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Preface

The study of thermodynamics is often limited to classical thermodynamics where
minimal laws and concepts lead to a wealth of equations and applications. The
resultant equations best describe systems at equilibrium with no temporal or spa-
tial parameters. The equations do, however, often provide accurate descriptions
for systems close to equilibrium. . Statistical thermodynamics produces the same
equilibrium information starting with the microscopic properties of the atoms or
molecules in the system that correlates with the results from macroscopic classical
thermodynamics. Because both these disciplines develop a wealth of information
from a few starting postulates, e.g., the laws of thermodyamics, they are often
introduced as independent disciplines. However, the concepts and techniques devel-
oped for these disciplines are extremely useful in many other disciplines. This
book is intended to provide an introduction to these disciplines while revealing the
connections between them.

Chemical kinetics uses the statistics and probabilities developed for statistical
thermodynamics to explain the evolution of a system to equilibrium. Irreversible
thermodynamics, which is developed from the equations of classical thermodynam-
ics, centers on distance-dependent forces, and time-dependent fluxes. The force flux
equations of irreversible thermodynamics lead are generated from the intensive and
extensive variables of classical thermodynamics. These force flux equations lead,
in turn, to transport equations such as Fick’s first law of diffusion and the Nernst
Planck equation for electrochemical transport.

The book illustrates the concepts using some simple examples. These examples
provide a physical basis that facilitates understanding of the more complicated sys-
tems. Probabilities and averages in statistical thermodynamics are developed for
systems with only two or three energy levels. The effects of interactions can be
demonstrated effectively with such systems. The same techniques are then applied
to continuous systems such as Maxwell Boltzmann velocity and energy distribu-
tions. The probability that a molecule has sufficient energy to react is developed
using the same techniques.

Some models are developed within different disciplines (chapters) to contrast the
different approaches. The Ehrenfest urn (or dog-flea) model, originally used to con-
trast states and distributions in statistical thermodynamics, is also used to describe
the kinetic approach to equilibrium and the stationary state produced by a directional
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flow of particles through the system. Bose Einstein statistics are introduced in sta-
tistical thermodynamics and then applied in kinetics to calculate the probability that
sufficient energy will collect in a bond to rupture it.

The first law of thermodynamics in Chapters 1–3 is expressed as a generic
equation that leads easily to specific applications such as adiabatic and isothermal
expansions of both ideal and real gases. Entropy is considered from both thermody-
namic (Chapter 4) and statistical (Chapter 5) points of view. The statistical chapter
includes some information theory. It also presents some paradoxes, which, when
explained, help clarify the statistical nature of entropy.

The free energies and their physical significance are presented in Chapter 6 and
applied in Chapter 7 for Maxwell’s equations and thermodynamic equations of
state. These equations are not limited to a study of gases. They are used to develop
equations such as those for electrocapillarity and adiabatic demagnetization. The
thermodynamics of solutions is developed through partial molar quantities and
chemical potential in Chapter 8. Balance of the chemical potential at equilibrium is
used to develop solution equations for freezing point depression and osmotic pres-
sure and other equations such as the barometric and Clausius Clapeyron equations.
The chemical potential balance equations for ionic systems also lead to equations
for the electrochemical potential and the Donnan equilibrium.

Statistical thermodynamics begins with some mathematical background. The
most probable distribution is illustrated for systems with two or three particles.
The most probable distributions are then developed for some simple systems
before the introduction of the method or undetermined multipliers that leads to the
Boltzmann factor for molecules with different energies. Bose Einstein and Fermi-
Dirac statistics are introduced and contrasted with Boltzmann statistics using some
minimal state models.

The use of the Boltzmann factor for energy is illustrated with systems hav-
ing two or three energy levels to illustrate probabilities and averaging techniques
in Chapter 11. The Boltzmann factor in chemical potential is illustrated with
enzymes having one or two binding sites. The probabilities and average values
for these enzyme systems are compared with the same parameters developed from
equilibrium macroscopic binding equilibria.

Probabilities and averaging techniques developed for discrete systems are
expanded and used for continuous energy systems. The connection between a
sum over Boltzmann factors for two or three energy states and the integrals over
Boltzmann factors for a continuum of energy states is emphasized. The equation
developed to determine average energy from the partition function for two or three
states is shown to give the average energy for the continuum of states once the parti-
tion function is known. Phase space is introduced as well as the connection between
quantum and classical two-dimensional systems. .The average energy for a dipole
in an electric field is determined from the relevant partition function to generate the
Langevin equation for the average dipole moment.

Basic interactions are illustrated in Chapter 15 using enzyme/substrate sys-
tems. Transfer matrices are introduced to describe larger one-dimensional systems
with nearest neighbor operations, and the continuum Debye Huckel theory is
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introduced for interactions between a charged surface and ions in solution. The
one-dimensional analyses serve as a precursor to more complicated two and
three-dimensional systems.

Chemical kinetics merges thermodynamics with time. The Ehrenfest urn model
for systems at equilibrium is expanded to show the temporal evolution to equi-
librium. The statistics of this temporal evolution are developed using stochastic
methods. Bose Einstein statistics are used to establish the number of states in uni-
molecular reaction theory and the probability that sufficient energy will accumulate
in a single bond for reaction. Bose–Einstein statistics are also used to develop
probabilities for energy transfer between molecules.

The irreversible thermodynamics in Chapter 16 develops a generalized force flux
equation and uses it to develop some illustrative pairings. The velocity of an irre-
versibly expanding piston, for example, is equivalent to a flux as defined by the
generalized equations. Force–flux equations are used to develop transport equations
such as Fick’s diffusion equation and the Nernst–Planck electrodiffusion equation.
The Goldman equation, the constant field solution of the Nernst–Planck equation
is developed for both ion and charge fluxes, and these two equations are used as a
specific example of the Onsager reciprocal relations. The coupling of vector (diffu-
sion) and scalar (chemical reaction) fluxes is illustrated using the transport of ions
through membranes as aion/ionophore complex.

The final chapter includes some simple flow models that open avenues to some of
the more active areas of modern thermodynamics, transport, and chemical research.
Such models illustrate the overall reduction in entropy in a system held at steady
state by a flow. Simple oscillatory systems such as nerve action potentials and
oscillating reactions are described.

The book is intended to provide a solid grounding in both the mathematical
techniques and the physical concepts they describe. Chapter problems are directed
toward developing and using new equations to show that the reader has mastered
the techniques developed in the chapters. The text lays the framework to help the
student proceed to more advanced treatises on the material.

This book was developed and refined from my courses on thermodynamics,
statistical thermodynamics, and kinetics. I am indebted to the students whose per-
ceptive questions and insights helped me find the most effective ways to present the
material.
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Chapter 1
The First Law of Thermodynamics

1.1 The Conservation of Energy

The first law of thermodynamics is the law of conservation of energy; energy is
neither created nor destroyed. It can occur in different forms such as thermal or elec-
trical energy and can be converted between these forms. Since matter and energy are
intra-convertible, matter itself might be considered an energy. For most situations,
however, the energy converted from matter is negligible and is ignored.

Energy is also transferred between locations. The preferred approach in thermo-
dynamics is to select a specific location called the system and record energy in all
its forms within that system. Everything outside the system boundaries is the sur-
roundings. Energy transfers between the system and surroundings conserve energy.
A 200 J energy loss from the system equals a 200 J energy gain for the surround-
ings. The energy change for the universe, the sum of energies for the system and
surroundings, is always zero.

A sealed glass bulb with gas is a system. The gas can lose or gain energy. The
glass bulb is assigned to either the system or surroundings if its energy does change
during any transfers. A balloon or a biological cell is surrounded by a flexible sur-
face. Expansion of this surface requires energy and the surface can be included as
part of the system.

Since the surroundings include everything but the system, its energy total should
be difficult to monitor. However, the surroundings can be approximated by a region
adjoining the system. A glass bulb is immersed in a water bath at some temperature.
An energy loss from the system causes an equal energy gain entirely in the water
bath to a good first approximation if the bath is large enough.

Energy and energy changes occur in different forms that can be monitored by
system variables. The temperature, pressure, and volume of a gas must be known
so that any observer can prepare the system in exactly the same way. Although the
surroundings can also be characterized by variables such as temperature, special
emphasis is placed on these state variables within the selected system. These state
variables are often related through equations of state. The ideal gas law for pressure
P, volume V, temperature T, and moles n

PV = nRT

1M.E. Starzak, Energy and Entropy, DOI 10.1007/978-0-387-77823-5_1,
C© Springer Science+Business Media, LLC 2010
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connects these four state variables in a fairly accurate description of gas behavior.
The direct proportion between energy and temperature for an ideal gas is as:

E = CT

where C is constant is another equation of state.
The transfer of energy is used to calculate the total energy change in the system.

This change in energy is more useful and more easily determined than the absolute
energy of the system. The change in system energy can be determined in two distinct
ways: (1) monitoring the loss or gain of energy of the system and (2) observing
changes in the other system variables that correlate directly with the energy change
of the system.

Heat is a non-directed transfer of energy to or from the system. A bulb of gas
at 400 K dipped into a water bath at 300 K will transfer energy equally across all
the bulb surfaces. The energy transfer is heat. In this case, heat is lost from the hot
system to the surroundings as the system cools. The system acts as the reference so
that heat loss from the system is negative.

When a hot ball is dropped into a water bath, the internal energy decreases by
�E because an amount of heat q is transferred from the system to the surroundings.
Internal energy is used for the change within the system, while q is the energy trans-
ferred randomly across the system boundary. Heat and the change in internal energy
are equal:

�E = q

“delta” defines macroscopic changes within the system. An infinitesimal change in
internal energy, dE, is equal to an infinitesimal transfer of heat dE = dq.

Directed transfers of energy to or from the system are defined as work with
units of energy. A change in the internal energy is the sum of both heat and works
transferred:

�E = q +
∑

wi

Work can include pressure volume work of expansion, electrical work, etc.
The differential equation for heat transfer

distinguishes two types of differential:

dE = δq

dE is a perfect differential. A definite integral between limits E1 and E2

E2∫
E1

dE = E2 − E1
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depends only on the initial and final limits and not the path taken between limits.
δq, by contrast, depends on the path.

Heat can be added to a system by placing it in a water bath (the surroundings)
at a higher temperature. The heat added can depend on the temperature differ-
ence. However, no matter how the heat is added, the internal energy for an ideal
gas depends only on the temperature change of the system. The temperature of the
system is easily measured. Once the temperature change and, for non-ideal gases,
changes in other system variables are known, the internal energy is determined
independently of the manner in which heat and work are added.

1.2 Molar Heat Capacities

Different materials can absorb different amounts of energy. The specific heat of
a material is the energy absorbed by 1 g of this material when the temperature
increases by 1◦C. The molar heat capacity of this material is the energy absorbed by
1 mol when the temperature increases by 1◦C. A specific heat or molar heat capacity
is nearly constant over a limited range of temperatures.

The empirical law of Dulong and Petit states that atomic solids have a molar
heat capacity of 25 J deg−1 mol−1 (3R with R= 8.31 J mol−1 K−1). Gold atoms
with a higher density and lower specific heat have the same molar heat capacity as
aluminum atoms with lower density and higher specific heat.

The empirical law of Dulong and Petit is used to estimate atomic molar masses.
The specific heat of the metal is determined experimentally and divided into the
molar heat capacity to give the atomic molar mass. An atomic metal with a specific
heat of 0.415 J ◦C−1g has an atomic weight:

amm = 25 J C−1 mol−1

0.415 J C−1g−1
= 60 g mol−1

Monatomic gases such as argon or helium, despite their mass difference, have
approximately equal, constant molar heat capacities of 12.5 J deg−1 mol−1 (3R/2)
at constant volume. Diatomic gases, such as N2 or O2, have molar heat capacities of
about 20.8 J deg−1 mol−1 (5R/2) at room temperature and constant volume.

The pattern in heat capacity values is related to locations for storing energy within
an atom or a molecule. Atomic motion in a three-dimensional space is described by
translational kinetic energies in three independent directions x, y, and z:

εx = 1

2
mv2

x

εy = 1

2
mv2

y

εz = 1

2
mv2

z
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The atomic gas heat capacity of 3R/2 is generated if each of these three inde-
pendent energies contributes a heat capacity R/2 to the total. Since the product
of the heat capacity and the temperature has units of energy, e.g., J mol−1, each
independent motion or degree of freedom stores an equal internal energy

Ei = R

2
T

This is the equipartition of energy theorem. The internal energy change for 1 mol
of a monatomic gas with three independent motions (x, y, z) is

�E = 3RT/2

If the atom is confined to a two-dimensional surface, e.g., a table, its heat capacity
would be only 2R/2. Energy is stored in only two translations.

Diatomic molecules, such as O2 or N2, have larger heat capacities because, in
addition to the three independent translations, these molecules can rotate about only
two of three perpendicular axes; energy is not easily transferred to rotation about
the internuclear axis for a linear molecule. Each independent rotation (degree of
freedom) has an energy:

ε = 1

2
Iω2

The five degrees of freedom (three translations plus two rotations) each con-
tribute R/2 to the total heat capacity so that Cv = 5R/2. A linear molecule such as
CO2 also has five degrees of freedom (no rotation about the long axis) and a heat
capacity of 5R/2.

A non-linear molecule can rotate about three perpendicular spatial axes so that it
has three translational and three rotational degrees of freedom at room temperature.
If vibrational degrees of freedom do not absorb energy at this temperature, the total
molar heat capacity for such molecules is

Ctot = Ctrans + Crot = 3
R

2
+ 3

R

2
= 3R

The atoms in a solid are confined to a specific location in the crystal and so can
neither translate nor rotate. They are, however, free to vibrate about a fixed center
at this site in three distinct directions. The energy for one of these vibrations is the
sum of a kinetic energy and a potential energy,

E = 1/2mv2 + 1/2kx2

where m is the mass of the atom moving at velocity v and x is the displacement of
the atom. The force constant k is a measure of the restoring force experienced by
the vibrating molecule.
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For vibrations, each squared term in the energy expression defines a degree
of freedom for an atom in the crystal. Each vibration for a mole of atoms has
C = 2(1/2R). The three possible spatial vibrations have six degrees of freedom and
6(R/2) = 3R, the empirical heat capacity for atomic crystals in the law of Dulong
and Petit (3 × 8.31 J mol−1 K−1≈ 25 JK−1 mol−1).

The energy is determined from these heat capacities:

E = CT

An atom of larger mass might be expected to store more energy. However, since
E = 1/2 Mv2 for a mole of atoms, the velocities of atoms of different mass must differ
to maintain constant energy at constant temperature. Since

E = 3/2RT = 1/2Mv2

V = √
3RT/M

The atoms of larger mass have a lower velocity to give the same energy. Energy,
not mass, is the primary variable.

Although the equipartition of energy theorem predicts a constant C = R/2 for
each degree of freedom, this heat capacity can be temperature dependent for some
systems. For example, (1) the heat capacity of an atomic crystal decreases at lower
temperatures and approaches zero as the temperature approaches 0Kand (2) the heat
capacities of diatomic molecules change from 5R/2 to 7R/2 as temperature increases.
These are quantum phenomena. For solids, energy is added to the vibrations in dis-
crete packets (quanta). At lower temperatures, there are fewer packets with sufficient
energy to produce the discrete change in vibrational energy so that less energy is
absorbed by the crystal and the heat capacity at lower temperatures is lower.

The nitrogen molecule is “stiff.” In classical thermodynamics, the vibration
absorbs with C = 2R/2 just like a molecule that vibrates easily. However, as a
quantum molecule, a large discrete quantum is required for vibration. At lower
temperatures, including room temperature, such packets are rare and the molecule
remains vibrationally unexcited. With increasing temperature, quantum packets of
sufficient energy are more prevalent and vibrational modes can absorb energy to
increase the heat capacity by two vibrational degrees of freedom (2R/2) to 7R/2.

1.3 State Variables and Equations of State

Heat transfer into a system changes E but can also produce changes in other system
variables like the temperature and the volume of a gas. Temperature, volume, pres-
sure, and the internal energy of a gaseous system are all examples of state variables
that characterize the system.

The state variables for a system can vary. The earth’s gravitational field acts on
the molecules of a system to produce a potential energy. However, if the system
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remains at the same height, this gravitational energy is constant and height h, a
possible state variable, need not be included in the analysis.

A change in one-state variable can cause a change in a second-state variable. The
relationship between two or more state variables is an equation of state. The ideal
gas law,

PV = nRT ,

relates the pressure P, temperature T, volume V, and the number of moles, n, within
a system. If three of these four variables (the independent variables) are known,
the fourth, dependent variable is determined from the others using the equation of
state. The calculated value of the dependent variable depends on how accurately the
equation of state describes the behavior of the system.

The internal energy can also be related to system variables like temperature, vol-
ume, and moles for a given system. For an ideal gas, the internal energy depends
only on temperature and moles and the equation of state E = nCT suggests that gas
energy is independent of other state variables like volume.

For real gases, the energy can depend on temperature, volume, and moles and a
new equation of state is necessary. The pressure need not be included as an addi-
tional independent variable if it can be determined from an equation of state for
the gas.

Each independent equation of state that relates the state variables of the system
reduces the number of independent variables by one. Holding a state variable X
constant during an experiment gives dX = 0.

The ideal gas law approximates the behavior of the actual gas. The law predicts
a volume when pressure, Kelvin temperature, and moles are known. The volume
calculated might differ slightly from the actual volume and the equation of state
must be refined for a more accurate fit.

The equations of state for gases have the thermodynamic variables P, T, and
V. Other systems might have different state variables and equations of state. For
example, the tension (or force) τ generated by a polymer, e.g., rubber band, when
stretched is proportional to the temperature and the distance L the band is stretched
from its equilibrium, unstretched length Lo

τ = aT (L − Lo)

with constant a. This equation parallels Hooke′s law (another equation of state) for
a spring displacement, x,

F = k�x

where k is constant. The equation of state for the rubber band connects T, L, and τ .
The Curie–Weiss law relates the amount of magnetization M induced in a sample

to the size of the externally applied magnetic field H and the temperature T as
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M = CH

T − Tc

where C and Tc are constants in this equation of state.

1.4 Non-Ideal Gases

The ideal gas equation

PV = nRT

is actually a limiting equation where the gas diameter approaches zero and interpar-
ticle interactions are absent. The equation describes gases at lower densities where
their size is small relative to the total volume and they are separated sufficiently to
minimize interactions.

A mole of real gas occupies a finite volume, approximately the volume the gas
would occupy as a condensed liquid. This finite “liquid” volume (b) is incorporated
into the van der Waals equation of state. The ideal gas law is predicated on a particle
of zero volume free to move everywhere in the state volume V. The van der Waals
equation of state excludes the volume nb of n moles of the molecules. The actual
volume V is reduced to a theoretical volume available to the molecules, V−nb.

In an ideal gas, the pressure is produced by elastic collisions with the container
walls. The change in the direction of momentum on collision produces the force and
pressure. The particle transfers no energy to the wall during these elastic collisions.
Collisions between particles are also elastic, i.e., no energy is lost to the internal
motions of the molecule. The total kinetic energy is preserved. A non-elastic colli-
sion results for a particle that flattens or distorts when it strikes the wall. Some of
the kinetic energy is expended to distort the particle.

Molecular interactions reduce the force with which a molecule strikes a wall to
reduce the total pressure on the wall. A particle with a clear path to the wall is held
back by interactions with particles behind it to reduce its striking force and pressure.
The observed pressure P on the wall is corrected by adding back the pressure lost to
particle interactions

P + n2a/V2

where a is a constant related to the magnitude of the interactions for the particles.
The additive pressure correction is proportional to the square of the molar density
n/V of the particles since each particle interacts with the other N−1 particles in
the system. N−1 = N for large numbers of particles. The N particles then have
N(N−1) = N2 interactions. This translates to a term in the square of the density,
(n/V)2 .

Excluded volume b and the interaction constant a are incorporated into the van
der Waals equation of state

(
Pexp + a

n2

V2

) (
Vexp − nb

) = nRTexp
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where the subscript “exp” is added to emphasize that these variables are the
laboratory variables.

The van der Waals equation is a third order in V and a P−V plot (a hyper-
bola for an ideal gas) has a maximum and a minimum in the intermediate volume
region (Fig. 1.1) because the equation describes a continuous function with no sharp
changes in slope

Fig. 1.1 The van der Waals equation on a P−V plot

A P−V plot for a real gas has three regions. The high volume low pressure
region is described by the ideal gas law since nb<<V and a/V2 << P in this region.
As the volume approaches b, the volume is that of a liquid and the plot rises
steeply. The intermediate region that describes the phase transition between the
gas and the liquid is a horizontal line for a real gas. Vapor condenses to liquid,
while the pressure remains constant. The continuous van der Waals equation can-
not reproduce this horizontal line. However, since the equation does describe the
gas and liquid portions of the P−V plot, a horizontal line (the Maxwell construc-
tion) replaces V3 dependence predicted by the van der Waals equation in this region
(Fig. 1.1).

One mole of a van der Waals gas has an equation of state

P = RT

V − b
− a

V2

The Berthelot equation with a new constant a
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P = RT

V − b
− a

V2T

includes an inverse temperature dependence in the correction term.
A virial expansion is a sum of correction factors in increasing powers of some

state variable. The ratio
PV

nRT
= 1

describes the ideal gas. Deviations from ideality increase as the density of the
gas increases because the effects of molecular volume and molecular interactions
increase as the gas particles are closer together on average. The deviations are
expressed as a sum of addition terms in powers of the density:

PV

nRT
= 1 + B

n

V
+ C

( n

V

)2 + . . .

The empirical constants, B, C, etc., depend on temperature but are independent
of the density of the gas. The terms in higher powers of density are more accurate
refinements to describe the gas behavior. The first virial coefficient, B = B(T), the
largest, is negative at lower temperatures and becomes positive as the temperature
increases. B must then be zero at one temperature. If the gas is studied at this partic-
ular temperature, it will behave like an ideal gas to a very good approximation since
the first virial term is zero.

All these non-ideal gas equations are very similar to the ideal gas equation
because the correction terms or parameters are generally very small. The correction
terms fine tune the ideal gas equation to describe small variations between different
real gases.

1.5 Work

An automobile engine does work when gasoline in an engine cylinder is ignited and
energetic product gases move a piston in the cylinder. The piston is connected to a
crankshaft to convert this linear motion into rotary motion. This mechanical energy
is not lost as the wheel turns; it is conserved in other forms. For example, the bulk of
the work produced by the moving piston (50%) pushes air away from the front of the
moving car. About 33% of it appears as heat in the engine block (the surroundings
for the piston). The remainder reappears as frictional heating, either in the engine
parts or at the interface between the tires and the road.

Thomson first noted the direct conversion of work energy to heat using the heat
produced from a known quantity of work. Work is not lost; it is degraded to heat.
Total energy is conserved.

Energy transfer as work is illustrated for a gas in a cylinder (the system) with a
movable, frictionless piston (Fig. 1.2).

An applied force and pressure on the piston is produced by weight of masses on
the upright piston or the weight of a column of air above the piston. For mass m, the
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Fig. 1.2 A cylinder for pressure volume work

force mg where g is the acceleration of gravity divided by the area A of the piston
is the pressure mg/A. Rather than calculate the mass of a column of air, the pressure
of this column of air is operationally defined as 1 atm. In either case, work is done
by the system when the volume of the gas expands to raise the piston. Work done
by the system, i.e., an expansion of the gas in the cylinder, is negative; energy is
transferred from the gas in the cylinder to the exterior.

Work is force × the distance �h the piston moves

W = mg�h

Even though this work for increasing x is done by the molecules in the cylin-
der, work is defined for energy transferred from the system to the surroundings on
expansion. This work against external weights or external atmospheric pressure is
the transferred variable

w = −Fext�h

The minus sign shows that energy leaves the system when h increases.
If h is negative (a compression), work is positive. The energy of this compression

reappears in the gas of the system to increase its internal energy.
The transfer of heat q is an independent process. Heat or work is positive

for a transfer into the system and negative for a transfer from the system. With
this convention, a change in internal energy results from transfer of either heat
or work,

�E = q + w

The primary system variable is the net change of internal energy.
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The external weight divided by the area of the piston defines an external
pressure

Pext = Fext/A

The work expression can be converted into an external pressure–volume expres-
sion by multiplying and dividing by the piston area A. The product of A and the
distance moved h is the volume change of the gas within the system. A differential
change in h produces a differential change Adh in volume and a differential work

dw = −Fext
/

A (Adh) = −PextdV

The work for constant external pressure where the gas (system) volume changes
from V1 to V2 is

w = −
∫ V2

v1

PextdV = −Pext (V2 − V1) = −Pext�V

In this form, the pressure in atmospheres and volume in liter gives a work with
the units of liter–atmospheres (Latm). 1 Latm ≈100 J.

For a constant external pressure, Pex, and a transferred heat, q, the integrated
equation for the change in internal energy is

�E = q − Pext�V

Many combinations of heat and work give the same change in internal energy. A
100 J increase in the internal energy might arise from the addition of only 100 J of
heat and no work. It might also arise solely from 100 J of work done on the system –
a decrease in the system volume. Various combinations of q and w, e.g., q = 50 and
w = 50 will also produce the same change in internal energy. If the equation of state
for the system is known, e.g., �E = C�T, the details of heat and work transfers are
not needed to establish the internal energy change.

1.6 Reversible Work

Work and heat are transferred across the boundary between the system and the sur-
roundings. Since these transfers depend on conditions in the surroundings, they are
usually not state functions. An internal energy change, by contrast, occurs entirely
within the system even though energy transfers are necessary for the change. For
the ideal gas with equation of state

�E = Cv�T

the change in internal energy is determined by the temperature change of the system.
The work and heat that produced the change need not be known.
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Work is defined only in terms of the external pressure but some pressure gradient
is required for a transfer to take place. The pressure of the gas, the internal pres-
sure, must be larger than the external pressure if an expansion occurs. Similarly, the
temperature of the gas, the internal temperature, must be larger than the external
surroundings temperature if heat is to leave the system.

The theoretical limit where the temperature gradient goes to zero, i.e., Tint = Text,
is one example of a reversible limit. Since both system and surroundings are at the
same temperature, heat can move in or out of the system with equal facility. Heat is
transferred slowly and the system remains essentially at equilibrium.

Work also has a reversible limit. A frictionless piston in a cylinder separating an
internal pressure of 10 atm and an external pressure of 1 atm is not a reversible sys-
tem. The piston expands irreversibly until the internal pressure reaches equilibrium
at 1 atm and Pext = Pint at constant temperature. The piston does not spontaneously
return to its original position since the two pressures are equal.

The work for the one-step expansion from 1 to 10 L against a constant external
pressure of 1 atm at constant temperature is

W = 1

10∫
1
1

dV = −9 Latm = −900 J

(1 Latm ≈ 100 J). The irreversible expansion is also described by a piston with
ten weights that combine for a total pressure of 10 atm. When nine weights are
removed, the piston rises against the remaining weight (1 atm pressure).

The expansion from 1 to 10L can be accomplished in two steps. Five weights
(5 atm) are removed to produce Pext = 5 atm. The internal pressure expands the gas
until Pext = Pint = 5 atm and V= 2 L (PV = 10 Latm = 2 × 5). The work is

w = −Pext

2∫
1

dV = −5 atm (2 − 1)L = −5 Latm

The expansion to 10 L occurs in a second step when the external pressure is
reduced to 1 atm and the piston expands from 2 to 10 L doing work

w = −Pext

10∫
2

dV = −1 atm (10 − 2)L = −8 Latm

The total work for this two-step process

W = −5 − 8 = −13 Latm

is larger than the −9 L atm for a single-step expansion from 1 to 10 L. The
smaller pressure differentials between the internal and the external pressure for the
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two-step process generated additional work. Work depends on the path between
the initial and the final states. The system does more work when the differ-
ence between the internal and the external pressures is smaller, e.g., the two-step
expansion.

A three-step expansion produces more work than the two-step expansion. For the
expansion sequence,

(10 atm,1 L) → (5 atm,2 L) → (2 atm,5 L) → (1 atm,10 L)

the total work is −16 L atm. The 3 L atm improvement in work done is less than the
4 L atm improvement in going from a one-step to a two-step expansion. The total
work done reaches a limit as the number of expansion steps increases.

Maximal work results as internal and external pressures are equal for each step.
In this limit, no motion is possible. However, if the external pressure is infinitesi-
mally smaller than the internal pressure, the piston expands infinitely slowly, i.e.,
at equilibrium and reversibly. In this limit, Pext = Pint and the volume changes by
dV. After each volume change dV, the external pressure must be reduced to keep
Pext = Pint.

For 1 mol of an ideal gas with

Pint = P = RT

V

the differential reversible work is

dw = −PextdV = −PintdV = −RT

V
dV

For the expansion from 1 to 10 L at constant temperature

dw = −RT
∫ 10

1
dV/V

wrev = −RT ln V|10
1 = −RT ln

10

1

A change V1 to V2 for n mol of ideal gas at constant temperature has reversible
work

wrev = −nRT ln
V2

V1

Only state (system) variables (V, n, and T) appear in the final expression.
The total reversible work has units of Latm because the product PV = nRT has

these units. For the 1–10 L expansion, PV =10 Latm and
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w = −nRT ln
10

1
= −10 ln 10 = −23 Latm

This is the maximal work possible for the expansion from 1 to 10 L at constant
T and n.

Weights on the piston illustrate reversibility. An infinitesimally small portion of
the 10 atm is removed from the piston and stored on a platform at that level and
the piston rises infinitesimally. It takes essentially no energy to move the infinitesi-
mal weight back onto the piston and return the piston to its starting position. Small
weights are removed and stored at successive levels as the piston rises and the sys-
tem expands reversibly toward 10 L. At any stage, the small weight at that level can
be restored to reverse the direction of expansion.

1.7 Work Cycles

The one-step expansion occurred when the external pressure was decreased from 10
to 1 atm. To restore the system to 1 L in one step, an external pressure of 10 atm is
required

wcomp = −10 atm (1 − 10) = +90 Latm

The irreversible work required to restore the piston in one step is 10 times the
work the system provided on expansion because the external pressure, the pressure
defining work, is so large. A cycle is a sequence of changes that brings the system
back to its starting point. In this case, the expansion against 1 atm followed by a
compression with 10 atm returns the system to its starting point with a net 90–9 =
+81 Latm. One full cycle for this irreversible machine requires 81 Latm of work
from the surroundings. A negative net work is needed to use this piston system as
an engine.

A two-step expansion followed by a two-step compression to restore the system
still requires work from the surroundings. The expansion from 1 to 2 L against the
external pressure of 5 atm followed by an expansion from 2 to 10 L against an exter-
nal pressure of 1 atm gives a total work of −13 Latm. For a two-step compression,
the external pressure is increased from 1 to 5 atm and then to 10 atm. The volume
decreases from 10 to 2 L and then from 2 to 1 L

w = −5 atm

2∫
10

dV + (−10 atm)

1∫
2

dV = 50

and wnet = 50−13 = +37 Latm. Less external work is required but the piston cycle
does not produce useful work.

The three-step compression requires a net surrounding’s work of +l9 Latm. The
compression work (35 Latm) and net work decrease with more steps and smaller
pressure differentials.

For a reversible compression back to 1 L, the external pressure equals the internal
pressure and reversible compression work for the change from 10 to 1 L is
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wrev = −
1∫

10

nRT

V
dV = −nRT ln

1

10
= −10 (−2.3) = +23 Latm

In the reversible limit, the system does 23 Latm of work on expansion (–23
Latm). The work +23 Latm by the surroundings restores the piston and completes
the cycle. No usable net work by the system is produced. Net work is zero for a
cycle with reversible expansion and compression.

1.8 Other Types of Work

PV work is useful for gases in cylinders. Other systems can transfer energy with dif-
ferent types of work or combinations of works. Each work independently contributes
to changes in the internal energy of the system so that

dE = δq +
∑

δwi

Work is external force × distance

w = Fextdx

where increasing x adds potential energy to a system such as a rubber band or other
polymer.

As the band is stretched, the molecules in the band exert an opposing force, the
tension τ . For a reversible expansion, tension replaces external force

dw = τdx

If the band is allowed to contract by lowering the external force, the system
does work.

Changes in the surface area A of a system, e.g., a balloon, involve work. A dif-
ferential change in work, dw, is directly proportional to a differential change dA
through the surface tension (with units of energy/area, e.g., J/m2)

w = γ dA

The work is positive as area increases if the surface is assigned to the system.
An electrochemical cell converts the energy of chemical reactions in the system

to electrical energy. A potential electrical potential, ψ , with units of energy per
charge, e.g., J/C appears across the electrodes and the product of P and the charge
transferred dq is work

dw = −ψdq

where positive ψ will drive positive q (and work) from the system.



16 1 The First Law of Thermodynamics

Each work is the product of an intensive and extensive variable. The intensive
variables like T and P are independent of amount. The temperatures of a pond and
a puddle can be exactly the same even though the pond contains far more water.
The pressure can be the same on a person or a large room. Extensive variables like
electrical charge q, volume V, and moles vary with “extent.” If q doubles, the work
doubles.

Intensive variables are often identified as “per some extensive quantity,” e.g.,
energy/mol, energy/coulomb, or force/area.

1.9 Enthalpy

Internal energy, temperature, volume, and pressure for a gaseous system are system
parameters that differ from transfer quantities like work or heat. A change in a sys-
tem or state variable is calculated directly as the difference of its final and initial
values and is path independent. Temperature, for example, could be raised in two
steps from 300 to 350 K and then from 350 to 400 K. The temperature difference is
100 K. The internal energy change for an ideal gas

�E = Cv�T = Cv (Tf − Ti)

is also independent of the path that led from 300 to 400 K.
A state function differential, e.g., d(X), is integrated to X. The X limits are then

subtracted to give the change. The state function E with differential dE integrates as

Ef∫
Ei

d (E) = E|Ef
Ei

= Ef − Ei

or

�E = Ef − Ei

The work with Pext is not a state function even though it seems integrable to a
difference of final and final states

−
Vf∫

Vi

d (PextV) = −Pext (Vf − Vi)

because the external pressure is not a system variable.
A state function can be built from any combination of state variables with consis-

tent units. The product of system pressure and volume PV has units of energy and,
since P and V are system variables, this product is also a state function
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�(PV) = PfVf − PiVi

PfVf = RTf

This energy is added to the internal energy to give a new state function H, the
enthalpy

H = E + PV

The change in enthalpy depends only on final and initial values

�H = Hf − Hi = (Ef − Ei)+ (PfVf − PiVi)

The internal energy of 1 mol of an ideal gas is constant if the temperature is
constant, �E = 0. At a constant temperature, PiVi = RT = PfVf

�(PV) = PfVf − PiVi = 0

and

�H = �E +�(PV) = 0

Enthalpy changes only if the temperature changes for an ideal gas.
The enthalpy change of an ideal gas depends only on the change in temperature

since

�E = Cv�T

and

PiVi = RTi

�H = �E +�(PV) = Cv�T + RTf − RTi = [Cv + R]�T

For an ideal gas, both CV and R are constants. For a change dT, the differential
enthalpy is

dH = CvdT + RdT = (Cv + R) dT = CPdT

The new heat capacity for enthalpy is the heat capacity at constant pressure, Cp >
Cv. The enthalpy increase is larger than internal energy increase if the temperature
is increased. What exactly is the extra energy? Consider a cylinder/piston system
with ideal gas equilibrated so that internal and external pressures are 1 atm. As
temperature increases, both pressures are maintained at 1 atm. The volume must
increase to satisfy the ideal gas law. The piston moves and extra energy must be
added to the system

�H = �E +�PV = �E + P�V
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The enthalpy change is the sum of changes in state functions E and PV with Pint
constant. P�V is not work which requires Pext but it is an additional system energy
incorporated in the enthalpy.

Both internal energy and enthalpy changes can be calculated for any system. For
the ideal gas,

�E = Cv�T �H = Cp�T

The subscripts vand P suggest that internal energy is calculated only at constant
volume and H is calculated only for constant pressure. Energy and enthalpy changes
are determined for any system if the initial and final E, P, V are known.

1.10 Heat Capacities as Partial Derivatives

The ideal gas is characterized by internal energy and enthalpy changes that depend
only on the temperature change of the system

�E = Cv�T

As differentials,

dE = CvdT

And the heat capacity is the slope (derivative)

Cv = dE

dT

More generally, a change in internal energy might be caused by a change in
either temperature or volume (for 1 mol, pressure is dependent on V and T). Two
derivatives are now required

dE/dT dE/dV

A state function is independent of path; dE is determined via a path where tem-
perature is changed, while V is held constant. Once this leg is completed, T is held
constant while the volume is changed

dE =
(
∂E

∂T

)
V

dT +
(
∂E

∂V

)
T

dV

∂ is the symbol for a partial derivatives where, for example, the variable V is held
constant while E is differentiated with respect to T. For example,
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(
∂
[
RT/V

]
∂T

)
V

= R

V

(
∂T

∂T

)
= R

V

The formal expression for heat capacity at constant volume is

CV =
(
∂E

∂T

)
V

By convention, the path selected for enthalpy has separate paths for T and P

dH =
(
∂H

∂T

)
P

dT +
(
∂H

∂P

)
T

dP

The heat capacity at constant pressure is

CP =
(
∂H

∂T

)
P

The heat capacity CV for

E = CvVT

is (
∂E

∂T

)
V

= CvV
dT

dT
= CvV

if CV is constant.
The heat capacity at constant pressure for this equation of state

CP =
(
∂H

∂T

)
P

uses

H = CvVT + PV

to give

Cp = CVV + P

(
∂V

∂T

)
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Problems

1.1 Set up the integrals for the reversible work done by gases with equations of
state (

P + a

V2

)
(V − b) = RT(

P + a

TV2

)
(V − b) = RT

P (V − b) e
a′

RTV = RT

for a reversible isothermal expansion from V1 to V2.
1.2 n moles of an ideal gas are allowed to expand isothermally from 100 atm, 1

L to 1 atm, 100 L by three different paths: (a) reversibly; (b) by having the eter-
nal pressure drop discontinuously from 100 to 1 atm to produce an irreversible
expansion; and (c) the pressure is dropped discontinuously from 100 to 50 atm and
when the gas comes to thermal equilibrium at 50 atm, the pressure again decreases
discontinuously from 50 to 1 atm. Calculate the work done by the gas in each case.

1.3 One mole of a monatomic ideal gas changes state by losing 12.1 L atm of
heat while 8 Latm of work is done as a piston expands against an external pressure
of 2 atm. Find �V, �E, and �T.

1.4 Determine expressions for the work when 1 mol of gas with equation of
state

P (V − b) = RT

expands from V1 to V2 isothermally (at constant temperature) and

a. reversibly and b. against a constant final Pex.

1.5 Show the reversible work for an isothermal expansion of an ideal gas can also
be written as

W = −RT ln (P2/P1)

1.6 One mole of an ideal monatomic gas that is initially at 300 K and 1 atm
pressure undergoes a change to increase its enthalpy by 2500 J. Determine the
temperature change and the change in internal energy.

1.7 One mole of an ideal monatomic gas, initially at 300 K, is expanded against
an external pressure of 2 atm. During the expansion, the internal energy E decreases
by 2500 J.

a. Determine the work if q=0.
b. Determine �H.
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1.8 A rubber band, which changes length rather than volume, uses work Fextdx.
If the band has an equation of state

τ = k (x − xo)

determine the reversible work (τdx) required to stretch this band from xo to 2xo.
If the band has a heat capacity C and no heat escapes from the band during the

expansion, determine the internal energy change.



Chapter 2
First Law Formalism

2.1 The Special Character of State Variables

A gas can be characterized by a set of state variables. Some, such as temperature,
pressure, and volume, are measured directly in the laboratory. Others, such as inter-
nal energy and enthalpy, are determined by measuring work and heat transferred or
determined from changes in the experimentally observable state variables.

Changes in state variables are determined if the initial and final values of these
variables are known. For example,

�T = T2 − T1

The actual path for the change is irrelevant. If internal energy is proportional only
to temperature, the initial and final temperatures alone dictate the total temperature
difference needed to calculate the change in internal energy.

Gravitational potential energy is proportional to the state variable height (h). A
mass m has a potential energy mgh where g is the acceleration of gravity. Ground
level is h=0. The energy difference between the mass m at heights h1 and h2,

�E = E2 − E1 = mg (h2 − h1)

depends only on the initial and final heights and not the path.
Heat and work can vary when a mass is raised from h=0 to h at the top of a

building. A student (as the system) who wishes to go from the ground floor to the top
floor of the building by elevator loses little chemical energy as work and generates
little heat. The sum of heat and work is mgh. A student who elects to run up the
stairs loses significant energy as work while producing considerable heat so that the
sum is again mgh. q and w are path dependent, whereas E is not.

A system with initial values T1, V1, and E1 is changed to have final values T2,
V2, and E2. In a second step, the variables are returned to T1, V1, and E1, the initial
values. The net change in all the state variables for this cycle is 0,

�T = T1 − T1 = 0

�V = V1 − V1 = 0

�E = E1 − E1 = 0

23M.E. Starzak, Energy and Entropy, DOI 10.1007/978-0-387-77823-5_2,
C© Springer Science+Business Media, LLC 2010
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A transition from state 1 to state 2 with an internal energy change of +100 J will
require �E = −100 J to return to the original state by any path; the total energy
change for the full cycle is 0,

�Ecycle = 0 = �E1 +�E2 = +100 − 100 = 0

Any path, not just the actual path followed in the laboratory, is used to determine
a state function. Heating a gas might produce simultaneous increases in temperature
and volume. The internal energy can be calculated on a two step path:

(1) determine the change in energy with a temperature change at constant volume
and

(2) hold the final temperature constant and determine the change in energy with
volume at constant T

dE =
(
∂E

∂T

)
V

dT +
(
∂E

∂V

)
T

dV

2.2 Energy and Enthalpy for Chemical Reactions

An isomerization

A → B

is a rearrangement of bonds for a set of atoms. The new bonds have different ener-
gies so energy is released or absorbed on reaction. If the bonds in the B isomer
require less energy than the bonds of the A isomer, some bond energy is released
during the reaction and appears as system kinetic energy of the B isomers. Since this
energy is proportional to the temperature, the temperature of the system increases
when this energy is released.

Internal energy changes for a reaction at constant volume are listed for a constant
temperature, e.g., 25◦C. However, the isomer reaction above releases energy and the
temperature should rise following the reaction. If 10,000 J of energy is released by
the reaction, this would appear as an internal energy increase,

E = +10,000 J

with the concomitant temperature increase. Many reactions release considerable
energy and the resultant temperature change produced by this release would lead to
an unrealistic rise in the system temperature. To alleviate this problem, the chemical
reaction internal energies are defined as the heat transferred to maintain the constant
system temperature. Thus, the 10,000 J of heat released when the new bonds are
formed defines a negative, or exothermic, internal energy of reaction

�Er = qv = −10,000 J



2.2 Energy and Enthalpy for Chemical Reactions 25

An endothermic reaction requires extra energy transferred from the surroundings.
Because the system gains energy at constant temperature, an endothermic reaction
is positive.

The enthalpy of a reaction such as the isomerization is determined for constant
pressure conditions. The difference between the energy and the enthalpy for the
same reaction is illustrated by the dissociation reaction at constant volume,

A → 2B

where �E = −50,000 J. The same reaction occurring in a cylinder fitted with
a frictionless piston is reversible when the pressure within the system is always
equal to the external pressure on the piston so that the system pressure remains
constant. The increase in moles by dissociation changes the gas volume and the
piston must rise to accommodate the new volume. Some of the energy released
by the reaction raises the piston so less is available to leave the system and
maintain 25◦C.

The enthalpy for the gaseous reaction is predicted using the enthalpy definition
and the ideal gas law

�Hr = �Er +�(PV)

�H = �E +�(nRT) = �E + (�n)RT

since the temperature is constant when this energy leaves.
The dissociation

A → 2B

in a closed (constant volume) vessel gives an internal energy change of −50,000 J
for the reaction as written. Since both A and B are gaseous, reaction produces a net
increase of 1 mol of gas,

�n = 2 − 1 = 1

and the predicted enthalpy for this reaction is

�H = �E +�nRT = −50,000 + (+1) (8.31) (298) = −47,523 J

The reaction under constant pressure conditions releases 2476 fewer joules, the
energy required to raise the piston.

The enthalpy of reaction is defined for gases in a cylinder with constant pressure.
Reactions of solids and liquid involve small changes in volume and internal energy
and enthalpy are almost equal. By convention, the enthalpy of reaction is recorded
for constant pressure.
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2.3 Hess’s Law and Reaction Cycles

The energy and enthalpy of a chemical reaction are determined only by the initial
(reactants) and final (product) states and not the path the system follows to move
between these states. The internal energy change for the reaction is the difference
between these product and reactant energies and is independent of the reaction path
between these species. The enthalpy of reaction is also path independent.

The path independence is demonstrated with a hypothetical (and incorrect) sit-
uation where the energy of reaction does depend on path. Two different reaction
pathways give different energies. Reactant (A) reacts to product (B) through an
intermediate C

A → C → B

with a total enthalpy of reaction, �H = − 1000 J for the two steps. If A goes to B
directly in one step, �H = − 750 J. If the one-step reaction from A to B releases
750 J of energy, the reverse (endothermic) reaction from B to A must absorb 750 J.
The two reactions are combined to form a cycle that begins and ends with A. The
forward reaction follows the two-step path, while the reverse reaction to complete
the cycle is the one-step path. The reactions for the full cycle are

A → C → B �H = −1000

B → A �H = +750

The enthalpy for the cycle (Hcyl) is determined by adding the enthalpies of reac-
tion for each step in the cycle to give − 250 J for this hypothetical situation. A is
exactly the same but 250 J of energy has been created in violation of the conserva-
tion of energy. The state function, enthalpy, for the reaction depends on the final (B)
and initial (A) states. Each path between reactants and product must give exactly the
same result.

The total enthalpy change for the cycle is

�Hcycle = −1000 + 1000 = 0

The path independence of reactions is the basis of Hess’ law. The unknown
enthalpy or energy for a reaction is determined by combining other reactions with
known energies and enthalpies.

The enthalpy required to change carbon as graphite into carbon as diamond can-
not be determined directly since graphite does not change into diamond at normal
temperatures and pressures. However, this enthalpy can be determined by the sim-
ple, but expensive, task of burning both graphite and diamond and determining their
enthalpies for combustion

C (gra)+ O2 → CO2 �H − 388.7 kJ

C (dia)+ O2 → CO2 �H = −391.2 J
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Fig. 2.1 Two paths to create graphite from diamond

The oxidation equation for diamond is reversed

CO2 → C (dia)+ O2 �H = +391.2 J mol−1

If 391.2 kJ of energy is released when diamond is burned, 391.2 kJ must be added
to remake the diamond from CO2. The enthalpy is 2.5 J for the two-step path and
also the direct path from graphite to diamond.

The enthalpy for the reaction from graphite to diamond uses the two combustion
reactions to complete the path from graphite to diamond (Fig. 2.1).

The two reactions can be added and their enthalpies with proper sign added to
give the final reaction and enthalpy,

C (gr)+ O2 → CO2 �H − 388.7 kJ

CO2 → C (dia)+ O2 �H = 391.2 kJ

C (gr) → C (dia) �H = 391.2 − 288.7 = +2.5 J

The graphite to diamond enthalpy is also determined by placing each reaction on
a vertical scale. CO2 is a common energy and C(dia) is 2.5 J above C(gra) on this
scale (Fig. 2.2).

Fig. 2.2 Relative enthalpies for diamond and graphite
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Fig. 2.3 A three-step path for reaction at 400 K when its energy at 300 K and the heat capacities
are known

Any state function change can be determined using the most convenient pathway.
For example, the enthalpy for the reaction,

A → B

is −10,000 J at 300 K. The enthalpy for the same reaction at 400 K is determined
with a path that goes from reactants to products at 400 K. One such path (Fig. 2.3)
uses three steps: (1) A at 400 K is cooled to 300 K, (2) A is changed to B at 300 K,
and (3) B at 300 K is heated to 400 K.

The change in enthalpy for a change in temperature is determined via the heat
capacities at constant pressure, Cp, for A(Cp(A))and B (Cp(B)). The enthalpy change
for A when it is cooled to 300 K is

�H = CP (A)�T = CP (A) (300 − 400) = CP (A) (−100)

The change from A to B at 300 K is already known to be −10,000 J. The enthalpy
change for step 3 is

�H3 = CP (B)�T = CP (B) (400 − 300) = CP (B) (+100)

The enthalpy change for the reaction at 400 K is the sum of these three
steps,

�Hr
(
400◦) = �H1 +�H2 +�H3#

= CP (A) (300 − 400)+ (−10,000)+ CP (B) (400 − 300)

= −10,000 + (CP (B)− CP (A)) (400 − 300)

= −10,000 +�CP�T = −10,000 +�CP (100)

where the �Cp is just the difference between the heat capacities of all the products
less the heat capacities of all the reactants. The second term corrects the reaction
enthalpy at 300 K for the new temperature.

In general, the enthalpy for a reaction,

aA + bB ↔ cC
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at any temperature includes the net difference of heat capacities for the reactants
and products,

�CP = cCP (C)− aCP (A)− bCP (B)

When the product and reactant total heat capacities are similar, the enthalpy
changes little with temperature and is essentially constant. This property is useful
when a constant enthalpy gives a linear plot in some graphs.

2.4 Standard States

The CO2 enthalpy served as a common energy for both graphite and diamond. When
both had a common reference, their energy of reaction was the difference between
their energies. Standard states use this information to select an energy that is com-
mon to all molecules as a reference or standard state. The reference is the energy of
the atoms of the molecules in their most common states. Enthalpy or energy differ-
ences for the molecules are then differences of these standard state enthalpies. For
the graphite–diamond example, C(gra) is selected as the standard state and assigned
a standard enthalpy 0. C(dia) is then 2.5 J mol−1 higher so its standard enthalpy is
2.5 J mol−1. The CO2 molecule has enthalpy 388.7 kJ less than C(gr) so its stan-
dard enthalpy is −388.7 kJ. The enthalpy to convert diamond into CO2 is just the
difference of standard state enthalpies for product CO2 (−388.7) and the reactant
diamond (2.5)

�H = Hf
o (CO2)− Hf

o (C (dia)) = −388.7 − 2.5 = 391.2 J mol−1

The subscript f indicates formation from the elements, while the o indicates
25◦C. Deltas are absent because the standard states are all relative to an assigned
value of 0 for the elements in their standard states.

For a general reaction,

aA + bB ↔ cC + dD

the total enthalpy of formation for products is the sum of the enthalpies of formation
of all the products less the enthalpies of formation of all the reactants

[cHo
f (C)+ dHo

f (D) ] − [aHo
f (A)+ bHo

f (B) ]

For a reaction,

A + 2B = 2C

the enthalpy of reaction is

�Hr = 2�o
f (C)− 1�Ho

f (A)− 2�Ho
f (B)

The negative signs for the reactants show that these reactions have been reversed
to produce the proper net reaction.
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2.5 More Partial Derivatives

Partial derivatives are used to establish a path involving several independent vari-
ables. Each term is a slope (partial derivative) and a differential. The power of the
formalism is revealed when the partial derivatives are known.

The pressure P of an ideal gas is related to the volume and temperature as the
independent variables so that

dP =
(
∂P

∂T

)
V

dT +
(
∂P

∂V

)
T

dV

A differential dP is determined by the derivatives and differentials for T and V.
The derivatives are evaluated from ideal gas law

P = RT/V

The change in P with T at constant V is

(
∂P

∂T

)
v
=

(
∂
(RT

V

)
∂T

)
v

= R

V

(
∂T

∂T

)
= R

V

and the change in P with V at constant T is

(
∂P

∂V

)
T

=
(
∂
(RT

V

)
∂V

)
T

= RT

⎛
⎝∂

(
1
V

)
∂V

⎞
⎠

T

= RT

(
− 1

V2

)

to generate dP for an ideal gas

dP = R

V
dT − RT

V2
dV

The ideal gas constant R is approximated as 0.08 Latm K-1 mol-1 to give an initial
pressure, volume, and temperature (P, V, T) = (1 atm, 10 L, 125 K) for 1 mol of
gas. The final (P, V, T) are (2 atm, 20 L, 500 K). The pressure change is

dP =
2∫

1

dP = 2 − 1 = 1

Using the right side of the equation, T is changed from 125 to 500 K with V =
10 L. The constant temperature is 500 K during the second leg. The pressure change
for the first leg

�P = (+ R/V)�T = +0.08/ (10 L) [500 − 125] = +3

is added to the pressure change for the second leg
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�P = −RT

20∫
10

dV

V2
= +RT

V

20|
10

= RT

V2
− RT

V1

0.08 (500)

(
1

20
− 1

10

)
= 40 (0.05 − 0.1) = −2 atm

The net change in pressure for the two-step path is 3–2 =1. If volume is changed
first while T=125, the result is the same

�P = RT

20∫
10

− 1

V2
dV + R

V

500∫
125

dT = (0.08) (125)
1

V

20|
10

+0.08

20
T

500|
125

= 10 (0.05 − 0.1)+ 0.004 (375) = 1

Path differential equations are also used for error analysis. If the experimental
errors in measuring T and V are�T and�V, respectively, each of these errors could
produce an error in the value of P, �P. The rates of change of pressure with respect
to T and V are multiplied by the errors �T and�V, respectively

BP = R

V
�T

�P = −RT

V2
�V

These independent errors are combined by squaring each, adding, and then taking
the square root of the sum

�P2 =
√[(

∂P

∂T

)
V

dT

]2

+
[(
∂P

∂V

)
T

dV

]2

The change in internal energy is expressed as the sum of T and V legs:

dE = CvdT +
(
∂E

∂V

)
T

dV

The derivatives for some simple systems are 0 and this simplifies the path
expressions. For example, an ideal gas has

(
∂E

∂V

)
T

= 0

so that

dE = CvdT +
(
∂E

∂V

)
T

dV = CvdT
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2.6 Generalized Thermodynamic Equations

The relation between the heat capacity at constant pressure and the heat capacity at
constant volume

CP = CV + R

is valid for an ideal gas. A more general expression works for any equation of state
with P, T, and V.

The heat capacity at constant pressure is

(
∂H

∂T

)
P

Since

H = E + PV

the terms on the right side of the equation are differentiated with respect to T at
constant pressure. The derivative of H with respect to T at constant P is

(
∂H

∂T

)
P

=
(
∂E

∂T

)
P

+ P

(
∂V

∂T

)
P

The partial derivative

(
∂E

∂T

)
P

is not a standard heat capacity and must be related to Cv.
The internal energy is expressed in terms of its standard variables, T and V, using

partial derivatives:

dE =
(
∂E

∂T

)
V

dT +
(
∂E

∂V

)
T

dV

These T and V differentials become partial derivatives if they are each differenti-
ated with respect to T at constant P:

(
∂E

∂T

)
P

=
(
∂E

∂T

)
V

(
∂T

∂T

)
P

+
(
∂E

∂V

)
T

(
∂V

∂T

)
P

= CV +
(
∂E

∂V

)
T

(
∂V

∂T

)
P

Substituting this equation into the heat capacity expression to gives the general
expression relating CP and CV,
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CP =
(
∂H

∂T

)
P

= CV +
(
∂E

∂V

)
T

(
∂V

∂T

)
P

+ P

(
∂V

∂T

)
P

#CP = CV +
[(
∂E

∂V

)
T

+ P

](
∂V

∂T

)
P

for any gas with any equation of state. For an ideal gas, with

(
∂E

∂V

)
T

= 0

and (
∂V

∂T

)
P

= R

P

dT

dT
= R

P

CP = CV + [0 + P]
R

P
= CV + R

as expected.
A dependent state variable that depends on two (or more) other thermodynamic

variables might be constant during a change of state so that its differential is 0 and
the partial derivative terms on the right side of the equation must also equal 0. For
example, if the enthalpy remains constant during an expansion, dH = 0 and

dH = 0 =
(
∂H

∂T

)
P

dT +
(
∂H

∂P

)
T

dP

For the independent variables, T and P, the differentials (not the partials) are
differentiated with respect to temperature to give

(
∂H

∂T

)
P

dT

dP
= −

(
∂H

∂P

)
T

(
dP

dP

)
(
∂H

∂T

)
P

dT

dP
= −

(
∂H

∂P

)
T

The standard derivative dT/dP is replaced with partial derivatives to show the
process proceeds at constant enthalpy:

dT

dP
=

(
∂T

∂P

)
H

= −
(
∂H
∂P

)
T(

∂H
∂T

)
P

2.7 Calculating Internal Energy

The differential expansion for dE

dE =
(
∂E

∂T

)
V

dT +
(
∂E

∂V

)
T

dV
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has derivatives that depend on the specific system under study. For example, an ideal
gas has a constant heat capacity:(

∂E

∂T

)
V

= CV = constant

and (
∂E

∂V

)
T

= 0

�E is determined by integrating dT from its initial (Ti) to its final temperature
(Tf). If CV is temperature dependent,

If (
∂E

∂V

)
T

= 0

�E =
Tf∫

Ti

Cv (T) dT

If CV = constant,

�E =
∫ Tf

Ti

CVdT = CV�T

A molar heat capacity linear in temperature

C (T) = Cv + aT

gives

�E =
Tf∫

Ti

[Cv + aT] dT = CvT|Tf
Ti

+ aT2

2
|Tf
Ti

= Cv�T + a

2
[T2

f − T2
i ]

The temperature dependent term is usually small relative to the constant CV term.
For real gases, the CvdT changes are usually much larger than

(
∂E

∂V

)
T

dV

changes. For isothermal (dT=0) conditions

dE =
(
∂E

∂V

)
T

dV

This energy change is larger for a small volume where the gas molecules are
closer together on average so that intermolecular interaction energies are signifi-
cant. This potential energy of interaction is released as the volume increases and the
molecules separate.
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One mole of a van der Waals gas has a partial derivative in volume that depends
on the molecular interaction constant a,

(
∂E

∂V

)
V

= a

V2

the pressure correction term in the van der Waals equation,

(
P + a

V2

)
(V − b) = RT

with units of pressure.
If the van der Waals gas is expanded from Vi to Vf at constant temperature,

dT = 0, and

dE =
(

dE

dV

)
T

dV

is integrated to give

�E =
uf∫

ui

dE =
Vf∫

Vi

(
∂E

∂V

)
T

dV =
Vf∫

Vi

a

V2
dV = − a

V
|Vf
Vi

= − a

Vf
+ a

Vi

As volume increases, the internal energy will increase reflecting the change
of potential energy of interaction to kinetic or internal energy as the molecules
separate.

Problems

2.1 The heat of formation of HBr(g) from H2(g) and Br2(g) is − 38 kJ mol-1.
Determine the heat of formation at 400 K.

2.2 A diatomic gas expands isothermally (constant temperature) against an
external pressure Pex=1 from V1 =1 L to V2 =2 L. The gas is non-ideal and

∫
∂E

∂V
dV = −0.1 Latm

Determine w, �E, and q.
2.3 An ideal monatomic gas expands reversibly in two steps: (1) an isother-

mal (dT=0) expansion at 400 K and (2) an adiabatic expansion (q=0). During the
two steps, the system absorbs 5000 J of heat and its internal energy decreases by
−500 J mol−1.

a. Determine the internal energy changes for each step.
b. Determine the work for each step.
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2.4 A non-ideal monatomic gas has

V2∫
V1

∂E

∂V
dV = a = constant

Write an integrated expression for the change in internal energy when the
temperature increases from T1 to T2 and the volume increases from V1 to V2.

2.5 The standard enthalpies of formation use elements in their most stable states.
For the reaction

A → B

with
�Ho

f (A) = −1000 J

�Ho
f (B) = −2000 J

Determine the "standard" enthalpy of A is B is selected as the 0 enthalpy reference
state.

2.6 One mole of a non-ideal gas with CV = 12.5 J K−1 mol−1 and
(
∂E
∂V

)
T =

20 J L−1 expands against a constant pressure of 0.2 atm from 1 to 11 L while the
temperature decreases from 350 to 300 K.

a. Determine �E and w.
b. Determine �H if

(
∂H

∂P

)
T

= 0

2.7 A non-ideal monatomic gas expands with �H = +1000 J.

(
∂H

∂P

)
T

= 0

a. Determine the final T.
b. Determine �E.
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First Law of Thermodynamics: Applications

3.1 General Equation for the First Law

�E is determined from changes in other state variables such as volume and tempera-
ture or by measuring the net heat and work transferred across the system boundaries.
Since both methods give the same �E, they are combined in a single equation:

dE =
(
∂E

∂T

)
V

dT +
(
∂E

∂V

)
T

dV = dq + dwPV + dwother

Terms in the equation are eliminated for different experimental conditions.
An isothermal change, i.e., constant T, gives dT = 0

(
∂E

∂T

)
V

dT = CVdT = 0(
∂E

∂V

)
T

= 0

for an ideal gas so

dE = 0 = dq + dwPV + dwother

and

dq = −dwPV − dwother

Any heat transferred must be compensated by an equal and opposite transfer of
work to maintain constant internal energy.

A system can be insulated to prevent the flow of heat in either direction. This is
an adiabatic system with q = 0. The general equation reduces to

dE =
(
∂E

∂T

)
V

dT +
(
∂E

∂V

)
T

dV = dwPV + dwother
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For an ideal gas with constant heat capacity, (∂E/∂V)T = 0 and only PV work

dE = CvdT = −PextdV

3.2 The Joule Experiment

dE for a gas is found from changes in the independent variables T and V:

dE = CVdT +
(
∂E

∂V

)
T

dV

Joule studied (∂E/∂V)T experimentally by observing gas expansion. Gas
expanded from one glass bulb into a second bulb when the stopcock was opened and
Joule used a thermometer to observe a temperature change on expansion (Fig. 3.1).

Fig. 3.1 Expansion of gas into a vacuum

Both bulbs (the system) are insulated (q=0). No work is done because the gas
expands against the gas in the filling bulb, not against an external pressure. Since
q=w=0, dE=0

dE = dq + dw = 0 + 0 = 0

Since V and T are the observables

dE =
(
∂E

∂T

)
V

dT +
(
∂E

∂V

)
T

dV = 0

CVdT = −
(
∂E

∂V

)
T

dV

dT/dV =
∂E
∂V

CV

Since Cv �= 0, any temperature change observed on expansion means a finite
energy change with volume. (

∂E

∂V

)
T

is small for the common gases. The temperature change in Joule’s experiment was
too small to detect with his thermometer.
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3.3 The Joule–Thomson Experiment

Joule and Thomson used a different experiment to determine if enthalpy changes
with pressure. The pressure differential is larger than the volume differential and
any temperature change is larger. Joule and Thomson divided a hollow cylinder
into two sections by inserting a porous meerschaum plug for the slow (equilibrium)
transfer of gas.

Gas is transferred by applying a larger external pressure to a piston on one side
so that gas moved slowly through the plug and expanded the permeant gas against a
second piston. The entire cylinder is insulated, i.e., adiabatic.

The left cylinder (side 1) has an internal and applied pressure P1 and volume V1
initially (Fig. 3.2). When the gas expands through the porous plug, this volume drops
to 0 while the right cylinder gas expands from V2 = 0 to V2 against a pressure P2.

Fig. 3.2 The initial and final states for the Joule–Thomson experiment

Pint = Pext on either side and q = 0 and

�E = E2 − E1

The compression of the piston on side 1 does work on the system

w = −Pext (0 − V1) = P1V1

while the second piston does work

w = −Pext (V2 − 0) = −P2V2

and
wnet = P1V1 − P2V2

Since both chambers constitute the system:

�E = E2 − E1 = P1V1 − P2V2

Collecting terms of common subscript gives

E1 + P1V1 = E2 + P2V2

or
H1 = H2

Enthalpy is constant throughout the transfer and dH = 0
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Since the experimental variables are T and P

dH = 0 =
(
∂H

∂T

)
P

dT +
(
∂H

∂P

)
T

dP

Differentiating with P

0 =
(
∂H

∂T

)
P

dT

dP
+

(
∂H

∂P

)
T

dP

dP

dT

dP
==

(
∂T

∂P

)
H

= −
(
∂H
∂P

)
T(

∂H
∂T

)
P

= −
(
∂H
∂P

)
T

CP

is non-zero. An observed change in temperature reflects a non-zero

(
∂H

∂P

)
T

3.4 The Joule–Thomson Coefficient

dT/dP is the Joule–Thomson coefficient,

μJT =
(

dT

dP

)
H

Heat capacity is always positive but the Joule–Thomson coefficient and

(
∂H

∂P

)
T

can be positive or negative. For most gases at room temperature, cooling occurs
(dT (−)) when the gas expands from a high pressure to a low pressure (dP (−)).
dT/dP > 0. Compressed air from a gas cylinder at high pressure released to the
atmosphere cools as it leaves the nozzle. Gas in a tank of "liquid" nitrogen has
sufficient pressure difference to condense the gas.

Joule–Thomson cooling can liquefy most gases by reducing the temperature in a
sequence of steps. The gas is compressed isothermally and then expanded to produce
cooled gas. This cooled gas cools more compressed gas that is then expanded for
further cooling.

Helium and hydrogen have negative Joule–Thomson coefficients at room temper-
ature so they heat on expansion. However, the Joule–Thomsen coefficient changes
from negative to positive at the Joule–Thomson inversion temperature. Hydrogen
and helium are liquefied by cooling them below their Joule–Thomson inversion
temperature using the expansion of other gases. They can then be cooled further
by their own expansion and cooling.
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3.5 The Reversible Isothermal Expansion

The general expression of the first law of thermodynamics

dE = CVdT +
(
∂E

∂V

)
T

dV = dq − PextdV + dwother

is simplified for an ideal gas with (
∂E

∂V

)
T

= 0

For an isothermal expansion with dT=0,

dE = 0.

The enthalpy expansion in T and P

dH = CPdT +
(
∂H

∂P

)
T

dP = dqP + VdP

simplifies to dH = 0 for an ideal gas since dT = 0 and

(
∂H

∂P

)
T

= 0.

Since dE=0, the work done when the volume changes must be balanced by heat
transferred across the boundary:

dE = 0 = dq − PextdV

For a reversible, ideal gas expansion

Pint = Pext

and

dq = −dw = RT

v
dv.

For an expansion, work is done by the system while an equal amount of heat
is transferred into the system to maintain constant internal energy. The reversible,
isothermal expansion of an ideal gas at 300 K from 1 to 10 L gives heat and work:

qrev = −wrev =
(

8.31
J

K mol

)
(300 K) ln

(
10

1

)
≈ 2500 (2.3) = 5750

J

mol

where w and q are calculated from the volume change.
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Since state functions depend only on the initial and final thermodynamic
parameters, the enthalpy for an ideal gas has

(
∂H

∂P

)
T

= 0

and

dH = CpdT +
(
∂H

∂P

)
T

dP = Cp (0)+ (0) dP = 0

For �.H = 0, absorbed heat is equal and opposite to the energy, VdP,

dq = −VdP

Since both P and V in H are system variables, V is expressed in terms of P using
the ideal gas law

Pi = RT

Vi

to give

q = −RT ln

( RT
V2
RT
V1

)
= −RT ln

(
V1

V2

)
= +RT ln

(
V2

V1

)

This heat equals the reversible work because it describes the same reversible
transition.

3.6 Irreversible Isothermal Expansion of an Ideal Gas

A reversible expansion always gives the maximal work for a given change of vol-
ume. If an ideal gas expands irreversibly and isothermally against a constant external
pressure from V1 to V2 at constant temperature, less work is done. However, since
dT = 0 and the gas is ideal, the internal energy change during the expansion
is 0,

�E = CvdT +
(
∂E

∂V

)
T

dV = 0

Any work done by the system during the expansion is compensated by the
absorption of an equal amount of heat to maintain the constant internal energy.

The heat absorbed during the volume increase equals the work that is done
against the constant external pressure:

q =
∫

dq = Pext

V2∫
V1

dV = Pext (V2 − V1)
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The enthalpy change is �E plus

�(PV) = �(RT) = R�T = 0

and �H = 0.
An ideal gas initially at 1 L and 24.6 atm expands isothermally (300 K) against

an external pressure of 2.46 atm until its pressure reaches 2.46 atm and 10 L:

P = RT

V
=

(
0.082 Latm

K mol

)
(300 K)

10 L
= 2.46 atm

The heat and work

q = −w = Pext (V2 − V1)

= 2.46 (10 − 1) ≈ 22 Latm ≈ 2200 J

are smaller than those for the reversible expansion.

3.7 Isothermal Expansion of Non-ideal Gases

The reversible, isothermal expansion of a gas with an equation of state for 1 mol,
finite volume (b) and no intermolecular interactions (a= 0)

P (V − b) = RT

has (
∂E

∂V

)
T

= 0

and

(
∂H

∂P

)
T

= b = constant

For an isothermal expansion (dT = 0) from P1 to P2, the differential enthalpy
change

dH = CpdT +
(
∂H

∂P

)
T

dP

gives

�H =
P2∫

P1

bdP = b (P2 − P1)

Since
(
∂E
∂V

)
T = 0, the net change in internal energy for this isothermal

expansion is

dE = Cv (0)+ 0dV = 0
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The equation of state for the van der Waals gas

(
P + a

V2

)
(V − b) = RT

has (
∂E

∂V

)
T

= a

V2

and (
∂H

∂P

)
T

= 0

For an isothermal expansion,

dE = Cv (0)+ a

V2
dV

The change in internal energy for an expansion from V1 to V2 is

�E =
V2∫

V1

a

V2
dV

= −a (1/V2 − 1/V1)

Since V2>V1, �E>0. As the molecules separate, the potential energy of interac-
tion is released as kinetic energy.

The enthalpy change is

�H = b (P2 − P1)

The internal pressure for reversible work of expansion for a van der Waals gas
with

P = RT

V − b
− a

V2

gives

w = −
V2∫

V1

[
RT

V − b
− a

V2

]
dV = −RT ln (V − b)

V2|
V1

a

V

V2|
V1

= −RT ln

(
V2 − b

V1 − b

)
− a

V2
+ a

V1

The second term is the energy needed to separate the molecules when V increases.
The equation shows that this released energy can be used to do work.
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The heat is determined by combining internal energy and work

�E = − − a

V2
+ a

V1
= q − RT ln

(
V2 − b

V1 − b

)
− a

V2
+ a

V1

q = RT ln

(
V2 − b

V1 − b

)

3.8 Adiabatic Reversible Expansions

An adiabatic system (q=0) equates internal energy and work. If a monatomic ideal
gas is allowed to expand reversibly and adiabatically from a volume V1 to a vol-
ume V2, the work done equals the internal energy change in the system. Since
temperature changes, T must be eliminated from the work expression.

The general first law equation,

dE = CvdT +
(
∂E

∂V

)
T

dV = dq − PextdV

simplifies as follows:

(1) Since the process is adiabatic, dq = 0;
(2) Since the gas is ideal: (

∂E

∂V

)
T

= 0

(3) Since the expansion is reversible:

Pext = Pi = P = nRT

V

for n moles of gas in the system.
(4) n moles of the ideal monatomic gas have a heat capacity Cv = n3R/2.

The remaining terms are

CvdT = − (RT/V) dV

For integration, both sides are divided by T; the left side is integrated over T
while the right side is integrated over V with the common format

dE = nCvdT = n3R

2
dT = dq − PextdV = −nRT

V
dV

3R

2

T2∫
T1

dT

T
= −

V2∫
V1

R

V
dV

3/2 ln (T2/T1) = − ln (V2/V1)
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For a reversible expansion from 1 to 10 L when the gas is initially at 300 K, the
final temperature, T2, is

3

2
ln

(
T2

300

)
= − ln

(
V2

V1

)
= − ln

(
10

1

)
T2 = 300e−1.53 = 65 K

Since the initial and final temperatures are known, the internal energy change and
the reversible work are

�E = 3R

2
(65 − 300) = −2908.5 J = wrev

for this reversible adiabatic expansion. R = 8.31 J K−1 mol−1.
The initial and final temperatures give the enthalpy change as well. The heat

capacity at constant pressure for this gas is

Cp = Cv + R = 5R

2
≈ 21 J K−1mol−1

and

�H = Cp (Tf − Ti) = 21 (65 − 300) = −4935 J K−1mol−1

Because temperature, pressure, and volume are all interrelated through the ideal
gas law, this expression also defines the change of temperature with pressure for a
reversible adiabatic expansion. The initial and final volumes

Vi = RTi

Pi

Vf = RTf/Pf

give

Cv ln

(
T2

T1

)
= −R ln

( RT2
P2

RT1
P1

)

which is rearranged to

Cv ln

(
T2

T1

)
= −R ln

(
T2

T1

)
− R ln

(
P1

P2

)

ln

(
T2

T1

)
= ln

(
P2

P1

) R
Cp

The logarithms on both sides cancel to give

(T2/T1) = (P2/P1)
R/CV



Problems 47

3.9 Irreversible Adiabatic Expansion

An adiabatic irreversible expansion of an ideal gas against a constant external
pressure obeys

dE = CvdT = −PextdV

External pressure is independent of system temperature so that both sides
integrate over their separate variables (T and V).

For an initial temperature of 300 K and an expansion from 1 to 10 L against an
external pressure of 1 atm, the final temperature is calculated from

�E = CV

T2∫
300

dT = −Pext

10∫
1

dV
3

2
R (T2 − 300) = −1 atm (10 − 1)

= −9 Latm = −900 J

#12.5 (T2 − 300) = −900 T2 = 227 K

The internal energy change for any adiabatic expansion is equal to the work. The
final temperature is determined from the change in internal energy.

For non-ideal gases, when the partial derivative

(
∂E

∂V

)
T

is finite
T2∫

T1

CVdT+
V2∫

V1

(
∂E

∂V

)
T

dV = −Pext

V2∫
V1

dV

The temperature change is determined only when the two terms in volume are
known.

Problems

3.1 An ideal monatomic gas expands from a volume of 2 L in the left compartment
to a volume of 5 L in the right compartment in a Joule–Thomson experiment. The
system is insulated. The pressure of the gas in the left compartment is Pext = Pint =
5 atm, while the pressure on the gas in the right compartment is Pext = Pint= 2 atm.
The initial temperature is 300 K.

a. Determine dT/dP for this gas.
b. Determine �E
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3.2 One mole of an ideal monatomic gas which is initially at 300 K and 1 atm
pressure undergoes a reversible change which increases its enthalpy by 4000 J.

Determine the temperature change and the change in internal energy �E for the
gas in this change.

3.3 One mole of a monatomic gas with the equation of state,

P (V − b) = RT

initially at 300 K, expands against a constant external pressure of 1 atm from 1 to
10 L and does irreversible work of 9 Latm = 907 J. During this process, 347 J of
heat are also lost from the system.

a. The thermodynamic equation of state for this system will give (∂E/∂V)T = 0.
Determine the internal energy change and the temperature change for this system
if Cv = 3R/2 = 12.5 J K−1 mol−1. 1 Latm = 100 J.

b. If b = 0.05 J atm−1 for this gas, determine the enthalpy change for the change in
(a). Do not forget (∂H/∂P)T = b. Use Pf for your final pressure.

3.4 One mole of an ideal monatomic gas, initially at 300 K, is expanded
irreversibly and adiabatically against an external pressure of 2 atm. During the
expansion, the internal energy E decreases by 10,000 J.

a. Determine the work done by the expansion.
b. Determine �H and q for the expansion.
c. Determine the final temperature of the system.

3.5 Use the definition H = E + PV to prove

a. (∂H/∂T)P = (∂E/∂T)V + [
P + (∂E/∂V)T

]
(∂V/∂T)P

b. (∂E/∂T)V = (∂H/∂T)P − [− (∂H/∂T)P (∂T/∂P)H + V
]
(∂P/∂T)P

3.6 Show that

α = (1/V) (∂V/∂T)P = 1/T and β = − (1/V) (∂V/∂P)T = 1/P

for an ideal gas.
3.7 Calculate the temperature increase and final pressure of a monatomic ideal

gas if 1 mol is compressed adiabatically and reversibly from 44.8 L at 300 K to 22.4
L. Cv = 12.5 J K−1 mol−1.

3.8 For an energy

D = H + RT
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a. Explain why D is a state function.
b. Show

CP =
(
∂D

∂T

)
P

− R

c. Find (
∂T

∂P

)
D

in terms of partials in D.



Chapter 4
Entropy and the Second Law:
Thermodynamics Viewpoint

4.1 Temperature Gradients and Net Work

A piston expanding reversibly and isothermally from a volume V1 to a final volume
V2 generates the maximal possible work for an ideal gas at constant temperature

wrev = RT ln

(
V2

V1

)

A reversible isothermal compression from V2 to V1 at this temperature is −wrev
and the work for the cycle from V1 to V1 is 0

w = −RT ln

(
V1

V1

)
= −RT ln (1) = 0

Each reversible step in the cycle gives maximal work but no net work is done for
the cycle. All work generated on expansion must be stored and used to return the
gas to its initial volume.

Net work is produced in a reversible cycle if the gas is recompressed at a lower
temperature. Less work is then required to compress the gas and the residual work
can be used externally. Each cycle then generates a net work.

An ideal gas expanding reversibly at 122 K transfers +23 Latm of work. If the
temperature is reduced to 50 K for the compression back to the initial volume, the
reversible compression work by the surroundings is

Wcom = (0.082) (50) ln

(
1

10

)
= −9.4 Latm

9.44 Latm of the 23 Latm done restores the initial volume. The remaining work,
23–9.44 = 13.56 Latm, is available as work that can be used externally for each
cycle.

In a Carnot cycle, the gas is cooled to the lower temperature using a reversible
adiabatic expansion to reduce the internal energy. The gas is then compressed
reversibly at the lower temperature and then compressed adiabatically and reversibly
to return to the initial volume and temperature. The energy changes for the two

51M.E. Starzak, Energy and Entropy, DOI 10.1007/978-0-387-77823-5_4,
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adiabatic steps are equal and opposite since they move between the same two
temperatures. The net work is the difference between the isothermal, reversible
expansion and isothermal, reversible compression.

4.2 The Carnot Cycle

The Carnot cycle has four steps:

(1) a reversible isothermal expansion of the gas from V1 to V2 at Th;
(2) a reversible, adiabatic expansion of the gas from V2 to V3 with a temperature

decrease from Th to Tc;
(3) a reversible isothermal compression of the gas at Tc from V3 to V4; and
(4) a reversible adiabatic compression from V4 to V1 to restore the initial tempera-

ture Th (Fig. 4.1)

Fig. 4.1 The Carnot Cycle

The work for a reversible, isothermal expansion of 1 mol of an ideal gas at Th

from V1 to V2

w = RTh ln
V2

V1

acquires its energy from an equivalent transfer of heat into the system since �E=0
for the ideal gas

�E = 0 = qrev − RT ln

(
V2

V1

)

qrev = −wrev = RT ln

(
V2

V1

)

The gas expands to V3 during the adiabatic reversible expansion that decreases
the temperature to Tc. qrev = 0 and

�E = q + w = wrev = Cv (Tc − Th)
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The isothermal compression at Tc requires reversible work on the system and
releases heat to the surroundings. This ideal engine needs heat conducting (diather-
mal) walls for the two isothermal changes and insulated walls during the adiabatic
changes. Real engines are designed to mimic this theoretical behavior.

At Tc, the gas is compressed reversibly and isothermally from V3 to V4

w = RTc ln
V4

V3

V4 is selected so that an adiabatic compression returns the system to Th and V1.

�E = CV (Th − Tc) = w

The temperatures and volumes for the reversible adiabatic expansion are related
as

Cv ln

(
Tc

Th

)
= −R ln

(
V3

V2

)

while the adiabatic reversible compression relates temperatures and volumes as

Cv ln

(
Th

Tc

)
= −R ln

(
V1

V4

)

Since the logarithmic temperature ratio is common to both equations, the four
volumes are related as ratios

− R ln

(
V3

V2

)
= Cv ln

(
Tc

Th

)
= −R ln

(
V4

V1

)

and

− R ln

(
V3

V2

)
= −R ln

(
V4

V1

)
V3

V2
= V4

V1

or

V2

V1
= V3

V4

The volume ratios are the same for the isothermal expansion and compression.
The two volume ratios produce isothermal works that are opposite in sign.

The sum of the isothermal expansion and compression works is the net work.
Since the volume ratios are identical for the isothermal expansion and compression,
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any difference in the work for these two steps depends exclusively on the temper-
ature difference. As the difference between the temperatures in the two isothermal
steps increases, the net work done during the cycle increases.

The four steps in the Carnot cycle have the following changes:

1. The isothermal reversible expansion at Th: �E=0 and

q = −w = RTh ln (V2/V1)

The expansion draws heat from the surroundings and converts it to work that is
stored for use in the cycle.

2. The adiabatic expansion, q= 0 and

�E = w = Cv (Tc − Th)

3. The isothermal compression at Tc: �E=0 and

q = −w = −RTc ln (V2/V1)

The piston is compressed and heat is released to the surroundings at this lower
temperature.

The adiabatic compression energy and work are equal and opposite to the
adiabatic expansion energy and work

�E = w = Cv (Th − Tc) = −Cv (Tc − Th)

�E is the state function and its sum for the four steps of the cycle is 0. Work and
heat both give non-zero sums for the four steps. Work is applied to the surroundings
in the cycle

qtot = q1 + q3 = RTh ln

(
V2

V1

)
+ RTc ln

(
V3

V4

)
= (Th − Tc) R ln

(
V2

V1

)
= −wnet

The net work is proportional to the temperature difference between the hot and
cold surroundings. The minus sign on net work reflects its transfer from the system
to surroundings.

4.3 The Efficiency of Ideal Carnot Engines

The net work in a Carnot cycle depends on the temperature difference. For
convenience and convention, net work is assigned a positive sign

Wnet = (Th − Tc)R ln

(
V2

V1

)
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The factor

R ln
V2

V1

is common to net work, heat absorbed at Th, and heat lost at Tc and cancels for ratios
of these quantities.

The efficiency e, the ratio of work produced for heat absorbed at Th, is

e = wnet

qh
=
(Th − Tc )R ln

(
V2
V1

)
Th R ln

(
V2
V1

) = (Th − Tc)

Th

For example, when Th = 400 K and Tc = 300 K, the efficiency or fraction of the
total heat absorbed at the higher temperature that becomes net work is

e = Th − Tc

Th
= 400 − 300

400
= 0.25

i.e., 25% of all the heat absorbed can be converted into work with an ideal engine
working between 400 and 300 K. For Th = 1000, this fraction is

e = 1000 − 300

1000
= 0.7

For Th = 400 K and a temperature difference of 100 K, a heat input of 1000 J
produces 250 J of net work. The remaining 750 J of the 1000 J originally absorbed
by the system is released to the surroundings during isothermal compression at Tc.
This work of compression is proportional to the cold bath temperature Tc,

q = −w = −RTc ln
V2

V1

The sum of waste heat and net work equals the total heat absorbed at the hotter
temperature to conserve energy.

An engine functions best when the temperature difference is largest and practi-
cal thermal engines are designed to maximize this gradient. For example, a steam
engine, using superheated steam rather than steam at 100◦C, converts a larger frac-
tion of all the energy used to heat the steam into net work. Even if an engine is not
reversible, its efficiency increases with an increased temperature difference. When
the hot and cold temperatures are equal, the engine produces no net work.

The mean temperature of the earth is low relative to the temperature of the sun.
A thermal engine might be developed to exploit heat from the sun with its hot bath
temperature of 6000 K to the earth with its cold bath temperature of 300 K. This
engine has a maximal efficiency of

e = Th − Tc

Th
= 6000 − 300

6000
= 0.95
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In principle, a device which used the sun’s energy to generate net work
could convert 95% of that energy directly into work. Plants, which use the sun’s
energy to produce stored chemical energy, do the conversion with relatively high
efficiency.

The ratio of waste heat qc to absorbed heat qh equals the temperature ratio.

qc

qh
= Tc

Th
= 300

400
= 0.75

75% of the heat absorbed is released as waste heat for these two temperatures.
For ratios, the heat absorbed, qh, is proportional to Th, the net work, wnet,

is proportional to the temperature difference, Th−Tc, and the waste heat, qc, is
proportional to Tc.

4.4 Refrigerators and Heat Pumps

A reverse Carnot cycle absorbs heat from the cold bath at Tc. Work is done on the
system and converted into additional heat to raise the temperature of the system to
Th; heat is released to the surroundings at Th by a reversible isothermal compression.
The forward Carnot cycle that absorbed 8000 J of heat at 400 K to give 2000 J of net
work and 6000 J of waste heat at 300 K is reversed so that 6000 J of heat is absorbed
at 300 K. Then, 2000 J of work is done on the system to raise its temperature to
400 K. All this energy (8000 J) is then released to the surroundings as heat during a
reversible compression at Th.

This reverse Carnot cycle is actually an ideal, i.e., reversible, refrigerator, where
heat is extracted from the interior at Tc by evaporating a fluid in coils in contact with
the interior. Work by an electric motor recompresses the fluid in a region contacting
the exterior and heat is released at Th.

For the ideal refrigerator, heat is removed from the interior with a reversible
isothermal expansion at Tc. A reversible adiabatic compression heats the system to
Th. A reversible isothermal compression at Th transfers qh to the surroundings. The
work of expansion at Tc is smaller than the work of compression at Th. The extra
energy released on compression comes from the adiabatic compression.

A refrigerator’s effectiveness is measured as the waste heat removed, qc, per the
net work done on the system, wnet

qc

wnet

which equals the ratio of the cold temperature and the temperature difference,

qc

wnet
= Tc

Th − Tc

For a refrigerator operating between Tc = 300 K and Th = 400 K (only for
illustration, not reality), the ratio is
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qc/w = 300/ (400−300) = 3/1

1000 J of work by the compressor removes 3000 J of heat from the refrigerator
interior. A total of 1000 + 3000 = 4000 J of heat is released to the room. The heat
released to the room is determined directly by forming the ratio of qh and the net
work

qh

wnet
= Th

Th − Tc

This ideal refrigerator releases a total heat equal to

Qh = qc + wnet

4000 J is released at Th for 1000 J of applied work.
A heat pump uses energy from the exterior plus the work to reach the interior

temperature to heat the interior. Heat is extracted from the cold exterior and com-
pressed by doing work to release both the external heat and the work of compression.
A net work of 1000 J for a temperature difference of 100◦C (300 K, 400 K) trans-
fers 4000 J of heat to the house at the higher temperature. This heat pump gives four
times the heating of a conventional system where work is converted directly to heat.
The effectiveness of an ideal heat pump is the total amount of heating (qh) per the
net work done on the system (w),

qh

w
= Th

Th − Tc

Unlike the Carnot engine, where large temperature differences are used to maxi-
mize the efficiency of heat converted to usable work, a heat pump works best when
the temperature differences are smaller. If the exterior temperature is 280 K, while
the inside temperature is 300 K, the ratio of heat added to the house per unit work is

qh

wnet
= Th

Th − Tc
= 300

300 − 280
= 15

Each joule of electrical work produces 15 J of home heat. A normal furnace
would produce 1 J for each 1 J of electrical work.

To keep the temperature gradient small for effective heat pump action, the
lines that collect the exterior heat are often buried below the frost line where the
temperature remains relatively high and constant.

A heat pump, run in reverse, removes heat from the interior and deposits it out-
side. The heat pump functions as an air conditioner; heat from the house plus the
work to run the engine is transferred to the exterior.
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4.5 The Carnot Cycle and Entropy

Each of the four steps in the Carnot cycle involves finite work. The isothermal,
reversible expansion and compression heats are not state functions but they do
depend on the state variables T and V,

qh = RTh ln (V2/V1)

qc = −RTc ln (V2/V1)

The two reversible isothermal heat transfers differ only in their temperatures.
Dividing qh, Th, and qc by Tc gives equal and opposite terms in the volumes

qrev

Th
= R ln

(
V2

V1

)

and
qrev

Tc
= −R ln

(
V2

V1

)

The sum of this ratio around the cycle is 0

R ln

(
V2

V1

)
− R ln

(
V2

V1

)
= 0

since the two reversible adiabatic legs with qrev = 0 give

qrev

T
= 0

even if T is changing.
The ratio of the reversible heat to the constant temperature

�S = qrev

T
is the entropy �S.

The entropy measured for an isothermal volume change

�S = R ln
V2

V1

depends only on initial and final volumes, not the path.
The differential change in entropy, dS, is not

d (qrev/T)

Differential entropy requires a differential, reversible heat, dq, divided by
constant temperature

dS = dqrev

T



4.5 The Carnot Cycle and Entropy 59

If a finite amount of heat was transferred to a system, its temperature would rise.
The change in entropy is evaluated as an integral where T can be a variable

�S =
∫

dqrev

T

The differential dqrev for an ideal gas at constant volume

dE = CvdT = dqrev

defines dS for a differential temperature change

dS = dqrev

T
= CvdT

T

If the temperature of the system is changed from T1 to T2 in a range where the
heat capacity remains constant, the entropy changes for each temperature increment
dT are summed using a definite integral

�S =
T2∫

T1

Cv

T
dT = Cv ln (T)

T2
l|
T1

= Cv ln

(
T2

T1

)

The entropy change for a reversible adiabatic process is 0 since

qrev = 0

for such a process. Even if the temperature is not constant, the entropy change is 0,

�S = qrev

T
= 0

T
= 0

The reversibility condition is absolutely necessary for determining entropy since
it defines the path for an entropy change. Entropy does change for an irreversible
process but it is calculated on a reversible path. For example, the entropy can still
change for an adiabatic irreversible process even though no heat is transferred.

The entropy for an irreversible process that changes a gas volume from V1 to V2
uses the reversible isothermal change

qrev = RT ln (V2/V1)

for the entropy change

�S = qrev

T
= R ln

(
V2

V1

)

This is true even if the actual heat transferred during the irreversible process is
less than the heat transferred reversibly.
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4.6 The Differential Formulation of Entropy

A differential path for E using the independent variables T and V involves separate
terms for changes with T and V

dE =
(
∂E

∂T

)
V

dT +
(
∂E

∂V

)
T

dV

Since S is also a state function, it follows a similar two-step differential path

dS =
(
∂S

∂T

)
dV

dT +
(
∂S

∂V

)
T

dV

For T and P as the independent variables,

dS =
(
∂S

∂T

)
P

dT +
(
∂S

∂P

)
T

dP

A differential expression using independent variables P and V

dS =
(
∂S

∂V

)
P

dV +
(
∂S

∂P

)
V

dP

is valid but less convenient.
The partial derivatives for the differential expressions are inferred from existing

equations for the ideal gas. The entropy change for an isothermal ideal gas expansion
from V1 to V2

�S = R ln

(
V2

V1

)

with functional form

S = R ln (V)

is differentiated (
∂S

∂V

)
T

= R
d ln V

dV
= R

V

The functional form for a pressure change of an ideal gas

S = −R ln (P)

gives

(
∂S

∂P

)
T

= −R

(
∂ ln (P)

∂P

)
T

= −R

P
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A non-ideal gas with equation of state

P (V − b) = RT

has

�E = 0 and

P = RT

V − b

Then

ds = dqrev

T
= PdV

T

=
RT

V−b dV

T
= R

V − b
dV

The partial differential expression for S versus T at constant V is

dS =
(
∂S

∂T

)
V

dT = CV

T
dT

so

(
∂S

∂T

)
V

= CV

T

For constant Cv, the entropy change for a temperature change from T1 to T2 is

�S =
∫

dS =
T2∫

T1

CV

T
dT

Each differential increment of heat was transferred reversibly at a constant
temperature but the sum of all these incremental reversible transfers gives a net
macroscopic entropy change.
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The entropy for a transition between (T1, V1, P1) and (T2, V2, P2)

dS =
(
∂S

∂T

)
V

dT +
(
∂S

∂V

)
T

dV

is

dS = Cv

T
dT + R

V
dV

for an ideal gas. Integrating

�S = Cv

T2∫
T1

dT

T
+ R

V2∫
V1

dV

V

= Cv ln

(
T2

T1

)
+ R ln

(
V2

V1

)

A new equally valid path is possible with T and P

dS =
(
∂S

∂T

)
P

dT +
(
∂S

∂P

)
T

dP

For constant P,

dqp,rev = dH = CpdT

and

dS = dqp,rev

T
= Cp

T
dT

Since

dS =
(
∂S

∂T

)
P

dT

(
∂S

∂T

)
P

= Cp

T

The partial derivative for the change of entropy with pressure at constant
temperature for an ideal gas

(
∂S

∂P

)
T

= −R

P
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completes the T, P path

dS = Cp

T
dT − R

P
dP

4.7 Entropy Paths

The differential reversible paths (T, V and T, P) must give the same entropy change
because each path takes the system from one state, characterized by its state vari-
ables T, V and P, to a final state. For example, an ideal monatomic gas in a state with
(P1, V1, T1) = (1 atm, 10 L, 300 K) changes to a state with final values (4 atm, 5 L,
600 K). The entropy is calculated by either of two distinct paths. For path 1, P is
constant at 1 atm while T rises from 300 to 600 K. Then, P changes from 1 to 4 atm
while T is constant at 600 K. The third parameter, the volume, changes to satisfy the
ideal gas law, and is not an independent variable.

Cp for an ideal monatomic gas

CP = CV + R = 3R

2
+ R = 2.5R

is used for the (T, P) path

dS =
5R
2 dT

T
− R

P
dP

Integrating from initial to final temperature and pressure gives

�S = Cp ln

(
600

300

)
− R ln

(
4

1

)
= (3R/2) ln (2)−R ln (2) = (R/2) ln (2)

For the second path, V first decreases from 10 to 5 L at 300 K. The third variable,
the pressure, increases to 2 atm. T increases at a constant 5 L

�S = R ln
Vf

Vi
+ CV ln

Tf

Ti

= R ln (5/10)+ (3R/2) ln (600/300)

= (R/2) ln (2)

The values for each leg of the two paths are different but the entropy change is
exactly the same for each total path between the two states.

4.8 Entropy Changes of the Surroundings

T`he isothermal expansion of an ideal gas involves the reversible transfer of heat,
qrev, from the surroundings to compensate the reversible work done by the system
at constant internal energy, �E = 0. Since energy is conserved, the surroundings
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lose qrev as determined from the calculations for the system. Since system and sur-
roundings have the same T for this transfer, the entropy change of the surroundings
is determined using this reversible heat

qrev,sur = −qrev,sys

to give
�Ssys = −�Ssur

The entropy change of the universe is 0 for reversible changes:

�Suniv = �Ssys +�Ssur

= 0

A reversible adiabatic expansion has qrev = 0 and �S = 0. An irreversible adi-
abatic expansion has q = 0, but this does not mean the entropy change is 0. The
actual entropy change is determined from the initial and final system variables.

For a reversible adiabatic expansion, the entropy changes of the system and
surroundings are both 0,

�Ssys = qrev

T
= 0

T
= 0

The entropy change of the universe, the sum of these two entropies, is also 0.
The system entropy change for an adiabatic irreversible expansion is determined

from changes in the state variables (the reversible path)

�S = Cv ln

(
T2

T1

)
+ R ln

(
V2

V1

)

since volume and temperature changes are known. The expansion uses the sys-
tem’s internal energy so volume increases, as temperature decreases for the adiabatic
expansion.

No heat is transferred in this irreversible expansion. qsur = 0. The entropy
for the surroundings is calculated from the actual heat (q=0) transferred to the
surroundings; this transfer is assumed reversible

qsur,irr = 0

and

�Ssur = qrev

T
= 0

T
= 0

The volume entropy change of the system increases more than the temperature
entropy change decreases so their sum is a net positive. The entropy of the universe
is positive. In general, the entropy of the universe increases for any spontaneous
(non-reversible) process. Entropy is not conserved; it is produced during irreversible
changes.
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The first two laws of thermodynamics are often expressed concisely as (1) energy
is conserved and (2) the entropy of the universe increases. The last statement reflects
the fact that very few changes are reversible. Almost all proceed irreversibly with
the production of entropy.

4.9 Reversible Paths for Entropy in Irreversible Changes

The Joule experiment expands gas irreversibly into an evacuated bulb. The gas
does not spontaneously return to the initial volume in the left bulb. The entropy
of the system, however, is calculated by a reversible path, not the actual path.
One mole of ideal gas in a 1 L bulb expands into a second evacuated 1 L bulb
so that the gas occupies a final volume of 2 L with no temperature change for the
ideal gas.

The entropy is calculated via the reversible path where only volume changes

�S = R ln

(
V2

V1

)
= R ln

2

1

The system is insulated so qsur = 0. The reversible “path” for the surroundings is

�Ssys = qrev/T = 0

and

�Suniv = �Ssys +�Ssur = R ln

(
2

1

)
+ 0 = R ln (2)

The entropy of the universe increases for the irreversible Joule expansion.
There is a strong correlation between the generation of entropy and spontaneity.

A gas always expands into a vacuum; heat always flows from the hotter to the colder
temperature. These are spontaneous processes that generate entropy.

Heat always flows spontaneously from the hotter to the colder. For a reversible
Carnot cycle, the entropy change is 0 and the net work is maximal.

4.10 Non-equilibrium Phase Transitions

Phase transitions occur at a constant temperature. For example, liquid water
becomes vapor at 100◦C (373 K) and 1 atm and freezes to ice at 273 K and 1 atm
pressure. During the transition, heat is transferred. If the phase transition occurs at
constant pressure,

�Hphase transition = qP

The enthalpy of vaporization,�Hvap, is positive since heat is added to the system
to vaporize a liquid. Since energy is conserved, this energy is removed from the
surroundings as heat
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�Hsur = −�Hvap

In the reversible limit, the phase transition occurs when the temperatures of both
system and surroundings are equal at the transition temperature.

For a vaporizing system at the boiling point,

�Svap = qrev

Tbp
= �Hvap

Tbp

while

�Ssur = −�Hvap

Tbp

and

�Suniv = �Ssys +�Ssur = �vap

Tbp
+ −�Hvap

Tbp
= 0

A reversible phase transition transfers entropy into the system without gener-
ating new entropy at a constant temperature. A phase transition when system and
surroundings temperatures are different generates entropy.

A substance freezes reversibly at 300 K, releasing 3000 J mol−1 with an entropy
decrease of

�Sfus,sys = −3000

300
= −10 J K−1mol−1

At 300 K, the surroundings’ entropy increases the same amount

�Sfus,sur = +10 J K−1 mol−1

This liquid is supercooled to 290 K where it can freeze spontaneously. The
enthalpy and entropy of fusion at this temperature are determined for a reversible
path (Fig. 4.2).

(1) The supercooled liquid is heated to 300 K.
(2) A reversible phase transition occurs at 300 K
(3) The solid is cooled to 290 K.

Fig. 4.2 A reversible path for the transition from supercooled liquid to solid
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The enthalpy change for fusion at 290 is

�H = Cp(liq)(300 − 290) − 3000 + Cp(sol)(290 − 300)

If Cp(l) = 6 and Cp(s) = 4,

�H = −3000 + 6(10) + 4( − 10) = −2980

The enthalpy changes only slightly with temperature.
The entropy on the reversible path is

Cp(liq) ln (300/290) − 3000/300 + Cp(sol) ln (290/300)

The entropy change of the system is

6(0.034) − 10 + 4( − 0.034) = −5 + 2(0.034) = −9.9

The entropy change of the system is smaller than the reversible change but the
entropy of the universe must increase. The entropy of the surroundings is found
from the enthalpy released at 290 K.

�H = 6(300 − 290) + ( − 1500) + 4(290 − 300) = 60 − 3000 − 40 = −2980

The entropy of the surroundings is found by assuming this heat is added to the
surroundings reversibly

�Ssur = +2980/290 = +10.3 J mol−1K−1

The entropy of the universe

− 9.9 + 10.3 = 0.4 J mol−1 K−1

increases for this irreversible process.

Problems

4.1 An ideal monatomic gas expands from a volume of 2 L when a pressure Pext =
Pint = 5 atm is applied. The gas flows through a porous material to a second com-
partment with Pext = Pint = 2 atm. The volume of this compartment increases from
0 to 5 L. The temperature is a constant 300 K.

Determine �Ssys

4.2 One mole of an ideal gas with CV = 1.5R = 12.5 J mol−1 K−1 and

(
∂E

∂V

)
T

= 20 J L−1
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expands against a constant external pressure Pext = 0.2 atm from 1 to 11 L
(1 Latm =100 J). During the change, the temperature decreases from 350 to 300 K.

a. Determine the entropy change of the system.
b. Determine the entropy change of the surroundings at constant 300 K.

4.3 The adiabatic expansion in a Carnot cycle lowers the temperature of 1 mol of
an ideal monatomic gas (CV = 12.5 J K−1 mol−1) from 350 to 300 K.

a. Determine the work done during this reversible adiabatic expansion step.
b. Determine the entropy change of the system during the reversible adiabatic

expansion step.

4.4 The volume of 1 mol of an ideal monatomic gas initially at 2 atm, 300 K,
and 12.2 L is doubled by (a) reversible isothermal expansion and (b) reversible
adiabatic expansion. Calculate the entropies of the system and surroundings for
each case.

4.5. An ideal heat pump operating between an outside temperature of 270 K and
an inside temperature of 300 K deposits 1200 J of heat in the house. Determine
how much heat would be deposited if the same amount of heat were drawn from
the outside but the engine was only 50% efficient, i.e., it had to do twice as
much work as the ideal machine to extract the same amount of heat from the
outside.

4.6 A mole of solid material at 400 K with a heat capacity of 25 J K−1 mol−1 at
all temperatures is dropped into a large water bath with a temperature of 300 K. The
heat from the metal is then lost irreversibly to the water although the water bath is
so large that the temperature of the bath remains effectively constant as it receives
the heat from the metal.

a. Determine the entropy change for the block. The volume change of the block on
cooling is very small and can be ignored.

b. Determine the entropy change for the constant temperature water bath.
c. Determine the entropy change for the universe.

4.7 The entropy of gas is defined by

(
∂S

∂V

)
T

= R

V − b

(
∂S

∂T

)
V

= Cv

T

Find the entropy change when the system changes from (V1, T1) to (V2, T2).
4.8 One mole of an ideal gas with Cp = 7R/2 = 30 J K−1 mol−1 and

(∂E/∂V)T = 0 absorbs 1100 J of heat during an irreversible expansion. The temper-
ature changes from 200 to 400 K (the surroundings temperature), while the pressure
is constant at 8.2 atm. The initial volume is 2 L.
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Calculate the entropy change for system and surroundings.
4.9 One mole of an ideal diatomic gas expands in two steps: an adiabatic

reversible expansion followed by an isothermal reversible expansion. The initial
temperature and pressure of 300 K and 1 atm reach a final temperature and pressure
of 200 K and 0.25 atm, respectively.

a. Determine the entropy change for the isothermal reversible expansion alone.
b. Determine the entropy change for the surroundings.



Chapter 5
The Nature of Entropy

5.1 The Nature of Entropy

Entropy is different from conserved energies and system variables like T and V
that can be measured in the laboratory. However, the product TS has units of
energy which suggests that entropy produced in an irreversible process also pro-
duces energy. Both the entropy S and the product TS are related to the randomness
of the system. The connection between randomness and both entropy and energy is
one of the more interesting concepts in thermodynamics. Its physical meaning can
be approached probabilistically

For isothermal, reversible expansions, the entropy depends only on the change of
volume for an ideal gas:

�S = R ln

(
V2

V1

)

This same entropy change could occur at any temperature. Entropy in this case
only depends on the change of the system volume.

During a vaporization, heat is absorbed as liquid becomes gas but the temperature
of the two-phase system is constant. Energy is added but does not appear as an
increase in the kinetic energy of the system molecules. The entropy increase during
a vaporization at constant temperature

�Svap = �Hvap

T

has to be associated with the large volume change in the liquid to gas transition.
The energy is added as heat to increase the entropy but not the kinetic energy of the
system.

5.2 Trouton’s Rule

Although enthalpies of vaporization and boiling point temperature can vary sig-
nificantly for different liquids, the entropy of vaporization is roughly consistent.
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Benzene, which boils at 353.25 K with�Hvap = +30,800 J mol−1, gives an entropy
increase of

�S = �Hvap

Tbp
= +30,800

353.25
= 87.2 J mol−1K−1

Liquid nitrogen which boils at 77.4 K with �Hvap = 5818 J mol−1 has

�S = 5818

77.4
= 75.2 J K−1 mol−1

Trouton’s rule states that the entropy of vaporization is approximately 85 J mol−1

K−1. Water and NH3 with considerable hydrogen bonding (and structure) in the
liquid phase, i.e., more liquid order, have higher entropies of vaporization (ca. 110 J
K−1 mol−1).

Trouton’s rule permits estimates of the enthalpies of vaporization if the boiling
point is known. The enthalpy of vaporization of carbon tetrachloride with a boiling
point of 349.9 K is approximately

�H = Tbp85 J K−1 mol−1 = 29,665 J mol−1

which compares very favorably with the experimental vaporization enthalpy of
30,000 J mol−1.

A gas occupies a much larger volume than a liquid. Entropy is a measure of
randomness. Each molecule is located in many more locations as a gas. Ammonia
and water have this locational entropy increase plus the entropy increase when the
hydrogen bonded liquid structure is destroyed on vaporization.

If the entropy increase on vaporization is due to increased vapor volume, the
entropy can also be estimated using the volume change on vaporization:

�Svap = R ln

(
Vvap

Vliq

)

A mole of liquid might occupy about 2 mL, while the same gas at 25◦C occupies
30 L (30,000 mL):

�S = R ln

(
V2

V1

)
= 8.31 ln

(
30,000

2

)
= 80 J K−1 mol−1

The volume approach gives a value comparable to that of Trouton’s rule
(85 J K−1mol−1). A more accurate calculation includes molecular interactions and
the degree of randomness in the liquid.

Solids and liquids are more dense than gases and the molecules can interact
strongly. A phase transition between a solid and a liquid or a solid and a solid phase
involves a change in crystal structure and interactions. Entropy changes for these
phase transitions vary considerably and there is no equivalent of Trouton’s rule for
liquid–solid and solid–solid phase transitions.
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5.3 Volume Changes and Randomness

The entropy change for an isothermal ideal gas depends only on the change in the
gas volume. The ratio of volumes for the entropy change

�S = R ln

(
V2

V1

)

is equivalent to the difference

�S = S2 − S1 = R ln (V2)− R ln (V1)

The entropy of a state is directly proportional to the natural logarithm of its
volume:

S = R ln (V)

This entropy can be divided by Avogadro’s number to give an entropy per
molecule:

S′ = S/Na = R/Na ln (V) = k ln (V)

k with units of J molecule−1 K−1 is Boltzmann’s constant. This individual molecule
entropy still has the logarithmic volume dependence. A single molecule can increase
its entropy if it is free to move (at any speed) in a larger volume. The molecule is
harder to locate in the larger volume no matter how fast it moves.

5.4 States

One mole of an ideal gas that expands isothermally from 1 to 2 L has an entropy
change

�S = R ln

(
2

1

)

For one molecule,

�S = k ln (2/1)

Each molecule that was free to move anywhere in 1 L is now free to move
anywhere in 2 L.

Each volume is partitioned into a set of cubes of equal volume. A random
molecule “visits” each of these cubes with equal probability. Ideally, the cube vol-
ume is fine grained, i.e., each microvolume is molecular size. However, entropy
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differences are determined from volume ratios. As long as 2 L has twice as many
cubes as 1 L, the entropy change is known.

Each of the volume cubes is called a state of the system. The volume doubling
from 1 to 2 L is equivalent to doubling the number of location states (�)

�S = R ln

(
2�

�

)

The entropy change for just one molecule is

�S = k ln

(
2�

�

)

The cubes are equally accessible to this single molecule.
Intuitively, two molecules might be expected to occupy twice the number of

states. For a volume cube of 1 L, 1 L is one state and 2 L is two states. Two molecules
produce four (22) distinct states: (1) both particles in the left liter; (2) both particles
in the right liter; (3) particle 1 in the left and particle 2 in the right; and (4) particle
2 in the left and particle 1 in the right.

Three molecules expanding from 1 to 2 L increase from 1 state (all in the
left “cube”) to 23 = 8 states; each molecule has twice the possible locations. An
Avogadro’s number of molecules increases from 1 to

2Na

states. A volume increase from 1 to 3 L for Na particles gives

(
3

1

)N

as the state ratio.
A difference in entropy is related to a ratio of states.
Boltzmann defined an absolute entropy for � states as

S = k ln (�)

with kb = 1.38 × 10-23J K−1 molecule−1. While location state volume is arbitrary,
definite states can be allotted to some systems. This important equation appears
on Boltzmann’s tombstone in Vienna. This might have been his only equation that
fitted.

5.5 States and Probability

In Boltzmann’s formulation, all states are accessible to the molecule. Each state
is equally probable. If the number of states is known, the probability of being in
a specific state is the inverse of number of states. A system with 100 states has a
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probability of 1/100 = 0.01 that a molecule is found in a specific state. Doubling the
size and the states of the system to 200 decreases the probability to 1/200 = 0.005.
The probability of finding the particle in a specific state is halved. The increased
randomness of the system is associated with a decreased probability.

A two-particle system that goes from 1 to 2 states has a probability

1 / 22 = (1 / 2)2 = 1/4

One quarter of the time, both particles will return to their initial state.
The probability of returning to the original state decreases dramatically with

increasing particles (N). The probability that 10 particles expanded from 1 to 2 L
will return to their original 1 L is

1 / 210 = 1/1024 = 0.00098

An Avogadro’s number of particles has a return probability

1/2N

that is vanishingly small. This low probability is responsible for the irreversible
nature of the expansion from 1 to 2 L. The probability that all the particles, each
undergoing its own random motion, all collect in the left 1 L is vanishingly small.
Once the gas expands, it stays expanded.

The gas, on an average, cycles through all possible states before it returns to
the original state. This is a Poincare cycle. The system with ten particles and 1024
states passes through 1024 states, i.e., all the states, before it can return to the initial
state. If the average time T to pass from one state to the next is known, the Poincare
recurrence time is just

T�

In Boltzmann’s formulation, all states are equally probable. However, only one of
these equally probable states places all the particles on the left. This is a (L, R) =
(N, 0) distribution. The 50–50 (N/2, N/2) distribution appears much more often since
so many distinct states give this distribution.

5.6 Entropy and Temperature

An isothermal increase in the volume increases the number of states and this leads to
an increase in the system entropy. The kinetic energy plays no role at all. However,
the entropy also increases with temperature

�S = Cv ln

(
T2

T1

)
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at constant volume. If kinetic energy is not involved, what produces this change in
entropy?

The kinetic energies determined by the heat capacities are averages. The particles
actually have a distribution of energies. For translation, some particles move faster,
while others move slower, i.e., a velocity distribution or energy distribution. The
range of velocities and energies increases at higher temperatures. If possible molec-
ular velocities define states, the higher temperature system has more such states.
The entropy change

�S = Cv ln (T2/T1)

reflects this increase in velocity states.
A system at higher temperature does net work as it drops to the lower tem-

perature. The loss of high energy states releases some of the randomness as work
energy.

Entropy is a system variable like temperature, pressure, or volume. In the
reversible limit, the first law becomes

dE = dqrev + dwrev = TdS − PdV

All external variables are replaced by state (system) variables.

5.7 The Entropy of Mixing

The mixing of two liquids, e.g., coffee and cream, or two different gases is gen-
erally a spontaneous and irreversible process. Once mixed, coffee and cream do
not separate. The mixed system is more disordered or random and entropy is
larger. Mixing is an irreversible process; the mixed materials never spontaneously
unmix. However, the materials must be mixed reversibly to calculate the entropy
of mixing.

The irreversible mixing of nA moles of ideal gas A in a volume VA and nB moles
of ideal gas B in volume VB at the same constant temperature and pressure occurs
by joining two cylinders with these gases. The total volume

Vt = VA + VB

is proportional to nt = nA + nB. Temperature and pressure remain constant.
If gas A expands from VA to Vt,

Vt = VA + VB

the entropy change is

�SA = nA R ln

(
Vt

VA

)
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If B expands isothermally from VB to Vt, the entropy change is

�S = nBR ln

(
Vt

VA

)

These entropy changes do occur for the two gases when they each expand dur-
ing mixing. However, the calculations do not include an actual entropy change for
mixing. Mixing requires an additional reversible step where the two gases can mix
or separate.

A reversible path to calculate the entropy need not correspond to the path actually
followed by the system from its initial to its final state. In fact, the path need not
be an experimentally viable path. A hypothetical, reversible path gives the exact
entropy change. For the entropy of mixing, Planck proposed a gedanken (thought)
experiment for reversible mixing (Fig. 5.1). Gases A and B expand to Vt in separate
cylinders. Planck postulated special caps for one end of each expanded cylinder. The
cylinder containing gas A is capped with an end plate which, while impermeable to
A, is completely permeable to B. A cannot escape from this cylinder but B can
enter through the cap. The cylinder containing B had an end cap which is permeable
to A. For a reversible mixing, the cylinders, each of volume Vt, are arranged with
their special end caps facing each other. The cylinders are pushed together to form
one cylinder with total final volume Vt. A molecules pass easily through the cap
of cylinder B to reach the common region, while B molecules pass easily through
the cap of cylinder A to reach this same common region. The A and B separate
reversibly as the cylinders are pulled apart.

Fig. 5.1 Planck reversible mixing

The total entropy for mixing is the sum of the three reversible steps. A and B are
expanded to the volume Vt in their separate cylinders. The reversible mixing step
involves no change in internal energy (temperature constant) and no work (Pext = 0).
Since

�E = 0 = q + w = q = qrev

The entropy change for this third (mixing) step is 0! The total entropy of
mixing is



78 5 The Nature of Entropy

�S = nAR ln

(
Vt

VA

)
+ nBR ln

(
Vt

VB

)
+ 0

T and P are constant for this mixing. Although the individual pressures decrease
on expansion, the total pressure is still P

PA,f = PA,i
VA

Vt

PB,f = PB,i
VB

Vt

PA,f + PB,f = P

(
VA

Vt
+ VB

Vt

)
= P

VA + VB

Vt
= P

Since the temperature and total pressure are constant

nt = nA + nB = P

RT
(VA + VB) = P

RT
Vt

the ratio {Vt} over {VA} is

Vt

VA
= nt

RT
P

nA
RT
P

= nt

nA

The B ratio is

Vt

VB
= nt

nB

Substituting these mole fractions gives

�Smix = nAR ln

(
nt

nA

)
+ nBR ln

(
nt

nB

)
= −R [nA ln (XA)+ nB ln (XB)]

The sign changes when the logarithmic ratios are inverted.
This total entropy of mixing for nt = nA + nB moles is converted to an entropy

per total moles

�S̄mix = �S

nt
= −R

(
nA

nt

)
ln (XA)+ nB

nt
ln (XB) = −R (XA ln XA + XB ln XB)

The entropy of a mixture of N species with mole fractions, Xi, is

�S̄mix = −R
i=N∑
i=1

Xi ln Xi

Mixing gases at different pressures or temperatures is done by first determining
the entropies required to bring the temperature and pressures to their values for
mixing. If one mole of a monatomic gas A at a pressure of one atmosphere and a
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temperature of 300 K is mixed with one mole of a second monatomic gas B at 1 atm
pressure and 400 K, the final temperature of the mixture will be 350 K at 1 atm total
pressure because both gas heat capacities are equal. The entropy of this mixture is
found in two steps:

(1) the entropy required to change the temperatures to the final temperature of the
mixture and

(2) the entropy of mixing at 350 K and 1 atm.

The entropy change to bring both gases to 350 K is

�S = (1)Cp(A) ln
350

300
+ (1)Cp ln

350

400
= 5

2
R

(
ln

7

6
+ ln

7

8

)
= 0.051R

for the two moles of gas. The entropy of mixing for the two moles of gas is

�Smix = 2�S̄mix = −2R (0.5 ln 0.5 + 0.5 ln 0.5) = 1.39R

The entropy change for mixing dominates because mixing is a more spontaneous
process. The total entropy is

�St = �ST +�Smix = 0.051R + 1.39R = 1.44R

5.8 Entropy of Mixing for Microscopic States

The molar entropy of mixing

�S = −R
∑

i

Xi ln Xi

is converted to an entropy of mixing for a single molecule by dividing both sides by
Avogadro’s number

�S = −kb

∑
Xi ln Xi

How is it possible to have an entropy of mixing for one molecule? The molecule
is either A or B. To resolve this anomaly, the mole fraction for A for a large num-
ber of particles is equivalent to the probability that a molecule A is selected if one
particle is pulled at random from the mixture. For one particle that is either A or B,
XA= pA and XB= pB. The probabilities indicate something unknown about a single
particle. If pA = pB = 0.5

�S = −kb {0.5 ln (0.5)+ 0.5 ln (0.5)} = −kb ln (0.5) = +kb (0.69)

is the largest possible for a two species mixture. Since the two are equally probable,
the choice is most random. Neither guess is favored. If the probabilities are
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pA = 0.8 and pB = 0.2

a gambler who guessed that A would be picked has 0.8/0.2 = 4/1 odds. This order
is reflected in a lower entropy

�S = −k (0.8 ln (0.8)+ 0.2 ln (0.2)) = 0.5 k

The Boltzmann equation

S = k ln (�)

is generated from the entropy of mixing when � identical states are mixed. The
probability of each state is 1/� and the entropy of mixing

S = −k
�∑
1

1

�
ln

(
1

�

)
= −k�(1/�) ln

(
1

�

)
= +k ln (�)

5.9 The Third Law of Thermodynamics

The entropy of mixing is the change from unmixed to mixed. The unmixed state
is assigned a probability of 1 since A and B are located exactly in their respective
containers. The entropy difference on mixing is

�S = −k [(XA ln XA − 1 ln 1)+ (XB ln XB − 1 ln 1]

�s = sf − si = sf − 0 = smix

Since ln(1) = 0.
The entropy of mixing is relative to a starting entropy of 0 even though each gas

does have an entropy.
Boltzmann’s equation

S = k ln (�)

is not a difference equation. The reference state consists of one state and an entropy
of 0.

A crystalline solid of atoms confines each atom to a single volume element.
The volume for each atom expands with increasing temperature as the whole crys-
tal expands since each atom moves within its own cavity. As the temperature
approaches absolute zero, the kinetic motions decrease locking each atom in a
stationary position in classical models of a crystal.

At absolute zero, the kinetic energy of each classical atom is 0; the atoms are
motionless in their cavities. At absolute zero, the entire crystal is one state. Each
atom can be located exactly. The absolute entropy of an atom in the crystal at 0 K is

S = kB ln (�) = kB ln (1) = 0
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The third law of thermodynamics states that the entropy of a perfect atomic
crystal at absolute zero is 0.

As the volume or temperature of the crystal increases, the corresponding entropy
change is actually an absolute entropy since its reference entropy is 0 at t= 0 K

�S = Sf − Si (T = 0 K) = S (T ,V)− 0

The absolute entropy of the elements in their most stable states at 25◦C and 1 atm
is determined by summing all the entropy changes from 0 K. Tables of absolute
entropies are listed at 25◦C and 1 atm so that they can be used in conjunction with
internal energy and enthalpy changes.

5.10 Absolute Entropy Calculations

The Debye theory for heat capacities based on quantized energies states that, near
zero, heat capacity follows a “T-cubed” law

Cp = aT3

where a is a constant for each crystal.
The absolute entropy at any temperature and pressure is the sum of entropy

change from T=0 K. Near zero, the T-cubed law is used

S (T) =
T∫

0

Cp

T
dT =

T∫
0

aT3

T
dT = aT3

3

T|
0

= aT3

3

Further integration from T to the melting point (or phase transition temperature)
is approximated with a constant heat capacity:

�S =
Tmp∫
T

Cp

T
dT

At the melting point, the entropy of the phase transition from the solid to the
liquid is

�S = �Hmp

Tmp

If the material is liquid at 25◦C and 1 atm, the liquid entropy change is added:

�Sliq =
298∫

Tmp

Cp (liq)

T
dT

If the material is gas at the final T and P, the entropy for the liquid–vapor phase
transition and changes in the pressure and temperature of the gas are added for a
total absolute entropy.
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5.11 Residual Entropy

A perfect crystal at a temperature of 0 K has zero entropy because each atom or
molecule is confined to its own volume cell. The entropy is larger than 0 for imper-
fect crystals. However, some perfect crystals can have a finite entropy at absolute
zero.

The entropy at 0 K is calculated using either thermodynamics or statistical
thermodynamics. Although the two approaches should give identical results, a dif-
ference, the residual entropy, is observed for certain molecules. For example, the
entropies for the CO molecule differ by Rln(2).

C and O atoms in CO are roughly the same size. A CO molecule can fit into its
lattice site as either CO or OC in the perfect crystal. The two orientations become
two states at 0 K. Instead of a single perfect crystal, �=1, each crystal site has two
equally probable orientations. For N such sites (or molecules), there are

2N

distinct perfect crystals for CO. The absolute entropy at 0 K is

S = kb ln
(
�N) = R ln (�) = R ln (2)

Symmetrical linear molecules like O2 and CO2 have no residual entropy.
Quantum mechanics states that two-like atoms are indistinguishable, i.e., the oxygen
atoms can not be labeled. Without labels, two orientations are indistinguishable.

The residual entropy for crystalline ice has 3/2 states

S = R ln (3/2)

Linus Pauling explained the factor by noting water is a tetrahedron with two
protons and two unpaired electrons that has six different spatial orientations
in space

4!/2!2! = 6

The number of orientational states is reduced because the only allowed ori-
entations have the water’s protons face electron pairs on adjacent molecules (2/4
possibilities) and its electron pairs must face protons on adjacent molecules (2/4).
This reduces the number of possible residual states as

6 (2/4) (2/4) = 6/4

and the residual entropy is

S = kb ln

(
6

4

)Na

= R ln (1.5)
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5.12 The Gibbs Paradox

A 50–50 mixture of A and B with XA = XB−0.5 has entropy of mixing

�S = R ln (2)

For example, 0.5 mol of O2 mixed with 0.5 mol of N2 gives XO2 and XN2 = 0.5
and an entropy of mixing

S = −R (0.5 ln (0.5)+ 0.5 ln (0.5)) = R ln (2)

A cylinder containing 0.5 mol of 16O16O can be mixed with a second cylin-
der containing 0.5 mol of isotopic oxygen 18O18O to produce the same entropy of
mixing,

�S̄mix = −R[0.5 ln 0.5 + 0.5 ln 0.5] = R ln 2

If 0.5 mol of 16O16O is mixed with 0.5 mol of 16O16O, the predicted entropy of
mixing is

�S̄mix = R ln 2

However, if these molecules are indistinguishable, the final “mixture” looks
exactly like the original, unmixed system with equal numbers in each half of the
container. Without labels, it is impossible to determine that mixing has occurred.
For indistinguishable molecules, the entropy change is 0 �S = 0

Both answers seem valid but zero entropy is correct because the molecules cannot
be distinguished to restore them to their original locations. However, indistinguisha-
bility is even more subtle. Imagine instrumentation (or a computer program) that
could observe and follow every molecule in the two containers. The particles are
effectively labeled because each location is known at every time. The instrument
or computer could then be used to return them to their original positions. However,
quantum mechanics postulates that these molecules can never be labeled in this
manner. For example, if atom 1 collides with atom 2, the products of the collision
produce the expected (1,2) trajectory and also a trajectory (2,1). Indistinguishability
is manifested in the need to include both outcomes in the final result.

5.13 Entropy and Information

An increase in states means more system randomness and less order. The probability
of finding a state if all are equally probable is

pi = 1

�

However, systems where the state probabilities are not equal do exist and lead
to a more general definition of entropy where the probabilities, not the numbers of
states, dominate.
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Probabilities can occur in situations outside physics and chemistry. Any of 26
letters could be sent down a communication line. If all were sent with equal proba-
bility, the probability of receiving a specific letter would be 1/(26) and the entropy
per signal is

S = k ln (26) .

Letters do not appear with equal probability. e appears far more often than q so
that a signal, given this information on frequency, is less random, i.e., lower entropy.
Consider an alphabet with only three letters (a,b,c). Without information, the three
letters are sent with probabilities 1/3. However, if the vowel a appears more often,
e.g., pa = 0.5 and pb = pc = 0.25, the entropy drops from kln(3) = 1.10k for the
random system to

k{0.5ln(0.5) + 0.25ln(0.25) + 0.25ln(0.25)} =1.04k. The letter is more likely to
be recorded correctly because frequency information is included. The transmission
is more ordered.

A DNA molecule is made of four nucleotides (C,G,A,T). If they are present in
equal amounts (determined by taking the average from the entire chain), their prob-
abilities are all 1/4 and the entropy for a base is kln(4)= 1.39k. A more organized
system might have different probabilities although the base pair probabilities (A,T)
and (C,G) must be equal. Probabilities

pc = pG = 0.3 pa = pT = 0.25

give a lower entropy

S = k {2 [0.3 ln (0.3)] + 2 [0.2 ln (0.2)] = 1.37 k

The decrease in entropy from the most random case in both examples is a
measure of external information available to the system. The entropy decrease 0f
1.1k−1.04k = 0.06k for the three letters and 1.39k−1.37k = 0.02k for the more
ordered nucleotides defines information. Since this concept is applicable to non-
thermodynamic systems, k is dropped and the base 2 logarithm log2 is used in
systems, e.g., computers and communications with binary choices.

External information about the system can be used to lower its entropy. The 50–
50 mixture of A and B molecules could be separated into containers with pure A
and B if A and B molecules are kept on the left and right sides, respectively. This
is done using the following gedanken (thought) experiment. A partition with hole
covered by a movable gate divides the container into two parts. A being, often called
Maxwell’s demon, sits near the gate and opens it only when an A particle can pass
through the hole from right to left or a B particle can pass through from left to right.
After 2Na gate openings, a mole of A and a mole of B are separated into the left and
right containers, respectively.

The separation of the 2 mol requires an entropy decrease of

− 2R ln (2) .
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The second law, however, states that entropy cannot decrease spontaneously.
Entropy of at least +2Rln(2) must be produced to compensate this decrease. The
entropy increase occurs in the Maxwell demon.

As each particle approaches the gate, the demon makes a binary choice – open
the gate or do nothing. Since only A and B are present, the probability the gate will
be opened is 1/2. The entropy changes by kln(2) for each binary choice. The demon’s
entropy increases because it no longer stores this bit of information. After 22N such
decisions, the demon’s entropy has increased by

S = k ln
(

22 N
)

= 2Nak ln (2) = +2R ln (2)

For this reversible system, the decrease in entropy on unmixing is balanced by
an equal increase in the entropy of the demon.

A Maxwell demon could also be used to separate hot (high kinetic energy) and
cold (low kinetic energy) particles. The gate is opened only when a high energy
particle approaches from the right or a low energy particle approaches from the left.
A temperature gradient appears and the system entropy decreases. The entropy of
the demon increases.

If a temperature gradient is produced without the demon, total entropy decreases
in violation of the second law. Consider the case where the two halves of the con-
tainer are separated by a membrane permeated with protein channel to permit gas
flow (Fig. 5.2).

Fig. 5.2 A protein with prosthetic flap to pass “hot” molecules in one direction
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The protein has a prosthetic flap on one end that can be forced open only if a
particle in the channel has sufficient kinetic energy. High energy particles can then
pass from right to left. A high energy particle on the left cannot open the flap. Even
if some kinetic energy was used to open the flap, enough energetic particles would
reach the left and raise its temperature.

The temperature gradient created might be tapped to do work (Fig. 5.2). The
“cold” side contacts the surroundings to maintain a constant temperature distribution
with hot molecules that can lift the flap and reach the “hot” side. This is a perpetual
motion machine where heat is converted to work.

This perpetual motion machine must fail because, each time a hot molecule raises
the flap, it uses some of that energy to lift the flap. This energy than accumulates in
the flap until the flap begins to open and close randomly so that both hot and cold
molecules can pass in either direction. No temperature gradient can develop and no
work can be done. The increase in entropy of the flap offsets any possible decrease
in entropy from separating the hot and cold molecules.

Problems

5.1 Determine the residual entropy for

a. linear CO2 and b. planar BF2Cl with bond angles of 120o.

5.2 Determine the entropy of mixing for an ideal gas mixture with mole fractions
XA = 0.1, XB = 0.3, and Xc = 0.6.

5.3 Two moles of oxygen at a pressure of 1 atm and 300 K were mixed with
3 mol of nitrogen at 400 K and a pressure of 1 atm and immersed in a heat bath
at 300 K to give a mixture at this temperature and 1 atm pressure. Calculate the
entropy, energy, and enthalpy for this process. Note: that O2 and N2 are diatomic
molecules.

5.4 Determine the entropy of a crystal containing XNO = 0.025 and XCO = 0.75 at
absolute zero. The N, C, and O atoms are nearly the same size for crystallization and
may crystallize with random orientation.

5.5 A classroom has 100 equivalent seats.

a. What is the “seating” entropy for a single student who sits alone in the same seat
all the time?

b. What is the single student’s “seating” entropy if the student chooses a seat
randomly?

c. What is the total number of seating states for five students who choose from the
100 seats randomly? (all five students might sit on one seat).
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5.6 One mole of gaseous A with heat capacity Cp(A) is mixed with 3 mol of
gaseous B with heat capacity per mole Cp(B) at constant P = 1 atm and T = 200 K.

a. Set up the expression for the entropy of mixing per total moles.
b. Determine an expression for the entropy of mixing at 400 K and 1 atm pressure.
c. Give the probability of selecting an A molecule from the mixture.



Chapter 6
Free Energy

6.1 Spontaneity and Entropy

The entropy change for an ideal gas is calculated from temperature, pressure,
or volume changes. A phase transition occurs reversibly if the system and
surroundings temperatures are equal. Entropy is transferred from surroundings
to system on vaporization. Vaporization of a liquid with a boiling point of
300 K and an enthalpy of vaporization of 24,000 J mol−1 produces an entropy
increase of

�S = Hvap

T
= 24,000

300
= 80 J K−1 mol−1

The reversible transfer at the boiling point is an equilibrium. The liquid and
vapor remain in equilibrium while the relative fractions of each phase change.
Equilibrium is defined by equal and opposite entropies for the system and
surroundings.

The free energies incorporate system and surroundings information into a format
in system variables. The Gibbs free energy at constant temperature

�G = �H − T�S

is 0 for the reversible, equilibrium phase transition

�G = 24,000 − 300( + 80) = 0

This means (1) the system is at equilibrium for this transition and (2) no useful
work can be extracted from this transition.

A truly reversible phase transition is infinitesimally slow since there is no tem-
perature gradient. An irreversible vaporization phase transition occurs when the
surroundings temperature is higher than the system temperature and

�Suniv > 0.

89M.E. Starzak, Energy and Entropy, DOI 10.1007/978-0-387-77823-5_6,
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If Tsur = 301 K > 300 K, 24,000 J of heat is transferred from the surroundings to
the system at 300 K; the reversible path

�Ssys = 24,000

300
= +80

The entropy change for the surroundings takes place “reversibly” at 301 K

�Ssur = −24,000

301
= −79.7 J K−1

The entropy change of the universe for this phase transition is positive

�Suniv = �Ssys +�Ssur = 80 + ( − 79.7) = +0.3 J mol−1 K−1

The universe entropy increases with increased positive temperature difference
between surroundings and system and increased irreversibility.

An irreversible condensation also generates entropy in the universe. For a bath at
299 K, the system loses 24,000 J of heat. The system entropy using the reversible
path at 300 K decreases by 80 J K−1 mol−1 (−80). The surroundings entropy adds
the 24,000 J on a reversible path at 299 K

�Ssur = +24,000

299
= 80.27 J K−1 mol−1

The system entropy decreases but the entropy of the universe increases for the
irreversible condensation

�Sniv = −80 + 80.27 = +0.27 J K−1 mol−1

Spontaneous (irreversible) phase transitions increase the entropy of the universe.
For both vaporization and condensation, heat flows spontaneously from the hotter
to the colder region.

The entropy of the universe for the vaporization at 301 K

�Suniv = �Ssys +�Ssur = +�Ssys + −�Hvap

Tsur

is converted into an energy by multiplying both sides of the equation by the
temperature of the surroundings

Tsur�Suniv = Tsur�Ssys −�Hvap

The system temperature must equal the surroundings temperature for the phase
transition to occur. Replacing Tsur by Tsys gives the Gibbs free energy in system
variables

�G = −Tsur�Suniv = −Tsys�S

For spontaneous vaporization, Tsur = Tsys> Tbp,� G is negative �G =
24,000−301(+80) = −80 J mol−1 K−1.
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For spontaneous condensation, Tsur = Tsys< Tbp

�G = −24,000 − (299)( − 80) = −24,000 + 23,920 = −80 J mol−1

Each spontaneous process has a negative free energy.
An attempt to vaporize the liquid at 299 is impossible as reflected in a positive

free energy

�G = +24,000 − (299)( − 80) = −24,000 + 23,920 = +80 J mol−1K−1.

6.2 The Free Energies and Work

The Gibbs free energy for enthalpy

�G = �H −�S

Is paralleled by a Helmholtz free energy with internal energy

�A = �E − T�S

Both energies subtract the reversible heat T�S from the system energies.
A reaction with �H = −10,000 J and �S = +10 J K−1 mol−1 at 300 K gives

�G = −10,000 − (300)(10) = −13,000 J mol−1

By convention,�H is negative since the positive energy produced by the reaction
is transferred to maintain 25◦C. The entropy change is the actual system entropy.
−T� S is released to the surroundings if the entropy increases.

The free energy is larger than the enthalpy in this case and measures the work that
can be done by this reaction. Both the kinetic energy change for the formation of new
bonds in reaction and the potential energy released on the increase in randomization
are free to do work on the surroundings.

An exothermic reaction (�H = −15,000 J mol−1) with a negative entropy
change (�S = −8 J K−1 mol) at 300 K releases

�G = −15,000 − (300)( − 8) = −12,600 J mol−1

since some energy released during the bond changes on reaction is now used to
order the products and cannot be used to do work.

Entropic heat is transferred to a gas at Th in a Carnot cycle. The same gas at Tc

has an equal and opposite entropy change but less entropic heat. The difference in
these two entropic heats is the net work done by the ideal system between the two
temperatures:

w = qh − qc
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Some of the “latent” heat to increase randomization at the higher temperature is
not needed at the lower temperature and can be released as work in the Carnot cycle.

6.3 The Legendre Transform and Thermodynamic Energies

The free energies are state functions made from combinations of other state
functions

G = H − TS

A = E = TS

Enthalpy is generated as

H = E − ( − P)V = E + PV

In each case, the subtracted product term is an extensive/intensive conjugate pair.
In the differential, reversible limit

dE = dqrev + dwrev = TdS − PdV

H = E + PV is converted to a differential using the product rule

dH = dE + PdV + VdP

Substituting dE gives

dH = TdS − PdV + PdV + VdP = TdS + VdP

The independent variables for dH are S and P. If they are constant, dH = 0.
The change from the differential expression for E to a differential expression for

H is an example of a Legendre transform. The transform changed the internal energy
with differential variables S and V to the enthalpy with differential variables S and P.
The conjugate variables −P and V in the internal energy expression are multiplied
and the product is subtracted from the internal energy to define the enthalpy

H = E − ( − P)V = E + PV

Other energies are defined by subtracting conjugate pairs. The Helmholtz free
energy A is generated from the internal energy E in the following steps:

1) a conjugate pair whose product has units of energy (TS) is selected and
subtracted from the internal energy to define a new energy, A,

A = E − TS
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2) the new energy, A, is differentiated,

dA = dE − TdS − SdT

3) dE is substituted into the equation and two identical terms cancel,

dA = TdS − PdV − TdS − SdT = −SdT − PdV

The Helmholtz free energy is constant if the experimentally controlled thermo-
dynamic variables T and V are constant

dA = −SdT − PdV = 0

The differential Gibbs free energy is defined by subtracting the thermodynamic
pair, TS, from the enthalpy

G = H − TS

dG = −SdT + VdP

and is constant when T and P are constant.
Internal energy with reversible system work

dE = TdS − PdV + γ dA

gives internal energy in the independent variables S, V, and A. This is Legendre
transformed to the new energy

Es = E − γA

with differential form

dEs = TdS − PdV − Adγ

and independent variables S, V, and γ .
The internal energy with electrical work for transferring charge dq by an

electrical potential ψ is

dE = TdS − PdV − ψdq

The sign is negative because moving positive charge out of the system with a
positive system potential decreases the internal energy of the system. A new free
energy, A, is formed by subtracting the product, −ψq,

Ã = E − ( − ψ)(q)
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to give

dẼ = dE − ( − ψ)dq − (q)( − dψ) = TdS − PdV − ψdq + ψdq + qdψ

= TdS − PdV + qdψ

with independent variables S, V, and P.
The total number of coulombs for a mole of material with charge z is zF, where

F is Faraday’s constant

dẼ = TdS − PdV + zFψ

This energy is a convenient choice for laboratory experiments where the intensive
electrical potential is held constant. However, the entropy is generally difficult to
control and it is expedient to define new free energies with the differential variables
(T, V, P) or (T, P, P)

dÃ = −SdT − PdV + zFdψ

d̃G = −SdT + VdP + zFdψ

For dimensional consistency, G, S, and V are all per mole (molar) quantities.
The Legendre transforms follow a consistent pattern. An intensive–extensive

product XdY

dG = −SdT + VdP + XdY

becomes a new energy in the variables T, P, and X by simply reversing the positions
of X and Y and negating

dG(T ,P,X) = −SdT + VdP − YdX

6.4 The Mathematical Basis of the Legendre Transform

Each energy can be expanded in its independent variables using partial derivatives.
Internal energy expanded in its independent variables S and V

dE =
(
∂E

∂S

)
V

dS +
(
∂E

∂V

)
T

dV

is compared with

dE = TdS − PdV

to define T

T =
(
∂E

∂S

)
V
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and P

P = −
(
∂E

∂V

)
S

Substituting these partial derivatives for their variables in the Legendre transform
makes them slopes in a linear equation

H = E + PV = E −
(
∂E

∂V

)
S

V

Y = b + mx

The Legendre transform equation describes a linear plot tangent to this curve at
V. Subtracting (

∂E

∂V

)
S

(V − 0)

from the internal energy removes the V axis and V as an independent variable. The
S axis remains and the P which had been a dependent variable for E now becomes
an independent variable for the new energy

6.5 The Chemical Potential

The energies are extensive quantities that can be converted into intensive quanti-
ties by dividing by moles. For a pure (one component) system, the molar enthalpy,
�H, is

�H = �H

n

In multicomponent systems, the molar enthalpy is defined as a partial derivative
in the moles of one component

Hi =
(
∂H

∂ni

)
S,P,n

for constant independent variables S, p, and n.
dH for one component is

dH =
(
∂H

∂n

)
S,P

dn = Hdn

dH(S,P,n) = TdS + VdP + Hdn

The molar Helmholtz free energy

A =
(
∂A

∂n

)
T ,V

gives

dA = −SdT − PdV + Adn



96 6 Free Energy

The partial molar Gibbs free energy is also called the chemical potential with
symbol :,

μ = G =
(
∂G

∂n

)
T ,P

For a one component system, the chemical potential is the Gibbs free energy
per mole.

The Gibbs free energy in the independent variables, T, P, and n is

dG =
(
∂G

∂T

)
P,n

dT +
(
∂G

∂P

)
T ,n

dP +
(
∂G

∂n

)
T ,P

dn

or

dG = −SdT + VdP + μdn

Since any of the energies can be differentiated with respect to n

μ =
(
∂G

∂n

)
T ,P

=
(
∂H

∂n

)
S,P

=
(
∂E

∂n

)
S,V

=
(
∂A

∂n

)
T ,V

A Legendre transform for n and μ generates a new free energy, G′,

G′ = G − μn

or

dG′ = −SdT + VdP − ndμ

with independent variables T, P, and μ.

6.6 The Gibbs–Helmholtz Equation

The Gibbs free energy change

�G = �H − T�S

and the Helmholtz free energy change

�A = �E − T�S

are temperature dependent. A new state function

J = G/T
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is manipulated to produce a linear plot for free energy change with temperature. The
function J is differentiated using the product rule,

(
∂J

∂T

)
P

=
(
∂ G

T

∂T

)
P

to give

(
∂ G

T

∂T

)
P

= 1

T

(
∂G

∂T

)
P

+ G

(
∂ 1

T

∂T

)
P

= − S

T
− G

T2

The free energy

G = H − TS

is substituted to give

(
∂J

∂T

)
P

= − S

T
− H − TS

T2
= − H

T2

If H is constant, J = G/T, is integrated

G2,T2∫
G1,T1

d

(
G

T

)
=

T2∫
T1

−H

T2
dT

G2

T2
− G1

T1
= H

T

T2|
T1

= H

(
1

T2
− 1

T1

)

The same integrals are used for �G and �H

(�G)2

T2
− (�G)1

T1
= �H

(
1

T2
− 1

T1

)

Since

− 1

T2
dT = d

(
1

T

)

the differential form

d(G/T) = Hd(1/T)

shows that H is now the slope of a plot of G/T versus 1/T (Fig. 6.1).
If H depends on temperature, the integral

T2∫
T1

H(T)

T2
dT

must be used.
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(a)

J J 

(b)

Fig. 6.1 Plots of J versus 1/T for a) endothermic and b) exothermic reactions

An exothermic reaction gives a �G/T versus 1/T plot with negative slope. As
T increases (1/T axis to left), G/T increases. �G moves up the energy axis (more
positive) indicating less spontaneity in the reaction to products. This is a formal
statement of Le Chatelier’s principle. An exothermic reaction is driven to reactants
at higher temperatures to absorb the extra energy present at the higher temperatures.

6.7 Free Energies and Equilibrium

Free energy measures the drive of a reaction to products. A large negative free
energy favors products. However, as products increase, the negative free energy
difference decreases. The reaction reaches an equilibrium �G = 0 where the pres-
sures or concentrations of reactants and products are constant. The product/reactant
pressure ratio when �G = 0 is the equilibrium constant Kp. A stable ratio of
concentrations defines Kc, the concentration equilibrium constant.

The reaction

A � B

where the free energies of A and B are 20,000 and 30,000, respectively, reaches
equilibrium when A = 0.3 atm and B = 0.2 atm

�G = 0.2(30,000) − 0.3(20,000) = 0

and

Kp = Beq/Aeq = 0.2/0.3 = 2/3

Non-equilibrium pressures of A and B will change until the system reaches
equilibrium. The molar free energies change with pressure as
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dG = −SdT + VdP = VdP

at constant temperature. Molar energies are used. For an ideal gas,

V/n = RT/P

a change in pressure for 1 mol gives

�G = RT

P2∫
P1

dP/P

Tables of standard free energies list energies for P = 1 atm. These free energies
are changed to the equilibrium pressure Peq

�G = RT ln (peq/1)

At equilibrium, when the gas pressures are Peq
A and Peq

B , the free energy difference
is 0

Geq
B − Geq

A = 0

Go
A + RTln

(
Peq

A

1

)
= Go

B + RTln

(
Peq

B

1

)

Collecting terms gives

0 = 1G0
B − 1G0

A + RT
[
ln

(
Peq

B /1
) − ln

(
Peq

A /1
)]

The ratio of pressure ratios is the equilibrium constant

�G0 = −RT ln

⎛
⎝ Peq

B
1

Peq
A
1

⎞
⎠ = −RTln(KP)

The equilibrium constant is unitless since each pressure is divided by 1 atm. The
ratio gives a free energy correction that brings the standard free energy difference to
zero, i.e., equilibrium.

A multicomponent reaction

aA + bB = cC + dD
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with a moles of A, b moles of B, etc., has component free energies aGA
o, bGA

o, etc.
The free energy change to bring each to its equilibrium pressure is

−RT

[
c ln

(
Peq

C

1

)
+ d ln

(
Peq

D

1

)
− a ln

(
Peq

A

1

)
− b ln

(
Peq

B

1

)]

The free energies with appropriate stoichiometric coefficients and equilibrium
pressures are combined as products less reactants. For the standard free energies

cG0
C + dG0

D − aG0
A − bG0

B

Including the pressure correction terms and a net free energy of zero at
equilibrium gives

�G0
r = −RT

⎛
⎜⎜⎜⎝

(
Peq

C
1

)c (
Peq

D
1

)d

(
Peq

A
1

)a (
Peq

b
1

)b

⎞
⎟⎟⎟⎠ = −RT ln (Kp)

The equilibrium pressures of each of the gases are raised to a power equal to its
stoichiometric coefficient.

All pressures in the equilibrium constant appear as ratios so the full equilibrium
constant is formally dimensionless. If the standard state is 1 atm pressure,

Kp =
(
Peq

C

)c (
Peq

D

)d

(
Peq

A

)a (
Peq

B

)b

The equilibrium constant is constant because the standard free energy difference
(all species at 1 atm) is constant.

The free energy to change the pressure from 1 atm to Peq is determined from the
ideal gas law. If any reactants or products are either solids or liquids, the change VdP
is small and can be ignored. The equilibrium constant includes only the pressures of
the gases in the reaction. For the reaction,

aA(solid) + bB(gas) → cC(liquid)

the equilibrium constant is

Kp = 1

(Peq
B )b

An equilibrium constant for gases A and B that obey the ideal gas law

Kp = PB

PA
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is converted to a gas concentration in mol L−1 by substituting

pA = nART

V
= RT

nA

V
= RT[A]

PB = RT[B]

To give a concentration ratio

Kc = [B]1

[A]1

For the reaction,

aA + bB = cC

the pressure equilibrium expression

Kp =
(
pe

C

)c(
pe

A

)a (
pe

B

)b

becomes

Kc =
(
ce

C

)c(
ce

A

)a (
ce

B

)b
(RT)c−a−b

Kc can also be determined directly from a table of free energies at 1 M
concentration

�G0
M = −RT ln (Kc)

6.8 Fractional Concentrations or Pressures

The equilibrium constant relates product and reactant pressures at equilibrium.
In situations with total pressure the only observable, the partial pressures are
determined from K. The total pressure for the 1:1 reaction

A → B

is pt and

pe
B = pt − pe

A

Keq
p = pt − pe

A

pe
A
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and pA
e is

peq
A = pt

1 + Keq
p

Keq

pe
B = pt − pe

A

peq
B = pt

1 + Keq
p

The fractions of each species at equilibrium are the ratios of the equilibrium
pressure to the total pressure

fA = pA/pt = 1/(1 + K)

fB = pB/pt = K/1 + K

The fractions are generated if A is assigned a “partial pressure” of 1 and B is
assigned a “partial pressure” of K. The total pressure in the denominator is the sum
of these partial pressures. The numerators are the portions of this total allotted to
each species.

The single-site enzyme reaction

E + S � ES

with Kc =K gives ES in terms of E

[ES] = K[S][E]

Assigning E =1, [ES] = K[S]
The concentrations of E and ES relative to Et, the total enzyme concentration are

[E] = {1/1 + K[S]} Et

[ES] = {K[S]/1 + K[S]} Et

An enzyme E with two identical substrate binding sites has four distinct enzyme
forms, E, ES, SE, and SES

E + S � ES,SE + S � SES

The equilibrium between E and ES with equilibrium constant K1 is

K1 = [ES]

[E][S]
= [SE]

[E][S]

for either ES or SE. The concentration of ES or SE is proportional to E

[ES] = [SE] = K1[E][S]
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The second equilibrium converts either ES or SE into SES,

K1 = [SES]

[SE][S]
= [SES]

[ES][S]

and is proportional to ES or SE

[SES] = K1[ES][S] = K1[SE][S]

Since ES and SE depend on the concentration of E, SES also depends on E,

[SES] = K1[ES][S] = K2
1[E][S]2

The total enzyme concentration, Et, is the sum of these four species,

Et = [E] + [ES] + [SE] + [SES]

Substituting

Et = [E] + K1[E][S] + K1[E][S] + K2
1[E][S]2 = [E](1 + 2K1[S] + K2

1[S]2

fE = [E]/Et = 1/[1 + 2K1[S] + K2
1[S]2]

[ES] = [SE] = K1[S][E] = K1[S]Et

1 + 2K1[S] + K2
1[S]2

FES,SE = K1[S]/[1 + 2K1[S] + K2
1[S]2]

[SES] = K2
1[S]2[E] = K2

1[S]2Et

1 + 2K1[S] + K2
1[S]2

FSES = K2
1[S]2/[1 + 2K1[S] + K2

1[S]2]

The fractional ratios of each species are determined by selecting E=1, [ES]=
[SE] = K1[S], [ES2] = K1

2[S]2 = K1
2[S]2. The fraction of [ES] using these

concentrations is

FES = K1[S]

1 + K1[S] + K1[S] + K1[S]K1[S]

The fractions of ES2 and E are, respectively,

FES2 = K2
1[S]2

1 + K1[S] + K1[S] + K1[S]K2[S]

FE = 1

1 + K1[S] + K1[S] + K1[S]K2[S]
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In general, one enzyme state (the free enzyme E in this case) is selected as a
reference. The numerator for any other state is determined as the product of all the
equilibrium constant–substrate products that lead to that state.

For a complex ESI, the numerator for ESI in the equilibrium sequence

E = ES = ESI

is Ks[S]KI[I] where Ks and KI are the equilibrium constants for binding to S and I
sites, respectively.

Problems

6.1 Given that H= E + PV and G = H−TS, show dG = −SdT + VdP.
6.2 A system initially with E = 900, H = 1500, T = 300 K, S = 2, and P = 1 atm

changes to a new state with E = 1200, H = 2000, T = 400 K, S = 3, and P = 2 atm.
All energy units are joules. Determine the change in the Gibbs free energy for this
change of state. Note: the S are absolute entropies.

6.3 The system energy for expanding a surface by dA is proportional to the
surface tension, γ , with units of J m−2

dG = −SdT + VdP + γ dA − Vdq

a. Define a new free energy, G′, with independent intensive variables (T, P, γ , and
V).

6.4 The normal boiling point of n-hexane is 69◦C. Estimate

a. its molar heat of vaporization and
b. its vapor pressure at 60◦C.



Chapter 7
Thermodynamic Equations of State

7.1 Maxwell’s Relations

An entropy change for the independent variables T and V follows the partial
differential path

dS =
(
∂S

∂T

)
V

dT +
(
∂S

∂V

)
T

dV

For an ideal gas, (
∂S

∂T

)
V

= cV

T(
∂S

∂V

)
T

= R

V

The Helmholtz free energy change

dA =
(
∂A

∂T

)
V

dT +
(
∂A

∂V

)
T

dV

is compared to

dA = −SdT − PdV

so that (
∂A

∂T

)
V

= −S

(
∂A

∂V

)
T

= −P

A partial derivative is an operation. A second partial differentiation can use the
variable held constant in the first. The final result is independent of differentiation
order, For example, (

∂ RT
V

dT

)
V

= R

V

(
∂ R

V

∂V

)
T

= − R

V2
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or, in reverse order

(
∂ RT

V

∂V

)
T

= −RT

V2

⎛
⎝∂

(
−RT

V2

)
∂T

⎞
⎠

V

= − R

V2

In general,

⎛
⎜⎝

(
∂
∂f
∂T

)
V

∂V

⎞
⎟⎠

T

= ∂2f

∂T∂V
=

⎛
⎜⎝∂

(
∂f
∂V

)
T

∂T

⎞
⎟⎠

V

For the Helmholtz free energy A

⎛
⎜⎝

(
∂A
∂T

)
V

∂V

⎞
⎟⎠

T

=
⎛
⎜⎝

(
∂A
∂V

)
T

∂T

⎞
⎟⎠

V

since (
∂A

∂T

)
V

= −S(
∂A

∂V

)
T

= −P(
∂ (−P)

∂T

)
V

=
(
∂ (−S)

∂V

)
T(

∂ (P)

∂T

)
V

=
(
∂ (S)

∂V

)
T

This Maxwell relation relates the entropy change with volume at constant
temperature to a tractable derivative in pressure and temperature.

The equation of state n moles of an ideal gas

PV = nRT

P = nRT/V

is substituted in this Maxwell relation(
∂S

∂V

)
T

=
(
∂P

∂T

)
V

= nR

V

(
∂T

∂T

)
= nR

V

to give the result derived previously. dS is

dS =
(
∂S

∂V

)
T

dV = nR

V
dV
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Maxwell’s relation can be used for any equation of state. The entropy change
with volume for n moles of gas with equation of state

P (V − nb) = nRT

is

dS =
(
∂S

∂V

)
T

dV =
(
∂ nRT

V−nb )

∂T

)
dV = nR

V − nb
dV

Since ∫
dx

x − b
= ln (x − b)

S = �S =
∫ V2

V1

nR

V − nb
dV = R ln

(
V2 − nb

V1 − nb

)

7.2 Gibbs Free Energy

The Gibbs free energy

dG = −SdT + VdP

in temperature and pressure has the Maxwell relation

⎛
⎜⎝∂

(
∂G
∂T

)
P

∂P

⎞
⎟⎠

T

=
⎛
⎜⎝∂

(
∂G
∂P

)
T

∂T

⎞
⎟⎠

P

with (
∂G

∂T

)
P

= −S(
∂G

∂P

)
T

= V

the Maxwell relation is (
∂ (−S)

∂P

)
T

=
(
∂ (+V)

∂T

)
P(

∂S

∂P

)
T

=
(
∂V

∂T

)
P
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The isothermal entropy change with pressure for an ideal gas

(
∂S

∂P

)
T

= −
(
∂
(RT

P

)
∂T

)
P

= −R

P

gives

dS =
(
∂S

∂P

)
dP

�S =
(
∂S

∂P

)
T

dP = −R

Pf∫
Pi

dP

P
= −R ln

Pf

Pi

The entropy change for the non-ideal gas with equation of state

V = RT/P + b

from Pi to Pf is

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

dS = −
(
∂
[RT

P + b
]

∂T

)
P

dP = −R

P
dP

�S = −
Pf∫

Pi

RT

P
= −RTln

(
Pf

Pi

)

The Maxwell relations can combine any two conjugate energy pairs. The
independent (differential) variables always appear in the denominator of the
derivative.

The Maxwell relation for the enthalpy

dH = TdS + VdP

is

(
∂T

∂P

)
S

=
(
∂V

∂S

)
P

This equation is less useful since S must be the independent variable. Enthalpy is
transformed to the Gibbs free energy in independent variables T and P to produce a
useful Maxwell’s relation.
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7.3 Other Maxwell’s Relations

Maxwell’s relations relate entropy to other system variables by coupling -SdT with
other conjugate energy pairs. The work required to stretch a rubber band or polymer
is proportional to the stretched length of the polymer and the applied external force,

dw = +FextdL

which is converted into a reversible work by replacing Fext with the restoring force
or tension, τ , of the polymer

τdL

The energy is positive because the reversible work of expansion increases the
internal energy of the system. At constant polymer volume

dA′ = −SdT − PdV + τdL = −SdT + τdL

The unstretched rubber band has disordered molecular polymers that become
ordered as the band is stretched to lower the polymer entropy. The Maxwell relation
from A′ (

∂S

∂L

)
V , T

= −
(
∂τ

∂T

)
V , L

is used to determine an entropy change using the equation of state

τ = AT (L − L0)

with constant A and Lo(
∂S

∂L

)
T

= −
(
∂ [AT (L − L0 ]

∂T

)
L

= −A (L − L0)

Integrating from Lo to L

(
∂S

∂L

)
T

dL = A (L − L0) dL

�S = −A

L∫
L0

(L − L0) dL = −A
(L − L0

2

L|
L0

= −A
(L − L0)2

2

The entropy decrease with length reflects the ordering of the polymer on
stretching.

The reversible path for entropy requires the tension, not the external force. The
entropy change defines the reversible heat

qrev = T�S = −AT
(L − L0)

2

2



110 7 Thermodynamic Equations of State

The heat released by the band during stretching is easily detected by stretching a
rubber band and holding it against your cheek.

An electrical potential (j/C) is multiplied by the charge dq(C) to give the electrical
work for the system

dG′ = −SdT − ψdq

The electrical work is negative because a positive system potential uses system
energy to move positive charge out of the system.

The entropy change with charge is determined from the change in potential with
temperature (

∂ (−S)

∂q

)
T

=
(
∂ (−ψ)
∂T

)
q

The electrical potential of a battery is measured at a series of temperatures to
determine (

∂ψ

∂T

)
C

and the change in entropy for transfer of charge.

7.4 Adiabatic Demagnetization

The heat capacity of a perfect crystal decreases to 0 as the temperature approaches
0 K. The decreased heat capacities of both the system and surroundings at low
temperature make further cooling more difficult.

If a magnetic solid is placed in a magnetic field, heat is released from the system
as the solid becomes more ordered. If the solid is insulated and the magnetic field
is turned off, the system temperature drops during this adiabatic demagnetization as
internal energy is converted to random heat of disorder.

Magnetic molecules oriented by a magnetic field H produce a net macroscopic
magnetization M of the system.

M = χmH

χm is inversely proportional to the temperature of the system

χm = C′
m

T

The internal energy change depends on the magnetization change dM

dE = TdS − PdV + μ0HdM

μo, the magnetic permittivity gives the proper units. E is Legendre transformed to
free energy in variables T, P, and H,

dG = −SdT + VdP − μ0MdH
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to generate a Maxwell relation(
∂ (−S)

∂H

)
T

=
(
∂ (−μ0M)

∂T

)
H(

∂S

∂H

)
H

=
(
∂μ0M

∂T

)
H

Using the equation of state

(
∂S

∂H

)
T

=
⎛
⎝∂

[
μ0CmH

T

]
∂T

⎞
⎠ = −C′

mH

T2

The entropy change when the field is increased from 0 to H is

�S = −C′
m

2T2

H∫
0

HdH = −μ0C′
mH2

2T2

The entropy decreases with increased magnetic field.
If the system is now insulated and the magnetic field is turned off (adiabatic

demagnetization), the internal energy and the temperature decrease

dE = CdT = μ0MdH = − [
C′

m/T
]

HdH∫ T2

T1

CTdT =
∫ 0

H
C′

mHdH

C

2

[
T2

2 − T2
1

]
= −C′

mH2

2T

The molecules are free to randomize and the temperature decreases.

7.5 The Lippman Equation

When a potential is applied to mercury in a capillary, the mercury rises or falls in
the capillary depending on the polarity. This is electrocapillarity. The phenomenon
is caused by a change in the liquid surface tension. Maxwell’s relations connect an
electrical potential energy

− ψdq

to the reversible system work for changing the surface area A with a surface tension,
ψ , with units of energy per unit area

− γ dA

dG = −ψdq − γ dA
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The change in surface tension with voltage requires a Legendre transform

dG′ = +qdψ − γ dA

to give the Maxwell relation

(
∂γ

∂ψ

)
A

= −
(
∂q

∂A

)
ψ

= −σ

σ is the charge per unit area.
The equation of state for γ and ψ is

γ = −Cψ2

2

The derivative is linear

∂γ

∂ψ
= −Cψ = − ∂q

∂A
= −σ

The constant C is the capacitance per unit area

C = σ/ψ

The capacitance is produced by separated charges of opposite polarity on the drop
surface and in the solution, respectively, a double layer capacitance. The differential
capacitance

C =
(
∂σ

∂ψ

)
is identical in this case.

7.6 Thermodynamic Equations of State

The derivative (
∂E

∂V

)
T

is applied to

dE = TdS − PdV

to give

(
∂E

∂V

)
T

= T

(
∂S

∂V

)
T

− P

(
∂V

∂V

)
T

= T

(
∂S

∂V

)
T

− P
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Since (
∂S

∂V

)
T

=
(
∂P

∂T

)
V

the thermodynamic equation of state

(
∂E

∂V

)
T

= T

(
∂P

∂T

)
V

− P

requires only an equation of state with P, T, and V to determine

(
∂E

∂V

)
T

For an ideal gas

(
∂P

∂T

)
V

=
(
∂ nRT

V

∂T

)
V

= nR

V(
∂E

∂V

)
T

= T

(
nR

V

)
− nRT

V
= 0

The internal energy of an ideal gas does not change with a change in volume.
The van der Waals equation of state for 1 mole of gas

(
P + a

V2

)
(V − b) = RT

P = RT

V − b
− a

V2

gives

(
∂P

∂T

)
V

=
(
∂ RT

V−b

∂T

)
V

−
(
∂ a

V2

∂T

)
V

= R

V − b

and

(
∂E

∂V

)
T

= TR

V − b
−

[
RT

V − b
− a

V2

]
= + a

V2

The energy change depends on the magnitude of a and the inverse square volume
and is largest at small volumes when the average distance between molecules is
smaller.

The isothermal internal energy change of a van der Waals gas

dE = CvdT +
(
∂E

∂V

)
T

dV = a

V2
dV
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For a volume change from Vi to Vf

�E =
Vf∫

Vi

a

V2
dV = − a

V

Vf|
Vi

= −a

(
1

Vf
− 1

Vi

)

is positive when the volume increases. The potential energy in intermolecular
interactions at the smaller volume is released to the system on expansion.

The reversible expansion work uses Pint,

P\nt = RT

V − b
− a

V2

W = −
Vf∫

Vi

[
RT

V − b
− a

V2

]
dV = −RT ln

Vf − b

Vi − b
+ a

[
1

Vf
− 1

Vi

]

The first term is negative when Vf> Vi since the system is doing work but the
negative first term is reduced by the positive second term. This is the energy that is
used to separate the molecules as the volume increases.

Substituting the internal energy change and work into the first-law expression

q = �E − w = −a

[
1

Vf
− 1

Vi

]
+ RTln

Vf − b

Vi − b
+ a

[
1

Vf
− 1

Vi

]

q = RTln
Vf − b

Vi − b

The potential energy released on separating the molecules goes into work,
not heat.

7.7 The Joule–Thomson Coefficient

The thermodynamic of state for the change of enthalpy with pressure at constant
temperature (

∂H

∂P

)
T

is derived by differentiating the differential enthalpy expression,

dH = TdS + VdP(
∂H

∂P

)
T

= T

(
∂S

∂P

)
T

+ V

(
∂P

∂P

)
= T

(
∂S

∂P

)
T

+ V
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and substituting the Maxwell relation

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

to give a thermodynamic equation of state

(
∂H

∂P

)
T

= −T

(
∂V

∂T

)
P

+ V

For an ideal gas,

(
∂V

∂T

)
P

=
(
∂ RT

P

∂T

)
P

= R

P(
∂H

∂P

)
T

= −TR

P
+ V = −V + V = 0

The enthalpy of an ideal gas does not change with pressure.
The partial derivative

(
∂V

∂T

)
P

is complicated for a van der Waals gas. However, a simpler equation of state with
a= 0,

P (V − b) = RT

gives

(
∂V

∂T

)
P

=
(
∂
[RT

P + b
]

∂T

)
= R

P

and (
∂H

∂P

)
T

= −RT

P
+ V = −RT

P
+ RT

P
+ b = b

For constant b, the enthalpy change of the gas at constant temperature is

�H =
Pf∫

Pi

bdP = b (Pf − Pi)

in Latm/mol.
Since the constants a and b make small corrections to the volume and pressure

of the gas, a product term with a and b is also small. Expanding factors in the van
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der Waals equation and eliminating the ab term gives the approximate equation of
state

PV − bP + a

V
= RT

PV = RT + bP − a

V
Since a is small, the V in the a/V term is replaced with its ideal gas value to give

an expression for V in terms of P and T

RT = P (V − b)− aP

RT

The temperature derivative is

(
∂V

∂T

)
P

= ∂
[RT

P + b − a
RT

]
∂T

= R

P
+ a

RT2

and (
∂H

∂P

)
T

= V − RT

P
− a

RT
= RT

P
+ b − a

RT
− RT

P
− a

RT
= b − 2a

RT

The Joule–Thomson coefficient for the expansion of a gas at constant enthalpy

μJT =
(
∂H
∂P

)
T

CP
is

μJT = −b + 2a
RT

CP

At high temperatures, when a/RT is small, μ>0. The Joule–Thomson inversion
temperature (μ = 0) is

T = 2a

Rb

Problems

7.1 The thermodynamic properties of light are determined using the relationship
between temperature and light pressure.

a. Use the thermodynamic equation of state

(
l∂E

∂V

)
T

= T

(
∂P

∂T

)
V

− P
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If the radiation pressure is related to the internal energy per unit volume

(E/V) =
(
∂E

∂V

)
T

by the equation of state

P = E

3V

Show

T

(
∂P

∂T

)
V

= 4P

b. Collect terms and integrate to show that the radiation pressure of light is
proportional to the fourth power of the temperature.

7.2 A flexible polymer stretches when a tension τ (energy per unit length) is
applied to change the length L. The internal energy

dE = TdS + τdL
a. Determine (

∂E

∂L

)
S

from the internal energy.
b. Use dE to create a free energy with independent variables T and L using the

Legendre transformation.
c. Determine the change in entropy with length via Maxwell’s relations and the

equation of state.

7.3 Given the internal energy

dE = TdS + τdL

develop a thermodynamic equation of state in experimental variables for (dE/dL)T.
7.4 Given the equation of state PV = RT + BP where B = B(T), show

(
∂E

∂V

)
T

= RT2

(V − B)2
dB

dT

7.5 Derive an expression for the Joule–Thomson coefficient

μJT =
(
∂H
∂P

)
T

Cp
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for a gas with equation of state

PV = RT − aP

T

7.6 Prove the identity

CP = CV + T (∂P/∂T)V (∂V/∂T)P

from
(
∂H
∂T

)
P = CV + {(

∂E
∂V

)
T + P

} (
∂V
∂T

)
P

by substituting (∂E/∂V)T .
7.7 Molecules confined to a surface have an internal energy,

dE = TdS + γ dA

a. Develop a thermodynamic equation of state for (∂E/∂A)T .
b. If the equation of state for the system is

γ = Es (1 − T/Tc)

where Es and Tc are constants, determine the entropy change when the surface is
expanded from area A1 to area A2, A Legendre transform is needed.

7.8 An electric field, D, will work on a system to create a net orientation of
induced dipoles (the polarization P) proportional to the field. The work for polariza-
tion is w = PdD and the polarization itself is proportional to the electric field, i.e.,
P = αD, where the constant is temperature independent.

a. Give an internal energy differential expression in the variables S, V, and D.
b. Develop a free energy, Z, in the variables T, P, and D.
c. Determine (∂Z/∂D)P.
d. Set up the thermodynamic equation of state for (∂E/∂D)P, T .

7.9 A one-dimensional lattice gas with N particles free to locate on N sites has a
Helmholtz free energy

dA = −SdT + μdN + φdM

a. Find (
∂A

∂N

)
T ,M

=
(
∂μ

∂M

)
N,T

=



Chapter 8
Chemical Potentials in Solution

8.1 Chemical Potentials for Ideal Solutions

The free energy change per mole (the chemical potential) for a mole of ideal one
component gas at a constant temperature is

dμ = dG

n
=

nRT
P dP

n
= RT

P
dP = RTd[ln(P)]

If the gas is in equilibrium with pure liquid, the pressure is the vapor pressure,
po, of that liquid. For equilibrium, the chemical potentials of gas and liquid must
be equal

μg = μl = RT ln
(
po)

so that vapor properties give thermodynamic information on liquids and solutions.
If the vapor pressure and chemical potential of the vapor change, the chemical

potential of the liquid changes to maintain equilibrium

dμvap = dμliq

The vapor pressure for a liquid component changes when it is mixed with other
liquids. An ideal mixture obeys Raoult’s law. For a mixture of A and B with mole
fractions XA and XB, respectively,

pA = XApo
A pB = XBpo

B

Since the pure vapor pressures are constant, the chemical potential changes only
if the mole fraction changes

dμA(liq) = dμA(vap) = RTd[ ln
(
XApo

A

)
= RTd ln (XA)+ RTd[ ln

(
po

A

)
] = RTd ln (XA)

For the ideal solution, the chemical potential change for B is

dμB = RTd ln (XB)

119M.E. Starzak, Energy and Entropy, DOI 10.1007/978-0-387-77823-5_8,
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The chemical potential of water in aqueous solutions depends on its mole
fraction,

dμliq (H2O) = RTd
[
ln

(
XH2O

)]
because it relates to vapor pressure through Raoult’s law. However, since pressure
is directly proportional to concentration through the ideal gas law

P = (n/V)RT = cRT

the differential chemical potential is also

dμ = RTd ln{c}

This equation is generally used with solutes that have negligible vapor pressure,
e.g., ions.

Each ion in a salt solution has its own chemical potential

dμ[Na] = RTdln[Na+]

dμ(Cl) = RTdln[Cl−]

These potentials sum to give the total chemical potential for the salt as solute

dμ = dμ(Na) + dμ(Cl) = RTd ln [Na] + RTd ln Cl = RTdln ([Na][Cl])

For CaCl2, the chemical potential for one mole of the salt is the sum of the
chemical potentials for one mole of Ca2+ and the free energy for two moles of Cl−

dμ = 1RTdln[Ca+2] + 2RTdln[Cl−] = RTdln
([

Ca+2
] [

Cl−
]2
)

Since the anions and cations always appear together, a mean ion concentration is
defined as

dμ = RTdln
([

Ca2+] [
Cl−

]2
)

= RTdln
(

c3±
)

8.2 Fugacity

The chemical potential

dμ = RTd ln [P]

is based on the ideal gas equation. Real gases differ from ideal gases and the
chemical potential for such real gases might be developed in several ways.
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(1) An improved equation of state is used in conjunction with

dμ = VdP

to produce a new function for the chemical potential.

(2) The chemical potential is determined experimentally for different pressures and
used to define a corrected pressure or fugacity, f, that gives the proper chemical
potential in the logarithmic equation, i.e.,

dμ = RTd[ ln (f )]

(3) An improved equation of state is used to produce a logarithmic equation in
fugacity instead of pressure. A change in chemical potential is

�μ = RTln

(
ff
fi

)

The non-ideal equation of state

P(V − b) = RT

for one mole of gas defines a system volume

V = RT/P + b

As pressure approaches 0, the first term dominates and the gas behaves like an
ideal gas

fi = Pi as Pi → 0

The chemical potential for the non-ideal gas is also expressed in terms of fugacity
for higher pressures

dμ = RTd[ ln (f )]

Chemical potential as VdP gives

dμ = RT

P
dP + bdP

�μ = RT ln (P/Pi)+ b (P − Pi)

The two equations are equated

�μ = RT ln
f

Pi
= RT ln

P

Pi
+ b (P − Pi)
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The limiting pressure, Pi, cancels since f =P at low pressures and

RT lnf − RT lnPi = RT lnP − RT lnPi + b (P − Pi)

to give

lnf = lnP + bP

RT

or

f = Pe
bP
RT

Because b is small, the fugacity is close to the pressure for this equation of state.
The exponential is expanded in a Taylor series

ex = 1 + x + x2

2! + . . .

to give

f = P

(
1 + bP

RT
+ . . .

)
= P + bP2

RT
+ . . .

8.3 Activity

A solute in dilute solution has a chemical potential
dμ = RTd ln (c)

where c is the molar concentration. The corrected chemical potential for real
solutions uses an activity a in place of the molar concentration

dμ = RTd ln (a)

Activity and molarity are related through an activity coefficient

a = γ c

For example, a 0.02 M solution with an activity coefficient of 1.1 at this
concentration has an activity

a = γ c = 1.1(0.02) = 0.022

for a more accurate chemical potential.
A salt dissociates into its constituent ions in solution. Each ion then has a con-

centration and activity that are related. The mean concentration is a geometric mean
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since the logarithmic chemical potentials add. The mean concentration for salts,
Cz-

z+Az+
z-, e.g., Ca1

2+Cl2-, with z- moles of C and z+ moles of A

cz± = cz−
C cz+

A

The mean activity and mean activity coefficient are

az± = az−
C az+

A

and

γ z± = γ
z−
C γ

z+
A

respectively.
For CaCl2,

γ± (CaCl2) =
[
γ 1+(Ca)γ 2−(Cl)

]1/3

8.4 Partial Molar Quantities

The chemical potentials for a two component system are more complicated for non-
ideal solutions. However, a differential path gives the total change in free energy

dG =
(
∂G

∂nA

)
nB

dnA +
(
∂G

∂nB

)
nA

dnB

μA =
(
∂G

∂nA

)
nB

μB =
(
∂G

∂nB

)
nA

The free energies can now be different for different pairs (nA, nB). The total
differential free energy is

dG = μAdnA + μBdnB

Total volumes depend on partial molar volumes, the volumes per mole of each
species for a given composition. If the volumes of one mole of A and B in an ideal
solution were 29 and 30 cm3/mol, respectively, a mixture with one mole of each has
total volume

Vt = 1 mol A

(
29

cm3

mol

)
+ 1 mol B

(
30 cm3

mol

)
= 59 cm3
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This is valid when the volumes per mole are constant for all combinations. More
generally,

dVt =
(
∂V

∂nA

)
nB

dnA +
(
∂V

∂nB

)
nA

dnB

If the partial molar volumes are known for a given nA and nB, the change in
total volume on addition of incremental amounts of A and B is known. Larger addi-
tions change the composition and the partial molar volumes so detailed data or an
equation describing the system volumes are needed for a total volume measurement.

8.5 Euler’s theorem

Euler’s theorem serves as a bridge from differential to macroscopic changes in
partial molar systems. The volume change for a binary system

dVt =
(
∂Vt

∂nA

)
nB

dnA +
(
∂Vt

∂nB

)
nA

dnB

has two extensive variables, nA and nB, as the independent (differential) variables.
Differential changes with the same proportions as the macroscopic nA and nB pro-
duce no change in the overall composition of the solution. For example, adding
dnA = 0.02 and dnB = 0.03 to solution with nA = 2 and nB = 3 and mole fractions
XA = 0.4 and XB = 0.6 produces no change in the composition of the solution
expressed as mole fraction,

XA = 0.2 + 0.02

0.2 + 0.02 + 0.3 + 0.03
= 0.4

Additions of 0.04 and 0.06 for A and B, respectively, also keep XA = 0.4. The
macroscopic ratio of nA/nB = 2/3 is maintained for the differential changes, e.g.,
0.04/0.06 = 2/3. In fact, the “differential” changes could be increased to 2 and 3
(ratio 2/3)from 0.2 and 0.3 without changing the composition

XA = 2.2/(2.2 + 3.3) = 0.4

Euler’s theorem states that the differential equation with extensive independent
variables is integrated by removing the differential d

Vt = V̄AnA + V̄BnB

The differential free energy

dG = μAdnA + μBdnB



8.7 The Gibbs–Duhem Equation 125

becomes

G = μAnA + μBnB

The chemical potentials must be known for the particular composition defined
by nA and nB.

Since S and V are extensive variables, Euler’s theorem states that

dE = TdS − PdV

becomes

E = TS − PV

8.6 Determining Partial Molar Quantities

The total volume of a binary mixture of nA moles of A and nB moles of B is mea-
surable This total volume is plotted against mole fraction (composition). Tangents
at specific mole fractions give the partial molar volumes for that composition.

The integrated partial molar volume equation

V = V̄AnA + V̄BnB =
(
∂V

∂nA

)
nB

nA +
(
∂V

∂nB

)
nA

dnB

is converted to mole fractions

<V> = Vt

nA + nB
= V̄AXA + V̄BXB

Since XB = 1−XA,

V = V̄AXA + V̄B (1 − XA) = (VA − V̄B)XA + V̄B

This linear equation gives <V> = V̄B when XA = 0 and <V> = V̄A when
XA = 1. A tangent to the plot at any mole fraction gives the partial molar volumes
of B and A as intercepts of XA = 1 and XA = 0 respectively (Fig. 8.1).

8.7 The Gibbs–Duhem Equation

Euler’s theorem converts a differential equation in extensive independent variables

dVt = V̄AdnA + V̄BdnB
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Fig. 8.1 <V> versus X for partial molar volumes

into a macroscopic equation
Vt = V̄AnA + V̄BnB

This equation can be differentiated to give four terms

dVt = V̄AdnA + nAdV̄A + V̄BdnB + nBdV̄B

The formal differential path for total volume is also correct and includes only
dnA and dnB, differentials

dVt = V̄AdnA + V̄BdnB

The two “correct” equations are reconciled only if

0 = nAdV̄A + nBdV̄B

This is an example of a Gibbs–Duhem equation. The partial molar volumes in
solution are not independent. If dV̄A is changed, dV̄B must change to maintain the
equality

dV̄B = −
(

nA

nB

)
dV̄A

The internal energy with extensive independent variables

dE = TdS − PdV + μAdnA + μBdnB
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becomes

E = TS − PV + μAnA + μBnB

Differentiation gives

dE = TdS + SdT − PdV − VdP + μAdnA + nAdμA + μBdnB + nBdμA

and the Gibbs–Duhem equation

SdT − VdP + nAdμA + nBdμB = 0

At constant temperature and pressure, the equation becomes

nAdμA + nBdμB = 0

or

nAdμA = −nBdμB

dμB = − (nA/nB) dμA

A chemical potential change for A produces a change in the differential chemical
potential for B.



Chapter 9
Phase Equilibria and Colligative Properties

9.1 Chemical Potential Balance Equations

The chemical potential of a system is zero at equilibrium. To maintain equilibrium,
a change in T, for example, must be balanced by a change in P, to keep the net chem-
ical potential change equal to zero. For two phases, the chemical potential of any
component must be equal. A differential change dμ1 in phase 1 must be balanced
by an equal change, dμ2, in phase 2. These one and two phase balance equations are
used to develop a broad range of equations, the equations for colligative properties.

The Gibbs free energy for a single phase is the sum of intensive–extensive pairs
of thermodynamic variables,

dG = −SdT + VdP +
N∑

i=1

μidni − ψdq + γ dA + . . .

For a one component system, the free energy G is the chemical potential

dμ ≡ dG

n

For chemical potential, the partial molar entropy and volume are used
dμ = SdT + VdP + . . .

The electrical energy

+ qdψ

is convenient since a mole of charge has zF coulombs.

+ qdψ = zFdψ

For one phase systems, energy changes are balanced to keep the free energy
change zero. For two-phase system, equilibrium between the is maintained by
balancing chemical potentials in both phases

dμ(phase 1) = dμ(phase 2)

129M.E. Starzak, Energy and Entropy, DOI 10.1007/978-0-387-77823-5_9,
C© Springer Science+Business Media, LLC 2010
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The chemical potential, not the extensive free energy, is used for the two-phase
equilibria.

9.2 The Barometric Equation

The pressure of atmospheric gases decreases exponentially with increasing height h
above ground level when temperature is constant. Equilibrium is maintained at all
heights to prevent a net motion of gas from one layer to the next under a free energy
gradient. Two opposing energies create this equilibrium. The mass m of each particle
is directed downward by an energy difference mgdx. The same mass is directed
upward by a pressure difference.

The free energy change for a mole of particles with pressure P at x

VdP

VdP = RT

P(x)
dP(x)

(x = 0 is ground level) is converted to a free energy per particle (k = R/Na)

kTdP(x)/P(x)

This change is balanced by the potential energy change

d [PE(x)] = mgdx

where g is the acceleration of gravity.
If P and x are the only independent variables, the change in chemical potential is

the sum of these two potential energies. At equilibrium

0 = kTdP(x)/P(x) + mgdx

At x = 0, P = P0, the pressure at ground level. P(h) is the pressure at height h

kT

P∫
Po

dP

P
=

h∫
0

mgdx

P(h) = Poe− mgh
kT

The exponential ratio of energy mgh to kT is a Boltzmann factor for the probabil-
ity of finding a particle at height h. kT is a thermal energy that serves as a measure
of the energy available to the particle at that temperature.

The barometric formula is also written using the molecular weight M (the mass
of a mole of particles) and R (energy mol–1 K–1)

P = Poe− Mgh
RT



9.3 Sedimentation 131

9.3 Sedimentation

Since P is directly proportional to the moles (n) or number of particles (N),

P(h)

Po
= N(h)

No
= e

−mgh
kT

the barometric equation also predicts the number of particles at each height.
The equation in m and k is valid for single particles. The particle might be a pollen

grain or latex sphere. The equation provides an excellent method for determining k.
For particles in water, the buoyant mass

m′ = m(1 − ρVg)

with the density of water ρ is the density of water and the volume per gram of the
particle Vg gives the “air” mass of the particle less the mass of an equal volume of
water. A particle with negative buoyant mass floats, while one with positive buoyant
mass sinks but also rises into solution via the thermal motions in the water to heights
h above the bottom of the tank (h = 0).

An experimentalist measures the number of particles at each height in a given
cross-sectional area to prepare a logarithmic plot

ln [n(h)] = ln [n0] − m′g
kT

h

that is linear with slope m’g/kT to determine k. Since

Na = R/k

Avogadro’s number is determined accurately.
The experiments to determine Na in this manner had far reaching implications

because they established that thermodynamic properties were indeed the statistical
behavior of a large number of particles. Although the experiments were performed
on visible particles, microscopic particles like atoms and molecules followed the
same rules.

The effective acceleration of gravity is increased significantly by spinning it in a
centrifuge. Particles of different mass then collect at different “heights,” i.e., radii, in
the centrifuge. For a radial frequency ω=2π (rotations per second), the acceleration
of gravity produced by the centrifuge at a radius r is

g′ = ω2r

g′ replaces g and the centrifuge gives a distribution in radius r

N(r) = N(r0) exp ( − m′g′r/kT)
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9.4 Gibbs-Helmholtz Equation and Equilibrium

The Gibbs–Helmholtz equation (Chapter 7)

d

(
�G

T

)
= +�Hd

(
1

T

)

determines the change in free energy with temperature.
The free energy change for reactants and products in their standard states defines

an equilibrium constant

�G0 = −RT ln (Kp)

A temperature-induced free energy means an equilibrium constant change.
Substituting for the free energy

d

(
ln (Kp)

RT

)
= −�H

R
d

1

T

A plot of ln (Kp) versus 1/T is linear with a slope

slope = −�H

R

An endothermic reaction (�H<0) produces a negative slope (Fig. 9.1a). The
equilibrium constant increases with increasing temperature. This is a quantitative
statement of Le Chatelier’s principle which states an endothermic reaction goes
toward products at higher temperature since the reaction absorbs some of the energy
to mitigate the applied force (the temperature rise). An exothermic reaction with a
positive slope lowers the equilibrium constant as temperature is increased.

(a) (b)

Fig. 9.1 Ln(K/ln(K)) versus 1/T plots for (a) an endothermic reaction and (b) an exothermic
reaction
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9.5 Osmotic Pressure

A component in two different phases is equilibrated when its chemical potentials in
those phases are equal. A change of chemical potential in one phase is balanced by
an equal change in the second phase

dμ1 = dμ2

A semipermeable membrane that permits only water flow is a one component,
two-phase system. Solute cannot cross the membrane and cannot equilibrate its
chemical potentials. Equilibrium for two aqueous solutions (phases) separated by
the semipermeable membrane is the equilibrium for water alone.

If pure water is separated from a water solution by the membrane, the mole frac-
tion of pure water (X = 1) is higher than the mole fraction of the water in the solution

RTd ln (X1)+ V1dP1 = RTd ln (X2)+ V2dP

μ(X = 1) = RT ln (1) = 0

while

μ(X) = RT ln (X) < 0

In the absence of a counter energy, water flows to the solution. For equilibrium,
this driving energy is balanced by a hydrostatic pressure head, the osmotic pressure,

π = p2 − p1

The general chemical potential equation

dμ = −SdT + VdP + RTd ln X + zFψ + . . .

reduces to two potentials for each phase

du1 = dμ2

V1dP1 + RTd ln (X1) = V2dP2 + RT ln (X2)

The mole fractions are usually selected for water “concentration”; a molar
concentration for solvent is less convenient (Fig. 9.2).

When both baths are pure water, equilibrium requires equal hydrostatic pressures
(P1 = p2 = p). This equilibrium is reversibly changed with increments of solute in
Bath 2 that cause incremental pressure changes. An integration sums the reversible
steps. The limits of integration are
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Fig. 9.2 An osmotic pressure defined by the height difference of liquid

Bath 1 (pure water) P to P1, X = 1 to X = 1
Bath 2 (solution) P to P2, X = 1 to X

P1∫
P

V1dP1 +
1∫

1

RT ln (X1) =
P2∫

P

V2dP2 +
X∫

1

RT ln (X2)

The concentration integral for phase 1 (pure water) is 0. The remaining three
integrals give

V1

P1∫
P

dP1 = V2

P2∫
P

dP2 + RT

X∫
X=1

d ln XV1 (P1 − P) = V̄2 (P2 − P)+ RT
ln (X)

1

For dilute solutions, the partial molar volume for the pure water and the solution
are almost equal because the small amount of solute has little effect on the structure
of the water so V1 = V2 = V

V (P1 − P2) = RT ln X

The pressure difference is the osmotic pressure

π = P2 − P1
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Dividing each side of the equation by V gives

π = −RT

V
ln X

The sum of the mole fractions XW + XS = 1 so

Xw = 1 − Xs

and

ln Xw = ln (1 − Xs) ≈ −Xs

Since

Xs = ns

ns + nw
≈ ns

nw

the osmotic pressure is

π = RT
nw

V

ns

nw
= RT

ns

V
= cRT

When the baths have molar concentrations c1 and c2, respectively, the osmotic
pressure is

π = (c2 − c1)RT

The integrations to obtain the expression for the osmotic pressure started from
an equilibrium with water in both baths. Solute was added to the right chamber
and water flowed to the right to dilute the solution. The osmotic pressure equation
describes only the final situation where the pressure has developed and the solution
has a different concentration to maintain the equilibrium.

A more practical way to measure osmotic pressure uses external pressure to bal-
ance the water flow to solute so that no water flows and the concentration is constant.
When Pext = π, no water can flow to dilute the solution in bath 2.

If the external pressure exceeds the osmotic pressure, water is forced from the
solution to the pure water. This reverse osmosis is used to prepare pure water.

9.6 Molecular Weight Measurements

The osmotic pressure of a dilute solution is directly proportional to the molar con-
centration and large enough for convenient measurement. For example, a 0.01 M
solution opposing pure water has an osmotic pressure

π = cRT =
(

0.01 mol L−1)0.082
Latm

mol K

)
(300 K) = 0.246 atm

One atmosphere supports a 33 foot column of water.
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The osmotic pressure is proportional to c, the molar concentration. For g grams
of a solute with a molecular weight M in a volume V of solution, the molar
concentration is

c = g/M

V
= G/M

M = G/c

For example, if 0.001 g of a protein is dissolved in 1 mL of water,

G = 0.001 g

1 mL

103mL

L
= 1 gL−1

If the observed osmotic pressure is 0.0025 atm at 300 K, the concentration is (RT
= 25 Latm)

0025 = cRT = 25c

c = 0.0001

the molecular weight of the protein is

M = G/c = 1/0.0001 = 10,000 g mol−1

The osmotic pressure counts total solute. A weak acid, HA, with initial concen-
tration ct dissociates to give the following concentrations

HA = ct(1 − α)

H+ = A− = αct

ct = [HA] + [H+] + [A−] = c(1 − α) + αc + αc = c(1 + α)

For a weak electrolyte that dissociates partially into n ions, α is determined from

1 + (n − 1)α = π

ctRT

A small ion that dissociates from a protein on dissolution has a major impact on
molecular weight measurements for that protein. If the protein of 10,000 g/mol had
one ionizable Na+ ion, the osmotic pressure would double since the concentration
of solute ions doubles. This doubled concentration gives half the protein molecular
weight,

M = G/c = 1/0.002 = 5000 g mol−1

The observed molecular weight is actually an average where, to a first approxi-
mation, the weights of the metal ions are 0. For a protein salt P3- with M = 10,000
and three Na3+ (four ions total), the average observed molecular weight is

< M >≈ 10,000/4 = 2500
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9.7 The Electrochemical Potential

Solutions are electroneutral. An electrical potential is generated only by a spatial
separation of cations and anions. This separation becomes possible when two elec-
troneutral salt solutions of concentrations c1 and c2 are separated by a membrane
permeable only to cations or anions. A K+ permeable membrane permits K+ ions to
move down their concentration gradient through the membrane separating it from its
counterion (Cl−). The system equilibrates when the electrical potential free energy
balances the concentration free energy for the permeable ion.

The electrochemical potential is

dμi = RTd ln (cK) + zFψ

K+ equilibrates between the two phases

dμ1 = dμ2

RT d ln [K]1 + zFdψ1 = RT d ln [K]2 + zFdψ2

The initial K+ concentrations and potentials are

[K]1 = [K]2 = [K]0 ψ1 = ψ2 = 0

As the concentrations in the baths are changed reversibly to their final values of
[K]1 and [K]2, the potentials for each bath change to their final non-zero values of
ψ1 and ψ2, i.e.,

[K]1∫
[K]0

RT d ln c + zF

ψ1∫
0

dψ =
[K]2∫

[K]0

RT d ln c + zF

ψ2∫
0

dψ

RT ( ln [K]1 − ln [K]0) + zFψ1 = RT( ln [K]2 − ln [K]0) + zFψ2

RT ln [K]1 + zFψ1 = RT ln [K]2 + zFψ2

The electrical potential difference is

�ψ = ψ2 − ψ1 = RT

zF
ln [K]1 − RT

zF
ln [K]2 = −RT

zF
ln

[K]2

[K]1

For K+, z = +1. The minus signifies the opposition of the two gradients. A larger
concentration of cation in bath 2 produces a larger positive potential in bath 1.

The ratio RT/F is

RT

F
= 8.31J mol−1K−1 298 K

96,500
= 0.0257 V ≈ 25 mV

The potential difference for a [K]1 = 1 M and [K]2 = 2 M is

�ψ = −RT

F
ln

[K]2

[K]1
= −0.0257 ln

2

1
= −0.018 V
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A voltmeter measures only the electrical potential difference between the solu-
tions, not absolute potentials. If the left solution is assigned a reference potential of
0 volts, the right solution potential is negative

�ψ = ψ2 − ψ1 = ( − 17.6 mV) − 0 = −17.6 mV

Membranes permeable to ions might be used to tap energy where river water
mixes with sea water. Fresh water from a river with a low ionic concentration flows
along one face of a membrane array. Seawater flows by the opposite face to produce
an electrical potential difference across the membrane.

A glass electrode pH meter behaves as if it is permeable only to protons. An acid
concentration gradient across the glass bulb produces an electrical potential differ-
ence that can be measured. If the internal acid concentration is known, the external
sample solution concentration is determined. The pH meter measures small con-
centrations because the potential is determined by concentration ratios, not absolute
concentrations. A concentration ratio of 0.01/0.02 gives the same electrical potential
as a ratio 1×10−8/2×10−8.

9.8 The Clapeyron Equation

A liquid–solid equilibrium for one component equilibrates when

dμs = dμl

A change in pressure changes the equilibrium melting temperature where the
phases coexist. Both phases have the same temperature and pressure. The chemical
potential balance equation

− SsdTs + VsdPs = −SliqdTlit + V liqdPliq

is rearranged (−Ss + Sl
)

dT = (+V l − Vs
)

s dP

for the entropy and volume changes for the phase transition

�S = Sl − Ss �V = Vl − Vs

�SdT = �VdP

to give the slope of the solid–liquid line on a phase diagram.

dP/dT = �S

�V

The entropy of melting at any temperature near the normal (1 atm) melting
point is

�Sm = �Hm

T



9.9 The Clausius–Clapeyron Equation 139

and

dP

dT
= �Hm

T�Vm

for liquid–solid or solid–solid phase transitions.
The Clapeyron equation gives the slope of the equilibrium (2 phase) line which

separates a solid from a liquid in a pressure–temperature phase diagram. The entropy
change is positive on melting. An increase in volume on melting produces a positive
slope. Water is an exception. The volume of water decreases on melting and the
slope of the ice-liquid water transition is negative.

The slopes of the solid–liquid equilibrium lines are generally quite large because
the volume change is small. An entropy change of +1 Latm mol-1 with a volume
increase of 0.02 L mol–1 gives a slope

dP

dT
= �S

�V
= 1 Latm mol−1K−1

0.01 L mol−1
= 100 atm K−1

A one degree change in the temperature requires a 100 atm change in the pressure
to maintain the equilibrium. The line separating the liquid and solid phases in the
phase diagram appears vertical.

9.9 The Clausius–Clapeyron Equation

In a pressure–temperature phase diagram, liquid–solid and solid–solid equilibrium
lines are straight because the entropy change and volume changes are constant over
a large temperature range. By contrast, the liquid–vapor equilibrium line curves with
an exponential dependence.

When one mole of a liquid vaporizes, 1 or 2 mL of the liquid expands to roughly
20 L of volume as vapor. The volume difference is essentially the vapor volume

�V = Vvap − V liq ≈ Vvap

Substituting into the Clapeyron equation

dP

dT
= �S

�V
= �H

TVvap

and introducing the ideal gas volume per mole

V = V/n = RT/P

gives

dP

P
= �H

RT2
dT
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The variables P and T are separated for integration

dP

P
= �H

RT2
dT

The vapor pressure of the liquid is 1 atm at its boiling point by definition. An
integration from the normal boiling point at 1 atm gives the vapor pressure at T

p∫
1

dP

P
=

T∫
Tbp

�H

RT2
dT ln

p

1
= −�H

R

(
1

T
− 1

Tbp

)

The slope of a ln(P) versus 1/T plot

dlnP = �H

R
d

(
1

T

)
dlnP

d(1/T)
= −�H

R

is proportional to the enthalpy of vaporization

slope = −�H

R

This linear plot format parallels the Gibbs–Helmholtz equation because the
pressure equilibrium constant for the phase transition

A(liq) = A(vap)

is Kp = p, the equilibrium vapor pressure.

9.10 Freezing Point Depression

If ice and water are at equilibrium and a solute is added to the water at 0oC, the
chemical potential of the water is lower than that of the ice. Ice melts completely
trying to restore the ice-water equilibrium at this temperature. For equilibrium, the
freezing point must decrease.

Because ice is solute free, only water equilibrates. The chemical potential balance
equation

dμsolution(H2O) = dμsolid(H2O)

−SidT + RTlnXi = −SsdT + RTdlnXw

has Xice =1 since no solute appears in ice at equilibrium,

−SsdT = −SwdT + RTdlnXw(
Sw − Ss

)
dT = �SfusdT = RTdlnXw
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The entropy difference for melting is

�Sfus = �Hfus

T

so that

�Hfus

T2
dT = Rdln (Xw)

The integration limits are (Xw =1, T=Tf) to (Xw, T)

T∫
Tf

�Hfus

T2
dT = R

Xw∫
1

dlnX
�Hfus

R

(
1

Tf
− 1

T

)
= ln

Xw

1

For a dilute solution, T ≈ Tf.The reciprocal temperature difference is

1

Tf
− 1

T
= T − Tf

TTf
≈ −�T

T2
f

where

�T = Tf − T

and

− �Hfus

RT2
f

�T = ln(Xw)

Since the solution is dilute,

Xw = 1 − Xs

lnXw = ln(1 − Xs) ≈ −Xs

The freezing point depression

− �Hfus

RT2
�T = −Xs

compares with the “usual” equation

�T = Kfm

where Kf is a constant and m is the molality of the solution.
A 2 m solution has 2 moles of solute per 1000 g of solvent. If this solvent has a

molecular weight M′, there are

n′ = 1000/M′
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moles of solvent so the mole fraction of solute is

Xs = 2
1000
M′ + 2

= m

m + 1000
M′

Xs ≈ m
1000
M′

so that

�Hfus

RT2
�T = mM′

1000

The freezing point depression

�T =
(

M′

1000

)(
RT2

�Hfus

)
m

gives Kf in solvent parameters

Kf = M′RT2

1000�Hfus

The freezing point depression constant for water with a molecular weight of 18
and an enthalpy of fusion of 601.9 J g−1 is

Kf = 18 g mol−18.31 J mol−1K−1273 K2

1000 × 601.9 J mol−1
= 1.86 K m−1

9.11 Boiling Point Elevation

The freezing point is depressed when solute is added to the liquid phase. The boil-
ing point increases when solute is added to the liquid phase to compensate the
decrease in liquid chemical potential. The chemical potential balance equation for
equilibrium

dμliq = dμvap

−SsolvdT + RTdlnXsolv = −SvapdT

is integrated from (Xl=1, Tbp) to (Xl, T) Using

�S = �H

T



9.12 Donnan Equilibrium 143

gives

T∫
Tb

−Hv

T2
dT+

X∫
1

R dlnX =
T∫

Tb

−Hv

T2
dT

−�Hv

R

(
1

T
− 1

Tb

)
= −lnXsolv = +Xs

The reciprocal temperature difference becomes

(
1

T
− 1

Tb

)
= −�T

T2
b

where �T is now the positive temperature difference. The final expression is

�H

R

�T

T2
b

= Xs

The mole fraction is converted to molality

�Hv

R

�T

T2
b

= mM′

1000

and a boiling point elevation

�T = M′RT2

1000�Hv
m

9.12 Donnan Equilibrium

Dissolved salts that dissociate in solution are electroneutral. A Donnan equilibrium
occurs when two ionic solutions are separated by a membrane permeable to specific
anions and cations. The equilibrium also occurs when one phase with fixed charge,
e.g., charged proteins or ion exchange beads, is dispersed in water.

For KCl, the total free energy of each phase is the sum of the chemical potential
of each ion

1dμ1(K) + 1dμ1(Cl) = 1dμ2(K) + 1dμ2(Cl)

1RTd ln[K]1 + 1RTd ln[Cl]1 = 1RTd ln[K]2 + 1RTd ln[Cl]2

gives

[K]1 [Cl]1 = [K]2 [Cl]2 = Ksp
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The equilibrium balances products of concentrations of the anions and cations
(a solubility product):

Ksp = [K+][Cl−]

For CaCl2, the free energy balance equation requires 1 mole of Ca2+ and 2 moles
of Cl−. The balance equation is

1RTd ln[Ca]1 + 2RTd ln[Cl]1 = 1RTd ln[Ca]2 + 2RTd ln[Cl]2

and

[Ca]1[Cl]2
1 = [Ca]2[Cl]2

2

The Donnan equilibrium explains the experimental observation of salt gradients
across membranes or phases with no energy source to produce them. The concen-
tration of an anion or cation is increased by adding a second salt with that ion
and a counterion that is impermeable or locked as fixed charge in one phase. For
example, all salts that release independent K+ in solution contribute to the total K+

concentration in the phase.
Two solutions are separated by a membrane permeable to both K+ and Cl−.

A univalent potassium protein salt (K+P−) with membrane impermeable P−, is
now added to bath 1 to increase the total K+ concentration in solution. KCl moves
from bath 1 to bath 2 to maintain the equilibrium, i.e., keep the KCl concentration
products in both solutions equal. This reduces the KCl concentration in bath 1.

A non-equilibrium system which has 1 mM KCl and 1 mM KP in bath 1 and
1 mM KCl in bath 2 moves toward an equilibrium. The product of K+ and Cl−
is larger on side 1 because the K+ concentration is 2 mM, KCl flows to bath 2 to
reestablish the equilibrium. If x mM K+ flows from bath 1 to bath 2, it must be
accompanied by x mM of Cl− to maintain electroneutrality. The 2 mM K+ in bath 1
(1 mM from KCl + 1 mM from KP) decreases by x at equilibrium. The 1 mM
chloride concentration drops by x as well to maintain the electroneutrality of bath 1.
Bath 2 contains only 1 M KCl so both the K+ and Cl− concentrations increase by x.

The Donnan equilibrium for KCl between the two phases is now

[K]1[Cl]1 = [K]2[Cl]2

(2 − x)(1 − x) = (1 + x)(1 + x)

2 − 3x + x2 = 1 + 2x + x2

5x = 1

X = 0.2

x is substituted into the expressions for each species to determine their equilib-
rium concentrations,

[K]1 = 2 − x = 1.8, [Cl]1 = 1 − x = 0.8

[K]2 = [Cl]2 = 1 + x = 1.2
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Each phase is electrically neutral. Bath 1 has 1.8 mM of positive charge which
is counterbalanced by 0.8 mM of Cl− and 1 mM of the P− protein that induced the
flow to bath 2. Bath 2 has 1.2 mM of both K+ and Cl−.

The new concentrations satisfy the Donnan equilibrium condition,

[K]1[Cl]1 = [K]2[Cl]2

1:1 electrolytes are very tractable because the quadratic terms cancel. In salts
such as CaCl2, the resulting equation includes a third power in x. In addition, elec-
troneutrality requires that 2 Cl− ions travel with each Ca2+. The Donnan equilibrium
expression for 1 mM CaCl2 and 1 mM CaP in bath 1 is

[Ca]1[Cl]2
1 = [Ca]2[Cl]2

2

For KCl, the concentrations of both K+ and Cl− differ in each of the phases. If
K+ sensitive electrodes were inserted into each bath, a Donnan electrical potential
difference could be recorded as

�ψ = − RT

+1F
ln

1.2

1.8
= 25 ln

(
2

3

)
= −10.14 mV

On the other hand, if a Cl− ion-sensitive electrode were used, the measured
potential difference would be

�ψ = − RT

−1F
ln

[Cl]2

[Cl]1
= +25 ln

1.2

0.8
= 25 ln

3

2
= +10.14 mV

The magnitude of the potential is the same; only the sign of the potential changes.
In order to measure a potential, the electrode must be sensitive to only one of the
two equilibrated species.

Problems

9.1 A fiber, e.g., muscle, produces a force τ when placed in an ionic solution of
molar concentration c. For a length L of fiber, the chemical potential is −Ldτ . The
force decreases as the concentration increases.

a. Define a chemical potential for this system using ion concentration c and the
force τ as independent variables.

b. If one portion of fiber is placed in a bath of length L with a concentration c1 of
ions and second portion is placed in a second bath of length L with a concentra-
tion c2 of ions, the two portions of the fiber will come to equilibrium at different
lengths. Give the balance equation.
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9.2 Two metals with absolute entropies S1 and S2, respectively, are placed
together. If a potential difference (ψ1 for metal 1 and ψ2 for metal 2) is applied
to the pair, the temperatures of the two metals will differ at equilibrium.

a. Set up the appropriate chemical potential balance equation.
b. Use the enthalpies for each phase (H1andH2) to modify your equation in (a) so

that it depends on the enthalpy difference between the phases.
c. Determine the natural logarithm of the ratio of temperatures produced by apply-

ing a potential difference �ψ = ψ2−ψ1 between the two metals. Both metals
have the same temperature when the potential difference is 0.

9.3 The K+ salt of a protein of 50,000 daltons gives an osmotic pressure of
0.001 atm when 0.05 g is dissolved in H2O to make 0.1 L of solution. RT = 25
Latm.

a. What is the experimental molecular weight of this protein from the osmotic
pressure experiment?

b. How many K+ ions are present per protein molecule?

9.4 A membrane separates two NaCl solutions of equal concentration (0.1 M)
and is permeable to both ions. Determine the concentration of a second salt NaA
with impermeable anion A− that must be added to bath 1 to transfer 0.01 M NaCl
from solution 1 to solution 2.

9.5 At 300 K and 1 atm,� G = 75 J mol−1 for the conversion of monoclinic sul-
fur (V = 16.3 × 10−3) to rhombic sulfur(V = 15.5 × 10−3) Estimate the minimum
pressure necessary to achieve a stable monoclinic phase at this temperature.

9.6 A fritted disk is used to separate mercury liquid and mercury vapor. If the
pressure on the liquid is increased from 1 to 11 atm, what is the change in vapor
pressure of the gaseous mercury. The initial vapor pressure is 1 atm and the partial
molar volume of the liquid is 2.46 L mol−1.

9.7 Two solutions with concentrations of 0.1 M are separated by a semipermeable
membrane. An additional 0.5 atm of pressure is now applied to bath 1 and the system
is allowed to equilibrate.

a. Determine the ratio of mole fractions for equilibrium with the additional
pressure.

9.8 At equilibrium, an aqueous phase (2) has a KCl concentration of c2 and a
protein phase (1) has a KCl concentration of c1 and a KzPz- concentration of cp.

a. Show

[c1 + zcp][c1] = c2
2
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9.9 A semipermeable bag with 1 L of a sugar solution is placed in pure water and
the bag swells to an equilibrium volume of 11 L.

a. Set up a potential balance equation in the concentrations and the surface energy
of the bag.

b. If the bag energy per unit surface area is 12 J L−1 determine the water mole
fraction of the sugar solution.

9.10 An n-type semiconductor is doped with atoms that provide electrons that
can move to a second semiconductor where the concentration of such electrons is
lower. These electrons carry a negative charge which moves with the electron to the
lower concentration region to produce an electrical potential difference.

a. Set up a chemical potential balance equation involving the electrons concentra-
tions (ch and cl) and the potentials (ψH and ψL).

b. Starting from the equilibrium condition cH = cL = c0, with equal electrical
potentials, determine the potential difference that arises when the electrons reach
their equilibrium concentrations (cH and cL).



Chapter 10
The Foundations of Statistical Thermodynamics

10.1 The Ergodic Hypothesis

Classical thermodynamics does not require detailed molecular information for ther-
modynamics parameters. The heat capacity is a proportionality constant relating
E to T:

E = CvT

Statistical thermodynamics uses microscopic parameters such as molecular ener-
gies and probability to generate averages. The average energy, for example, matches
the energy determined via classical thermodynamics.

A single system with an Avogadro’s number of particles gives stable averages.
Even though energy is transferred continually between particles on collision, the
number with each energy remains constant for constant temperature and volume.

The averaged parameters are obtained as either time or number averages. In the
first case, a single system is examined at a series of different times and parameters
observed at each time are averaged.

In the second case, the parameters for a large number of identical systems, the
ensemble, are observed “simultaneously.” The parameter values observed for each
separate system are then averaged. The accuracy of the ensemble average improves
as the number of systems in the ensemble increases.

A system of 100 particles, each of which has two possible energies ε1 or ε2 is
ensemble averaged by examining four such identical systems. The first system has
74 particles with energy ε1 and 26 with energy ε2 (74, 26), the second has (76, 24)
and the third and fourth ensemble systems have (75, 25). The ensemble average is
then a system which has 75 particles with energy ε1 and 25 particles with energy ε2.

The time average for a single system might show the particles with the two
allowed energies in the combination (75, 25). A second observation at a later time
might be (77, 23), a third (74, 26), and a fourth (74, 26). This time average also
gives an average distribution having 75 particles with energy ε1 and 25 particles
with energy ε2.

The ergodic hypothesis states that time and ensemble averages are equal. This
hypothesis might seem intuitively obvious but is difficult to prove except for
special cases.

149M.E. Starzak, Energy and Entropy, DOI 10.1007/978-0-387-77823-5_10,
C© Springer Science+Business Media, LLC 2010
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The variation in the time average reflects the fact that energy is continuously
transferred between the molecules of the system. A state of the system would
involve each of the 100 labeled molecules with a specific energy. For example,
molecules 1 through 75 might have energy C 1 while those labeled 76–100 have
energy C2. Another state could have 1–74 and 76 with energy C1. 75 and 77–100
then have energy C2. There are clearly a large number of states that can give the
result (75, 25) which is called a distribution. An observer sees the distribution
(75, 25) which could be any of the labeled states that have 75 particles with energy
C1.

A system observed in time must ultimately return to its initial state. If all states
are equally probable, the system will, on average, pass through every possible state
in the system before returning to the initial state. The number of states is then equal
to the number of events or observations required before regaining the initial state.
This sequence is a Poincare cycle. If the time per event is known, the total time to
return to the initial state is the time per state multiplied by the total states of the
system, the Poincare recurrence time.

10.2 States and Distributions

An ideal gas, expanding spontaneously from 1 to 2 L increases its entropy because
the number of locational states doubles. All such states are equally probable includ-
ing the one with all the particles in the original 1 L. However, for large numbers
of particles, this original state, while possible, is never observed in practice. The
expanded gas remains spread homogeneously in the 2 L container. Even situations
where all but 2 or 3 particles appear on the left are not seen. For large numbers of
particles, 50% of the particles are found in the left container. A state with 100%,
while just as probable as a 50–50 state is “almost” never observed.

The observation that the 2 L container has equal particles in each liter seems to
contradict the postulate, proposed by Boltzmann, that all states are equally proba-
ble. A state with all particles in the left container is just as likely as one with the
particles equally divided between left and right. In reality, there is no contradic-
tion. The observer observes only the distribution of particles without the labels that
define a specific state. Many states will produce a 50–50 distribution, while only a
single state will produce the 100–0 distribution (all particles in the left 1 L). The
distribution is the number of particles in each container or the fraction of particles
in each bulb.

[
p (left), p (right)

] = [0.5, 0.5]

States describe the way labeled particles are distributed between the two 1 L
containers. A 50–50 distribution includes all the states with half the particles on the
left. For 100 particles, there are 100 states with the [99, 1] distribution – particle 1
left, particle 2 left, . . ., particle 100 left).



10.3 The Dog-Flea Model 151

A 50–50 distribution of particles between the two halves of a container at equi-
librium has the largest number of distinct states. This is the equilibrium distribution.
Other distributions can appear as fluctuations but the 50–50 dominates because it
has the largest number of the equally probable states.

10.3 The Dog-Flea Model

The distinction between states and distributions was difficult to understand because
Boltzmann developed it for large numbers of particles. His student, Paul Ehrenfest,
developed heuristic models to illustrate the differences with simple systems.

Although Ehrenfest ultimately published his work as the “urn” model, it was
also described as a “dog-flea” model. The two urns (or 1 L containers) are dogs.
A fixed number of fleas (particles) are free to jump between the two dogs. This is
equivalent to particles moving between the two connected 1 L containers or balls
moved between two urns. The fleas jump between the dogs randomly so an initial
state, e.g. (100, 0), becomes a new state when a flea jumps.

The model is also identical to a chemical reaction with two isomers A and B of
equal energy. Either isomer can randomly convert to the other in some time interval.

A system with two fleas and two dogs has four states.

(1) Fleas 1 and 2 on dog A.
(2) Fleas 1 and 2 on dog B
(3) Flea 1 on dog A, flea 2 on dog B
(4) Flea 2 on dog A, flea 1 on dog B

Equivalently, for isomers (A;B)

(1) (1,2;0)

(2) (0;1,2)

(3) (1;2)

(4) (2;1)

Each of the four states is equally probable. Two of the four states have a 50–50
distribution and this distribution occurs twice as often as the (2;0) or (0;2) distri-
bution. As the number of fleas increases, this equilibrium distribution encompasses
an increasingly larger fraction of the total states. For a mole of fleas or isomers,
this equilibrium 50–50 distribution is characterized by a dominant fraction of the
states. Most of the remaining states are found in distributions similar to the 50–50
distribution, e.g., (49, 51) or (51, 49).

The relative increase in both total states and states for a 50–50 distribution is
illustrated with four fleas on two dogs, i.e., four molecules with two isomeric forms.
Since each molecule is either A or B (two possibilities), the total number of states
possible is

24 = 16
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The number of states in the 50–50 distribution (2, 2) is

4!
2!2! = 6

The 4! Is the number of possible orders for the four labeled isomers. Since the
order of labeled particles for each isomer is irrelevant, e.g. (1,2;34) is the same state
as (2,1;3,4), the ways of ordering the A isomers(or dog A) reduces the total states
by a factor of 2!. The ordering of B also reduces the total number of allowed states
by 2!. By contrast, 4 fleas on dog 1 appear in 4! Orders and the number of states is

4!/4!0! = 1

The (4, 0) distribution has a probability of 1/16.
The 2 flea–2 dog model had a higher 50–50 probability (0.5) than the 2 dog–4

flea model (0.375) but the overall distribution is narrowing. Only 2/16 = 1/8 of the
states are (4, 0) or (0, 4).

For only 50 particles with two isomers (far less than an Avogadro’s number of
particles), the total number of states is

250 = 1.1259 × 1015

Of this total, the number of states that give 25 particles of each isomer is

50!
25!25! = 1.264 × 1014

The probability of finding this distribution is

1.264 × 1014

1.1259 × 1015
= 0.112

The (24, 26), (26, 24), (27, 23), etc. distributions also have high probabilities. The
range of distributions with significant probability is narrowing but not yet spiking at
50–50. The fraction of states for only A isomers or all fleas on dog 1,

1

1.1259 × 1015
= 8.8 × 10−16

is extremely small indicating the improbability of observing this distribution.
An isomerization reaction passes through all the states in time. A system starting

with all A isomers must ultimately return to this state as the system cycles through
all the states of the system. This is a Poincare cycle. If each state change takes time
t, the time for a Poincare cycle is �t. A two molecule system has 22 = 4 states and
the Poincare cycle time is 4t.
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For 100 molecules, probability of the (100, 0) distribution is

p = 1

2100
= 7.9 × 10−31

� = 1.2×1030 and the Poincare cycle time is 1.2�1030t. Even molecules with
collisions every 10−25 s require

1.2×1030 × 10−25 = 1.2×105 s = 2 days. With an Avogadro’s number of parti-
cles, the time increases dramatically. The chance of returning to the original state is
finite but ridiculously small.

10.4 The Most Probable Distribution

The equilibrium distribution for two isomers of equal free energy contains the
largest number of states. The systems with 2 and 4 isomers had binomial distri-
butions of states (1:2:1) and (1:4:6:4:1). The distributions are symmetric with a
maximum at the most probable distribution 50–50 distribution. With increasing par-
ticles, the binomial distribution becomes a symmetric Gaussian distribution with a
maximum at the 50–50 distribution.

The number of states for each distribution is encased in the binomial distribution
for N particles and 2 isomers

(x + y)N =
N∑

n=0

N!
n!(N − n)!xnyN−n

For a total of N particles, A distribution with nA A isomers and nB = N–nA B
isomers has of states

� = N!
nA!nB!

states

N = nA + nB

The most probable distribution and average distribution have

nA = nB = N/2

The most probable distribution is obtained by differentiation with respect to
nA or nB. Since

nB = N − nA

the binomial coefficient is

� = N!
nA! (N − nA)
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The factorials cannot be differentiated but their logarithms can. The logarithm of
this function has the same maximum. The factorials are converted to differentiable
functions using Stirling’s approximation,

ln M! = M ln M − M

The derivatives for ln nA! and ln(N–nA)! Are

d (ln nA!) /dnA = d [nA ln (nA)− nA] /dnA

= ln (nA)+ nA/nA − 1 = ln (nA)

d ln (N − nA)!/dnA = d [(N − nA) ln (N − nA)− (N − nA)] /dnA

= − ln (N − nA)− (N − nA) / (N − nA)+ 1 = − ln (N − nA)

The logarithm of the binomial

ln� = ln
N!

nA! (N − nA)!
becomes

ln� = ln N! − ln nA! − ln (N − nA!) = N ln N − (nA)

ln nA + nA − (N − nA) ln (N − nA)+ (N − nA)

Differentiating with respect to nA and equating to zero

{d ln�}/{dnA} = 0 = − [ln (nA) + ln (N − nA)] = 0

ln nA = ln (N − nA)

nA = N − nA

#2nA = N

nA = nB = N

2
As expected, a 50–50 distribution (nA = N/2) is most probable with the maximal

number of states.

10.5 Undetermined Multipliers

A single derivative suffices to determine the most probable distribution for the two
isomer model since nB is expressed in terms of nA. For a system with three or more
equal energy isomers, the binomial equation cannot be reduced to a single differen-
tiable variable. The method of undetermined multipliers resolves this difficulty. For
two isomers and N particles, the constraint

N = nA + nB



10.5 Undetermined Multipliers 155

is rearranged

N − nA − nB = 0

multiplied by the undetermined coefficient α and added to the general expression
for the number of states

ln{N!/ (nA!) (nB!)} + α (N − nA − nB)

α is determined using the constraint. The constraint term equals zero but the
derivative is finite.

Since

d (ln (nA!)) /dnA = ln (nA)

The derivative selects only terms in nA

0 = − ln nA + α( − 1)

nA = exp ( − α)

Differentiation with respect to nB gives

nB = e−α

Since α is the same for both equations, nA + nB = eα + eα = 2eα

eα = nA = nB = N

2

The approach work for multiple (p) isomers

ln
N!

n1!n2! . . . np! + α
(
N − n1 − n2 − . . .− np

)
Each ni is maximized

∂

∂ni

[
ln

N!
n1!n2! . . . ni! . . . np! + α

(
N − n1 − n2 − . . .− ni . . .− np

)] = − ln ni − α

ni = eα

N =
p∑
1

e−α = pe−α

ni = N/p

The populations of each of the isomers are the same.
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10.6 Energy Distributions

The isomers (or fleas) that form a distribution all had exactly the same energy. The
situation becomes more realistic and more complicated if the system consists of a
molecule with different energies. The distribution is the number of molecules with
energy ε0, molecules with energy ε1, etc. Because the total amount of energy is
limited, the distribution need not have equal numbers of molecules at each energy.
In fact, high-energy molecules appear less frequently than low-energy molecules in
such distributions.

The isomerization
A � B

has reference energy 0 for A and free energy�G for B. The equilibrium distribution
is not 50–50; the high-energy species appears less frequently at equilibrium.

Systems where each particle, isomer or flea have exactly the same energy are
microcanonical ensembles. Formally, the ensemble is a large number of systems
containing a fixed number of particles that can distribute in two (or more) equi-
energy ways. The average distribution is then the average of all these independent
ensembles.

The molecule with, for example, three possible energies is analogous to a system
with three different isomers. The system is a mixture of molecules with each of the
energies. Within the constraint of limited total energy, the equilibrium distribution
subsumes the largest number of states.

A system where the molecules are distinguished by their different energies is a
canonical ensemble. Again, the ensemble is a large number of identical systems that
have the same fixed number of molecules and equal total energy.

The canonical ensemble has two constraints that become undetermined multipli-
ers. The system has a fixed number of molecules. For N molecules

N = n0 + n1 + . . .+ ni + . . . =
∞∑

i=0

ni

no of the molecules have energy εo, n1 have energy ε1, etc. The total energy of
all ε0 molecules is

ε0n0

The n1 molecules with energy ε1 each contribute

ε1n1

The total energy E for the system is

E = n0ε0 + n1ε1 + . . .+ niεi + . . . =
∞∑

i=0

niεi

These two constraints establish the equilibrium distribution for the canonical
ensemble.
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The total number of states possible with no, n1, etc. molecules is

� = N!
n0!n1! . . . ni! . . . = N!

∞
π

i=0
ni

The two undetermined multiplier constraints are added

ln
N!

∞
Pi
i=0

ni

+ α

(
N −

∞∑
i=0

ni

)
+ β

(
E −

∞∑
i=0

niεi

)

and differentiated with respect to each ni for the equilibrium distribution with
maximal states. Only three terms survive differentiation with respect to each ni

d

dni
[− ln ni! − αni − βniεi] = 0

d

dni
[ − ln ni! − αni − βniεi] = − ln ni − α − βεi = 0

ni = e−αe−βεi

The sum of all the ni must equal N

N =
∞∑

i=0

ni =
∞∑

i=0

e−αe−βεi

exp(–α) is common to all terms. Factoring and solving

e−α = N
∞∑

i=0
e−βεi

Substituting for exp (−α)

ni = N
e−βεi

∞∑
i=0

e−βεi

The probability of finding a particle with energy εi is

pi = ni

N
= e−βεi∑

e−βεi

The sum of all exponentials (the Boltzmann factors) in the denominator converts
each Boltzmann factor (a number) into a probability. This sum over Boltzmann fac-
tors is called a “sum over states” or partition function. Neither definition accurately
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reflects this “sum over Boltzmann factors in each possible energy” but partition
function has the widest usage.

Energy isomers are not equally probable. The exponential value decreases with
higher energies. The number of states with higher energy is always smaller. Even
though the state populations differ, the Boltzmann distribution gives the largest
number of states consistent with the constraints.

10.7 The Boltzmann Factor

The probabilities pi for the canonical system contain the second undetermined
multiplier. For microscopic (single molecule) energies

β = 1

kT

This result is inferred from the following observations:

(1) kT is positive so the exponential is smaller for higher energies;
(2) kT has units of energy per molecule; the exponential ratios are dimensionless;

and
(3) the energy is proportional to T.
(4) The exponential has appeared for thermodynamic systems such as the baromet-

ric formula:

p

po
= e

mgh
kT

and Gibbs–Helmholtz equation (h is the enthalpy per molecule)

pα exp ( − h/kT)

β = 1/kT is established rigorously in Chapter 11.

10.8 Bose–Einstein Statistics

Two dogs that contain three fleas have a total of 23 = 8 possible states. The (3, 0)
and (0, 3) states don’t require labeled fleas. The distribution (2, 1) has three states
in Boltzmann statistics (– flea 1, 2, or 3 on dog 2), with labels [D1;D2] = [1,2;3],
[1,3;2], and [2,3;1].

Boltzmann statistics recognizes which labeled flea appears on Dog 2. Bose–
Einstein statistics, by contrast, uses indistinguishable particles. For Boltzmann
statistics, each of the three Boltzmann states is a single state with 2 indistinguishable
particles on dog 1 and one indistinguishable particle on dog 2.
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For two dogs and three indistinguishable fleas, Bose–Einstein statistics predicts
[3, 0],[2, 1],[1, 2], [0, 3]
For a total of four states rather than the 23= 8 total states of Boltzmann statistics.
The four Bose–Einstein states are also expressed using x for each indistinguish-

able flea and “|” to separate the dogs

(xxx|) (xx|x) (x|xx) (|xxx)

The indistinguishable particles can be discrete quanta occupying a single vibra-
tion in a molecule. The 3-flea/2-dog model becomes a molecule with two identical
quantized vibrations. The three photons then distribute into these two vibrational
modes following Bose Einstein statistics to give the four states.

The number of Bose–Einstein states in this case arranges the quanta (x) and parti-
tions (|) along a line to determine all possible arrangements. The four Bose–Einstein
states are

Xxx| xx|x x|xx |xxx

There are 4! ways of arranging these four entities. The order of the x’s on the line
must be factored out by dividing by 3!. Only 2–1 = 1 “1” entities are required to
create the two separate vibrational modes. The factor (1!)[not 2!] must be factored

4!
3!1! = 4

The equation for the number of states when there are n quanta in g identical
oscillators is

� = (n + g − 1)!
n!(g − 1)!

This formula replaces the gn total states for Boltzmann statistics and is useful
when there are a relatively small number of oscillators and quanta. The total states
are used to determine the distribution of energy among vibrational modes in a single
molecule. For systems where both g and n are large, the n and g for the maximal
states are found using undetermined multipliers and the constraints

N =
∑

ni

E =
∑

niεI =
∑

niiε

where ε is the energy of a single quantum. The ni for the distribution with the largest
number of states is

∂

∂ni

[
ln

(
(ni + g − 1)!

ni!(g − 1)!
)

+ α (N −�ni)+ β (E −�niεi)

]
= 0

ln (ni + g − 1)− ln (ni)− α − βεi = 0
ni

ni + g − 1
= e−αe−βεi
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The ni in this equation is that for the distribution giving the maximal number of
states subject to the two constraints. It is useful when g and ni are large. In this case
g–1 ≈g. The equation is solved for ni

ni = (ni + g)e−αe−βεi

ni = ge−αe−βεi

1 − e−αe−βεi
= g

eαeβεi − 1
g is the degeneracy of each of the energy states. If g can vary with energy level,

the degeneracy becomes gi and

ni

gi
= [eαeβεi − 1]−1

The constant α in Boltzmann statistics is determined from the constraint

N = �ni

Evaluation of α for the Bose–Einstein statistics is more complicated. Since these
statistics often used when both N and g are small, it is then convenient to use the
total number of states. A molecule containing g equivalent vibrational modes that
can contain a total of N quanta (bosons) has

(N + g − 1)!
N!(g − 1)!

total states.

10.9 Fermi Dirac Statistics

The dog-flea model considered the situation where a large number of fleas (n) were
present on a small number of dogs (g) and the number of states was based on the
number of arrangements for the N fleas. For n1 fleas on dog 1,

� = N!
n1! (N − n1)!

Fermi Dirac statistics are used when the number of dogs is large compared to the
number of fleas. For example, each dog might have no more than one flea. In this
case, the number of states is determined by the number of dogs that have a flea and
the number that don’t

� = g!
(g − n)!n!

Fermi Dirac statistics are required for electrons (fermions with spin 1/2) since
electrons with the same quantum number can’t occupy the same orbitals. This is the
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Pauli exclusion principle. g is now the number of orbitals. Each electron energy level
can have two orbitals (electron spins +1/2 and –1/2), i.e., g=2. Both can be occupied
(n=2), one can be occupied (n=1) or the orbital can be empty. The number of states
is repeated for each energy level so that the total number of states is a product

�1�2..�e . . . = g!
(g − n1)!n1!

g!
(g − n2)!n2! . . .

g!
(g − ni)!ni! . . .

The logarithm of the states can be differentiated with respect to ni to determine
the value that gives the maximal states subject to the constraints∑

ni = N

∑
ni,εI = E

For the ith level, (1 particle maximum occupancy) the only term in the logarith-
mic sum subject to differentiation with ni is

ln
g!

(g − ni)!ni!
and

∂

∂ni

[
ln

g!
(g − ni)!n!i + α (N −�ni)+ β (E −�niεi)

]
= 0

+ ln (g − ni)− ln (ni)− α − βεi = 0

ln
ni

g − n
= −α − βεi

ni

g − ni
= exp ( − α) exp )− βεi )

rearranging to

ni = g exp ( − α) exp ( − βεi)

1 + exp ( − α) exp (−βεi)
= g

exp (α) exp (+βεi)+ 1

β=1/kT and the constant α is determined since, at T=0 K, the energy levels will
be filled continuously from the lowest level with n=1 to some level m with energy
εm. ni=1 for each level below m and 0 for every level above m. This is possible if α
= –βεm. At the threshold with T = 0 K,

exp (−βεm) exp (βεm) = 1

and level m is filled

n = 2/(1 + 1) = 1
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For smaller ε (i<m), the exponential argument is positive and infinite when
T=0 K. The exponential in the denominator with argument ε–εm>0 becomes
vanishingly small and n =g. For ε>εm, the exponential is very large and n=0.

The analysis reflects that the levels begin to “fill” with electrons starting with
lowest energy and continuing until all the electrons are added at some energy Cm.
Higher energy levels are unoccupied at 0 K. As T increases, some electrons from
the highest occupied levels move into the unoccupied levels to produce a range
of state populations with energy rather than the abrupt change from populated to
unpopulated states observed at absolute zero.

10.10 Other Ensembles

The canonical ensemble has a fixed number of molecules per system and a constant
total energy. Formally, the systems of the ensemble are in thermal contact and energy
moves across the boundaries to establish the distribution populations.

The grand canonical ensemble allows both particles and energy to move between
communicating systems in the ensemble, while the total energy and particles are
constant. Particle transfer between systems requires an additional constraint. Just as
the total energy sums products

niεi

particle transfer uses the chemical potential

μini

Since

μα kT ln c

cα eμ/kT = λ

A grand canonical system has probabilities with Boltzmann factors for both
energy and chemical potential

exp ( − βε) exp ( + βμ)

The full partition function must include exponentials with all possible energies
and all possible molecules, i.e., a double summation

fi,N = e
Ei
kT e

Nμ
kT∑

N

∑
i

e
Ei
kT e

μN
kT

This formidable equation is simplified when the system is an enzyme with bind-
ing sites. The particle is then a substrate molecule and it is convenient to assume
a single energy (a binding energy). In this case, the partition function for a protein
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with a single binding site is

1 + exp (βμ) exp ( − βε)

The isobaric–isothermal ensemble permits energy flow via volume changes

fi,v = e
Ei
kT e

pv
kT∑

v

∑
i

e
Ei
kT e

pv
kT

where p is a single molecule pressure obtained from the macroscopic pressure by
dividing by Avogadro’s number.

Different ensembles have different energies but, in general, each of these energies
is incorporated into the probability as a Boltzmann factor. The partition function
then sums over all possible energies.

Problems

10.1 Five molecules can exist as either A or B isomers. The isomers have equal
energies.

Determine the fraction of time the system has a distribution of 2 A and 3 B
isomers if all states are equally probable.

10.2 Determine the distribution with maximal for a system having three equal
energy isomers (1,2,3) using the undetermined multiplier technique and the con-
straint for the total isomers, N = n1 + n2 + n3.



Chapter 11
Applied Boltzmann Statistics

11.1 Boltzmann Statistics for Two-Energy Levels

Systems with only two or three possible energies illustrate the Boltzmann dis-
tribution. The probabilities for such systems determine average thermodynamic
parameters. The intimate connection between the energies of individual molecules
and the macroscopic thermodynamic parameters makes statistical thermodynamics
a powerful analytical technique.

An unpaired electron in a molecule like NO has two possible electron spins with
quantum numbers +1/2 or −1/2 with the same energies, ε,. At constant T, each spin
state (+1/2 or −1/2) has the same Boltzmann factor

e− ε′
kT

Since only two states are possible, the partition function sums their Boltzmann
factors

q = e− ε
kT + è− ε

kT = 2e− ε
kT

The probability for an electron with spin +1/2 is its Boltzmann factor divided by
a two-term partition function

p+ = e− ε
kT

2e− ε
kT

= 1

2
= 0.5

The electron with +1/2 spin is found 50% of the time. The probability for the
electron with -1/2 spin is also 0.5

p− = e− ε
kT

2e− ε
kT

= 1

2

The electron with two equal energy states is equivalent to the two isomer model
with two equi-energy isomers. The two electron states are equally probable; half of
a set of electrons have the +1/2 quantum number.

Because the probabilities are formed as a ratio, the Boltzmann probabilities are
often simplified by choosing a reference energy as the state of zero energy. For
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the spin probabilities above, the exponentials in the numerator and denominator
canceled because they were identical. Their energy could simply be selected as a
reference energy of zero. In this case, the probability of the +1/2 state is

e0

e0 + e0
= 1

1 + 1
= 0.5

When the energies differ, one energy can be selected as the reference energy.

11.2 Unpaired Electrons in a Magnetic Field

If NO molecules with their unpaired electrons are placed in a magnetic field, the
energy of the electrons depends on both the magnitude of the field and the spin
quantum number. The common energy splits into two energies (Fig. 11.1).

Fig. 11.1 Two electron energy states generated in a magnetic field

Electrons with spin -1/2 have an energy below the zero field reference energy
ε− = −ε, while the electrons with spin +1/2 increase their energy to ε+ = +ε.
The zero field energy is the reference. The Boltzmann factors for the negative and
positive electron spins e− ε−

kT = e− −ε
kT are and

e− ε+
kT = e− +ε

kT

respectively. The two-term partition function is

q = e
ε

kT + e− ε
kT

The first Boltzmann factor is greater than 1. However, it is only a number;
the probability is formed from a ratio of numbers and is always less than 1. The
probability that the electron has the negative (lower) energy is

p− = e+ ε
kT

q
= e+ ε

kT

e+ ε
kT + e− ε

kT

while the probability that the electron has the (positive) higher energy is

p+ = e− ε
kT

q
= e− ε

kT

e+ ε
kT + e− ε

kT
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The electron is in one of these two states with 100% probability:

e+ ε
kT

q
+ e− ε

kT

q
= q

q
= 1

Numerical probabilities are determined for the special case where the magnetic
field makes

|ε| = kT

The exponential arguments are then +1 and -1, respectively, and the probability
of finding the lower energy state is

p− = e+1

e+1 + e−1
= 2.73

2.73 + .37
= 0.88

while the probability of the high-energy state is

p+ = e−1

e+1 + e−1
= .37

2.73 + .37
= 0.12

The two probabilities sum to 1. ε= kT strongly favors the population of the lower
energy state. This kT provides insufficient energy to create a large population of the
high-energy state.

The probabilities also give the total number of molecules that have a given spin in
the magnetic field. For 0.88 probability, 0.88 mol/1 mol of electrons have the lower
energy and 0.12 mol have the high energy. For n total moles

n+ = np+
n− = np−

respectively.
Since the probabilities are always ratios of Boltzmann factors, the choice of ref-

erence state is completely arbitrary. If the lower energy is selected as the reference
energy (0), the upper energy is +2ε higher. With ε = kT , the probability for the
lower energy states are

p− = e0

e0 + e−2
= 1

1 + .135
= 0.88

p+ = e−2

e0 + e−2
= 0.12

These probabilities are temperature dependent. An increase in temperature moves
the numerical values of the Boltzmann factors and the probabilities toward equal-
ity. At very high temperatures, both exponentials approach 1 and the probabilities
become equal. There is sufficient energy to create either spin state.

Boltzmann probability always decreases with increasing energy. This equilib-
rium condition is violated by some non-equilibrium systems. A two-energy level
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laser system might undergo an inversion where the upper energy state population
exceeds that of the ground state. Since the energies are fixed, the inversion has
been explained with a negative absolute temperature that reverses the arguments in
the Boltzmann factors. Negative temperature is simply a construct. The Boltzmann
factor is fully valid only for systems at equilibrium. The laser is a driven system.

A system with three possible energies
ε,0, − ε

has a partition function

q = e− ε
kT + e

0
kT + e− −ε

kT

The probabilities for finding the negative, 0, and positive energies are

p− = e+ ε
kT

q

#p0 = 1

q

p+ = e− ε
kT

q

respectively. For |ε| =kT, the probabilities for the three states are

p− = 2.73

4.10
= 0.66

p0 = 1

4.10
= 0.24

p+ = 0.37

4.10
= 0.09

The ratios of probabilities for adjacent energy states are 0.37 reflecting the
common energy difference between them.

11.3 The Average Energy

A two-state model where each state has the same energy ε′ has an average energy
ε′ since this is the only energy possible. In a magnetic field, when |ε| = kT , 88%
of the molecules have the lower energy and the average energy is closer to – but not
equal to it since the remaining 0.12 high energy electrons raise the average.

The energy averaging procedure is like averaging examination grades. In a class
of 100 students, 25 students earn a grade of 80, 50 earn a grade of 90, and the final
25 earn a grade of 100. The examination average is the sum of all grades divided by
the number of students. For 25 80’s, 50 90’s, and 25 100’s

G = 25 × 80 + 50 × 90 + 25 × 100

25 + 50 + 25
= 9000

100
= 90
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This average is a probability equation. The probability that one student received
80 is 0.25 (25/100). The probability a single student received 90 is 0.5 (50/100). The
25 students who received 100 generate a probability of 0.25 (25/100). The average
grade is

<G> = 25

100
80 + 50

100
90 + 25

100
100 = p8080 + p9090 + p100100

= 1/4 (80)+ 1/2 (90)+ 1/4 (100) = 90

In a class of five students who receive grades of 70, 80(2 students), 90, and 100,
the probabilities are

p70 = 1

5
p80 = 2

5
p90 = 1

5
p100 = 1

5

and the class average is

<G> =
∑

piGi = 0.2 (70)+ 0.4 (80)+ 0.2 (90)+ 0.2 (100) = 84

The average need not correspond to one of the actual grades.
The probabilities convert the statistical behavior of the 100 students to the behav-

ior of a single “average” student. Each student has a 25% chance of receiving an 80,
a 50% chance of receiving a 90, and a 25% chance of receiving 100. These statistics
improve with increasing numbers of matched students.

The set of probabilities can be used to determine any other functions of grades.
For example, the average squared grade is

<G2> = p80

(
802

)
+ p90

(
902

)
+ p100

(
1002

)
The average energy for the two-state system with

|ε| = kT

and probabilities

p− = 0.88 p+ = 0.12

at 300 K, the energies for the two states are

ε− = −kT = −1.38 × 10−23 (300) = −4 × 10−21 J molecule−1

ε+ = +kT = +1.38 × 10−23 (300) = +4 × 10−21 J molecule−1
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respectively. The average energy is the sum of the products of the probability that a
molecule has a certain energy and its energy

<ε> = 0.88
(
−4 × 10−21

)
+ 0.12

(
+4 × 10−21

)
= (−3.52 + 0.48)× 10−21

= −3.04 × 10−21J molecule−1

or

<ε> = (−kT) (0.88)+ (+kT) (0.12) = −0.76kT

The average value is negative and relatively close to the energy of the negative
spin state because the larger percentage of the electrons have this energy. The 12%
of molecules with positive spin raise the average 0.48 × 10 −21 J above the energy
of the lower state.
<ε> is the average energy for a single molecule. Multiplication by Na gives the

average energy per mole

<E> = Na〈ε〉

For this example, the average energy is

<E> =
(

6.02 × 1023
) (

−3.04 × 10−21
)

= −1830 J mol−1

11.4 A Differential Expression for Average Energy

For a two-state system with energies ε− and ε+, the average energy expression is

<ε> = e− ε−
kT ε− + e− ε+

kT ε+
e− ε−

kT + e− ε+
kT

The numerator is similar to the partition function in the denominator. Each term
in the numerator is multiplied by a different energy. This numerator is generated
directly by differentiating the denominator with respect to

β = 1

kbT

The partition function
q = e−βε− + e−βε+

is differentiated with

− ∂

∂β

to give terms

e−βεi [+εi]
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and the negative derivative of the partition function

∂q

∂ (−β) = − ∂q

∂β
= − ∂

∂β

[
e−βε− + e−βε+] = −e−βε− (−ε−)+ e−βε+ (−ε+)

= ε−e−βε− + ε+e−βε+

is the numerator in the average energy expression.
The average energy is

<ε> = − ∂q
∂β

q

or

<ε> = −
∂q
q

∂β
= −∂ ln (q)

∂β

This differential expression is applicable to any partition function for discrete
or continuum energies. If the partition function can be added or integrated to
give a compact function, that function is differentiated to give the average energy.
This is particularly important when the partition functions involve integrals over a
continuum of energies.

Some partition functions for different types of independent energies are products
of partition functions. Independent rotational and vibrational partition functions are
products

qrotqvib

The logarithm is a sum

ln (qrotqvib) = ln (qrot)+ ln (qvib)

Each term, when differentiated, gives an average energy

<ε> = <εrot>+<εvib>

11.5 Average Entropies and Free Energies

The canonical ensemble is a mixture of molecules with different energies. If
molecules with different energy are considered distinguishable isomers, the system
has a distribution of isomers. The two energy model is a mixture of two such energy
isomers. If the isomers are distinguishable, the system has an entropy of mixing
determined from the probabilities for each species.

The “mixture” of molecules with ε− = −ε and ε+ = ε, i.e., two isomers, has a
single particle entropy of mixing

S = −k
∑

Xi ln Xi = −R [Xi ln X1 + X2 ln X2]

= kb
[
p1 ln (p1)+ p2 ln (p2)

]
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The mole fractions are equivalent to the probability that a given “isomer” is
chosen when a single molecule is selected.

For two energy isomers, the entropy is

S = −kb

2∑
i=1

Xi ln Xi = −R [X1 ln X1 + X2 ln X2]

For

ε− = −kT ε+ = +kT

And probabilities p− = 0.88 and p+ = 0.12, the entropy for this system

S = −k

[
N∑

i=1

pi ln pi

]
= −k [0.99 ln 0.99 + 0.12 ln 0.12] = 0.366k

is less than the equal probability distribution

S = kb ln (2) = 0.69kb

The equal probability system has the largest entropy.
The Boltzmann probabilities

pi = e− εi
kT

q

are substituted into the entropy of mixing for the two-state model entropy

<s> = −kb
[
p+ ln p+ + p− ln p−

] = −kb

[
e−βε+

q
ln

[
e−βε+

q
+e=βε−

q
ln

[
e−βε−

q

]

and separate as

ln pi = ln
[
e− εi

kT

]
− lnq = − εi

kT
− lnq

The entropy

<S>

kb
= − [

p+ ln p+ + p− ln p−
] = −p+

[
−ε+

kT

]
+ p+ln q − p−

[
−ε−

kT

]
+ p− ln q

separates into groups of terms in ε and in ln(q), respectively. Since the probabilities
sum to unity

p+ ln q + p− ln q = [
p+p−

]
ln (q) = ln q
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The remaining terms give the average molecular energy

<ε> = p+ε+p−ε−

and the entropy is
<s>

k
= <ε>

kT
+ ln q

Both sides are now multiplied by k to give an average entropy

<s> = +<ε>
T

+ kln q

The molar Helmholtz free energy

A = E − TS

is converted to a molecular free energy and solved for the molecular entropy

a = ε − Ts

s = ε/T − a/T = <ε>/T− < a > /T

Comparing this with the distribution entropy

<s> = <ε>/T + k ln (q)

gives

<a> = −kT ln (q)

The energy and entropy equations can be used to show

β = 1/kT

The change in entropy with energy

dE = TdS − PdV = TdS

dS = dE/T

dS/dE = 1/T

is compared with the ratio

d<S>

d<ε>
= 1

T
Since

<s> = kβ<ε>+ k ln (q)

1/T = d<S>/d<ε> = d[kβ<ε>+ k ln (q)]/d<ε> = k + 0

andβ = 1/kT .
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11.6 The Chemical Potential

The chemical potential is an energy associated with the addition or subtraction of
particles from a system. The chemical potential is a free energy per mole or a free
energy per particle. The energy change in the system is the product

μdN

and the thermodynamic internal energy change is

dE = TdS − PdV + μdN

Since

dE =
(
∂E

∂S

)
V ,N

dS −
(
∂E

∂V

)
S,N

dV +
(
∂E

∂N

)
S,V

dN

the thermodynamic chemical potential is

μ =
(
∂E

∂N

)
S,V

at constant volume and entropy.
A system contains two molecules (A1 and A2) that absorb discrete quanta of

energy, C. The entire system has two such quanta so only three states are pos-
sible: (A1, A2) = (2, 0), (0, 2), and (1, 1). The quanta are indistinguishable
(a Bose–Einstein system).

The entropy of this system is

S = kln(�) = kln(3)

The chemical potential is the energy change on adding a particle without chang-
ing V or S. If a third molecule A3 with no energy (0 quanta) is added to the system at
constant volume, the total energy of the system is unchanged (2{C}). However, the
number of states increases to 6; (A1, A2, A3) = (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0),
(1, 0, 1), and (0, 1, 1). The entropy increases to

S = kB ln (�) = kBln(6)

The definition of the chemical potential requires constant entropy. The addition
of A3 has not changed the internal energy but has changed the entropy.

The proper conditions are met using a hypothetical situation. A3 is added to the
system with a negative quantum, i.e., an energy, –ε. When the molecule is added the
total quanta in the system decrease from 2 to 1. The internal energy of the system
decreases. At the same time, only one quantum defines the states of the system.
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Only the following three states are now possible: (A1, A2, A3) = (1, 0, 0), (0, 1, 0),
and (0, 0, 1). The entropy is constant on addition of the negative energy molecule

S = kbln(�) = kbln(3)

The conditions to define a chemical potential on the addition of one particle are
now satisfied. The energy has decreased by

− ε

at constant volume and entropy. The chemical potential is the change in energy
divided by the change in molecules at constant entropy and volume

μ =
(
∂E

∂N

)
S,V

= −ε
1

= −ε

The chemical potential, an intensive quantity, decreases on the addition of a
molecule. If this energy is inserted into a Boltzmann factor

exp [−( − βε)] = exp (βμ)

The Boltzmann factor in chemical potential has a positive argument.
The Boltzmann factor increases with particles. Two particles in the system have

a factor [
exp (βμ)

]2

The Boltzmann factor with positive argument is consistent with the thermody-
namic expression for free energy (for one particle)

μ = kT ln (c)

Exponentiating gives
exp ( + βμ)

The probability for N particles is proportional to

e
+ μN

kBT

11.7 Multi-particle Systems

Two independent identical molecules each have their own partition function. A new
partition function, Q, generated from all total energies of the system is equivalent to
the product of the two single molecule partition functions.

For two molecules with two-energy levels, ε1 and ε2, each molecule has a
partition function,

q = e−βε1 + e−βε2

The total energies for the two molecules are
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(1) molecules 1 and 2 with energies ε1;
(2) molecules 1 and 2 with energies ε2;
(3) molecule 1 with energy ε1 and molecule 2 with energy ε2; and
(4) molecule 1 with energy ε2 and molecule 2 with energyε1.

The last two states have the same energy

ε1 + ε2 = E12 = ε2 + ε1

so their Boltzmann factors are identical and can be combined. The two states with
identical energy are degenerate states. The combined energy partition function

Q = e−βE11 + 2e−βE12 + e−βE22

has E11 = 2ε1, E12 = ε1 +ε 2, and E22 = 2ε2.
This result can be obtained by squaring the single particle partition function

Q2 =[ exp ( − βε1) + exp (βε2)]2

exp (−2βε1)+ 2 exp (−β {ε1 + ε2})+ exp (−2βε2)

The Boltzmann probabilities include both molecules. For both molecules with ε1

p11 = e−βE11

e−βE11 + 2e−βE12 + e−βE22

The probability of molecules with ε1 and ε2 in either order requires the
degeneracy

p12 = 2e−βE12

Q

The two molecule partition function is the product of the two single particle
partition functions

Q = q2

For N independent molecules, the system partition function is

Q = qN

The energy for the N molecules is

E = −
(
∂ ln Q

∂β

)
=

(
∂ ln qN

∂β

)
= −N

(
∂ ln q

∂β

)
= N<ε>

Each molecule contributes its average energy to the total.
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The partition function is a sum of numbers, i.e., a weighted count of states. If
the particles are distinguishable, their order is incorporated into this sum. The two
molecule system had one doubly degenerate state when one molecule had energyε1
and the second had energy ε2. If the molecules are indistinguishable, this would
be considered one state. The partition function is converted from distinguishable to
indistinguishable by dividing by the number of orderings possible (2!)

Qind = q2/2!

N indistinguishable particles with N! Orderings have a corrected (for indistin-
guishabilty) Boltzmann partition function

Qind = qN/N!

N! does not change the average energy

ln Q = ln qN − ln N! = N ln q − ln N!
<E> = −N

(
∂l ln q

∂β

)
since N! is constant.

11.8 Energy Manifolds

A single molecule can have translational, rotational, vibrational, and electronic ener-
gies. To a good first approximation, these energy manifolds are independent. The
partition function for the rotational energies and the partition function for vibrational
energies are generated separately. The product of all these independent energy parti-
tion functions within the single molecule are multiplied to produce the full partition
function for a single molecule

Q(1 molecule) = qtransqrotqvibqelec

A molecule with only two possible rotational energies,εr1 and εr2 and two
possible vibrational energies εr2 and εv2 gives rotational and vibrational partition
functions

[e−βεr1 + e−βεr2 ]

[e−βεv1 + e−βεv2 ]

Energies are added to get the total molecular energy. One molecule now has four
possible energy states and the partition function for the two molecule system is

Q = e−βεr1 e−βεv1 + e−βεr1 e−βεv2 + e−βεr2 e−βεv1 + e−βεr2 e−βεv2
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Which factors as

Q(1 molecule) = qrotqvib

[e−βεr1 + e−βεr2 ][e−βεv1 + e−βεv2 ]

= exp [ − β(εr1 + εv1)] + exp [ − β(εr1 + εv2)]

+ exp [ − β(εr2 + εv1)] + exp [ − β(εr2 + εv2)]

All possible energy combinations are generated by the product.
The product partition function generates a sum of independent translational, rota-

tional, vibrational, and electronic energies. Real molecular systems can include
some coupling between energy manifolds.

Problems

11.1 A quantum harmonic oscillator has large quanta so that only three-energy levels
are populated. The molecule may have 0, 1, or 2 quanta exclusively. The Boltzmann
factors for 0, 1, and 2 quanta are

e− ε0
kT = 1 e− ε1

kT = 0.2 e− ε2
kt = 0.04

a. Determine the partition function for this harmonic oscillator.
b. Determine the total probability that a molecule has either one or two quanta.
c. Determine the average number of quanta in a single harmonic oscillator

molecule.
11.2 A molecule has only three allowed energy states, ε0 = 0, ε1 = 1kT , ε2 =

2kT with Boltzmann factors

e−βε0 = 1 e−βε1 = 0.4 e−βε2 = 0.2

a. For a system with 80 molecules, determine the numbers of molecule with
energies ε0,ε1,ε2 for the most probable distribution.

b. Determine the total average energy for one molecule using the most probable
distribution from (a) in terms of kT.

c. Write an expression for the total number of states associated with the most
probable distribution.

11.3 A molecule can exist as three isomers. The A isomer has a reference energy,
ε=0 (exp(0/kT) = 1. The B isomer has an energy, ε1 = 0.5kT[exp(–0.5kT/kT)
= 0.6] and the C isomer has an energy, ε2 = 0.9kT[exp(–0.9kT/kT) = 0.4] at a
temperature T.

a. Determine the probability of selecting an A isomer.
b. Determine the average energy for a single molecule.
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c. Determine the entropy and Helmholtz free energy for the single molecule if the
temperature is 300 K and k = 1.4 × 10-23 J K–1 molecule–1.

11.4 A system has energies
ε0,ε1,ε2 Give

a. the probability of finding a molecule in the lower energy state;
b. the average energy of the system;
c. the Helmholtz free energy for one molecule; and
d. the partition function Q for 10 indistinguishable particles.



Chapter 12
Multi-state Systems

12.1 The Harmonic Oscillator

The number of Boltzmann factors in the partition function increases with increasing
energy states. The higher energy states might have small Boltzmann factors but
are included for completeness. This leads to infinite sums that can sometimes be
reduced to a simple partition function to calculate average energy, entropy, and free
energy.

A classical vibrating molecule obeys Hooke’s law for a displacement x–0

F = −kx

All displacements x are possible to give a continuum of possible energies.
A quantum mechanical oscillator, by contrast, accepts only discrete quantized

energies that obey the equation

εv =
(

v + 1

2

)
hν =

(
v + 1

2

)
h

2π

√
k

μ
= (v+1/2) hν

v = 0,1,2, . . .

For vibration of two masses m1 and m2 connected by a bond, μ is a reduced mass

1/μ = 1/m1 + 1/m2

The mathematics is equivalent to a single mass μ bound to a fixed wall. k is the
Hooke’s law force constant. h is Planck’s constant and ν is the vibrational frequency
that determines the energy.

The energy of the vth energy level is

εv = ε 1
2

+ vh ν

Each term has energy ε1/2 = 1/2hν and the energy for each level can be broken
into a constant term plus a v-dependent energy. Since the constant energy appears
in each term, it can be factored to give a variable energy set

εv = hν(v + 1/2)

181M.E. Starzak, Energy and Entropy, DOI 10.1007/978-0-387-77823-5_12,
C© Springer Science+Business Media, LLC 2010
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The constant hν/2 is then added to the average energy determined for the Cv.
The partition function for these energies is

q =
∞∑

v=0

e
− vhν

kbT

or

q =
∞∑

v=0

xv

with

x = exp ( − βhν)

Since

1

1 − x
= 1 + x + x2 + . . . =

∞∑
i=0

xi

The infinite sum reduces to

q = 1

1 − x
= 1

1 − e−βhν

Its logarithm

ln q = ln
1

1 − e−βε = − ln
(
1 − e−βε)

determines the average energy

< ε > = −∂ ln q

∂β

= ∂

∂β
ln

[
1 − exp ( − βhν)

] = [
1 − exp ( − βhν)

]−1 exp ( − βhν)(hν)

The numerator and denominator are both multiplied by

e+βhν

to give

< ε >= hν

eβhν − 1

and a total energy

< ε >= hν

2
+ hν

eβhν − 1
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12.2 The Classical Limit

The average energy for a quantum harmonic oscillator for quantized energies, hν,
differs from the predictions of classical equipartition theory

ε = 2
1

2
(kT) = kT

for one molecule. The difference is accentuated at low temperatures where the quan-
tum partition function has few significant terms and produces very low energies. At
higher temperatures, the quantum average energy approaches the classical value.
The exponential argument

ε/kT

decreases with temperature. The exponential is approximated by the first two terms
of a Taylor expansion:

eβε = 1 + βε

With this approximation, the average energy expression reaches the classi-
cal limit

< ε >= hν

1 + hν
kT − 1

= hν
hν
kT

= kT

independent of the vibrational frequency.
This classical limit represents an upper bound for the harmonic oscillator energy

when there is enough thermal energy (kT) to populate the discrete energy levels.
The heat capacity for a classical oscillator is the derivative of the average energy

with respect to temperature:

Cv =
(
∂ < ε >

∂T

)
V

=
(
∂ (kT)

∂T

)
V

= k

The heat capacity for the quantum oscillator is

Cv =
(
∂ < ε >

∂T

)
v

The derivative requires three chain rule operations. The derivative of the paren-
thetical term

d

dT

(
ehν/(kT) − 1

)−1 = −1
(

ehν/(kT) − 1
)−2

is followed by the derivative of the term in brackets (the exponential) and then the
derivative of the argument of the exponential

d

dT

[
ehν/(kT) − 1

]
= ehν/(kT) hν

−kT2
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to give a heat capacity

Cv =
hν

kT2 hνehν/(kT)(
ehν/(kT) − 1

)2

12.3 The Helmholtz Free Energy and Entropy

The Helmholtz free energy for the harmonic oscillator

< a >= −kT ln q = +kT ln
(
1 − e−βε)

determines the work that the single molecule can provide. The energy ε is constant.
Free energy differences appear only for temperature differences.

The free energies when ε = kT at 600 K for 600 K and 300 K are

<a(600)> = k (600) ln (1 − e−1) = 275 k

<a(300)> = k (300) ln (1 − e−2) = 44 k

275k – 44k = 231k of the free energy within one molecule can be released to the
surroundings as the system temperature decreases.

The entropy for the harmonic oscillator is determined from the thermodynamic
relation

< s >= < ε > − < a >

T

as

< s >= −k ln
[
1 − e−βhν

]
+

hν
T

eβhν − 1

12.4 Einstein’s Crystal Heat Capacity

The law of Dulong and Petit states that all atomic crystals have a heat capacity of
3R (25 J K−1mol−). This remarkable observation means that a crystal with heavy
atoms, e.g., gold, has exactly the same ability to absorb heat as a crystal of light
atoms such as lithium. A single atom has a heat capacity of 3k.

An atom in a crystal differs from an atom in a gas since it is trapped by its neigh-
bors and cannot wander freely. The atom can store energy, however, by moving
within the cavity formed by its neighbors. These oscillatory motions are effec-
tively vibrations. The total equilibrium energy of one atom in the crystal with three
vibrational directions is
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< ε >= 3kT

The heat capacity is determined as the derivative of this energy with respect to
the temperature

C = d < ε > /dT = 3k

This constant heat capacity is the law of Dulong and Petit for a single atom.
Classical physics was unable to explain the temperature dependence of atomic

heat capacities. While C = 3k at higher temperatures, it shows a steep decrease with
decreasing temperature and approaches zero at T approaches 0 K (Fig. 12.1).

Fig. 12.1 Atomic crystal heat capacities as a function of temperature

Einstein invoked the quantum oscillator to explain the heat capacity decrease.
The three atomic vibrations have a total quantum average energy

< ε >= 3ε

eβε − 1

with C= hν. The heat capacity of the crystal at any temperature is the temperature
derivative of this average energy

Cv = 3kB

(
hν

kBT

)2 eβhν(
eβhν − 1

)2

At the lower temperatures, fewer energy quanta are available to raise the
oscillator energy by a discrete amount. The crystal absorbs less energy at these
temperatures.
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The Debye theory for heat capacities uses vibrations for the entire crystal rather
than the vibrations of a single atom in a cavity to give a more accurate description
of the decrease in heat capacity with temperature.

12.5 The Grand and Petit Canonical Partition Functions

The Boltzmann factor

e−βεtot

generates an energy distribution. The grand and petit canonical partition functions
generate both energy and particle distributions. Energies and chemical potentials
are required to produce the distribution. The Boltzmann factors include both these
energies

e−βεe
μN
kT

where N is the number of particles in the system.
The probability of finding a system with energy E and N particles is

p(E,N) = e−βEeβμN

�

with

� =
∑

E

∑
N

e−βEeβμN

Although this double summation looks formidable, the most useful summations
involve only a few terms. A petit canonical ensemble is used when a small number
of ligands bind to a protein or surface site.

A protein has a partition function qp incorporating all the energies of that protein.
If these energies are not altered when ligand binds to the protein, the bare protein is
assigned a reference energy of 0 and a Boltzmann factor qE = 1. Since these protein
energies and qE are also present when a ligand binds, qE cancels from any ratios,
e.g., probabilities.

A binding ligand brings two energies to the protein as system. A chemical poten-
tial is necessary to bring the ligand from solution to the site. A binding energy, εb,
is included for kinetic energy changes on docking. The petit partition function for a
protein with one ligand binding site has only two terms, one for the protein and one
for the protein with bound ligand

ξ = 1 + exp (−βεb) exp (+βμ)
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or

ξ = qE + qEe−βεb e+1βμ

qE cancels for probabilities. The probability that the protein has a bound ligand is

pES = qEe−βεb eβμ

qE
[
1 + e−βεb eβμ

] = e−βεb eβμ

1 + e−βεb eβμ

or
pES = qbλ/ (1 + qbλ)

where qp = exp(βεb) λ = exp(+βμ)
The probability of ligand-free protein is

PE = 1/ (1 + qbλ)

while the probability for the protein–ligand complex is

pES = qbλ/ (1 + qbλ)

For a protein with two identical binding sites, two bound ligands produce the
Boltzmann factor

λ2 = e−β2εb eβ2μ

and petit partition function

ξ = 1 + 2qbλ+ q2
bλ

2

The identical sites are degenerate. Their Boltzmann factors are identical for a
single ligand binding to either site.

12.6 Multiple Sites

An ensemble of proteins with two binding sites has proteins with 0, 1, or 2 bound
ligands. The average number of bound ligands lies between 0 where no ligands are
bound to any protein to 2 where every protein has two ligands. The probabilities
for a single protein are used to determine an average that lies between these two
extremes.

The ligand-free protein is the reference Boltzmann state (qE = 1). A ligand S
binds to either identical site with binding energy, εb, and chemical potential, μ, to
give two identical Boltzmann factors qbλ. The state with two bound ligands has
twice the energy and chemical potential to give a squared Boltzmann factor

q2
bλ

2
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The petit canonical partition function

ξ = 1 + 2qbλ+ q2
bλ

2 = (1 + qbλ)
2

factors into two identical single site partition functions since each site is indepen-
dent. Two sites with different energies would not reduce to a squared expression. A
“system” that has N equal binding sites has partition function

ξ = (1 + qbλ)
N

The partition function is the same for N independent sites on one protein or
N single site proteins. The partition function recognizes only their independence.
Expanding the partition function for three independent sites

(1 + qbλ)
3 = 1 + 3qbλ+ 3 (qbλ)

2 + (qbλ)
3

reveals the degeneracies. A protein with 2 ligands and 1 free site has degeneracy

3!/2!1! = 3

A protein with two different binding sites has energy and chemical potential εb1
and μ1 for site 1 and εb2 and λ2 for site 2 has four distinct terms

1 + qb1λ1 + qb2λ2 + qb1λ1qb2λ2

= (1 + qb1λ1) (1 + qb2λ2)

Each independent site supplies its own partition function.

12.7 Binding Averages

The three site partition function

ξ = 1 + 3qbλ+ 3q2
bλ

2 + q3
bλ

3

has probabilities for 0,1,2,3 bound ligands

p0 = 1/ξ

p1 = 3qbλ/ξ

p2 = 3qb
2λ2/ξ

p3 = qb
3λ3/ξ

ξ = 1 + 3qbλ+ 3q2
bλ

2 + q3
bλ

3
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The average number of ligands bound to a single protein lies between 0 and
3 for this protein. The average substrate bound is the sum of the products of the
probabilities times the number of substrate for that state

< n > = 0p0 + 1p1 + 2p2 + 3p3 = 0(1) + 1 (3qbλ)+ 2
(
3q2

bλ
2
) + 3

(
q3

bλ
3
)

1 + 3qbλ+ 3q2
bλ

2 + q3
bλ

3

= 3qbλ
[
1 + 2qbλ+ q2

bλ
2
]

(1 + qbλ)
3

= 3qbλ

1 + qbλ

The averaging is the probability for binding at one independent site

qbλ

1 + qbλ

times the total sites (3).

3qbλ

1 + qbλ

For the three site enzyme, a Boltzmann factor

qbλ = 1

gives

< n >= 0 + (1)(3) + (2)(3) + (3)(1)

1 + 3 + 3 + 1
= 12

8
= 1.5

Since a bound site is as likely as an empty site with this Boltzmann factor (they
have the same energy), half of the available sites on the protein are bound.

12.8 A Differential Expression for Average Binding

The numerator for average number differs from the denominator only by the num-
ber of ligands in each term. This number is also a power of the Boltzmann factor.
Differentiation of the partition function with λ reproduces the numerator when the
result is multiplied by λ

∂

∂λ

[
1 + 3qbλ+ 3qb

2λ2 + qb
3λ3

]
= 0 + (1)3qb + (2)3qbλ

1 + 3q3
bλ

2

λ
∂ξ

∂λ
= (1)qbλ+ (2)3q2

bλ
2 + (3)qb

3λ3
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This differential replaces the numerator for <n>

< n >= λ
∂ξ
∂λ

ξ
= λ

∂ξ
ξ

∂λ
= λ

∂ln (ξ )

∂λ

An enzyme with N sites has a partition function

ξ = (1 + λqb)N

and

< n >= λ
∂ln (1 + λqb)N

∂λ
= Nλqb

1 + λqb

A single site protein that binds different ligands A and B has a partition function

ξ = 1 + qbAλA + qbBλB

where each ligand has its own binding energy and chemical potential.
The average number of bound A and B are

< nA > = λAdln (ξ )/dλA

< nB > = λBdln (ξ )/dλB

12.9 Macroscopic Equilibria

A protein with a single binding site has probabilities

pE = 1

1 + λq
pES = λq

1 + λq

for E and ES. For total protein concentration ct, the actual concentrations E and
ES are

[E] = ct
1

1 + λq
[ES] = ct

λq

1 + λq

The concentrations determined using the equilibrium constant K and concentra-
tion ct also have a ratio

K = [ES]

[E][S]

[ES] = K[E][S]

ct = [E] + [ES]

= [E] + K[S][E]



12.10 The Langmuir Adsorption Isotherm 191

the concentration of [E] in terms of ct

[E] = ct
1

1 + K[S]

also gives the concentration of [ES]

[EL] = ct − [E] = ct
1 + K[S]

1 + K[S]
− ct

1

1 + K[S]
= ct

K[S]

1 + K[S]

The structure of these results parallels those for the microscopic statistical ther-
modynamic systems. Free protein is the reference state. The product K[S] is the
macroscopic equivalent of qbλ. The Boltzmann factor in the chemical potential
plays the role of a concentration at the microscopic level

Cα λ = exp (+ βμ)

The Boltzmann factor for binding energy mimics the macroscopic equilibrium
constant since strong binding to the site produces a large binding fraction consistent
with a large equilibrium constant.

12.10 The Langmuir Adsorption Isotherm

A surface is an array of potential ligand binding sites for some ligand L. If binding at
each site is independent of events at adjacent sites, surface binding analysis is done
for a single site. The Langmuir model postulates one adsorbate molecule per surface
site. Binding depends on binding energy and chemical potential. The Boltzmann
factor when ligand binds

qbλ = e−βεb eβμ

plus reference as the bare site (1) gives

ξ = 1 + qbλ

The grand canonical partition function for a surface with N binding sites is

Xi = ξN = (1 + qbλ)
N

The average number of ligands at the site (0< <n><1) is

< n >= fS = λ
∂ ln (ξ )

∂λ
= λ

∂ ln (1 + qbλ)

∂λ
= qbλ

1 + qbλ
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Fig. 12.2 Saturation in substrate binding

For N surface sites, the number with ligand is

< nt >= λ
∂ ln (�)

∂λ
= λ

∂ ln (1 + λq)N

∂λ
= Nλq

1 + λq

ps = [S]/N is the probability for observing a substrate on a single site because each
of the sites is independent. pS approaches a limiting value of 100% as λ increases
(Fig. 12.2). Since λq is the microscopic manifestation of K[S] where [S] is the adsor-
bate concentration in solution, this curve rises to 100% as the concentration of ligand
in the solution above the surface increases.

12.11 The Brunauer–Emmett Teller (BET) Model

The Langmuir adsorption model limits binding to a single S on each binding site.
The model can be extended to independent site, multiple substrate binding by adding
a column of substrate to each of the binding sites. However, the first layer, the
adsorbate, that binds directly to the surface, has different properties than subse-
quent layers that bind to the adsorbate molecules. For one site, the first adsorbate
S is characterized by a specific binding energy and chemical potential to give the
Boltzmann factor

λqb ≡ λ

Each subsequent substrate molecule sits on top of another substrate molecule
with different binding energy and chemical potential. The Boltzmann factor for each
of these S molecules is

λ′q′ ≡ λ′
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Fig. 12.3 The Brunauer–Emmett Teller (BET) model

The petit partition function includes the empty site and sites with 1, 2, 3, ...
substrates for an infinite series,

ξ = 1 + λ+ λλ′ + λ
(
λ′)2 + . . . = 1 + λ

∞∑
i=0

(
λ′)i = 1 + λ

1 − λ′

for λ′ < 1.
The number bound per site can now be greater than 1. If S binds more strongly to

the surface than it does to other substrate, a plot of <n> versus λ reaches a plateau,
then rises rapidly when λ′ becomes large enough to induce multilayer binding
(Fig. 12.3).

When

ξ = 1 + λq

1 + λq′

the average number of bound molecules per site is evaluated as (λ′ = qbλ)

< N > = λ
∂ ln ξ

∂λ
= λ

∂
[
ln

(
1 + λq

(
1 − λq′)−1

)
∂λ

=
qλ

1−q′λ + qq′λ2

(1−q′λ)−2

1 + λq

1−λq′
= qλ+ qq′λ2

1−q′λ
1 − λq′ + λq

= qλ

(1 − q′λ) (1 − q′λ− qλ)
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Problems

12.1 A large molecule with a reference energy 0 has two identical ion binding sites
for ion A. One ion with chemical potential μ and binding energy ε binds to the
protein.

a. Determine the partition function for the two site protein.
b. Determine the fraction of proteins that have no ions bound.

12.2 Diatomic molecular hydrogen lies on a surface where it can rotate. Assume that
the interaction of this diatomic with the surface permits quantized non-degenerate
energies EJ = EJ.

a. Write the petit canonical partition function for this system for a single molecule
on the surface.

b. Determine the average energy for this system if J = 1 and 2 only.
c. Determine the Helmholtz free energy for 100 such molecules.

12.3 A very small metal surface has only three surface sites which are each capable
of binding no more than 1 absorbate molecule A.

a. Label the three metal sites 1, 2, and 3 and show all possible states for the three
site system.

b. Determine � for this full system if there are no interactions between adsorbate
molecules. The chemical potential for A is μ and is binding energy is E.

12.4 In one model of surface adsorption, only two “layers” are possible. The first
molecule binds to the surface with an energy ε (Boltzmann factor λ = e−βε).A
second molecule can then sit on top of the first adsorbed molecule with energy ε’
(Boltzmann factor λ′ = e−βε′ ).

a. Give the partition function for the single site with adsorbed molecules using the
bare surface site as the reference state with zero energy.

b. Write an expression for the probability that the single site will have two adsorbed
molecules.

c. Write an expression for the average number of adsorbed molecules at this site.
d. If the surface consists of three independent surface sites, write the partition

function for the entire surface in terms of the partition function q for one site.

12.5 Two DNA chains of two nucleotides each, G1–G2 and C1–C2 interact at
all sites.

a. Show all possible distinct configurations for the interactions between these two
chains. Do not forget the “no interaction” configuration.
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b. If each C–G interaction releases E1, write the total partition function with
degeneracies.

12.6 A molecule can exist as either an A or a B isomer. The A isomer is assigned a
reference energy 0. Relative to this reference state, the B isomer has an energy �G
per molecule.

a. Give an expression for the fraction of B isomers.
b. Only the B isomer has two sites that bind an S molecule when it is added to the

solution. The A isomer has no such binding sites. If the additional Boltzmann
factor for binding 1 S is

λqb = e
μ
kT e− εb

kT

write the full single molecule partition function which includes the A, B, BS,
SB, and SBS forms of the isomer.

c. Determine the probability of finding B isomers in the solution. The B′s include
those with S bound.

d. Write an expression for the average number of S molecules bound to the isomer
using the information from parts a, b, and c.

12.7 Evaluate the surface pressure for N molecules absorbed on a surface of M sites
with N bound adsorbate molecules. For this specific absorption, use the partition
function,

Q(N,M,T) = {M!/N!(M − N)!} qN

Derive the equation

μ/kT = −(∂ ln Q/∂N)M,T

Develop an expression for the fraction of sites with bound molecules (θ = N/M)
from the partition function. This is the Langmuir absorption isotherm.
12.8 A protein can exist in two conformations, R and T, and the conformation T can
bind ions I at two identical sites. Select R with reference energy E = 0. If T then has
a relative energy E and the binding energy/ion is Eb,

a. Find the fraction of R molecules.
b. Determine the average number of bound ions.

The equilibrium constant for the R and T conformations

R → T

is L. It is also the Boltzman factor for T.
12.9 A protein can exist in R or T conformations with an energy difference,
�G= GT−GR The R conformation has two binding sites, site 1 and site 2, which
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are capable of binding ligands S1 and S2, respectively. S1 cannot bind at site 2 and
S2 cannot bind at site 1. S1 has a chemical potential μ1 and binding energy E1, while
S2 has a binding energy E2 and a chemical potential μ2.

a. List the possible states for the system and their energies.
b. Give the petit canonical partition function for this system.
c. Determine the fraction of proteins which would have the R conformation, i.e.,

they are not in the T conformation.
d. Develop an expression for the total bound substrate,<S1 +S2>.

12.10 A pair of electron exist in a triplet state with parallel spins or a single state with
paired electrons. The triplet state splits into three separate energies in a magnetic
field.

a. Determine the fraction of all pairs that are singlets.
b. If a magnetic field is turned on, the three equal triplet energies (0 energy

reference) become −ε,0, ε. Determine the fraction of electron pairs with
energy +ε
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Maxwell–Boltzmann Distributions

13.1 Distributions for Energy Continua

The Boltzmann factor
e−βεi

describes a distribution for maximal states consistent with the available energy. If
the separation between discrete energies is reduced to a continuum, the Boltzmann
factor is proportional to the probability for an infinitesimal energy range. The par-
tition function is an integration of Boltzmann factors over the range of continuous
energies. The Boltzmann factor for dε

exp (−βε) dε

gives the partition function

q =
∫

exp (−βε)dε

The discrete state equations for average energy and free energy are valid for the
continuum partition function

< ε >= −∂ ln q

∂β

< a >= −kT ln (q)

The probability that a classical oscillator has total energy ε. is proportional to the
Boltzmann factor,

e− ε
kT = e−βε

This two-dimensional energy (p,x) for the harmonic oscillator) has energy limits
from zero to infinity, i.e., energy is always positive:

q =
∞∫

0

e−βεdε
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The differential energy dε gives the partition function units of energy. The
numerator for average energy has units of energy squared for unit consistency.

The dimensionless probability for finding an energy from ε → ε + dε is

pdε = e−βεdε
∞∫
0

e−βεdε

The probability of all possible energies is

∞∫
0

p (ε) dε =

∞∫
0

e−βεdε

∞∫
0

e−βεdε
= 1

The partition function (not the energy) for the classical oscillator is

q =
∞∫

0

e−βεdε = −1

β
e−βε ∞

l|
0

= − 1

β

[
e−∞ − e0

]
= 1

β
= kT

The probability for finding a molecule with an energy in the differential slice,
dε, is

pdε = p (ε) dε = e−βεdε
∞∫
0

e−βεdε
= e−βε dε

kT

The ratio

dε/kT

is a dimensionless variable of integration.
The probability of finding oscillators with energy from ε1 to ε2 is

P (ε1 → ε2) =
∫ ε2

ε1

exp (−βε) dε

kT

The average energy of a single classical harmonic oscillator is determined from
the logarithm of the partition function in β format

ln q = ln (kT) = ln
1

β
= − lnβ

< ε >= −∂ ln q

∂β
= +∂ lnβ

∂β
= 1

β
= kT

as expected for the two degrees of freedom of the classical harmonic oscillator.
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The free energy is

< a >= −kT ln (kT)

13.2 Useful Integrals

The kinetic and potential energies of the classical harmonic oscillator

ε = mv2

2
+ kx2

2

each generate a Boltzmann factor. The kinetic energy factor is integrated over all
possible velocities while the potential energy factor is integrated over all possible x.
An ideal gas has no potential energy (exp(0) =1) and a three-dimensional integral
gives the volume V of the container. A one-dimensional integral gives the length L
of the line.

The one-dimensional translational kinetic energy

K.E. = mv2

2

makes velocity, not energy, the integration variable. The Boltzmann factor has v2

and range −∞ ≤ vx ≤ ∞

q =
∫ ∞

−∞
exp

(
−βmv2/2

)
dvx

This integral appears for energies with a squared variable dependence, e.g., kx2/2,
mv2/2. The integral for a general

e−ax2

with a constant is

∞∫
−∞

e−ax2
dx =

√
π

a

The second major integral

∞∫
0

e−ax2
xdx = 1

2a

is non-zero on the interval 0 ≤ x ≤ ∞ for this odd product; it is zero on the interval
−∞ < x ≤ ∞.
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The integral
∞∫

−∞
e−ax2

dx =
√
π

a

is evaluated using the product of two identical integrals in different variables
(x and y)

I2 =
∞∫

−∞
e−ax2

dx

∞∫
−∞

e−ay2
dy

∞∫
−∞

∞∫
−inf

e−a
(
x2+y2

)
dxdy

The pair is simplified by a change to polar coordinates. The differential product
dxdy becomes

dxdy = rdrdθ

and

x2 + y2 = r2

r is integrated from 0 to ∞ and θ is integrated from 0 to 360◦ =2π to span the
full two-dimensional space.

The two integrals convert to

∞∫
0

2π∫
0

e−ar2
rdrdθ =

∞∫
0

e−ar2
rdr

2π∫
0

dθ

The integral over all angles is just 2π. The radial integral is integrable with the
substitution

z = ar2 dz = 2ardr rdr = dz

2a
to give

z=∞∫
z=0

e−z dz

2a
= 1

2a
[ − e−z]

∞
l|
0

= + 1

2a

I2 = 2π

2a
= π

a

is the product of two identical integrals so

I =
√
π

a
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Integrals such as

∞∫
−∞

e−ax2
x2dx

are evaluated by differentiating both sides of the integral

∞∫
−∞

e−ax2
dx

with respect to −a
For example,

−∂
∂a

⎡
⎢⎣

∞∫
−inf

e−ax2
dx

⎤
⎥⎦ = − ∂

∂a

√
πa−1/2

∞∫
−∞

x2e−ax2
]

dx = −√
π

(
−1

2

)
a− 3

2 = (1/2a)
√
π/a

Other integrals with even powers of x, e.g., x4, x6, are solved by further
differentiation of both sides of the integral.

For odd powers of x, e.g., x3, x5 with

∞∫
0

e−ax2
xdx = 1

2a

repeated differentiations produce the integrals in x3, x5, etc.
For example,

∞∫
0

e−ax2
x3dx = 1

2a2

13.3 One-Dimensional Velocity Distribution

One-dimensional velocities range from −∞ ≤ vx ≤ ∞ since the particles can move
in either direction along x.

The squared velocity in the exponential produces a symmetrical decrease in prob-
ability for either positive or negative velocities. The resultant distribution is maximal
at and centered about v =0.
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The most probable velocity occurs when the derivative with respect to v is 0

d
(

exp
(
−βmv2/2

))
= 0

exp
(
−βmv2/2

)
(βmv) = 0

v = 0

The average squared energy is always positive and the integral is non-zero. The
partition function with Boltzmann factor

exp

(−mv2
x

2

)

gives a probability

p (vx) dvx = e
(−mv2/2kT

)
dvx

+∞∫
−∞

e(−mv2/2kT)dvx

The partition function is the integral

∞∫
−∞

exp
(
−ax2

)
=

√
π

a

with

a = m/2kT

i.e.,

q =
∞∫

−inf

e−av2
dvx =

√
π

a
=

√
2πkT

m
=

√
2π

mβ

The logarithm of partition function with β separates into two parts:

ln q = ln

(√
2πkT

m

)
= ln

(
2π

βm

)1/2

= 1

2
ln

(
2π

m

)
− 1

2 ln (1/β)

The average energy depends only on β

< ε >= −
∂

(
1
2

ln
(
β−1

)
β

)
∂β

= +1

2

∂ lnβ

∂β
= 1

2β
= kT

2

The result is the equipartition of energy theorem for one-dimensional translation.
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The average velocity is the product of an even (exp(–βmv2)) and odd (vx)
function. The product is odd to give 0 average velocity

< vx >=
∞∫

−∞
vxp (vx) dvx =

∞∫
−∞

e
(−βmv2

x/2
)
vxdvx

q
=

∞∫
−∞

e
(−βmv2

x/2
)
vxdvx√

2πkbT
m

∞∫
−∞

e−av2
vdv = −1

2a
e−av2 ∞|

−∞
= 0 − 0 = 0

The distribution widens as temperature increases (Fig. 13.1).

Fig. 13.1 The change of velocity distribution with increasing temperature

13.4 Mean Square Velocities

The one-dimensional velocity distribution has an average energy

< ε >= kbT

2

while the average velocity is

< vx >= 0

The zero average velocity does not give an average energy of zero since the
energy is proportional to v2 and this must be averaged
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< ε >=< 1

2
mv2

x >= m

2
< v2

x . >

This average square velocity is calculated from the average equipartition energy

< v2
x >= 2 < ε >

m
= 2 kT

2

m
= kT

m

and square rooted for a root mean square (rms) velocity

vrms =
√

v2
x =

√
kT

m
=

√
RT

M

< vx
2 > is also determined using the Boltzmann probabilities

< v2 >=
∞∫

−∞
p (vx) ν

2dvx

< v2 >=

∞∫
−∞

e
(−mv2/2kT

)
v2

xdvx√
2πkT

m

with

a = βm

2
= m

2kT

< v2 >=
1
2a

√
π
a√

π
a

= 1

2a
= 2kT

2m
= kT

m

as expected.

13.5 Two-Dimensional Distributions

A one-dimensional partition function has a single differential. A two-dimensional
systems (velocities along the x and y axes) has a differential element

dvxdvy

Since the directions are independent when the potential energy v = 0, the
two-dimensional system separates into two integrals with Boltzmann factors and
differential elements in x and y, respectively
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∫ ∞

−∞

∫ ∞

−∞
exp

(
−βmv2

x

)
exp

(
−βmv2

y/2
)

dvxdvy

=
∫ ∞

−∞
exp

(
−βmv2

x/2
)

dvx

∫ ∞

=∞
exp

(
−βmv2

y/2
)

dvy

= q2 =
(√

2π

mβ

)2

= 2π

mβ

This result is also obtained using a polar coordinate system with

vr =
√(

v2
x + v2

y

)
and polar angle θ (0 ≤ θ ≤ 2π) ( dvr is the infinitesimal radial length). The angular
length depends on the radius as vdθ for an area element

vdvdθ

The two Boltzmann arguments are combined to give a two-dimensional speed

V2 = v2
x + v2

y

The two-dimensional partition function is the product of dθ and du integrals

∫ 2π

0
dθ

∫ ∞

0
exp

(
−βmv2/2

)
vdv = 2π

[
2

2βm

]
= 2π

βm

equivalent to that obtained as the product of two one-dimensional partition func-
tions.

The average energy is

< ε >= −
⎛
⎝∂

[
ln

(
2π
m

)
− ln (β)

]
∂β

⎞
⎠ = 1

β
= kT

13.6 Three-Dimensional Velocity Distributions

A three-dimensional velocity distribution uses the speed

v2 = v2
x + v2

y + v2
z

that defines a hollow sphere with radius v in this velocity three-dimensional space.
The surface area of the sphere is
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4πv2

and the differential volume of the hollow sphere is this area times dv

4πv2dv

The partition function requires a single integral in the speed v. The factor of 4π
is eliminated since it is common to all terms

q =
∞∫

0

e
(−βmv2/2

)
v2du =

∞∫
0

e−av2
v2dv = 1

2

1

2a

√
π

a
= 1

4a

√
π

a

1/2 is included for integration from 0 to ∞.
The average energy is

< ε >= −
∂
[
ln (π)

3
2 − lnβ

3
2

]
∂β

= +3

2

1

β
= 3

2
kT

as expected for the three-dimensional system.
Since the three Cartesian velocity components are independent, this same par-

tition function is also a product of three one-dimensional partition functions

q = qvx qvy qvz =
[√

t
2π

mβ

]3

=
(

2πkbT

m

) 3
2

The Boltzmann probability has partition function

q = (2π/βm)3/2

to give

p (v) dv = e
(−mv2/2kT

)
v2dv

q

Although the Boltzmann factor decreases as the speed increases, the volume of
each concentric sphere as v2dv increases with increasing v. These two opposing
changes combine to give a maximum at an intermediate speed (Fig. 13.2).

The average energy for the three-dimensional system

ln q = ln

(
2π

m

)3/2

− 3

2
lnβ

ε = −
∂
(
− 3

2 lnβ
)

∂β
= 3

2β
= 3kT

2
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Fig. 13.2 3 dimensional velocity distribution

is again consistent with equipartition of energy.
The speed probability distribution

p (v) dv = e
(−mv2/2kT

)
v2dv

q

is multiplied by the speed v and integrated to find <v>

< v >=
∞∫

0

p (v) vdv

The ratio

< v >=
4π

∞∫
0

e−av2
v3dv

4π
∞∫
0

e−av2v2dv

requires integrals

∞∫
0

e−ax2
x3dx = −∂

1
2a

∂a
= 1

2a2
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and ∫ ∞

0
exp

(
−ax2

)
x2dx = 1

4a

√
π

a

with

a = m

2kblT

<v> is

< v >= 4π 1
2a2

q
= 4π 1

2a2

4π 1
2

1
2a

√
π
a

= 2

a

√
a

π
=

√
4

πa
=

√
8kT

πm

An equivalent expression in the gas constant R and the molecular weight M (in
kilograms) is

< v >=
√

8kbNaT

πmNa
=

√
8RT

πM

Each form gives units of meters per second.
The kinetic energy for each molecule depends on its average squared speed:

< v2 >=
∞∫

0

p (v) v2du

< u2 >=

∞∫
0

e− μ2

2kT v2v2du

q

The numerator is

∂2
∞∫
0

e−av2
du

∂a2
= ∂2 1

2

√
πa

−1
2

∂a2

1

2

1

2

3

2
a

−5
2 = 3

8
a− 5

2

to give

< v2 >=
3
8 a

−5
2

1
4 a− 3

2

= 3

2a
= 3kbT

m

or

< v2 >= 3RT

M
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The average kinetic energy is

< ε >= m

2
< v2 >= m

2

3kT

m
= 3

2
kbT

The root mean square speed is the square root of this speed:

vrms =
√

3kT

m
=

√
3RT

M

The larger speeds are weighted more heavily so the root mean square contains a
factor of 3 while the average speed contains a factor

8

π
= 2.55

Because of the shape of the speed distribution, the average speed and the
root mean square speed differ from the speed of maximum probability. The most
probable speed is determined by equating the derivative in v to 0

∂p (v)

∂v
= 0

∂e−av2
v2

∂v
= e−av2

[ − 2av]v2 + e−av2
[2v]

to give

0 = −2av3 + 2v v2 = 1

a
= 2kT

m

The most probable speed is the square root of this expression:

vmp =
√

2kT

m
=

√
2RT

M

This speed is smaller than either the average speed or the root mean speed since
both of these average quantities emphasize the larger speeds of this skewed speed
distribution.

13.7 The Classical Harmonic Oscillator

A classical harmonic oscillator has kinetic and potential energies

E = 1

2
mv2 + 1

2
k′x2

where k′ is the force constant. The Boltzmann factor separates as the product of
Boltzmann factors in v and x:
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e
−β

[
1
2 mv2+ 1

2 kx2
]

= e− βmv2

2 e− βkx2

2

The partition function has integrals over v and x

q =
∞∫

−∞
e− βmv2

2 dv

∞∫
−∞

e− βkx2

2 dx

The first integral is identical to the one-dimensional velocity distribution integral:

qv =
√

2π

βm

The position partition function with a =βk/2 is

qx =
∞∫

−∞
e−ax2

dx =
√
π

a
=

√
2π

βk

The logarithm of the product separates into sums

ln (qvqx) = ln (qv)+ ln (qx) = 1

2
ln

(
2

m

)
− 1

2
ln (β)+ 1

2

ln

(2k)
− 1

2
ln (β)

= ln (constant)− ln (β)

to give an average energy

< E >= − ∂

∂β
[ln (constant)− ln (β) ] = + 1

β
= kT

Each squared term, integrated over its independent variable, gives an average
energy kT/2, the equipartition of energy.

13.8 The Quantum Rotator

A classical diatomic rotator rotates about only 2 of its three rotational axes. Each of
these rotations has a kinetic energy

E = 1

2
Iω2

where I is the moment of inertia of the rotator. The partition function for each
rotation, determined by an integration over all possible angular velocities,
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qr =
∞∫

−inf

e
(−βIω2/2

)
dω =

√
2π

βI

gives an average energy kT/2 for each independent rotation.
A quantum rotator has discrete energy levels

EJ = εJ (J + 1) J = 0,1,2, . . .

where ε is constant and the Jth quantum level is degenerate; there are 2J+1 equal
energies with quantum number J

(2 J + 1) e−βεJ(J+1)

The sum over these discrete Boltzmann factors can be approximated by an
integral using the index dJ in place of the integer J because the small quantized
rotational energies are very closely spaced. The partition function

qr =
∞∫

0

(2 J + 1) e−βεJ(J+1)dJ

is evaluated using the substitutions

y = J (J + 1)

dy = (2 J + 1) dJ

to give

qr =
∞∫

0

e−βεydy = −e−βεy

βε

∞|
0

= 0 + 1

βε

Although the partition function is different than that for the classical rotator with
two rotational modes, the average energy is the same:

< E >= − ∂

∂β
[− ln (ε)− ln (β)] = 1

β
= kT

The hydrogen diatomic molecule has quantum properties that require refinement
of its partition function. Each hydrogen atom has a nuclear spin of +1/2 or -1/2.
The spin components of the two nuclei give two different hydrogen molecules:
ortho hydrogen has both spin components equal, e.g., +1/2 and +1/2, while para
hydrogen has nuclei with opposite spin components, e.g., +1/2 and -1/2. Para hydro-
gen is described by a single molecular wavefunction, while ortho hydrogen has
three wavefunctions for spin components (+1/2,+1/2), (1/2, -1/2) + (-1/2, +1/2), and
(-1/2, -1/2). The three ortho hydrogen molecules have an even nuclear symmetry,
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i.e., the nuclei can be exchanged without changing the sign of the wavefunction.
The para hydrogen molecule is odd or negative in an interchange of the two
nuclei.

The Pauli exclusion principle states that a valid wavefunction must be odd or
antisymmetric. The total wavefunction for the molecule is a product of electronic,
vibrational, rotational, and nuclear wavefunctions. The nuclear wavefunctions are
symmetric or antisymmetric and the rotational wavefunctions can also be odd or
even. The wavefunctions with even quantum number J (0,2,4,. . .) are even.

The integral partition function over all J, q, is halved when the integration is over
either even or odd J

qo = (q/2) = qe

Since each of the ortho forms is equally probable, the total partition function for
an equilibrium mixture of ortho and para hydrogen molecules is

Qt = 3qo + qp = 3q/2 + q/2 = 2q

The total partition function is twice as large as the “classical” q.

13.9 Phase Space

The Maxwell–Boltzmann distributions use velocity, not energy, as the independent
integration variable. The kinetic energy

mv2/2

in momentum mv is

(
m2v2

)
2m

= p2

2m

Momentum and position play a central role in quantum mechanics where the
uncertainty principle

�x�p ≈ h

establishes a level of observability. The uncertainty principle also establishes a min-
imum size for area in a space with one x coordinate and an orthogonal px coordinate.
This phase space area is used as a minimum state size.

A two-dimensional phase space for a vibrating diatomic molecule on a one-
dimensional axis has x and px axes for the independent variables that give

ε = p2/2m + kx2/2
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Fig. 13.3 A constant energy phase space trajectory for a harmonic oscillator

The velocity is 0 when the oscillator reaches its maximal positive and negative x
(xm) for one energy. x=0 when positive and negative px are maximal. The trajectory
in phase space is an oval that passes through these four points (Fig. 13.3).

For a classical oscillator, an increase in energy produces a larger closed concen-
tric trajectory. A quantum oscillator with discrete energies produces a set of discrete
concentric trajectories in the phase space.

A three-dimensional system has three position coordinates (x, y, and z) and three
momentum coordinates (px, py, and pz). This six-dimensional space cannot be illus-
trated graphically but a fixed energy forces the oscillator to follow a closed trajectory
in this space.

A complete one-dimensional partition function must involve both the px (or vx)
variable and the position (x) variable. Gas particles in one dimension have a potential
energy zero and the spatial portion is integrated over the length of the line

∫ ∞

−∞
exp

(
−βp2/2m

)
dp

∫ L

0
exp (0) dx =

√
2πm

β
L

The logarithm of this partition function would separate into an energy (p) and
locational (x) component. This is the classical partition function for translation.

13.10 Quantized Phase Space

The quantum mechanical version of translation on a one-dimensional line of length
L requires the discrete energies for a particle on a line

ε = h2n2/8mL2 n = 1,2,3, . . .

Discrete energies are apparent when L is small. For larger L, the summed partition
function
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∞∑
n=1

exp
(
−βh2n2/8mL2

)

is well approximated by an integral

q =
∫ ∞

o
exp

(
−βh2n2/8mL2

)
dn

with a = βh2/8mL2, the partition function is

q = 1

2

√
π

a
= 1

2

√
8πmL2

βh2
=

√
2πm/β

h
L

This quantum energy partition function is almost identical to the partition func-
tion for a classical translating particle confined to length L with zero potential
energy. The numerator is the volume in the classical phase space. The equation
divides this volume by the uncertainty volume h in phase space

�x�p ≈ h

This smallest “observable” volume gives the number of states for the system.
A classical partition function can be converted into a number of possible states by
dividing each two-dimensional (p,X) partition function by h.

If the trajectories of a large number of different oscillators with different phases
are plotted in phase space, the phase points are distributed equally about the trajec-
tory. The points are all moving about the trajectory at the same rate since all the
oscillators are identical. This means that the density of phase points on the line is
equal everywhere and remains so as a cluster of phase points moves about the trajec-
tory. This is an example of Liouville’s theorem that states that the density of points
in a phase space of arbitrary dimension remains constant in time

dρ/dt = 0

this is easily visualized for the two-dimensional phase space.

13.11 The Langevin Equation

A diatomic molecule with a dipole moment defined by positive and negative charges
q separated by a distance d

μ = qd

rotates to align with an applied electric field E. This energy to align is opposed by the
thermal energy kT to produce a continuous range of alignments from full alignment
(θ=0) to full opposition (θ=π). The energy at any angle θ is
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ε (θ) = −μE cos (θ)

Using a differential element sinθdθ , the partition function is

q =
∫ π

0
exp (+βμE cos (θ)) sin (θ) dθ

With x = cos(θ ), dx = +sin(θ )dθ , a =βμE, xi = cos(0) = 1, and cos(π) = +1,
the integral becomes

q =
∫ 1

−a
exp (ax) dx = 1

a
exp (ax) |2−1 = 1

a

[
eax − e−ax]

The energy for this system < ε > also determines the average dipole moment in
the field since

< ε >= μE < cos (θ) >=< μ > E

The average energy is

< ε >= −
∂ ln

[
1

βμE

]
∂β

⎤
⎦ − ∂ ln [eβμE − e−βμE]

∂β
= + 1

β
− μE

eβμE + e−βμE

eβμE − eβμE

= 1

β
− μE coth (βμE)

The average alignment angle is

< cos (θ) >= − < ε > /μE = coth (βμE)− 1/βμE

Problems

13.1 The three-dimensional kinetic energy distribution function is

dn

n
= 2√

π

(
E

kT

) 1
2

e− E
kT

dE

kT

Set up the equation for the average kinetic energy of the gas.
Note:

I (n) =
∞∫

0

xn−1e−xdx = √
π

I (n + 1) = nI (n)

13.2 Molecules are free to move on a two-dimensional surface at a temperature
of 200 K.
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a. Set up the integral for the mean square speed <v2> for this system.
b. Evaluate the integral(s) for the mean square speed.

13.3 The energies of vibration, E, for a reacting molecule range from 0 to ∞

a. Determine the partition function.
b. Determine the probability that the molecule has vibrational energy between Eo

and ∞.
c. Set up the integral(s) to determine <E2> for this system.
d. Set up a differential expression that gives <E2> from the partition function.

13.4 A particle moves continuously on a ring of constant radius with an energy

p2

2I

where p is the angular momentum and I is the moment of inertia

a. Determine the partition function for this system by integrating over all possible
angular momenta (−∞ < p < ∞).

b. Determine the average energy.

13.5 The probability of finding a total energy E in a molecule containing s
identical harmonic oscillators (molecular vibrations) is

p (E) dE = e−βEEs−1dE

(kT)s

a. Determine the partition function for this system.
b. Set up an integral expression for the probability of finding a molecule with

energies between E1 and E2.
c. Set up an integral expression for the average energy.
d. Find the average energy.

13.6 Given that particles of mass m at height h (ground level is h = 0) have
energies mgh:

a. Set up the integral for the partition function and evaluate it.
b. Determine the average height of the particles.



Chapter 14
Interactions

14.1 A Two-Site Enzyme

A protein with two independent ligand binding sites resolves into two single site par-
tition functions even if the two sites have different binding parameters. The distinct
sites can even be on different proteins. Interaction between two sites with bound
ions requires an additional interaction energy so that the total partition function can-
not be factored. For example, charged ions on two neighboring sites repel each other
and the repulsion energy Boltzmann factor is included in the Boltzmann factor for
the state with ions at each site.

The partition function for an enzyme with two independent, different bind-
ing sites

ξ = (1 + qb1λ1) (1 + qb2λ2) = 1 + qb1λ1 + qb2λ2 + qb1λ1qb2λ2

requires an additional Boltzmann factor in the final term if the ligands repel (or
attract) each other

qi = exp (−βεi)

The partition function

ξ = 1 + qb1λ1 + qb2λ2 + qb1λ1qb2λb2qi

cannot be factored.
The fraction of enzymes with two bound substrates decreases for a large

repulsion energy since qi is small to reduce the fraction.

14.2 Koshland–Nemethy–Filmer Model

Biological systems often involve groups of interacting proteins where the geometry
of the group determines the total interaction energy for each state. A functional unit
is composed of three identical proteins might have a linear or planar (triangular)
geometry (Fig. 14.1).

217M.E. Starzak, Energy and Entropy, DOI 10.1007/978-0-387-77823-5_14,
C© Springer Science+Business Media, LLC 2010



218 14 Interactions

Fig. 14.1 Interaction configurations for three identical interacting proteins: (a) linear and (b)
triangular

The linear model has 1–2 and 2–3 interactions, while the triangular model has
1–2, 2–3, and 3–1 interactions. A system of four identical proteins might be linear
with three (1–2, 2–3, 3–4) interactions, square planar with four (1–2, 2–3, 3–4,
4–1) interactions or tetrahedral with six (1–2, 1–3, 1–4, 2–3, 2–4, 3–4) interactions
(Fig. 14.2).

The Koshland model for protein conformational changes allows each protein to
change conformation when it binds substrate

Fig. 14.2 Linear (a), square (b), and tetrahedral (c) interacting configurations for a four protein
oligomer
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r → tS

r is the reference state. Each independent t conformer requires a Boltzmann factor
for the conformational change (k = exp(−β�g)), a Boltzmann factor for the energy
of binding (qb) and a chemical potential with Boltzmann factor λ=exp(βμ)

L = kqbλ

A two protein system with no interactions has a partition function

ξ = 1 + 2L + L2 = (1 + L)2

where the degeneracy is 2 for the rt and tr conformations.
A linear three protein system with rt and tt interactions (εrt, qi = exp(−βεrt),

εtt,qtt = exp(−βεtt) and qrr=1) requires additional Boltzmann factors in the
partition function for independent proteins

ξ = (1 + L)3 = 1 + 3L + 3L2 + L3

The rrt conformers have three orders (rrt, rtr, and trr). rrt is different from trr
since the two interacting sides of each protein are different. rrt and trr have one
rt interaction, while the middle has two rt interactions. The interactions break the
degeneracy

3L → 2Lqrt + Lq2
rt

The 3L2 term has arrangements rtt, trt, and ttr. trt has two rt interactions, while
rtt and ttr have one tr and one tt interaction

3L2 → L2q2
rt + 2Lqrtqtt

The final linear conformer (ttt) has two tt interactions

L3 → L3q2
tt

The partition function with rt and tt interactions

ξ = 1 + 2Lqrt + Lq2
rt + L2q2

rt + 2L2qrt + L3q2
tt

determines the number of bound substrates and the thermodynamic parameters of
the system. A change in substrate concentration changes the Boltzmann factors for
the t conformers so the probabilities of t conformers and the number of bound S
change (sigmoidally) as the S concentration increases. The change is more dramatic
if t–t interactions are large.
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14.3 Surface Double Layers: Ion Surface Interactions

A planar surface with ionizable groups loses its counterions leaving a surface array
of fixed surface charges with surface charge density σ= q/A – the charges are
assumed smeared into a continuum. These fixed ions attract hydrated counteri-
ons from the solution while repelling co-ions to produce a double layer. Negative
charges on the surface, for example, are balanced by an equal number of positive
ions in solution held a distance d from the surface by the waters of hydration. A unit
area of negative surface charge balances a unit area of positive solution ions. These
two plates of ions of opposite charge separated by distance d define a capacitance in
two forms. The separated charges produce an electrical double layer potential, Vd,
and capacitance

C = q/Vd

The capacitance of two plates of area A separated by d is

C = εA/d

where the dielectric constant for the solution ε = εoεr. εr, the relative dielectric
constant, is about 80 for water. Equating the two definitions

q/Vd = εA/d

gives a voltage proportional to the surface charge “density” σ=q/A, the charge per
unit area,

Vd = dq/εA = dσ/ε

More realistically, the ions in solution are not all at a fixed distance d from the
surface. Because the water and ions in solution are in continuous thermal motion, the
counterions in solution are found in a series of aqueous planes increasingly distant
from the surface. Thermal energy moves the ions randomly while the electrostatic
attraction moves counterions toward the surface. The excess charge in each layer
progressively cancels the electric field lines from the negative charge on the surface.
At some distance from the surface, the total excess positive charge in all the solution
planes completely cancels the negative electric charge emanating from the surface
as field lines. At larger distances, the solution is electroneutral. Excess positive
charge is largest closest to the surface where the attractive electrostatic energy has
its largest negative value, i.e., the electrostatic energy depends on distance from the
surface.

The excess charges at each distance x determine the double layer potential V(x)
at that location. The surface generates an electric field that diminishes as the field
moves through regions with charge of opposite polarity and charge density ρ(x)
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dE/dx = ρ(x)/ε

Since

E = −dV(x)/dx

d2 V(x)/dx2 = −ρ(x)/ε

The excess counterion concentration and charge density depend on the poten-
tial via Boltzmann statistics. The voltage V(x) at a distance x from the surface has
energy z+eV(x) and the concentration (for negative V and negative surface charge) is
increased relative to the bulk concentration c+(b):

C+(x) = c+(b) exp (−βz+eV(x))

with a net positive charge per unit area in solution

z+ec+(x) = z+ec+(b) exp (−βz+eV(x))

The negative ionic charge at x is

z−ec−(x) = z−ec−(b) exp ( (−βz−eV(x))

The positive and negative concentrations in bulk solution (large x) where the
solution is electroneutral are

z+c+(b) = z−c−(b)

The net charge density is

ρnq(x) = z+ec+(b) exp ( (−βz+eV(x))+ z−ec−(b) exp (−βz−eV(x))

The second term is negated by the negative z−. If the exponential arguments
are small

exp ( − x) = 1 − x

and the net (excess) density is

z+e co+
[
1 − βz+eV(x)

] + z−e co−
[
1 − βz−eV(x)

]
Since the bulk solution is electroneutral

z+c+(b) + z−c−(b) = 0

the excess charge density is

−βeV
[
c+z2+ + c−z2−

]
= −2βeVI
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where the ionic strength

I = 1/2

[
c+z2+ + c−z2−

]
equals the salt concentration for a 1:1 electrolyte. Ions with larger charge contribute
more to the ionic strength and excess charge density.

The Poisson–Boltzmann equation is

d2 V/dx2 = −ρnq(x)/4πε = + (2βeI/ε)V = κ2 V

κ has units m−1 and is called the inverse Debye length. The applicable solution is

V(x) = A exp (−κx)

The sum of all excess charge at all x facing a unit area of membrane must have
the charge per unit area σ . Since

ρ(x)/ε = κ2 V(x)

ρ(x) = 4πεκ2 V(x) = 4πεκ2A exp (−κx)

and, integrating from a, the distance of closest approach to infinity

σ =
∫ ∞

a
4πεκA exp (−κx) = 4πεκ2A

(
− 1

κ

)
exp (−κx) |∞a

= +4πεκA exp (−κa)

A = σ exp (κa) /4πεκ =
[
σκ−1/ε

]
exp (κa)

The potential V(x) is

V(x) =
(
σκ−1 /ε

)
exp (−κ [x − a])

At x=a, the distance of closest approach, the potential

V (a) = σκ−1/4πε

compares with the basic single layer model at distance d

V = σd/4πε

The inverse Debye length, κ−1, an average of all the excess charge in solution at
all x determines the potential at closest approach.

Because the ionic strength I is proportional to the square of the ionic charge, poly-
valent ions play a more significant role in reducing the solution range of the excess
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solution charge. κ−1, the average distance the diffuse layer extends into solution is
reduced more effectively with increasing ionic charge.

14.4 The Debye–Hückel Theory

The chemical potential for an ion

μ = kT ln c

is based on independent ions, i.e., no attraction between cations and anions.
However, Coulomb attractions are long range (r)−1 and a cation in solution attracts
an ion atmosphere of excess counterions. The interaction between the central ion
and this ion atmosphere is used to determine the activity coefficient that corrects the
concentration expression (RTlnc) for chemical potential.

The excess charge now changes as a function of radius r and the appropriate
differential equation in three dimensions depends only on r

1

r2

d

dr

(
r2 dV(r)

dr

)
= +κ2 V(r)

The appropriate solution

V = A exp (−κr) /r

with

A = ze/ε

is verified by substitution. ze is the total central ion charge.
For dilute solutions, the double layer potential at the ion surface of radius R

becomes

V = ze

ε

exp (−κr)

r
= ze

εR

1

exp (κR)
= ze

εR

1

1 + κR
= ze

εR

κ−1

κ−1 + R

The product of radial terms

κ−1

R
(
R + κ−1

) = 1

R
− 1

R + κ−1

Separates the potential into two parts

V (R) = ze

εR
− ze

ε
(
R + κ−1

)
The first term is the central ion’s potential at the surface. The second term is a

correction for the ion atmosphere at a distance R+κ−1 from the center that corrects
the potential (and the chemical potential) for the central ion.
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14.5 One-Dimensional Ising Model

An electron has two spin states that have different energies in a magnetic field. Some
atoms such as iron have an intrinsic magnetic moment that gives them aligned and
opposed orientation in a magnetic field. If the atoms aligned with the field exceed
those opposed, the metal is magnetized.

A one-dimensional line of such atoms with no interactions obeys two state
Boltzmann statistics. For a magnetic moment μ, the aligned (ε+ = −μH,
q+ = exp(+βμH)) and opposed (ε− = +μH, q− = exp(−βμH)) energies give
probabilities

p+ = q+/ (q+ + q−) p− = q−/ (q+ + q−)

for each atom. For a line of N atoms,

� = (q+ + q−)N

If p+ = 0.75, 3/4 of the atoms are aligned but, without interactions, these aligned
atoms appear randomly along the line. Interactions make the aligned atoms “con-
dense” in a region of the line so that, for example, the left three quarters of the line
is strongly magnetized.

When interactions are allowed, the partition function for N atoms is expanded
and the interactions for each configuration are calculated. A three atom line has eight
(23) configurations or terms that can have different interaction energies. Although
Boltzmann products can be developed for chains of two or three atoms, the partition
function for larger N is calculated using special techniques.

A 2 × 2 matrix includes all possible Boltzmann factors for a single unit inter-
acting with its neighbor to the right. An atom with a “+” alignment has energy ε+
q+ = exp(−βε+). If it interacts with a second “+” atom to its right with interac-
tion energy ε++, q++ = exp(−βε++). The four Boltzmann factors generated in this
manner (q+q++, q+q+−,q−q−+, , q−q−−) are all the factors for a single unit and are
arranged in a matrix array where the rows tabulate the state of the atom and the
columns tabulate the state of its nearest neighbor. The transfer matrix

i\i + 1 + −
+ q+q++ q+q+−
− q−q−+ q−q−−

for one unit is extended to a chain of N atoms as

� = MN

if the Nth unit in the chain interacts with the first unit (cyclic boundary conditions).
Each atom then sees an interacting unit to its right.
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This matrix formulation for a chain is used to produce a modified partition
function for each atom in the chain using eigenvalue–eigenvector techniques.

14.6 Eigenvalue Techniques

A matrix is an array of numbers that acts on a vector to rotate and alter its length.
The 2×2 matrix (

1 1
1 1

)

acts on the two-component vector (x,y) = (2,1) to give a new vector(
1 1
1 1

)(
2
1

)
=

(
3
3

)

The original vector with 63.4o and length
√

22 + 12 = √
5 rotates to 45o with a

new length
√

32 + 32 = √
18. The matrix operates on only two “eigenvectors” in

the two-dimensional space to change the length but not the orientation of the vector

(
1 1
1 1

)(
1
1

)
= 2

(
1
1

)
(

1 1
1 1

)(
1
−1

)
= 0

(
1
−1

)
The scalar factors of the unrotated eigenvectors are the eigenvalues.
If the eigenvectors are used for the coordinate system, the matrix is transformed

for that new coordinate system. The new matrix is diagonal with the two eigenvalues
as the diagonal elements (

2 0
0 0

)

Any power of this diagonal matrix is a power of each of the diagonal
eigenvalues

MN
d =

(
2N 0
0 0N

)

These eigenvalues λ are determined with a characteristic determinant and
polynomial ∣∣∣∣ 1 − λ 1

1 1 − λ

∣∣∣∣ = 0

(1 − λ) (1 − λ)− 1 = 0 = λ2 − 2λ

λ = 0 λ = 2
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14.7 An Eigenvalue Partition Function

The general transfer matrix for atomic magnets with nearest neighbor
interactions (

q+q++ q+q+−
q−q−+ q−q−+

)

is simplified with the following assumptions:

(1) the opposed state is reference (q− =1);
(2) aligned–opposed interaction energy is 0 (q+− = q−+ = 1);
(3) aligned–aligned and opposed–opposed have the same interaction energy (q++ =

q−− = q’); and
(4) the transfer matrix is

(
qq′ q
1 q′

)

The characteristic determinant and polynomial

∣∣∣∣ qq′ − λ q
1 q′ − λ

∣∣∣∣ = 0(
qq′ − λ

) (
q′ − λ

) − q = 0

qq′2 − q − q′ (1 + q) λ+ λ2 = 0

give eigenvalues

λ± = +q′ (1 + q)

2
±

√
q′2 − 2qq′2 + q′2q2 + 4q

2

Since N is usually large, the larger eigenvalue raised to the Nth power dominates
and the partition function is

� = λN+

for cyclic boundary conditions where the Nth atom interacts with the first atom. The
single atom partition function is

ξ ≈ λ+

The complicated expression for the atoms with interactions simplifies when the
interaction energy is 0 and q’ = 1

λ+ = 1 + q

2
+

√
1 + 2q + q2

2
= 1 + q

the partition function for independent atoms.
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14.8 The One-Dimensional Ideal Lattice Gas

A gas condenses to liquid when interactions become important at low volume and
temperature. A one-dimensional lattice gas is a line of M cells that are either empty
or occupied by one of N gas atoms (N<M). The Boltzmann probability that a site is
occupied depends on the chemical potential:

λ = exp (βμ)

N particles on M sites are arranged in

M!N! (M − N)!

ways to give a partition function

Q = M!
N!(M − N)!qN

for an ideal gas with no interactions. q is the partition function for one gas molecule.
The number of sites M is the one-dimensional equivalent of volume. The three-

dimensional classical equation

P =
(
∂A

∂V

)
= −P

and the free energy

< a >= −kT ln (Q)

suggest the definition for a one-dimensional system pressure

P = −
(
∂ < a >

∂M

)
= +kT

(
∂ ln (Q)

∂M

)
= +kT [ln (M)− ln (M − N)]

= −kT ln

(
1 − N

M

)
= kT (1 − θ)

where θ = N/M is the “concentration,” the number of atoms per total sites. Since

Ln(1 − θ ) = −θ

for a dilute gas (N<<M),

P = +kTθ = kTN/M

PM = NkT

This is the equation of state, analogous to PV = nRT, for a one-dimensional
ideal gas.
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14.9 The Bragg–Williams Approximation

The number of ways N non-interacting particles can be arranged on M sites

M!
N!(M − N)!

is valid for any geometrical arrangement of the M cells. The equation can be used for
a one-, two-, or three-dimensional gas. Interactions between the molecules require
a separation of states that have interacting neighbors and those that do not.

The Bragg–Williams approximation uses the fraction or probability that a particle
has interacting neighbors to determine its average energy of interaction. Two nearest
neighbor particles interact with energy ε and if the system geometry can produce up
to c interacting neighbors, the energy of interaction can range from 0 to cε. The
average energy of interaction for one particle is

cεN/M

As the particles fill lattice sites (N → M), the interactions approach their max-
imum energy (cε). Each particle experiences this average interaction so the total
interaction energy for the system is

N (cεN) /2 M = cεN2M

The energy is divided by 2 since 1–2 and 2–1 interactions are the same.
The partition function for the lattice gas with M sites and N particles is

Q = M!qN exp
(−βcεN2 / M

)
N!(M − N)!

The pressure P for this gas depends only on logarithmic terms with M

P + kT

(
∂ ln Q

∂M

)
= + kT

∂

∂M

[
ln M! − ln (M − N)! − βcεN2/2 M

]
= + kT

[
ln M − ln (M − N) + βcεN2 / M2

]
P = kTθ + βεθ c2/2

This is an expansion in θ= N/M, the “concentration.”
The derivative for the chemical potential for this gas acts only on ln(N) terms
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μ =
(
∂ < A >

∂N

)
M,T

= −kT
∂ ln (Q)

∂N

= −kT
∂

∂N

[
− ln (N!)− ln (M − N)! + N ln q − βcε

N2

2 M

]

= kT ln

[
N

M − N

]
− kT ln q + 2cε

N

M

Attractive interactions (ε<0) produce a lower chemical potential. Particles tend
to sites that have interacting neighbors. The first term is the “adsorption” isotherm

N/(M − N) = θp/(1 − θ )

Problems

14.1 A one-dimensional alloy with metals A (λA = exp(βμA)) and B (λB =
exp(βμB)) has only A–A (εAA) and B–B interactions (εBB). Give the transfer matrix
for one site in this alloy.

14.2 The Debye length for a 0.01 M solution of 1:1 electrolyte is κ−1 = 3 ×
10-9m = 3 nm. Noting that the Debye length is inversely proportional to the square
root of the ionic strength, determine the Debye length for 0.01 M CaCl2 and 0.01 M
CaSO4.

14.3 The three proteins of an interacting array have two conformations (r,t) and
are arranged with a planar, triangular geometry. If the free energy for a change r =
t for each conformer is g (L=exp(−βg)) and the only interaction energy is t–t (εtt),
determine the partition function and the average number of

(a) t conformers and
(b) ttt oligomers.



Chapter 15
Statistical Thermodynamics in Chemical
Kinetics

15.1 The Dog-Flea Model Revisited

The dog-flea model illustrates an equilibrium distribution with the maximal states.
If all fleas are on dog A, each might jump to dog B with some characteristic time.
Independent jumps by fleas in either direction eventually lead to an equilibrium
state. Even then, random jumps create a dynamic equilibrium. Even though fleas
continue to jump between dogs, the 50–50 distribution is stable. Fleas continue to
jump and although the system can fluctuate from this equilibrium, the 50–50 equi-
librium is observed predominantly. For equal energy isomers, an initial state of only
A isomers leads, in time, to the 50–50 A–B distribution.

The isomer reaction rate depends on initial conditions. For a non-equilibrium
distribution of 16 fleas and 0 fleas on dogs A and B, respectively, the forward rate
from A to B is large. Any one of the 16 fleas can jump to dog B. The rate (number
of fleas jumping per unit time) is proportional to the number of fleas N = 16, on
dog A

Rate (A) = −k1NA

where the negative signifies loss of fleas from dog A. k is a proportionality constant
with units of inverse time, e.g., s−1. Its inverse, the natural lifetime τ , establishes
the time scale. Since the departing fleas go to dog B, the rate of gain for B is

Rate (B) = +k1NA

Since dog B has no fleas initially, the rate for a jump from B to A is 0

Rate (B) = −k1NB = k−1(0) = 0

As fleas jump to dog 2, the forward rate decreases. If k = 1/4 s−1 ,τ , the natural
lifetime = 2.5 s,

Rate = −1/4NB = 1/4(16) = −4
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i.e., four fleas have jumped leaving 16–4 = 12 fleas behind. In the next time interval,
the forward rate of loss is smaller since rate depends on NA at a this time

Rate = −kN1 = 1/4(12) = −3

Any of the four fleas on dog B might also return to dog 1 in this time interval.
When all fleas (or isomers) have the same energy, k1 = k−1 = k, and the rate of
return is

kNB = 1

4
(4) = 1

The net rate for A is

dNA/dt = −kNA + kNB = −1/4(12) + 1/4(4) = −2

As B increases, the overall net rate slows.
For first-order kinetics, isomer transition probabilities are defined for each time;

the total time the particle has been a specific isomer is irrelevant. The fraction at a
given time is proportional to the number of this isomer at that time.

For a reversible reaction, the rate constant for the decay to equilibrium is the sum
of the forward and reverse rate constants

The net rate for B is

dNA

dt
= −kNA + kNB

Using the conservation of total isomers

NA + NB = N

the rate equation is

dNA/dt = −kNA + k(N − NA) = kN − (2 k)NA

The solution for NA = N, NB =0 at t= 0

NA = N exp ( − 2kt) + Nk/2 k[1 − exp ( − 2kt)]

illustrates an interesting characteristic of first-order reactions. The NA isomers at
the start of the reaction might be expected to decay with rate constant k since no B
are present. However, the net rate constant (2k) is the sum of forward and reverse
rate constants even though no B is present. The decay reflects transitions, not the
specifics of A to B or B to A.
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15.2 Reversible Reactions and Equilibrium

The net rate of reaction for the equal energy isomers

dNA/dt = −kNA + kNB

with conservation of total isomers

N = NA + NB

slows as the system approaches an equilibrium where the net rate is 0

0 = −kNA + k(N − NA)

and
kN = 2kNA

NA = N/2

Although transitions continue, the numbers of A and B isomers are constant at
this dynamic equilibrium. Different N/2 molecules are A isomers at any time in
dynamic equilibrium.

Transition rate constants are different if the A and B isomers have different free
energies. The equilibrium probabilities are now Boltzmann probabilities

pA = exp (0/kT)/q pB = exp ( − g/kT)/q

q = 1 + exp ( − g/kT)

and the forward and reverse rate constants are modified to produce this result at
equilibrium. Substituting the Boltzmann probabilities for dynamic equilibrium

0 = −k(1/q) + k exp ( − g/kT)/q = −k pA + krpB

requires rate constants

K1 = k exp ( − g/kT)

k−1 = k

These rate constants now define equal forward and reverse rates at dynamic
equilibrium. This is the condition of detailed balance at equilibrium.

15.3 Kinetic Averages

Continuous first-order differential equations are solved for N(t). The irreversible
kinetic equation

dN/dt = −kN
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with No at t=0 gives
dN/N = −kdt

∫ N(t)

No

dN/N =
∫ t

0
−kdt

Ln(N/No) = −kt

N(t) = No exp ( − kt)

P(t) = No/N = exp ( − kt)

N(t) and p(t) are the average number of particles and probabilities, respectively
for time t.

The average time for the decay is determined from the probability

p(t) = exp ( − kt)/
∫ ∞

0
exp ( − kt)dt

as ∫ ∞

0
(t) exp ( − kt)dt/

∫ ∞

0
exp ( − kt)dt

The numerator is the derivative of the denominator with respect to k and the ratio
is

= −∂
[∫

exp ( − kt)dt

]
/∂k/

∫ ∞

0
exp ( − kt)dt

Since ∫ ∞

0
exp ( − kt)dt = −k−1 exp ( − kt)|∞0 = 1/k

the numerator is

d/dk

[∫ ∞

0
exp ( − kt)dt

]
=

∫ ∞

0
t exp ( − kt)dt = d(k−1)/dk = −k−2

and the average time is

− d(k−1)/dk/k−1 = +k−2/k−1 = 1/k = τ

The natural lifetime, the probabilistic time for a change, is equal to the average
time for decay.

The reversible rate expression

dNA

dt
= −k1NA + k−1NB
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with conservation of particles

Nt = NA + NB

is

dNA/dt = −k1NA + k−1(Nt − NA) = k−1Nt − (k1 + k−1)NA

The integrating factor exp(kt) with k = k1 + k−1 is multiplied on each side

exp (kt)[dNA/dt + kNA] = k−1Nt exp (kt)

to reduce the left to a single differential[
N1 exp (kt)

]
/dt = k−1Nt exp (kt)

Integrating gives

NA(t) = Nt exp ( − kt) + k−1

k
N(1 − exp ( − kt))

and

NB(t) = Nt − NA(t)

15.4 Stochastic Theory for First-Order Decay

N(t) for the irreversible first-order irreversible decay

N(t) = No exp ( − kt)

is the average <N(t)>. For a given system, the actual value might vary but it remains
close to this average. Stochastic analysis is used to determine both the average and
the standard deviation (fluctuations) about this average at each time t.

p(N,t) is the probability the system has N molecules at time t. For the next inter-
val �t, the probability of having N molecules, P(N, t+� t), is determined by two
events. (1) There are N+1 molecules and one reacts in the time interval leaving N
molecules and (2) there are N particles at t and nothing happens in the interval for
this irreversible reaction.

The rate constant k is a probability factor for a change in unit time. The product
k�t is the probability one particle will react. For N+1 particles, the probability one
reacts is k(N+1)�t. The probability of no reaction for the N particles in the interval is

1 − kN�t

The total probability of “change” in the interval � t is

P(N,t +�t) = P(N + 1,t)(k(N + 1)�t + P(N,t)(1 − kN�t)
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P(N, t+�t) is expanded in a Taylor series

P(N,t) + (∂P/∂t) dt = P(N + 1,t)k(N + 1)dt + P(N,t) − P(N,t)kNdt

∂P(N,t)/∂t = p(N + 1,t)k(N + 1) − P(N,t)kN

This differential equation for P(N,t) is solved using a generating function with a
dummy variable s to create a series in the probabilities

F(s,t) =
∑

P(N,t)sn

Derivatives of this generating function generate averages. For example, the aver-
age value of x as a function of time is determined by differentiating the generating
function with respect to s and then setting s = 1,

s (∂F/∂s)s=1 = s
∑

P(N,t)NsN−1 =
∑

NP(N,t) = <N>

The average square deviation from the average value as a function of time is

<(N −<N>)2> =
(
∂2F/∂s2

)
s=1

+ (∂F/∂s)s=1 − (∂F/∂s)2s=1

These average values are found by converting the differential equation in
probabilities to a differential equation in the generating function

∑(
∂P(N,t)sn/∂t

) = k
∑

P(N + 1,t)(N + 1)sN+1 − k
∑

P(N)NsN

= (∂F/∂t) = k(1 − s) (∂F/∂s)

The solution to this equation

F(s,t) = [1 + (s − 1) exp ( − kt)]No

is verified by substitution.
The average number of reactant molecules at each t is

<N(t)> = s∂F/∂s|s=1
[
1 + (s − 1) exp ( − kt)

]No

= No
[
1 + (s − 1) exp ( − kt)

]No−1 |s=1 exp ( − kt)

= No exp ( − kt)

The average change in reactant A determined by the stochastic analysis is equiv-
alent to that determined from the general rate equation. The stochastic approach also
gives the mean square fluctuations from this average value at each t

<(N −<N>)2> = No exp ( − kt)[1 − exp ( − kt)]

The largest fluctuations are observed at intermediate times for this irreversible
reaction.
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15.5 The Wind-Tree Model

Boltzmann’s statistical approach was criticized because it seemed to violate some
fundamental physical laws. Systems move to equilibrium in positive time. However,
collisions between particles that produce reaction are symmetric in time. Since
Newton’s force equation

md2x/dt2 = F

is indifferent to the direction of time. If time is reversed (. t to −t), Newton’s force
equation is unchanged

md2x/d( − t)2 = md2x/dt2 = F

How could equations symmetrical in time generate an approach to equilibrium
with increasing time?

Ehrenfest proposed a simple model to explain the transition from bidirectional to
unidirectional time with a model involving four directional states. An infinite plane
is covered randomly with diamond-shaped “trees” with their four vertices facing
north (1), east (2), south (3), and west (4), respectively (Fig. 15.1).

“Wind” particles roll along the frictionless plane with constant velocity in only
the four possible directions (N, E, S, W). Their direction changes when they strike
one face of the tree elastically so all particles maintain the same energy. A particle
moving in the north (1) direction would deflect east (2) if it struck the right side of

Fig. 15.1 The wind-tree model
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the diamond tree; it would deflect west (3) if it struck the left side. A wind particle
follows a very definite trajectory through the trees dictated by Newton’s laws. If
time is reversed, the particle retraces its steps to its starting point. All trajectories
are known exactly so entropy is unchanged.

The system becomes time directional when the known trajectories for each par-
ticle are replaced by transition probabilities defined by the cross-section length of
one tree over the length on the plane allocated to that tree. The probability defines
a transition rate constant k for transitions in time. A particle moving north to south
changes direction to either west or east. The full set of kinetic equations with north
=1, north to south = 3, west to east = 2, and east to west =4 is

df1/dt = −2kf1 + kf2 + kf4
df2/dt = kf1 − 2kf2 + kf3
df3/dt = kf2 − 2kf3 + kf4
df4/dt = kf1 + kf3 − 2kf4

At equilibrium, each rate equals zero and the equilibrium populations in each
direction are

f1 = f2 = f3 = f4 = 0.25

The system has reached its most random, highest entropy equilibrium state where
all information about the starting populations is lost. Introducing probabilities has
produced a unidirectional evolution to equilibrium.

The four rate equations form a rate constant matrix with eigenvalues (decay con-
stants) 0, −2k, −2k, and −4k. λ=0 is the equilibrium distribution. The solutions are

fi = 0.25 + X1e−2kt + X2
e−4kt

The smallest non-zero decay constant (eigenvalue) dictates the evolution to
equilibrium (the degenerate −2k).

The rate decreases as the system approaches equilibrium and maximal entropy.
The stability of the equilibrium distribution is determined from dS/dt for the model

S′ = −S/K =
∑

piln(pi)

= dS′/dt =
∑

(dpi/dt) ln (pi) +
∑

(pi/pi)dpi/dt =
∑

ln (pi)dpi/dt

since ∑
dpi/dt = d(1)/dt = 0

The kinetic equations for the derivatives are substituted

Ln(p1)[ − 2kp1 + kp2 + kp4] + ln (p2)[ − 2kp2 + kp1 + kp3]

+ ln (p3)[ − 2kp3 + kp2 + kp4] + ln (p4)[ − 2kp4 + kp1 + kp3]
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Collecting terms in pairs (1,2), (2,3), (3,4), (4,1) gives terms

Ln(p1)( − p1 + p2) + ln (p2)( − p2 + p1)

+ ln (p2)( − p2 + p3) + ln (p3)( − p3 + p2)

+ ln (p3)( − p3 + p4) + ln (p4)( − p4 + p3)

+ ln (p4)( − p4 + p1) + ln (p1)( − p1 + p4)

Each line of probability pairs can be reduced to the form

(p2 − p1) ln [p1/p2]

For the fractional probabilities, this form is always negative. The derivative

− dS′/dt = −d(S/k)

is then always positive so that the entropy rate of change with time increases as
the probabilities differ. The rate of entropy change at equilibrium (equal probabili-
ties in this case) is zero. The rate is small when the system is close to equilibrium
and increases as the system moves further from equilibrium. This is an example of
Lyaponouv stability. If the system is perturbed from equilibrium so that its entropy
decreases, it returns to equilibrium more rapidly for larger perturbations.

15.6 The Bimolecular Collision Theory

A bimolecular reaction between A and B in the gas phase might occur if these two
molecules collide. The rate of A–B collisions constitutes an upper limit on the rate
of bimolecular reactions in the gas phase. This rate of collisions between A and B is
proportional to the concentrations of A and B

ZAB = C[A][B]

The proportionality constant C is the rate constant k for a bimolecular reaction
where every collision between A and B leads to reaction

Rate = d[A]

dt
= −k[A]1[B]1

The proportionality constant C (or k) depends on the relative velocity (the
velocity at which they approach each other

vr =
√

8kT

πμ

with reduced mass μ

1/μ = 1/mA + 1/mB

And the radii rA and rB of A and B, respectively.
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ZAB is a reaction rate only if each A–B collision produces reaction. Bimolecular
collision theory postulates that only some fraction of the molecules collide with
enough energy to react. The Boltzmann factor for a collision energy is

e−ε/kT = e−βε

The partition function for the colliding molecules is

q =
∞∫

0

e−βεdε = − 1

β
e−βε ∞|

0
= − 1

β
[e−∞ − e(0)] = 1

β
= kT

The probability that the collision has an energy greater than the minimum energy
for reaction, εm, is found by integrating the probabilities for each energy,

p(ε) = e−βε

q

from the minimum energy for reaction εm to ∞,

p(ε < εm) =
∞∫
εm

p(ε)dε =
∞∫
εm

e−βε

q
dε = − 1

βq
e−βε ∞

l
εm

= e−βεm

since βq = β 1
β

= 1
This total probability is the fraction of all collisions that lead to reaction. For A

mole of reacting A and B, the probability is

p(E > Ea) = e(−εa/kbT) = e(−Ea/RT)

The total number of reactive collisions is

dP

dt
= ZABe(−Ea/RT)

Comparing this theoretical result

dP

dt
= ZABe(−Ea/RT) = Ce(−Ea/RT)[A][B]

with the experimental (Arrhenius) rate expression,

kexp = C exp ( − Ea/RT)

Ea describes the minimum collision energy for reaction and C, calculated from
the cross section and relative velocity, describes the frequency factor A.
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15.7 Transition State Theory

Non-elastic X–Y collisions can create an XY complex where energy flows through-
out the complex. Activated complex theory postulates short-lived complexes that
exist for about 10−13 s. The XY complex is in pseudo-equilibrium with the X and Y
reactants since the activated complexes can dissociate to products.

A bimolecular reaction

X + Y ⇔ XY‡ → Products

has forward and reverse rate constants of k1 and k−1 respectively, and k2 for the
irreversible reaction to products. The dagger notation for the activated complex was
a typesetter’s error. Eyring had used an asterisk.

Reactants and the transition state complex rapidly reach a pseudo-equilibrium.
The reaction to products is ignored to produce an equilibrium

X + Y
k1−−−→

k−1
XY

0 = −k1[X][Y] + k−1[XY‡ ]

K‡ = k1

k−1
= [XY‡]

[X][Y]

[XY‡ ] = K‡ [X][Y]

The rate of reaction to product is

R = k2[XY‡ ] = k2K‡ [X][Y]

k2 is the frequency for a single vibration. The vibration with quantum energy hν
is thermalized to the classical vibrational energy kT

kT = hν ν = kT

h

This frequency is the rate constant for complex dissociation

k2 = ν = kT

h

τ2 = 1

ν
= h

kT
At 300 K, the k2 is approximately 1013 s−1. The molecule could dissociate in

10−13 s.
The experimental bimolecular rate expression

dP

dt
= +k[X][Y]
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is compared with the rate for the transition state theory to give a theoretical
expression for the experimental rate constant

k = kbT

h
K‡

This basic form is valid for all types of reaction. Only the equilibrium constant
changes. The unimolecular reaction

A ⇔ A‡ → P

has equilibrium constant

K‡ = A‡

A

dP/dt = k2A‡ = k2K‡A

15.8 The Energetics of Transition State Theory

The empirical rate constant has an activation energy Ea

kexp = Ae(−Ea/RT)

The transition state rate constant

k = K‡k2

is converted to an energy form using the hypothetical free energy for complex
formation

0 = �Ao‡ + RT ln K‡ �Ao‡ = −RT ln K‡ K‡ = e
�A‡
RT

The transition state rate constant

k = kbT

h
K‡ = kbT

h
e
�A‡
RT

is modified with
�A‡ = �E‡ − T�S‡

e−�A‡
RT = e− (�E‡−T�S‡)

RT = e+�S‡
R e−�E‡

RT

E‡ correlates with the experimental activation energy. The temperature indepen-
dent entropy factor is incorporated into the frequency factor A

Ea = �Eo‡ A = kT

h
e(�S‡/R)

A = kT

h
e
�S‡

R
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since

k = Ae
Ea
RT = kbT

h
e
�So‡

R e
�Eo‡

RT

The model predicts a frequency factor directly proportional to T.
Both reactant and complex free energies require the same standard state.

However, the hypothetical activated complex has no tabulated free energy; it must
be estimated.

15.9 Transition State Theory and Partition Functions

The unimolecular reaction with activated complex

A ⇔ A‡ → P

has equilibrium constant

K‡ = [A]‡

[A]

involving the postulated, short-lived activated complex. The concentration of this
complex is estimated using partition functions since this “sum over states” sums all
possible energy states of a molecule.

The partition functions for reactant molecules are calculated from their known
energies. The partition function for the activated complex is found by postulating a
structure and estimating its partition function.

The equilibrium constant for the formation of activated complex from molecules
A and B

K‡ = [AB]‡

[A][B]

requires an AB‡ partition function. Since the partition functions are all based on a
common reference state, the free atoms, the equilibrium constant is

K‡ = Q‡
AB

QAQB

Q‡
AB,QA, and QB are each products of partition functions for translation, rotation,

and vibration. For example,

QA = qi
Atq

j
Arq

k
Av

where i, j, and k are the number of translational, rotational, and vibrational degrees
of freedom, respectively.

The activated complex is expected to have a higher energy than the reactants but
conservation of energy requires that it have the same total energy. The difference in
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the partition function lies in the larger number of states and larger partition function
created by the new geometry of the complex.

An accurate estimate of a rate constant using transition state theory requires
detailed energy information. Errors cancel for ratios making it possible to make
estimates for partition functions in the ratios.

The one-dimensional translational partition function is

qt =
√

2πRT

M

N2 (MW = 0.028 kg) at 300 K has a partition function of 748 while He has a
partition function of 1978. An estimate of 103 establishes the order of magnitude.
For translation in three dimensions, the partition function is qt

3 = 109.
An average rotational partition function qr = 102 per rotation. A quantum

oscillator has a partition function

qv = 1 + e−1βε + e−2βε + . . .

between 1 and 10.
A diatomic reactant molecule (AB) with three translations, two rotations, and one

vibration and an estimated partition function

QAB = q3
t q2

r q2
v ≈ (103)3(102)2(5)1 = 5 × 1013

reacts with an atom C with partition function

Qc = q3
t = (103)3 = 109

The activated complex might be triangular or linear. A linear complex has three
translations, two rotations, and 3(3)–5 = 4 vibrations. One vibration stretches and
breaks with rate constant ν = kT/h. The remaining three are tabulated in the partition
function

QAB‡ = q3
t q2

r q3
v

The equilibrium constant is

K‡ = QAB‡

QAQB
= q3

t q2
r q3

v

q3
t
[
q3

t q2
r q1

v

] = q2
v

q3
t

= 25

109
≈ 25 × 10−9

and the estimated rate constant is

k = k2K‡ = kbT

h
K‡ = (1013)(25 × 10−9) = 25 × 104
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15.10 The Lindemann Mechanism

A gas reaction that obeys first-order kinetics, i.e., concentration to the first power,
implies a unimolecular reaction. Each molecule reacts independently. A second-
order reaction implies a bimolecular reaction where two molecules interact to react.
Certain gas phase reactions can display both orders. They are first order at high
pressure or concentration but are second order at lower pressures or concentrations.
This suggests that the reaction from reactants to products might proceed by two
or more steps. The Lindemann mechanism is a two-step sequence. The reactant A
molecules are mixed in a heat bath of B molecules which can transfer energy to A
on collision to create an excited A∗ molecule. This molecule has sufficient energy
to react to product although a second collision with a B removes this energy (the
strong collision assumption) and returns the molecule to its non-reactive state

The three kinetics rates are (1) activation, (2) deactivation, and (3) reaction to
products

A + B → A∗ + B

A∗ + B → A + B

A∗ → P

have rate constants k1, k−1, and k2, respectively.
The rate for A∗ is

d[A∗]

dt
= +k1[A][B] − k−1[A∗][B] − k2[A∗]

The steady state approximation,

dA∗

dt
= 0

states that the small concentration or pressure of A∗ formed is constant

0 = k1[A][B] − k−1[A∗][B] − k2[A∗]

k1[A][B] = [A∗](k−1[B] + k2)

[A∗] = k1[A][B]

k−1[B] + k2

The rate of formation of products is

dP

dt
= k2[A∗] = k2

k1[A][B]

k−1[B] + k2

This equation reduces to first or second order under the proper conditions. For
large [B], k–1[B]>>. k2 in the denominator is dropped to give a first-order rate of
formation

dP

dt
= k2k1[A][B]

k−1[B] + 0
= k2k1

k−1
[A] = ke[A]
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The limiting first-order rate constant is a combination of rate constants

ke = k2k1

k−1

The equilibration of A and A∗ at high pressure gives an equilibrium constant

Ke = k1

k−1
= [A∗][B]

[A][B]
= [A∗]

[A]

The rate constant expression has the same form as the activated complex model;
both have an initial equilibration step and a reaction step to products

k = Kek2

at high B pressures.
A–B collisions decrease with decreasing B pressure slowing formation and

deactivation of A∗. At low pressure, k−1[B]<<k2 so k−1[B] ≈ 0

dP

dt
= k2k1[A][B]

0 + k2
= k1[A][B]

The second-order rate depends only on k1. The slowest, or rate-determining step,
is the one that creates the A∗. Once created, the molecule remains active for a time
sufficient to react without deactivating.

The Lindemann rate includes intermediate pressures where both first- and
second-order processes contribute to the observed rate.

15.11 Bose–Einstein Statistics

The discrete energy packets that add to a quantum mechanical oscillator are pho-
tons. Photon statistics deals with integral numbers of indistinguishable photons. This
Bose–Einstein statistics differs from Boltzmann statistics because indistinguishabil-
ity changes the procedure for counting states.

The 22 = 4 Boltzmann states for a system with two molecules and two absorbed
photons recognize labeled photons. If the molecules are labeled 1 and 2 and the
photons a and b, then the states are all possible because the a and b quanta are
distinguishable. For indistinguishable quanta, the second and third states are one
state (Fig. 15.2).

The “molecules” can be vibrational modes in a single molecule. If the photons
are free to move between vibrational modes, sufficient photons (energy) can collect
in one mode to induce a vibrational rupture, i.e., reaction.

A molecule with two equal vibrational modes accepts three photon of the proper
energy. Four distinct states are possible: (1) three quanta in mode 1, (2) three quanta
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Fig. 15.2 Boltzmann (a) and Bose–Einstein (b) states for two oscillators and two quanta

in mode 2, (3) 2 quanta in mode 1 and 1 in mode 2, and (4) 1 quantum in mode 1
and 2 in mode 2.

Four Bose–Einstein states when the photons are indistinguishable compare with
23 = 8 Boltzmann states.

The number of Bose–Einstein states (Chapter 10) for g modes and N photons is

� = (N + g − 1)!/N!(g − 1)!

For 2 modes (g=2) and 2 photons (N=2), the number of states is

(2 + 2 − 1)!/(2!)(2 − 1)! = (N + g − 1)!/(N!)(g − 1)! = 3!/2!1! = 3

For 2 modes and 3 photons (N=3.g=2), the number of states is

(3 + 2 − 1)!/3!(2 − 1)! = 4!/3! = 4

The total Bose–Einstein states

(N + g − 1)!
N!(g − 1)!

give the total states possible. For N=3. g=2 with four total states, two of the states
have all three photons in a single vibration. If three vibrational quanta were sufficient
to break the bond, two out of four states would lead to reaction to give a reaction
probability 2/4=1/2.

Three photons (N=3) and three modes (g=3) have 10 total states. Three of these
10 have all three photons in one mode; if three photons are sufficient to break the
bond, the probability of reaction is 3/10 =0.3.

15.12 Energy Dependence of k2

The Lindemann mechanism postulates a single excited molecule. However, the B
molecules have a distribution of energies and can create A∗ with different quanta. An
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excited A∗ with more photons (energy) reacts faster. The rate constant k2 is energy
dependent and the k2 in the Lindemann mechanism is an average rate constant.

A minimum number of photons, No, must collect in a mode to create a reactive
A∗. The only acceptable states for reaction are those that have a least No photons
in the bond. Only N–No photons are free to move between modes in A∗ to define
reactive states; No must stay in the bond for reaction.

The total number of states possible for N quanta in g modes is

(N + g − 1)!
N!(g − 1)!

The number of states possible once No photons are locked in a mode is

(N − No − g − 1)!
(N − No)!(g − 1)!

This number of states is divided by total states for the probability of reaction that
depends on N, the total photons or energy in the molecule.

When N=4 and j =3, the state total is

(4 + 3 − 1)!
4!(3 − 1)! = (6)!

4!2! = 6 × 5

1 × 2
= 15

If 3 photons are locked in a bond for reaction (No =3), the number of states is

(4 − 3 + 3 − 1)!/(4 − 3)!(3 − 1)! = 3!/2! = 3

The probability of reaction is

p(reaction) = 3/15 = 0.2

Adding one more photon (N=5) increases the probability of reaction

(5−3+3−1)!
(5−3)!(3−1)!

(5+3−1)!
5!(3−1)!

= 6

21
= 0.286

The probability for N quanta and g vibrational modes with a minimum number
of quanta, No, per reactive mode is

(N − No + g − 1)!
(N − No)!(g − 1)!

The probability that at least No quanta collect in a specific vibrational mode is

p( > No) =
(N−No+g−1)!
(N−No)!(g−1)!

(N+g−1)!
N!(g−1)!
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Since the molecule has a distribution of energies, these probabilities are averaged
and multiplied by a time scaled constant k to determine an average k2.

15.13 The Continuum Approximation

The A∗ reaction probabilities are summed over all possible N. For large, the prob-
abilities are recast in an energy continuum (ε = Nhν). The probability for k2 is
converted to k2(ε) using Stirling’s approximation,

M! = MMe−M

The exponential terms cancel in both numerator and denominator

e−(N−No+g−1)

e−(N−No)e−(g−1)
= exp ( − N − No − g + 1 + N − No + g − 1) = e0 = 1

to give

(N−No+g−1)N−No+g−1

(N−No)N−mo (g−1)j−1

(N+g−1)N+j−1

NN (g−1)j−1

= (N − No + g − 1)N−No+g−1NN

(N − No)N−No (N + g − 1)N+g−1

If N>>g, g–1 is ignored in the parentheses while n is retained in the powers to
avoid an oversimplified probability of 1

N − NN−No+g−1
o NN

N − NN−No
o NN+g−1

= (N − No)g−1

Ng−1
=

(
N − No

N

)g−1

Total energy in the molecule is

E = Nε = Nhν

while the minimum energy is

Eo = Noε = Nohν

k2(E) is

k2( > Eo) = k

(
E − Eo

E

)g−1

In the limit of high pressure, the Lindemann unimolecular rate constant

k1

k−1
k2 = K1k2
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becomes a Boltzmann probability times k2(E) for each energy. For 1 mode, the
vibrational Boltzmann probability

e(−E/kbT) dE

kT

is used. The partition function for j identical oscillators is

(kbT)j

The Boltzmann probability for g oscillators is developed by analogy with
differential elements for multidimensional systems. The radial two-dimensional
differential element is

rdr

while the three-dimensional element is

r2dr

A differential element in an M-dimensional radial space is

rM−1dr

The differential element for g identical oscillators is

Eg−1dE

The probability for an energy E for g oscillators is

exp ( − E/kT)(E/kT)g−1d(E/kT)

The result is also the ratio of forward and reverse rate constants for an excited
energy E.

The average rate constant for j modes the integral of the rate constant k2 and
Boltzmann probability

<k2> =
∞∫

Eo

k(E)p(E)dE =
∞∫

Eo

k

(
E − Eo

E

)(
E

kT

)g−1

e−βEdE/kT

using the probability distribution for the g indistinguishable oscillators

e−βE

(j − 1)!
(

E

kT

)g−1

d

(
E

kT

)
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For intermediate pressures, the average rate is the integral over the Lindemann
expression

dP/dt =
∫ ∞

0

k2(E)k1[A][B]

k−1[B] + k2(E)
p(E)dE

15.14 Energy Transfer

Two molecules with vibrational energy can collide to form a complex where the
energy moves though all the vibrational modes of the complex. When the com-
plex separates into its individual molecules, energy can be transferred. When a
D molecule with three photons strikes a second molecule B with none to form a
complex, what is the probability that has transferred its three quanta to A?

Maximal states occur for the complex since it contains all the photons and all the
modes. Information on the initial modes and photons for D and A is lost as energy
moves throughout modes in the complex. The number of states for the separate D
and A molecules after dissociation is the product of the numbers of states for each.
This probability of energy transfer is the ratio of the total states for the separated D
and A over the total states for the complex. D has 3 photons (N=3) and 2 equivalent
modes (g=2) initially and A has zero photons (N=0) and 3 modes with the same
energy (k=3) initially. What is the probability that, after transfer, D has zero photons
(N=0) and A has 3 photons (M=3)?

The complex has M+N = 3 total photons and g+k = 2+3 = 5 equivalent
vibrations and

(3 + 5 − 1)!/3!(5 − 1)! = 7!/3!4! = 7 × 6 × 5/3 × 2 = 35

states.
After separation, D has 0 photons (and 2 modes) for

(0 + 2 − 1)!/0!(2 − 1)! = 1

state (the energy free state). The A molecule has three photons and three modes for
a total of

(3 + 3 − 1)!/3!(3 − 1)! = 5!/3!2! = 5 × 4/2 = 10

states. The probability of this energy transfer is

p(D(3) A(3)) = 10 × 1/35 = 2/7

If the complex forming collision rate ZDA is known, the product of this rate and
the probability of transfer gives the rate of energy transfer.
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In this example, the complete transfer of three quanta was the only energy trans-
fer considered in determining the probability. The problem requires averaging when
different numbers of photons are transferred on collision.

Problems

15.1 A Lindemann mechanism requires the formation of an excited A∗ molecule
by collisions with heat bath molecules B. Further collisions with B will remove the
energy to return the molecule to the unexcited state A.

a. Determine the steady-state concentration of A∗ if it can return to A either by
collisions with B (rate constant k-1) or by emitting the excess energy as a photon
of radiation (rate constant kf).

b. Determine the intensity of radiation emitted by the A∗ molecules.

15.2 A linear diatomic molecule A decomposes via a unimolecular mechanism.
For transition state theory, it proceeds through the intermediate A

A ⇔ A‡ → P

a. Tabulate the degrees of freedom for A and A‡, i.e., list number of translations,
rotations, etc.

b. If qtrans = 103, qvib = 10, and qrot = 100, determine K‡ for this reaction.
c. Determine the rate constant k for the reaction if (kT/h) = 1013 × s−1.
d. Determine �A‡ for this reaction at 300 K (RT = 2500 J mol-1).

15.3 An atom A interacts with a diatomic molecule (BC) to form a triangular
activated complex in three-dimensional space. Determine K‡ for the equilibrium
between reactants and the activated complex using partition functions.

15.4 Two A atoms which exist in the gas phase above a surface can both bind to
the surface and interact to form an activated complex on the surface. Because the
complex is confined to two dimensions (the surface), it has two possible translations
in the plane.

a. Determine the number of rotations and vibrations possible for the activated
complex.

b. Set up (do not evaluate) the partition function for the activated complex using qt,
qrot, etc.

c. Give the theoretical rate constant for the reaction in terms of the partition function
(do not evaluate).

15.5 A molecule A with N photons and g equivalent vibrational modes collides
with a second molecule B with no quanta and k vibrational modes.
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a. How many different ways can the N photons be distributed when the two
molecules combine to form a complex.

b. What is the probability that the molecule A has only i photons when the complex
dissociates, i.e., N–i quanta are transferred to B.

15.6 The rate constant for a bimolecular process is described by the Arrhenius
expression

k(T) = Ae(−Ea/RT) = 3 × 109e(−50,000/RT)

a. If this rate constant is described with the collision theory model what is the
collision frequency.

b. What is the minimal energy required to create a reactive molecule.



Chapter 16
Irreversible Thermodynamics and Transport

16.1 Charge Flux

The product of electrical potential ψ and charge dq is a reversible free energy
change

dG = ψdq

Charge is transferred without changing the potential. The energy is the product
of an intensive ψ(J/C) and extensive (qC) parameters. A battery converts chemical
energy to electrical energy. Energy is transferred reversibly only when the current
that moves across the system boundary is infinitesimally small.

Batteries are normally used under irreversible conditions. Charge flows as a cur-
rent and the free energy or work of the battery is transferred to the surroundings.
This work is degraded to heat. The energy transferred finally to heat is described by
having the surroundings approximated by a resistor. As current flows through the
resistor under the battery potential, the resistor produces heat.

The current through a resistor for a given potential difference is defined by Ohm’s
law, a linear equation; the current i(C/s) is directly proportional to the electrical
potential difference ψ

i = ψ/R = Gψ

The conductance G (Siemens = amperes/volt) is the inverse of resistance in
ohms. While classical thermodynamics has no time variable, the current is charge
per second for this irreversible system. The potential is also modified for this irre-
versible system. The distance over which the potential acts determines the current
generated. A grounded electrode placed 1 km from 20,000 V produces no current
since the conductance of all the intervening air is too low. The same electrode 1 mm
from the 20,000 V ionizes the air to produce a large current. The difference behavior
is due to the potential gradient (the electric field) in each case

E = −dψ/dx

255M.E. Starzak, Energy and Entropy, DOI 10.1007/978-0-387-77823-5_16,
C© Springer Science+Business Media, LLC 2010
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The electric field is

20,000/0.001 = 2 × 107 V/m

for the 1 mm separation and 20 V/m for the 1 km separation. The minus sign pro-
vides consistent flow charge. If the positive potential on the right is larger, it makes
a positive charge move to the left – the electric field vector direction.

The conductance of the material increases with the distance between electrodes.
To provide a consistent, general Ohm’s law, a current “density” or more accurately
a charge flux is defined as the current per unit area

Jq = i/A(C/s/m2)

For a homogeneous material of length d

E = −ψ
d

Combining these intensive quantities in Ohm’s law gives

Jq = i/A = −[Gd/A]ψ/d = [Gd/A]E = +κE

Gd/A = κ is the conductivity, i.e., the conductance across a 1 m long cube with
1 m2 cross-section. The sign is positive since a positive field moves a positive test
charge from left to right.

The irreversible current flow involves time and distance in charge flux and
electric field, respectively. These independent variables were absent in classical
thermodynamics but now characterize irreversibility.

The product of current and voltage is power (J/s−1)

P = iψ

for a volume V = Ad. The power per unit volume

P

V
= iV

Ad
= i

A

ψ

d
= JE

is the product of the flux and driving force. Power is the rate of production of heat.
Since

q = TS

the rate of heat production at constant temperature is related to the rate of entropy
production

ϕ = dq

dt
= T

dS

dt
= JqE

TdS/dt is the dissipation function.
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16.2 Generalized Forces and Fluxes

Ohm’s law

Jq = κE

is one example of a general type of linear equation called a flux force equation.
The electric field, a force per unit charge, produces a charge flux. A concentration
gradient dc/dx produces a flow of particles in a linear equation

Jn = L
dc

dx

A force X based on a potential gradient produces a flux. The general force flux
equation

J = LX

is common to many systems close to equilibrium. Forces and fluxes are generated
from conjugate thermodynamic variables. For example, Ohm’s law is created from
the conjugate pair ψdq by defining a force as the gradient of the electric potential
(the intensive variable)

X = E = −dψ/dx

and the flux as the charge (the extensive variable) per unit time and area

Jq = 1

A

dq

dt

The linear Ohm’s law then relates these new variables

J = LX Jq = κE

Force flux equations are derived from any pair of thermodynamic conjugate vari-
ables. Each pair (PV, Vq, μn) is the product of an intensive variable (a potential)
and an extensive conjugate (charge). A generalized potential, (Y) and a generalized
charge Q give a thermodynamic energy

YQ

The general linear force flux equation has a one-dimensional force using the
intensive quantity

X = −dY

dx

and flux using the extensive conjugate

JQ = 1

A

dQ

dt
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The force flux relation is

J = 1

A

dQ

dt
= LX = −L

dY

dx

The thermodynamic pair μn gives a force

X = −dμ

dx

and flux

J = 1

A

dn

dt

and the linear relation

J = 1

A

dn

dt
= LX = −L

dμ

dx

For the PV conjugate pair, the pressure gradient,

X = −dP

dx

is the pressure difference across the piston of width �x. The flux is

J = 1

A

dV

dt

The change in volume is dV = Adx and

J = 1

A
A

dx

dt
= dx

dt
= v

The flux is the piston velocity. This flux can be interpreted as the motion of
volume elements across the piston. The force flux equation is

J = v = +LX = −L
dP

dx

The dissipation function

� = JX = |vdP/dx|

shows that both entropy and heat production rates increase with gradient and
velocity.
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16.3 Particle Flux

The flux of particles is proportional to the gradient of the chemical potential

Jn = 1/Adn/dt = −Ldμ/dx = LX

for n moles. The mole flux is also the product of particle velocity v and concentra-
tion c

Jn = −vc

with units v(m)c (moles/m3) = vc mol/m2.
The force mobility u’ is the velocity per unit force

u′ = v/X v = uX

Comparing the equations

j = −vc = −u′cX = −u′cdμ/dx = −Ldμ/dx

L = u′c

A single particle flux is related to the particle concentration c

JN = u′cdμ/dx

with single particle chemical potential
d = kTd ln (c)

The particle flux is

JN = −u′cd[kT ln (c)]/dx = −u′ ckT

c

dc

dx
= −u′kT

dc

dx

Comparing this with Fick’s empirical first law

J = −Ddc/dx

gives the Einstein equation
D = u′kT

u’ has units velocity per force. The frictional coefficient f, defined for force F and
velocity v,

F = fv

has units of force per velocity. The frictional coefficient is the inverse of the force
mobility

u′ = 1/f = v/F
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The Einstein equation is

D = u′kT = kT/f

Continuous steady state diffusion occurs across a thin homogeneous region, e.g.,
a film or membrane, flanked by bathing solutions with concentrations c1 and c2,
respectively. Since the baths are large, their concentrations remain effectively con-
stant for a flux across the membrane. Since the flux across the region is constant,
Fick’s law is integrated from bath 1(x = 0) to bath 2 (x = L)

L∫
0

Jdx = −
c2∫

c1

Ddc

JL = −D(c2 − c1)

J = −D/L(c2 − c1) = −P(c2 − c1)

P, the permeability coefficient, has units of velocity (m/s).

16.4 Discrete State Membrane Transport

At the molecular level, particle transport proceeds in a series of discrete jumps where
the particle moves between “holes” in the transport medium. Discrete state transport
is illustrated with a one dimensional, one site model; particles from either bath jump
to a single site in the center of the homogeneous film or membrane. The continuum
flux equation

J = vc

is modified for the three states (bath 1, site, bath 2) of the one site model. J = vc1 is
the flux into a unit area of sites. J = vc2 is the flux into the sites from bath 2 and vc∗
is the flux from the site into each bath. The stationary state rate of change for c∗ is

0 = vc1 + vc2 − (v + v)c∗

c∗ = [vc1 + vc2]/2v = [c1 + c2]/2

The net flux from the site to bath 2 is

Jnet = vc∗ − vc2 = v/2[c1 + c2] − vc2 = −v/2(c2 − c1)

The permeability coefficient P = v/2. The net flux from bath 1 to site 1

Jnet = vc1 − vc∗ = −v/2(c2 − c1)

is the same to maintain the stationary state concentration.
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For two interior sites, the two stationary state equations for c1
∗ and c2

∗ are

0 = vc1 + vc2
∗ − 2vc1

∗

0 = vc1
∗ + vc2 − 2vc2

∗

The equation is recast as a matrix

0 = V|c∗ > +|j >
0 =

(−2 1
1 −2

)(
c1

∗
c2

∗
)

+
(

c1
c2

)
|C∗ > = V−1|j >(
c1

∗
c2

∗
)

= 1

3

(
2 1
1 2

)(
c1
c2

)
=

(
(2c1 + c2)/3
(c1 + 2c2)/3

)
The net flux

Jn = vc1 − vc1
∗ = −(v/3)(c2 − c1)

The permeability coefficient is now one third the velocity that the particle moves
between sites. For N discrete sites

P = v/(N + 1)

for a homogeneous film or membrane.

16.5 Fick’s Second Law

The stationary state flux described by Fick’s first law involves only position x. In
irreversible thermodynamics, both x and t are key variables, i.e., the magnitude of
the flux changes with time.

A layer of dye solution at x = 0 sandwiched between pure water forms a sharp
boundary at t = o. With time, the dye moves symmetrically into the water to form
a more diffuse layer with a Gaussian shape (Fig. 16.1). c(x,t), the concentration at
each x and t is determined using Fick’s second law.

Fick’s second law is derived from the first law using the equation of continuity
in one dimension. Solute passes through a region �x where some dye remains. The
change in flux leaving the region is

Jout = Jin −
(
∂J

∂x

)
dx

The net particle change for an area A (JA)

JoutA − JinA = −
(
∂J

∂x

)
dxA
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Fig. 16.1 The Gaussian distribution for the concentration c(x,t) with c = co only at x = 0 at t = 0

is equal to the increase in particles within the volume Adx

dc(x,t)

dt
Adx

The two expressions for particle absorption are equated to give the equation of
continuity

∂c

∂t
Adx = −∂J

∂x
Adx

∂c

∂t
= −∂J

∂x
To convert Fick’s first law into Fick’s second law for c(x,t), the first law is

differentiated with respect to x
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∂J

∂x
= −D

∂2c(x,t)

∂x2

and the equation of continuity is substituted to give Fick’s second law,

∂c(x,t)

∂t
= D

∂2c(x,t)

∂x2

with

C(x,t) = cop(x,t)

The solution for this partial differential equation if all the material is concentrated
at position x = 0 at time t = 0 is proportional to a Gaussian function with an inverse
time argument

p(x,t)α exp ( − x2/4Dt)

The probability is formed by a “partition function” an integral of all possible p(x)
at any time

∫ ∞

−∞
exp ( − x2 /2Dt)dx = √

π/a = √
2πDt

i.e.,

p(x,t) = 1/
√

4πDt exp ( − x2/4Dt)

The average location of the particles is

< x >= 1/
√

4πDt
∫ ∞

−∞
x exp ( − x2/4Dt)dx = 0

since the integral is the product of an odd (x) and even (the exponential) function
over the interval.

The squared displacement is

< x2 > = 1/
√

2πDt
∫ ∞

−∞
x2 exp ( − x2/4Dt)

= 1√
4πDt

√
4πDt2Dt = 2Dt

The root mean square displacement measures the spread of the Gaussian with
time.
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16.6 Discrete State Diffusion

Diffusion about x = 0 proceeds by discrete steps of length d in time intervals τ . The
discrete positions are labeled 0,1,.., −1, −2. With no external force, probabilities
left and right are equal

p+1 = p−1 = 1/2

A transition occurs in each time interval.
For one step, the particle is at −1 or +1 with equal probability.
For two steps, the possible steps and final locations are

+1, + 1x = +2

+1, − 1x = 0

−1, + 1x = 0

−1, − 1x = −2

The four outcomes for 2τ are three locations. The particle is located at x = 1 one
out of four times, i.e., p2 = 1/4. po =1/2 since the particle reaches 0 by two paths.
At x= −2, p−2 = 1/4. For two steps, the probability for each path is the product
(1/2)(1/2) = 1/4.

After 1τ , the average location of the particle is

< x >= 1/2( − 1) + 1/2( + 1) = 0

while its mean square location is

< x2 >= 1/2( − 1)2 + 1/2( + 1)2 = 1

for a root mean deviation of±1 about x = 0.
After 2τ , the average location is again

< x >= 1/4( − 2) + 1/2(0) + 1/4( + 2) = 0

Probabilities in both directions are equal so, on an average, the steps left equal
the steps right. The mean square excursion does increase with τ

< (x− < x > )2 = <(x − 0)2 >= 1/4( − 2)2 + 1/2(0)2 + 1/4( + 2)2 = 2

The root mean square distance is

Xrms = √
2 = 1.414

The binomial coefficients that define the step probabilities are (1,3,3,1) for 3τ .
The particle can move to x = −3 or x = +3 in one way (three steps left or right).
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Three paths bring it to +1: (+1,+1, −1), (+1, −1,+1), and (−1,+1,+1). Three paths
bring it to −1 as well. These 23 = 8 paths have probabilities

p( − 3) = 1/8 = p( + 3) P( − 1) = p( + 1) = 3/8

The average location is again 0

< x >= 1/8( − 3) + 3/8( − 1) + 3/8( + 1) + 1/8( + 3) = 0

while the average squared location is

< (x − 0)2 >= 1

8
(9) + 3

8
(1) + 3

8
(1) + 1

8
(9) = 24

9
= 3

For N intervals (steps), the average location is zero and Xrms = √
N or distance

= √
N d

As the size of the steps and the length of time between jumps decrease, the dis-
crete step one-dimensional system evolves to the Gaussian distribution of Fick’s
second law

p(x,t)α exp ( − x2/2Dt)

The diffusion coefficient in terms of d and τ is

D =< x2 > d2/τ

16.7 The Nernst Planck Equation

The two terms of the electrochemical potential

μ̃ = RT ln (c) + zF ψ

or

μ̃ = kbT ln (c) + zeψ

give a sum of concentration and electrical forces,

X = −dμ̃

dx
= −kT

c

dc

dx
− ze

dψ

dx

Since the ions carry charge, the flux is either a particle flux with units of mol s−1

m−2 or a charge flux with units of Cs−1 m−2.
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The particle flux is converted to a charge flux by multiplying by the charge per
particle

Jq = zeJN

The particle flux

J = u′cX = vc

requires the force X

J = cu′
[
−kbT

c

dc

dx
− ze

dψ

dx

]
= u′kbT

dc

dx
+ u′cze

dψ

dx

The first term is Fick’s first law since

D = u′kbT

The second term is Ohm’s law for particle flux. For charge flux (current), the
conductivity is

ze(u′cze) = u′c(ez)2

Ion flow across a film or membrane is driven by both concentration gradient and
an electrical potential gradient (electric field). The concentrations and voltages on
side 1 and side 2 are (c1, 0) and (c2, ψ). The electric field is assumed constant for
the homogeneous medium

E = −ψ/d

and

J = −Ddc/dx − u′zeEc

J/D = −dc/dx − Bc B = u′zeE/D

is solved with the integrating factor

exp ( + Bx)

− [J/D] exp (Bx) = d/dx[c exp (Bx)]
Ld∫

0

−J/D exp (Bx)dx =
c2∫

c1

d[c exp (Bx)]

− J/DB [ exp (Bd) − 1] = c2 exp (Bd) − c1

J = −DB(c2 exp (Bd) − c1)/( exp (Bd) − 1)



16.7 The Nernst Planck Equation 267

Since Bd = zeψ /kT and DB = D/d(zeψ /kT), the Nernst Planck constant field
equation (the Goldman equation) is

J = −D/d(zeψ/kT)[(c1 − c2 exp (zeψ/kT))/(1 − exp (zeψ/kT))]

For large positive values of ψ (potential on side 2 much greater than the potential
on side 1), the exponential terms dominate and the equation is

JN = D/L(zeψ/kT)c2 = u′zec2E

and

Jq = zeJN = (ze)2u′c2E

Comparing this with Ohm’s law

Jq = κE

gives the conductivity for this system.

κ = (ze)2u′c2

If the electrical mobility (velocity per electric field)

u = zeu′

is used,

κ = zeuc2

and the equivalent conductivity for the ion (conductivity/concentration) is

λ = κ/c = zeu

if ψ1 >> ψ2, the conductivity depends on the concentration in bath 1

κ = zeuc1

For ψ = 0, E = 0. The denominator is zero and J is undefined. However, the
limit as V approaches zero is finite and determined using the expansion

exp (x) = 1 + x
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J = −D

d

zeψ

kT

{
c1 − c2e

zeψ
kt

1 − e
zeψ
kt

}

= −D

d

zeψ

kt

c1 − c2 − c2
zeψ
kt

1 − 1 − zeψ
kt

= +D

d

(
c1 − c2 − c2

zeψ

kr

)

As ψ = 0,

J = D/L[c1 − c2] = −D

L
(c2 − c1)

16.8 Discrete Diffusion with Drift

The Nernst–Planck equation with constant flux is converted to an equation in x and
t using the equation of continuity

(
∂J

∂x

)
= −D

(
∂2c

∂x2

)
− zeu

(
∂cE

∂x

)
= −

(
∂c

∂t

)

This second-order equation describes diffusion as well as drift. Particles at
x = 0 move randomly about x = 0 but also drift along the axis. This is illustrated
using the discrete state formulation.

Drift from x = 0 in a preferred direction results from an applied vector force like
electric field. For the discrete step model, this applied force favors one probability.
For pure diffusion, pl = pr = 1/2. If pr>pl, the particle drifts to the right and the
average location changes in time.

For 1τ , the particle reaches +1 with pr = 0.75 and −1 with pl = 0.25. The average
location is

< x >= 0.75( + 1) + 0.25( − 1) = +0.5

The particle has drifted right with velocity d/2τ .
The square displacement is determined about the average location

< x2 >= 1/4( − 1 − 0.5)2 + 3/4( + 1 − 0.5)2 = 3/4

The square deviation is smaller; the directed motion has “ordered” the random
motion.

For two steps, the single paths to +2 or −2 have joint probabilities
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(3/4)(3/4) = 9/16 and (1/4)(1/4) = 1/16

respectively. The two paths to 0 have joint probability

(1/4)(3/4)

The average location is

< x >= (1/4)(1/4)( − 2) + 2(1/4)(3/4)(0) + (3/4)(3/4)( + 2) = 1d

The particle drifts twice as far as it did for one step, i.e., constant drift velocity.
The square displacement about the average location

< (x− < x > )2 >= 1/16(− 2 − 1)2 + 2(3/16)(0 − 1)2 + 9/16(2 − 1)2

= 9/16 + 6/16 + 9/16 = 1.5

is also smaller than the deviation for random, equal probability steps.
For three steps, the binomial coefficients (1:3:3:1) describe the paths. Three steps

left (1 path) occurs with joint probability

(1/4)(1/4)(1/4) = 1/64

The three paths to −1 each have two steps left and one right for a joint probability

(1/4)(1/4)(3/4) = 3/64

and 9/64 for the three paths
The probability for +1 and +3 are both 27/64. The probabilities sum to 1

(1+9+27+27 = 64).
The probability for 2 steps right and 1 left

3!
2!1!p2

r p1
l

is generalized for N total steps with n steps right and N–n steps left

N!
n!(N − n)!pN−n

l pn
r
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For N total steps (or time intervals) with n jumps to the right and N–n jumps to
the left, the particle is located at position

x = n − (N − n) = 2n − N

with probability
N!

n!(N − n)!pn
r pN−n

l

The average location is

<2n − N >=!
∑ N

n=0
(2n − N)

N!
n!(N − n)!pn

r pN−n
l

16.9 Force Coupling

The Nernst–Planck equation

Jn = −uc
dμ

dx
− ucze

dψ

dx

has two separate force terms to produce the particle flux. The particle force gives a
particle flux. However, the electric field also gives a particle flow since the particle
moves with its charge. The particle flux is written as

J1 = L11
dμ

dx
+ L12

dψ

dx

The same two forces also produce a charge flux J2

I = J2 = zeJ1 = zeucRT
dμ

dx
+ (ze)2uc

dψ

dx

= L21
dμ

dx
+ L22

dψ

dx
=

The two equations

J1 = L11X1 + L12X2

J2 = L21X1 + L22X2

have equal cross-coupling coefficients

L12 = ucze = L21

The is one example of Onsager’s reciprocal relations

Lij = Lji
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For example, in the coupled set of equations

J1 = L11X1 + L12X2

J2 = L21X1 + L22X2

L12 = L21

16.10 Streaming Current and Electroosmosis

An applied pressure gradient produces a flux of water through a membrane. An
applied electric field produces a flow of charge as ions in the same solution. These
direct flux–force relations are joined by cross-coupling relations. The applied pres-
sure produces an ion flow (the streaming current). The applied electric field produces
a water flux (electroosmosis). The water and charge fluxes (using P for dP/dx) are

Jw = LwpP + LwEE

Jq = LqpP + LqEE

LqE is the conductivity κ .
When pressure moves a solution, both cations and anions are carried equally with

the water flow and the net flow cannot produce the separation of charge necessary
to produce a potential or current.

If the electrolytic solution moves in channels whose walls are lined with negative
fixed charge, a excess of positive ions are found near the surface where the solution
flows more slowly. The negative solution ions, repelled from the surface, are located
in faster moving solution to produce a net charge separation and potential called the
streaming potential.

The Onsager reciprocal relations do hold when the units for force are consistent.
Pressure in atmospheres differs from electric field (force per charge). However, the
electrical mobility, the velocity per unit electric field is developed for water flow past
a charged surface. The flow also produces a streaming current and a cross-coupling
force–flux relation

Jq = LqPP

The complementary cross-coupling equation results when an electric field (or
potential) drives ions past a surface with fixed charge. Water also flows by the
surface, a phenomenon called electroosmosis.

A surface with fixed negative charge per unit area σ and area A has a total charge
σA. An applied electric field E parallel to the surface produces a force

σAE

on the mobile solution plate with an equal number of excess counterions. This
motion is opposed by a frictional force which depends on solution viscosity
coefficient η, area A, and gradient v/d where v is the velocity of the solution and d is
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the separation between the fixed charges in the surface and the solution counterion
“plate.”

σAE = ηAv/d

The mobility is the velocity of the solution plate divided by the field

v/E = u = σd/η

This gives either the velocity of the counterions to give a streaming current or the
velocity of the water to give the volume flow in accord with Onsager’s reciprocal
relations.

16.11 Saxen’s Relations

The Onsager reciprocal relations connect diverse forces and fluxes. These Saxen’s
relations act like Maxwell’s relations but are valid only for linear relationships
between forces and fluxes. For the general coupled force flux relations

J1 = L11X1 + L12X2

J2 = L21X1 + L22X2

L12 and L21 are expressed as ratios of the forces and fluxes and then equated using
Onsager’s reciprocal relation L12 = L21.

If X1 = 0 in J1 equation and X2 = 0 in J2 equation

J1 = L12X2

J2 = L21X1

so that

L12 = (J1/X2)X1

L21 = (J2/X1)X2

Since L12 = L21

(J1/X2)X2 = (J2/X1)X1

If J1 = 0 in equation 1

0 = L11X1 + L12X2

L12/L11 = −(X1/X2)J1

If X2 = 0, the ratio of the two equations is

(J2/J1)X2 = (L21X1)/(L11X1) = L21/L11
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Onsager’s relationship gives

(J2/J1)X2 = −(X1/X2)J1

The last ratio uses J2 = 0

J2 = 0 = L21X1 + L22X2

to give

(X2/X1)J1 = −(L21/L22)

and X1 = 0 to form the ratio

(J1/J2)X1 = L12/L22

so that

(J1/J2)X1 = −(X2/X1)J1

Saxen’s relations are used to determine an unknown force or flux by controlling
some experimental variables (the subscripts) while measuring the remaining three.
Force and flux ratios are determined if only two of the four variables are known.

16.12 Scalar Forces and Fluxes

Forces and fluxes are predominantly vector quantities. The force establishes a direc-
tion for the flux. A chemical reaction also describes a flow from reactant to product
but has no direction in space. The reaction proceeds everywhere in the reaction ves-
sel. This scalar flux from reactant to product is the reaction rate. The gas phase
reaction

A � B

has product formation rate (the rate of advancement ξ)

R = +dA/dt = ξ = +k1A − k−1B

proportional to the A and B concentrations.
The driving force for reaction is free energy. When �G = 0, the reaction is at

equilibrium with zero rate (reaction flux). A negative free energy for some pressures
A and B means a net forward reaction to equilibrium. For a linear relationship, a
larger free energy produces a faster rate of reaction for chemical systems very close
to equilibrium

R = L�G
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The Curie symmetry principal states that forces of different order cannot cou-
ple. A scalar force, e.g., free energy, cannot produce a vector flow of A or B in
homogeneous solution. The Curie principal, however, holds only in homogeneous
media. A membrane system can be used to couple scalar and vector processes.

A protein P is completely insoluble in a membrane and cannot be transported
across the membrane. If this protein reacts with ATP to form a membrane solu-
ble complex P∗, the reaction will produce a concentration of P∗ in the interfacial
(side 1) region of the membrane. This concentration produces a vector flow across
the membrane. The “scalar” chemical reaction has produced a vector flow. Of
course, the reaction is not really homogeneous; it occurs only at one membrane
interface. The overall result is a coupling of a reaction and a vector flow.

The kinetic sequence with concentration P1
∗ of protein on side 1

P + ATP
k1�

k−1
P1

∗ k−→ P2
∗

has a stationary state rate of formation for P1
∗ and its transfer from side 1 to Side 2.

The stationary state fraction of P∗

k1[P][ATP] − (k−1 + k)P1
∗ = 0

P1
∗ = k1[ATP][P]

k−1 + k

gives a net flux to side 2

J = k1k[ATP][P]

k−1 + k

The vector flux increases with ATP concentration.

Problems

16.1. The hydrostatic pressure P produces a flow of water across a membrane. The
osmotic pressure π = cRT where c is solute concentration produces a solute flux
through this same membrane.

Set up the two coupled equations for water and solute flow for this system.
Discuss the coupling for this system.

16.2. A thermocouple produces a voltage (or current) when its ends are at
different temperatures. Set up the pair of force flux equations for this system.

16.3. Show that the square deviation for a one dimensional walk with pl = pr =
0.5 is 4 after four steps.

16.4. Set up the forces and fluxes for system with variables T and P from the
energies for these two thermodynamic variables.



Chapter 17
Stationary State Thermodynamics

17.1 Introduction

Classical thermodynamics characterizes macroscopic systems at equilibrium; sta-
tistical thermodynamics generates averages of thermodynamic parameters from
microscopic molecular information. Irreversible thermodynamics explores macro-
scopic systems displaced, but close to equilibrium. However, the majority of systems
are neither at or near equilibrium. Far from equilibrium, new phenomena require a
more global examination of the roles of energy and organization. Far from equi-
librium, a system might settle into a meta-stable equilibrium maintained by a flow
of energy or particles. Far from equilibrium, a homogeneous system might sponta-
neously order. Reactive systems oscillate through metastable states without coming
to a single stable equilibrium. Aspects of these more complicated phenomena are
introduced using some simple models.

Irreversible thermodynamics focuses on heat or entropy production. Although
entropy increases for the whole universe during an irreversible process, this entropy
production can be apportioned so that the entropy of the system decreases while
the entropy of the surroundings increase more to produce a net increase for the
universe. Schrodinger in “What is Life” noted that the organization and entropy
decrease observed for living organisms could be explained if the entropy of their
surroundings, e.g., food digested, increased more to increase the entropy of the uni-
verse. Of course, the food itself must have a lower entropy before digestion and
this lower entropy is produced by the sun through photosynthesis. This progression
could continue. The sun’s entropy is increasing as it radiates energy. What lowered
its entropy in the first place? However, flow systems are the focus of this chapter
and it is necessary to distinguish between the sun as an ideal machine – a work
generating Carnot cycle between the hot sun and the cold earth or an energy flow
system.

Equilibrium statistical mechanics is used to calculate the probability that a living
system could come into existence. The appropriate Boltzmann factors are gener-
ated from the energy required for the bonds and structure of the organism. Even
for a minimal “living” organism such as a virus, this probability is vanishingly
small. An organism cannot spontaneously arise in an equilibrium medium even if
the appropriate starting materials such as those on the primeval earth are present.

275M.E. Starzak, Energy and Entropy, DOI 10.1007/978-0-387-77823-5_17,
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The situation changes if the earth is viewed as part of a flow system. Energy
from the sun flows through the biosphere to the earth. This unidirectional flow with
its intrinsic directional order has the ability to reduce entropy in the biosphere with
a concomitant increase of entropy for the sun–earth universe.

Energy flow can produce ordering in homogeneous systems. A liquid such as
water heated from below to produce an upward energy flows produces turbulent
behavior as the liquid boils. However, if a heavy oil, e.g., spermaceti, is carefully
heated from below, the liquid will “spontaneously” organize. The liquid rises in a
stable column and then falls through other stable columns – a spatial oscillation.
Viewed from above, the rising columns outline hexagonal cells; the falling liquid
columns are the centers of these cells (Fig. 17.1). This structure is stable while the
steady flow of heat through the system is maintained.

A vortex whistle seems to defy the second law of thermodynamics. Air at one
temperature is forced into tube through a lateral inlet and hot air exits one end of the
tube while cold air exits the opposite end. The tube creates a temperature gradient.
The key to the separation in the shape of the input nozzle which forces the linear
stream of air into a vortex within the tube. Since the entire stream now rotates at a
constant angular speed, the “hotter”, i.e., faster moving, molecules move to the out-
side, i.e., larger radii, while the cooler molecules circulate at the smaller radii. The
outlets are designed to collect, respectively, the gases at the larger and smaller radii.

A bunsen burner uses a flow of gas and air to produce a cone of burning material.
The shape of this single cone is ordered but the degree of order is enhanced by
careful adjustment of the flow. With the right flow and mixture conditions, the stable
single cone separates into two, four, or eight minicones that remain symmetrical and
stable while the gas flow is maintained.

A salt solution on a watch glass normally evaporates so that the salt is deposited
homogeneously on the glass surface. In some cases, the salt is deposited in a series
of concentric Liesegang rings. As water evaporates, the solution becomes supersat-
urated. When the supersaturation cannot be maintained, the salt precipitates to form
a ring. This solution continues to evaporate and supersaturate until it, too, becomes
unstable. The salt precipitates to form the next concentric salt ring. The process
continues until all the water has evaporated.

The mercury beating heart is an oscillating system. Mercury in a watch glass
is covered with an oxidizing solution that produces ions that bind to the mercury
surface. The surface charge produces a change in surface tension that causes the
mercury surface to expand. A metal electrode is placed in the solution near, but not
in contact, with the mercury. As the reaction and expansion proceed, the mercury
touches the electrode and discharges its surface charge. The mercury pool returns to
its original size and, as the reaction continues, expands again to touch the electrode
so that the drop expands and contracts like a beating heart.

Although the mercury drop expands and contracts in time, the chemical reaction
that drives it proceeds at a steady pace, i.e., new ionic charge is generated continu-
ously. Some chemical reaction oscillates with time. Reactant forms product but this
product is not at final equilibrium; the system remakes reactant to start the process
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Fig. 17.1 The Rayleigh–Bernard phenomenon
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Fig. 17.2 Time course of an oscillating (autocatalytic) reaction

once again (Fig. 17.2). The oscillations do not occur without energy expenditure;
some material in the reaction mixture is consumed to provide the energy to sustain
the oscillations.

A leaky faucet can display oscillatory behavior under the proper conditions. If the
leaking water flow is adjusted carefully, water will flow in bursts; a burst of water
on the left side of the faucet is followed by a burst on the right. The flow of water
empties the pipe on that side, while the second side continues to collect water for its
subsequent burst. The process continues indefinitely while water is added steadily
to the pipe.

Oscillating chemical reactions can display both spatial organization and temporal
oscillation. The key to oscillations is an autocatalytic step where product formation
triggers the production of more products. The rapid growth in product moves its
concentration well away from its equilibrium value. The rapid reaction depletes the
reactant so the excess product decays. Meanwhile more reactant begins to form so
that the autocatalytic process can be repeated (Fig. 17.2).

The reactant builds up randomly in the homogeneous solution. If reactant reaches
the autocatalytic threshold in some volume, autocatalytic reaction develops in that
volume and spreads to surrounding volumes. The homogeneous solution will order
with expanding regions of product. The autocatalytic reaction and its oscillations
produce spatial patterns.

17.2 Driven System Distributions

An ensemble of two site membrane channels is similar to the dog-flea or isomer
models if ions from adjoining baths can bind with equal energy. If both baths
have the same ion concentration and channel occupancy is limited to one site, the
ensemble of channels reaches an equilibrium where each site has equal occupancy
probability, i.e., p=0.5 at each site.

The equal and constant input rates j add ions from the bath while the rate constant
k is the same for all transitions from the sites

The rates for each site are zero at stationary state

dS1/dt = j − 2kS1 + kS2

dS2/dt = j − 2kS2 + kS1
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The two equations in matrix form

0 = |j > +K|S >

0 =
(

j
j

)
+

(−2 k k
k −2 k

)(
S1
S2

)

has a solution

|S >= −K−1|j >

with

K−1 = −1

3 k

(
2 1
1 2

)

to give site populations

(
S1
S2

)
= 1

3 k

(
2 1
1 2

)(
j
j

)
=

(
j/k
j/k

)

The populations of each state are equal when the inputs from both baths
are equal; the populations depend on the time independent ratio j/k. Fractional
populations are determined by dividing by this ratio.

The system changes from a dynamic equilibrium to a stationary state system if
the two input rates differ; different bath concentrations or an applied voltage produce
different input fluxes j1 and j2.

The formal solution for the two-site system is the same (Fig. 17.3)

|S >= −K−1|j >
but

|j >=
(

j1
j2

)

and the stationary state concentrations are different

(
S1
S2

)
= −1

3 k

(
2 1
1 2

)(
j1
j2

)
= 1

3 k

(
2j1 + j2
j1 + 2j2

)

Fig. 17.3 The channel drawing
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If j2=0, the absolute populations at stationary state are S1 = 2j
k and S2 = j

k and
the fractional populations are f1=2/3 and f2= 1/3.

If j1 �= j2, the total population is the sum of both site populations,

j/k = (3j1 + 3j2)

3 k
= (j1 + j2)

k

The fractional populations are

f1 = 2j1 + j2
3(j1 + j2)

f2 = j1 + 2j2
3(j1 + j2)

These stable populations are maintained with a steady flux through the channel.
For j2=0, the net flux out of the channel is

jn = k(S2) = k(j1/3 k) = j1/3

to match the net flux in and maintain stable populations

jn = j1 − kS1 = j1 − k
[
(2j1)/3 k

] = j1/3

The stable populations for a steady flux define and entropy for each channel in
terms of their fractional populations, i.e., probabilities

S = −k{f1 ln f1 + fs ln fs}

The steady flow through the system has reduced the entropy of the system relative
to the equilibrium state when both fluxes are equal

S = −k[1/2 ln 1/2 + 1/2 ln 1/2] = k ln 2

since the fractions are different.

17.3 General Linearized Driven Systems

Channels are good models for driven systems because they limit the number of
possible transitions. For a three-site channel, the ion moves from site 1 to site 2 but
not from site 1 to site 3. For a three-site channel with nearest neighbor site transitions
and equal rate constants, the matrix is tridiagonal

K =
⎛
⎝−2 k k 0

k −2 k k
0 k −2 k

⎞
⎠

The general K N × N matrix might allow transitions between all states. However,
the stationary state populations are still
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|s >= −K−1|j >

the inverse for any matrix is found using eigenvalue-projection operator techniques
where the projection operator Zi is formed from the normalized eigenvectors

Zi = |i >< I|
The inverse for K with eigenvalues is

K−1 = �λ−1
i Zi

The tridiagonal matrix has eigenvalues and normalized eigenvectors

(
−2 + √

2
)

k (1/2)
(

1,
√

2,1
)

2 k (1/2) (2,0, − 2)(
−2 − √

2
)

k (1/2)
(

1, − √
2,1

)
and inverse

1

4 k
(
− − 2 + √

2
)
⎛
⎝ 1√

2
1

⎞
⎠(

1
√

2 1
) + 1

−8

⎛
⎝ 2

0
−2

⎞
⎠(

2 0 −2
)

+ 1

4 k
(
−2 − √

2
)
⎛
⎝ 1√

2
1

⎞
⎠(

1 −√
2 1

)

The row eigenvector of the inverse matrix forms a scalar product with the flux
vector

| j >=
⎛
⎝ j1

0
j2

⎞
⎠

to give the three populations⎛
⎝ j1 + j2

4 k
(

2 − √
2
)
⎞
⎠

⎛
⎝ 1√

2
1

⎞
⎠ + j1 − j2

8 k

⎛
⎝ 2

0
−2

⎞
⎠ + j1 + j2

4 k
(

2 + √
2
)
⎛
⎝ 1

−√
2

1

⎞
⎠

The first eigenvalue is smallest and the first term is largest. The stationary state
distribution for systems with many states can often be approximated satisfactorily
by selecting only the term in the smallest eigenvalue.

The stationary flow through the channels is calculated in four different ways that
give the same net flux:

(1) the net flux from bath 1 to Site 1; j1–k(S1)
(2) the net flux from site 1 to site 2; k(S1)–k(S2)
(3) the net flux from site 2 to site 3; k(S2)–k(S3)
(4) the net flux from site 3 to bath 2; k(S3)–j2
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For any system, the total population is the sum of all state populations and is used
to form the population fractions for the system entropy.

For a channel where the sites are different, the rate constants can differ. The rate
constant matrix, while more complicated, can still be inverted and used to establish
the site populations.

17.4 The Driven Wind-Tree Model

The wind-tree model is a four state linear kinetic system that uses transitions prob-
abilities. The system evolves to an equilibrium where a wind particle has equal
probabilities in all four directions. The wind-tree model is converted into a driven
system when wind particles are added to the plane in one direction, e.g., north to
south (direction 1), while an equal number is removed from the south to north direc-
tion (direction 3). The total wind particles are conserved but the stationary state
distribution includes different populations.

The equilibrium wind-tree equations

df1/dt = −2kf1 + kf2 + kf4 = 0

df2/dt = kf1 − 2kf2 + kf3 = 0

df3/dt = kf2 − 2kf3 + kf4 = 0

df4/dt = kf1 + kf3 − 2kf4 = 0

are modified with input rate j (direction 1) and output rate −j (direction 3)

df1/dt = −2kf1 + kf2 + kf3 + j = 0

df2/dt = kf1 − 2kf2 + kf3 = 0

df3/dt = kf2 − 2kf3 + kf4 − j = 0

df4/dt = kf3 + kf1 − 2kf4 = 0

or, at stationary state,

d/dt

⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−2 k k 0 k
k −2 k k 0
0 k −2 k k
k 0 k −2 k

⎞
⎟⎟⎠

⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

j
0
−j
0

⎞
⎟⎟⎠ = 0

d|f > /dt = K|f > +|j >= 0

|f > = K−1|j >
is the sum of an equilibrium vector, doubly degenerate projection operator matrix
with eigenvalue 2 k and a projection operator matrix with eigenvalue 4 k



17.4 The Driven Wind-Tree Model 283

K−1 = |ceq > +
∑ 1

λi
|i >< i|

= |c >=

⎛
⎜⎜⎝

.25

.25

.25

.25

⎞
⎟⎟⎠

+ j

4 k

⎛
⎜⎜⎝

1 0 −1 0
0 1 0 −1

−1 0 1 0
0 −1 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
0

−1
0

⎞
⎟⎟⎠ + j

8 k

⎛
⎜⎜⎝

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
0

−1
0

⎞
⎟⎟⎠

|f > =

⎛
⎜⎜⎝

.25

.25

.25

.25

⎞
⎟⎟⎠ + j

2 k

⎛
⎜⎜⎝

1
0

−1
0

⎞
⎟⎟⎠

The fraction of wind particles in the north to south direction (1) increases as the
south to north fraction decreases. Directions 2 and 4 have unchanged populations

f1 = 0.25 + b

f2 = 0.25

f3 = 0.25 − b

f4 = 0.25

The stationary state populations are stable as long as the flow is maintained.
The wind particles do not pass sequentially through states as they would for the
deterministic model. However, the system can be modified to produce a cyclic pro-
gression through the states by changing the shape of the trees so they are wedge
shaped.

Wind particles change from 1 to 2, 2 to 3, etc., but not 1 to 4, 4 to 3, etc. The
K matrix

K = k

⎛
⎜⎜⎝

−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1

⎞
⎟⎟⎠

has equilibrium fractions (0.25, 0.25, 0.25, 0.25). However, the non-zero eigen-
values for the matrix contain the imaginary i

λ = 0, − 1 + I, − 2, − 1 + i

The eigenvalues with imaginary terms will produce a decay with periodic
behavior

exp ( − k( − 1 + i)t)
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The real terms in the eigenvalues insure that this system will decay to the fully
random distribution in time. The imaginary term indicates that it will spiral cycli-
cally through the states as it evolves to this equilibrium. This oscillatory behavior
is only observed if the input and output directions are selected to give a non-zero
scalar product. For the eigenvalue -1+i, an input at 1 with output at 3 produces this
cycle to equilibrium

<− 1 + i|j> = (
1 −i −1 i

)
⎛
⎜⎜⎝

j
0
−j
0

⎞
⎟⎟⎠ = 2j

The modified wind tree cannot sustain cyclic oscillations when driven by the
input and output of particles. However, it can still be maintained in a non-
equilibrium state with the proper input and outputs. The eigenvalue −2 with
eigenvector (1, −1, 1, −1) which is part of the inverse matrix expansion will
maintain a steady non-equilibrium distribution for the input flux (j,0,0, −j).

17.5 The Entropy Decrease in Driven Systems

Directional flow asserts an order on a system to produce a decrease in the system
entropy. A system with A and B isomers of equal energy (the dog-flea model) has
equal populations of A and B at equilibrium. Since

k

A � B

k

dA/dt = 0 = −k(A) + k(N − A)

and

fA = A/N = 0.5 fB = B/N = 0.5

The system is now pumped to a stationary state by adding A at a rate r, while
removing B at the same rate. The stationary state concentrations are

|dA/dt = 0 = r − kA + kB

dB/dt = 0 = −r + kA − kB

0 =
(

r
−r

)
− k

(
1 −1

−1 1

)(
A
B

)

The populations are the sum of an equilibrium vector and a perturbation vector
in r/k (

fA
fB

)
=

(
0.5
0.5

)
+ 1

2 k

(
1

−1

) (
1 −1

) ( r
−r

)
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fA = 0.5 + r/k

fB = 0.5 − r/k

The parameter r/k, which must be smaller than 0.5, is a measure of the distance
from equilibrium.

The entropy at stationary state is determined as

−S/k = fA ln fA + fB ln fB = (0.5 + r/k) ln (0.5 + r/k) + (0.5 − r/k) ln (0.5 − r/k)

= (0.5 + r/k)
[
ln (0.5) + ln (1 + 2r/k)

]
+ (0.5 − r/k)

[
ln (0.5) + ln (1 − 2r/k)

]
Using ln(1+x) = x, the entropy is

S/k = ln (2) − 2(r/k)2

The linear terms in r/k cancel so that the entropy decreases from its equilibrium
maximum as the square of r/k.

The entropy reduction for a driven wind-tree model where the wind is added in
the 1 direction and removed at 3 has a stationary state correction that uses only the
2 k eigenvalue

⎛
⎜⎜⎝

f1
f2
f3
f

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.25
0.25
0.25
0.25

⎞
⎟⎟⎠ + r

2 k

⎛
⎜⎜⎝

1
0

−1
0

⎞
⎟⎟⎠(

1 0 −1 0
)
⎛
⎜⎜⎝

r
0

−r
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.25 + r/k
0.25

0.25 − r/k
0.25

⎞
⎟⎟⎠

With opposite deviations in only two states, the entropy decrease for this four-
state system is

S/k = ln (4) − (2r/k)2

The situation is more complicated for an open system like a membrane channel
that reaches a dynamic equilibrium only if the inputs from both baths are j and the
ion can return to the baths

dA/dt = r − 2kA + kB

dB/dt = r + kA − 2kB

0 = −k

(
2 −1

−1 2

)(
A
B

)
+

(
j
j

)
(

A
B

)
= K−1|j >= 1

3 k

(
2 1
1 2

)(
j
j

)
= r

3 k

(
3
3

)
=

(
r/k
r/k

)
For this open model, the populations of both sites are determined by the input

flux j; the populations are equal when the fluxes from both sides are equal.
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With a flux only to site 1, the populations are

(
A
B

)
= 1

3 k

(
2 1
1 2

)(
j
0

)
=

(
2j/3 k
j/3 k

)

The population of site 1 is now twice that of site 2.
The entropy is determined by breaking the population into a common concen-

tration and fractional populations at each site. For this case, the concentration is j/k
and the fractional populations are 2/3 and 1/3 respectively. The entropy is

(j/k)

[
2

3
ln

(
2

3

)
+ 1

3
ln

(
1

3

)]

17.6 Lasers

Flow systems with linear kinetics are driven from equilibrium with a redistri-
bution of states. The basic kinetic mechanisms remain at all drive levels. The
mechanism for lasing involves a transition from linear first-order to a non-linear
second-order mechanism. As the input flux of excitation photons increases, the
emission mechanism changes from spontaneous emission by single molecules to
stimulated emission where the emission photon from one molecule stimulates the
emission of a photon from a second molecule.

A molecule absorbs photons for a transition from its ground state So to an
excited state S∗. The rate depends on the So molecules and photons expressed as
an intensity I

keSoI

Normally, So >> I and the rate is pseudo-first order in I

(keSo)I = k′I

This rate is similar to the input flux j used to produce populated membrane
channels.

Although the excited S∗ can react via several pathways, for this example, S∗ is
depopulated only by fluorescence, the first-order emission of a photon to restore the
ground state So with rate constant kf S∗.

The stationary state S∗ population is

0 = keSoI − kfS
∗

S∗ = keSoI/kf

The rate of emission (fluorescence) equals the rate from S∗ to So

If = krS
∗ = keSoI
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Since fluorescence is the sole depopulation path, all added photons reappear as
fluorescent photons.

The spontaneous behavior of emission is apparent if the S∗ are all created with
a short pulse of photons (a delta function) at t=0. The initial population S∗(0)
decays as

S∗(t) = S∗(0) exp ( − kft)

Einstein used the concept of microscopic reversibility to postulate stimulated
emission. An excitation is second order in So and I. One reverse path from S∗ to So
must also be second order in both S∗ and I. The rate constants for excitation and
stimulated emission are equal because of microscopic reversibility. The non-linear
stimulated emission rate

kseS∗I = kS∗I

is included in the stationary state rate equation for S∗

0 = kSoI − (kI + kf)S
∗

S∗ = kSoI/(kI + kf)

The rates of spontaneous and stimulated emission, respectively, are

rs = kfS
∗ = kfkSoI/(kI + kf)

rse = kIS∗ = (kI)2So/(kI + kf)

An increase in I favors stimulated emission. Lasing occurs with a population
inversion where S∗>So. However,

S∗/So = kI/(kI + kf) < 1

for finite kf. Most lasers operate by transferring the energy to S∗ from A molecule
with higher energy. A helium–neon laser uses the excited state of He to populate an
excited state of neon and a neon population inversion.

Stimulated emission when S∗>So produces cooperative behavior. S∗ are created
along the longitudinal axis of a laser. A photon emitted along this axis passes other
S∗ to stimulate their emission with the same direction and phase. The two photons
continue along the axis to stimulate additional S∗. Mirrors extend the photon path
along the axis to stimulate additional S∗ to emit. For an ideal laser, the photons
emitted move in the same direction with equal phase. The large drive photon popu-
lation necessary to create the inversion produces order in the system. The population
inversion is the threshold between spontaneous and stimulated emission.

17.7 The Nerve Impulse

Sodium and potassium channels in a nerve cell combine to produce a simple one
shot oscillator. A resting nerve axon has channels for Na+ that are closed so that the
+110 mV voltage that these ions can generate as an electrical potential is absent.
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The potassium channels in the same axon are sufficiently open to create an internal
−60 mV potential from the K+ gradient ( cK(inside) > cK(outside)). This negative
potential is observed for the unstimulated axon. The “equilibrium” potential is stable
even if small currents are injected. The potential forced to −50 mV by a current
injection pulse decays back to −60 mV when the current pulse terminates.

The situation changes dramatically if the injection current drives the membrane
potential beyond a threshold. Instead of decaying exponentially back to −60 mV
when the pulse terminates, the potential continues to move away from −60 mV. The
potential increases from −60 to +50 mV and then begins to relax back to negative
potentials in a period of about 2 ms (Fig. 17.4).

Fig. 17.4 The nerve action potential

The system moves away from equilibrium when the injection current produces a
voltage change sufficient to induce opening of some sodium channels; the sodium
potential (+110) then begins to equilibrate raising the potential still more. This
“autocatalytic” change in the number of open sodium channels produces a rapid
rise with a concomitant addition of the full sodium ion potential of +110 mV. The
observed peak at voltage 50 mV (−60 mV + 110mV) produces two effects: (1) a
second mechanistic step closes the sodium channels cutting off their 110 mV while
(2) a greater fraction of potassium channels also open so the potential actually drops
to −72 mV – the electrochemical potential observed with open potassium channels.
The system then re-equilibrates to −60 mV in preparation for the next stimulus.

The initial potential of −60 mV is produced by the permeabilities or mobilities of
K+ and Na+ in their respective ion channels via the Goldman Hodgkin Katz equation
(the sum of the constant field equations for Na+ and K+) with the electrical mobility
for sodium and potassium ion in their respective channels

ψ = −[kT/e] ln

[
uKK2 + uNaNa2

uKK1 + uNaNa1

]

For the initial equilibrium, uK > uNa , the potassium potential

V = −kT

e
ln

cK(inside)

cK(outside)

dominates. The spike potential from Na+ dominates when uNa>uK because the
sodium channels are open.
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The open-closed kinetic sequence built into the sodium channels produces a one
shot oscillation. The axon leaves it equilibrium potential of −50 mV to reach a new
transient potential of +50 mV before returning to its initial voltage of −60 mV.
The sodium–potassium channel combination produces an oscillating system driven
by the concentration gradients of Na+ and K+ across the membrane. The contents
of the axon can be extruded and replaced by an electrolytic solution of the proper
concentrations and the axon functions perfectly. The oscillatory behavior resides
entirely in the kinetic behavior of the sodium and potassium channels.

17.8 The Prey–Predator Model

A train of nerve impulses is an oscillating reaction where the populations of open
sodium and potassium channels change in both time and phase. The transition
between two equilibria for the oscillations is an autocatalytic process where the pres-
ence of open sodium channels triggers the formation of additional sodium channels.
The prey–predator model is an example of a oscillating system where the non-linear
behavior produces non-equilibrium changes in population

Prey–predator kinetics postulates first-order growth for the prey, e.g., rabbits (R)
and a second-order rate of loss proportional to the populations of predator(foxes F)
and prey (rabbits R). The R rate equation

dR

dt
= krR − k−rR F

is coupled to a rate of change of foxes whose increase is proportional to both the
existing foxes and rabbits, i.e., second order or non-linear while the rate of loss for
foxes (without their own predators) is proportional to the fox population

df

dt
= kf FR − k−1F

The system has a stable equilibrium when both rates are 0

0 = krR − k−rR F

and

0 = kfF R − k−fF

F = kr

k−r
R = k−f/kf

= kf FeRe − K−f Fe + Kf fR + kf rF − k−f f

The system does not always reach these equilibrium populations. A small
change in these equilibrium populations can trigger oscillatory behavior around
equilibrium. If the equilibrium population of rabbits increases by r,

R = Re + r
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while the fox population changes by f,

F = Fe + f

the rate equation for r is

d(Re + r)

dt
= dr

dt
= kr(R + r) − k−r(R + r)(F + f )

while the rate of change for f is

d(Fe + f )

dt
= df

dt
= kf(F

e + f )(Re + r) − k−f(F
e + f )

The equilibrium rates for in R and F are zero. For small perturbations from equi-
librium, rf is small and equated to zero. The final rate equations in the perturbed
populations r and f

dr

dt
= krr − k−r

(
r

kr

k−r

)
− k−r

(
f

k−f

kf

)
= −k−f k−r

kf
f

df

dt
= ke

f (RFe + rFe + fRe + rf ) − k−fF − k−f f

df

dt
= kfr

kr

k−r
+ kf f

k−f

kf
− k−f f = kfkr

k−r
r

The two equations are coupled. dr/dt depends on f while df/dt depends on r.
The two equations combine to reduce to a single second-order differential

equation

d2r

dt2
= −k−rk−f

kf

df

dt
= −k−rk−f

kf

kfkr

k−r
r = −k−fkrr

with a sine or cosine solution. The population of excess rabbits r oscillates in
time as

r = sin ωt

with frequency of oscillation

ω = √
k−f kr

to satisfy the differential equation.
The excess fox population oscillates with the same frequency. However, it lags

the rabbit population because the population of rabbits must increase before the fox
population begins to increase.

As the rabbit population increases the fox population changes slowly. When the
rabbit population increases, the fox population begins to rise rapidly. The excess
foxes then decrease the rabbit population so that the fox population again decreases.
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This cycle can continue indefinitely. The system is not at equilibrium; it exists as an
oscillating stationary state about equilibrium.

More sophisticated prey–predator models do not assume homogeneous popula-
tions of prey and predator. A population of rabbits might develop as a fluctuation in
some sub-area and their population spreads from this region. A color map of rabbits
(red) and foxes (blue) shows regions of blue appearing and growing while, with a
phase delay, red impinges and “grows” into the blue areas. The behavior is similar
to that observed for oscillating chemical reactions in a flask.

17.9 Oscillating Reactions

An autocatalytic reaction needs an autocatalytic step where a reactant B produced
at some steady rate exceeds a threshold to produce a rapid increase in the prod-
uct. When the available B is exhausted in the reaction, other kinetics deplete this
molecule to return the initial conditions so a new cycle can begin.

The basic mechanism is illustrated by a model with the key steps:

(1) The reaction is “fueled” by the steady formation I of one of the reactants, S → A
(2) The catalytic material (B) is created from A by an uncatalyzed slow, first-order

reaction step

k1[A]

(3) An autocatalytic step of order n in B gives a strong rate increase when B reaches
a critical concentration. For n = 2

A + 2B → 3B

R = kc[A][B]2

Once this autocatalytic step begins, B increases to a large concentration
depleting the reactant A that sustains the reaction.

(4) No additional B is produced by autocatalysis and its concentration decreases via
a slower irreversible reaction to product −k2[B]

This chemical flow system is driven by the chemical reactions that carry the
starting reactant A to a final product. The energy for the oscillations is tapped from
the energy difference of the reactants and products.

A does continue to form and can build to trigger a second autocatalytic cycle; the
cycles continue until production of A stops.

The rate equation for A includes the steady input of A from the source S and the
loss of A by both an irreversible first-order reaction and the irreversible autocatalytic
reaction,

d[A]

dt
= I − k1[A] − kx [A][B]2

Ass = I

kx[B]2 + k1
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The creation of B occurs via both the first-order reaction of A and the third-order
autocatalytic reaction. The reaction rate is decreased by the loss of B to product C
(k2[B]),

d[B]

dt
= kc[A][B]2 + k[A] − k2[B]

Steady-state concentrations of A and B are determined by setting the rates to zero
and adding

0 = I − kc[A][B]2 − k1[A] + (kc[A][B]2 + k1[A] − k2[B]) = I − k2[B]

The steady-state concentrations of B and A, respectively, are

Bss = I

k2

I −
(

kc[B]2 + k1[A]
)

= 0

The concentrations are perturbed from their steady-state values by concentrations
a and b for the A and B molecules, respectively,

[A(t)] = Ass + a

[B(t)] = Bss + b

The rate equation for a is

d(Ass + a)

dt
= da

dt
= I − kc(Ass + a)(Bss + b)2 − k1

(
Ass + a

)
The corresponding equation for b is

db

dt
= I − kcAss(Bss)2 − k1Ass# − kcaBss2 − kc2AssBssb − k1a + ...

Combining these two equations for one equation in a or b does not give a
sinusoidal like the prey–predator model but does oscillate in time.

17.10 Resonance and Stochastic Resonance

Driven systems acquire order reflected in a decrease in the system entropy when
subjected to a constant directed input. The order depends on the time independent
ratio of flux to rate constant j/k. Order can also develop from a time dependent input
with period consistent with the rate constants of the system. The system gives max-
imal response to the input when the frequency of the input matches characteristic
frequencies of motions within the system. Although the frequencies involve all the
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eigenvalues of the system, the smallest eigenvalue often dominates. A system with a
single characteristic frequency is developed as an example. The system is resonant
when the oscillation period matches a period of the system.

A light beam is intensity modulated at a frequency ω= 2π/T where T is compara-
ble to the dominant system time constant τ . If the modulated photon beam produces
a modulated concentration of excited S∗, the products of S∗ are also modulated at
this frequency although phase delayed relative to the input. The kinetic scheme

I(t) + S
ke−→ S∗(t)

kf +k′
−→ P(t) + If(t)

where kf and k′ are first-order constants for fluorescent and non-fluorescent depop-
ulations, respectively. If k = kf + k′ and I(t) = I sin(ωt), the rate is

dS∗/dt = j = keIj sin (ωt) − kS∗

With integrating factor exp(kt)

dS∗/dt exp (kt) + kS∗ exp (kt) = keI sin (ωt) exp (kt)

S∗(t),t∫
S∗=0,t=0

d[S∗ exp (kt)] = keI

t∫
0

sin (ωt) exp (kt)dt

S∗(t) exp (kt) − 0 = keI exp (kt)[k sin (ωt) − ω cos (ωt)]/[k2 + ω2]t
0

S∗(t) = keI[k sin (ωt) − ω cos (ωt)]/(k2 + ω2)

+ ω exp ( − kt)/(k2 + ω2)

The exponential term decays to leave a stationary state in sine and cosine
functions. However, the definitions

cos (ϕ) = k/
√

(k2 + ω2) sin (ϕ) = ω/
√

k2 + ω2

are substituted to give

S∗ = keI/ [cos (ϕ) sin (ωt) − sin (ϕ) cos (ωt)]

= keI√
k2 + ω2

sin (ωt − ϕ)

and

tan (ϕ) = sin (ϕ)/ cos (ϕ) = ω/k = ωτ

The fluorescence intensity is also modulated

If = kfS
∗(t) = keIkf sin (ωt − ϕ)/

√
k2 + ω2
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The output intensity falls with increasing frequency while the system period T
equals the driving period at 45◦.

The maximal signal at the resonant frequency suggests that all molecules are
emitting in synchrony. If they are excited by a pulse of light, the decay is exponential
indicating that each molecule emits independently with no “memory.” The resonant
frequency imparts a common time bias to all the emitting molecules.

Stochastic resonance is observed in non-linear systems driven by both a periodic
signal at any frequency and a range of noise frequencies. Both components below a
threshold necessary for a transition to a second stable state but transitions between
states occur. For example, a strong periodic signal can promote transitions between
the wells of a two-well potential with non-linear terms

V(x) = −kx2 + ax4

The same periodic signal with amplitude and attendant noise below threshold
promotes the same transitions. This is stochastic resonance.

17.11 Synchronization

The systems driven by an external periodic input fall into synchronization with that
frequency to give a constant phase shift for the output. Systems can also sponta-
neously reach a common frequency and phase with no controlling external input, a
phenomenon called synchronization. The classic example of synchronization is that
of two separate clock pendula mounted on a common bar. The two pendula reach
a common period with a constant phase of 180; both pendula move inward at the
same time. . Their natural periods differ slightly because its almost impossible to
produce pendulums an exact frequency match. However, the periods and phases of
both clocks shift until the clocks have exactly the same period and are exactly 180◦
out of phase.

The stimulated emission of a laser is an non-linear process depending on both
the number of photons and the excited states. A photon released from a molecule
in the laser cavity induces emission from other excited molecules. Although such
molecules might be released with a range of wavelengths, the interaction between
the photon and the excited molecule produces a second photon of the same phase
and wavelength.

A single pendulum need not force its frequency on the second. Both pendula
have frequencies within some capture range and both change to reach a common
frequency. A frequency difference also appears as a phase difference. A signal at
higher frequency moves through its phases more rapidly to produce a phase shift
relative to the second, lower frequency signal. Synchronization is mapped using a
phase plot. Sinusoidal signals have a phase changing as ωt, where ω is the angular
frequency. The phase change is plotted as a point on a circle for the periodic system.
One complete cycle moves the point 360◦ around the circle. For two synchronizing
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units, a second point on the circle describes the second unit. If the second frequency
is higher, its phase point moves more rapidly around the circle. As the two signals
come into synchronization, they move around the circle at the same rate although
their phase may differ. For example, two synchronized pendula with periodic motion
have a plot with two points that move about the circle separated by 180◦. Before
synchronization, one phase moves ahead or behind the second. Their separation
becomes constant only when the two systems are synchronized.



Problem Solutions

Chapter 1

1.1 Solve for P, insert in PdV integral

w = −
∫

RT

V − b
− a

V2
dV

w = −
∫ (

RT

V − b
− a

TV2

)

w = −
∫ (

RT

V − b
exp ( − a′/RTV)

)
dV

1.2 a. w = –nRT ln(Vf/Vi) = –PV ln(Vf/Vi) = −100 ln(100/1) = −4600 Latm
b. w = −1(100−1) = −99 Latm
c. w = −50(2−1)−1(100−2) = −138 Latm

1.3 �E = q + w = −12.1−8 = −20.1 Latm

w = − Pext�V

−8 = − 2(�V) �V = + 4

�T = �E/(3(R)/2) = −2000J/12.5 = −160

1.4 a. w = −RT ln

(
V2 − b

V1 − b

)
b. w = −Pext(V2−V1)
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1.5 w = −RT ln (V2/V1) = −RT ln

(
RT/P2

RT/P1

)
= +RT ln (P2/P1)

1.6 Cp = 5R/2 = 20 �T = �H/Cp = 2500/20 = 125◦
Cv = Cp−R = 12.5

�E = Cv�T = 12.5(125) = 1562.5 J

1.7 �E = −2500 = 0 + w w = −2500

�T = −2500/12.5 = −200 �H = Cp�T = 20(−200) = −4000

1.8 F = τ for reversible work

wrev =
∫
τdL =

2xo∫
xo

k(x − xo)dx = (k/2)x2
o

�E = w since q = 0

Chapter 2

2.1 a. Cool H2 + Br2 from 400 to 300++
b. Change H2 + Br2 to 2HBr at 300
c. Heat 2HBr to 400

CP = 5R/2 for H2, I2 and HI
2Cp(diatomic)(300−400)−38 kJ + 2Cp(diatomic)(400−300) = −28 kJ

2.2 w = −Pext (Vf−Vi) = −1(2−1) = −1 Latm = −100 J

�E = Cv�T + (−0.1 Latm) = 5R/2(0) − 0.1 Latm = −0.1 Latm

q = �E − w = − 0.1 Latm − (− 1 Latm) = 0.9 Latm

2.3 q = 5000 J for step 1 since q = 0 for the adiabatic step 2

�E = 0 for step 1 so w = − q = −5000

q = 0 for step2 �E = −500 J so�E = w = −500 J for step 2



Problem Solutions 299

2.4 Cv(T2−T1) +a(V2−V1)

2.5 H(A) = +1000, i.e. 1000 over the reference for B as zero

2.6 12.5(300−350) + 20(11−1) =�E = 625 + 200 = 825, w = + 0.2(11−1 ) = 2
Latm ≈ 200 J

q = �E − w = 825 − 200 = 625J

�H = (12.5 + R)�T = 1000

2.7 �H = 1000 = 20�T � = + 50

�E = 12.5(50) = 625

Chapter 3

3.1 a. Since ideal,

(
∂H

∂P

)
T

= 0 dT/dP = 0/Cp = 0

b. �E = 0 since isothermal and ideal

3.2 �H = 4000 = (20)�T �T = 4000/200 = 200

�E = 12.5(200) = 2500

3.3 w = −907 q = −347 �E = q + w = −907 − 347 = −1254

�T = −1254/12.5 = 100.3

3.4 a. Since q = 0, �E = 0 + w = −100

b. q = 0 �T = −100/12.5 = −8 �H = 20(− 8) = −160

c. Tf = 300 +(−8) = 292

3.5 a.

(
∂H

∂T

)
P =

(
∂E

∂T

)
P + P

(
∂V

∂T

)
P

(
∂E

∂T

)
P =

(
∂E

∂T

)
V

(
∂T

∂T

)
P +

(
∂E

∂V

)
T

(
∂V

∂T

)
P

(
∂H

∂T

)
P =

(
∂E

∂T

)
V +

[(
∂E

∂V

)
T + P

](
∂V

∂T

)
P
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b.

(
∂E

∂T

)
V =

(
∂H

∂T

)
V − V

(
∂P

∂T

)
V

(
∂H

∂T

)
V =

(
∂H

∂T

)
P

(
∂T

∂T

)
V +

(
∂H

∂P

)
T

(
∂P

∂T

)
V

(
∂E

∂T

)
V =

(
∂H

∂T

)
P −

[
−

(
∂H

∂P

)
T + V

](
∂P

∂T

)
V

3.6 α = 1

V
∂(RT/P)/∂T = R/PV = 1/T

β = 1

V
∂(RT/P)/∂P = −RT/VP2 = −P/P2 = −1/P

3.7 CvdT = −(RT/V)dV CVdT/T = − RdV/V

CV ln (Tf/300) = −R ln (22.4/44.8) 1.5 ln (Tf/300) = + ln (2)

Ln(Tf/300) = +0.46 Tf = 300 exp (0.46) = 475K

3.8 D = H + RT

a. Made of state functions

b. H = D − RT

(
∂H

∂T

)
P

=
(
∂D

∂T

)
P

− R

c. dD = 0 =
(
∂D

∂T

)
P

dT +
(
∂D

∂P

)
T

dP

(dT/dP)D=
(
∂D

∂P T

)/(
∂D

∂T

)
P

Chapter 4

4.1 S depends on volume change

�S = R ln (Vf/Vi) = R ln (5/2)

4.2 �S = Cv ln(300/350) + R ln(11/1)
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w = − 0.2(11 − 1) = − 2 Latm

q = �E − w = 0 + 0.2(11 − 1) = + 2 Latm = + 200 J

�Ssurr = − 200/300 = 2/3

4.3 �E = 0 + w =12.5(300−350) = −625 J
�S = 0 for reversible adiabatic expansion

4.4 Reversible isothermal �S = R ln(2); surroundings �S = −R ln(2)
Adiabatic reversible �Ssys = 0 surroundings �S = 0

4.5 qc/qh = Tc/Th = 270/300 = 0.9 = qc/1200 qc = 1080; ideal work 120
50% does 240 J work total heat added 1080 + 240 = 1320 J

4.6 a. �S = 25 ln[300/400] = −7.1

b. q = 25(300−400) = −2500 from block 2500 to surroundings

c. �Suniv = 8.3−7.1 = +1.2

4.7 �S = R ln[(V2−b)/(V1−b)] + Cv ln(T2/T1)

4.8 a. �Ssys = 30 ln(400/200)−R ln(0.25/1) = entropy of isothermal since
adiabatic step �S = 0

b. �Ssur = −�Ssys since all is reversible

4.9 �S = −R ln(P2/P1) for constant T = −R ln(0.25/1)

Chapter 5

5.1 a. 0

b. 0 since Cl>>F only one orientation possible

5.2 �S = −R[0.1 ln(0.1) + 0.3 ln(0.3) + 0.6 ln(0.6)]

5.3 �Smix (400) = −5R[0.4 ln(0.4) + 0.6 ln(0.6)]

Mixture to 300 �S = 5Cp ln(300/400)
5.4 Two entropies mixing and residual

R ln(2)−R[0.25 ln(0.25) + 0.75 ln(0.75)]

5.5 a. k ln(1) = 0

b. k ln(100)

c. k ln(100)5 = 5 ln(100)
5.6 a. Smix = −4R[0.25 ln(0.25) + 0.75 ln(0.75)]

b. Smix + Cp(A) ln(400/200) + 3Cp(B) ln(400/200)
c. 1/4
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Chapter 6

6.1 G = E + PV − TS dG = dE + PdV + VdP − TdS − SdT = − SdT + VdP

6.2 �G = (H−TS)f − (H−TS)I = Hf−HI−(TS)f + (TS)i

= 2000−1500−(400 × 3) + (300 × 2) = −100

6.3 dG
′ = −SdT + VdP−Adγ + qdV

6.4 �Hvap = 342×85 = 29,070

Ln(p/1) = −29,070/R[1/233−1/242]

Chapter 7

7.1 E/V = T(dP/dT) − P 3P = T(dP/dT) − P

4P = T(dP/dT) dP/P = 4dT/T ln P = 4 ln T = ln T4 PαT4

7.2 dE = TdS + τdL

a.

(
∂E

∂L

)
S

= τ

b. dG′ = −SdT + τdL

c.
(
∂S

∂L

)
T

= −
(
∂τ

∂T

)
L

�S = −
L2∫

L1

(
∂τ

∂T

)
dL

7.3 dG = − SdT + τdL

(
∂S

∂L

)
T

= −
(
∂τ

∂T

)
L(

∂E

∂L

)
T

= T

(
∂S

∂L

)
T

+ τ = −T

(
∂τ

∂T

)
L

+ τ

7.4

(
∂E

∂V

)
T

= T

(
∂P

∂T

)
V − P

(
∂P

∂T

)
V

= d[RT/V − B]dT = RT

(V − B)2

(
∂B

∂T

)
+ R/V − B

(
∂E

∂V

)
T

= RT2

(V − B)2

(
∂B

∂T

)
+ R

V − B
− R

V − B
= RT2

(V − B)2

(
∂B

∂T

)
(
∂H

∂P

)
T

= −T

(
∂V

∂T

)
P

+ V = −RT/P + RT/P = 0

7.5 (
∂H

∂P

)
T
= − T

(
∂V

∂T

)
P

+ V = −T

[
∂[RT/p − a/T]

∂T

]

= − RT/P + a/T + RT/P − a/T = 0
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7.6 Cp = CV

[(
∂E

∂V

)
+ P

](
∂V

∂T

)
P

= CV +
[

T

(
∂P

∂T

)
V

− P + P

](
∂V

∂T

)
P

7.7 a.

(
∂E

∂A

)
T

= T

(
∂S

∂A

)
T

+ γ = −T

(
∂γ

∂T

)
+ γ

b.
(
∂γ

∂T

)
= −Es/Tc = −

(
∂S

∂A

)

�S=
A2∫

A1

(Ec/Tc)dA = Ec/Tc(A2 − A1)

7.8 a. dE−TdS −PdV +P’dD

b. dZ = −SdT + VdP + P′dD

c.

(
∂Z

∂D

)
P′ = P′

d.

(
∂E

∂D

)
T

= T

(
∂S

∂D

)
T

+ P′ = T

(
∂P′

∂T

)
D

+ P′

7.9

(
∂S

∂M

)
= φ

(
∂S

∂N

)
T

= μ

Chapter 9

9.1 RTd ln(c1)−Ldτ 1 = RTdln(c2)−Ldτ 2

RT ln(c1)−L1τ 1 = RT lnc2−L2τ 2

9.2 −S1dT + zFdψ1 = −S2dT + zFdψ2

−H1dT/T + zFdψ1 = −H2 dT/T + zFdψ2

�H ln (T2/T1) = zF(ψ2 − ψ1) �H = H2 − H1

9.3 a. Observed π = {G/M)RT

0.001 = (.5)/M 25 = 12.5/M

M = 12.5/0.001 = 12500

b. 12500 = 50,000/total ions Total ions = 4 (1 protein, 3 K+)



304 Problem Solutions

9.4 [Na]2[Cl]2 = [Na]1[Cl]1

(0.11)(0.11) = (0.1 + x−0.01)(0.1−0.01) = 0.09(0.09 + x)

0.134 = 0.09 + x x = 0.044

9.5 �G = 0 = Vm(1−P) + 75 + Vr(P−1) 3 step cycle

75 = (Vm−Vr)(P−1) = 16.3−15.5)×10−3 (P−1)

P−1 = 93.8×103

9.6 VldPl = VgdPg = RT dP/P

2.46(11−1) = 0.082 (300) ln(P/1)

1 = ln(P/1) P = 2.7 atm

9.7 Vπ = −RT ln(X2/X1)

P−(P + .5) = −0.5 = −2500 V−1 2500 ln(X2/X1)

9.8 c2 = [K}2 = [Cl]2 [Cl1] = c1 [K] = c1 + zcp

C2
2 = c1[c1 + zcp]

9.9 a. RT ln(X) + γ dA = RT ln(1) = 0

b. 120 (1.1−1) = −8.3×300 ln(X/1) ln(X) = −0.048

X = 0.953

9.10 RTd ln (cL) + zFdψL = RTd ln (cH) + zFdψH

− RT ln (cH/cL) = zf (ψH − ψL)

Decrease RT lnc must still equal m’gh so c must be smaller

Chapter 10

10.1 5!/2!3! / 25 = 10/32 = 5/16
10.2 d/dni[ ln (N!/n1!n2!n3!) − + α(N − n1 − n2 − n3)] = 0

For 1, 2 or c
Ln(ni)−α = 0 ni = exp(α) N = 3exp(α) each ni = N/3 = exp(α)

Chapter 11

11.1 a. q = 1 + 0.2 + 0.04 = 1.24
b. p = 0.24/1.24 = 0.19

<quanta> = [0×1 + 1×0.2 + 2(.04)]/1.24 = 0.28/1.24 = 0.23
11.2 a. [1/1.6](80) = 50 [0.4/1.6](80) = 20 [0.2/1.6](80) = 10

b. <ε> = 5/8(0) + 2/8(1kT) + 1/8(2kT) = 0.5kT
c. Ωmax = 80!/50!20!10!
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11.3 a. 1/(1+0.6+0.4) = 1/2
b. <ε> = 0.6/1(0.5kT) + 0.4/1(0.9kT) = 0.66kT

<A> = −kT ln(2)
<s> = [<E> + <A>]/T = 0.66 k +kT ln(2) = 1.35 k

11.4 a. p0 = exp (−βεo)

exp (−βεo) + exp (−βε1) + exp (−βε2)
= exp (−βεo)

q

b. <ε>= exp (−βεo)εo + exp (−βε1)ε1 + exp (−βε2)ε2

q
c. <A> = −kT ln(q)

d.
q10

10!

Chapter 12

12.1 a. ξ = 1 + 2λqb + λ2qb
2

b. <none bound> = 1/ξ
12.2 q = 1 + x + x2 + . . . = 1/(1 − x) x = exp ( − βE)

<ε> = [0∗1 + Ex + 2Ex2. . .]/q
<A> = −100kT ln(q)

12.3 a. Empty sites; 3 SSSA 3 SSASA 1 SASASA
b. �= (1+�qb)3 λ= exp(βμ) qb= exp(βεb)

12.4 a. ξ = 1 + λ + λλ’
b. p(2 absorbed) = λλ’/ξ
c. <N> = [0(1) + 1(λ) +2(λλ’) ]/ξ
d. � = ξ3

12.5 a. G1G2 C1C2 G1(G2C1)C2 C1(C2G1)G2 (C1G1)(C2G2)
b. � = 1 + 2exp(−βE1) + exp(−2βE1)

12.6 a. p(B) = exp(−β�G)/[1+ exp(−β�G)]
b. ξ = 1 + exp(−β�G)[1+ 2λqb + λ2qb

2]
c. p(B) = exp(−β�G)[1+ 2λqb + λ2qb

2]/{1+ exp(−β�G)
[1+ 2λqb + λ2qb

2]}
d. <Ns> = exp(−β�G)[1× 2λqb +2× λ2qb

2]/[1+ exp(−β�G)
[1+ 2λqb + λ2qb

2]

12.7 μ =
(
∂A

∂N

)
= −∂[kT ln Q]

∂N
− μ

kT
=

(
∂ ln (Q)

∂N

)
M,T

− μ

kT
=

⎛
⎜⎜⎝
∂ ln

(
M!

N!(m − N)!qN
)

∂N

⎞
⎟⎟⎠ = ln N−ln (M−N)+ln (q) = ln

Nq

M − N

= ln

(
θq

1 − θ

)
12.8 a. fR = 1/[1 + L{1+ q1λ1 + q2λ2)]
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12.9 a. R, RS1, RS2, S1RS2, T

b. ξ = 1 + λ1qb1 + λ2qb2 + λ1qb1λ2qb2 + exp(−β�G)

c. fR = 1 + λ1qb1 + λ2qb2 + λ1qb1λ2qb2/ξ

d. <N(S1+S2) = [1(λ1qb1) + 1(λ2qb2) + 2(λ1qb1 λ2qb2)]/ξ

12.10 a. fs (no magnetic field) = 1/4

b. f+ε = exp(−βε)/[1+ exp(−βε−) + 1 + exp(−βε+)]

Chapter 13

13.1

∞∫
0
εε1/2 exp ( − βε)dε

∞∫
0
ε1/2 exp ( − βε)dε

13.2 a.
<v2>=

∞∫
0

v2 exp (βmv2/2)vdv

∞∫
0

exp (βmv2/2)vdv

a = βm/2

b. <v2>= 1/2a2

1/2a
= 1/a = 2/mβ

13.3 a. q =
∞∫
0

exp (−βε)dε = 1

−β exp (−βε)|∞0 = 1/β

b. p =
∞∫
εa

exp ( − βε)dε/
1

β
= exp (−βεa)

c. <ε2>=β−1
∞∫
0
ε2 exp (−βε)dε

d. <ε2>=∂
2 ln q

∂β2

13.4 q =
∞∫

−∞
exp (−βp2/2m)dp =

√
2mπ

β

< ε >= −∂ ln q

∂β
= kT/2

13.5 a. (kT)s = q

b. < ε >=
E2∫

E1

exp ( − βε)εs−1dε/(kT)sdε

c. <ε> = skT
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13.6 q =
∞∫
0

exp (−βmgh)dh = 1

−βmg
exp (−βmgh)|∞0 = 1

βmg

< h >= (βmg)
∞∫
0

h exp (−βmgh)dh

Chapter 14

14.1 T =
(
λA exp (−βεAA) λA

λB λB exp (−βεBB)

)

14.2 I(CaCl2) = [0.01 (2)2 + (.02)(−12)]/2 = 0.03

K−1 (CaCl2) = 3 nm(0.01/0.03)1/2 = 1.7 nm

I(CaSO4) = [0.01(2)2 + 0.01(−2)2]/2 = 0.04

K−1 (CaSO4) = 3 nm(0.01/0.04)1/2 = 1.5 nm

14.3 a. ξ = 1 + 3L + 3L2qi + L3q3
i qi = exp (−βεtt)

b. <Nt> = [1(3L) + 2(3L2) + 3(L3)qb
3]/ξ

c. <Nttt> = 1(3L3qb
3)/ξ

Chapter 15

15.1 dA∗/dt = k1[A][B]−k−1[A∗][B] −kf[A∗] = 0

a. [A∗] = k1[A][B]/[k−1 [B]] + kf

b. I = kf[A∗]

15.2 a. A = 3t, 2r, 1v A∗ = 3t, 2r, 1 − 1 = 0v

K� = qt
3qr

2/qt
3qr

2qv = qv
−1 = 0.1

k2 = 1013×0.1 = 1012

b. <A> = −RT ln(K) = −2500 ln(0.1)

15.3 K = q3
t q3

r q2
v

q3
qtq2

r q1
vq3

t

15.4 a. Activated complex has two translations, 1 rotation and 1 vibration

b. K�=q2
t q1

r q0
v

[qt]4
k2 = K�(kT/h)
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15.5 a.
(N + j + k − 1)!
N!(j + k − 1)! = D all states for complex

b.
(i + g − 1)!(N − i + k − 1)!

i!(g − 1)!(n − i)!(k − 1)! /D

15.6 a. 3×109 [A][B] = Z

b. 50,000 J/mol

Chapter 16

16.1 Jw = L11 dP/dx + L12 dπ /dx

Js = L21 dP/dx + L22 dπ /dx

Moving ions carry some water, moving water carries some ions

16.2 Jheat = L11 dT/dx + L12 dψ /dx

Jcharge = L21 dT/dx + L22 dψ /dx

16.3 <x2> = [(−42)1 + (−2)24 + 02(6) +(+2)2(4) +(42)1]/16 = 64/16 = 4

16.4 JT = (1/A)dS/dt Xt = dT/dx

JP = (!/A)dV/dt XP = dP/dx
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A
Absolute energy, 2
Absolute entropy, 81
Activity and molarity, 122–123
Adiabatic demagnetization, 110–111
Adiabatic reversible expansions, 45–46
Atomic gas heat capacity, 4
Atomic motion, 3
Automobile engine, 9–11
Average binding, differential expression for,

189–190
Average energy, 168–170

differential expression for, 170–171
Average entropies and free energies, 171–173
Avogadro’s number, 73–75, 79, 131, 149

B
Batteries, 255
Benzene, 72
Bimolecular collision theory, 239–240
Binding averages, 188–189
Binding energy, 186
Binomial coefficient, 153
Boiling point elevation, 142–143
Boltzmann distribution, 165
Boltzmann equation, 80
Boltzmann factor, 130, 158, 165, 167–168,

175, 181, 186, 189, 191, 197, 199,
217, 219, 240

Boltzmann partition function, 177
Boltzmann probabilities, 165–168, 172, 176,

227, 250
Boltzmann statistics

approach, 237
average energy, 168–170

differential expression for, 170–171
average entropies and free energies,

171–173
chemical potential, 174–175

energy manifolds, 177–178
for two-energy levels, 165–166
multi-particle systems, 175–177
unpaired electrons in magnetic field,

166–168
Boltzmann’s constant, 73
Boltzmann’s formulation, 74–75
Boltzmann’s tombstone in Vienna, 74
Bose–Einstein statistics, 158–160, 246–247
Bragg–Williams approximation, 228–229
Brunauer–Emmett Teller (BET) model, 193

C
Canonical ensemble, 162–163
Capacitance, 220
Carbon tetrachloride, 72
Carnot cycle, 52–54

and entropy, 58–59
Carnot engines, 57

efficiency of ideal, 54–56
Charge flux, 255–256
Chemical kinetics, statistical

thermodynamics in
bimolecular collision theory,

239–240
Bose–Einstein statistics, 246–247
continuum approximation, 249–251
dog-flea model, 231–232
energetics of transition state theory,

242–243
energy dependence of k2, 247–249
energy transfer, 251–252
kinetic averages, 233–235
Lindemann mechanism, 245–246
reversible reactions and equilibrium, 233
stochastic theory for first-order decay,

235–236
transition state theory, 241–242
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Chemical kinetics (cont.)
transition state theory and partition

functions, 243–244
wind-tree model, 237–239

Chemical potential(s), 121, 174–175
balance equations, 129–130
equation, 133
for ion, 223
free energy, 95–96
in solution

activity, 122–123
Euler’s theorem, 124–125
for ideal solutions, 119–120
fugacity, 120–122
Gibbs–Duhem equation, 125–127
partial molar quantities, 123–125

Chemical reactions, energy and enthalpy for,
24–25

Clapeyron equation, 138–139
Clausius–Clapeyron equation, 139–140
CO2 enthalpy, 29
Conservation of energy, 1–3
Continuum approximation, 249–251
Crystalline solid of atoms, 80
Curie symmetry principal, 274
Curie–Weiss law, 6–7

D
Debye theory for heat capacities, 81
Debye–Huckel theory, 223
Degrees of freedom, 4–5
Diamond, 26–27

oxidation equation, 26–27
Diatomic gases, 3
Diatomic molecule with dipole moment, 214
Diatomic reactant molecule, 244
Diatomic rotator, 210
Dielectric constant, 220
Discrete diffusion with drift, 268–270
Discrete state diffusion, 264–265
Discrete state membrane transport, 260–261
Dissipation function, 258
Distributions for energy continua, 197–199
DNA molecule, 84
Dog-flea model, 151–153, 160, 231–232
Donnan equilibrium, 143–145
Driven system distributions

stationary state thermodynamics, 278–280
Drivenwind-tree model, 282–284
Dulong and Petit, empirical law of, 3, 5, 184

E
Eigenvalue partition function, 226
Eigenvalue techniques, 225

Einstein’s crystal heat capacity, 184–186
Electrochemical cell, 15
Electrochemical potential, 137–138
Empirical law of Dulong and Petit, 3, 5
Endothermic reaction, 25, 132
Energetics of transition state theory, 242–243
Energy, 10
Energy

continua, 197–199
dependence of k2, 247–249
distribution, 76
and enthalpy for chemical reactions, 24–25
expression, 170–171
manifolds, 177–178
transfer, 9, 251–252

Enthalpy, 16–18, 24–26, 28–29, 39–40, 92
CO2, 29
diamond and graphite, 27
of vaporization, 65–66

Entropy, 71
change, 73–74, 90

for ideal gas, 89
of mixtures, 76
of vaporization, 72
spontaneity and, 89–91

Entropy and second law
Carnot cycle, 52–54

and entropy, 58–59
changes of the surroundings, 63–65
differential formulation of, 60–63
efficiency of ideal Carnot engines, 54–56
entropy paths, 63
non-equilibrium phase transitions, 65–67
refrigerators and heat pumps, 56–57
reversible paths for entropy in irreversible

changes, 65
temperature gradients and network, 51–52

Entropy decrease in driven systems,
284–286

Entropy paths, 63
Entropy, nature of, 71

absolute entropy, 81
and information, 83–86
and temperature, 75–76
Gibbs paradox, 83
of mixing, 76–79

for microscopic states, 79–80
residual entropy, 82
states, 73–74
states and probability, 74–75
third law of thermodynamics, 80–81
Trouton’s rule, 71–72
volume changes and randomness, 73
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Enzyme concentration, 102–103
Equation of state, 6–7
Equilibrium, 89

constant, 100–102, 244
distribution, isomers, 153
wind-tree equations, 282–283

Equipartition of energy theorem, 4–5
Ergodic hypothesis, 149–150
Euler’s theorem, 124–125
Exothermic reaction, 96, 132

F
Faraday’s constant, 94
Fermi Dirac statistics, 160–162
Fick’s second law, 261–263
First law of thermodynamics

adiabatic reversible expansions, 45–46
conservation of energy, 1–3
energy and enthalpy for chemical reactions,

24–25
enthalpy, 16–18
equation of state, 6–7
general equation for, 37–38
heat capacities, 18–19
Hess’s law and reaction cycles, 26–29
internal energy

calculation, 33–35
change for ideal gas, 16

irreversible adiabatic expansion, 47
irreversible isothermal expansion of ideal

gas, 42–43
isothermal expansion of non-ideal gases,

43–45
Joule experiment, 38
Joule–Thomson coefficient, 40
Joule–Thomson experiment, 39–40
molar heat capacities, 3–5
non-ideal gases, 7–9
partial derivatives, 30–31
reversible isothermal expansion, 41–42
reversible work, 11–14
standard states, 29
state variables, 5–6, 23–24
work, 9–11, 15–16
work cycles, 14–15

First-order decay, stochastic theory for,
235–236

Fluorescence, 286
Force coupling, 270–271
Fractional concentrations or pressures

free energy, 101–104
Free energy(ies), 92, 95–97, 100, 119, 123

and equilibrium, 98–101

and work, 91–92
chemical potential, 95–96
fractional concentrations or pressures,

101–104
Gibbs–Helmholtz equation, 96–98
gradient, 130
Legendre transform and thermodynamic

energies, 92–94
mathematical basis of Legendre transform,

94–95
spontaneity and entropy, 89–91

Freezing point depression, 140–142
Fugacity, 120–122

G
Gas

constants, 17
expansion, 38
law, 1–2, 6

Generalized forces and fluxes, 257–258
General linearized driven systems, 280–282
Gibbs–Duhem equation, 125–127
Gibbs free energy, 89, 93, 96, 107–108, 129
Gibbs–Helmholtz equation, 96–98
Gibbs–Helmholtz equation and equilibrium,

132
Gibbs paradox, 83
Grand and petit canonical partition functions,

186–187
Grand canonical partition function, 191
Graphite, 26–27
Gravitational potential energy, 23

H
Harmonic oscillator, 181–182, 184,

209–210
Heat, 2
Heat capacities, 4–5, 18–19, 149, 184

at constant pressure, 32
constant, 34
energy, 5
molar, 34
pattern in, 3
pump, 57
transfer, 2–3, 5, 11–12, 37

Helmholtz free energy, 91, 95–96, 105–106,
173

and entropy, 91, 184
Hess’s law and reaction cycles, 26–29
Hooke’s law, 6

I
Ideal gas, 18
Ideal gas law, 1–2, 6–9, 25
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Interactions
Bragg–Williams approximation, 228–229
Debye–Huckel theory, 223
eigenvalue partition function, 226
eigenvalue techniques, 225
Koshland–Nemethy–Filmer model,

217–219
one-dimensional ideal lattice gas, 227
one-dimensional ising model, 224–225
surface double layers, 220–223
two-site enzyme, 217

Internal energy, 23–24, 32
calculation, 33–35
change for ideal gas, 16

Irreversible adiabatic expansion, 47
Irreversible isothermal expansion of ideal gas,

42–43
Irreversible thermodynamics and transport

charge flux, 255–256
discrete diffusion with drift, 268–270
discrete state diffusion, 264–265
discrete state membrane transport, 260–261
Fick’s second law, 261–263
force coupling, 270–271
generalized forces and fluxes, 257–258
Nernst–Planck equation, 265–268
particle flux, 259–260
Saxen’s relations, 272–273
scalar forces and fluxes, 273–274
streaming current and electroosmosis,

271–272
Irreversible work, 14
Isomerization, 24, 156
Isomerization reaction, 152
Isothermal expansion

f non-ideal gases, 43–45, 53
of ideal gas, 63

Isothermal ideal gas expansion, 60

J
Joule experiment, 38, 65
Joule–Thomson coefficient, 40, 114–116

helium and hydrogen, 40
Joule–Thomson experiment, 39–40

K
Kinetic averages, 233–235

statistical thermodynamics, 233–235
Kinetic energy, 75
Koshland–Nemethy–Filmer model, 217–219

L
Langevin equation, 214–215
Langmuir adsorption

isotherm, 191–192
model, 192

Langmuir model postulates, 191
Lasers, 286–287
Le Chatelier’s principle, 132
Legendre transform, 94, 110

and thermodynamic energies, 92–94
mathematical basis of, 94–95

Ligand-free protein, 187
Lindemann mechanism, 245–246
Linus Pauling, 82
Lippman equation, 111–112
Liquid–solid equilibrium, 138–139
Liquid–vapor equilibrium, 139

M
Macroscopic equilibria, 190–191
Magnetic field

unpaired electrons in, 166–168
Maxwell demon, 85
Maxwell’s relations, 105–107, 109–110
Maxwell–Boltzmann distributions

classical harmonic oscillator, 209–210
distributions for energy continua, 197–199
Langevin equation, 214–215
mean square velocities, 203–204
one-dimensional velocity distribution,

201–203
phase space, 212–213
quantized phase space, 213–214
quantum rotator, 210–212
three-dimensional velocity distributions,

205–209
two-dimensional distributions, 204–205
useful integrals, 199–201

Mean square velocities, 203–204
Molar energy, 99
Molar enthalpy, 95
Molar entropy of mixing, 79
Molar heat capacities, 3–5

diatomic gases, 3
monatomic gases, 3
see also Heat capacities

Molar Helmholtz free energy, 95
Multi-particle systems, 175–177
Multi-state systems

binding averages, 188–189
Brunauer–Emmett Teller (BET) model,

192–193
classical limit, 183–184
differential expression for average binding,

189–190
Einstein’s crystal heat capacity, 184–186
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grand and petit canonical partition
functions, 186–187

harmonic oscillator, 181–182
Helmholtz free energy and entropy, 184
Langmuir adsorption isotherm, 191–192
macroscopic equilibria, 190–191
multiple sites, 187–188

Multicomponent reaction, 99–100
Multiple sites, 187–188

N
Nernst–Planck equation, 265–268, 270
Nerve impulse, 287–289
Non-equilibrium phase transitions, 65–67
Non-ideal equation of state, 121
Non-ideal gas, 7–9

equation, 9
with equation of state, 61

O
Ohm’s law, 255, 257
One-dimensional ideal lattice gas, 227
One-dimensional ising model, 224–225
One-dimensional velocity distribution,

201–203
Onsager’s relationship, 273
Oscillating reactions, 291–292
Oscillator, partition function, 198
Osmotic pressure, 133–135
Oxidation equation for diamond, 27

P
Partial derivatives, 30–31
Partial molar quantities, 123–125
Particle flux, 259–260
Partition function, 188

for enzyme, 217
Partition function, oscillator, 198
Pauli exclusion principle, 212
Phase equilibria and colligative properties

barometric equation, 130
boiling point elevation, 142–143
chemical potential balance equations,

129–130
Clapeyron equation, 138–139
Clausius–Clapeyron equation, 139–140
Donnan equilibrium, 143–145
electrochemical potential, 137–138
freezing point depression, 140–142
Gibbs–Helmholtz equation and

equilibrium, 132
molecular weight measurements, 135–136
osmotic pressure, 133–135
sedimentation, 131

Phase space, 212–213
Phase transitions, 72, 89–90

non-equilibrium, 65–67
Piston, 9–10, 12
Poincare recurrence time, 75, 150
Poisson–Boltzmann equation, 222
Pressure–temperature phase diagram, 139
Prey–predator model, 289–291
Protein, 86, 190

oligomer, 218

Q
Quantized phase space, 213–214
Quantum oscillator, 183
Quantum rotator, 210–212

R
Randomness, 71
Raoult’s law, 119–120
Rayleigh–Bernard phenomenon, 277
Refrigerator

and heat pumps, 56–57
effectiveness, 56–57

Residual entropy, 82
Resonance and stochastic resonance, 292–294
Reverse Carnot cycle, 56
Reversible adiabatic expansion, 64
Reversible isothermal compression, 51
Reversible isothermal expansion, 41–42, 58
Reversible mixing, 77
Reversible paths for entropy in irreversible

changes, 65
Reversible reactions and equilibrium, 233
Reversible work, 11–14

S
Saxen’s relations, 272–273
Scalar forces and fluxes, 273–274
Second law of thermodynamics, entropy and

Carnot cycle, 52–54
and entropy, 58–59

changes of the surroundings, 63–65
differential formulation of, 60–63
efficiency of ideal Carnot engines, 54–56
entropy paths, 63
non-equilibrium phase transitions, 65–67
refrigerators and heat pumps, 56–57
reversible paths for entropy in irreversible

changes, 65
temperature gradients and network, 51–52

Sedimentation, 131
Semipermeable membrane, 133
Solid–solid equilibrium, 139
Specific heat, 3
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Spontaneity and entropy, 89–91
Standard states, 29
State function, 16–18, 26
State of system, 74
State variables, 5–6, 23–24
Stationary state thermodynamics, 275–278

drivenwind-tree model, 282–284
entropy decrease in driven systems,

284–286
general linearized driven systems, 280–282
lasers, 286–287
nerve impulse, 287–289
oscillating reactions, 291–292
prey–predator model, 289–291
resonance and stochastic resonance,

292–294
synchronization, 294–295

Statistical thermodynamics
Boltzmann factor, 158
Bose–Einstein statistics, 158–160
canonical ensemble, 162–163
dog-flea model, 151–153
energy distributions, 156–158
ergodic hypothesis, 149–150
Fermi Dirac statistics, 160–162
probable distribution, 153–154
states and distributions, 150–151
undetermined multipliers, 154–155

Statistical thermodynamics in chemical
kinetics

bimolecular collision theory, 239–240
Bose–Einstein statistics, 246–247
continuum approximation, 249–251
dog-flea model, 231–232
energetics of transition state theory,

242–243
energy dependence of k2, 247–249
energy transfer, 251–252
kinetic averages, 233–235
Lindemann mechanism, 245–246
reversible reactions and equilibrium, 233
stochastic theory for first-order decay,

235–236
transition state theory, 241–242
transition state theory and partition

functions, 243–244
wind-tree model, 237–239

Steady state approximation, 245
Stirling’s approximation, 154
Stochastic theory for first-order decay,

235–236
Stoichiometric coefficients, 100
Streaming current and electroosmosis,

271–272
Sun’s energy, 56
Surface double layers, 220–223
Synchronization, 294–295

T
Taylor expansion, 183
Temperature gradients and network, 51–52
Thermodynamic equations of state, 112–114

adiabatic demagnetization, 110–111
Gibbs free energy, 107–108
Joule–Thomson coefficient, 114–116
Lippman equation, 111–112
Maxwell’s relations, 105–107, 109–110

Thermodynamic equations, generalized, 32–33
Thermodynamic internal energy, 174
Third law of thermodynamics, 80–81
Three-dimensional velocity distributions,

205–209
Transfer of energy, 2
Transition state theory, 241–242

and partition functions, 243–244
Trouton’s rule, 71–72
Two protein system, 219
Two-dimensional distributions, 204–205
Two-particle system, 75
Two-site enzyme, 217

V
Van der Waals equation of state, 7–9, 113
Van der Waals gas, 35
Vapor pressure, 119, 140
Vaporization, 65, 71–72, 89–90

enthalpy, 72
Velocity distribution, 76

W
Wind-tree model, 237–239
Work, 9–11, 15–16

cycles, 14–15


