework, consistent with
general laws (balances) as well as with thermodynamic principles (the First and
Second Laws and the principles of rational thermodynamics). The results of this
development are simplified in Sect. 3.7 to the model of (single) fluid with linear
transport properties. Sections 3.6 and 3.7 also show that the local equilibrium
hypothesis is proved for fluid models. The linear fluid model is used in Sect. 3.8 to
demonstrate how the stability of equilibrium is analysed in our approach.

The exposition culminates in Chap. 4 dealing with the mixture of fluids with
linear transport properties and representing thus the most important part of this
book. Section 4.1 explains the difference between the description of single-com-
ponent and multi-component systems (mixtures). In Sects. 4.2–4.4 the basic
principles and laws, presented in preceding chapters in the single-component
version, are appropriately modified to mixtures and prepared to be used for the
derivation of thermodynamically consistent models of a mixture. The properties of
mixtures are described using partial quantities systematically. Special attention is
paid to the accessibility of partial quantities from experiments—Sect. 4.4 also
presents the special property related to this aspect, the mixture invariance. The
derivation of consistent mixture model is exemplified in Sect. 4.5 in the mixture of
chemically reacting fluids with linear transport properties. In Sect. 4.6 the whole
classical chemical thermodynamics is derived on the basis of this model and the
validity of its equations also in the linear fluid mixture out of equilibrium is
demonstrated. Of course, the local equilibrium is completely proved in this mix-
ture model, again. Section 4.7 analyses the equilibrium in the mixture of linear
fluids in detail including its stability. In Sect. 4.8 the linear fluid model is modified
to several yet simpler material models which reflect the systems analysed tradi-
tionally in classical chemical thermodynamics. Among others, this enables to
analyse the applicability of traditional instruments of chemical thermodynamics
like activity or fugacity under non-equilibrium conditions. The consequences of
the presented thermodynamic method on the rates of chemical reactions, i.e. on
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chemical kinetics, are given in Sect. 4.9. Particularly, we show how the kinetic
mass action law naturally emerges from thermodynamic considerations and how it
can be generalised to non-ideal fluid mixtures. The last section, Sect. 4.10, elab-
orates on the transport properties (viscosity effects, diffusion, heat conduction and
corresponding cross effects) and transforms the transport equations derived in
Sect. 4.5 to more practical forms. Several traditional models or phenomena then
follow as natural consequences of presented thermodynamic methodology—e.g.
Fick or Fourier laws, Sorret and Dufour effects, as well as various phenomeno-
logical coefficients which are in classical irreversible thermodynamics introduced
a priori.

Almost every section closes with a brief summary giving an outline of the most
important information or equations and of what should be learned in the section.
The summaries should serve as the study aids and can be read also before studying
the corresponding section. Some additional thermodynamic and particularly
mathematical instruments are collected in Appendices 1–5.

We want to express our gratitude to Prof. K. R. Rajagopal for the initiative to
write this book and for stimulating discussions. Our thanks go to Drs. Miroslav
Šilhavý, Willy Pabst and Pavel Hrma. We thank also the representatives of the
publisher for the patience and care devoted to this manuscript. The authors will be
grateful for any criticism concerning this book.

August 2013 Miloslav Pekař
Ivan Samohýl
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Chapter 1
Thermodynamics and Its Concepts
in Nonequilibrium

Thermodynamics deals with the behavior of macroscopic bodies (systems) when
heat, work, and mass are exchanged. It is usually divided into two parts: equilibrium
(classical) thermodynamics deals with equilibrium states while nonequilibrium (or
irreversible) thermodynamics studies nonequilibrium processes. Each approach can
either disregard themolecular structure, in which case we discuss the phenomenolog-
ical thermodynamics, or, in the contrary, stress it in the statistical thermodynamics.
Although statistical thermodynamics offers a deeper insight and useful results it can-
not totally replace the phenomenological (i.e., nonmolecular) description because the
results of statistical theory are often interpreted in (macroscopic) terms of phenom-
enological theory (regardless of the difficulties given by the complexity of molecular
models).

We prefer here the phenomenological approach permitting broader applications
but then some (macroscopic) empirical data of the studied system are necessary.

Besides immense applications, the foundations of phenomenological thermody-
namics are attempted to be reformulated in nearly every textbook or monography on
the subject, cf., e.g., [1–16],1 see also thorough discussions in [17–23]. The main
reason for this situation consists in the fact that thermodynamics gives in princi-
ple only an incomplete description because the macroscopic objects it deals with
are too intricate and composed of an immense number of particles the detailed
behavior of which is mostly not necessary to know (disregarding the practical impos-
sibility of such description). Moreover in nonequilibrium situations time rates and
gradients of properties play an important role and thus thememory and neighborhood
influences on a state in a considered time and place become more important.

Therefore, we must deal with idealized thermodynamic models of real materials
forming a system (body) studied, models which stress only those material properties
which are important in the intended applications. Thermodynamic concepts (like

1 Footnotes (remarks) are numbered in Chapters starting with its number and subsequent equations
in them are denoted (a), (b), . . .; reference to them is, e.g.,: Eq. (a) in Rem.10, Chap.3. Appendices
at the end are denoted A1, A2, . . . , their equations and footnotes are denoted by letter A.
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2 1 Thermodynamics and Its Concepts in Nonequilibrium

heat, work, temperature, entropy, equilibrium, nonequilibrium process, etc.) may
have different meanings depending on such models and this may explain the various
paradoxes and misunderstandings.

An overview of main approaches to the thermodynamics of nonequilibrium can
be found in Ref. [24] and we review the most important of them here in brief. Per-
haps the oldest theory is the classical or linear irreversible thermodynamics which
represents a straightforward extension of classical equilibrium theory to nonequi-
librium processes. The core is formed by the local equilibrium hypothesis already
mentioned in the Preface. This hypothesis states that the relations between thermody-
namic quantities at given time and place in a system out of equilibrium are the same
as known for a uniform system in equilibrium. The most important consequence
of this hypothesis is that the Gibbs equation, i.e., the relation between entropy and
relevant state variables, remains valid locally though the involved quantities change
in time and space. In other words, the (specific) entropy is a function of (specific)
internal energy, (specific) volume, and composition (expressed usually in terms of
mass fractions) and the differential of this function is given by (equilibrium) Gibbs
equation. The local equilibrium hypothesis avoids the problem of the existence of
entropy in nonequilibrium just because of the supposed (local) equilibrium. The rate
of entropy change is supposed to be composed from two parts—the rate of exchange
with the surroundings and the rate of internal entropy production. This enables to
write down the balance of entropy and supplement it with the (second law) state-
ment of nonnegative entropy production inside the system. Combining the balances
and the Gibbs equation the entropy production is expressed as a sum of products
which are interpreted as products of forces and conjugated fluxes. Linear relation-
ships between conjugated forces and fluxes are supposed and their coefficients are
called the phenomenological coefficients. The Second Law (the nonnegativity of
entropy production) is used to set the restrictions on the sign of these coefficients.
Interested reader can learn more about this theory in a modern version and with
applications especially in chemistry and chemical engineering in books [25, 26].

This classical, linear theory has been really extended in the extended irreversible
thermodynamics [27] by relaxing the local equilibriumhypothesis. The basic concep-
tion is very similar to that of the classical irreversible theory and the main difference
is in a set of relevant independent variables. The set of classical variables used in the
classical theory (mass, energy, composition, and alsomomentum) is extended includ-
ing the corresponding fluxes. The extending fluxes may include, e.g., the heat flux,
stress-related variables like scalar bulk viscous pressure, or tensorial shear viscous
pressure. The Gibbs equation is then generalized, i.e., extended with the differential
terms containing the extending variables. The existence of a nonequilibrium entropy
is usually taken to be granted and the entropy is required to be a concave function
of the whole set of variables (i.e., including the extending variables) with locally
positive rate of production and additivity property. The concavity means that the
entropy as a function lies everywhere below its family of tangent lines (the meaning
of the opposite notions of concavity and convexity is interchanged in some works).
The extending variables are nonconserved and usually fast-changing and are typ-
ically used to describe the nonequilibrium phenomena in systems (materials) with
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non-negligible (though apparently short) relaxation times, e.g., ultrasound
propagation in dilute gases, neutron scattering in liquids, flow of, or diffusion in
suspensions or polymer solutions. Generalized Gibbs equation is used to derive the
expression for the entropy production. To obtain practically applicable expressions
this usually calls for introducing additional hypothesis, presumptions, or simplifica-
tions. The linearizations around the local equilibrium values or in the dependence of
some coefficients on the extending fluxes were applied as well as specific properties
of isotropic systems or functions (used also in our approach in Sects. 3.5, 3.7, or
4.5; see also AppendixA.2). Once the expression for the time derivative of (specific)
entropy is obtained (on the basis of generalized Gibbs equation and its modifications)
and the specific expression for the dependence of the entropy flux on independent
variables is suggested they can be combined with the general form of balance equa-
tions and the expression for the entropy production is thus identified. The concavity
requirement places additional restrictions on derived equations or their coefficients,
i.e., on the model of a specific system or material behavior.

The youngest nonequilibrium thermodynamic theories are represented by the
GENERIC formalism which stands for the abbreviation of the General Equation for
the Non-Equilibrium Reversible-Irreversible Coupling [28]. Similarly, as rational
thermodynamics, the approach used in this book, also the GENERIC is rooted in
and closely related to mechanics. In contrast to rational thermodynamics, which has
“unwound” of the continuum mechanics, GENERIC belongs to Hamiltonian for-
mulations of mechanics and originally evolved from a generalization of the Poisson
bracket formalism proposed in the classical (Hamiltonian) mechanics particularly to
model the flow properties of complex fluids like polymer melts or solutions. Hamil-
ton’s reformulation of mechanics consists in the description of the time evolution
of a (mechanical) system using the position and (generalized) momentum vectors
as the principal set of variables. The time evolution is described by the Hamilton
equations expressing the dependence of time derivatives of positions or momenta on
total energy of the system (on its derivatives with respect to momenta or positions,
more precisely). The Hamilton equations can be reformulated introducing the Pois-
son brackets [24]. The total energy, i.e., the sum of kinetic and potential energies, is
also called the Hamiltonian of the system and referring to the Hamilton equations it
can be viewed as a potential driving the time evolution of the system.

GENERIC tries to formulate a general time evolution equation by which the
time evolution (derivative) of a state variable (which can be, e.g., mass density or
fraction, momentum, energy) is determined by two potentials: the total energy of the
system and a dissipation function. Just the latter one introduces the irreversibility
(and, in this way, “the thermodynamics”) into consideration and description of the
system behavior. The dissipation function or potential is a function of derivatives
(with respect to the state variables) of a quantity which should have the physical
meaning of the entropy of the system and this latter function is minimum at zero state
variables, is zero at zero entropy derivatives just mentioned and a concave function.
The general evolution equation can be reformulated by means of Poisson brackets.
To apply the GENERIC formalism first one has to select suitable state variables
for the problem or system which is to be modeled. The next step is to formulate

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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the appropriate set of evolution equations (this, in fact, involves also finding the
Poisson brackets) which may not be an easy task. To establish a valuable expression
for the dissipation potential it requires the information on parameters related to the
nonequilibriumbehavior like diffusion coefficients, viscosities, thermal conductivity,
tensors describing hydrodynamic interactions, and others. More information on this
general formalism capable of providing universal approach on every level of material
description, being it macroscopic, mesoscopic, or microscopic, can be found in the
book by Öttinger [28].

We also want to mention the contribution to modern thermodynamics made by
Müller [10, 16, 29] which lies somewhere between the extended irreversible and
rational approaches as indicated in the title of one of corresponding books, co-
authored by Ruggeri [30]. Particularly, the reference [16] can be recommended even
for the very beginners in modern approaches to fundaments of thermodynamics.
Although the substantial part of this book deals with the equilibrium theory Müllers
reintroduce time into consideration and thermodynamics equations and treat both the
equilibrium and (and least some) nonequilibriumprocesseswithin a natural, common
framework. Their book contains a lot of real application examples and explains and
illustrates the common basis of probably all rigorous thermodynamic approaches—
the equations of balance of mass, momentum, and energy and equations describing
the specific behavior of different material bodies (systems) which were traditionally
called the equations of state and in modern terms the constitutive equations.

The last theory we want to refer to in this brief overview is the rational thermody-
namics. Because this is the core theory of our book it is explained in more detail in
subsequent parts and here only some new achievements are mentioned which are rel-
evant to our treatment and not included in it. The foundations and theoretical aspects
of practical applications were further elaborated and precised by Rajagopal and his
school (though now without the title “rational”). Sections3.1 and 3.2 of our book
stress the importance of the referential frame for the mathematical description and
of the configurations of material bodies (systems) which should be recorded by this
frame. A new concept of natural configuration was introduced [31] which enables
more proper description of behavior of deformable bodies (therefore it seems to have
no essential effect on linear fluids which are the subject of our book). Chapters2
through 4 systematically use the traditional principles of rational thermodynamics to
derive final versions of thermodynamic equations, i.e., mathematical models describ-
ing the behavior of the material system of interest. References [31–34] introduced
another principle—the principle of maximum rate of dissipation—and showed how
it can guide and simplify the process of finding thermodynamically consistent consti-
tutive equations. Several works from Rajagopal’s school are devoted to chemically
reacting systems which are one of the principal subjects of this book. A general
framework for such systems was presented in Ref. [35], however, for systems with-
out diffusion only. This framework is based on Gibbs potential, which is also an
important quantity in our book, particularly as a “source” of chemical potential (cf.
especially Sects. 4.4 and 4.6), and on maximization of the rate of dissipation (max-
imization of entropy production, in other words). Finally, derived evolution equa-
tions for the concentrations of reacting species (kinetic or rate equations, in fact)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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contain chemical potentials as the quantities determining (among others) the evolu-
tion. This is similar to our results where chemical potentials are among possible sets
of independent variables determining the reaction rates [Sect. 4.5, (4.79)]. However,
in the example of rubber vulcanization the traditional kinetic mass action law was
applied directly in its standard form (cf. our more general treatment in Sect. 4.9).
Specific examples of similar treatment of reactive pulsatile or Hagen-Poiseuille
flow can be found in Refs. [36, 37], respectively, and of synovial fluid in Ref. [38].
A simplifieddescriptionof a two-component reaction-diffusion systemwaspresented
in paper [39].

As already stated in this book we follow neither the usual method of classical
equilibrium thermodynamics [1, 2, 12, 21] nor the one of irreversible thermody-
namics [3–6, 9, 40] even in their recent variants [11, 41] although we often discuss
the same problems, cf. Rem.2 in Chap.2. We prefer the method of rational thermo-
dynamics introduced in the following section. The main reason is very simple—it is
the field we have been working in, we are familiar with. Furthermore, it seems to be
the most elaborated approach in the principal area of our interest—the chemically
reacting systems (see also [42]). Classical and extended reversible thermodynamics
use the flux-force view on the Second Law—as a rule, the affinity is then identified
as the force driving the “chemical flux”, i.e., the rates of chemical reactions which
are usually expressed in terms of the extent of reaction. It is shown in Sect. 4.5 of this
book that due to certain orthogonality other type of affinity is not seen in the Second
Law and thus it is overlooked as a part of that “driving force” for chemical reactions.
Further, it has been demonstrated that the extent of reaction cannot be used in chemi-
cally reacting mixtures with diffusion [17] (more precisely, when the diffusion is not
“self-balanced”). GENERIC applications to the reactive systems are apparently still
in their infancy [43, 44]. Rational methodology as presented in this book enables to
rederive the whole classical chemical thermodynamics and to extend it to (at least
some areas of) nonequilibrium. In other words, the rational thermodynamic theory
of linear fluids puts the chemical classics onto a firm basis of nonequilibrium theory
and supplies it with nonequilibrium capabilities. Of course, this book does not pro-
vide any “theory of everything” and it does not claim that all systems encountered
in chemistry, chemical engineering, and related areas belong to the class of linear
fluids. This book just presents a set of models which adequately correspond to lot of
chemical experience and the application of which in a specific problem should and
can be tested. The methodology is based on clearly defined principles and axioms the
validity of which in a specific real situation can be verified or a priori estimated. The
rational thermodynamics was also a subject of criticism, see e.g., [24, 45]. Whereas
the critics can be relevant in some (perhaps very) specific systems (like plasma) in
our case of linear fluids it can be neglected.

http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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1.1 Introduction

Models and their developments in this book are based on the method of rational
thermodynamics which has substantially contributed to the present-day understand-
ing of the bases of thermodynamics.

Rational thermodynamics tries to construct systematically and with logical
clarity mathematical models of thermomechanic phenomena in arbitrary situations
on a nonmolecular level and therefore it is in fact modern phenomenological thermo-
dynamics or the thermomechanics of continua. It was developed in the last decades
mainly by Truesdell, Noll, Coleman, Gurtin, Bowen, Müller, Rajagopal, Šilhavý
[10, 13, 17, 23, 46–50].2 The basic procedure of rational thermodynamics (in prin-
ciple the same as in themost elaborate physical theories such asmechanics or electro-
magnetism) may be outlined as follows: First, the primitives, i.e., a priori formulated
(nondefined) concepts are introduced to describe the phenomena intended to study.
Such concepts follow from the theoretical (even molecular) ideas as well as practical
experience (immediate experience being the best) with (often special) thermome-
chanic phenomena and from the level of description intended. Primitives used in
theories might be very different but some which are “nonmechanical” are necessary
in phenomenological thermodynamics, cf. [17, Introit] (e.g., in this book these prim-
itives are (macroscopic) motion, work, and “nonmechanical” heat, temperature). In
terms of primitives the defined concepts are obtained (e.g., velocity from motion,
entropy from heat and temperature).

Primitives and definitions are used to formulate general postulates (e.g., the First
and Second Laws, balances of mass, momentum, etc.) valid for all (in fact for a broad
class of) material models. Real materials are expressed through special mathematical
models in the form of constitutive equations which describe “idealized materials”
expressing features important in assumed applications.Moreover, the same realmate-
rial may be described by more models with various levels of description. The levels
are motivated by the observer’s time and space scales—typically the time and space
intervals chosen (by the observer) for description of a real material having its own

2 Rational thermodynamics develops from critical revision of continuum mechanics [21–23, 48,
50–52], thanks to pioneer work of Coleman and Noll [46] concerning the new interpretation of the
entropy inequality (see also [53–61]).

For introduction to this theory there are useful books and results connected with the names of
Truesdell [22, 52, 62, 63], Eringen [64–66], Rajagopal [50, 67], Müller [10, 68], Šilhavý [13],
Astarita [69], Owen [70], Wilmanski [71], and others [47, 72, 73].

The physical content of the theory is discussed mainly in Truesdell’s polemics with previous
theories [17, 19, 20, 62].

For further developments see Truesdell and Noll [23], Eringen [65, 66, 74] and others [75–
81], and most papers published in Archive for Rational Mechanics and Analysis and (mostly for
applications) in International Journal of Engineering Science.

Concerning mixtures, which are of special interest in this book, the basic information may be
found in the works of Bowen [49, 82], Müller [10, 68], Truesdell and Toupin [21], Williams [83,
84], Rajagopal and Tao [67], surveys of Atkin and Craine [85, 86], Hrma [87, 88] and Samohýl
[89, 90], see also [91–93].
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natural space and time scales (e.g., size of property inhomogeneities and typical time
of their disappearance); see Sect. 2.3 for further details. In phenomenological theory
all such scales are macroscopic (nonmolecular), cf. Sect. 1.2. The same real material
may therefore have different constitutive equations from which we can choose the
appropriate model for the intended application.

Constitutive equations have often been proposed empirically, intuitively, from
molecular models, etc., and some of them have been well-known for a long time
(state equations, transport laws of Fourier, Fick, etc.) but experience with their pro-
posals may be generalized in plausible constitutive principles, see also Rem.2 in
Chap.2. These principles are used in rational thermodynamics for generalized moti-
vations, proposals, and further rearrangements of constitutive equations and, as a
result, for finding the final form of constitutive equations, cf. further sections of
this book, e.g., Sect. 2.1. Important and specific role in the process of deriving final
constitutive equations is played by the Second Law or the entropy inequality. The
subsequent logical step—introduction of constitutive equations into balances and
the solution of resulting (usually differential) equations for given (boundary, initial)
conditions is a traditional task of other disciplines like hydrodynamics, elasticity,
heat conduction, chemical kinetics, etc.. But, sometimes, such a task is considered a
part of thermodynamics, e.g., the issue of stability or formation of dissipative struc-
tures [4, 7, 11]; correspondingly, these problems will be discussed in this book only
marginally.

At the end of the discussion of rational thermodynamics we stress that in this
theory we in fact study mathematical models (in this sense this theory is a part of
mathematics) and only after their application in a real situation and with real mate-
rial we can decide about the limits of their practical validity.3 Although practical
application is out of scope of the theory developed here, it motivates the types of
material models studied in this book and offered as various constitutive equations to
be selected for particular application. Such applications motivate some concepts or
procedures in the theory and also exclude some unusual properties of these models
because the real materials are much more complicated: to avoid, e.g., instabilities
(manifested, e.g., by phase changes), we exclude zero values of some transport coeffi-
cients or heat capacities. Such and similar regularity properties we add to constitutive
equations and the resulting models we then denote as regular (see (3.232), (3.234),
Rems. in Chap. 1, 2, 6, 8, and 9).

Thermodynamics is generally a very broad discipline, and towrite an introductory
book self-consistently we had to select only certain, typical part. Constitutive equa-
tions offer very different models of thermomechanical phenomena in many diverse
materials for applications. In this book, intended for students of chemistry and
chemical engineering and related fields, we choose only a narrow sector from these
immense fields. Namely, we discuss the (mainly nonequilibrium) thermodynamics of
fluids (i.e., gas or liquid; for difference see Sect. 4.8) and their reacting mixture with

3 E.g., in developing this theoryweassume that somequantitiesmaybe arbitrary reals (cf. application
of LemmaA.5.1 from AppendixA.5 in Sect. 2.2) though we know that all such possible values are
far out of the limits of practical applicability of the mathematical model studied.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_6
http://dx.doi.org/10.1007/978-3-319-02514-8_8
http://dx.doi.org/10.1007/978-3-319-02514-8_9
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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unique temperature, with (linear) transport properties (heat conduction, viscosity,
diffusion) and (nonlinear) chemical reactions. We try to show that rational thermo-
dynamics describes naturally the typical nonequilibrium situations (say in chemical
engineering) of (chemically) reacting fluid mixtures where transport phenomena
take place simultaneously: local state equations fulfill the classical thermodynamic
relations and linear transport laws (Fourier, Newton, Fick) and also equations of
(nonlinear) homogeneous chemical kinetics are valid.

The other important issues (often not sufficiently established in phenomenological
nonequilibrium thermodynamics) like transport through the phase boundary, hetero-
geneous chemical kinetics, fluid–solid (heterogeneous) mixtures, etc., are noted here
only marginally for simplicity, see Sects. 2.4, 2.5 and Rem.1 in Chap.3.

1.2 General Concepts and Framework, Thermodynamic
Systems, Processes, and the Universe

Basic ideas of (phenomenological) thermodynamics need to use some “nonmechan-
ical” concepts, like temperature, internal energy, or entropy.4

In this section we introduce these concepts in a very broad way, valid generally
for “any thermodynamics” including nonequilibrium theories, to justify their appli-
cation in our methodology. For this goal, only several primitives well-known from
common life are sufficient. We use the Šilhavý’s method [59, 60, 94–97], following
mostly the papers of Kratochvíl and Šilhavý [98, 99] (see Sects. 1.3, 1.4), because
it is appropriate for (at least some) nonequilibrium situations. Unfortunately, this
procedure has been demonstrated for pure materials only (for discussion of mixtures
see below).

The construction of entropy and absolute temperature (even in nonequilibrium)
fulfilling entropy inequality is done by Šilhavý’s method in terms of the primitives
work, heat and empirical temperature (for the latter, see AppendixA.1; cf. Zemansky
cited in [17, p. 53]). Moreover, the existence of energy satisfying the energy balance
will be also proved.

These results are achieved by postulating the First and Second Laws of
thermodynamics (in subsequent sections) as inequality assertions in terms of the
primitives mentioned (and therefore directly experimentally verifiable). These basic

4 Such concepts as entropy or (absolute) temperature are usually constructed, or motivated in
equilibrium. Their transfer to nonequilibrium situations is not so clear; therefore in nonequilibrium
thermodynamics either the existence of these concepts was simply assumed [17, 19] or hypothesis
on the local equilibrium was used [3–5, 9] (cf. also AppendixA.1).

Originally, rational thermodynamics assumed the existence of entropy and absolute temperature
in nonequilibrium (cf. Lecture1 of [17, 19]) but this assumption has been shown to be derivable by
Šilhavý [59, 60, 94–97]. In simplified terms this was explained by Kratochvíl and Šilhavý [98, 99]
and it will be used subsequently.

Similar results were obtained by Serrin [58] (he used the concept of “hotness”), Man [100] and
Feinberg and Lavine [56, 57] (temperature was avoided completely from primitives).

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Laws may be also presented as classical statements about the impossibility of the
perpetual motion of the first and second kind.

The procedure is performed generally for all constitutive models (independently
of the choice of independent variables of constitutive equations, cf. Rem.6) and there-
fore the great generality of the results (mainly energy balance and entropy inequality)
is guaranteed. Conversely, however, we deal with phenomenological models where
the observer’s time and space scales are macroscopic (“human”, “terrestrial”) and
therefore giant against microscopic natural scales (molecular scales, like the relax-
ation times of energy exchange among motion modes of molecule or intramolecular
distances). This great difference between these types of scales permits to distinguish
clearly between heat and work, to formulate empirical temperature and to rely on
the inviolability of macroscopic principles with statistical origin.5

These results are obtained and applied for pure materials and closed systems
(which do not change their mass, cf. Chap.2). They may be enlarged even at mass
exchange systems using instruments like material volume or material (time) deriva-
tive, see Chap.3. But, with the exception of some simple models, difficulties begin
withmixtures, especially with those which are diffusing or exchangingmass and heat
simultaneously. Here, because the similar Šilhavý procedure is not known for the
mixture, some further primitivesmust be introduced (by analogywith purematerials),
and the basic Laws must be reformulated, see Chap. 4, Sects. 4.1–4.4 and Rem.14 in
Chap.2.

In (phenomenological) thermodynamics we study the (macroscopic) thermody-
namic system (also called the body) and we assume that we know how its state can
be described.6 By process we understand realizable time sequence of states from the
initial to the final state.

The manner of the description of the state plays no role in this chapter; the only
thing which is important here is that we are able to say whether two states are the
same or not. Therefore, the results are general and valid for all constitutive models
or at least for those discussed in the following Chaps. 2 and 3. But we emphasize that
phenomenological models expressed by constitutive equations, i.e., by a concrete
choice of state, may be various and therefore, the concrete meaning of concepts
discussed in this chapter (like work, definition of equilibrium, entropy values, etc.)
may differ among such models, cf., e.g., [10, 17, 47, 101]. This will be demonstrated
in constitutive models discussed in the following Chaps. 2, 3 (see Sects. 2.1–2.3,
3.6–3.8).

5 Like the Second Law. Difficulties may be expected if this giant difference between the observer’s
and the molecular scales breaks down as, e.g., in nanotechnologies, but we avoid these problems
here.
6 State is given by independent variables of constitutive equations modeling the properties of
such system, e.g., density, temperature, their gradients and time derivatives, deformation rate, etc.
Constitutive equations need not be only functions, but, e.g., functionals where state variables may
also be functions of time (histories in materials with memory, cf. example in Rem.3 in Chap. 2) or
space (nonuniform or nonlocal systems). Sometimes (e.g., for energy) the state is determined also
by velocity and other external influences, e.g., gravitation or radiation. cf. also Chap. 2.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
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http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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http://dx.doi.org/10.1007/978-3-319-02514-8_3
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We suppose that in any process we can determine the following three primitives
work, empirical temperature, and heat exchanged at each empirical temperature
during the process. The sum of such heats (through all empirical temperatures in
process) gives heat in the whole process.7 We assume that such determinations
(measurements) are possible at least in principle.8

Work w may be measured in the usual way known from mechanics9 and heat
exchanged at given empirical temperature may be measured by a calorimeter (e.g.,
by “phase calorimeter”measuring heat by themass of a new phase formed by suitable
substance the phase change of which is just at considered temperature).

Empirical temperature ϑ is a number adjoined to every place and instant of process
in the system and may be measured by thermometer (see AppendixA.1 for further
details; note that a priori assumptions, like thermal equilibrium, Zeroth law, are
necessary here). We use for ϑ the same units, namely Kelvins, and because we try to
measureϑ generally in nonequilibrium situations, we consider as a reliable that value
of ϑ read from thermometer the dimension and relaxation time of which are both
much smaller than observer’s scales (cf. Rem.8 and Sects. 1.1, 2.3, AppendixA.1).
The right value of ϑ is assured if by repeating of identical measurement with other
thermometers with smaller and smaller dimensions and relaxation times the same
values (in Kelvins) are obtained.

In this book, we consider only the systems where empirical temperature just
described has the sense and may be used even in nonequilibrium situations. There
are, of course, alsomore complicated systems, e.g., mixtures withmore temperatures
(like plasma from electrons and ions) see, e.g., [10, 105, 106] and [107, Sect. 4],
which will be not discussed here.

After discussion of basic primitive concepts we can proceed with the theory as
follows: Adding together the heat exchanged at all instances of the process and in

7 We use the (newer) convention in which work done by the system is negative and done on the
system is positive similarly as heat emitted from (absorbed by) the system is negative (positive),
e.g., [11, 17, 19, 21, 102–104]. See also Rem.20 in Chap.3.

But the traditional reversed convention for work has been often used just in the Šilhavý’s proof,
see [13, 60, 90, 96, 98, 99].
8 The dimension and the time constant (or “relaxation time”—time interval needed for right
response) of measuring devices must be much smaller than the observer’s scales of space and
time; then it may be expected that the measured quantity has meaning even in the nonequilibrium
processes where heat, work, and empirical temperature may be field quantities changing with finite
rates (cf. also AppendixA.1).
9 Caused, in macroscopic thermodynamic systems, by surface or volume forces, see Sect. 3.3. Often
the volume work is used, which is defined by

w = −
∫ V f

Vi

P dV

where the volume V changes from the initial Vi to final V f value under the external pressure P
coming from the outside as boundary condition (P > 0 at compression, P < 0 at expansion). But in
important models neglecting motion (classical thermodynamics, uniform models of Chap. 2), P is
determined by constitutive equations of material inside the volume, cf. Rems.1 and 37 in Chaps. 2,
and 3, respectively.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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all places of the system where empirical temperature achieves some fixed value ϑ j

and denoting this sum by Q j we can obtain the heat distribution
→
Q which gives

an information how much heat was exchanged during the process at each empirical
temperature. To avoid the exact and nontrivialmathematical definition of this quantity
[59, 60, 98, 99] and to show here only the principles of Šilhavý’s methodwith the use
of simplemathematicalmeans (namely finite dimensional vector space)we introduce
the following “step” approximation: we assume that empirical temperature may be
measured only by steps and the number N of all possible empirical temperatures ϑ j

( j = 1, 2, . . . , N ) is finite and fixed (to make this approximation realistic we assume
high number of steps, say exactly N = 109, i.e., steps are small).10

Then the heat distribution
→
Q in the given process and given system may be

represented by an N -dimensional vector

→
Q = (Q1, Q2, . . . , QN ) (1.1)

10 If we are not satisfied with this “step” approximation giving results in the form of sums (1.20),
(1.21) instead of usual integrals (1.41), (1.42) we can proceed as follows (according to [98, 99]):

Heat distribution
→
Q (of given process in the given system) is now infinite dimensional vector

with components dQ (i.e., Q j in (1.1) with N → ∞) having similar properties: dQ for each
empirical temperature ϑ (generally different for different dQ) is the sum of heat exchanged at all
instances of the process and in all places of the system with this empirical temperature ϑ j and dQ
are defined as zero on these temperatures ϑ which do not occur in the process.

From a mathematical point of view the heat distribution is the function which to each set of
empirical temperatures ϑ furnish the (real) number, i.e., it is the measure defined on the reals ϑ (cf.
[59, 60, 98, 99]). Therefore, the heat q exchanged during the process (1.2) is now expressed by

q =
∫

dQ =
∫

η(ϑ)dϑ (a)

where we integrate through all possible empirical temperaturesϑ . For simplification we use here the
second integral with (primitive) density of heat distribution η = η(ϑ) (function of ϑ) [98, 99] (more
general procedure see [59, 60]). It gives dQ = η(ϑ)dϑ as the amount of heat exchanged between
empirical temperatures ϑ and ϑ + dϑ (of course in all (possible different) parts and instants in the
process of the system with temperature ϑ). But, then we must admit that density of heat distribution
η(ϑ)may be also a δ-function: If a process is isothermal exchanging heat Qi at the unique empirical
temperature ϑi , the density of heat distribution is

η(ϑ) = Qi δ(ϑ − ϑi ) (b)

Indeed, these Eqs. (a), (b) then give for all exchanged heat q

q = Qi

∫
δ(ϑ − ϑi )dϑ = Qi (c)

(we recall that by definition of δ-function δ(x) its value is nonzero only when x = 0, δ(0) �= 0 and
δ(x) = 0 for x �= 0, but its integral through all x is equal one

∫
δ(x) = 1).

For further developments of this “integral” procedure see Rems.16, 21 in Sect. 1.4.
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Its components Q j have the signs according to the convention mentioned in Rem.7
or they are zero; the values of Q j at empirical temperatures which do not occur in
the given process (usually great majority from N possible) are zero by definition.

In fact we need heat distribution only in the discussion of the Second Law in
Sect. 1.4; for the First Law we need only the heat q exchanged during the whole
process which is the sum of heats exchanged at each temperature

q =
N∑

j=1

Q j (1.2)

(“step” approximation has no influence on the following postulates of theory
[60, 98, 99]).

We postulate now (nearly obvious) properties for studied systems and their

processes with ϑ,w, q,
→
Q [or Q j in (1.1)]:

S1. The workw and heat distribution
→
Q may be determined in an arbitrary process

[we assume w, q finite as well as components Q j in (1.1)].
S2. Composition of processes: The work or the heat distribution of the process

formed by two successive processes following each other is the sum of works or heat
distributions of both processes (vectorial sum in the last case).

S3. It is possible to connect two arbitrary states by some process. From this also
existence of cyclic process follows, i.e., cyclic process starts and ends at the same
state.

S4. The system has equilibrium state defined as the state in which the system
persists arbitrarily long time without exchange of work and heat with surroundings,

i.e., with w = 0 and
→
Q = →

0 .11

The set of all systems (and their processes) with properties S1–S4 and all their
(though conceivable) combinations is called a (thermodynamic) universe. We pos-
tulate that the universe has the following properties:

U1. Closeness of the universe: the composition of two arbitrary systems from
the universe is again the system from this universe. Thus, if in both such individual

systems there are processes with w1,
→
Q1 and w2,

→
Q2 both of which having the same

duration, then these processes may be regarded as one process in the compound

system with w = w1 + w2 and
→
Q = →

Q1 + →
Q2.

11 Concrete definition of equilibrium state must be performed for each constitutive model (charac-
terized by the observer’s scales of Sect. 1.1 and mainly Sect. 2.3) by time fixing of some quantities
from those determining their states (see Rem.6). Time persistency is usually difficult to achieve
(because of molecular fluctuation) and therefore to describe real materials by such constitutive
models we must add to constitutive equations (as their regularity) the conditions of stability by
which the time permanence of equilibrium state S4 is assured. For details see Sects. 2.1–2.4, 3.8,
4.7 and Rems.7, 9, 11 in Chap.2. Although one equilibrium state would suffice, typically there are
more equilibrium states often forming the equilibrium process as their time sequence, see Rem.12.

Equilibrium states and equilibrium processes therefore depend on the choice of constitutive
model.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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To explain the remaining property of the universe we introduce two special types
of processes.

A process with w,
→
Q is called reversible if a reverse process with −w,−→

Q exists
in the universe (usually in the same system) which passes the same states but in

reverse order comparing to the original “straight” one with w,
→
Q.12

Process withw,
→
Q is called homogeneous if a process withαw,α

→
Q for eachα > 0

exists in the universe (e.g., in uniform systems, i.e., those without space gradient of
properties, changing the mass α-times we change the work and heat distribution in

αw, α
→
Q because of extensivity of these quantities).

For further explanation we introduce the set A of w,
→
Q of all cyclic processes

in the universe and of all ideal cyclic processes w,
→
Q which are some limits of

preceding “real” cyclic processes (running cycle slower and slower as we approach
the reversible one, cf. Rem.12, cycles with real gas running at lower and lower
pressure approach those with ideal gas, etc. These are experimental examples of
possible limitations to ideal cyclic process; of practical importance is the Carnot
cycle used below and discussed in Rem.4 in AppendixA.1 in details).

Then we introduce the set B of w,
→
Q of all real and ideal cyclic processes which

start in equilibrium (therefore B ⊂ A ).

Ultimately, we introduce the set C of w,
→
Q of all cyclic processes starting in

equilibrium with the following property: with each such process characterized by

w,
→
Q, the set C contains the cyclic process starting in equilibrium, work, and heat

distribution of which is αw, α
→
Q respectively, where α is an arbitrary real number.

Therefore C is the set of w,
→
Q of the cyclic reversible and homogeneous processes

starting in equilibrium (see definitions above with α = −1 meaning reversibility and
α > 0 meaning homogeneity respectively).

Subset C is not empty (and therefore also B, A, because C ⊂ B ⊂ A) because
for two different empirical temperatures the ideal cyclic reversible and homogeneous
processes starting in equilibrium may be introduced, namely those with ideal gas—
Carnot cycle of AppendixA.1 (cf., e.g., [1, 12, 110, 111]).

As the second property of universum we postulate:

12 Cf. [98, 99, 108, 109] and classical texts [1, 12]. The states passed in reversible process are not
specified here but the results following from their existence in Sect. 1.4 [equalities in Clausius (1.20)
or (1.41) and entropy (1.21) or (1.42) inequalities, (1.40)] show how to find reversible processes in
each constitutive model of this book. Namely, such are equilibrium processes from Rem.11 defined
in each constitutive model (see Sects. 2.1, 2.2, 2.4, 3.8, 4.7) by zero entropy production [e.g. (2.11),
(3.109), i.e., in fact by equalities in (1.21), (1.42)]. They form the time sequence of equilibrium
states S4 and their reversibility may be shown explicitly in examples, see Sect. 2.2 (modelsA, B),
Rem.41 in Chap.3. The stability of such equilibrium states (cf. Rem.11) explains the experience
that real processes approach those reversible if they are sufficiently slow, cf. [109], Rem.48 in
Chap.3.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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U2. Completeness of the universe: for every two empirical temperatures (from N
possible in our “step” approximation) there is the process in the universe which is
from C (cyclic, reversible, and homogeneous process starting in equilibrium) with
nonzero heat and work (q �= 0, w �= 0), exchanging heat only at these two empirical
temperatures. Specifically we can assume, that in C such are the Carnot cycles
(defined in AppendixA.1) for each two temperatures.

Summary. Basic thermodynamic concepts were introduced in this section which
form a very general framework to formulate two basic thermodynamic laws also at
nonequilibrium conditions. Only three primitive notions of work, heat, and empir-
ical temperature and several simple general properties of thermodynamic systems
and universe were sufficient for this purpose. In the following two sections, we
postulate the First and the Second Laws of thermodynamics and deduce the con-
sequences. Because they are formulated in terms of heat, work, empirical tempera-
tures, and cyclic processes (including those which are ideal) their direct experimental
confirmation is possible.

1.3 The First Law of Thermodynamics

In this section we continue with the method of Šilhavý and Kratochvíl [13, 59, 60,
98, 99]; here we need only work and heat in the entire process (heat distribution is
not necessary and therefore also an approximation by finite numbers of empirical
temperatures is redundant) moreover we consider here often cyclic processes.

We postulate the First Law of thermodynamics as follows:
In any cyclic process (real and ideal from the set A, see end of Sect. 1.2) the system

can perform work if and only if it absorbs heat, i.e.,

w < 0 ⇔ q > 0 (1.3)

As we noted at the end of Sect. 1.2, direct experimental confirmation of this
postulate is possible (even for ideal process).

Examples are cyclic working heat machines producing work from absorbed heat
but (cyclic) perpetuum mobile (of the first kind) performing work w < 0 without
absorbing heat or even producing it (by friction) q ≤ 0 are excluded. Note that if a
process is not cyclic, inequalities (1.3) not be valid, e.g., at adiabatic expansion.

From this First Law and postulates about the system and universe S1–S4, U1, U2
we can prove the following results:

1. Existence of the mechanical equivalent of heat J: there exists a positive,
universal (i.e., the same in the whole universe) constant J such that for each cyclic
process in the arbitrary system of the universe we have

w = −Jq (1.4)



1.3 The First Law of Thermodynamics 15

Therefore, the value of J is given by the choice of heat andwork units (usually they
are chosen the same and consequently J = 1; if different, e.g., formerly “Calorie”
for heat, J �= 1).

2. Existence of energy and balance of energy: for each system in the universe
there exists a state function—the energy U (determined within an additive constant)
such that the balance of energy holds

U f − Ui = Jq + w (1.5)

for an arbitrary process in the system. Here U f and Ui denote values of U in the
final and the initial state, respectively.

Values of a state function are determined only byquantities describing the state and
U is the whole energy of the system if the state is described (besides the independent
variables of constitutivemodel) also by themacroscopic velocity of the system and/or
even by its position in external fields like the gravitation. But the influence of these
last macroscopic parameters can be included [in balance (1.5)]13 into the work w of
inertial forces in the form of (macroscopic) kinetic energy (or even potential energy
of an external field), cf. [47, 112, 113]. ThenU may be interpreted as internal energy
depending on the independent variables of the constitutivemodel, cf. (1.12), Rem.15,
Sects2.1, 3.4, e.g., (3.97).

Proof of these assertions (1.4), (1.5) may be sketched geometrically.14 Values of q
andw of each cyclic process in the universe (i.e., from the set A) may be represented
by the point of the plane putting q and w on perpendicular axes, see Fig. 1.1 (cf.
[103] and, with Rem.7, [90, 98, 99]).

According to the First Law (1.3) these representing points (w, q) ∈ A cannot fall
in the first and in the third quadrants (here is w > 0 and q > 0 or w < 0 and q < 0).
By the completeness of universe U2 there is a (w0, q0) ∈ C (real or ideal cyclic
process starting from (stable) equilibrium which is reversible and homogeneous, say
the Carnot cycles). Therefore, also (αw0, αq0) ∈ C exists (with arbitrary real α) and
such processes are situated on the line going through the origin but not crossing the
first and the third quadrant and not coinciding the axes (C ⊂ A, w0 �= 0, q0 �= 0).
Then however, all the cyclic (real and ideal) processes starting from equilibrium, i.e.,
from the set B, must have their representing points on the same line. Indeed, if it
would not be true, i.e., if there would be a (cyclic) process (say (w1, q1) on Fig. 1.1)
not situated on this line, we could find a (cyclic) process (αw0, αq0) ∈ C (on this
line) such that the sum of these two processes in the sense of the closeness of the
universe U1 form a cyclic process, the representing point (αw0 + w1, αq0 + q1) of
which would fall into the forbidden (first or third) quadrant (waiting appropriately
in initial equilibrium state we can achieve the same duration of both process), see
Fig. 1.1.

13 Or even neglected as in classical thermodynamics and other models of Sects. 2.1, 2.2.
14 Original proof in [59, 60, 98, 99] stresses more the difference between First and Second Laws,
cf. Rem.17. See also Rem.7 concerning sign of work.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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Fig. 1.1 Plane representingwork and heat in cyclic processes. The First Law prohibits points (ω, q)
to fall in the first or third quadrants

Thus Eq. (1.4) is proved for the set B (and C ⊂ B) with positive constant J the
same in the whole universe. Before extending this result to all cyclic processes (set
A) we take some equilibrium state σ0 (cf. postulate S4 in Sect. 1.2) as a reference
state and define the energy U in an arbitrary state σ by

U = Jq + w (1.6)

where w, q are the work and heat of some process p (cf. S3) from the (equilibrium)
reference state σ0 to σ .

The energy U just defined is independent of the process p from σ0 to σ . Indeed,
let us consider the fixed backward process p0 from σ to σ0 with w0, q0. Because p
followed by p0 is a cyclic process starting in equilibrium, by S2, (1.4) and (1.6) we
obtain

(Jq0 + w0) + U = 0 (1.7)

The same equation is valid for another process p′ from σ0 to σ with w′, q ′.
Therefore

U = Jq + w = Jq ′ + w′ = −(Jq0 + w0) (1.8)
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This means that U is a state function, i.e., depending on the state σ (and, of course,
on the reference state σ0) and not on the processes (like p, p′).

Let us consider now two arbitrary states, the initialσi and the finalσ f and a process
with w, q from σi to σ f . If we choose some equilibrium state σ0 as a reference state,
then from the composition of the processes S2 (schematically: σ0 → σi → σ f ) and
(1.6) it follows that

U f = Ui + Jq + w (1.9)

where U f and Ui are the energies in the final and initial states, respectively. This is
the balance (1.5). If the initial and the final state coincide σ f = σi (cyclic process)
then U f = Ui and we obtain from (1.9) the general validity of Eq. (1.4) for any
cyclic process (i.e., from the set A). This also permits the definition of state function
U based on any (and not only equilibrium) reference state σ0 repeating with it the
procedure from analogs of (1.6) to (1.9); therefore (1.9), i.e., (1.5), is valid also for
energy defined in this general reference state.

Moreover, repeating the deduction of (1.9) for the same process from σi to σ f

with the same w, q but also with another (general) reference state σ ′
0 giving energies

U ′
f and U ′

f in σ f and σi respectively, we have

U ′
f − U ′

i = Jq + w = U f − Ui (1.10)

Taking U = U f , U ′ = U ′
f and σ ′

0 = σi (i.e., U ′
i = 0) we find that the energy of

an arbitrary state (σ f in our case) relative to the new reference state U ′ and to the
original reference state U respectively are in the relation

U = U ′ + const. (1.11)

where “const.” is the energy of the new reference state relative to the original.
Consequently, energy (defined to general reference state) is determined within an
arbitrary constant. Therefore proof of results 1 and 2. is complete. Q.E.D.

The classical special case of (1.5) (here and in the following we use mostly J = 1)
is arrived at when the volume work in Rem.9 is the only work considered (the work
of inertial and/or external forces is neglected); U is then internal energy.15

15 Experience (and also most constitutive models in this book, e.g., modelsA, B in Sects. 2.1, 2.2
and in Chap.3) shows that the internal energy of (uniform) fluids (namely real gases) are functions
only of V and ϑ (denoted later as T , see (1.30) below). For the special case of ideal gas (defined
by i., ii. in AppendixA.1, cf. end of Sect. 3.7) the internal energy is a rising function of temperature
ϑ only

U = U (ϑ)

Therefore dU/dϑ (heat capacity of ideal gas) is positive which is also a stability condition, cf.
Rem.7 in Chap.2, (3.256).

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3


18 1 Thermodynamics and Its Concepts in Nonequilibrium

U f − Ui = q −
∫ V f

Vi

P dV (1.12)

For a small change of internal energy dU by small quantities of heat dq and
volume work dw = −P dV we have the classical form

dU = dq − P dV (1.13)

Summary. The First Law was postulated as a simple general statement on
performing work by a system exclusively upon the absorption of heat. Such a general
statement was demonstrated to lead to the proof of equivalency between heat and
work and to the proof of existence of the internal energy and its balance (with heat
and work).

1.4 The Second Law of Thermodynamics

Using still the method of Šilhavý and Kratochvíl [13, 59, 60, 94–96, 98, 99] for
the formulation of the Second Law we need more detailed information than for the
First Law. It is necessary to know how much heat is exchanged at every empirical

temperature. This is givenby the heat distribution
→
Q (cf. the discussionof this quantity

in Sect. 1.2). Now we define the heat absorbed q+ and the heat emitted q− during
the process as follows:

q+ ≡
∑

k

Qk if Qk > 0 (1.14)

q− ≡ −
∑

l

Ql if Ql < 0 (1.15)

where we sum through all empirical temperatures ϑ j where the heat is absorbed
Qk > 0 or emitted Ql < 0, respectively (cf. Rem.7); if such Qk or Ql do not exist
in the process, q+ or q− are zero (see 1.1). We note that both the heat absorbed and
the heat emitted are nonnegative

q+ ≥ 0, q− ≥ 0 (1.16)

The net heat exchanged q (1.2) is then16

16 Using more general concepts from Rem.10 we can analogously define heat absorbed q+ and
emitted q− (both nonnegative) as (using also the concept of density of heat distribution η(ϑ) Eq. (a)
in Rem.10)

q+ =
∫

dQ+ =
∫

η+(ϑ) dϑ, q− =
∫

dQ− =
∫

η−(ϑ) dϑ (a)

where, integrating through all temperatures ϑ [cf. (1.22), (1.15)],
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q = q+ − q−. (1.17)

Now we are able to postulate the Second Law of thermodynamics as will be used in
the following.17

The Second Law of thermodynamics is postulated as follows: In a cyclic process
(from the set A of all real and ideal cyclic processes) a system can absorb heat
(q+ > 0) only if it also emits some heat (q− > 0), i.e.,

q+ > 0 ⇒ q− > 0 (1.18)

This is in fact the Carnot-Clausius formulation of the Second Law [94–96]; we
stress here especially that the inverse implication of (1.18) is not valid (e.g., on–off
cycle of electrical heating has q− > 0 but q+ = 0).

Formulation (1.18) is independent of the First Law and permits a comparison with
the Second Law. Namely, the symmetry ⇔ of the First Law and asymmetry ⇒ of
the Second Law may be stressed [59, 60, 98, 99], cf. Rem.14.

Alternatively, however, accepting the First Law (i.e., nonexistence of perpetuum
mobile of the first kind), the Second Law (1.18) may be reformulated as the nonex-
istence of perpetuum mobile of the second kind as follows:

In a cyclic process a system can perform the work w only if it absorbs heat q+
and also emits some heat q−

w < 0 ⇒ q+ > 0 and q− > 0 (1.19)

This formulation excludes the perpetuum mobile of the second kind having in
(1.19) q− = 0.

Proof of (1.19) from (1.3), (1.18): if w < 0 then q > 0 by (1.3) and by (1.17) and
(1.16) we obtain q+ > 0. Then from (1.18) we obtain (1.19). Conversely from (1.3)
and (1.19) relation (1.18) follows: if w < 0 then from (1.19) we obtain (1.18). For
w ≥ 0 we obtain from (1.4) [which is a consequence of (1.3)] q ≤ 0, and by (1.17)
q− ≥ q+. Then (1.18) follows (if q+ > 0 then q− > 0). Q.E.D.

(Footnote 16 continued)

dQ+ = dQ, dQ− = 0 for dQ > 0

(or η+(ϑ) = η(ϑ), η−(ϑ) = 0 if η(ϑ) > 0)

dQ− = −dQ, dQ+ = 0 for dQ ≤ 0

(or η−(ϑ) = −η(ϑ), η+(ϑ) = 0 if η(ϑ) ≤ 0) (b)

Net heat (Eq. (a) from Rem.10) may be expressed through (1.17) again. See also Rem.21.
17 We proceed according to [60, 98, 99] (cf. [90]) simplified [103] by using empirical temperature
ϑ of the ideal gas thermometer and using as the set C (cf. property U2 in Sect. 1.2) the Carnot cycles
from AppendixA.1 (these fulfill, e.g., the relation (4.6) of [90]).

For thorough discussion of all classical formulations of Second Laws see [94–96].

http://dx.doi.org/10.1007/978-3-319-02514-8_4
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Going back we demonstrate that from the formulation of the Second Law(1.18)
andproperties of the systemS1–S4and the universeU1,U2, the following resultsmay
be obtained (for simplicitywe use the “step” approximation by the finite number N of
empirical temperatures ϑ j but the known “integral” form (1.41) and (1.42) of results
(1.20) and (1.21) may be understood, say by the simplified method of Rems.16, 17,
21):

1. The existence of the absolute temperature T (applicable in all the universe)
which may be identified with the empirical temperature of the ideal gas thermometer
ϑ = T and is therefore positive (and increasing with physiological “hotness”) and
measurable in Kelvins.

For every system from the universe and every cyclic process (real and ideal, i.e.,
from the set A) the following Clausius inequality is valid

∑
j

Q j/Tj ≤ 0 (1.20)

where the sum is taken over all possible (in our “step” approximation j = 1, . . . , N )

temperatures Tj = ϑ j and Q j are the components of the heat distribution
→
Q (1.1) in

the cyclic process considered.
2. Existence of entropy and the entropy inequality: for each system in the universe

there exists a state function S, called entropy, such that for every process in the system
the following entropy inequality, is valid

S f − Si ≥
∑

j

Q j/Tj (1.21)

Here S f and Si are values of S corresponding to the final and initial state of the system
in the process, respectively. The meaning of the sum in (1.21) is the same as in (1.20)
(but the process is not cyclic) and in fact in both of them we sum only through the

nonzero components of
→
Q in the given process [cf. discussion of Eq. (1.1)]. Equalities

in (1.20), (1.21) are valid for any reversible process (cyclic in the first case). Entropy
S is the state function (its values are determined by the state σ ) but it is not generally
unique in the sense that more entropies satisfying (1.21) and differing by a function
of the state may be constructed. But in special cases (important in applications) the
entropy is unique within an additive constant (see (1.40) below).

Proof of these assertions will be outlined geometrically [the proof is possible also
for the more general concept, see Rem.21; note also that some limiting assumptions
during this proof [e.g., special reference state in definition (1.31)] will be gradually

removed]. The vector
→
Q of heat distribution of any cyclic process in the universe

(from the set A) may be situated in the N -dimensional Cartesian system, if we put
components Q j on each axis (accounting for each possible empirical temperature
in our “step” approximation); see Fig. 1.2 for two dimensions: From the Second

Law(1.18) we can see that any heat distribution
→
Q of any process from A cannot be
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situated in the hyperquadrant given by positive values of Q j > 0 [otherwise q+ > 0
by (1.14) and q− = 0 by (1.15) which contradicts (1.18)]. Let us consider two heat

distributions
→
Q1,

→
Q2 from C (cyclic, reversible, and homogeneous processes starting

in equilibrium state; by completeness U2 they exist as, e.g., Carnot cycles). Then

(see closeness U1) for any real α1, α2 there is a cyclic process with α1→Q1 + α2
→
Q2

from C (because both processes with
→
Q1,

→
Q2 may have the same duration achievable

due to the stability of equilibrium in S4) and also a process with α(α1→Q1 + α2
→
Q2)

exists for any real α). Therefore all
→
Q ∈ C form a subspace. But this subspace must

have the dimension smaller than N because
→
Q (from C ⊂ A) cannot be present in

the forbidden hyperquadrant mentioned above.

On the other hand, we are able to show that this subspace of all
→
Q ∈ C has

dimension N −1: let us consider a cyclic process from the postulate U2, specifically
the Carnot cycle fromAppendixA.1, with two arbitrary empirical temperatures ϑb >

ϑa , the heat distribution ofwhich has only two nonzero components (of opposite sign)
Qb = q+ > 0, Qa = −q− < 0 [cf. AppendixA.1 below, Formulae (A.5), (A.4),
(A.7) respectively, see also below (A.9)].

Now we select and consider processes with indices a = j and b = j + 1 where
j = 1, 2, . . . , N −1 is index of empirical temperatures in our “step” approximation.

Then the heat distributions
→
Q j of such processes (with components Qa = Q j j ,

Qb = Q j, j+1 ) are

→
Q j = (0, . . . , Q j j , Q j, j+1, . . . , 0) j = 1, 2, . . . , N − 1 (1.22)

These N − 1 vectors (1.22) from C, both components of which being different
from zero and of opposite sign (i.e., Carnot cycles between adjacent pairs of all
possible temperatures according to our “step” approximations and completeness U2)

are linearly independent. Therefore, the subspace of vectors
→
Q fromC has dimension

N − 1 and forms a hyperplane coming through the origin in the N -dimensional
Cartesian system, see Fig. 1.2 (according to our construction this (N−1)-dimensional
hyperplane contains all possible Carnot cycles; but in fact it contains any reversible
cyclic process, see below). Moreover, this hyperplane contains vectors with at least
two nonzero components (1.22) [Carnot cycles fulfill the Second Law (1.18)] and
therefore does not meet any hyperplane formed by the axes of the Cartesian system.

Then there exists an N -dimensional vector
→
f which is perpendicular to this

hyperplane and is directed into the forbidden hyperquadrant, i.e., all its components
f j are positive only

f j > 0 j = 1, 2, . . . , N (1.23)

fulfilling for any
→
Q ∈C

→
Q · →

f = 0 (1.24)
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b

Qb
f

Q

Q + Qc

hyperplane C

Qa a

Qc

Fig. 1.2 Two dimensional example of the heat distribution vectors for cyclic processes

Now let us consider arbitrary vector
→
Q ∈B, i.e., the heat distribution of any cyclic

process starting in equilibrium. We will now show that vector
→
Q ∈ B cannot form a

sharp angle with vector
→
f , i.e., it must be

→
Q · →

f ≤ 0 (1.25)

Indeed, because
→
Q ∈ B ⊂ A it cannot be in the forbidden hyperquadrant or situated

between the hyperplane C and the forbidden hyperquadrant. In the latter case specifi-

cally, we are able to find such vector
→
Qc ∈ C (e.g., such Carnot cycle) which together

with
→
Q gives a compound process with

→
Q + →

Qc (by U1 from Sect. 1.2; because both
processes start in equilibrium, the same duration may be achieved) which is again in
the forbidden hyperquadrant (cf. Fig. 1.2 for two dimensions). Therefore for arbitrary
→
Q ∈ B the relation (1.25) must be valid.

Now, we can define the values (permitted by our step approximation) of absolute
temperature Tj by

Tj ≡ 1/ f j j = 1, 2, . . . , N (1.26)
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and therefore Tj are positive numbers [cf. (1.23)] unique for thewhole universewithin

multiplicative positive constant (because the length of vector
→
f is arbitrary). Each Tj

corresponds to empirical temperatureϑ j of the ideal gas thermometer (AppendixA.1)
and therefore absolute temperature T is its function

Tj = T (ϑ j ) (1.27)

universal within a positive multiplicative constant. To knowmore about this function
we use completeness U2 of the universe from Sect. 1.2, specifically in the form that
between every two (empirical) temperatures (of the ideal gas thermometer), sayϑb >

ϑa , some Carnot cycle exists, specifically those above (1.22) with Qb = q+ > 0,
Qa = −q− < 0. Then

ϑb/ϑa = q+/q− = (Qb/−Qa) = Tb/Ta (1.28)

The first equalities are the equalities (A.9) proved in AppendixA.1 and the last one
follows from (1.24), (1.26)

(Qa/Ta) + (Qb/Tb) = 0 (1.29)

because Carnot cycle is reversible from subset C (and its heat distribution have only
two nonzero members, cf. AppendixA.1).

From results (1.28) we can see that absolute temperature [introduced, after all,
within a positive constant, cf. (1.27)] is proportional to the empirical temperature
of the ideal gas thermometer T = cϑ . Arbitrary universal constant c may be cho-
sen; usually c = 1 and we can identify the absolute temperature with empirical
temperature of ideal gas thermometer

T = ϑ (1.30)

Absolute temperature is therefore positive and measured in Kelvins.
Recapitulating hitherto existing results we can see that by (1.26) and (1.1), relation

(1.25) is in fact the Clausius inequality (1.20) for arbitrary cyclic process from B
(i.e., starting from equilibrium state) and, by (1.24), equality in (1.20) is valid for
any Carnot cycle.

Now we are able to construct the entropy S of arbitrary (even instable or non-
equilibrium) state σ of a given system in the following way. We choose an (stable)
equilibrium state σ0 (from S4, Sect. 1.2) as a reference state [it may be chosen even
arbitrarily as we show below (1.40)]. As entropy S in the state σ we take the supre-
mum18 of the set of the sums

∑
p Q j/Tj corresponding to all processes p from

σ0 to σ

18 Supremum (least upper bound) of a given set A of real numbers (containing even infinite elements)
is the least from all numbers which are greater than, or equal to the numbers of the set.

From this definition the following Lemma follows:
If for reals X we have X ≥ Y for all Y ∈ A, then X ≥ supA.
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S ≡ sup
∑

p

Q j/Tj (1.31)

(we write
∑

j Q j/Tj = ∑
p Q j/Tj ; in fact only nonzero components of

→
Q play

role in the sum in the given process p).
From the definition (1.31) we can see that S is independent of the process p among

the same states σ0 and σ and therefore entropy S is a state function depending only
on the state σ (and on chosen reference state σ0).19

Now we consider an arbitrary process p passing arbitrary states between two
such states—initial σi and final σ f . Choosing the (stable equilibrium) reference
state σ0 and a process pi from σ0 to σi , we can regard the process pi followed by
process p as a combined process connecting σ0 and σ f . Therefore it follows from
the definition (1.31) for S f (entropy in the state σ f with σ0 as a reference state) and
postulate S2 that

S f ≥
∑

pi

Q j/Tj +
∑

p

Q j/Tj (1.32)

This inequality is valid for any process pi (from σ0 to σi ) and therefore by Lemma
in Rem.18

S f −
∑

p

Q j/Tj ≥ Si ≡ sup
∑

pi

Q j/Tj (1.33)

Thus, we obtain entropy inequality (1.21) for entropies defined relative to the same
(stable equilibrium) reference state σ0.

Equality in (1.21) is valid in any reversible process (cf. its definition in Sect. 1.2)
coming from σi to σ f and vice versa for forward and reverse process through the

same states respectively. Indeed, if (1.21) is valid for the forward process p with
→
Q

from σi to σ f , then for the reverse process p′ with − →
Q from σ f to σi we have by

(1.21)
Si − S f ≥

∑
p′

−Q j/Tj = −
∑

p

Q j/Tj (1.34)

where the last equality follows from the reversibility (passed states are the same at
p′ and p with the heats of reverse sign). Comparing this inequality with (1.21) for
the forward process p we have for the reversible process between σi and σ f

19 Because the number of processes p may be infinite, the definition (1.31) has sense if S < ∞.
But this is fulfilled: indeed, connecting the σ with σ0 by some fixed process p̄ we form the cyclic
process (starting in equilibrium) where by (1.20)

∑
p Q j /Tj + ∑

p̄ Q j /Tj ≤ 0 (process is from
B), i.e., ∑

p

Q j /Tj ≤ −
∑

p̄

Q j /Tj < ∞

The expression in the middle is a finite number (Tj > 0, Q j and sum are finite in chosen p̄, see S1
from Sect. 1.2) (even for non “step” approximation, cf. end of Rem.21). First inequality is valid for
every process p and therefore, by Lemma in Rem.18, S is finite.
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S f − Si =
∑

p

Q j/Tj (1.35)

Thus, the entropy inequality (1.21) was proved for any process p from state σi

to σ f with entropies Si and S f respectively, defined relative to the same (equilib-
rium stable) reference state σ0 (states σi , σ f and processes p between them may be
arbitrary).

Now, if we choose (arbitrary) σi = σ f in (1.33) [our (1.21)], then p is some cyclic
process from A and we have Si = S f (supremum (1.31) is unique); inequality (1.20)
thus follows. Analogously taking σi = σ f in (1.35) we can see that for any reversible
cyclic process (the forward process and the reverse come through the same states)
equality in (1.20) is valid. Therefore the Clausius inequality (1.20) is thus proved
to be valid for any cyclic process A [and not only for B as (1.25)] and equality in
(1.20) is valid in any reversible cyclic process [and not only for C or Carnot cycles

as (1.24)]. Then
→
Q for arbitrary cyclic process must be situated in N -dimensional

Cartesian system below or on the hyperplane of Fig. 1.2 (containing all reversible
cyclic processes).

We now demonstrate nonuniqueness of the entropy S (1.31) of the state σ which
was defined relative to the reference (stable equilibrium) state σ0. Choosing another
(stable equilibrium) state, say σ ′

0, as the reference state, then the same state σ will
have the (new) entropy S′ by (1.31). Denoting by p0 a process from σ0 to σ ′

0 and by
p′ a process from σ ′

0 to σ , we have by definition (1.31) and by combination of the
processes (S2 in Sect. 1.2)

S ≥
∑

p0

Q j/Tj +
∑

p′
Q j/Tj (1.36)

This is valid also for supremas of these quantities through all possible p0 and p′,
cf. Lemma in Rem.18. The supremum taken for the process p′ is entropy S′ and
supremum for p0 is entropy S0 (the entropy of the new reference state σ ′

0 relative to
the original reference state σ ′

0). Therefore

S − S′ ≥ S0 ≥
∑

p0

Q j/Tj (1.37)

We can see that the difference between entropies of the same state σ taken relative
to different referential (equilibrium) states [the left hand side of (1.37)] is generally
not smaller than the constant quantity on the right hand side, i.e., S′ is distinguished
from S by some state function of σ [note the different behaviour of energy U , cf.
(1.11)].

Only in special cases is the difference between S and S′ a constant, e.g., when
among the processes p0 from σ0 to σ ′

0 a reversible process p01 (with Qi ) exists: then
starting from σ ′

0 to σ0 by reverse (to p01 process (with −Qi ) and continuing from σ0
to σ by some process p we have for S′ from (1.31)
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S′ ≥
∑
p01

−Qi/Ti +
∑

p

Q j/Tj (1.38)

Because (1.38) is valid also for supremum from processes p (see Lemma in Rem.18)
we have

S − S′ ≤
∑
p01

Qi/Ti ≤ S0 (1.39)

where the last inequality follows from the definition of S0. Comparing (1.37) and
(1.39) we obtain

S − S′ = S0 (1.40)

which proves our assertion (S0 is the (constant) entropy of σ ′
0; all entropies in (1.40)

are relative to (stable equilibrium) reference state σ0).
As has been shown above the Clausius inequality (1.20) is valid for any cyclic

process (i.e., from A) and it remains to show that also the entropy inequality (1.21)
[where, of course, the states of considered process p are arbitrary, cf. (1.33)] is valid
for quite arbitrary reference state σ0 in the definition of entropy (1.31). Indeed, using
the general validity of (1.20), it is sufficient to repeat the arguments giving (1.33)
(including inequality in Rem.19 valid now for A). Moreover, we can repeat the
arguments giving (1.35), (1.37), (1.40) and therefore equality in (1.21) is valid for
any reversible processes with arbitrary entropies but now defined relative to general
σ0 [or in case (1.37), (1.40) also to another general σ ′

0].
20 Thus the proof of our

assertions 1, 2 [i.e., (1.20), (1.21) and below them] is accomplished. Q.E.D.
As we noted above all states σ (including those of reference σ0) may be arbitrary,

e.g. those which are instable or nonequilibrium [cf. above (1.31)]. Specification of
such states depends on the chosen constitutive model and its formulation of equi-
librium or reversible process (cf. Rems.11, 12). In most constitutive models in this
book, where the local equilibrium is typically valid, the states of such processes are
equilibrium and even stable; entropies may be determined with precision of constant
(1.40), see end of this Sects. 1.4, 2.1, 2.2, and 3.7.

We now remove our “step” approximation, i.e., the assumption that the empirical
temperature could be measured by definite steps only with finite number N of “per-
mitted” temperatures. This approximation was used only to obtain the results by sim-
ple mathematics. Namely, it may be expected that by allowing the steps of empirical
temperature to approach zero (i.e., the number of temperatures N goes to infinity),
in resulting formulae (1.20), (1.21) the sums change into integrals and components

20 The same form of entropy inequality (1.21) may be obtained also with another definition of
entropy than (1.31). Such is, e.g. the entropy S̄ defined by (with general σ0) S̄ ≡ −sup

∑
p̄ Q j /Tj

[cf. (1.31)] giving again entropy inequality S̄ f − S̄i ≥ ∑
p Q j /Tj . The difference between S and

S̄ in the same state σ (and with the same reference state σ0) is generally a function of state σ (i.e.,
not constant), S − S̄ ≤ 0. But the difference disappears, if reversible process from σ0 to σ exists.
See [60, 98, 99] for details.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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of heat distributions at temperature T change to dQ. So we obtain from (1.20) the
Clausius inequality for any cyclic process

∫
dQ

T
≤ 0 (1.41)

and, from (1.21), the entropy inequality for an arbitrary process between arbitrary
initial and final states with entropies Si and S f respectively.

S f − Si ≥
∫

dQ

T
(1.42)

Here dQ is the heat exchanged in the process (may be their sum at different
places and instants) where their absolute temperature has the same value T . We
recall that T are identified with (positive) empirical temperature ϑ of the ideal gas
thermometer (1.30).

Results (1.41), (1.42) are precisely proved by Šilhavý [59, 60, 96] with a more
general empirical temperature (cf. Rems.17) andwithout the “step” approximation.21

21 Following [98, 99] we sketch this procedure in simplified form used in Rems.10, 16 (using
existence of the density of heat distribution η). Similarly as in Rem.10 we consider N → ∞ in our
“step” approximation; components of heat distribution are now dQ for each temperature ϑ of ideal
gas thermometer. Proof in this Sect. 1.4 then needs the infinite dimensional space with such vectors
of heat distribution.Using (nonnegative) heat absorbed q+ and emitted q− given nowbyEq. (a) from
Rem.16, the Second law (1.18) forbids for (infinite dimensional vector of) heat distribution of cyclic
processes (or its densities) the region with absorbed heat only (q+ > 0, q− = 0). Moreover, using
closeness and completeness of universe U1, U2 with Carnot cycles, the heat distributions (or their
densities) must fall into halfspace which does not meet the forbidden region (with corresponding
boundary hyperplane of reversible cyclic processes). This may be similarly expressed through
positive function f (ϑ) > 0 of empirical temperature ϑ by

∫
f dQ =

∫
f (ϑ)η(ϑ)dϑ ≤ 0 (a)

Defining absolute temperature as T (ϑ) = 1/ f (ϑ) we obtain Clausius inequality (1.41) for cyclic
process ∫

(η(ϑ)/T (ϑ))dϑ =
∫

dQ

T
≤ 0 (b)

Again absolute temperature may be identified with empirical temperature of ideal gas thermometer
(1.30) admitting of course, that the Carnot cycle may be introduced for any two empirical temper-
atures ϑ .

Entropy S of state σ (relative to reference σ0) may be now defined analogously [as (1.31)] as
the supremum

S = sup
∫

dQ

T
(c)

of all processes p fromσ0 toσ . This is the state function fulfilling the entropy inequality (1.42)which
may be proved quite analogously as before substituting finite sums

∑
p Q j /Tj by corresponding

finite integrals
∫
dQ/T through the same corresponding process p. All other considerations are

similarly valid in Sect. 1.4 above, e.g., sum in the center of inequality in Rem.19 is substituted by
corresponding finite integral.



28 1 Thermodynamics and Its Concepts in Nonequilibrium

In (1.41), (1.42) we integrate dQ [a component of infinite dimensional heat
distribution (1.1)] through all temperatures of our process, but, because dQ are the
sums of heat exchanged at all instants and places the temperature of which has a
given value T , we may use in (1.41), (1.42) the integrals in time and space instead
[in “step” approximation this is represented by summations according to postulates
S2 and U1 respectively; cf. discussion of (1.1) and, e.g., (1.32)].

Such a form of entropy inequality (1.42) and likewise the energy balance (1.5)
will be used (in fact by further simplifications) in Chap.2 where uniform systems
without space gradients are treated: The process is a time sequence of the states
and we may expect the validity of (1.5), (1.42) for arbitrarily close time instants.
Therefore we formulate these basic laws for the rate (time derivative) of the state
functions (entropy, energy) with heatings (rate of heat exchange) and power, cf. (2.1),
(2.2). Using these rate arguments in nonuniform systems (Chaps. 3, 4), an analogical
assumption in the space leads to the densities of the quantities used in the formulation
of these basic laws (see, e.g., Sect. 3.4).

Recapitulating, the results of this chapter look plausible, but there is a problem22:
while the definition of energy (1.6) may be expected and useful, using the definition
of entropy as a supremum (1.31) (or by (c) in Rem.21) will be scarcely possible.
Moreover, it is not clear how to find the reference (especially nonequilibrium) state
and also the existence of more possible definitions (noted in Rem.20) complicates
the situation further.

Conversely the results that energy and entropy are the state functions permit us to
formulate their constitutive equations in rational thermodynamics. These, together
with balances (say of energy (1.5), (2.1), etc.) and entropy inequality (like (1.42),
(2.2), etc.) with the constitutive principle of admissibility (see, e.g., Sect. 2.1), permit
to calculate entropy within a constant in constitutive models describing equilibrium
or near equilibrium situations; in this book we study models of this type almost
exclusively. This follows from Gibbs equations (i.e., local equilibrium) proved in
such constitutive models and seems to correspond to (1.40) and to the existence of
a reversible process between states (which, although nonequilibrium states, permit
to calculate entropy, cf., e.g. model B in Sect. 2.2). This is in accord with results of
classical (equilibrium) thermodynamics [1, 12], and irreversible (nonequilibrium)
thermodynamics [4, 5, 9] (its basic hypothesis—the principle of local equilibrium—
may be therefore proved in rational thermodynamics).

In more general constitutive models the Gibbs equations (local equilibrium) are
not valid and therefore explicit calculations of entropy are impossible. This seems
to correspond to the nonuniqueness of entropy or to irreversibility of processes
between nonequilibrium states [see below (1.37) and Rem.20]. Such are some con-
stitutive models in Sects. 2.1–2.3, but in particular models with long range memory
[17, 23, 48]. Even the usefulness of entropy in situations far from equilibrium [11,
101, 114–120] seems questionable, the entropy inequality deduced and used in

22 Such problems, giving more or less only partial interpretation of entropy defined in this chapter
in terms of entropies introduced in the remaining chapters, are similar, apparently not incidentally,
to the interpretation of statistically defined entropy, cf., e.g., [12, Sect. 11.14].

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2


1.4 The Second Law of Thermodynamics 29

rational thermodynamics [13, 17, 19, 59, 60, 94–96] gives interesting informa-
tion about possible material behavior (moreover, in physics are also known further
useful nonunique quantities, e.g., Lagrange function or electromagnetic potentials).

Summary. The Second Law was postulated as a simple general statement on
heat exchange in cyclic processes. It was demonstrated that when this statement is
combined with the properties of thermodynamic systems and universe introduced in
Sect. 1.2 the existence of the absolute temperature and entropy follows, even out of
equilibrium. The entropy should satisfy an inequality (1.21) which can be viewed
as an alternative form of the Second Law and is called the entropy inequality. How-
ever, entropy need not be unique especially in complex (nonequilibrium) systems
or processes and even the transferability of the proof of its existence at such condi-
tions remains unclear. Even in such cases the supposed existence of entropy can give
important information on possible behavior which can be subjected to experimental
testing.
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Chapter 2
Thermodynamics of Uniform Systems

In this chapter we discuss uniform systems, the properties of which change only in
time. Similarly as in [1–8] our main aim here is to demonstrate the method of rational
thermodynamics and application of its principles in simple material models. In other
words, the main aim is pedagogical—to begin with simple issues, demonstrations,
and examples. Nevertheless, even this chapter contains practical results which can be
applied on many simple real systems. Among others the principal results of classical
equilibrium thermodynamics will be obtained and this will be shown also for reacting
mixtures and heterogeneous (multiphase) uniform systems.

2.1 Energy Balance, Entropy Inequality and Constitutive
Principles, and Equations in Uniform Systems

A uniform thermodynamic system—(uniform) body—may be visualized as a block
of single (i.e., pure or one-constituent) material, the mass of which is fixed (closed
system) with properties depending only on time (and not on space). Therefore, the
state and state functions change only in time. Results (1.5) and (1.42) (where it
is possible to use time integration) may be expressed in the rate form as it was
explained at the end of Sect. 1.4. Consequently, such forms of energy balance and
entropy inequality in uniform systems are [1, 3, 4]

U̇ = Q − PV̇ (2.1)

Ṡ → Q/T (2.2)

Here the dot denotes the time derivative of state functions: the internal energy U, the
entropy S, and the volume V of the body. Q is the heating, i.e., the heat exchanged
in the time unit (we use J = 1; see (3.3)) in the considered instant when the absolute
temperature is T . For the sake of simplicity we limit the material of the body to fluid
(i.e., gas or liquid) only and neglect the motion (kinetic energy, inertial forces) and
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external volume forces (like gravitation). Therefore, we restrict the power only to
“volume” working (see Rems.9, 13 in Chap.1) caused by the pressure P—force on
the surface unit from its surroundings.1

Our thermodynamic system—the uniform fluid body—is therefore characterized
by following 6 functions of time t (which may be looked upon as primitives in
this chapter)

Q(t) (2.3)

U(t), S(t), P(t) (2.4)

V(t), T(t) (2.5)

giving the values of these quantities in any instant of the process.
The ultimate aim of the application of thermodynamics is the finding of some of

these functions (e.g., P(t) at prescribed (2.3), (2.5)). But the balance (2.1) (and of
course (2.2)) is not sufficient for a great class of all uniform fluids (we do not need
the other balances here, e.g., for momentum and its moment and for mass, because of
neglecting the inertial and volume forces and conserving the mass, see Chap. 3). We
must introduce additional relations among quantities (2.3)–(2.5) which characterize
the differences among different materials (of the given class of uniform fluids in this
case)—constitutive equations [1, 3]. Aswe noted in previous Chap.1, such equations
aremathematicalmodels of realmaterials (“idealmaterial”, “material model”) which
stress those of its features which are important in assumed applications; the same real
material may have different constitutive equations depending on the circumstances
where the assumed model will be used (this depends on the relations between the
natural and observer’s time and space scales, cf. Sects. 1.1, 1.2, 2.3).

Rational thermodynamics proposes the construction of such equations by the use
of constitutive principles [1, 3]which generalize long experience accumulated during
the past with proposals of special constitutive equations (cf. Sect. 1.1). Some of these
constitutive principles more resemble rules or recommendations (e.g., principles of
determinism or equipresence below) serving rather as a guidance. On the other hand,
some constitutive principles (of admissibility below and objectivity in Sect. 3.5) seem
to be sufficiently general and therefore in turn all constitutive equations should be in
accord with them.2

Going back to proposing constitutive equations in our simple systems we call
the functions (2.3)–(2.5) fulfilling the balance (2.1) a thermodynamic process.

1 By neglecting the above noted, themomentumbalance reduces per the action-reaction law. Closely
around (part of) the surface this provides that the external pressure P is equal to those from the
interior and therefore depends on the material inside (i.e., it is given by constitutive equations like
(2.6), (2.7) below), cf. Rems.9 in Chap.1, 36 in Chap.3, and e.g., [9, p.108].
2 Other types of such principles were also proposed: “phenomenological relations” between “flows”
and “forces” in classical irreversible thermodynamics [10–19], the use of pressure (flow of momen-
tum) as independent variables in equilibrium thermodynamics and more generally the use of flows
as independent variables in extended irreversible thermodynamics [20–23]. Cf. also “internal vari-
ables” in Sect. 2.3.
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We regard the balance (2.1) as fulfilled in any process because the heating Q may be
in principle adjusted from the surroundings of the studied body (and therefore we do
not propose constitutive equation for Q).

We call the values of (2.4) responses and functions (2.5) a thermokinetic process;
constitutive equations must be therefore relations among them (even if the pressure
P comes from the surroundings (similarly asQ), it is included into responses because
here it depends on material inside the body, as explained in Rem.1).

According to the constitutive principle of determinism the response (in the actual
instant) is given by deformation and temperature in the present and the past of the
body (cf. also Sects. 3.5, 4.5, and Rem.26 in Chap.3). This means that constitutive
equations give the responses (2.4) in the actual instant as functional-independent
variables of which there are histories—thermokinetic processes (2.5) in the past and
present (in fluids, by definition, the deformations which influence the response are
expressible only through volume in mass conserving system; cf. Rems.3, 4 in this
chapter, 30 in Chap.3).

Constitutive principles of memory give more detailed description of the influence
of the past on the response. Section2.3 describes the role of time scales (cf. Sect. 1.1)
for this description and the expression of the influence of the past (or history) through
internal variables. The influence of the past frequently expected from the experience
is contained in the constitutive principle of fading memory: the more the past is
remote, the less influence it has on the response. Mathematical formulation of this
principle need not be unique [24–29] (for introduction see [2, 4, 6, 30]). In limit
of equilibrium there is some time interval (natural time scale or relaxation time, cf.
Rem.11 in Chap.1 Sects. 2.4, 3.8, 4.7) after which the (practical) influence of the
past is negligible.

Herewe confine ourselves to the short rangememory expressed by the constitutive
principle of differential memory: constitutive equations are functions of values and
time derivatives of the thermokinetic process (2.5) taken in the present instant. Such
constitutive equations may be expected in the material with fading memory where
the history (2.5) is developed in the Taylor series about the present instant with
restriction to the slow processes (2.5) when higher time derivatives are negligible,
cf. [31].3

Further the constitutive principle of equipresence demands that independent vari-
ables have to be the same in all constitutive equations for responses (2.4). This
principle prevents the nonjustified preference of some constitutive equations against

3 Let the response f be given by the function g(.) through the following example of functional with
fading memory F

f = F(g(.)) ∞
∫ ∞

0
g(s)(exp(−3s))ds (a)

by which the number f is adjoined to functions g(.), e.g., as in the following table

function g(s) 1 s s2 ....

response f 1/3 1/9 2/27 ....

Understanding s as an interval passed from present time t into the past (i.e., s ∞ t − τ , where
τ is time elapsed τ ⊂ (−∞, t]). Therefore, g(s) is the “history” of quantity g; the exponential in
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the others in general formulation of the material model (in special cases it need not
be used, of course).

Guided by these three constitutive principles, we propose the following four
material models of a uniform fluid body generally nonlinear in independent vari-
ables [1–4, 8]:

A. Fluid without memory

U = Û(V , T), S = Ŝ(V , T), P = P̂(V , T) (2.6)

B. Fluid with memory to the volume

U = Û(V , V̇ , T), S = Ŝ(V , V̇ , T), P = P̂(V , V̇ , T) (2.7)

C. Fluid with a higher order memory in volume

U = Û(V , V̇ , V̈ , T), S = Ŝ(V , V̇ , V̈ , T), P = P̂(V , V̇ , V̈ , T) (2.8)

D. Fluid with memory in volume and temperature

U = Û(V , V̇ , T , Ṫ), S = Ŝ(V , V̇ , T , Ṫ), P = P̂(V , V̇ , T , Ṫ) (2.9)

Here V , T are only positive and V̇ , V̈ , Ṫ are arbitrary real numbers.
At this point we recall again the difference between the constitutive model and

reality (cf. Rem.3 in Chap.1 and Sect. 2.3): here we study mathematical models and
therefore (unless said otherwise) we assume that T , V are positive in these models
and that Ṫ , V̇ , V̈ are any real numbers (e.g., in study of model we apply Lemma
A. 5.1 fromAppendixA. 5 based on such assumptions). However, in practical choice
of a model (say from A, B, C, D above, motivated, e.g., by the relation between the
observer’s and the natural scales, see Sect. 2.3)we consider only part of these possible
values (i.e., these are considered in the application of a model and not in the model

(Footnote 3 continued)
the functional (a) assures fading of memory in the past: the influence of great s (remote past) is
suppressed. Developing g(s) into a series around the present instant s = 0 we have

g(s) = g(0) + ġ(0)s + (1/2)g̈(0)s2 + · · · (b)

which by inserting into functional (a) gives

f = (1/3)g(0) + (1/9)ġ(0) + (1/27)g̈(0) + · · · (c)

Neglecting the remainingmembers (which neglect the influence of the past by the fading exponential
in (a) we obtain response f as a function of value g(0) and its time derivatives ġ(0), g̈(0) in the
present instant t (i.e., s = 0):

f = f (g(0), ġ(0), g̈(0)) (d)

For the general procedure of such an approximation of fading memory to a differential one (elimi-
nating exceptional fading exponential exp(−3s)) see [31].
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itself as studied in theory presented as a mathematical object). For example, if we try
to apply these models to real fluids with very high V̇ wewish to prefer model B rather
thanmodel A. Similarly, somemodels, especially C, D, are not very realistic, because
uniformity (as well as neglecting motion) is difficult to keep and wemust apply some
more realistic nonuniform models of Chap.3 (of which the uniform models A, B are
special cases), cf. Sect. 3.8. This consideration has been valid “unless said otherwise”
(see above), i.e., mathematical constitutive models may also be studied with some
a priori added regularity conditions (like conditions of stability, cf. Rem.6 in this
chapter below). This procedure will be used in Sects. 2.2, 2.3, 3.8, 4.7.

To find the final forms of constitutive equations (2.6)–(2.9) we will ultimately
use4 the constitutive principle of admissibility (called also the dissipation or entropy
principle [3, 8, 34, 35]). This principle was proposed by Coleman and Noll [36] and
it opens a way to building up rational thermodynamics. To formulate this principle
we define the admissible thermodynamic process as any thermodynamic process
(2.3)–(2.5) fulfilling (2.1) which is consistent with (admissible by) the proposed
constitutive equations (some model from (2.6)–(2.9); such a process is a sequence
of states in the sense of Sect. 1.2).

The constitutive principle of admissibility demands that the entropy inequality
(2.2) must be valid in all admissible thermodynamic processes. This principle then
restricts the form of constitutive equations.5

This principle will be used similarly also in other models of this book, see
Sects. 3.5, 4.5. In more complicated cases it is not easy to find an admissible process
and for these cases the admissibility principle may be achieved by I-Shih Liu method
of Lagrange multipliers [35, 41, 42]; this will be explained in Appendix5.

Now, in our uniform systems, an arbitrary thermokinetic process (2.5) gives
some admissible thermodynamic process. Indeed, if any smooth functions (2.5)
are taken we can calculate necessary values at the present time and introducing
them into constitutive equations (2.6)–(2.9) we calculate the response. Heating Q is
then adjusted so that the balance of energy (2.1) is satisfied (therefore this balance
gives no restriction on constitutive equations; for a slightly different point of view
see [35, 42–46], cf. also Rem.14 in Chap.4). Therefore, an admissible thermody-
namic process is obtained and thus the constitutive admissibility principle may be

4 Inmore complicatedmaterialmodelswemodify or use further constitutive principles: determinism
is enlarged for densities (mass concentrations) inmixtures (cf. Sects. 2.4, 3.5, 4.5), and the definition
of fluid used in this principle is in fact the result of constitutive principle of symmetry (see Rem.30
in Chap.3). Another constitutive principle is the objectivity (frame indifference) principle. Here it is
trivially satisfied because motion is neglected and all quantities are objective (see Sects. 3.2, 3.5). In
nonuniform systems the influence of neighborhood is described in the principle of local action (cf.
Sect. 3.5). In mixtures, the property of mixture invariance [32] may also be used as a constitutive
principle [33].
5 This differs from classical interpretation which looks at the entropy inequality (i.e., at the Second
Law) as the restriction on the process leaving the form of constitutive equations unchanged.

This admissibility is criticized by Rajagopal and his school; using instead the assumption of
maximum of entropy production rate, their further restrictions may be obtained, see, e.g., [37–39].
However, there are also reservations to the principle of maximum entropy production [40].

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3


40 2 Thermodynamics of Uniform Systems

formulated in our systems in the following way: entropy inequality (2.2) must be
valid in any thermokinetic process (2.5).

For the majority of applications it is sufficient to assume that the thermokinetic
process as well as the constitutive equations (2.6)–(2.9) are differentiable (for a more
general case see [2, 3]).

Before going further we introduce some definitions: Production of entropy ϑ is
defined by

ϑ ∞ Ṡ − Q/T (2.10)

Therefore, entropy inequality (2.2) may be expressed by

ϑ → 0 or Tϑ → 0 (2.11)

Entropy production multiplied by (absolute) temperature, here Tϑ, is called dissi-
pation.

Another important concept in constitutive models is equilibrium introduced for
each constitutive model with typical observer’s scales (cf. Sects. 1.1, 1.2, 2.3). We
define the equilibrium process as that with zero production of entropy. Namely, in
uniform systems of this Chap.2 the equilibrium process is given by ϑ = 0 in any
state (instant) of its sequence.

The special equilibrium process is the equilibrium state when the system is per-
manently in the one state (cf. Rems.11, 12 in Chap.1). Its entropy does not change
in time (permanence) and there is no heat exchange in it, i.e., Ṡ = 0 and heating is
zero Q = 0 separately in (2.10); therefore ϑ = 0.

But there are also equilibrium processes where ϑ = 0 is achieved by com-
pensating the two nonzero members in the right-hand side of (2.10). They may be
constructed as reversible (see Sect. 1.2 below property U1) by zero values of quan-
tities causing nonequilibrium and achievable by adequate slowing of corresponding
nonequilibrium processes (see Rem.48 in Chap.3), cf. examples of Sect. 2.2.6

Others examples are given in Sects. 2.4, 2.5 and the concept of equilibrium
reversible process may be enlarged also to nonuniform systems in the next Chapters,
see Sects. 3.6, 3.8, 4.7, Rem.41 in Chap.3.

Free energy F of the body is defined by

F ∞ U − TS (2.12)

Therefore, F is a state function for which a constitutive equation may be constructed
if we insert those for U and S in (2.12) (e.g., for model B (2.7) is F = F̂(V , V̇ , T)).
It is convenient to use the free energy F instead of U which may be calculated back
from (2.12) if necessary. Finally we eliminate heating from (2.1), (2.2) and we use
(2.11), (2.12) to obtain the reduced inequality

6 As we noted in Rem.11 in Chap.1 we must add the stability conditions of the equilibrium state
(as the part of regularity conditions of the constitutive model), see Rems.7, 9, 11 in this chapter.
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− Tϑ = Ḟ + PV̇ + SṪ ⇔ 0 (2.13)

Therefore, the principle of admissibility may now be reformulated in the following
way now: reduced inequality (2.13) must be valid for any thermokinetic process
(2.5).

In the following Sect. 2.2 we demonstrate how this requirement restricts the con-
stitutive equations (2.6)–(2.9).

Summary. In this Section, the principles used in rational thermodynamics to
derive constitutive equations modeling the behavior of specific (material) bodies
(systems) were described. Four simple general models of behavior of fluids were
proposed, (2.6)–(2.9), taking into account most of these principles. The entropy
inequality was formulated for uniform systems and modified introducing the free
energy, (2.12), to the final—reduced—form (2.13). The basic exposition of rational
methodology is thus prepared for the application of the very thermodynamic principle
in the following Section.

2.2 Constitutive Equations of Uniform Fluids

In this Section, we obtain the ultimate form of constitutive equations for model
A, B, C, D (2.6)–(2.9) using the constitutive principle of admissibility in the form
mentioned at the end of preceding Sect. 2.1 [1, 2, 4–8].

A.Fluid without memoryhas constitutive equations (2.6) and therefore (see (2.12))
the constitutive equation for the free energy is

F = F̂(V , T) (2.14)

Introducing (2.14) into reduced inequality (2.13) we have

− Tϑ = (∂F̂

∂V
(V , T) + P̂(V , T)

)
V̇ + (∂F̂

∂T
(V , T) + Ŝ(V , T)

)
Ṫ ⇔ 0 (2.15)

According to the admissibility principle (in the form quoted at the end of the preced-
ing Sect. 2.1) this inequality (2.15) must be valid in any thermokinetic process and
therefore also in such a one where T > 0, V > 0, V̇ are arbitrary constants and Ṫ
may be an arbitrary real number. Then coefficient standing next to Ṫ in (2.15) must
be zero; otherwise it is possible to find such a real Ṫ that inequality (2.15) is not
valid. Here (and often in the following) the Lemma A. 5.1 of AppendixA. 5 is used
(with X = Ṫ ). Therefore,

∂F̂/∂T = −S (2.16)

and (because V , T was fixed arbitrarily) this is valid identically (i.e., for any V , T ).
Similarly, choosing V , T , Ṫ constants and V̇ arbitrarily, we prove an identity (again
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by Lemma A. 5.1 for any choice of V , T , Ṫ )

∂F̂/∂V = −P (2.17)

Relationships (2.16), (2.17) are not only necessary but (inserting (2.16), (2.17) into
(2.15)) also sufficient for validity of (2.15).

Therefore, the free energy is a potential for entropy and pressure, i.e., Gibbs
equations are valid

Ḟ = −SṪ − PV̇ (2.18)

U̇ = TṠ − PV̇ (2.19)

where the last equation follows from (2.12). Comparing (2.18) with (2.13) (or (2.19)
with (2.12)) it follows that in (2.13) (or (2.2)) only the equality is valid, i.e., ϑ = 0
identically. Thus, all processes possible in this fluid without memory A are the
equilibrium processes (see definition under (2.11)).

Model A is in fact the main material model studied in the classical equilibrium
thermodynamics. Each state in this model A may be an equilibrium state from pos-
tulate S4 in Sect. 1.2 by fixing not only V , T , but also V̇ = 0, Ṫ = 0; then not only
power but, by (2.1), (2.6)1, also heating should be zero Q = 0. Its persistence is
assured (cf. Rems.6 in this chapter, 11 in Chap. 1) by stability conditions.7

All processes in model A may be considered also as those with reversible
equilibrium because for each process passing a sequence of states with state vari-
ables V , T and with (nonzero) V̇ , Ṫ and therefore with (generally nonzero) U̇, Ṡ,
heating Q, or power PV̇ and ϑ = 0, obviously there exists a reverse process pass-
ing a sequence of the same states in reverse order with V , T and −V̇ ,−Ṫ , ϑ = 0
in which by (2.1), (2.19) we have −U̇, −Ṡ, and opposite power −PV̇ and heating
−Q. In such processes, which are equilibrium and reversible, we have ϑ = 0 where
both (nonzero) members on r.h.s. of (2.10) compensate. An equilibrium reversible
process may be regarded as a sequence of such stable equilibrium states. An apparent
contradiction (V̇ , Ṫ in the equilibrium process are nonzero, while in the equilibrium
state are zeros, cf. their definitions under (2.11)) consists in the choice of the ob-
server’s time scale in practical applications of model A: this time scale is chosen to
be sufficiently great and therefore (all) processes in A are slow and the equilibrium
of each passed state is attained (by its stability from Rem. 7) instantaneously in this
large time scale (i.e., V̇ , Ṫ are nonzero in the observer’s time scale, but because of
its choice, they are in fact very small and nearly zero). Cf. also analogous discussion
of model B below and [47], Rem. 17.9, Sect. 2.3.

If we should shorten the observer’s time scale, we cannot use this model A and
(in the same material) we must use a more complicated model, e.g., B (or even C,
D, etc.) discussed in the following.

7 Which in uniform models A (2.6) are ∂Û/∂T > 0, ∂P̂/∂V < 0. They follow from the fact that
model A may be deduced as a special case of nonuniform model in equilibrium (cf. below (3.239)
in Sect. 3.8) stability conditions of which are (3.256), (3.257) (cf., e.g., (3.199)). Cf. Rem.9 in this
chapter, see Sects. 2.3, 3.8 Rem.48 in Chap.3 for further details.
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B. Fluid with memory in volume has constitutive equations (2.7) and therefore by
(2.12) we have

F = F̂(V , V̇ , T) (2.20)

Introducing it in (2.13) we obtain

− Tϑ = (∂F̂/∂V) + P)V̇ + (∂F̂/∂T) + S)Ṫ + (∂F̂/∂V̇)V̈ ⇔ 0 (2.21)

By the principle of admissibility (see end of Sect. 2.1) this inequality (2.21) must be
valid at all T > 0, V > 0, and all real V̇ , V̈ , Ṫ . Choosing some T , V , V̇ , Ṫ fixed,
and V̈ arbitrary (Lemma A. 5.1 is used for any choice of T , V , V̇ , Ṫ ), we obtain the
identity

∂F̂/∂V̇ ∞ 0 (2.22)

which means that instead of (2.20) we have

F = F̂(V , T) (2.23)

Introducing (2.22) to (2.21), choosing T , V , V̇ fixed and Ṫ arbitrary (Lemma A. 5.1
is used for any choice of T , V , V̇ ), we obtain identically

∂F̂/∂T = −S (2.24)

and by (2.23) we have also
S = Ŝ(V , T) (2.25)

U = Û(V , T) (2.26)

instead of (2.7) (Eq. (2.26) followed by (2.12)). Therefore, from inequality (2.21) it
remains

ϑ = −(1/T)

(
∂F̂

∂V
(V , T) + P̂(V , V̇ , T)

)
V̇ → 0 (2.27)

Because of nonlinearity (in V̇ ) the preceding arguments based on Lemma A. 5.1 are
not usable.

Achievement of the same results is also demonstrated by application of the I-Shih
Liu method on model B in Appendix5.

Further results follow the equilibrium process in model B defined as a thermody-
namic process with

V̇ = 0 (2.28)

motivated by ϑ = 0 in (2.27) (with compensation of both even nonzero members
on r.h.s. of (2.10), cf. below (2.11)), see Rem.9 in this chapter below.
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As a consequence, the production of entropy ϑ = ϑ̂(V , V̇ , T) is not only zero
in equilibrium but it also has (for given V , T ) minimum here. Therefore, for fixed
T , V , V̇ and real parameter λ we have

d

dλ
ϑ̂(V ,λV̇ , T) |λ=0 = 0 (2.29)

d2

dλ2 ϑ̂(V ,λV̇ , T) |λ=0 → 0 (2.30)

Introducing (2.27) into (2.29) we obtain

(
∂F̂

∂V
(V , T) + P̂(V , 0, T))V̇ = 0 (2.31)

and because l.h.s. of (2.31) depends linearly on V̇ (which may be arbitrary) we have
for any choice of V , T

∂F̂/∂V = −Po (2.32)

i.e., identically for any V , T . Here the equilibrium pressure Po

Po = P̂o(V , T) ∞ P̂(V , 0, T) (2.33)

was defined (we shall denote the equilibrium values by superscript o). As nonequi-
librium pressure PN we denote

PN = P̂N (V , V̇ , T) ∞ P̂(V , V̇ , T) − P̂o(V , T) (2.34)

which is at equilibrium zero

Po
N ∞ P̂N (V , 0, T) = 0 (2.35)

For production of entropy we thus obtain

− Tϑ = PN V̇ ⇔ 0 (2.36)

Againwe can see that the validity of (2.22), (2.24), (2.32), (2.36) is not only necessary
but also sufficient for fulfilling (2.21).

From the second condition (2.30) we obtain
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∂P̂N

∂V̇
(V , 0, T) ⇔ 0 (2.37)

by (2.27) and (2.34).8

Summing the results for model B—fluid with memory to volume—we can see
that thermodynamic responses U, S, F depend only on T , V and free energy F is a
potential for entropy S but only for equilibrium pressure Po. Gibbs equations are

Ḟ = −SṪ − PoV̇ , U̇ = TṠ − PoV̇ (2.38)

which are valid in all processes.
At the end we note (cf. below (2.11) and model A) that an equilibrium state in

this model B is achieved by fixing not only V , T , V̇ = 0 but also Ṫ = 0; then not
only power but, by (2.1), (2.26), also heating should be zero Q = 0. Its permanence
is given by stability, see below and Rem.9 in this chapter.

The equilibrium process, defined by (2.28) in model B, is reversible: for any
forward equilibrium process passing the states with V , T , V̇ = 0, and Ṫ , U̇, Q,
zero power PV̇ , there seems to exist a reverse process passing these states in the
reverse order, the same states with V , T , V̇ = 0 and −Ṫ ,−U̇,−Q and zero power
(see (2.27), (2.26), (2.1), Rems.12 in Chap.1 and examples in Rem.48 in Chap.3).
Zero entropy production is achieved but generally heat exchange Q may be nonzero,
giving entropy change: both (nonzero) members on r.h.s. of (2.10) compensate in
this case. The equilibrium process in this model B is a sequence of equilibrium states
S4 of Sect. 1.2. The observer’s time scale for volume V is much shorter than in
model A, while temperature T has the observer’s time scale similar to that in model
A, i.e., greater and do not contribute to entropy production (2.36). By the difference
in time scales for V and T , the equilibrium process in this model B has V̇ nearly
zero (similar to A model Ṫ is nearly zero), giving zero entropy production (2.36) (in
the other, nonequilibrium processes, V̇ may be great). Cf. analogous discussion of
model A and Sect. 2.3, Rem.48 in Chap.3.

Important is that equilibrium states passed during such reversible processes are
stable. Such a reversible process must be slow because the time scale (for volume) in
the usual (irreversible) processes is much less than the relaxation time—practically
finite time of achieving an equilibrium state during a change of V from the old
(perturbed) value to the new equilibrium value during the process in B . These results

8 In the Sect. 3.7 a (nonuniform) fluid model is discussed which as a special case leads to uniform
fluid of type B but with linear dependence on V̇ ; namely, for nonequilibrium stress the relation
(3.211) may be written as a special case of (2.34), (2.35)

PN = −(ζ/V)V̇

Here the proportionality coefficient (possible function of V , T ) is written with the help of volume
viscosity coefficient ζ = ζ̂(V , T) used in nonuniform models of Sect. 3.7. From (2.37) it follows
that ζ → 0 which is of course in accord with (3.197). Moreover, usually as regular condition, we
demand only positive ζ , see Rem. 9 in this chapter.
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will be explicitly demonstrated in examples of reversible isothermal and adiabatic
processes discussed in Rem.48 in Chap.3 in linear fluid of Sects. 3.7, 3.8 (uniform
case of which may be considered as model B).9

Equations (2.38) (which are in fact the Gibbs equation with equilibrium pressure
Po, cf. (2.18), (2.19) of model A) are valid also in nonequilibrium processes and
prove (in this uniform system B) an analog of the local equilibrium hypothesis of
irreversible thermodynamics [12, 16].

Again, not all results formodel B are valid if we come tomore complicatedmodels
C and D.

C. Fluid with a higher order memory in volume [4] has constitutive equations
(2.8) and therefore by (2.12)

F = F̂(V , V̇ , V̈ , T) (2.39)

Inserting it in the reduced inequality (2.13) we obtain

−Tϑ = ((∂F̂/∂V)+P)V̇+((∂F̂/∂T)+S)Ṫ+(∂F̂/∂V̇)V̈+(∂F̂/∂V̈)
...

V⇔ 0 (2.40)

which by principle of admissibility (cf. end of Sect. 2.1) must be valid in any
thermokinetic process. Because of linearity in

...

V and Ṫ we obtain (by Lemma A. 5.1
analogously as above) the identities

∂F̂/∂V̈ ∞ 0 (2.41)

∂F̂/∂T = −S (2.42)

Therefore, (instead of (2.8)) we have

F = F̂(V , V̇ , T), S = Ŝ(V , V̇ , T), U = Û(V , V̇ , T), P = P̂(V , V̇ , V̈ , T) (2.43)

and inequality (2.40) then gives (note nonlinearity of P̂ in V̈ )

− Tϑ = ((∂F̂/∂V) + P)V̇ + (∂F̂/∂V̇)V̈ ⇔ 0 (2.44)

Motivated analogously as in (2.28) we define the equilibrium process in model C
by

V̇ = 0, V̈ = 0 (2.45)

9 As we noted in Rems.12 in Chap.1, 6, 11 in this chapter, the stability conditions of equilibria
must be added which in model B means that for equilibrium pressure (2.33) and (2.26) we have
∂P̂o/∂V < 0, ∂Û/∂T > 0. This follows from the fact that equilibrium in model B is, similarly
as in model A (see Rem.7 in this chapter), a special case of equilibrium in a model of nonuniform
fluid from Sect. 3.8, cf. (3.256), (3.257). Stability forms a part of regular conditions (see end of
Sect. 1.1, Rem.6 in this chapter). To exclude rather pathological cases in applications we add to
regular conditions that PN = 0 only if V̇ = 0 (entropy production ϑ̂(V , V̇ , T) has a sharp minimum
at V̇ = 0, i.e., equalities in (2.30), (2.37) are excluded). In linearized model B from Rem.8 such
regularity means that volume viscosity coefficient is only positive ζ > 0, cf. (3.232).
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Production of entropy is now a function ϑ = ϑ̂(V , V̇ , V̈ , T) (cf. (2.44)) and has a
minimum in equilibrium (2.45). Thus

d

dλ
ϑ̂(V ,λV̇ ,λV̈ , T) |λ=0 = 0 (2.46)

for arbitrarily chosen V , V̇ , V̈ , T where λ is a real parameter (sufficient inequality of
minima (analogical to (2.30)) will not be discussed for simplicity).

We use the following definitions in model C for all V , T :
equilibrium pressure Po

Po = P̂o(V , T) ∞ P̂(V , 0, 0, T) (2.47)

nonequilibrium pressure PN

PN = P̂N (V , V̇ , V̈ , T) ∞ P̂(V , V̇ , V̈ , T) − P̂o(V , T) (2.48)

equilibrium free energy Fo

Fo = F̂o(V , T) ∞ F̂(V , 0, T) (2.49)

nonequilibrium free energy FN

FN = F̂N (V , V̇ , T) ∞ F̂(V , V̇ , T) − F̂o(V , T) (2.50)

Therefore, these definitions have in equilibrium (2.45) the following properties

F̂N (V , 0, T) = 0,
∂F̂N

∂V
(V , 0, T) = 0, P̂N (V , 0, 0, T) = 0 (2.51)

Inserting (2.44) to (2.46) and using (2.47)–(2.51), we obtain equality linear in
(arbitrarily and independently chosen) V̇ and V̈ and therefore coefficients standing
in this equality by V̇ and V̈ must be identically zero; this means

∂F̂o/∂V = −Po (2.52)

∂F̂N

∂V̇
(V , 0, T) = 0 (2.53)

The ultimate form of entropy production is (by (2.47)–(2.52) in (2.44))

− Tϑ = ∂F̂N

∂V
V̇ + ∂F̂N

∂V̇
V̈ + PN V̇ ⇔ 0 (2.54)
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Again, results (2.41), (2.42), (2.52), (2.54) are not only necessary but also sufficient
for fulfilling (2.40). But in this material model with higher order memory the ther-
modynamic quantities F, S, U are functions not only T , V but also V̇ , free energy
is potential for S (2.42), but only equilibrium part Fo is a potential for equilibrium
pressure Po (2.52). By (2.42), (2.43), (2.50), (2.52), (2.53)

Ḟ = −SṪ − PoV̇ + ∂F̂N

∂V
V̇ + ∂F̂N

∂V̇
V̈ (2.55)

This result gives the classical Gibbs equation only in equilibrium process (2.45),
i.e., analog of “local equilibrium” hypothesis is not valid in this material model C.
Two last members in (2.55) contribute to the entropy production.

Using appropriate regular condition (analogously as in Rems.7, 9 in this chapter)
we can achieve that inmodel C the equilibrium process is identical with the reversible
or zero production processes, but we omit this for simplicity.

Again, other results follow in the last model D.
D. Fluid with memory in volume and temperature (2.9). Then, by (2.12), the

constitutive equation for free energy is

F = F̂(V , V̇ , T , Ṫ) (2.56)

Inserting it in (2.11) we have

− Tϑ = ((∂F̂/∂V) + P)V̇ + ((∂F̂/∂T)+ S)Ṫ + (∂F̂/∂V̇)V̈ + (∂F̂/∂Ṫ)T̈ ⇔ 0 (2.57)

According to the admissibility principle (quoted under (2.13)) and because of lin-
earity of (2.57) in V̈ and T̈ we obtain (by Lemma A. 5.1 analogously as before) the
identities

(∂F̂/∂V̇) ∞ 0, (∂F̂/∂Ṫ) ∞ 0 (2.58)

Therefore, in material model D

F = F̂(V , T) (2.59)

and from (2.57) it remains (nonlinear in V̇ , Ṫ by (2.9)2,3))

− Tϑ = ((∂F̂/∂V) + P)V̇ + ((∂F̂/∂T) + S)Ṫ ⇔ 0 (2.60)

In further results we obtain equilibrium process in model D defined as follow

Ṫ = 0, V̇ = 0 (2.61)

motivated again by zero entropy production (cf. under (2.11)). At equilibrium, the
entropy production is minimal and therefore
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d

dλ
ϑ̂(V ,λV̇ , T ,λṪ) |λ=0 = 0 (2.62)

d2

dλ2 ϑ̂(V ,λV̇ , T ,λṪ) |λ=0 → 0 (2.63)

valid for any V , V̇ , T , Ṫ ; λ is a real parameter. Inserting (2.60) into (2.62) we obtain
an equality linear in arbitrary values of V̇ , Ṫ and therefore by standing coefficients
must be zero (using again Lemma A. 5.1). This gives identities

∂F̂/∂V = −Po (2.64)

∂F̂/∂T = −So (2.65)

where we use the following definitions in model D:
equilibrium pressure Po

Po = P̂o(V , T) ∞ P̂(V , 0, T , 0) (2.66)

equilibrium entropy So

So = Ŝo(V , T) ∞ Ŝ(V , 0, T , 0) (2.67)

Therefore, the Gibbs equation is valid in the form

Ḟ = −SoṪ − PoV̇ (2.68)

i.e., free energy is a potential for both equilibrium values of entropy and pressure.
Defining in model D the nonequilibrium pressure PN

PN = P̂N (V , V̇ , T , Ṫ) ∞ P̂(V , V̇ , T , Ṫ) − P̂o(V , T) (2.69)

and the nonequilibrium entropy SN by

SN = ŜN (V , V̇ , T , Ṫ) ∞ Ŝ(V , V̇ , T , Ṫ) − Ŝo(V , T) (2.70)

we obtain the entropy production (2.60) in the final form

− Tϑ = PN V̇ + SN Ṫ ⇔ 0 (2.71)

It may be seen that results (2.58), (2.64), (2.65), (2.71) are not only necessary but
also sufficient for fulfilling (2.57).

Inserting (2.60) into (2.63) we obtain negative semidefinite quadratic form in V̇ , Ṫ
with coefficients in equilibrium (2.61) and therefore, e.g.,
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∂P̂N

∂V̇
(V , 0, T , 0) ⇔ 0,

∂ŜN

∂Ṫ
(V , 0, T , 0) ⇔ 0

For simplicityweomit further results aswell as the discussion of regularity conditions
permitting equivalence of equilibrium process with the reversible and zero entropy
production processes in model D (which are similar as in Rems.7, 9 in this chapter).

We can see that in principle the same physical systemmay be described by various
models with various constitutive equations with various entropies (cf., e.g. (2.25),
(2.70)) and with various equilibrium processes (cf. (2.28), (2.45), (2.61)); see also
the Sect. 2.3.

In “equilibrium thermodynamics” model A and in model B “not far from equilib-
rium” (and with no memory to temperature) the entropy may be calculated up to a
constant. Namely, in both cases S = Ŝ(V , T) (2.6)2, (2.25) and we can use the equi-
librium processes (2.28) in B or arbitrary processes in A for classical calculation of
entropy change: by integration of ∂Ŝ/∂T or ∂Ŝ/∂V expressible by Gibbs equations
(2.18), (2.19), (2.38) through measurable heat capacity ∂Û/∂T or state Eqs. (2.6)3,
(2.33) (with equilibrium pressure Po in model B).10 This seems to accord with such
a property as in (1.11), (1.40) in Sects. 1.3, 1.4. As we noted above, here the Gibbs
equations used were proved to be valid not only in classical equilibrium thermody-
namics (2.18), (2.19) but also in the nonequilibriummodel B (2.38) and this expresses
the “local equilibrium hypothesis” in model B (it will be proved also in nonuniform
models in Chaps.3 (Sect. 3.6), 4, while in classical theories of irreversible processes
[12, 16] it must be taken as a postulate).

On the other hand, in material models C, D with longer range memory or also
with memory in temperature, the entropy cannot be calculated: because of (2.43)2,
(2.9)2, we have no possibility to express, e.g., ∂Ŝ/∂V̇ , through measurable quantities
because of more complicated (2.55) (as distinct from the finding of ∂Ŝ/∂V from
Gibbs equation (2.38) above). In model D, the Gibbs equation in the form (2.68) is
valid, but it permits to calculate only the equilibrium (part of) entropy. This seems
to correspond with property (1.37) in these models C, D.

Models A, B, C, D illustrate the general behaviour noted at the end of Sect. 1.4
and will be discussed further in the following Sect. 2.3.

Summary. This Section illustrates the application of a typical and genuine ther-
modynamic requirement—the admissibility principle or the conformity with the
entropic inequality (the Second Law)—on the fluid models introduced in preced-
ing Section. The principle simplifies the constitutive equations, cf. e.g., (2.20),
(2.22), and (2.23), as well as the entropy inequalities, cf. e.g. (2.21) and (2.27);
reveals the relationships between (thermodynamic) variables, e.g., (2.16), (2.24);

10 Internal energy may be calculated with Gibbs equations (2.19), (2.38) again with precision of
constant, cf. Sect. 1.3. Calculation of free energy (2.14), (2.23) needs the constant with which the
entropy is known (if temperature changes) which may be obtained on the basis of the “Third Law”
of thermodynamics [48, 49] (zero entropy value of pure solids at 0 K). This is a rather constitutive
assertion (as distinct from general First and Second Laws) appropriate, e.g., for calculating of
equilibrium in reacting mixture, cf. Sect. 2.4.
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http://dx.doi.org/10.1007/978-3-319-02514-8_1
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confirms the validity of Gibbs equations, e.g., (2.18), (2.19); and “shows sources” of
irreversibility (typically nonequilibrium variables), see (2.48), (2.50), or (2.69),
(2.70), and inequalities below the latter.

2.3 Level of Description and Internal Variables

As we noted in Sect. 1.1 to describe different materials thermodynamically, general
postulates (balances, Second Law) must be supplemented by constitutive equations.
These are not only themathematical models (or “ideal materials”) of different classes
of materials (like gases, liquids, solids, etc.) but, because it is superfluous and prac-
tically impossible to describe the behaviour of a body in all details, they represent
a level of description stressing typical properties important in intended applications
[17, 50, 51]. Besides others (e.g., mixture may be regarded as a single (pure, one
constituent) body if diffusion and chemical reactionsmay be neglected) the important
features of the level of description are time and space scales of the observer—typical
time and length intervals in which a change of observed properties in the studied phe-
nomenon plays a role. Intervalsmuch smaller or greater than these scales are regarded
by observer as infinitesimal (instants or points) or infinite respectively. On the other
hand, each property of real material has its own natural time or space scales as, e.g.,
relaxation times (cf. memory and stability in Sects. 2.1, 3.8) or lengths on which the
properties’ changes influence the responses (cf. nonlocality in Sect. 3.5). Of course,
all scales in our phenomenological (macroscopic) approach are still much greater
than natural scales of molecular phenomena (cf. Sect. 1.1, Rem.5 in Chap.1).11

The choice of constitutive equations means in fact the choice of such properties
the natural scales of which are comparable with the observer’s scales. Quantities
the natural scales of which are much greater than the observer’s scale play a role
of constant parameters in constitutive equations (they are in “frozen equilibrium”
or uniform); on the other hand, quantities with a much shorter natural scale than
the observer’s may be regarded as in (“relaxed”) equilibrium or having localized
influence through their gradients.

We discuss the level of description on uniform fluid models from Chap.2. Here
the space gradients have no influence (observer’s space scales are much less than
the natural space scales) and therefore we discuss only the time scales.12 Different
constitutive models may be applied on the same physical system, say models A, B,
C, D in Sect. 2.2 on a uniform, closed fluid body. This corresponds to the use of
various observer’s scales relative to the same natural time scales which are in this

11 Stability of states, i.e., the return (by some relaxation time) after some perturbation is not self-
evident. For equilibrium states this is discussed in Sects. 3.8, 4.7, cf. Sects. 1.1, 1.2, Rems.11 in
Chap.1, 7, 9 in this chapter; for stability of other states (steady states, dissipative structures) see
[11, 16, 52–55].
12 The following results are obviously valid locally in nonuniform systems of Chaps. 3, 4.Moreover,
space scales may be discussed analogously, cf. similarity of differential memory with local action
in Sect. 3.5.
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example the relaxation times for T and V (which may be very different). Relative
to them the observer’s scales for T , V are very great for model A, for model B, C
is the observer’s scale for V comparable (with further shortening in model C) while
the observer’s scale for T remains very great; finally in model D the observer’s scale
is also comparable to T .

Processes in model A (which are all the equilibrium processes here, cf. Sect. 2.2)
may be regarded as the time sequence of equilibrium states (in the sense of S4
in Sect. 1.2) because the “infinitesimal” instant (in fact the time interval between
adjoining states) in A is greater than the natural scale (relaxation time) of quantities
V , T which are in (relaxed) equilibrium, see also Rem.48 in Chap.3.

Only a part of processes in model B is the equilibrium process (2.28) because
only T (but not V ) is in relaxed equilibrium, (see Rem.9). Such a limitation is
more severe for models C, D where neither T nor V are relaxed in corresponding
equilibrium processes.

Correspondingly, as we explained at the end of Sect. 2.2, the entropy in A may
be calculated with precision of a constant using “classical” Gibbs equation. Entropy
in B may be calculated (with precision of constant) through Gibbs equation but
only with equilibrium pressure (2.33) (principally measurable in equilibrium) and,
ultimately, entropy cannot be calculated in the remaining models C, D. It may be
even expected [17] that the difference between entropies of the two constitutive
models with different observer’s scales, say C and A, is such that entropy in model
A is greater than in model C because in some instant entropy grows in model C
(nonnegative entropy production) while in model A has still an equilibrium (greater)
value. It is because that “instant”, i.e., “infinitesimal” time interval is, by the choice
of observer’s scale, much greater in model A than C. This dependence of entropy
on the chosen model (constitutive equation even in the same material body) causes
nonmeasureability of entropy and nonexistence of entropometers.

In this connection we recall the difference between the real material and its math-
ematical model, cf. Sect. 1.1 and below (2.9). In the model, i.e., in its constitutive
equations, the rates may be arbitrary (e.g., Ṫ , V̇ in model A, cf. Rem.3 in Chap.1)—
study of such mathematical models is in fact a part of pure mathematics. But in
applications of the model these rates cannot be arbitrary but must be in accord with
chosen observer’s scale, e.g., in using model A, the maximum rate V̇ must be such
that observer’s scale V/V̇ (where V is some typical value) is much greater than the
relaxation (natural scale) time for V . The model is thus tested on real materials and
further simplifications or limitations on its parameters may then result.

An often used method describing the influence of the (long) past and expressing
the natural scales more explicitly is the method of internal variables [17, 56–64].
Constitutive equations (for simplicity we discuss the uniform fluid body) even with
long range memory are functions of external (i.e., from outside controlled) variables
likeV ,T and of (even several) internal variables βi. Eachβi is controlled by evolution
equation for its rate β̇i

β̇i = fi(V , T ,βj) i, j = 1, 2, . . . (2.72)

http://dx.doi.org/10.1007/978-3-319-02514-8_1
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http://dx.doi.org/10.1007/978-3-319-02514-8_1
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given by constitutive function fi of (generally all) external and internal variables.13

Solving this system of differential Eq. (2.72) from the present time (as initial condi-
tion) to the past and inserting solutions for the present βj into constitutive equations
we obtain such equations for responses (2.4) as functionals in thermokinetic process
(2.5) from the past to the present instant.

The problem is rather in the physical identification of these “hidden” βj but if they
are known the use of internal variables with evolution Eq. (2.72) is another way to
describe materials with (long range) memory. Solutions of (2.72) is facilitated in the
case of fadingmemory (where always β̇j < 0 [61]), but alsomore intricate cases may
be described as phase changes [65], plasticity and generally any hysteresis [66], cf.
also Rem.31 in Chap.3; important are applications in chemically reacting mixtures
(where βj may be, e.g., “extent of reaction”) which will be discussed here in Sect. 2.4
and in Chap.4.

Another simplification in solving (2.72) follows from the fact that from the gen-
erally immense number of internal variables only those play a role whose relaxation
time (characterized by βi/β̇i for some typical values of βi, β̇i is comparable with
the observer’s time scale). Internal variables with sufficient shorter or greater relax-
ation times are in frozen or relaxed equilibrium respectively. In both these situations
β̇i = 0. In the first case βi are constant, in the second case, for example, the equi-
librium values may be expressed from (2.72) as functions of T , V . Inserting these
values in constitutive equations (for βj contained in them in such internal variables’
description) we obtain model A (for these relaxed internal variables).

In the next Sect. 2.4 we show a simple example of an internal variable.

2.4 Uniform Reacting Mixture in Closed System

Balance of energy (2.1) and entropy inequality (2.2) may be applied also for more
complicated models [59, 67], namely mixtures and multiphase systems.14 Similarly
classical thermodynamics balances (2.1), (2.2) have given the equilibrium result
(namely model A of Sect. 2.2) and we can then obtain classical results for chemical
and phase equilibria; we show them on simple examples in Sects. 2.4, 2.5.

In this Sect. 2.4 we discuss the uniform fluid (i.e., gas or liquid) mixture composed
of two constituents (components of mixture) 1, 2 which (possibly) chemically react
by a simple chemical reaction

1 = 2 (2.73)

13 The name internal (or hidden) variables (or parameters) are connected with the fact that they are
present in expression for entropy production but not in the expression for power (where typically
external variables occur, likeV ). Internal variables therefore cannot be controlled during the process
with the exception of initial values.
14 However, these models are closed (not exchanging mass with surroundings). In their opposite-
open systems (the whole mass of which is not constant)-it is not clear how to formulate heat when
mass passes through the boundary simultaneously [12, 43]. Plausible formulation seems to be
known in continua, cf. Sects. 3.1, 4.4 and Rems.23 in Chap.3, 11 in Chap.4.
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The whole mass m of the system is constant and this closed system, exchanging
only heat and volume work with its surroundings, is supposed to be described
again by fields (time function) (2.3) and (2.4) added with fields of (positive)
masses m1(t), m2(t) of both constituents 1, 2 respectively. For closed systems (cf.
Sects. 1.2, 2.1) the balance of energy (2.1) and entropy inequality (2.2) are valid but
now together with the balance of mass

m1 + m2 = m (2.74)

where the whole (positive) mass of the system m is a known constant. This mass
balance may be also written for time derivatives

ṁ1 + ṁ2 = 0 (2.75)

Using free energy (2.12), we can also use the reduced inequality (2.13) joining energy
balance and entropy inequality.

For the most simple model (in fact extended model A of Sects. 2.1, 2.2) of the
fluid mixture without memory, motivated by principles of determinism (with en-
larged thermokinetic process by masses m1, m2) and equipresence, the following are
postulated for responses (2.4)

U = Ũ(T , V , m1, m2) = Ū(T , V , m2) (2.76)

S = S̃(T , V , m1, m2) = S̄(T , V , m2) (2.77)

P = P̃(T , V , m1, m2) = P̄(T , V , m2) (2.78)

F = F̃(T , V , m1, m2) = F̄(T , V , m2) (2.79)

((2.79) follows from definition (2.12)).
Memory is removed completely assuming that values of responses in the present

instant are given by values of thermokinetic process T , V , m1, m2 at the same present
instant. The second functions, i.e., the functions (2.76)2–(2.79)2, follow for our closed
system excluding m1 by (2.74), because the whole mass m is the known constant.

Before discussing the physical sense of this model, we deduce the consequences
of the admissibility principle: entropy inequality (2.2)must be valid at any admissible
thermodynamic process. The last one is (by definition) the set of any functions (2.3),
(2.4), m1(t), and thermokinetic process

T(t), V(t), m2(t) (2.80)

consistent with proposed constitutive equations (2.76)–(2.79) and fulfilling the
balance of energy (2.1) and mass (2.74), cf. Sect. 2.1 (differentiability needed is
assumed). Again, any thermokinetic process (2.80) gives some admissible thermo-
dynamic process: it gives present values of independent variables in (2.76)–(2.79),

http://dx.doi.org/10.1007/978-3-319-02514-8_1
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balance of energy (2.1) is fulfilled by appropriate Q (2.3), and mass balance (2.74)
is fulfilled by appropriate m1 (m is constant). Therefore, the constitutive principle of
admissibility demands the fulfilling of inequality (cf. Sects. 2.1, 2.2)

− Tϑ = ((∂F̄/∂T) + S)Ṫ + ((∂F̄/∂V) + P)V̇ + (∂F̄/∂m2)ṁ2 ⇔ 0 (2.81)

(arisen by inserting constitutive equation (2.79) into reduced inequality (2.13)) at
any thermokinetic process (2.80), i.e. also at any mutually independent values of
T , V , m2, Ṫ , V̇ , ṁ2.

Thus from (2.81) we obtain (using Lemma A. 5.1) for fluid mixture without
memory the following identities (valid at any T , V , m2)

∂F̄/∂T = −S (2.82)

∂F̄/∂V = −P (2.83)

∂F̄/∂m2 = 0 (2.84)

Therefore, instead of (2.76)–(2.79) we have (see (2.12))

U = Ū(T , V), S = S̄(T , V), P = P̄(T , V), F = F̄(T , V) (2.85)

As follows then from (2.81) this fluid mixture without memory has zero entropy
production ϑ = 0 in every process and also Gibbs equations (2.18), (2.19) are valid
here. In fact, this model of fluid mixture without memory is the same as model A of
Sects. 2.1, 2.2 (the form of functions (2.85) depends on the whole mass m chosen).

A trivial example of this model is the nonreacting fluid mixturewherem1, m2 (and
therefore m) are constant parameters on which, for example, the form of F̄(T , V)

depends and (2.84) is valid trivially, see also the next model with memory. A more
interesting example of such afluidmixturewithoutmemory is a reactingfluidmixture
(with reaction (2.73)) in chemical equilibrium given by result (2.84), namely zero
chemical affinity (see below and Rem.15). At usual (regular) conditions we can
calculate m2 from (2.73) (and from known m also m1 by (2.74)) as the function of
T , V which then provide results (2.85) from constitutive functions (2.76)–(2.79).
All processes here are sequences of chemical equilibria (shifted with T , V ). A more
detailed physical insight into this model will be discussed below in the terms of the
following model of reacting mixture with memory of which this model is a special
“equilibrium” case.

The model of uniform chemically reacting fluid mixture with memory follows
naturally because it describes chemical kinetics in uniform fluid mixture as an irre-
versible (nonequilibrium) process with (for simplicity) reaction (2.73) in instanta-
neous volumeV and temperature T . Inside such a reactingmixture themassesm1, m2
of constituents transform to each other during the reaction and this reacting mixture
exchanges only the volume work and heat(ing), but not masses of constituents, with
its surroundings; therefore the mass of mixture m, given by (2.74), is (a known)
constant. The forms of balance of energy (2.1) and entropy inequality (2.2) remain



56 2 Thermodynamics of Uniform Systems

valid as well as that of mass balance (2.74). Constitutive equations (2.76)–(2.79)
remain the same here (present values of thermokinetic process give present values
of responses) but, as follows from experience of chemical kinetics, the rate of chem-
ical reaction (which may be expressed here by ṁ2 and depending on concentrations
(densities—mass per unit volume) and temperature) is given by evolution equation

ṁ2 = f̄ (T , V , m2) (2.86)

Taking this (2.86) (with present values of ṁ2, T , V , m2) as an additional constitu-
tive equation to the original set of constitutive equations (2.76)–(2.79) (note that it is
in accord with the principle of equipresence), we obtain an example of material with
a long range memory expressed through the evolution equation (of the type (2.72))
with the internal variable m2. Such a material model [59] (which for simple reaction
(2.73) may be interpreted also as a fading memory model [61]) may be investigated
with the use of the constitutive principle of admissibility: entropy inequality and
therefore reduced inequality (2.13) must be valid in any admissible thermodynamic
process (defined in the same way as in the preceding case around (2.80) but adding
(2.86) to constitutive equations). Now, an admissible process may be obtained in this
closed system with known mass m if we choose arbitrary functions V(t), T(t) from
past to present (therefore we can choose arbitrarily and independently V , V̇ , T , Ṫ at
the present time) and arbitrary valuem2 at present time. Indeed, the solution of (2.86)
with this value m2 as the initial one (from the present moment to past; we assume
its existence with 0 < m2 < m) gives the function m2(t) and from such obtained
(2.80) we get responses (2.4) (and F(t) by (2.12)) through constitutive equations
(2.76)–(2.79). With appropriate time functions Q(t) and m1(t), the fulfilling of the
balances (2.1) and (2.74) is achieved.

Inserting constitutive equation (2.79) into reduced inequality (2.13) we obtain
again inequality (2.81) and this, by the admissibility principle, must be valid at any
values of V , V̇ , T , Ṫ , m2 at the present instant. By usual arguments (based on the
Lemma A. 5.1 from AppendixA.5) we obtain identities

∂F̄/∂T = −S (2.87)

∂F̄/∂V = −P (2.88)

But the last member in (2.81) remains in this reacting fluid mixture with memory,
because ṁ2 is not arbitrary but given by the evolution Eq. (2.86):

− Tϑ = (∂F̄/∂m2)ṁ2 ⇔ 0 (2.89)

Namely, the last member in (2.81) describes the irreversible process of chemical
kinetics in the reacting system. Note that the final constitutive equations remain
in the form (2.76)–(2.79) fulfilling (2.87), (2.88) (Eq. (2.89) expresses the typical
influence of an internal variable on entropy production).
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We denote −∂F̄/∂m2 (the negative derivative of function (2.79)2 of reacting fluid
mixture with memory) as the chemical affinity (cf. also (2.94). Because of the simple
reaction (2.73) we use mass units here; for complicated stoichiometry we prefer
molar units, see (4.176)).15

Motivated by zero entropy production in (2.89) we define the equilibrium process
in the reacting fluid mixture with memory by zero reaction rate

ṁ2 = 0 (2.90)

at any T , V . Correspondingly, we denote as equilibrium value mo
2 of m2 which is

given by solution of
f̄ (V , T , mo

2) = 0 (2.91)

Uniqueness and 0 < mo
2 < m is assumed and to such regularity we add the condition

that when ṁ2 ≤= 0 then also affinity −∂F̄/∂m2 ≤= 0 and moreover we assume that
affinity is continuous in m2 (i.e., the equilibrium process is identical to those of zero
entropy production and those which are reversible, cf. Sect. 2.2 models A, B). Then
also (chemical) affinity in equilibrium must be zero

− (∂F̄/∂m2)(T , V , mo
2) = 0 (2.92)

because if ṁ2 > 0 or ṁ2 < 0 then (∂F̄/∂m2) < 0 or (∂F̄/∂m2) > 0 respectively as it
follows from (2.89). Therefore, in equilibrium both members of product (2.89) must
vanish simultaneously (thus the form of functions f̄ and affinity are not independent,
cf. Sect. 4.9).

In such a regular model the equilibrium may be also defined by zero chemical
affinity (2.92) with result (2.90) (further discussion see Sect. 4.7).

The previous model of fluid mixture without memory (2.82)–(2.85) may be
understood as the present model with memory in equilibrium process (as relaxed
model from Sect. 2.3). It may be looked upon as the limiting case of a short natural
time scale (caused by a great chemical reaction rate (2.86)) in comparison with the
observer’s scale. Equilibrium is achieved instantaneously in the observer’s scale of
this previous model and therefore affinity is persistently zero (2.84) (cf. (2.92)); m2
in (2.76)–(2.79) (for m fixed) then follows from (2.91) in fact as mo

2, (2.85) indeed.
Arbitrariness and independency of m2 and ṁ2 used in deduction of (2.84) of previ-
ous model follows, because in the great observer’s scale, they are in fact the initial
value m2 and its time change selected arbitrarily in present model with memory. On
the other hand, a nonreacting mixture is another extreme (“frozen” equilibrium in
Sect. 2.3) at which the rate (2.86) is practically zero (the natural scale is much greater
than the observer’s scale).

15 Using negative sign in this definition of chemical affinity we follow the tradition
[12, 13, 15, 19, 68] and it even seems more natural to use such a reverse sign, cf. (2.94), (4.174),
(4.176). Affinity with reverse sign was used, e.g., in [8, 33, 34, 69, 70].

http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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At the end of this Section we discuss the starting forms of constitutive equations
(2.76)1–(2.79)1 (their obtaining will be discussed below) which were used (with
m as parameter) in a reacting mixture (where evolution equation (2.86) is given),
in an equilibrium “relaxed” mixture (with (2.85)) and in a nonreacting mixture (all
results of model A in Sect. 2.2 may be used with m2, m1 as parameters). We call
the derivatives of (more general) function F̃ with respect to masses the (specific)
chemical potentials g1, g2

g1 = ∂F̃/∂m1, g2 = ∂F̃/∂m2 (2.93)

of both constituents (they are in fact the classical definitions inmass units; cf. (2.100)).
Using (2.79) and (2.74) we can see that chemical affinity is (see Rem.15)

− ∂F̄/∂m2 = g1 − g2 (2.94)

Therefore, the condition of zero affinity (cf. (2.92) or (2.84)) gives equality of
chemical potentials for reaction (2.73). Because of (2.87), (2.88) (or (2.82), (2.83))
we can see that

∂F̃/∂T = −S, ∂F̃/∂V = −P (2.95)

and therefore we have the Gibbs equation

Ḟ = −SṪ − PV̇ + g1ṁ1 + g2ṁ2 (2.96)

Defining the free enthalpy (Gibbs energy) G as

G = F + PV (2.97)

we obtain with (2.96) the Gibbs equation in the form

Ġ = −SṪ + VṖ + g1ṁ1 + g2ṁ2 (2.98)

From the assumption of invertibility of (2.78) for V we can use T , P, m1, m2 as
classical independent variables. For instance,

G = Ǧ(T , P, m1, m2) (2.99)

and (2.98) gives the classical forms for chemical potentials [67]

g1 = ∂Ǧ/∂m1, g2 = ∂Ǧ/∂m2 (2.100)

In uniform systems we have the extensivity of V , U, S (and therefore also
F, G). This means that, e.g., F is a homogeneous function of first order in m1, m2,
i.e., for any real α it is valid that
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F̃(T ,αV ,αm1,αm2) = αF̃(T , V , m1, m2) (2.101)

This property follows from additivity of these quantities, cf. Rem.7 in Chap.3 (for
S and U this may be expected from their definitions and from the extensivity of heat
and work in homogeneous processes, see Sect. 1.2); other fields, like T , P, g1, g2,
are intensive ones .

By Euler theorem for homogeneous functions

V(∂F̃/∂V) + m1(∂F̃/∂m1) + m2(∂F̃/∂m2) = F̃(T , V , m1, m2) (2.102)

from which, by (2.95), (2.93) and (2.97)

G = g1m1 + g2m2 (2.103)

From (2.103) and the Gibbs Eq. (2.98) follows the Gibbs-Duhem equation

SṪ − VṖ + ġ1m1 + ġ2m2 = 0 (2.104)

Thus the classical relations of equilibrium thermodynamics have been obtained.
Finally, we discuss how to obtain (in principle) the constitutive equations

(2.76)–(2.79)1. This is possible for the model of nonreacting mixture using the cal-
culation of S, U as in model A described at the end of Sect. 2.2 for fixed but arbitrary
parameters m1, m2 (this may be obtainable also for chemical reacting mixture by
shortening of the observer’s scale sufficiently to obtain chemical reaction rates of
nearly zero). Integration constants also depend on such parameters. They may be
obtained in the gas phase from U and S of pure constituents provided the pressure
of the initial state is sufficiently low to use the change of U and S in mixing for ideal
gases (such change in U is zero; cf. ideal gas from Appendix A. 1, Sect. 4.8). For
liquid or solid phase we choose the initial state in phase equilibria with a gas phase
(cf. conditions of phase equilibria (2.116), (2.129)) values ofwhichmay be calculated
as before. By (2.103) and the composition of such a phase we know the initial value
of G and from (2.98) every (2.76)1–(2.79)1 follows. Constitutive evolution equation
for reaction rate (2.86) then remains as a postulate, the explicit form of which can
be found from “external” theories, i.e., chemical kinetics. This is quite a common
approach in thermodynamics of chemically reacting mixtures. A different approach
is shown here in Sect. 26.

Summary. Section 2.4 illustrates the extension of rational thermodynamics
methodology on mixtures with chemical reaction(s) using a very simple model of
two-component uniformmixture. The composition variable(s) enters the constitutive
equations, cf. (2.76)–(2.79). In a uniform mixture, the classical chemical thermody-
namics was obtained, i.e., its validity also in nonequilibrium covered by this model
was demonstrated, cf. e.g., (2.82), (2.83), (2.85), (2.87), (2.88). Traditional quantities
known from the equilibrium chemical thermodynamics may be thus introduced and
used out of equilibrium—affinity by (2.89), chemical potential by (2.93) or (2.100),
or Gibbs energy by (2.97). Gibbs and Gibbs-Duhem equations also remain valid,

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_26
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cf. (2.96) and (2.104), respectively. The necessity of “external information” from
chemical kinetics is indicated by (2.86); this requirement will be relaxed by more
general thermodynamic treatment in Sect. 4.9.

2.5 Phase Equilibria

Another model for which (2.1), (2.2) may be applied is the two-phase fluid system
without memory which models two-phase equilibria in pure fluid. It has one con-
stituent in two phases which are uniform bodies where the masses and volumes of
which are denoted by m(1), m(2) and V (1), V (2), respectively. For the whole volume
V and mass m we have

V = V (1) + V (2) (2.105)

m = m(1) + m(2) (2.106)

where m is a known constant. Basic laws (2.1), (2.2) may be applied to this whole
two-phase system because it exchanges with its surroundings only heat and volume
work but not a mass (exchange of heat, volume work, and mass between its phases
is possible).

Constitutive equations for a two-phase system are postulated as

U = Ũ(1)(T , V (1), m(1)) + Ũ(2)(T , V (2), m(2)) (2.107)

S = S̃(1)(T , V (1), m(1)) + S̃(2)(T , V (2), m(2)) (2.108)

P = P̃(T , V (1), V (2), m(1), m(2)) (2.109)

Therefore, we assume that energy and entropy are additive—each of them sums
corresponding quantities of both phases taken as pure uniform bodies (i.e., we ne-
glect surface energy or entropy on the phase contact). Memory is excluded because
independent and dependent variables are taken in the same present instant. On the
other hand, the pressure (2.109) and also temperature T (intensive quantities) are
assumed to be the same in both phases (cf. discussion at the end of this Sect. 2.5).
Using the definitions of free energies F for the whole system (2.12) and for both
phases F(1), F(2)

F(α) = U(α) − TS(α) α = 1, 2 (2.110)

we have the constitutive equation for free energy (by (2.106))

F = F̃(1)(T , V (1), m(1)) + F̃(2)(T , V (2), m(2)) ∞ F̄(T , V (1), V (2), m(2)) (2.111)

Because also the reduced inequality (2.13) for the two-phase system is valid,
introducing here (2.111) we obtain with (2.105), (2.106):

http://dx.doi.org/10.1007/978-3-319-02514-8_4
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0 → ((∂F̃(1)/∂T) + (∂F̃(2)/∂T) + S)Ṫ + ((∂F̃(1)/∂V (1)) + P)V̇ (1)

+ ((∂F̃(2)/∂V (2)) + P)V̇ (2) + (g(2) − g(1))ṁ(2) (2.112)

where chemical potentials of both phases are defined as (cf. (2.93))

g(1) ∞ ∂F̃(1)/∂m(1), g(2) ∞ ∂F̃(2)/∂m(2) (2.113)

According to admissibility principle, the entropy inequality must be valid at any
admissible thermodynamic process. The last one is again defined as time functions
for V , V (α), m(α), m, T (α = 1, 2), and (2.107)–(2.111), which fulfill the balances
(2.1), (2.105), (2.106). Again, arbitrary time functions T(t), V (1)(t), V (2)(t), m(2)(t)
(thermokinetic process) suffice to obtain some admissible thermodynamic process,
namely, (2.107)–(2.109) may be found and balances (2.1), (2.105), (2.106) may be
satisfied by appropriate Q, V , m(1) (at given m). Then the inequality (2.112) (fol-
lowing from entropy inequality (2.2), balances (2.1), (2.105), (2.106), and constitu-
tive equation (2.111)) must be satisfied at any mutually independent values in the
present instant T , V (1), V (2), m(2), Ṫ , V̇ (1), V̇ (2), ṁ(2) (because from them may be
constructed a certain thermokinetic process).

In a standard way (with Lemma A. 5.1) we obtain from (2.112) identities

−S = (∂F̃(1)/∂T) + (∂F̃(2)/∂T) = ∂F̄/∂T (2.114)

∂F̃(1)/∂V (1) = ∂F̃(2)/∂V (2) = −P (2.115)

g(1) = g(2) (2.116)

The last Eq. (2.116) expresses the equality of chemical potentials in both phases. As
a result only the equality is valid in (2.112) and therefore all processes in this model
of a two-phase systemmay be considered those of zero entropy production and equi-
librium (and those reversible). Namely, it is an analogical result as for model A in
Sect. 2.2 because we confine to the model without memory: assuming the indepen-
dence of ṁ(2) and m(2) we confine to the system the equilibrium of which (between
the phases) is attained much more quickly than observer’s time scale.

In a similar way we can discuss the more complicated system: a two-phase and
two-constituent fluid system without memory which models (two-)phase equilib-
rium in fluid mixture. The model is composed of two phases (upper indices (2.105),
(2.106)) each representing the (chemically) nonreacting fluidmixture containing two
mutually nonreacting constituents (in the sense of Sect. 2.4; constituents are denoted
by lower indices 1, 2). We have therefore two constituents distributed in two phases
with the masses

m(1)
1 , m(1)

2 , m(2)
1 , m(2)

2 (2.117)

Mass balances are
m(1)
1 + m(2)

1 = m1 (2.118)
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m(1)
2 + m(2)

2 = m2 (2.119)

wherem1, m2 are knownconstants because the system (without chemical reactions) is
closed exchanging heat(ing) and volume work (but not mass) with the surroundings.
The balance of volume (2.105) and energy (2.1) as well as entropy inequality (2.2)
are again valid for the whole system.

Constitutive equations of this two-phase and two-constituent fluid systemwithout
memory are assumed in the form

U = Ũ(1)(T , V (1), m(1)
1 , m(1)

2 ) + Ũ(2)(T , V (2), m(2)
1 , m(2)

2 ) (2.120)

S = S̃(1)(T , V (1), m(1)
1 , m(1)

2 ) + S̃(2)(T , V (2), m(2)
1 , m(2)

2 ) (2.121)

P = P̃(T , V (1), V (2), m(1)
1 , m(2)

1 , m(1)
2 , m(2)

2 ) (2.122)

(U(α) and S(α) are the internal energy and entropy of each phase α = 1, 2, respec-
tively). Pressure P, similar to temperature T , is assumed to be equal in both phases.
Defining the free energies of both phases again by (2.110) we have the constitutive
equation for free energy (2.12) of the system

F = F̃(1)(T , V (1), m(1)
1 , m(1)

2 ) + F̃(2)(T , V (2), m(2)
1 , m(2)

2 ) (2.123)

Now we insert (2.123) into reduced inequality (2.13) (which is valid by (2.1),
(2.2) for the whole system). Because frommasses in (2.118), (2.119) only m(1)

1 , m(1)
2

are independent, we obtain

0 → ((∂F̃(1)/∂T) + (∂F̃(2)/∂T) + S)Ṫ + ((∂F̃(1)/∂V (1))

+ P)V̇ (1) + ((∂F̃(2)/∂V (2)) + P)V̇ (2)

+ (g
(1)
1 − g

(2)
1 )ṁ(1)

1 + (g
(1)
2 − g

(2)
2 )ṁ(1)

2 (2.124)

where chemical potentials of constituents 1, 2 in both phases (2.105), (2.106) are
defined by

g
(1)
1 ∞ ∂F̃(1)/∂m(1)

1 , g
(2)
1 ∞ ∂F̃(2)/∂m(2)

1 (2.125)

g
(1)
2 ∞ ∂F̃(1)/∂m(1)

2 , g
(2)
2 ∞ ∂F̃(2)/∂m(2)

2 (2.126)

Again the time functions (thermokinetic process) for T , V (1), V (2), m(1)
1 , m(1)

2 give
some admissible process (Eqs. (2.120)–(2.123) fulfilling (2.1), (2.118), (2.119)
by some Q, m(2)

1 , m(2)
2 ; m1, m2 are known constants), for which (2.2) and there-

fore also reduced inequality (2.13) must be valid by the dissipation principle.
Therefore, inequality (2.124) must be valid at any values of independent vari-
ables T , V (1), V (2), m(1)

1 , m(1)
2 , Ṫ , V̇ (1), V̇ (2), ṁ(1)

1 , ṁ(1)
2 (because some thermoki-

netic process may be constructed from them; absence of memory means that time for
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attaining the phase equilibrium is much smaller than the time scale of the observer,
i.e., m(1)

1 , m(1)
2 , ṁ(1)

1 , ṁ(1)
2 may be mutually independent). Thus, by usual arguments

(Lemma A. 5.1), we obtain from (2.124) the identities

(∂F̃(1)/∂T) + (∂F̃(2)/∂T) = −S (2.127)

∂F̃(1)/∂V (1) = ∂F̃(2)/∂V (2) = −P (2.128)

g
(1)
1 = g

(2)
1 , g

(1)
2 = g

(2)
2 (2.129)

where the last Eqs. (2.129) are known conditions for phase equilibria: equality of
chemical potentials of both constituents in both phases.

In this and preceding Sects. 2.5, 2.4 (and also in Sect. 2.2 in model A) we showed
how to obtain some classical results of equilibrium thermodynamics without stability
arguments (which use extremes of thermodynamic functions, cf. Sects. 3.8, 4.7) as
it is usually done in classical theory. Its modern version [65, 71, 72] give not only
these results but also stability of equilibrium phases (through conditions like (3.256),
(3.257)); moreover, the Gibbs phase rule may be properly founded as valid for stable
phases [73, 74]. It would be desirable to enlarge these results by some models with
memory and mass exchange (e.g., between the phases and by obtaining the equal-
ity of their temperatures and pressures in equilibrium). But (a sufficiently general)
evolution equation (like (2.86)) is not known and moreover the main problem is how
to formulate (or interpret) the entropy inequality for an open system, i.e., when heat
and mass are simultaneously exchanged (cf. Rems.14 in this chapter, 11 in Chap.4).

Summary. The last Section illustrating the basics of rational thermodynamics
shows how phase equilibria can be treated by this methodology. Constitutive equa-
tions should be modified to describe the effects of different phases, see (2.107)–
(2.109). Traditional condition of phase equilibrium in terms of chemical potentials
was derived, (2.116) or (2.129).
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Chapter 3
Continuum Thermodynamics of Single Fluid

In this chapter, we advance our exposition of rational thermodynamics further. The
uniformity is abandoned and the description of space effects enters the scene. To
keep the explanation simple, we deal with the rational thermodynamics of a single
(pure) substance only (i.e., a substance composed of only one constituent as opposed
to many constituent substances—mixtures—discussed in the following Chap.4) and
confine our discussion to fluids. We thus study properties changing not only in time
but also in the space, but in such a way that the discrete structure of matter may be
ignored. That is, we use the methods of continuum (thermo)mechanics by reducing
properly the space scale (in comparison with uniform bodies of Chap.2). On the
other hand, the timescale will be similar to that in Chap. 2, i.e., we confine ourselves
only to materials with differential memory. Finally, we discuss the linearized case,
which is the most important model in applications, in the subsequent chapters of this
book.1

3.1 Kinematics of Continua

First, we review some basic concepts from deformation theory; although they are not
needed in most applications for fluids they are necessary to develop and understand
the general theory [6–13].

We study the body (composed of a single substance) and its parts which we
perceive through their configurations (connected region in three-dimensional Euclid-
ean space), which this body (or its parts) occupies or may occupy in the space.

1 For simplicity we do not discuss bodies in which there exist surfaces of discontinuity even though
such models are very important in chemical engineering, e.g., they model phase boundaries, surface
chemical reactions, or shock waves. But even in such simplified models (ignoring specific surface
phenomena like surface tension) [1, 2], we obtain the important results of phase equilibria (like
equality of chemical potentials in bulk phases, cf. Sect. 2.5, which may be generalized to Eshelby
tensors of chemical potentials, cf. Rem. 38, [2, 3]). Further generalization with surface phenom-
ena uses configurational forces (in fluids these are chemical potentials related to unit volume)
see [4, 5].
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We select one arbitrary configuration as a reference configuration (we denote it
simply as a “reference”) and radius vectors of points in such reference, X, we call
the particles of the body (identified with their positions).2

The motion of the body is described mathematically as the time succession of the
actual configurations in real space. Namely, vector x (relative to frame discussed in
Sect. 3.2) gives the position of particle, X, in the instant t through the vector function
ϑ called the motion or deformation function as

x = ϑ(X, t) , xi = ϑ i (X J , t) i, J = 1, 2, 3 (3.1)

The second expression is given in the component form (which is a concise form
of xi = ϑ i (X1, X2, X3, t)). For simplicity, we use for the reference and actual
configurations Cartesian coordinates only which need not coincide; therefore, we
denote referential or actual (spatial) components by great or small upper Latin indices
respectively. Motion (3.1) therefore assigns to every particle X its place x in the
actual configuration in the instant t . A given body or its part contains in all its actual
configurations the same particles (as in reference). For a given particle, the X gives
(3.1) its trajectory. A simple example of (3.1) is the rigid motion in Rem. 5, others
(shear, volume expansion, etc.) may be easily written [9, 12, 14]. For simplicity, we
assume that function (3.1) is smooth (continuous and differentiable in both variables)
and invertible for X

X = ϑ−1(x, t) (3.2)

Therefore, two particles cannot be present at the same place and conversely; we
exclude from description such phenomena as a tearing or a penetrating of the bodies,
destruction and origin of new particles and trajectories, crossing trajectories, etc.
A typical quantity η we are interested in (which may be scalar, vector, or tensor) is
a field, i.e.,

η = η(x, t) (3.3)

η = η(X, t) (3.4)

which are connected through (3.1) and (3.2). Using (3.3) we speak about space or
actual (or Euler) description and using (3.4) we speak about material or referential,

2 From a molecular point of view such a “macroscopic” particle X contains a great number of
molecules.

We fix this reference once and for all, but in the general theory the change in this reference may
be used to describe the symmetry inherent to the material of the body; in the special case it may be
used for the definition of fluid (cf. Sect. 3.5 and Rem. 30).

In some continuum theories of more complicated models (e.g., micromorphic or microcontin-
uous) X may have some inner structure (cf. Rem. 26).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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(or Lagrange) description of the field for quantity η . The time or space derivative
in space description (3.3) we denote δη/δt or gradη (in components δη/δxi ),
respectively, the time derivative in referential description (3.4) we denote by a dot

η̇ = δη(X, t)

δt
(3.5)

and call it the material or substantial (time) derivative. This quantity expresses the
change of η in time along the trajectory of the chosen particle. Gradient in the
referential description we denote as Grad:

Gradη = δη(X, t)

δX
(3.6)

We define the velocity v of a particle as the time (material) derivative of themotion
(3.1)

v → δϑ/δt = ϑ̇ (3.7)

From (3.1), (3.3), (3.5), and (3.7), it follows for material derivative

η̇ = δη

δt
+ vi δη

δxi
= δη

δt
+ v.gradη (3.8)

where the second expression is valid for scalar η (dot in r.h.s. denotes the scalar
product); for vector η j

η̇ j = δη j

δt
+ vi δη j

δxi
(3.9)

Here we use the summation rule: we sum through the repeating indexes, e.g.,

vi δη j

δxi
=

3∑
i=1

vi δη j

δxi

Deformation gradient F is a derivative of a motion ϑ with respect to X

F = δϑ

δX
, Fi J = δϑ i

δ X J
(3.10)

It is a tensor of the second order3 which describes changes in the mutual position of
two close particles during the change of configuration from reference to actual one
as it is seen from

3 Defined in the following Rem. 4 generalized here in a (generally) different Cartesian system (here,
a space and referential one). Then, e.g., the matrix of F = 1 need not be the unit one (Kronecker
delta), but a so-called shifter; cf. e.g. [9, 15]. Here, for simplicity, both Cartesian systems are mostly
chosen as the same.
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dx = F dX (3.11)

Because of the invertibility of motion

J → | detF |> 0 (3.12)

and inverse of F, denoted by F−1 (in components
−1

F Ji is a gradient of ϑ−1 (3.2)).
We note that

Gradη = (gradη)F (3.13)

Velocity gradient L is defined by

L = gradv = ḞF−1 (3.14)

where the second relation follows from (3.6), (3.4) and (3.2). Symmetric or skew-
symmetric parts of velocity gradient

D → 1

2
(L + LT ), W → 1

2
(L − LT ), L = D + W (3.15)

(where superscript T means transposition) we call stretching (or rate of deformation)
D or spin W respectively. We note that (div and tr are divergence and trace, respec-
tively)

divv = trL = trD (3.16)

Euler’s relation is
J̇ = Jdivv (3.17)

which follows from (3.11), (3.12), (3.16) and from the properties of second order
tensor function. 4

4 Tensors of 2nd order A are linear transformations (matrix 3 × 3) of vector a to vector b

b = Aa

bi = Ai j a j (a)

where the second expression is in Cartesian components (with summation rule of course).
But vectors and tensors are more thanmatrices 3×1 and 3×3: changing (Cartesian) coordinates

by orthogonal matrix Qkl (cf. Rem. 8) the components bi of vector b transforms into new (starred)

components
∞

b j of the same vector b by

∞
b j = Q ji bi (b)

That is, b is the same “arrow” looked at from these different (starred and original) coordinates.
Transformation (b) is valid for the usual polar vectors (less usual axial vectors, e.g., those
obtainable by vector product [16], are discussed in Rem. 10). Similarly, the components Ai j
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A motion is said to be rigid if the distances between the particles do not change
in time.5 Killing’s theorem asserts that motion of the body is rigid if and only if
stretching is zero in all its particles

D = 0 (3.18)

This follows from the definition of rigid motion (3.11)–(3.13) and from the very
definition of material derivative (quadratic form with skew-symmetric tensor W is
zero):

0 = ˙| dx |2 = ˙dx.dx = 2ḋx.dx = 2ḞdX.dx = 2Ldx.dx = 2Ddx.dx

As a material volume we denote such volume which contains the same particles
during the motion. Therefore, configurations of a given body or its parts occupy
material volumes. Similarly, material surface and material line are defined. It fol-
lows from properties of (3.1) that material volume, surface, or line are those in any

(Footnote 4 continued)

of tensor A transform into starred components
∞

Akl of the same A by

∞
Akl = Qki Ai j Ql j (c)

(namely, transformation (c) guarantees linear transformation (a) with both vectors transformed by
(b)).

Relations (b), (c) inspire in Sect. 3.2 the more general notion of changes of frame and frame
indifference, cf. (3.31), (3.32).

Generalizations of tensors for nonCartesian coordinates see, e.g., [7, 16, 17] and Appendix A.4.
Similar to matrices (3×3), tensors may be symmetric, skew-symmetric, etc., about vector and outer
products. See Rems. 6, 16.

If A = A(t) is a tensor function of the scalar t then detA is the scalar function of t . Its derivative
is

d detA
dt

= δdetA
δ Ai j

dAi j

dt
= (detA)

dAi j

dt

−1

A ji (d)

where we use the following derivative of detAwith respect to its components (using its development
according to line)

δdetA
δ Ai j

= (detA)

−1

A ji (e)

5 Rigid motion (3.1) has the general form

x = α X + ω

whereα(t) and ω (t) are some orthogonal (Rem. 8) and vector functions of time t respectively. This
follows from the preservation of distances of any two particles in reference X, X0 and in actual
configurations (positions x, x0) in rigid motion, i.e.,

x − x0 = α(X − X0)

where orthogonal α and x0 are arbitrary time function, cf. analogous deduction of (3.25).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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configuration even if their magnitude or shape changes. An element of material vol-
ume dV in reference configuration transforms into an element of material volume
dv in actual configuration by

dv = J dV (3.19)

Indeed, if we express such elements as parallepides with dXa or dxa (a = 1, 2, 3)
in reference or actual configurations, respectively, their volumes are given by triple
products

dv = | σi jkdxi
1dx j

2 dxk
3 | , dV = | σJ K LdX J

1 dX K
2 dX L

3 | (3.20)

where σi jk (or σJ K L ) is the permutation or Levi-Civita symbol.6

Inserting (3.11) into (3.20)1 (both elementary volumes contain the same particles)
and using the property of detA from the end of Remark 6, Eq. (3.19) follows.

Ifη(x, t) has a meaning of the density of some quantity�, then (at given instant)

� =
∫
V

η(x, t) dv =
∫
V0

η(X, t) J dV = �(t) (3.21)

where V0 is a material volume in reference configuration which in an actual one
takes the material volume V . The relation (3.21)2 expresses the change of integral
variables from actual to reference configuration.7

Now we can use the material derivative on the material volume: it is a time
derivative of quantity (3.21) when the number of particles is constant

6 (In fact a cubic matrix) defined by

σ123 = σ231 = σ312 = 1

σ132 = σ213 = σ321 = −1

(the remaining elements of this 3 × 3 × 3 matrix are zero)
From this definition, it follows (by direct calculation) the following properties of the permutation

symbol (and its relation to Kronecker delta δi j )

σi jk = σ jki = σki j = −σk ji = −σ j ik = −σik j

(such “cyclic” permutation does not change its value)

σi jkσilm = δ jlδkm − δ jmδkl , σi jkσ jkn = 2δin , σi jkσi jk = 6

With this symbol we can express the vector and triple products as (a, b, c are vectors)

(a × b)i = σi jka j bk , c.(a × b) = σi jkci a j bk

and for the determinant of matrix A it is valid that

σi jk Aim A jn Akp = σmnpdetA

See also Rems. 4, 10, 16.
7 The density η may be deduced assuming � as primitive and continuous with volume, i.e., when
V → 0 also � → 0 [7, 10, 18–20].
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˙∫
V

η dv =
˙∫

V0

η J dV =
∫
V0

η̇ J dV =
∫
V0

(η̇ J + J̇η) dV

=
∫
V0

(η̇ + ηdivv)J dV =
∫
V
(η̇ + ηdivv) dv =

∫
V

δη

δt
dv

+
∫
V
(divηv) dv (3.22)

Here (3.19), (3.21), the independence of the reference configuration on time, (3.17),
(3.8) were used.

Using Gauss’ theorem ∫
V
(divηv) dv =

∫
δV

ηv.n da (3.23)

(where n is an outside normal and da is an element of the material surface δV
of material volume V in actual configuration) we obtain from (3.22) the Reynolds
theorem

˙∫
V

η dv =
∫
V

δη

δt
dv +

∫
δV

ηv.n da = d

dt

∫
V

η dv +
∫

δV
ηv.n da (3.24)

where the last expression follows for the fixed volume V with fixed surface δV (i.e.,
this geometrical object is not changed in time) which at a given instant coincides
with material volume V .

Therefore, the Reynolds theorem asserts that the rate of change of quantity η in
a material volume V in a given instant is equal to the rate of its change in a fixed
volume V (coincided with V in that instant) and the flow of such a quantity through
its fixed surface δV . Consequently, it expresses the natural change from closed to
open system in continuum theory where η is sufficiently smooth and V is a volume
of any part inside the body (cf. solidification principle in Sect. 3.3 and Rems. 14 in
Chap.2, 23 in this chapter, 11 in Chap.4). The Reynolds theoremmay be generalized
on a surface moving with arbitrary fictive velocity [13].

Summary. Mathematical basis for the description of space changes or effects
is presented. They are based on calculus with vectors and tensors (usually of the
second order) and their functions. The most important concepts or quantities are
the two derivatives—time and space, cf. (3.5) and the notation above it, and (3.8)—
the velocity gradient (3.14) and its decomposition (3.15), and the density of some
physical quantity (3.21). It is also essential to realize the difference between the

(Footnote 7 continued)
The additivity of � in volume (� for volume consisting of two separate volumes is the sum
of � of each separate volume) follows from (3.21). Such quantities � are usual in continuum
thermomechanics, cf. mass, energy, entropy, etc.; using mass and mass density we can introduce
specific quantities instead of densities (cf. (3.66) and Sects. 3.4, 4.6) and extensivity instead of
additivity (cf. Sects. 1.2, 2.4). Similarly, [19, 20] there are quantities continuous in surface with
surface densities (cf. (3.58), (3.99) and Rems. 14, 18).

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2


74 3 Continuum Thermodynamics of Single Fluid

actual and the material volume (see the paragraph above (3.19) and to understand
related derivatives of volume integrals in (3.22) and (3.24)).

3.2 Change of Frame

It was assumed so far that the frame in which we observe our thermodynamic system
in actual configuration is fixed. Frame is a set of objects the mutual distances of
which do not change (like the walls of a laboratory, arms of the rotor of a centrifuge,
distant stars, or any body in rigid motion) and which are combined with some clock.
An observed event in the actual configuration is characterized by a place (position
vector) x and an instant t and the same event may be described in a different “starred”
frame by place x∞ and instant t∞. Some frames—those which are inertial—play a
special role (see below and Sect. 3.3), but more important is the change of frame
in actual configurations (reference configuration is not influenced by it) [7, 10, 12,
21–24] (for generalization, see end of Sect. 3.4).

Change of frame from the original frame to a new “starred” one is given by

x∞ = c(t) + Q(t)x ,
∞
x

j = c j (t) + Q ji (t)xi (3.25)

t∞ = t + b (3.26)

Here, the function c(t) orQ(t) of time t (cf. under (3.119)) give vectors or orthogonal

tensors,8 respectively, and b is a scalar constant. In actual reference, the xi or
∞
x

j
are

Cartesian components of the same event in a Cartesian coordinate system fixed with
an old (original) or new (starred) frame, respectively: in the Cartesian system of a
new frame at given instant t , c j and Q ji xi are the positions of origin and of event
(seen in the Cartesian system of the old frame), respectively, cf. Fig. 3.1.

Transformations (3.25) and (3.26) follow from the expected properties of the
change of frame in classical physics: the distance between two simultaneous events

8 Orthogonal tensor Q transforms any vector a into vector Qa of the same length a.a = Qa.Qa.
Then the basic properties of orthogonal tensor Q follow:

QT Q = QQT = 1 , in components Qki Qkj = Qik Q jk = δi j

Q−1 = QT , (detQ)2 = 1

An example of the orthogonal tensor is (3.29).
Orthogonal transformations Q form a group: generally (cf. [9, 15, 16]) a set of elements with

a defined “product” giving another element from this set (here a matrix product of two orthogonal
tensors giving again an orthogonal tensor) with inverse and unit elements (here QT and 1 respec-
tively). This group is called a full orthogonal group with det Q = ±1 which expresses rotation
or/and reflection. A proper orthogonal group forms its subgroup with det Q = +1 (a subgroup is
a subset with group properties again).

The corresponding orthogonal matrix Qi j may be also used for rotation (and/or inversion) of
Cartesian coordinates, cf. (b), (c) in Rem. 4 and Rem. 10.
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Fig. 3.1 On relationships between two frames

is preserved and the time interval between two events and the time order of events
is left unchanged. Indeed [12, 14, 22], let us consider two simultaneous events
taking place x and x0 in the original frame and x∞ and x∞

0 in the new, “starred”
frame. Because their distance must be preserved | x − x0 | = | x∞ − x∞

0 |, vectors in
this equation must be connected by orthogonal transformation Q (see Rem. 8), i.e.,
x∞ −x∞

0 = Q(x−x0). Taking c → x∞
0 −Qx0 we obtain (3.25) because both frames are

moving each to the other generally not steadily and therefore, c and Q are functions
of time (see Fig. 3.1) (this deduction is analogous to the deduction of rigid motion
in Rem. 5, where distances are also preserved, see also discussion of (3.223) and
Rem. 40). Further, let us consider two arbitrary events, the earlier and latter having
their instants t0 and t or t∞0 and t∞ in the original or “starred” frame, respectively.
From the preservation of the time interval, we have | t − t0 | = | t∞ − t∞0 | and from
the preservation of the time order we have t∞ > t∞0 because of t > t0. Then preceding
equality gives t∞ − t∞0 = t − t0, i.e., (3.26) if we choose b → t∞0 − t0.

It is evident from (3.25) and (3.26) that b is the time shift in the origin of the time
axes, c is the shift in the origins of the Cartesian systems and Q (from full orthogonal
group, cf. Rem. 8) expresses the rotation (detQ = 1) or reflection (detQ = −1) of
the starred frame relative to the original one.9 We also note the inversions of change

9 Use of a full or proper orthogonal group puts the additional property of preservation of
right- or left handedness on the change of frame; some authors [12, 23–26] (motivated usually
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of frame (3.25), (3.26)
x = QT (t)(x∞ − c(t)) (3.27)

t = t∞ − b (3.28)

The change of frames (3.25), (3.26) and its consequences below is also demon-
strated in the following example of centrifuge: We take as an original frame the
walls of the laboratory and as a new “starred” frame the rotor of centrifuge, having
a constant number ω/2π of revolutions in the time unit (ω is the angular velocity)
and rotating from the first to the second axis around the third axis of original frame.
Here, (3.25) is

∞
x

j = Q ji (t)xi , ⊂ Qi j (t) ⊂=
⎛
⎝ cosωt sinωt 0

−sinωt cosωt 0
0 0 0

⎞
⎠ (3.29)

with corresponding orthogonal time function. There is also no shift in space and
time origins: c j (t) → 0 and b = 0 in (3.25) and (3.26) respectively. Other results
concerning centrifuge are noted below (3.41) and below (3.46).

The special case of (3.25) is the Galileo transformation where function c(t) is
linear and Q is a constant, i.e., frames are moving each to the other with constant
velocity and differ by a constant angle (or also by inversion). A special set of frames
must be noted—inertial frames which contain the frame formed by distant stars
and those obtained from it by Galileo transformation (cf. Sects. 3.3, 4.3; in many
applications the frame fixed with earth surface may be taken as an approximately
inertial one). Their typical property is zero inertial acceleration (3.48).

A more special case with c = o and Q constant is physically trivial because it
expresses the change of coordinate system only. Therefore, a change of coordinates
(in Rem. 4) is not the same as the much more general change of frame (where time
and its transformation (3.26) and shifts in origins are moreover considered).

Many quantities used in the following considerations are called objective or frame-
indifferent, if they are “invariant” in the change of frame (3.25), (3.26) as follows
(because this change contains rotations and/or inversions of corresponding Cartesian
systems as a very special case (cf. Fig. 3.1), the following definition is motivated by
(b), (c) of Rem. 4):

Objective or frame-indifferent scalar a, vector a and (second order) tensor A
transform by the change of frame on scalar a∞, vector a∞ and tensor A∞ as follows:

a∞ = a (3.30)

a∞ = Qa (3.31)

(Footnote 9 continued)
by nonmechanical arguments) confine (3.25) only to the rotations. This problem seems not to have
been settled. Because it has no influence on the linear models preferred here, we use in the following
the full orthogonal group, see Appendix A.2.

http://dx.doi.org/10.1007/978-3-319-02514-8_4
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A∞ = QAQT (3.32)

This is because an objective scalar a does not change its value, objective vector a is
the same “arrow” looked at from different frames and, ultimately, an objective tensor
A transforms an objective vector (say a1) to an objective vector (say a2) in all frames:
indeed if in the original frame a2 = Aa1 and in the “starred” frame a∞

2 = A∞ a∞
1 then

by (3.31) we obtain (3.32).
But there are also quantities which are nonobjective, i.e., they do not transform by

(3.30)–(3.32) when the frame is changed. Generally, we can find the transformation
of any quantity at the transformation of t, x to t∞, x∞ and vice versa according to
(3.25), (3.26), (3.27), (3.28), i.e., to decide about objectivity or nonobjectivity (frame
indifference or not) according to the following nearly obvious precepts:

• The reference configuration and its properties (like particles and bodies in ref-
erence) are not influenced by changing of frame (this affects actual references
only).

• For primitives we must decide about their objectivity (frame indifference) a priori
(e.g., it may be expected that primitives of this Chap.3 connected with the body,
like density, temperature, internal energy, entropy, etc., are objective).

• For the other defined quantities, we decide from their definitions assuming that the
definition itself is not influenced by change of frame (i.e., definitions are the same
in any frame). Not only those, but in fact all relations between quantities (e.g.,
those from Sect. 3.1) are valid also for new (starred) frame, i.e., for new starred
quantities if we use t∞, x∞ (3.25), (3.26) simultaneously. This is evident from the
fact that the frame used for actual reference (say in Sect. 3.1) was chosen quite
arbitrarily. Cf. also end of this section.

Applying the change of frame (3.25), (3.26) to the above definitions of Sect. 3.1
and, using these precepts, we can decide about objectivity or nonobjectivity (frame
indifference or not) of the following quantities (more detailed proofs of some of them
are written in the footnote-sized script below); the remainder from the next sections
may be proved analogously.

It follows from (3.25), (3.26) that time t and place x are not objective because
these scalar and vector do not transform as prescribed by (3.30), (3.31) (but time and
space intervals are objective).

Motion (3.1) transforms as

ϑ∞(X, t∞) = c(t) + Q(t) ϑ(X, t) (3.33)

and therefore it is not an objective vector (cf. objective (3.31), (3.56))

Proof Motion (3.1) in the starred frame is by (3.25), (3.28)

∞
ϑ

j
(X, t∞) = ∞

x
j = c j (t∞ − b) + Q ji (t∞ − b) ϑ i (X, t∞ − b) (3.34)

(particle X is not influenced) which is nonobjective (3.33). Q.E.D.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Velocity v is transformed as

v∞ = Qv + ċ + Q̇x (3.35)

and therefore it is not an objective vector.

Proof Velocity (3.7) in the new starred frame is (using (3.34))

∞
v

j → δ
∞
ϑ

j
(X J , t∞)

δt∞ = δ(c j (t∞ − b) + Q ji (t∞ − b)ϑ i (X J , t∞ − b))

δt∞

= dc j (t)

dt

d(t∞ − b)

dt∞ + dQ ji (t)

dt

d(t∞ − b)

dt∞ ϑ i (X J , t) + Q ji (t)
δϑ i (X J , t)

δt

d(t∞ − b)

dt∞
= Q ji (t)vi (X J , t) + ċ j (t) + Q̇ ji (t)ϑ i (X J , t) (3.36)

which is (3.35) by (3.1); here

ċ j = dc j (t)

dt
, Q̇ ji = dQ ji (t)

dt
,

d(t∞ − b)

dt∞
= 1 (3.37)

have been used. Q.E.D.
This (3.35) may be written by (3.27)

v∞ = Qv + ċ + �(x∞ − c) (3.38)

where (tensor of) angular velocity � (of original frame relative to the new one) is
defined as

� → Q̇QT (3.39)

and this tensor is skew-symmetric (this follows from time derivative of QQT = 1,
namely Q̇QT + QQ̇T = Q̇QT + (Q̇QT )T = 0 which is zero tensor).

By inversion of (3.38) and by (3.39), (3.25), Rem. 8

v = QTv∞ − QTċ + ∞
� x (3.40)

where we define the (tensor of) angular velocity
∞
� (of the new frame relative to the

original one) by
∞
� = −QT �Q (3.41)

The origin of the name “angular velocity” for (3.39), (3.41) may be seen in the
example of centrifuge (3.29): Calculation of tensors of angular velocities (3.39),

(3.41) gives for this example �12 = ∞
�

21
= ω = − ∞

�
12

= −�21 (their
other components are zero). Define the vector of angular velocity ω as axial
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one10 corresponding to skew-symmetric tensor
∞
� according to (b) in Rem. 10 as

ωi = (1/2)σi jk
∞
�

k j
. This axial vector (changing parity it changes the sign) has only

one nonzero component ω3 = ω. From (3.40) for the point fixed on the rotor v∞ = o
(we consider x perpendicular to the rotation axis, c(t) → o) we obtain

v = ∞
� x , v = ω × x (3.42)

where the equivalent second relation (using the vector product) follows from (c) in
Rem. 10 and the vector product noted in Rem. 6. This is in accord with the name of
∞
� because ω is the vector of angular velocity of new frame (centrifuge) relative to
the old one (laboratory).

Similarly, for point fixed in laboratory (v = 0) we have by (3.38)

v∞ = � x∞ or v∞ = −ω × x∞ (3.43)

(−ω is an axial vector equivalent to � : � jk = − ∞
�

jk
= −ωiσik j ). Acceleration v̇

is also not objective. Namely, by (3.38)

10 As distinct from usual polar vectors which by coordinate changes (characterized by orthogonal
matrix Q ji , see Rem. 8) transform by (b) of Rem. 4, the axial vector w is defined by transformation

∞
w

j = (detQ)Q ji wi (a)

and therefore changes the sign at parity (right-handedness or left-handedness) changes (detQ = −1,
cf. Rem. 8)

Lemma (equivalency of skew-symmetric tensors with axial vectors): For every skew-symmetric
tensor (of second order)W it is possible to define an axial vectorw (both contain three (independent)
components) and vice versa by

wi = (1/2)σi jk W kj (b) , W jk = wi σik j (c)

Indeed, the usual coordinate transformation of tensor W (i.e., of the type (c) in Rem. 4) leads to
axiality transformation (a). Namely, (b) must be valid also for the new (starred) coordinate system

∞
w

i = (1/2)σi jk ∞
W

kj
= (1/2)σi jk Qkl W lm Q jm = (1/2)σi jk Qklw pσ pml Q jm

which multiplying by Qir gives

∞
w

i
Qir = (1/2)w pσ pmlσi jk Qir Q jm Qkl = (1/2)w pσ pmlσrml (detQ) = (detQ)wr

where properties of permutation symbol from Rem. 6 were used. Multiplying it by orthogonal Q jr

we obtain (a) and therefore w is an axial vector.
Axiality of w is automatically achieved by the usual transformation ((c) in Rem. 4) of tensor W.

Therefore the skew-symmetric tensors instead of axial vectors and outer product (see Rem. 16) may
be used and we do it this way at the moment of momentum balances in the Sects. 3.3, 4.3, cf. [7, 8,
14, 27]. Generalization of this Lemma to third-order tensors, made by M. Šilhavý, is published in
Appendix of [28].

http://dx.doi.org/10.1007/978-3-319-02514-8_4


80 3 Continuum Thermodynamics of Single Fluid

v̇∞ = Qv̇ + i∞ (3.44)

where i∞ is defined by
i∞ → 2Q̇v + c̈ + Q̈x (3.45)

Proof From the definition of acceleration in the new, starred frame and by (3.36),
(3.28) we have

(v̇ j )∞ → δ
∞
v

j
(X J , t∞)
δt∞

= δ(Q ji (t∞ − b)vi (X J , t∞− b)+ċ j (t∞− b) + Q̇ ji (t∞− b)ϑ i (X J , t∞ − b))

δt∞

= Q ji (t)
δvi (X J , t)

δt
+ dQ ji (t)

dt
vi (X J , t) + dċ j (t)

dt

+ dQ̇ ji (t)

dt
ϑ i (X J , t) + Q̇ ji (t)

δϑ i (X J , t)

δt
= Q ji v̇i + 2Q̇ jivi + c̈ j + Q̈ ji xi

which is (3.44), (3.45) with (3.37) and

c̈ j = dċ j (t)

dt
, Q̈ ji = dQ̇ ji (t)

dt

Q.E.D.
This inertial acceleration i∞ (perceived in the new, starred frame) may be tradi-

tionally rewritten as (using (3.40), (3.41), (3.39), (3.27) and �̇ + �2 = �̇ − ��T =
Q̈QT )

i∞ = 2�(v∞ − ċ) − �2(x∞ − c) + �̇(x∞ − c) + c̈ (3.46)

The terms on the right-hand side of (3.46) are, subsequently, the Coriolis, centrifugal,
and Euler accelerations and the last term is the acceleration of the origin.

For example of centrifuge (3.29) above (angular velocity is constant in time) the
inertial acceleration i∞ (3.46) in the place x∞ perpendicular to the rotation axis and
fixed with the rotor (starred frame, v∞ = o ) is therefore only the centrifugal one (see
below (3.43) and Rem. 6)

i∞ = −�2x∞ = ω2x∞ (3.47)

Note that in Galileo transformation (c(t) linear, Q constant)

i∞ = o (3.48)

This zero inertial acceleration is assumed in the frame fixed with distant stars and
therefore also in any inertial frame and at change between them. Therefore, in inertial
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frames the identity (3.48) is valid and the acceleration v̇ behaves objectively (frame
indifferently).

Applying the change of frame (3.25), (3.26) on the further definitions of Sect. 3.1
and using the three precepts above we can decide about their frame indifference
(objectivity); those remaining may be proved analogously.

Deformation gradient F (3.10) is not a frame-indifferent (objective) tensor,
because it transforms as

F∞ = QF (3.49)

Namely, deformation gradient (3.10) in starred frame transforms by (3.33), (3.28)

∞
F

j J
→ δ

∞
ϑ

j
(X K , t∞)/δ X J = δ(c j (t∞ − b) + Q ji (t∞ − b)ϑ i (X K , t∞ − b))/δ X J

= Q ji (t)δϑ i (X K , t)/δ X J = Q ji Fi J

But the scalar J defined by (3.12) is the objective one

J ∞ → | detF∞ |= | detQ || detF | = | detF | = J (3.50)

Obviously, GradF is an objective vector (cf. e.g., [28, 29])

(GradF)∞ = QGradF (3.51)

(at fixed reference, F and GradF may be considered as objective vectors (3.31),
cf. (3.122)).

The velocity gradient L (3.14) is transformed at frame change as

L∞ = QLQT + � (3.52)

and therefore it is not an objective tensor (recall the skew-symmetry of � (3.39)).

Proof We write transformation of velocity (3.38) in actual (Euler) description and
use (3.27), (3.28):

∞
v

i
(
∞
x

l
, t∞) = Qik(t)vk(xl , t) + ċi (t) + �ik(t)(

∞
x

k − ck(t))

= Qik(t∞ − b)vk(Qml(t∞ − b)(
∞
x

m − cm(t∞ − b)), t∞ − b)

+ ċi (t∞ − b) + �ik(t∞ − b)(
∞
x

k − ck(t∞ − b))

Using this and starting with definition (3.14) in the new, starred frame we obtain
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∞
L

i j
(
∞
x

l
, t∞) → δ

∞
v

i
(
∞
x

l
, t∞)

δ
∞
x

j
= Qik(t∞ − b)

δvk(Qml (t∞ − b)(
∞
x

m − cm(t∞ − b)), t∞ − b)

δ
∞
x

j

+ �ik(t∞ − b)
δ(

∞
x

k − ck(t∞ − b))

δ
∞
x

j

= Qik(t)
δvk(xl , t)

δxn
δ(Qmn(t∞ − b)(

∞
x

m − cm(t∞ − b)))

δ
∞
x

j
+ �ik(t∞ − b)δk j

= Qik(t)Lkn(xl , t)Qmn(t)δmj + �i j (t) = Qik(t)Lkn(xl , t)Q jn(t) + �i j (t)

and this is (3.52). Q.E.D.
Using (3.15) in the starred frame we find with (3.52) that the spin W is not

objective
W∞ = QWQT + � (3.53)

but the stretching tensor D is objective (frame indifferent)

D∞ = QDQT (3.54)

Transformation properties of some objects (mostly derivatives useful in the
following chapters) formed from scalar a, vector a, tensor A which are objective
(frame indifferent) (3.30)–(3.32), will be discussed now. We must realize that these
objective conditions must be valid at any x∞, t∞ transforming by (3.25), (3.26) to
x, t (the same event seen from different frames passing at the same particle X);
therefore11

a∞(X, t∞) = a∞(x∞, t∞) = a∞ = a = a(x, t) = a(X, t) (3.55)

a∞(X, t∞) = a∞(x∞, t∞) = a∞ = Qa = Q(t)a(x, t) = Q(t)a(X, t) (3.56)

A∞(x∞, t∞) = A∞ = QAQT = Q(t)A(x, t)QT (t) (3.57)

As a result, we obtain: If scalar a is objective (3.55) then its material derivative
ȧ and space gradient grada are objective while Grada and δa/δt are not. If a is an
objective vector, diva, a.a = a2 are objective, while material derivative ȧ is not.
Ultimately, with objective (second order) tensor A, the vector divA and the scalars
trA, detA are objective.

Proofs Transformation (frame change) of objective scalar a (3.55) with (3.28) gives
the objectivity of scalar material derivative

11 Note that functions on both sides of (3.55)1 are different: a∞(x∞, t∞) = a∞(ϑ∞(X, t∞), t∞) →
a∞(X, t∞). Remark that the assumption (3.30) is crucial for validity of (3.55); namely, the function
α(x, t), defined by (3.25), (3.26) as a∞(x∞, t∞) = a∞(c + Qx, t + b) → α(x, t) is generally different
from function a(x, t). Similarly (3.31) and (3.32) are crucial for (3.56) and (3.57).
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(ȧ)∞ → δa∞(X K , t∞)
δt∞

= δa(X L , t∞ − b)

δt∞
= δa(X L , t)

δt

d(t∞ − b)

dt∞
= ȧ

and also objectivity of vector grada (by (3.27), (3.28))

∞
(grada)

j → δa∞(∞
x

m
, t∞)

δ
∞
x

j

= δa(xn, t)

δ
∞
x

j
= δa(Q pn(t∞ − b)(

∞
x

p − cp(t∞ − b)), t∞ − b)

δ
∞
x

j

= δa(xn, t)

δxi

δ(Q pi (t∞ − b)(
∞
x

p − cp(t∞ − b)))

δ
∞
x

j

= δa(xn, t)

δxi
Q ji (t) = Q ji (grada)i

But the vector Grada is not objective because

∞
(Grada)

J → δa∞(X K , t∞)
δ X J

= δa(X L , t)

δ X J
= (Grada)J

as well as δa/δt (by (3.28), (3.27))

(δa/δt)∞ → δa∞(∞
x

m
, t∞)

δt∞
= δa(xn, t)

δt∞
= δa(Q pn(t∞− b)(

∞
x

p −cp(t∞− b)), t∞ − b)

δt∞

= δa(xn, t)

δt

d(t∞ − b)

dt∞
+ δa(xn, t)

δxi

δ(Q pi (t∞ − b)(
∞
x

p − cp(t∞ − b)))

δt∞

= δa(xn, t)

δt
+ δa(xn, t)

δxi

(
dQ pi (t)

dt
(
∞
x

p − cp(t∞ − b)) − Q pi (t)
dcp(t)

dt

)

= δa

δt
+ (grada)i (Q̇ pi Q pj x j − Q pi ċ p)

or (using time derivative of Q pi Q pj = δi j )

(δa/δt)∞ = δa/δt − Q pi (grada)i (Q̇ pj x j + ċ p)

i.e. the (space) time derivative of objective scalar a is not the objective scalar.
Transformation (frame change) of objective vector a (3.56) gives the objectivity

of the scalar product a2

(a2)∞ → a∞.a∞ = ∞
a

i ∞
a

i = Qi j a j Qikak = δ jka j ak = a j a j = a.a = a2
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and also the objectivity of the (space) divergence diva (scalar) using (3.27), (3.28),
Rem. 8

(diva)∞ → δ
∞
a

i
(
∞
x

l
, t∞)

δ
∞
x

i
= δ(Qi j (t)a j (xm, t))

δ
∞
x

i

= δ(Qi j (t∞ − b)a j (Qnm(t∞ − b)(
∞
x

n − cn(t∞ − b)), t∞ − b))

δ
∞
x

i

= Qi j (t)
δa j (xm, t)

δxk

δ(Qnk(t∞ − b)(
∞
x

n − cn(t∞ − b)))

δ
∞
x

i

= δa j (xm, t)

δxk
Qi j (t)Qik(t) = δa j (xm, t)

δx j
= div a

But the material derivative of objective vector ȧ is not objective: From (3.56),
using (3.28), it follows

(ȧi )∞ → δ
∞
a

i
(X J , t∞)
δt∞

= δ(Qi j (t∞ − b)a j (X K , t∞ − b))

δt∞

= Qi j (t)
δa j (X K , t)

δt

d(t∞ − b)

dt∞

+ dQi j (t)

dt

d(t∞ − b)

dt∞
a j (X K , t) = Qi j ȧ j + Q̇i j a j

and therefore ȧ is not an objective vector.
Transformation (frame change) of objective (second order) tensor (3.57) gives the

objectivity of the scalars trA and detA :

(trA)∞ = trA∞ = ∞
A

ii
= Qik Akl Qil = δkl Akl = All = trA

(detA)∞ = detA∞ = detQAQT = detQdetAdetQT = detQQT detA = detA

Also the vector divA is objective (from (3.57)) using

∞
(divA)

i → δ
∞
A

i j
(
∞
x

m
, t∞)

δ
∞
x

j
= δ Qik(t)Akl(xn, t)Q jl(t)

δ
∞
x

j

= δ(Qik(t∞ − b)Akl(Q pn(t∞ − b)(
∞
x

p − cp(t∞ − b)), t∞ − b)Q jl(t∞ − b))

δ
∞
x

j

= Qik(t)
δ Akl(Q pn(t∞ − b)(

∞
x

p − cp(t∞ − b)), t∞ − b)

δ
∞
x

j
Q jl(t)
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= Qik(t)
δ Akl(xm, t)

δxq

δ Q pq(t∞ − b)(
∞
x

p − cp(t∞ − b))

δ
∞
x

j
Q jl(t)

= Qik(t)
δ Akl(xm, t)

δxq
Q jq(t)Q jl(t) = Qik(t)

δ Akl(xm, t)

δxl
= Qik(divA)k

Therefore, divA of objective tensor A is an objective vector. Q.E.D.
As we noted in the precepts above the remaining relations of Sect. 3.1 are also

valid in all frames, e.g., (3.21), (3.22) or Reynolds theorem (3.24). Because of no
influence of the change of frame on the reference configuration (andmaterial points),
no such influence may be also expected on material volume V , material surface δV
(they behave as objective scalars), and the outside normal n should be an objective
vector.12

Objectivity of other quantities occurring in the remaining chapters may be
obtained analogically.

Summary. The change of frame refers to the change (rotation, translation, etc.) of
coordinate system used to describe space and time variations and the effects of this
change on various (physical) quantities or functions. The change is mathematically
described by (3.25) and (3.26). Special quantities which are in some sense invariant
to this change were called objective or frame-indifferent, cf. (3.30)–(3.32), and are of
special importance for the methodology of rational thermodynamics. The objectivity
of several quantities or functions was tested; the most important conclusions are the
objectivity of stretching tensor, cf. (3.54), and the nonobjectivity of velocity, cf.
(3.35), and its gradient, cf. (3.52), and of deformation gradient, cf. (3.49).

12 Moreover, it should be expected that

(∫
V

η dv

)∞
=
∫
V

η∞ dv ,

(∫
δV

ηn da

)∞
=
∫

δV
η∞Qn da

because the objectivity of da, dv follows from the objectivity of space intervals (η may even be a
component of a vector or a tensor).

Note also that the following relationships are valid in the starred frame for the time derivative
of function ϕ(t) (see (3.26), (3.28))

∞
ϕ̇ → dϕ∞(t∞)

dt∞
= dϕ∞(t∞)

dt

d(t∞ − b)

dt∞
= dϕ∞(t∞)

dt
= ϕ̇∞

Such a function ϕ may be, e.g., η(X, t) or �(t) in (3.21); for the latter the relation (3.22) and the
previous formula (with (3.50)) gives

( ˙∫
V

η dv

)∞
=
∫
V0

(η̇ J )∞ dV =
∫
V0

∞̇
η

∞
J dV =

˙∫
V

∞
η dv

because V0 is a material volume in reference configuration.
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3.3 Balances of Mass, Momentum, and Moment of Momentum

In this and in the following paragraphs, we formulate general postulates, mostly
balances for a single substance [6–9, 11, 13, 23]. We use classical mechanics and
formulate them in the inertial frame (specifically those fixed with distant, remote
stars, see Sect. 3.2); generalization in other frames (even noninertial) will be shown
at the end of the discussion of each special balance (for further developments, see
end of Sect. 3.4).

To formulate the balance of mass let us consider the single (one-constituent) body
in arbitrary actual configuration (in inertial frame noted above).

As a primitive we assign to each particle X of this body the (mass) density ρ—
positive and (assuming) objective (frame indifferent) scalar. Mass of the body or its
arbitrary part with material volume V is then

∫
V

ρ dv (3.58)

It follows that mass is continuous and additive with volume (cf. Rem. 7) and therefore
we exclude the concentrated masses (mass points) from consideration. The mass
balance is postulated by the conservation of mass of some part of the body (or body
itself) containing the same particles during its motion. In other words, the mass of
material volume V is not changed in time

˙∫
V

ρ dv = 0 (3.59)

Using Reynolds theorem (3.24), mass balance (3.59) may be written in (space) fixed
volume V with surface δV as

d

dt

∫
V

ρ dv +
∫

δV
ρv.n da = 0 (3.60)

i.e., mass in the fixed volume may be changed only by a flow through its (fixed)
boundary. Using Gauss theorem (3.23) in (3.60) we have

∫
V

δρ

δt
dv +

∫
V
div(ρv) dv = 0 (3.61)

We assume now validity of this mass balance for any part of the body, specifically
for that whose volume V is sufficiently small. Then also the integrand here must be
zero and we obtain the local mass balance

δρ

δt
+ divρv = 0 (3.62)
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Another form of local mass balance follows using material derivative (3.8) of the
density

ρ̇ + ρ divv = 0 (3.63)

We note that using Euler relation (3.17) we can write the mass balance (3.63) as

˙ρ J = 0 (3.64)

which after time integration gives the mass balance in the form

ρ0 = ρ J (3.65)

Here ρ0 is the density in the reference configuration (because J = 1 when F = 1).
Assumed continuity and additivity of mass permits to introduce (cf. Rem. 7) the

specific quantities ϕ related with densities η by

η = ρϕ (3.66)

Wenote twouseful formulae for specific quantitiesϕ (whichmay also be a component
of vector or tensor)

δρϕ

δt
+ divρϕv = ρϕ̇ (3.67)

˙∫
V

ρϕ dv =
∫
V

ρϕ̇ dv (3.68)

which follows for (3.66) from (3.22), (3.63) in material volume V .
Mass balances obtained so far were formulated and deduced in an inertial frame

fixed with distant stars. But their form is the same in any frame (even a noninertial
one), i.e., formulae (3.58)–(3.68) are independent of the frame. This may be seen
from the assumption of objectivity of scalar mass density ρ ((3.30) is valid). Using
the last formulae from Rem. 12 with objective density ρ as the scalar η we find
general validity of mass balance (3.59) in any frame. In some new frame, Reynolds
theorem (3.24) may be quite analogously deduced and used and then, by localization,
all remaining formulae (3.60)–(3.68) are valid in any frame. Indeed, e.g., (3.63) is
valid in any frame because of the objectivity of thematerial derivative of the objective
scalar ρ̇ and, see (3.16) divv = trD, because the trace of objective tensor (3.54) is
objective. Similarly, so is (3.65) with the same ρ0 (reference is unique for all actual
configurations) and by (3.50). This is also (3.68) for ϕ from such a new frame.

To postulate the balance of momentum, we define themomentum or linear momen-
tum of a part of body (or the whole body) with material volume V in actual configu-
ration in given (arbitrary) frame as

∫
V

ρv dv (3.69)
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The postulate of the balance of momentum expresses the experience that the time
change of momentum (3.69) is equal to the forces acting on the corresponding part of
body with material volume V in actual configuration. Simple, classical formulation
of this balance is done in an inertial frame, specifically that fixed with distant stars.
The main reason for this is the nonobjectivity of velocity in (3.69), see (3.38); forces
are a priori considered as objective. Below (3.78) we show that such formulation
is the same in any inertial frame and that in a general frame the balance must be
modified a little.

Forces are primitive quantities and we confine here two types of forces: the
external or body, volume, outer forces exist inside material volume V but have their
origin outside the (whole) body and are characterized by a vector of body, or volume
forces b per mass unit (an example is the gravitation coming from the environment
of the body). The second type are the contact or surface forces acting on the surface
of the chosen part of the body. These imaginable forces come from the outside neigh-
borhood of the surface considered (“short range interaction forces” from the outside
part of the same body) and they are characterized by the stress vector or traction
t—force per unit surface of the chosen part coming from its outside.13 Therefore, we
exclude in the following a “long range interaction body forces” among distant parts
of the same body like self-gravitation; for such a more general case see e.g., [18,
19, 30]. They might appear in ion mixtures, but in salt solution may be neglected by
electroneutrality, cf. Rems. 6 and 32 in Chap.4.

The Balance of momentum or balance of linear momentum for an arbitrary part
of a body in actual configuration and in inertial frame (fixed on distant stars) is
postulated as14

˙∫
V

ρv dv =
∫

δV
t da +

∫
V

ρb dv (3.70)

where this part of the body has the material volume V with the material surface δV .
We shall assume in the following, that vectors t, b are objective (frame indifferent).

Experience shows that the body force is a field (i.e., a function of position x and
time t) but that traction depends not only on the x and t but also on the orientation
of the surface; this is expressed by Cauchy’s postulate15

13 On the real surface of the whole body the surface forces t (originated from the outside of the
whole body) are given by boundary conditions; cf. Rems. 18 and 24 in this chapter, 9 in Chap. 1.
14 Again [7, 10, 18–20] as we noted in Rem. 7, it would be more natural to postulate forces for any
part of volume or surface (which bound them) and then to deduce ρb or t as the volume or surface
densities.

In fact, the formulation of balances in Sects. 3.3 and 3.4 for each part of the body is motivated by
the solidification principle: we imagine the part of the body isolated from the remainder of the body
and interactions with this remainder and surroundings of the body are expressed by appropriate
(volume or surface) densities. This principle will be used also in the following, e.g., contact and
body forces in formulation of (3.70) are such interactions.
15 E.g., hydrostatic pressure (typical traction in steady fluid) is directed always perpendicularly to
any orientation of the surface in a given place. Moreover, assumption (3.71) may be also proved

http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_1
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t = t(x, t, n) (3.71)

where n is the outside normal to the surface δV in a given place x and instant t .
In fact, the dependence of t on n (3.71) is linear as the Cauchy theorem asserts

t = Tn (3.72)

where the field T = T(x, t) is the stress tensor.
The Cauchy theorem may be proved by application of (3.70) to an infinitesimal

tetrahedron at considered place x and instant t , the walls of which are formed by
coordinate planes and a tangent plane perpendicular to considered n. The estimate
of the surface and volume integrals in (3.70) gives (using (3.68))

ρv̇ �v = t �a + t j�a j + ρb �v (3.73)

Here�v is the volume of the tetrahedron and t and t j are the tractions on the surfaces
�a and �a j (the latter are formed by coordinate axes) respectively (summation rule
is assumed). But �v = (1/3)h �a (where h is the height of the tetrahedron) and
�a j = n j�a where n j are components of n. Inserting these relations into (3.73)
and limiting h → 0 (assuming continuity) we obtain t = −t j n j which is (3.72) in
Cartesian components t i = T i j n j if we take T i j as ith component of vector −t j .
Moreover, T depends only on x and t because also t j depends on x and t and not
on n as follows from the construction of the tetrahedron. The sign of T is given
by a convention which gives to t the meaning of tension by which the exterior of
the surface δV acts on material inside (cf. e.g. [13]; modern versions of this proof
[7, 30–32] show the much more general validity of (3.72)). The stress tensor T is
objective because of the objectivity of t and (arbitrary) n (see end of Sect. 3.2); the
deduction is similar to that of (3.32).

Inserting (3.72) into (3.70) we obtain the balance of momentum in the inertial
frame (fixed on distant stars) as

˙∫
V

ρv dv =
∫

δV
Tn da +

∫
V

ρb dv (3.74)

d

dt

∫
V

ρv dv +
∫

δV
ρv(v.n) da =

∫
δV

Tn da +
∫

V
ρb dv (3.75)

where the last form (3.75) was obtained using (3.24) (Reynolds theorem obtainable
in any frame) for the volume V with the surface δV fixed in the space. Because
(3.74) and (3.75) are valid for any volume we can use the Gauss theorem to convert
the surface integrals into those of volume(only those are permitted by stress field

(Footnote 15 continued)
[7, 21, 30, 31]; from this proof it follows that t cannot depend on the other local properties of
surface, like curvature, etc.
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as distinct from traction (3.71)) and using (3.68) we obtain the local balances of
momentum in the inertial frame

ρv̇ = divT + ρb (3.76)

δρv
δt

+ div(ρv ⇔ v) = divT + ρb (3.77)

(in components (divT)i = δT i j/δx j and (div(ρv ⇔ v))i = δρviv j/δx j ).
So far we have assumed that the inertial frame (fixed with distant stars) was used.

To transform balances (3.70), (3.74)–(3.77) into another framewe note that the stress
tensor T is objective (see below (3.72)). Considering any new (starred) frame and
using (3.30)–(3.32), (3.44), (3.46) (note that divT is objective vector and ρ objective
scalar) in (3.76) (multiplied by orthogonal transformation Q of coordinates in the
inertial frame to the new one at considered instant) we obtain the local balance of
momentum in any frame (stars denoting the new frame were removed)

ρv̇ = divT + ρ(b + i) (3.78)

where the inertial acceleration i (3.46) in this new frame is

i = 2�(v − ċ) − �2(x − c) + �̇(x − c) + c̈ (3.79)

Here, the tensor � is the angular velocity (of original, inertial frame relative to new
one) (3.39) and c is the position of origin, v is the velocity, x the position in the new
frame at the considered instant.

Then it is not difficult to see that transformation of anymomentum balance (3.70),
(3.74)–(3.77) into an arbitrary frame means inserting b + i instead of b. Indeed, the
starting postulate of momentum balance (3.70) has in an arbitrary new frame the
form ˙∫

V
ρv dv =

∫
δV

t da +
∫
V

ρ(b + i) dv (3.80)

because balance (3.78) in the new frame may be integrated in this frame through
material volume (which is independent of the frame, cf. end of Sect. 3.2) and uses
Gauss theorem (3.23), (3.72) and (3.68) (where ϕ is component of velocity) in the
new frame (because these formulae are the same in all frames as well as the Reynolds
theorem (3.24), mass balances above, etc.).

Repeating the previous procedure in the new frame we obtain all remaining bal-
ances in this new arbitrary frame, e.g.,

˙∫
V

ρv dv =
∫
V

ρv̇ dv =
∫

δV
Tn da +

∫
V

ρ(b + i) dv (3.81)
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d

dt

∫
V

ρv dv +
∫

δV
ρv(v.n) da =

∫
δV

Tn da +
∫

V
ρ(b + i) dv (3.82)

δρv
δt

+ div(ρv ⇔ v) = divT + ρ(b + i) (3.83)

Because of zero inertial acceleration (3.48), we can see from these general results
(3.78)–(3.83), that the balances (3.70), (3.74)–(3.77) are valid in any inertial frame
and not only in the one fixed with the distant stars. This assertion expresses the
Galilean relativity principle about the impossibility of preference of any inertial
frame.

Momentum balances (3.81), and (3.78) in the arbitrary frame may be written as
(cf. [1, 7, 18–20, 22, 33])

o =
∫

δV
Tn da +

∫
V

ρβ dv (3.84)

o = divT + ρβ (3.85)

where the total body force β (coming from the outside of the body) is defined by

β → b + i − v̇ (3.86)

This force β is objective: indeed, (3.85) is valid in all frames, therefore

β∞ = (−(1/ρ)divT)∞ = (−(1/ρ∞)(divT)∞
) = Q (−(1/ρ)divT) = Qβ (3.87)

where objectivity of scalar ρ and vector divT have been used (see Sect. 3.2; stress
tensor T is objective).

Balance of momentum in the objective form (3.84), (3.85) may be interpreted as
the general action and reaction law: sum of all forces is zero (in total body force
(3.86) the force i − v̇ caused by “distant, remote stars” is included).

To formulate another main principle—the balance of moment of momentum—we
introduce for some part of body (or body itself) with material volume V in actual
configuration of the considered frame the moment of momentum or angular moment
related to the point y as follows16

16 We use the outer product ≤ defined for two vectors a, b as a ≤ b → a ⇔ b − b ⇔ a, i.e.
(a ≤ b)i j = ai b j − a j bi . This product is obviously the skew-symmetric tensor which, using the
results from Rem. 10, is equivalent to the axial vector created by the vector product of these vectors,
see Rem. 6

b × a = −a × b

Then, e.g., the balance of angular moment (3.90) may be written in a more traditional way as
∫
V

(x − y) × ρv̇ dv =
∫

δV
(x − y) × Tn da +

∫
V

(x − y) × ρb dv
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∫
δV

(x − y) ≤ ρv dv (3.88)

Here, x is the place where density ρ and v is considered and y is the point which
may be outside of the body and usually fixed in the considered frame.

To obtain a simple form of the balance of moment of momentum, we confine its
formulation to inertial frame with angular moment (3.88) having point y fixed here
(althoughweuse here the inertial framefixedwith distant stars, resulting formulations
are valid in any inertial frame as will be shown at the end of this section). Again,
the main reason for that is the nonobjectivity of x, y, v in (3.88), cf. (3.25), (3.38);
generalization of this balance in the arbitrary frame will be discussed below but we
note that the main local result—symmetry of stress tensor (3.93) below—is valid in
the arbitrary frame.

Such a balance of the moment of momentum (balance of angular moment) asserts
that the time change of the moment of momentum is equal to torques acting on a
considered part of the body (or the body itself). Here we confine to the simplest case
of (mechanically) nonpolar materials where torques are moments of forces (i.e., their
outer products of Rem. 16 with x−y) used in the preceding balance of momentum.17

Therefore, the balance of moment of momentum or balance of angular momentum
related to the fixed point y in actual configuration in the inertial frame (fixed with
distant stars) for (arbitrary part of) body with material volume V and its surface δV
is postulated as

˙∫
V
(x − y) ≤ ρv dv =

∫
δV

(x − y) ≤ Tn da +
∫
V
(x − y) ≤ ρb dv (3.89)

Traction t is here expressed through the stress tensor by (3.72). We also note that
postulating (3.89) for one fixed point y the form (3.89) is valid for arbitrary but fixed
point (say y0 as follows from the balance of linear momentum (3.74) multiplied by
constant (y−y0)≤ (i.e., as outer product in Rem. 16) and by summation with (3.89),
of course all in our inertial frame). For this reason the origin y = o is often used in
formulations of this postulate, e.g., [16], without loss of generality.

Using (3.68), (3.7) (namely ẋ ≤ v = 0) and the assumption of fixed point, i.e.,
the time derivative ẏ = o (note that (3.25) applied on point y shows that y may be at
most a function of time in the arbitrary frame; cf. below (3.94)), we obtain

17 In more general (mechanically) polar materials [13, 34], the local result (3.93) must be changed
(cf. also Rems. 32 in this chapter, 9 in Chap.4). Namely, the balance (3.89) then contains (besides
moments of forces) torques expressing the direct exchange of angular moment on a microscopic
level (something like heat in energy exchange). These “microscopic” torques may be expressed
by the objective field of density of skew-symmetric tensor M adding to the right-hand side of the
postulate (3.89) the integral

⎡
V M dv. Then instead of local result (3.93), we obtain

T − TT = M.

http://dx.doi.org/10.1007/978-3-319-02514-8_4
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∫
V
(x − y) ≤ ρv̇ dv =

∫
δV

(x − y) ≤ Tn da +
∫
V
(x − y) ≤ ρb dv (3.90)

Using Gauss’ theorem (cf. (3.23); note that the following skew-symmetric tensor is
in components (div((x − y) ≤ T))i j = δ((xi − yi )T jk − (x j − y j )T ik)/δ(xk), cf.
Rem. 16) and by localization using assumed validity of (3.90) for any V , we obtain

(x − y) ≤ ρv̇ = div((x − y) ≤ T) + (x − y) ≤ ρb (3.91)

Calculating divergence (simply in component form above, y is fixed) we obtain

div((x − y) ≤ T) = TT − T + (x − y) ≤ divT (3.92)

Inserting it in (3.91) and using in this inertial reference configuration the balance of
momentum (3.76) multiplied by (x − y)≤ from the left, we obtain the local balance
of moment of momentum as

T = TT (3.93)

expressing the symmetry of the stress tensor (but seeRem. 17). Though our deduction

was performed in the inertial frame fixed with distant stars, we can see that such
symmetry of the stress tensor is valid in any frame, even a noninertial one, because
the stress T is an objective tensor (see above and (3.32)).

Starting with (3.93) in any frame and tracing back the deduction we can obtain the
integral form of the balance of angular momentum even in the noninertial frame; as
may be expected such a result will bemore complicated because of the nonobjectivity
of x, y, v and objectivity of forces T, b, cf. e.g. [7, 14].

Namely, taking the outer product of x − y with local momentum balance (3.78)
in an arbitrary, even noninertial frame we have (we use (3.92) and the validity of
moment of momentum balance (3.93) in any frame)

(x − y) ≤ ρv̇ = div((x − y) ≤ T) + (x − y) ≤ ρ(b + i) (3.94)

where y may be an arbitrary function of time (at most, cf. our remark above (3.90); it
would be better to denote all quantities in this new arbitrary frame say by stars as in
Sect. 3.2, e.g. y∞ may be obtained from y by (3.25) as y∞ = c(t)+Q(t)y with fixed y
(say from inertial frame fixed with distant stars above), but we do not use this mark
for simplicity).

Integrating (3.94) throughmaterial volumeV in this new arbitrary “starred” frame
and using Gauss’ theorem (3.23) we obtain (3.90) with b + i instead of b. Because

˙
(x − y) ≤ v = (x − y)≤ v̇ − ẏ ≤ v (namely ẋ ≤ v = v ≤ v = 0; scalar ρ is objective)
we obtain by (3.68) (y is function of time at most) the balance of the moment of
momentum related to even the nonfixed point y in an arbitrary (even noninertial)
frame as
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˙∫
V
(x − y) ≤ ρv dv+ ẏ≤

∫
V

ρv dv =
∫

δV
(x−y)≤Tn da +

∫
V
(x−y)≤ρ(b+ i) dv

(3.95)

Using here the Reynolds theorem (3.24) we can, e.g., write the balance of moment
of momentum related to even a nonfixed point y in an arbitrary (even noninertial)
frame for a fixed volume V in actual configuration as

d

dt

∫
V
(x − y) ≤ ρv dv +

∫
δV

(x − y) ≤ ρv(v.n) da + ẏ ≤
∫

V
ρv dv

=
∫

δV
(x − y) ≤ Tn da +

∫
V
(x − y) ≤ ρ(b + i) dv (3.96)

Therefore, as follows from (3.95), if point y is fixed (i.e., ẏ = o) the balances
of moment of momentum (3.89) may be used also in an arbitrary (even noninertial)
frame if body force b is enlarged by inertial acceleration i (3.79) (i.e., b is substituted
by b + i). This is valid also for balance (3.90) (see deduction of (3.95)) and for local
balance (3.91) (cf. (3.94)).

Balance of moment of momentum (3.93) expressed through the symmetry of a
stress tensor (at least for mechanically nonpolar materials, cf. Rem. 17) is valid
in any frame, even noninertial. Finally we can see that because (3.48) is valid for
transformations between any inertial frames, the balances of angular moment related
to fixed y (3.89)–(3.91) are valid in any inertial frame and not only in those fixed
with distant stars.

Summary. The first three balance equations are formulated in this section. The
balances are necessary conditions to be fulfilled not only in thermodynamics but
generally (in continuum mechanics). The balance of mass was formulated locally in
several alternatives—(3.62), (3.63), or (3.65). The most important consequence of
the balance of momentum is the Cauchy theorem (3.72), which introduces the stress
tensor. The local form of this balance is then expressed by (3.76) or (3.77). The most
relevant outcome of the balance of moment of momentum is the symmetry of the
stress tensor (3.93). Note that in this section also an important class of quantities—
the specific quantities—was introduced by (3.66); note particularly their derivative
properties (3.67) and (3.68).

3.4 Energy Balance and Entropy Inequality

In Chap.1 we postulate the First Law as (1.3) which gives the existence of internal
energy fulfilling (1.5). Similarly as in Sect. 2.1 we can write (1.5) as a balance: the
time derivative of internal energy is equal to the sum of heating and power (cf. (2.1))
[11, 18, 22, 35]. This is applicable to the material volume of a (nonuniform) body
or its arbitrary part consisting of a single substance. We postulate the existence of a

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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specific internal energy u and assume that heating is composed of the surface heating
q (exchange of heat between neighbourhood parts by conductivity) and the volume
heating Q (exchange of heat by radiation from the outside of the body) which are
surface and volume densities respectively.18 Therefore assuming that power is given
by forces from Sect. 3.3, i.e., by traction t (3.72) with symmetrical stress T (3.93)
and the total body force β (3.86), we can postulate the balance of energy in the form

˙∫
V

ρu dv =
∫

δV
q da +

∫
V

Q dv +
∫

δV
v.Tn da +

∫
V

ρβ.v dv (3.97)

for any material volume V with the surface δV but in actual configuration, cf. end of
Sect. 3.1. The justification of the name internal energy on the left hand side follows
from using all forces (including those inertial in β) for the construction of power on
the right-hand side, cf. discussion of (1.5).

We postulate also that u, q and Q are objective scalars (but see Rem. 21); then
(3.97) is valid in all frames: by Rem. 12 the first three integrals in (3.97) are objective
as well as the remaining scalar

∫
δV

v.Tn da +
∫
V

ρβ.v dv =
∫
V
(v.(divT + ρβ) + tr(LT))dv =

∫
V
tr(DT) dv

(3.98)

obtained by (3.23), (3.14), (3.85), (3.15), (3.93). Its objectivity follows from the
objectivity of D, T and therefore of DT (as may be easily seen) and its trace, see
Sects. 3.2 and 3.3.

Densities in (3.97) are field quantities; but19 we assume that the heating surface
density q depends, in excess, on the external normal n

q = q(x, t, n) (3.99)

Then using the tetrahedron arguments (similarly as in deduction of (3.72)) we prove
from (3.99), (3.97), that dependence on n is linear

q = −q.n (3.100)

18 Exchange of radiation between distant parts of the same body is neglected; q on the real surface
of body is given as a boundary condition. Assuming the validity of such a balance for each part
of the body, we use again the principle of solidification and again volume and surface densities
(ρu, Q, q etc.) could be deduced from more plausible primitives. Cf. Rems. 7, 13 and 14.
19 Surface heating is scalar. Vectorial heat flux in (3.100) will be deduced quite similarly as the
stress tensor was obtained from the traction in (3.72). Dependence of q on n may be expected,
e.g., in a body under temperature gradient it may be expected in a given place that q on the surface
perpendicular to such a gradient will be greater then on the surface parallel to it.

http://dx.doi.org/10.1007/978-3-319-02514-8_1
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i.e., there exists a field20 of the heat flux vector q = q(x, t). Indeed, if we apply
(3.97) to a small tetrahedron (as in (3.73)) and use (3.68) and Gauss’ theorem, we
obtain

ρu̇ �v = q �a + q j �a j + Q �v + (div(vT))�v + ρβ.v �v (3.101)

Here �v = (1/3)h �a, h, �a, �a j = n j�a have the same meaning as in (3.73).
Inserting these relations into (3.101) and limiting h → 0 we obtain q = −q j n j

where q j (independent of n) are components of the heat flux q. Moreover, because
of objectivities of q and (arbitrary) n, the heat flux q is an objective vector
(cf. motivation of (3.31) and below (3.72)).21 Inserting (3.100) into (3.97) and using
(3.68), (3.86) we obtain the balance of the whole energy (internal and kinetic) in the
usual form

˙∫
V

ρ(u + (1/2)v2) dv =
∫
V

ρ
˙

(u + (1/2)v2) dv

= −
∫

δV
q.n da +

∫
V

Q dv +
∫

δV
v.Tn da

+
∫
V

ρ(b + i).v dv (3.102)

which is valid in an arbitrary frame (in inertial frame i = o). Balance (3.102) may
be also written for fixed volume V with surface δV if we use the Reynolds theorem
(3.24)

d

dt

∫
V

ρ(u + (1/2)v2) dv +
∫

δV
ρ(u + (1/2)v2)v.n da

=
∫

δV
v.Tn da +

∫
V

ρ(b + i).v dv −
∫

δV
q.n da +

∫
V

Q dv (3.103)

A special case follows when the body force has a potential � constant in the
time22

b + i = −grad�,
δ�

δt
= 0 (3.104)

Inserting (3.104) into (3.102) and using (3.8), (3.68) we can interpret this special
case as the balance of internal, kinetic and potential energy

20 The sign is in accord with convention mentioned in Rem. 7 in Chap.1: negative heat q is
emitted when q has direction of outer normal n. Also Fourier law (3.187) directs heat flux q against
temperature gradients, cf. [1, 14, 24, 27, 36, 37].
21 Heat is based on molecular motion; therefore the possible nonobjectivity of heat flux has been
discussed [24, 38–40]. Because of the molecular chaos this effect is probably negligible with the
exception of very rarefied gases. Cf. also Rem. 33 in Chap.4.
22 Such is, e.g. the potential � = (1/2)x∞.�2x∞ giving centrifugal force (3.47); �2 (as a product
of the identical skew-symmetrical tensors) is symmetrical.

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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˙∫
V

ρ(u + (1/2)v2 + �) dv =
∫

δV
v.Tn da −

∫
δV

q.n da +
∫
V

Q dv (3.105)

Now we can obtain the balance of energy in a local form using (3.68), Gauss’
theorem and validity of (3.102) for all V

ρ
˙

(u + (1/2)v2) = −div q + Q + div(vT) + ρ(b + i).v (3.106)

From this we subtract the balance of “kinetic energy” obtained from (3.78)
multiplying it by v and using (3.14), (3.15), (3.93) to get the local energy balance

ρu̇ = −div q + Q + tr(TD) (3.107)

(this follows also by localization from (3.97), (3.68), (3.100), (3.98)). This result is
valid in any frame because of objectivity of all members here, cf. Sect. 3.2.

We now apply the entropy inequality (1.42) to our continuous body (or arbitrary
part of it). Because the integral in (1.42) may be understood (by definition of heat
distribution) as time and space integral we can formulate an entropy inequality using
the entropy rate, heating and corresponding densities of these quantities (cf. end of
Sect. 1.4 and thewaywe obtained (2.2); again it is possible to proceedmore naturally,
see Rems. 7, 14 and 18) [11, 18, 35, 41]. Therefore entropy may be expressed if we
introduce the specific entropy s as a primitive objective scalar. Because the heating
nowcontains surface and volumepartswith densitiesq and Q (cf. (3.97)) and because
the absolute temperature is now scalar field T = T (x, t), assumed to be objective, it
follows that the entropy inequality may be formulated as (we use (3.100))

˙∫
V

ρs dv ∈ −
∫

δV
(q/T ).n da +

∫
V
(Q/T ) dv (3.108)

for the material volume V with the surface δV of a body or its arbitrary part.23

By Gauss’ theorem and (3.68) we obtain entropy inequality in the local form
called the Clausius-Duhem inequality

ξ → ρ ṡ + div(q/T ) − Q/T ∈ 0 (3.109)

valid in any frame. The left-hand side of inequality (3.109) defines the production
of entropy ξ which is therefore never negative and by the objectivity of its defining
quantities it is an objective scalar.

Using (3.68), Gauss’ theorem (3.23) and definition (3.109) we can write entropy
inequality (3.108) as

23 Using Reynolds theorem (3.24) in (3.108) we obtain quite naturally the entropy inequality for
open systems in (single) continua. Cf. Rems. 14 in Chap.2, 11 in Chap.4 and the end of Sect. 3.1.

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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∫
V

ρ ṡ dv +
∫
V
div(q/T ) dv −

∫
V
(Q/T ) dv =

∫
V

ξ dv ∈ 0 (3.110)

Finally, we can eliminate q and Q from energy balance (3.107) and Clausius-
Duhem inequality (3.109) and use the following definition of the specific free energy
f and the temperature gradient g

f → u − T s (3.111)

g → grad T (3.112)

(it follows that both are objective quantities, cf. Sect. 3.2) to get the reduced inequality

− T ξ = ρ ḟ + ρsṪ + T −1 q.g − tr(TD) ≤ 0 (3.113)

This is again objective and will be useful later in Sect. 3.6.
At the end of these Sects. 3.3 and 3.4 we note that energy balance and entropy

inequality motivated by procedures like those in Chap.1 together with generaliza-
tion of frame indifference (plausible objectivity is postulated not only for motion
(Sect. 3.2) but also, e.g., for power of surface and body forces or heating) permit to
deduce balances in Sect. 3.3 (i.e., for mass, linear and angular momentum), internal
energy, entropy and their objectivity, etc. For details see, e.g., [1, 22, 42, 43] and
other works on modern thermomechanics [7, 8, 18, 20, 41].

Summary. Energy balance containing heat transfer, and entropy inequality are
typical thermodynamic conceptions. In fact, they constitute the (general forms of)
First and Second Law of thermodynamics, respectively. Perhaps the most important
for further development are the local energy balance in the form (3.107) and the
Clausius-Duhem formulation of entropy inequality—(3.109). Introducing the (spe-
cific) free energy, (3.111), the latter is transformed to the reduced form (3.113).

3.5 Constitutive Principles and Constitutive Equations
for the Single Substance

In preceding paragraphs, the balances and the entropy inequality in local form (3.63),
(3.76), (3.93), (3.107), (3.109) have been obtained. Because of the general validity
of balances (for broad class of nonuniform single continua in a given case; cf. similar
situation in Sect. 2.1) these independent relations are not sufficient for determination
of all fields (functions of x, t) occurring there

ϑ , ρ , T (3.114)

u , s , q , T (3.115)

Q , b , i (3.116)

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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We call the fields (3.114)–(3.116) fulfilling the balances of mass (3.63), (3.65),
momentum (3.76), moment of momentum (3.93), and energy (3.107) a thermody-
namic process, because only these are of practical interest. Then we denote the fields
(3.114) as the thermokinetic process and the fields (3.115) as the responses (we
limit to the models with symmetric T (3.93); in more general models we must intro-
duce also the torque M into responses (3.115), cf. Rems. 17, 32). The fields (3.116)
are controlled from the outside24 (at least in principle). Just constitutive equations,
which express the difference among materials, represent the missing equations and
are relations between (3.114) and (3.115) [6, 7, 9, 10, 23, 34, 38, 40, 41, 44, 45].
Referring to Sect. 2.1 we briefly recall that constitutive equations are definitions of
ideal materials which approximate real materials in the circumstances studied (i.e.,
at chosen time and space scales). Constitutive equations may be proposed in rational
thermodynamics using the constitutive principles of25: determinism, local action,
memory, equipresence, objectivity, symmetry, and admissibility.

The constitutive principle of determinism asserts that responses (3.115) in the
present instant and given place are determined by thermokinetic process (3.114) in
the past and present in all the body. But in single substances, the field of density is
given by the motion through (3.65) (field ρ0 is assumed to be known) and therefore
response (3.115) is given by fields ϑ and T only (in fact mass balance was used; this
will be used also in the following applications of thermokinetic process, cf. Sects. 3.6,
4.5). Thus, the constitutive equations are functionals giving values of (3.115) in given
particle X and present time t , independent variables of which are functions

ϑ(Y, τ ) , T (Y, τ ) (3.117)

in all the particles Y of the body and all times τ ≤ t . This very general material
model is significantly reduced by the following two constitutive principles. The
principle of local action asserts that responses (3.115) are influenced only by values
of (3.117) in particles Y = X and in immediate neighbourhood of X (“locality,”
cf. Rem. 12 in Chap.2) and, similarly, the principle of differential memory asserts
that the response (3.115) is given only by the values (3.117) in the present time t and in
the immediate past. Mathematically we can express these principles in the following
way (cf. Sect. 2.1 and Rem. 3 in Chap.2 for memory effect only): we expand (3.117)
in the Taylor series around the present time t and given particle X; then the response
is influenced only by the values and several space and time derivatives taken at
these t and X. This means that the response functionals are reduced to the following
functions:

{s, u, q, T} = F̆(x, v, F,GradF, Ḟ, T,GradT, X, t) (3.118)

24 Such are also boundary values q, T on the real surface of the whole body, cf. Rems. 13, 18, see
also Rem. 36.
25 Repeating those noted in Sects. 1.1 and 2.1 the name “principles” here is stilted a little: they are
rather rules or recommendations which generalize motivation or proposals of such equations in the
past [40], cf. exceptions in Rems. 21, 26, and 28.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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We believe that the choice of derivatives is representative for the materials intended
for study here. Note the elimination of temperature memory; otherwise the “local
equilibrium” might be invalid (cf. Sects. 2.2, 4.5).

In (3.118), the concise form of writing of several constitutive equations with the
same variables was used, i.e., here F̆ stands for constitutive functions s̆, ŭ, q̆, T̆
respectively (overhead symbol � differs function from its value; rare exclusion,
see, e.g., Sect. 3.2). Because the response as well as the independent variables are
functions of X and t , we add in (3.118) also explicit dependence on these quanti-
ties.26 In formulation of constitutive equations (3.118) the constitutive principle of
equipresence was used: in all constitutive equations (3.118) we used the same inde-
pendent variables. This prevents the unjustified preference of some of such equations;
it is a rather plausible rule, cf. Rem. 25, Sect. 2.1, which in special cases, e.g. [28, 60],
may be left.

The explicit dependence on X in (3.118) means that in different particles of our
body there may be different material of the same type (i.e., depending on the same
variables but in different way). We eliminate for simplicity this dependence, i.e., our
body consists of the same material in all particles.27 Then we use (3.14), (3.15),
(3.112) to write (3.118) in the form

{s, u, q, T} = F̆(x, v, F,GradF, D, W, T, g, t) (3.119)

where F̆ means functions s̆, ŭ, q̆, T̆.
Further reduction of constitutive equations (3.119) may be achieved by the con-

stitutive principle of frame indifference or the principle of objectivity: the mater-
ial properties and therefore also constitutive equations must be independent of the
choice of frame. This principle is a generalization of common experience with mate-

26 Great numbers of more general models have been studied e.g. with long range memory (as fading
memory or with internal variables mentioned in Sects. 2.1, 2.3), where differential memory is not
suitable. Its analog for a space coordinate is the nonlocal material [46–50] where the local action is
not sufficient. Another type are materials with a microstructure (micromorphic materials) in which
the particles have a more complicated structure [11, 45, 48, 51, 52] (cf. Rem. 2). For simplicity we
excluded in (3.118) the temperature memory studied in [23, 26, 53] (the influence of which was
outlined in Sect. 2.2; cf. Rem. 31 in Chap.4). The principle of determinism is modified in materials
with internal constraints [6, 7, 10, 12, 54–58] manifested usually as some a priori limitation on
the motion (but there are also nonmechanical constraints such as perfect heat conductivity). Most
important are incompressible materials where the internal constraint is J = 1 (by (3.64) density
of particles does not change and therefore only isochoric motions are allowed). The limitation is
achieved by forces (pressure in incompressible material) which are not determined by the motion
and do not work. The remaining part of the stress is given by the usual principle of determinism.
Modification of determinism is also given by using pressure as an independent variable (usual in
classical thermodynamics); then incompressibilitymaybe also understood as pressure independence
here [24, 59], cf. end of Sect. 3.7.
27 Moreover a unique reference configuration was tacitly assumed in the whole body. But there
are (nonfluid, usually solid) materials with dislocations which may be just described by nonunique
references and dependence on X remains even if they are from the “same” material, cf. [6, 8, 41],
cf. also Rem. 30.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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rial properties.28 Mathematically this principle means that the functions in (3.119)
(considered in some frame) are the same in the arbitrary other “starred” frame

{s∞, u∞, q∞, T∞} = F̆(x∞, v∞, F∞, (GradF)∞, D∞, W∞, T ∞, g∞, t∞) (3.120)

where starred quantities in the new frame are transformed by (3.25), (3.26), (3.38),
(3.49), (3.53), (3.54), (3.51) and (3.30)–(3.32) for objective s, u, q, T, T, g.

In a special choice Q = 1 and arbitrary b, c, ċ, Q̇, these transformations must
give the same values of responses in (3.119) and (3.120) (because F̆ is the same
in both frames) and this is possible (change from (3.119) to (3.120) is valid for any
values of independent variables) only if responses are independent of variables x, t, v
and W. This means that two observers with a shift in origins of time and space and
with different velocities of translation and rotation must obtain the same responses.
Therefore, the constitutive equations (3.119) must be reduced by the principle of
frame indifference (or objectivity) to the form

{s, u, q, T} = F̄(F,GradF, D, T, g) (3.121)

where again F̄ means functions s̄, ū, q̄, T̄.29 Because responses are given by (3.121)
in the actual reference, the F̄ must be such that responses are the same if we only
change reference configuration (F and GradF change correspondingly but describe
the same deformation; the other independent variables in (3.121) remain the same
[6, 7, 41, 63], cf. Rem. 30 for application).

But this is not all. Using again the change of frame with arbitrary Q in the con-
stitutive equations (3.121) we have (note that here all dependent and independent
variables are objective; we can regard F and GradF as objective vectors, cf. (3.49),
(3.51))

{s, u, Qq, QTQT } = F̄(QF, QGradF, QDQT , T, Qg) (3.122)

which must be identically valid for any values of independent variables and any
orthogonal tensor Q from the full orthogonal group (see Rem. 8), i.e., at any rota-

28 E.g. we tacitly assume such a principle in the assertion that the same force extends by the same
amount the loaded spring when it is suspended in gravitational field or it is attached in the centre
of rotated disc. Namely, we assume that the constant of the Hook’s law of the spring (i.e., its
constitutive equation) is the same in these both frames [6, 7, 61]. But, cf. Rem.25, even here they
are exceptions [62] (from nonclassical physics).
29 Namely, the substitution described below (3.120) gives

{s, u, Qq, QTQT } = F̆(Qx+c, Qv+ ċ+�Qx, QF, QGradF, QDQT , QWQT +�, T, Qg, t +b)

which by choice
Q = 1, c = −x, ċ = −v + Wx, � = −W, b = −t

gets
{s, u, q, T} = F̆(o, o, F,GradF, D, 0, T, g, 0) → F̄(F,GradF, D, T, g)

valid for any independent variables, i.e., giving (3.121).
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tion and inversion (also restriction on rotation only is used; cf. Rem. 9). This
condition (3.122) restricts the form of functions to the so-called isotropic functions,
the form of which in vector and tensor variables is very limited [6, 9, 64–66] (cf. also
Appendix A.2 for linear functions on which we concentrate later, see Sect. 3.7). We
name the model with constitutive equations (3.121) the nonsimple (or second grade)
material with heat conduction and viscosity.

A special case is a simple material which does not depend on GradF, cf. [67, 68]

{s, u, q, T} = F̄(F, D, T, g) (3.123)

Such functions F̄ must again be isotropic (for Q from full orthogonal group)

{s, u, Qq, QTQT } = F̄(QF, QDQT , T, Qg) (3.124)

Further simplification of (3.123) is thermoelasticmaterial (with heat conductivity,
see Sect. 3.6)

{s, u, q, T} = F̄(F, T, g) (3.125)

(or elastic at T fixed, cf. Rem. 31) again isotropic, i.e., fulfilling analogical conditions
(3.124).

The following constitutive principle of material symmetry demands that constitu-
tive equations must be in accord with the inherent symmetry of the material studied.

Here we confine mainly to fluids (gases or liquids) defined as materials with
maximal symmetry. Using this principle we find that dependence on F and GradF
may be in fluids expressed through dependence on density ρ and its gradient h

h → gradρ (3.126)

respectively, and constitutive equations are independent of the reference. Other
important materials are solids, mainly those isotropic (not to be confused with the
isotropic function!), or crystals of different crystal classes, etc. For the purposes of
this book, we plainly define the fluid using ρ instead of F in (3.125) for a simple
fluid, and using ρ, h instead of F, GradF in (3.121) for a nonsimple fluid. But such
replacement may be deduced.30

30 How the principle of symmetry works we outline on simple material (3.123) (see [6, 7, 10,
14, 41, 63, 69] for details); for nonsimple fluid the similar procedure is more complicated, see
[14, 70, 71]. Assume for simplicity a unique reference with reference density ρ0 in the whole body
(everywhere is uniformmaterial without dislocations, see Rem. 27) and all responses behave equally
(their symmetries are the same). The material symmetry may be expressed by (referential) tensor H
(in components H J K ) which, changing deformation F to FH in constitutive relation (3.123), gives
the same response

F̄(F) = F̄(FH) (a)

(nonchanging variables are omitted for brevity) and also the same (actual) density ρ at considered
reference density ρ0, i.e., by (3.65), (3.12), ρ0 = ρ|detF| = ρ|detFH|. This latter condition limits
tensors H to those which are unimodular
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Also other criteria for classification of materials may be used.31

Therefore constitutive equations of nonsimple fluid with viscosity and heat con-
duction are

{s, u, q, T} = F̂(ρ, h, D, T, g) (3.127)

where F̂ stands for functions ŝ, û, q̂, T̂ (independent variables including ρ and there-
foreh are objective, cf. Sect. 3.2).We repeat that responseT here and in all mentioned
constitutive functions is a symmetric tensor. Moreover, the principle of objectivity
demands that functions F̂ must be isotropic, i.e., for any Q from full orthogonal
group and all values of independent variables the following is valid

(Footnote 30 continued)

| detH | = 1 (b)

E.g. indistinguishable rotation may be described by orthogonal H ((b) is valid, cf. Rem. 8).
All such H form the symmetry group G (e.g., two such rotations H1, H2 give indistinguishable

rotation H1H2) which characterize the inherent symmetry of studied material (3.123) in the consid-
ered reference configuration. For example, material is isotropic if any rotation (or even inversion)
is indistinguishable, i.e., G contains a proper (or even full) orthogonal group.

Note that a symmetry group depends on a considered reference: its change (which may also
alter referential density) generally changes the group. This is described by Noll’s rule; for this and
other details see, e.g. [10].

A symmetry group of simple material divides it in two parts (and each of them in isotropic and
anisotropic subparts) [6, 7, 63]:

• simple solids: isotropic or anisotropic (crystal classes like cubic, hexagonal, triclinic etc.)
• simple liquid crystals: isotropic (simple fluids, i.e., gases or liquids) or anisotropic (liquid

crystals).

E.g. in simple solids there exists a reference the symmetry group of which is contained in (full)
orthogonal group; if they are identical then the material is the simple isotropic solid.

Simple fluid has a group of symmetry identical to a unimodular group (contains all H with
| detH | = 1); this group is therefore the maximal one and fluids are isotropic (because they contain
the orthogonal group, cf. Rem. 8; note that unimodular deformations (indistinguishable in fluids)
need not be orthogonal, e.g., isochoric shear). Replacement of F by ρ follows from (a), (b) by the
choice H = J 1/3F−1 (unimodular for given F: | detH | = | det(J 1/3F−1) | = J | detF |−1 = 1).
Indeed, by (3.65), the response is

F̄(FH) = F̄((ρ0/ρ)1/3) → F̂(ρ) (c)

where F̂ is in fact independent of any reference (and its ρ0) because the response (in actual config-
uration) must remain the same if the reference (and therefore F, ρ0) is changed (cf. remark under
(3.121) valid also for (3.123)).
31 Besides those based on symmetry in Rem. 30, see e.g., [8], another was used by Haupt [72]
according to the size of memory for the stress tensor T in an isothermal body: materials (mostly
solids) are

(i) elastic: T is (deformation) rate independent without hysteresis, e.g. (3.125).
(ii) plastic: T is rate independent with hysteresis (by appropriate internal variables, cf. Sect. 2.3).
(iii) viscoelastic: T is rate dependent without hysteresis, e.g. (3.123).
(iv) viscoplastic: T is rate dependent with hysteresis (possible even in equilibrium).

http://dx.doi.org/10.1007/978-3-319-02514-8_2
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{s, u, Qq, QTQT } = F̂(ρ, Qh, QDQT , T, Qg) (3.128)

Analogously, starting from (3.123), simple fluid with viscosity and heat conduction
has the constitutive equations

{s, u, q, T} = F̂(ρ, D, T, g) (3.129)

with analogical properties (3.128).
Finally the specialization of (3.125) on fluid leads to

{s, u, q, T} = F̂(ρ, T, g) (3.130)

with analogical properties (3.128). This is the thermoelastic fluid or, in isothermal
case, the elastic fluid or ideal (Euler) fluid.

The final form of constitutive equations for these models (3.125), (3.127), (3.129)
will be given in Sect. 3.6 where we use the constitutive principle of admissibility.

Summary. A procedure really specific for the rational thermodynamics is intro-
duced in this section in the form of several principles put forward to derive the
thermodynamically consistent constitutive equations. In their most general form, the
constitutive equations were proposed as functions (3.118) on the basis of the princi-
ples of determinism, local action, differential memory, and equipresence. They were
further reduced to the form (3.121) considering the same material throughout the
body and applying the principle of objectivity. Because of our interest in fluids only,
the constitutive equations were further modified to this material type by means of
the principle of material symmetry giving the final form (3.127). Two special types
of fluid were defined by (3.129) and (3.130).

3.6 Principle of Admissibility — Constitutive Equations of Single
Material. Fluid with Viscosity and Heat Conduction

The last constitutive principle of admissibility (or dissipation or entropy principle)
proposed by Coleman and Noll [68] is the most typical for rational thermodynamics
[6, 7, 9, 23, 24, 34, 38, 45, 63, 73] (cf. Sects. 2.2, 2.4, 2.5, 3.7, 4.5).

We call a thermodynamic process which is possible in a given material model,
i.e., fields (like (3.114)–(3.116)) fulfilling all balances (like (3.65), (3.76), (3.93),
(3.107)) combined with proposed constitutive equations an admissible thermody-
namic process. Now, we want such a process to also fulfil entropy inequality.
According to Coleman and Noll [68] (cf. Rem. 5 in Chap.2) we leave the admissible
thermodynamic process arbitrary and restrict the constitutive equations in such a way
that the entropy inequality (3.109) is satisfied identically.

Therefore, the constitutive principle of admissibility (also called the principle of
dissipation or entropy) may be formulated as follows: entropy inequality must be

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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satisfied in any admissible thermodynamic process; mathematical justification of
this principle was given by Muschik and Ehrentraut [74].

But, because of the validity of balances (3.107) (and remaining balances (3.93),
(3.78), (3.63)), the entropy inequality (3.109)may be expressed as reduced inequality
(3.113), the constitutive principle of admissibility may be alternatively formulated
as follows: reduced inequality (3.113) must be satisfied in any admissible thermo-
dynamic process.

Moreover, as we show in the following examples, an admissible process may be
constructed from a thermokinetic process fulfilling the mass balance (using consti-
tutive equations proposed so far and using outside controlled fields like (3.116)).
Therefore, the results of the admissibility principle (i.e., simplifications and further
properties of constitutive equations) follow from inequality obtained by inserting the
constitutive equations into the reduced inequality and by using suitable thermoki-
netic process (fulfilling the mass balance, cf. above (3.117); there is also alternative
method of I-Shih Liu explained in Appendix 5 avoiding the construction of admis-
sible process in complicated cases. As was shown in Appendix 5, this method gives
the same results for our fluid models of Sects. 2.2, 3.7, 4.5).

Although fluids are our main interest, first we demonstrate the admissibility
principle on thermoelastic material (3.125).

Here the free energy (3.111) used in (3.113) has obviously the following consti-
tutive equation

f = f̄ (F, T, g) (3.131)

We calculate ḟ using
˙

FF−1 = 0 and (3.13)–(3.15) and introducing result in (3.113)
we obtain (in Cartesian components):

−T ξ = ρ
δ f̄

δ Fi J
F j J W i j +

(
ρ

δ f̄

δ Fi J
F j J − T ji

)
Di j + ρ

(
δ f̄

δT
+ s

)
Ṫ

+ ρ

−1

F Ji δ f̄

δgi
˙

(GradT )J − ρ

−1

F K i δ f̄

δgi
(GradT )J

−1

F J j Ḟ j K + T −1qi gi ≤ 0

(3.132)

According to the dissipation principle, this inequality must be valid at any admissible
thermodynamic process, which in turn, may be obtained from the appropriate
thermokinetic process (3.114) fulfilling the mass balance (cf. general procedure
sketched above).

Namely, the inequality (3.132) must be valid in an arbitrarily chosen particle X
and (say present) instant t (x is the place of X at t according to motion (3.1)) and
the following thermokinetic process (cf. (3.114)) may be constructed in any particle
Y and any time τ (with place y) in the body as follows: for it we use the following
expansions about considered X and present time t

y = ϑ(Y, τ ) = x + F(Y − X) + Ḟ(Y − X)(τ − t) (3.133)

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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T (Y, τ ) = T + (GradT )(Y − X) + ˙
(GradT )(Y − X)(τ − t) (3.134)

where x, T, F, Ḟ,GradT,
˙

(GradT ) are values of these fields and its derivatives taken
at X, t , and the density field follows from mass balance (3.65)

ρ(Y, τ ) = ρ0(Y)/ | detF(Y, τ ) | (3.135)

(cf. above (3.117); it is valid by thefield of density in the given reference configuration
ρ0(Y) which is assumed to be known. The fixed mass of the body is then given by
(3.58)).

The thermokinetic process (3.133)–(3.135) in thermoelastic material (3.125)
fulfilling mass balance generates the admissible thermodynamic process. Indeed,
for chosen values of F, T and g = (GradT )F−1 at X (or place x) and t (see (3.13))
the fields of responses (3.115) follow by (3.125); the symmetric responseT fulfils the
balance of moment of momentum. Mass balance is satisfied by (3.135) and the bal-
ance of momentum (3.78) and energy (3.107) are satisfied by the appropriate choice
of external body force b(Y, τ ) (or/and inertial force i(Y, τ )) and volume heating
Q(Y, τ ) because (3.116) are controlled from the outside.

Therefore, an admissible thermodynamicprocess exists and is causedby thermoki-
netic process (3.133)–(3.135); by the admissibility principle the inequality (3.132)
must be satisfied. Then this inequality must be satisfied at (arbitrarily chosen) parti-
cle X and instant t by arbitrarily chosen values of mutually independent F, T, g (or

GradT ) and W, D, Ṫ ,
˙

(GradT ) (this follows from the independence of derivatives
in expansions (3.133), (3.134) and (3.14), (3.15); note that T (and ρ) are positive
scalars and D, W are symmetric or skew-symmetric tensors, respectively). But the
inequality (3.132) depends only linearly on the latter values and therefore members
containing them must be zero because of Lemmas A.5.1, A.5.2 from Appendix 5.

Indeed, if we choose F, T, g fixed, D, W,
˙

(GradT ) zero, the following relation
follows from Lemma A.5.1

δ f̄

δT
= −s (3.136)

because Ṫ may be arbitrary scalar (and ρ > 0).

Similarly, if we choose ˙
(GradT ) arbitrary at F, T, g fixed and D, W, Ṫ zero, the

following vector must be zero
δ f̄

δg
= o (3.137)

by Lemma A.5.1 (applied on components, i.e., we choose the components of vector
˙

(GradT )J for J = 1 arbitrary and for J = 2, 3 as zeros; then the first component

of vector ρ
−1

F Ji δ f̄
δgi must be zero. Repeating such application of Lemma A.5.1 for
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remaining J = 2, 3 we also obtain zeros for the remaining components of this last

vector. Because matrix ρ
−1

F Ji is regular we obtain result (3.137)).
Further, we use Lemma A.5.2 (with consequences for symmetric and skew-

symmetric tensors). Namely, if we choose D, ˙
(GradT ), Ṫ zero at arbitrary F, T, g,

the first member in (3.132) must be zero at any skew-symmetric tensor W, i.e., the
following tensor in this member must be symmetric

δ f̄

δF
FT = F

(
δ f̄

δF

)T

(3.138)

By analogical arguments, we obtain from Lemma A.5.2 that the tensor standing
at D in (3.132) must be skew-symmetric. But it is at the same time symmetric (see
(3.138), (3.93)) and therefore it is zero.32

T = ρ
δ f̄

δF
FT (3.139)

Moreover, these results (3.136)–(3.137) are valid identically: at any F, T, g and
any X, t . Therefore, (3.131) is reduced to

f = f̄ (F, T ) (3.140)

and (3.136) and (3.139) show that free energy is a potential for entropy and stress,
i.e., the corresponding Gibbs equation is valid. Therefore also s (and by (3.111)
also u) and T depend on F, T only (only heat flux q depends on temperature gradi-
ent g).

Production of entropy is caused only by heat conduction

ξ = −T −2q.g ∈ 0 (3.141)

and it is zero in the equilibrium process defined here by

g = o (3.142)

(cf. the end of Sect. 2.1 and Rem. 11 in Chap.1). But in equilibrium (3.142) the
production of entropy ξ = ξ(F, T, g) (cf. (3.125)) has a minimum and therefore

d

dλ
ξ(F, T, λg) |λ=0 = 0 (3.143)

where λ is a real parameter. Inserting (3.141) into (3.143) gives

32 Note that by analogical calculation for (mechanically) polar materials Rem. 17, the result (3.139)
is valid but its skew-symmetric part gives torque M.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
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qo → q(F, T, o) = o (3.144)

and therefore equilibrium value qo of the heat flux is zero.
Without going into details we note also that sufficient conditions of minima of

ξ may be discussed and further simplifications of these results using objectivity
(3.124) andmaterial symmetrymay be obtained: using Cauchy-Green tensors, Piola-
Kirchhoff stress tensors, the known linearized constitutive equations of solids follow,
e.g. Hook and Fourier laws with tensor (transport) coefficients which are reduced to
scalars in isotropic solids (e.g. Cauchy law of deformation with Lamé coefficients)
[6, 7, 9, 13, 14].

Results for thermoelastic fluid might be also obtained by the constitutive principle
of symmetry but we get them directly from the following fluid model, cf. (3.182)
and the end of this section.

Our main goal is to apply the admissibility principle to fluids [39, 53, 75–78],
namely to nonsimple fluid (3.127) (the special cases of simple (3.129) and ther-
moelastic (3.130) fluids will be discussed at the end of this section but the most
important are fluids with linear transport properties contained in Sects. 3.7 and 3.8).
In nonsimple fluid (3.127) it is sufficient to use the field of velocity (instead of
motion), cf. (3.14)1, (3.15)1. Therefore we define the thermokinetic process in fluids
as the fields of (instead of (3.114))

v, ρ, T (3.145)

An admissible thermodynamic process in fluids is defined as fields of thermokinetic
process (3.145), responses (3.115) (given by constitutive equations (3.127)), and
outside fields (3.116) which fulfil balances (3.63), (3.78), (3.93), (3.107).

Although the spatial (Euler) description x, t is simpler in fluids, the material
(time) derivative, expressed by (3.8), is preferred below because it givesmore concise
results.

The principle of admissibility demands to fulfil entropy inequality (3.109) and
therefore also the reduced inequality (3.113) by any admissible thermodynamic
process. Here the free energy (3.111) is used for which, as follows from (3.127),
we have the following constitutive equation

f = f̂ (ρ, h, D, T, g) (3.146)

in our nonsimple fluid. Hence we can write

ḟ = δ f̂

δρ
ρ̇ + δ f̂

δh
.ḣ + tr

δ f̂

δD
Ḋ + δ f̂

δT
Ṫ + δ f̂

δg
.ġ (3.147)
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Here tr δ f̂
δD Ḋ = δ f̂

δ Di j Ḋi j where both tensors are symmetric. This is clear for Ḋ but the

symmetry of δ f̂
δD follows from the rule that the derivative of a scalar function with

respect to a symmetric tensor is symmetric.33

Now we express ρ̇ from (3.63) using (3.16) and ḣ from

ḣ = −h(D + W) − h trD − ρ grad(trD) (3.148)

which may be obtained if we take the gradient from balance of mass (3.62) and use
(3.126), (3.9), (3.14), (3.15). Both ρ̇ and ḣ we use in (3.147) and then we insert ḟ
into reduced inequality (3.113). After rearrangement we obtain (in component form)

−T ξ = −ρ
δ f̂

δhi

⎣
h j (D ji + W ji ) + hi Dkk

⎤
− ρ2 δ f̂

δhi

δ Dkk

δxi
+ ρ

δ f̂

δ Di j
Ḋ ji

+ ρ
δ f̂

δgi
ġi + ρ

(
δ f̂

δT
+ s

)
Ṫ −

(
T i j + ρ2 δ f̂

δρ
δi j

)
D ji + T −1qi gi ≤ 0

(3.149)

33 Let f be a scalar function f̃ of symmetric tensor D, i.e., a function of 6 independent variables:

f = f̃ (D) = f̃ (D11, D12, D13, D22, D23, D33) = f̃
(
D11,

1

2
(D12 + D21),

1

2
(D13 + D31), D22,

1

2
(D23 + D32), D33)

→ f̂ (D11, D12, D13, D21, D22, D23, D31, D32, D33) = f̂ (D)

The last definition of function f̂ of 9 variables (allowed by symmetry of D) permits to employ
the customary tensor (or matrix) descriptions, e.g. the summation convention in component form.
This is the reason for using this definition of f̂ in (3.146), (3.147) and other formulae in this book
(similar definitions may be used for skew-symmetric tensor and vector and tensor functions [7, 14,
79]). As may be seen from the definition above, the main property of f̂ is (when D is symmetrical

and this is just such a case) that δ f̂
δD is indeed symmetrical, e.g.

δ f̂

δ D12 = 1

2

δ f̃

δ D12 = δ f̂

δ D21

If B is a symmetric tensor then, as may be expected,

tr
δ f̂

δD
B = δ f̂

δ Di j
B ji = δ f̃

δ D11 B11 + δ f̃

δ D12 B12 + δ f̃

δ D13 B13

+ δ f̃

δ D22 B22 + δ f̃

δ D23 B23 + δ f̃

δ D33 B33 = δ f̃

δD
.B

and therefore this expression may be also written as an inner product in the space of symmetric
tensors, i.e., as a scalar product (denoted by dot) of 6-dimensional vectors. This way is also often
used; then, of course, we understand (in (3.146) etc.) f as a function in the space of symmetric
tensor D, i.e., as f̃ . Similarly it may be proved that the derivative of a scalar function with respect
to a skew-symmetric tensor is again skew-symmetric.
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This inequality depends through constitutive equations (3.127), (3.146) on

ρ, h, D, T, g (3.150)

and linearly on
W, grad trD, Ḋ, Ṫ , ġ (3.151)

In accord with our general procedure sketched in the beginning of this section we
now construct the following thermokinetic process (assumed to fulfil mass balance)
which generates an admissible thermodynamic process which in turn, by the admis-
sibility principle, must fulfil the inequality (3.149). From this then further properties
of constitutive equations (3.127), (3.146) will be obtained.

Namely, we construct the thermokinetic process (3.145) in arbitrary point y of
the actual configuration of the body and arbitrary instant τ as bounded expansions of
fields v(y, τ ), T (y, τ ) around the arbitrarily selected place x in the body and (present)
instant t

vi (y, τ ) = vi (x, t) + (Li j (x, t))(y j − x j ) +
(

δLi j

δt
(x, t)

)
(y j − x j )(τ − t)

+ 1

2

(
δLi j

δxk
(x, t)

)
(y j − x j )(yk − xk) (3.152)

T (y, τ ) = T (x, t) + (g(x, t)).(y − x) +
(

δT

δt
(x, t)

)
(τ − t)

+
(

δg
δt

(x, t)

)
.(y − x)(τ − t) (3.153)

Density field ρ(y, τ ) need not be formulated explicitly because mass balance is
assumed to be valid (in fact it has been assumed at deduction of (3.149) in eliminations
of ρ̇, ḣ by (3.63), (3.148); note that ρ̇, ḣ are not present in (3.150), (3.151)). It is

satisfied, e.g. as (3.63) by choice ˙lnρ = ρ̇/ρ = −divv for appropriate velocity
(3.152) at any y, τ .34

This thermokinetic process (with validity of mass balance) generates an admis-
sible thermodynamic process: we can obtain the values of independent variables of
constitutive equations (3.127), (3.146) in the whole body at any time (see (3.126),
(3.112), (3.15)) and therefore also fields of responses (3.115) (with f ). Further the
balance of moment of momentum (3.93) is satisfied because of symmetric tensor T

34 Construction of ρ(y, τ ) in Euler description is more complicated: in principle we can use current
deformation of the body in present time t (assumed to be known as well as density fields ρ(y, t) in
it) as the reference, calculate relative deformation function y = ϑ

t
(x, τ ) (cf. (3.1)) by integration

of velocity field (3.152) and in turn the relative deformation gradient Ft = gradϑ
t
(see [8] p. 9 for

details or [7, 10]). Then ρ(y, τ ) = ρ(y, t)/ | detFt (y, τ ) | following analogy with (3.65).
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in (3.127) and ultimately balances of momentum (3.78) and energy (3.107) may be
fulfilled if we use appropriate fields of body force b (or/and inertial force i) and body
heating Q respectively.

Thus for each choice of obviously mutually independent values of v and T and its
derivatives in (3.152), (3.153) taken in some x and t the admissible thermodynamic
process exists and, according to the constitutive principle of admissibility, the reduced
inequality (3.113) and therefore inequality (3.149) must be valid in this x, t .

We choose these quantities in x, t as follow: density and its gradient have the
values ρ, h, fields (3.152), (3.153) and its derivatives have values T, g and

v(x, t) = o, L(x, t) = D + W,
δL
δt

(x, t) = Ḋ

δLi j

δxk
= 1

3

δ Dll

δxk
δi j

(δi j is Kronecker delta),

δT

δt
= Ṫ ,

δg
δt

= ġ ,
δρ

δt
= −ρtrD − v.h = −ρtrD

This choice of (3.150), (3.151) may be arbitrary and independent (ρ, T are posi-
tive scalars, D, Ḋ are symmetric tensors, W skew-symmetric tensor and Ṫ , h, g,
grad trD, ġ are arbitrary scalar or vectors); here the zero velocity in x, t was used
(see (3.8), (3.9)) and the choice of value δρ

δt (not needed in (3.149)) simply expresses
the mass balance (3.62) at x, t .

But because (3.149) depends on values (3.151) linearly, we can use Lemma A.5.1
from Appendix A.5, and the following restrictions on the constitutive equations
follow

δ f̂

δh
= o,

δ f̂

δD
= 0,

δ f̂

δg
= o (3.154)

δ f̂

δT
= −s (3.155)

− T ξ = T −1q.g − tr

((
T + ρ2 δ f̂

δρ
1

)
D

)
≤ 0 (3.156)

E.g. to prove (3.154)1 we choose (3.150) and W, Ḋ, Ṫ , ġ as some constants in
Lemma A.5.1 applied on components (similarly as in proof of (3.137)): we choose
the 1st component of grad trD as arbitrary reals, while its 2nd and 3rd component

are selected equal to zero. Then the result δ f̂
δh1

= 0 follows from Lemma A.5.1
(ρ are always positive). By repetition of this procedure for remaining components
2,3 analogously we obtain the results (3.154)1.
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By a similar procedure we obtain (3.154)2: we choose (3.150) and fixed W, Ṫ , ġ

(and grad trD or we use the previous result) and because tr δ f̂
δD Ḋ may be considered

as a 6-dimensional scalar product, cf. Rem. 33, we obtain by Lemma A.5.1 the
result (3.154)2 analogously as in the previous case. But we can use equivalently
Lemma A.5.2 understanding D as 3× 3 symmetric tensor: because Ḋ is symmetric,

the tensor δ f̂
δD is skew-symmetric but at the same time it is symmetric (cf. Rem. 33)

and therefore zero (3.154)2.
Quite similarlywe obtain the remaining results (3.154)3, (3.155). Thus the original

entropy production (3.149) is simplified to inequality (3.156).
Note that the same results follow using the I-Shih Liu method of Lagrange

multipliers (seeAppendixA.5) and the discussion ofmass balance in the construction
of an admissible process is not needed. This method is described in Appendix A.5
in the example of thermoelastic simple fluid, cf. (3.11).

Relations (3.154), (3.155) are valid identically because values (3.150) and x, t
are chosen arbitrarily. Therefore the free energy f and also the entropy s (and by
(3.111) also u) depend on ρ and T only in the nonsimple fluid

f = f̂ (ρ, T ) (3.157)

s = ŝ(ρ, T ) (3.158)

We say that in a given place and instant there is an equilibrium process when

D = 0 , g = o (3.159)

The motivation for such definition is that the entropy production (3.156) is zero
(cf. end of Sect. 2.1 and Rem. 12 in Chap.1); we omit for simplicity more detailed
discussion of equilibrium, reversibility, regularity (cf. Sect. 2.2), because this may
be done analogously as in the special case of the linear fluid in Sect. 3.8.

We denote the equilibrium values of stress tensor and heat flux by To and qo

respectively
To = T̂o(ρ, h, T ) → T̂(ρ, h, 0, T, o) (3.160)

qo = q̂o(ρ, h, T ) → q̂(ρ, h, 0, T, o) (3.161)

and we define the nonequilibrium stress tensor TN by

TN = T̂N (ρ, h, D, T, g) → T − To (3.162)

We note that both stresses To and TN are symmetrical and equilibrium value of TN

is zero
To

N → T̂N (ρ, h, 0, T, o) = 0 (3.163)

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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Inserting (3.162) into (3.156) we have

ξ = T −1tr

((
To + ρ2 δ f̂

δρ
1

)
D

)
+ T −1tr(TND) − T −2q.g ∈ 0 (3.164)

Production of entropy ξ = ξ̂ (ρ, h, D, T, g) is not only zero but also minimal at
equilibrium (3.159). Therefore the following conditions must be fulfilled

d

dλ
ξ̂ (ρ, h, λD, T, λg) |λ=0 = 0 (3.165)

d2

dλ2
ξ̂ (ρ, h, λD, T, λg) |λ=0 ∈ 0 (3.166)

where λ is a real parameter (values of ρ, h, D, T, g may be fixed arbitrarily).
Inserting (3.164) into (3.165) and using (3.163) we get

T −1tr

((
To + ρ2 δ f̂

δρ
1

)
D

)
− T −2qo.g = 0 (3.167)

This equality is linear in arbitrary independent values of D and g and therefore we
obtain, by Lemmas A.5.1, A.5.2, identities ((3.167) is valid for any ρ, h, T )

To = −P1 (3.168)

P = P̂(ρ, T ) → ρ2 δ f̂

δρ
(3.169)

where P is called the (equilibrium) pressure which, as well as To, is function of only
ρ and T as follows from (3.157). Further it follows from (3.167) that the equilibrium
value of the heat flux is zero

qo = q̂(ρ, h, 0, T, o) = o (3.170)

The condition (3.166) gives some restrictions on the sign of derivatives of TN
and q but we omit them here (we elaborate on them only in the linearized model in
Sect. 3.7).

As a result of all constitutive principles the constitutive equations of nonsimple
fluidwith (nonlinear) viscosity and heat conduction are (see (3.111), (3.127), (3.157),
(3.158), (3.162), (3.168), (3.169))

f = f̂ (ρ, T ), s = ŝ(ρ, T ), u = û(ρ, T ) (3.171)

q = q̂(ρ, h, D, T, g) (3.172)
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T = −P̂(ρ, T )1 + T̂N (ρ, h, D, T, g) (3.173)

with the properties (3.155), (3.169):

δ f̂

δT
= −s (3.174)

ρ2 δ f̂

δρ
= P (3.175)

Functions q̂ and T̂N are isotropic (see (3.128), (3.173), Rem. 8), i.e., for every
orthogonal tensor Q we have

Qq̂(ρ, h, D, T, g) = q̂(ρ, Qh, QDQT , T, Qg) (3.176)

QT̂N (ρ, h, D, T, g)QT = T̂N (ρ, Qh, QDQT , T, Qg) (3.177)

Entropy production is caused by nonequilibrium stress (viscosity) and heat flux
(conduction of heat) (see (3.164), (3.168), (3.169))

T ξ = tr(TN D) − T −1q.g ∈ 0 (3.178)

In the equilibrium process defined by D = 0, g = o (3.159), entropy production
is zero ξ = 0, stress is reduced on pressure P and heat flux is zero

To = −P1 or To
N = 0 (3.179)

qo = o (3.180)

Isotropic functions (cf. (3.176), (3.177)) permit only a certain combination of vectors
and tensors on which q and T, may depend. This is described by the so called
representation theorems [6, 9, 23, 64]; for general dependence see [65] (for full and
proper orthogonal group from Rem. 8). An example for a simple fluid is given in
Rem. 35 below, more details (as well as discussion of other results, e.g. (3.166)) we
leave to the special model of linear fluid in Sect. 3.7.

The assertion that the results (3.171) with properties (3.174), (3.175) (in fact the
same as in classical thermodynamics and proved in this model of nonsimple fluid)
are valid even at nonequilibrium process (at nonzero ξ in (3.178)) is known as local
equilibrium. This was taken as a starting principle in the classical theories of non-
equilibrium processes [36, 80]. But in more complicated models local equilibrium
need not be valid, cf. Sect. 2.2.

Now we turn to the less complicated case of constitutive equations (3.129)—
simple fluidwith (nonlinear) viscosity and heat conduction inwhich an independence
of the density gradient h was assumed from the start. By inspection of the results of

http://dx.doi.org/10.1007/978-3-319-02514-8_2
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the preceding more complicated model we obtain the same results (3.171)–(3.180)
with the exceptions that the heat flux q and nonequilibrium stress TN (Eqs. (3.172),
(3.173)) are independent of density gradient h. Flows of such simple fluids are often
studied in rheology.35

The last specialization is the thermoelastic simple fluid excluding also a
dependence on D in constitutive equations of simple fluid (3.129) (independent of
h). Then the results (3.171) are valid, heat flux in (3.172) is independent of h and D
and nonequilibrium stress TN are identically zero, i.e., instead of (3.173) we have

T = −P̂(ρ, T ) 1 (3.181)

with (3.174) and (3.175). Production of entropy (3.178) is reduced to T ξ =
−T −1q.g ∈ 0. This model was used in Appendix A.5 to demonstrate I-Shih Liu
method with more constraints giving the same results, cf. (A.158).

All the results for the thermoelastic fluid follow also from (3.136)–(3.144) for
thermoelastic materials if we use the constitutive principle of symmetry (cf. Sect. 3.5
and Rem. 30). In this case the constitutive equations (3.125), (3.131) are realized
through (3.65), (3.12), e.g.

f̄ (F, T, g) → f̂ (ρ0 | detF |−1, T, g) (3.182)

Using (3.182) in (3.139) with the use of (e) from Rem. 4, we deduce (3.181), and
(3.175) as well as the other results for thermoelastic fluid.

All these models may be specialized also to incompressible fluids, which
practically model liquids (at nonextreme, say atmospheric, pressures). Such fluids
may be defined mechanically by J = 1 [10, 83], cf. Rems. 26, 35 or thermodynam-
ically [24, 43] and this will be discussed at the end of Sect. 3.7.

Further simplification of these fluid models (3.172)–(3.180) we obtain by lin-
earization presented in Sect. 3.7. We note that the formulae (3.198)–(3.207) are valid
also in the nonlinear model of this section.

35 Consider an example of the non-Newtonian liquid (e.g., solutions and melts of polymers, suspen-
sions, etc.), isothermal and without heat conduction for simplicity. Isotropic nonequilibrium stress
fulfils (cf. (3.177))

QT̂N (ρ, D)QT = T̂N (ρ, QDQT )

for anyQ ≡ O. Representation theorem of this symmetric isotropic nonlinear function of symmetric
tensor is (see [9, 12, 64])

TN = ω01 + ω1D + ω2D2

where coefficients ω0, ω1, ω2 are (nonlinear) functions of ρ (T is constant) and trD, trD2, trD3. Such
nonNewtonian liquid is practically incompressible (trD = 0, see Rem. 26, (3.17), (3.16), below and
end of Sect. 3.7), ω0 may be included in the undetermined pressure and for small velocity gradients
the last member may be neglected. Constitutive equation for nonequilibrium stress is reduced to
[81]

TN = ω1D

where ω1 depends nonlinearly on trD2 (and ρ, T ). For more complicated models see [8, 10, 82].
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Ultimately thesefluidmodelsmay still be reduced to the uniformmodels discussed
in Chap.2 mainly as the model A or B in Sects. 2.1 and 2.2. Due to the uniformity, the
dependence on the gradient g must be eliminated and the dependence on D should
be expressed through trD, i.e., through ρ̇ or equivalently V̇ (see (3.63), (3.16)).

Because of neglecting the motion in the uniform models, the pressure (stress) on
the boundary of the body (usually defined from the outside as a boundary condition,
cf. Rem. 13) is given by the constitutive equation of material inside the body,36 cf.
Rems. 9 in Chap.1, 1 in Chap.2 and 37 in this chapter.

Generally, the results for simpler models may be obtained from a more gen-
eral model by specialization of constitutive equations, but sometimes to get all the
results, we must again use the admissibility principle on the remaining inequality
(entropy production) of the more complicated model (cf. deduction of (3.181) and
also Sect. 3.7).

Summary. This section finalizes the exemplification of rational thermodynamics
methodology applying its most typical principle—the principle of admissibility. In
fact, this principle represents the requirement of consistency of a material model
(constitutive equations) with the Second Law or the entropy inequality. It was applied
to finish the derivation of constitutive equations for a single fluid initiated in preceding
sections of this chapter. Startingwith the form (3.146) for the free energywe arrived at
its final simplification in the form (3.157) which indicates also the final constitutive
equations for the (specific) entropy and internal energy, see (3.171). In contrast
the constitutive equation for the heat flux was not simplified and remained in the
form (3.172). The same conclusion was found for the stress tensor but this could
be decomposed to equilibrium and nonequilibrium parts, cf. (3.173), the former
leading to the (equilibrium) pressure known from classical thermodynamics. Both,
pressure and specific entropy are related to (specific) free energy in the form of its
derivatives, see (3.174), (3.175). The final form of entropy inequality in this material
model is (3.178); the definition of equilibrium, (3.159), is motivated by zero entropy
production. Note that during the derivation of constitutive equations not only the
entropy inequality as such was applied but also the fact of zero andminimum entropy
in equilibriumwas used, cf. (3.165) and (3.166). Several simplified fluidmodels were
mentioned at the end of this section. The exposition is thus prepared to derive the
key fluid model of our book in the subsequent section.

36 Namely, neglecting the motion and external fields (v, v̇, b, i are practically zeros) the momentum
balance (3.81) of the thin layer along the real boundary reduces to

⎡
V Tn dv = o with (mostly)

pressure P , T = −P1 (cf. [84], figure on p. 108). In the limit of this narrow sub body this balance
expresses the action-reaction law; therefore the pressure from the outside is given by the constitutive
equation of the fluid inside (under the boundary). Pressure P in the model B is given by (2.7)3 (the
pressure may contain here a nonequilibrium part (2.34) given (in linear approximation) by the
volume viscosity, cf. Rems. 9 in Chap.1, 1 and 8 in Chap.2, 37 in this chapter).

The equilibrium pressure part is given by the state equation, see (2.33), (2.32). This, in fact
“equilibrium” pressure in “reversible” processes, forms the whole pressure (2.6)3 of the “classical”
thermodynamic model A (density of uniform body with constant mass is given by its volume V ).

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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3.7 Fluid with Linear Transport Properties

In this paragraph we specialize the results for the nonsimple fluid (3.171)–(3.180)
on the linear dependence in vectors and tensors i.e., in D, g and h (while the depen-
dence on scalars ρ, T may be nonlinear) [9, 14, 23, 24, 27, 45]. We denote this
model as a linear fluid or fluid with linear transport properties because the results
describe the classical Navier-Stokes (Newtonian) and Fourier fluid with linear vis-
cosity and heat conduction; at the same time the classical thermodynamic relations
(local equilibrium) are valid.

From the principle of objectivity it follows that functions q̂ and T̂N must be
isotropic (3.176), (3.177). In the linear case the most general form of such isotropic
functions is given by the representation theorem (see Appendix A.2) of vector and
tensor functions (3.172), (3.162) which are linear in vectors and tensors (cf. (A.58),
(A.68)):

q = −kg + ϑh (3.183)

TN = ω01 + ω1(trD)1 + ω2D (3.184)

where all scalar coefficients k, ϑ, ω0, ω1, ω2 are (generally nonlinear) functions only
of ρ and T . But in equilibrium (3.159) the nonequilibrium stress and heat flux must
be zero (3.163), (3.170) at any ρ, T and h and therefore in (3.183) and (3.184) the
following coefficients are identically (i.e., for all ρ, T ) zero37

ϑ → 0 (3.185)

ω0 → 0 (3.186)

Therefore from (3.183) and (3.185) we obtain the Fourier law of heat conduction

q = −kg (3.187)

37 As we note at the end of Sect. 3.6 all this and the subsequent results follow if the assumption
of linearity has been used in a constitutive relation of a nonsimple fluid with viscosity and heat
conduction (3.127), (3.146) (i.e., before application of admissibility principle). These constitutive
relations are scalar, vector and symmetric tensor isotropic functions (3.128) (including f ) which
are linear in vector g, h and symmetrical tensor D.

The representation theorems for such linear functions (A.67), (A.58), (A.68) fromAppendix A.2
then gives for scalar functions

s = s(0) + s(1)trD , u = u(0) + u(1)trD

f = f (0) + f (1)trD

and (3.183) and (3.184) for vector and tensor functions. Similarly, as scalar coefficients here, the
scalars s(0), u(0), f (0) → u(0) − T s(0), s(1), u(1), f (1) → u(1) − T s(1) are (generally nonlinear)
functions of density ρ and temperature T . Using them in the reduced inequality (3.113) and by the
admissibility principle, we obtain all the results (like (3.185), (3.186), etc.) of this section (namely
s(1), u(1), f (1) are zeros identically), see [14, 27, 84].
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where k = k̂(ρ, T ) is the heat conductivity which is a function of ρ, T . Similarly

from (3.186) and (3.184), using the divergenceless stretching tensor
≥
D defined as

≥
D → D − (1/3)trD1, tr

≥
D= 0 (3.188)

and with ζ → ω1 + (1/3)ω2, η → (1/2)ω2, we obtain the Newton law of viscosity

TN = ζ(trD)1 + 2η
≥
D (3.189)

where ζ = ζ̂ (ρ, T ) are the volume (bulk) viscosity and η = η̂(ρ, T ) the (dynamical)
viscosity coefficients respectively, both are (generally nonlinear) functions of ρ, T

only. Note that trD and
≥
D are mutually independent (choosing them arbitrarily and

independently we obtain the corresponding D according to (3.188)).
The other constitutive equations are the same as in Sect. 3.6 (cf. (3.175), (3.171),

(3.173))
f = f̂ (ρ, T ) (3.190)

s = ŝ(ρ, T ) (3.191)

u = û(ρ, T ) (3.192)

δ f̂

δT
= −s (3.193)

ρ2 δ f̂

δρ
= P = P̂(ρ, T ) (3.194)

T = −P1 + ζ(trD)1 + 2η
≥
D (3.195)

where P, ζ, η are functions of ρ and T only. Production of entropy in the linear fluid
follows from (3.178) inserting (3.187) and (3.189)

T ξ = ζ(trD)2 + 2ηtr(
≥
D)2 + T −1kg2 ∈ 0 (3.196)

Because this quadratic form (of mutually independent variables) is positive semidef-
inite [85, 86], we obtain that the transport coefficients ζ, η, k are nonnegative for all
ρ, T

ζ ∈ 0 , η ∈ 0 , k ∈ 0 (3.197)

Equilibrium in the linear fluid will be thoroughly discussed in Sect. 3.8 in which we
also confine this model to the regular one to avoid unusual situations or to achieve
its stability (see (3.232)–(3.234), (3.256), (3.257), Rem. 42).
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It is noteworthy that the independent variable h is not present at all in this linear
model; therefore we would obtain the same results by analogous linearization of
simple fluid (3.129), cf. end of Sect. 3.6 [9, 23, 24, 45] (but the presence of density
gradients will be important in mixtures, see Sect. 4.8).

At the end we stress several characteristic features of the linear fluid. Though the
thermodynamic quantities f, u, s, P as well as the transport coefficients k, ζ, η are
functions of ρ and T only, no relationships exist between these two groups. Therefore
it is impossible to obtain transport coefficients from equilibrium measurements. But
suchmeasurements suffice to obtain the thermodynamic functions, because theGibbs
equation is valid (by (3.193), (3.194))

ḟ = −sṪ + (P/ρ2)ρ̇ = −sṪ − P v̇ (3.198)

where the specific volume v was introduced

v → 1/ρ (3.199)

(remember that the same symbol used in dv in integrals has a different meaning, cf.
(3.21), (3.275)).

These and other thermodynamic relations below are written in classical thermo-
dynamics with differentials instead of material derivatives, e.g. dT instead of Ṫ , cf.
Sect. 4.6. As may be seen from Sect. 3.1 also δ/δt or grad may be used here.

Again, the (principle of) local equilibrium (cf. end of Sect. 3.6)whichwas deduced
by the method of rational thermodynamics for the linear model (results (3.198)–
(3.209) is also valid for the more general model of nonlinear fluid of preceding
Sect. 3.6; cf. (3.157), (3.155), (3.169) [24, 75, 77, 78]); however, the local equilibrium
is not to be expected as generally valid (cf. Sects. 2.2, 2.3).

Other forms of the Gibbs equation are

u̇ = T ṡ + (P/ρ2)ρ̇ = T ṡ − P v̇ (3.200)

ġ = −sṪ + v Ṗ (3.201)

Here (3.111) and the specific Gibbs energy (free enthalpy) or (specific) chemical
potential g defined as

g → δρ f̂

δρ
(3.202)

have been used. Then, by (3.194), (3.199), a more classical form of this definition
may be seen as in

g = f + Pv (3.203)

It is well known that chemical potentials play an important role in many, usually
more complicated models in the description of phase and chemical equilibria in

http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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mixtures (cf. Sects. 2.4, 2.5 andChap.4), surface phenomena, etc. Chemical potential
may be generalized to more general material models (including, e.g. solids).38

Often the inversion of the function (3.194) P = P̂(ρ, T ) for ρ is used

ρ = ρ̃(T, P) (3.204)

assuming δ P̂
δρ

⇒= 0 for every temperature T , cf. (3.234). This is practically fulfilled

out of phase changes because of the stability criterion δ P̂
δρ

> 0, see (3.257).
Then P, T may be used instead of ρ, T as independent variables, e.g.

g = ĝ(ρ, T ) = g̃(T, P) , u = ũ(T, P) , s = s̃(T, P) (3.205)

Comparing (3.205) with (3.201) we have

δ g̃

δT
= −s (3.206)

δ g̃

δ P
= v (3.207)

and from (3.200), (3.204), (3.205)

ṡ = (1/T )u̇ − (P/(Tρ2))ρ̇ = (1/T )

(
δ ũ

δT
− (P/ρ2)

δρ̃

δT

)
Ṫ

+ (1/T )

(
δ ũ

δ P
− (P/ρ2)

δρ̃

δ P

)
Ṗ (3.208)

From the last equation the form of derivatives s̃(T, P)may be seen. Using them in the
integrability condition δ2s̃/δ PδT = δ2s̃/δT δ P we obtain after some calculation

δ ũ

δ P
= (T/ρ2)

δρ̃

δT
+ (P/ρ2)

δρ̃

δ P
(3.209)

38 As the configurational or material forces [4, 87] (note that the density of chemical potential
ρg has a pressure dimension). An analog of chemical potential is the Eshelby tensor (of chemical
potential) � defined as (F−T → (FT )−1)

� → f 1 − (1/ρ)FT TF−T

Note, that if stress is reduced to pressure P , T = −P1, (usual in fluids) this definition gives
the classical result (3.203) � = g1, see (3.199). The Eshelby tensor, e.g. gives the condition of
phase equilibria (Maxwell relation—equality of chemical potentials (2.116) in fluid phases), namely
equality of �n on both sides of equilibrated solid phases (n is the normal to phase boundary) and
may be also used to describe surface phenomena, dislocations, etc. [1, 4, 87]. Eshelby tensors may
also be defined in mixtures [2, 3].

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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With (3.204) we can write the transport coefficients k, ζ, η (functions of ρ and T )
also as functions of P, T

k = k̃(T, P) , ζ = ζ̃ (T, P) , η = η̃(T, P) (3.210)

We also note that the vector or tensor responses (3.187), (3.189) depend only on
the vector or tensor “driving forces” respectively. This fact is known in linear irre-
versible thermodynamics as the “Curie principle” [36, 80, 88, 89] (cf. discussion in
[34, 38]). Present theory shows however, that this property follows from the isotropy
of constitutive functions and from the representation theorems of such linear func-
tions, see Appendix A.2, Eqs. (A.11)–(A.13) and (A.57)–(A.59). But representation
theorems for nonlinear isotropic constitutive functions [64, 65] show that the “Curie
principle” is not valid generally.

In processes with g = o and
≥
D = 0 the nonequilibrium stress is reduced to the

nonequilibrium pressure PN

TN = −PN 1 ,where PN → −ζ trD = −ζ(T, v)
v̇

v
(3.211)

where (3.189), (3.63), (3.16), (3.199) have been used. Such nonequilibrium pressure
exists even in a uniform system which is in fact the uniform model B from Sect. 2.2
(see (2.34); volume V is proportional to v) with linear dependence on V̇ discussed
in Rem. 8 in Chap.2.

Recapitulating the results we need (from experiment or from molecular models)
in this model of fluid

(i) to describe their transport behaviour: the heat conductivity k, volume viscosity
ζ and viscosity η and their dependences on temperature and density;

(ii) to describe their thermodynamics: the state equation P = P̂(ρ, T ) (3.194)
and the caloric state equation u = û(ρ, T ) (3.192). In fact, here we need the
dependence on temperature only (usually in the form of dependence of heat
capacity at constant volume) (see AppendixA.1, Rem. 5 inAppendixA) because
dependence (3.192) on density may be calculated from the state equation (3.194)
(namely, this gives, by interchangeability of mixed derivatives in (3.198), the
dependence of s on density and therefore, by another form of Gibbs equation
(3.200), the dependence of u on density).

In the simplest case of ideal gas (defined in Appendix A.1) the state (3.194) and
caloric (3.192) equations are

P/ρ = Pv = (R/M)T (3.212)

(see (A.3), (A.10) with use (3.199) and molar mass M) and (see Rems. 15 in Chap.1,
5 in Appendix A)

u = û(T ) (3.213)

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
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As we explain in Appendix A.1 the experience shows that (3.212), (3.213) are valid
for any gas in the limit of zero densities, even with nonlinear transport39 and they
were used for the definitions of absolute temperature and entropy (see (A.9), (1.28),
(1.30), (1.31)).

Finally we can define the incompressible fluids which model liquids approxi-
mately because the dependence of liquids properties on the pressuremay be neglected
at nonextreme, say atmospheric, values of the pressure.

Incompressible fluids have been defined by mechanical internal constraint J = 1
in Rem. 5.3 but they may be defined (more specially and naturally) from previous
thermodynamic formulae (3.204)–(3.209) neglecting their dependence on pressure
[24]. Namely, we have by definition (instead of (3.204), (3.205))

ρ = ρ̃(T ) , s = s̃(T ) , u = ũ(T ) (3.214)

Then from integrability condition (3.209) it follows that density is independent of
temperature

ρ → const. (3.215)

therefore density is a unique (positive) constant in this definition of incompressible
fluid.

But then, by (3.16), (3.63), (3.65), we obtain

divv = trD = 0 , J = 1 (3.216)

which we have seen also in the mechanical definition. Note that even these formulae
are valid for the linear fluid model and they are valid also in the nonlinear model
from the previous Sect. 3.6 because thermodynamic formulae (3.204)–(3.209) are
valid there too (cf. the discussion of local equilibrium above (3.200)).

Transport equations in the incompressible fluids are (see (3.187), (3.188), (3.195),
(3.216))

q = −kg (3.217)

T = −P1 + 2ηD (3.218)

where, by the definition of incompressible fluids, the thermal conductivity k and the
viscosity η are functions of temperature only

k = k̃(T ), η = η̃(T ) (3.219)

39 If we assume that the ideal gas studied fulfils the local equilibrium (and this is the usual case:
ideal gas may be from the linear fluid models discussed here, but it may be also from some nonlinear
models fulfilling this principle, e.g. those in [78]), then property (3.213) follows from state equation
(3.212). Indeed, the local equilibriummeans the validity of Gibbs equations (3.200)1, (3.198)1, from

which δ û/δρ = T δ ŝ/δρ + P/ρ2 and δ ŝ/δρ = −δ
ˆ

(P/ρ2)/δT . By their combination and using
state equation (3.212) we obtain identically δ û/δρ = 0. Cf. also [27, Sect. 16], [90, 91].

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
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and the pressure P is arbitrary scalar, cf. Rem. 26.
At the end we note that generalization of incompressibility on fluid mixtures is

not straightforward, see Sect. 4.8.
Of course the results concerning nonlinear transport phenomena must be trans-

formed correspondingly.
Summary. Section3.7 derives the main model of interest in our book for the

case of single fluid. This model of fluid with linear transport properties started with
linearization of constitutive equations derived in preceding section for fluid vector
and tensor quantities, i.e., for the heat flux and (nonequilibrium) stress tensor, taking
into account that they are isotropic functions—see (3.183) and (3.184). Two classical
laws immediately followed, viz. the Fourier law (3.187) and theNewton viscosity law
(3.189). In the same time entropy inequality put some restrictions on the coefficients
in these laws, cf. (3.197). It also followed that the Gibbs equation (3.198) is valid in
thismodel and also the local equilibriumwas proved. For our subsequent applications
the definition of (specific) chemical potential (3.202) is important. Traditionally, the
pressure is used as an independent variable in (chemical) thermodynamics. Though
this was noted and used in paragraphs among Eqs. (3.204)–(3.210) the verification
of this exchange of variables should be postponed to the next section. At the end the
simplification to incompressible fluids is made which are defined by (3.214).

3.8 Equilibrium Processes in Linear Fluid

An equilibrium process in the linear fluid of Sect. 3.7 may be defined by (cf. (3.159))

D = 0 (3.220)

g = o (3.221)

because just these conditions give the zero entropy production

ξ = 0 (3.222)

as follows from (3.196), cf. discussion of (2.10), (2.11) and Rems. 12 in Chap.1, 7
and 9 in Chap.2.

Consider first an equilibrium process in the linear fluid model where (3.220),
(3.221) are valid through all the body and persistently (at least for considered time
interval); practically this is achieved by the stability discussed below [14, 18, 92–95].

The validity of (3.220) throughout the body is expressed by Killing’s theorem
(3.18), which is that the motion of a linear fluid body in an equilibrium process is
rigid. This means that a frame fixed with such a body exists in which

v = o (3.223)

http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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through the body and persistently.40 Such a frame, giving the zero velocity (3.223)
in an equilibrium process, will be used in the following (among others it means
that instead of material derivative we can use δ/δt in this frame). By persistence of
(3.223) we have also

v̇ = o (3.224)

through the body and persistently.
Constitutive equations (3.195), (3.188), (3.187) in such an equilibrium process

are
T = −P1 (3.225)

q = o (3.226)

With those equations the following forms of balances (3.63), (3.85), (3.107), (3.109)
are valid ((3.93) is trivially satisfied)

ρ̇ = 0 (3.227)

gradP = ρ(b + i) (3.228)

ρu̇ = Q (3.229)

ρ ṡ = Q/T (3.230)

The persistence and validity of these equations through the body therefore give
the behaviour of other formulae such as δρ

δt = 0, δg
δt = o, δh

δt = o, etc.
Now, we restrict ourselves to some equilibrium process persisting in one equilib-

rium state of the linear fluid model in the sense of the property S4 from Sect. 1.2 (one
equilibrium from those more possible which is compatible with the given boundary
and external conditions).41 Such an equilibrium state may be achieved if no radiation
heat transfer is considered

Q = 0 (3.231)

40 Cf. (3.18), Rem. 5 and deduction of (3.25). Because the change of frame describes the change
of frame in a rigid motion to another one the result (3.223) is intuitively clear. Formally, inserting
rigid motion from Rem. 5 into (3.25) we seek the (starred) frame in which x∞ = X (and therefore
v∞ = o, i.e., (3.223)) through the body. It may be seen that this need the change of frame by time
functions Q = αT and c = −αT ω .
41 Note that an equilibrium process (as the time succession of states with (3.220)–(3.222))
with nonzero radiation Q ⇒= 0, which is even reversible, is possible: in the “straight”
part of the process the heating (defined by the first two members on the right-hand
side of (3.97)) is given as

⎡
V Q dv by (3.226) (V is the volume of the body); see also

http://dx.doi.org/10.1007/978-3-319-02514-8_1
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Moreover we add to the linear fluid model the following regularity conditions42

valid at any ρ, T , i.e., at any state, not only in the equilibrium one:
Transport coefficients are always positive (as different from (3.197))

ζ > 0 , η > 0 , k > 0 (3.232)

and the following derivatives are nonzero

δ û

δT
⇒= 0 (3.233)

δ P̂

δρ
⇒= 0 (3.234)

at any T, ρ.
Therefore, in this section, we study the regular linear fluid body or the fluid with

linear transport properties with regular responses consisting of the linear fluid body
of Sect. 3.7 to which we add the regularity properties (3.232)–(3.234).

In such regular linear fluid with no radiation (3.231) we define the equilibrium
or equilibrium state by the zero entropy production (3.222) which is valid through
all the body and persistently.

(Footnote 41 continued)
Sect. 1.2, models A, B in Sect. 2.2 and Rems. 12 in Chap.1, 48 in this chapter.

Temperature may change in time but not in space (3.221) during such an equilibrium process in
the rigid and not moving body, density does not change in time (3.227) (but may change in space);
u, s change as the temperature changes, similarly P changes by a corresponding time change of b+i
(say by (3.192), (3.191), (3.194) in the linear fluid model). The reverse process may be imagined
to exist as going through the same states of the equilibrium process, power and entropy production
are again zero, heating is of reverse sign − ⎡

V Q dv (in comparison with the appropriate instant of
“straight” equilibrium process).

Even this reversible process is rather a special one. We note it here to demonstrate that in the
model of the linear fluid equality (in entropic inequality) is possible, see (1.35), and to show that
entropy may be calculated with the precision of a constant, see (1.40), cf. application of reversible
processes in Sect. 1.4. An equilibrium state is also an equilibrium process formed by a unique state
with (3.231), cf. definition below (2.11).
42 Similarly as in Rem. 11 in Chap.1 and in Sects. 2.1, 2.2, we try to avoid in this way the unusual,
often “pathological” situations of real complex materials in our simple models (as, e.g. zero values
of some transport coefficients (3.197) at certain ρ, T ); other motivation is the “practical realization
of the persistence of the equilibrium state” which may be achieved through its stability (discussed
below), e.g. regularity conditions (3.233), (3.234) are even intensified in such a stable equilibrium
state (both derivatives are positive, see (3.256), (3.257) below).

Again we assume that the constitutive model together with regularities introduced is valid in all
situations, e.g. the model of fluid with linear transport properties with regular response is assumed
to be valid for all values of ρ, T . Namely, we study the (properties of) model even though we know
that there are values of ρ, T for which a real fluid does not fulfil some regularities assumed (e.g.
stability in the region of phase transformations); as usually, such difficulties are resolved by the
appropriate limiting applications of the model studied.

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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Then “equilibrium conditions” (3.220), (3.221) are valid through the body and
persistently because the quadratic form (3.196) is positive definite due to regularity
conditions (3.232)43 and, reversely, from (3.220), (3.221) equation (3.222) follows.

Therefore (3.225)–(3.228) are valid and, by (3.229)–(3.231), we have

u̇ = 0 (3.235)

ṡ = 0 (3.236)

From (3.235), (3.192), (3.227), and regularity (3.233) we have through the body
and persistently

Ṫ = 0 , or by (3.223)
δT

δt
= 0 (3.237)

This, together with (3.221), means that a unique and constant (in time) temperature is
everywhere in the body in this equilibrium (note that, reversely, Eq. (3.231) follows
from (3.237), cf. (3.192), (3.227), (3.229) [76]).

Inserting constitutive equation for P (3.194) into (3.228) and using (3.221) we
have

δ P̂

δρ
h = ρ(b + i) (3.238)

and making another time derivative of this equation (using zero time derivatives of
ρ, h, T ) we obtain δ(b + i)/δt = o, i.e., the body and/or inertial force must be
constant in time in such an equilibrium process. Further, from (3.238), it follows that
h ⇒= o because of (3.234); in the special case b + i = o (no body and/or inertial
forces), density gradient disappears h = o.

Therefore we can conclude that during such equilibrium process in the frame
with persisting and everywhere zero velocity (3.223), the body is in one “persisting”
equilibrium state in the sense of Sect. 1.2 in which density does not change in time
but may change in space (if the body or inertial forces are nonzero constants in
time), while temperature is everywhere the same persistent constant. Heating and
power (the right-hand side of energy balances), e.g. of (3.103), (3.106) or (3.107)
are zero (see (3.226), (3.231), (3.220), (3.223)) and in such an equilibrium state also
all responses in the particles of the body do not change in time (cf. (3.227), (3.237),
(3.225), (3.194)) but some of them (the density and properties depending on the
density) may have nonzero space gradients (parallel to the time constant nonzero
body and/or inertial forces; cf. (3.238), (3.221), (3.192)); temperature is a unique
constant in all body.

43 Calculation of tr(
≥
D)2 in (3.196) gives tr(

≥
D)2 = (

≥
D11)2 + (

≥
D22)2 + (

≥
D33)2 + 2(

≥
D12)2 +

2(
≥

D13)2 + 2(
≥

D23)2 and therefore zero entropy production (3.222) and positivity (3.232) give from

(3.196) the result (3.221) as well as trD = 0 and
≥

D11=
≥

D22=
≥

D33=
≥

D12=
≥

D13=
≥

D23= 0 which

with definition (3.188) of
≥
D gives (3.220).

http://dx.doi.org/10.1007/978-3-319-02514-8_1
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The body force having a potential � is of practical importance; the potential,
similarly as with this force, must be constant in time (3.104). In this case the chemical
potential (3.205)–(3.207) is preferred (note use of regularity (3.234) here) because, by
(3.221), (3.199), gradg = (1/ρ)gradP and therefore the equilibrium result (3.228)
with time constant potential � (3.104) may be written as

grad(g + �) = o (3.239)

in such an equilibrium state.44 Probably the most important is this equilibrium in an
inertial frame without the body force (i = o, b = o) because then space gradients
disappear as we noted above and we obtain a uniform equilibrium state, not changing
in time which, in fact, was exemplified by the uniform model A or by equilibrium in
the model B of Sects. 2.1, 2.2, see also below.

Time persistence of an equilibrium state through the persistence of its conditions
(like (3.220), (3.221), (3.227), (3.237)) may be realized in practice with great dif-
ficulties (or it is even impossible) because of molecular fluctuations. The practical
persistence of an equilibrium state (and therefore also the assumption S4 in Sect. 1.2)
may be achieved by its stability and this is analyzed in the rest of this section; we
are inspired mainly by [1, 18, 92, 93], see also [94, 95, 97–102].

We concentrate here on the stability of our model of regular linear fluid (giving the
classical Gibbs stability) modelling one-phase fluid.45 We try to find such properties
of constitutive equations which permit to realize equilibrium states in our model
at some ρ, T (and also motivate some of the regularity conditions above). If such
stability properties are not fulfilled then, typically, our (one-phase) fluid system
disintegrates into more phases, cf. Rem. 45.

The stability of equilibrium state may be roughly defined as gradual return to the
equilibrium after some disturbance from this state at fixed boundary and exterior
conditions of the body. The mere removal of such disturbances (caused by molecular
nature of studied material) causes the real persistence of the equilibrium state. As
noted above, this property need not be valid generally in real material and depends
on its formulation. Here we discuss sufficiently general stability of an isolated body
resulting from the classical Gibbs stability [93–95, 97] which permits to obtain
additional regularity properties—the conditions of stability of constitutive equations
of our fluid model. Namely, consider an isolated body modelled by the linear fluid
(3.187)–(3.196) with regular response (3.232)–(3.234) which is in an equilibrium

44 This result (3.239)may be generalized for Eshelby tensor� (generalization of chemical potential,
e.g. for solids, see Rem. 38) as

Div(� + �1) = o

cf. [1, 96] (Div is the divergence in referential description).
45 But we omit the generalizations of equilibrium stabilities for phase transitions [1, 103–106] (for
them typically criteria stability like (3.256), (3.257) are not valid), for more general materials (say
solids), and the more complicated problem of stability of nonequilibrium states (e.g. the vast field
of dissipative structures [24, 37, 80, 107–109]) because most of these issues do not concern our
(one-phase) model or are now in the stage of intensive and not completely resolved research; see
also Rem. 31 in Chap.4.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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state defined by (3.222) (or by (3.220), (3.221)) the persistence of which is achieved
by the zero body heating (3.231), the zero inertial and body forces (i = o, b = o) and
the zero velocity v = o (3.223) everywhere. The body is in the uniform equilibrium
state mentioned above and as may be seen, such a state may be realized in the
isolated body in which no exchange of heat, work and mass with environment exists
and the boundary of which is fixed. Denoting constant (throughout the body and
time) equilibrium values of temperature T o density ρo and therefore also specific
volume vo, internal energy uo and entropy so (cf. (3.191), (3.192), (3.199)) we can
express the volume V o, energy Eo and entropy So of the body in such equilibrium
by

V o = vomo (3.240)

Eo = uomo (3.241)

So = somo (3.242)

where mo is the mass of the body.
We say that such a uniform equilibrium state is dynamically stable under isolation,

if an arbitrary “perturbed” state of the body compatible with isolation decays back
to this equilibrium state. Compatibility with isolation means that during the whole
return to the equilibrium state the energy and the volume is the same as in the
original equilibrium state, Eo, V o, further b = o, Q = 0 through the body and
v = o, q = o on the boundary (but generally nonzero inside the body). Therefore in
an arbitrary state during this return (and including the original perturbed state aswell)
we have by (3.21) (with the density ρ and dm = ρ dv; cf. (3.199)), using the specific
volume v, total energy and entropy and integrating through mass mo of the body,

V o =
∫

mo
v dm (3.243)

Eo =
∫

mo

(
u + 1

2
v2
)

dm (3.244)

while the entropy S of an arbitrary state grows up (see (3.108)) to its maximum value
So (3.242)

S =
∫

mo
s dm ≤ So (3.245)

i.e., in accordwith the regular equilibrium response,we can conclude that the equality
in (3.245) is valid only for a uniformequilibriumstate (the stability ofwhich is tested).

In fact, by the assertion that this equilibrium state is dynamically stable under
isolation, we express an extra postulate that the state compatible with isolation and
with the entropy S comes back to the equilibrium state with the entropy value So

(3.242) in this isolated system.
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This postulate is in agreement with traditional and reasonable expectation of
achieving finite extremal values of entropy in a process occurring in an isolated
system (an increase of entropy only follows from inequality (3.108)). Similarly, finite
extremal values of other potentials at corresponding conditions, like the minimum
of (say Gibbs) energies, etc., may be expected cf. [1, 37, 92, 110, 111].

In what follows we deduce the conditions of stability (3.256), (3.257) from this
postulate. Then, in the remaining part of this section following mainly [18, 93], we
try, on the contrary, to show that the stability conditions in the regular linear fluid
lead to this postulate, see (3.266).

Result (3.245) is valid for any perturbed state and therefore also for such a state
with zero velocity inside the body; then, instead of (3.244), we have in that perturbed
state

Eo =
∫

mo
u dm (3.246)

with volume and entropy given again by (3.243), (3.245) (in the following states of
a body when approaching the equilibrium state the velocity need not be zero inside
although it must be zero at the boundary). This special case of any perturbation with
(3.243) and (3.246) (instead of (3.244)), considering (3.245), is in fact the classical
definition of theGibbs stability under isolation [92, 93]. Although the Gibbs stability
is studied in classical thermodynamics with uniform model (like A of Sect. 2.2), its
dynamical interpretation [18, 93, 97, 106] cannot be described in terms of such a
uniform model, namely a nonuniform perturbed state permitting the nonequilibrium
processes and therefore inequalities in (3.245) must be possible (in fact this is more
or less explicitly expressed in classical proofs, see, e.g. [112, p. 82, Sect. 21]). This
motivates the following procedure [93]:

Assume that a given uniform equilibrium state of the linear fluid with regular
equilibrium response is dynamically stable under isolation. Therefore it is also Gibbs
stable (namely its starting perturbed state may have zero velocity inside and (3.246)
is valid). This suffices for the following result: the function

s = s̄(u, v) (3.247)

is strict concave in the corresponding domain (such function (3.247)46 follows from
(3.191) inserting inversion of (3.192) for T (which exists by (3.233)) and using
(3.199)).

Indeed, let us choose a perturbed state with zero velocity inside in the following
way: we divide the body on two parts with masses αmo and (1 − α)mo where
0 < α < 1; internal energies ua, ub and specific volumes va, vb (ua ⇒= ub, va ⇒= vb)

are constant (uniform) but different in these parts and entropies sa, sb are given by

46 It follows from our intention to use the theorem of concave function from Appendix A.3 for
the proof. This assumes the negative (or positive) definiteness of a matrix composed from second
derivatives of such a function. This property has, besides (3.247), e.g. function g̃(T, P) (3.205)
(used also below in this section) but unfortunately not the more natural f̂ (ρ, T ) (3.190) or even
f̌ (v, T ) (see (3.199)); cf. [113, Sect. 39].

http://dx.doi.org/10.1007/978-3-319-02514-8_2
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(3.247). Because of the compatibility with isolation of that perturbed state we have
by (3.243), (3.246), (3.240), (3.241)

vaαmo + vb(1 − α)mo = V o , uaαmo + ub(1 − α)mo = Eo (3.248)

Inserting (3.240), (3.241) and removing mo we obtain

vaα + vb(1 − α) = vo , uaα + ub(1 − α) = uo (3.249)

But using such a perturbed state in (3.245)

saαmo + sb(1 − α)mo < So (3.250)

(equality disappears because of the nonuniformity of the perturbed state; cf. (3.245)).
By (3.242), (3.247) we have

αs̄(ua, va) + (1 − α)s̄(ub, vb) < s̄(uo, vo) (3.251)

By definition (i) in the theorem of concave functions (Appendix A.3), the function
(3.247) is strict concave (see (A.70), (A.71), (A.72), (3.247), (3.249), (3.251) with
ω = (u, v) and � = s). Therefore property (iii) of this theorem is equivalently valid
for function (3.247): the matrix of its second derivatives is negative definite at all
corresponding u, v, i.e.,

δ2s̄

δu2 = −(T 2 δ û

δT

)−1
< 0 (3.252)

δ2s̄

δu2

δ2s̄

δv2
−
(

δ2s̄

δuδv

)2

= δ(T, ρ)

δ(u, v)

δ(T −1, PT −1)

δ(T, ρ)
= ρ2

T 3

δ P̂

δρ

(
δ û

δT

)−1

> 0

(3.253)
Here we use the properties of the negative definite matrix and Jacobians [85, 86],
(3.192), (3.194) and (as follows from (3.200))

δ s̄

δu
= 1

T
(3.254)

δ s̄

δv
= P

T
(3.255)

Thus it follows from (3.252), (3.253) (because T > 0, ρ > 0) that if the linear fluid
body with regular equilibrium response is dynamically stable (or Gibbs stable) under
isolation then at each corresponding T, ρ the following stability conditions are valid

δ û

δT
> 0 (3.256)
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δ P̂

δρ
> 0 (3.257)

in our models. In what follows we use these conditions (3.256), (3.257) instead of
(3.233), (3.234) as regular conditions (besides (3.232)) to our model of fluid with
linear transport properties because, as we shall show in the rest of this section, such
models then have dynamical stability not only under isolation but even at other
conditions.

It has been shown that results (3.256), (3.257) are necessary for dynamical stability
of our linear fluid of Sect. 3.7 (with regularity (3.232)).

Now we try to prove also the sufficiency: assuming stability conditions (3.256),
(3.257) we try to show that the body of regular linear fluid of Sect. 3.7 (with further
regularities (3.232)), kept permanently in isolation (defined below) develops asymp-
totically to uniform equilibrium state. That is we prove the dynamical stability under
isolation (and also Gibbs stability) for such a body. But the time behaviour of the
perturbed system is generally a very complicated task—we need to solve the sys-
tem of differential equations obtained by substitution of constitutive equations into
balances.

For simplicity therefore we show only that the uniform equilibrium state (those
given by (3.240)–(3.242)) is the possible one inwhich the perturbed state kept perma-
nently in isolation (defined below) develops asymptotically as time goes to infinity
[1, 18, 93, 97].

Let us have some perturbed state of a body made from the linear fluid (3.187)–
(3.196) with regular equilibrium response ((3.232) is valid) and with stability condi-
tions (3.256), (3.257), which is held permanently in an inertial frame without body
force in isolation (no heat, work and mass exchange with surroundings). That is we
have persistently through the body i = o (3.48), b = o, no heat radiation Q = 0
(3.231) and on its boundary no heat exchange q = o and zero velocity v = o.

Therefore the body, having permanently constant massmo, volume V o and energy
Eo given by (3.243), (3.244) with corresponding local specific volume v and energy
u of the given state, develops asymptotically to a uniform equilibrium state with
specific internal energy uo and volume vo given by

uo → Eo/mo (3.258)

vo → V o/mo (3.259)

Because of assumed stability conditions (3.256), (3.257) we achieve from (3.252),
(3.253) the fulfilment of property (iii) from Appendix A.3 for function (3.247).
Therefore equivalently (A.73) is valid for this function (3.247), giving so for values
uo, vo (3.258), (3.259) and s for values u, v in any place of the body in arbitrary state
during the process, i.e.,

s < so + (1/T o)(u − uo) + (Po/T o)(v − vo) (3.260)



132 3 Continuum Thermodynamics of Single Fluid

where T o, Po are values given by (3.254), (3.255). Equality in (3.260) is valid as

s = so (3.261)

when (cf. in (A.73))
u = uo (3.262)

v = vo (3.263)

Nowwe add to the right-hand side of (3.260) the nonnegative quantity (2T o)−1v2

(with v in the same place and instant as in (3.260)) and integrate such inequality
through the body at some instant; using (3.243), (3.244), (3.258), (3.259) we have

S(t) →
∫

mo
s dm ≤

∫
mo

so dm → So = somo (3.264)

where the equality sign in the middle occurs if the system is a uniform one ((3.261)–
(3.263) are valid in any place of the body; this is the final state with entropy So, see
above (3.266)).

Before going further we note that result (3.264) for a special perturbed state with
(3.243), (3.246) (i.e., (3.244) with zero velocity through the body) expresses the
Gibbs stability of a uniform state withU o, V o, So (3.258), (3.259), (3.264), deduced
from the stability conditions (3.256), (3.257).

Turning back to dynamical stability we can see from entropy inequality (3.110)
and (3.68) in this isolation (3.226), (3.231) that at any moment t during the develop-
ment

Ṡ(t) →
˙∫

mo
s dm =

∫
V o

ξ dv ∈ 0 (3.265)

Therefore, during the process, the entropy function S(t) has two properties: it does
not decrease in time (3.265) and has the upper limit So (3.264) (in this connection
S(t) is called a canonical function). We add a simplifying (and in fact expected)
assumption that whenever inequality in (3.264) is valid, the inequality in (3.265) is
valid too (cf. [93, Rem. 4.5, Theor. 3]). Then in uniform equilibrium achieved at
t → ∞ entropy reaches the value So from (3.264)

lim
t→∞ S(t) = So (3.266)

cf. [93, Eq. (4.40)].
Assuming also that limt→∞ Ṡ(t) exists it cannot be positive because of the upper

limit So (3.264) and therefore by (3.265)

lim
t→∞ Ṡ(t) = 0 (3.267)
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Moreover, motivated by (3.265), we assume that this limit (3.267) may be written
as limt→∞ Ṡ(t) = ⎡

V o ξ o dv where ξ o are limits of (local) nonnegative entropy
productions ξ .

To localize these results we simply assume that all deductions may be repeated
with any part of the considered body, i.e., with the corresponding part ofmass, volume
and other extensive quantities. Then result (3.267) may be written locally

ξ o = lim
t→∞ ξ = 0 (3.268)

in any place through the body.47

Therefore at t → ∞ the body achieves the state where there is zero entropy
production ξ = ξ 0 = 0 (3.222) in any place and permanently, and this is the
equilibrium state defined with (3.240)–(3.242). In our linear fluid with regularity
(3.232) we obtain from (3.196) (cf. Rem. 43) everywhere and permanently D = 0
(3.220) and g = o (3.221). Because of assumed zero velocity on the boundary of
this equilibrium body, this rigid motion (3.18) gives zero velocity v = o (3.223)
everywhere and permanently inside. Constitutive equations (3.187), (3.195) give
in this asymptotically equilibrium body (3.225), (3.226) and momentum balance
(3.78) is then gradP = (δ P̂/δρ)h = o. By (3.257) we obtain h = o and by mass
balance (3.227), we can see that the density (and therefore also the specific volume vo

following from (3.259) because of the constant volumeV o) in this equilibriumbody is
everywhere and permanently constant, as is similarly temperature. The latter follows
by (3.221) and (3.237) which is given by energy balance (3.235) at Q = 0 (3.231).
From this and similarly from the entropy balance (3.236) and also from (3.192),
(3.191) results that also the specific internal energy and entropy are everywhere and
permanently constant with values uo (following from constant energy Eo in (3.258))
and so obtainable then from (3.247), cf. (3.261).

Admitting the results (3.266), (3.268), the conditions (3.256), (3.257) are sufficient
for the dynamical stability of a uniform equilibrium state compatible with isolation
for a linear fluid body with regular equilibrium response.

Similarly as with classical Gibbs stability it may be shown that the stability condi-
tions lead analogously to dynamical stability at other conditions. As another example
of such a kind we discuss the fluid body of a constant volume immersed in a ther-
mostat and in a body force field (and, also without it as special case). We use again
the method similar to those giving (3.266), see also [94, 95] and Sect. 4.7.

47 Although assumptions giving (3.267), (3.268) look natural, this is not so, e.g. such S(t) fulfilling
(3.264), (3.265) may exist where Ṡ(t) > 0 changes oscillatorily for any time and therefore a limit
does not exist. Similarly the existence of limit (3.268) is not clear, e.g. ξ o in (3.267) may be nonzero
on surfaces or lines (sets of zero measure) and such a situation may be obtained even by limitation
from smooth function ξ .

However, these difficulties may be avoided by other means, e.g. it is possible to prove (often
with special types of material or with other potentials instead of entropy) the dynamical stability
(even asymptotical one) but mostly in integral form (deviations are expressed by integral through
the body). For further discussions see [1, 18, 93–95, 97–103, 114, 115].

http://dx.doi.org/10.1007/978-3-319-02514-8_4
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Let us have a body consisting of linear fluid (of Sect. 3.7) with regular equilibrium
response (3.232) with stability conditions (3.256), (3.257). The thermostatic bound-
ary of this body has everywhere the same temperature T o constant in time (the
temperature inside the body may be arbitrary) and the boundary is fixed with v = o;
therefore the volume of the body V o is a constant. Heat may be exchanged but not
by radiation, i.e., Q = 0 (3.231) through the body is valid. The mass of the body mo

is a constant which is independent of time

∫
V o

ρ dv = mo (3.269)

The body is situated in the body force field b constant in time (e.g. earth gravitation),
having the potential �

b = −grad� (3.270)

δ�

δt
= 0 , i.e. � = �(x) (3.271)

but the frame is inertial, i = o (cf. (3.104)).
We intend to show that a perturbed state compatible with these conditions may

develop in t → ∞ to the state which is in fact the equilibrium one: It has constant
T o and v = o throughout the body, the stationary (equilibrium) pressure Po(x) is
obtained by solution of (equilibrium) equation (3.228), (3.270)

gradPo(x) = −ρo(x) grad�(x) (3.272)

with stationary (equilibrium) density field ρo(x) → ρ̃(T o, Po(x)). Such solution
contains only one constant—pressure at one equipotential surface and this may be
determined with the help of the known mass of the body (3.269) mo = ⎡

V o ρo(x) dv.
The balance of energy for such a body follows from (3.105)

˙∫
V o

ρ(u + 1
2v2 + �) dv = −

∫
δV o

q.n da (3.273)

where δV o is the boundary of the body with fixed volume V o. Because temperature
T o is a constant we can eliminate the surface integral from (3.273) using entropy
inequality (3.108) (with the help of entropy production ξ (3.109) and (3.68), (3.23))
for such a body with (3.231). After rearrangements we obtain

−
∫

δV o
q.n da −

˙∫
V o

ρT os dv =
˙∫

V o
ρ(u − T os + 1

2v2 + �) dv

= −T o
∫

V o
ξ dv ≤ 0 (3.274)



3.8 Equilibrium Processes in Linear Fluid 135

Because field Po(x) and V o are time independent we have (by (3.199) and below)

0 = d

dt

∫
V o

Po dv = d

dt

∫
V o

ρvPo dv (3.275)

Using the Reynolds theorem (3.24) in (3.275) for v = o on the boundary and adding
this to (3.274) we obtain (the volume V o is fixed, the dot over the integral and d

dt
have the same meaning)

Ṙ(t) = −T o
∫

V o
ξ dv ≤ 0 (3.276)

where the canonical function R(t) is defined by

R(t) →
∫

V o
ρ(u − T os + Pov + 1

2v2 + �) dv (3.277)

Because of conditions of stability (3.256), (3.257) we obtain again the inequality
(3.260) (u ⇒= uo, s ⇒= so, v ⇒= vo; T o > 0, using again (A.73) from Appendix A.3
for function (3.247)). This may be written as

u − sT o + vPo > uo − soT o + vo Po → go (3.278)

where (cf. (3.191), (3.192), (3.199), (3.111), (3.203)) we can choose uo, so, vo, go as
the values at T o, ρo(x) → ρ̃(T o, Po(x)) in the given placex (calculated from (3.272))
and u, s, v are values at T, ρ in this place and some instant. Adding nonnegative
quantity 1

2v2 (the velocity is taken at this place and instant) to the left-hand side
of (3.278) and adding the potential � to both sides, multiplying then the resulting
inequality by ρ > 0 at this place and instant and integrating over the fixed volume
V o of the body in the given instant, we obtain

R(t) ∈ Ro (3.279)

(the equality is valid if T = T o, ρ = ρo, v = o through the body). Here the definition
of canonical function (3.277) was used and Ro is defined by

Ro →
∫

V o
ρ(go + �) dv = (go + �)mo (3.280)

The right-hand side of (3.280) and therefore Ro is constant; indeed, go(x) =
g̃(Po(x), T o), (3.278) was obtained using the solution Po(x) of (3.272) and there-
fore (remember that for time-constant potential � the equilibrium relation (3.239) is
valid) go + � is constant as well as the mass (3.269).

Therefore we constructed the canonical function (3.277) which does not increase
(3.276) andwhich has a lower bound (3.279). Using a similar simplifying assumption
as at (3.266), namely, whenever the inequality in (3.279) is valid, the inequality in
(3.276) is valid too (cf. [93, Rem. 4.5, Theor. 3]), we obtain
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lim
t→∞ R(t) = Ro (3.281)

i.e., the time limit of canonical function R(t) achieves value Ro. Therefore this regular
linear fluid achieves asymptotically the equilibrium state with constant temperature
T o and no movement inside v = o (3.223) (such were permanent on the boundary).
This is the equilibriumwith equilibriumpressure Po(x) anddensityρo(x)fields given
by (3.272). Adding similar simplifying assumptions leading to (3.267), (3.268), we
obtain, in this equilibrium, e.g. the result (3.268) in such a nonuniform body.

The dynamical stability just described contains as a special case the zero body
force b = o (again i = o) which leads to a final uniform equilibrium state (noted
below (3.239)) without potential (say � = 0).

The stability conditions (3.256), (3.257) lead analogously to stability at further
conditions, e.g. the stability of a fluid in a thermostatic cylinder closed by a piston
under constant pressure, cf. [14, 95, 97]. This may be done similarly as for mixtures
in the last example of Sect. 4.7.

The processes going asymptotically to equilibrium discussed in this section may
be used for understanding the reversible equilibrium processes as those processes
which pass so slowly that the entropyproduction in (3.265), (3.276)maybeneglected,
cf. Sects. 1.2, 2.1, 2.2, in models A, B, Rems. 12 in Chap.1, 7 and 9 in Chap.2, 41
in this chapter and [116] (for simplicity we use linear model of Sect. 3.7).48

Summary. This section shows the analysis of equilibrium state for a given
system (single linear fluid in this case), which can be made once its final consti-
tutive equations were derived. The equilibrium is defined so as to give the zero
entropy production, cf. (3.220)–(3.222). To ensure the persistence of equilibrium (see
the property S4 in Sect. 1.2), the regularity conditions (3.232)–(3.234) were added to
the model of linear fluid. The majority of this section was devoted to the analysis of
the stability of equilibrium; the concept of stable equilibrium was explained on page
127. The condition of stability called the Gibbs stability are (3.256) and (3.257). We

48 Namely, we discuss two examples of equilibrium reversible processes: the isothermal and then
those which are adiabatic. Such processes with ideal gas (i.e., with real stable gas at sufficiently
low pressures) are used in the Carnot cycle in Appendix A.1.

The uniform process described here for linear fluid (see below (3.239) and (3.211)) which is
isothermal (temperature T = T 0 is permanently the same constant) may be considered as a special
case of equilibrium reversible processes in the fluid model B of Sect. 2.2 if the entropy production
(given by (2.36) or (3.196)) may be neglected. A stable equilibrium state in a given instant has
(besides the constant temperature T 0) the volume V (with zero velocity everywhere (3.223)). The
change of this state to another one with the volume V + dV (and the same temperature T 0 and
zero velocity) by such a reversible process can be imagined as a sudden change of the volume by
a small dV and as a development of this perturbed state isothermally to a new stable equilibrium
state as described above (the second example without the body force: b = o in (3.270)). A new
equilibrium state will be practically achieved after a time interval much greater then the typical
time scale in model B. Therefore the reversible process composed from sequences of such V to
V + dV changes must be slow V̇ is zero as well as the entropy production (2.36) and all this
happens in the time scale of the model B. Heat exchange is nonzero and gives the entropy change,
i.e., both members on the left-hand side of (3.274) compensate (similarly as in (2.10)) because
the entropy production is zero (in (3.196) the second order contributions of heat and viscosity
are neglected in fact, while in (3.274) the not neglected first order heat contribution is compensated).
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want to stress that the latter condition enables the inversion of density as a function of
pressure, i.e., it allows to use the pressure as an independent variable (in place of the
density)—this condition was only supposed in preceding section and also in other
thermodynamic approaches. During the evolution to the stable equilibrium state the
entropy does not decrease in time, see (3.265) and also has an upper limit (3.264).
Analogous conditions for the stability at different conditions (fluid of a constant vol-
ume maintained in a thermostat and under the effects of body forces) were derived
in the form of canonical function defined by (3.277)—the conditions are given by
(3.276) and (3.279).
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Chapter 4
Continuum Thermodynamics of Mixture
of Linear Fluids

This is the core chapter of our book. Here we discuss rational thermodynamics of
mixtures and our main interest is the classical subject—the chemically reacting fluid
mixture composed from fluids with linear transport properties (linear fluid mixture).
In the last section, we discuss the relation of our results to those classical.

4.1 Principles of Mixture Theory

Thus far, with the exception of Sects. 2.4 and 2.5, we have studied only one-
component system. In chemistry and its applications, multicomponent systems are
much more encountered and the description of mixtures is much more important.
The first systematic study of the non-equilibrium behaviour of mixtures was given in
the linear thermodynamics of irreversible processes, mainly by Prigogine, Meixner
and others [1–5]. It uses usually the properties of mixtures as primitives and it for-
mulates balances (with the exception of those for mass) for mixture only. Also the
newer extended thermodynamics (see Rem. 2 in Chap. 2) is studying mixtures [6–9].

Rational thermodynamics (the basic ideas of which have been presented in previ-
ous chapters) of mixtures has been promoted mainly by Truesdell [10–13], Bowen
[14, 15], Müller [16–19], Williams [20, 21], see also reviews [15, 22, 23]. It also
uses the classical approach [24–26] but most of its mixture theories [17, 27–73] use
Truesdell’s more detailed conception of mixture as superposing continua of its con-
stituents [10, 11, 13]. These theories use the analogy with single (one constituent)
material but because of the non-uniqueness of such analogy these theories differ
sometimes in conceptions and details. Therefore, their comparison is often difficult
but (because of limited knowledge of mixture properties) their results do not differ
essentially [22, 23]. Mixtures studied by rational thermodynamics may be very dif-
ferent [13, 15, 17, 22, 23, 45, 54, 62, 74–78]. They include not only the one phase
mixtures of fluids but also the more complicated (and therefore touched only mar-
ginally in this book) “heterogeneous mixtures” like porous solids filled with liquids
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and other phases, suspensions, emulsions, etc. (even non-linear in transport) [14,
15, 29–37, 54, 59, 60, 70–72, 79–81] and models with temperature memory effects
(cf. Rems. 26 in Chap. 3, 31, Sect. 2.2 model D) [17, 18, 82, 83] (where the “local
equilibrium” is invalid, cf. Sects. 2.2, 3.7 and 4.6), and systems with more tempera-
tures (Rem. 2, [14, 15, 59]). Among them are also the mixtures with fading memory
[35], mixture surfaces (waves and phase boundaries) [17, 40, 49, 51, 52, 55, 73,
84–92], Gibbs’ phase rule [93, 94] and non-local materials [41, 95, 96]. Yet newer
theories of mixtures are beginning to be developed based on modern concepts of
continuum thermomechanics [97–100] and promoted mainly by Williams [20, 21,
67, 68, 101–103]. These theories use, in fact, only the solidification principle (in its
broader form noted below) to construct the mixture, but so far they are elaborated
mainly in mechanical aspects (cf. Rems. 7 in Chap. 3, 11).

In this book, we use Truesdell’s conceptually most simple idea of mixture [10–
12] and we confine ourselves to a classical task important in applications: we study
the mixture of chemically reacting fluids (mechanically non-polar, cf. Sect. 4.3 and
Rem. 17 in Chap. 3), with the same temperature of all constituents and with linear
transport properties (like diffusion, heat conduction, viscosity; generalization on non-
linear transport, see [60, 71, 72, 104]). This model, called shortly the linear fluid
mixture, contains as special cases non-reacting fluid mixtures and some further ones
(see Sect. 4.8).

At least for this linear fluids mixture, we (partially) overcome the usual objection
to Truesdell’s conception: how to find the thermodynamic partial properties taken as
primitives in this theory. Namely, we show that such partial quantities may be calcu-
lated from the dependence of corresponding mixture properties on the composition
using the so-called mixture invariance of balances [59], see Sects. 4.5 and 4.6.

To construct the theory of mixture, we use as a basis the following three “meta-
physical” principles of Truesdell [12, 13]:

1. All properties of a mixture are consequences of properties of its constituents.
By this principle, we introduce the properties of constituents as primitives and
properties of mixture are then defined.

2. So as to describe the motion of a constituent, we may imagine it to be isolated
from the rest of the mixture, provided we allow properly for the actions of the
other constituents upon it. This solidification principle (which is an extension of
those noted in Rem. 14 in Chap.3) permits us to formulate balances by analogy
with pure materials.

3. The motion of the mixture is governed by the same equations as is a single body.
By this principle, the properties and balances of mixture are formulated on the
basis of pure substances.

Obviously, the interpretation of these principles is not unique. In this book, we
interpret the third principle in the sense that if we neglect the diffusion (relative
movement of one constituent towards the others—a phenomenon typical only for
the mixture) the mixture must behave as a single substance (then even chemical
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reactions may be described with the use of internal variables); the balances in such
a non-diffusing mixture must be the same as in Chap.3.1

In themixtures, we postulate two types of balances: balance for each constituent ϑ
and balance of mixture. Motivated by principles (1) and (2). we propose the balances
for individual constituents (ofmass, momentum and its moment, energy and entropy)
similarly as for the single constituent (see Sects. 3.3 and 3.4), i.e. their left-hand
sides form the change of corresponding partial quantity in a fixed volume and to the
right-hand sides we add the interactions with the remaining constituents. Balances
of mixtures we postulate as the sums of left-hand sides of individual constituent
balances, putting the sums of interactions on right-hand sides equal to zero because of
their assumed compensation, see Sects. 4.2, 4.3 and 4.4 for details. Entropy inequality
is postulated for the mixture only (as may be expected physically; partial entropy
inequalities seem to be too strong [15, 22, 23], cf. Rem. 2).

We simplify the mixture model in this book by assumption that all constituents
(occupying simultaneously the same place ofmixture, see below (4.1)) have the same
temperature; then it suffices to formulate the energy and entropy balances for themix-
ture only, see Sect. 4.4.2 Note that entropy, as a quantity depending on the material
model (cf. Sect. 2.3), is not only the function of composition but also depends on the
number of constituents (cf. Gibbs paradox: the presence of additional constituent dis-
continuously changes the entropy regardless of its (physical) proximity); therefore,
we assume the number of constituents as firmly given in the following.

Concluding, it seems that the thermodynamics of mixtures has not yet been solved
satisfactorily in spite of great endeavour and specific results. The main problems are
rooted in distinguishing between heat and matter flowing simultaneously through
(even imaginary) boundarywhich necessary appears in diffusingmixture exchanging
mass (of different constituents by different velocities) and energy. While for single
substance this difficulty has been removed by using the instrument of the “material
volume” and this permits to construct the theory of single substance on the basis
of Chap.1 (namely, the First and Second Laws are postulated there for closed, i.e.
not exchanging mass, system), this is impossible in diffusing and heat exchanging
mixture. Here we must add rather intuitive postulates (on summing the left-hand
sides of component balances or on the compensation of interactions) noted above.
In spite of this, Truesdell’s mixture theory seems to be simpler than the classical

1 Literal interpretation [12, 13] of the third principle is that “a body does not know if it is a mixture
or not” which leads to complicated and not fully clear expressions in mixture when diffusion is
present; cf. Rems. 3, 7, 10, 11, see also [60, 67, 68, 73].
2 Energy and entropy balancesmay be formulated for individual constituents (and entropy inequality
is given as the non-negativity of sums of entropy productions in individual entropy balances), cf.
[14, 15, 59] but, even the constitutive equations for partial heat fluxes or energy interactions may be
formulated, if the temperature of all constituents is the same, they play a role only through the sum
of partial heat fluxes (i.e. through the heat flux for mixture as in Sect. 4.4) and the sum of energy
interactions disappears by compensation, see [59, Sect. 3].

For mixtures with different temperatures, e.g. plasma is a mixture of electrons and ions with
different temperatures, see [32, 59, 105].
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theory [1, 3] with postulates for mixture only, where especially ad hoc proposition
of energy and entropy balances is complicated and not unique, cf. Rems. 10, 11.

Properties of constituents which are of fixed number n will be denoted by the
Greek subscriptϑ = 1, 2, . . . , n (in this chapter, if it is not noted otherwise, subscripts
ϑ, η, δ = 1, 2, . . . , n and α, ω, σ = 1, 2, . . . , n − 1 are used).

For each constituent, we can use the same kinematic description as for the single
substance in Sect. 3.1. Namely, for each constituent ϑ invertible and smooth motion
χ

ϑ
is defined as

x = χ
ϑ
(Xϑ, t) ϑ = 1, . . . , n (4.1)

where x is the place of the particle Xϑ of constituent ϑ = 1, . . . , n in the instant t
(Xϑ is defined by its place in reference configuration of constituent ϑ); see also [73,
90, 91, 106].

Mixture is an intersection of actual configurations of all n constituents, i.e. it is
a superposition of such parts of actual configurations of every constituent that each
place in the mixture is occupied simultaneously by n different particles each from
every constituent of the mixture. The meaning of reference, actual configurations as
well as other quantities for constituent ϑ are quite analogous to those in Sect. 3.1.
e.g. velocity vϑ of every constituent ϑ = 1, . . . , n, is defined by (cf. (3.7)):

vϑ → ∂χ
ϑ
/∂t =\ϑ

χ
ϑ
= χ̀

ϑ
ϑ = 1, . . . , n (4.2)

where the second equality denotes the material derivative relative to constituent ϑ;
the last expression is the simplified description of this derivative when upper ϑ is the
same as in the lower index.

Each quantity—field ϕ—may be, by (4.1), described by the spatial as well as
material (to some constituent ϑ) description ϕ = ϕ(x, t) = ϕ(Xϑ, t); therefore the
material derivative to the constituent ϑ is also (cf. (3.8) and (3.9))

\ϑ
ϕ→ ∂ϕ

∂t
+ vi

ϑ

∂ϕ

∂xi
(4.3)

and we have
Gradϕ = gradϕ Fϑ (4.4)

Here the deformation gradient Fϑ as well as the velocity gradient Lϑ , stretching Dϑ

and the spin Wϑ for constituent are defined analogously as (3.10), (3.12), (3.14),
(3.15) and (3.16), e.g.

Fϑ → ∂χ
ϑ
/∂Xϑ (4.5)

Lϑ → gradvϑ = Dϑ + Wϑ = F̀ϑF−1
ϑ (4.6)

Dϑ → 1

2
(Lϑ + LT

ϑ ), Wϑ → 1

2
(Lϑ − LT

ϑ ) (4.7)

divvϑ = trDϑ (4.8)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3


4.1 Principles of Mixture Theory 147

Killing’s theorem is valid for all constituentsϑ = 1, . . . , n: Themotion of themixture
is rigid if and only if for all ϑ

Dϑ = 0 ϑ = 1, . . . , n (4.9)

It is clear that analogues of (3.12), denoted Jϑ , are valid for each constituent as well
as that of Euler relation (3.17) and Reynolds theorem (3.24) with \ϑ instead of the
dot in the original equations, cf. (d) in Rem. 3, but material volume (containing the
same particles of constituent ϑ) is not as important as for the pure substance.

Results of Sect. 3.2 concerning the change of frame are possible to transfer to
mixtures directly if we keep in mind that transformations (3.25),(3.26) concern all
constituents of a mixture simultaneously (c(t), Q(t), b are the same for all con-
stituents of the mixture). Velocities vϑ and accelerations v̀ϑ (concisely written like
(4.2)) are transformed again by (3.38) and (3.44), i.e.

v∞
ϑ = Qvϑ + ċ + π(x∞ − c) (4.10)

v̀∞
ϑ = Qv̀ϑ + i∞ϑ (4.11)

where the inertial force of constituent ϑ = 1, . . . , n is

i∞ϑ → 2π(v∞
ϑ − ċ) − π2(x∞ − c) + π̇(x∞ − c) + c̈ (4.12)

with π given by (3.39) (cf. (3.46), see also (3.79) and (4.58)). The dot means the
derivative of the function of time only. Note that in inertial frame i∞ϑ = o for the same
reasons as (3.48). Stretching Dϑ of constituent ϑ is an objective tensor

D∞
ϑ = QDϑQT (4.13)

(by the same arguments as in (3.54)) and similarly in other cases.

4.2 Balances of Mass and Stoichiometry of Chemical Reactions

In the mixture, in the given place and instant, we introduce the mass density ρϑ of
constituent ϑ = 1, . . . , n as a primitive. It has the meaning of mass of constituent ϑ
in a volume unit of the whole mixture (in chemistry this quantity is called the mass
or “weight” concentration). The (partial) densities ρϑ = ρϑ(x, t) are assumed to be
objective and only positive—this is clearly a plausiblemodel evenwhen a “practically
pure” constituent is formed as a result of chemical reactions. The density of mixture
ρ (defined as the sum of partial densities through all constituents, cf. (4.21) and
Rem. 3) has the usual meaning [11, 15, 17, 22, 23, 50].

Balances for constituent s and mixture (postulated in accord with in Sect. 4.1
proposed procedure) are as follows.
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The balance of mass for each constituent ϑ is

d

dt

∫
V

ρϑ dv +
∫

∂V
ρϑvϑ.n da =

∫
V

rϑ dv ϑ = 1, . . . , n (4.14)

for each volume V fixed in space with the surface ∂V which is contained in mixture
(cf. (3.60)). The first integral on the left-hand side is change of mass of constituent
ϑ in V , the second integral is flux of mass of ϑ through ∂V (the left-hand side is
the time change of mass in fixed volume) and the integral on the right-hand side
expresses the change of mass of constituent ϑ by chemical reactions: rϑ is the mass
produced (rϑ > 0) or consumed (rϑ < 0) by chemical reactions in the time and
volume unit (the right-hand side is just interaction with the remaining constituents).

If identically
rϑ → 0 (4.15)

we denote such constituent ϑ as the non-reacting one, cf. (4.28).
The balance of mass for the mixture asserts that in any fixed volume V of the

mixture the whole mass (sum of mass of all constituents) can be changed only
through the fixed surface ∂V as a result of the flow of each constituent ϑ by the
velocity vϑ

d

dt

n∑
ϑ=1

∫
V

ρϑ dv +
n∑

ϑ=1

∫
∂V

ρϑvϑ.n da = 0 (4.16)

This postulate is in accord with the general proposal of construction of mixture
balances given in Sect. 4.1: the left-hand side of (4.16) is the sumof the left-hand sides
of (4.14) and the right-hand side of (4.16) expresses the compensation of interactions
(cf. (4.20)).

Assuming, similarly as for pure substance in Sect. 3.3, the validity of these pos-
tulates for any part of the mixture we can localize them using Gauss’ theorem (3.23)
(cf. deduction of (3.62) from (3.60); note independency of V on constituents).

We obtain the local balances of mass for constituent

∂ρϑ

∂t
+ divρϑvϑ = rϑ ϑ = 1, . . . , n (4.17)

which may be rewritten with the use of material derivative of each constituent (4.3),
(4.2)

ρ̀ϑ + ρϑdivvϑ = rϑ ϑ = 1, . . . n (4.18)

Using (4.17), (4.3) the analogue of (3.67) may be obtained for field ϕ

∂ρϑϕ

∂t
+ divρϑϕvα = ρϑ

\ϑ
ϕ +ϕrϑ (4.19)
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Local balance of mass for mixture may be expressed as

n∑
ϑ=1

rϑ = 0 (4.20)

as follows from the local forms of (4.16) and (4.17).
We assume that rϑ are objective scalars and therefore balances (4.18) and (4.20)

are the same in any frame (cf. (4.8), (4.13); ρ̀ϑ is objective which may be proved
similarly as objectivity of the material derivative of the objective scalar in Sect. 3.2).

We introduce several definitions which will be useful later.3

Density of mixture ρ is defined as

ρ →
n∑

ϑ=1

ρϑ (4.21)

Mass fraction wϑ of constituent ϑ (in physics denoted as “concentration”)

wϑ → ρϑ/ρ ϑ = 1, . . . , n (4.22)

with property

3 Using density of mixture (4.21), mass fractions (4.22) and barycentric velocity vw , defined by

vw →
n∑

ϑ=1

wϑvϑ (a)

in (4.16), we obtain the same form as (3.60) or locally the form of (3.62) or (3.63) with v = vw

∂ρ

∂t
+ divρvw = 0, ρ̇ + ρ divvw = 0 (b)

where “dot” denotes the material derivative relative to barycentric velocity (cf. (3.8)), i.e.

ρ̇ → ∂ρ

∂t
+ vw.gradρ (c)

Using “dot” (like in Chap.3) is natural if the all velocities vϑ are the same as in Sect. 4.7, see (4.322),
(4.323).

Unfortunately, so simple a result is not obtainable with other balances (see Rems. 7, 10, 11) but
even here, if all velocities are the same vϑ = v, they are in accord with the interpretation of the
third principle in Sect. 4.1, cf. Rem. 1.

If we use material derivatives, balances (4.14) and (4.16) may be written

\ϑ∫
V

ρϑ dv=
∫
V

rϑ dv,

n∑
ϑ=1

\ϑ∫
V

ρϑ dv= 0 (d)

where the analogue of Reynolds theorem (3.24) for constituent ϑ was used (cf. (3.59)); V is a
material volume chosen the same for all constituents.
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n∑
ϑ=1

wϑ = 1 (4.23)

In Sect. 4.1 we denoted as diffusion the relative motion of mixture constituents
caused by their generally different velocities. Therefore, it is useful to define the
diffusion velocity uα relative to the n-th constituent (there are more possibilities of
such definitions, cf. Rem. 7 and Sect. 4.10)

uα → vα − vn α = 1, . . . , n − 1, un → o (4.24)

The latter expression is useful in sums like (4.64). Note, see (4.10), that diffusion
velocities (4.24) are objective (frame indifferent) as well as (4.21), (4.22).

In chemically reacting mixture rϑ �= 0 (for several reacting constituents at least)
due to chemical reactions among reacting constituents. The reactions are described
by stoichiometry. Here we follow Bowen [14, 30, 31], see also [12, 48, 65], using
non-orthogonal bases (see Appendix A.4); therefore, we use upper or lower indices
for contravariant or covariant components. In stoichiometry, we assume that each
constituent is composed of atomic substances (atoms—often chemical elements) in
definite proportions. The constituent ϑ = 1, . . . , n is characterized by a positive
constant—the molar mass Mϑ , which is therefore a linear combination of atomic
masses Aσ of atomic substances σ = 1, 2, . . . , z

Mϑ =
z∑

σ=1

Aσ Tσϑ ϑ = 1, . . . , n (4.25)

where Tσϑ may be interpreted as the “number of atoms σ in one molecule of con-
stituent ϑ”.

We define reaction rate Jϑ of constituent ϑ (in mols in time and volume units) by

Jϑ → rϑ/Mϑ ϑ = 1, . . . , n (4.26)

expressing the number of mols of constituent ϑ formed or destroyed by chemical
reactions in a volume and time unit.

The basic postulate of stoichiometry is the permanence of atomic substances

n∑
ϑ=1

Tσϑ Jϑ = 0 σ = 1, . . . , z (4.27)

which expresses the indestructibility of atoms in chemical reactions. This postulate
is in accord with the balance of whole mass (4.20): summing rϑ from (4.26) through
constituents and using (4.25), (4.27), we obtain (4.20) (therefore, we could use (4.27)
instead of (4.20)). In the following, the rank h of matrix ⊂Tσϑ⊂ of dimension z × n
plays an important role.According to its definition (rank h of amatrix is the dimension
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of the highest non-zero determinant formed from the matrix) h ⇔ min(z, n) and
therefore h ⇔ n.

The case h = n (this is possible if z ≤ n) is the chemically non-reacting mixture
because the solution of the system z equations (4.27) with n unknowns Jϑ is

Jϑ = 0, i.e. rϑ = 0 ϑ = 1, . . . , n (4.28)

Note that if this is valid only for some constituentsϑ (4.28) then thosemay be denoted
as non-reacting, cf. (4.15).

In this section, we are interested mainly in chemical reactions where

h < n (4.29)

The rank h of ⊂Tσϑ⊂ gives the maximum number of the linear independent rela-
tions in (4.27) and n −h gives the number of chemical reactions in the system (which
are independent, namely no such chemical reaction follows by linear combination
from those remaining), see below (4.33).4 Therefore, only h independent relations
from (4.27) (as well as any other system of h linearly independent relations obtained
by linear combinations) are useful. Therefore, the permanence of atomic substances
(4.27) may be expressed by

n∑
ϑ=1

Sσϑ Jϑ = 0 σ = 1, . . . , h (4.30)

where the matrix ⊂Sσϑ⊂ of dimension h × n and of rank h is one from the matrices
obtained from ⊂Tσϑ⊂ in the way described above. If we use Sσϑ instead of Tσϑ in
(4.25) we can write

Mϑ =
h∑

σ=1

Eσ Sσϑ ϑ = 1, . . . , n (4.31)

where Eσ are certain linear combinations of atomic masses. Therefore, a “molecule”
of constituent ϑ is a combination of “atomic substances with atomic masses” Eσ

(which are not generally the chemical elements, cf. examples at the end of this
Sect. 4.2).With such interpretationEqs. (4.30) and (4.31)will be used in the following
instead of (4.27) and (4.25).

We introduce an abstract n-dimensional vector space U and we call it the mixture
space. In it we select bases ∈eϑ and ∈eϑ; for now it is sufficient to assume that these
bases are othonormal, i.e. ∈eϑ = ∈eϑ , cf. Appendix A.4. In the space U , we define the
vectors of molar masses ∈M and reaction rates ∈J by

4 Results (4.28), (4.29) depend on the a priori choice of n constituents to obtain reasonable accord
with chemistry: e.g. if we choose HCl and NaOH as constituents only we obtain non-reacting
mixture (z = 4, n = h = 2); adding NaCl, H2O (n = 4, z = 4, h = 3), one reaction is possible.
On the other hand in practice, (4.28) may be valid even when (4.29) is valid (“frozen” reactions).
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∈M →
n∑

ϑ=1

Mϑ∈eϑ (4.32)

∈J →
n∑

ϑ=1

Jϑ∈eϑ (4.33)

Then we define h independent (contravariant) vectors ∈fσ by

∈fσ →
n∑

ϑ=1

Sσϑ∈eϑ σ = 1, . . . , h (4.34)

which form a basis in h-dimensional subspace W of the mixture space U . The
subspaceW uniquely determines a complementary, orthogonal andn−h dimensional
subspace in the space U which we will call the reaction space V .

The postulate of permanence of atomic substances (4.30) may be equivalently
expressed as follows [30]:

The vector of molar masses ∈M is situated in the subspace W and the vector of
reaction rates ∈J is situated only in the reaction space V , i.e.

∈M ∈ W (4.35)

∈J ∈ V (4.36)

where W≡V and W ≥ V = U (≥ means Cartesian sum).

Proof Necessity of (4.35): inserting (4.34), (4.31), (4.32) into the left hand side of
following expression (4.37) we obtain

h∑
σ=1

Eσ ∈fσ = ∈M (4.37)

i.e. ∈M may be expressed in the basis ofW and therefore (4.35) follows. The necessity
of (4.36): using (4.33),(4.34),(4.30) in the left-hand side of following expression
(4.38) we obtain

∈J . ∈fσ = 0 σ = 1, . . . , h (4.38)

i.e. ∈J is orthogonal to the basis of W and therefore (4.36) follows. To prove the
sufficiency,we show that (4.30), (4.31) follow from (4.35), (4.36): indeed, let ∈fσ (σ =
1, . . . , h) be some basis of the h-dimensional subspaceW and Sσϑ are components
of each ∈fσ , in the basis ∈eϑ (ϑ = 1, . . . , n) of the mixture space U , i.e. (4.34) is
valid. According to (4.36), Eqs. (4.38) must be valid. Introducing (4.33), (4.34) into
left-hand side of (4.38) we obtain (4.30). Further, let Eσ be components of ∈M in the
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basis ∈fσ of subspaceW , i.e. (4.37) is valid. If ∈M has components Mϑ in the space U
according to (4.32), we can see, by substitution of (4.34) and (4.32) into (4.37), that
(4.31) must be valid. Q.E.D.

From the permanence of atomic substances (4.35), (4.36) then follows

∈M . ∈J = 0 or
n∑

ϑ=1

Mϑ Jϑ = 0 (4.39)

which, according to (4.32), (4.33), (4.26), expresses again the mass balance for the
mixture (4.20).

Now, let us choose n − h linearly independent covariant vectors ∈g p as basis in
the reaction subspace V and show that n − h is the number of independent chemical
reactions in the mixture, cf. below (4.45) and Rem. 4. These vectors can be written
in the basis of U as

∈g p =
n∑

ϑ=1

P pϑ∈eϑ p = 1, . . . , n − h (4.40)

where matrix ⊂P pϑ⊂ of the dimension (n − h) × n is called the matrix of sto-
ichiometric coefficients (of independent reactions noted above). Because of linear
independency of ∈g p, the rank of this matrix ⊂P pϑ⊂ is n − h. From the orthogonality
of subspaces V and W follows (with the use of (4.40) and (4.34))

∈fσ .∈g p =
n∑

ϑ=1

Sσϑ P pϑ = 0 σ = 1, . . . , h, p = 1, . . . , n − h (4.41)

Therefore, an arbitrary matrix of dimension (n − h) × n of the rank n − h fulfilling
the relations (4.41) for the given matrix ⊂Sσϑ⊂ may be chosen as matrix ⊂P pϑ⊂. If
we use (4.40) and (4.32) then from (4.35), (4.36) it follows that

∈g p. ∈M =
n∑

ϑ=1

P pϑ Mϑ = 0 p = 1, . . . , n − h (4.42)

From the permanence postulate (4.36) further follows

∈J =
n−h∑
p=1

Jp ∈g p (4.43)

where Jp (components in chosen covariant basis ∈g p of reaction space V) is called
the reaction rate of p-th chemical reaction.
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From (4.43) and (4.40), (4.33) we have

Jϑ =
n−h∑
p=1

Jp P pϑ ϑ = 1, . . . , n (4.44)

On the other hand, the reaction rate Jr (r = 1, . . . , n − h) may be obtained by
multiplying (4.43) with vectors of contravariant basis ∈gr (see (A.89)). Inserting in
such product from (4.33), from the relation between contra- and covariant bases in
V (see (A.86)) and from (4.40), we obtain (by using of orthonormality of ∈eϑ) the
relation between rates (reversal to (4.44))

Jr =
n∑

ϑ=1

n−h∑
p=1

Jϑ P pϑgr p r = 1, . . . , n − h (4.45)

(covariantmetric tensor gr p is obtained by the inversion of contravariantmetric tensor
gr p = ∈gr . ∈g p which follows fom (4.40) and chosen reactions; cf. (A.83)).

It follows therefore, that chemical changes can be described selecting basis ∈g p in
the reaction space V (systematic choice see, e.g. [107, 108]). Such n−h independent
reactions may be seen from (4.42) if we use the corresponding chemical symbols
instead of Mϑ and use the following convention: in the following, we call the products
in p-th chemical reaction these constituents for which P pϑ > 0; constituents with
P pϑ < 0 are the reactants in the reaction p. If P pϑ = 0 then constituent ϑ does not
take part in the reaction p; if this is valid in all reactions p = 1, . . . , n − h then such
ϑ is a non-reacting constituent (indeed, from (4.44) we obtain (4.28)).

The same reacting mixture may be described by infinite numbers of systems of
n−h independent chemical reactions equivalently (each of such systems corresponds
to some choice of basis ∈g p in V) which may be mutually recalculated by linear
transformations of the type (A.87). Using (4.40), we recalculate the corresponding
stoichiometry coefficients; zero column P pϑ for non-reacting constituent ϑ will be
again zero. Therefore, reacting and non-reacting constituents are such in any choice
of the system of independent chemical reactions.

Chemical kinetics is described by (constitutive equations for) rates Jϑ or Jp (see
Sect. 4.9 for further details); note that Jp P pϑ from (4.44) may be interpreted as the
number of moles of constituent ϑ produced (or consumed) in the time and volume
unit in p-th reaction.

As an example of the preceding formulae, we consider themixture ofNO2 (ϑ = 1)

and N2O4 (ϑ = 2) with atoms N (σ = 1) and O (σ = 2). Then ⊂Tσϑ⊂ =
⎛

1 2
2 4

⎝
with h = 1 and therefore, e.g. ⊂Sσϑ⊂ = (1 2) (i.e. atomic substance is NO2).
As stoichiometric matrix, e.g. ⊂P pϑ⊂ = (2 − 1) may be chosen, corresponding to
reaction

N2O4 = 2NO2 (4.46)

or ⊂P pϑ⊂ = (−1 1/2) with reaction
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NO2 = 1/2N2O4 (4.47)

Another example is again NO2 and N2O4 but with atoms Q (ϑ = 3 = n).

Correspondingly ⊂Tσϑ⊂ =
⎞

1 2 0
2 4 0
0 0 1

⎠
with h = 2 and, e.g. ⊂Sσϑ⊂ =

⎛
1 2 0
0 0 1

⎝
. Then,

e.g. ⊂P pϑ⊂ = (2 − 1 0) which corresponds to the reaction (4.46) with Q as non-
reacting constituent.

The last example is O, O2 ,O3 (ϑ = 1, 2, 3) with atom O (σ = 1). Then ⊂Tσϑ⊂ =
(1 2 3) = ⊂Sσϑ⊂ (the last choice is possible). As the stoichiometric coefficients

are, e.g. ⊂P pϑ⊂ =
⎛

0 3 −2
3 0 −1

⎝
corresponding to the reactions

2O3 = 3O2, O3 = 3O (4.48)

Another equivalent set of these reactions is

O3 = O2 + O, O2 = 2O (4.49)

See also Rem. 4 and Sect. 4.9.
Summary. The balance of mass can be written either for each component sep-

arately or for the mixture as a whole; both involve the mass density (mass concen-
tration) of individual components. Their local forms are (4.17) or (4.18) and (4.20),
respectively. Themass changes during chemical reactions are restricted by additional
conditions resulting from the stoichiometry of chemical reactions or, in other words,
by the permanence of atoms in reactions—see (4.27). Linear algebra of stoichiom-
etry leads then to a restriction on rates by which the masses or molar amounts of
reacting constituents are changed—see (4.39). Further it gives the stoichiometric
matrix, (4.42), and translates the rates (of chemical transformations) of individual
constituents to the rates of (independent) chemical reactions, cf. (4.45). Thus only
the independent reactions are sufficient to be included in amodel of chemically react-
ing mixture and to describe chemical transformations mathematically. Note also the
definition of the density of mixture (4.21) and of the mass fraction (4.22).

4.3 Balances of Momentum and Moment of Momentum
in Reacting Mixture

Postulation of momentum balances for constituents and for mixture [11, 12, 15, 17,
22, 23, 50, 65] is sufficient (similarly as for pure constituent in Sect. 3.3) to be done
in the inertial frame because our main results—local balances (4.58), (4.63)—will be
valid in any frame. For every fixed volume V with fixed surface ∂V in the mixture,
we postulate the balance of momentum of constituent ϑ in the inertial frame as

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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d

dt

∫
V

ρϑvϑ dv +
∫

∂V
ρϑvϑ(vϑ.n) da =

∫
∂V

tϑ da +
∫

V
ρϑbϑ dv +

∫
V

kϑ dv

+
∫

V
rϑvϑ dv ϑ = 1, . . . , n (4.50)

(For modification for general, non-inertial frame see below (4.58)). On the left-
hand side, there is the change of momentum of constituent ϑ in the fixed volume V
(momentum density is obviously ρϑvϑ) and its flux through the fixed surface ∂V . On
the right-hand side of (4.50), the forces on constituent ϑ are postulated (according to
principles discussed in Sect. 4.1): the first two represent surface and volume forces
respectively (similarly as in pure material in Sect. 3.3) and those remaining describe
interactions (but see Rem. 5). Namely, the first integral on the right side expresses
through the partial traction tϑ the all contact forces (on surface unit) acting on the
constituent ϑ; these (partial stress) vectors are assumed to be objective (material
frame indifferent). Such are the inner surface forces by which all constituents act
from the outside (of V ) on the constituent ϑ on the surface ∂V (if ∂V , or its part, is a
real boundary of the mixture they are outer surface forces from the outside given as
boundary conditions) and also interaction surface forces coming from the remaining
constituents acting from the inside (of V ) on the constituent ϑ on the surface ∂V .5

The second integral on the right-hand side of (4.50) expresses the action of body
(volume, external and outer) forces bϑ in the inertial frame (they have their sources
in the outside the body); we assume thatbϑ are objective vectors. The third integral on
the right-hand side of (4.50) characterizes the volume interaction among constituents.
Here the volume interaction force kϑ expresses the action of other constituents on
the constituent ϑ. It is assumed that kϑ are objective vectors. The last integral on
the right-hand side of (4.50) expresses the time change of momentum caused by
chemical reactions [11, 14, 25]; we assume that the velocity of reacting constituent
ϑ is vϑ .6

5 These last forces from inside were introduced by more detailed mixture theory [101], see also
[20, 67, 68, 109, 110], but we do not distinguish them in tϑ (or in partial stress Tϑ (4.53) below).
These therefore contain also surface interactions (analogues of volume interactions kϑ below)which
compensate themselves in sum of tractions or stresses in (4.60), (4.61).
6 This is not obvious but if it is not so this may be always achieved: let us assume that vr

ϑ is a real
velocity of chemically reacting constituent ϑ and real interaction force is kr

ϑ . Then the last two
members in (4.50) are

∫
V

kr
ϑ dv +

∫
V

rϑvr
ϑ dv =

∫
V

kϑ dv +
∫

V
rϑvϑ dv

where the form postulated in (4.50) was achieved defining kϑ → kr
ϑ + (vr

ϑ − vϑ)rϑ . Because the
objectivity of kr

ϑ and rϑ may be assumed, the kϑ are also objective (in this way, the different
formulations of these last two members used in the literature [12, 16, 22, 40, 41, 46, 49, 52, 95,
105, 111] may be transformed in the form used here in (4.50)).

Other possible forces are neglected in (4.50), e.g. long range body forces (cf. Sect. 3.3; they may
occur in ionic salt solutions, but they may be neglected by electroneutrality, see Rem. 32), influence
of (mechanically) polar components, cf. Rem. 9, hyperstresses [112].

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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The left-hand side of postulate (4.50) may be arranged by Gauss’ theorem and
with (4.19) using the component of partial velocity as ϕ; then the partial balance of
momentum of constituent ϑ is

∫
V

ρϑ v̀ϑ dv =
∫

∂V
tϑ da +

∫
V

ρϑbϑ dv +
∫

V
kϑ dv ϑ = 1, . . . , n (4.51)

To achieve momentum balance in a local form, we have the analogous difficulties
with surface integral in the right-hand side of (4.50) as in Sect. 3.3. We therefore use
analogical Cauchy’s postulate and theorem but concerning here partial tractions and
stresses (motivation and deductions are quite analogical as in Sect. 3.3): The Cauchy
postulate for partial tractions is

tϑ = tϑ(x, t, n) ϑ = 1, . . . , n (4.52)

i.e. partial traction depends (moreover) on the (outside) normal n to the chosen
surface. Cauchy’s theorem then asserts that such dependence is linear, that is

tϑ = Tϑn ϑ = 1, . . . , n (4.53)

where the partial stress tensors Tϑ = Tϑ(x, t) are fields (functions of position and
time only) which are objective as follows from the objectivity of tϑ and n (similarly
as by (3.32)).

Proof of (4.53) may be done analogously as of (3.72): we construct a similar infin-
itesimal tetrahedron on the tangent plane given by n on which we apply the balance
(4.51)

ρϑ v̀ϑϕv = tϑϕa + (tϑ) j ϕa j + (ρϑbϑ + kϑ)ϕv (4.54)

By limiting the volume of the tetrahedron to zero, we obtain result (4.53) quite
analogously as (3.72) (components of stress tensor T i j

ϑ are components of vectors
−(tϑ) j ). Q.E.D.

Inserting (4.53) into (4.51) we obtain the balance of themomentum for constituent
ϑ in the inertial frame as

∫
V

ρϑ v̀ϑ dv =
∫

∂V
Tϑ.n da +

∫
V

ρϑbϑ dv +
∫

V
kϑ dv ϑ = 1, . . . , n (4.55)

Assuming its validity for any volume V the local formulation of momentum balance
of constituent ϑ in inertial frame may be obtained from (4.55) by Gauss’ theorem

ρϑ v̀ϑ = divTϑ + ρϑbϑ + kϑ ϑ = 1, . . . , n (4.56)

or (back by (4.19) choosing ϕ as velocity component)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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∂ρϑvϑ

∂t
+ div(ρϑvϑ ⇒ vϑ) = divTϑ + ρϑbϑ + kϑ + rϑvϑ ϑ = 1, . . . , n (4.57)

Balances ofmomentum for constituents have been formulated in the inertial frame.
Their form in a general (non-inertial frame) remains the same if we simply replace
bϑ with bϑ + iϑ . Indeed, the local balance of momentum of constituent ϑ in any
frame may be obtained from (4.56) if we use (4.11) and the objectivity of remaining
quantities assumed above (cf. analogous deduction of (3.78))

ρϑ v̀ϑ = divTϑ + ρϑ(bϑ + iϑ) + kϑ ϑ = 1, . . . , n (4.58)

where iϑ is given by (4.12) (without stars; other symbols as in (3.79)).
Starting with (4.58) in any frame (instead of (4.56) and going back through all

previous formulae (as in inertial system) it may be seen (cf. analogous behaviour
in Sect. 3.3 before (3.80)) that for transformation from inertial to non-inertial frame
here, it suffices to use bϑ + iϑ instead of bϑ in all preceding relations for the inertial
frame including the starting postulate (4.50). Therefore, e.g. the integral momentum
balance for constituent in an arbitrary (non-inertial) frame will be

∫
V

ρϑ v̀ϑ dv =
∫

∂V
Tϑ.n da +

∫
V

ρϑ(bϑ + iϑ) dv +
∫

V
kϑ dv ϑ = 1, . . . , n

(4.59)
instead of (4.55) in an inertial frame.

In accord with the general procedure proposed in Sect. 4.1 (summing of l.h.s. of
(4.50) and compensation of interactions) we postulate the balance of momentum for
the mixture in the inertial frame as

d

dt

∫
V

n∑
ϑ=1

ρϑvϑ dv +
∫

∂V

n∑
ϑ=1

ρϑvϑ(vϑ.n) da =
∫

∂V

n∑
ϑ=1

tϑ da +
∫

V

n∑
ϑ=1

ρϑbϑ dv

(4.60)

for arbitrary fixed volume V with fixed surface ∂V in the mixture. Using here
Cauchy’s theorem (4.53) we can write momentum balance of mixture in the inertial
frame as

d

dt

∫
V

n∑
ϑ=1

ρϑvϑ dv +
∫

∂V

n∑
ϑ=1

ρϑvϑ(vϑ.n) da =
∫

∂V

n∑
ϑ=1

Tϑn da +
∫

V

n∑
ϑ=1

ρϑbϑ dv

(4.61)

Therefore, we assume that interaction forces (including the surface interaction forces
assumed to be contained in the tϑ, Tϑ) and exchange of momentum in chemical
reactions compensate each other among the constituents.7

7 Postulate (4.61) is in accord with our interpretation of the third principle in Sect. 4.1: if the mixture
is non-diffusive, i.e. velocities of all constituents are the same vϑ = v, then (4.61) has the form

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Local momentum balance of mixture in the inertial frame follows from (4.61)
with Gauss’ theorem and arbitrary volume V (using (4.19))

n∑
ϑ=1

∂ρϑvϑ

∂t
+ div

n∑
ϑ=1

(ρϑvϑ ⇒ vϑ) =
n∑

ϑ=1

ρϑ v̀ϑ +
n∑

ϑ=1

rϑvϑ = div
n∑

ϑ=1

Tϑ +
n∑

ϑ=1

ρϑbϑ

(4.62)

Summing (4.56) through the constituents and comparing it with (4.62)2 we obtain
the local momentum balance of mixture as

n∑
ϑ=1

(kϑ + rϑvϑ) = o (4.63)

Although we have deduced this balance in the inertial frame, it is valid in all (even
non-inertial) frames because both sums on the left-hand side are objective (for the
second sum, this follows from (4.10) and (4.20)). This is also seen directly if we
write the momentum balance of the mixture with the use of diffusion velocity (4.24)
(which is an objective vector)

n∑
ϑ=1

(kϑ + rϑuϑ) = o (4.64)

The momentum balance for the mixture in integral forms (4.60), (4.61) may be
written again in an arbitrary frame simply by substitution of bϑ with bϑ + iϑ . Indeed,
adding rϑvϑ to both sides of (4.58) and summing through all constituents we obtain,
by (4.63), the result (4.62)2 with aforementioned substitution. Going backward with
the corresponding integration,we obtain integralmomentumbalances for themixture
in any frame with substitution mentioned above.

Postulation of moment of momentum balances for constituents and for mixture
[11, 12, 15, 17, 22, 23, 50, 65] is sufficient (similarly as in Sect. 3.3, cf. Rem. 16
in Chap. 3) to be done in the inertial frame with the construction of moment against
fixed point (y below) because our main results—local balances (4.70), (4.75)—are
valid in any frame independently of y (for generalization, see Rem. 8).

For simplicity, we confine to models where all constituents as well as the mix-
ture are mechanically non-polar (for polar models, see Rem. 9; cf. also Rem. 17 in
Chap. 3), i.e. time changes ofmoment ofmomentum are equal only tomoments of the

of a momentum balance for pure substance(3.75); here (4.21) is used, and T → ∑n
ϑ=1 Tϑ (4.94),

ρb → ∑n
ϑ=1 ρϑbϑ are defined.

In the general case of a diffusing mixture the interpretation noted in Rem. 1 is possible, i.e. we
transform (4.61) in the form (3.75), if we use barycentric velocity vw (see Rem. 3) and define the
whole stress as

∑n
ϑ=1(Tϑ − ρϑuw

ϑ ⇒ uw
ϑ ) (i.e. different from (4.94)) where uw

ϑ → vϑ − vw is the
diffusion velocity relative to the barycentric velocity (note

∑n
ϑ=1 ρϑuw

ϑ = o). Cf. [12, Lect. 5], [15,
18, 50].

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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forces introduced in the balances of momentum. Surface tractions will be expressed
through stress tensors (4.53).

The balance of moment of momentum for constituent ϑ in the inertial frame relative
to the fixed point y is postulated in any fixed volume V with fixed surface ∂V in the
mixture as (we use outer product from Rem. 16 in Chap. 3)

d

dt

∫
V
(x − y) ∧ ρϑvϑ dv +

∫
∂V

(x − y) ∧ ρϑvϑ(vϑ.n) da

=
∫

∂V
(x − y) ∧ Tϑn da +

∫
V
(x − y) ∧ ρϑbϑ dv

+
∫

V
(x − y) ∧ (kϑ + rϑvϑ) dv ϑ = 1, . . . , n (4.65)

To find the local moment of momentum balance for constituent ϑ we use here
Gauss’ theorem (3.23) in surface integrals and by localization (validity of (4.65) is
assumed for any volume V ) we obtain

∂ρϑ(x − y) ∧ vϑ)

∂t
+ div(ρϑ(x − y) ∧ vϑ ⇒ vϑ)

= div((x − y) ∧ Tϑ) + (x − y) ∧ ρϑbϑ + (x − y) ∧ kϑ

+ (x − y) ∧ rϑvϑ ϑ = 1, . . . , n (4.66)

where both divergences with tensors vϑ ⇒ vϑ and Tϑ are defined (in components)
analogously as under (3.90). Using (4.19) in the left-hand side of (4.66) we find (an
analogue of (3.91))

(x −y)∧ρϑ v̀ϑ = div((x −y)∧Tϑ)+ (x −y)∧ρϑbϑ + (x −y)∧kϑ ϑ = 1, . . . , n
(4.67)

because `
(x − y) ∧ vϑ = (x − y) ∧ v̀ϑ (4.68)

namely
\ϑ
x ∧ v̀ϑ = v̀ϑ ∧ v̀ϑ = 0 and

\ϑ
y = o (y is fixed); for the same reason (cf.

(3.92))

div((x − y) ∧ Tϑ) = TT
ϑ − Tϑ + (x − y) ∧ divTϑ (4.69)

Inserting this result into (4.67) and subtracting (4.56)multiplied by (x−y)∧weobtain
the local partial moment of momentum balance for constituent ϑ as a symmetry of
the partial stress tensor

Tϑ = TT
ϑ ϑ = 1, . . . , n (4.70)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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This is valid in any frame because of the objectivity of tensors Tϑ (even (4.70) was
deduced in the inertial frame); generalization for (mechanically) polar constituent
see Rem. 9.

According to general procedure discussed in Sect. 4.1 (summing of l.h.s. of (4.65)
and compensation of interactions), we postulate the balance of moment of momentum
for the mixture in inertial frame relatively to the fixed place y for any fixed volume
V with the surface ∂V in the mixture as

d

dt

∫
V
(x − y) ∧

n∑
ϑ=1

ρϑvϑ dv +
∫

∂V
(x − y) ∧

n∑
ϑ=1

ρϑvϑ(vϑ.n) da

=
∫

∂V
(x − y) ∧

n∑
ϑ=1

Tϑn da +
∫

V
(x − y) ∧

n∑
ϑ=1

ρϑbϑ dv (4.71)

To obtain the local moment of momentum balance for the mixture, we use Gauss’
theorem in (4.71) and localization similarly as in (4.66). This result is

n∑
ϑ=1

⎞
∂ρϑ(x − y) ∧ vϑ)

∂t
+ div(ρϑ(x − y) ∧ vϑ ⇒ vϑ)

⎠

=
n∑

ϑ=1

div((x − y) ∧ Tϑ) + (x − y) ∧
n∑

ϑ=1

ρϑbϑ (4.72)

Using (4.19) in the left-hand side (ϕ are components of (skew symmetric) tensor)
and (4.69) in the right-hand side of (4.72) we obtain

n∑
ϑ=1

ρϑ
`

(x − y) ∧ vϑ + (x − y) ∧
n∑

ϑ=1

rϑvϑ

=
n∑

ϑ=1

TT
ϑ −

n∑
ϑ=1

Tϑ + (x − y) ∧ div
n∑

ϑ=1

Tϑ + (x − y) ∧
n∑

ϑ=1

ρϑbϑ (4.73)

Adding (x − y) ∧∑n
ϑ=1 kϑ to both sides, using (4.68) and rearranging we obtain

(x − y) ∧
n∑

ϑ=1

(
ρϑ v̀ϑ − divTϑ − ρϑbϑ − kϑ

) + (x − y) ∧
n∑

ϑ=1

(kϑ + rϑvϑ)

=
n∑

ϑ=1

TT
ϑ −

n∑
ϑ=1

Tϑ

(4.74)

But the left-hand side of this equation is zero because of the local momentum
balance for each constituent (4.56) and for mixture (4.63). So, the local balance of
moment of momentum for the mixture has been obtained
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n∑
ϑ=1

Tϑ =
n∑

ϑ=1

TT
ϑ =

(
n∑

ϑ=1

Tϑ

)T

(4.75)

which is valid in any (even non-inertial) frame (on the same grounds as (4.70)).
Integral balances (4.71), (4.65) in any frame might be obtained by similar means

as for a single substance (see end of Sect. 3.3) but we omit them here (for our appli-
cations, the local forms (4.70),(4.75) suffice).8

For our model of (mechanically) non-polar constituents and non-polar mixture9

(4.75) is a trivial consequence of (4.70) and therefore the moment of momentum
balance for mixture is not needed in this non-polar model (indeed, (4.71) follows by
summing (4.65) and using (4.63)).

Summary. The balance ofmomentumpostulated for individual constituents leads
to the Cauchy’s theorem for partial stress tensors (4.53) and the local form of this
balance is given by (4.56) or (4.57). The balance ofmomentum formixture as awhole
is given by (4.63) or (4.64). The balance of moment of momentum postulated for
individual constituents gives the symmetry of the partial stress tensor—see (4.70).
Analogical balance for mixture as a whole gives “symmetry” of sum of these tensors,
cf. (4.75). Note that in mixture conceptually new quantities entered these balances—
especially partial quantities and the interaction forces between constituents.

4.4 Balance of Energy and Entropy Inequality in Reacting
Mixture: Mixture Invariance

Because we study only mixtures with a unique temperature of all their constituents,
we need only a balance of energy for themixture as has been explained in Sect.4.1, cf.
Rem. 2. Namely, in this case, the constitutive principles give no restrictions on energy
interactions in energy balances for constituents [11, 15, 46, 50, 53, 65]. This is the
difference with a more general mixture of constituents with different temperatures
[10, 14, 37, 46, 59, 113].

We postulate the balance of energy of a mixture in the inertial frame motivating it
by the energy balance of a single substance in the form (3.97). That iswepostulate that
the change of sum of kinetic energy (given by partial velocity vϑ) and internal energy
characterized by the primitive specific partial internal energy uϑ of constituent ϑ in
fixed volume V of the mixture and the change of the total whole energy by the mass

8 In fact such calculation (see, e.g. [79, Sect. 30]) gives results similar to (4.65) or (4.71), only we
must add ẏ∧∫V ρϑvϑ dv or ẏ∧∫V

∑n
ϑ=1 ρϑvϑ dv to their left-hand sides respectively and again bϑ

must be substituted by bϑ + iϑ ; note that by (3.25) y (fixed in some inertial frame) is in any frame
function of time at most and ẏ is its time derivative like in the end of Sect. 3.3, cf. also (3.96).
9 Often [13, Lect. 5], [27, 28, 37, 40, 46, 79] the mixture with polar constituents (containing partial
torques Mϑ) which compensate themselves in the mixture is studied. Balance (4.65) then contains∫
v

Mϑ dv on its right-hand side, balance (4.71) is the same. As the results we obtain Mϑ = Tϑ −TT
ϑ

(instead of (4.70)) and
∑n

ϑ=1 Mϑ = 0 (i.e. (4.75) remains valid), cf. Rems. 17, 32 in Chap. 3.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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flux through the fixed surface ∂V is given by the power of all forces (in mixture, cf.
balance (4.61); partial stress tensors (4.53) were used) and by heat exchange caused
by the scalar surface heating q (heat exchanged by unit surface in time unit) and by
the volume heating Q (heat exchanged by unit volume in time unit with external heat
source by radiation):

d

dt

∫
V

n∑
ϑ=1

ρϑ(uϑ + (1/2)v2ϑ) dv +
∫

∂V

n∑
ϑ=1

ρϑ(uϑ + (1/2)v2ϑ)vϑ.n da

=
∫

∂V

n∑
ϑ=1

vϑTϑ.n da +
∫

V

n∑
ϑ=1

ρϑbϑ.vϑ dv +
∫

∂V
q da +

∫
V

Q dv (4.76)

Similarly as for the single substance in Sect. 3.4 we postulate that scalars uϑ, q, Q
are objective (frame indifferent) as well as ρϑ, bϑ, Tϑ .

Using Gauss’ theorem in the left-hand side of balance (4.76) and then (4.19) we
obtain the energy balance of mixture in the inertial frame in the form

d

dt

∫
V

n∑
ϑ=1

ρϑ(uϑ + (1/2)v2ϑ) dv +
∫

∂V

n∑
ϑ=1

ρϑ(uϑ + (1/2)v2ϑ)vϑ.n da

=
∫

V

n∑
ϑ=1

ρϑ
`

(uϑ + (1/2)v2ϑ) dv +
∫

V

n∑
ϑ=1

rϑ(uϑ + (1/2)v2ϑ) dv

=
∫

∂V

n∑
ϑ=1

vϑTϑ.n da +
∫

V

n∑
ϑ=1

ρϑbϑ.vϑ dv −
∫

∂V
q.n da +

∫
V

Q dv (4.77)

where the (field of) heat flux vector q = q(x, t), resulting from the (heat analogue
of) Cauchy’s theorem

q = −q.n (4.78)

was used.10 This is obtained in the same way as (3.100) in Sect. 3.4, Rem. 20 in
Chap. 3, from the (heat analogue of) the Cauchy postulate, i.e. that scalar heating q
depends on the normal n to the chosen surface (cf. (3.99) with the same motivation)

q = q(x, t, n) (4.79)

10 We can transform (4.77) (see, e.g. [13, Lect. 5]) into the form (3.103)(with i = o) if we use the
interpretation fromRem. 1 and define the internal energy as 1

ρ

∑n
ϑ=1 ρϑ(uϑ +(1/2)(uw

ϑ )2), the heat

flux as q−∑n
ϑ=1(u

w
ϑ Tϑ −ρϑ(uϑ +(1/2)(uw

ϑ )2)uw
ϑ ), the heat source as Q+∑n

ϑ=1 ρϑbϑ.uw
ϑ and use

the following quantities (introduced in Rems. 3, 7, 11): vw as the velocity,
∑n

ϑ=1(Tϑ −ρϑuw
ϑ ⇒uw

ϑ )

as the (whole) stress, uw
ϑ as the diffusion velocity and b as the body force.

Our interpretation of the third principle in Sect. 4.1 is then achieved in non-diffusing mixture
with uw

ϑ = o, with the internal energy u naturally given by (4.90), (4.22).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Namely, the balance (4.77)2 with Gauss’ theorem in the right-hand side applied on
a small tetrahedron with volume ϕv as in Sect. 3.4 is

n∑
ϑ=1

ρϑ
`

(uϑ + (1/2)v2ϑ)ϕv +
n∑

ϑ=1

rϑ(uϑ + (1/2)v2ϑ)ϕv

= q ϕa + q j ϕa j + Q ϕv + (div
n∑

ϑ=1

vϑTϑ)ϕv +
n∑

ϑ=1

ρϑbϑ.vϑ ϕv (4.80)

from which (by limitation of tetrahedron volume to zero) we obtain result (4.78):
components of vector q form scalar surface heatings q j (independent of n) in the
axes of the Cartesian system in tetrahedron, see Sect. 3.4.

Moreover, because q and (arbitrary) n are objective (see end of Sect. 3.2), then
from (4.78) follows (similarly as below (3.101)) that the heat flux q in mixture is
objective (frame indifferent) vector; cf. also Rem. 21 in Chap. 3.

By Gauss’ theorem and by the arbitrariness of volume V , we obtain the local form
of (4.77)2 as

n∑
ϑ=1

ρϑ ùϑ +
n∑

ϑ=1

ρϑ
1

2
v̀2ϑ +

n∑
ϑ=1

rϑuϑ +
n∑

ϑ=1

rϑ
1

2
v2ϑ

= div
n∑

ϑ=1

vϑTϑ +
n∑

ϑ=1

ρϑbϑ.vϑ − divq + Q (4.81)

Subtracting from this the local balance of kinetic energy (obtainable frommomen-
tum balance (4.56) by multiplying with vϑ and summing through constituents) and
using (4.8), diffusion velocity (4.24) and mixture balances of momentum (4.64) and
that of mass (4.20), we obtain from (4.81) the following local balance of (internal)
energy in the mixture

n∑
ϑ=1

∂ρϑuϑ

∂t
+

n∑
ϑ=1

div(ρϑuϑvϑ) =
n∑

ϑ=1

ρϑ ùϑ +
n∑

ϑ=1

rϑuϑ

= − divq + Q +
n∑

ϑ=1

trTϑDϑ −
n−1∑
α=1

kα.uα

− (1/2)
n−1∑
α=1

rαu2
α (4.82)

where the left-hand side follows from (4.19). Although the deduction of (4.82) was
given in the inertial frame, this form is valid in any frame: indeed, (4.82)2 contains
only objective quantities (material derivative ùϑ of objective scalar is objective; proof,
with (4.3) here, is analogous to that below (3.57)).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3


4.4 Balance of Energy and Entropy Inequality in Reacting Mixture: Mixture Invariance 165

Entropy inequality for the mixture [10, 14, 15, 17, 50, 65] is motivated by such
inequality for single substance (3.108) (with (3.24)). We postulate it using two fol-
lowing primitive concepts (assumed to be objective scalars): the specific partial
entropy sϑ and the absolute temperature T > 0. Therefore, we confine ourselves
to mixtures with only one temperature, the same for all constituents. For any fixed
volume V in the mixture with fixed surface ∂V , we postulate the entropy inequality
as

d

dt

∫
V

n∑
ϑ=1

ρϑsϑ dv +
∫

∂V

n∑
ϑ=1

ρϑsϑvϑ.n da ≤ −
∫

∂V
(q/T ).n da +

∫
V
(Q/T ) dv

(4.83)
Using Gauss’ theorem, we can obtain the entropy inequality in the local form called
the Clausius-Duhem inequality

σ →
n∑

ϑ=1

∂ρϑsϑ

∂t
+

n∑
ϑ=1

div(ρϑsϑvϑ) + div(q/T ) − Q/T ≤ 0 (4.84)

The left-hand side of this inequality is defined as the entropy production σ . Relation
(4.84) (and in fact also (4.83)) is valid in any frame because of the objectivity of
most quantities and because of

n∑
ϑ=1

∂ρϑsϑ

∂t
+

n∑
ϑ=1

div(ρϑsϑvϑ) =
n∑

ϑ=1

ρϑ s̀ϑ +
n∑

ϑ=1

rϑsϑ (4.85)

which can be obtained quite analogously as Eq. (4.82)1 (with similarly motivated
objectivity of its right-hand side). Therefore also the entropy production σ is an
objective quantity.11

11 So far no deduction of entropy inequality, entropy and absolute temperature in mixtures (“open”
systems) as presented in Chap.1 is known. Moreover, in formulation of entropy inequality in mix-
tures, there are discrepancies among the authors; here we follow the one of Truesdell [10] (cf. also
[14, 15, 56, 59, 60, 79]) which seems to be the most simple; the other proposals see [2–4, 16–18,
24, 25, 51, 52]. As the most natural the theory of Williams [20, 21] can be considered which is
based on a single body [100] but still an additional (even plausible) assumption (superadditivity of
entropy production) must be added. The problem grows in mixtures with different temperatures of
their constituents [10, 14, 37, 46, 59] where inequalities analogous to (4.84) for each constituent
give too stringent results (in admissibility principle below) [22, 40, 43, 49] and therefore such par-
tial inequalities are not considered here. The main source of discrepancies may be seen as follows:
if we use the entropy of mixture s naturally defined by ρs = ∑n

ϑ=1 ρϑsϑ (cf. (4.91), (4.22)) and
barycentric vw and diffusion uw

ϑ velocities (see Rems. 3,7) we can write (4.83) as

d

dt

∫
V

ρs dv +
∫

∂V
ρsvw.n da ≤ −

∫
∂V

T −1(q +
n∑

ϑ=1

ρϑT sϑuw
ϑ ).n da +

∫
V
(Q/T ) dv

which, with ρ = ρs, v = vw , has the form (3.108) (with (3.24)) as the interpretation of the third
principle in Rem. 1 demands. But here the heat flux q +∑n

ϑ=1 ρϑT sϑuw
ϑ and the heat source Q are

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Later, another form of entropy inequality will be useful. To this end, we eliminate
divq − Q from balance (4.82) and inequality (4.84) using the specific partial free
energy fϑ

fϑ → uϑ − T sϑ ϑ = 1, . . . , n (4.86)

and thus we obtain

−T σ =
n∑

ϑ=1

∂ρϑ fϑ
∂t

+
n∑

ϑ=1

vϑ.grad(ρϑ fϑ) +
n∑

ϑ=1

ρϑsϑ

∂T

∂t
+

n∑
ϑ=1

ρϑ fϑ divvϑ

+
n∑

ϑ=1

ρϑsϑ vϑ.g + (1/T )q.g −
n∑

ϑ=1

trTϑDϑ +
n−1∑
α=1

kα.uα

+ (1/2)
n−1∑
α=1

rαu2
α ⇔ 0 (4.87)

Here we replace the velocities by diffusion velocities (4.24) and use (4.8) and the
generalization of divergenceless tensor (3.188) in the mixture

◦
Dϑ→ Dϑ − (1/3)trDϑ 1, tr

◦
Dϑ= 0 ϑ = 1, . . . , n (4.88)

In this way, we obtain the reduced inequality for mixtures

−T σ =
n∑

ϑ=1

∂ρϑ fϑ
∂t

+
n∑

ϑ=1

ρϑ fϑ trDϑ +
n−1∑
α=1

uα. grad(ρα fα) + vn grad
n∑

ϑ=1

ρϑ fϑ

+
n∑

ϑ=1

ρϑsϑ

∂T

∂t
+

n−1∑
α=1

ραsα uα.g + vn .g
n∑

ϑ=1

ρϑsϑ + (1/T )q.g

−
n∑

ϑ=1

trTϑ

◦
Dϑ −(1/3)

n∑
ϑ=1

trTϑtrDϑ +
n−1∑
α=1

kα.uα

+ (1/2)
n−1∑
α=1

rαu2
α ⇔ 0 (4.89)

(Footnote 11 continued)
different from these quantities in the energy balance noted in Rem. 10. In our formulation of (4.84),
we use the weaker interpretation of the third principle from Sect. 4.1 which stresses the specific role
of diffusion in a mixture (in non-diffusing mixture uw

ϑ = o) and we obtain the accord of all these
postulates. Moreover, discrepancies may also be understood in the light of “mixture invariance”
[59] discussed below in this section 4.4. The formulation used in (4.83) (as well as in (4.76), (4.50),
(4.60), (4.65), (4.71), (4.16), (4.14)) for such mass exchanging (open) systems follows naturally
from Reynolds’ theorem (3.24) for (fictive) surface ∂V , but for a real boundary exchanging the
mass (especially with different velocities of different constituents and together with heat exchange)
this is not as clear as it seems, cf. Rems. 14, 23 in Chaps. 2, 3 and the end of Sect. 3.1.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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which we use in the following discussions of a (chemically) reacting fluid mixture
with (mechanically) non-polar constituents with unique temperature, see Sect. 4.5.

Now, we write down the following useful definitions concerning the mixture (see
(4.22)): the specific total (i.e. of the mixture) internal energy u, entropy s and free
energy f are defined by

u →
n∑

ϑ=1

wϑuϑ (4.90)

s →
n∑

ϑ=1

wϑsϑ (4.91)

f →
n∑

ϑ=1

wϑ fϑ (4.92)

where (4.86) has been used; the following equation is then valid (cf. (3.111))

f = u − T s (4.93)

We also note that mixture properties (4.90)–(4.92) are objective (frame indifferent).
For later applications, it is useful to define the total stress T by

T →
n∑

ϑ=1

Tϑ (4.94)

In the following applications in fact only the local balances (4.18), (4.20), (4.58),
(4.63), (4.70), (4.75), (4.82), (4.84), (4.85) are useful. They are valid, as has been
proved in Sects. 4.2, 4.3 and 4.4, in any (even non-inertial) frame. But these balance
equations have another interesting property, which we shall call the mixture invari-
ance [56, 59, 65, 79, 114], (in older references called also the “form invariance”);
its possibility is noted in [95, 112].

To discuss this property, we first rewrite local balances and rearrange balances of
energy and entropy (inequality) into more appropriate forms:

ρ̀ϑ + ρϑtrDϑ = rϑ ϑ = 1, . . . , n (4.95)

n∑
ϑ=1

rϑ = 0 (4.96)

ρϑ v̀ϑ = divTϑ + ρϑbϑ + kϑ ϑ = 1, . . . , n (4.97)

(as follows from (4.56), (4.58), in the non-inertial frame we change here bϑ for
bϑ + iϑ),

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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n∑
ϑ=1

(kϑ + rϑvϑ) = o (4.98)

Tϑ = TT
ϑ ϑ = 1, . . . , n (4.99)

n∑
ϑ=1

Tϑ =
n∑

ϑ=1

TT
ϑ ϑ = 1, . . . , n (4.100)

n∑
ϑ=1

ρϑ ùϑ +
n∑

ϑ=1

rϑuϑ = −divq + Q +
n∑

ϑ=1

trTϑDϑ −
n∑

ϑ=1

kϑ.vϑ − (1/2)
n∑

ϑ=1

rϑv2ϑ

(4.101)

σ =
n∑

ϑ=1

ρϑ s̀ϑ +
n∑

ϑ=1

rϑsϑ + div(q/T ) − Q/T ≤ 0 (4.102)

(for (4.101) we use (4.24), (4.98), (4.96) in (4.82) and (4.102) follows from (4.84),
(4.85)).

To discuss the mixture invariance, consider first a process described by the quan-
tities occurring in the balance equations (4.95)–(4.102) and let

εϑ, βϑ ϑ = 1, . . . , n (4.103)

be two sets of fields defined in the mixture, the εϑ having the physical dimension of
energy, and the βϑ having the physical dimension of entropy, such that identically

n∑
ϑ=1

ρϑεϑ = 0 (4.104)

n∑
ϑ=1

ρϑβϑ = 0 (4.105)

Define fields ϕϑ by

ϕϑ → εϑ − T βϑ ϑ = 1, . . . , n (4.106)

so that
n∑

ϑ=1

ρϑϕϑ = 0 (4.107)
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Nowwe replace uϑ, sϑ, Tϑ, kϑ, q in (4.95)–(4.102) by the following primed quan-
tities (ϑ = 1, . . . , n)

u∀
ϑ = uϑ + εϑ (4.108)

s∀
ϑ = sϑ + βϑ (4.109)

T∀
ϑ = Tϑ + ρϑϕϑ1 (4.110)

k∀
ϑ = kϑ − grad(ρϑϕϑ) (4.111)

q∀ = q − T
n∑

ϑ=1

ρϑβϑvϑ (4.112)

while the remaining quantities in (4.95)–(4.102) are left unchanged, i.e.

ρ∀
ϑ = ρϑ, v∀

ϑ = vϑ, r ∀
ϑ = rϑ, b∀

ϑ = bϑ, ρ∀ = ρ

w∀
ϑ = wϑ, D∀

ϑ = Dϑ, Q∀ = Q, T ∀ = T, σ ∀ = σ, (4.113)

We call the quantities with trivial transformations such as (4.113) the mixture invari-
ant quantities. In what follows we assume that the definitions themselves are mixture
invariant, e.g.

f ∀
ϑ = fϑ + ϕϑ (4.114)

f ∀ =
n∑

ϑ=1

w∀
ϑ f ∀

ϑ (4.115)

(cf. (4.108), (4.109), (4.92), (4.86)), similarly u∀, s∀, v̀∀
ϑ = v̀ϑ, ρ̀∀

ϑ = ρ̀ϑ, ù∀
ϑ =

ùϑ + ὲϑ, (trDϑ)∀ = trDϑ etc. Some of them are mixture invariant, cf. (4.116).
The mixture invariance may be described as follows [56, 59, 65, 79, 114]:
Consider a process in our mixture model described by the unprimed quantities in

(4.108)–(4.113) that satisfy (4.95)–(4.102) and define the new primed quantities by
(4.108)–(4.113). Then the primed quantities satisfy (4.95)–(4.102).

This means the change from the original, unprimed quantities to the primed quan-
tities does not change the form of local balances (4.95)–(4.102) for arbitrary 2(n −1)
independent fields (4.103).

Proof of mixture invariance follows by a direct substitution of (4.108)–(4.113)
into (4.95)–(4.102). This proof is trivial for (4.95), (4.96) because of the mixture
invariance of all quantities, for (4.99), (4.100) it is simple, (4.97) in primed quantities
it follows by (4.110), (4.111) as ρϑ v̀ϑ = ρ∀

ϑ v̀∀
ϑ = div(T∀

ϑ − ρϑϕϑ1) + ρ∀
ϑb∀

ϑ + k∀
ϑ +

grad(ρϑϕϑ1) and (4.98) we obtain by (4.107). To prove the remaining relationships
(4.101), (4.102) in primed quantities we use
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n∑
ϑ=1

ρϑὲϑ =
n∑

ϑ=1

\ϑ
ρϑεϑ −

n∑
ϑ=1

ρ̀ϑεϑ =
n∑

ϑ=1

vϑ.grad(ρϑεϑ) −
n∑

ϑ=1

ρ̀ϑεϑ

(which follow from (4.3), (4.104), (4.86)) and their analogues for βϑ , namely using
transformations (4.108)–(4.115) and (4.8), (4.106), (4.18). Q.E.D.

The possibility of changing systematically the values of certain quantities without
breaking the validity of the balance equations indicates a certain degree of arbitrari-
ness of the quantities in question. Using the mixture invariance property in the next
section on the constitutive level, i.e. when the additional quantities (4.103) are given
by constitutive equations similar to those for themain quantities, the newmixturewith
the new constitutive functions (4.108)–(4.112) leads to the same evolution equations
for temperature, densities and motions of the constituents provided the same external
fields of force and radiation are applied. Hence, the new mixture is indistinguishable
from the original one. Therefore, the physical meaning of the mixture invariance
consists in the fact that only the mixture invariant quantities have direct physical
significance, i.e. they are expected to be measurable. Among them are the exter-
nal fields of force and radiation, kinematical quantities, densities, chemical reaction
rates, temperatures, etc. cf. (4.113), and total densities, total thermodynamic quanti-
ties and total stress (cf. (4.21), (4.92), (4.94)) as may be seen from (4.115), (4.114),
(4.107), (4.110), (4.113)

f ∀ =
n∑

ϑ=1

wϑ f ∀
ϑ =

n∑
ϑ=1

wϑ( fϑ + ϕϑ) = f, similarly u∀ = u, s∀ = s (4.116)

T∀ = T (4.117)

On the other side, partial quantities (4.108), (4.109), (4.110), (4.111), (4.112) are
not mixture invariant in accord with their expected non-measurability. Note, that the
heat flux (4.112), which may be also written as (see (4.105), (4.24))

q∀ = q − T
n∑

ϑ=1

ρϑβϑuϑ (4.118)

is invariant in a non-diffusingmixture (when all constituents have the same velocities,
the heat flux is measurable as in single material, cf. Rems. 14, 23, 11 in Chaps. 2,
3 and 4, respectively). This also reflects different choices of entropy flux in many
classical and rational mixture theories, cf. [3, 14, 17, 18].

The property of mixture invariance will be used in the application of our model,
see Sect. 4.6, namely, it gives the possibility of explicit calculations of partial ther-
modynamic properties similarly as in classical thermodynamics of solutions. Other
applications (e.g. using mixture invariance as a constitutive principle permits to sim-
plify constitutive equations for partial quantities) are discussed in [59, 60].

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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Summary. Balancing the energy introduced additional partial property—the
partial internal energy. Because the different constituents do not have different tem-
peratures in our model of mixture it is sufficient to write down the balance of energy
only for the mixture as a whole. In the local form, this is expressed by (4.81); cor-
responding balance of internal energy is given by (4.82). Similarly it is sufficient
to postulate the entropy inequality for the mixture as a whole. In the local form the
Clausius-Duhem inequality is given by (4.84) and in the reduced form by (4.89).
The (specific) partial quantities represent an essential instrument of rational ther-
modynamics approach to mixtures. Partial free energy was introduced by (4.86);
corresponding properties of mixture can be obtained as indicated in (4.90)–(4.94). In
our model these quantities are linked up with an interesting property of the mixture
invariance, which is essential for the possibility of experimental determination of par-
tial quantities. The mixture invariance simply means that only the mixture invariant
quantities are measurable. Mathematically, it is expressed by the invariance of (local)
balances to transformations of mixture invariant quantities; these transformations are
indicated in (4.108)–(4.113).

4.5 Chemically Reacting Mixture of Fluids with Linear
Transport Properties

Westart this section by a brief explanation of the transfer of principles of rational ther-
modynamics, which have been explained for single component systems in Sects. 3.5
and 3.6, to mixtures. Similarly as in the case of the single fluid in Sect. 3.5, balances
of Sects. 4.2–4.4 are not sufficient to solve any concrete problem: we must add the
constitutive equations—further relations among fields in balances which describe
the material model to be studied.

In models of fluid mixtures, cf. [16, 17, 27, 28, 56, 65], the following fields are
called a thermodynamic process:
Thermokinetic process

χ
η
, ρη , T (4.119)

Responses
rα, uϑ, sϑ, q, kα, Tϑ(sym.) (4.120)

External fields
Q, bϑ, iϑ (4.121)

with ϑ, η = 1, . . . , n;α = 1, . . . , n − 1, which fulfil (often through the fields
deduced in Sects. 4.1, 4.2, like (4.2), (4.24)) the local form ofmass (4.17),momentum
(4.57) and energy (4.82) balances; the remaining balances (4.20), (4.63), (4.70) (and
(4.75) trivially) are satisfied defining rn, kn and three components of Tϑ for each
constituent, respectively.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Because fields (4.121) are controlled from the outside (of the mixture), constitu-
tive equations are relations between (4.119), (4.120): according to the constitutive
principle of determinism their independent variables form the thermokinetic process
(4.119) giving their values as responses (4.120). For simplicity, we restrict to recent
past and nearest surroundings of the considered response by constitutive principles
of differential memory and local action. Constitutive equations for responses (4.120)
are then functions of the following values of thermokinetic process (4.119) and their
(time and space) derivatives taken in a considered instant and place of response (in
referential description introduced in Sect. 4.1 similarly as in Sect. 3.1, i.e. as (4.1),
ρη = ρη (Xη , t), T = T (Xη , t)), namely

x, vη , Fη ,GradFη , F̀η , ρη ,Gradρη , T,GradT, t η = 1, . . . , n (4.122)

(memory expressed through ρ̀η is superfluous, namely it may expressed through
(4.122) as well, see (4.18), (4.8) and response for rα ); temperature memory is not
studied at all (because local equilibriumwould not be achieved, cf. Sects. 2.2 and 3.5)
and dependences on Xη expressing, e.g. “heterogeneous mixtures”, see Sect. 4.1, are
not considered).

Using (4.6), (4.4) and the following definitions of space gradients of densities and
temperature

hη → gradρη η = 1, . . . , n (4.123)

g → gradT (4.124)

the independent variables (4.122) may be chosen as

x, vη , Fη ,GradFη , Lη , ρη , hη , T, g, t (4.125)

and used, by the constitutive principle of equipresence, in all constitutive equations
for responses (4.120).

By the constitutive principle of symmetry, we confine in this treatise to fluids
mixtures only in which the independent variables of constitutive equations for (all)
responses (4.120) reduce to12

x, t, ρη , hη , vη , Lη , T, g η = 1, . . . , n (4.126)

Now we restrict such constitutive equations—responses (4.120) as functions
of (4.126)—by the principle of objectivity (or (material) frame indifference), cf.
Sect. 3.5: constitutive equations cannot depend explicitly on (non-objective) x and t

12 This may be looked upon as a definition of fluids mixture, but it may be deduced by the principle
of symmetry defining the (non-simple) fluid (constituent) [79, 115–117] as the material with the
greatest possible symmetry. If the fluid constituent η is non-reacting, dependence on Fη ,GradFη is
performed through ρη , hη (bymass balance like (3.65) similarly as for single substance; cf. Sect. 3.5
and Rem. 30 in Chap. 3); if fluid constituent ϑ is a reacting one, then dependence on Fϑ,GradFϑ

is completely eliminated [60, 115, 116, 118]. Then (4.126) follows from (4.125).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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(cf. below (3.120)) and the dependence on the non-objective quantities Lη and vη

may be achieved through the objective quantities Dη , diffusion velocities (4.24) and
relative spins πω (cf. difference with single substance in Sect. 3.5)

πω → Wω − Wn ω = 1, . . . , n − 1 (4.127)

Therefore, the constitutive equations of a mixture of reacting fluids are functions
F = r̂α, ûϑ, ŝϑ, q̂, k̂α, T̂ϑ as follows (ϑ, η = 1, . . . , n;α, ω = 1, . . . , n − 1)

{rα, uϑ, sϑ, q, kα, Tϑ(sym.)} = F(ρη , hη , uω, Dη ,πω, T, g) (4.128)

Moreover it follows from the objectivity principle that functions (4.128) are isotropic,
i.e.

{rα, uϑ, sϑ, Qq, Qkα, QTϑQT } = F(ρη , Qhη , Quω, QDη QT , QπωQT , T, Qg)

(4.129)
are valid for any orthogonal tensor Q (cf. Rem. 8 in Chap. 3 and discussion under
(3.122)).

Note, that, as was shown by Müller [16–18], the presence of density gradients in
a thermokinetic process is important for obtaining the classical thermodynamics of
mixtures. Models without hη , called simple fluid mixtures give vast simplifications
of thermodynamics, e.g. partial free energies are independent of densities of other
constituents (cf. Sect. 4.8), a simple gas mixture is reduced to the mixture of ideal
gases only [61]. These and other special cases will be discussed in Sect. 4.8.

In this book, we confine ourselves only to the special case of fluidsmixture (4.128)
which is linear in vector and tensor variables.13 We denote it as the chemically react-
ing mixture of fluids with linear transport properties or simply the linear fluid mixture
[56, 57, 64, 65]. Then (seeAppendixA.2) the scalar, vector and tensor isotropic func-
tions (4.129) linear in vectors and tensors (symmetrical or skew-symmetrical) have
the forms:

rα = r (0)
α +

n∑
η=1

r (η )
α trDη α = 1, . . . , n − 1 (4.130)

(for non-reacting constituents coefficients r (0)
α , r (η )

α are identically zero),

uϑ = u(0)
ϑ +

n∑
η=1

u(η )
ϑ trDη ϑ = 1, . . . , n (4.131)

13 For more complicated non-linear mixtures, even those non-fluid, see, e.g. [18, 60, 71, 72],
the thermodynamic relations are similar (local equilibrium is valid) but constitutive equations for
chemical reaction rates are not simplified as in the linear model here, cf. Sect. 4.9.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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sϑ = s(0)
ϑ +

n∑
η=1

s(η )
ϑ trDη ϑ = 1, . . . , n (4.132)

fϑ = f (0)
ϑ +

n∑
η=1

f (η )
ϑ trDη ϑ = 1, . . . , n (4.133)

Constitutive equations (4.133) follow from definitions

f (0)
ϑ → u(0)

ϑ − T s(0)
ϑ (4.134)

f (η )
ϑ → u(η )

ϑ − T s(η )
ϑ (4.135)

and (4.131), (4.132), (4.86).
The remaining constitutive equations are (with the use of (4.88))

q = −k g −
n−1∑
ω=1

λω uω +
n∑

η=1

χη hη (4.136)

kα = −ξα g −
n−1∑
ω=1

ταω uω +
n∑

η=1

λαη hη α = 1, . . . , n − 1 (4.137)

Tϑ = −pϑ 1 +
n∑

η=1

σϑη (trDη ) 1 +
n∑

η=1

2βϑη

◦
Dη ϑ = 1, . . . , n (4.138)

All coefficients in these constitutive equations r (0)
α , r (η )

α , u(0)
ϑ , u(η )

ϑ , s(0)
ϑ , s(η )

ϑ ,

f (0)
ϑ , f (η )

ϑ , k, λω , χη , ξα , ταω , λαη , pϑ , σϑη , βϑη are functions of the scalars

T, ρ1, ρ2, . . . , ρn only (e.g. f (0)
ϑ = f̂ (0)

ϑ (T, ρη )). We note that linear dependence on
skew-symmetric tensors πω does not exist because Tϑ are symmetric (this is not the
case in mechanically polar constituents [27, 28]; cf. Rem. 9).

Of course this important reduction (known also as the “Curie principle” roughly
asserting that response of given tensor rank (scalar, vector and tensor) depends on
variables of the same tensor rank [2–4, 119, 120]) is valid only in this linear case
[12, 13]. The non-linear case is much more complicated [79, 121–123].

It remains to apply the principle of admissibility to our material model of linear
fluidsmixture (cf. Sect. 3.6). According to the principle of admissibility [124] also the
entropy inequality (4.84) must be fulfilled in an arbitrary admissible thermodynamic
process. Such process is defined (cf. (3.145) and Sect. 3.6) by fields (4.120), (4.121),
by thermokinetic process (4.119) (where instead of motions χ

η
it is sufficient to use

velocities vη as may be clear from the choice of independent variables in consti-
tutive equations (4.128) for our fluids mixture) and fields of rn, kn and calculable

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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three components of each symmetrical Tϑ , which fulfil all balances (of mass (4.17),
(4.20), momentum (4.57), (4.63) and its moment (4.70) and energy (4.82)) in which
responses (4.120) are given by constitutive equations of the studied model, i.e. in our
case given by (4.130)–(4.133), (4.136)–(4.138).

The principle of admissibility demands also that reduced inequality (4.89)must be
fulfilled in any admissible thermodynamic process (because (4.89) was constructed
from all these balances, mainly those of energy and entropy inequality). Then, and
this is the main idea of Coleman and Noll [124], inserting constitutive equations of
the studied model into (4.89), the identical fulfilling of inequality obtained in this
way at any admissible thermodynamic process permits to obtain further properties
of the constitutive model (for this, it suffices to choose the thermodynamic processes
appropriately).

We perform this procedure in detail for our linear fluids mixture. First, we insert
the constitutive equations (4.130)–(4.133), (4.136)–(4.138) into reduced inequality
(4.89).

Quantities ρϑ f (0)
ϑ or ρϑ f (η )

ϑ in (see (4.133)) ρϑ fϑ = ρϑ f (0)
ϑ +∑n

η=1 ρϑ f (η )
ϑ trDη

are functions of T and ρη only. Their derivatives, written as ∂ρϑ f̂ (0)
ϑ /

∂T, ∂ρϑ f̂ (η )
ϑ /∂T , ∂ρϑ f̂ (0)

ϑ /∂ρη , ∂ρϑ f̂ (η )
ϑ /∂ρδ (ϑ, η, δ = 1, . . . , n), are used for cal-

culation of the first two members on the right-hand side of (4.89). We eliminate
∂ρϑ/∂t using the mass balances (4.17), (4.8), (4.123) and constitutive equations
(4.130) and we deduce the part of the result (4.139) containing these derivatives. A
further part is obtained using constitutive equations (4.130)–(4.133), (4.136)–(4.138)
in the remaining part of (4.89).

After laborious rearrangements, we obtain inequality (ζ is the dissipation,
cf. (2.11))

ζ → T σ = −
⎡
⎣n−1∑

α=1

(

n∑
ϑ=1

∂ρϑ f̂ (0)
ϑ

∂ρα
−

n∑
ϑ=1

∂ρϑ f̂ (0)
ϑ

∂ρn
)r (0)

α

⎤
⎦−

{ n∑
ϑ=1

∂ρϑ f̂ (0)
ϑ

∂T
+

n∑
ϑ=1

ρϑs(0)
ϑ

}
∂T

∂t

+
n∑

η=1

⎡
⎣ρη

n∑
ϑ=1

∂ρϑ f̂ (0)
ϑ

∂ρη
− ρη f (0)

η − pη −
n−1∑
α=1

(

n∑
ϑ=1

∂ρϑ f̂ (η )
ϑ

∂ρα
−

n∑
ϑ=1

∂ρϑ f̂ (η )
ϑ

∂ρn
)r (0)

α

−
n−1∑
α=1

(

n∑
ϑ=1

∂ρϑ f̂ (0)
ϑ

∂ρα
−

n∑
ϑ=1

∂ρϑ f̂ (0)
ϑ

∂ρn
)r (η )

α

⎤
⎦ trDη −

n∑
η=1

{ n∑
ϑ=1

ρϑ f (η )
ϑ

}
∂trDη

∂t

+
n∑

η=1

n−1∑
α=1

⎧⎨
⎩

n∑
ϑ=1

∂ρϑ f̂ (0)
ϑ

∂ρη
ωαη −

∂ρα f̂ (0)
α

∂ρη
− λαη

⎫⎬
⎭uα .hη −

n∑
ϑ=1

{χϑ/T }hϑ.g

−
{ n∑

ϑ=1

∂ρϑ f̂ (0)
ϑ

∂T
+

n∑
ϑ=1

ρϑs(0)
ϑ

}
vn .g −

n∑
η=1

{ n∑
ϑ=1

∂ρϑ f̂ (η )
ϑ

∂T
+

n∑
ϑ=1

ρϑs(η )
ϑ

}
∂T

∂t
trDη

−
n∑

η=1

n−1∑
α=1

{
ρα f (η )

α

}
uα .grad trDη −

n∑
η=1

{ n∑
ϑ=1

ρϑ f (η )
ϑ

}
vn .grad trDη + (k/T )g2

+
n−1∑
α=1

n−1∑
ω=1

(ταω − (1/2)r (0)
α ωαω)uω .uα +

n−1∑
α=1


λα

T
+ ξα −

∂ρα f̂ (0)
α

∂T
− ρα s(0)

α


 uα .g

http://dx.doi.org/10.1007/978-3-319-02514-8_2
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+
n∑

δ=1

n∑
η=1

⎡
⎣ρδ

n∑
ϑ=1

∂ρϑ f̂ (η )
ϑ

∂ρδ
−

n−1∑
α=1

( n∑
ϑ=1

∂ρϑ f̂ (η )
ϑ

∂ρα
−

n∑
ϑ=1

∂ρϑ f̂ (η )
ϑ

∂ρn

)
r (δ)
α

− ρδ f (η )
δ + σδη

]
trDδ trDη

+
n∑

ϑ=1

n∑
η=1

(2βϑη )tr(
◦

Dϑ

◦
Dη ) +

n∑
δ=1

n∑
η=1

n−1∑
α=1

⎧⎨
⎩

n∑
ϑ=1

∂ρϑ f̂ (η )
ϑ

∂ρα
ωαδ −

∂ρα f̂ (η )
α

∂ρδ

⎫⎬
⎭ trDη (hδ .uα)

−
n−1∑
α=1

n∑
η=1

⎧⎨
⎩

∂ρα f̂ (η )
α

∂T
+ ρα s(η )

α

⎫⎬
⎭ trDη (uα .g) −

n∑
η=1

n−1∑
α=1

{ 1
2

r (η )
α }u2α trDη

−
n∑

η=1

{ n∑
ϑ=1

∂ρϑ f̂ (η )
ϑ

∂T
+

n∑
ϑ=1

ρϑs(η )
ϑ

}
trDη (vn .g) ≤ 0 (4.139)

where ωαη is Kronecker delta (with ωαn = 0 for all α = 1, . . . , n − 1). According to
the admissibility principle, this inequality (4.139) (obtained from entropy inequality
(4.84) or reduced inequality (4.89) and from constitutive equations (4.130)–(4.133)
and (4.136)–(4.138)) must be fulfilled at any place in mixture x and instant t with
arbitrary values of the following mutually independent quantities

T, ρη , trDη , hη , uα, g,
◦

Dη , η = 1, . . . , n;α = 1, . . . , n − 1 (4.140)

∂T

∂t
,
∂trDη

∂t
, vn, grad trDη η = 1, . . . , n (4.141)

Namely, such values (4.140), (4.141) generate some admissible thermodynamic
process as follows (cf. analogical procedure for fluid model in Sect. 3.6):

Temperature and velocities fields of the thermokinetic process in place y and time
τ are constructed by bounded expansion about chosen place‘ x and instant t , i.e. as
(cf. (3.152), (3.153))

T (y, τ ) = T (x, t) + (g(x, t)).(y − x) + (
∂T

∂t
(x, t))(τ − t) (4.142)

vi
η (y, τ ) = vi

η (x, t) + (Li j
η (x, t))(y j − x j ) +

(
∂Li j

η

∂t
(x, t)

)
(y j − x j )(τ − t)

+ 1

2

(
∂Li j

η

∂xk
(x, t)

)
(y j − x j )(yk − xk) (4.143)

where for values taken at x, t we choose vη = uη + vn , Lη = (1/3)trDη 1 + ◦
Dη ,

∂Lη

∂t = (1/3)( ∂trDη

∂t )1 and ∂Li j
η

∂xk = (1/3)( ∂trDη

∂xi )ω jk . This is motivated by (4.24), (4.6),

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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(4.88) and choosing Wη = 0 ((4.139) is independent of Wη ). These choices express
possible (4.142), (4.143) through independent quantities (4.140), (4.141).

The density fields of the thermokinetic process are given by solutions of differen-
tial equations (4.17) (assuming their existence; we follow [14, 15, 125]) using fields
of velocities (4.143) and constitutive equations (4.130) (rn follows from (4.20)) with
the following initial conditions for density fields at chosen instant t

ρη (y, t) = ρη (x, t) + (hη (x, t)).(y − x) (4.144)

Therefore, mass balances (4.17), (4.20) are satisfied by such density fields.
It may be seen from this construction that any mutually independent choice of

quantities (4.140), (4.141) gives some thermokinetic process (4.119) fulfilling the
mass balances (4.17), (4.20). Using them in constitutive equations (4.130)–(4.133),
(4.136)–(4.138), we obtain responses (4.120) and ultimately we fulfil the balances
(4.58) and (4.82) by appropriate (4.121) (because these may be controlled from the
outside the mixture) and balances (4.63) by appropriate kn (there is only n − 1
constitutive equations (4.137)); fulfilling (4.70) (and therefore trivially (4.75)) is
achieved by symmetric responses (4.138).

In this way, the admissible thermodynamic process may be obtained for any
(mutually independent) values (4.140), (4.141) (in any chosen place x and instant t)
and therefore it follows from the admissibility principle that (4.139) must be valid
at any such values of (4.140), (4.141).14

The same results as (4.139) and its validity at any independent values of (4.140),
(4.141)might be obtained directly by themethod ofLagrangemultipliers (seeAppen-
dix. A.5 with example of simple thermoelastic fluid from Sect. 3.6).

From the latter formulation of the admissibility principle, we obtain the necessary
and sufficient validity of the following results concerning constitutive equations
(identically for all x and t in mixture and for all values of fields ρη , T in it):

n∑
ϑ=1

∂ρϑ f̂ (0)
ϑ

∂T
+

n∑
ϑ=1

ρϑs(0)
ϑ = 0 (4.145)

f (η )
ϑ = 0 (4.146)

s(η )
ϑ = 0 (4.147)

r (η )
α = 0 (4.148)

χη = 0 (4.149)

14 The weak point of argument above is that the arbitrary bϑ influencing only the constituent ϑ

is difficult to find (e.g. Coriolis force in iϑ (4.12) is specific on constituent ϑ through vϑ but this
cannot be maintained arbitrarily [126]).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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n∑
ϑ=1

∂ρϑ f̂ (0)
ϑ

∂ρη

ωαη − ∂ρα f̂ (0)
α

∂ρη

= λαη (4.150)

where ϑ, η = 1, . . . , n; α = 1, . . . , n − 1 and

T σ = −
n−1∑
α=1

(
n∑

ϑ=1

∂ρϑ f̂ (0)
ϑ

∂ρα

−
n∑

ϑ=1

∂ρϑ f̂ (0)
ϑ

∂ρn

)
r (0)
α

+
n∑

η=1

(ρη

n∑
ϑ=1

∂ρϑ f̂ (0)
ϑ

∂ρη

− ρη f (0)
η − pη )trDη +

n∑
ϑ=1

n∑
η=1

σϑη trDϑtrDη

+
n∑

ϑ=1

n∑
η=1

(2βϑη )tr(
◦

Dϑ

◦
Dη ) +

n−1∑
α=1

n−1∑
ω=1

(ταω − (1/2)r (0)
α ωαω)uω.uα + (k/T )g2

+
n−1∑
α=1

(
λα

T
+ ξα − ∂ρα f̂ (0)

α

∂T
− ραs(0)

α

)
uα.g ≤ 0 (4.151)

Proof the sufficiency follows immediately and the necessity is proved, usingmainly
Lemma A.5.1 from Appendix A.5, as follows. For any fixed choice of ρη , T (such
fields of x, t in (4.144), (4.142) may be chosen arbitrarily; repeating the follow-
ing procedures with other such choices and at any x, t we obtain identical validity
of results noted above (4.145)) and zero choice of other quantities of (4.140) the
inequality (4.139) depends linearly on ∂T

∂t or ∂trDη

∂t (these numbers may be indepen-
dently arbitrary reals). Therefore, the coefficients at these quantities in (4.139) must
be identically zero to fulfil inequality (4.139) at all values of these quantities (coef-
ficients which, as the result will be zero, are denoted in (4.139) by curly brackets
and they will be discarded from it sequentially during the proof). From this (4.145)
follows and

n∑
ϑ=1

ρϑ f (η )
ϑ = 0 η = 1, . . . , n (4.152)

Then, if we use (4.145) and (4.152), the inequality (4.139) depends linearly on grad
trDη ; because uα is arbitrary we have

f (η )
α = 0 α = 1, . . . , n − 1 η = 1, . . . , n (4.153)

which in combination with (4.152) gives (4.146) (identical validity of these results
noted above (4.145) which is obtained by repeating procedures with other values
ρη , T , give zero values of all derivatives of f̂ (η )

ϑ and therefore to eliminating them
from (4.139) in what follows). Further (4.139) is linear in hϑ; choosing g �= o and
uα = o we obtain (4.149) and then, by choice uα �= o, we have (4.150). In (4.139)
there is another linear member in ∂T

∂t ; choosing trDη �= 0 and using (4.146) we have
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n∑
ϑ=1

ρϑs(η )
ϑ = 0 η = 1, . . . , n (4.154)

With (4.154), (4.145), (4.146) and choose g = o the last member in remaining
(4.139) is of the third order, i.e. it is necessary for (4.148) to be valid because oth-
erwise, when uα and trDη are sufficiently great, this member determines the sign
of expression (4.139); see Lemma A.5.3 of Appendix A.5. By (4.154), (4.146) the
remaining third order member in (4.139) (with non-zero g) must be zero from the
analogous reason and we obtain s(η )

α = 0 which with (4.154) gives (4.147). Finally
using the results (4.145)–(4.150), we obtain inequality (4.151) from (4.139) and the
proof of results (4.145)–(4.151) is finished. Q.E.D.

By (4.135), (4.146), (4.147), there is also

u(η )
ϑ = 0 ϑ, η = 1, . . . , n (4.155)

and therefore constitutive equations for scalar quantities (4.130)–(4.133) are (here
and in the following we omit the index (0))

rϑ = r̂ϑ(T, ρ1, ρ2, . . . , ρn) = r̂ϑ(T, ρη ) ϑ, η = 1, . . . , n (4.156)

For ϑ = n this follows from those previous by balance (4.20). The last expression
in (4.156) is the usual shortened form (used, e.g. in (4.128) and in the following).
Similarly,

uϑ = ûϑ(T, ρη ) ϑ, η = 1, . . . , n (4.157)

sϑ = ŝϑ(T, ρη ) ϑ, η = 1, . . . , n (4.158)

fϑ = f̂ϑ(T, ρη ) ϑ, η = 1, . . . , n (4.159)

Using definitions of total specific quantities (of mixture) (4.90), (4.91), (4.92) it then
follows (cf. (4.21), (4.22)) similarly

u = û(T, ρη ), s = ŝ(T, ρη ), f = f̂ (T, ρη ) (4.160)

Now we define the specific chemical potential gϑ by15

∂ρ f̂

∂ρϑ

→ gϑ = ĝϑ(T, ρη ) ϑ, η = 1, . . . , n (4.161)

15 In Sect. 4.6 we shall see that this is the usual definition, cf. (4.194). Its density has a dimen-
sion of force; in some theories, using partial Eshelby tensors [88] as generalization of (4.161)
(cf. Rem. 38 in Chap. 3), the “configurational” or “material” forces are introduced instead
[127, 128].

http://dx.doi.org/10.1007/978-3-319-02514-8_3


180 4 Continuum Thermodynamics of Mixture of Linear Fluids

and define (recall above (4.156))

ϕpϑ → ρϑ(gϑ − fϑ) − pϑ ϑ = 1, . . . , n (4.162)

ϑα → λα

T
+ ξα − ρα

∂ f̂α
∂T

− ραsα α = 1, . . . , n − 1 (4.163)

Then we can write the results (4.145), (4.150) as

∂ f̂

∂T
+ s = 0 (4.164)

gη ωαη − ∂ρα f̂α
∂ρη

= λαη α = 1, . . . , n − 1; η = 1, . . . , n (4.165)

and instead of (4.136), using (4.149), we have the constitutive equation for the heat
flux

q = −k g −
n−1∑
α=1

λα uα (4.166)

Constitutive equations (4.137), (4.138) are not changed. The remaining inequality
(4.151) may be written as

T σ = −
n−1∑
α=1

(gα − gn)rα +
n∑

η=1

ϕpη trDη +
n∑

ϑ=1

n∑
η=1

σϑη trDϑtrDη

+
n∑

ϑ=1

n∑
η=1

2βϑη tr(
◦

Dϑ

◦
Dη ) +

n−1∑
α=1

n−1∑
ω=1

(ταω − (1/2)rαωαω)uω.uα + (k/T )g2

+
n−1∑
α=1

ϑα uα.g ≤ 0 (4.167)

This inequality may be written as the sum of two non-negative expressions

T σ = �1 + �2 ≤ 0 (4.168)

�1 → �0 +
n∑

ϑ=1

ϕpϑ trDϑ +
n∑

ϑ=1

n∑
η=1

σϑη trDϑtrDη ≤ 0 (4.169)

�2 →
n∑

ϑ=1

n∑
η=1

(2βϑη )tr(
◦

Dϑ

◦
Dη ) +

n−1∑
α=1

n−1∑
ω=1

(ταω − (1/2)rαωαω)uω.uα + (k/T )g.g
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+
n−1∑
α=1

ϑα uα.g ≤ 0 (4.170)

where�0 is the dissipation (entropy production in fact) caused by chemical reactions

�0 → −
n−1∑
α=1

(gα − gn)rα ≤ 0 (4.171)

Inequalities (4.169) and (4.171) follow from (4.168) due to independence of quan-
tities (4.140); note that ϕpϑ is generally non-zero, see below and cf. discussion of
(A.98) in Appendix A.5. To prove (4.170) we fix T and all ρη , set trDη = 0, then
(4.168) has the form: non-negative constant + real quadratic form ≤0. Transform-
ing this quadratic form into canonical form we can see that all its coefficients must
be non-negative (otherwise ≤0 is not fulfilled for some values of its variables) and
therefore this form must be positive semidefinite.

Now we define the molar chemical potential μϑ

μϑ → gϑ Mϑ ϑ = 1, . . . , n (4.172)

(where Mϑ is the molar mass (4.25)) and the vector of chemical potentials ∈μ in the
mixture space U with Cartesian basis ∈eϑ

∈μ →
n∑

ϑ=1

μϑ ∈eϑ (4.173)

This vector may be uniquely decomposed in the orthogonal subspaces V and W
(see Sect. 4.2)

∈μ = − ∈A + ∈B, ∈μ ∈ U , ∈A ∈ V, ∈B ∈ W, V≡W, V ≥ W = U (4.174)

The vector ∈A is called a vector of chemical affinities

∈A =
n−h∑
p=1

Ap ∈gp (4.175)

because, using (A.85), (4.40), (4.173)–(4.175), its components are the chemical
affinities Ap of the p-th chemical reaction defined as [3, 4, 108, 129–131]

Ap = −
n∑

ϑ=1

μϑ P pϑ p = 1, . . . , n − h (4.176)
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with the usual convention about stoichiometric coefficients (Sect. 4.2); see also Rem.
15 in Chap. 2 and (2.94) (because of simple reaction (2.73) the mass units were used
here) where the traditional definition of chemical affinity is discussed.

Decomposition (4.174)1 may be expressed in component form as

μϑ = −
n−h∑
p=1

n−h∑
q=1

Apgpq Pqϑ +
h∑

σ=1

Bσ Sσϑ ϑ = 1, . . . , n (4.177)

which follow from μϑ = ∈μ.∈eϑ inserting (4.174) and using (4.175), (A.86), (4.40),
expression of ∈B in the subspace W , namely ∈B = ∑h

σ=1 Bσ ∈fσ , and (4.34). Cf. also
stoichiometry in Sect. 4.2 and Appendix A.4.

The production of entropy by chemical reactions (4.171) may be written with
(4.20), (4.172), (4.173), (4.26), (4.33), (4.174), (4.36) using rates Jp (4.43) and
affinities Ap (4.175) of n − h independent chemical reactions as

�0 = −
n∑

ϑ=1

gϑrϑ = −∈μ. ∈J = ∈A. ∈J =
n−h∑
p=1

Jp Ap ≤ 0 (4.178)

It should be stressed that because the vectors ∈J and ∈B lie in orthogonal subspaces,
cf. (4.41), (4.174), the product ∈B. ∈J vanishes and ∈B does not appear in (4.178).
Consequently, theories of irreversible thermodynamics which try to find fluxes and
forces from the production of entropy overlook the dependence of reaction rate (flux)
on force ∈B, see also (4.179) below.

Note, that reaction rates Jp (see (4.45), (4.26)), similarly as rates rϑ (4.156),
(4.20), are functions (beside T ) of ρη and by the usual assumption of invertibility
(see the third regularity condition at the end of Sect. 4.6) they may be expressed as
functions J̄p of chemical potentials (see (4.161), (4.172))

Jp = Ĵp(T, ρη ) = J̄p(T, μη ) = J̃p(T, Bσ , Ar ) η = 1, . . . , n; σ = 1, . . . , h;
p, r = 1, . . . , n − h (4.179)

The last function J̃p may be defined by insertion of (4.177) into the previous one:
∈B, ∈A may be looked upon as independent vectors in W,V respectively which by
composition (4.174)1 gives some vector ∈μ.

The last quadratic form in (4.169) must be also positive semidefinite

n∑
ϑ=1

n∑
η=1

σϑη trDϑtrDη ≤ 0 (4.180)

This follows from (4.169) with (4.180) in the canonical form because this member of
second order determines ultimately the sign of the whole (4.169). From the positive

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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semidefinity16 of quadratic forms (4.170) (such are also its two first quadratic forms
by independency of (4.140)) and (4.180) there follows the non-negativity of certain
determinants formed from their symmetrized matrices (e.g. symmetrized matrix of
(4.180) is ⊂(1/2)(σϑη + σηϑ⊂) as, e.g.

k ≤ 0, βϑϑ ≤ 0, σϑϑ ≤ 0 ϑ = 1, . . . , n (4.181)

ταα ≤ (1/2)rα α = 1, . . . , n − 1 (4.182)

Relations (4.182) express the limitation of reaction rates by diffusion known in
chemical kinetics [132] (roughly, inversions of ταα are proportional to diffusion
coefficients, cf. Sect. 4.10).

We note that whenever
�0 = 0 (4.183)

it must be also
ϕpϑ = 0 ϑ = 1, . . . , n (4.184)

as may be seen from (4.169), see (A.98) and Lemma A.5.4 from Appendix A.5.4.
Important examples are non-reacting mixtures where rϑ → 0 (4.15) (see Sect. 4.8)
identically (by (4.178), (4.183), LemmaA.5.4, the (4.184)must be valid at anyρϑ, T )
and (chemically reacting) mixtures in chemical equilibrium where (4.183) is valid
at certain ρϑ, T giving, by Lemma A.5.4, Eq. (4.184) at these values (equilibrium
in fluids mixture will be discussed in Sect. 4.7). Equation (4.184) is valid also in the
case when coefficients σϑη are zero, e.g. in a mixture of monoatomic ideal gases
[133] or if we neglect viscosity phenomena completely.

As we shall see in the next Sect. 4.6, ϕpϑ causes the difference between pressure
pϑ in stress (4.138) and the pressure used in thermodynamic formulae (“thermody-
namic pressure”, see (4.186)), e.g. in chemical kinetics out of equilibrium.

To estimate ϕpϑ , we choose some values of T, ρη and therefore some values
of �0,ϕpη , σϑη are fixed. For simplicity, we assume that quadratic form (4.180)
is positive definite with elements σϑη of symmetrized matrix and denote by σ−1

ϑη

the elements of its inversion. Taking first derivative of �1 (4.169) (in arbitrary real
trDη at chosen T, ρη ) as zero we obtain the extremal values trDη (in fact in mini-
mum because second derivatives of (4.169) form positive definite matrix of (4.180),
cf. [134, Sect.11.3-3]). Inserting this values into (4.169) (for which this inequality is
valid too) we obtain the following minimal values of �1

�0 − (1/4)
n∑

ϑ=1

n∑
η=1

σ−1
ϑη ϕpϑϕpη ≤ 0 (4.185)

16 From this generally does not follow the symmetry of its coefficients. The skew-symmetric part of
these coefficients disappears and to obtain them as zero we must add the new assumptions, namely
Onsager reciprocity, cf. Sect. 4.10, Rem. 31.
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valid for chosen T, ρη (and therefore similarly for other values). This inequality may
be used for the estimation of values ϕpϑ if we know volume viscosity coefficients
and entropy production by chemical reactions.17

Summary. This section began with a short description of the application of prin-
ciples of rational thermodynamics on mixtures. Then the principal model of our
book—the mixture of fluids with linear transport properties—was defined generally
by the linearization of constitutive equations (for fluids) in vector and tensor variables
see (4.130)–(4.133), (4.136)–(4.138). The general formswere thenmodified and sim-
plified by the admissibility principle. The final forms are given by (4.156)–(4.160)
and (4.166); the constitutive equations (4.137) and (4.138) remained unchanged. The
final form of entropy inequality is seen in (4.167) and can be separated into several
relatively independent parts the most important of which is the part representing the
entropy production by chemical reactions—(4.171) or in modified form (4.178). The
entropy inequality put also the restrictions on transport coefficients, (4.181), and on
reaction rates coupled with diffusion, (4.182). Note also the definition of (specific)
chemical potential (4.161) and the decomposition of its molar counterpart into affini-
ties (4.177). All this enables to formulate the reaction rates as functions of various
sets of independent variables (4.179) though the necessary regularity conditions are
given in the following sections only.

4.6 Thermodynamic Relationships in the Linear Fluid Mixture

We now deduce basic thermodynamic properties of the mixture of fluids with linear
transport properties discussed in Sect. 4.5. Among others, we show that Gibbs equa-
tions and (equilibrium) thermodynamic relationships in such mixtures are valid also
in any non-equilibrium process including chemical reactions (i.e. local equilibrium
is proved in this model) [56, 59, 64, 65, 79, 138].

Besides the definitions (4.21), (4.22), (4.90)–(4.92), (4.161)–(4.163), we define
the partial thermodynamic pressure Pϑ and the total thermodynamic pressure P of
mixture

17 Though our model excludes by (4.120) influence of trDη on chemical reaction rate (usually
discussed in classical linear non-equilibrium thermodynamics [3]) this influence remains indirect
through the volume viscosity coefficients as may be seen from (4.185). We can estimate the (whole)
pressure differenceϕp for (chemical) reaction of hydrogen nuclear isomers p−H2 (1) to o−H2 (2)
at 650 ◦C, 100 torr in which the rate is J = 1.52 × 10−3mol/m3s at halftime 450 s [135]. Because
of similarity of both isomers we take ϕp1 = ϕp2 = ϕp/2 (cf. (4.186), (4.187)) and as σϑϑ (those
which are diagonal; the remaining are neglected) we can take approximate volume viscosity σ of
pure H2 for both isomers (estimated by σ = 32β from usual viscosity β = 1.9 × 10−5 kg/m.s of
pure H2 [136]). Affinity A in halftime (the same concentrations of isomers) may be calculated by
A = RT lnK where the equilibrium constant is K = 3 [137], cf. (4.479), (4.481) and (b) from
Rem. 28. Resulting ϕp, calculated from (ϕp)2 ⇔ 8σ J A (which is (4.185) with (4.178) in this
example), is not greater then 0.25 Pa; unfortunately, for more realistic cases, we have difficulties in
knowing the values of σϑη .
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Pϑ → pϑ + ϕpϑ ϑ = 1, . . . , n (4.186)

P →
n∑

ϑ=1

Pϑ (4.187)

the partial volume vϑ , the partial enthalpy hϑ (ϑ = 1, . . . , n)

vϑ → Pϑ/(ρϑ P) (4.188)

hϑ → uϑ + Pvϑ (4.189)

and the total specific enthalpy h, volume v and free enthalpy (Gibbs energy) g of
mixture

h →
n∑

ϑ=1

wϑhϑ (4.190)

v →
n∑

ϑ=1

wϑvϑ (4.191)

(the same symbol used in dv in integrals, like (4.14), has another sense, cf. (3.199)),

g →
n∑

ϑ=1

wϑgϑ (4.192)

All these quantities are functions of T, ρ1, . . . ρn only.
By (4.186) and (4.162)

Pϑ = ρϑ(gϑ − fϑ) (4.193)

and Pϑ, P play the role of pressures in the following thermodynamic relationships
although Pϑ are generally different from “real pressures” pϑ (cf. (4.138) and (4.186)).
But when (4.184) is valid (e.g. chemical equilibrium or non-reacting mixture) both
pressures are the same (cf. end of Sect. 4.5 and Rem. 17).

From (4.186)–(4.193), (4.21)–(4.23), (4.90)–(4.93), (4.161), (4.86) it may be
obtained

gϑ = fϑ + Pvϑ ϑ = 1, . . . , n (4.194)

v = 1/ρ (4.195)

n∑
ϑ=1

ρϑvϑ = 1 (4.196)

f = u − T s (4.197)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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g = f + Pv (4.198)

h = u + Pv (4.199)

Pϑ =
n∑

η=1

ρϑρη

∂ f̂η
∂ρϑ

ϑ = 1, . . . , n (4.200)

From all these relations, the Gibbs equations may be obtained

d(ρ f ) = −ρs dT +
n∑

ϑ=1

gϑ dρϑ (4.201)

d(ρu) = T d(ρs) +
n∑

ϑ=1

gϑ dρϑ (4.202)

du = T ds − P dv +
n−1∑
α=1

(gα − gn) dwα (4.203)

d f = −s dT − P dv +
n−1∑
α=1

(gα − gn) dwα (4.204)

dh = T ds + v dP +
n−1∑
α=1

(gα − gn) dwα (4.205)

dg = −s dT + v dP +
n−1∑
α=1

(gα − gn) dwα (4.206)

Because all these quantities are fields (i.e. functions of x, t), we can use these equa-
tionswith the time and space derivatives (gradients) instead of differentials (cf. below
(3.199)).

From (4.206) and (4.192), the Gibbs-Duhem equation may be obtained

− s dT + v dP −
n∑

ϑ=1

wϑ dgϑ = 0 (4.207)

We can also deduce the following relationships from (4.165), (4.193), (4.187),
(4.207), (4.22), (4.195), (4.92), (4.164)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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n∑
η=1

λαη dρη = dPα − ρα dgα + ρα

∂ f̂α
∂T

dT α = 1, . . . , n − 1 (4.208)

n−1∑
α=1

n∑
η=1

λαη dρη = −dPn + ρn dgn − ρn
∂ f̂n

∂T
dT (4.209)

We denote by yϑ all specific partial thermodynamic quantities of constituents and
by y corresponding specific total (or for mixture) thermodynamic quantities:

yϑ = uϑ, sϑ, fϑ, gϑ, vϑ, hϑ, ϑ = 1, . . . , n

y = u, s, f, g, v, h (4.210)

Relations (4.90), (4.91), (4.92), (4.190), (4.191), (4.192), may be written as

y =
n∑

ϑ=1

wϑ yϑ (4.211)

y = ŷ(T, ρη ) (4.212)

yϑ = ŷϑ(T, ρη ) ϑ, η = 1, . . . , n (4.213)

Besides the independent variables T, ρ1, . . . , ρn , variables T, P, w1, . . . , wn−1
are often used in classical thermochemistry (as well as their molar analogues, cf.
(4.288) below). To obtain this change of variables we take (using (4.195), (4.22),
(4.23))

P = P̂(T, ρη ) = P̂(T, w1/v, . . . , wn−1/v, (1 −
n−1∑
α=1

wα)/v)

→ P̆(T, v, w1, . . . , wn−1) (4.214)

and assume the existence of an inversion of P̆ (4.214) for volume

v = ṽ(T, P, w1, . . . , wn−1) (4.215)

(such assumption is fulfilled in the usual stable mixture where (4.358) is valid, see
Sect. 4.7).

The arbitrary function of T, ρ1, . . . , ρn , may be transformed analogously as
(4.214) and using (4.215) we obtain functions of T, P, w1, . . . , wn−1 denoted by
the tilde and written shortly as (ϑ = 1, . . . , n;α = 1, . . . , n − 1)

yϑ = ỹϑ(T, P, wα) (4.216)
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y = ỹ(T, P, wα) (4.217)

Therefore, the classical relations of thermochemistry were obtained. Especially, the
Gibbs equations (4.201)–(4.206) are valid in arbitrary process in this chemically
reacting mixture of fluids with linear transport properties, i.e. the principle of local
equilibrium is valid in this mixture. But we show in the following relations that this
accord with classical thermochemistry (e.g. [138] ) is not quite identical: indeed, if
we differentiate (4.211) and use (4.22), (4.23) we obtain

∂ ỹ

∂wα

= yα − yn +
n∑

ϑ=1

wϑ

∂ ỹϑ

∂wα

α = 1, . . . , n − 1 (4.218)

and comparing the differentials from (4.211) and (4.217) and use (4.218) we obtain

∂ ỹ

∂T
dT + ∂ ỹ

∂ P
dP −

n∑
ϑ=1

wϑ dyϑ +
n−1∑
α=1

n∑
ϑ=1

wϑ

∂ ỹϑ

∂wα

dwα = 0 (4.219)

We can see that these relations (4.218), (4.219) are in accord with classical thermo-
chemistry if the sum in the right hand side of (4.218) is zero (which is known as
(generalized) Gibbs-Duhem equation) for all yϑ (4.210). Exceptions are chemical
potentials gϑ and specific Gibbs energy g as may be seen from (4.206) and (4.217)

∂ g̃

∂wα

= gα − gn α = 1, . . . , n − 1 (4.220)

i.e. for chemical potentials the Gibbs-Duhem equations are valid

n∑
ϑ=1

wϑ

∂ g̃ϑ

∂wα

= 0 α = 1, . . . , n − 1 (4.221)

But we show now that validity of relations similar to (4.220), (4.221) (Gibbs-
Duhem equations) may be achieved even for remaining yϑ, y (4.210) and therefore
the complete accord with classical thermodynamics of mixtures will be obtained
(specifically, e.g. classical expressions (4.266), (4.267) will be valid).

For this, we use the mixture invariance discussed in Sect. 4.4 in the following
programme with two Propositions (defined more precisely below):

• Proposition 23.1 gives by mixture invariance the equivalent description of linear
fluid mixture (i.e. all constitutive equations and their properties from Sect. 4.5
remains valid) even with new “primed” quantities (introduced similarly as in
Sect. 4.4)with arbitrary functions (4.222), (4.223) below (instead of arbitrary quan-
tities (4.103)).

• All remaining hitherto obtained results of Sects. 4.5 and 4.6 of the linear fluid
mixture will be shown to be valid also for primed quantities,
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• Proposition 23.2 achieves (by appropriate choice of functions (4.222), (4.223),
namely (4.257)) the (still absenting) validity of Gibbs-Duhem equations for all
yϑ, y (4.210).

• All these results then give the complete accord of thermodynamic relations with
classical thermodynamics of mixtures.

Recall that the mixture invariance described in Sect. 4.4 means that all bal-
ances (4.95)–(4.102) remain valid with primed quantities defined by transforma-
tions (4.108)–(4.113). But here we proceed further: with functions (4.222), (4.223)
instead of (4.103), the Eqs. (4.108)–(4.112) permit the formulation of linear con-
stitutive equations with primed quantities by constitutive principles analogously18

as in Sect. 4.5. Remaining parts of Sects. 4.5 and 4.6 will be done with analogous
(but primed) definitions keeping the rule that the definitions themselves are mixture
invariant (cf. above (4.114)). Procedure and description will be similar as in Sect. 4.4.
Quantities or expressions which do not change by using (4.108)–(4.113) we denote
as mixture invariant, e.g. quantities (4.113). For simplicity, we use the primes for
mixture invariant quantities rather exceptionally.

Proposition 23.1 (equivalent description of linear fluid mixture with primed quan-
tities). Assuming some a priori unprimed quantities uϑ, sϑ, Tϑ, kϑ, q and some fur-
ther (4.108)–(4.113) used in balances (4.95)–(4.102), we choose for the quantities
(4.103) the following arbitrary (but differentiable) functions of (mixture invariant,
see (4.113)) T and all ρη

εϑ = ε̂ϑ(T, ρη ) ϑ, η = 1, . . . , n (4.222)

βϑ = β̂ϑ(T, ρη ) ϑ, η = 1, . . . , n (4.223)

having the dimension of energy and entropy respectively, which fulfil (4.104) and
(4.105) identically (for all T, ρη ). These functions may be written as

σϑ = σ̂ϑ(T, ρη ) ϑ, η = 1, . . . , n (4.224)

fulfilling identically (i.e. for all T, ρη )

n∑
ϑ=1

ρϑσϑ = 0 (4.225)

together with primed (specific) partial thermodynamic quantities y∀
ϑ = u∀

ϑ , s∀
ϑ , f ∀

ϑ ,
g∀
ϑ , v

∀
ϑ , h∀

ϑ defined as
y∀
ϑ = yϑ + σϑ ϑ = 1, . . . , n (4.226)

where

18 This may be generalized also for non-linear models but then it seems plausible to give up the
(principle of) equipresence [59, 60, 72, 114].
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σϑ = εϑ, βϑ, ϕϑ, 0, −ϕϑ/P, T βϑ (4.227)

corresponding to the original yϑ = uϑ, sϑ, fϑ, gϑ, vϑ, hϑ , respectively. Here the
following definition was used:

ϕϑ → εϑ − T βϑ = ϕ̂ϑ(T, ρη ) ϑ = 1, . . . , n (4.228)

Besides gϑ , also the total thermodynamic pressure P = P ∀ is mixture invariant
in (4.227), for which P ∀ = ∑n

ϑ=1 P ∀
ϑ (see (4.187)), with partial thermodynamic

(primed) pressure obtainable from Pϑ (4.186) by transformation

P ∀
ϑ = Pϑ − ρϑϕϑ ϑ = 1, . . . , n (4.229)

Total thermodynamic primed quantities y∀ are defined with (4.226) as (cf. (4.210),
(4.211))

y∀ →
n∑

ϑ=1

wϑ y∀
ϑ = y (4.230)

and they are mixture invariant (cf. (4.116)).
Transforming original unprimed quantities according (4.108)–(4.118) to corre-

sponding primed quantities using some functions (4.222), (4.223), the resulting
form of constitutive equations and their properties for primed quantities remains
(cf. (4.157)–(4.159), (4.166), (4.137), (4.138))

u∀
ϑ = ûϑ(T, ρη ) + ε̂ϑ(T, ρη ) = û∀

ϑ(T, ρη ) ϑ, η = 1, . . . , n (4.231)

s∀
ϑ = ŝϑ(T, ρη ) + β̂ϑ(T, ρη ) = ŝ∀

ϑ(T, ρη ) ϑ, η = 1, . . . , n (4.232)

f ∀
ϑ = f̂ϑ(T, ρη ) + ϕ̂ϑ(T, ρη ) = f̂ ∀

ϑ(T, ρη ) ϑ, η = 1, . . . , n (4.233)

q∀ = −kg −
n−1∑
α=1

λ∀
αuα (4.234)

k∀
α = −ξ ∀

αg −
n−1∑
ω=1

ταωuω +
n∑

η=1

λ∀
αη hη α = 1, . . . , n − 1 (4.235)

T∀
ϑ = −p∀

ϑ1 +
n∑

η=1

σϑη (trDη )1 +
n∑

η=1

2βϑη

◦
Dη ϑ = 1, . . . , n (4.236)

where primed quantities in their right-hand sides are transformed as
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λ∀
α = λα + ρα T βα (4.237)

ξ ∀
α = ξα + ρα

∂ϕ̂α

∂T
(4.238)

λ∀
αη = λαη − ∂ραϕ̂α

∂ρη

(4.239)

p∀
ϑ = pϑ − ρϑϕϑ (4.240)

Coefficients k, ταω, σϑη , βϑη are mixture invariant. The remaining constitutive equa-
tions for reacting rates (4.156) are the same, because they contain the mixture invari-
ant quantities only.

Chemical potentials gϑ (4.161) are mixture invariant as well as quantities ϕpϑ

(4.162), ϑα (4.163). Therefore resulting expressions (4.164), (4.167)–(4.171) are
the same, i.e. �0,�1,�2, σ are mixture invariant in these inequalities. The result
(4.165) is

gη ωαη − ∂ρα f̂ ∀
α

∂ρη

= λ∀
αη α = 1, . . . , n − 1; η = 1, . . . , n (4.241)

Proof Results follows by appropriate construction of constitutive equations and
their properties (as in Sect. 4.5, i.e. starting with (4.128)) for primed quantities here
proposed (i.e. as in Sect. 4.4):

Relations (4.226), (4.225) and mixture invariance (4.230) follow directly for
y = u, s as in Sect. 4.4 using (4.222), (4.223) instead of (4.103) (cf. (4.108), (4.109),
(4.104), (4.105), (4.90), (4.91), (4.116)). For y = f , these relations and mixture
invariance (4.230) then follow from definition (4.86) with primed quantities (defin-
ition formulae are mixture invariant) f ∀

ϑ → u∀
ϑ − T s∀

ϑ (cf. (4.106), (4.114), (4.107),
(4.115), (4.116)). For the remaining y = g, v, h these will be shown below.

Deduction of (4.231), (4.232), (4.233) follows from (4.108), (4.109), (4.114)

inserting (4.131), (4.132), (4.133) and using y(0)
ϑ

∀ = y(0)
ϑ + σϑ (for y = u, s, f

respectively) leaving their remaining parts y(η )
ϑ mixture invariant (because such are

rα we leavemixture invariant all parts of (4.130)); that y(η )
ϑ = 0 will be shown below.

To obtain (4.234) we insert (4.136) into (4.118) and leaving here k, χη mixture
invariant while we choose (4.237) (this follows from members linear in diffusion
velocities (4.24)); we have

q∀ = −kg −
n−1∑
α=1

λ∀
αuα +

n∑
η=1

χη hη (4.242)

(zero value of χη is shown below).
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To obtain constitutive equations (4.235), we insert (4.137) into (4.111); here

grad(ραϕα) = ρα
∂ϕ̂α

∂T g + ∑n
η=1

∂ρα ϕ̂α

∂ρη
hη by (4.224) and therefore we choose

(4.238), (4.239) leaving ταω mixture invariant.
Ultimately constitutive equations (4.236) follow inserting (4.138) into (4.110)

leaving viscosities σϑη , βϑη mixture invariant; therefore (4.240) follows for mixture
non-invariant partial pressures pϑ .

Now, the proof of the final form of (4.231)–(4.236) will be given noting that con-
stitutive equations obtained so far for primed quantities r ∀

α, u∀
ϑ, s∀

ϑ, f ∀
ϑ, q∀, k∀

α, T∀
ϑ

have the same form as (4.130)–(4.133), (4.136)–(4.138). Similarly, reduced inequal-
ity with these primed quantities has the form (4.89) because this was obtained from
an invariant form of balances (4.95)–(4.102) (cf. property of mixture invariance
of balances in Sect. 4.4). Therefore, the great inequality may be constructed with
primed quantities but otherwise is the same as (4.139), and because the arguments
of the admissibility principle may be again used here analogously, all the results in
Sect. 4.5 may be obtained also for primed quantities. Namely, zero results (4.146)–
(4.149) are valid in accord with the assumed mixture invariance of all quantities here
(see above and (4.113)), and the results (4.150), (4.151), (4.145) are valid with the

corresponding primed quantities y(0)
ϑ

∀
,(4.237), (4.238), (4.239), (4.240). Therefore,

constitutive equations (4.231), (4.232), (4.233) are obtained as analogues of (4.157),
(4.158),(4.159) for primed quantities; the primed constitutive equation (4.156) is
trivial by mixture invariance of rates rα .

From mixture invariance (4.230) of y = u, s, f (noted at the beginning of proof),
the mixture invariance of result (4.164) also follows (in accord with that of (4.145)).
By the same arguments, we can see that chemical potentials gϑ (4.161) are mixture
invariant and therefore σϑ = 0 for this yϑ = gϑ as we have noted in (4.227).

By zero value (4.149), we obtain from (4.242) constitutive equation for (primed)
heat flux (4.234) (cf. (4.166)) and from (4.150) for primed quantities and chemical
potential we obtain (4.241). With its original form (4.165) and (4.226), we obtain
the transformation (4.239) again.

Definitionsϕp∀
ϑ (4.162), ϑ ∀

α (4.163) for primed quantities are nowmixture invari-
ant because of (4.226) (for fϑ, sϑ), (4.240), (4.237), (4.238) and the mixture invari-
ance of gϑ

ϕp∀
ϑ → ρ∀

ϑ(g∀
ϑ − f ∀

ϑ) − p∀
ϑ = ρϑgϑ − ρϑ( fϑ + ϕϑ) − (pϑ − ρϑϕϑ) = ϕpϑ

ϑ ∀
α → λ∀

α/T ∀ + ξ ∀
α − ρ∀

α

∂ f̂ ∀
α

∂T ∀ − ρ∀
αs∀

α = λα/T + ραβα + ξα + ρα

∂ϕ̂α

∂T
− ρα

∂( f̂α + ϕ̂α )

∂T
− ρα(sα + βα) = ϑα

Finally it follows that σ,�0,�1,�2 aremixture invariant because all expressions
for entropy productions are obtained for primed quantities are the same as (4.167)–
(4.171) and contain the mixture invariant quantities only (see (4.113) and below, see
also definitions (4.124), (4.88)).



4.6 Thermodynamic Relationships in the Linear Fluid Mixture 193

Primed thermodynamic pressures are defined now, instead of (4.186), (4.187) (we
recall that form of definitions is mixture invariant), as

P ∀
ϑ → p∀

ϑ + ϕp∀
ϑ ϑ = 1, . . . , n (4.243)

P ∀ →
n∑

ϑ=1

P ∀
ϑ (4.244)

These definitions give, by mixture invariance of ϕpϑ above and (4.240) for pϑ , the
transformation (4.229) for partial thermodynamic pressures and mixture invariance
of total thermodynamic pressure P ∀ = P (see (4.244), (4.229), (4.225) (cf. (4.107)).

It remains to show σϑ (4.227) for y = v, h. Definitions of partial volumes (4.188)
and enthalpies (4.189) for primed quantities are now (ϑ = 1, . . . , n)

v∀
ϑ → P ∀

ϑ/(ρ∀
ϑ P ∀) = (Pϑ − ρϑϕϑ)/(ρϑ P) = vϑ − ϕϑ/P (4.245)

h∀
ϑ → u∀

ϑ + P ∀v∀
ϑ = uϑ + εϑ + P(vϑ − ϕϑ/P) = hϑ + T βϑ (4.246)

where transformations follow by (4.229), (4.228) and (4.226), (4.227) for uϑ (cf.
(4.108), (4.106), (4.113)). These give the remaining values of σϑ in (4.227). The
mixture invariance of corresponding (and in fact also all) total thermodynamic
(primed) quantities y∀ (4.230) follows from (4.225) (cf. (4.116), (4.90), (4.190),
(4.191), (4.192), (4.211)), namely

y∀ →
n∑

ϑ=1

wϑ y∀
ϑ =

n∑
ϑ=1

wϑ yϑ + (1/ρ)

n∑
ϑ=1

ρϑσϑ = y (4.247)

Q.E.D.

According to our programme (see below (4.221)), it has been shown that all
hitherto obtained results of Sects. 4.5 and 4.6 of a linear fluid mixture are valid for
primed quantities (or to be the same for mixture invariant quantities). We show such
validity for the remaining results.

Because molar masses and stoichiometric coefficients may be considered as mix-
ture invariant, it is obvious that molar chemical potentials (4.172) and chemical
affinities (4.176) are mixture invariant. Obviously, also the properties from the end of
Sect. 4.5, (4.180)–(4.182) remain valid, including also special cases (4.183), (4.184).

To show it for the remaining formulae and quantities from Sect. 4.6 we use the
primed quantities from Proposition 23.1 in the definitions. Some of them are valid
trivially by the mixture invariance of the quantities in them (like Gibbs equations
(4.201)–(4.206), (4.207), (4.195), (4.197)–(4.199) etc.), others, like (4.193), (4.194),
(4.196),may be easily verified by previous results; we do it herewith (4.200), (4.208),
(4.209):

The validity of (4.200) for primed quantities follows because
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P ∀
ϑ =

n∑
η=1

ρ∀
ϑρ∀

η

∂ f̂ ∀
η

∂ρ∀
ϑ

=
n∑

η=1

ρϑρη

∂( f̂η + ϕ̂η )

∂ρϑ

= Pϑ +
n∑

η=1

ρϑρη

∂ϕ̂η

∂ρϑ

= Pϑ + ρϑ

∂
∑n

η=1 ρη ϕ̂η

∂ρϑ

−
n∑

η=1

ρϑϕη

∂ρη

∂ρϑ

= Pϑ − ρϑϕϑ

where (4.225) were used and this is indeed (4.229).
Inserting from (4.239), (4.229), (4.233) into (4.208) we have

n∑
η=1

λ∀
αη dρη +

n∑
η=1

∂(ραϕ̂α)

∂ρη

dρη

= dP ∀
α + d(ραϕα) − ρα dgα + ∂ρα f̂ ∀

α

∂T
dT − ∂ραϕ̂α

∂T
dT

Calculating d(ραϕα) with function (4.228) and using the mixture invariance of
gϑ, ρϑ, T we obtain (4.208) in primed quantities:

n∑
η=1

λ∀
αη dρη = dP ∀

α − ρα dgα + ρα

∂ f̂ ∀
α

∂T
dT α = 1, . . . , n − 1 (4.248)

Similarly, inserting (4.239), (4.229), (4.233) into (4.209) we have

n−1∑
α=1

n∑
η=1

λ∀
αη dρη +

n−1∑
α=1

n∑
η=1

∂ραϕ̂α

∂ρη

dρη = − dP ∀
n − d(ρnϕn) + ρn dgn − ∂ρn f̂ ∀

n

∂T
dT

+ ∂ρn ϕ̂n

∂T
dT

which with (4.225) (for σϑ = ϕϑ) gives (4.209) in primed quantities:

n−1∑
α=1

n∑
η=1

λ∀
αη dρη = −dP ∀

n + ρn dgn − ρn
∂ f̂ ∀

n

∂T
dT (4.249)

A change of independent variables from mixture invariant T, ρη to mixture
invariant T, P, wα, may be done also for primed quantities, specifically for (4.224)
σϑ = σ̃ϑ(T, P, wα) and therefore (4.216) is valid also for primed partial thermody-
namic quantities y∀

ϑ (see (4.226))

y∀
ϑ = ỹϑ(T, P, wα) + σ̃ϑ(T, P, wα) → ỹ∀

ϑ(T, P, wα) ϑ = 1, . . . , n (4.250)
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Relation (4.217) is valid for primed quantities

y∀ = ỹ∀(T, P, wα) = y = ỹ(T, P, wα) (4.251)

because of the mixture invariance of all quantities. Inserting from these results into
(4.218) we have

∂ ỹ∀

∂wα

= y∀
α − σα − y∀

n + σn +
n∑

ϑ=1

wϑ

∂ ỹ∀
ϑ

∂wα

−
n∑

ϑ=1

wϑ

∂σ̃ϑ

∂wα

(4.252)

But identity (4.225) (divided by ρ)
∑n

ϑ=1 wϑσϑ = 0 may be understood as a
function of T, P, wα (see (4.23)) equal to zero identically; its derivative is therefore
also zero

∂
∑n

ϑ=1 wϑσ̃ϑ

∂wα

= 0 α = 1, . . . , n − 1 (4.253)

and from (4.253) it follows

n∑
ϑ=1

wϑ

∂σ̃ϑ

∂wα

= ∂
∑n

ϑ=1 wϑσ̃ϑ

∂wα

−
n∑

ϑ=1

σϑ

∂wϑ

∂wα

= −
n−1∑
β=1

σβ

∂wβ

∂wα

− σn
∂wn

∂wα

= −σα − σn
∂(1 −∑n−1

β=1 wβ)

∂wα

= −σα + σn

Therefore inserting this in the previous Eq. (4.252), we obtain (4.218) in primed
quantities

∂ ỹ∀

∂wα

= y∀
α − y∀

n +
n∑

ϑ=1

wϑ

∂ ỹ∀
ϑ

∂wα

= ∂ ỹ

∂wα

(4.254)

which may be obtained also by differentiation of (4.230). Using (4.254) and dif-
ferentials from (4.230), (4.251) analogously as in deduction (4.219) we obtain its
analogue in primed quantities

∂ ỹ

∂T
dT + ∂ ỹ

∂ P
dP −

n∑
ϑ=1

wϑ dy∀
ϑ +

n−1∑
α=1

n∑
ϑ=1

wϑ

∂ ỹ∀
ϑ

∂wα

dwα = 0 (4.255)

Ultimately (4.220) and Gibbs-Duhem equations (4.221) for chemical potentials
remain unchanged because of their mixture invariance. Again, Gibbs-Duhem equa-
tions for all primed y∀

ϑ (i.e. zero value of the sum in (4.254)) are not generally valid.
All the results with primed quantities (including those in Proposition 23.1) starting

with arbitrary functions (4.222), (4.223) therefore fulfil all results of mixture model
achieved in Sect. 4.2–4.6.
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From a physical point of view, it seems that measurable quantities are mixture
invariant (cf. end of Sect. 4.4). Such are the properties ofmixture like y, T (see (4.94),
(4.236), (4.240), (4.225)) but also the chemical potentials gϑ . Note that also heat flux
is transformed as (4.118) (with functions (4.223)) and therefore heat flux is mixture
invariant in a non-diffusing mixture (all uα = o) in accord with its measurability.
But heat flux is mixture non-invariant in a diffusing mixture, consistently with our
expectation of difficulties in surface exchange (of masses) of different constituents
with different velocities together with heat. We note that all formulations of heat flux
used in linear irreversible thermodynamics [1–4, 120] (cf. Rems. 11 in this chapter,
14 in Chap. 2) are contained (by arbitrariness of βα ) in expression (4.118) for heat
flux in a diffusing mixture.

Nowwe are ready to start the last part of our programme (outlined below (4.221)):
by the following Proposition 23.2 we achieve the Gibbs-Duhem equations for all
primed quantities y∀

ϑ because then, as we shall see, we obtain the complete accord
of thermodynamic properties with classical thermodynamics of mixtures.

Proposition 23.2 (general validity of Gibbs-Duhem equations [56, 59, 139]). For
every partial thermodynamic quantity yϑ (4.210) of linear fluid mixture which may
be expressed by (4.216) as yϑ = ỹϑ(T, P, wα) there are corresponding primed quan-
tities (4.226), expressible as y∀

ϑ = ỹ∀
ϑ(T, P, wα) (4.250), introduced and satisfying

hypotheses of Proposition 23.1 which fulfil the Gibbs-Duhem equations

n∑
ϑ=1

wϑ

∂ ỹ∀
ϑ

∂wα

= 0 α = 1, . . . , n − 1 (4.256)

Proof We begin (as in Proposition 23.1) with some yϑ = uϑ, sϑ which may be
expressed by (4.216) as yϑ = ỹϑ(T, P, wα). Based on them we now propose the
primed quantities y∀

ϑ = u∀
ϑ, s∀

ϑ by (4.250) where for functions σ̃ϑ(T, P, wα), σϑ =
εϑ, βϑ, we choose the following special functions based on starting ỹϑ(T, P, wα)

(we follow [59, Teor. 8.1, choice (8.36)]; another version is in [56, 139])

σn = −
n−1∑
α=1

n∑
η=1

wαwη

∂ ỹη

∂wα

σω =
n∑

η=1

wη

∂ ỹη

∂wω

+ σn ω = 1, . . . , n − 1 (4.257)

This choice should have the basic property (4.225). Indeed

n∑
ϑ=1

ρϑσϑ =
n−1∑
ω=1

ρωσω + ρnσn

http://dx.doi.org/10.1007/978-3-319-02514-8_2
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= ρ

n−1∑
ω=1

n∑
η=1

wωwη

∂ ỹη

∂wω

+ ρ

n−1∑
ω=1

wωσn + ρwnσn = −ρσn + ρσn = 0

(4.258)

The relations (4.257) are then also valid for the remaining yϑ = fϑ, gϑ, vϑ, hϑ

because the corresponding σϑ are combinations of εϑ, βϑ, see (4.227) (for gϑ trivially,
see (4.221)). Indeed, by (4.257) for yϑ = uϑ, sϑ, we have for yϑ = fϑ by (4.86)

∂ f̃η
∂wω

= ∂ ũη

∂wω

− T
∂ s̃η

∂wω

(4.259)

which inserting into the right-hand side of (4.257)1 gives by (4.106)

−
n−1∑
α=1

n∑
η=1

wαwη

∂ f̃η
∂wα

= εn − T βn = ϕn (4.260)

Similarly, inserting into r.h.s. of (4.257)2 we have by (4.106)

n∑
η=1

wη

∂ f̃η
∂wω

+ ϕn = εω − εn − T (βω − βn) + ϕn = ϕω (4.261)

The Gibbs-Duhem equation (4.221) gives σϑ = 0 for (4.257) with yϑ = gϑ (where
ϑ = ω, n). Inserting here from (4.194) we have by (4.260), (4.261) 0 = ϕn −
P
∑n−1

α=1
∑n

η=1 wαwη
∂ṽη

∂wα
which is (4.257)1 (for yϑ = vϑ) with σn = −ϕn/P and

(inserting (4.194) into (4.257)2 for yϑ = gϑ) 0 = ∑n
η=1 wη

∂ f̃η
∂wω

+ P
∑n

η=1 wη
∂ṽη

∂wω
,

i.e.
∑n

η=1 wη
∂ṽη

∂wω
= −ϕω/P + ϕn/P from which σω = −ϕω/P; therefore result

(4.257) follows for yϑ = vϑ .

Ultimately, we obtain by inserting (4.189) in the right hand side of (4.257) for
yϑ = hϑ using (4.257) for yϑ = uϑ, vϑ and (4.106)

−
n−1∑
α=1

n∑
η=1

wαwη

∂ h̃η

∂wα

= εn + P(−ϕn/P) = T βn

n∑
η=1

wη

∂ h̃η

∂wω

+ T βn = εω − εn + P(−ϕω/P + ϕn/P) + T βn = T βω

which is for yϑ = hϑ (4.227) and therefore (4.257).
Now we use the proposed choice (4.257) to show that partial thermodynamic

quantities y∀
ϑ (4.250) with σϑ given by (4.257) fulfil Gibbs-Duhem equations (4.256)

for all of them (and not for chemical potentials only). Indeed, by (4.250) with (4.257)
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we have
n∑

ϑ=1

wϑ

∂ ỹ∀
ϑ

∂wα

=
n∑

ϑ=1

wϑ

∂ ỹϑ

∂wα

+
n∑

ϑ=1

wϑ

∂σ̃ϑ

∂wα

(4.262)

Using identity (4.253) with (4.23), (4.257)2

0 =
n∑

ϑ=1

wϑ

∂σ̃ϑ

∂wα

+
n−1∑
ω=1

σω

∂wω

∂wα

+ σn
∂(1 −∑n−1

ω=1 wω)

∂wα

=
n∑

ϑ=1

wϑ

∂σ̃ϑ

∂wα

+ σα − σn

=
n∑

ϑ=1

wϑ

∂σ̃ϑ

∂wα

+
n∑

ϑ=1

wϑ

∂ ỹϑ

∂wα

Inserting this into (4.262) we obtain (4.256)

n∑
ϑ=1

wϑ

∂ ỹ∀
ϑ

∂wα

= 0 α = 1, . . . , n − 1

i.e. Gibbs-Duhem equation (4.256) are valid for all such y∀
ϑ . Q.E.D.

Therefore, for such primed thermodynamic quantities, we have not only all the
results of our theory of primed thermodynamic quantities but also the Gibbs-Duhem
equations for all of them are valid.

In the following, wewill assume that such primed thermodynamic quantities were
achieved and hereafter we do not use the prime to denote these quantities. Therefore,
all results of Sects. 4.2–4.6 (up to (4.217)) are valid but moreover also Gibbs-Duhem
equations are valid for all partial thermodynamic quantities (i.e. (4.256) written
without primes)

n∑
ϑ=1

wϑ

∂ ỹϑ

∂wα

= 0 α = 1, . . . , n − 1 (4.263)

As a result of the validity of (4.263), we obtain from (4.218), (4.219) (in fact
(4.254), (4.255) without primes) for all yϑ another form of Gibbs-Duhem equations

∂ ỹ

∂T
dT + ∂ ỹ

∂ P
dP −

n∑
ϑ=1

wϑ dyϑ = 0 (4.264)

and
∂ ỹ

∂wα

= yα − yn α = 1, . . . , n − 1 (4.265)

Moreover, from (4.265), (4.206), (4.211) we obtain the classical relationships (for
them the general Gibbs-Duhem equation (4.263) are necessary)
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∂ g̃ϑ

∂T
= −sϑ ϑ = 1, . . . , n (4.266)

∂ g̃ϑ

∂ P
= vϑ ϑ = 1, . . . , n (4.267)

Indeed, to prove (4.266), we obtain from Gibbs equation (4.206) and Gibbs-
Duhem Eq. (4.263)

∂(g̃α − g̃n)

∂T
= − ∂ s̃

∂wα

= −(sα − sn) α = 1, . . . , n − 1 (4.268)

FromGibbs equation (4.206) it follows also ∂ g̃/∂T = −s whichwith (4.211), (4.23)
gives

∂(
∑n−1

α=1 wα g̃α + (1 −∑n−1
α=1 wα)g̃n)

∂T
=

n−1∑
α=1

wα

∂(g̃α − g̃n)

∂T
+ ∂ g̃n

∂T
= −

n∑
ϑ=1

wϑsϑ

= −
n−1∑
α=1

wα(sα − sn) − sn

Because of (4.268), we obtain (4.266) for ϑ = n and therefore also (4.266) for
remaining α = 1, . . . , n − 1.

Proof of (4.267)may be peformed quite analogously (using differentiation accord-
ing to pressure instead of temperature).

Results (4.265) and (4.211) permit to obtain partial specific thermodynamic quan-
tities yϑ (fulfilling Gibbs-Duhem equations (4.263) of course) from specific thermo-
dynamic quantities y = ỹ(T, P, wα) of the mixture (measurable in accord with their
mixture invariance) and their dependence on composition wα as follows

yn = y −
n−1∑
α=1

wα

∂ ỹ

∂wα

(4.269)

yα = yn + ∂ ỹ

∂wα

α = 1, . . . , n − 1 (4.270)

While (4.270) is (4.265), Eq. (4.269) follows by multiplication of (4.270) with wα ,
by summation through α = 1, . . . , n − 1 and using (4.23), (4.211).

Ultimately we note that using functions (4.213) (see (4.216), (4.214), (4.21),
(4.22)), we have

gϑ = g̃ϑ(T, P, wα) = g̃ϑ(T, P̂(T, ρη ), ρα/

n∑
η=1

ρη ) = ĝϑ(T, ρη ) (4.271)
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Therefore ∂ ĝϑ/∂T = ∂ g̃ϑ/∂T + (∂ g̃ϑ/∂ P)(∂ P̂/∂T ) and this gives by (4.266),
(4.267), (4.194)

− sϑ = ∂ ĝϑ

∂T
− vϑ

∂ P̂

∂T
= ∂ f̂ϑ

∂T
+ P

∂v̂ϑ

∂T
ϑ = 1, . . . , n (4.272)

Therefore, a relation analogical to (4.164) for partial fϑ does not follow (but this is
possible in special cases, see (4.426)).

Analogues of (4.269), (4.270) for expressing the partial specific quantities through
mixture properties in independent variables temperature and densities (4.213) are

• for partial specific volumes vϑ

vϑ = (
∂ P̂

∂ρϑ

)/


 n∑

η=1

ρη

∂ P̂

∂ρη


 ϑ = 1, . . . , n (4.273)

where P = P̂(T, ρη ) is the (whole) thermodynamic pressure as the function of
temperature and densities of all constituents.

• for remaining thermodynamic partial specific quantities yϑ = uϑ, sϑ, fϑ, hϑ, gϑ

yϑ = y + ρ


 ∂ ŷ

∂ρϑ

− vϑ

n∑
η=1

ρη

∂ ŷ

∂ρη


 ϑ = 1, . . . , n (4.274)

where vϑ is given by (4.273) and the specific thermodynamic quantities of the
mixture y = ŷ(T, ρη ) = u, s, f, h, g are functions of temperature and densities
of all constituents.

We prove (4.273), (4.274) using (4.269), (4.270) calculating ∂ ỹ/∂wα appropri-
ately. With (4.215), definition P̆ (4.214), (4.195) we have

∂ṽ

∂wα

= − ∂ P̆

∂wα

/
∂ P̆

∂v
=
(

∂ P̂

∂ρα

− ∂ P̂

∂ρn

)
/


 n∑

η=1

ρη

∂ P̂

∂ρη


 α = 1, . . . , n − 1

(4.275)
because

∂ P̆

∂v
= −ρ

n∑
η=1

ρη

∂ P̂

∂ρη

∂ P̆

∂wα

= ρ
∂ P̂

∂ρα

− ρ
∂ P̂

∂ρn
α = 1, . . . n − 1

Similarly, for the remaining y = u, s, f, h, g, we can define functions y =
y̆(T, v, wα) by
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y = ŷ(T, ρη ) = ŷ(T,
w1

v
, . . . ,

wn−1

v
,
1 −∑n−1

α=1 wα

v
) → y̆(T, v, w1, . . . , wn−1)

= y̆(T, ṽ(T, P, wα),wα) = ỹ(T, P, wα) (4.276)

From this we obtain analogously

∂ ỹ

∂wβ

= ∂ y̆

∂wβ

+∂ y̆

∂v

∂ṽ

∂wβ

= ρ(
∂ ŷ

∂ρβ

− ∂ ŷ

∂ρn
)−ρ(vβ−vn)

n∑
η=1

ρη

∂ ŷ

∂ρη

β = 1, . . . n−1

(4.277)
because (4.195), (4.265) and

∂ y̆

∂v
= −ρ

n∑
η=1

ρη

∂ ŷ

∂ρη

∂ y̆

∂wβ

= ρ(
∂ ŷ

∂ρβ

− ∂ ŷ

∂ρn
) β = 1, . . . n − 1

Inserting (4.275), (4.277) into (4.269), (4.270) (for y = v and those remaining
respectively) we obtain after rearrangement, the results (4.273), (4.274).

Result (4.273) gives that expressions (∂ P̂/∂ρϑ)/vϑ and therefore also (multiply-
ing by 1/P and using (4.188) or (4.278)) (ρϑ/Pϑ)(∂ P̂/∂ρϑ) are the same for all
constituents ϑ = 1, . . . , n, cf. [61, Eq. 2.11]. This will be used in the next Sect. 4.8,
see (4.415).

Application of (4.269), (4.270) on a specific volume (ormixture densityρ) permits
to calculate partial specific volume vϑ and therefore, by (4.188), to calculate partial
thermodynamic pressures (see [140])

Pϑ = ρϑvϑ P ϑ = 1, . . . , n (4.278)

which fulfil Dalton’s law (4.187) generally. Note that ρϑvϑ = cϑ Mϑvϑ in molar units
(see below). In a mixture of ideal gases, ρϑvϑ is the molar fraction and (4.278) is the
classical Dalton law, see (4.423), (4.424).

Relations (4.217) are specifically (with the use of (4.195))

u = ũ(T, P, wα), s = s̃(T, P, wα), (4.279)

v = ṽ(T, P, wα) or ρ = ρ̃(T, P, wα), (4.280)

From these relations and Gibbs equation (4.203), we obtain

ds = 1

T
du − P

Tρ2
dρ −

n−1∑
α=1

(gα − gn)

T
dwα = (1/T )

⎞
∂ ũ

∂T
− (P/ρ2)

∂ρ̃

∂T

⎠
dT
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+ (1/T )

⎞
∂ ũ

∂ P
− (P/ρ2)

∂ρ̃

∂ P

⎠
dP

+
n−1∑
α=1

⎞
1

T

∂ ũ

∂wα
− P

Tρ2
∂ρ̃

∂wα
− (gα − gn)

T

⎠
dwα (4.281)

Using the integrability conditions of (4.280), (4.279), namely ∂2s̃/∂ P∂T = ∂2s̃/
∂T ∂ P we obtain, after some calculation

∂ ũ

∂ P
= (T/ρ2)

∂ρ̃

∂T
+ (P/ρ2)

∂ρ̃

∂ P
(4.282)

which is for the mixture an analogue of (3.209).
In classical thermodynamics of mixtures, the special case of the uniform (or

homogeneous) mixture (i.e. without gradients of properties, cf. Sect. 2.4) is often
studied. Denoting here by Y the following extensive quantities: volume V , entropy
S, internal energy U , free energy F , Gibbs energy G and enthalpy H , we have the
following relations between the extensive functionsY = Y̌ (T, P, mη ), η = 1, . . . , n
and the corresponding total specific thermodynamic quantities y = ỹ(T, P, wω),
ω = 1, . . . , n − 1

Y = my = (

n∑
η=1

mη )ỹ(T, P, mω/(

n∑
η=1

mη )) → Y̌ (T, P, m1, . . . , mn) (4.283)

Herem is the mass of the uniform body which is the sum of masses of all constituents
mη (cf. Sect. 2.4)

m =
n∑

η=1

mη (4.284)

and
ρη = mη /V η = 1, . . . , n (4.285)

wη = mη /m η = 1, . . . , n (4.286)

((4.285) follows from the physical meaning of ρη and (4.286) from (4.21), (4.22),
(4.285), (4.284)).

Relations (4.283)–(4.286) in uniformmixture permit to express the partial specific
thermodynamic quantities from extensive (4.283) as ([59], i.e. as an analogue of the
molar “classical” definition [138, 141])

∂Y̌

∂mϑ

= yϑ ϑ = 1, . . . , n (4.287)

(therefore they are also uniform analogue of (4.269), (4.270)). Indeed, (4.283) gives

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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∂Y̌

∂mϑ

= y + m
n−1∑
α=1

∂ ỹ

∂wα

(
1

m

∂mα

∂mϑ

− mα

m2

∂
∑n

η=1 mη

∂mϑ

)

= y +
n−1∑
α=1

∂ ỹ

∂wα

ωαϑ −
n−1∑
α=1

wα

∂ ỹ

∂wα

which is the result (4.287) if we use (4.269), (4.270) because Kronecker delta ωαϑ →
∂mα

∂mϑ
here has the property ωαn = 0, α = 1, . . . , n − 1.

Examples of (4.287) are (2.100) and also Gibbs and Gibbs-Duhem equations
(2.98), (2.104) are uniform analogues of (4.206), (4.207).

These and all previous results of thermodynamic mixture which also fulfil Gibbs-
Duhem equations (4.263) show the complete agreement with the classical thermo-
dynamic of mixtures but moreover all these relations are valid much more generally.
Namely, they are valid in this material model—linear fluid mixture—in all processes
whether equilibrium or not. Linear irreversible thermodynamics [1–4], which stud-
ies the same model, postulates this agreement as the principle of local equilibrium.
Here in rational thermodynamics, this property is proved in this special model and
it cannot be expected to be valid in a more general model. We stress the difference:
in the cases when (4.184) is not valid—e.g. in a chemically reacting mixture out of
equilibrium—the thermodynamic pressures P, Pϑ need not be the same as the mea-
sured pressure (as e.g.

∑n
ϑ=1 pϑ) and therefore applications of these thermodynamic

formulae are not of much use in this case. This is probably the reason for difficulties
in application of chemical thermodynamics in chemical kinetics, cf. Sect. 4.9.

Because of using these results in a non-equilibrium situation where momentum
balances are important, specific variables have been used, while in (equilibrium)
thermodynamics of mixtures molar units are prefered.

In chemical applications following molar quantities, based on molar mass (4.25),
quantities ρϑ, ρ andwϑ are introduced as analogues of “mass” quantities (in physical
literature usually denoted as densities and concentrations). We define the molar
concentrations cϑ for constituents and for mixture c and the molar fractions xϑ

(cf. (4.25)) as follows (ϑ = 1, . . . , n)

cϑ = ρϑ/Mϑ (4.288)

c =
n∑

ϑ=1

cϑ (4.289)

xϑ = cϑ/c (4.290)

Because Mϑ > 0 (constant molar mass), ρϑ > 0 we have cϑ > 0, c > 0,
0 < xϑ < 1 and

n∑
ϑ=1

xϑ = 1 (4.291)

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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wϑ = xϑ Mϑ/M (4.292)

where the average molar mass M (depending on composition) is defined by

M →
n∑

ϑ=1

xϑ Mϑ (4.293)

and
1

M
=

n∑
ϑ=1

wϑ

Mϑ

(4.294)

1/c = vM (4.295)

Equation (4.294) follows from (4.291), (4.292), and (4.295) asserts that the inverse
of c is the molar volume Mv.

We now discuss relations between specific and molar description; as may be
expected from the results above, the formof expressions remains ifwe change specific
quantities yϑ, y andmass fractionswϑ by correspondingmolar quantities Mϑ yϑ, My
and molar fractions xϑ (cf., e.g. (4.172)). Such a simple change is understandable,
because the application of molar quantities means in fact using different mass units
for each constituent only. Change of specific andmolar descriptionmaybe sometimes
simple, e.g. the expression for partial thermodynamic pressure (4.278) may be also
written in a “molar” way as Pϑ = cϑ Mϑvϑ P , the classical molar form of (4.287)
which gives Mϑ yϑ follows using mols mϑ/Mϑ in Y̌ (4.283), or inserting (4.292)
into (4.211) we obtain its “molar analogue” My = ∑n

ϑ=1 xϑ Mϑ yϑ . Sometimes the
change ismore complicated:multiplying “specific”Gibbs equation (4.206) (arranged
with (4.23)) by M we obtain (using dwϑ = Mϑ

M dxϑ − xϑ Mϑ

M2 dM from (4.292))

M dg = −Ms dT + Mv dP +
n∑

ϑ=1

Mgϑ dwϑ

= −Ms dT + Mv dP +
n∑

ϑ=1

gϑ Mϑ dxϑ −
n∑

ϑ=1

gϑ Mϑxϑ/M dM

which is the “molar” Gibbs equation

d(Mg) = −Ms dT + Mv dP +
n∑

ϑ=1

gϑ Mϑ dxϑ

= −Ms dT + Mv dP +
n−1∑
α=1

(Mαgα − Mngn) dxα (4.296)
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Another more complicated example is connected with a change of functions T, ρϑ

or T, P, wα to functions of T, cϑ (see (4.288)) or T, P, xα , α, ω = 1, . . . , n − 1 ,
e.g.

Mϑ yϑ = Mϑ ỹϑ(T, P, wω) = Mϑ ỹϑ(T, P, xω Mω/(Mn +
n−1∑
ω=1

xω(Mω − Mn)))

→ Mϑ yϑ(T, P, xω) (4.297)

where, according to (4.293), (4.291), M = Mn +∑n−1
ω=1 xω(Mω − Mn) was used.

With this M the expression (see (4.292))

n∑
ϑ=1

xϑ

∂ Mϑ yϑ

∂xα

=
n∑

ϑ=1

wϑ M

Mϑ

Mϑ

n−1∑
ω=1

∂ ỹϑ

∂wω

∂xω Mω/(Mn +∑n−1
ω=1 xω(Mω − Mn))

∂xα

= M
n−1∑
ω=1

(
n∑

ϑ=1

wϑ

∂ ỹϑ

∂wω

)
∂xω Mω/(Mn +∑n−1

ω=1 xω(Mω − Mn))

∂xα

= 0 α = 1, . . . , n − 1 (4.298)

is zero because of “specific” Gibbs-Duhem equation (4.263). But results (4.298) are
Gibbs-Duhem equations in molar units.

From the “molar analogy” of (4.211) above we then see also that My =
My(T, P, xω) and from the derivative of it according to xα we have (using molar
Gibbs-Duhem equations (4.298))

∂ My

∂xα

= Mα yα − Mn yn α = 1, . . . , n − 1 (4.299)

which is a molar analogue of (4.270). From these (by multiplication with xα and
summing) we obtain a molar analogue of (4.269)

Mn yn = My −
n−1∑
α=1

xα

∂ My

∂xα

(4.300)

By a similar means as in these examples, it may be proved that all thermody-
namic relationships mentioned so far have their counterpart in molar units used in
thermochemistry of mixtures.

At the end, we summarize the results of the model of a reacting mixture of fluids
with linear transport properties from Sects. 4.5 and 4.6 (properties such as kinemat-
ics, stoichiometry and balances of mass, momentum and their moment, energy and
entropy inequality are as in Sects. 4.2, 4.3 and 4.4). Constitutive equations, their
properties and final form of entropy production are given in the end of Sect. 4.5
(from Eq. (4.156)), further thermodynamic quantities and properties are given at the
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beginning of Sect. 4.6 (up to Eq. (4.217)). But then we use only classical partial ther-
modynamic quantities fulfilling Gibbs-Duhem equations (Sect. 4.6 from Eq. (4.263))
which may be calculated by (4.269), (4.270) from corresponding properties of mix-
ture; also corresponding molar description is presented. All these relations are valid
in all equilibrium and non-equilibrium situations, (4.283)–(4.287) are valid in a uni-
form system.

Similarly as in preceding models (cf. Sect. 1.1, Rems.6, 9, 8, 42 in Chaps. 2, 3,
respectively) we exclude unusual situations by regularity conditions. Even though
some exclusions are similar to those for pure materials and possible in (especially
non-reacting) mixtures (e.g. disintegration of real fluidmixture tomore phases which
is outside of ourmodels), the situation ismuchmore complicated in chemical reacting
mixtures because of non-linearity of chemical reaction rates in our model (transport
phenomena are linear as in pure fluid of Sect. 3.7).

Regularity conditions (assumptions) 1, 2, 3 are chosen as follows:

1. Matrices of quadratic forms in (4.170), (4.180) are positive definite.
This regularity means among others that transport coefficients in (4.181), (4.182)
are only positive.

2. Matrices of derivatives ∂ r̂ϑ/∂ρη of function (4.156) (ϑ, η = 1, . . . , n) are
regular.19

Then the matrix of derivatives ∂ Ĵp/∂ρη has (maximal) rank n − h. Here the
chemical reaction rates are Jp = Ĵp(T, ρη ), (see (4.179)) p = 1, . . . , n − h is
the number of independent chemical reactions chosen for description (any other
reaction is their linear combination) and ϑ, η = 1, . . . , n is the number of con-
stituents.

19 Regular (quadratic) matrix means that its determinant is non-zero. Assertions in conditions 2, 3
about ranks n − h (number of independent chemical reactions, see Sect. 4.2) follow with the use
of Lemma: product of quadratic regular matrix with rectangular matrix of maximal rank has also
this maximal rank (this follows from Sylvester’s inequalities for rank of matrix product, see [134,
13.2.7]).
To prove assertion in regularity property 2 we make the derivative of (4.45) using (4.26)

∂ Ĵp

∂ρη

=
n∑

ϑ=1

(
n−h∑
r=1

gpr Prϑ

)
∂(r̂ϑ/Mϑ)

∂ρη

Namely, by Lemma, the matrix in great parentheses has rank n − h because such a rank has
both metric tensor gpr and rectangular matrix of stoichiometric coefficients Prϑ (because chemical
reactions chosen for description are independent, cf. Sect. 4.2). This ismultiplied by lastmatrix n×n
which is regular (as matrix product of regular diagonal matrix (with non-zero 1/Mϑ) and regular
∂ r̂ϑ/∂ρη ). Therefore, again by the Lemma, it follows the rank n − h for ∂ Ĵp/∂ρη . Analogously,
assertion 3 about the rank follows from derivative of (4.176) with (4.172)

∂ Â p

∂ρη

= −
n∑

ϑ=1

P pϑ ∂(Mϑ ĝϑ)

∂ρη

Namely, latter derivatives form a regular matrix (product of regular diagonal matrix (with non-zero
Mϑ) and regular ∂ ĝϑ/∂ρη has rank n − h. According to the Lemma the matrix ∂ Â p/∂ρη has rank
n − h.

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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3. Derivative (heat capacity, cf. (4.357), Sect.A.1) ∂ û/∂T is non-zero and thematrix
of derivatives ∂ ĝϑ/∂ρη of function (4.161) (ϑ, η = 1, . . . , n) is regular. In
Sect. 4.7, we show that this property follows from stability, see (4.362).

Then it follows that the matrix of derivatives ∂ Â p/∂ρη of corresponding affinities
Ap = Â p(T, ρη ) (following from (4.176), (4.172), (4.161)) has (maximal) rank
n − h.

Adding these regularities to our model of reacting fluid mixture with linear trans-
port properties we formulate the most usable model called the regular linear fluid
mixture. This model will be used in the remaining part of this book: in the discussion
of equilibria and their stability Sect. 4.7 (condition 3. here follows from this stability),
in chemical kinetics Sect. 4.9 and transport phenomena in Sect. 4.10.

As in the study of any model, we assume for simplicity that our model is valid
at any values of the independent variables of its constitutive equations, e.g. at all
positive temperatures and densities. Again, such behaviour is not fulfilled in reality
and in fact this limits the range of application of such a model (cf. difference between
real material and its mathematical model in Sect. 2.3).

From themodel of (chemically) reacting (non-simple)mixture of fluidswith linear
transport properties simpler models may follow, e.g. the non-reacting mixture (where
(4.15) is valid identically and regularity 2. plays no role), the incompressible fluid
mixture (which should have similar properties as incompressible fluid from the end
of Sect. 3.7.) or the simple mixtures (where density gradients are not a priori present
in constitutive equations, see below (4.129) in Sect. 4.5). These simplified models
will be thoroughly discussed in Sect. 4.8.

Summary. This section demonstratesmainly the relationships between ourmodel
of linear fluid mixture and classical chemical thermodynamics and investigated
applicability of classics out of equilibrium. The Gibbs equations and the Gibbs-
Duhem equation were obtained in specific quantities, cf. (4.201)–(4.206), (4.207),
respectively, and are thus valid in non-equilibrium—in other words the local equi-
librium was proved in this model. Alternative independent variable widely used in
classical thermodynamics, i.e. the (thermodynamic) pressure, can be introduced as
indicated in (4.214) but this needs a proof of invertibility of pressure as a func-
tion of volume which will be part of the subsequent section. However, introducing
the pressure among independent variables disturbed the total harmony with classical
thermodynamics as shown in (4.219) except the chemical potentials. This dissonance
was remedied by means of the mixture invariance described in Sect. 4.4. This rather
long procedure presented as the discussion of two Propositions (23.1 and 23.2) ended
with the proof of (4.256) the non-zero value of which in unprimed quantities was
the cause of that dissonance. The theoretical background for the measurability of
partial quantities from measurements of mixture properties and their dependence on
the composition is provided by (4.269) and (4.270) or by (4.273) and (4.274). Before
the end we also made some notes on transfer from “specific” to molar description. At
the end, we added three regularity conditions to exclude some strange situations and
to prepare more detailed study of properties of linear fluid mixture in the following

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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sections. Note also the definitions of thermodynamic pressures (4.186) and (4.187)
and the partial volume (4.188), which were made to obtain the consistent results
described in this section.

4.7 Equilibrium in the Linear Fluid Mixture

Definition of equilibrium is motivated similarly as in Sects. 1.2, 2.1, 2.2 and 3.8 [39,
52, 53, 56, 79, 98, 142, 143] (for non-linear models, see, e.g. [60, 71, 72]). For
the regular linear fluid mixture model summarized at the end of previous Sect. 4.6,
we define equilibrium by zero entropy production (4.301) as an equilibrium process
going persistently through a unique equilibrium state, which is possible, as we shall
see, if the body heat source is zero (4.303) and at zero rates of chemical reactions
(4.302). By regularity conditions (see 1, 2, 3 at the end of Sect. 4.6), we exclude some
unusual processes compatible with zero entropy production. We apply the regularity
conditions on equilibrium states (moreover, regularity condition 3 follows for stable
equilibrium states which will be discussed later in this Sect. 4.7).

In chemically reacting mixture (as different from the non-reacting one) the equi-
librium may be achieved at any temperature T but only at certain densities ρo

η (given
by chemical equilibrium, see below (4.311)). We use sometimes the superscript o to
denote the equilibrium values (because most quantities in this Sect. 4.7 are those of
equilibrium we use o only for stressing this).

In the model of regular linear fluid mixture of Sects. 4.5 and 4.6 we define every-
where and permanently the equilibrium by zero entropy production

σ = 0 (4.301)

and by zero chemical reaction rates rϑ of all constituents (and therefore also zero of
all Jϑ and Jp by (4.26), (4.45))

ro
ϑ = 0, Jϑo = 0 ϑ = 1, . . . , n, J o

p = 0 p = 1, . . . , n − h (4.302)

Body heating is assumed to be excluded

Q = 0 (4.303)

We add the regularity assumptions 1, 2, 3 as they are formulated in the regular
model at the end of previous Sect. 4.6; moreover, they mostly concern an equilibrium
state and are used in it in this Sect. 4.7.

In a non-reacting mixture equations (4.302) are valid identically and regularity 2
plays no role.Moreover, aswe showbelow in this Sect. 4.7, regularity 3 at equilibrium
follows (even inmore precise formwith both ∂ û/∂T and determinant ∂ ĝϑ/∂ρη being

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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positive, see (4.357), (4.362)) from properties which assure that the equilibrium is
stable (this concerns non-reacting mixture, too).20

This definition of the equilibrium process has the following consequences: in
equilibrium it follows from (4.301) and (4.168) that

�1 = 0 (4.304)

�2 = 0 (4.305)

and from (4.302) (see (4.178)) we have zero production of entropy by chemical
reactions �0 (chemical equilibrium (4.183))

�0 = 0 (4.306)

From (4.306), (4.305) it follows that in equilibrium the condition (4.184) is
fulfilled

ϕpϑ = 0 ϑ = 1, . . . n (4.307)

i.e. the (measurable) pressure in a chemically reacting mixture in (chemical) equi-
librium is the same as the thermodynamic pressure (similarly for partial pressures,
see (4.186), (4.187)); cf. end of Sect. 4.5. In a non-reacting mixture, the (4.307) is
valid always, cf. Sect. 4.8.

But moreover we can see from (4.178) and (4.306) that �0 has a minimum in
equilibrium and therefore, because �0 = �̂0(T, ρη ) , η = 1, . . . n (as follows from
functions Jp = Ĵp(T, ρη ) and Ap = Â p(T, ρη ) noted in regularity conditions 2, 3
at the end of Sect. 4.6), the necessary and sufficient conditions of minimum are

d

dλ
�̂0(T

o + λα, ρo
η + λϑη )|λ=0 = 0 (4.308)

d2

dλ2
�̂0(T

o + λα, ρo
η + λϑη )|λ=0 ≤ 0 (4.309)

Here ρo
η , T o are equilibrium values of densities and temperature at which (4.306)

is valid, λ is a real parameter and ϑη , α are arbitrary constants. Calculation of (4.308)
gives21

20 Defining here equilibriumby zero entropy production (4.301)with simultaneous zero of chemical
rates (4.302) (together with regularity assumptions 1–3 giving simultaneously zero equilibrium
affinities (4.311)) we exclude some (see (4.178)) rather pathological situations, giving zero entropy
production (4.301) like non-zero chemical rates at zero affinities or perpendicularity of non-zero
vectors ∈J and ∈A in reaction space (possible only formore chemical reactions).Ourmodel of chemical
equilibria excludes also by regularity 2 the case of “frozen reactions”where, even chemical affinities
are non-zero, the chemical rates are zero (probably rather negligible in such observed cases) and it
excludes, in accord with regularity 3, the instabilities of mixture (see below in this Sect. 4.7).
21 We proceed similarly as in Sect. 1.2 , e.g. in (2.29), (2.31). Inserting (4.178) into (4.308)

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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n−h∑
p=1

(
∂ Ĵp

∂ρη

)o

Apo +
n−h∑
p=1

J o
p

(
∂ Â p

∂ρη

)o

= 0 η = 1, . . . , n (4.310)

As follows from the assertions in regularity assumptions 2, 3 (see end of Sect. 4.6
and Rem. 19), the matrix of both derivatives in (4.310) has the (maximal) rank n − h
(equilibrium values are stressed here by the zero superscript, i.e. these are the val-
ues of corresponding quantities at ρo

η , T o). Therefore using now zero reaction rates
(4.302) in the result (4.310) we obtain a system of homogeneous linear equations
for n − h equilibrium affinities with the matrix of rank n − h formed by the equilib-
rium values of derivatives ∂ Ĵp/∂ρη . Therefore chemical affinities of independent
chemical reactions (and, consequently, also of dependent reactions) must be zero in
equilibrium

∈Ao = ∈0, Apo = 0 p = 1, . . . , n − h (4.311)

The zero values of chemical affinities in equilibrium is the most important con-
dition of chemical equilibrium. Namely

Apo = Â p(T, ρo
η ) = 0 p = 1, . . . , n − h, η = 1, . . . , n (4.312)

permit to calculate, through chemical potentials (see (4.176)), n −h relations among
n equilibrium values of densities ρo

η at given T = T o (in practice, by using so called
equilibrium constants, see Sect. 4.9).

Both properties (4.302), (4.311) are valid in the equilibrium simultaneously.
Namely, both of them are equivalent: assume (4.311), then�0 has againminimal zero
value and therefore (4.310) is valid. Because the matrix of (equilibrium) derivatives
∂ Â p/∂ρη has rank n −h (as follows from regularity 3, cf. Rem. 19) the zero reaction
rates (4.302) of all reactions follow.

Note that from the split of the vector of chemical potential to the vector of affinities
and the vector ∈B (4.174) (or (4.177) in component form), we obtain in equilibrium

(Footnote 21 continued)
and differentiating we have

d

dλ
�̂0(T o + λα, ρo

η + λϑη )

= α


n−h∑

p=1

∂ Ĵp

∂T
Ap +

n−h∑
p=1

Jp
∂ Â p

∂T


+

n∑
η=1

ϑη


n−h∑

p=1

∂ Ĵp

∂ρη

Ap +
n−h∑
p=1

Jp
∂ Â p

∂ρη


 (a)

Becauseα, ϑη are arbitrary constants, the expressions staying at themmust be zero at λ = 0 ((4.308)
is valid in equilibrium). Such expressions at ϑη give result (4.310). Zero equilibrium value of the
expression at α is then a trivial result of (4.302) and (4.311).

Sufficient condition of the minimum (4.309) may be calculated from (a). It gives some limits on
equilibrium values of derivatives of functions Jp = Ĵp(T, ρη ), Ap = Â p(T, ρη ). We omit them
here for simplicity; moreover practically the same limitation is given by (e) of Rem. 22 obtained
analogously from (b) and (c) there.
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by (4.311)

∈μo = ∈Bo in components μo
ϑ =

h∑
σ=1

BσoSσϑ ϑ = 1, . . . , n (4.313)

i.e. the vector ∈B is equal to the vector of chemical potential in equilibrium com-
pletely lying in the subspaceW and composed from equilibrium values of chemical
potentials (see Sects. 4.2 and 4.5). Indeed, inserting (4.313) into the definition of
affinity (4.176) we obtain (4.312) because of (4.41), i.e. the projection of a chemical
potential vector into the reaction space V , i.e. the chemical affinity, is zero.22 See
examples in Sect. 4.9.

It is also necessary to distinguish between the equilibrium and the steady state
(see, e.g. [144, 145]). The latter essentially embraces non-equilibrium chemical
reaction processes where reaction rates of only some constituents are zero and do
not contribute to the (non-zero) entropy production.

22 We can also start the (chemical) equilibrium definition with (4.311) (“strong” equilibrium instead
of “weak” one used by (4.302) here, cf. [12, 13, 56, 79]). From (4.178), (4.179) it follows

�0 =
n−h∑
p=1

Ap J̄p(T, μη ) =
n−h∑
p=1

Ap J̃p(T, Bσ , Ar ) → �̃0(T, Bσ , Ar ) ≤ 0 (a)

The function �̃0 thus defined achieves zero value and also minimum in equilibrium (4.311) and
therefore (cf. (4.308), (4.309) and similar consideration as in Rem. 21)

d

dλ
�̃0(T o + λα, Bσo + λδσ , λAr )|λ=0 = 0 (b)

d2

dλ2
�̃0(T o + λα, Bσo + λδσ , λAr )|λ=0 ≤ 0 (c)

where λ is the real parameter, α, δσ , Ar (σ = 1, . . . , h; r = 1, . . . , n − h) are the arbitrary real
numbers and T o, Bσo are the equilibrium values of temperature and ∈B, see (4.313). Calculation of
(b) with the use (4.179), (4.177), (4.313) gives

n−h∑
p=1

Ap J̃p(T o, Bσo, Aro = 0) =
n−h∑
p=1

Ap J o
p = 0 (d)

because the equilibrium value of reaction rates is obviously J o
p = J̃p(T o, Bσo, Aro = 0) at such

“strong” equilibrium in which, by arbitrariness of Ap , (d) gives the zero reaction rates J o
p = 0

(4.302). Calculation of (c) gives (among others; α, δσ may be chosen zeros)

n−h∑
p=1

n−h∑
r=1

(
∂ J̃p

∂ Ar

)o

Ap Ar ≤ 0 (e)

where derivatives are taken in equilibrium, i.e. at T o, Bσo, Aro = 0.Result (e) is valid in equilibrium
of this section because of the simultaneous validity of (4.311), (4.302).
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From the result (4.304) and from the regularity assumption 1 (the positive definite
quadratic form is zero only if its variables are zero) it follows that in equilibrium (see
(4.306), (4.307), (4.169), (4.170))

trDϑ = 0 ϑ = 1, . . . n (4.314)

◦
Dϑ= 0 ϑ = 1, . . . n (4.315)

uα = o α = 1, . . . n (4.316)

g = o (4.317)

From (4.314), (4.315) and (4.88), we have in equilibrium

Dϑ = 0 ϑ = 1, . . . n (4.318)

Therefore in the equilibrium (with restrictions on equilibrium densities in the
reacting mixture) the constitutive equations of the regular linear fluid mixture (cf.
end of Sect. 4.6) are:

• constitutive equations for rates (4.156) are equal to zero (4.302), thermodynamic
constitutive equations (4.157)–(4.159) and relations (4.164), (4.165) remain valid,

• heat flux (4.166) is zero in equilibrium (cf. (4.316), (4.317))

qo = o (4.319)

• interaction force (4.137) is in equilibrium

ko
α =

n∑
η=1

λo
αη ho

η α = 1, . . . , n − 1 (4.320)

where λo
αη is given by (4.165) (with equilibrium values),

• stress (4.138) is reduced in equilibrium to

To
ϑ = −Po

ϑ 1 ϑ = 1, . . . , n (4.321)

where Po
ϑ are equilibrium values of partial thermodynamic pressures (4.186) (we

use (4.307)–(4.318)).

As follows from (4.316), all constituents have the same velocity in equilibrium
(denoted as v); equilibrium superscript o is usually not used, cf. beginning of this
Sect. 4.7.

v = vϑ ϑ = 1, . . . , n (4.322)
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Material derivatives (4.3) are all the same because of (4.322), andwe can denote them
by the dot; because of permanency the acceleration is everywhere zero in equilibrium

v̇ = v̀ϑ = o ϑ = 1, . . . , n (4.323)

(namely, the “dot” denotes in this Sect. 4.7 the \ϑ (4.3) which is the same for all
constituents (4.322) in equilibrium, cf. (c) in Rem. 3).

Unique velocity (4.322) means the mixture is moving as a solid body and again
permits to find a frame (similarly as in Sect. 3.8) where velocities are everywhere
and permanently zero for all constituent in this equilibrium (see (4.318) and Killing’s
theorem (4.9)).

v = vϑ = o ϑ = 1, . . . , n (4.324)

and we consider such a frame in equilibrium in the following. This may be the non-
inertial one with inertial force (4.12). Therefore the material derivative (denoted by
the dot, cf. (4.323)) may be identified with partial time derivatives ∂/∂t (at constant
place).

The equilibrium valid everywhere in the mixture is also permanent in time as
follows: by assumptions of zero body heating and chemical reaction rates (4.303),
(4.302) and (4.301), (4.21), (4.90), the balances (4.18), (4.20), (4.58), (4.63), (4.82),
(4.84) have the following forms in equilibrium (balance (4.70) is trivially satisfied
by (4.321)), ϑ = 1, . . . , n

ρ̇ϑ = 0 (4.325)

ρ̇ = 0 (4.326)

gradPϑ = ρϑ(bϑ + iϑ) + kϑ (4.327)

(permanence of bϑ + iϑ is necessary; see above (4.334))

n∑
ϑ=1

kϑ = o (4.328)

u̇ = 0 (4.329)

ṡ = 0 (4.330)

Also from (4.329), (4.325), (4.213) (for y = u) and assumption 3 (non-zero heat
capacity) we have in equilibrium

Ṫ = 0 (4.331)

Therefore, all properties are not changed in time in equilibrium but some of
them, specifically pressures including the total one (see (4.187) and (4.323), (4.327),
(4.328)), may change in space

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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gradPo =
n∑

ϑ=1

ρo
ϑ(bϑ + iϑ) (4.332)

Similarly from (4.327), (4.320), (4.317), (4.328) and (4.208), (4.209) (for space
gradient) we obtain

gradgo
ϑ = bϑ + iϑ (4.333)

Equations (4.332), (4.333) are starting equations for deducing barometric and Sved-
berg formulae or calculation of chemical equilibrium in gravitational or centrifugal
fields [3, 79].23

We can see from (4.333), (4.213) (for yϑ = gϑ), (4.317) and regularity assumption
3, that density gradients hϑ are not zero in the equilibrium state if bϑ + iϑ are not
zero. While temperature T is a constant fixed everywhere and permanently in equi-
librium, densities ρϑ may change in space but are fixed in time as well as properties
depending on them (like pressures) and also ∂hϑ/∂t = o, ∂g/∂t = o, etc. Then from
(4.327),(4.320) it follows (similarly as in Sect. 3.8) that body and/or inertial forces
bϑ + iϑ must be constant in time in equilibrium. If they have potentials ζϑ , they do
not change in time

bϑ + iϑ = −gradζϑ ,
∂ζϑ

∂t
= 0 ϑ = 1, . . . , n (4.334)

These forces must fulfil in equilibrium (because obviously gradApo = o)

n∑
ϑ=1

(bϑ + iϑ)Mϑ P pϑ = o p = 1, . . . , n − h (4.335)

as follows from (4.311), (4.333), (4.176), (4.172). Known gravitational and centrifu-
gal forces have these properties (cf. (3.104)) because they are independent of ϑ (cf.
(4.12), (4.322), Rem. 13), i.e. (4.335) is satisfied by (4.42) (even in reactions of

23 Namely, (4.332) and then (4.333) may be written (see (4.213), (4.267), (4.331); equilibrium
superscript o is omitted) in (time constant) gravitation or centrifugal fields which are independent
of constituents bϑ = g or iϑ = i respectively (g is gravity acceleration, i is given by (4.12))

gradP = ρ(g + i)

n−1∑
α=1

∂ g̃ϑ

∂wα

gradwα = (1 − ρvϑ)(g + i) ϑ = 1, . . . , n

In an ideal binary solution, defined by (4.437), we obtain the Svedberg formula for measuring
of molar mass M1 (usually of macromolecular substance) in centrifuge with i above (see (4.292)–
(4.294))

(1/x1)gradx1 = (M1/RT )(1 − ρv1)i

where v1 of the ideal solution may be interpreted as specific volume of pure constituent 1 (cf. below
(4.440)).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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ions the electrostatic forces fulfil (4.335) by preservation of electrical charge in such
reactions).

An important special case is the uniform equilibrium in the mixture. This is the
case of the inertial frame and with zero body forces (iϑ = o (3.48), bϑ = o) with
(4.324), (4.323). Then from (4.332), (4.333) gradPo = o, gradgo

ϑ = o, and because of
regularity (assumption 3) density gradients are also zero (besides (4.317)). Therefore
in the uniform equilibrium we obtain all quantities not changing in time and space
(thermodynamic properties are given by (4.283), (4.287)). Moreover, by (4.320),
(4.328) we have

ko
ϑ = o ϑ = 1, . . . , n (4.336)

in uniform equilibrium.
Definition of equilibrium here is difficult to achieve in practice because of mole-

cular fluctuations; in fact the stability of equilibrium, i.e. its return back after its
disturbance, must be achieved and thus the equilibrium may be realized. The prob-
lem of the stability of equilibrium will be discussed in the remaining part of this
Sect. 4.7 proceeding similarly as in Sect. 3.8, although the problem is more compli-
cated mainly due to chemical reactions, cf. [39, 98, 143, 146, 147].

Similarly as in Sect. 3.8 (cf. postulate of dynamical stability under isolation
below (3.245)) our postulate is that the (body from) mixture under isolation, i.e.
not exchanging work, heat or mass with the environment and without the presence
of body forces (iϑ = o, bϑ = o) develops into the unique final uniform equilibrium
state with time fixed properties with its entropy having achieved in this equilibrium
state its maximal value (mixture body has the whole energy, volume and mass fixed,
zero reaction rates, Q = 0 inside and q = o, vϑ = o on the boundary).

This additional postulate seems physically plausible (note that from (4.83) applied
to the whole mixture body, it follows the growth of entropy only).

Our programme will thus be completed in the remaining part of Sect. 4.7 by
deduction, starting with this postulate, of the additional properties of the discussed
constitutive model, namely stability conditions (4.357), (4.358), (4.359) (or (4.360),
(4.362)), which assure the stability of the equilibrium state. At the end, reversely,
assuming these stability conditions, we try to find the time development of some
non-equilibrium states into corresponding equilibrium states, cf. (4.387), (4.400).

Therefore, using the just formulated postulate in the isolated mixture from our
material model—the regular linear fluid mixture (cf. end of Sect. 4.6), we expect
that an arbitrary perturbed state (obtainable, say, by molecular fluctuations) decays
back to the final uniform equilibrium state withmaximum entropy [39, 146] in which
Eqs. (4.303), (4.302), (4.316)–(4.319), (4.321)–(4.326), (4.328)–(4.331), (4.336) are
valid and gradients of pressures and chemical potentials are zero (see (4.327), (4.332),
(4.333)). Let us denote by mo the whole mass of such an equilibrium mixture, by
mo

ϑ the mass of each constituent, by V o its total volume, by Eo its total energy and
by So its total (and maximum) entropy. Therefore (cf. (3.240)–(3.242))

V o = vomo (4.337)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3


216 4 Continuum Thermodynamics of Mixture of Linear Fluids

Eo = uomo (4.338)

mo
ϑ = wo

ϑmo ϑ = 1, . . . , n (4.339)

So = somo (4.340)

where vo, uo, wo
ϑ, so, are constant equilibrium values of the specific volume (4.191),

the internal energy (4.90), themass fraction (4.22) and the entropy (4.91) respectively.
Equations (4.339) are not independent: in a non-reactingmixture n−1 such equations
are independent by (4.23) and in reacting mixture (with (4.29)) there is an additional
dependence among wϑ caused by n − h relations (4.311). We also recall that in a
uniform equilibrium mixture the rates of chemical reactions are zero (4.302).

Stability means that an arbitrary perturbed state under isolation decays into a
unique final uniform equilibrium state (4.337)–(4.340) without exchange of heat,
work and mass with the environment in the inertial frame with bϑ = o and (4.303),
i.e. with vϑ = o, g = o on the boundary of the (body of) mixture. But now in the
perturbed state v,wϑ, uϑ, vϑ are arbitrary fields but such that the whole volume and
energy are obviously the same constants V o, Eo as in (4.337), (4.338)

V o =
∫

mo
v dm (4.341)

Eo =
∫

mo

n∑
ϑ=1

wϑ(uϑ + (1/2)v2ϑ) dm (4.342)

(here dm = ρdv with (4.21), (4.195) (see below (4.191)) and (4.77) are used).
In the perturbed state of a chemically reacting mixture reaction rates are generally

non-zero, but the following relations are valid

n∑
ϑ=1

(Sσϑ/Mϑ)mo
ϑ =

n∑
ϑ=1

(Sσϑ/Mϑ)

∫
mo

wϑ dm σ = 1, . . . , h (4.343)

because they express the preservation of atomic substances during the chemical
reactions, cf. Sect. 4.2 (we recall that atomic substances need not be the chemical
elements). Indeed, Eq. (4.343) follow because from (4.14) for mixture with vϑ = o
on its boundary and from (4.26), (4.30) we have (ρϑdv = wϑρdv = wϑdm)

d

dt

(
Eσ

n∑
ϑ=1

(Sσϑ/Mϑ)

∫
mo

wϑ dm

)
= 0 σ = 1, . . . , h (4.344)

i.e. quantities in outer parentheses—the masses of atomic substances with atomic
masses Eσ—are preserved during chemical reactions in the course of decay of this
perturbed state (masses of constituents in them are integrals in (4.344)).
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But (4.343) are trivially satisfied even in a non-reacting mixture because then mo
ϑ

from (4.339) are constants equal to integrals on the right-hand side of (4.343) (see
(4.347) below).

According to (4.83) and (4.91) the entropy S of such an isolated perturbed state
is not greater than the maximum entropy So (4.340) of the final equilibrium state as
we discussed in our postulate above

S →
∫

mo
s dm ⇔ So (4.345)

and the equality may be expected in the equilibrium state stability of that is tested.
Because of the arbitrariness of the perturbed state, we (similarly as in Sect. 3.8)

choose such a one in which Eqs. (4.341), (4.345) are valid while Eqs. (4.342), (4.343)
are substituted by

Eo =
∫

mo
u dm (4.346)

mo
α =

∫
mo

wα dm α = 1, . . . , n − 1 (4.347)

i.e. we consider such a perturbed state which has zero velocities of all constituents
and, in reactingmixtures, the masses of all constituents are the same as in the equilib-
rium state tested; this non-uniform perturbed state is not in chemical equilibrium and
generally wα �= wo

α inside, while in non-reacting mixtures (4.347) are always valid
(instead of (4.343) as we noted above). Of course, during the subsequent approach to
the equilibrium state in an isolated system the velocities need not be zero as equally
the masses of constituents need not be mo

ϑ (but they fulfil (4.343); in (4.347) we
exclude the dependent mass by mo

n = mo −∑n−1
α=1 mo

α ).
Using this type of perturbed state ((4.349)–(4.351)below) and assuming that each

equilibrium state of a linear fluid mixture with regular response is stable under
isolation (i.e. these perturbed states develop in isolation to the corresponding final
equilibrium state as described above), we prove now that the function (cf. (3.247)
and Rem. 46 in Chap. 3)

s = s̄(u, v, wα) (4.348)

is strict concave in all equilibrium states (in chemical equilibrium, as different from a
non-reacting mixture, wα are not all independent). The existence of (4.348) follows
from (4.212) written for s and u, inverting the last one for T (this is possible by
regular response assumption 3 from the end of Sect. 4.6) and by inserting into the
first one; then (4.22), (4.23) and (4.195) are used.

Proceeding analogously as in Sect. 3.8, we define the perturbed state with (4.341),
(4.346), (4.347), (4.345) as follows: it is composed from two parts (denoted by
superscripts a, b ) with masses ϑmo and (1 − ϑ)mo (where 0 < ϑ < 1; mo is
the mass of mixture) with different, but in these parts uniform, specific energies
ua, ub, volumes va, vb and mass fractions wa

α,wb
α and entropies sa, sb given by

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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(4.348). Using such division in (4.341), (4.346), (4.347), (4.345) and comparing
with (4.337)–(4.340) we obtain (just the assumptions giving (4.346), (4.347) are
important)

ϑva + (1 − ϑ)vb = vo, ϑua + (1 − ϑ)ub = uo (4.349)

ϑwa
α + (1 − ϑ)wb

α = wo
α α = 1, . . . , n − 1 (4.350)

ϑs̄(ua, va, wa
α) + (1 − ϑ)s̄(ub, vb, wb

α) < s̄(uo, vo, wo
α) (4.351)

According to the theorem of concave functions (Appendix A.3(i)), results (4.349)–
(4.351) show that function (4.348) is strict concave.Therefore, according toAppendix
A.3(ii), the matrix of its second derivatives in equilibrium is (equivalently) negative
definite i.e. this matrix multiplied by −1 is positive definite. Then, according to the
known theorem valid for such positive definitematrices [134, Sects. 13.5, 13.6], [148,
Sect.1.29], its principal minors must be equivalently positive at equilibrium values
uo, vo, wo

α .
Then, according to the known theorem valid for such positive definite matrices

[134, Sects.13.5–13.6], [148, Sect.1.29], its principal minors must be equivalently
positive. Writing these determinants as jacobians and using (as follows from (4.203),
(4.348))

∂ s̄

∂u
= 1

T
(4.352)

∂ s̄

∂v
= P

T
(4.353)

∂ s̄

∂wα

= −gα − gn

T
α = 1, . . . , n − 1 (4.354)

the following determinants are positive (independent variables are here u, v, w1, . . .,
wn−1):

∂ − (1/T )

∂u
> 0,

∂(−1/T,−P/T )

∂(u, v)
> 0 (4.355)

∂(−1/T,−P/T, (g1 − gn)/T, . . . , (gk − gn)/T

∂(u, v, w1, . . . , wk)
> 0 k = 1, . . . , n − 1

(4.356)
From these inequalities (4.355), (4.356), the properties of the jacobians and using a
“thermodynamic” way in writing some partial derivatives (see (4.214)) and functions
(4.217), (4.216) (for y = u, v, g respectively) we obtain

∂ ŭ

∂T
→
⎞

∂u

∂T

⎠
v,wα

= ∂ û

∂T
> 0 (4.357)
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which may be called the heat capacity at constant volume in mixture (cf. Appendix
A.1),

∂ P̆

∂v
→
⎞

∂ P

∂v

⎠
T,wα

< 0 or
∂ṽ

∂ P
< 0 (4.358)

∂(g̃1 − g̃n)

∂w1
> 0, . . . ,

∂(g̃1 − g̃n, . . . , g̃k − g̃n)

∂(w1, . . . , wk)
> 0, . . . ,

∂(g̃1 − g̃n, . . . , g̃n−1 − g̃n)

∂(w1, . . . , wn−1, P)
> 0

(4.359)

Proof (cf. analogous deduction (3.256), (3.257)) Inequalities (4.355) (where allwϑ

are constants) give

0 <
∂ − (1/T )

∂u
= 1

T 2

(
1/

⎞
∂u

∂T

⎠
v,wα

)

leading to (4.357) (we use (4.212) for y = u, (4.195), (4.23), (4.22)) and

0 <
∂(−1/T,−P/T )

∂(u, v)
= ∂(−1/T,−P/T )

∂(T, v)

∂(T, v)

∂(u, v)

=
(

(−1/T 3)

⎞
∂ P

∂v

⎠
T,wα

)(
1/

⎞
∂u

∂T

⎠
v,wα

)

which by (4.357) gives (4.358)1 (and from this following invertibility of (4.214) to
(4.215) also (4.358)2).

Further, from (4.356)

∂(−1/T, −P/T, (g1 − gn)/T, . . . , (gk − gn)/T )

∂(u, v, w1, . . . , wk)

= ∂(−1/T, −P/T, (g1 − gn)/T, . . . , (gk − gn)/T )

∂(−1/T, −P/T, w1, . . . , wk)
.
∂(−1/T, −P/T, w1, . . . , wk)

∂(u, v, w1, . . . , wk)

= (1/T )k ∂(g1 − gn, . . . , gk − gn)

∂(w1, . . . , wk)
.
∂(−1/T, −P/T )

∂(u, v)
> 0 k = 1, . . . , n − 1

from which follows, by (4.355) and T > 0

∂(g1 − gn, . . . , gk − gn)

∂(w1, . . . , wk)
> 0 k = 1, . . . , n − 1

Because here T, P and remaining wα are constant we obtain (4.359) using (4.216)
for yϑ = gϑ . Q.E.D.

Conditions of stability are therefore (4.357), (4.358), (4.359); from the latter it
follows equivalently, by known theorem [134, Sects.13.5–13.6], that matrix n − 1×
n − 1 from elements

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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∂(g̃α − g̃n)

∂wω

α, ω = 1, . . . , n − 1 (4.360)

is positive definite. Therefore, the determinant of order n − 1 of matrix (4.360) is
also regular, i.e. non-zero, namely positive.

For binary mixture n = 2 it follows from (4.359) and Gibbs-Duhem equa-
tion (4.221) that

∂ g̃1

∂w1
> 0 (4.361)

From these results, we obtain further consequences (again valid in equilibrium
not stressed by index for brevity). Namely, we show that from regularity of matrix
(4.360) it follows that matrix n × n with components

∂ ĝϑ

∂ρη

ϑ, η = 1, . . . , n (4.362)

is regular (i.e. its determinant of order n is non-zero, even positive), see results (4.375)
below, cf. assumption 3 at the end of Sect. 4.6.24 Indeed, the jacobian formed from
(4.362) may be transformed as follows

∂(g1, . . . , gn)

∂(ρ1, . . . , ρn)
= ∂(g1, . . . , gn)

∂(w1, . . . , wn−1, P)

∂w1, . . . , wn−1, P)

∂(w1, . . . , wn−1, v)

∂(w1, . . . , wn−1, v)

∂(ρ1, . . . , ρn)

(4.363)

and its regularity follows, because all three jacobians here are non-zero as we prove
now:

We start with the last jacobian in (4.363) which may be calculated as follows

∂(w1, . . . , wn−1, v)

∂(ρ1, . . . , ρn)
= (1/ρ)n−1(−1/ρ2) = −1/ρn+1 = −vn+1 < 0 (4.364)

because ρ, v are both positive. Namely, this jacobian contains derivatives

∂wω

∂ρϑ

= 1

ρ
(ωωϑ − wω),

∂v

∂ρϑ

= −ρ−2 ϑ = 1, . . . , n , ω = 1, . . . , n − 1 (4.365)

obtained from functions wω = ρω/
∑n

η=1 ρη or v = 1/
∑n

η=1 ρη of ρ1, . . . , ρn (cf.
(4.21), (4.23), (4.195)). Inserting (4.365) into (4.364) and rearranging we have

∂(w1, . . . , wn−1, v)

∂(ρ1, . . . , ρn)
= (1/ρ)n−1(−1/ρ2)J (4.366)

where determinant J (of order n) is defined as

24 Cf. [56, Sect. 24]; the unsuccessful proof of even positive definiteness of (4.362) in this reference
obviously needs further assumptions.
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J →

1 − w1 −w1 . . . −w1 −w1
−w2 1 − w2 . . . −w2 −w2

:
:

−wn−1 −wn−1 . . . 1 − wn−1 −wn−1
1 1 . . . 1 1

(4.367)

Now,we prove that this n × n determinant J is equal to 1, see (4.370). Namely, n−
1 negative mass fractions (−1)n−1w1.w2.....wn−1 we write before this determinant
writing in its diagonal 1 − 1/wk with k = 1, . . . , n − 1 (remaining elements are 1)
and from each line we substract the following line; the last line contains 1 only.

Expanding with respect to the last column we obtain J with determinant of order
n − 1

J = (−1)n−1w1.w2.....wn−1

−1/w1 1/w2 0 . . . 0 0
0 −1/w2 1/w3 . . . 0 0

:
:

0 0 0 . . . −1/wn−2 1/wn−1
0 0 0 . . . 0 −1/wn−1

(4.368)

From the last line, we exclude −1/wn−1 before determinant and develop according

its last line. The order of determinant breaks down (to n − 2) and we obtain

J = (−1)n−1w1.w2.....wn−1
(−1)

(wn−1)

−1/w1 1/w2 0 . . . 0 0
0 −1/w2 1/w3 . . . 0 0

:
:

0 0 0 . . . −1/wn−3 1/wn−2

0 0 0 . . . 0 −1/wn−2

(4.369)

This procedure (excluding −1/wn−2 and developing the last line again; order of
determinant breaks down) is repeated several times. So we obtain

J = (−1)n−1 w1.w2.....wn−1

wn−1.wn−2....w4
(−1)n−4

−1/w1 1/w2 0
0 −1/w2 1/w3
0 0 −1/w3

= (−1)n−1 w1.w2.....wn−1

wn−1.wn−2....w4.w3
(−1)n−3 −1/w1 1/w2

0 −1/w2

= (−1)n−1 w1.w2.....wn−1

wn−1.wn−2....w3.w2.w1
(−1)n−1 = 1 (4.370)
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Therefore, because of this result (4.370), J = 1, we have from (4.366)

∂(w1, . . . , wn−1, v)

∂(ρ1, . . . , ρn)
= (1/ρ)n−1(−1/ρ2) < 0 (4.371)

which is negative by the positivity of ρ > 0.
The central jacobian in (4.363) is

∂(w1, . . . , wn−1, P)

∂(w1, . . . , wn−1, v)
=
⎞

∂ P

∂v

⎠
T,wα

< 0 (4.372)

because the right-hand side of (4.372) is obvious and the negative sign follows from
(4.358).

Ultimately we calculate the sign of the first jacobian in (4.363)

∂(g1, . . . , gn)

∂(w1, . . . , wn−1, P)
= v.

∂(g1 − gn, . . . , gn−1 − gn)

∂(w1, . . . , wn−1)
> 0 (4.373)

Its positivity may be obtained by rearranging the left-hand side by subtracting the
last row of this jacobian from its 1 to n − 1 rows and adding to the last row these
1, . . . , n − 1 rows multiplied by w1, . . . , wn−1 respectively (values of this jacobian
are unchanged by such operations). Then the members of the last row are

∂ g̃n

∂wω

+
n−1∑
α=1

wα

∂(g̃α − g̃n)

∂wω

= 0 ω = 1, . . . , n − 1,
n∑

ϑ=1

wϑ

∂ g̃ϑ

∂ P
= v (4.374)

as follows from Gibbs-Duhem equations (4.221) and (4.267), (4.191), (4.23). Devel-
oping a determinant obtained in this way according to the last row we obtain the
right-hand side of (4.373), which is positive as follows from the important previous
result (4.359) and v > 0.

By these partial results (4.371), (4.372), (4.373) we obtain from (4.363) that the
jacobian

∂(g1, . . . , gn)

∂(ρ1, . . . , ρn)
> 0 (4.375)

is positive and therefore the matrix (4.362) is regular. In other words, the result 3.
from the end of Sect. 4.6 follows from the stability assumed in this section.

Butwe recall that these results are valid in equilibrium, specifically in a chemically
reacting mixture only at (usually special) chemical equilibrium composition (as dif-
ferent from a non-reacting mixture where every composition may be the equilibrium
one).

Therefore, the regularity of matrices (4.360), (4.362) or inequalities (4.357),
(4.358), (4.359), are the stability conditions for the mixture.
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Note that these results are valid not only in a stable reacting mixture in chemical
equilibrium but also in a stable non-reactingmixture. It contains the known result that
the chemical potential of a constituent increases with its concentration, cf. (4.361).

Now we try to show the reversal (similarly as in Sect. 3.8): any state of a regular
linear fluidmixturewith conditions of stability develops under conditions of isolation
to a uniform equilibrium state. That iswe show the dynamical stability under isolation
(and also Gibbs stability) for such a mixture. We note that generally this goal is very
complicated, especially in a chemically reactingmixture. For simplicity we therefore
prove only that the uniform equilibrium state (those given by (4.337)–(4.340)) is a
possible one in which the perturbed state kept permanently in isolation (defined
below) develops asymptoticaly as time goes to infinity [39, 79, 143].

Thus, let us assume to have a regular linear fluid mixture with stability condi-
tions ((4.357), (4.358), and (4.359)) which starts in an arbitrary non-equilibrium
(initial) state held in isolation: there is no exchange of heat, work and mass with
the environment, i.e. permanently Q = 0, iϑ = o, bϑ = o (no external or non-
inertial, e.g. centrifugal, forces) through the mixture and on its boundary there is
q = o, vϑ = o, ϑ = 1, . . . , n (but they may be non-zero inside). Chemical reactions
are going on, i.e. their rates are generally non-zero. From the known initial state we
can calculate the whole energy Eo and volume V o of the mixture by (4.341), (4.342)
which are constant during the further development as well as the constant total mass
mo from the given masses of constituents mϑ in the initial state

mo =
n∑

ϑ=1

mϑ (4.376)

We show now that such an initial state asymptotically develops to (a chemical)
equilibrium uniform state (permanent with zero reaction rates) with values of the
specific volume vo and the internal energy uo given by

vo = V o/mo (4.377)

uo = Eo/mo (4.378)

At the same time, the masses mo
ϑ in a non-reacting mixture are equal to mϑ , i.e. the

equilibrium composition is then given for the independent masses by

wo
α = mo

α/mo α = 1, . . . , n − 1 (4.379)

However in the reacting mixture mo
ϑ need not be equal to mϑ and wo

α may be cal-
culated as follows (in principle): chemical equilibrium (4.311) may be expressed
in n − h following relations if we use (4.176), (4.172) with (4.213) for yϑ = gϑ ,
eliminate T by (4.160)1 (cf. (4.357)) and use (4.22), (4.23), (4.195)

Ap(u, v, w1, . . . , wn−1) = 0 p = 1, . . . , n − h (4.380)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Putting (4.377), (4.378) for u = uo, v = vo in equilibrium (4.380)we can express
n − h mass fractions wϑ = wo

ϑ as the functions of remaining h mass fractions in
equilibrium; inserting them in (4.343), i.e. in

n∑
ϑ=1

(Sσϑ/Mϑ)mowo
ϑ =

n∑
ϑ=1

(Sσϑ/Mϑ)mϑ σ = 1, . . . , h (4.381)

we can calculate the remaining h mass fractions from these h equations (mϑ are
prescribed) and therefore all (equilibrium) values wo

α may be obtained.
We also recall that in the uniform state in chemical equilibrium (4.380) all rates

(4.302) of chemical reactions are zero, cf. below (4.312).
Because of conditions of stability (4.357), (4.358), (4.359), Eqs. (4.355), (4.356)

are valid (this is, in fact, a reversed proof of the former relations) and therefore a
negative definiteness of the matrix of second derivatives of (4.348) follows. By (iii)
and (ii) in Appendix A.3 we have equivalently for the values uo, vo (4.377), (4.378)
and just calculated (chemical equilibrium) mass fractions wo

α (cf. similar deduction
of (3.260)):

s < so + (u − uo)/T o + (v − vo)Po/T o −
n−1∑
α=1

(wα − wo
α)(go

α − go
n)/T o (4.382)

where (4.352)–(4.354) were used (remember, equilibrium values are denoted by
zero superscript) and u, v, wα, s are the values inmixture during the non-equilibrium
process. We add to the right-hand side of (4.382) the non-negative quantity∑n

ϑ=1 wϑv2ϑ/(2T o) (kinetic energies multiplied by 1/T o with velocities vϑ in the
mixture which are zeros in equilibrium) and integrate over the total mass mo. We
obtain

S →
∫

mo
s dm ⇔

∫
mo

so dm = So = somo (4.383)

where the equality occurs when in all the mixture

u = uo, v = vo, wα = wo
α (4.384)

(this is the uniform final state with entropy So and constant so, cf. above (4.387)).
The result (4.383) follows because integrals of the terms on the right-hand side in
(4.382) (extended by kinetic energy) are zero: V o, Eo in (4.377), (4.378) is given by
(4.341), (4.342) for any state and the last integral may be calculated as follows

∫
mo

n−1∑
α=1

⎛
wα − wo

α

⎝ go
α − go

n

T o dm

=
n∑

ϑ=1

go
ϑ

T o

∫
mo

(
wϑ − wo

ϑ

)
dm =

n∑
ϑ=1

(
mϑ − mo

ϑ

) go
ϑ

T o

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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= 1

T o

h∑
σ=1

Bσo

( n∑
ϑ=1

mϑ Sσϑ/Mϑ −
n∑

ϑ=1

mo
ϑ Sσϑ/Mϑ

)
= 0 (4.385)

where we use (4.23). For nonreacting mixture mϑ = mo
ϑ and these results follow

immediately. For a reacting mixture the decomposition (4.177) for chemical equi-
librium (4.313) has been used with (4.172) where Bσo are the equilibrium values of
∈B. Introducing (4.313) into (4.385) and using (4.381), (4.379) we obtain the result
(4.385) and therefore also (4.383).

Before going further, we note that analogously as in Sect. 3.8 (i.e. all velocities
are considered to be zero), we can define the Gibbs stability (under isolation) of the
equilibrium state (usually for a non-reacting mixture) if for every state with (4.341),
(4.346), (4.347), the inequality (4.345) is valid. From this definition, the stability
conditions (4.357), (4.358), (4.359) may be deduced (similarly as shown above).
Reversely, these conditions express the Gibbs stability.

Now, from the entropy inequality (4.83) for our isolated mixture we have (using
entropy production (4.84) and (4.91); dm = ρdv, cf. below (4.342))

Ṡ(t) → d

dt

∫
mo

s dm =
∫

V o
σ dv ≤ 0 (4.386)

Thus during the process the entropy S does not decrease in time (4.386) and has
an upper bound (4.383). As the result, similarly as in Sect. 3.8 in (3.266), it may
be obtained that in uniform equilibrium achieved at t → ∞, the value of entropy
reaches the value So from (4.383) and therefore also equality here is attained

lim
t→∞ S = So (4.387)

In additional simplifying assumptions as in Sect. 3.8weobtain even in this reacting
mixture (cf. Rem. 47 in Chap. 3) analogues of (3.267), (3.268)

lim
t→∞ Ṡ(t) = 0 (4.388)

σ o = lim
t→∞ σ = 0 (4.389)

everywhere and persistently.
This limiting state with So, Eo, V o, m0 has been obtained as a result of time

development from the starting state at t → ∞ in fixed conditions Q = 0, iϑ =
o, bϑ = o through the (body of) the mixture and q = o, vϑ = o on its boundary.
The resulting equilibrium mixture (cf. beginning of this Sect. 4.7) is uniform with
everywhere constant and time independent so, uo, temperature, composition wo

ϑ in
chemical equilibrium with zero affinities and chemical reaction rates. Zero entropy
production σ = σ 0 = 0 (4.389) is valid in any place and permanently and similarly,
by regularity conditions (mainly 1 and 3, see the end of Sect. 4.6 and beginning of

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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this Sect. 4.7), permanently and everywhere (4.302)–(4.319) and (4.321), (4.322) (or
(4.324) in the appropriate frame). Because of no inertial and/or body forces iϑ =
o, bϑ = o we have no densities gradients and (4.336) which is limiting equilibrium
state is uniform.

The problem of approaching to a state of chemical equilibrium is solved and
discussed in detail in Edelen’s works [39, 143].

Again as in Sect. 3.8, conditions of stability give the dynamical stability at other
conditions. Thus, similar asymptotic evolution to the equilibriumstate of a chemically
reacting linear fluid mixture in a closed vessel immersed in a thermostat and in an
external gravitation field may be discussed [79, 143].

Here we show another example (cf. Edelen [39] for more details): asymptotic evo-
lution to equilibriumof the linear fluidmixturewith regular equilibrium response, ful-
filling the stability conditions ((4.357), (4.358) and positive definiteness of (4.360))
and placed in a thermostated cylinder closed by piston under constant pressure. That
is, the boundary of this mixture is under constant temperature T o (over the whole
boundary) and its movable part is under constant pressure Po, i.e. the whole stress
(4.94) is

T = −Po1 (4.390)

Further, there are the same velocities of all constituents on the boundary: on its fixed
part vϑ = o, on its movable part vϑ → v, ϑ = 1, . . . , n . We assume also that there is
no radiation Q = 0 (4.303) (but exchange of heat by heat flux q through the boundary
is possible), the frame is inertial iϑ = o and there are no body forces bϑ = o. Total
mass of the mixture mo is constant but starting masses of constituents mϑ can change
by chemical reactions. We intend to show that an arbitrary (non-equilibrium) state of
this mixture develops on conditions just given to an equilibrium state, i.e. that such a
state is stable. The balance of energy (4.77) for such a mixture at these conditions is

˙n∑
ϑ=1

∫
V
(wϑuϑ + wϑ(1/2)v2ϑ)ρ dv = −Po

∫
∂V

v.n da −
∫

∂V
q.n da (4.391)

where the left-hand side of (4.77) was transformed by Reynolds theorem (3.24) with
the use of material derivative \ϑ (cf. below (4.9)); because V is the same for all
constituents and on its surface vϑ = v we use a dot instead of \ϑ in the sense used
in this section, see below (4.323). By the same arguments, we can use (3.23), (3.22)
(with ρ = ρv = 1) on the first surface integral in (4.391) to obtain

Po
∫

∂V
v.n da =

˙∫
V

Poρv dv (4.392)

and we put (4.392) to the left-hand side of (4.391). Moreover, we subtract the follow-
ing quantity with constants go

ϑ (ϑ = 1, . . . , n) from the left hand side of (4.391):

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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˙∫
V

n−1∑
α=1

wα(go
α − go

n)ρ dv =
n−1∑
α=1

(go
α − go

n)

\α∫
V

ρα dv =
∫

V

n∑
ϑ=1

go
ϑrϑ dv

= −
∫

V

∈Ao. ∈J dv = 0 (4.393)

which is equal to zero by (4.311) (we use (4.16) in the form (d) in Rem. 3, (4.20) and
the product from (4.178), see (4.174), (4.172), (4.26), (4.36)). Namely, in (4.393),
wα, ρα, ρ, ∈J , V are taken in an arbitrary state (say the initial one) but constants go

ϑ

are the chemical potentials in (uniform) chemical equilibrium mixture at its T o, Po

and wo
α (these values characterize the final equilibrium state in the evolution of the

starting state at given conditions as we shall see below). Thus from (4.391), we obtain
(using (4.90))

˙∫
V

ρ(u + Pov −
n−1∑
α=1

wα(go
α − go

n) + (1/2)
n∑

ϑ=1

wϑv2ϑ) dv = −
∫

∂V
q.n da

(4.394)
Now we write the entropy balance (4.83) for our mixture with fixed temperature

T o on the boundary (and Q = 0) using entropy production σ and Reynolds theorem
(3.24) (with a dot instead of \ϑ argumenting similarly as below (4.391))

˙∫
V

n∑
ϑ=1

ρϑsϑ dv + (1/T o)

∫
∂V

q.n da =
∫

V
σ dv ≤ 0 (4.395)

Multiplying (4.395) by T o, using (4.91) and inserting here (4.394), we obtain

Ṙ(t) = −T o
∫

V
σ dv ⇔ 0 (4.396)

where we define the canonical function R = R(t) as follows

R(t) →
∫

V
ρ(u − T os + Pov −

n−1∑
α=1

wα(go
α − go

n) + (1/2)
n∑

ϑ=1

wϑv2ϑ) dv (4.397)

Now, because of conditions of stability ((4.357), (4.358) and the positive definiteness
of matrix (4.360)), inequality (4.351), and therefore (cf. (A.72), (A.73)) equivalently
(4.382), is valid in a chemical equilibrium state characterized by T o, Po, wo

α (in
(4.382) is so = s̃(T o, Po, wo

α) by (4.217)). This inequality (4.382) may be trans-
formed by (4.197), (4.198), (4.192), (4.23) in the form

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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u − T os + Pov −
n−1∑
α=1

wα(go
α − go

n) > go
n (4.398)

Adding to the left-hand side of (4.398) a non-negative quantity (1/2)
∑n

ϑ=1 wϑv2ϑ
(velocities are in the place and instant where u, s, v, wα , etc. are considered), mul-
tiplying by ρ > 0 and integrating over the (material) volume of all the mixture we
obtain

R(t) ≤ Ro → go
n

∫
V

ρ dv = go
n mo (4.399)

where the definition of canonical function (4.397) was used (the integral in (4.399)
is obviously the constant mass mo of the whole mixture). Equality in (4.399) occurs
when T o, Po, wo

α and therefore uo, so, vo, etc. and also vϑ = o for all constituents
are valid throughout the mixture.

Thus we constructed, analogously as in previous examples in Sects. 4.7 and 3.8,
the canonical function R(t) which does not increase (4.396) and has a lower bound
(4.399).

Therefore, similarly as by (4.387) or (3.266), it may be expected that also equality
in (4.399) is achieved at t → ∞.

lim
t→∞ R(t) = Ro (4.400)

This is motivated similarly as (3.266), (3.281), (4.387). Other similar assumptions
(giving (3.267), (3.268), (4.388),(4.389)) may be used to derive similar results
limt→∞ Ṙ = 0 and limt→∞ σ = 0, valid permanently and in all the mixture
(with similar consequences as (4.389)).

We thereforefind that themixture of linear fluidswith regular equilibrium response
achieves a uniform equilibrium statewith T o, Po everywhere in themixture (because
they were such permanently at the boundary) and therefore with wo

α (calculated
analogously as from (4.380) (using T, P, wα as independent variables), (4.381)) and
moreover with vϑ = o in all the mixture (because this was permanently held on the
part of its boundary).

Summary. This section analyses the equilibrium in the mixture of linear flu-
ids equipped with the regularity condition introduced in the preceding section. The
equilibrium was defined by zero entropy production, zero reaction rates and exclud-
ing the body heating, cf. (4.301)–(4.303), respectively. The entropy production or its
parts given in Sect. 4.5 reach also aminimum in such equilibrium. Fromall these equi-
librium characteristics, several important results can be derived. Chemical affinities
of independent reactions are zero in equilibrium, cf. (4.312). The remark 22 contains
an important restriction on rates of these reactions, the relation (e), aswill be shown in
Sect. 4.9. The constitutive equations which are changed in equilibrium are shown by
(4.319)–(4.321), other remained unchanged, viz. (4.157)–(4.159). The equilibrium
is permanent in time as shown on page 213 but the space changes are not excluded,
unless the equilibrium is uniform, see pages 213–214. Most of this section is devoted

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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to the analysis of stability of equilibrium. The dynamical stability is postulated on
page 215 and the stability per se on page 216. The main results of the analysis of
equilibrium are as follows: There is an upper—equilibrium—bound on entropy, see
(4.345), and entropy as a function (4.348) is strictly concave; see also (4.383) and
(4.386). The conditions of stability were derived in the form of (4.339)–(4.359). The
condition (4.375) proves the regularity of the matrix (4.362) which was only sup-
posed in previous section. Similarly, the conditions (4.358) prove the invertibility of
the specific volume as a function of pressure and justify the introduction of pressure
among independent variables which was done also in preceding section. Note that
all these regularity conditions are valid in stable mixtures only, i.e. mixtures with
stable equilibrium. This section concludes with the example analysing the approach
to equilibrium of linear fluid mixture with regularity conditions placed in a ther-
mostated cylinder with piston under constant pressure. The evolution to equilibrium
is described by the canonical function defined in (4.397), see (4.396), (4.398), and
(4.400).

4.8 Special Cases of Linear Fluid Mixtures. Chemical
Potentials and Activities

Here we discuss some special cases of the (reacting, non-simple) fluid mixture with
linear transport properties of Sect. 4.1–4.7 which may be often obtained by simpli-
fication of this model [16, 61, 65, 149–151]; simplified models for pure fluids were
also discussed in Sects. 3.6–3.8. But simplification must be done carefully, e.g. the
expression for entropy production should give additional results by admissibility,
cf. end of Sect. 3.6, Rem. 25.

In this Sect. 4.8 we discuss also the results concerning chemical potentials and
activities, studiedmainly by classical equilibrium thermodynamics of mixtures [129,
138, 141, 152]. These are also valid in our models, among others in non-equilibrium
(e.g. in transports or/and chemical reactions), because of the validity of local equi-
librium, cf. Sect. 4.6.

While in the previous sections the difference between pure constituent andmixture
was given by separated Chap.3 and in this chapter (e.g. g in Sect. 3.7 concerns pure
constituent (3.205)while in Sect. 4.6 the same symbol g concerns themixture (4.192))
in the followingwe use both concepts together and thereforewe use (namely in places
where misunderstanding is possible) the following indexation:

• means the pure fluid
0 means the pure ideal gas (note the difference from the equilibrium value o)
s denotes the standard value or state (specified below, e.g. � in (4.468))

Therefore, e.g. g or gϑ is the Gibbs specific energy of the mixture or of constituent
ϑ in the mixture respectively, while g• or even g•

ϑ both are the same Gibbs specific
energy of pure fluid (gas or liquid); by index ϑ we only stress that we consider (in this

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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case pure) constituent ϑ. Moreover, Mg• = μ• = μ•
ϑ = Mϑg

•
ϑ is the molar Gibbs

energy of the pure constituent ϑ with the molar mass M = Mϑ . We also often write
for brevity xϑ = 0, xϑ = 1, P = 0, instead of limits xϑ → 0, xϑ → 1, P → 0,
etc. (cf. non-zero assumption of all densities at the beginning of Sect. 4.2), e.g. the
(practically) pure constituent 1 follows from a binary mixture if x2 → 0, x1 → 1,
(the presence of 2 is negligible).

(i) Non-reacting Mixture of Non-simple Linear Fluids
In this mixture, zero chemical reactions rates (4.15) are valid identically for all
constituents

rϑ → 0 ϑ = 1, . . . , n (4.401)

Therefore, the expressions containing rϑ are eliminated from the results of Sect. 4.5–
4.7. We note only that in a non-reacting mixture equations (4.184) are valid and
therefore identically (see (4.186))

Pϑ → pϑ ϑ = 1, . . . , n (4.402)

i.e. the thermodynamic pressure P (4.187) is measurable through (4.94), (4.138)
in principle. In the non-reacting mixture, all transport coefficients form positive
semidefinite matrices, i.e. besides (4.181) we have instead of (4.182)

ταα ≤ 0 (4.403)

Equilibrium discussions are more simple as was noted in Sect. 4.7; e.g. regularity
(giving usual stability of equilibrium) demands inequality only in (4.403). For the
case n = 1 we recover the results for the single linear fluid of Sect. 3.6.

(ii) Incompressible Fluid Mixture [104, 153]
which, as may be expected, should have similar properties (3.215), (3.216) as the
incompressible fluid discussed at the end of Sect. 3.7. But the situation is not so simple
because of the dependence on composition. Namely, using the Müller’s concept [18]
of incompressibility as independence of properties on pressure, elimination of the
pressure P from the independent variables T, P, w1, . . . , wn−1 (cf. (4.279), (4.280))
gives, from (4.282), ∂ρ̃

∂T → 0. Therefore, the density of the mixture (and by (4.195)
also the specific mixture volume) remains dependent on mass fractions only

ρ = ρ̃(wα), v = ṽ(wα) (4.404)

(cf. the difference from (3.215) in pure incompressible fluid).
From the last result (4.404)2 of an incompressible mixture, the formulae (4.269),

(4.270) for y = v give that partial volumes depend on wα only, vϑ = ṽϑ(wα), and
also (4.191) is

v = ṽ(wα) =
n∑

ϑ=1

wϑṽϑ(wα) (4.405)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Therefore, the constant mixture density is not achieved (as in (3.215)), unless further
assumptions are adopted:

The usual assumption is the independence of partial volumes on composition
[58, 153]

vϑ = v•
ϑ = 1/ρ• = const. (4.406)

where ρ• = ρ•
ϑ may be interpreted as the constant density of the pure incompressible

fluid constituent ϑ before mixing (cf. (3.215)) and (4.405) expresses the Amagat
law (incompressible fluid mixture is volume-additive), cf. (4.440) or (with (4.195),
(3.199))

1/ρ =
n∑

ϑ=1

wϑ(1/ρ•
ϑ) (4.407)

We again see that the constant mixture density is not achieved and further additional
assumptions are needed, like (see [104]):

• Restriction to a (chemically) non-reacting incompressiblemixture:mixture density
(4.404) is constant because the composition is fixed (wα = const.).

• Another possibility for a volume-additive incompressible (even reacting) mixture
is (approximately) the same density ρ•

ϑ of all constituents and therefore equal to
the constant mixture density ρ

ρ•
ϑ = ρ = const. ϑ = 1, . . . , n (4.408)

• Another plausible assumption, e.g. in dilute (usually aqueous) solutions (water is
the n-th constituent) where the mixture density is practically constant and equal to
the density of pure water ρ = ρ•

n = const. because wα � wn, α = 1, . . . , n − 1,
see [104].

Therefore with such (or similar) additional assumptions, the constant density
for incompressible fluid mixture should be achieved and also other properties are
obtained (properties from Rem. 3 based on barycentric velocity are often used [58])

ρ = const. ρ̇ = 0 div vw = 0 (4.409)

Hereρ is themixture density (4.21), ρ̇ itsmaterial derivative relative to the barycentric
velocity vw defined as (c) in Rem. 3; the last expression follows from the previous
one by mass balance (b) here.

(iii) Mixture of Simple Linear Fluids (Simple mixture)
As a simple fluid, we denoted a fluid, the response of which was independent of

density gradient (cf. end of Sect. 3.6, [16–18, 56, 61]). Therefore a mixture of simple
linear fluids or shortly a simple mixture of fluids is that from Sect. 4.6 (fulfilling,
e.g.(4.263), (4.269), (4.270), (4.278)) defined by a priori absence of the density
gradients hϑ in (4.136), (4.137) or equivalently (4.149) and identities

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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λαη = 0 α = 1, . . . , n − 1; η = 1, . . . , n (4.410)

are valid. As a consequence, there is significant reduction of dependence of thermo-
dynamic quantities on composition in the simple fluidmixture. Namely, from (4.410)
identically follows

∂ f̂ϑ
∂ρη

→ 0 ϑ �= η, ϑ, η = 1, . . . , n (4.411)

because of (4.165) and (for ϑ = n) of (4.161),(4.92),(4.22) (recall that λαα =
0, ωαn = 0, α = 1, . . . , n − 1). Then also (4.161) reduces to

∂ρϑ f̂ϑ
∂ρϑ

= gϑ = ĝϑ(T, ρϑ) ϑ = 1, . . . , n (4.412)

Therefore, we found that in the mixture of simple fluids, the partial free energy
of constituent ϑ is independent of densities of other constituents (note the difference
with (4.159))

fϑ = f̂ϑ(T, ρϑ) ϑ = 1, . . . , n (4.413)

as well as the chemical potential (4.412). This surprising result (4.413) was shown
first by Müller [16] for simple models with linear transport.25

The same simplifying property is valid by (4.200) for partial thermodynamic
pressure

ρ2
ϑ

∂ f̂ϑ
∂ρϑ

= Pϑ = P̂ϑ(T, ρϑ) ϑ = 1, . . . , n (4.414)

From (4.194), (4.413), (4.412) itmay be seen that also Pvϑ depends on corresponding
ρϑ only (and T ) in contrast with P, vϑ, sϑ, uϑ, hϑ which generally depend on all

25 Therefore, simple models excluding density gradients from independent variables of constitutive
equations a priori are not able to describe, e.g. classical thermodynamics of solutions [129, 138] (cf.
Sect. 4.6); a gaseous simple mixture is in fact the mixture of ideal gases only [61], see (iv) below.

Result (4.411) may be valid in some more general but simple fluids [17, 18, 53]. For example,
in non-linear (even reacting) simple fluid mixture from [72] where the density gradients hη are
removed a priori: they are absent, e.g. in constitutive equations [72, (2.26)–(2.33)] and the “second”
chemical potentials [72, (2.47)] they are zero. Therefore, the 4th and 5th term in the right-hand side
of [72, (2.64)] are linear in hη in such a simplemixture and, consequently, again by the admissibility
principle (using Lemma A.5.1 from Appendix A.5), the following identities are valid

(gϑ − fϑ)uϑ −
n∑

η=1

ρη

∂ f̂η
∂ρϑ

uη = ϑ = 1, . . . , n

(in [72, (2.64)] is a misprint: the 5th term should include a negative sign). Manipulating here with
the independent diffusion velocities uϑ (note that un → o, [72, (2.23), (2.46)] ) we arrive at (4.411).
Cf. also [79, Sect. 40]. Because the thermodynamic structure in this non-linear model is the same
(cf. [72, (2.46), (3.28), (3.29)] ) also other relations, like (4.412), (4.414) remain valid here.
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ρ1, . . . , ρn and T (cf. (4.413)–(4.414), (4.194), (4.187), (4.188), (4.189), (4.272),
(4.86)).26

We can show that such a simple fluidmixture has a special formof “state equation”
(4.414): indeed, we noted above (4.278) that expressions (ρϑ/Pϑ)(∂ P̂/∂ρϑ) are the
same for all constituentsϑ = 1, . . . , n (cf. [61, Eq. (2.11)]) generally, but for a simple
mixture, using (4.414) in (4.187) we have ∂ P̂/∂ρϑ = ∂ P̂ϑ/∂ρϑ depending, as well
as Pϑ , only on the density of the considered constituent ϑ (and on temperature).
Therefore, there is a universal C (possibly a function of temperature)

ρϑ

Pϑ

∂ P̂ϑ

∂ρϑ

= C = C(T ) ϑ = 1, 2, . . . , n (4.415)

in a simple mixture.
By integration, we obtain the following general form of dependence of partial

pressures on densities in a simple fluid mixture (the state equation)

Pϑ = Kϑ(ρϑ)C ϑ = 1, 2, . . . , n (4.416)

where Kϑ = Kϑ(T ), as well as C(T ), are functions of temperature T only.
We note also that for such a simple fluidmixture we have from (4.415) and (4.414)

that ∂2 f̂ϑ/∂ρ2
ϑ = ((C − 2)/ρϑ)∂ f̂ϑ/∂ρϑ and therefore ∂ P̂ϑ/∂ρϑ = (Cρϑ)∂ f̂ϑ/∂ρϑ

and by (4.412) ∂ ĝϑ/∂ρϑ = C ∂ f̂ϑ/∂ρϑ .
Using these and previous formulae, we can obtain from (4.273) for a simple fluid

mixture (by (4.187))

vϑ = (
∂ P̂ϑ

∂ρϑ

)/


 n∑

η=1

ρη

∂ P̂η

∂ρη


 = ρϑ(

∂ f̂ϑ
∂ρϑ

)/


 n∑

η=1

ρ2
η

∂ f̂η
∂ρη


 = KϑρC−1

ϑ

P

= ρϑ(
∂ ĝϑ

∂ρϑ

)/


 n∑

η=1

ρ2
η

∂ ĝη

∂ρη


 ϑ = 1, . . . , n

The dependence of partial properties fϑ, gϑ, Pϑ, Pvϑ only on the density of cor-
responding constituent ϑ (besides T ) in this simplemixturemeans (if we put ρη → 0
for other constituents) that such a partial propertymay be interpreted as a correspond-
ing property of pure constituent ϑ at the same density and temperature (as ρϑ, T in
the mixture considered). E.g. relation (4.414) together with (4.187) expresses the
classical Dalton law valid in this simple fluid mixture because we can interpret Pϑ

as the pressures of pure constituents ϑ at a given density and temperature before
mixing, the sum (4.187) of which is the pressure P of the mixture at the same partial
densities and temperature.

26 We stress that we use only the classical partial thermodynamic quantities, calculable (say) by

(4.269), (4.270), but there are also other possible definitions, e.g. partial entropies by− ∂ f̂ϑ
∂T (different

by (4.272)), cf. [17, 18]. These are, however, not so useful as those classical.
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(iv) Mixture of Ideal Gases
We show here that the mixture of ideal gases is equivalent to the simple fluid mixture
from (iii), if its constituents and their mixture are gases [61] (modelling gas by linear
fluid seems to be sufficient; moreover, the thermodynamic relations used here remain
valid even in some models with non-linear transport as in [72], cf. Rem. 25).

The density and pressure of pure real gas (as different from liquid) goes to
zero simultaneously, see Appendix A.1. Therefore, Pvϑ considered for a pure
gas constituent (i.e. as a product of the pressure P and the specific volume vϑ

of the pure constituent ϑ; we omit symbols above with which we could write
P• = P•

ϑ , ρ•
ϑ = 1/v•

ϑ , cf. (3.199)) has the property (A.1) permitting the intro-
duction of absolute temperature based on any gas (see Appendix A.1; we use T
(1.30) for temperature), that is

lim
ρϑ→+0

Pvϑ = RT

Mϑ

= lim
ρϑ→+0

Pϑ

ρϑ

ϑ = 1, . . . , n (4.417)

where R is the gas constant and Mϑ is the molar mass of the constituent.
Now, following the property of the simple mixture discussed at the end of (iii)

above, we can interpret (4.417) and the quantities in it as those in a gaseous simple
fluid mixture, i.e. Pϑ, ρϑ, vϑ are corresponding partial quantities in this mixture
fulfilling, e.g. (4.278), (4.188). Inserting (4.416) into (4.417) we obtain

lim
ρϑ→+0

(ρϑ)a = b ϑ = 1, . . . , n (4.418)

where a → C − 1, b → RT/(Kϑ Mϑ) .
But (4.418) is valid if and only if a = 0, b = 1 (limits b for a > 0 or a < 0 are

0 or +∞ respectively without physical sense; densities are only positive). Therefore
C = 1, Kϑ = RT/Mϑ and “state equation” (4.416) of the simple gas mixture is
an ideal one

Pϑ = ρϑ

RT

Mϑ

ϑ = 1, . . . , n (4.419)

valid at any density and pressure (and not only in the limit (4.417)). This and the
following relations show that the gaseous simplefluidmixture is the ideal gas mixture.

Moreover, for such a simple gas mixture, it follows by (4.419), (4.278) that partial
molar volumes vϑ Mϑ of all constituents are the same

vϑ Mϑ = RT/P ϑ = 1, . . . , n (4.420)

From this, the independence of vϑ = ṽϑ(T, P) on w1, . . . , wn−1 follows (see
(4.216)) which permits interpretation of v as the specific volume of the pure con-
stituent ϑ and (4.191) expresses the validity of Amagat’s law in an ideal gas mixture
(Amagat’s law asserts that partial specific volumes in mixture in (4.191) are equal
to specific volumes of pure constituents at the same P, T of the mixture, cf. (4.440)
below); here, moreover, all molar partial volumes are the same (4.420).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_1
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Using (4.191), (4.420), (4.294) we obtain for the molar volume of mixture vM
(4.295) the following state equation for the ideal gas mixture (which is the same as
for pure ideal gas (A.3))

PvM = RT (4.421)

Equations (4.421) and (4.419), (4.420) are state equations of the ideal gas for the
mixture and its constituents. Note, that interpreting (4.417) as valid for every con-
stituent ϑ = 1, . . . , n in a simple gaseous mixture, multiplying each (4.417) by wϑ

and summing them we obtain (using (4.191), (4.294); the limit in all ρϑ with fixed
wϑ may be obviously substituted by the limit in P)

lim
P→+0

Pv = RT/M (4.422)

But, following the discussion given at the end of iii. above and similarly as for the
first “pure” interpretation of (4.417), we can interpret (4.422) as a limiting property
of each real gas mixture of fixed composition, i.e. property (A.3) is valid also for
mixtures of real gases which therefore in the limit of zero pressures behaves as an
ideal gas mixture with state equation (4.421).

Inserting (4.419) through (4.187) into (4.278) we obtain

ρϑvϑ = (
ρϑ

Mϑ

)/


 n∑

η=1

ρη

Mη


 = xϑ ϑ = 1, . . . , n (4.423)

i.e. ρϑvϑ in the ideal gas mixture is equal to the molar fraction (see (4.288), (4.290)).
From (4.278) the Dalton law for partial pressures for the mixture of ideal gases
follows:

Pϑ = xϑ P ϑ = 1, . . . , n (4.424)

which fulfils (another form of) Dalton’s law (4.187).
From (4.423) (cf. (4.213)) we can also see that the partial specific volumes are

independent of temperature in the ideal gas mixture

vϑ = v̂ϑ(ρη ) ϑ = 1, . . . , n (4.425)

and therefore instead of general result (4.272) we have

− ∂ f̂ϑ
∂T

= sϑ = ŝϑ(T, ρϑ) ϑ = 1, . . . , n (4.426)

in the ideal gas mixture. This is not only an analogue of general result (4.164) but,
moreover and much more importantly, it gives partial entropy as depending on the
density ρϑ of the constituent ϑ only (besides T ; cf. also (4.434)). Then, according to
the discussion at the end of (iii) above, the partial entropy sϑ may be interpreted as
specific entropy of pure (ideal) gas at a density equal to those in the mixture. This
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permits direct calculation of the mixing entropy (4.435) from pure ideal gases. This
traditional calculation of mixing entropy in the ideal gas mixture is therefore well
motivated by the fact that this mixture is the simple one.

Further, partial internal energies and enthalpies are functions only of temperature
in the ideal gas mixture (simple gas mixture)

uϑ = ûϑ(T ) ϑ = 1, . . . , n (4.427)

hϑ = ĥϑ(T ) ϑ = 1, . . . , n (4.428)

Equation (4.427) follows from (4.86) and from (4.426) by derivation with respect
to ρϑ . Namely, ∂ ûϑ

∂ρϑ
→ 0 because it follows from (4.414) and (4.419)

∂ f̂ϑ
∂ρϑ

= Pϑ

ρ2
ϑ

= RT

Mϑρϑ

ϑ = 1, . . . , n (4.429)

Equation (4.428) then follows from (4.189), (4.427), (4.420).
Then, e.g. the internal energy u of the ideal gas mixture (and therefore, the heat

capacity of the mixture (4.357)) depends on its composition in a simple way as may
be seen from (4.427), (4.90).

The well-known logarithmic dependence of partial free energies, entropies or
chemical potentials on composition in the ideal gas mixture (like densities, molar
concentrations or fractions, partial pressures, etc.) follows as a consequence of the
ideal state equation (4.419). For example, by integration of (4.429)

fϑ = f̂ 0ϑ (T ) + RT

Mϑ

lnρϑ ϑ = 1, . . . , n (4.430)

where f̂ 0ϑ (T ), depending on temperature only, is the free energy of pure gas ϑ at
unit density (depending on its physical dimension). Inserting (4.430) with (4.419),
(4.420) into (4.194) we have with classical partial pressure (4.424) in the ideal gas
mixture

gϑ = ĝ0ϑ(T ) + RT

Mϑ

lnPϑ ϑ = 1, . . . , n (4.431)

with ĝ0ϑ(T ) → f̂ 0ϑ (T ) + (RT/Mϑ)(1 + ln(Mϑ/RT )) depending again on pressure
units. Equation (4.431) is one of the proposed definitions of the mixture of ideal
gases, cf. [154] (Chap.3).

Here it has been shown that the property of the ideal gas mixture follows from the
model of a simple fluid mixture of gases. In fact both these models are equivalent,
because from (4.430), (4.431), (4.419) Eqs. (4.413), (4.412), (4.414) follow [61].

The result (4.431) may be written for the more usual molar chemical potential μϑ

(4.172) using (4.424) as a logarithmic function of the molar fraction in the mixture
of ideal gases
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μϑ = (Mϑg
0
ϑ(T ) + RT lnP) + RT lnxϑ = μ0

ϑ(T, P) + RT lnxϑ ϑ = 1, . . . , n
(4.432)

where μ0
ϑ(T, P) is the molar chemical potential of pure ideal gas constituent ϑ at

T, P of the mixture (as follow from xϑ → 1). Hence the mixture of ideal gases
(or gaseous mixture of simple fluids) is an example of an ideal mixture defined by
(4.437) below.

From (4.432), we obtain by (4.290), (4.295), (4.421) for a mixture of ideal gases

μϑ = (Mϑg
0
ϑ(T ) + RT ln RT ) + RT lncϑ = μ0

ϑ(T ) + RT lncϑ ϑ = 1, . . . , n
(4.433)

(as the simplemixture fulfils (4.412)2 inmolar units) used below, see (4.468), (4.469),
Rem. 27.

Using (4.432) in (4.266) (with molar units (4.172); at constant wω is such also xω ,
see (4.292), (4.297)) we obtain for the molar entropy in the mixture of ideal gases

∂μϑ

∂T
= Mϑsϑ = Mϑs0ϑ(T, P) − R lnxϑ ϑ = 1, . . . , n (4.434)

where Mϑs0ϑ(T, P) is the molar entropy of pure ideal gas ϑ at T, P of the mixture.
Using (4.267) we obtain (4.420) analogously.

Equation (4.434) permits the calculation of mixing entropy (change of entropy at
mixing of pure constituents to mixture) defined as the difference between the entropy
of the mixture and the sum of entropies of pure constituents: molar mixing entropy
(related to onemole ofmixture, is therefore (usingmolar quantities in (4.434), (4.91),
(4.292) at the same T, P of pure constituents and in mixture):

Ms −
n∑

ϑ=1

xϑ Mϑs0ϑ = M
n∑

ϑ=1

wϑ(sϑ − s0ϑ) = −R
n∑

ϑ=1

xϑlnxϑ (4.435)

Just because this is the simple mixture, the partial entropy sϑ may be interpreted as
specific entropy of pure (ideal) gas at a density equal to those in the mixture (see
(4.426) and below), and the mixing entropy may be calculated as the sum of entropy
changes at the expansion of pure (ideal) gases ϑ (with masses wϑ) from starting
density (before mixing) to final density (as in the mixture).

It is possible to define another mixing property in a similar way (besides s also
for v, u, h, f, g), e.g. the specific mixing volume (related to mass unit of mixture) is
defined as the left hand side of following equation

v −
n∑

ϑ=1

wϑv0ϑ = 0 (4.436)

This mixing volume is zero for ideal gases because the specific volume of mixture
is given by (4.421) and the specific volume of pure ideal gas ϑ at the same T, P as
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in the mixture (wϑ is its mass in mixture of unit mass) is v0ϑ = RT/P Mϑ , cf. (A.3),
(4.292), (4.291).

Mixing thermodynamic properties can be calculated in some simple models like
(iv) or (v) here. In a general non-simple mixture, they are usually obtained experi-
mentally.

(v) Ideal Mixture
Motivated by (4.432) we use in classical thermodynamics (e.g. [129, 138, 152, 155])
the ideal mixture or the ideal solution defined by the following expression for molar
chemical potential of gas or liquid

μϑ = μ•
ϑ(T, P) + RT lnxϑ ϑ = 1, . . . , n (4.437)

where μ•
ϑ(T, P) is the chemical potential of pure fluid (gas or liquid) at the same

T, P as in the mixture, R is the universal gas constant (A.2).
An ideal mixture is generally different from a simple mixture; an exception is the

ideal gas mixture which is also a simple mixture, see (4.432) and Rem. 27. But, on
the other side, the ideal mixture (4.437) (and this is its main motivation) has many
properties similar to the ideal gas mixture:

• molarmixing entropy follows from (4.266), (4.172) (cf. (4.434)), quite analogously
as (4.435) but with (4.437) instead of (4.432): for molar entropy we have

Mϑsϑ = Mϑs•
ϑ(T, P) − R lnxϑ ϑ = 1, . . . , n (4.438)

(where Mϑs•
ϑ = −∂μ•

ϑ(T, P)/∂T is the molar entropy of pure constituent ϑ) and
therefore

Ms −
n∑

ϑ=1

xϑ Mϑs•
ϑ = −R

n∑
ϑ=1

xϑlnxϑ (4.439)

The mixing entropy in an ideal mixture is therefore the same as in an ideal gas
mixture (4.435) but it is valid more generally, e.g. in the liquid the ideal mixture
is formed from liquid pure constituents.

• Mixing volume is zero (i.e. no volume changes upon mixing) because Amagat’s
law is valid

v =
n∑

ϑ=1

wϑv•
ϑ (4.440)

Here v is the specific volume of the mixture at given T, P, w1, . . . , wn−1 and v•
ϑ

are the specific volumes of pure constituents at these T, P equal to vϑ in (4.191).
Indeed, this follows from (4.437) taking derivative (4.267) (with specific variables,
cf. (4.172)) and using (3.207).

• Mixing enthalpy is zero (i.e. no enthalpy changes upon mixing). Indeed, by defin-
ition, the specific mixing enthalpy is the difference h −∑n

ϑ=1 wϑh•
ϑ (cf. (4.435),

(4.436)) where h is the specific enthalpy of the mixture and h•
ϑ is the specific

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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enthalpy of pure ϑ taken at the same T, P . But h•
ϑ is equal to partial enthalpy hϑ

in the final mixture, indeed, by (4.189), (4.194), (4.86) (valid also for pure fluid,
cf. (3.111), (3.203)) and by ideal mixture relations (4.437), (4.438)

hϑ = gϑ + T sϑ = μ•
ϑ/Mϑ + (R/Mϑ)T lnxϑ + T s•

ϑ − T (R/Mϑ)lnxϑ

= μ•
ϑ/Mϑ + T s•

ϑ = h•
ϑ

(of course enthalpy of pure fluid is defined similarly as (4.199)). Specific mixing
enthalpy is therefore zero by (4.190).

• No internal energy changes upon mixing: specific mixing internal energy is zero
as follows directly from the previous two results:

u −
n∑

ϑ=1

wϑu•
ϑ = h −

n∑
ϑ=1

wϑh•
ϑ − P(v −

n∑
ϑ=1

wϑv•
ϑ) = 0

From these results it follows, that in an ideal mixture the partial Gibbs energy
gϑ = μϑ/Mϑ , the free energy fϑ = gϑ − Pvϑ and the entropy sϑ depend on T, P
and on composition in a logarithmic way (see (4.437), (4.438)) but partial volume,
enthalpy and internal energy vϑ, hϑ, uϑ = hϑ − Pvϑ are functions of T, P only. All
these results are valid also in special case of ideal gas mixture, cf. (4.433), (4.430),
(4.434), (4.420) often even simpler (4.425), (4.427), (4.428).

If such mixing in the ideal mixture proceeds at constant temperature, pressure
(and therefore at constant volume simultaneously), the system has constant energy
(kinetic energy is usually neglected, cf. Rem. 9 in Chap. 1) and constant mass, no
work is done and therefore no heat exchange is observed.

As we noted above, the ideal mixture is generally different from the simple mix-
ture; the exception is the ideal gasmixture which is simple as well as ideal, cf. (4.432)
with (4.437).27

In the remainder of this section, we discuss the important role of chemical poten-
tials gϑ or μϑ because they are sufficient to determine (through (4.266), (4.267),
(4.86), (4.194), (4.189)) all other yϑ (fulfillingGibbs-Duhemequation (4.263)).Moti-
vated by application in equilibrium thermodynamics [129, 138, 154, 156] (called
chemical thermodynamics; but the following is valid also for non-equilibrium situ-
ations if local equilibrium is valid, e.g. for models presented in Sects. 4.5 and 4.6),
instead of chemical potential μϑ of constituent ϑ the activity aϑ is used equivalently
defined by

μϑ = μs
ϑ + RT lnaϑ (4.441)

27 The definition of ideal mixture (4.437) does not fulfil generally the property (4.412) of the
simple mixture which should be μϑ = μϑ(T, cϑ) (in molar units, cf. (4.172), (4.288)). Indeed, for
the ideal mixture (by (3.205) μ•

ϑ(T, P) = μ•
ϑ(T, c•

ϑ), where c•
ϑ = ρ•

ϑ/Mϑ is the molar density of
pure constituent ϑ; ρ•

ϑ = ρ in Chap.3)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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where R is the gas constant (see Appendix A.1) and μs
ϑ is the selected standard

function (of T, P, wα or some of them); usually it is called the standard state. Note
that in the standard state (i.e. when μϑ = μs

ϑ) activity is equal to one.
This special definition (4.441) is motivated by the fact that when a standard func-

tion is appropriately chosen, activities (and therefore chemical potentials) are (often
at least approximately) expressible through easy measurable quantities like concen-
trations, pressures, etc. (besides this, μϑ must be determined relatively to some fixed
level in practice). Note that activities are only positive, dimensionless and their rela-
tion to chemical potentials is unique (for the known standard function). Changing
the standard function from μs

ϑ to μs,
ϑ we can recalculate the corresponding activities

from aϑ to a∀
ϑ by

a∀
ϑ = aϑ/as

ϑ (4.442)

where as
ϑ is the original activity of the new standard state given by μs,

ϑ = μs
ϑ +

RT lnas
ϑ . (these formulae may be valid for all ϑ = 1, . . . , n , but generally it is

not necessary to choose as the standard state the same state for all constituents, cf.
example below (4.446)).

Because of the many possibilities of selecting standard functions they must be
clearly specified if an activity is to be used; due to practical and historical grounds
some activities are called fugacities and, in fact, so-called activity or fugacity coef-
ficients are also of this type [4, 79, 129]. These quantities and other examples of
activities will be discussed in the following.

The basic properties of any activity and its use will be first demonstrated on
the following classical example of fluid (gas or liquid) mixtures. As the standard
function μs

ϑ in (4.441) we choose μ•
ϑ(T, P) in (4.437), i.e. the chemical potential in

the following standard state: pure constituent ϑ at T, P and aggregation state as that

(Footnote 27 continued)

μϑ = μ•
ϑ(T, P) + RT lnxϑ = μ•

ϑ(T, c•
ϑ) + RT lncϑ + RT ln

n∑
η=1

(
cη /(

n∑
ε=1

cε)

)
(1/c•

η )

where (4.290), (4.295), (4.440), (4.292), (4.289), (3.199) have been used. This is different from
μϑ = μϑ(T, cϑ) mainly because c•

η = (Mη v•
η )−1 are different for different η . But in an ideal gas

mixture where (at chosen T, P) molar densities are the same for all constituents as well for those
which are pure, namely cη = c•

η = P/RT , see (4.420), (4.421), this equation (cf. (4.432)) gives
(4.433) and this is the simple mixture.

There are attempts to motivate the definition of ideal mixture by a simpler way, e.g. it is possible
to show [149, 150] that if the chemical potential of each constituent depends (besides temperature
and pressure) only on the molar fraction of that constituent then this dependence is logarithmic as
in (4.437) (it is assumed also that the partial internal energy and volume of at least one constituent
depends on temperature and pressure only and that the number of constituents must be 3 as a
minimum).

The alternative motivation of definition (4.437) for (real) gas mixtures comes from a statement
that a mixture is ideal if Amagat’s law (4.440) is valid at any T, P . Indeed, Amagat’s laws means
vϑ = v•

ϑ and then by (4.454), (4.458) below, for fugacity coefficients also τϑ = τ•
ϑ ; therefore by

(4.463), this is an ideal mixture.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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in the mixture activity in which we try to find. The motivation follows from (4.437):
if the mixture is ideal then activity aϑ is equal to molar fraction aϑ = xϑ .

The behaviour of real fluid mixture may be described through deviations from
ideal mixture [129, 138, 152, 154, 156] expressed by the activity coefficient ηϑ

defined by
aϑ = ηϑxϑ (4.443)

which is, similarly to the activity aϑ , some function of T, P, xα, α = 1, . . . , n − 1 .
For this activity and activity coefficient equation (4.441) is written

μϑ = μ•
ϑ(T, P) + RT ln aϑ = μ•

ϑ(T, P) + RT lnxϑ + RT lnηϑ (4.444)

for the fluid (gas or liquid) constituent ϑ.
Therefore, the activity coefficient is ηϑ → 1 in ideal mixture (4.437), but, as fol-

lows from the choice of standard state, even in a real mixture, the activity coefficient
has limiting property limxϑ→1 ηϑ = 1. (i.e. concentrations of all remaining con-
stituents go to zero in such a limit). This may be also interpreted such that each real
mixture behaves in the limit xϑ → 1 as the ideal mixture (cf. (4.444) with (4.437)
in this limit).

For a description of a dilute solution of constituentsα = 1, . . . , n−1 in nearly pure
solvent n at given T, P we can use another limit: activity coefficients at infinitesimal
dilution η ∞

α = limxα→0 ηα , practically depending only on T, P (the most simple
case is one solute α = 1 in a solvent n = 2; also more complicated cases may be
discussed when some solutes have got higher concentrations, e.g. when solvents are
mixed, but we exclude for simplicity such cases from the following discussions). This
permits to introduce another standard state (a “hypothetical” one based on Henry’s
law (4.464), see (4.465)) giving new activities a∀

α and new activity coefficients η ∀
α

fulfilling (cf. (4.443))

a∀
α = xαη ∀

α α = 1, . . . , n − 1 (4.445)

The (4.441) has the form

μα = μ∞
α + RT lna∀

α = μ∞
α + RT lnxα + RT lnη ∀

α α = 1, . . . , n − 1 (4.446)

which follows from Eq. (4.444) (applied on our dilute mixture with chemical poten-
tials μϑ) by using the limiting η ∞

α . Namely, we use the following definitions of new
standard functions μ∞

α → μ•
α +RT lnη ∞

α and new activity coefficient η ∀
α → ηα/η ∞

α .
From this definition it follows that the new activity coefficient η ∀

α has the following
property limxα→0 η ∀

α = 1 (cf. difference from ηα above).
Therefore in very dilute solution, the activities (4.445) of solutes a∀

α may be
substituted bymolar fractions xα and this is the main reason for using such a standard
state, cf. (4.465). Note, that solvent n in such dilute solution is nearly a pure one and
therefore it remains in the original standard state (4.444) for ϑ = n (with nearly
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an = xn = ηn = 1); this is an example of the use of different standard states for
different constituents in the same mixture.

Both these standard states are used in thermodynamics of solutions (especially the
last one also for other concentration units like (molar) concentrations or molalities,
see end of this Sect. 4.8) but it is better to discuss them and other standard states in
the following terms of fugacities.

The fugacity fϑ of constituent ϑ is some type of activity in fluid (gas or liquid)
mixture [152, 155]. It is a function of T, P and its composition defined by chemical
potential μϑ of constituent ϑ with the same conditions as

μϑ = μ0s
ϑ (T ) + RT ln(fϑ/Ps) ϑ = 1, . . . , n (4.447)

Standard function μ0s
ϑ (T ) → μ0s

ϑ (T, P = Ps) is the molar Gibbs energy of con-
stituent ϑ taken as a pure ideal gas at the considered temperature and the standard
pressure Ps (usually 101.325 kPa); because of this constant, this standard function
(and state) depends on temperature only (comparing with (4.441) this activity should
be rather fϑ/Ps but for traditional reasons we keep the special name and dimension
of pressure for fϑ).

For pure fluid ϑ the fugacity f•
ϑ , a function of T, P , may be also defined through

its molar Gibbs energy μ•
ϑ(T, P) (chemical potential of pure ϑ) as

Mϑg
•
ϑ = μ•

ϑ = μ0s
ϑ (T ) + RT ln(f•

ϑ/Ps) (4.448)

where g•
ϑ is the (specific) Gibbs energy of pure fluid ϑ, μ0s

ϑ (T ) is the molar Gibbs
energy of (pure) ideal gas ϑ at T and standard pressure Ps which is the same tem-
perature function as in (4.447) for given ϑ (cf. symbols introduced at the beginning
of this Sect. 4.8).

The definitions are chosen in such away that in an ideal gas or an ideal gasmixture

f• = P, fϑ = Pϑ ϑ = 1, . . . , n (4.449)

Indeed, inserting the partial pressure of ideal gas (4.424) into (4.431) we have

gϑ = ĝ0ϑ(T ) + RT

Mϑ

ln P + RT

Mϑ

ln xϑ ϑ = 1, . . . , n (4.450)

The first two members on the right-hand side form the specific Gibbs energy of
pure ideal gas ϑ at T, P , as may be seen from xϑ = 1 (note that in this limit the
state equation of pure ideal gas ϑ is valid, cf. (4.421)). Specifically, the molar Gibbs
energy μ0s

ϑ of (pure) ideal gas ϑ at standard pressure Ps (and the same T ) is

μ0s
ϑ (T ) = Mϑ ĝ

0
ϑ(T ) + RT ln Ps (4.451)

where ĝ0ϑ(T ) are the same functions of temperature as in (4.450) or (4.431). Elimi-
nating this function from (4.431) using (4.451) we obtain for ideal gas constituent ϑ
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μϑ = μ0s
ϑ (T ) + RT ln(Pϑ/Ps) ϑ = 1, . . . , n (4.452)

which comparing with (4.447) gives for an ideal gas mixture the result (4.449)2 with
partial pressure (4.424) of the ideal gas mixture. Limiting in (4.452) xϑ → 1 we
obtain a pure ideal gas, Pϑ → P by (4.424), and, cf. (4.448), (4.449)1 follows.

We introduce now the dimensionless fugacity coefficients τ• for pure fluid and τϑ

for constituent ϑ in mixture by

f• = τ• P, fϑ = τϑxϑ P ϑ = 1, . . . , n (4.453)

They express the deviation of fugacities from pressures and are equal to one for ideal
gases, see (4.449).

Real gases and their mixtures have the property (see (4.422) and Appendix A.1)
that at P → 0 they behave as the ideal gases and their mixtures (4.421). This
permits to calculate fugacity coefficients and therefore fugacities fromstate behaviour
(equations like (3.204), (4.215)).

The fugacity coefficient τϑ for the real gas mixture may be calculated (at given
composition xϑ , temperature T and pressure P of which is τϑ function) from

RT ln τϑ =
∫ P

0
(Mϑvϑ − RT/P) dP ϑ = 1, . . . , n (4.454)

where Mϑvϑ is the partial molar volume of constituent ϑ in real gas mixture
considered.

To deduce (4.454) we insert (4.453)2 into (4.447) and we obtain

μϑ = μid
ϑ + RT ln τϑ (4.455)

where μid
ϑ is the molar chemical potential in the ideal gas mixture (at the same T, P ,

composition) given by the right-hand side of (4.452) with (4.424). This quantity
may be obtained by integration of (4.267) using (4.172) and partial molar volume in
ideal gas mixture (4.420) (note that at both following integrations (4.456), (4.457)
the composition is fixed no matter if it is expressed by mass or molar fractions; cf.
similar “molar” integration of (4.266) in (4.434))

μid
ϑ = μ00

ϑ +
∫ P

0
(RT/P) dP (4.456)

Similarly, in a real gas mixture analogous integration of corresponding (4.267)
gives for constituent ϑ

μϑ = μ00
ϑ +

∫ P

0
Mϑvϑ dP (4.457)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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It is important to note that the constant μ00
ϑ (molar chemical potential at the same T

and composition and P → 0) is the same in both (4.456),(4.457) because each real
gas behaves as an ideal gas at P → 0, see Appendix A.1,(4.422). Inserting (4.456),
(4.457) into (4.455) we obtain result (4.454).

Fugacity coefficient τ• at T, P of real pure gas is calculated from

RT ln τ• =
∫ P

0
(Mv• − RT/P) dP (4.458)

where Mv• is the molar volume of pure gas (M is the molar mass, v• the
specific volume (3.199)). Deduction of (4.458) is quite analogous to (4.454): insert-
ing (4.453)1 into (4.448) we obtain (index ϑ is omitted) Mg• = Mg0 + RT ln τ•
where Mg0 = μ0s(T ) + RT ln(P/Ps) is the molar Gibbs energy of pure ideal gas
at P (and T ). These Mg0 and Mg• may be again obtained by integration (3.207)
(using the molar mass M), in the first case with the molar volume (3.212) of ideal
gas, in the second one with the molar volume of pure real gas Mv•. We obtain
Mg0 = Mg00 + ∫ P

0 (RT/P) dP , Mg• = Mg00 + ∫ P
0 (Mv•) dP . Here Mg00 (the

molar Gibbs energy of pure gas at T and P →0) are the same for both cases again
because a real gas behaves as an ideal one at P → 0. Inserting both into first formula
we obtain result (4.458).

Fugacities in the liquid phase may be defined as follows: they are equal to fugac-
ities in a vapour (gas) phase which is in phase equilibrium and which may be cal-
culated by (4.454) or (4.458). It is because fugacities of a given constituent are the
same in both such phases (as follows from their definitions (4.447), (4.448), because
the equality is valid for chemical potentials in phase equilibrium [152, 154] and the
standard functions are the same for both phases).

The main importance of fugacities consists in the possibility to calculate arbitrary
activity aϑ in an arbitrary state from (4.442).Namely, taking herefϑ/Ps for activities,
cf. below (4.447), we obtain

aϑ = fϑ/fs
ϑ (4.459)

and activity can be calculated if we know the fugacity fϑ in this state and the fugacity
fs

ϑ in the standard state on which the activity aϑ is considered.
For the standard state and activities of classical example (4.444) the fugacity

fs
ϑ = f•

ϑ of pure constituent ϑ at T, P and the same aggregation state as in the
mixture. That is, f•

ϑ = f•
ϑ(T, P) is given by (4.448) with the chemical potential of

standard state μ•
ϑ(T, P)

μ•
ϑ(T, P) = μ0s

ϑ (T ) + RT ln(f•
ϑ(T, P)/Ps) (4.460)

Then (4.443) is valid and (4.459) in this standard state gives

fϑ = xϑηϑf
•
ϑ (4.461)

where ηϑ is the activity coefficient discussed at (4.444).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Because of the unit value of this activity coefficient in the ideal mixture (see
(4.437), (4.444)) this may be expressed by fugacities through Lewis’ or the Lewis-
Randall rule equivalently as

fϑ = xϑf
•
ϑ ϑ = 1, . . . , n (4.462)

It gives the fugacityfϑ of constituentϑ in the idealmixturewith themolar fraction
xϑ from the fugacity f•

ϑ of pure constituent ϑ at T, P of the mixture.
Equivalently to (4.462), the fugacity coefficient τϑ of constituent ϑ in the ideal

mixture is equal to that of the pure constituent (at the same T, P)

τϑ = τ•
ϑ ϑ = 1, . . . , n (4.463)

and therefore is independent of composition. This follows by elimination of P from
both relations (4.453) and comparing with (4.462).

Using limiting properties of activity coefficients η in (4.461) (cf. discussion of
(4.444)) we find that Lewis’ rule is valid in the limit of high concentrations xϑ → 1
at any real fluid mixture.

On the other hand, in the dilute solutions of solutes α = 1, . . . , n − 1 activity
coefficients of which achieve in (4.461) their limits η ∞

α (the value of which depend
on T, P of the mixture which is nearly pure solvent n; we recall our simplification
above (4.445), e.g. α = 1, n = 2) we obtain Henry’s law

fα = xαη ∞
α f•

α (4.464)

asserting that fugacities of very dilute solutions of constituent α are proportional to
concentration, in this example to molar fraction xα ; quantity η ∞

α f•
α (depending on

T, P only) is called the Henry constant. At the same time for solvent ϑ = n Lewis’
rule is valid because xn → 1 (this follows also from integration of Gibbs-Duhem
equation (4.221), e.g. if linear Lewis’ rule is valid for n = 2 at x2 → 1 then linearity
of Henry’s law is valid for n = 1 at x1 → 0 and reversely). But if the ideal mixture
applies for all concentrations (as above in (v) Ideal Mixture), then the Lewis rule
(4.462) and Henry’s law (4.464) are equivalent (because activity coefficients are
equal to one, e.g. η ∞

ϑ = 1).
Henry’s law is traditionally expressed through pressure in (ideal gas) approxima-

tion of the type (4.449); with similar approximation the Lewis rule gives Dalton’s
law (4.424) in the gas phase or Raoult’s law in the liquid phase used in vapour-liquid
equilibria [152, 154].

Above (4.445) the “hypothetical” standard state was mentioned. This may be
defined by the standard fugacity fs

α = η ∞
α f•

α because then (4.459) gives for activity
(4.445) (with fugacity expressed through our first activity coefficient as (4.461))

a∀
α = (ηαf•

α)xα

η ∞
α f•

α

= η ∀
α xα (4.465)
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and this is (4.445) indeed. For very dilute solution (when Henry’s law (4.464) is
valid), also limxα→0 η ∀

α = 1 and the activities of solutes may be substituted by molar
fractions a∀

α = xα ; this is result below (4.446). The standard state is hypothetic
because, as may be seen from (4.464), it has xα = 1 but fugacity as in (an infinitely)
diluted solution.

Because the molar fractions in (4.461) are proportional to other types of con-
centrations especially in dilute solutions we can obtain similar results for them. We
demonstrate this in the case of molar concentration cα (4.290) which may be inserted
in (4.464); we use “dimensionless” concentration cα/cs where cs is some fixed stan-
dard concentration (for liquid solution typically unit one, like cs = 1mol/dm3).
Then Henry’s law (4.464) in dilute solution of α = 1, . . . , n − 1 is

fα = Hα cα/cs (4.466)

with the Henry constant Hα → csη
∞
α f•

α/c∞ in which we can include the molar
volume of mixture 1/c∞ which is in this dilute solution practically equal to the
molar volume of pure solvent. Similarly as above, we choose the state with the
fugacity fs

α = Hα which depends on T, P , as another “hypothetic” standard state.
Then, similarly as in the previous case (4.465), the (new) activity is given by (4.459),
(4.461), (4.290)

aα = (ηαf
•
αcα/c)/Hα = η c

α cα/cs (4.467)

with another activity coefficient η c
α → (ηαc∞)/(η ∞

α c). By diluting the solution
η c
α → 1 because if cα → 0 then ηα → η ∞

α , c → c∞ and, as a result, we obtain
that activity (4.467) in very dilute solution is equal to (dimensionless) concentration
aα = cα/cs .

Approximation of activities by corresponding concentrations in very dilute solu-
tions is the main motivation for use of such “hypothetic” standard states.

These standard states are used, e.g. in dilute solutions of salt in water, where the
Debye-Hückel theory exists for estimation [154] of these η c

α . Modern versions of
this theory use molalities (number of mols in mass unit, namely 1 kg, of solvent)
instead of concentrationswith quite analogical, but different in principle, formulation
of the standard state; at low concentrations the differences, e.g. in η c

α , are usually
negligible.

A little similar but another choice of standard state, used e.g. in gas chemical
kinetics, see Sect. 4.9, is the pure ideal gas at given temperature and at fixed standard
molar concentration cs (usually unit one, say cs = 1 mol/m3). Therefore, by (4.433),
the standard function (μs

ϑ in (4.441)) is defined as μ�
ϑ (T ) = μ0

ϑ(T ) + RT lncs and
depends only on temperature. Then (4.441) is (we use variables T, cη ; see (4.212),
(4.288))

μϑ = μ�
ϑ (T ) + RT ln aϑ(T, cη ) (4.468)

In the mixture of ideal gases, we have
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aϑ = cϑ/cs (4.469)

as follows from (4.433).
Ultimately we note that the classical theory of mixtures presented here is used

also for solids but with deformations limited on those only which may be described
through density.

Summary. Following simplified models obtained from the linear fluids model
are presented in this section: non-reacting mixture, incompressible mixture, simple
mixture (independent of density gradients), mixture of ideal gases, and ideal mixture.
In the non-reacting mixture the partial thermodynamic pressure is equal to “partial”
pressure in stress tensor, cf. (4.402). The Amagat law was proved in the incompress-
ible mixture, see (4.405). Although in classical (equilibrium) thermodynamics the
chemical potential is defined as a partial derivative of Gibbs energy of mixture which
is in general a function of molar amounts of all constituents, the chemical potential of
a constituent is considered to be a function of only its concentration (molar or weight
fraction). This independence of chemical potential from the concentration of other
constituents was proved here only in the case of simple mixture—see (4.412); the
same was shown for partial free energies, partial thermodynamics pressures, and for
the product of partial volume and thermodynamic pressure. It was also shown that the
simple mixture has a special constitutive (state) equation for partial thermodynamic
pressures—(4.416). The mixture of ideal gases was shown to be a specific case of
the simple mixture and the ideal gas state equation was derived, (4.419). The partial
entropy of ideal gas constituent depends on the density of only this constituent (and
temperature), cf. (4.426), what enabled the calculation of themixing entropy (4.435).
Classical logarithmic dependence of chemical potential on the composition naturally
resulted from (4.429), cf. (4.431) and (4.432). The ideal mixture was defined on the
basis of a specific type of just this logarithmic dependence, cf. (4.437). It is gen-
erally different from the simple mixture. The second part of this section discussed
two important points related to chemical potential—the activity and standard states.
The activity was defined by (4.441). The importance of selection of proper standard
state and the use of activity coefficients and fugacities in calculating the activities
was then described. In fact, this was not a specifically non-equilibrium or rational
treatment but it operated on quantities and relationships the validity of which had
been proved in our model of fluid mixture.

4.9 Chemical Reactions and their Kinetics

Chemical kinetics and its relation to chemical equilibrium is a subject of monographs
and reviews [108, 131, 132, 154, 157]. Classical non-equilibrium thermodynamics
[3, 4, 119, 120] studies this subject starting from entropy production (4.178) and
therefore taking the affinity as a driving force of chemical reaction rates [158]; but
this seems (at least) insufficient because of the decomposition (4.174), cf. discussion
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of (4.489), (4.493) below and references [108, 159, 160]. Chemical reactions are
discussed also in rational thermodynamics [14, 18, 31, 75, 161].

To describe a chemically reacting system, it is sufficient to consider independent
reactions only (see Sect. 4.2) because any other (dependent) chemical reactions may
be obtained by their linear combinations.

In this Sect. 4.9 we discuss Eqs. (4.156), (4.171) concerning chemical reactions
in a regular linear fluids mixture (see end of Sect. 4.6), i.e. with linear transport phe-
nomena. This model gives the (non-linear) dependence of chemical reaction rates on
temperature and densities (i.e. on molar concentrations (4.288)) only (4.156), which
is (at least approximately) assumed in classical chemical kinetics [132, 157]. Here,
assuming additionally polynomial dependence of rates on concentrations, we deduce
the basic law of chemical kinetics (homogeneous, i.e. in one fluid (gas, liquid) phase)
called also the mass action law of chemical kinetics, by purely phenomenological
means [56, 66, 79, 162, 163].

In non-linear transportmodels, see e.g. [72], the chemical reaction rates depend on
more parameters: not only on concentrations and temperature but also on deformation
rates, gradients of concentrations, etc.; for a possible generalization of the presented
procedure see [108, 164] and the end of this section.

Constitutive equations for rates of chemical reactions (4.156) in regular linear
fluids mixture may be written with the use of molar quantities (4.26), (4.33) (cf.
(4.179) and examples (4.487), (4.488), (a) of Rem. 30, below)

∈J = ∈J (T, ∈c) = ∈J (T, ∈μ) = ∈J (T, ∈a) (4.470)

where ∈c is the vector of (molar) concentrations cϑ (4.288), ∈μ is the vector of molar
chemical potentialsμϑ (4.172), (4.173), and ∈a is the vector of activities aϑ (4.441) (in
the mixture space U , see Sect. 4.5). The second relation follows from the preceding
one using inversion of function ∈μ = ∈μ(T, ∈c) (cf. (4.172), (4.161), (4.288)) which
exists because the matrix with components ∂μϑ/∂cη = Mϑ Mη ∂ ĝϑ/∂ρη is regular
by the regularity of (4.362) and diagonal matrix from non-zero Mϑ (we study rates
(4.470) in stable, one-phase gas or liquid mixture). The last equation (4.470) follows
from (4.441) where the form of this function depends on the form of the standard
function; we limit ourselves to the most often used case (4.468) when the standard
functions depend only on temperature.

In the regular linear fluidsmixture, the production of entropy is caused by chemical
reactions given by (4.178) and (chemical) equilibrium is given simultaneously by
zero affinities (4.311) of independent chemical reactions chosen for their description
of reacting system

∈A = ∈0 (4.471)

and by the zero rate of these chemical reactions (4.302)

∈J = ∈0 (4.472)
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(see Sect. 4.7 for details). Equilibrium (4.471) may be expressed through the equilib-
rium values of activities ao

ϑ inserting (4.441)with the equilibrium chemical potentials
μo

ϑ = μs
ϑ + RT ln ao

ϑ into (4.176) by

− RT lnKp =
n∑

ϑ=1

μs
ϑ P pϑ p = 1, . . . , n − h (4.473)

where the so called equilibrium constantsKp of independent reaction p are defined as

Kp =
n∏

ϑ=1

(ao
ϑ)P pϑ

p = 1, . . . , n − h (4.474)

According to the limitation stated above, our standard functions μs
ϑ = μs

ϑ(T )

depend only on temperature and therefore also equilibrium constants depend on
temperature only and by (4.474) give restrictions on the values of activities ao

ϑ in
chemical equilibrium (denoted by superscript o; cf. Sect. 4.7). Equations (4.473) and
(4.474) permit calculations of chemical equilibria: Kp may be calculated from the
right-hand side of (4.473) (e.g. from thermodynamic data for pure constituents if they
are taken as the standard state) and composition of equilibrium mixture is restricted
by (4.474) if we know the relation of activities to composition; simple results follow
for important case (4.469), which will be used below (4.475).

Chemical kinetics is given by constitutive equations (4.470). Their form must be
valid in all processes and therefore also in equilibrium (4.471). But simultaneously
we have a restriction (4.472) on the constitutive equations (4.470) in equilibrium.We
find explicit consequences of this restriction for the approximation of constitutive
equations (4.470) by a polynomial in activities aϑ [66, 79, 162]. This was motivated
by proportionality of activities to concentrations (e.g.(4.469)) and the empirically
observed power dependency of reaction rates on concentrations. We denote such
powers as reaction orders [132, 157]; often they are 1, 2 (rarely 3) but sometimes
also fractions (see Rem. 17), cf. also end of this Sect. 4.9. Indeed, we show below
that such approximation and restriction give the power law of chemical kinetics in
activities which is, moreover, consistent with chemical equilibrium and which is
then, by the activity-concentration proportionality just mentioned, consistent also
with classical power law in concentrations (i.e. with the mass action law of chemical
kinetics), cf. examples (4.476), (4.498) below.

Even though such power laws of chemical kinetics in activities were proposed
[154, 156] the results are often controversial, cf. [165–168] and caused polemics
between Haase and Hall [169–175], see detailed discussion in review [108]. These
difficulties in application of activities and other thermodynamic concepts in chemical
kinetics [131, 132, 157, 176], the dependence of chemical reaction rates on pres-
sure (relatively small effect in comparison with temperature dependence [132, 157,
177]), problems related to not using T, P, wα instead of T, ρη as thermodynamic
variables, etc., may be connected, as it seems, with the result of our theory that the
thermodynamic pressures Pϑ and P are not the same as measured pressures (like pϑ
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or other quantities of such kind given by constitutive equations (4.138)). Namely,
as follows from our theory (cf. end of Sect. 4.5 and (4.186),(4.187)), the non-zero
values of such difference ϕpϑ (4.162) may be expected in a chemically reacting
mixture out of equilibrium.

We demonstrate the procedure of obtaining the mass action law of chemical kinet-
ics on special cases of regular linear fluids mixtures in which these activities (for
standard states depending on temperature only) are equal to dimensionless concen-
trations (cf. end of Sect. 4.8, cs is a fixed standard concentration)

aϑ = cϑ/cs ϑ = 1, . . . , n (4.475)

specifically we limit ourselves to the mixture of ideal gases, see (4.468), (4.469).
Similar results may be obtained also for very dilute liquid solutions, see (4.467),

but because the corresponding standard state may depend beside T also on the
pressure P , we confine ourselves usually to chemical kinetics with constant, say
atmospheric pressure (its small variation may be neglected in liquids).

As a first example, let us consider a linear mixture of two ideal gases NO2 (ϑ = 1)
and N2O4 (ϑ = 2) with reaction (4.46)

N2O4 = 2NO2 (4.476)

The rate of this reaction Jp (p = 1) is given by the first equation (4.470)1.28

J1 = J1(T, c1, c2) (4.477)

We note that this rate is in the relation with Jϑ (4.26) by (4.44)

J 1 = 2J1, J 2 = −J1 (4.478)

Chemical affinity (4.176) of this reaction (4.476) is

A1 = −(2μ1 − μ2) = −(2μ�
1 (T ) − μ�

2 (T )) − RT ln

⎞
1

cs

(c1)2

c2

⎠
(4.479)

28 We follow here the traditional chemical kinetics using concentrations cϑ with their dimension
giving more or less formal, dimensional complications, cf. Rem. 29, 30. Performing this example
in dimensionless activities we have by (4.470)3

J1 = J1(T, a1, a2) (a)

In equilibrium, cf. (4.480), (4.481),wehave J o
1 = J1(T, ao

1 , ao
2 ) = 0 togetherwith zero chemical

affinity (4.479) A1o = −2μo
1 + μo

2 = 0 which gives the dimensionless “real” equilibrium constant

K1 = (ao
1 )

2

ao
2

= 1

cs

(co
1)

2

co
2

(b)

(equilibrium values are denoted by superscript o, cf. below (4.474)).
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where the last expression follows from chemical potentials of ideal mixture of gases
(4.468) with activities (4.475).

In chemical equilibrium, Eqs.(4.471) and (4.472) are valid and with equilibrium
concentrations co

1, co
2 (at given temperature T ) Eqs. (4.477) and (4.479) give

J o
1 = 0 = J1(T, co

1, co
2) (4.480)

− RT ln

(
1

cs

(co
1)

2

co
2

)
= 2μ�

1 (T ) − μ�
2 (T ) (4.481)

where the dimensionless “real” equilibrium constant K1 is in logarithm, namely (b)

in Rem. 28. This is depending on temperature only (because of such a dependence
of the chosen standard state).

Because the number cs is fixed (cf.Rem. 30), it canbe included into the equilibrium
constant:

csK1 = (co
1)

2

co
2

→ K1 (4.482)

Motivated by traditional use in chemical kinetics, we denote K1 also as an equilib-
rium constant of reaction (4.476) depending on temperature only, even it is different
from dimensionless “real” equilibrium constant K1.

Now we assume that dependence (4.477) in concentrations may be approximated
by a polynomial up to the second degree

J1 = k00 + k10c1 + k01c2 + k20c21 + k11c1c2 + k02c22 (4.483)

where the coefficients k00, . . . , k02 depend only on temperature.29 This equation
(4.483) must be valid also in equilibrium; therefore introducing (4.483) into (4.480)
and eliminating co

2 by (4.482) we obtain

0 = k00+k10co
1 +(k01/K1 + k20) (co

1)
2+(k11/K1)(c

o
1)

3+(k02/K 2
1 )(co

1)
4 (4.484)

which is a polynomial in independent equilibrium values of co
1 . This value may be

chosen arbitrarily in chemical equilibrium at a given temperature and Eq. (4.484)
must be valid (the considered place in mixture is generally open to mass exchange,

29 The same form follows assuming that (a) of Rem. 28 is a polynomial in activities

J1 = k00 + k10a1 + k01a2 + k20a2
1 + k11a1a2 + k02a2

2 (a)

coefficients of which depend on T only and have the same dimension.
The corresponding polynomial in concentrations is obtained by substitution of (a) by (4.475),

namely

J1 = k00 + (k10/cs)c1 + (k01/cs)c2 + (k20/c2s )c
2
1 + (k11/c2s )c1c2 + (k02/c2s )c

2
2 (b)

This is the same as (4.483) but with other coefficients than in (a), e.g. k01 = k01/cs ; they have
different dimensions but again they are functions of temperature only.
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e.g. even in uniform equilibrium in a batch reactor this arbitrariness may be achieved
by changing the initial composition of the mixture before chemical reactions start).
Because a polynomial of finite degree may have only a finite number of roots, the
requirement of arbitrariness of values co

1 fulfilling (4.484) (e.g. its positive values
from some interval) gives therefore that all coefficients in (4.484) must be identically
zero, i.e.

k00 = k10 = k11 = k02 = 0 (4.485)

k20 = −k01/K1 (4.486)

Because these coefficients depend only on temperature, this result is valid also in
the general expression (4.483). Therefore the final form of (4.483) is

J1 = k01c2 − (k01/K1)c
2
1 = k20(c

2
1 − K1c2) (4.487)

Thus, the form of mass action law of chemical kinetics was recovered where k01
and k01/K1 may be interpreted as the rate constants in the forward and reversed
directions of reaction (4.476) respectively; moreover, these constants depend only
on temperature and fulfil the known relation (4.486) with the equilibrium constant.30

Further, this form of mass action rate equation automatically satisfies the principle of
detailed balance which is used as a thermodynamic restriction on chemical kinetics
and which, in turn, seems to be a result of permanence of atoms [140] stated in
Sect. 4.2. Conditions when this form transforms to traditional and experimentally
supported mass action rate equations are discussed in Ref. [163]. In practice rate
constants in the two directions often differ essentially (usually by extremely high or
low values of equilibrium constants, cf. (4.486)) and we obtain the classical form of
the chemical kinetic law for an “irreversible” one-directional reaction. From (4.487)
and (4.478) (and this is valid by (4.44) more generally) the constitutive equations for

30 It may be seen that the same procedure may be performed formally quite analogously if we use
activities instead concentrations (compare (a), (b) inRem. 28 and (a) inRem. 29with corresponding
(4.477), (4.482) and (4.483) even their difference in dimensions, cf. [79, 162]). Proceeding similarly,
the analoguewith activities (instead of concentrations)may be obtained, e.g. the analogue of (4.484)
with equilibrium activity ao

1 . Therefore also the analogue of result (4.487)1 in activities will be valid

J1 = k01a2 − (k01/K1)a
2
1 (a)

this time with coefficients (rate constants) coming from (a) of Rem. 29 with dimensionless equi-
librium constant K1, see (b) of Rem. 28. Indeed, inserting (4.475) into (a) we obtain

J1 = (k01/cs)c2 −
⎞

(k01/cs)
co
2

(co
1)

2

⎠
c21 (b)

which is (4.487)1 with velocity constants as in (b) of Rem. 29 and with equilibrium constant (4.482)
K1.

Note, that if, as usually cs = 1 mol/m3 and concentrations are given in the same units, the
numerical values of rate and equilibrium constants are the same even though their dimensions are
different.
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components Jϑ have also the form of (4.487) (with rate constants depending only
on temperature) but this result is independent of the reaction chosen in contrast to
rates Jp and equilibrium constants. E.g. for reaction (4.47) (with primed quantities)
K ∀
1 = K −0.5

1 and J ∀
1 = −2J1 but Jϑ remains the same.

Substituting cϑ in (4.487) from (4.475), (4.468) using (4.481) with (4.482) we
obtain

J1 = cs k01(T ) exp[−μ�
2 (T )/(RT )] (exp[μ2/(RT )] − exp[2μ1/(RT )])

= J̄1(T, μ1, μ2) (4.488)

which is the second relation (4.470) for this example (4.476), cf. (4.179) (the last
one of (4.470) is (a) in Rem. 30)).

Eliminating μ1 from (4.488) by (4.479), we have

J1 = cs k01(T ) exp[−μ�
2 (T )/(RT )] exp[μ2/(RT )]

⎛
1 − exp[−A1/(RT )]

⎝
(4.489)

Linearization of this equation in A1 gives the “phenomenological” equation for
reaction rate of linear irreversible thermodynamics [1, 3, 4, 130]. But there is a
controversion here [159]:μ2 is contained in affinity (4.479) as well as in the first part
of (4.489) which is considered as constant in such linearization, cf. below (4.494),
see also [158].

We show on this example (4.476) also the result of decomposition of vector of
chemical potential from the 2-dimensional reaction space U into two 1-dimensional
subspaces V and W (4.174), in component form (4.177):

μϑ = −A1g11P1ϑ + B1S1ϑ ϑ = 1, 2 (4.490)

Using matrices ⊂P pϑ⊂ = (2 − 1) , ⊂Sσϑ⊂ = (1 2) for constituents in this
reaction (4.476) (see above (4.46)) and g11 = 1/5 (because this is the inversion of
g11 = ∈g1.∈g1 = 5 calculated from (4.40)) we obtain the decomposition (4.490) as

μ1 = −(2/5)A1 + B1, μ2 = (1/5)A1 + 2B1 (4.491)

This gives the expression for affinity (4.479) and also

B1 = (μ1 + 2μ2)/5 (4.492)

Using this (1-dimensional) decompositions (4.479), (4.492) in (4.489) (inserting
(4.491)2) we obtain (4.470) with decomposition (4.174) as (4.179), i.e.

J1 = J̄1(T, μ1, μ2) = J̃1(T, A1, B1)

= cs k01(T ) exp[−μ�
2 (T )

RT
] exp[2B1

RT
] exp[ A1

5RT
]
⎞
1 − exp[− A1

RT
]
⎠

(4.493)
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At zero affinity A1 = A1o = 0 = −2μo
1 + μo

2 (4.479) we obtain J1 = 0 in
equilibrium, indeed (where also B1 = B1o = μo

1 = (1/2)μo
2 by (4.492), (4.479)

with equilibriumvalues of chemical potentialsμo
1, μ

o
2). Production of entropy (4.178)

in this example is �0 = J1A1 ≤ 0 and therefore for A1 > 0 it must be J1 > 0 and
it follows from (4.493) or (4.489) that (cs > 0 of course)

k01 > 0 (4.494)

Results of this type (signs of rate constants; equilibrium constants are only posi-
tive) follow generally from the sharp minimum of �0 (4.171) in equilibrium which
is described in variables T, ∈A, ∈B as (a) in Rem. 22. Namely, the first derivative (b)
in it gives zero reaction rates (4.472) and the second derivative gives the inequality
(e) in Rem. 22. The latter is (4.493) in our example and (∂ J̃1/∂ A1)o(A1)2 ≤ 0 gives
(4.494) again.

As we noted below, the equation (4.489) the expressions (4.493) show that depen-
dence of reaction rate on affinity is not so simple [158, 159] as it is assumed in clas-
sical non-equilibrium thermodynamics [1, 3, 4, 130] based on entropy production
(by chemical reactions), i.e. as a product of “fluxes” and “driving forces” (4.178).
Projection ∈B of chemical potential vector ∈μ to the subspace W also plays a role in
expression for reaction rates ∈J as (4.493) in our example; the affinity ∈A is projection
of ∈μ into orthogonal reaction subspace V only, cf. (4.174). Cf. detailed discussion
and criticism in review [108] and references [159, 160].

What happens if we use polynomials of different degrees in approximation of
(4.477)?. For the zero and first degrees, we get by the samemethod J1 → 0 identically,
for the third degree we obtain

J1 = k20(c
2
1 − K1c2) + (k30c1 + k21c2)(c

2
1 − K1c2) (4.495)

The first member is the same as (4.487) (see (4.486)) and the second one may
be interpreted as autocatalysis by both constituents of mixture (some rate constants
may be neglected, cf. below (4.487)). Moreover, if we add a third constituent (say
ideal gas) Q (ϑ = 3) to this mixture which formally does not take part in the reaction
(4.476) but may have an influence on the reaction rate

J1 = J1(T, c1, c2, c3) (4.496)

then (using (4.482)) we obtain, approximating this dependence by polynomial of the
2nd degree, the same result as (4.487) and by the polynomial of the third degree we
obtain a similar expression as (4.495) containing (besides autocatalysis members)
also catalysis caused by the constituent Q (ϑ = 3)

J1 = k200(c
2
1 − K1c2) + (k300c1 + k210c2 + k201c3)(c

2
1 − K1c2) (4.497)
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Here again, as well as in (4.495), the coefficients k200, k300, . . . , K1 depend only
on temperature. From (4.497) it follows, that in accord with experience, the auto-
catalysis and catalysis have influence on both directions of reaction (4.476).

As a last example, we consider the regular linear fluid mixture of atomic and
molecular oxygen and ozone O, O2, O3 as ideal gases denoted by ϑ = 1, 2, 3
respectively, i.e. the simplification (4.475) is valid. Here two independent chemical
reactions take place, e.g. (4.48)

2O3 = 3O2, O3 = 3O (4.498)

denoted by p = 1, 2 respectively. Constitutive equations for reaction rates are (upper
indices are p = 1, 2, the remaining are powers of concentrations)

Jp = Jp(T, c1, c2, c3) = k p
000 + k p

100c1 + k p
010c2 + k p

001c3

+ k p
200c21 + k p

020c22 + k p
002c23 + k p

110c1c2 + k p
011c2c3

+ k p
101c1c3 p = 1, 2 (4.499)

where the approximation by polynomial of the 2nd degree was assumed. The equilib-
rium concentrations are connected by the equilibrium constants of reactions (4.498)
respectively

K1 = (co
2)

3/(co
3)

2, K2 = (co
1)

3/co
3 (4.500)

from which we express the equilibrium values (denoted by superscript o)

co
2 = (K1/K 2

2 )1/3(co
1)

2, co
3 = (co

1)
3/K2 (4.501)

In equilibrium Jp = 0 p = 1, 2 (with equilibrium concentrations co
ϑ ϑ =

1, 2, 3) and we insert there from (4.501). We obtain two polynomials in (possible
continuum of) co

1 which must be zero; therefore, their coefficients must be zero:

k p
000 = 0, k p

100 = 0, k p
002 = 0, k p

011 = 0, k p
010 = −k p

200(K 2/3
2 /K 1/3

1 )

k p
001 = −k p

110(K1K2)
1/3, k p

101 = −k p
020(K 2/3

1 /K 1/3
2 ) p = 1, 2 (4.502)

Because coefficients in (4.499) and equilibrium constants (4.500) depend only on
temperature, we obtain for reaction rates after inserting from (4.502) into (4.499):

Jp = k p
200(c

2
1 − K4c2) + k p

110(c1c2 − K3c3) + k p
020(c

2
2 − K5c1c3) p = 1, 2

(4.503)
where (the upper indices mean powers as usual)

K 3
3 = K1K2, K 3

4 = K 2
2/K1, K5 = K3/K4 (4.504)
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which all are functions of temperature only (similarly as the rate constants k p
200, k p

110,
k p
020).
Note that we obtain the same result (using polynomial of the 2nd degree (4.499))

from an equivalent set of independent reactions, say (4.49). This may be seen directly
from (4.503), (4.504) inserting (4.500): then K3, K4 are equilibrium constants of
reactions (4.49) respectively. We also note that we can also eliminate co

1, co
3; then we

must use the preceding method for polynomial of the type (4.484) but in (co
2)

0.5 and
the result (4.503) may be obtained again. Therefore, chemical kinetics in the system
O, O2, O3 may be described by two equilibrium and six rate constants when constitu-
tive equations for reaction rates are approximated by a polynomial of the second order
(a polynomial of the third order gives 20 rate constants [79]; equilibrium constants
are again two because of two independent chemical reactions).

This method gives reaction orders as natural numbers only; for further details and
discussion, see [79, 108, 162, 178]. Result (4.503) (written for Jϑ by (4.44)) may
be interpreted also as a mechanism (e.g. O2 = 2O , O+O2 = O3 , O3 +O = 2O2)
of some overall reaction (e.g. 2O3 = 3O2) considering also unstable intermediate
products as constituents, e.g. O in (4.498). Neglecting some rate constants and by
standard methods of chemical kinetics [131, 132, 157], the mechanism may then
explain the observed (even fractional) reaction orders. Therefore it seems that the
method presented here is appropriate for (at least a possible) proposal ofmechanisms,
because the integer degrees of polynomials suffice giving 1, 2, or 3 for “molecular-
ity” (the reaction order of “elementary” reactions (often linearly dependent) forming
mechanism; their irreversibility follows ignoring some of rate constants as we noted
below (4.487)). By this method (see also [108]) the mechanism of decomposition of
N2O has been discussed [178], as has the detailed balance in the “triangle” mecha-
nism [179] and a possible application in heterogeneous kinetics [164] (the method
presented here may be generalized on such more complex models if the reaction
rates may be expressed through polynomial in concentrations (even though they
depend on further parameters) and their equilibrium values are linked together, say
by equilibrium constants).

We have seen above that expressions in a more general case with activities may
be obtained simply using activities instead of concentrations (cf. Rems. 28, 29, 30),
but the problem of their usefulness (and other thermodynamic notions) in chem-
ical kinetics remains, as we noted above (4.475), because of the possible differ-
ence between measured and thermodynamic pressure in systems out of chemical
equilibria.

Summary. The classical mass action law of chemical kinetics was proved, in
fact, in the linear fluid mixture as the general constitutive equations for the reaction
rates which were reproduced in this section as (4.470). This law generally states that
the rates depend only on temperature and composition expressed by densities, molar
concentrations or activities or, alternatively, even by (molar) chemical potentials.
The equilibrium constant of independent reactions was defined by (4.474). Then
we have shown on several reaction examples how the general function reaction
rate-concentrations (or reaction rate-activities) can be approximated by a suitable



4.9 Chemical Reactions and their Kinetics 257

polynomial in concentrations (or activities) and further modified to obtain the final
equation for the reaction rate in the mass action form—cf., e.g. (4.477), (4.483) and
(4.487). The traditional mass action kinetics was thus justified thermodynamically
at least for our mixture model. We have also illustrated the proper transformation of
reaction rate to a function of affinities (and temperature), which has not been done
correctly in other works, see (4.493). This functional form also enables to find the
restrictions put by the entropy inequality on the rate coefficients (mass action rate
constants)—see (4.494).

4.10 Transport Phenomena in the Linear Fluid Mixture

We have studied a regular linear fluid mixture where most of the results for transport
phenomena (4.137), (4.138), (4.165), (4.166) (viscosity, diffusion, heat conduction
and cross effects) are not in a form useful in practice [76, 104, 180, 181]. In this
section we transform them into a more convenient form which is also used in linear
irreversible thermodynamics [1–4, 27, 28, 119, 120, 130, 182]. Onsager relations
will be also noted and some applications, like Fick law and the electrical conductivity
of electrolytes are discussed.

To account for viscosity effects [180, 183, 184], in a mixture of linear fluids we
write the constitutive equations for stress (4.138) in the form (we use (4.186))

Tϑ = −Pϑ1 + TN
ϑ ϑ = 1, . . . , n (4.505)

where Pϑ is the partial thermodynamic pressure andTN
ϑ is thepartial non-equilibrium

stress defined by

TN
ϑ → ϕpϑ1 +

n∑
η=1

σϑη (trDη )1 +
n∑

η=1

2βϑη

◦
Dη ϑ = 1, . . . , n (4.506)

Coefficients ϕpϑ and the partial volume viscosity coefficients σϑη and the partial
viscosity coefficients βϑη are functions of temperature and densities (composition)
only. In applications Dη of all constituents are often the same and the total stress
(4.94) T = ∑n

ϑ=1 Tϑ is of interest; then (4.506) has the same form as for single
fluids (3.189) with

∑n
ϑ=1

∑n
η=1 σϑη and

∑n
ϑ=1

∑n
η=1 βϑη as viscosity coefficients

of the mixture (and ϕpϑ (4.186) contributes to the pressure only in a chemically
reacting mixture out of equilibrium; cf. Sects. 4.5 and 4.9).

To describe diffusion, heat conduction and cross effects [76–78, 180, 181], i.e.
thermodiffusion and Dufour effect, we define the diffusion flux jα as

jα → ραuα α = 1, . . . , n − 1 (4.507)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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where uα is the diffusion velocity defined by (4.24) with the velocity of n-th con-
stituentvn as the referential one (for other diffusion velocities, see (4.539) and below).

To obtain the constitutive equations for fluxes jα , we express diffusion velocities
from (4.137) and eliminate kα by balance of momentum (4.58) using (4.505)

n−1∑
ω=1

ταωuω =
n∑

η=1

λαη hη − ξαg − gradPα + divTN
α + ρα(bα + iα)

− ρα v̀α α = 1, . . . , n − 1 (4.508)

Writing (4.208) for space gradients we obtain

n∑
η=1

λαη hη − gradPα = −ρα gradT gα + ρα

(
sα + ∂ f̂α

∂T

)
g (4.509)

where we used the isothermal gradient of chemical potential gradT gϑ defined by
[1–4, 120]

gradT gϑ → gradgϑ + sϑg (4.510)

Note, that using variables (4.216) and (4.266), (4.267)

gradT gϑ = vϑ gradP +
n−1∑
α=1

∂ g̃ϑ

∂wα

gradwα (4.511)

Similarly, using variables (4.213), gradgϑ depends linearly on g, hη . Now the
Eq. (4.509) is introduced into Eq. (4.508), the definition of the driving force of
diffusion yα

yα → gradT gα − (bα + iα) + v̀α − (1/ρα)divTN
α α = 1, . . . , n − 1 (4.512)

and (4.163) are used to obtain

−
n−1∑
ω=1

ταωuω = ραyα +
⎞

ϑα − λα

T

⎠
g α = 1, . . . , n − 1 (4.513)

Suppose that the matrix ⊂ταω⊂ is regular. It is usually the case because yet more
is often assumed: the symmetry (4.521) (cf. Onsager relations below) and positive
definiteness (see the assumption 1 of regular linear fluids mixture in the end of
Sect. 4.6) at least in a non-reacting mixture (diffusion is mostly studied in a non-
reacting mixture; rates in a reacting mixture are usually assumed to be negligible in
(4.182)).
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Then uω may be eliminated from (4.513) and inserting them into (4.507) we obtain
constitutive equations for diffusion fluxes

− jω =
n−1∑
α=1

Lωα yα + Lωq
g
T

ω = 1, . . . , n − 1 (4.514)

− q =
n−1∑
ω=1

Lqω yω + Lqq
g
T

(4.515)

Equation (4.515) is deduced if we insert uα just obtained into (4.166). Here the so
called phenomenological coefficients are therefore defined by

Lωα → ραρωτ
−1
ωα α, ω = 1, . . . , n − 1 (4.516)

Lωq →
n−1∑
α=1

ρωT (ϑα − λα

T
)τ−1

ωα ω = 1, . . . , n − 1 (4.517)

Lqω → −
n−1∑
α=1

ρωλα τ−1
αω ω = 1, . . . , n − 1 (4.518)

Lqq → kT −
n−1∑
α=1

n−1∑
ω=1

T λα(ϑω − λω

T
)τ−1

αω (4.519)

where τ−1
ωα are the elements of the inverse matrix to the matrix of the transport

coefficients ταω (i.e.
∑n−1

α=1 τ−1
ωα ταβ = ωωβ is Kronecker delta, ω, β = 1, . . . , n − 1)

and subscript q denotes a relation to the heat flux. Therefore the phenomenological
coefficients are, similarly to the coefficients in constitutive relations (4.137), (4.166),
functions of T, ρ1, . . . , ρn only (with usual invertibility, cf. (4.213), (4.217), also
dependence on T, P, wα or even on other variables, e.g. those in (4.551), are often
used). In equilibrium, where (4.316), (4.317) is valid, it follows from (4.513) that the
driving force of diffusion is zero yα = o (this follows also from (4.512); cf. (4.505),
(4.321), (4.323), (4.333)).

Expressions (4.514), (4.515) are known as phenomenological equations of lin-
ear irreversible or non-equilibrium thermodynamics [1–5, 120, 130, 185–187], in
this case for diffusion and heat fluxes, which represent the linearity postulate of this
theory: “flows” (jω, q) are proportional to “driving forces” (yα, T −1g) (irreversible
thermodynamics studied also other phenomena, like chemical reactions, see, e.g.
below (4.489)). Terms with phenomenological coefficients Lωα, Lωq , Lqω, Lqq , cor-
respond to the transport phenomena of diffusion, Soret effect or thermodiffusion,
Dufour effect, heat conduction respectively, discussed more thoroughly below.
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In irreversible thermodynamics Onsager reciprocity relations are (usually) pos-
tulated which in our context (4.514), (4.515) are

Lωα = Lαω, Lωq = Lqω α, ω = 1, . . . , n − 1 (4.520)

These reciprocity relations are valid if the following additional simple assumptions
about our constitutive model is fulfilled

ταω = τωα (4.521)

ϑα = 0 α, ω = 1, . . . , n − 1 (4.522)

as may be seen from (4.516)–(4.519) (from (4.521) follows symmetry of τ−1
αω ).

We motivate (4.521), (4.522) here31 by plausible additional constitutive assump-
tions according to Truesdell [188], [13, Lect7] and Müller [18, Sect. 6.6]: Let us
consider a non-reacting three-constituent linear fluids mixture (n = 3; generaliza-
tion on more constituents is possible [188]). To prove (4.521) it suffices to consider
the special case with g = o, hη = o (in driving force (4.512) gradT gα = o, see
below (4.511)) because ταω does not depend on them. Then by (4.137), (4.24)

kα = −
2∑

ω=1

ταω(vω − v3) α = 1, 2 (4.523)

k3 = −k1 − k2 (4.524)

where (4.524) expresses the balance of momentum (4.63) in such a non-reacting
mixture. Introducing (4.523) into (4.524) and rearranging we can write Eqs. (4.523),
(4.524) as

31 Besides the explanation of reciprocity relations through constitutive properties used here and
proposed [188] and promoted by Truesdell [12], [13, Lect7], (for other examples of this type see
Šilhavý [189], Wang [13, Appendix 7a]), most authors in irreversible thermodynamics consider
them as a result of a more general principle like “dissipative potential” whose derivatives according
to “driving forces” give the “fluxes” fulfilling the Onsager relation. Existence of such dissipative
potentials is supported by plausible explanations of non-equilibrium states, as the steady non-
equilibrium states and their stability, cf. minimum of entropy production by Onsager reciprocity
[1, 129], see also [3, 5, 39, 190, 191]. Phenomenological theory [39, 143, 192–195] may give
such dissipative potentials but with the condition that fluxes contain also parts not contributing
to the entropy production, e.g. simply if such a part is zero (symmetry does not follow from
positive semidefinity, see Rem. 16). To find such a part additional molecular arguments, at least
in motivation, are necessary, e.g. from fluctuation theory with the principle of detailed balance
or microscopic reversibility [1, 3, 5, 196] (originally Onsager’s idea), from molecular theories of
transport phenomena (kinetic theory of gases) [133], from invariance entropy production against the
time reversal [111, 197]; see also [22, 23, 111, 119, 182, 187, 196–201]. In addition, the symmetry
(4.520) has been confirmed experimentally [181, 202].
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kϑ =
3∑

η=1

Fϑη (vη − vϑ) ϑ = 1, 2, 3 (4.525)

where we define

Fϑϑ = 0, ϑ = 1, 2, 3, F12 = −τ12, F21 = −τ21,

F13 = τ11 + τ12, F31 = τ11 + τ21, F23 = τ22 + τ21, F32 = τ22 + τ12
(4.526)

and therefore the scalar coefficients, the diffusive drags Fϑη , are functions only
of T, ρ1, ρ2, ρ3. Forces kϑ (4.525) may be therefore interpreted as originating by
transport of momentum from other constituents η on a given constituent ϑ. Because
(4.524) is valid, we have

3∑
η=1

kϑ =
3∑

ϑ=1

3∑
η=1

(Fηϑ − Fϑη )vϑ = o (4.527)

But Fϑη are independent of velocities vϑ and therefore we have the following restric-
tion from (4.527)

3∑
η=1

(Fηϑ − Fϑη ) = 0 ϑ = 1, 2, 3 (4.528)

Splitting the matrix ⊂Fϑη ⊂ uniquely to its symmetric ⊂Fs
ϑη ⊂ and skew-symmetric

⊂Fa
ϑη ⊂ parts, we have

Fϑη = Fs
ϑη + Fa

ϑη ϑ, η = 1, 2, 3, Fs
ϑη → (1/2)(Fϑη + Fηϑ),

Fa
ϑη → (1/2)(Fϑη − Fηϑ) (4.529)

Inserting (4.529) into (4.528) we obtain

3∑
ϑ=1

Fa
ϑη = 0 or

3∑
η=1

Fa
ϑη = 0 (4.530)

i.e. the skew-symmetric matrix ⊂Fa
ϑη ⊂ must be such that sums of its columns and

rows must be zero. Therefore, for n = 3 it must have the form

⊂Fa
ϑη ⊂ =


 0 +ϑ −ϑ

−ϑ 0 +ϑ

+ϑ −ϑ 0


 (4.531)



262 4 Continuum Thermodynamics of Mixture of Linear Fluids

where ϑ is a coefficient which is only a function of T, ρ1, ρ2, ρ3. Plausible physical
arguments are taken now as additional constitutive assumptions [188]:

1. Fϑη are independent of the density of constituent ε if ε �= ϑ, η . This may be
regarded as a macroscopic definition of binary drags, i.e. the drag force between
the constituents ϑ and η is independent of the presence of other constituents.

2. When ρη → 0 then Fϑη → 0 because it may be expected that the drag force
from constituent η on constituent ϑ goes to zero when the mixture becomes more
diluted in the constituent η .

Then from assumption 1, we can see that the coefficient ϑ is not dependent on
ρ1, ρ2, ρ3 altogether and from assumption 2 we have ϑ = 0, i.e. the skew-symmetric
part of ⊂Fϑη ⊂ is zero

⊂Fa
ϑη ⊂ = ⊂0⊂ (4.532)

Then ⊂Fϑη ⊂ is symmetrical and from (4.526) we obtain the symmetry (4.521),
for this case

τ12 = τ21 (4.533)

Thus from (4.516) the Onsager relation L12 = L21 follows for this case.
To obtain the reciprocity relations (4.520), it suffices to add (4.522) (see (4.163)).

This is valid in an ideal gas mixture (simple mixture of gases) where (4.426) is valid
if we assume compensation λα/T + ξα = 0 (something like reciprocity in (4.166),
(4.137)) or even λα = 0, ξα = 0 (no thermal drags); see discussion in [18, Sect. 6.6],
[51, 75], cf. Rem. 26.

As we noted above, the phenomenological relations (4.514), (4.515) are starting
equations for obtaining useful results for transport phenomena as diffusion, heat
conduction and cross effects. This will be discussed in the remaining part of this
Sect. 4.10; for details see [1–5].

Heat conduction [181] is described by the Fourier law

q = −k g (4.534)

where the heat conductivity k depends on T, ρη (cf. below (4.136), (4.519)). This
follows from (4.166) at the absence of diffusion, cf. (3.187). Fourier law, under-
stood as the proportionality of heat flux to temperature gradient, follows also from
phenomenological equation (4.515) at zero diffusion driving force. But the “heat con-
ductivity” Lqq/T , is changed a little, see (4.519), (4.545): the difference is caused
by the most important cross effect, namely the Soret effect (thermodiffusion): dif-
fusion flux is caused by a temperature gradient because λα �= 0, see (4.514) (cf.
also (4.166)). Reversal to this cross effect is the Dufour effect (heat flux caused by
diffusion), see (4.515), (4.518) and Onsager relations (4.520). For further details, see
[9, 156].

The most important transport phenomenon—diffusion [76]—then remains. Using
expression (4.511), we obtain for the driving force of diffusion (4.512)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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yα =
n−1∑
σ=1

∂ g̃α

∂wσ

gradwσ +vα gradP −(bα + iα)+ v̀α − 1

ρα

divTN
α α = 1, . . . n−1

(4.535)
Therefore, the diffusion driving force has three important parts which express the

concentration diffusion (caused by composition gradient), the barodiffusion (by pres-
sure gradient) and the third member is the forced diffusion by the body forces bα +iα .
The remaining acceleration and friction parts are usually neglected (but see Rem. 33
below). While barodiffusion emerges rather by the choice of independent variables
in (4.511), the forced diffusion explains the sedimentation (e.g. in centrifugal fields)
and electrical conductivity.32 Note, that these three types of diffusions are described
by only one type of the phenomenological coefficient Lωα (as the difference from
thermodiffusion with special coefficient Lωq ).

The most important case of concentration diffusion is that with isobaric diffusion
driving force (4.535), without external forces and with corresponding neglection
noted above, i.e. with the following driving force

32 E.g. (aqueous) solutions of electrolytes in electrochemistry. These may be described by our linear
mixture model where constituents are ions of salts and water as solute. The volume force affecting
ions is the electrical force which is such when acting on (for simplicity) a univalent positive ion in
electrical field with intensity E

bα = ∂F

∂Mα

E (a)

where F is the Faraday charge (product of elementary electrical charge and Avogadro number) and
Mα is the molar mass of ion α. Then the diffusion flow at (electrical) conductivity measurement
(mixture without temperature and concentration gradients) is according to (4.514), (4.512):

jα = Lαα bα (b)

with the force (a) (neglecting inertial forces, friction, acceleration and “cross” phenomenological
coefficients Lωα ). Inserting (4.507), (4.24), and assuming zero velocity vn of solute (Hittorf refer-
ential system, see above the equation (4.539)) we obtain basic relation for electrical conductivity
of solution

vα = uα E (c)

where the mobility uα of univalent cation α is defined as

uα → Lαα

F

ρα Mα

(d)

Mobility and electrical conductivity are therefore determined by the same phenomenological
coefficient Lαα as the diffusion, see (4.538). But the situation is much more complicated in such
salt solutions because salt is composed from cations and anions and the mixture has at least three
constituents.Moreover solutions are electroneutral with high precision and thereforemeasuring Lαα

of unique ion say by diffusion is difficult (difference between diffusion velocities of ions causes e.g.
“diffusion potentials”, etc.; see [3, 4, 203]). In fact the (near) electroneutrality of ionic solutions
permits to use our theory here which neglect long-range electrical forces, cf. Rem. 6.

Experiments and molecular model show that the mobility uα in the limit of zero concentration
of α is constant; therefore Lαα in such limit must be proportional to density ρα ; this is an example
that phenomenological coefficients need not be constant quantities, cf. below (4.519).
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yα =
n−1∑
σ=1

∂ g̃α

∂wσ

gradwσ α = 1, . . . , n − 1 (4.536)

and, moreover, under isothermal conditions. According to phenomenological equa-
tion (4.514), the diffusion flux is then given by the Fick law

− jω =
n−1∑
σ=1

Dnw
ωσ gradwσ ω = 1, . . . , n − 1 (4.537)

where Dnw
ωσ are the diffusion coefficients or diffusivities (more precisely, as it is

denoted by superscripts, relative to n-th constituent and for expression of concentra-
tion gradients through mass fractions) defined by

Dnw
ωσ →

n−1∑
α=1

Lωα

∂ g̃α

∂wσ

ω, σ = 1, . . . , n − 1 (4.538)

They are therefore functions of temperature, pressure and composition (or temper-
ature and partial densities) values of which are only partially determined by (equilib-
rium) thermodynamic quantities, namely by the dependence of chemical potentials
on composition (usually expressed through the dependence of (logarithm of) the
activity coefficient on composition, see (4.444), obtainable from equilibrium mea-
surements).

Using Fick (4.537) and Fourier (4.534) laws in balances of mass and energy
respectively gives the most commonly-used application.33

Fick’s law of concentration diffusion understood as proportionality between the
diffusion flow and the gradient of composition has many forms according to the
choice of referential velocities and expressions of composition gradients; moreover
also using molar instead of specific units plays a role (e.g. molar diffusion fluxes
(4.560) instead of those from (4.507) which are specific). But the form of the Fick
law remains the same with corresponding change in diffusion coefficients, cf. also
labelling of diffusion flows or diffusion coefficients (see below and (4.537)). Their
general recalculation may be found in [3, 4, 79], here we demonstrate this on exam-
ples of mainly binary non-reacting mixture used often in praxis.

33 Fick or Fourier laws, introduced into the mass or energy balances give (after known simplifica-
tions) parabolic differential equations for diffusion or heat conduction respectively. This leads to
the “diffusion paradox”: infinite velocity of concentration or temperature disturbance. It is possible
to remove it if the influence of acceleration v̀α in diffusion driving force (4.535) is not neglected
[16, 51, 52] or temperature memory is introduced [17, 82, 83]. This may be related to possible
non-objectivity of heat flux sometimes discussed [13, 204] but as seems this effect is negligible in
continuum theory [204], cf. Rem. 21 in Chap. 3. Moreover, Bright and Zhang [205] argumented
that this paradox and preference of hyperbolic over parabolic differential equations are, in fact, a
result of misperception.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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In our theory, we mostly have used the Hittorf referential system, cf. (4.24),
(4.507), Rem. 32, with the velocity of n-th constituent as the referential one. But
also the barycentric velocity vw (see Rem. 3) may be used as the referential one. Its
molar analogue is the molar average velocity vx defined by

vx →
n∑

ϑ=1

xϑvϑ (4.539)

where xϑ is the molar fraction of constituent ϑ.
Volume average velocity vo is defined by (cf. (4.196))

vo →
n∑

ϑ=1

ρϑvϑvϑ (4.540)

and we can also define corresponding diffusion flows, e.g.

jo
ϑ → ρϑ(vϑ − vo) ϑ = 1, . . . , n (4.541)

Motivation for these definitions is often rooted in experimental measurement of
diffusion coefficient (we try here to use the referential velocity which is zero in
the measuring device; movement of constituent relatively to it is just the diffusion).
Usually, it is used (4.539) in gases, (4.540) in liquid, mixing of which is nearly ideal
(4.440).

Only n − 1 diffusion flows and therefore also n − 1 Fick laws of any type are
independent, e.g. because of (4.540), (4.541), (4.196),

n∑
ϑ=1

vϑ jo
ϑ = o (4.542)

or in Hittorf system with (4.507), (4.24) it should be jn → ρn(vn − vn) = o, cf. the
binary diffusion below.

Results (4.516)–(4.519) for the binary mixture together with Onsager relations
(4.520)

L1q = Lq1 (4.543)

are valid if
ϑ1 = 0 (4.544)

(see (4.517), (4.518); here the matrix τ−1
ωα is reduced to 1/τ11); because of τ11 > 0

(cf. (4.181), (4.182) and below (4.513) for a regular non-reacting mixture), (4.519),
we obtain also

L11 > 0, Lqq > 0 (4.545)
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For a binary mixture, the Fick law is therefore (4.537)

− j1 = Dnw
11 gradw1 (4.546)

where the diffusion coefficient is

Dnw
11 → L11

∂ g̃1

∂w1
(4.547)

Because L11 > 0 (4.545) and in the stable mixture ∂ g̃1
∂w1

> 0 (chemical potential
increases with concentration, see (4.361)) we obtain Dnw

11 > 0, i.e. diffusion leads to

equalizing of concentration differences. In an unstablemixture ∂ g̃1
∂w1

⇔ 0 and therefore
Dnw
11 ⇔ 0 and the solution disintegrates to separate phases (diffusion enlarges the

concentration difference).
The relation between j1 (Hittorf system) and diffusion flows jo

ϑ (ϑ = 1, 2) (relative
to the volume average velocity) in a binary mixture follows from (4.541), (4.540),
(4.196), (4.507), (4.24)

jo
1 = ρ2v2 j1 (4.548)

Inserting the Fick law (4.546) here, we obtain again the Fick law but this time for
the volume average diffusion flow with concentration gradient expressed by mass
fraction again

− jo
1 = Dow

11 gradw1 (4.549)

where the new diffusion coefficient is defined as

Dow
11 → ρ2v2 Dnw

11 (4.550)

Superscripts denote referential velocities and gradient expressions respectively
(cf. below (4.537)) and subscripts point to a binary mixture with one independent
diffusion coefficient (sometimes the Fick law is also formulated for diffusion flow
jo
2 [76, 203] but this is not necessary by (4.542) for n = 2).
A more usual form of Fick law is obtained, if we use (in binary mixture) variables

T, P, ρ1 instead of T, P, w1 (we recall that space gradients of T, P are zero at con-
centration diffusion), cf. (4.537). Assuming implicit definition ofw1 = w1(T, P, ρ1)

from ρ1 = w1/ṽ(T, P, w1) (see (4.22), (4.195), (4.215)) we deduce with (4.191),
(4.265) for y = v, (4.23), that

⎞
∂w1

∂ρ1

⎠
T,P

= 1/(ρ2v2) (4.551)

gradw1 =
⎞

∂w1

∂ρ1

⎠
T,P

gradρ1 (4.552)
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Inserting these relations into (4.549), we obtain the Fick law in the form tradi-
tionally used (e.g. for diffusion in liquid non-electrolyte mixtures)

− jo
1 = D gradρ1 (4.553)

giving the diffusion flow relatively to the volume average velocity with density gra-
dients, i.e. with the diffusion coefficient Doρ

11 (using also (4.550))

D → Doρ
11 = Dow

11 /(ρ2v2) = (w2/ρ)Dnw
11 (4.554)

Another often used Fick law for solutions (say of salts in water—solute, con-
stituent 2) is

− j1 = Dnρ
11 gradρ1 (4.555)

and therefore, by (4.548), (4.553), we have

D = ρ2v2 Dnρ
11 = Dww

11 /ρ (4.556)

The latter formula follows from the Fick law

− jw1 = Dww
11 gradw1 = ρD gradw1 (4.557)

written for the barycentric diffusion flow jw1 → ρ1uw
1 (with the barycentric diffusion

velocity uw
1 from Rem. 7); namely then jw1 = w2j1 and (4.557) follows by (4.546),

(4.554).
The traditional symbol D is used because of frequent cases (4.553), (4.555) [76,

180]; moreover in dilute solutions (where solute 2 prevails w2 → 1 and ρ2v2 → 1)
it follows from the transformations (4.556), (4.554), (4.550)

D � Dnρ
11 , ρD � Dnw

11 � Dow
11 (4.558)

With these approximations, the often used forms of Fick laws (4.553), (4.549),
(4.546), (4.555) in dilute solutions are (usually jo

1 for non-electrolytes and j1 for salt
solutions)

− jo
1 = D gradρ1 = ρD gradw1, −j1 = ρD gradw1 = D gradρ1 (4.559)

(note that (4.557)2 is valid generally).
But this is not all, the same diffusion coefficient D may be used if we use molar

quantities in formulation of Fick law for this binary concentration diffusion, cf.
(4.562) below. Specifically, using the molar diffusion flow of constituent 1 defined as
the corresponding (specific) diffusion flow given above divided by the molar mass
M1 of the first constituent (molar quantities are denoted, in addition, by apostrophe ∀),
e.g. the molar diffusion flow j∀o1 relatively to volume average velocity as
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j∀o1 → jo
1/M1 = c1(v1 − vo) (4.560)

and expressing composition gradients through gradients of molar concentrations or
molar fractions, we can write Fick law (4.553) in another classical way

− j∀o1 = D gradc1 = D∀ox
11 gradx1 (4.561)

with the same diffusion coefficient (4.554)

D → Doρ
11 = D∀oc

11 (4.562)

using our labelling above analogously. For this we use molar quantities from the
end of Sect. 4.6 (4.288)–(4.295) and from them deduced relations like gradρ1 =
M1gradc1, gradw1 = (M1M2/M2)gradx1 for the binary mixture. With these results
we can define similarly the molar diffusion flows j∀1 → j1/M1 , j∀x1 → jx

1/M1 =
c1(v1 − vx ) = (x2/M1)j1 and analogously from the preceding “specific” Fick laws
(4.555), (4.546) and analogue of (4.557) we obtain the “molar” Fick laws

− j∀1 = D∀nc
11 gradc1 = D∀nx

11 gradx1 (4.563)

− j∀x1 = D∀xx
11 gradx1 = cD gradx1 (4.564)

where diffusion coefficients are in analogous relations to D as in (4.554), (4.556),
namely

D = D∀oc
11 = D∀ox

11 /(c2v2M2) = (x2/c)D∀nx
11 = c2M2v2D∀nc

11 = D∀xx
11 /c (4.565)

Again, in dilute solutions (x2 → 1 and c2M2v2 → 1), we obtain analogously as
(4.558) (with the same diffusivity D)

D � D∀nc
11 , cD � D∀nx

11 � D∀ox
11 (4.566)

and in dilute solution “molar” Fick laws may be written analogously as (4.559)

− j∀o1 = D gradc1 = cD gradx1, −j∀1 = cD gradx1 = D gradc1 (4.567)

Note also, that for diffusion of gas mixtures where the molar average velocity vx

is used, it is possible to approximate such mixture by a mixture of ideal gases where,
by (4.423), ρϑvϑ = xϑ and therefore the volume average velocity is the same as the
molar average one; it is therefore possible to use, e.g. Fick law in the form (4.561)
(or (4.553) recalculated with constant M1) with the same diffusion coefficient D.

These results demonstrate that the form of Fick law, as proportionality between
diffusion flow and composition gradients, preserves in the different choice of con-
centration gradient and reference velocity.
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Concluding, we can see that in the frequent practical cases of approximation by
dilute solutions or ideal gases, that only one diffusion coefficient D can be used (or
ρD or cD if we use for component the gradients of mass or molar fractions) and
differences among different referential velocities can be neglected. This is the usual
way in applications or/and at tabulation diffusion coefficients [76, 180, 206].

At the end we note concentration diffusion for more constituents, say for ternary
system n = 3. Fick’s law (4.537) is

− jω =
2∑

σ=1

Dωσ gradwσ ω = 1, 2 (4.568)

where diffusion flows in Hittorf system (4.507), (4.24) are

jω = ρω(vω − v3) ω = 1, 2 (4.569)

and diffusion coefficients (4.538) are

Dωσ →
2∑

α=1

Lωα

∂ g̃α

∂wσ

ω, σ = 1, 2 (4.570)

The Onsager relation of reciprocity is usually admitted

L21 = L12 (4.571)

then (4.570) allows to express, e.g. D21 as the function of those remaining D11, D22,
D12 and thermodynamic quantities ∂ g̃α/∂wσ (cf. discussion of (4.538)). Therefore
it is sufficient to measure the latter three independent diffusion coefficients only.
Moreover, the “cross” diffusion coefficient D12 may be sometimes neglected in
comparison with those which are “principal” D11, D22.

Summary. This section further elaborates on the description of transport phe-
nomena, including their cross effects, in the linear fluid mixture. The equations
derived for these phenomena in previous sections were transformed here into more
practical forms. Some classical laws were thus disclosed. The diffusion fluxes were
introduced by (4.507) and the isothermal gradient of chemical potential (4.510) was
used to derive the constitutive equations for them—(4.514)—as well as the modified
constitutive equation for the heat flux (4.515). All these new constitutive equations
contain the driving force for diffusion (4.512) and their coefficients correspond to the
phenomenological coefficients known from classical irreversible thermodynamics,
cf. (4.516)–(4.519). These coefficients can be made to fulfill the Onsager reciprocity
relations (4.520) as shown on pages 260–262. The Fourier law of heat conduction
(4.534) was disclosed together with related cross effects with diffusion—Soret and
Dufour effects. The driving force for diffusion was shown to include the concentra-
tion diffusion as well as the barodiffusion, the diffusion forced by the external body
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forces, by acceleration, and by friction—see (4.535). The most important part—
the concentration diffusion—was treated in more details. The Fick law (4.537) was
derived and some of its many forms, which depend on used velocity referential sys-
tem, concentration (compositional) quantities and gradients, were demonstrated; for
the most frequently used examples see (4.546), (4.553), or (4.561).
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Appendix

A.1 Empirical Temperature, Ideal Gas, and Carnot Cycle

Temperature is a quantity concerningmacroscopic bodies only andmaybe introduced
as follows:

Consider three systems having the corresponding measurable thermometric prop-
erties V, R, E , respectively, which change monotonously by heating or cooling such
systems (e.g., in the first one, wemeasure the volume V , in the second one its (electri-
cal) resistance R, and in the third one—electrochemical cell—its electromotive force
E ; other variables, like pressure or composition are assumed to be fixed). Putting each
two of these systems in thermal contact (i.e., permitting mutually heat exchange), the
experience shows that they achieve after sufficient time thermal equilibrium.1 If the
first and second systems achieve fixed values (in time) V1 and R1 in such equilibrium
and the first and third achieve in their (separate) equilibrium (time fixed) values V1
and E1 (the value V1 is chosen the same in both cases by corresponding heating or
cooling of systems) and if we realize another equilibrium between the second and
third systemwith the value R1 (again achieved by heating or cooling), we find that the
value in the third system is just E1. This not self-evident empirical result expresses
the Zeroth Law of thermodynamics (cf. [1, Sect. 1.4], [2, Sect. 1.05] ): If two systems
(our second and third such) are both in thermal equilibrium with another (the first in
our case) system, then they are in thermal equilibrium with each other.

This means that these three systems have a common property called empirical
temperature. Choosing, say, the first system as thermometer, we can take, in thermal
equilibrium, as the numerical value of empirical temperature the thermometric prop-
erty V of this first system because it is the same in all systems; in our experiments it
has the value V1.

Generally, measuring the empirical temperature ϑ (as we denote it in the follow-
ing) of some system, therefore, consists in bringing it into thermal equilibrium with
some thermometer and reading the thermometer value ϑ.

1 For simple systems, discussed in this book, achieving such equilibriummay follow from properties
of systems, cf. Sects. 3.8, 4.7.
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The system in thermal equilibrium consists of one (usually great) subsystem—the
bath—and several further subsystems—calibrated thermometers—serve to calibrate
the thermometers according to one of them—the calibrating thermometer (and also
for finding the relation between the different temperature scales if thermometric
properties of the calibrated thermometers are different). For our purposes, we use
only Kelvin units for empirical temperature ϑ using the ideal gas thermometer as
the calibrating one which may be realized (in principle) as follows [3]: as a (real)
calibrating thermometer, we use the gas thermometer containing a fixed number of
mols n of (real) gas andmeasure its volume V (thermometric property in the example
above) of the gas at fixed pressure P 2 and we repeat suchmeasurements at lower and
lower pressure. Then, the following limit for zero pressure limP→0(PV/n) which
experience shows is the same for all gases (and, moreover, it is positive and rises with
physiological “hotness”) may be taken as the thermometric property. The empirical
temperature ϑ of this ideal gas thermometer in Kelvin units K is given by

ϑ = ( lim
P→0

PV/n)/R (A.1)

where (positive) R (= 8.31441 J/K · mol) is the universal gas constant [4]. This
value was obtained by analogous measurement of the temperature of the triple point
of water (equilibrium of (water) ice, liquid, and vapor) by the following relation

R = ( lim
P→0

PV/n)/273.16 (A.2)

because the temperature of exactly 273.16Kwas attributed to the triple point of water
(the choice of this value is motivated by the practical invariability of data tabulated
so far, e.g., the normal boiling point of water is by 0.026K lower than the former
value 373.15K (100 ∞C)).

Because of laboriousmeasurementwith a gas thermometer, the International Tem-
perature Scale (containing, e.g., melting or boiling temperatures of pure substances
and obtained in principle on their basis) is used for practical calibrations.

Therefore, temperature and its measurement is joined with equilibrium the part of
which is the thermal equilibrium (cf. unique temperature in equilibrium situations,
e.g., (2.61), (3.237)).

The possibility ofmeasuring empirical temperatureϑ in nonequilibrium situations
is connected with the fact that the different calibrated thermometers noted abovemay
have very different dimensions and very different relaxation times (the time inter-
vals necessary to achieve practically thermal equilibrium). Then, a reliable empirical
temperature in (even nonequilibrium) situations may be obtained if we use a ther-
mometer with a dimension and relaxation time much less than the space and time
of the observer’s scales of this situation (cf. Sects. 1.1, 1.2, 2.3). Moreover, the right
value of ϑ is assured if, by repeating identical measurement with other thermome-

2 Or the pressure P—thermometric property at a fixed volume V of thermometer.
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ters with smaller and smaller dimensions and relaxation times, the same values (in
Kelvins) are obtained.

The ideal gas thermometer realized by limitation (A.1) may be looked upon as a
thermometer filled by ideal gas which is defined by

(i) the state equation
PV = nRϑ (A.3)

where ϑ is the temperature (A.1) measured in Kelvins and R is the universal gas
constant (A.2).

(ii) its internal energy (of fixed gas amount) being an increasing function of temper-
ature only.3

The state equation of ideal gas (A.3) and the limiting process in (A.1) express the
experimental fact that every real gas in the limit of low pressure behaves as an ideal
gas. Note, that the density and pressure of (real) gas goes to zero simultaneously and
continuously (as different from liquids which achieve discontinuous phase change
during such diminishing), cf. Sect. 4.8. Experience also confirms definition ii through
the Joule experiment: the temperature of a gas (ideal in the limit of its zero pressure)
does not change in adiabatic expansion to vacuum (i.e., without heat exchange against
zero external force). Therefore, the internal energy of an ideal gas does not change
even if its volume changes at constant temperature; moreover, the function in ii. is
increasing, see Rem.15 in Chap. 1, (3.213), (3.256). Properties i. and ii. are also in
accord with the molecular picture of ideal gas as a gas with negligible interparticle
influences (i.e., that its internal energy consists of the kinetic energy of molecular
motions and its interparticle potential energy, is neglected). Moreover, as was shown
by (4.421), (4.422), the state equation (A.3) of ideal gas is valid also for mixtures and
the limiting property (A.1) is valid for any real gas mixture of constant composition.

In the remaining part of this AppendixA.1, we obtain the important result (A.9)
using an ideal cyclic process from subset C of Sect. 1.2, namely the Carnot cycle [1,
2, 4, 5]. Carnot cycle is a cyclic process with (fixed number of mols, n, of) uniform
ideal gas composed from isothermal and adiabatic (no heat exchange) expansions
followed by isothermal (at lower temperature) and adiabatic compressions back to
the starting state. All these processes pass the equilibrium (stable) states and they
are reversible (cf. definition in Sect. 1.2), see also Rem.48 in Chap. 3.

The Carnot cycle is an abstract construction because of ideal gas, namely this
was used for obtaining temperature ϑ of the ideal gas thermometer in Kelvins (see
(A.1)) and, through result (A.9) below, for obtaining the absolute temperature (1.30),
see Sect. 1.4.4 Also the balance of energy (1.5) contains only the volume work w

(because the (macroscopic) kinetic and potential energymay be neglected, seeRem.9

3 Internal energy is the (whole) energy diminished by kinetic energy of (macroscopic) flow or,
moreover, by potential energy of external force fields (gravitation, e.g.); cf. Sect. 1.3.
4 But, generally, such a cycle with adiabatic and isothermal irreversible processes may be realized
with real gas (or even liquid). Those with real gas approximate the reversible Carnot cycle with
ideal gas by a double limiting process as follows (i.e., we form the ideal cyclic process from set A
(and also B andC), seemotivation of postulate U2 in Sect. 1.2): running this cycle slower and slower
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in Chap. 1) where, by reversibility, the pressure P is given by the state equation of
ideal gas (A.3) (the external pressure is equal to the internal one in such a nearly
nonmovable state, cf. Sect.2.1, Rem.1). In this uniform (stable) equilibrium state,
the internal energy U (of fixed number of mols, n) is given by an increasing function
of temperature, cf. Rems.15 in Chap. 1, 7 in Chap. 2, (3.213), (3.256).5

The Carnot cycle starts at state 1 with temperature ϑb , volume V1 and internal
energy U1 = U (ϑb) and it expands reversibly and isothermally to state 2, volume V2
with the same temperature ϑb. Internal energy U2 = U1 = U (ϑb) does not change
during this isothermal expansion. Balance (1.5) (here and in the following we use
J = 1), in the form (1.12) for this reversible expansion (pressure follows from the
ideal gas state equation (A.3)) gives at this ϑb the heat Qb (the component of heat
distribution at ϑb of Carnot cycle)

Qb =
V2∫

V1

P dV = nRϑb ln(V2/V1) = q+ (A.4)

which is, by expansion V2 > V1 and (1.14), the heat absorbed q+ > 0.
From state 2, the adiabatic reversible expansion (i.e., with zero heat exchange)

to state 3 follows, resulting in volume V3 and temperature ϑa . Internal energy is
U3 = U (ϑa). Using themolar heat capacityCV at constant volume (which is positive
and may be a function of ϑ, see Rem.5) as nCV = dU/dϑ, the differential form of
energy balance (1.13) gives with state equation (A.3) for this reversible adiabatic
expansion

dU = nCV dϑ = −P dV = −nRϑ dV/V (A.5)

Therefore dU < 0, dϑ < 0 (other quantities here are positive), i.e., internal energy
and temperature fall and ϑb > ϑa must be valid.

By integration of (A.5), we obtain

ϑa∫

ϑb

(nCV /ϑ) dϑ = −nR ln(V3/V2) (A.6)

(Footnote 4 continued)
the velocity of macroscopic motion may be neglected (external fields, like gravitation, are assumed
to be not present), all states passed during this cycle are therefore uniform (without space gradients,
cf. Sect. 3.8), and are (stable) equilibrium states (cf. Rems.12 in Chap. 1, 7 in Chap. 2, 48 in Chap.
3). The sequence of such states is the reversible process which may be also homogeneous (changing

mass, we change extensive w,
→
Q, cf. motivation of U2 in Sect. 1.2). Moreover, running this cycle in

limits of lower and lower pressure, we obtain the Carnot cycle, because in the limit of low pressure
any real gas behaves as the ideal one.
5 Positive molar heat capacity CV ≡ 1

n dU/dϑ depends generally on temperature (and it is not
only constant as in discussions of Carnot cycle in many thermodynamic textbooks, cf. [1, exrc. 8 in
Chap.1].
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Fromstate 3 to 4, the isothermic reversible compression is running fromvolumeV3
to V4 at (lower and constant) temperature ϑa and internal energyU3 = U (ϑa) = U4.
Heat exchanged Qa (unique at ϑa ) is given by (analogously as (A.4) )

Qa =
V4∫

V3

P dV = nRϑa ln(V4/V3) = −q− (A.7)

which, by compression V4 < V3 is the emitted heat Qa < 0, i.e., by (1.15), q− > 0.
At last from state 4 to the initial state 1, we have reversible adiabatic compression
from volume V4 and temperature ϑa back to V1 and ϑb and integration of (A.5) (at
compression the temperature rises) gives

ϑb∫

ϑa

(nCV /ϑ) dϑ = −nR ln(V1/V4) (A.8)

Comparing the left hand sides of (A.8) and (A.6), we obtain V4/V3 = V1/V2. Using
it in (A.4) divided by (A.7), we obtain the equality

Qb/(−Qa) = ϑb/ϑa = q+/q− (A.9)

Note that the Carnot cycle has the heat distribution
→
Q, composed from only two

nonzero members (of different signs) Qa , Qb, cf. (1.1); other members of heat
distribution are zero (in adiabatic parts of the Carnot cycle or by definition—most
temperatures are not present at all). Also note that from (A.9) follow q+ > q− for
our case ϑb > ϑa ; therefore by (1.17) q > 0 and by (1.4) w < 0, i.e., in the Carnot
cycle the workw is produced from “net absorbed” heat q; Second law (1.18) is valid.

Equality (A.9) is important for identification of empirical temperature of ideal gas
thermometer ϑwith the absolute temperature T (see deduction of (1.30) in Sect. 1.4).
In most parts of this book, we use this absolute temperature T . Therefore, e.g., the
state equation of ideal gas (A.3) may be written as

PV = nRT (A.10)

A.2 Representations of Linear Isotropic Functions

In our treatise, we deal with the isotropic functions (Sects. 3.5, 3.7, 4.5) defined as
follows: scalar a, vector a and tensor (of the second order) A in three dimensional
space are given, respectively, by isotropic scalar â, vector â and tensor Â function of
scalars yγ (γ = 1, . . . , n), vectors yα (α = 1, . . . , r ) and (second order) tensors Yβ

(β = 1, . . . , s) if relations

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4


284 Appendix

a = â(yγ, yα, Yβ) = â(yγ, Qyα, QYβQT ) (A.11)

a = â(yγ, yα, Yβ) = QT â(yγ, Qyα, QYβQT ) (A.12)

A = Â(yγ, yα, Yβ) = QT Â(yγ, Qyα, QYβQT ) Q (A.13)

are valid for any values of independent variables and any orthogonal tensor Q from
the full orthogonal group O (i.e., for the set of all orthogonal transformations Q
describing any rotation and inversion; cf. Rems.8 in Chap. 3, 9 in Chap. 3). Indepen-
dent variables in (A.11)–(A.13) are written by usual concise form (cf. (4.128), (3.1)),
i.e., the number of independent scalars, vectors, and tensors (cf. Rem.4 in Chap. 3)
is n, r, s, respectively, (these numbers may be different in these three types of func-
tions). The vectors are all usual, polar vectors (namely, axial vectors may be always
expressed through corresponding skew-symmetric tensors of the second order, see
Rem.10 in Chap. 3) and if it is not stressed especially, by tensor we understand the
tensor of the second order in the following.

It is clear that properties (A.11)–(A.13) restrict the functions â, â, Â somehow and
these restrictions concern only vector- and tensor-independent variables. Therefore,
scalars yγ play a role of parameters only and therefore they will not be written
explicitly in the following. Of course in applications, where independent scalars are
typically present, all coefficients in the subsequent formulae are functions of such
scalars.

Restrictions of this type are studied by the theory of invariants [6] and for functions
(A.11)–(A.13) are known as representations of isotropic functions [7, 8]; see these
results in [9, 10] (quoted also in [11]). Deduction of these restrictions for the general
case of nonlinear functions is complicated (we do it only in Cauchy’s representation
theorem below) and therefore, we discuss only the much more simple case of linear
isotropic functions where dependence on vectors and tensors is only a linear one; of
course, the dependence on scalar parameters is not restricted and is usually nonlinear.

As we noted in Rem.9 in Chap. 3 sometimes only a proper group of orthogonal
tensors (embracing only rotations) is used and as may be expected the resulting
restrictions are not so strong. But for the linear case discussed mostly in this book
such results are the same (see, e.g., representations in [10]) as for the full orthogonal
group which is therefore preferred here.

Although the resulting representation theorem concerns 3-dimensional vectors
and tensors, we note that the following Cauchy representation theorem and Lemma
in its proof are valid for vectors of arbitrary dimension.

First, we deduce the theorem of Cauchy about representation of scalar (nonlinear)
functions of vectors [12, Sect. 11]: If a scalar function â of r vectors yα (α = 1, . . . , r )
is isotropic, i.e., if

a = â(y1, y2, . . . , yr ) = â(Qy1, Qy2, . . . , Qyr ) (A.14)
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is valid for all yα and for all Q from the full orthogonal groupO, then it is necessary
and sufficient that the dependence on these vectors yα is expressed through their
scalar products yα.yβ (α,β = 1, 2, . . . , r; α ⊂ β).

Proof at the beginning, we note that here and in the following we shall write
concisely (yα) = (y1, y2, . . . , yr ) and similarly we write the left hand side of (A.14)
concisely a = â(y1, . . . , yr ) = â(yα) (in fact this concise form has been used
also in (A.11)). We also assume that vectors yα are p-dimensional with Cartesian
components yi

α (i = 1, . . . , p; for our 3-dimensional applications it is sufficient to
consider p ⊂ 3).

First of all, we prove the followingLemma: Let us consider two r -tuples of nonzero
vectors (yα) and (xα) such that

yα.yβ = xα.xβ α,β = 1, 2, . . . , r (A.15)

Then Eq. (A.15) are valid if and only if an orthogonal tensor Q ⇔ O exists such that

Qyα = xα α = 1, . . . , r (A.16)

For proof of Lemma, we start with its sufficiency: Let orthogonal tensor Q exist
which for r -tuple of nonzero vectors (yα) gives r-tuple of vectors (xα) by (A.16).
Then (A.15) follows (cf. Rem.8 in Chap. 3):

yα.yβ = yi
αyi

β = Q ji x j
αQki xk

β = x j
αxk

βδ jk = x j
αx j

β = xα.xβ α,β = 1, 2, . . . , r
(A.17)

Necessity of Lemma: Vectors (yα) form a subspace the dimension of which is
given by a number p of linear independent vectors. We arrange (yα) in such a way
that p linearly independent vectors are at the beginning.

Then the matrix from scalar products of the first p vectors is regular

det ≤ yγ .yε ≤∈= 0 γ, ε = 1, . . . , p (A.18)

which is a necessary and sufficient condition of their linear independence: indeed,
(A.18) may be expressed as a product of two determinants, the rows of the first one
and the columns of the second one are composed of p Cartesian components of
(nonzero) vectors (y1, . . . , yp). Each of these determinants is nonzero if and only if
these vectors are linearly independent and from this (A.18) follows.

If we insert (A.15) into (A.18), we obtain again the nonzero determinant with
corresponding vectors (x1, . . . , xp) which are therefore also lineary independent.

Then there exists tensor Q unique for these both p-tuples of linear independent
vectors giving

Qyγ = xγ γ = 1, . . . , p (A.19)

Namely, by linear independency of vectors yγ , unique cartesian components Qi j

(i, j = 1, . . . , p) of this tensor Q may be obtained if we solve p systems of

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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linear equations (A.19) Qi j y j
γ = xi

γ , γ = 1, . . . , p (e.g., p components Q1 j fol-

lows uniquely from system Q1 j y j
γ = x1γ , γ = 1, . . . , p because its determinant is

nonzero; similarly for remaining components of Q ).
Inserting (A.19) into (A.15) we have

yγ .yε = Qyγ .Qyε γ, ε = 1, . . . , p (A.20)

and therefore (with γ = ε by definition, see Rem.8 in Chap. 3) Q is an orthogonal
tensor, Q ⇔ O.

Result (A.19) proves the necessity of a Lemma for linear independent vectors (and
in fact it transforms one basis yγ of p-dimensional vector space to another one xγ by
linear transformation Q). To prove this for the remaining linearly dependent vectors
yη , we express them through those which are independent

yη =
p∑

γ=1

αηγyγ η = p + 1, . . . , r (A.21)

Scalar products

yη.yε =
p∑

γ=1

αηγyγ .yε ε = 1, . . . , p , η = p + 1, . . . , r (A.22)

form r − p systems of p linear equations with p unknowns which, by (A.18), may
be solved uniquely by Cramer’s rule for (r − p) × p quantities αηγ . Then r − p
vectors xη from r -tuple (xη) is given by first p vectors (xγ) (linearly independent
known from (A.19)) of this tuple as

xη =
p∑

γ=1

αηγxγ η = p + 1, . . . , r (A.23)

whereαηγ are the samecoefficients as in (A.21): indeed, forming thevectors zη (η =
p + 1, . . . , r) by zη = ∑p

γ=1 αηγxγ using αηγ calculated from (A.22) and known
(linearly independent) xγ , we obtain, by multiplying these definitions by (again
those linearly independent) xε (ε = 1, . . . , p) and using (A.15) and (A.22), that
(zη − xη).xε = 0. Because xε are linearly independent, this system of homogeneous
equations (for each fixed η = p + 1, . . . , r ) gives zη = xη , i.e., (A.23) is proved.

From (A.23), (A.19), and (A.21), we can see

xη =
p∑

γ=1

αηγQyγ = Q
p∑

γ=1

αηγyγ = Qyη η = p + 1, . . . , r (A.24)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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i.e., (A.16) is valid for vectors with indices α = η = p + 1, . . . , r too. Therefore,
(A.19) together with (A.24) gives the necessity of (A.16) and the Lemma is proved.
Q.E.D.

Using this Lemma, we now prove the Cauchy theorem.
Sufficiency: let a = â(yα) depend on (yα) through scalar products (left side of

(A.15)). Choosing arbitrary orthogonal Q ⇔ O, we find by (A.16) vectors (xα) and
(A.15) is valid. Inserting (A.15) into â and using (A.16), we obtain (A.14).

Necessity: Let us assume (A.14) for all Q ⇔ O and we prove that a depends
on (yα) through scalar products (left hand side of (A.15)) by contradiction. If such
dependence does not exist, we find two r-tuples (yα1) and (yα2) giving the same
values of scalar products yα1.yγ1 = yα2.yγ2 (left hand side of (A.15)) but at the
same time giving different values of (A.14) â(yα1) = a1 ∈= a2 = â(yα2). Let us
choose some Q′ ⇔ O and by (A.16), we calculate two r -tuples (xα1) or (xα2) for
the mentioned (yα1) or (yα2), respectively, (e.g., (xα2) = Q′(yα2)). By (A.15), these
tuples give the same values of scalar products

xα1.xγ1 = yα1.yγ1 = yα2.yγ2 = xα2.xγ2 (A.25)

and by (A.14) and (A.16) they give the same value

a1 = â(yα1) = â(Q′yα1) = â(xα1) (A.26)

or the same value
a2 = â(yα2) = â(Q′yα2) = â(xα2) (A.27)

respectively. But for two r -tuples (yα1) and (xα2) also (A.15) is valid as follows from
(A.25) and therefore by Lemma there exists Q ⇔ O fulfilling (A.16) Qyα1 = xα2;
but using this and (A.14) in (A.26)1, we obtain equality of both (A.26) and (A.27)
a1 = â(yα1) = â(Qyα1) = â(xα2) = a2. This contradicts the assumption a1 ∈= a2
and therefore proves the necessity. Therefore, Cauchy’s theorem is proved. Q.E.D.

Henceforth, we deal only with vectors and tensors in the three dimensional space.
Now,we define isotropic tensors of the first order (isotropic vectors) vi , the second

order Ui j , the third order Ri jk and the fourth order K i jkl as tensors fulfilling

vi = Qi jv j or v = Qv (A.28)

Ui j = Qik Q jlU kl or U = QUQT (A.29)

Ri jk = Qil Q jm Qkn Rlmn (A.30)

K i jkl = Qim Q jn Qkp Qlq K mnpq (A.31)

for all orthogonal tensors Q from the full orthogonal group O. In (A.28)–(A.31),
Cartesian components are used and we stress that on both sides of these equations
there are the same tensors with components in the one and the sameCartesian system.
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The following representation theorem of isotropic tensors is valid: it is necessary
and sufficient that isotropic tensors of odd orders (A.28), (A.30) are identically zero

vi = 0 (A.32)

Ri jk = 0 (A.33)

and isotropic tensors of even orders (A.29), (A.31) are of the form

Ui j = ηδi j (A.34)

K i jkl = αδi jδkl + βδikδ jl + γδilδ jk (A.35)

where η,α,β, γ are scalars (δi j are Kronecker’s deltas).
Proof Sufficiency follows immediately by inserting (A.32)–(A.35) into (A.28)–

(A.31) and using property of orthogonal tensors, see Rem.8 in Chap. 3.
Necessity of (A.32) and (A.33) follows if we use Q = −1 in (A.28) and (A.30).
Necessity of (A.34), we prove forming the scalar function J of two arbitrary

vectors u, w by
J ≡ Ui j uiw j = J (u, w) (A.36)

where Ui j is an isotropic tensor. Then

∂2 J

∂ui∂w j
= Ui j (A.37)

Now we take an arbitrary orthogonal tensor Q ⇔ O and we form a new tensor Ú
and vectors ú, ẃ by the following linear transformations

Ú kl = Qki Ql jU i j (A.38)

úk = Qkmum (A.39)

ẃl = Qlnwn (A.40)

Using properties of Q from Rem.8 in Chap. 3 and (A.36), we have

Ú kl úkẃl = Qki Ql jU i j Qkmum Qlnwn = Ui j uiw j = J (A.41)

i.e., J is a scalar invariant at transformations (A.38)–(A.40). Using (A.29) in the
r.h.s. of (A.41)1, we obtain

J = J (u, w) = U kl Qkmum Qlnwn = J (Qu, Qw) (A.42)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Because this is valid for all Q ⇔ O, we can see that J is a scalar isotropic function
(A.14) of two vectors u and w. According to Cauchy representation theorem for such
a function (proved above), the dependence J on these vectors must be expressed
through scalar products

u.u, w.w, u.w (A.43)

But because (A.36) is linear and homogeneous in u and w, this is possible only when
J has a form

J = J (u, w) = ηu.w (A.44)

where η is a scalar. Using (A.37), we obtain the necessity of (A.34).
The necessity of (A.35) may be proved analogously: we form a scalar L of four

arbitrary vectors
L ≡ K i jkluiw j xk yl = L(u, w, x, y) (A.45)

where K i jkl is an isotropic tensor. Then

∂4L

∂ui∂w j∂xk∂yl
= K i jkl (A.46)

Forming new tensor Ḱ mnpq and new vectors ú, ẃ, x́, ý by

Ḱ mnpq = Qmi Qnj Q pk Qql K i jkl (A.47)

úm = Qmt ut (A.48)

ẃn = Qnuwu (A.49)

x́ p = Q pr xr (A.50)

ýq = Qqs ys (A.51)

for some Q ⇔ O, we obtain by properties of orthogonal tensor (see Rem.8 in
Chap. 3)

Ḱ mnpq úmẃn x́ p ýq = Qmi Qnj Q pk Qql K i jkl Qmt ut Qnuwu Q pr xr Qqs ys

= K i jkluiw j xk yl = L (A.52)

But using (A.31) in (A.52), we obtain (cf. (A.42))

L(u, w, x, y) = L(Qu, Qw, Qx, Qy) (A.53)

for all Q ⇔ O and therefore L is a scalar isotropic function of vectors u, w, x, y. By
Cauchy’s representation theorem, L depends on the following scalar products

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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u.u, w.w, x.x, y.y, (A.54)

u.w, u.x, u.y, w.x, w.y, x.y (A.55)

But according to its definition (A.45), L depends on their vectors linearly and homo-
geneously and therefore has the following (most general) form (see (A.55))

L = α1u.w + α2u.x + α3u.y + α4w.x + α5w.y + α6x.y + α(u.w)(x.y)

+ β(u.x)(w.y) + γ(u.y)(w.x) (A.56)

where α,β, γ,α1,α2,α3,α4,α5,α6, are scalar constants. Inserting (A.56) into
(A.46), we obtain the necessity of (A.35) and this finishes the proof of the rep-
resentation theorem of isotropic tensors. Q.E.D.

Recalling the role of scalar parameters, we can also consider (A.28)–(A.31) as
the definitions of isotropic functions (vector or tensor functions up to fourth order)
of scalar variables only and relations (A.32)–(A.35) are representation theorems for
such functions; then of course, scalars η,α,β, and γ are (not specified) functions of
scalar variables (of course, some of these results follow as a special case of a more
general representation theorem below).

Nowwe come to themain theorem of this Appendix concerning the representation
of scalar, vector, and tensor linear isotropic functions of vectors and tensors (scalars
as independent variables play the role of parameters).

Representation theorem of linear isotropic functions: Scalar, vector, and tensor
(of second order) functions (with values a, a, A) depending linearly on r vectors
yα (α = 1, . . . , r ) and s tensors (of second order) Yβ (β = 1, . . . , s) are isotropic
(relative to the full orthogonal groupO) if and only if their (most general) forms are

a = a0 +
s∑

β=1

ϑβ trYβ (A.57)

a =
r∑

α=1

εαyα (A.58)

A = τ1 +
s∑

β=1

αβ(trYβ)1 +
s∑

β=1

(ββYβ + γβYT
β ) (A.59)

where a0,ϑβ, εα, τ ,αβ,ββ, γβ are scalar constants.
Proof The most general forms of scalar, vector, and tensor functions depending

on r vectors and s tensors linearly are

a = a0 +
r∑

α=1

vi
αyi

α +
s∑

β=1

Ui j
β Y i j

β (A.60)
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ai = ai
0 +

r∑
α=1

V i j
α y j

α +
s∑

β=1

Ri jk
β Y jk

β (A.61)

Ai j = Ai j
0 +

r∑
α=1

Si jk
α yk

α +
s∑

β=1

K i jkl
β Y kl

β (A.62)

where all coefficients, scalar a0, vectors ai
0, v

i
α, tensors of the second order Ai j

0 , V i j
α ,

Ui j
β , tensors of the third order Ri jk

β , Si jk
α , and tensors of the fourth order K i jkl

β are
constants.

Now, these functions (A.60)–(A.62) must be isotropic and therefore by (A.11)–
(A.13)

a0 +
r∑

α=1

vi
αyi

α +
s∑

β=1

Ui j
β Y i j

β = a0 +
r∑

α=1

v j
αQ ji yi

α +
s∑

β=1

U kl
β Qki Ql j Y i j

β (A.63)

Qil(al
0 +

r∑
α=1

V l j
α y j

α +
s∑

β=1

Rl jk
β Y jk

β ) = ai
0 +

r∑
α=1

V ik
α Qkj y j

α +
s∑

β=1

Rilm
β Ql j QmkY jk

β

(A.64)

Qim(Amn
0 +

r∑
α=1

Smnk
α yk

α +
s∑

β=1

K mnkl
β Y kl

β )Q jn = Ai j
0 +

r∑
α=1

Si jl
α Qlk yk

α

+
s∑

β=1

K i jmn
β Qmk QnlY kl

β

(A.65)

for all Q from the full group of orthogonal transformation O and for all values of
the independent variables (components of all r vectors and s tensors). Adding here
all coefficients standing at the same variables together, we may put such resulting
coefficients to zero because of the independence of the variables (this concerns also
the zero order members in (A.61), (A.62); a0 is canceled). From this we can see,
using the arbitrariness of Q ⇔ O and its properties from Rem.8 in Chap. 3), that all
vector and tensor (2-, 3-, 4- order) coefficients in (A.60)–(A.62) are isotropic tensors
in the sense of (A.28)–(A.31). Therefore, representation theorems for such tensors
(A.32)–(A.35) are valid, i.e.,

ai
0 = 0, vi

α = 0, Ri jk
β = 0, Si jk

α = 0

Ai j
0 = τδi j , V i j

α = εαδi j , Ui j
β = ϑβδi j

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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K i jkl
β = αβδi jδkl + ββδikδ jl + γβδilδ jk α = 1, . . . , r β = 1, . . . , s (A.66)

where all τ , εα,ϑβ,αβ,ββ, γβ are scalar constants. Inserting (A.66) into (A.60)–
(A.62), we obtain the necessity of (A.57)–(A.59).

The sufficiency of (A.57)–(A.59) follows immediately if we insert them into
(A.11)–(A.13) and the proof of the representation theorem of linear isotropic func-
tions is accomplished. Q.E.D.

This theorem is valid for any tensors but in applications there are tensors A or Yβ

often symmetric or skew-symmetric. The most important case used in our treatise is
that from s tensors Yβ the first h tensors Dη (η = 1, . . . , h) are symmetric and the
rest are skew-symmetric tensors Wτ (τ = h +1, . . . , s). Then, because trWτ = 0,
we have instead of (A.57)

a = a0 +
h∑

η=1

ϑηtrDη (A.67)

Moreover, if A is a symmetric tensor B given as a function (A.59), then by sym-
metrization of (A.59) (by which B is not changed)

B = τ1 +
h∑

η=1

αη(trDη)1 +
h∑

η=1

σηDη (A.68)

where scalar constants ση = βη + γη (η = 1, . . . , h).
Similarly, if A is a skew-symmetric tensor M given as a function (A.59), then

skew-symmetrization of (A.59) (not changing M) gives

M =
s∑

τ=h+1

ντ Wτ (A.69)

with scalar constants ντ = βτ − γτ (τ = h + 1, . . . , s).
Therefore, Eqs. (A.57)–(A.59), (A.67)–(A.69) express the representation theo-

rems of isotropic vector, scalar, and tensor (even symmetric or skew-symmetric)
functions linear in vectors and (possibly symmetric or skew-symmetric) tensors. Of
course, special cases of these representations follow, e.g., (A.68) is a representation
theorem of the isotropic symmetric tensor function linear in symmetric tensors (this
was used in Sects. 3.7, 4.5) or (A.34) is a special case of (A.59) as was noted above,
etc.

Finally, we recall that if linear isotropic functions depend (even nonlinearly) also
on scalars (and these are mostly our cases), then all the constants in representation
theorems (A.57)–(A.59), (A.67)–(A.69), (A.34), and (A.35) are (unspecified, often
nonlinear) functions of these scalars.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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A.3 Concave Functions

In Sects. 3.8 and 4.7, certain properties of concave functions [13–15] are needed.
At the same time, properties of convex functions are obtained because the convex
functions differ from the concave by the sign only and therefore their properties are
mostly obtainable by reversion of all following inequalities. For simplicity, we do
not restrict the domain of independent variables (although possible restriction on
some concave subset, i.e., having property (A.71) below, is nearly obvious) and we
confine ourselves to strict concave functions which suffice for our purposes.

Theorem on concave functions: Let ϑ̄ be a (differentiable) function mapping m-
dimensional vectors ≡ω = (ω1, . . . ,ωm) in real numbers ϑ

ϑ = ϑ̄(≡ω) (A.70)

Then three following assertions are equivalent

(i) Function (A.70) is strictly concave in all its domain which means (by definition)
that whenever ≡ω0, ≡ω1, and ≡ω2 are such that

≡ω0 = α ≡ω1 + (1 − α) ≡ω2 for 1 > α > 0 ; ≡ω1 ∈= ≡ω2 (A.71)

the function (A.70) has the following property

ϑ̄(≡ω0) > αϑ̄(≡ω1) + (1 − α)ϑ̄(≡ω2) (A.72)

(of course equality instead of > in (A.72) is valid if ≡ω1 = ≡ω2 or α = 0, 1).
(ii) If ≡ω1 ∈= ≡ω2 in (A.71) then

ϑ̄(≡ω1) < ϑ̄(≡ω0) +
m∑

p=1

(ω
p
1 − ω

p
0 )

∂ϑ̄

∂ω p
(≡ω0) (A.73)

where ∂ϑ̄
∂ω p (≡ω0) is the value of the p-th component of gradient of the function

ϑ̄ (in corresponding vector space) taken at ≡ω0 (of course if ≡ω1 = ≡ω0 the trivial
equality instead of (A.73) is obtained).

(iii) The matrix of second derivatives of ϑ̄ (A.70) taken at arbitrary ≡ω0 (A.71)

∥∥∥∥ ∂2ϑ̄

∂ω p∂ωq
(≡ω0)

∥∥∥∥ p, q = 1, . . . , m (A.74)

is negative definite (therefore a matrix with elements − ∂2ϑ̄
∂ω p∂ωq is positive defi-

nite) [16, 13.5], [17, 1.29].

Proof It suffices to show that (iii) follows from (i), (i) follows from (ii), and (ii),
(iii) are equivalent.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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To prove that (iii) follows from (i), we choose (for arbitrary ≡ω0 , α = 1/2 and
arbitrary vector ≡τ = (τ1, . . . , τm))

≡ω1 = ≡ω0 + ≡τ , ≡ω2 = ≡ω0 − ≡τ (A.75)

Such choice fulfills (A.71) and inequality (A.72) is then

ϑ̄(≡ω0 + ≡τ ) + ϑ̄(≡ω0 − ≡τ ) < 2ϑ̄(≡ω0) (A.76)

We expand both terms on the left-hand side in the Taylor series around ≡ω0

ϑ̄(≡ω0 + ≡τ ) = ϑ̄(≡ω0) +
m∑

p=1

τ p ∂ϑ̄

∂ω p
(≡ω0) +

m∑
p=1

m∑
q=1

τ pτq 1

2

∂2ϑ̄

∂ω p∂ωq
(≡ω0) + o1(≡τ2),

ϑ̄(≡ω0 − ≡τ ) = ϑ̄(≡ω0) −
m∑

p=1

τ p ∂ϑ̄

∂ω p
(≡ω0) +

m∑
p=1

m∑
q=1

τ pτq 1

2

∂2ϑ̄

∂ω p∂ωq
(≡ω0) + o2(≡τ2)

(A.77)
where functions o1(≡τ2), o2(≡τ2) converge more rapidly to zero then preceding terms
in (A.77). Inserting (A.77) into (A.76), we have

m∑
p=1

m∑
q=1

τ pτq ∂2ϑ̄

∂ω p∂ωq
(≡ω0) + o1(≡τ2) + o2(≡τ2) < 0 (A.78)

At sufficiently small vector ≡τ , the left-hand side of (A.78) is a negative quadratic
form and therefore iii follows for any ≡ω0.

Now we prove that (i) follows from (ii). We write (A.73) taking for ≡ω1, the
vectors ≡ω1, ≡ω2 fulfilling (A.71), and multiplying such inequalities by α and 1 − α,
respectively, we obtain

αϑ̄(≡ω1) < αϑ̄(≡ω0) +
m∑

p=1

α(ω
p
1 − ω

p
0 )

∂ϑ̄

∂ω p
(≡ω0),

(1 − α)ϑ̄(≡ω2) < (1 − α)ϑ̄(≡ω0) +
m∑

p=1

(1 − α)(ω
p
2 − ω

p
0 )

∂ϑ̄

∂ω p
(≡ω0) (A.79)

Adding these relations together, we have by (A.71)

αϑ̄(≡ω1) + (1 − α)ϑ̄(≡ω2) < (α + 1 − α)ϑ̄(≡ω0)

+
m∑

p=1

(
αω

p
1 + (1 − α)ω

p
2 − (α + 1 − α)ω

p
0 )

) ∂ϑ̄

∂ω p
(≡ω0)

= ϑ̄(≡ω0) (A.80)
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and this is the result (A.72), i.e., (i) was proved.
Ultimately, we show that ii and iii are equivalent. We expand ϑ̄(≡ω1) in the Taylor

series around ≡ω0 with the remainder of the second order

ϑ̄(≡ω1) = ϑ̄(≡ω0)+
m∑

p=1

(ω
p
1 −ω

p
0 )

∂ϑ̄

∂ω p (≡ω0)+ 1

2

m∑
p=1

m∑
q=1

(ω
p
1 −ω

p
0 )(ω

q
1 −ω

q
0 )

∂2ϑ̄

∂ω p∂ωq (≡ω3)

(A.81)

where components ω
p
3 of ≡ω3 are between ω

p
1 and ω

p
0 . Assuming (iii) for ≡ω3, we find

that the last term in (A.81) is a negative definite quadratic form and we obtain (A.73)
in (ii) for ≡ω1 ∈= ≡ω0. Conversely, assuming (ii), i.e., (A.73), we find that the last term
in (A.81) is a negative definite quadratic form and therefore (iii) follows.

A.4 Nonorthogonal Bases

In Sect. 4.2,weneed vector spacewith a basiswhich is formedby k linear independent
vectors ≡gp (p = 1, . . . , k) which are not generally perpendicular or of unit length
[12, 18, 19]. Such nonorthogonal basis, we call a contravariant one. Covariant
components of the so called metric tensor are defined by

gpq = ≡gp.≡gq p, q,= 1, . . . , k (A.82)

A metric tensor with matrix ≤gpq≤ is obviously symmetrical and regular (this last
assertion is necessary and sufficient for the linear independence of ≡gp: in the basis
of k orthonormal vectors in this space, we obtain det≤gpq≤ as a product of two
determinants first of themhaving the rows and second one having the columns formed
fromCartesian components of ≡gp and ≡gq . Because of the linear independence of these
k vectors, every determinant and therefore also det≤gpq≤ is nonzero and conversely).
Contravariant components g pq of the metric tensor are defined by inversion

≤g pq≤ = ≤gpq≤−1 i.e.
k∑

q=1

gpq gqr = δr
p (A.83)

where δr
p is the Kronecker delta; ≤g pq≤ is regular and symmetrical.

The reciprocal covariant base ≡g p is defined by

≡g p =
k∑

q=1

g pq ≡gq p = 1, . . . , k (A.84)

From (A.82)–(A.84), we have

http://dx.doi.org/10.1007/978-3-319-02514-8_4
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≡g p.≡gr = g pr , ≡g p.≡gr = δ
p
r (A.85)

≡gp =
k∑

q=1

gpq ≡gq , ≡gq =
k∑

p=1

δ
p
q ≡gp (A.86)

The other basis ≡g p′
is connected with ≡gr by regular tensor H p

r

≡g p′ =
k∑

r=1

H p
r ≡gr (A.87)

and conversely, each regular transformation H p
r defines a new basis (similar trans-

formation is valid for ≡gr ).
It is possible to express an arbitrary vector ≡a in k-dimensional vector space in

both bases as

≡a =
k∑

p=1

a p ≡gp =
k∑

q=1

aq ≡gq (A.88)

where a p and aq are contravariant and covariant components, respectively. The fol-
lowing relations between them give (A.88), (A.82), (A.85) as

a p = ≡a.≡g p =
k∑

q=1

g pq aq , aq = ≡a.≡gq =
k∑

p=1

gqp a p (A.89)

A special (often used) case is the orthonormal basiswhere ≤gpq≤ is the unitmatrix.
Then both contravariant and covariant bases are the same unit vectors

≡gp = ≡g p (A.90)

as follows from (A.84); ≤g pq≤ is also the unit matrix.

A.5 Inequalities, Theorem of I-Shih Liu

Here, we present lemmas and the theorem containing inequalities as they have been
used in the main text as the consequence of the Second Law (note that sometimes
equivalent inequalities are used with reverse signs in premises and implications
achieved by changing the signs of corresponding quantities, cf. (A.92) below).

Lemma A.5.1 ([20, Appendix 6.1]) If the following inequality with real constants
a, b

a + bX ⊂ 0 (A.91)
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is valid for any real X then it is necessary and sufficient that b = 0 and a ⊂ 0 .
Proof of sufficiency is obvious and necessity follows by contradiction: if b > 0 at

some real a then such real X may be found atwhich inequality is invalid. Analogously
for b < 0. The remaining follows. Q.E.D.

If we define a′ ≡ −a, b′ ≡ −b, we can obviously write Lemma A.5.1 equiva-
lently as

a′ + b′ X ≥ 0 ⇒ b′ = 0, a′ ≥ 0 (A.92)

In this form, Lemma A.5.1 has been also used (e.g. in (A.104) or in Sect. 4.5).
This Lemma has its generalization on matrices (3 × 3 in our application in

Sect. 3.6):
Lemma A.5.2 If the following inequality with real matrix B and real constant a

a + trBX ⊂ 0 (A.93)

is valid for any real matrix X, then it is necessary and sufficient that a ⊂ 0 and
trBX = 0.

Proof of sufficiency is obvious and necessity follows by contradiction: If it would
be that trBX1 ∈= 0 for some fixed matrix X = X1 then (A.93) must be valid for
X = βX1 with any real β. But this is impossible because a + βtrBX1 ⊂ 0 cannot
be valid for some real β.

In the special case, it follows from trBX = 0 that if arbitrary X is symmetric or
skew-symmetric then B must be skew-symmetric or symmetric, respectively. This
follows from the component form immediately choosing one independent element
of corresponding X sequentially as a unit (and remaining as zero).

Lemma A.5.3 Let the following polynomial of the third degree in real X be given,
where a is the real constant and f (X) the polynomial of mostly second degree, and

aX3 + f (X) ≥ 0 (A.94)

is valid for any real X . Then it is necessary and sufficient

a = 0, f (X) ≥ 0 (A.95)

Proof Sufficiency is obvious. Necessity: If a ∈= 0 then at |X | of sufficient magnitude,
the term of the third degree determines the sign of the left-hand side of (A.94)
and its nonnegativity need not be fulfilled at some X ⇔ . The remaining follows
immediately. Q.E.D.

Lemma A.5.4 If quadratic inequality with real constants b, a

bX + aX2 ≥ 0 (A.96)

is valid for any real X then it is necessary and sufficient

b = 0, a ≥ 0 (A.97)

http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Proof Sufficiency is obvious. Necessity: If a = 0 then obviously b = 0. If a < 0
then inequality (A.96) is not valid for sufficiently great |X |. If a > 0 and b > 0,
then inequality (A.96), written as X (X + b/a) ≥ 0, is not valid for 0 > X > −b/a.
Finally, if a > 0 and b < 0, then inequality (A.96), written as X (X + b/a) ≥ 0, is
not valid for 0 < X < −b/a. Therefore, (A.97) is valid. Q.E.D.

We note that generalization of such a Lemma for more variables of X is deduced
in [21, p. 240].

We also note that if quadratic inequality with real constants a, b and c ∈= 0

c + bX + aX2 ≥ 0 (A.98)

is valid for any real X then the previous result b = 0 is not generally valid. An
example of such a case is (1+ X)2 = 1+ 2X + X2 ≥ 0. Cf. Sect. 4.5, discussion of
(4.169).

Method of Lagrange multipliers of I-Shih Liu [22], cf. also [23, 10]:
The use of the Coleman-Noll admissibility principle in complicated cases (mix-

tures , electromagnetic and surface systems) is often very difficult, becausemany gra-
dients and time derivatives are bound together through some interrelations (mainly
through balance equations) and the finding of an admissible process is therefore
not easy. For these purposes, the method of Lagrange multipliers was proposed by
I-Shih Liu [22] which simplifies such complicated situations (for many different
applications see also [23], [10, mainly Sect. 5.4.3], [24–28]). The name originates
from a certain analogy with the Lagrange method of finding extremes at additional
constraints.

The basis for this method is formed by the following
Theorem of I-Shih Liu A.5.5 (cf. Lemma in [22] or [10, Sect. 5.4.3]):
Let it be given that A = (AJγ) (the component form is in parentheses where

J = 1, . . . , p, γ = 1, . . . , n) a real p × n matrix, B = (BJ ) ⇔ p, nonzero
α = (αγ) ⇔ n real vectors (of dimension p or n respectively) and real β ⇔ . Let
S be the non-empty set of (mutually independent) vectors X = (Xγ) ⇔ n fulfilling
equations (summing rules in γ, J are assumed)

AJγ Xγ + BJ = 0 J = 1, . . . , p (A.99)

Then the following statements are equivalent:

(i)
αγ Xγ + β ≥ 0 for all X ⇔ S (A.100)

(ii) There exist nonzero Lagrange multipliers η = (ηJ ) ⇔ p such that

αγ Xγ + β − ηJ (AJγ Xγ + BJ ) ≥ 0 for all Xγ ⇔ n (A.101)

(iii) There exist nonzero Lagrange multipliers η = (ηJ ) ⇔ p such that

http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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αγ − ηJ AJγ = 0 γ = 1, . . . , n (A.102)

β − ηJ BJ ≥ 0 (A.103)

Proof For the equivalence it is sufficient to prove, that (ii)⇒(i), (ii)⇒(iii), and
(i)⇒(iii).

Result (ii)⇒(i) follows from (A.99).
Equivalence (ii)⇒(iii) follows writing (A.101)

(αγ − ηJ AJγ)Xγ + (β − ηJ BJ ) ≥ 0 ∀X ⇔ n (A.104)

(∀X ⇔ n means for all vectors X (with components Xγ) from n-dimensional space
n). Since Xγ are arbitrary reals, (A.104) is true if and only if (A.102), (A.103) is
valid according to Lemma A.5.1 with reversal sign (A.92).

To complete the proof, it is sufficient to show that (i)⇒(iii): We define the fol-
lowing sets

H ≡ {X ⇔ n fulfilling αγ Xγ + β ≥ 0} (A.105)

i.e., H is the set of all those vectors X = (Xγ) from n fulfilling the (A.100) (but
they need not fulfill (A.99), similarly in the following);

H0 ≡ {X ⇔ n fulfilling αγ Xγ = 0} (A.106)

H⊥
0 ≡ {y ⇔ n fulfilling yγ Xγ = 0, ∀X ⇔ H0} (A.107)

(i.e., H⊥
0 are those (n-dimensional) vectors y = (yγ) perpendicular to vectors from

H0). Similarly,

S0 ≡ {X ⇔ n fulfilling AJγ Xγ = 0, J = 1, . . . , p} (A.108)

S⊥
0 ≡ {y ⇔ n fulfilling yγ Xγ = 0, ∀X ⇔ S0} (A.109)

Observe that H0, H⊥
0 , S0, S⊥

0 all are linear subspaces of n (i.e., linear space in
respect of its members, e.g., if X, X ′ ⇔ H0 , then indeed X + X ′ ⇔ H0 and ξX ⇔ H0
for ξ ⇔  because αγ(Xγ + X ′

γ) = 0 and αγξXγ = 0. The analogical proof is valid
for H⊥

0 , S0, S⊥
0 ).

To continue the proof, we introduce two following auxiliary Lemmas:
Lemma 1: If X ⇔ S0 then for any Y ⇔ S , we have X + Y ⇔ S
This follows from the definition of S.
Lemma 2: By definition, (i) implies S ⊂ H , and from this it follows that S0 ⊂ H0.
This Lemma 2 will be proved as follows: Assuming that S ⊂ H implies S0 ∈⊂ H0

(the opposite possibility), we obtain a contradiction:
Indeed, suppose that S0 ∈⊂ H0. Then there exists a y ⇔ S0 such that y ∈⇔ H0,

i.e., AJγ yγ = 0, ∀J = 1, . . . , p and αγ yγ ∈= 0. Since S0 is a linear subspace of
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n , for any a ⇔  it follows that ay ⇔ S0 (according to definition (A.108) ay ⇔ n

and AJγayγ = 0, J = 1, . . . , p). Using Lemma 1 for X = ay, we obtain for any
Y ⇔ S that Y + ay ⇔ S. But

αγ(Yγ + ayγ) + β = aαγ yγ + αγYγ + β (A.110)

and because aαγ yγ ∈= 0, there exists some a ⇔  such that αγ(Yγ + ayγ) + β < 0,
which means Y + ay ∈⊂ H although Y + ay ⇔ S and this contradicts our assumption
S ⊂ H . Lemma 2 is proved.

Result S0 ⊂ H0 of Lemma 2 implies H⊥
0 ⊂ S⊥

0 . Namely, taking some y ⇔ H⊥
0 ,

this fulfills yγ Xγ = 0 for all X ⇔ H0 (see (A.107)) and therefore also for all X ⇔ S0
(because of S0 ⊂ H0), i.e., such y ⇔ S⊥

0 (see (A.109)). This is valid for any such
y ⇔ H⊥

0 and therefore H⊥
0 ⊂ S⊥

0 . According to the definition of H0 (A.106), the
vector α = (αγ) is one of vectors y ⇔ H⊥

0 (A.107), i.e. α ⇔ H⊥
0 . Therefore,

according to the previous result H⊥
0 ⊂ S⊥

0 , we have also α ⇔ S⊥
0 . Analogically,

considering the rows of matrix (AJγ) as p vectors AJ (containing n elements),
J = 1, . . . , p, we can see from the definition of S0 (A.108) that p vectors AJ are
from y ⇔ S⊥

0 , i.e., AJ ⇔ S⊥
0 .

By interpretation of matrix (AJγ) through the vectors AJ ⇔ S⊥
0 , we can see

that rank(AJγ) gives the dimension of S⊥
0 , e.g., if rank(AJγ) = p then vectors

AJ , J = 1, . . . , p, are linearly independent and form the basis of S⊥
0 . But even if

rank (AJγ) < p (of course rank (AJγ) ⊂ n), we can express the arbitrary vector from
S⊥
0 through p vectors AJ , J = 1, . . . , p, in this case even those linear dependent.

Specifically for αγ ⇔ S⊥
0 , there exists a nonzero vector η = (ηJ ) ⇔ p such that

= ηJ AJ , or
αγ − ηJ AJγ = 0

Finally, for any X ⇔ S we have AJγ Xγ = −BJ , J = 1, . . . , p, according to
(A.99) and therefore from the previous result and (i) (A.100):

0 ⊂ αγ Xγ + β = ηJ AJγ Xγ + β = −ηJ BJ + β

These last results are (A.102) and (A.103) of (iii) obtained from (i).
Finally, we note that if rank AJγ = p the Lagrange multipliers ηJ are unique.

Q.E.D.
At p = 0, the Theorem A.5.5 reduces to Lemma A.5.1 in the form (A.92).
Theorem A.5.5 (which is algebraic only) may be applied to the thermodynamics

of our book, namely in the admissibility principle used on the models of differential
type as we show in the examples below. The Xγ are here the time or space derivatives
of deformation and temperature fields other than those contained in the independent
variables of the constitutive equations and therefore allαγ,β,ηJ , AJγ, BJ are func-
tions of these independent variables. Constraint conditions (A.99) usually come from
balances (of mass, momentum, energy) and (A.100) from the entropy inequality.

The advantage of I-Shih Liu’s Theorem A.5.5 consists in the enlargement of the
validity of inequality (ii) (A.101) (modified by Lagrange multipliers) to all Xγ (⇔n)
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while the original inequality (i) (A.100) has been valid only for Xγ fulfilling addi-
tional constraint equalities (A.99) (and just such limited Xγ ⇔ S are often difficult to
find in classical procedure, see, e.g. Sect. 4.5). I-Shih Liu’s TheoremA.5.5 then finds
the Lagrange multipliers from (A.102) and therefore, the results of the admissibility
principle including the remaining inequality from (A.103).

The strength of I-Shih Liu method, therefore, manifests itself at the more com-
plicated constraints [24, 26]. The most complicated case in our book—the reacting
mixture with linear transport properties—with the use of entropy inequality and
all balances (of mass, momentum, energy) as (A.100), (A.99), would be laborious.
Therefore, to demonstrate the application of the I-Shih Liu’s Theorem A.5.5, we
choose relatively simple examples of the uniform fluid model B from Sect. 2.2 and
the simple thermoelastic fluid from the end of Sect. 3.6.6

The example of the uniform fluid model B discussed in the Sects. 2.1,2.2 uses
entropy inequality (Second Law) (2.2) and balance of energy (First Law) (2.1) as
a constraint (balances of mass and momentum may be ignored because they are
fulfilled trivially: the mass of bodies is constant and velocity (and therefore also
kinetic energy) is zero).

U̇ = Q − PV̇ (A.111)

Ṡ ≥ Q/T (A.112)

6 We note the special case of I-Shih Liu’s Theorem A.5.5 when p = n and the (quadratic) matrix
(AJγ) = 1 is unit matrix. Then, we have (A.99), (A.102) (J = γ) as

Xγ + Bγ = 0, αγ = ηγ (a)

giving from inequality (A.100) the resulting inequality (A.103) of the I-Shih Liu Theorem. Such a
procedure has been used in fact in our main text: using free energies the inequality (A.100) with
constraint (a)1 in special cases p = n, (AJγ) = 1 may be constructed fromwhich by elimination of
Xγ , the unconstrained inequality (A.103) has been obtained (on which the standard Coleman-Noll
admissibility method may be used).

We show it on our model B from Sect.2.2. Here, the basic inequality (A.100) is (2.2)

−Q + TṠ ≥ 0 (b)

with the additional constraint condition (A.99) given by energy balance (2.1) as

Q − (U̇ + PV̇ ) = 0 (c)

We use I-Shih Liu Theorem A.5.5 choosing n = p = 1, A11 = 1, B1 = −(U̇ + PV̇ ),α1 =
−1,β = T Ṡ, X1 = Q and its results (A.102), (A.103) are η1 = −1 and inequality

T Ṡ − (U̇ + PV̇ ) ≥ 0 (d)

This inequality, using free energy F = U − T S (2.12) and model B (2.7), specifically F =
F̂(V, V̇ , T ) (2.20), is the same as the inequality (2.21) (which has been obtained in Sect. 2.2 by
elimination of Q from (2.2), (2.1)). From this it follows all results formodel B by the same procedure
as in Sect. 2.2.

Similarly, we can discuss results from Sects. 3.6, 4.5 using mass balances as (a)1.

http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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As a model, we use the uniform fluid with volume memory B (2.7) from Sects. 2.1,
2.2

U = Û (V, V̇ , T ), S = Ŝ(V, V̇ , T ), P = P̂(V, V̇ , T ) (A.113)

By (A.113) the constraint and inequality of the type (A.99), (A.100) in I-Shih Liu
Theorem A.5.5 are

(∂Û/∂T )Ṫ + (∂Û/∂V̇ )V̈ + {[(∂Û/∂V ) + P]V̇ − Q} = 0 (A.114)

(∂ Ŝ/∂T )Ṫ + (∂ Ŝ/∂V̇ )V̈ + {(∂ Ŝ/∂V )V̇ − Q/T } ≥ 0 (A.115)

In this example J = p = 1 and γ = 1, 2 with n = 2 and with Xγ = Ṫ , V̈ . Matrix A
is the vector (A1γ) = (∂Û/∂T, ∂Û/∂V̇ ) and vector α is (αγ) = (∂ Ŝ/∂T, ∂ Ŝ/∂V̇ ).

Therefore, the results (A.102), (A.103) of I-Shih Liu Theorem A.5.5 are

(∂ Ŝ/∂T ) − η(∂Û/∂T ) = 0 (A.116)

(∂ Ŝ/∂V̇ ) − η(∂Û/∂V̇ ) = 0 (A.117)

{(∂ Ŝ/∂V )V̇ − Q/T } − η
(
[(∂Û/∂V ) + P]V̇ − Q

)
≥ 0 (A.118)

with one Lagrange multiplier η1 ≡ η (which, similarly as other quantities here,
may be a function of V, V̇ , T ).

To calculate the Lagrange multiplier η, we write (A.118) as

(
(∂ Ŝ/∂V ) − η(∂Û/∂V ) − ηP

)
V̇ + (η − 1/T )Q ≥ 0 (A.119)

and we express Q from (A.111) and (A.113)

Q = U̇ + PV̇ = (∂Û/∂V )V̇ + (∂Û/∂T )Ṫ + (∂Û/∂V̇ )V̈ + PV̇ (A.120)

Inserting (A.120) into (A.119), we obtain after rearrangement

(
(∂ Ŝ/∂V ) − (1/T )(∂Û/∂V ) − (P/T )

)
V̇ + (η − 1/T )(∂Û/∂T )Ṫ

+ (η − 1/T )(∂Û/∂V̇ )V̈ ≥ 0 (A.121)

This inequality is linear in Ṫ , V̈ and therefore the coefficients at these must be zero
(identically, i.e., at any independent variables of constitutive equations (A.113)).
Therefore,

(η − 1/T )(∂Û/∂T ) = 0 (A.122)

But because (∂Û/∂T ) ∈= 0 (and is even positive, because this is the heat capacity at
constant volume, cf. Rem.9 in Chap. 2), we obtain for this Lagrange multiplier

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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η = 1/T (A.123)

With this result (A.123), the inequality (A.121) gives

(
(∂ Ŝ/∂V ) − (1/T )(∂Û/∂V ) − P/T

)
V̇ ≥ 0 (A.124)

and the identities (A.116), (A.117) give

(∂ Ŝ/∂T ) − (1/T )(∂Û/∂T ) = 0 (A.125)

(∂ Ŝ/∂V̇ ) − (1/T )(∂Û/∂V̇ ) = 0 (A.126)

Using the free energy F = U − T S = F̂(V, V̇ , T ) (2.12), (2.20) we obtain from
(A.126), (A.125), (A.124)

∂ F̂/∂V̇ ≡ 0, i.e., F = F̂(V, T ) (A.127)

∂ F̂/∂T = −S (A.128)

− (1/T )
(
(∂ F̂/∂V ) + P

)
V̇ ≥ 0 (A.129)

These are the same results as in Sect. 2.2, namely (2.22), (2.24), and (2.27). Therefore,
the remaining results of model B in Sect. 2.2 follow.

The example of the simple thermoelastic fluid, noted in the end of Sect. 3.6 above
(3.181) (cf. also example in [22]), has the constitutive equations for u, s, T, q limited
to independent variables ρ, T, g = gradT only. For simplicity, external body (or
inertial) force and volume heating are not considered, b + i = o, Q = 0. We have
entropy inequality (3.109) (with (3.8))

ρ
∂s

∂t
+ ρv j ∂s

∂x j
+ (1/T )

∂q j

∂x j
− (1/T 2)q jg j ≥ 0 (A.130)

constrained by balances of mass (3.63), momentum (3.78), and energy (3.107) (again
with (3.8) and (3.15), (3.14)) assuming (3.93) (i.e., balance of moment of momentum
has been used)

∂ρ

∂t
+ v j ∂ρ

∂x j
+ ρ

∂v j

∂x j
= 0 (A.131)

ρ
∂vi

∂t
+ ρv j ∂vi

∂x j
− ∂T i j

∂x j
= oi (A.132)

ρ
∂u

∂t
+ ρv j ∂u

∂x j
+ ∂q j

∂x j
− T i j ∂v j

∂xi
= 0 (A.133)

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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We calculate derivatives of constitutive functions (denoted by hat) needed in
(A.130)–(A.133)

∂s

∂t
= ∂ŝ

∂ρ

∂ρ

∂t
+ ∂ŝ

∂T

∂T

∂t
+ ∂ŝ

∂gk

∂gk

∂t
(A.134)

∂s

∂x j
= ∂ŝ

∂ρ

∂ρ

∂x j
+ ∂ŝ

∂T
g j + ∂ŝ

∂gk

∂gk

∂x j
(A.135)

∂u

∂t
= ∂û

∂ρ

∂ρ

∂t
+ ∂û

∂T

∂T

∂t
+ ∂û

∂gk

∂gk

∂t
(A.136)

∂u

∂x j
= ∂û

∂ρ

∂ρ

∂x j
+ ∂û

∂T
g j + ∂û

∂gk

∂gk

∂x j
(A.137)

∂T i j

∂x j
= ∂T̂ i j

∂ρ

∂ρ

∂x j
+ ∂T̂ i j

∂T
g j + ∂T̂ i j

∂gk

∂gk

∂x j
(A.138)

∂q j

∂x j
= ∂q̂ j

∂ρ

∂ρ

∂x j
+ ∂q̂ j

∂T
g j + ∂q̂ j

∂gk

∂gk

∂x j
(A.139)

Inserting (A.134)–(A.139) into (A.130)–(A.133), we obtain the inequality of the type
(A.100) with constraints of the type (A.99) in I-Shih Liu Theorem A.5.5 choosing
as Xγ the vector with n = 26 independent components

(Xγ) = (∂ρ

∂t
,
∂v j

∂t
,
∂T

∂t
,
∂gk

∂t
,

∂ρ

∂x j
,
∂v j

∂xk
,
∂g(k

∂x j)

)
γ = 1, . . . , 26 (A.140)

(symmetrized tensor ∂g(k
∂x j )

≡ 1
2 (

∂gk

∂x j + ∂g j

∂xk ) is used because ∂gk

∂x j = ∂g j

∂xk is symmetric

with 6 independent components, cf. Rem. 7). The members containing g j were
excluded because of the choice of independent variables in our model; they are used
in definitions β, BJ (A.142), (A.148).

Therefore, we obtain the inequality of the type (A.100) in I-Shih Liu Theorem
A.5.5 by inserting (A.134), (A.135), and (A.139) into inequality (A.130)

ρ
∂ŝ

∂ρ

∂ρ

∂t
+ ρ

∂ŝ

∂T

∂T

∂t
+ ρ

∂ŝ

∂gk

∂gk

∂t
+ (ρv j ∂ŝ

∂ρ
+ (1/T )

∂q̂ j

∂ρ
)

∂ρ

∂x j

+ (ρv( j ∂ŝ

∂gk)
+ (1/T )

∂q̂( j

∂gk)
)
∂g(k

∂x j)
+ (ρv j ∂ŝ

∂T
+ (1/T )

∂q̂ j

∂T
− (1/T 2)q j )g j ≥ 0

(A.141)
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from which we can see definitions7

β ≡ (ρv j ∂ŝ

∂T
+ (1/T )

∂q̂ j

∂T
− (1/T 2)q j )g j (A.142)

(αγ) ≡ (ρ
∂ŝ

∂ρ
, o j , ρ

∂ŝ

∂T
, ρ

∂ŝ

∂gk
, ρv j ∂ŝ

∂ρ
+ (1/T )

∂q̂ j

∂ρ
, 0k j , ρv( j ∂ŝ

∂gk)
+ (1/T )

∂q̂( j

∂gk)
)

(A.143)
where, by symmetrization, the last six independent symmetrical quantities arewritten
and oi , 0i j are 3 vector and 9 tensor zero components not used in (A.141), i.e., this
vector (αγ) has, similarly to (A.140), 26 components.

The choice of vectors (A.140) permits to obtain equalities of the type (A.99)
in I-Shih Liu Theorem A.5.5 by inserting (A.136), (A.137), (A.138), (A.139) into
balances (A.131), (A.132), (A.133) and rearranging:

∂ρ

∂t
+ v j ∂ρ

∂x j
+ ρδk j ∂v j

∂xk
= 0 (A.144)

ρδi j ∂v j

∂t
− ∂T̂ i j

∂ρ

∂ρ

∂x j
+ ρvkδi j ∂v j

∂xk
− ∂T̂ i( j

∂gk)

∂g(k

∂x j)
− ∂T̂ i j

∂T
g j = oi (A.145)

ρ
∂û

∂ρ

∂ρ

∂t
+ ρ

∂û

∂T

∂T

∂t
+ ρ

∂û

∂gk

∂gk

∂t
+ (ρv j ∂û

∂ρ
+ ∂q̂ j

∂ρ
)

∂ρ

∂x j

− T kj ∂v j

∂xk
+ (ρv( j ∂û

∂gk)
+ ∂q̂( j

∂gk)
)
∂g(k

∂x j)
+ ρv j ∂û

∂T
g j + ∂q̂ j

∂T
g j = 0 (A.146)

7 The term

(ρv( j ∂ŝ

∂gk)
+(1/T )

∂q( j

∂gk)
)
∂g(k

∂x j)
= (ρv j ∂ŝ

∂gk
+(1/T )

∂q j

∂gk
)
∂gk

∂x j
(a)

in (A.141) is equal to those obtained by direct calculation of (A.141). This equality follows, from
the definition of symmetrization, say of tensor N jk , defined as N ( jk) ≡ 1

2 (N jk + N kj ). Indeed,
defining in (a) for brevity

N jk ≡ ρv j ∂ŝ

∂gk
+ (1/T )

∂q j

∂gk
, T,k j ≡ ∂2T

∂xk∂x j
= ∂gk

∂x j

Because of symmetry T,k j = T, jk we can write for the left hand side of (a)

N ( jk)T,(k j) = 1

2
(N jk + N kj )

1

2
(T,k j + T, jk) = 1

2
(N jk + N kj )T,k j = 1

2
N jk T,k j + 1

2
N kj T, jk

= 1

2
N jk T,k j + 1

2
N jk T,k j = N jk T,k j

and this is the right hand side of (a).
Such symmetrization must be used in (A.141) (and in (A.140), (A.143), etc.) to stress the

independence of Xγ , specifically the independence of only the six components of tensor ∂gk/∂x j .
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Because of the symmetry of ∂gk

∂x j , the symmetrization from Rem.7 has been used

analogously giving ∂T̂ i( j

∂gk)

∂g(k

∂x j) = ∂T̂ i j

∂gk
∂gk

∂x j and (ρv( j ∂û
∂gk) + ∂q̂( j

∂gk) )
∂g(k

∂x j) = (ρv j ∂û
∂gk +

∂q̂ j

∂gk )
∂gk

∂x j .
Therefore, we have five equations of the type (A.99), J = 1, . . . , p = 5 (2 scalar

(A.144), (A.146), and 3 (in component i = 1, 2, 3) vector equations (A.145)).
From these form of Eqs. (A.144), (A.145), and (A.146) of the type (A.99), we

can write explicitly the five components of the vector B = (BJ ):

(BJ ) = (B1, Bi , B5) J = 1, . . . , 5, i = 1, 2, 3 (A.147)

B1 = 0, Bi = −∂T̂ i j

∂T
g j i = 1, 2, 3, B5 = ρv j ∂û

∂T
g j + ∂q̂ j

∂T
g j (A.148)

and the matrix A = (AJγ) of dimension (5 × 26):

1 o j 0 ok v j ρδk j 0(k j)

oi ρδi j oi δikok −∂T̂ i j

∂ρ ρvkδi j −∂T̂ i( j

∂gk)

ρ∂û
∂ρ o j ρ ∂û

∂T ρ ∂û
∂gk ρv j ∂û

∂ρ + ∂q̂ j

∂ρ −T kj ρv( j ∂û
∂gk) + ∂q̂( j

∂gk)

Therefore we obtain, as the result of I-Shih Liu Theorem A.5.5, the five Lagrange
multipliers η1,η

i , i = 1, 2, 3,η5 in the resulting expressions (A.102), (A.103).
These are in our example

ρ
∂ŝ

∂ρ
= η1 + η5ρ

∂û

∂ρ
(A.149)

o j = ηiρδi j (A.150)

ρ
∂ŝ

∂T
= η5ρ

∂û

∂T
(A.151)

ρ
∂ŝ

∂gk
= η5ρ

∂û

∂gk
(A.152)

ρv j ∂ŝ

∂ρ
+ (1/T )

∂q̂ j

∂ρ
= η1v

j + ηi (−∂T̂ i j

∂ρ
) + η5(ρv j ∂û

∂ρ
+ ∂q̂ j

∂ρ
) (A.153)

0k j = η1ρδk j + ηiρvkδi j + η5(−T kj ) (A.154)

ρv( j ∂ŝ

∂gk)
+ (1/T )

∂q̂( j

∂gk)
= ηi (−∂T̂ i( j

∂gk)
) + η5(ρv( j ∂û

∂gk)
+ ∂q̂( j

∂gk)
) (A.155)
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(ρv j ∂ŝ

∂T
+(1/T )

∂q̂ j

∂T
−(1/T 2)q j )g j −ηi (−∂T̂ i j

∂T
g j )−η5(ρv j ∂û

∂T
g j+∂q̂ j

∂T
g j )≥ 0

(A.156)
From these results, we calculate the following relations of our model (which are

valid identically, i.e., for all independent variables ρ, T, g chosen in application of
Theorem A.5.5 as fixed): Because ρ ∈= 0, we obtain from (A.150) that all multipliers
ηi are zeros. From this and because the symmetrized dyad formed by the multipli-
cation of (A.152) with v j is contained in (A.155), we obtain that η5 is equal to the
inverse of temperature

ηi = 0 i = 1, 2, 3, η5 = 1/T, η1 = −P/(T ρ) (A.157)

To obtain the last relation, we note that with the free energy (3.111) f = u − T s =
f̂ (ρ, T, g), we find from (A.151), (A.152) that ∂ f̂ /∂T = −s and f , and therefore
s, u, are independent of g. Then from (A.154) it may be seen that the stress tensor
is reduced to T kj = η1T ρδk j = −Pδk j in our model, i.e., to the pressure P which
may be expressed through Lagrangemultipliers asη1 = −P/(T ρ). Using it and free
energy in (A.149) we obtain that pressure is given by free energy ∂ f̂ /∂ρ = P/ρ2

and therefore P depend on ρ, T only. Equation (A.153) is fulfilled identically. These
relations reduce the inequality (A.156) to −(1/T 2)q jg j ≥ 0 .

The final results are, therefore,

f = f̂ (ρ, T ), s = ŝ(ρ, T ), u = û(ρ, T ), P = P̂(ρ, T )

∂ f̂

∂T
= −s,

∂ f̂

∂ρ
= P/ρ2, T kj = −Pδk j , q = q̂(ρ, T, g), −(1/T 2)q jg j ≥ 0

(A.158)
We can see that the method of Lagrange multipliers in I-Shih Liu Theorem A.5.5
gives for the model of simple thermoelastic fluid exactly the same results as the
classical procedure from Sect. 3.6, cf. (3.181), (3.174), (3.175), (3.171), and (3.172)
(without h, D).
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ics of chemically reacting mixtures). Academia, Praha (1982)
12. Truesdell, C., Noll,W.: The nonlinear field theories ofmechanics. In: Flügge, S. (ed.) Handbuch

der Physik, vol. III/3. Springer, Berlin (1965).
13. Coleman, B.D.: On the stability of equilibrium states of general fluids. Arch. Ration. Mech.

Anal. 36(1), 1–32 (1970)
14. Coleman, B.D., Greenberg, J.M.: Thermodynamics and the stability of fluid motion. Arch.

Ration. Mech. Anal. 25, 321–341 (1967)
15. Gurtin, M.E.: Modern continuum thermodynamics. In: Nemat-Nasser, S. (ed.) Mechanics

Today, vol. 1, 1972. Pergamon Press, New York (1974).
16. Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientist and Engineers (Russian trans-

lation: Spravocnik po matematike, Nauka, Moskva 1973). McGraw-Hill, New York (1968)
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