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Preliminary Information

It is pertinent to give some advice regarding the use of some terms in this book:

The word particle is used as a generic term. It can mean molecule, atom, or ion.
In this book, it does not signify an elementary particle with the meaning given to
them by the physicists, although such may be (and are) the subject of studies
through statistical thermodynamics. Likewise, the author indiscriminately uses
the words compounds and species to refer to the chemical species that constitute
a thermodynamic system or are a part of a thermodynamic system, without
trying to attribute a specific meaning to them.

The author has tried to ensure that the logarithm is a dimensionless number.
When it was not the case in this book, it was for an economy of writing. From
a general standpoint, it is sufficient to introduce into the denominator of the
argument the quantity 1, unity, which is the same as in the numerator. The author
recalls that the argument of a logarithm being dimensionless or not has been the
matter of a considerable number of discussions.

First of all, the author indicates that the pressure unity most often found in this
book is the atmosphere, although it is no longer recommended by IUPAC. The
reason for this discrepancy is practical. A great deal of data is expressed with it
in the thermodynamic literature.

The term “concentration” written in quotes in this book is endowed with its
largest meaning as it may designate either a molality, a molarity, a molar
fraction, or a density number. In no case does it only designate a molarity.
However, written without any quotes, it exclusively means molarity.
Concerning the part of the book which requires the use of statistical thermody-
namics, two points must be stressed.

— In order to introduce this part of thermodynamics, we follow the development
of T.L. Hill (see the general bibliography). It is rather brief. Several strategies
exist to delve into it. Hill’s treatment of the subject is one of the clearest.

XXVii



XXViii Preliminary Information

— The introduction and the reasoning based on molecular functions have been
done by writing and handling them with the symbolism used by A. Ben-Naim
in his books and publications.

 Finally, the word thermodynamics used alone signifies classical thermodynam-
ics exclusively.
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A
A
A
AN, V,T)
A

a,d, a;or ()
B
B
B or B(Ry,. . .,Ry)
B(RI’RH)

B,(T) or By,

BI(T, A1)

boa, bo3, bao, b3o, b11,
bij -

CP
(Cp)l, (Cp)s

C(R,, R//)
c

cior[ ]
E

E°

Absorbance

Coefficient of Debye—Hiickel’s relations

Helmholtz energy

Characteristic function of the canonical ensemble

Ion size parameter (extended Debye—Hiickel’s relation)
General symbols of an activity

Coefficient of the extended Debye—Hiickel’s relation
Matrix of BY (Kirkwood-Buff’s theory)

Sum of the interaction energies between the added
particle and the other particles of the solute

Coefficient of the series expansion of g (R',R") in the
density p

Successive terms of the series expansion of the virial
inp

Successive terms of the expansion of the virial in p
(binary mixture)

Virial terms of the osmotic pressure (McMillan—
Mayer’s theory)

Expansion in series terms in z of p/kT (binary mixture)

Heat capacity at constant pressure

Molar heat capacities at constant pressure in the liquid
and solid states

Expansion in series terms of g (R, R”) in p

General symbol of a “concentration” whichever it is
(molar fractions, molalities, molarities, density
numbers)

Molarity (molar concentration of 7)

Electromotive force of an electrochemical cell
Standard electromotive force of an electrochemical cell
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F(RY)
(F(RM)) or (F)

F

f

fs hh Je

fo

f

7

f(X;, X;) or AR, R") or
SaasfaB - - Jap
f(rip)andsof...
G(T,P,N)or G

G, Gap, G11, Gr2, G2y,
G,

or Gaa, Gas, Ges
Gaa®, Gag’, Gep°®

G—12 or G,,/}

G
Gm i Or Gi

gR)or g(R, T, p) or g5,

Glossary

Junction potential

Stationary quanto-energetic states of a system belonging
to an ensemble

Allowed energy of a great ensemble system possessing
N particles

Total energy of the particle i

Kinetic energy of a particle

Total energy of an ensemble

Internal energy of a system

Total energy of a system

Potential energy of a particle

Mean energy of a system in an ensemble

Elementary electric charge

Base of natural logarithms

Every function depending on the configuration R
Mean value of a function F depending on the
configuration R

Faraday

General symbol of the fugacity

Fugacities in the solid, liquid, and gaseous states
Fugacity of i in the standard state

Fugacity of i in the pure state

Fugacity in the reference state (at very low pressure)
Potential energy functions in pairs into which a more
complex energy function can be divided

....Mayer’s f-function
Characteristic function of the
ensemble

Kirkwood—Buff’s integral

isothermal—isobaric

First terms of the expansions in p, of the Kirkwood—
Buff’s integrals

Kirkwood—Buff’s integral between the species 1, 2 or a,
p (grand ensemble)

General symbol of the Gibbs energy function

Molar Gibbs energy

Molar Gibbs energy in the reference state

Partial molar Gibbs energy of i

Gibbs energy of i in the standard state

Excess Gibbs energy of a mixture

Molar excess Gibbs energy of a mixture

Conductance of a solution

Radial distribution function (R scalar)
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8ap (R', R") or

g R, R") or g(r)i
8 (R, R”) or
g(R,R") or g, (R),

2 2
g( ) ++s g( )2+7a

2) 2)
8o T8
g solv—solv4g i (}"12,
13, 1'23), g( ),

5 6)
g( ), g( b .’g(ﬂ)

+solvs

Solisy
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K° or K°(T)

K(T) or K'(T) or K', K"

NOO 3 'UNFHN
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€
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25

Ny, Ns,. ..
n; orn
ni(Ny, N»)

zZ|

XXXi

Pair correlation function (between the particles o and
or j and k or those located in R’ and R”)

Pair correlation function between the particles a and f in
the grand ensemble

Radial distribution functions between two or several
species

Hamilton’s function

General symbol of enthalpy

Partial molar enthalpy of i

Molar enthalpy of i

Molar enthalpy in the standard state

Molar enthalpy in the reference state
Planck’s constant

Ionic strength of the solution

General symbol of an equilibrium constant
Thermodynamic equilibrium constant or
equilibrium constant

Formal or conditional equilibrium constants
Equilibrium constant related to fugacities
Equilibrium constant related to partial pressures
Equilibrium constant related to molalities

Equilibrium constant related to molarities
Thermodynamic acid dissociation constant of an acid
Acid dissociation constant (general symbol)
Thermodynamic ionic product of water

Ionic product of water

Solubility product

Mean kinetic energy of a system

Boltzmann’s constant

Henry’s law constant

Matrix of partial derivatives at constant volume
(Kirkwood-Buff’s theory)

Molar mass

General symbol of the molality

Composition of a system

Number of particles of a system

Number of moles in the solution

Number of systems possessing N; and N, particles
(grand ensemble)

Mean number of particles i in the canonical ensemble
Number of moles of a species in the ensemble
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<N1> or ]T]
WV, T, p
ni(j)

nN)

P™ (R, Ry,. . ,R,)

P(z)(R/, R//)

P™ (R, Ry,..,R,)
dey dRZ" . 'stn
P(N)

Pj Oer(N, V, T)
Pi(N)
PAN. V. T, u)

pV
P,

p

Glossary

Mean number of particles of the species i in one system
of the grand ensemble

Number of systems of the grand ensemble possessing
J particles

How many times appears the quanto-energetic state £; in
the most probable distribution (canonical ensemble)
How many times appears the quanto-energetic state £;in
the most probable distribution for a number N of
particles (grand ensemble)

Number of exchanged electrons during an
electrochemical reaction

Pressure of a system

Partial pressure of i

Partial pressure of i in the standard state

Pressure of i in the pure state

Pressure in the reference state

Average pressure of the systems in an ensemble
Pressure of the system j in the energetic state E;

Basic density function or probability density function of
the occurrence of the configuration R

Probability of the occurrence of the configuration R”,
i.e., probability to find the particle 1 in dR; at Ry, 2 in
dRz at R2,. . .,N in dRN at RN

Specific function of order (n) or density probability for

the particle 1 to be in Ry,... the particle n in R,
whichever the configuration of the (N-n) remaining
particles

Specific pair distribution function (probability density)
Specific probability of order (n) for a well-specified
particle be in the volume element dR;, another well-
specified one in dR,,. . . a last well-specified one in dR,,,
whichever are the configurations of the remaining N—n
particles

Probability to find a system in the grand ensemble with
exactly N particles of a species

Probability for the system to be in the energy state E;
(canonical ensemble)

Probability for a system of the grand ensemble to be in
the energetic state Ey(N, V)

Probability for a system of the grand ensemble to be in
the energetic state E(N, V, u)

Characteristic function of the grand ensemble
Probability for a system to exhibit the volume
V (ensemble isothermal—isobaric)

Momentum of a particle (vector)
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Symbol of the dependence of Hamilton’s function on the
momenta of the N particles of the system

General symbol of the partition function of the
canonical ensemble

Canonical partition function corresponding to the
occurrence of only one molecule in the system
Canonical partition function for a mixture of two
particles

Generalized coordinate

Total charge excess around the central ion (Debye—
Hiickel’s theory)

Electrical charge

Molecular partition function

Internal molecular partition function

Rotation molecular partition function

Translation molecular partition function

Vibrational molecular partition function

Electronic molecular partition function

Heat exchanged with the surroundings

Perfect gases constant

Scalar distance between two particles (R: scalar)
Vector defining the location of a species

Configuration taking only into account the location of
the N particles

Configuration of the N and Ny particles of A and B of
the system

Entropy

Partial molar entropy of i

Absolute temperature of the system

Internal energy (IUPAC)

General symbol of the potential energy of a species
Mean energy of interaction between particles

Total potential energy of interaction between the
particles in the configuration X"

Total potential energies in the configurations R and RV*!

Interaction energy between two particles as a function
of the distance R (between them)

Volume of the system

Molar volume of i

Partial molar volume of i

Coupling work of A with its surroundings consisting
solely in particles A
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W(AIA + B)
W(AIB +B)
W(BIB +A)

wir(r) or wi

el IS

8

M <
23

Vi
zZ;Oorz
Zi

!
N, Z'n, 2y, 2y,
etc.......
ZOI7 2027 ZIO,
le?' BEE) ZNINZ
a

p

p
5

Y

23

;i or p*
[T i

wi(T, p)

Glossary

Coupling work of A with its surroundings consisting in a
mixture of A and B

Coupling work of A with its surroundings consisting
solely in particles B

Coupling work of B with its surroundings consisting in a
mixture of particles B and A

Potential of average force between the ions i and
k (Debye—Hiickel’s theory)

Exchanged work between a system and its surroundings
General symbol of a partial molal quantity

Every thermodynamic quantity

Molar quantity

Molar partial quantity

Configuration of an ensemble of N rigid and nonlinear
particles

Configuration of a rigid and nonlinear particle

Molar fraction of i in solution

Molar fraction of i in gaseous phase

Statistical analogue of activity i

Electrical charge of ion i

Configurational partition function (configuration
integral)

Configuration integrals (mixture of two or several types
of particles)

Lagrange multiplier

=1/kT

Lagrange multiplier

Kronecker’s function

Solute activity coefficient (McMillan—-Mayer’s theory)
Absolute permittivity of the medium

Vacuum permittivity

Relative permittivity (dielectric constant)

Internal, translational, vibrational, rotational, and
electronic energies of a molecule

General symbol of the chemical potential

Chemical potential of the species i

Chemical potential of species i at equilibrium

Standard chemical potential of i p;° u? standard
chemical potentials of i in the phases a and §
Chemical potential in the reference state

Standard chemical potentials of i in the gaseous, liquid,
and solid states

Integration constant of the differential equation defining
an ideal solution (molar fractions scale, liquid phase)
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Hi y*(T7 P)
Y24
Pr

Pi
p

P N
P (RY)
p(n) (RN) dRN

p(2)(R’, R”) or
PPap®R', R")

Pr

pas(R'/R"), p(R'/R")
p(RI/R//) dR//

A PR, ps'(R)

or p (R, p V(R

14

Yr

yx i

Ym i
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Integration constant of the differential equation defining
an ideal solution (molar fractions scale in gaseous
phase)

Obsolete symbol of the ionic strength

Charges density at the distance r of the central ion
i (Debye—Hiickel’s theory)

Density number of i

Total density number of a binary solution (p = pa + pp)
Mass density of the solution

Generic molecular function of density of probability of
distribution of order () in the configuration RY
Probability for a molecule (not necessary molecule 1) to
be indRy,...... and a n™ molecule to be in dR,,
Generic molecular function of distribution by pairs p”

(RN ) mean molecular distribution function of the n™
order in the grand ensemble

Charges density at the point located at the distance r of
the central ion

Conditional probability density of finding the particle
A in dR’ at the configuration R’ when another B is in R”
Conditional probability to find a particle in dR” at R”
whereas another one is located in dR’ at R’

Probability densities to find a particle A or B in R’ and
R//

General symbol of an activity coefficient

Rational activity coefficient

Activity coefficient of i, molar fractions scale
(reference, dilute solution)

Activity coefficient of i, molalities scale (reference,
dilute solution)

Activity coefficient of i, molarities scale (reference,
dilute solution)

Activity coefficient (reference state, pure compound)
Solute activity coefficient (McMillan—-Mayer’s theory)
Limit value of y, (McMillan—-Mayer’s theory)
Lagrange multiplier

Spherical coordinate

Solvent molar cryoscopic constant

Absolute activity of i

Extent degree of a reaction

Coupling parameter

Fugacity coefficient of a gas

Spherical coordinate

Thermodynamic potential
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Practical osmotic coefficient “scale of molalities”
Rational osmotic coefficient “scale of molar fractions”
Flux

Spherical coordinate (nonrigid molecule)

Wave function (Schrodinger’s equation)

Electrostatic potential

Mean electrostatic potential at the distance r of the
central ion (Debye—Hiickel’s theory)

Electrostatic potential due to the ions distribution
around the central ion (Debye—Hiickel’s theory)
Electrostatic potential due to the central ion itself
(Debye—Hiickel’s theory)

Semi-grand partition function (McMillan-Mayer’s
theory)

Semi-grand partition functions (McMillan-Mayer’s
theory)

Canonical partition function of a mixture of N,
molecules 1 and of N, molecules 2. Ny is a changing
value, N, is a constant

Stoichiometric coefficient of species i

Total number of a given ion given by an electrolyte
V=U,+U—

Total number of particles in the grand ensemble

Gibbs energy change

Standard Gibbs energy change accompanying a process
Gibbs energy change accompanying a chemical reaction
Standard Gibbs energy change accompanying a
chemical reaction

Chemical potential change due to the interactions
between the ion i and the other ions j

Enthalpy change

Standard enthalpy change

Enthalpy change accompanying the fusion of a solid
Molar latent heat of vaporization

Mixing enthalpy

Parameter originating in the Kirkwood-Buff’s theory
permitting to introduce different concepts of the ideality
Entropy change in an isolated system

Partition function of the isothermal-isobaric ensemble
de Broglie’s thermal wavelength

Equivalent conductance of an electrolyte

Effective conductance of an ion

Limit equivalent conductance

Grand canonical partition function
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Isothermal compressibility coefficient

Volume

Osmotic pressure

Function semi-grand partition depending on the
variables Ny, P, T, u, (Mc-Millan’s theory)

Vector specifying the orientation of a nonspherical
molecule i

Number of possibilities to group a total of ny +n,+n3
...objects in groups of ny, n,, n3 ones

Number of possible quantic states of the grand ensemble
Degenerescence of a quanto-energetic state

Constant (Debye—Hiickel’s equation)

Thickness of the ionic cloud (Debye—Hiickel’s theory)
Number of systems in an ensemble

Degenerescence of the energetic levels ¢;, ¢;



Introduction

This book is, before all, an attempt to demystify the notion of activity. Activity is
interesting and intriguing for chemists, physicists, and others and has been for more
than a century. Outside of the physical sciences, it remains often ignored, even
unknown.

The notion of activity originates from the application of the basic principles and
methods of thermodynamics to chemical processes. It proves to be particularly
useful when this application encounters some difficulties. Its introduction permitted
the study of the thermodynamic behavior of imperfect gases and nonideal solutions.
The particular behavior of systems in both cases is related to the occurrence of mutual
non-negligible interactions between molecules of gases or of solutes. It is now well
established that handling the intimately linked concepts of activity and fugacity
permits one to neatly take into account these interactions. With their introduction,
the chemical potentials of imperfect gases and those of the components of nonideal
solutions can be expressed in a useful manner in order to study different processes,
despite the already mentioned difficulties. This is an important point. Change of the
chemical potential of a substance during a physical or a chemical process, indeed,
determines its result and its term, which is not a kinetic one. This is the reason why
chemical potentials must be expressed in the most realistic way possible.

The chemical potentials of perfect gases or of components of ideal solutions are
simply expressed with respect to their partial pressures or concentrations. This is no
longer possible with imperfect gases or with the components of nonideal solutions.
This is the origin of the introduction of the fugacity and activity concepts by G. N.
Lewis in 1907. Lewis’ thought process in order to overcome the problem may be
summarized by the following comment:

... partial pressures and concentrations do not permit the satisfactory thermodynamic
behavior of imperfect gases and of non-ideal solutions? No problem! Let us introduce
new physical quantities, even if they are virtual, in such a way that they allow the right
description of chemical potentials, with the same formalism as that used in cases of ideal
behaviors ...

XXXIX
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Miraculously, this approach proved to be successful! It works well, at least under
well-defined experimental conditions.

But the purely arbitrary introduction of the fugacity and activity concepts
immediately calls for the following central recurrent question: what is the physical
meaning of these two quantities? It is the goal of this book to provide the reader
with an answer to this question.

A second question is also frequently asked: why introduce these quantities? Its
answer has already been given above by recalling the part played by the chemical
potential.

Finally, a somewhat neophyte practitioner of the activity quantity (e.g., one
engaged in their calculations) cannot fail to be troubled by the arbitrariness of the
definitions of the activities and by its repercussion upon the validity of the results
obtained by using them. This is also a very legitimate question.

Let us recall, at this point, that the concept of activity is also of utmost
importance from a practical standpoint. It is sufficient to take the two following
examples to be convinced. They are the study of equilibria between gases and the
definition of pH. It is an experimental fact that satisfactory conditions of synthesis
of some gaseous compounds are frequently extreme. Under such conditions, the
behaviors of the reactants and products are no longer ideal. As a result, if we
calculate the equilibrium constants by taking into account only the partial pressures,
the obtained values are inconsistent. In brief, equilibrium constants obtained in such
a way are no longer constant! Using fugacities and activities rectifies this failure.
Concerning the case of pH, let us recall that it is formally defined as being the
decadic cologarithm of the activity of the solvated proton in the medium. Thus, in
principle, pH meters respond to the activity of the proton and not to its concentration.

Finally, the fact that the notion of activity is in common use in laboratories in
which the study of solutions is practiced must not be forgotten. The relative silence
which the concept of activity seems to be surrounded with is due certainly to its
mysterious character. But, it is also due to the constant success of its utilization.
This is the case of all great scientific theories.

It seems to us that all that we have recalled before may be classified as being
some good reasons to revisit the concept of activity.

This book is, before all, a book of chemical thermodynamics necessitated by the
concept to which it is devoted. Of course, it must be of interest for chemists and
physicists. However, the author thinks that it can also be of interest for all the
scientists engaged in the study of experimental sciences. They may be, for example,
biologists, who consider the evolution of biological systems, given the part played
by the changes in the Gibbs energy during these transformations. Let us recall, for
this purpose, that many biological systems evolve at constant temperature and
pressure. Hence, here stands the relevance of the notion of activity which permits
the obtaining of the changes in the chemical potentials in these conditions, which
are often far from being ideal.

Nevertheless, it is essentially centered on the chemistry of solutions. This must
not be a surprise because of the fact that it is in this area that the concept is the most
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used. However, the case of gases will be also considered for the sake of continuity
with that of liquids.

The book is divided into two main parts, each of them supplemented by some
appendices developing some particular points of physical or mathematical nature.

The first one is devoted to the concept of activity in classical thermodynamics.
At its beginning, there are some reviews of elementary thermodynamics directly
related to our purpose. They are followed by definitions of fugacity and activities
since there are several possible kinds of activities which may be adopted, which is
another troublesome point. The link between the fugacity and the activity of a
species is then established. It is at this point that the influence of the arbitrary
character of the definition is investigated. Some examples of determinations of
activities of electrolytes and nonelectrolytes are also given. The description of a
strategy of calculation of activities of electrolytes by a so-called simulation process
with the help of informatics concludes the first part.

The second one concerns activities from the point of view of statistical thermo-
dynamics. It begins by some review of generalities about statistical thermodynam-
ics. Developments from these fundamentals complete those given at the beginning
of the first volume, as could be expected, at the molecular level. It is in this part that
quantitative relations between activities and concentrations are set up. They are set
up with the help of the introduction of new functions such as molecular distribution
functions and, in particular, the radial distribution function. It is these quantitative
relations which give some physical meaning to the activity quantity. The two
theories leading to them are mentioned. They are that of Mc-Millan on one hand
and that of Kirkwood—Buff on the other hand.

The author has done his best to express the subject as concretely as possible.
This is not an easy task because statistical thermodynamics necessarily involves
elaborate and frequently cumbersome mathematical developments. This is the
reason he has deliberately mentioned some results without any demonstration, as
if they were postulates. This is not very satisfactory, but in the mind of the author,
the book is a first level approach to the subject.

Rennes, France Jean-Louis Burgot
November 2015
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Chapter 1
Thermodynamic Systems

Abstract Definitions and properties of some thermodynamic systems and of some
quantities in relation with the notion of activity are recalled in this chapter. The
properties of thermodynamic systems and of their states, and the notions of exten-
sive and intensive properties, of transformations, equilibria, state functions, and
reversible or irreversible processes are also mentioned. Especially, emphasis is
given on the different expressions of the composition of a solution and on the
pathways between them.

Keywords Composition (expressions) ¢ Density number *+ Number of moles ¢
Molality  Molar fraction  System (state) ¢ State (functions) ¢ Properties
(extensive and intensive)  Process (reversible, quasi-static, irreversible) * System
(thermodynamic) ¢ Transformation ¢ Equilibrium (thermodynamic)

Here, we recall the definitions and the properties of some thermodynamic systems
and of some quantities in relation with our purpose.

1.1 Thermodynamic Systems

A system is a part of the space and its contents, delimited by a real or a fictitious
closed surface. Figure 1.1 shows an example of system composed by a solution and
its vapor and its container closed by a fictitious surface.

The surroundings of the system are all but the system. Said with some emphasis,
surroundings are the remaining of the universe. According to the choice of the
operator, the container may or may not be a part of the system. The essential point
for the following operations is not going against the initial arbitrary definition of the
system.

One distinguishes several kinds of systems:

— The closed system which can only exchange energy (heat and work) and not
matter with the surroundings.

— The open system which exchanges energy (heat and work) and matter with the
surroundings.

© Springer International Publishing Switzerland 2017 3
J.-L. Burgot, The Notion of Activity in Chemistry,
DOI 10.1007/978-3-319-46401-5_1
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Fig. 1.1 An example of a thermodynamic system with its surroundings

— The isolated system which exchanges nothing with the surroundings, neither
energy nor matter. The definition of the isolated system inevitably rises the
metaphysical question: Is the universe an isolated system?

As already said, p in order to specify that is a “p in minuscules” to indicate that it
is a pressure in question and not a probability which must be written in majuscules.

1.2 State of a System

We are speaking here of thermodynamic state. The state of a thermodynamic
system is defined by the values of some parameters. Most often in chemistry, but
not obligatorily, the thermodynamic state of a system is defined by the values of
four measurable properties, called “state variables” which are:

— The composition
— The pressure p

— The volume V

— The temperature T

of the system. When the system is homogeneous, that is to say when it is
constituted by only one phase and when, moreover, the latter itself is composed
by only one species, its composition is fixed quite evidently. Then, its state only
depends on its volume, its pressure, and its temperature. Actually, the experience
shows that only two of these three variables V, p, and T are sufficient in order to fix
the state of the system since they are related to each other by a mathematical
equation called equation of state.

In unusual conditions of chemistry such as those resulting from the occurrence of
intense electric, magnetic, and gravitational fields to which the system is submitted
during a process, supplementary variables are necessary to define its state.
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When the state variables are known, all the other physical properties of the
system such as its mass, density, viscosity, refraction index, and dielectric constant
are fixed.

1.3 Extensive and Intensive Properties

A property is said extensive when it is additive. This means that its value for the
whole system is equal to the sum of the values of the different parts constituting
it. In other words, the values of the extensive quantities are proportional to the
quantity of matter under consideration. As examples, let us mention the volume and
the mass.

An intensive property is not additive. It is not necessary to specify the quantity of
sample under study to which the property is referring. As examples, let us mention
the density, pressure, molar quantities, temperature, and “concentrations.”

1.4 Transformation

We call transformation any process which expresses itself by one or several
changes in, at least, one of the state variables of the system. This definition
encompasses the cycles at the end of which the system is returned to its initial state.

1.5 Thermodynamic Equilibrium

One considers that a system is at the thermodynamic equilibrium when the observ-
able values which characterize it do not change with time. The thermodynamic
equilibrium entails that mechanical, thermal, and chemical equilibria are simulta-
neously reached. That means that the temperature, pressure, and concentrations
must be identical in all the parts of the system.

1.6 State Functions

Let us consider a process taking place from an initial state up to a final state. It
entails changes in one or several thermodynamic quantities. The changes may
follow several pathways (Fig. 1.2).

When the change is independent of the pathway, the measured quantity is called
a thermodynamic state function. Several thermodynamic functions are state func-
tions. For example, let us mention the temperature, volume, etc. State functions
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exhibit very interesting mathematical properties, the consequences of which are
very important in thermodynamics (viz. total exact differential in Appendix A).

1.7 Reversible or Quasi-Static Processes and Irreversible
Processes

A process is said reversible or quasi-static when, at every moment of its course, the
system is at equilibrium. Said in other words, the process is reversible when it takes
place through a succession of equilibrium states. If it is not the case, the process is
said irreversible. A consequence of the reversibility is the fact that at every stage of
the process, the state equation of the system applies.

One may conceive that one transformation carried out very slowly is reversible.
Actually, the least infinitesimal departure from equilibrium, carried out reversibly,
gives sufficient time to the system to recover the (further) equilibrium state, before
the next departure occurs and so forth.

The concept of reversible process is extremely fruitful.

1.8 Different Expressions of the Composition of a Solution

The composition of a liquid solution expresses the relative proportions of the solute
and of the solvent in the solution. Here, we only mention the expressions which are
the most usual.

— The total number of particles of species i: N,. It is a huge dimensionless number.
This is the reason why one rather uses the notion of number of moles or that of
quantity of molecules (viz. immediately under).

— The number of moles n;. The unity is the mole, symbol mol. It is the total number
of the species N, related to the Avogadro number (No or L). The latter is
expressed in mol':
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n; = Ni/NA
— The density number C; or p; is the number of molecules per unit volume:
Ci=N;/V

It is expressed in m . Actually, this expression of the composition is mainly
used in statistical thermodynamics. p; is the symbol most often used.

— Molarity, also called amount concentration (IUPAC), is expressed by symbol c;.
It is the number of moles of molecules related to the volume V of solution:

C,‘:I’l,‘/v

In SI units, it is expressed in mol m>. For practical reasons, one rather uses the
number of moles per dm® or equivalently per liter. A solution 1 mol L™" is often
called a molar solution and it is often written: solution 1 M. The symbol [i] is very
often encountered instead of c;. This unit is the most used in analytical chemistry.

— The molality is the number of moles of solute i per kilogram of pure solvent. Its
symbol is m;. In the SI system, it is expressed in mol kg ~'. Let n; be the number
of moles of solute i dissolved in the mass m, of pure solvent. The molality m; is

m; = n;/m, mass of pure solvent (in kg)

It is easy to show that, in a binary solution (where the index 1 points out the solvent
and index 2 the solute), the number of moles 7, of solute in the solution is given by
the expression

ny = (niM,/1000)m,

where M is the molar mass of the solvent and #; its number of moles, m, being the
molality of the solute.

The molality is overall used in physical chemistry. The great advantage it
exhibits with respect to the molarity lies in the fact that it is independent of the
temperature. For dilute aqueous solutions, the solute molality value differs very
little from that of its molarity, and the more diluted the solution is, the truer this
assertion is (viz. under).

— The molar fraction
The molar fraction is the ratio of the number of moles of the solute and of the
total number of moles in the solution. Its symbol is x. If, in a binary solution, the
number of moles of the solute is »; and that of solvent is n,, the molar fractions of
the solute and of the solvent are, respectively,



8 1 Thermodynamic Systems

xi=ni/(no+mn;) and x,=n, /(n,+n;)

Molar fractions are dimensionless quantities. They are very often used in
thermodynamics.
— Pathway from molar fractions to the molalities and molarities
The pathway from a scale of “concentration” to another one is not obvious. It
entails using the density of the solution.

Let us consider a solution composed of n, moles of solvent, n,, ng, ... moles of
solutes A, B, . ... By definition the molar fraction of A is

xA:nA/Zni with Zn1:n0+nA+nB+~~

* The molar concentration of A is by definition
CA = A / \%

where V is the total volume of the solution. Let us seek to express ca as a
function of x,. The mass of the solution Z n;M; (grams) is

ZniMj = noMy + naMa + ngMg + - - -

where M, M s, Mg, . . . are the molar masses (g mol_l) of the solvent and of the
solutes. The volume V of the solution is

V=> nM;/p1000

where p is the volumic mass (g cm ) of the solution. The factor 1000 permits to
express the volume V in liters. Then, from the previous relations, one can
immediately deduce the following ones:

ca = 1000pna/ Y " miM;

and

cpA = (IOOOpZ nl/z n[Mi)XA

We notice that there is no proportionality between c 5 and x since Y n and Y nM
do change with x,. However, proportionality appears when the solution is suffi-
ciently dilute. Under this condition, indeed
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E n; = ng

Z nM; ~ n.M,
whence
ca = (1000p/My)xa

where p' is the volumic mass of the pure solvent since the solution is diluted. In
particular, for water at usual temperature,

p=1
and
ca = (1000/M,)xa (water—usual temperature)
* The molality of A is by definition
ma = 1000nx /noM,

The factor 1000 is introduced since M, is expressed in grams and since m, is
expressed in moles number per kilogram of solvent. By introducing the expres-
sion defining x, in the latter, we obtain

ma = (Z n,-lOOO/nOMO)xA

Again, there is no proportionality between m, and x,. However, it appears in
diluted solution, since then

Z n; ~ ny
whence
ma = (1000/M,)xa
The latest relation clearly shows that in diluted aqueous solutions

p—1 and Zn,-M,« — noM,

ma =~ CaA

Do not confuse p (volumic mass here) with the density number.
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In brief, it is only in sufficiently dilute aqueous solutions that the numerical
values of the molality and of the molarity of a solute can be considered as being
equal and that they are proportional to the molar fraction.

Generally, for the same kind of solution in different conditions as those of
high dilution, just previously discussed above, the numerical values of the molar
fractions differ considerably from those of their molality or molarity. However,
numerical values of both latter ones remain close to each other.

In a gaseous mixture, the molar fraction is the most used unity. Its symbol is
then y. In a gas mixture in which n; and n; are the mole numbers of gases i and j,
the respective molar fractions are

vi=ni/(ni+m) and y;=n/(ni+n)



Chapter 2
Gibbs and Helmholtz Energies

Abstract Some properties of the Gibbs and Helmholtz energies, two thermody-
namic functions of utmost importance in chemistry especially for the study of the
notion of activity, are recalled. The chemical potential of a species in a system,
which is the pivotal notion of the chemical reactivity (most of the time entailing the
notion of activity), is, indeed, a particular Gibbs energy. Hence, for example, the
changes in Gibbs and Helmbholtz energies accompanying a process provide us with
an equilibrium criterion, at least in some experimental conditions.

In a first time, a brief recall of some properties of the entropy function is
mentioned in order to grasp the significance of these two functions. Later in the
chapter, for additional information, some notions concerning potential functions are
also given.

Keywords Chemical potential ¢ Entropy enthalpy ¢ Electrochemical cell o
Gibbs—Helmholtz relation ¢ Gibbs energy ¢ Helmholtz energy ¢ Isolated system o
Potential functions ¢ Surroundings

In this chapter, we recall some properties of two thermodynamic functions of
utmost importance in chemistry, especially for our purpose. They are the Gibbs
and Helmholtz energies. The chemical potential of a species in a system, which is
the pivotal notion of the chemical reactivity (most of the time entailing the notion of
activity), is, indeed, a particular Gibbs energy (viz. Chap. 5). Hence, for example,
the changes in Gibbs and Helmholtz energies accompanying a process provide us
with an equilibrium criterion, at least in some experimental conditions.

Grasping the significance of these two functions requires, in a first time, to
briefly recall some properties of the entropy function and, later, to summarize some
notions concerning the potential functions.

© Springer International Publishing Switzerland 2017 11
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2.1 Brief Recalls About the Second Principle and Entropy

2.1.1 General Points

It is a well-known fact that the knowledge of the changes in internal energy or
enthalpy accompanying a process does not permit to forecast their direction nor
their maximum possible extent (their “quantitativity”). The introduction of a new
function turned out to be necessary to answer these questions.

The study of cyclic processes (that is to say that kind of processes according to
which a system is brought back in its initial state after having been submitted to
varied transformations) shows that another thermodynamic function answers the
previous questions. It is the entropy function (symbol S, unity J K™') (in Greek:
evolution). It is endowed with remarkable properties. It is a state function and it is
extensive.

The second principle of thermodynamics is based on the existence of this
function. It states that the entropy of an isolated system cannot do anything else
than to increase during a spontaneous transformation. This is quantified by the
expression

ASisolatedsyst > 0 (spontaneous process)

or equivalently
ASU,V >0

(It is evident, indeed, that, according to the definition of an isolated system, the
internal energy remains constant since heat, mechanical work, and matter
exchanges with the surroundings cannot exist. The nonexistence of work exchange
requires that the volume V of the system is constant.)

For a reversible process, the second principle states that in an isolated state the
change in entropy is null, i.e.,

ASisolatedsyst = 0 (reversible process)
or
ASyy =0
The following relation

AS isolated syst > 0

is the mathematical counterpart of the most general statement of the second
principle of thermodynamics. The increase of the entropy of the studied system
plus the increase of entropy of its surroundings is called entropy creation.
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2.1.2 Studied System, Surroundings, and Isolated System

One of the difficulties of the understanding of the entropy concept comes from the
mix-up of the entropy of the studied system and of the entropy of the isolated
system containing the studied one.

In a general manner in thermodynamics, in order to study a process, one may
consider both the studied system and its surroundings with which it can, at first
sight, exchange work, heat, and matter. The studied system plus the surroundings
constitute an isolated system, but the studied system, solely, may not be isolated.

The important point is the following one: when a spontaneous process is
occurring in the studied system, the entropy of the isolated system (studied system
plus its surroundings) does obligatorily increase (except the case in which the
process is reversible) according to the second principle, whereas it is not at all
obligatory in case when it is not an isolated one. Hence, the studied system may
exhibit an increase or even a decrease of its entropy during this spontaneous
process.

Let us already mention that there exist other criteria of spontaneity than that of
entropy, in particular in the case of a process at constant temperature and pressure.
It is the point which will occupy us up to the end of this chapter.

2.2 Gibbs Energy

This function has been introduced by Gibbs.

The symbol of Gibbs energy is G. Its significance and use are related to an
isothermal and isobaric process. More precisely, the Gibbs energy is related to a
process in which the temperature and the pressure of the studied system remain
equal to the temperature and pressure of its surroundings (at least at the beginning
and at the end of the process provided, in this case, that during it, the surroundings
remain at the constant temperature 7.y, and pressure Pex):

P=DPe and T =Tey

The Gibbs energy is defined by the expression
G=U+pV-TS

where U, p, V, T, and § are, respectively, the internal energy, pressure, volume,
temperature, and entropy of the system. Its unity is the Joule J. Owing to its
definition, the Gibbs energy is a state function.

The interest of the introduction of this function is the following one: it turns out
that the Gibbs function may constitute a criterion of equilibrium and also of
evolution specially convenient for any process at constant pressure and temperature.
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Let us, for example, study the process with the aid of which we want to recover
useful work (every work other than that stemming from the change in the volume of
the system), starting from the system. (A good example is that of an electrochemical
cell producing electrical energy which is connected to an electrical motor. The cell
has the property to transform the chemical energy—coming from the two electro-
chemical reactions which simultaneously take place at each of both electrodes—to
electrical work.) It is demonstrated in an absolute general manner that the work
given to the surroundings is always weaker than the change in internal energy of the
system. In other words, the Gibbs energy of the system cannot do anything else than
to decrease when it supplies work to the surroundings, in any case when the process
is spontaneous. Hence, we can deduce that

AG <0
or in differential writing

dG <0
At equilibrium

dG =0

For a system at equilibrium at given pressure and temperature, the Gibbs energy is
at its minimum value.

Hence, with the introduction of the function of Gibbs energy, the criterion of
spontaneous evolution of a system, that is to say that of the change in the total
entropy (that of the system plus that of its surroundings—both forming an isolated
system), is transformed into another one which is the criterion of the decrease of the
Gibbs energy of the studied system alone. The latter criterion is evidently less heavy
than the former and is easier to handle because it does not require the knowledge of
the thermodynamic parameters defining the state of the surroundings. However, the
criterion of the Gibbs energy is by far less general than that of entropy because, for
its handling, it implies that the process evolves at constant temperature and
pressure.

In this sense, we shall see that the Gibbs energy plays the part of a potential
function (viz. paragraph 5).

The Gibbs energy function can be defined in another way. Of course, all its
definitions are equivalent. For example, taking into account the fact that the
enthalpy of a system is defined by the expression

H=U+pV
the Gibbs energy can also be written

G=H-TS



2.3 Some Properties of the Gibbs Energy Function 15

or

dG = dH — TdS — SdT (2.1)

2.3 Some Properties of the Gibbs Energy Function

2.3.1 Changes in the Gibbs Energy with the Pressure
and the Temperature

Let us consider the relation which expresses the enthalpy:
H=qg+w+pV

where ¢ and w are the heat and the work exchanged with the surroundings during
the process. For an infinitesimal transformation,

dH = dq + dW + pdV + Vdp (2.2)
If this one is reversible and isothermal
dq = dgye,
and after the second principle
dg =TdS

If, finally, the sole work done by the system is that of expansion as it is usually the
case in chemistry

dw = —pdV
the infinitesimal change in the enthalpy of the system becomes
dH =TdS — pdV +pdV + Vdp
or
dH =TdS + Vdp

By comparison with relation (2.1) which is a definition of the Gibbs energy
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dG = dH — TdS — SdT
we find
dG = Vdp — SdT (2.3)

Now, let us write the total differential of G, which is a state function (viz. Appendix
A):

dG = (0G/0T)pdT + (0G/0p),dp
We immediately deduce that
(0G/0T)p = =S and (2.4)
(0G/op); =V (2.5)
These two equations give the variations of the Gibbs energy with the temperature
and pressure.

In general, the Gibbs energy depends not only on the temperature and the
pressure but also on the quantities of substance (viz. Chap. 4).

2.3.2 Gibbs—Helmholtz Equation

The Gibbs—Helmholtz equation permits, as we shall see, to know the change in an
activity value with the temperature. It is obtained from the general definition of the
Gibbs energy function:

G=H-TS
Substituting the entropy by its expression (2.4) into it, we obtain
G=H+T(0G/oT)p (2.6)

It can be modified into another one. We obtain an expression of the variation of G with
the temperature T by the division of (2.6) by the factor T°. The relation found is

G/T* = H/T* + 1)T(0G/0T),

It is easy to check the following relation by a simple calculation of derivatives:
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[0(G/T)/0T], = [T(2G/0T) - G)/T*
Finally,
0(G/T)/0T), = — H/T? (2.7)

It is interesting to notice that relation (2.3) is valid, whatever the reversibility of the
process is, since all the quantities which are in it are state quantities. It is the same
for those which follow it. The sole existing constraint in order that all these
considerations are valid is that the system must be closed.

2.4 Helmholtz Energy

It has been introduced by Helmholtz.

It is slightly less interesting in the realm of chemistry than the Gibbs energy
is. The developments to which it leads are analogous to those stemming from the
Gibbs energy.

It applies to a process in which the temperature T of the system is equal to that of
the surroundings Ty and during which its volume is constant. The Helmholtz
energy A is defined by the relation

A=U-TS

It is a state function. It is extensive. It is expressed in joules.
The Helmbholtz energy A is related to the Gibbs energy G by the expression

G=A +pV

Following the same kind of reasoning as that developed in the case of Gibbs energy,
it is found that the physical significance of the Helmholtz energy is the following
one. The value of its change is the maximal work that can produce the system in
reversible and monothermal conditions. At equilibrium and at constant tempera-
ture, the Helmholtz energy function is minimal.

The difference between the Helmholtz and Gibbs energies lies in the fact that in
the first case, the maximal work is equal to the sum of the useful work and of that of
expansion whereas in the case of the Gibbs energy its decrease is only equal, in
reversible conditions, to the useful work.
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2.5 Gibbs and Helmholtz Energies, Potential Functions:
Thermodynamic Potentials

We have seen that the Gibbs and Helmholtz functions give important indications on
the possibilities of transformations of a system, respectively, at constant tempera-
ture and pressure and at constant temperature and volume. One knows that during a
spontaneous process, these functions evolve in such a manner that their values tend
toward a minimal value. By such a property, their behavior is that of potential
functions, called thermodynamic potentials.

2.5.1 Potential Energy and Evolution of a Mechanical
System

In order to make explicit this notion of potential function, let us recall the relation
linking the potential energy and the evolution of a mechanical system.

Let us consider a material point M which moves freely in a force field deriving
from a potential energy E(x). A representative example is that of the gravitational
field. One knows that if we initially abandon M at the point I (initial) of vertical
coordinate 4(I) with a null speed, then it spontaneously tends to go to the F point
(F: final) of minimal potential (viz. Fig. 2.1).

During its evolution, the body is getting a kinetic energy 1/2mv>. The constancy
of the mechanical energy is written for each intermediate point of the path:

Mgh(1) = Mgh + 1/2 my*

where & is the coordinate of the intermediate point. The kinetic energy being
obligatorily positive, we immediately can deduce that during this spontaneous
evolution, the term potential energy can only decrease. Its minimum Mgh(F)
corresponds to the state of stable equilibrium. In I, the state of equilibrium was
unstable.

Fig. 2.1 Potential energy
E = Mgh and the evolution
of a mechanical system

X
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2.5.2 Entropy and Thermodynamic Potential

Let us consider an isolated thermodynamic system evolving toward a final state
(F) starting from the initial one (I). According to the second principle of thermo-
dynamics, the system evolves in such a manner that its entropy is increasing:

S(F) = S(I)

When the entropy is already maximal in the initial state, it cannot increase and,
moreover, since it cannot, in any case, decrease, it remains constant. Then, the
system is at equilibrium. Let us, now, consider the function—S. One immediately
conceives that, during the same process, it cannot do anything else than to decrease
in order, finally, to get its minimal value at equilibrium. The function—S plays the
same part as that played by the potential energy in the mechanical system above. It
is a potential function called, since we are considering a thermodynamic system, a
thermodynamic potential. The function—S, called negentropy, is not easy to handle
for several reasons. The first one is probably due to the fact that there exist very few
true isolated systems; this is the reason why other thermodynamic potentials have
been conceived.

2.5.3 Generalization: Definition of a Thermodynamic
Potential

One calls thermodynamic potential of a system submitted to some constraints a
function @ depending on the state parameters of the system and, possibly, on the
external constraints such as, during the evolution of the system, it tends to take an
extremal value (minimal or maximal) at equilibrium. The nature of the thermody-
namic potential functions depends on the constraints imposed to the system,
prevailing on the thermodynamic quantities extensive or intensive.

It is evident that, according to these considerations, the Gibbs and Helmholtz
energy functions are thermodynamic potentials, at least for the conditions for which
they have been established. The constraints imposed to the system are these
conditions. We will again briefly evoke this notion of potential function when we
shall mention the genesis of the notion of activity.



Chapter 3
Escaping Tendency

Abstract The “escaping tendency,” notion due to the American scientist
G.N. Lewis, is the tendency of a substance to leave its thermodynamic state by
either a physical or a chemical process. Firstly, the content of the chapter shows the
analogy of the equilibrium distribution of the matter with the thermal one which
may exist between two bodies. Secondly, it also shows that the escaping tendency is
closely related to the decrease of the Gibbs energy of the studied system which
commands the spontaneous process at constant pressure and temperature.

Actually, in order to study the course of a chemical reaction from the thermo-
dynamic standpoint, it is convenient to relate the criterion of the decrease of the
Gibbs energy (and of its cancelling at equilibrium) to the chemical properties of the
reactants and products of the studied reaction. In the case of ideal gases, it is shown
that it is their molal Gibbs energy which is the essential property in the domain. The
part played by the molal Gibbs energy in the case of ideal gases induces the
introduction of the chemical potential in order to play this part in every kind of
system. In addition, the chemical potential is nothing but a particular molal Gibbs
energy. Actually, it will be further mentioned in the book that, in turn, the chemical
potential induces the introduction of the notions of the auxiliary functions that are
the fugacity and the activity for the study of nonideal systems.

Keywords Standard Gibbs energy * Escaping tendency * Fugacity « Ideal gas *
Molal Gibbs energy « Chemical potential

The expression “escaping tendency” is due to G.N. Lewis. It is the tendency of a
substance to leave its thermodynamic state by either a physical or a chemical
process. Quite evidently, it must be closely related to the decrease of the Gibbs
energy of the studied system which, as we have seen, commands the spontaneous
process at constant pressure and temperature.

Actually, in order to study the course of a chemical reaction from the thermo-
dynamic standpoint, it is convenient to relate the criterion of the decrease of the
Gibbs energy (and of its cancelling at equilibrium) to the chemical properties of the
reactants and products of the studied reaction. In the case of ideal gases, we shall
see that their molal Gibbs energy is the essential property in the domain. The part
played by the molal Gibbs energy in the case of ideal gases induces the introduction
of the chemical potential in order to play this part in every kind of system. In
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addition, it will be seen later that the chemical potential is nothing but a particular
molal Gibbs energy. Later on, we shall see that, in turn, the chemical potential
induces the introduction of the notions of the auxiliary functions that are the
fugacity and the activity for the study of nonideal systems.

3.1 Analogy of the Equilibrium Distribution of the Matter
with the Thermal One Between Two Bodies

We know that to make sure that a system is in thermal equilibrium, its temperature
must be the same in every point. We also know that every body with a temperature
higher than that of another tends to leave its heat. This is not the case of the second
body. The tendency to leave heat of the first body is higher than that of the
second one.

By analogy with this case, one may conceive that a substance of a system may
exhibit some tendency to modify its thermodynamic state by changing its moles
number. Lewis has introduced and also kept the name “escaping tendency” to this
tendency.

The material equilibrium condition for this substance, that is to say the equilib-
rium of the distribution of its number of moles, is such that its escaping tendency
might be the same at every point of the system.

Hence, as a first example, we must consider the system of water and ice. The
escaping tendency at the fusion point of both phases is the same. At lower
temperature, we may consider that the escaping tendency of water is larger than
that of ice, since it tends to disappear. It, actually, spontaneously transforms into
ice. The inverse is true for the temperatures which are higher than that of the fusion
point.

A second example is provided by the system made up by a solute in a solvent, as
for example a solution of sodium chloride in water. The escaping tendency of
sodium chloride may be either higher or lower than that of solid sodium chloride
(or equal) depending on whether the solution is saturated or not. In the first case, the
sodium chloride spontaneously crystallizes. Just at the saturation point, there exists
the equilibrium. In the last case, the solid sodium chloride is endowed with a larger
escaping tendency than that it possesses in solution. Hence, it disappears by
solubilization.

3.2 The Molal Gibbs Energy of a Substance as a Measure
of Its Escaping Tendency

Let us again consider the example consisting of water and ice at 0 °C and under
1 atm. Owing to the fact that the system is maintained at constant pressure and
temperature, it is judicious to reason by considering the Gibbs energies of both
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phases. The status of thermodynamic potential conferred to this function permits to
rationalize the evolution of the process.
Hence, let us consider the transformation

H2O(s0tid, 1 atm) — H2Oiig, 1 atm.)
or its inverse. Let AG be the change in Gibbs energy accompanying it:
AG = Giig — Gsolid
At equilibrium, at the melting point, under the pressure of 1 atm
Giiq = Golid

At a temperature higher than the previous one, the transformation follows the
direction already indicated since Gice > Giiq. At a lower temperature, it is the
inverse (th > Gice).

Hence, the molal Gibbs energy may be used to quantify the escaping tendency of
a substance. We must remark that the molal Gibbs energy function is an intensive
quantity since it is related to one mole of substance. As a result, it is independent of
the number of moles of substance. Of course, this example is particularly simple
since the system only contains one substance. Only the temperature, pressure, and
number of moles of the substance play a part as variables permitting to reach the
equilibrium.

It remains to relate the molal Gibbs energy of a substance to the thermodynamic
parameters of the system. This is done through the introduction of auxiliary
functions such as the fugacity and the activity. Later, in turn, relating these last
functions to some molecular parameters will be considered. The link will be
obtained through application of statistical thermodynamics.

3.3 Change of Molal Gibbs Energy of a Perfect Gas
with Pressure

In this paragraph, we give a relation expressing the Gibbs energy of a perfect gas as
a function of the pressure. As we shall see later (viz. Chaps. 7 and 9) this relation is
particularly important since it can be considered as a limit of the expression relating
the chemical potential of a substance in a given thermodynamic state to its activity
or to its fugacity.

Let us recall that a perfect gas can be defined by the fact that it obeys an equation
called state equation which is

pV = nRT


http://dx.doi.org/10.1007/978-3-319-46401-5_7
http://dx.doi.org/10.1007/978-3-319-46401-5_9

24 3 Escaping Tendency

where p and T are the pressure and the temperature of the gas, n its number of
moles, and V' the volume of the container into which it is. R is the (molar) gas
constant. (Some complements concerning perfect gases are given in Chaps. 26 and
27.) By definition, the state equation of a system is the relation which occurs
between the different state variables thermodynamically defining the system at
equilibrium.

Let us study the infinitesimal isothermal expansion of a pure perfect gas. We
know that (viz. Chap. 2)

dG =Vdp — SdT
At constant temperature
dG =Vdp
whence from the state equation

dG = nRTdp/p

From the change in pressure from p4 to pg, the change in the Gibbs energy AG
accompanying the process is

AG =Gg — Ga

PB
AG = nRT/ dp/p
PA

AG = nRTIn(pg/pa)

We notice that the Gibbs energy of a perfect gas depends on the pressure.
(In passing, let us recall that this is not the case of its internal energy nor of its
enthalpy.)

Usually, the Gibbs energy of a gas is related to that G° it possesses in a state
called the “standard state” which is arbitrarily chosen and in which its pressure is p°
and also in which its temperature is arbitrarily chosen to be 7. (The imposition of a
given temperature does not intervene in the definition of a standard state.) Its molal
Gibbs energy G is then given by the relation

G =G° +RTlnp/p° (3.1)

When the pressure chosen for the standard state is p°=1 atm, its molal Gibbs
energy is then given by

G= GO + RTln(palm/l‘dtm)
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The index atm is used here to recall that p and 1 are physical quantities endowed
with a dimension. The writing often encountered in the literature when p° =1 atm,
1.€.,

G =G° +RTInp

is fallacious. It appears, indeed at first sight, owing to the properties of the function
logarithm, that the pressure is a dimensionless quantity!

3.4 Gibbs Energy Change Accompanying a Reaction
Between Perfect Gases

Let us consider the following chemical reaction going to completion:
vmM + v L — vnN + vpP

where v, Uy, Un, and vp are the stoichiometric coefficients. Our goal is to calculate
the maximal work which can be done by this system at constant temperature and
pressure. This calculation may be carried out by taking into account the properties
of the Gibbs energy function (viz. Chap. 2). The important point, in the occurrence,
is that the maximal work available is equal (in absolute values) to the change in the
Gibbs energy. Let us define the system as being constituted by the four gases. The
change in the Gibbs energy A,G,y accompanying the above total transformation is

Aerysl = unGN + vpGp — .G, — vmGum (32)

where G and Gy, are the molal Gibbs energies of L and M in the initial state and G
and Gp those of N and P in the final state. It is very important to notice at this point
of the reasoning that relation (3.2) taking into account the molal Gibbs energies
can be used, here, because the process concerns perfect gases which in mixtures
exhibit the same behavior as that they have when they are alone. It is this property
which authorizes the handling, in the present case, of the molar Gibbs energies and
expression of them by relation (3.1).
By replacing G; by their expressions (3.1), one obtains

Aeryst — AG° — RTIn (pNol/NpPol/P/pLoprMoyM) +RT11’1 (pNuNpPyP/vaMprL)
(3.3)

or
AG° = UNGN® + vpGp° — 1L.GL° — vmGMm°

A,G° is evidently a constant at a given temperature.
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Hence the change in Gibbs energy accompanying the reaction (3.2) where the
perfect gases L and M, initially at pressures py; and p, are transformed at constant
temperature and pressure into the perfect gases N and P at pressures py and pp, is
given by the expression (3.3). We shall see (viz. Chap. 7) that the pressures pyy, pL
and py, pp are, in the occurrence, called partial pressures. In these conditions,
A,Ggyg is the maximal work available from the chemical energy supplied by the
gases L and M. This process may be actually realized with a convenient galvanic
cell working in the conditions of reversibility.

Unfortunately, in the case of reactions between non-perfect gases and also in the
case of reactions between components in solutions, the problem of the calculation
of the Gibbs energy changes accompanying the chemical reaction is not so simple
to solve, as we shall see in the following chapters.
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Chapter 4
Partial Molar Quantities

Abstract This chapter is concerned with the very essential notion of partial molar
quantities in chemical thermodynamics. During the determination of changes in
thermodynamic quantities accompanying a chemical reaction, especially the Gibbs
energy one, the question of the physical interpretation of the measured change is
frequently asked. Actually, it is not the case when the studied reaction is one
between perfect gases or when each of the reactants or products constitutes an
independent phase. But, it is set up as soon as intervene species in solutions as
reactants or products. The problem is overcome through the handling of partial
molar quantities among which the chemical potential stands. This is exemplified by
considering the reaction of dihydrogen gas with solid silver chloride to give
hydrochloric acid and solid silver. Definitions, properties, and handling of the
partial molar quantities are given. The chapter begins by the consideration of closed
and open systems.

Keywords Molal quantities ¢ Partial molal quantities » Natural thermodynamic
variables ¢ Systems (closed and open) ¢ Electrochemical cell

During the determination of changes in thermodynamic quantities accompanying a
chemical reaction, especially the Gibbs energy one, the question of the physical
interpretation of the measured change is frequently asked. Actually, it is not the
case when the studied reaction is one between perfect gases or when each of the
reactants or products constitutes an independent phase. But, it is set up as soon as
intervene species in solutions as reactants or products. The problem is overcome
through the handling of partial molar quantities among which the chemical poten-
tial stands (viz. Chap. 5).

4.1 Closed and Open Systems

Closed systems are those the composition of which is fixed, i.e., those of which the
substance quantities are constant. There exists no increase or decrease of matter in
the system nor the system can exchange it with the surroundings. In these
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conditions, all the relations previously recalled can be applied without any excep-
tion. For example, it is the case of the relation

dG = —SdT + Vdp

which entails a mechanical work as the only one which is developed (viz. Chap. 2).

Open systems are systems into which matter can enter or go out. That is to say,
they are systems in which the matter quantity may vary during the course of the
transformation. Then, the previous formula is no longer convenient. For example, it
is the case of the relation above. That which must be used in the same occurrence is

dG = —SdT +Vdp + Y (0G/0ni)y p ,dn; (4.1)

The new last terms on the right-hand side take into account the exchanges of matter
with the surroundings through the differentials dn; which express the changes in the
number of moles of the components i. The partial derivatives which appear are
examples of partial molar quantities that are studied now.

Let us note in passing that when two phases are in contact, each one constitutes
an open system whereas, when both are maintained in the same container which
precludes any matter exchange with the surroundings, the whole system (consti-
tuted by both phases) is closed.

4.2 On the Necessity to Introduce the Partial Molar
Quantities When the Species Are in Solution

In order to set up the problem, let us consider the chemical reaction
Ag(s) + 1/2Cly(g) — AgCl(s)

where (s) and (g) mean solid and gaseous states. Let us focalize on the volume
change accompanying the reaction. Let us define the system as being constituted by
the chemical substances and the container. The whole volume is given by the
relation

V= VAg +Va, + VAgCl + Cte

where Cte is the volume of the container. Let us consider the volume change 0V/0n
of the system per mole of consumed silver, n being the number of moles of silver.
We can write

aV/aI’l = aVAg/al’l + aVCh/an + 5VAgCI/an
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Among the partial derivatives of the right-hand member, none exhibits any diffi-
culty of interpretation. Each represents the molar volume of the substance, that is to
say its molal volume when it is pure. This is the case, here, because each component
constitutes a pure phase. For each phase, indeed, one can write

V=nv’
where v’ is the molal volume of the pure compound. It is evident that
ov/on=v"
As a result, for that system

8V/8n = V.AgCl - V.Ag — 1/2V.C12
oV/on = Av

with
Av =V pagct =V ag — 2V 1,
Hence, there is no problem of meaning for this example.
— Now, let us consider the following reaction:
1/2H,(g) + AgCl(s) — HCl(m) + Ag(s)

where m is the molality of the hydrochloric acid being in solution. Actually, this
reaction is the global relation of the following electrochemical cell:

H, [HCI(m)|AgCl|Ag

— Asaconcrete example of such a study, it may be interesting to know the effect of
the pressure on the electromotive force of this cell, that is to say actually, on the
change in Gibbs energy accompanying the reaction cell. In order to determine it,
we use the general expression (viz. Chap. 2)

(0G/op)r =V
i.e., for the reaction cell
(aAG/ap)T = AV

The solution of the problem imposes to know the volume V of the system and its
change. It is given by the relation
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V = Vu, + Vagal + Vact som + Vag + Cte

The volume change per mole of consumed silver 0V/0n is

BV/an = aVHZ/an + BVAga/an + aVHC]S(,]n/aI’I + 8VAg/8n

The true meaning of the term OVycisomn / On remains to be clarified. Here, is the
problem.
Let us symbolize it by Ve

Vial = 0VHcisoln/ On

As we shall see it in the next paragraph, it is the partial molal volume vycy of

hydrochloric acid at the molality m. The change Av in the volume of the system
when one mole of silver has disappeared is given by the relation

Av = VAg + VHCI — 1/2VH2 — VagCl

(The symbol v, in this last relation, appears in place of V in order to notice the
reader of the fact that the volumes which are in question are the molar ones,
partial or not.)

4.3 Definition of Partial Molar Quantities

According to what is previously mentioned, it is evident that we must express the
relations between the thermodynamic functions X and the variables playing a part in
their values in a closed system (such as the temperature, pressure, volume) by using
a supplementary type of variable, i.e., the number of moles of every component.

Numerous thermodynamic experiments show that the “great” thermodynamic
functions U, G, H, and A do possess the variables given immediately under, as
natural ones. Formally, we can, hence, formulate the following relations:

U=U(S,V,ni,ny, ...0ng)
G=G(T,p,n,na, ...ng)
H=H(S,p,m,n, ...n)
A=A(T,V,n,n,, ...n;) relations (4.2)

in which ny, n,,...n; are the number of moles of the components 1,2,...k. ny,
n,, . .. ny are the supplementary variables evoked.

From the mathematical standpoint, the partial molal quantity corresponding to X
is defined as being its partial derivative with respect to the number of moles »; of the
compound i, that is to say
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X = (ax/ani)other variables (43)
The partial molal quantities are symbolized by the same symbols as usually but they
are highlighted. Their unity, of course, is that of the considered quantity. The
introduction of the partial molar quantities permits to write thermodynamic quan-
tities as being function of the different variables which command their values, in
particular in the case of open systems.

Hence, for example, the total differential of the Gibbs energy of an open system
is written as

dG = (5G/5T)P,ndT + (aG/ap)T’ndp + (aG/anl)P,T,nzwdnl
+ (aG/a”2)P,T,n1,..4d"2 + o (4.4)

An important point is that the variables—see relations (4.2)—S, V and others, . . .;
characterizing U, the variables 7, p and so f., characterizing G a.s.f...are not
associated with them, randomly. They are said to be natural. Hence, T and V are
the natural variables of the Helmholtz energy A. From theoretical and practical
viewpoints, this means that when A is known either experimentally or even theo-
retically through the partition functions (viz. Chaps. 22 and 24) as a function of
T and V, all the other thermodynamic quantities are accessible (entropy, pressure,
chemical potentials—see the following chapter). It is the same with the other
functions U, G, and H mentioned in relations (4.2).
Some authors consider the relations (4.2) as being postulates.

4.4 Physical Meaning of the Partial Molal Quantities

The physical meaning of a partial molal quantity may be grasped by considering the
example of the volume of a solution.

Let us consider a binary solution in order to simplify the reasoning and let the
components 1 and 2 be the solvent and the solute. (However, it must be noticed that
for the following theory the fact that one of the components is the solvent and the
other the solute does not confer them any particular part to play.) Their initial
numbers of moles are, respectively, n; and n,. The initial total volume of the
solution is V,. Let us successively add some quantities of solute to the solution.
The total volume V changes. Let us draw the diagram V as a function of n,
(Fig. 4.1).

The partial molar volume v; is defined by

Vi = (0V/om), ,
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Fig. 4.1 Total volume of 2
the solution V as a function \/ a8
of the number 7, of moles of
solute added
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It is nothing different than the slope of the curve V/n,, for the values n; and n'2
considered. The immediate conclusion which can be drawn from this fact is that the
partial molecular volume v, (as all the other partial quantities intervening in the
system, in this case vy ) does vary with the “instantaneous” composition of the
solution. The above diagram, indeed, clearly shows that the slope varies for each
composition. However, in rare cases, the slope does not change with the composi-
tion (viz. below: molar quantities).

The same considerations can be addressed to any other quantity. In brief, one can
conclude that a partial molal quantity is equal to its increase or its decrease for the
whole solution when one mole of solute is added to a very large volume of solution in
order that the different concentrations do not noticeably change during the addition.

4.5 Molal Quantities and Partial Molal Quantities

It may happen that the measured thermodynamic quantity is in linear relation with
the number of moles of a component. Hence, for example, it may occur that it is the
case for the volume of a binary solution, that is to say, the total volume V of the
solution linearly varies with the number n, of moles of solute (Fig. 4.1). The
definition of the partial molal volume v;, of course, immediately shows that it is
the molal volume v,,(2) of the pure solute 2:

V2 =vm(2)

Remark: Concerning, now, the chemical potential (see the following chapter), this
term is generally used when a mixture is under consideration. When it is the case of
a pure substance to be under consideration, it is the term molal Gibbs energy which
is used.
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4.6 Fundamental Equation of the Molal Partial Quantities

Let X be an extensive property of a system constituted by a solution (for example, it
can be its volume, its calorific capacity, its internal energy). By definition of an
extensive property, it is a function of the number of moles of each component. Let
us suppose (for the sake of simplification) that the natural variables are maintained
constant (for example, in the case of the Gibbs energy, the temperature and pressure
are maintained constant). As a consequence, the relation (4.4) applied to X by
taking into account the properties of total differentials (viz. Appendix A) becomes

dX = (8X/8n1)dn1 + (aX/aI’lz)di’lz + -

(the indexes being missed in order to lighten the writing). The total differential may
also be written as

17),4 :)_(161711 +}_(2d}’12 + -

The partial molal quantities X|, X, . . . are intensive ones since they are related to a
well-defined quantity of matter (one mole). Because of this fact, they do not depend
on the total quantity of each component but only on the relative composition of each
one. As a result, if to a solution containing several components with a given relative
composition is added an identical solution of the same composition, the partial
molal quantities X; do not change whereas the numbers of moles 1, 15, . . . vary. The
consequence is that the total differential dX can be immediately integrated and we
can write

X=mX| +mXy+--- (4.5)

(From the strict mathematical viewpoint, obtaining the equation (4.5) is possible
because the function X is homogeneous of order 1—see Appendix A.) This relation
is very important.

It is sufficient to consider the case in which an extensive property of a solution is
in linear relation with the number of moles of each of the components to be
convinced by its interest. In these conditions, we have seen above that the partial
molal quantities are constant and, moreover, are equal to the molal properties of
pure components, that is to say

X = mXp(1) + mX(2) + - - (4.6)

The comparison of relations (4.5) and (4.6) shows that partial molal quantities play
the part of the molal quantities of pure compounds and that they can be handled as
the latest. However, there exists a double difference between both kinds of
quantities:
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34 4 Partial Molar Quantities

— On the one hand, the partial molal quantities are not constant whereas the molal
ones are.

— On the other, the partial molal quantities may be positive or negative. This
property is inconceivable with the molal ones.

4.7 Thermodynamic Relations Between Partial Molar
Quantities

The relations between the thermodynamic molal partial quantities are the same as
those which exist between molal quantities. For example, the validity of the
following relation can be demonstrated:

G=H-TS

We limit ourselves to mention that the demonstration is carried out by application
of the Schwartz’s theorem (viz. Appendix A). A particularly interesting example is
the obtaining of the relation which expresses the influence of the temperature on the
chemical potential (viz. Chap. 5).

4.8 Experimental Determination of Partial Molal
Quantities

The partial molal quantities are experimentally accessible:

— Either through graphical methods based on the study of the curves’ extensive
quantity/number of moles of the component (or its logarithm)
— Or analytically by starting from apparent molal quantities

In some cases, it is the absolute value of the partial molal quantity which is
accessible. Let us mention that this is the case of partial molal volumes for example.
In other cases, it is not possible. Only their relative values are accessible. It is the
case, for examples, of the partial molal enthalpy and partial molal Gibbs energy.
The reason lies simply in the fact that the molal quantities of pure compounds
cannot, themselves, be known in absolute values.
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Chapter 5
Chemical Potential or Partial Molal Gibbs
Energy

Abstract The chapter concerns the definition of the chemical potential as being a
partial molar Gibbs energy. It also mentions its physical meaning, some of its
properties with, especially, its change accompanying a chemical transformation.
The chemical potential is, by far for our purpose, the most important partial molal
quantity. As we shall see it later, the value of the chemical potential of a species is,
indeed, very often expressed in terms of the auxiliary functions that are the fugacity
and the activity. The notion of chemical potential, notably, permits the study of the
change in the Gibbs energy accompanying a chemical process and is the thermo-
dynamic basis of the so-called mass action law.

Keywords Gibbs’ relation « Mass action law e Partial molal Gibbs energy ¢
Electromotive force

The chemical potential is by far, for our purpose, the most important partial molal
quantity. As we shall see it later, the value of the chemical potential of a species is,
indeed, very often expressed in terms of the auxiliary functions that are the fugacity
and the activity. Actually, the chemical potential appears to be of utmost impor-
tance as soon as one takes into account the fact that it has the significance of a Gibbs
energy and as soon as one remembers that a Gibbs energy change may be a very
interesting criterion of spontaneity of a process.

The notion of chemical potential, notably, permits the study of the change in the
Gibbs energy accompanying a chemical process and is the thermodynamic basis of
the so-called mass action law. From the general standpoint, let us anticipate what is
following by saying that the mass action law must be expressed in terms of
activities.

5.1 Definitions of the Chemical Potential

— The chemical potential y; of a compound £ in a given state (temperature 7,
pressure p, numbers of moles of the different species making up the system n;) is
expressed by the following mathematical relation:
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Fig. 5.1 Chemical potential y; or partial molal gibbs energy G; in the case of a solute & in the
solvent 1

Hi = (aG/ank)T,P,ni;énk (51)
Quite evidently, it is the partial molal Gibbs energy G, defined by (viz. Chap. 4)
G_k = (aG/ank)T,P,m';énk (52)

In this case, G is the Gibbs energy of the whole solution considered as being the
system (Fig. 5.1). According to what was mentioned before (viz. Chap. 4), one
can write

G = mG; +mGy

Hence, both terms are synonymous and the unity of the chemical potential in use
is J mol .

— Let us also recall other definitions of the chemical potential based on the
following relations:

Hi = (aU/a”k)s,v, nitnk Mk = (aH/a”k)s,P, nitnk Mk = (aA/a”k)T,v, nink

Hence, the chemical potential turns to be, also, either a molal partial internal
energy, a molal partial enthalpy, or a partial molal Helmholtz energy. But, it must
be noticed that the variables maintained constant in the partial derivatives are not
the same. However, it is demonstrated that all these definitions are equivalent such
as they are written above.
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5.2 Physical Meaning of the Chemical Potential:
Equilibrium Condition

The chemical potential of a substance can be considered as being a quantity which
represents its escaping tendency as does the molal Gibbs energy (viz. Chap. 3). It is
by no means surprising since as we have seen it, it is also a molal Gibbs energy, but
a partial one. With this point in mind, it appears that the chemical potential extends
the notion of molal Gibbs energy to complex media.

Actually, the notion of molal Gibbs energy can be only applied to pure com-
pounds. This is the reason why the chemical potential of a pure compound is also its
molal Gibbs energy:

Ui = G (i) (pure i compound)

Hence, at this point of the reasoning, we can say that the chemical potential of a
compound is a quantity which is liable to quantify its tendency to leave its current
thermodynamic state by every sort of process, physical, chemical, or
biochemical one.

In the realm of physical processes, a simple example is given by the partition of a
solute 7 between two immiscible phases o and P. Let us suppose that at the
beginning of the process the whole solute is only present in the phase «. Its chemical
potential is then p;, whereas p;3 =0, that is to say

Hio > i (initial state)

By stirring both phases (this has the only effect to increase the speed of matter
exchanges between the phases but does not change anything to the thermodynamic
aspect of the process) a part of the solute spontaneously goes into the phase 8. There
exists a moment at which the transfer process ceases. Then, the concentrations in
both phases no longer vary. The partition equilibrium is reached. The equilibrium
condition (concerning, of course, the exchange of i) is the equality of its chemical
potential in both phases, that is to say

Hiw = Mg (equilibrium)

The partition spontaneously occurred because, initially, there existed an inequality
of the chemical potentials. We also may notice that the matter exchange process
follows the direction of a decreasing chemical potential. A difference of chemical
potentials plays an analogous part as that played by an electrical potential differ-
ence. Electrons flow between two points of an electrical circuitry because there
exists a difference of electrical potentials between them. It is also analogous to the
differences in temperature and pressure which, respectively, command a heat
transfer and a mechanical motion. Some authors assimilate the chemical potential
to a kind of “chemical pressure.”
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Likewise, a spontaneous chemical reaction occurs when a well-defined linear
combination of the chemical potentials of reactants and products of the reaction
differs from O (viz. paragraph 4 below).

An equilibrium state related to a species is a state in which its escaping tendency
is null. It is clear that the constancy of the chemical potential of a component is an
equilibrium criterion. This result is general. Hence, the chemical potential values,
as a rule, constitute a general criterion of evolution and equilibrium. It remains to
quantify a chemical potential. It is at this point that the notions of fugacity and
activity take all their importance (viz. Chaps. 7, 9, and 10).

5.3 Some Properties of the Chemical Potential

— The chemical potential is an intensive property, since it is a molal quantity,

— Since the chemical potential of a compound i is its partial molal Gibbs energys, it
provides a way to quantify the infinitesimal change in the Gibbs energy of the
whole system when the number of moles of species i varies under the influence
of a physical or chemical process change of an infinitesimal quantity, other
variables defining the state of the system (temperature, pressure, numbers of
moles of other species) being maintained constant,

— The chemical potential is expressed in J mol ',

— The chemical potential of a perfect gas tends toward —oo when its pressure tends
toward zero. This property is endowed with important practical consequences.

— As all the other partial molal quantities, the chemical potentials very often vary
with the composition of the system. In some scarce cases, it may be independent
of it,

— The chemical potential of a pure compound is simply its molal Gibbs energy G,,:

#; = Gp(i) (pure i compound)

— The absolute value of the chemical potential cannot be known since it is a Gibbs
energy and since the absolute values of the Gibbs energies are not accessible.
Only changes in chemical potentials can be measured. This property is an
essential one. As we shall see it, it is one of the reasons of the introduction of
the concept of activity (viz. Chap. 9),

— The influence of the temperature on the chemical potential is given by the
expression

(a:ui/aT)P,nj =-S5

S; being the partial molal entropy of i. The demonstration of the obtaining of this
result is as follows.
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http://dx.doi.org/10.1007/978-3-319-46401-5_9
http://dx.doi.org/10.1007/978-3-319-46401-5_10
http://dx.doi.org/10.1007/978-3-319-46401-5_9

5.3 Some Properties of the Chemical Potential 39

For an open system, the chemical potential of i is defined by relation (5.1). As a
result

(aﬂi/aT)P,nj = [a/aT(aG/ani)T,P,nj#ni}
= [o/an(36/01),,,,]

P,ni

T,P,nj#ni

equality which results from the crossing of the derivatives (viz. Appendix A:
Schwartz’s theorem). Since the occurrence of the relation (viz. Chap. 2)

(3G/dT), = —S
we find
= _(aS/ani)T,P,njyéni
- -5

Another interesting expression relating the temperature and the chemical
potential is

[a(:ui/T)/aT]P,nj = _H_i/T2

It results from the following expression, set up by a general reasoning starting from
the Gibbs—Helmholtz relation (viz. Chap. 2):

0l(G/T)/0T)p = —H|T’

This last relation results itself from the Gibbs—Helmbholtz equation (viz. Chap. 2).

— The influence of the pressure on the chemical potential is given by the expression

(Opi/ OP)r. 1y = Vi

The demonstration is analogous to the previous one. It results from the relation (viz.
Chap. 2)

(0G/0p)y =V

— A very important relation for the thermodynamic study of solutions and, hence,
for our purpose is that of Gibbs—Duhem. It expresses the fact that the simulta-
neous changes in the temperature, pressure, and chemical potentials (all inten-
sive quantities) are not independent from each other. They are “interrelated” by
the Gibbs—Duhem’s relation, which is
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—SdT + Vdp =Y midy; = 0
i

S and V are the total entropy and the total volume of the phase. »; is the number of
moles of every component, and y; is its chemical potential. At constant temperature
and pressure, it becomes

> nidp; =0

In these conditions, when the phase contains n components, only (n— 1) chemical
potentials can vary independently. In the case of a binary solution, the Gibbs—
Duhem’s relation may be written in a different manner. It becomes

nmidpy + nadpy =0
Dividing this relation by the total number of moles, it becomes

[/ (1 + mo)ldpy + [n2/ (ny + n2)ldp, = 0
xidpy + x2dp, =0 (5.3)
where x; and x, are the molar fractions of both components. The Gibbs—Duhem’s
relation may still be written in a different manner, at, as before, constant temper-

ature and pressure (for a binary solution). In these conditions, the chemical potential
of each component only depends on its molar fraction. Then, we can write

dp; = (Op;/ 0xi)y. pdx;
Hence, (5.3) can be rewritten:
x1 (01 /0x1) g pdx1 4 x2(Opp/ Ox2) 1 pdxy = 0
or
(Opy/OInxy )y pdxy + (Opp/OInxa)p pdxy = 0
Since, in this reasoning, we only consider binary solutions

X1+x=1
d)(] = —dXQ

and finally

(a/"l/alnxl)T,P = (aﬂz/amXZ)T,P (5.4)
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It is clear that the great interest of the Gibbs—Duhem’s relation lies in the fact that it
provides information concerning the changes in the chemical potentials of the
components of a solution.

— For a solution containing n components, the Gibbs energy of the whole chemical
system (defined as being constituted by the solvent and all the solutes) Gy is
given by the relation

Gsysl = nipy + napy + - RO

where n; are the numbers of moles of the components. This relation results from the
fact that the function of Gibbs energy is extensive and that its mathematical
counterpart is a homogeneous one (viz. Appendix A).

5.4 Change in the Gibbs Energy Accompanying a Chemical
Transformation

When a system is constituted by the compounds 1,2. .. before the transformation
(initial state), the numbers of moles of which being 7y, n,, ..., and after transfor-
mation (final state) by n’y, n'5... the change in Gibbs energy of the system
accompanying the chemical transformation is given by the expression

A Gy = (rypy + nigpty ++++) = (mupay + mopay + ) (5.5)

where uq, uo, .. ./4/1, ,u’z are the chemical potentials in the initial and final states.
This expression is absolutely general. As an example, let us consider the
following chemical reaction:

naA + ngB — nyM + nyN

and suppose that the reaction is total. The change in the Gibbs energy accompany-
ing the reaction is given by the expression

AG = (vmpy + Unpn) — (Vapia + vBpg) (5.6)
This relation can be generalized to the case of a more complex reaction. When the

linear combination of the kind of the type (5.6) just above is null, there is equilib-
rium (viz. Chap. 3).
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5.5 Electromotive Force of a Reversible Electrochemical
Cell and Change in the Gibbs Energy Accompanying
the Reaction Cell

Let us recall that the electric potential difference E that occurs at the terminals of an
electrochemical cell is a function of the temperature, pressure of the system, and,
also, the activities of the species taking part in the electrochemical reactions which
are developing onto the electrodes (viz. Chaps. 13 and 14). There exists a mathe-
matical relationship between the decrease of the Gibbs energy (of the chemical
system) accompanying a reversible process occurring in the cell and the electric
potential difference until the obtaining of the equilibrium. This is true at constant
pressure and temperature and, also, at null current. This relation is

AG = — nFE

E is called the electromotive force of the cell, n is the number of exchanged
electrons, and F is the faraday. This relation is of utmost important. It is the base
of the Nernst’s relation.

The use of electrochemical cells may permit, in some cases, to determine the
activities of nonelectrolytes and those of electrolytes (viz. Chaps. 13 and 14).
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Chapter 6
The Notion of Activity: An Overview

Abstract The chapter is a brief overview of the concept of activity. It can be
considered as a general scientific introduction of the book. It mentions:

— Some properties of the quantity activity in relation to the chemical equilibria
governed by the mass action law.

— Its relation with the corresponding concentration and the chemical potential of
the substance, with its standard state and the arbitrary character of the choice of
the latter.

— The link between a fugacity and an activity.

— The ideal character of a system and interactions between the particles constitut-
ing it and the intermolecular forces which may exist between them.

The possibility of their determination is also tackled. Finally, a recall of the
genesis of the notion of activity is given.

Keywords Constant conditional (or formal) e Determination of activities
(general) « Thermodynamic equilibrium constant ¢ Intermolecular forces

It seems interesting for us, as a general scientific introduction of the book, to give a
brief overview of the concept of activity before, of course, delving later into its
more thorough study.

6.1 Some Properties of the Quantity Activity: Activities
and Chemical Equilibria

A patent example of the interest in chemistry of the use of activities is the
following.
Let us, for example, consider the following chemical reaction:

UAA +1vgB = vyM + vaN
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We shall see (viz. Chap. 17) that, at equilibrium, the activities aa, ag, ... of the
different species A, B, M, and N (participating in it through the relation above) are
related to each other by the expression

K° = aMuMaNuN/aAuAaBDB (61)

This result is quite general.

Let us stress the fact that the activities taken into account in relation (6.1) are
those and only those occurring once the equilibrium is reached. K° is a constant at a
given temperature. It is called the standard equilibrium constant (of the reaction) or
the thermodynamic equilibrium constant. Relation (6.1) is well known under the
name “mass action law.” Historically, it is interesting to recall in passing that it has
been introduced into the scientific realm by starting from a reasoning which was not
at all based on thermodynamic considerations!

The thermodynamic equilibrium constant K° only depends on the temperature
and pressure and not on the composition of the system. It is a true constant. This
obvious sentence will take all its importance during the reading of the end of this
chapter.

The thermodynamic constant must not be confused with the corresponding
constant K which is related to the concentrations at the equilibrium of the reactive
species, defined for the above reaction by the expression

K = [M]™M[N""/[A]*[B] (6.2)

The terms in brackets in the expression (6.2) are the concentrations at equilib-
rium. They can be expressed in molalities, molarities, molar fractions ... (viz.
Chap. 1). The constant K may also be expressed in partial pressures. Each of these
cases must be, in principle, distinguished from each other by an index located next
to the symbol K. For example, the constant K is symbolized by K. and K,;, when the
concentrations are expressed, respectively, in molarities and molalities.

Whereas thermodynamic equilibrium constants are absolutely dimensionless
numbers since activities are themselves dimensionless, the equilibrium constants
related to the concentrations may be dimensioned according to the stoichiometry of
the reaction. The latter equilibrium constants are often called formal or conditional
constants. They do not only depend on the temperature and total pressure. They also
depend on the concentrations of the reactive species.

6.2 Activities and Concentrations

The activity a of a species in a given medium is related to its “concentration”
C through the general expression

a=yC (6.3)
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The factor y is called the activity coefficient. The activity of a species and
its concentration obey this relation, whatever the concentration scale is.
Hence, this relation is general. Let us say that although the activities are dimen-
sionless, the activity coefficients are also dimensionless whatever the scale of
concentration C is.

The very big difficulty encountered in the handling of activities lies in the fact
that relation (6.3) is not, actually, a true linear relation because the activity
coefficient y does vary with the “concentration” C. Here is the reason why the
analogy between relations (6.1) and (6.2) must not mask the fact that the mathe-
matical link between an activity and the corresponding concentration is complex
and badly known. It is the matter of this book to somewhat make it clearer.

From another viewpoint, it must not be forgotten that there exist several kinds of
activities which are of different numerical values for the same species in the same
thermodynamic state according to the chosen standard state (viz. under) and the
concentration scale to which they are related to and, eventually, according to the
conditions defining the state of the system.

6.3 Chemical Potential and Activity of a Compound

We know (viz. Chap. 5) that one of the most central quantities of chemical
thermodynamics is the chemical potential. Let us recall also that, essentially, its
change governs the tendency of a system to change its thermodynamic state through
a chemical or physical process.

One of the possible definitions of the activity of a species consists in using the
relation (6.4) linking it to its chemical potential:

u=u’+RTIna (6.4)

where R is the perfect gas constant and T the absolute temperature of the system. u°
is an arbitrary constant. We see that it is the chemical potential of the compound
when its activity equates to unity. u° is called the standard chemical potential of the
species or more properly its chemical potential in the standard state.

6.4 Standard State and Activity

Relation (6.4) is only a formal definition. Hence, further, the standard state must be
defined in terms of experimental variables defining this particular thermodynamic
state.

Owing to the arbitrary character of a standard state, which is one of the
characteristics of this quantity, it is clear that there exists an infinity of choices
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for it. However, it turns out that some choices are easier to handle than others.
Precisely, these choices can change according to the state of the matter of the
compound (gaseous, liquid, solid), according to whether it is pure or in a solution
and also according to the concentration scale of the species to which it is related to
through relation (6.3).

The result of these considerations is that the notion of activity cannot be
dissociated from that of standard state.

6.5 On the Arbitrary Character of the Choice
of the Standard State

A puzzling point of the concept of the chemical activity lies in the arbitrary
character of the choice of the concentration scale to which the chemical activity
of the species is related to. One must realize that, for example, it is as correct to
choose the molar fraction as to choose its molality or its molarity to express its
concentration. Then, one can rise the legitimate question of the validity of the
equilibrium constant value, which evidently varies with the choice of the retained
scale of concentration, since the numerical values of the “concentrations” are then
different. With this question in mind, it is quite admissible that the conclusions
stemming from the study of a chemical equilibrium through the value of the
equilibrium constant may be doubtful.

6.6 Activity and Fugacity

Although this book is mainly devoted to the concept of activity, it also mentions
some aspects of the quantity called the fugacity.

Both notions are actually intimately linked. It is true that they can be separately
introduced in the realm of classical thermodynamics without any mention of the
other. This is not astonishing since the concept of fugacity was introduced to study
the behavior of imperfect gases whereas that of activity was introduced mainly for
the study of solutions. However, as we shall see it later, both can apply to every kind
of phase.

There exist some simple mathematical relations linking them. Besides, they
permit us to better grasp their significances. In particular, let us mention the
occurrence of a very important one which, purely and simply, is one of the defini-
tions of the chemical activity. According to it, the chemical activity is the ratio of the
fugacity of the species of concern and of its fugacity in the standard state.
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6.7 Ideal Character of a System and Interactions Between
the Particles Constituting It

In the general introduction of this book, we have already recalled that the notion of
chemical activity has been introduced by G.N. Lewis in order to treat the nonideal
systems (in particular solutions) by using a formalism very close to that expressing
the chemical potentials of species in ideal systems.

The ideal character of a system is related to the occurrence (or not) of interac-
tions between particles constituting it. It has a somewhat different meaning
according to the fact whether it is a gaseous phase or a solution which is considered.
Even in the latter case, the conditions of “ideality” differ whether electrolyte or
nonelectrolyte solutions are considered.

A pure gas is said ideal if no interaction does exist between its particles. It is the
case when its pressure is very weak. Its behavior remains ideal as long as these
interactions cannot be felt. It is the same thing for a gaseous mixture. Its behavior
remains ideal as long as there do not exist interactions between the particles of the
mixture whatever their component identity is.

It is different in the case of solutions. At least, there exist two components, the
solute and the solvent, the particles of which are in interactions. Let us recall,
indeed, that the gaseous state is a very “expansed” one in which the volume
occupied by the particles is negligible with respect to that of the container.
Hence, one can consider that it is only occasionally that two particles are suffi-
ciently close to give rise to intermolecular forces. One can consider that the gas
molecules move freely. This is not the case of liquids and solutions. Concerning the
latter, the total volume of molecules quasi-fully occupies the whole volume of the
system. The intermolecular forces are strong. However, they cannot preclude the
easy movement of the particles in the medium. This is not the case for the other
compact state of the matter which is the solid state. As a result, one can say that
evoking the “ideality” notion to liquids, as it applies to the case of gases, is absurd,
because of the occurrence of the remaining interactions between solvent and solute
particles, even in highly dilute solutions.

A particularly interesting case of solutions is that of those containing ions. For
the latter, the interactions between solute particles still exist at distances much
higher than those separating two uncharged species when, precisely, the interac-
tions in the latter case are vanishing. Hence, deviations from “ideality” appear for
concentrations in charged molecules much weaker than with the uncharged ones.
For example, in an aqueous solution of sodium chloride, deviations from thermo-
dynamic laws expressing the ideal behavior by more than 5 % do appear once their
concentration attains 2 x 10~> mol L™". In solutions only containing uncharged
particles, the concentration of at least 1 mol L™" must be reached to obtain such
deviations.

At once, let us notice that the more dilute the solutions are, the weaker the
interactions between the solute molecules or between the ions are and the more the
activity values do approach those of the corresponding concentrations. It is the
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same for gases. The weaker their partial pressures, the closer their fugacity values
approach those of the latter. These properties are very interesting since they provide
us with a strategy for the determination of equilibrium thermodynamic constants. It
consists in determining them in very dilute solutions or at very weak partial
pressures. It is at this level of quantities of matter that the reliability of the values
of the obtained thermodynamic equilibrium constants may be expected to be good.

6.8 Intermolecular Forces

Intermolecular forces that operate between the molecules of a pure substance or
between the molecules of a mixture command the thermodynamic properties of the
system constituted by them. Since it is these intermolecular forces that are respon-
sible for the deviations from “ideality” exhibited by a system and since the chemical
activities have been introduced to overcome the problem, it is interesting to briefly
evoke these operating intermolecular forces. The intermolecular forces give rise to
potential energy functions. This term is often used to explicit the force.

Several intermolecular forces are operating and, hence, they can be classified in
several different manners. The different retained classifications are purely arbitrary.
For our own part, we distinguish:

— The electrostatic forces they exert between charged particles (ions) and between
permanent dipoles and quadrupoles.

— The induction forces they exert between a permanent dipole (or quadrupole) and
an induced dipole. The latter is induced in a molecule with polarizable electrons.

— The forces of attraction called dispersion forces and the forces of repulsion
between nonpolar molecules.

— The chemical forces (or specific forces) responsible for association and solvation
phenomena: Among them, we can mention the formation of hydrogen bonds and
association complexes called charge-transfer complexes.

Further considerations of these intermolecular forces are given in Chap. 46.

6.9 Determination of Activities

The determination of activities of all types of compounds is experimentally possible
except in the case of ions. This is a fact: the activity of an individual ion is not
measurable. However, fortunately, its value can be approached, at least in some
well-defined conditions, by using theoretical expressions which permit the calcu-
lation of activity coefficients.
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6.10 Genesis of the Chemical Activity Concept

G.N. Lewis has successively introduced the concepts of fugacity (1901) and activity
(1907). According to his own comments, two strategies were in this period followed
in order to study chemical equilibria.

The first one, followed in particular by Gibbs, Duhem, Planck, and other authors,
consisted in forecasting the evolution of systems by using the properties of their
entropy and also those of their thermodynamic potentials (viz. Chap. 2).

The second strategy, followed by Van’t Hoff, Ostwald, Nernst, Arrhenius, and
others, consisted in using equilibrium constants, calculated through the concentra-
tion values at the equilibrium because the notion of intangibility of the values of the
equilibrium constants was already sensed since some years.

Today, we know that handling the thermodynamic potentials is perfectly legit-
imate, but it is complicated in the realm of chemistry, by far more complicated than
in mechanics. This is the reason why the second method is more used than the
previous.

But using the second strategy, at that time, led to the following conclusion:

Equilibrium constants calculated by using concentrations at equilibrium are not truly
constant.

This conclusion was followed by a series of numerous discussions and works
essentially devoted to the case of electrolytes. The question was the following one:
Do the equilibrium constants vary because of an incomplete dissociation of the
electrolyte or because of another phenomenon? The hypothesis of an incomplete
dissociation of actually strength electrolytes has been ruled out, notably with the
help of conductometric experiences and thanks to the Debye—Hiickel relations.
Today, we know that the changes in the equilibrium constant values, when they
are obtained only from concentrations at equilibrium, are the result of interactions
between the species and not to an incomplete dissociation. Because of their
occurrence, it is said that the system no longer exhibits an ideal behavior.

It is in order to mathematically take into account this phenomenon that Lewis
has empirically introduced the notion of chemical activity. Likewise, he had
introduced the fugacity concept some years before. It was, of course, in order to
take into account the interactions between molecules of gas.

It is important to notice that taking into account the interactions between the
particles by the introduction of both notions of fugacity and activity stems from a
purely phenomenological reasoning. A rigorous theoretical study which would take
perfectly into account these phenomena of “nonideality” would require that the
term of the potential energy of the Schrodinger’s equation of the whole system
would contain all the terms describing the interactions between all the particles.
This is quite impossible to do, because on the one hand one cannot know how we
can perfectly modelize the interactions between these moving particles and
because, on the other hand, if we did know how to do, it would be an insuperable
work to carry out it, owing to the great number of particles.

Hence, it appears that the introduction of the notion of chemical activity is a
genial trick permitting to overcome this colossal problem.
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Chapter 7
The Fugacity Quantity

Abstract This chapter is devoted to the notion of fugacity. It is developed entirely
under the standpoint of classical thermodynamics. The fugacity quantity has been
introduced in order to describe the behavior of imperfect gases. It permits to express
the molar Gibbs energy of a pure imperfect gas and, also, to express the chemical
potential (the molar partial Gibbs energy) of a gas in a mixture of imperfect gases
with a formalism analogous to that used in the case of perfect gases. For this reason,
it can be said that the chemical potential which is an abstract notion can be, through
the use of the fugacity, expressed in terms of a new function which is more easily
identified with the physical reality than the chemical potential is. The chapter
mentions the definition of the fugacity of a pure gas, the chemical potential of a
perfect or real pure gas in terms of it, the fugacity of liquids and solids, the notion of
fugacity coefficient of a real gas, a coming back to the notion of reference state, and
the changes in fugacity with the temperature and the pressure. It also mentions the
expressions of the chemical potential of a component of a mixture of perfect gases,
the fugacities of real gases in mixtures, and their changes with pressure and
temperature together with their determination. From another viewpoint, the values
of the fugacity of a species present in different phases may assert or not the state of
partition equilibrium.

Fugacity and activity are two intimately linked quantities. This is the reason why
an introductory study of the notion of fugacity is necessary to understand well that
of activity.

Keywords Fugacity ¢ Fugacity coefficient Lewis—Randall’s rule « Molal Gibbs
energy * Molar enthalpy « Molar volume ¢ Partial molal quantities * Perfect gases ¢
Reference state

The fugacity quantity has been introduced by G.N. Lewis as soon as 1901 in order
to describe the behavior of imperfect gases. More precisely, fugacity permits (as we
shall see it) to express the molar Gibbs energy of an imperfect pure gas and, also, to
express the chemical potential (the molar partial Gibbs energy) of a gas in a mixture
of imperfect gases with a formalism analogous to that used in the case of perfect
gases. For this reason, it can be said that the chemical potential which is an abstract
notion can be, through the use of the fugacity notion, expressed in terms of a new
function which is more easily identified with the physical reality than the chemical
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potential is. We shall see that the chemical activity is also a quantity like the
fugacity function permitting to relate the chemical potential to the physical reality.
From another viewpoint, the values of the fugacity of a species present in
different phases may assert or not the state of partition equilibrium.
Fugacity and activity are two intimately linked quantities. This is the reason why
an introductory study of the notion of fugacity is necessary to understand well that
of activity.

7.1 Definition of the Fugacity of a Pure Gas

Although the fugacity notion has been overall used in the case of systems consti-
tuted by gas mixtures, it is firstly important to begin with by the definition of the
fugacity f of a pure gas. Lewis did that by setting up the expressions

dG = RTdInf (7.1)
or
Gm = RTInf + C(T) (7.2)

C(T) is the integration constant. It is already important to notice that constant C(T")
depends only on the nature of the substance and temperature (vis Chap. 34). G, is
the molar Gibbs energy of the gas.

Expression (7.2) is, according to some authors, incorrect from the mathematical
standpoint since the logarithm of a quantity which is dimensioned does not possess
any sense, since the fugacity is a quantity endowed with a dimension!’

On the other hand, relation (7.1) is correct since the ratio df/f is dimensionless.

It is interesting to notice the analogy between relations (7.1) and (7.3) under

dG =RTdInp (7.3)

which links the molar Gibbs energy of a perfect gas and its pressure p. It results
from the application to the case of perfect gases of the general expression

AGp.r = Vindp (7.4)

"By virtue of the famous aphorism
In (3apples) = In3 + Inapples !

3 and apples are mathematical objects from different nature.
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applicable to every reversible, isothermal transformation, only involving an expan-
sion work. V,, is the molar volume of the substance (vis Chap. 5).

Definitions (7.1) and (7.2) are not sufficient for the determination of absolute
values of the fugacity since they do not specify how the value of the constant C(T)
is fixed at a given temperature. Without any supplementary specification, they only
define the ratio between the fugacities f; and f; of the gas in the final and initial states
defining an isothermal transformation. Given the molar Gibbs energies G ¢ and G y;
in both states, the expression of the change in the Gibbs energy AG accompanying
it is

AG = Gt — Gy
AG = RTIn(f/ f,)

A supplementary specification is necessary. That put forward by Lewis is
universally adopted. It is based on the following reasoning.

Let us again consider the previous transformation and suppose that the gas is
perfect. The notion of fugacity is, by definition, a general one. Hence, it also applies
to perfect gases. In these conditions, one can write

AG = RTIn(f;/f;) (7.3)
and since the gas is perfect by hypothesis, one can also write

AG = RTIn(p;/p;) (7.6)

Pr and p; being the pressures in the final and initial states of the process under study.
Since the Gibbs energy is a state function, it results from the comparison of
expressions (7.5) and (7.6), in which in the case of a perfect gas the fugacity
must be in linear relation with the pressure.

Since no gas is, from the standpoint of the absolute scientific accuracy, perfect
but since, also, the behavior of every gas tends to be ideal when its pressure tends
toward 0, a judicious choice (in order to fix the integration constant) is such that the
value of the fugacity of pure gas goes over that of its pressure when the latter tends
toward 0, that is to say

f/p—1 when p—0

This is the choice that Lewis has done. Figure 7.1 exemplifies this specification.

The state in which the fugacity is asserted to be equal to the pressure is called the
reference state. Thus, the fugacity of a gas equates its pressure in the reference
state. The fact that the fugacity of every gas is set up to be equal to the value of its
pressure in the reference state permits to evaluate its fugacity at every other
pressure. Hence, the proportionality constant between the fugacity and the pressure
of a gas in the reference state, evoked above, has been fixed to 1 by Lewis.
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Fig. 7.1 Differences between the fugacity and the pressure of a pure gas

An outcome of the previous choice is that the fugacity of a perfect gas equates its
pressure whichever the latter is, on the contrary of a real gas. We have seen, indeed,
that in the case of a perfect gas, the fugacity is proportional to the pressure. By
adopting the convention that the fugacity is equal to the pressure when the latter is
very weak (in the reference state), it is clear that it remains as such in the whole
range of pressures in the case of a perfect gas. In order to convince ourself, it is
sufficient to consider the transformation described by relations (7.5) and (7.6) in
which the initial pressure is very weak. As a result

pi =i
since

RTIn(f¢/f;) = RT In(p¢/p;)

Hence
pr =/t

As a result of what is previously described, it appears that the fugacity must be
endowed with the same unities as the pressure. (Most values of fugacities are still
expressed in atmospheres in the literature for historical reasons.)
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7.2 Chemical Potential of a Perfect or Real Pure Gas
in Terms of Fugacities

1. In the case of a perfect gas, we know (vis Chaps. 3 and 5) that its molar Gibbs
energy (or, equivalently in this case, its chemical potential) is partially defined
by the expression

dG = RTdp/p
After integration, we obtain

Gpn = Cte + RTInp or
u=Cte +RTInp

where Cte is the integration constant. (These expressions are incorrect from the
mathematical standpoint for the reason given above.)
We know that the correct expression is (vis Chaps. 3 and 5)

u=p° +RTIn(p/p°)

in which p° is the chemical potential in an arbitrarily chosen state of the gas
where it is at the pressure P°. We shall see (vis Chaps. 9 and 10) that this state is
called the standard state. It may be temporarily defined as the state of the gas in
which it exhibits a perfect behavior at pressure p°. Usually, p° = 1 pressure unit
(historically 1 atm).
2. For a real gas, analogous considerations can be carried out:
We have seen just before that

dG = RTd Inf

or for its molar Gibbs energy

p=p"+RTIn(f/f°) (7.7)
u° is the integration constant. It is the chemical potential of the gas when its
fugacity fis equal to its fugacity f°. f° is its fugacity in the standard state. Hence,
u° is the chemical potential of the gas in its standard state. It is arbitrarily chosen.
Let us, at this point, anticipate one definition of the chemical activity a (vis
Chap. 9) by already giving the following relation:

a=f/f°

It expresses the chemical activity of a gas when its fugacity is f in the considered
state of chemical potential u and f° its fugacity in the arbitrary standard state of
chemical potential y°.
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7.3 Fugacity of Liquids and Solids

The definition of the fugacity applies to liquid and solid states as to the gaseous state
as well. Every substance in principle, indeed, exhibits a finite pressure vapor, even
if in some cases it is exceedingly weak.

When the pure solid (or the liquid) is at the equilibrium with its vapor (at a given
temperature), the molar Gibbs energy (chemical potential of the species) is the same
for both phases. As a result, we can set up by virtue of (7.7)

us+RTIn(f,/f°) = u°s + RTIn (fg/fg°> (case of a solid)
or
41+ RTIn (f,/f,°) = u° + RTn (fg /ng) (case of a liquid)

U, 1°1, and u°, are the standard chemical potentials of the chemical species in
solid, liquid, and vapor phases. f;, f;, and f, are their fugacity in the same conditions.
Let us recall that the choice of a standard state is arbitrary. Nothing precludes to
choose the same standard state in order to quantify the fugacity of the species in
solid or in liquid phase as that being the standard state in phase vapor. Then, of
course, the fugacities in the standard states for the solid and liquid phases are no
longer f£.° or fi° but f,°. Under these conditions, the equilibrium is expressed by the
two following relations:

4y + RTIn (f /ng) =4’ +RTn (fg /f;)
o RT(511,) =+ RT0 (7,0,
As a result, at equilibrium

fs=1,
fi :fg

The fugacity of the pure compound in the solid (or liquid) state is equal to its

fugacity in the vapor state provided that the standard state adopted to quantify the
fugacities is the same for both phases, i.e., that chosen for the vapor phase.

7.4 Fugacity Coefficient of a Real Gas

Figure 7.1 shows that the fugacity may be greater or weaker than the pressure of
the gas.
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One defines the fugacity coefficient ¢g of the gas B by the relation

¢p =fs/Ps

It is sometimes called the activity coefficient of the gas. In the literature, there
exist several values of ¢ permitting to calculate the fugacities of gases in given
experimental conditions, notably of pressure. They are sometimes found with the
help of approximations.

The fugacity coefficient is a pure number. It is dimensionless.

7.5 Coming Back to the Reference State

In order to prepare the future discussion concerning the reference and standard
states (viz. the following chapters), it is important to recall the fact that the
reference state is a real state.

Moreover, we have already mentioned that the reference state is a (real) state in
which its fugacity equals its pressure. Hence, we can deduce that the reference state
may be defined as a real state in which its fugacity coefficient is equal to its unity.
This is the usually adopted definition for the reference state, in any case for gases.
Later, we shall see that the notion of reference state is also linked to the notion of
activity (viz. Chaps. 9, 10, and 11).

Henceforth, we shall annotate every quantity considered at a very weak pressure
(that is to say in the reference state”) by the symbol * located in exponent.

7.6 Changes in Fugacity with the Temperature
and the Pressure

» The fugacity changes with temperature. These changes are accessible. We give
here only the principle of their determination at constant pressure. Let us
consider two states of the gas, the molar Gibbs energy and the fugacities Gy,
fand G,,*, f*. The state to which the quantities G,,*, f* are related to is a state of
very weak pressure in which the behavior of the gas is ideal (it is the state of
reference). The change in the molar Gibbs energy accompanying the path from
one state to the other is

’In thermodynamics, for the definition of the reference state, one sometimes finds that it is the state
attained from the standard state through a change in pressure. We shall not use this definition.
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*

AGp = G — Gy
AGy = RTInf /f"

or equivalently
Rin(f/f") =Gun/T —Gn /T
whence after derivation with respect to the temperature at constant pressure
R(OInf/0T), — R(OInf"/0T), = 0[(Gw/T)/0T)p — 0[(Gm" /T)/0T],
We know that (viz. Chap. 2—Gibbs—Helmbholtz relation)
0((Gu/T)/0T)p = —Hn/T*

where, in this equation, H,, is the molar enthalpy of the system at the pressure
P and Gy, its molar Gibbs energy. In the relation before the latter, the second
term of the left member is null since, in the reference state, the fugacity f is
equal to the pressure P~ and since the derivation is carried out at constant
pressure. Both latter relations immediately lead, after derivation, to

(OInf/0T)p=(Hwn — Hpu)/RT* (7.8)

where H,, is the molar enthalpy of the gas at null pressure. The difference
(Hy — Hy,) is the change in the enthalpy accompanying the “compression” of
the gas from the pressure P until the null one at constant temperature. For the
easiness of the calculations, it is a fact that the curves (Hm* — m)/RT2 as
functions of the temperature are experimentally accessible either by the study
of the diagrams p—V-T of the gases or by using the appropriate state equa-
tions. After this step, the obtention of f is carried out by integration.

The influence of the pressure on the value of the fugacity of a gas at constant
temperature is expressed by the relation

(Olnf/0p);=Vm/RT

since, by definition of the fugacity, dG = RTd Inf and since, in a general manner
(viz. Chap. 2),

(0G/0p)T=V

Let us recall that V,, is the molar volume of the substance whatever the phase
under which it is and whatever its behavior is, perfect or not.
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7.7 Physical Significance of the Fugacity

According to what is previously mentioned, it is evident that the fugacity of a gas is
a kind of a fictitious pressure or of a corrected pressure. Statistical thermodynamics
(Chap. 34) permits to grasp a deeper knowledge of the relation existing between the
fugacity and the pressure.

7.8 Expressions of the Chemical Potential of a Component
of a Mixture of Perfect Gases

Before considering the fugacity notion applied to the case of a mixture of real gases,
case where it exhibits all its importance, it is convenient, at the beginning, to
mention different relations expressing the chemical potential of a component of a
mixture of ideal gases.

Generally speaking, we know that the change in the chemical potential ug of
every component B of a gaseous mixture with pressure, at constant temperature
T and molar fraction y, is given by the relation (vis Chap. 5)

(Oup/OP)r,,=Vmp (7.9)

where V5 is the partial molar volume of the component B.
In the case of a mixture of perfect gases, the law of perfect gases applies to the
whole mixture. It is written as

V:(n1+n2+--- +I’ZB+"')RT/P (710)

where ny, ny, . . . are the numbers of moles of species 1,2, . .. in the gaseous mixture,
P the total pressure, and V the total volume of the system. Since, by hypothesis,
each gas of the mixture exhibits a behavior different from that of any other (of the
mixture), the partial pressure of each one pg is given, by definition, by the relation

ppV = ngRT (7.11)
The partial molar volume of the component B being given by the expression

Vg = (av/anB)T,P,nj

we obtain through derivation of (7.10)

Vs = RT /P

and hence, after using (7.9),
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dug=RT (dP/P) or dug=RT (dInP)

T,nj T,nj

Then, according to (7.10) and (7.11),
pe=ns(RT/V) and P=Y ng(RT/V)

Since ng and n (n total number of moles in the mixture: n =) ng) are constant,
the following equality is satisfied:

dlnpg =dInP
That is,

dug = RTdInpg
After integration, we obtain
ug = pg +RTInpg (7.12)

g is the integration constant. Its value depends only on the nature of the gas and
on the temperature as it is justified by statistical thermodynamics (viz. Chap. 34). It
is clear that ug " is the chemical potential of the gas B, at the given temperature,
when its partial pressure is equal to unity. Let us also recall that in order to obtain
this result, the underlying hypothesis was that the mixture should behave ideally.

Hence, the chemical potential of every constituent of an ideal mixture of gases is
determined by its partial pressure.

There exist other expressions of the chemical potential up equivalent to the
previous one.

Let us notice that relation (7.12) may be considered as being not satisfactory
since the logarithm of a dimensioned quantity is under consideration. However, it
can be written according to the following one which is perfectly correct:

#p = ugRT + In(pg/1)

where 1 is a quantity which is endowed with the same dimension as that adopted for
pg. Therefore, 1 is the unity of pressure.

Let us also notice the chemical potential pp of a constituent of an ideal mixture
of gases, as every other compound in every system may be expressed under
different manners according to the used concentration scales and also according
to the retained standard states. (We shall again consider this subject, but then at
greater length, when we shall discuss the expressions of the chemical potentials
with respect to the adopted standard states in order to define the different kinds of
activities in solutions—yviz. Chap. 11.)

Let us confine ourselves to mention that by introducing the molar fraction
yg = (ng/n) of B in the gaseous mixture, the expression of its chemical potential is
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Hp = ﬂyB* + RTInyg (7.13)
where
ps =pg +RTInP

We notice that, this time, the integration constant uyB* depends not only on the
nature of B and on the temperature, but also on the total pressure P. The reasoning
leading to this expression is based on the fact that the chemical potential of a
component in a given thermodynamic state is an invariant quantity, whatever the
expression of its quantity of matter is.

7.9 Fugacities and Mixtures of Real Gases

7.9.1 Expressions of the Chemical Potential
of the Components

The above considerations taking into account the partial pressures are no longer
correct once we are facing mixtures of real gases. Again, in this case, introducing
the fugacity notion simplifies the problem. In an analogous manner as that followed
in the case of a pure real gas, one partially defines the fugacity of the constituent B
in the mixture, at a given constant temperature, by the relation

dug = RT dInfy (7.14)
that is to say, after integration, by
pp = g +RTInfy (7.15)

ug depends on the nature of the gas and on the temperature of the system.
The chemical potential of the gas B is also given by the expression

pp = pp° + RTInfg /fg° (7.16)

where ug° is the standard potential of B and f3, fg° the fugacities of B in the state of
the system and in the chosen standard state. The reference state to which is linked
the standard state ug° (which has been just evoked) is the same as that which is
retained for a gas alone or in the case of an ideal mixture since, as it has been
demonstrated above, the behavior of each gas tends to be perfect when the total
pressure tends to be null. Hence, pg° is the standard chemical potential of B, alone,
at the same temperature as that of the system. In these conditions, we shall see (viz.
Chap. 10) that the chemical potentials in the standard and reference states are equal.
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One of the advantages that presents the introduction of the fugacity lies in the
fact that the chemical potential of a component of a mixture of real gases may be
expressed by the relation (7.15) which is formally analogous to that expressing the
chemical potential of a component of a mixture of perfect gases. Such expressions
enlighten the significance of the chemical potential since the significance of a
corrected pressure is by far closer to a physical reality than is a chemical potential
which is essentially an abstract mathematical notion.

7.9.2 Change of the Fugacity of One Component of a
Gaseous Mixture with the Pressure

The change of the fugacity of the constituent of a gaseous mixture with the pressure
is obtained from the following relation:

(0Infy/OP)y, ,=Vy /RT (7.17)

where Vy is the partial molal volume of the constituent (viz. Chap. 4). This relation
immediately follows from (7.9) and (7.15) after derivation with respect to P at
constant temperature and pressure and by taking into account the fact that in these
conditions ug " is a constant. Before proceeding to the integration, let us subtract the
term RT dIn pg from both members of the expression (7.17). We obtain

RTdIn(fy/pg) = Vi dP — RTdInpg
But
Ps = ypP
The molar fraction yg being a constant, since we are searching for the fugacity

change with the pressure at constant temperature and composition, the preceding
relation becomes

RTdIn(fs/pg) = (V& — RT/P)dP

The change of the fugacity fg with the total pressure is obtained by integration
from P =0 to P =P’, that is to say

In(fg/ps) :/0 (Vs /RT —1/P) dP

Let us recall that in the reference state, fB* :pB*. Of course, the integration
entails that we know the partial molal volume as a function of the pressure. As a
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special case, we shall see (viz. the following chapter) that for a mixture of ideal
gases, the molal partial volume of a constituent is equal to its molar volume when it
is pure.

7.9.3 Change in the Fugacity of a Component of a Mixture
of Real Gases with the Temperature

The change in the fugacity of the component with the temperature is given by the
relation

(Olnfy/0T),=(Hs" — Hy ) /RT* (7.18)

where Hy is the partial molal enthalpy of the component in the mixture at the given
pressure and temperature and Hy is the molar enthalpy of the gas at the same
temperature in the reference state. The relation is obtained as follows. According to
(7.15)

Rinfy=pg /T — pg" /T
and according to the general properties of the chemical potential (viz. Chap. 5)

[0(ugT)/OT]p=— Hy /T?
R(3Infy/0T),= — Hg /T*+Hyg" /T?

Hy is the partial molar enthalpy of the gas at the pressure P. Hy " is that in the state
of reference, that is to say at a null total pressure. In these conditions the behavior of
the gas is the same as that of a gas which should be alone, at a very weak pressure.
Then its molar partial enthalpy in the reference state equates its molar enthalpy
when it is in pure state, at a very weak pressure Hy :

Hg" =Hyg'

7.10 Determination of the Fugacity of a Gas in a Gaseous
Mixture

The determination of the fugacity of a gas in a gaseous mixture is possible. It is
carried out after obtention of the diagrams: total pressure/volume of the mixture and
subsequent determinations of partial molar volumes. The knowledge of the couples
of experimental data P-V for the mixture permits to determine the molar partial
volumes of the components of the mixture. Then, one carries out the integration by
graphical means. It can also be carried out by approached calculations.
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7.11 Fugacity and Heterogeneous Equilibria

Under some conditions, the values of the fugacities may be a criterion of equilib-
rium between different phases. We give two examples of this possibility here.

From a general standpoint, this criterion applies when one considers a closed
system constituted by two phases (or more). The whole system is closed but the
constituting phases are open systems. In principle, the general equilibrium concerns
three processes: the heat transfer, the changes in the limits of the phases (due to a
mechanical work), and the transfer of matter from one phase into the other. We are
only concerned here by the transfer of matter.

As a first example, let us consider the transfer of the species i from the phase o
(its solution) into the phase B (its vapor) at constant temperature and pressure. A
first criterion of equilibrium is the equality of the chemical potential of i in both
phases (viz. Chap. 5):

=u® (equilibrium)

By replacing the chemical potentials by their expressions (7.16), we obtain
pp*® + RTInf" /f°* = up®™ + RTInfpP /f°F (7.19)

The reasoning is the same as that followed in paragraph 3. Nothing precludes to
adopt the standard state of the vapor as the unique one for both phases. As a result,
we obtain

up® + RTInfp"/f5™ = up™ + RTInf P [f "
that is to say
I8° :fBB
The equality
fp (solution) = f5 (vapour)

is the condition of this equilibrium (at constant temperature) provided that the
reference states of the species are the same in both phases.

Let us consider, now, the equilibrium, at constant temperature, of a species B
present in two immiscible solvents, as a second example. At the equilibrium, the
expression (7.19) is still verified. Let us suppose, now, that the standard potentials
in both phases p°* and u°" are equal. The condition of equilibrium is still

/8* :fBﬁ
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The common standard potential may be that of the vapor phase which would
simultaneously be in equilibrium with both solutions.

The criterion of equality of fugacities (in some conditions) is easier to handle
than that of the chemical potentials.

7.12  Other Use of the Fugacities

Outside what has been mentioned just previously about the theoretical interests
exhibited by the notion of fugacity, it also exhibits a strong practical one. We
confine ourselves to mention the fact that taking into account the fugacities in order
to study the equilibria between imperfect gases is essential.

A striking example is provided by us with the values of the equilibrium constant
of the reaction of synthesis of ammoniac by starting from dihydrogen and
dinitrogen. The equilibrium constant, determined at 450 °C from measurements
of partial pressures, does not cease to enhance with the total pressure. Its values are,
respectively, 6.59 x 10~ atm under 10 atm and 23.28 x 10> under 1000 atm. At
600 atm, it is 12.94 x 10>, Taking into account the fugacities instead of partial
pressures, the equilibrium constant remains more and less constant (6.51-7.42 x 10
-3 atm). At 1000 atm, it has the value 10.32 x 103 atm. But, it must be noticed that
this latter is somewhat abnormal. This is probably not due to the failure of the
concept of fugacity but may be rather attributed to the simplifying rule of Lewis and
Randall used to calculate the fugacities. Hence, the last result does not question the
interest of the introduction of the fugacity in this field.

(The Lewis—Randall’s rule consists in setting up that the fugacity f; of the species
in the mixture is equal to the product of its molar fraction y; in the vapor phase by its
fugacity in the pure state at the temperature and total pressure of the system f;. It is
not reliable because it is based on a simplification which may or may not by far be
justified.)

7.13 Fugacity and the Gibbs—-Duhem Relation

The Gibbs—Duhem equation can also be expressed in terms of fugacities. It can be
written (viz. Chap. 5) as

(Ouy/0lnxt)y p = (Opy/Olnxz) g p (7.20)
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Let us recall the fact that as such it is written above, it applies to a binary solution at
constant temperature and pressure. In order to express it in fugacity terms, it is
sufficient to use the relation (7.14) above. The relation being searched for is

(2 /Onxy )y p=(0F, /D)y (7.21)



Chapter 8
Ideal Solutions

Abstract In this chapter, some properties of solutions are recalled, especially those
of ideal solutions are mentioned. The notions of “ideality” and of “nonideality” of
solutions are central for the purpose. The considerations developed here, solely
from the viewpoint of classical thermodynamics, are important in order to provide
the reader with a good understanding of the chemical activity of every component
of a solution. Actually, here, the case of the solutions of nonelectrolytes is only
considered. That of the solutions of electrolytes is studied later. Also, the case of the
nonideal solutions is only tackled by opposition to that of the ideal solutions.
Definitions of perfect, ideal, and dilute solutions are given in relation to Raoult’s
and Henry’s laws by applying Gibbs—Duhem relation. Finally, the study of the
osmotic pressure as an example of a colligative property is carried out. The study of
colligative properties entails the knowledge of the properties of ideal solutions. The
properties of osmotic pressure are encountered several times in the book.

Keywords Ideal solutions ¢ Perfect and sufficiently dilute solutions ¢ Raoult’s
law e Gibbs—Duhem relation * Henry’s law ¢ Colligative properties ¢ Osmotic
pressure ¢ Non-ideal solutions « Margules relations « Van Laar relations

In this chapter, we recall some properties of solutions. More specifically, we are
particularly interested in the ideal solutions. As we shall see it, the notions of
“ideality” and of “nonideality” of solutions are central for our purpose. The
considerations developed here are important in order to provide us with a good
understanding of the chemical activity of every component of a solution.

Ideal solutions have been the matter of a great attention, but their definition is
somewhat imprecise. Some authors, indeed, distinguish two kinds of ideal solu-
tions: the perfect solutions and the sufficiently diluted ones.

In this chapter, we only consider the case of the solutions of nonelectrolytes, and
that of the solutions of electrolytes will be studied later. In this chapter, that of the
nonideal solutions is only tackled by opposition to that of the ideal solutions.

Finally, we study the osmotic pressure as an example of a colligative property.
The study of colligative properties entails the knowledge of the properties of ideal
solutions. We focus ourselves on the study of osmotic pressure because it is
encountered several times in this book.
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8.1 Definition of Ideal Solutions

A solution is ideal when the chemical potential y; of all its components is a linear
function of the logarithm of its molar fraction x;, according to

ui = p*(T,p) + RTInx; (8.1)

u;* is a constant, the value of which only depends on the temperature, pressure, and
identity of the component and is independent of the composition. Its physical
meaning is given below. However, at this point of the development, we can already
notice that x;*(T, p) is the chemical potential of the component i when it is pure
(x;=1).

The formalism of this definition looks like the following ones, already men-
tioned (viz. Chap. 7):

u=p°(T)+RTInp (pure perfect gas) (8.2)
u; =pu,°(T) + RT1np; (component of a perfect gaseous mixture) (8.3)

which express the chemical potential of a pure perfect gas or that of a component of
a perfect gaseous mixture. (Let us notice, once more, that in the denominators of the
arguments of the logarithms of relations (8.2) and (8.3), the pressures of 1 unity or
that of p° or p;° are omitted.)

A still greater analogy between relation (8.1) and another expression of the
chemical potential of gases—relation (8.4) just below and relation (8.13) of the
preceding chapter—does exist:

p: = pyi (T, p) +RT Iny, (8.4)

It is interesting to notice that relation (8.1) is simply an integral solution of the
following differential relation:

dpu; = RTdlnx; (8.5)

Expression (8.5), actually, constitutes the same definition of an ideal solution as that
expressed by (8.1). However (8.5) is interesting because it explains the distinction
between ideal, perfect, and sufficiently diluted solutions which can be considered as
differing, as we shall see it, by the values of their integration constants (viz.
paragraph 4 below).
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8.2 Ideal, Perfect, and Sufficiently Diluted Solutions

Some authors consider that the ideal solutions are constituted on the one hand by the
perfect solutions and, on the other, by the sufficiently diluted ones:

— The perfect solutions: They are ideal ones in the whole domain of concentra-
tions. In order that is the case, their different components must be chemically
similar. They obey Raoult’s law (viz. below). This kind of solution is rather
scarce. As an example, let us mention some mixtures of saturated hydrocarbons.

— The sufficiently diluted solutions: They are solutions in which their solute
(s) exhibit(s) an ideal behavior only in a limited domain of “concentrations.”
The solute obeys Henry’s law (viz. below). As soon as the solution is not
sufficiently diluted, its behavior is no longer ideal. The case of the sufficiently
diluted solutions occurs systematically, provided that the solutions are suffi-
ciently diluted.

In both kinds of solutions, the criterion of ideality is the subscription to the
relation (8.1), at least in some domain of concentrations.

8.3 Raoult’s Law

8.3.1 Raoult’s Law (Strictly Speaking)

In its original version, Raoult’s law stipulated that in a liquid solution so-called
ideal, the partial vapor pressure p; of each of its components i is proportional to its
molar fraction x; in the solution and to its vapor pressure p;° when it is pure at the
pressure of the system, i.e.,

p; = x; p° (8.6)

This relation must be obeyed in the whole domain of “concentrations” of the
solution. As we shall see it, the subscription to Raoult’s law, actually, defines a
perfect solution (viz. paragraph 3.2). According to this law, also, the expression
(8.6) must be verified at every temperature and at constant total pressure. (However,
when the pressure remains moderated, the vapor pressures are quasi-independent of
the external pressure.)

It is more judicious, however, to use the generalized form of Raoult’s form in
which the vapor pressures are replaced by the corresponding fugacities in order to
take into account the fact that the vapors may no longer obey the perfect gas law.
Therefore, we obtain the following definition:
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where f; is the fugacity of every component i in the vapor state and in solution at
equilibrium of both phases as well (since they are identical for the same reference
state—see the preceding chapter) and /" is its fugacity in the pure state at the same
temperature and pressure.'

Hence, the idealized Raoult’s law stipulates that in an ideal solution, actually
perfect, the fugacity of every component is proportional to its molar fraction for all
the concentrations.

The dependence of the partial vapor pressure and hence of the fugacities of both
components of a binary ideal solution on their molar fractions is given in Fig. 8.1.

8.3.2 Equivalence of the Definition of Perfect Solutions
and the Fact That the Solution Obeys Raoult’s Law

Actually, the subscription of a solution to the Raoult’s law is equivalent to the
definition (relation (8.1)) of the perfect solutions.

'The fugacity in the standard state f;°—viz. Chap. 9—must not be confused with the fugacity f;~
introduced in Raoult’ law. The latter is the fugacity of the constituent in pure state at some
temperature and at the pressure of the system, whereas the former is that of the component in pure
state under a well-defined standard pressure, usually 1 atm. They become identical, of course,
under the pressure unity. f;~ depends on the total pressure. It is not the case of £°. This remark also
applies to partial pressures.
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Let us suppose that the gaseous phase above the perfect solution exhibits an ideal
behavior. (This hypothesis has no incidence on the accuracy of the following result.
It is only adopted for the sake of simplification. If it were not verified, it should be
necessary to reason with fugacities.) The equilibrium condition for the component
i of both phases (viz. Chap. 5) is

p;solution = y; vapor
Starting from the expressions (8.1) and (8.3), we obtain
u*(T,p) +RTInx; = p,°(T) + RT Inp; (8.8)

In the case of a perfect solution, the expression u;*(T, p)+ RT In x; applies to any
value of x (obligatorily, of course, located between 0 and 1). When the compound is
pure (x; = 1), its partial pressure p; is nothing different from its vapor pressure in the
pure state p,°. According to (8.8), we obtain

ui*(T,p) = p;°(T) + RTInp," (8.9)

Subtracting of expressions (8.9) from (8.8) leads to Raoult’s law (8.6).
From a more general viewpoint, equality (8.8) can be written as

w*(T,p) + RTInx; = p,°(T) +RTn(p;/p,°)

where p,° is the partial pressure in the state of chemical potential y,°.
Hence, another definition of a perfect solution may be based on the agreement of
the behavior of the solution with Raoult’s law.

8.4 Behavior of the Second Component of a Binary Liquid
Mixture When the First One Obeys Relation (8.7)
in the Whole Range of Concentrations

We shall demonstrate that, in this case, the second component may also obey the
same kind of relation. The demonstration is founded in the Gibbs—Duhem relation.

» Relation of Gibbs—Duhem
We know (cf. Chap. 5) that for a system consisting in a solution composed of two
components in equilibrium with their vapor at constant temperature and pres-
sure, the Gibbs—Duhem relation provides us with information concerning the
changes in the chemical potentials of the components with their “concentra-
tions” in solution. This information is accessible through the following relation:

(Op1/0Inx1)y, p — (Opa/Dlnxa)y =0 (8.10)

* Demonstration
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The proposition is demonstrated as follows. According to the relation (7.14) of
Chap. 7

du; = RT dInf;
and according to (8.10), we obtain

(BInf,/3In x1);, p=(lnf,/dln x2)y. (8.11)

When the vapor has the behavior of a perfect gas, we can replace the fugacity of
a component by its vapor pressure; thus we obtain

(Onp, /01nx1); p=(dlnp, /2lnxr); 5

where p; and p, are the vapor pressures of components 1 and 2 when there is
equilibrium between the solution of composition x; and x, and the vapor.
Since the Raoult’s law applies to compound 1 by hypothesis, we can write

O
fi=xaf
Taking the logarithms and derivating with respect to x1, at constant temperature and
pressure, we obtain

dinf, =dlnx,
or

(Olnfy/0Inx;)y p = 1

since f;" is constant for a given pressure and temperature. According to (8.11), we
immediately find

(Olnf,/0Inxy); p=1 (8.12)

After integration, we obtain
fr=kx; (8.13)
where k is the integration constant. From this result, we can distinguish two cases:

— When x, = 1 the component (8.2) is pure. The fugacity f, becomes equal to f>".
As a result,

fr= x2f2D

This means that the Raoult’s law also applies to component 2. The solution is a
perfect one.

— When the relation (8.13) is not verified up to x, = 1, the constant & is no longer
equal to f,”. Nevertheless, it is true that, according to (8.13), there remains a
linear relation between the fugacity of component 2 and its molar fraction
somewhere in the domain 0 < x, < 1. The solution is no longer perfect, but it
is still ideal. We can remark that relation (8.12) may be obtained directly from
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the definition (8.5) of an ideal solution, owing to the existing general expression
of the chemical potential as a function of the fugacity (viz. Chap. 7). This result
is again considered during the study of Henry’s law.

8.5 Diluted Solutions: Henry’s Law

In the case of diluted solutions, the difference in the behaviors of the solute and of
the solvent must be stressed. Usually, one names solvent and solute the components
which are, respectively, in the larger and lesser quantities. Their molar fractions are
x1 and x,_in a binary solution.

8.5.1 Henry’s Law

Experimentally, it is found that in a diluted solution:

— The behavior of the solvent tends toward that described by Raoult’s law, even if
it is less marked when the solution under study becomes more and more
concentrated in solutes. More precisely, the more diluted the solution is, the
more the solvent tends to have a perfect behavior, that is to say

fi —xf, for x; — 1 (diluted solution) (8.14)

— Simultaneously, the behavior of the solute is not that of a solute in a perfect case.
It is experimentally found that in a diluted solution, at constant temperature, the
vapor pressure (fugacity) of a solute is proportional to its molar fraction, as it is
the case in a perfect solution, but the proportionality constant is not the same.
These points are expressed by Henry’s law.

The proportionality constant is called the Henry’s constant ky, The more diluted
the solution is, the more the law verified is (Fig. 8.2). It is symbolized by
f2 — kHXZ when Xy — 0 (815)

in which the index 2 designates the solute, with the index 1 designating the solvent.
The law expressed in terms of vapor pressure is

Py = kpx, when x, — 0

In order to illustrate these points, we give some numerical values of Henry’s
constant for dinitrogen ky (19.4 °C)=8.32 x 10* atm, oxygen ky (23 °C)=
4.59 x 10* atm, and dihydrogen ky (23 °C)=7.76 x 10* atm. These values have
been obtained for a partial pressure of 2.6 atm for each gas.
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fugualy §, 7

Fig. 8.2 Differences between Raoult and Henry laws

Henry’s law applies to all diluted solutions.

From a vivid and purely qualitative standpoint, one can consider that Henry’s
law is verified when the solution is sufficiently diluted such as each molecule of
solute only sees molecules of solvent all around it. In these conditions, the “escap-
ing tendency” of the solute becomes proportional to its molar fraction.

8.5.2 Henry’s Law and Other Expressions
of the Composition of the Solution

Henry’s law can be settled with other unities than the molar fraction x. For example,
the expression of Henry’s law in terms of molalities is found after the following
reasoning. For the solute in a binary solution

Xp =my/(m +ny)

where 7; is the number of moles of each species. Since the law only applies to very
dilute solutions, 7, is negligible in the denominator, whence

Xy &y /m

Since also the molality m, of the solute is its number of moles for 1000 g of pure
solvent (viz. Chap. 1), we find

mp = 1000]12/(]11M1)
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where M, is the molar mass of the solvent in g mol~'. The relation (8.15) may be
written as

fa= kiyna/m

"
[ = kymy

k’H and k;_l being composite constants grouping the previous ones.
(Remark: Other interpretation of Henry’s law: it is often presented in literature as
governing the equilibria involving the solubilities of gases in liquids.)

8.6 About the Differences Between Henry’s
and Raoult’s Laws

Let us recall that in terms of fugacity Raoult’s law is expressed by
fr=hn (8.16)

whichever the component is (here it is the solute). The comparison of relations
(8.15) and (8.16) shows that the values of the proportionality constants between the
fugacity and the molar fraction differentiate both types of behaviors: kg #f,". The
“slopes of the Raoult and Henry” are not the same. Figure 8.2 illustrates this point.

One may consider that a dilute solution is an ideal solution since there is linearity
between the fugacities of the components and their molar fractions. But it is only
ideal and not perfect because this linearity is verified in an only limited range of
composition, that of great dilution, in any case for the solute. It is an ideal solution
said sufficiently diluted.

Finally, other difference, in a perfect solution: the behaviors of the components
are perfectly analogous.

These definitions and properties are based on experimental results obtained
within the framework of classical thermodynamics. Later, we shall reconsider
these points under the light of statistical thermodynamics.

8.7 Fundamental Interest of Raoult and Henry’s Laws

The principal difficulty encountered in the study of solutions lies in the fact that
classical thermodynamics provides us with no information concerning the depen-
dence of the chemical potential of a solute on its “concentration” in the solution.
The only one very interesting relation in this field is that of Gibbs—Duhem which
applies to a homogeneous phase (viz. Chap. 5 and above). It is evident that Raoult
and Henry’s laws bring us supplementary precious information.
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However, we must notice that these laws are empirical. Besides, there exist some
mathematical expressions, not founded on theoretical basis, which satisfactorily
describe changes in vapor pressures of solutes as a function of the “composition” of
the solution. They are Margules and van Laar laws (viz. paragraph 9 under).

8.8 Consequences of the Ideal Character: Partial Molal
Enthalpies and Partial Molal Volumes
of the Components of an Ideal Solution

In this chapter, let us confine ourselves to notice that:

— The partial molal enthalpy H., ; of every component i in an ideal solution is equal
to its molal enthalpy in the pure state H,, ;”. As a result, the relation

H = mHoyy +mHny + -
which is always valid (viz. Chap. 4) becomes in the case of an ideal solution
H =nmHn " 4+ mHyp" + -

The total enthalpy of the solution H is equal to the sum of the enthalpies of the
pure compounds. Hence, there is no thermal effect when a mixture of the
components of an ideal solution is realized.

— There is no volume change when the liquid components of an ideal solution are
mixed. This result comes from the fact that the partial molal volumes V., ; of
every component of the ideal solution are equal to their molal volumes V,, ;" in
pure state, at the same temperature and pressure.

— The entropy change AS resulting from the mixture of two pure components by
forming one mole of ideal solution is given by the expression

AS = — X]RlIl)C] — X2R lIl)Cz
where x; and x, are the molar fractions of both components in the mixture and

R the perfect gas constant. It is particularly noticeable that the entropy of mixing
is inevitably positive.

8.9 Colligative Properties

The above lines of arguments concerning Raoult and Henry’s laws are very close to
those rationalizing the colligative properties of solutions.
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The latter ones essentially depend on the quantities of matter rather than on their
nature. They are accompanied by some phenomena such as the boiling point
elevation of solutions, the lowering of freezing point of a solution, and the occur-
rence of the osmotic pressure. They can be used for the determination of the
activities.

In this chapter, we confine ourselves to the study of the osmotic pressure because
it has been the matter of several works which relate it to the activities. We shall
encounter the osmotic pressure several times in this book. (In Chaps. 13 and 14 we
shall give the principle of the method of determination of activities based on the
measure of the depression of the freezing point of the solvent in a solution.)

8.10 The Osmotic Pressure

Let us consider the apparatus with the form of a U shown in Fig. 8.3. It is made up of
two compartments separated by a membrane M. At the beginning of the experience,
both compartments are filled by the pure liquid 1 which will play the part of the
solvent. This liquid can permeate the membrane. One of the compartments (on the
left side for example) is equipped with an aperture allowing the addition of a solute.
The solute cannot pass through the membrane and when it is added it will be
confined in the compartment on the left.

At the beginning, the solute is not added. The level of the liquid is the same in
both compartments because they are under the same pressure Py Hence, we can set
up the equality (which is a condition of equilibrium at the same temperature and
pressure—see Chap. 7):

£ (eft) = £ (right)

where f; is the fugacity of the pure solvent.

T+ %o i

Aokt

—2

solueaF solioeu f

+

e

Fig. 8.3 Apparatus to display the occurrence of an osmotic pressure (end of the experience: same
level of solvent recovered)
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When the solute is added into the left compartment, we notice an enhancement
of its level. There has been a moving of the solvent from the right to the left, through
the membrane. The chemical potential of the liquid in the right compartment has
not changed because its thermodynamic state has not varied. As a result, its
chemical potential remains the same, with the value f;" (right). The conclusion
which can be drawn is the following one: because of the addition of the solute, the
fugacity of the solvent in the left compartment f; (left) has decreased (since there
has been a spontaneous transfer of the solvent from the right to the left):

£1(eft) < £ (right)

f1 (left) is the fugacity of the solvent in the left compartment after addition of the
solute, before the subsequent equilibrium has been established. In order to bring
back an identical level of liquid in both compartments, a supplementary pressure 7z,
called osmotic pressure, must be applied on the compartment containing the solute.
One can draw an expression relating z to the concentration of the solute.

The reasoning leading to it is the following. For the equilibrium to be brought
back, the new, nonequilibrium fugacity f; (left) must be modified so that the
following equality is satisfied again:

fr(left) = f] (right)

At constant temperature, f; depends on the pressure and concentration of the solute.
Hence, we can write (the index 2 corresponding to the solute)

dinf, = (OInf;/0p);, ,dp + (OInf,/0x2)p rdx;

When the identical level of liquid in both compartments is brought back, there no
longer exists a change in f; and

dinf, =0
whence
(a]nfl/ap)r, ndp = _(alnfl/aXZ)P,TdXZ (8.17)
Owing to the general relation (viz. Chap. 7)
(9Inf /Op); = Ve /RT (8.18)
that is to say, in the occurrence

(Olnf,/0p)y = Vi 1/RT
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where V, | is the partial molal volume of the solvent. Equation (8.17) may, hence,
be written as

Vi1 /RT = —(0Inf,/0xs)p 1 dx; (8.19)

The partial derivative of the right-hand side of (8.17) can be simplified provided
that the solution in the left compartment is sufficiently diluted. Since it is the case
for our reasoning, the solvent obeys the Raoult’s law:

fi=ri'n
and
fi=fi"(1-x)
Inf, = Inf," +1In(1—x)
dinf, = dIn(1 — x2)
dinf, = d(1 — x2)/(1 — x2)
dinf, = —dx>/(1 — x2)

As the solution is diluted,
(1 — Xz) ~1
(aln.fl/ax2)P,T =-1
Reporting this relation into (8.19), it results in

[Vin 1 /RT|dp=dx, (8.20)

In very dilute solution, the partial molal volume V, ; does not differ appreciably
from its molar volume in the pure state V,, {:

lezvml.

Taking into account this approximation and integrating equation (8.20) from the
pressure P, to the total pressure P acting on the left compartment, once the
equilibrium is brought back it leads to the expression

P —P() = [RT/Vm 1.})(2

or
7 =[RT/Vn1' ]2 (8.21)
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This is the expression searched for, called the Van’t Hoff’s relation. It is possible to
go further into the approximations by considering, again, that the solution is
sufficiently diluted so that the following approximation should be valid:

X = ny /n1

and hence
T = [RT ng/ n1Vm 1.] (822)

By taking into account the total volume of solvent (in the left compartment)
V= Nn1Vm 1 :

we obtain

7 =m(RT/V) (8.23)

Relation (8.23) is formally identical to that of perfect gases. Relations (8.22) and
(8.23) are also named Van’t Hoff’s relations.

For indicative purpose, for molar concentrations in saccharose equal to 0.098
and 1.000 mol L~ ! in water, osmotic pressures of 2.60 and 26.64 atm are observed.

Relation (8.23) shows that the measured properties are rather a functional of the
number of moles than of their nature.

The quantity osmotic pressure indirectly plays an important part in the domain of
the determination of activities and also in that of their physical meaning as we shall
see it later.

8.11 Nonideal Solutions

Aside from the Gibbs—Duhem’s relation which is based on theoretical foundations
and which also applies well to nonideal solutions, there also exist relations from
purely empirical origin relating the fugacities of liquid components of binary
nonideal solutions to their molar fractions. Two examples are those of Margules
and van Laar. They are capable of representing the positive and negative deviations
of their vapor pressures with respect to the ideal behavior. There exist several other
relations of this kind which, even, may reasonably describe the behavior of some
nonideal solutions which are more complex than the binary ones (viz. Chap. 16).

8.11.1 Margules’ Relations

Margules’ relations are, respectively, for the solvent and the solute:
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fr=xf\"exp[1/25,25 +1/2716 + -] (8.24)
f2=x2f2"exp[1/26,0G +1/27, 0] + -] (8.25)
i~ and f,7 are, respectively, the fugacities of both liquids in their pure state.
Constants f, f», y1, and y, are obtained experimentally from measurements of

values of partial vapor pressures at different molar fractions. These constants are
not independent from each other.

8.11.2 Van Laar Relations

Van Laar relations constitute an interesting alternative to those of Margules. They
are for both components of a binary solution:

fr=x1f%exp @/ (B + )’ (8.26)
fr =x2f, exp [azx%/(xl + ﬂzxz)z} (8.27)

The constants are not, of course, the same as those of the Margules’ relations.
Remark: There exist other Margules and van Laar relations which are more
complicated than those given above.



Chapter 9
Definitions of an Activity

Abstract A way to express the chemical potential of a compound consists in using
the quantity named activity.

It will be seen that the handling of activities necessarily requires the choice of
thermodynamic standard states, choice which is fully arbitrary. But, actually, some
choices are quasi-systematically done rather than others, according to whether the
studied species is either in gaseous state or into a solution and, also, according to the
studied system. Hence, it is not surprising that a great part of the considerations
concerning the activities is devoted to the standard states and to their choice.

In this chapter, the examination of the definitions of an activity is carried out,
since an activity of a compound can be defined according to two ways, one through
its fugacity and the other directly without involving the notion of fugacity. The
consequences of the arbitrary character of the choice of the standard states are
considered later. Finally, some general properties of the activities are mentioned. It
is the case of their changes with the temperature and pressure.

Keywords Activity/definitions ¢ Standard states * Standard chemical potential *
Arbitrary character of the chemical potential « Activity coefficient » Activity and
temperature ¢ Activity and pressure

A way to express the chemical potential of a compound, distinct from that which
involves directly the notion of fugacity, consists in using the quantity named
activity. Generally speaking, it is easier to handle than the activity in the case of
solutions whereas it is the converse in the case of gases. However, both notions can
apply to each of the two phases. In addition, they are intimately linked.

We shall see that the handling of activities necessarily requires the choice of
thermodynamic standard states, choice which is fully arbitrary. But, actually, some
choices are quasi-systematically done rather than others, according to whether the
studied species is either in gaseous state or into a solution and, also, according to the
studied system. Hence, it is not surprising that a great part of the considerations
concerning the activities is devoted to the standard states and to their choice. In this
chapter, we also examine the consequences of the arbitrary character of their
choice. Finally, we mention some general properties of the activities, i.e., their
changes with the temperature and pressure.
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9.1 Definitions of the Activity

Before all, we must distinguish the activity ag or (B) of a species B from its absolute
activity Ag. This last notion is only used in statistical thermodynamics. It will be
defined in Chap. 24. Now, we focus our attention on the notion of activity as it is
usually understood. It is also named relative fugacity and even relative activity as
opposed to the absolute activity.

We may consider that there exist two definitions of the activity of a compound.
In the first one, it is defined by starting from its fugacity. In the second, it is defined
from the chemical potential of the species that it must characterize.

9.1.1 Starting from the Notion of Fugacity

The activity a; of the species i in a given thermodynamic state is defined as being
equal to the ratio of its fugacity f; in this state and of its fugacity f;° in another state
called the standard state, generally chosen at the same temperature than the
previous one, that is to say

ai :fi/fio (9-1)

At first glance, we see that an activity is a dimensionless number. (Let us notice that
IUPAC defines the notion of activity without any mention of that of fugacity.)

9.1.2 Starting from the Notion of the Chemical Potential

The handling of relation (9.15) of Chap. 7 permits to express the chemical poten-
tials u and u° of the studied compound in the state of the system and in the standard
state by the relations

Mi = 1;* + RTInf;
1 = ui* + RTInf;*

This kind of expressions apply to only one species present in the system and to a
mixture as well since a chemical potential is a partial molal quantity. Subtracting
the latter expression from the former gives

H; — ;" =RTIn (f;/f,°)

Hi — //l['o =RTIn a; (9.2)
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If we consider the previous definition, the activity gets naturally through the
operation. Nevertheless, this is not a definition but it suggests the following one.
There is nothing which can stop the setting up of a new quantity, the activity,
which characterizes the chemical potential of a compound, the change of which is
in linear relation with its logarithm, that is to say which obeys to the expression

du; = RT dln a; (9.3)

After integration, relation (9.3) gives an expression of the following kind (where
Cte is the integration constant):

p; = Cte + RTIn a; (9.4)

Hence, the second definition of an activity consists, without any consideration of
the notion of the fugacity, in setting up that the activity is related to the chemical
potential of the solute, which is measured by it, through relation (9.4). (Let us notice
that JTUPAC, in agreement with what is just said, defines the notion of activity
without any mention of fugacity.)

The definition (9.4), of course, is incomplete because of the occurrence of the
integration constant which can take any value. Since, in a given thermodynamic
state, there is only one value of the chemical potential of a species and given the fact
it is given by the expression (Chap. 7)

0 fi
Hi =y + RTlnE
it results from its comparison with (9.4) that
Cte = y;°
whence the expression
Ui =u;° +RTIn a; (9.3)

u;° is called the standard chemical potential of i. It is a constant which only depends
on the nature of i and on the temperature. The relation (9.5) may also be written as

a; = explu; — p;° /RT] (9.6)

It is interesting to realize that the standard potential y,° is, in principle, different
from the integration constant y; * of the relation (9.15) in Chap. 7. Actually, it is the
introduction of the notion of activity which imposes the notion of standard potential
u;°. Moreover, according to the two ways through which an activity is defined, it
appears that both definitions of an activity are in full agreement.
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Remark: The different expressions expliciting the second definition of an activ-
ity also involve the fact that an activity must be a dimensionless number since it
arises in the argument of a logarithm.

9.1.3 Consequence of the Arbitrary Character
of the Standard State

The immediate consequence of the arbitrary character of the choice of the integra-
tion constant of relation (9.4), i.e., of the standard state, is that different choices
must lead to different values of the activity of a compound in the same thermody-
namic state! This is the reality.

This point is significantly unknown since, actually, some standard states are
more judicious in their using than others and, because of that, they are quasi-
universally chosen. In such conditions, the problem may not arise.

9.1.4 Definition of the Standard Chemical Potential
of a Species

By considering the relation (9.5), it appears that the standard chemical potential of a
species is its chemical potential when its activity is equal to unity. This definition of
the standard chemical potential is general, but it is purely formal (viz. paragraph 4).

9.2 The Activity Coefficient

Let us recall (vis Chap. 6) that the activity of a species is related to its “concentra-
tion” by a general relation of the kind

vi = ai/Ci (9.7)

y; is the activity coefficient of the species.

An activity coefficient is defined as being a dimensionless number whichever the
“concentration” unit is, if ever it does possess one. When this is the case, in order to
respect this definition, the activity coefficient must be defined by an expression of
the type

vi = ai/(Ci/C:°)

where C;° is the “concentration” of the species in a particular state (viz. under), with
C,° being expressed with the same units as C;.


http://dx.doi.org/10.1007/978-3-319-46401-5_6

9.3 A First Sight of the Physical Significance of the Quantities Activity and. . . 87

(Let us notice in passing that in the case of a gas (viz. Chap. 7), since the partial
pressure of a gas is an expression of the number of moles of the species in the
mixture, one can consider that the fugacity coefficient has the significance of an
activity coefficient.)

We shall see in the following chapters that there exist several kinds of activities.
A particular symbolism takes this point into account.

9.3 A First Sight of the Physical Significance
of the Quantities Activity and Activity Coefficient

We have seen in Chap. 8 that, in the case of a perfect solution, the chemical
potential u; of every component obeys the expression

w; = puf + RTInx;

where u.” is its chemical potential in its pure state and x; its molar fraction. Let us
also recall that for every mixture exhibiting an ideal behavior, the chemical
potential of every component depends on its “concentration” according to the
expression

u; = Cte + RTInC; (9.3)

where Cte is a constant.

When the mixture is not ideal, that is to say when the electrostatic interactions
between the species are not negligible—viz. Chap. 6—G.N. Lewis has introduced
the quantity activity in such a manner that the chemical potential of every compo-
nent may be written as

u; = Cte + RT Ing; (9.9)

where the constant Cte in both last relations is the same (viz. relation 6.4—Chap. 6).

* We see that the significance of the activity g; is that of a virtual concentration
(sometimes, we speak of a pseudo-concentration or of a corrected concentra-
tion). It confers the same chemical potential to the component i as that it would
have if it were at the concentration C; in the mixture of the same composition,
should it be ideal.

» Another physical significance of the activity appears after consideration of
relation (9.2). It is absolutely compatible with the previous one. We can note
that, through its logarithm, it measures the Gibbs energy difference between the
considered and standard states. It is a measurable quantity by measuring the
work which must be developed in order to perform this change (viz. Chap. 2).
Hence, we can deduce that an activity is a measurable quantity (see, however,
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the case of ions—Chap. 12). The following reasoning confirms this point. Let us
write the chemical potentials of the compound expressed as functions of the
fugacities:

— In the standard state

ui = ;" +RTInf;°
— In every state

Hi = ;" +RTInf;

The crossing from the first to the second state is endowed with the change in
the molar Gibbs energy AG®:

AG =RTInf,/f
AG =RTIna,

Since the chemical potential is a molar quantity (viz. Chap. 5), it appears that
an activity is endowed with a meaning of a change in the molar Gibbs energy
accompanying a process evolving from the standard state till some other state.

* In order to grasp the meaning of the activity coefficient, it is sufficient to write
(9.9) again and to introduce the expression (9.7) of the activity into it and,
finally, to compare the obtained relation (9.10) with (9.8). We obtain

u; = Cte + RTlny, + RTInC; (9.10)

At once, we realize that the term RT In y;, that is to say the activity coefficient,
represents the part of the chemical potential (belonging to the compound i) due to
its electrostatic interactions. In a way, this term quantifies the gap in “ideality.”

9.4 A First Return to the Standard State

We have seen that the standard chemical potential of a species is its chemical
potential when its activity is equal to unity. This definition is only a purely formal
one because it does not specify the thermodynamic state in which the species is
endowed with an activity unity, that is to say its standard state. It remains to
specify it.

Let us begin by stressing the fact that there exists no particular temperature
recommended to define a standard state. More precisely, standard states are defined
for a given temperature, arbitrarily chosen by the experimenter but, for practical
reasons, chosen as being that of the studied process.

The two following chapters devoted to the activities of gases and to the solutions
of nonelectrolytes will explicit this notion of standard state.
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9.5 Consequences of the Arbitrary Character
of the Standard State

The arbitrary character of the choice of the standard state induces the legitimate
question of the credibility of the numerical values of the thermodynamic quantities
obtained through the handling of the activities. Here, we give a first answer. A first
answer is that the arbitrary character of the choice of the standard state has no
impact on the value of the Gibbs energy change accompanying a process and, also,
has no impact on the changes of other thermodynamic state functions. We will go
deeper into the discussion with the help of the consideration of some equilibria
taking into account activities (viz. Chap. 19).

In order to conclude this point, we must first have in mind that the activity of a
species is a direct measure of the difference of the partial molal Gibbs energies
(chemical potentials) accompanying the crossing of the compound i from the
chosen standard state to that studied (viz. paragraph 1), that is to say

u; — ;" = RTng;

The very fact that the change in the Gibbs energy is constant is demonstrated as
follows.

Let us consider the crossing of one mole of gas from a gaseous mixture 1 to a
gaseous mixture 2 at constant temperature and pressure. Let us study this transfer
in two cases. The first one consists in choosing the state o as standard state
(process 1), and the second consisting in choosing the state p as the standard state
(process 2). For the process 1, the Gibbs energy change AG, is (using the function
fugacity—viz. Chap. 7)

AGlza :[RTlnf2 + C(T)] — [RTlnf‘xO + C(T)]—
{[RTInf, + C(T)] — [RTInf,* + C(T)]}

and for the process 2
AG1,P = [RTInf, + C(T)] — [RTlnfﬁ" + C(T)}

- {[RTlnf1 +C(T)] - [RTlnfﬁo + C(T)] }

These relations are justified by the fact that fugacities of the solute f, and f; remain
the same whatever the chosen standard state. Once the reference state is chosen and
maintained, indeed, the fugacities do possess a well definite value. However, they
are different in mixtures 1 and 2 since, owing to the process(es), the state(s) of the
system have changed. Both standard states, quite evidently, exhibit the different
fugacities f,° and f3°. According to these relations
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AG;x* =RTInf, — RTInf,° — RTInsf| — RTInf°

AGR" =RTInf,/f,” — RTInf, /f,°
AG," = RTIna, — RT Ind,

and also a;, a;, ag, and a'B are the activities in the mixtures 2 and 1 according to the

standard states o and p. The difference in the molar Gibbs energy accompanying the
crossing from the states 1 to 2 (same final and initial states) is obligatorily the same,
whatever the standard state; thus we obtain

AG;x* = AG,P
AG” = RTInay — RTInaj

It can be deduced from this thought experiment that the difference in the molar
Gibbs energy is independent from the standard states, whence the proposal.

One consequence of this fact is that the ratio of the activities in the same
experimental conditions a and &’ based on two different standard states is constant
whatever its concentration is. Since the standard states are different, the fugacities
in them are f° and /°’ and the activities based on them are

a=f/f° and d =f/f"
The ratio of activities is
afd = If°

since the fugacity f is the same. The ratio of activities is evidently a constant at a
given temperature.

We shall see later, especially when we shall consider the case of the electrolytes
and also the equilibria in which they take part, that the last sentence must be
somewhat shaded. Let us anticipate this point by saying that if the arbitrary choice
of the standard states does not change the value of the Gibbs energy of an
equilibrated process, it does change the value of the equilibrium constant.

9.6 Some Properties of the Activity Function

9.6.1 Dependence of the Activity on the Pressure

The fugacity in the standard state is defined at a constant pressure. As a result
Olnf°/op =0

and concerning the activities
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(Olna/0p);, = [OIn(f/f*)/ Oplr.
(Olna/0p); = (Olnf/0p);. (9.11)
(0lnf/0p)y = Vi /RT

because of the properties of the fugacity function (viz. Chap. 7, paragraph 5). V,, is
the partial molal volume of the solute in the solution and in the conditions of the
experience.

9.6.2 Dependence of the Activity on the Temperature

Let us again consider one of the definitions of an activity and divide the
corresponding relation (9.2) by T. We obtain

Rlna=u/T —u°/T

(9.12)
u/T=u°/T +RInf — R Inf°
Let us differentiate this relation with respect to 7. Owing to the properties of the
fugacity function (viz. Chap. 7), we obtain

[0(u/T)/0T)p, , = —Hu/T* (9.13)
[0(u°/T)/0T)p,, = —Hw' /T (9.14)

Let us recall that H,, is the partial molal enthalpy of the component at the
pressure and temperature of the system.

Now, it is interesting to anticipate the considerations concerning the standard
states which are in the following chapter. They mention that H,," is the partial molal
enthalpy of the solute when its behavior is perfect at the pressure of one unity, that
is to say in the standard state and thatH—m*is also equal to Hm* in the reference state,
as it is indicated by the superscript. Since the behavior is ideal both in the reference
and ideal states, we obtain

The molal enthalpy H,, in the reference state is equal to its molal standard
enthalpy, that is to say in the pure state H,,,°, under the pressure unity (viz. course in
thermodynamics)
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As a result, according to (9.14)
(0lna/0T)p, = (Hw® — Hm)/RT? (9.15)

The difference (Hy° — Hy ) is the change in enthalpy accompanying the transfer
of one mole of species from the solution to the pure state under the pressure unity.



Chapter 10
Activities of Gases

Abstract Although equilibria in gaseous state are the most often studied by
handling fugacities, they can also be studied by handling activities. With the
study of solutions in mind, it is however interesting, in a first step, to introduce
the notions of activity and of standard states in the case of gases. This first approach
is easier to grasp than that followed directly for the study of solutions and may be
used for an introduction of the latter ones.

The considerations mentioned in the chapter show that several standard states
can be indifferently chosen for the definition of the activities of gases; some are
easier to handle than others. The fact that several standard states can be chosen
leads to the conclusion that, actually, there are several kinds of activities charac-
terizing the same compound. Moreover, the chapter contains a comparison between
reference states and standard states.

Keywords Standard state ¢ Activity of a pure gas ¢ Activity of a gas in a gaseous
mixture ¢ Reference state « Chemical potential of a gas ¢ Other standard states

Although equilibria in gaseous state are the most often studied by handling fugac-
ities, they can also be studied by handling activities.

With the study of solutions in mind, it is however interesting, in a first step, to
introduce the notions of activity and of standard states in the case of gases. This first
approach is easier to grasp than that followed directly for the study of solutions and
may be used for an introduction of the latter ones.

10.1 Usual Standard State and Activity of a Pure Gas

The standard state of a pure gas is that in which it would exhibit an ideal behavior
under a well-definite pressure, called the standard pressure, at the chosen temper-
ature. The standard pressure most often retained is the pressure unity (historically:
1 atm). It is a hypothetical state since gases are no longer ideal at this pressure (with
the exception of dihydrogen in some conditions).

e Perfect gas
© Springer International Publishing Switzerland 2017 93
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10 Activities of Gases

Since the fugacity of a perfect gas is equal to its pressure (viz. Chap. 7), its

standard state is usually that of fugacity unity (f °=1 atm) at the chosen

temperature. But, we must pay attention. This is true only if the gas is perfect.

One gas, indeed, the behavior of which is nonideal, may exhibit one fugacity

equal to the unity by numerical accident. However, it is not its standard state.
According to the general definition of an activity (viz. Chap. 9)

a=f/f°
If in this state, f ° =1 unity,
whence
a=f/1 (perfectgas) (10.1)
In other words
a=f (perfect gas : numerical values) (10.2)

Hence, with the choice of the standard state such as f ° = I unity, the activity of a
perfect gas is equal to its fugacity. Moreover, since its fugacity is equal to its
pressure, its activity is also equal to its pressure:

a=p

It is interesting to notice that, since the gas is perfect, its fugacity is always equal
to its pressure, including its pressure in the standard state, whence the above
expression of its activity. When the pressure in the standard state is different
from 1 unity

a=p/p° (perfect gas) (10.3)

It is also interesting to notice that with the standard state such as f;° = 1 unity, we
can write

i = u;° + RTInf; /f:°
Ui = u;° + RTInf; (numerical values)

and, also, since (viz. Chap. 7)
u; = ;¥ + RTInf; (numerical values)
As a result

o

ui® = p*  (perfect gas; f;° = 1 unity)
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Owing to this choice of standard state, the chemical potential of the perfect gas
i is equal to the integration constant of the equation permitting the introduction
of the fugacity of a gas (viz. Chap. 7).

It is demonstrated in Chap. 26, relation (26.11), that

u;° = —kTIn {(Zﬂka/hz)?,/ sz} (perfect monoatomic gas)

This relation, stemming from a reasoning of statistical thermodynamics (viz.
Chap. 26), is interesting since it provides us with an expression, in concrete
molecular parameters, of the standard chemical potential. When it is introduced
only in classical thermodynamics, as it has been done up to now, the latter,
indeed, appears to be a rather mysterious quantity.
¢ Real gas

The usual standard state is the same as previously. It is the hypothetical state in
which the gas would exhibit an ideal behavior at the standard pressure
P° =1 atm, at the chosen temperature.

In the standard state, because of the (hypothetical) ideal behavior of the gas,
f=p°. With p°=1 atm, we find

f° = latm

The standard state remains that for which the numerical value of its activity a is
equal to the value of its fugacity f °, at a given temperature, that is to say to the
unity

a=f°/1 (standard state) (10.4)

a =1 (standard state) (10.5)

However, in every state of the gas, its fugacity is different from its pressure (if it
were the contrary, it would be no longer real on the contrary of the hypothesis).
The fugacity coefficient is different from 1. But, owing to the general definition
of the activity

a=f/f°
the latter remains equal to its fugacity (with f° =1 atm)
a=f (real gas with f° = latm) (10.6)
as a perfect gas. But, since f#p

a#p
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or more generally
a#p/p° (real gas)

There exists one exception in what is just mentioned, that is to say: the fact that
the fugacity of a real gas is different from its pressure. It is a reality in the whole
domain of concentrations. The exception is when the pressure is very weak,
when no longer interactions between atoms or molecules of gas do exist.
(Besides, it is in this domain of interactions that the relation has been set up:

f/p—1 for p—0

in order to fix the values of the fugacities.)
In these conditions

a =p/P° (real gas : very weak pressure) (10.7)

Finally, the interest of the choice of such a standard state (f° = 1 atm) lies in the
fact that the value of the activity of a gas is equal to the value of its fugacity.

10.2 Usual Standard State and Activity of a Gas

in a Gaseous Mixture

Ideal mixture

Let us consider the component i. We have already seen that (viz. Chap. 7) its
chemical potential is related through its partial pressure p; through the following
relation:

du; = RT dInp;,

We shall see (viz. paragraph 4) that its chemical potential u; may be expressed as

u; = u;° + RTInp;/ p;° (ideal gas or gaseous mixture)

where p;° is the partial pressure of i in the standard state and y;° its chemical
potential in the same state. p;° is an arbitrary pressure with respect to which y; is
based. It is expressed in the same units as p;. (We immediately check that when
Pi=pis ki=pi°.)

Usually, the standard state of the gas i is chosen in such a manner that its
partial pressure p;° is equal to 1 atm at the temperature of the system. Since the
mixture also exhibiting a perfect behavior by hypothesis, all the components also
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exhibit this “ideality” (viz. Chap. 8). The notion of fugacity applying to the
perfect gases and to the real ones as well results in the following equalities:

fi=pi
and especially
7 =p’
As a result,
a; =f; /fiO

as it must be, and

a; =p; (perfect mixture—p;° = 1unity) (10.8)

and more generally
a; =p;/p;° (perfect mixture) (10.9)

¢ Nonideal mixture of gases
The activity of gas i in the gaseous mixture is, of course, defined by the general
relation

a; :fi/fio

where f; is its fugacity in the considered state and f;° its fugacity in the standard
state.

Usually and as previously, the chosen standard state is that in which, at the
given temperature, the gas would behave ideally at the partial pressure
p¢ =1 atm. It is a hypothetical state in which, the mixture behaves ideally,

i =p
The same considerations as the previous ones lead to the following facts:

fi# pi
a; # pi/pi°

As previously, it results that the numerical value of the activity is equal to its
fugacity:

ai :fi/fio
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This comes from the choice of the adopted standard state, and one finds
a; = f; (numerical values f;° = 1 unity)

and that, at very weak total pressure P, the fugacity values tend toward those of
the partial pressures:

ai/p; — 1 (P —0) (numerical values)

Finally, with the chosen standard state (p;° = 1 atm, ideal behavior), the value of
the activity of the gas is equal to that of its fugacity, whether it be pure or real.

10.3 Reference State and Standard State

Through consideration of real gases, we saw that there exists a real state, hence
experimentally accessible, in which the properties of the gas, except one, are the
same in it as in the hypothetical standard state. The communal properties are due to
the ideal behavior exhibited by both the considered real state and the standard state.
This real state is that in which the total pressure of the mixture (or that of the sole
gas) is very weak. We saw that the interactions between the gas molecules are then
negligible. Its behavior becomes ideal. This state is the reference state.

The reference state is a real state of a very weak “concentration” in order that the
interactions between the particles constituting the system are negligible.

The property of a gas which is not the same in the reference state as in the
standard one is, evidently, the value of its fugacity or of its activity. Their values
are, by far, much weaker in the reference state than in the standard one, since its
fugacity and in the occurrence its activity (in numerical values) tend toward the
value of its pressure or toward that of its partial pressure (both being then very
weak) whereas, concerning now the activity in the standard state, it is equal to unity
by definition.

It is interesting to notice that in the communal properties of both states, there is
the fugacity coefficient which is equal to the unity. By definition of the
fugacity, indeed, it is equal to the unity in the reference state. In the standard
state, owing to the ideal character it exhibits its pressure is then equal to its
pressure.

The reference and standard states must not be confused. In brief, one can define
the reference state of a gas as a real state in which its fugacity coefficient is equal to
the unity. (We shall see that, in the case of solutions, the activity coefficient in the
reference state is also equal to unity.) Its standard state is a virtual state in which
not only its fugacity coefficient but also its activity are equal to the unity.

The fact that a reference state is real has the interesting and fruitful following
consequence: the properties of the standard state are obtainable by extrapolation
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until the value unity of the pressure, of the properties exhibited truly in the reference
state, which are experimentally accessible (see later)."

10.4 General Expression of the Chemical Potential of a Gas

The choice of the usual standard state permits to express the chemical potential of a
gas, perfect or real, pure or in mixture, under the following general relations:

u=p"+RTIna (10.10)
or
u; = ;" + RTIng; (10.11)

We shall justify the generality of this expression in the case of a mixture of perfect
or real gases. That of a pure gas is nothing else than a particular case of the mixture
one.

¢ In the case of a mixture of perfect gases, we have already demonstrated (viz.
Chap. 7) that the chemical potential of the component i is related to its partial
pressure by the two relations:

du; = RT dInp;,

and after integration
u; = u*+ RTInp, (10.12)

w* is the integration constant. It only depends on the nature of the gas and on the

temperature. (The fact that u* is characteristic of the sole gas i and not of the

mixture is an evidence. When the total pressure of the mixture is very weak and

when, then, it subsists quasi-alone, the above relation must still be verified).
After adoption of the usual standard state, we have

Hi = p* +RTInp; /1

This relation is satisfied at very weak pressure, that is to say in the reference
state. Hence p* is also the chemical potential in the reference state. Given the
fact that we are considering a mixture of perfect gases, the last relation may also
be written (partial pressures are equal to the activities) as

A possible confusion between the reference and the standard states comes from the fact that, in
literature, states called “reference standard states” are sometimes mentioned for which a particular
reference pressure is stipulated at a given temperature. We shall not use this term.
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u; = p*+RTIna; (10.13)
When p; =1, a; = 1. By definition, we are in the standard state and
Hi = i
and as a result

u®=pu; (mixture of perfect gases—f,;° = 1 unity)

The standard chemical potential of the gas is identical to that it exhibits in its
reference state. Then, the relation (10.11) is, actually, satisfied.

 In the case of a real mixture, the reasoning is strictly analogous. It is based on the
following relations:

4 =p +RTInf, (10.14)
' =p +RTInf,° (10.15)
where f;° is the fugacity in the standard state:

Wi — = RTlnfi/fio

ﬂi = ﬂio +RT1na1

The relation (10.11) is also satisfied. One must remark that this demonstration is
based on the fact that the fugacity of i in the mixture is equal to its partial
pressure in the reference state. This permits to set up both relations (10.14) and
(10.15) and to introduce the chemical potential ,u* of the gas in the pure state.

10.5 Other Standard States

There are two manners to choose the standard states. The first consists in varying
the numerical values of the parameters defining the state. This is legitimate because
the choice of a standard state is arbitrary. For example, the value P° =2 atm and not
the value 1 atm as previously may be chosen. The second manner consists in
choosing another physical quantity to which one assigns an arbitrary numerical
value. For example, one chooses to relate an activity to its molar concentration
instead of its pressure. In this paragraph, we are only interested in the second
manner.

Let us notice that the following considerations are valid for all kinds of systems
(gaseous, liquid, and solid).
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As an example, we choose to express the activity of a gas with respect to its
molar concentration c;°. In this case, the activity of a gas in an ideal mixture when it
is at the concentration c; is defined by the expression

ac = cifci’ (10.16)
where ¢;° is its concentration in the standard state. Its chemical potential is
u; =p.;" +RTn ag; (10.17)

(The index c indicates that the chemical potentials and activities are related to the
scale of molar concentrations.) The chosen standard state in this case is the state in
which the behavior of the gas is that of an ideal one at the molar concentration ¢,°,
for example 1 mol L™". Then, its chemical potential is expressed by

;= po © +RT1In(c;/1) (10.18)

The dimension of 1 is the mol L' and, hence, 1 represents 1 mol L™". 4.,° is the
chemical potential that the gas would possess if its behavior was ideal at the 1 molar
concentration (or, possibly, at the concentration ¢;°). When the concentration is
such that

¢;=1molL™" or C;=C,° molL™!
we find again
dc i = 1

It is, as awaited, the standard state (corresponding to the scale of molar concentra-
tions) since it obeys to the general but formal definition according to which the
activity of a species in its standard state is equal to unity.

It is interesting, at least from the theoretical standpoint, to relate the activity a. ;
to the fugacity of the gas f;. The followed reasoning permitting to find the corre-
spondence is based on the invariancy of the chemical potential of a species in a
given thermodynamic state. It is demonstrated that the expressions being searched
for are (see Appendix B)

ac; = f;/RT and ac;=a;/RT (10.19)

They are only valid in numerical values. With this new standard state, the propor-
tionality factor relating the fugacity to the activity is now 1/RT.
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Chapter 11
Activities of Nonelectrolytes in Liquid
Solutions

Abstract This chapter shows that the notion of activity in solution is more
complicated than in the gaseous state, although its introduction obeys the same
general principles. Notably, it also involves the choice of standard states. Among
the causes of complexity, let us first notice the obligatory occurrence of the solvent
in the system, in addition to that of solutes. To be more precise, from the strict
standpoint of the activities, the chosen standard states for the solutes differ from
those chosen for the solvent for practical reasons. Moreover and secondly, the
standard states chosen for a solute differ not only from those of the solvent but also
according to the scale of “concentrations” adopted for it, even when the solute
remains in the same thermodynamic state. As a result, the introduction and the
handling of activity coefficients differ from each other according to the scale of
“concentrations” of the species.

In this chapter, the most often encountered standard states adopted by the
community of chemists are mentioned. Temporarily, the case of nonelectrolytes
as solutes is only studied. That of electrolytes is still more complicated and is
considered in later chapters.

Keywords Standard states/pure solids ¢ Liquids ¢ Liquids in mixtures ¢ Solvent
and solutes * Rational and practical standard states ¢ Activity coefficients ¢
Relations between different activity coefficients

The notion of activity in solution is more complicated than in gaseous state,
although its introduction obeys the same general principles. Notably, it also
involves the choice of standard states. Among the causes of complexity, let us
first notice the obligatory occurrence of the solvent in the system, in addition to that
of solutes. To be more precise, from the strict standpoint of the activities, the chosen
standard states for the solutes differ from those chosen for the solvent for practical
reasons. Moreover and secondly, the standard states chosen for a solute differ not
only from those of the solvent but also according to the scale of “concentrations”
adopted for it, even when the solute remains in the same thermodynamic state. As a
result, the introduction and the handling of activity coefficients differ from each
other according to the scale of “concentrations” of the species.
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In this chapter, we mention the most often encountered standard states adopted by
the community of chemists. Temporarily, we only study the case of nonelectrolytes
as solutes. That of electrolytes is still more complicated and will be considered later.

11.1 General Definition of an Activity

Let us recall that the activity a of a species in a given thermodynamic state is equal
to the ratio of its fugacity f in the latter and of its fugacity in its standard one f°:

a=Fflf (1L.1)

It is at this point that the fact that every substance, whichever the physical state
under which it is (gaseous, liquid, or solid), does possess a fugacity (and also a
partial pressure even if the latter is very weak) takes all its importance. It permits an
identical definition of an activity in every circumstance.

11.2 Standard States of Pure Liquid or Solid Compounds

It turns out that, during the study of chemical reactions in which pure solids and
liquids are forming or disappearing, it is convenient to adopt these pure compounds
under the pressure of 1 atm and at the temperature of the system, as standard states.
According to this convention, the activity dpy. of a pure liquid or solid compound at
the pressure unity is taken to be the unity. Then, their molar fraction is, of course,
equal to 1(x = 1):

apyr = 1 (pure liquid or solid)

Evidently, they only form one phase.

11.3 Standard States of Liquids in Mixtures

In this paragraph, we consider the case of fully miscible liquids, such as the binary
mixture of water and methanol. Usually, the chosen standard state is that of the
component in its pure state, at the temperature of the system, under the unit
pressure. This choice presents the interest to maintain the symmetry of the theoret-
ical treatment of both components. Let us designate them by the indices 1 and 2:

a; = 1 standard state of compound 1 (x; = 1)

a; = 1 standard state of compound 2 (x, = 1)
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11.4 Standard States in Solutions

We successively consider the cases of the standard states of the solvent and of the
solute.

Let us begin to recall that the distinction between the solvent and the solute is not
evident. We confine ourselves to name the component of the solution which is in
excess, as being the solvent. In the following chapters, it will be marked by the
index 1 whereas the solute will be marked by the index 2. We essentially consider
binary solutions. From another side, the “concentrations” in solute are related to the
anhydrous matter. Except particular mention, we only consider binary solutions.

11.5 Standard State, Activity, and Activity Coefficient
of the Solvent

e The first point to mention is that the quasi-unanimously adopted scale of
“concentration” for the solvent is that of molar fractions. It is particularly
convenient from the practical standpoint since the values x; are only located in
the domain O0- 1.

The standard state quasi-systematically retained for the solvent is the pure
solvent at the pressure of the solution and at the chosen temperature. Its fugacity
f1° is given by the relation:

fi°=r

where f;" is its fugacity in the pure state (x; = 1) in the same conditions. The
pressure is often, except hazard, very different from 1 atm. Figure 11.1 which
represents the fugacity of the solvent as a function of its molar fraction illustrates
this choice.
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Fig. 11.2 Activity of the solvent as a function of its molar fraction

Given the general definition of an activity—relation (11.1)—the activity of the
solvent in the pure state is, as it must be, equal to unity since the fugacity in the
pure state is equal to that in the standard state:

a1°:l

The activity of the solvent cannot be larger than unity, given the upper limit of its
fugacity which is that it possesses in the pure state. Figure 11.2 shows the
activity of the solvent, the fugacity of which is given, as a function of its
molar fraction, in Fig. 11.1.

Quite evidently, both curves exhibit the same appearance since values of
activities stem from that of fugacities by division of each point of the latter by
the constant f,°. Notice that the activity of the solvent at its molar fraction x, is
given by the ratio NP/MP.

It is interesting to consider the behavior of the solvent in a perfect solution.
According to Raoult’s law (viz. Chap. 8) and according to the definition of the
standard state, when the solution is perfect

flleff
fllef:

and as a result
ay = xlfl /f1

a; = X1

In a perfect solution, the activity of the solvent is in linear relation with its molar
fraction. Let us remark, before studying analogous but different cases, that there
is no problem of dimension in the last equality, both quantities being dimen-
sionless. The slope of the line is 1 since it goes through the points of coordinates
(0,0) and (1, 1). The curve in dots of Fig. 11.2 is an illustration of this fact. That
in dots of Fig. 11.1 shows the fugacity of the solvent in the ideal case. Its slope is
no longer necessarily equal to 1 since its fugacity in the pure state is not equal to
unity apart by a numerical accident.
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From the practical viewpoint, the choice of this standard state is justified by the
fact that the more diluted the solution is, the closer to unity the solvent activity is
(factor, of course, easily handled).

e Two examples of the incidence of this choice of standard state on chemical
equilibria are found in analytical and physical chemistry. They are encountered
when the solvent simultaneously plays two parts in a process. The first is that of
solvent and the second that of a reactant. In this case, its activity is taken equal
to unity in the standard state and this explains why, generally, the activity of the
solvent most often does not appear in the expression of the mass law.

The first example is that of the definition of the constant K, of acid dissoci-
ation of the acid HA in water. The equilibrium is

HA + H,O0 = H;0" + A~

At equilibrium, the thermodynamic constant K° is expressed by
K® = aa - ay,o+/ aua - an,o

or equivalently

0
K aHzo = da - aHBOA/aHA

K°1 = apay,o+/ana (sufficiently diluted solution)
or usually
K® = aaay,o+/ana (sufficiently diluted solution)
In sufficiently diluted solution, indeed, given the choice of this standard state,
x =1
ap,o ~ 1
and by definition

Ka = K°aHzo ~1

The second example is provided by some global electrochemical reactions,
such as

Zn(s) + Cu*t =2zt + Cll(s)

Zngy and Cus) mean in the solid state. They are the electrodes. Each of them
constitutes a pure solid phase. Their activity is, by convention, taken to be the
unity (viz. paragraph 2). Usually, they do not appear in the expression of the
mass action law.
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» The values of the activity coefficient of the solvent stem from the previous
considerations.
The activity coefficient y,, called the rational activity coefficient, is, by
definition, given by the expression’

Yy = ai/x

Since the ordinate of each point of the line in dots of Fig. 11.2 is equal to its abscissa
(slope =1), it appears that the activity coefficient is equal to the ratio of both
segments NP and MP. In the example shown in Fig. 11.2, the ratio is systematically
lesser than 1. It is not inevitably the case. In any way, for a real solution, the ratio is
different from the unity. When the solvent is pure, it is equal to the unity.

11.6 Standard States, Activities, and Activity Coefficients
of the Solutes

Among all the possible standard states, two are particularly used in the case of
solutes: the rational and the practical ones. There exists only one rational standard
state. It is that in which the “concentration” of the solute is expressed in molar
fractions. But there are two practical standard states whether the “concentration” of
the solute is expressed in molality or in molarity.

11.6.1 Rational Standard State

The concentration of the solute is expressed in molar fractions.

« Itis wise that the standard state would be chosen in such a way that the value of
the solute activity tends toward that of its molar fraction in very dilute solution,
at the temperature of the solution. Hence, it is as follows:

afx; — 1 when x; — 0 (11.2)

"The index 7 recalls the word rational resulting from an ancient name (see paragraph 6). Actually,
according to IUPAC, in the present case, the symbol of the activity coefficient should be
symbolized by f since the standard state is obtained according to the Raoult’s law and since the
different “concentrations” are expressed in molar fractions. We do not use this symbol since a
confusion with the fugacity would be possible:

v, = NP/MP
7e = NP/¥,
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Fig. 11.3 Possible standard
states of a solute (scale of
molar fractions)
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The interest of this choice lies in the fact that Henry’s law is obeyed in this case.
Let us take the example of a solute, the fugacity of which is known in the whole
domain of the molar fractions (Fig. 11.3).

We notice that for the very weak molar fractions, Henry’s law is obeyed. The
curve of the fugacity is tangent to the line of equation for the low values of x;:

fa = knxz (11.3)

Since, in the standard state, the solution is by definition ideal and since then its
activity coefficient and its activity tend toward 1 (viz. Chap. 10), we can write

(f2/f2)/x2) — 1 when x, — 0 (11.4)

The value of the fugacity f,° in the chosen standard state is obtained after
comparison of relations (11.3) and (11.4). We immediately find

o

szkH

The fugacity in the standard state is equal to the value of the constant of
Henry’s law. It is marked on the Henry’ s line for the abscissa x, = 1. This
point (and then the standard fugacity) is experimentally accessible by extrap-
olation up tox; = 1 of the measures of fugacities for very weak values of molar
fractions. Here is the interest of the choice of this standard state.

It is clear that the chosen standard state is a hypothetical one. We notice,
indeed, that the real fugacity f5’ of the solute in pure state (at the same
temperature) (viz. curve in full line) is different from f5'. Actually, as a rule,
we can choose either the standard state of fugacity f5 or that of fugacity
12 =f, . From the practical viewpoint, the choice of the latter is awkward
and even impossible, since it involves the knowledge of the fugacity of the solute
in the whole domain of the molar fractions that is often impossible for a
solubility reason. On the contrary, it is not the case for the first possibility
since the Henry’s law is all the more obeyed as the molar fraction is weaker.
Quite evidently, it is the domain of concentrations where there is less risk of
solubility problems.
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e Figure 11.4 represents the activity of the solute as a function of its molar

fraction, its fugacity being the same as in Fig. 11.3 and the standard state
being obtained by extrapolation of Henry’s law.

We notice that the activity tends toward the molar fraction only for the weak
values of the latter. It is clear that the values of the activities obtained with the
pure compound of fugacity f5' as standard state differ considerably from the
previous ones (> < a3).

Hence, we can already see that the choice of the standard states governs the

values of the equilibrium constants (viz. Chap. 17).
The activity coefficients y, are given by the ratios NP/MP. They are dimension-
less numbers, since the activities and the molar fractions are dimensionless
numbers. It is very interesting for our purpose to note that their values may
change according to the chosen standard states, as it is shown in Figs. 11.4 and
11.5. We see that in the first case (the hypothetical one based on Henry’s law),
the activity coefficient is less than unity, whereas it is the inverse in the second
case, where it is also given by the ratio NP/MP.

Fig. 11.4 Activity and
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11.6.2 Practical Standard States

This subtitle means that the “concentration” of the solute is expressed either in
molalities or in molarities (viz. Chap. 1).

The choice of these units must be preferred to that of molar fractions as soon as
we consider the behavior of the solute. This is the present case. This assertion is
explained by the fact that when we use the former unities, the numerical values x,
are very weak and, hence, difficult to handle since, usually, the “concentrations” of
the solutes are weak. Expressed in molalities and molarities, the obtained values for
the same quantities of matter in the solution are larger than with the molar fractions.
Furthermore, as already mentioned, the weak solubilities encountered in practice
may be sufficient, then, to determine the activities.

« “Concentrations” of solutes expressed in molalities:

Figure 11.6 shows the fugacity of the solute as a function of the “concentration”

of the solute expressed in molalities m; related to the molality m;° in the standard
state, m; and m,° being expressed in mol kg~ '. Most often, m,° = 1 mol kg ~'.
In diluted solutions, Henry’s law is satisfied. Although, in principle, it expresses a
linear relation between the fugacity and the molar fraction of the solute, for the
very diluted solutions, the linear relation of the fugacity with the molality remains
obeyed. This is not a surprise since, at very weak concentrations, the molalities are
proportional to the molar fractions (viz. Chap. 1). It is the same thing with the
molar concentrations. The proportionality constants, of course, change from a scale
of “concentration” to another. Hence, Henry’s law can be written in this case as

fo=ku'my when my— 0

— Again, for the same reasons as previously, it is convenient to choose the
standard state in such a way that in diluted solution at the temperature of the
system and at the atmospheric pressure

e /My — 1 when my; — 0
Fig. 11.6 Definition of the
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Obeying simultaneously the last two relations directly leads to the fugacity f>°
in the standard state:

f,° =ky' (standard state)

This relation is only valid in numerical values since the fugacity is expressed in
atmospheres whereas the constant ky is expressed in atm/kg mol ' It is evident
that the standard state is hypothetical. It is the state of a solution obeying Henry’s
law, the concentration of solute being, most often, 1 mol kgfl.

The activity of the solute a, is defined as previously and, as it must be, by the
expression

am2 :fZ/fZO

Figure 11.7 shows the activity as a function of the molality related to the
standard molality.

It is interesting to notice that a real state, exhibiting an activity unity, may
exist. In Fig. 11.7, it is the point marked on the activity curve for the molality
m/2 However, it is not the standard state because it is not located on the limit
line stemming from that of Henry.

The activity coefficient y,,, is defined by the expression

Ay = Vp (M2 /M2°)

It is clear that it is a dimensionless number. It is easily accessible by
considering the diagram in Fig. 11.7. Let us consider, indeed, the point of

molality mlz/ and of activity a;;lz. Let us draw the line which joins it to the
origin. Its slope is a;;lz/m;. It is by definition endowed by the slope 7,,,5.
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Fig. 11.7 Activity and activity coefficient of the solute (scale of molalities)
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» “Concentrations” of the solute in molarities:
The considerations are here strictly analogous to those concerning the molalities.
They are based on Henry’s law. The standard state is the hypothetical one in
which the fugacity of the solute is equal to the constant of Henry’s law for a
concentration of 1 mol L' at the temperature of the system and at the atmo-
spheric pressure. The concentration ¢° in the standard state may differ from
1 mol L™". The activity coefficient of the solute 7., is defined by the relation

a =7a(c2/c2")

It is a dimensionless number. For the same solution, the activities of the solute
obtained according to the scales of molalities and molarities exhibit very close
numerical values, since the values of the “concentrations” themselves also are
very close to each other. As an example, let us consider 1 L of an aqueous
solution containing 192.6 g of potassium nitrate. Its molar fraction is 0.0348, its
molarity is 1.906 mol L™, and its molality is 2.004 mol kg~ '. However, we must
notice that this solution cannot, actually, be considered as being very diluted, at
least according to the analytical chemists.

11.7 Relations Between Activity Coefficients of the Same
Solute, the “Concentrations’ of Which Are Expressed
According to the Different Scales of Concentrations

It is the matter of this paragraph to set up the relations between the activity
coefficients of a solute in the same thermodynamic state when its concentrations
are related to the scales of molar fractions, molalities, and molarities.

For one solution of molality m,, the number of moles of solute is m, and the
number of moles of solvent is 1000/M, M, being the molar mass of the latter. The
factor 1000 comes from the fact that M, is expressed in g mol ', whereas the
molality is expressed in mol kg~'. As a result, a first expression of the molar
fraction of the solute x, is

Xy = my/(my 4+ 1000/M,)

X2=M2M1/(M2M1 + 1000) (11.5)
For a solution of molarity ¢,, the number of moles of solute is ¢,. The number of
moles of the solvent is (1000p — ¢oM3) /M. M, is the molar mass of the solute and
p is the density of the solution. 1000p is the mass of 1 L of solution whereas c,M, is
the mass of the solute it contains. The molar fraction as a function of the molarity is
given by the expression

xy = c2/[c2+ (1000p — c2M2) /M ]
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or equivalently by
X2 = oMy /[ca(My — M3) + 1000p] (11.6)
From (11.5) and (11.6), we obtain
Xy = mM,/(myM, + 1000) = CoM;/[C2(My — M;) + 1000p] (11.7)

For a very dilute solution for which we symbolize the molality by m,*, the
molarity by ¢,*, and the molar fraction by x,*, the density becomes that of the pure
solvent, that is to say, p°. Equation (11.7) changes and becomes

)Cz* = mz*Ml/IOOO = C2*M1/1000p0 (11.8>

The difference in the chemical potential of the solute in the solution where its
concentrations are x,, m,, and ¢, and in that where they are x,*, m,*, and c¢,* is
given by the ratio of the activities in both states, that is to say, by a,/a,* (viz.
Chap. 10). The activities in the less dilute state are, respectively, xoy,, My7,,, and
cy7.. In the dilute state, we know that with the chosen standard states, the activities
are equal to the concentrations expressed according to their scale of concentrations.
As a result, given the physical meaning of the ratio of two activities which
corresponds to the change in the Gibbs energy accompanying the path from a
state to another (viz. Chap. 10) which is the same whatever the scale of “concen-
tration,” we can write

Xoy /X2¥ = myy,/m* = cay.[er* (11.9)
By using relations (11.7) and (11.8), relation (11.9) leads to

7e = rm(1+ 0.001mM)) =y.[p + 0.00lc2(My — Ma)|/p°  (11.10)

The relation (11.10) is those we search for. In sufficiently dilute, when the values
¢, and m, are weaker than 0.1 and 0.1 mol kg™, the values of the three activity
coefficients are quasi-identical. Handling in the same manner (as just previously)
the relation (11.10) by taking into account relations (11.7) and (11.8), we obtain

Ym =7 (p — 0.00lc2M>) /p° (11.11)

This relation is useful from the practical standpoint since it permits the passing
from the activities based on the scale of molalities to that based on the scale of
molarities and inversely.

When all is said and done, we observe that if it is an indisputable fact that for the
same thermodynamic state the activity of a species does vary with the adopted scale
of “concentrations,” it appears that it is essentially due to changes in the values of
the “concentrations” themselves rather than changes in the values of activity
coefficients, as it is demonstrated just above.
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In relation with this point, let us recall that in physical chemistry it is the scale of
molalities which is generally used whereas in analytical chemistry, it is that of
molarities.

11.8 Dependence of the Activity Coefficients
on Temperature and Pressure

It is interesting to know the changes of the activity coefficients with temperature
and pressure, whatever the scale of the “concentration” to which the activity is
related to.

11.8.1 With the Temperature

¢ Concerning the scale of molar fractions:
ay =7y,X

whence, since x does not change with the temperature (x and T are independent
variables),

(Olna,/0T)p , = (Olny,/0T)p ,
According to relation (9.15) (viz. Chap. 9)
(0lna/0T)p , = (Hn® — Hy)/RT?
As a result
(Olny,/OT)p . = (Huw® — Hu)/RT* (11.12)

» It is the same for the scale of molalities, since the molality does not change with
the temperature. We find

(3Iny,,/OT)p., = (Hu® — Hy) /RT?

» Concerning now the scale of molarities, the demonstration is not the same since
the molarity of a species changes with the temperature since the volume of the
solution, that is to say, its density, changes with the temperature. In order to set
up the change in the coefficient y. with the temperature, let us consider relation
(11.11):


http://dx.doi.org/10.1007/978-3-319-46401-5_9
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Ve = 7mpo/(/) - 000162M2)

Neglecting the term 0.001c,M, with respect to the density p of the solution (this
is a reasonable approximation), we obtain

Ye = twP’/pP
whence

(Olny./0T)p, = (Hn" —Hn)/RT* + [0ln(p°/p)/ 0T,

11.8.2 With the Pressure

In Chap. 9 (relation (9.11)), we have set up the relation which gives the change of
the activity of a species with the pressure at constant temperature and molar
fraction:

(alna/ap)T,x = (V_m)/RT
where V,, is the molar partial volume of the species. Since
am = myp
as a result
(OIy,,/0P) = (V) /RT

Remark:

It is an experimental fact that the activity coefficients of nonelectrolytes also
vary with the charge of the ions in solution and, particularly, with what is called the
ionic strength of the solution. This point will be studied in Chap. 16.
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Chapter 12
Activities of Electrolytes

Abstract The consideration of the solutions of electrolytes by using the notion of
activity is that which, very highly, has been the matter of the largest number of
studies, in any case in the realm of the study of activities. The handling of the
activities is quasi-imperative as soon as one is faced with solutions of electrolytes
since, among all the solutions, the latter are those which exhibit the most strong
nonideality effects. This is due to the charges brought by ions. For example, even
when the “concentrations” of electrolytes are weak, equilibria constants in which
ions intervene are not constant, on the contrary to the solutions of nonelectrolytes.
Then, it is imperative to work with very weak “concentrations” so that these
constants can be considered as being constant.

Therefore, as soon as a solution does contain ions, the chemical potentials of the
different solutes must be the matter of supplementary theoretical and practical
considerations with respect to the solutions of nonelectrolytes. One is induced,
indeed, not only to define the activity and the activity coefficient of the whole
electrolyte but also for the ions coming from its dissociation.

The chapter is focused on the setting up of relations linking all these kinds of
activities. However these relations are fundamentally the same in the cases of
strong and weak electrolytes. Actually, it is clearer to successively treat both
kinds rather than to do that simultaneously. The study shows that a parameter of
great importance is the electric charge of the different intervening ions.

Keywords Activity of strong electrolytes/univalent and multivalent ¢ Activity of
an ion » Non-dissociated part of a weak electrolyte

The consideration of the solutions of electrolytes by using the notion of activity is
that which, very highly, has been the matter of the largest number of studies, in any
case in the realm of the study of activities. The handling of the activities is quasi-
imperative as soon as we are faced with solutions of electrolytes since, among all
the solutions, the latter are those which exhibit the most strong nonideality effects.
This is due to the charges brought by the ions. For example, even when their
“concentrations” are weak, equilibria constants in which ions intervene are not
constant, on the contrary to the solutions of nonelectrolytes. It is, therefore,
imperative to work with very weak “concentrations” so that these constants remain
constant.
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Actually, as soon as a solution does contain ions, the chemical potentials of the
different solutes must be the matter of supplementary theoretical and practical
considerations with respect to the solutions of nonelectrolytes. One is induced,
indeed, not only to define the activity and the activity coefficient of the whole
electrolyte but also for the ions coming from their dissociation.

To define these notions, we focus ourselves on setting up relations linking all
these kinds of activities. Although these relations are fundamentally the same in the
cases of strong and weak electrolytes, it appears that it is clearer to successively
treat the two kinds rather than to do that simultaneously.

12.1 General Considerations

— Given the electrolyte of general formula M, A, _, it ionizes in solution according
to the equilibrium

M, A,- = v, M + U AT (12.1)

z, and z_ are the charges of the ions (z, and z_ are not necessarily equal in
absolute values) and v, and v_ the stoichiometric coefficients. The ionization is
total in the case of strong electrolytes. We shall study the notion of activity in the
case of:

» The electrolyte taken as a whole. It is the species M, A, _.
+ Its ions M*" and A*".

— As in the case of the nonelectrolytes, the activity of every species (whatever it is
the electrolyte or one of its ions) is defined as being equal to the ratio of its
fugacities f in the studied solution and f° in the standard state, that is to say,

a=f/f° (12.2)

In the literature, in a quasi-systematic manner, the activity a of the different species
of concern is chosen in such a way that its value tends toward the one of its concen-
tration m expressed in molality or in molarity at infinite dilution, whether the electro-
lyte is strong or weak. Let us recall that in the standard state, not only the fugacity of the
species is f°, but its activity is also equal to unity by definition. Let us also recall that in
the standard state the properties of the species are the same as in infinite dilution.
(These definitions do not differ from those applying to nonelectrolytes.) Hence, the
previous considerations can be summarized by the following symbolism:

a/m—1 when m—0
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The origin of this choice is from practical origin. The solubility of the electrolyte in
the solvent may be, indeed, limited, and, of course, it is only with a weak dilution
that it is possible to have experimental data on their fugacities (vapor pressures) in
solution. (It must be well understood, however, that their “concentrations” may also
be expressed in molar fractions, in molarities, or in molalities as well.) It is of a
quasi-general use in physical and analytical chemistry to, respectively, choose the
molalities and the molarities, the molalities presenting the advantage to be
nonsensitive to the temperature. Let us remark that for the same “composition” in
solute, the numerical values of the molar fractions are weaker, than those of the
molalities and molarities, whence there is the preferential use of the two latter since
they permit to gain a better precision on the drawing of the Henry’s line. Here, we
only consider the “concentrations” of the different species expressed in molalities
m. The reasonings, obtained then, can also be applied without any difficulty to the
other scales of “concentrations.”

Hence, given these considerations, it appears that the strategy which must be
followed in order to define the activity of a strong electrolyte and consequently in
order to choose its standard state seems to be, as a rule, quite similar to that
followed in the case of a solute nonelectrolyte. Hence, it would be sufficient to
draw the Henry’s line, that is to say, to draw the diagram fugacity (vapor pressure)
of the species as a function for example of its molality, to prolong until the value
unity of the molality and, hence, to determine its fugacity in the standard state and
to obtain the activity for each point. Unfortunately, there exists a major difficulty in
applying such a strategy as soon as there is dissociation. It is the following one: the
fugacity of the electrolyte tends toward 0 when the molality tends toward 0, and that
with a null slope (viz. Fig. 12.1 which shows the case of hydrochloric acid).

Hence, with the electrolytes, it is impossible to proceed as with the nonelectrolytes.

{.'Lt;l[.t'ﬁ_,% ||1¢ /=
/I
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Fig. 12.1 Diagram of the relative fugacity (activity) of one electrolyte (hydrochloric acid) as a
function of its molality. Curve calculated by I.M. Klotz from data cited by G.N. Lewis and M. Randall
(According to .M. Klotz, Chemical thermodynamics, basic theory and methods, Ed W.A. Benjamin,
Inc., New York, 1964 and G.N. Lewis and M. Randall in “Thermodynamics and the free energy of
chemical substances,” Ed McGraw-Hill Book Company, Inc, New York and London, 1923)
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12.2  Activity of a Strong Electrolyte

In this case, reaction (12.1) goes to completion when it occurs from the left to the
right.

12.2.1 Case of the Univalent Electrolytes

Choice of the standard state
It is an experimental fact that in the case of a univalent strong electrolyte MA,
the diagram of its fugacity as a function of the square of its molality shows a line
of finite slope when its molality tends toward O (Fig. 12.2).

A good example is provided by a solution of hydrochloric gas in water.
Hence, according to experimental data, we can set up the following relation:

f» = kum® when m* — 0 (12.3)

where f; is the fugacity of the whole electrolyte and m its molality.

ky is the proportionality constant of Henry’s line. Since ki possesses a finite
value, it is convenient to choose the standard state in such a manner that the ratio
of the activity of the (whole) electrolyte a, and of the square of molality m* tends
toward 1 when m tends toward 0, that is to say,

a/m* — 1 when m — 0 (12.4)

The activity a, remaining is defined by the general expression

a :fz/fzo (12-5)

Fig. 12.2 Fugacity of an

univalent electrolyte as a WAty

function of the square of its
molality (same comments
as for Fig. 12.1)



12.2  Activity of a Strong Electrolyte 121

where f>° is the fugacity of the whole electrolyte in the standard state. The
expressions (12.3), (12.4), and (12.5) must be simultaneously verified. A very
simple reasoning, starting from the last relations, shows that it is the case when

f2° = kn (12.6)

The fugacity in the chosen standard state is equal to the constant of Henry’s law
in numerical values. It is obtained experimentally by extrapolating Henry’s line
until the value m?=1. Hence, the standard state of an electrolyte 1-1 is the
hypothetical one which would exhibit the value of the Henry’s law constant
(at the pressure of 1 atm and at the temperature of the system) for the value of its
fugacity. The chemical potential u, of the whole electrolyte is given by the
expression

Activity coefficient:
We can define the activity coefficient y, of the whole electrolyte through the
relation

ay =y (12.8)

The comparison of this relation with the equalities (12.4) and (12.6) shows that,
in the standard state and also in very dilute solutions, y, — 1.

12.2.2 Case of the Multivalent Electrolytes

Choice of the standard states:

Whatever the kind of electrolyte is, the most convenient standard state is that the
choice of which has the consequence that the ratio of the activity a, of the
electrolyte and its concentration tends toward 1 (in numerical value) when the
molality tends toward 0.

— In the case of a symmetrical electrolyte (in which the ions constituting it bring
the same charge in absolute value), the fugacity of the electrolyte in the
standard state is equal to the slope of Henry’s line:

fzo = kn

Henry’s line is drawn by writing the fugacity of the electrolyte as a function
of the square of its molality m?* (viz. the case of MgSOy, in Table 12.1). The
reasoning behind this choice is strictly the same as that followed in the case of
the univalent electrolyte.
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Table 12.1 Equations of Henry’s lines according to the kind of electrolyte
NaCl MgSO, Na,SO, AlCl; M,.A,

(v++v—)

= kym® kygm? kygm® kg kgm

— In the case of the dissymmetrical multivalent electrolytes, it turns out that,
according to their kind, the experimental Henry’s lines have the expressions
mentioned in Table 12.1 for mathematical equations.

In the same line of view as previously, it seems, at first sight, that one must
choose the standard states in which the fugacity f5° does possess the value of
the Henry’s law constant ky, obtained by extrapolation of its line until the
value m" =1 where n would be equal to 1, 2, 3,...(v, +v_) according to the
stoichiometry of the electrolyte.

Actually, there is a choice which proves to be more interesting than the
preceding one. It takes into account the fact that the concentrations of the
ions coming from the dissociation of these electrolytes are no longer equal
(viz. paragraph 3).

e Activity coefficient:
As usual, the activity coefficient of the solute y, is defined by the expression
(12.9), formally identical to (12.8):

Y2 = az/ my (12.9)

It tends toward 1 when m, tends toward 0. It is equal, of course, to 1 in the standard
state corresponding to the electrolyte.

12.3 Activity of Ions Resulting from the Dissociation
of Strong Electrolytes

We name strong electrolytes those which are fully dissociated. Others are named
weak electrolytes.

Until now, we did not take into account the dissociation of the electrolyte.
However, we were able to set up thermodynamic relations concerning the behavior
of the latter without having to take into account its dissociation. This lack of taking
into account is not at all surprising since the very structure of classical thermody-
namics is independent of the notions of atoms or molecules. However, the disso-
ciation is an experimental fact, the occurrence of which suffers no doubt. Hence, it
appeared interesting to give a thermodynamic framework to the ionic theory, given
its great importance.

Given the fact that classical thermodynamics do not take into account the
phenomenon of dissociation in its foundations, we can, already, forecast that a
thermodynamic theory of it must stem from some arbitrary choices.
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12.3.1 Monovalent Electrolyte MA

By hypothesis, the electrolyte is fully dissociated. As a result, naming m, and m_
the molalities of the ions M* and A™, the following equalities are satisfied:

my =m and m_ =m

Since for the dilute solutions, the fugacity of the electrolyte MA is proportional to
the square of its molality (Henry’s line), that is to say,

fa= kl—lm2
According to what is preceding, we can set up the equivalent relation
fa = ku(my)(m-) (12.10)

In other words, it is logical to relate the fact that the fugacity of the electrolyte is
proportional to the square of its molality in dilute solution to its dissociation in two
ions, in the occurrence of same “concentrations.”

» Chemical potentials and activities of the ions:
Since the existence of the ions is an unquestionable reality, it appeared interest-
ing to assign a proper chemical potential and a proper activity to every one. Let
M4, ayand u_, a_ be the symbols of these individual quantities. In the same spirit
as what is preceding, the activities of the ions are defined in such a manner that
they approach their molality at infinite dilution, in absolute values, that is to say,

a./my — 1 and a,/ m — 1 when m — 0 (12.11)
Concerning the definition of the chemical potentials of the ions, one sets up
pp=p"+RTIna, and p_=p_°+RT Ina_ (12.12)

A first choice, which is arbitrary but intuitive, consists in laying down the
chemical potential u, of the whole electrolyte as being equal to the sum of the
chemical potentials of both ions, that is to say,

Hy=Hy + 4 (12.13)

Let us compare the expression (12.7) and the expression (12.14) just under (the
latter resulting from (12.12) and (12.13))

Uy =" +RT Ina,

S (12.14)
po=p.°+pu_°+RTIn(a;)(a-)
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It is evident that a second arbitrary choice, consistent with the first one, consists
in setting up

Hy' =p "+t (12.15)

The result is the equality
ay = (ay)(a”) (12.16)

One may remark that it is possible to recover the relation (12.16) according to
another reasoning starting from the definitions (12.11). At infinite dilution,
indeed, starting from the latter ones, we can write

ar =m; and a_ =m_ (numerical values)

and according to (12.10)
fr=ku(ay)(a-)

Moreover, by definition

a =f,/f°
and with the standard state chosen for the electrolyte
ar =f,/kn

whence relation (12.16) is derived. This reasoning demonstrates that choosing
the standard states such as the activity values that are equal to the concentra-
tions in dilute solutions permits to automatically set up relation (12.15).

Relation (12.16) is often used in order to calculate the activity of an electro-
lyte by starting from the activities of its ions. We shall see (viz. considerations
under) that these relations can be generalized to all types of electrolytes,
including the weak ones.

e Activity coefficients of ions stemming from the dissociation of strong
electrolytes:

The introduction of the activity of ions induces the notion of the activity
coefficient of an ion. By analogy with other systems and in consistency with the
definitions of the activities of ions usually adopted, the activity coefficients of
ions are defined so that they obey the following relation, such as for a binary
electrolyte, through

Ym, =ar/ms and y,_ = a_/m_ (12.17)

Given the adopted definitions of the activities, it is evident that y, and y_ tend
toward unity at infinite dilution:

Ym, — 1 when m—0
Ym. — 1 when m—0
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Ym. andy,, are the activity coefficients on the scale of molalities. If the activities
had been related to the molarities or to molar fractions, the symbols of the
coefficients would have beeny. ,y. ory, ,y, and their values different. (The
coefficients y,,, y., and y, are sometimes named molal, molar, and rational
coefficients. 1)

The activity coefficients of the ions as others are dimensionless numbers.
From a rigorous mathematical standpoint, relations (12.17) are incomplete. They
should be written as

Ym, = a/(my/m°y) and vy, =a-/(m_/m°_)

wherem® ; andm® _ are the molalities in the standard states, for example 1 mol L™ !

It is of utmost importance to already notice that the activities of the ions and
their coefficients cannot be determined experimentally. This is due to the fact
that an ion cannot be alone in a solution. It must be obligatorily accompanied by
a counterion in order that the electrical neutrality of the solution should be
satisfied. The result is, actually, that every experimental information coming
from the solution is only an emanation from the whole electrolyte and not from
the only ion under study. However, their values can be approached, at least in
some conditions, by calculations, for example through the use of Debye—
Hiickel’s equations (viz. Chap. 15).

e Mean activity coefficient:

This is the reason why the notion of mean activity coefficient y, of an
electrolyte has been introduced. It is experimentally accessible. This is not a
surprise since it takes into account the occurrence of both ions of opposed
charges. It is defined as being the geometrical mean of the coefficients of the
ions. In the case of an univalent electrolyte, it is given by the expression

ve = (rir.)"

or
Yy = [(a+/m+)(a,/m,)]%

and according to (12.16)

ye= (a)"/m

'In the following pages of this chapter, we use the lightened symbols y, (and y_) for the scale of
molalities.
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Defining meaning activity a. by the relation

a; = [(a)(a)]'”
we obtain the relation
7+ =axz/m (12.18)
It is clear that
ay = (a2)1/2

We notice, according to relation (12.18), that by introducing the mean activity

coefficients and the mean activities, one obtains a relation between them which

is of the same type as that which is obtained with a non-dissociated derivative.
¢ On the physical meaning of the chemical potential of an ion:

For some authors, the chemical potential of an ion is nothing else than a fiction.

The argument is the following one. Let us, again, consider the case of a strong

univalent electrolyte MA. By the general definition of a chemical potential

Hy = (aG/amM)T,P, nl,mA
H_ = (aG/amA)T,P,nl,mM

my; and m are the molalities of the ions M* and A™, and #, the number of moles
of the solvent. G is the Gibbs energy of the whole system, and 7 and P are its
temperature and pressure. The fictitious aspect comes from the fact that the
chemical potential is a partial derivative. For example, the potential y, is the
change in the Gibbs energy of the system dG when the molality of M* is changed
by the differential dmy,, all the other variables defining the state of the system
being constant. In particular, it is the case of the molality of the counterion. Now,
from an operational standpoint, it is impossible to add an ion into the system
without adding one counterion since the electroneutrality must be verified.
Moreover, even admitting that this addition is possible, the simple addition of
an electrical charge, alone, would confer a supplementary electrical energy to
the system, supplementary energy by far larger than that which is of interest for
our purpose concerning the activities. In brief, the notion of the chemical
potential of an ion is doubtful.

Some authors somewhat shade the previous reasoning but their conclusion is the
same. They consider that since the differential dmy, is an infinitely (fixed) weak
quantity, as every differential, it is not necessary to add the counterion for the
respect of the electroneutrality. But, in this case, the change dG is immensely weak
and, hence, is imperceptible and the integration which permits to obtain the change
in Gibbs energy is impractical. In other words, the differentiation process permitting
the definition of the chemical potential of an ion, even if it is possible, cannot lead to
measurable results, but according to this standpoint, it remains conceivable.
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12.3.2 Multivalent Ions

Definitions of the chemical potentials and of the activities of multivalent ions:
The chemical potentials and the activities of the ions constituting the
corresponding electrolytes are defined as previously.

Standard states in the case of symmetrical bivalent electrolytes:

There exist more convenient standard states for dissymmetrical electrolytes than
those retained for the symmetric ones.

— Concerning the symmetrical bivalent electrolytes, for example MgSQO,, the
reasoning is strictly identical to that followed in the case of monovalent ones.
Relations (12.15) and (12.16) apply without any difficulty. As it was men-
tioned in Table 12.1, the Henry’s law line is of the type

fo=kum® or f = ku(m,)(m-)

The standard state quasi-unanimously retained is the hypothetical one, in which
the fugacity of the electrolyte is equal to the Henry’s constant at the unit pressure
and at the temperature of the system. One can verify that, as it is wanted by the
formal definition of an activity, its activity in this state is equal to 1 since m, and
m_ must be equal to the unity in order for f, = ky, while the ideal character is
satisfied.

Standard state in the case of multivalent dissymmetric electrolytes:

Let us consider the case of an electrolyte 2-1 such as sodium sulfate which
dissociates in two cations and one anion. By a reasoning identical to that adopted
in the case of symmetrical electrolytes, that is to say, by setting up that the
chemical potential of the electrolyte is equal to the sum of the chemical poten-
tials of both ions, we obtain the equality

a = (a+)(a;)(a-)

02 = (@ Va) (12.19)

The demonstration is very simple. The chemical potential u(Na,SO,) of the
electrolyte, taken as a whole, is given by the expression

,u(Na2504) = ,Llo (NaQSO4) + RT In a(Na2$O4)

The chemical potentials of the ions sodium and sulfate are given by the
expressions

u(Na™) = u,°+RT Ina(Na™)
y(SO42_) =u_°+RT In a(SO42_)

The first possible choice which can be done is to admit the following relation:

#(NaxS04) = 2u(Na™) + 14(S04*")
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We obtain relation (12.19), provided that we admit the following equality:
4#°(NaSO4) =2, °(Na®) + 1 u_°(S04*7)] (12.20)

It is very interesting to notice that if the standard potentials u,° and u_° are not
endowed with a physical significance, their linear combination above (12.20)
does have, as it is the case of the combination, 2 u(Na™) + 14(S04*").

e Activities and mean activity coefficients:
The mean ionic activity a. is defined as previously as being the geometrical
mean of the individual activities, that is to say,

a: = [(@(a)] " (1221)

or, in principle (viz. relation 12.19),
ay = (a)"? (12.22)

These two relations lead to an inconsistency.
When the solution is very diluted, it is once more interesting that the value of
the activity of each ion would be equal to that of its concentration, that is to say,

ar =my =2m (12.23)
a- = m_=m (12.24)

where m is the molality of the whole electrolyte. Let us replace a, and a_ by
their expressions (12.23) and (12.24) into (12.21). We obtain

ar = ®"3m (12.25)
or, in an equivalent way,
@ = (as)’ (12.26)
a =4m '

We notice that for the dilute solutions, the mean activity tends no longer toward
m but rather toward the factor (4)1/ 3m. In other words

13 When m — 0

ve= az/m— (4)

There is no major drawback that it would be the case, but this is not consistent
with the case of symmetrical electrolytes. Here is the new fact.

In this context, it is interesting to notice that the fugacity in the standard state,

that is to say, the variable defining the value of the activity can still be obtained



12.3  Activity of Ions Resulting from the Dissociation of Strong Electrolytes 129

y.al . 4
At P

S
1 0. ur & 4 1L
o { | Lo

< Aloudatd 2T

Fig. 12.3 Determination of the standard state for a ternary electrolyte (for example: Na,SO,)

exactly as in the case of symmetrical electrolytes, but it leads to a result which is
not consistent with relations (12.25) and (12.26). The usual extrapolation pro-
cess of the Henry’s line (in the present case—viz. Table 1 —f, = kym® of
equation so that the value m =1 leads by setting up f,° = ky, to the fact

a —m’ when m— 0 (12.27)

The only manner to make relations (12.26) and (12.27) self-compatible is to
adopt the quantity

[’ =ku/4

for the fugacity in the standard state.

Hence, the standard state is the hypothetical state in which the fugacity is
equal to the Henry’s constant divided by 4 in the present case, at the unit pressure
and at the temperature of the system. With this value, the coherence between the
mean activity of the ions and the activity of the electrolyte is reached. From the
graphical standpoint, it is sufficient to prolong the Henry’s straight line until the
molality unity and to divide the corresponding ordinate by 4 in order to obtain
the standard fugacity (viz. Fig. 12.3).

12.3.3 Generalization to Every Strong Electrolyte

Let us consider the electrolyte M, ,A,_ which ionizes by giving v, ions M*" and v_
ions A*~ according to reaction (12.1).
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— Its fugacity f; in very dilute solution is given by the expression
f2 _ km(u++u,)
or
fo = km"
with
v=(vy +v_)

The individual activities of the ions are related to the activity a, of the electrolyte
by the relation

(GM)D+(0A)D7 =day (1228)

It is obtained through the chemical potentials as in the case of the sodium sulfate
(viz. above). The chemical potentials of the ions are defined by the expressions

u(MFH) = p®(MFH) 4 RT In a(M7+) (12.29)
u(A*) = u°(A*") +RT Ina(A™) (12.30)

One arbitrary sets up the two following expressions:
p My AL ) = vp (M) +vop (A7)
and
UMy Ay ) = vop (M) +v_p (A7)

whence the following is derived:

a(M, A, ) = (a.) " (a )"~ (12.31)

— The mean ionic activity a4 is given by the expression
ay = ap!/¥ ) (12.32)

or

ar = [(aM)U+(aA)D—] 1/v
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— The mean activity coefficient y_. is given by the expression

ve= [(h)w(y_)”*} v (12.33)

Given relations (12.31) and (12.33) and since m, =mv, and m_=mv_, we
obtain the following relation:

Inay = Inmy + Iny, (12.34)

my is named the mean molality, defined by the expression

v+ /v

my = (my" "'m_"7)

— The fugacity in the standard state is given by the expression

[’ = kH/[(Mm)H(V—m)%]

12.4 Activities of Weak Electrolytes

In this case, it is necessary to consider the existence of a supplementary species, the
non-dissociated form. We shall see that, contrary to what may be perhaps intuitively
forecast, the fact that the electrolyte is not fully dissociated does not change the
preceding considerations.

— On the one hand the activity a, of the electrolyte M,,A,_, taken as a whole, is
equal to the product of the activities of the ions taken at the power equal to their
stoichiometric coefficients. In other words, relation (12.28) is still legitimate:

(am) " (an)"” = a (12.28)

— On the other, the activity a,q (nd: non-dissociated) of the non-dissociated
fraction is equal to the activity a, of the whole electrolyte:

dpng = dp (1235)

The demonstration of the result that weak electrolytes obey equation (12.28) is a
consequence of the equality (12.35) which, firstly, must be demonstrated.

Let us consider a solution containing the electrolyte M, A, _ as a solute, which
partially dissociates according to equilibrium (12.1). Let n; be the number of moles
of the solvent, n the total number of moles of solute, 7,4 the number of moles of the
non-dissociated solute, n, that of the ions M**, and n_ that of the ions A™".
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Starting from the stoichiometry of the dissociation reaction (12.1), we can draw the
following relations:

ny =vi(n — npg) (12.36)
n_=v_(n— nyq) (12.37)

An infinitesimal change dG of the Gibbs energy of the solution, at constant pressure
and temperature, is given by (viz. Chap. 5)

dG = ppgdngg + podny +p_dn_ + pdn (12.38)
According to (12.36) and (12.37)

dny =vidn —viodny
dn— =v—dn — v—dnyy

By replacing dn, and dn_ by the last two relations into (12.38), we obtain
dG = (ﬂnd — Uyply — v_ﬂ,)dnnd + (1/+/4+ + u_y,)dn + pydn (12.39)
The global equilibrium condition is such as
dG =0

We immediately notice that in order to be reached, we must simultaneously have
the factors of (12.39) involving the differentials d,q, dn, and dn; equal to 0.

The numbers of moles n and n; may be changed independently from each other.
The numbers n,q and n, and n_ also, since each position of the dissociation

equilibrium is possible. Hence, in order that the equilibrium should be reached in
these conditions, we must have:

(dG/dan)T,P,n,nl =0
The result of this condition is
Mg = Vil + Vop_ (12.40)
Equation (12.39) becomes
dG = (1/+,u+ —&—u,y_)dn—k;,tldnl (12.41)
Otherwise, at equilibrium

(aG/a”)T,P,m =0
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The partial derivative (0G/On)r.p 1 is, by definition, the chemical potential u of the
electrolyte, taken as a whole:

(5G/811)T’P’n1 = U (12.42)

After comparison of (12.42) and (12.41), since n; and n are independent from each
other, we obtain

H=Vipy + Vop (12.43)
Moreover, the comparison of (12.40) and (12.43) shows that
Hng = H

The chemical potential p,4 of the undissociated electrolyte is equal to the chemical
potential of the whole electrolyte.

Let us remark that relation (12.40) is no more nor less than the classical
expression of equilibrium of reaction (12.1).

The setting up of relation (12.28) is realized as it follows. The chemical
potentials of the ions are defined exactly as in the case of the strong electrolytes
(viz. (12.29) and (12.30)). The chemical potential and the standard one of the
undissociated electrolyte are those of the electrolyte taken as a whole, as we have
just seen. Let us reason with one mole of M, A, _.



Chapter 13
Determination of the Activity
of the Nonelectrolytes

Abstract The most used methods of determination of the activities of the non-
electrolytes are mentioned in this chapter. In addition, they may also be applied to
solutions of electrolytes. This aspect will be studied in the next one. At its
beginning, the principle of the determination of an activity of one component
from that of the other component of a binary solution is recalled. It is founded on
the Gibbs—Duhem’s relation. The mentioned methods are those based on the
determination:

Of vapor pressures

Of the activity of the solvent from the determination of its freezing point
Of the osmotic pressure

Of electromotive forces of suitable electrochemical cells

From gas chromatography

From excess functions and empirical relations

Values of some activities of this kind of solutes are given in this chapter. The
very important fact to know is the following one: the determination of the activities
of nonelectrolytes is a possible task.

Keywords Henry’s law « Gibbs—Duhem relation ¢ Activity of one compound from
that of the other ¢ Freezing point depression ¢ Electrochemical cell « Gas
chromatography ¢ Excess function

In this chapter, we mention the most used methods of determination of the activities
of the nonelectrolytes. In addition, they may also be applied to solutions of
electrolytes. This aspect will be studied in the next chapter. After having recalled
the principles of these methods, we shall give some results and values of some
activities of this kind of solutes.
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13.1 Activity of One of the Components of a Binary
Solution from That of the Other Component

Once the activity of a component of a binary solution, solvent, or solute is
determined, it is possible to calculate the activity of the other component starting
from the value of the former. The calculation is founded on the Gibbs—Duhem’s
relation, one form of which is (viz. Chap. 5)

Given the definition of an activity from the chemical potential
//li = ,Ltl-o +RT ln a;

the Gibbs—Duhem’s relation becomes
xidlna; +adIna, =0 (13.1)

This expression is applicable at constant pressure and temperature whatever the
adopted standard states since the chemical potential of a species in a given state is
constant for a given temperature. The rearranged relation (13.1) is

dlna1 = —()Cz/xl)d In ap (132)
dlna, = —(x1 /x)d In a; (13.3)

13.1.1 Activity of the Solvent from That of the Solute

The integration of relation (13.2) gives

X2

In(a/d}) = —J (x2/x1)d In a, (13.4)

/
X

a, and d, are the activities of the solvent in the two solutions where the molar

fractions of the solute are x, and x,. The ratio a,/a; is calculated by drawing the
curve (x»/x;) in ordinates as a function of the values In a, in abscissas and by
determining the area under the curve between the limits x’z and x;.

Actually, this process is poorly convenient from the standpoint of the precision
of the results. since, when the solution is very dilute, In @, exhibits very large
negative values and, as a result, the evaluation of the area under the curve is not
precise. It is based on expression (13.5) below, similar to (13.4). An interesting
variant of this integration process has been proposed.
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It involves the activity coefficients rather than the activities themselves. Its
principle stems from the following reasoning. For a binary solution:

X1+x=1
dxy +dxy; =0
xi(dxy /x1) + x2 (dxz/xz) =0

xidInx; +xdIlnx, =0
Subtracting this expression from (13.1), we obtain
dIn(ay /x1) = —(x2/x1)d In(a; /x7)

and after integration

X2

In(ar/x1) — In(a, /x,) = —J (/1) In(as /) (13.5)

x1

This relation can be simplified. At infinite dilution, x/l =1and x/2 = (0; the activity

a/l of the solvent is equal to unity because of the choice of the standard state usually
done (the unity of “concentration” is the molar fraction). The second term of the left
member vanishes and we obtain

X2
In(a; /x1) = —JO (xv2/x1)d In(az/x2) (13.6)

The area under the curve limited by the values x, =0 and x, gives the value Iny,
at the concentration x,.

As examples, Table 13.1 provides the necessary experimental data in order to
calculate the activity of mercury in the case of the amalgam of thallium at 20 °C.
They are stemming from the electromotive force of appropriate electrochemical
cells (viz. paragraph 5). In this table, x, is the molar fraction of thallium, a, its
activity, and a; the activity of mercury being searched for.

Table 13.1 Activity

: . X2 Xo/Xy ax/x; a/x,
coefficients of mercury in 0 0 ] ]
some amalgams by applying
relation (13.6) (According to 0.005 0.00502 1.06 0.9998
G.N. Lewis and M. Randall: 0.01 0.0101 1.15 0.999
Thermodynamics and the free 0.05 0.0526 1.80 0.986
energy of chemical 0.1 0.111 2.84 0.950
substances: McGraw-Hill 02 0.250 498 0.866
company, Inc, New York,

1923) 0.3 0.428 6.60 0.790
0.4 0.667 7.57 0.734
0.5 1.000 7.98 0.704
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Fig. 13.1 Example of

curve (xo/xy)/log(az/x;) Z/ ,1, 101 T T 4F[
permitting the obtention of

the activity of the solvent as o 8 —|— L |
the function of that of the i | -i
solute (case of thallium s i f]_ J__| % 1

amalgams) (viz. Table 13.1
and paragraph 5)

HH

g (5]

Figure 13.1 shows the corresponding curve (x,/x;)/log(a,/x;), the appropriate
area determination of which permitting the calculation of the activity coefficients
a l/xl.

13.1.2 Activity of the Solute as a Function of That
of the Solvent

The determination is based on relation (13.3) or on the following one:
dIn(ay/xp) = —(x1/x2)d In(ay /x)

or

In(az/x2) = —r (/) In(ay /1) (13.7)

0

Table 13.2 mentions the experimental data necessary to calculate the activity of
thallium from the activity values a; of mercury in a thallium amalgam, through
relation (13.7) (determination at 325 °C).

The curve (x;/x;)/log(a;/x;) built with the values of Table 13.2 is presented in
Fig. 13.2. (The indexes 1 and 2 remain affected, respectively, to mercury and
thallium.)

Actually, the graphical integration of (13.7) is difficult since for the solutions
very dilute (in solute), the ratio x;/x, tends toward infinite. Hence, this process
entails to possess very precise data at high dilutions. (Among others, there exists a
means to overcome this problem by a process of graphical extrapolation. Another
consists in carrying out a fit of an algebraic function on some experimental points
which are not endowed with a great imprecision.)
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Table 13.2 Activity ar a
. . X2 X1 X2
coefficients of mercury in
some amalgams by applying 0 1 1
relation (13.7) (According to 0.10 0.98 1.53
G.N. Lewis and M. Randall: 0.20 0.95 1.86
Thermodynamics and the free 0.30 0.92 2.05
energy of chemical
substances: McGraw-Hill 040 080 217
Company, Inc, New York, 0.50 0.87 2.23
1923) 0.60 0.85 2.28
0.70 0.83 2.30
0.80 0.82 2.31
(1.00) (0.80) (2.32)
/2
20
|
l
|
10
v
= T

™ T 0 &%( M/%J

Fig. 13.2 Example of curve x;/x,/log(a,/x;) permitting the calculation of the thallium activity in
some amalgams

13.2 Determination by Measurements of Vapor Pressures

Given the fact that the activity of every component of a solution is equal to the ratio
of its fugacity in the studied state and of its fugacity in the standard state and given
the links existing between the fugacity and the vapor pressure, it is intuitive that
measurements of partial pressure vapors may permit to approach the values of the
activities. The first condition is that the partial pressure vapor must be sufficiently
large in order to be measurable. However, it must not be too large in order to be
assimilated to its fugacity. That is to say, its partial pressure must obey the perfect
gas law. In these conditions

a=f/f°
a~p/p°

According to these considerations, we can determine the activity either of the
solvent or of the solute.
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13.2.1 Activity of the Solvent a;

The method of determination is based on the relation
ay = p,/p,°

p1 is the vapor pressure of the solvent in equilibrium with the solution where its
activity is aj. p;” is its vapor pressure in the standard state. The effect of the external
pressure may be considered as being negligible. Let us recall (viz. Chap. 11) that the
standard state of the solvent is unanimously chosen is the pure solvent at the
temperature and pressure of the system. Then, we can write

ay~p/p;’

p1 is the vapor pressure in the pure state at the same temperature and approximately
at the same pressure as the solution.

This method of determination of the activities of the solvents has been used for
aqueous and organic solutions.

13.2.2 Activity of the Solute a,

If the solute is sufficiently volatile in such a manner that the determination of its
vapor pressure above its solution is possible, its activity can be determined in the
same conditions as above through the measurement of its vapor pressure p, in the
state of the system and in the standard state p,° through the relation

ay = p,/py°

p>° is not, usually, the vapor pressure of the pure solute. p,° is the vapor pressure
which would be exhibited by the solute in the hypothetical standard state consisting
in a molal solution where it would obey Henry’s law. We have seen (viz. Chap. 11)
that

P2 = kn

The fugacity and, hence, the vapor pressure of the solute in the standard state are
equal to the constant ky of Henry’s law in the conditions mentioned above.

We know that in order to determine the latter, we linearly extrapolate the
Henry’s law until the molality unity.

From a practical standpoint, it may happen that the value of the vapor pressure
appreciably deviates from a line as soon as the molalities are very weak. In this
case, we must use another process to determine the constant ky. It is also a graphical
one. It consists in drawing the diagram solute pressure p, as a function of its
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Fig. 13.3 Graphical ' %)
determination of the partial = / My
pressure of the solute in its

standard state

Mo
b

molality m,. The obtained curve is extrapolated until down to the molality m,
null—Fig. 13.3.

At null molality, the ratio p,/m, is equal to the Henry’s constant, that is to say, to
the fugacity in the standard state. At null molality, indeed

py—f, and ay—m
As a result
(p2°/m) g = f2/ a2
and since a, =/f>/f>°

(PZO/m)m:0 :fzo
(on/m)mzo = kH

Graphical processes may also be used when the “concentration” scales to which are
related the activities are those of molarities and of molar fractions. Molalities are
simply replaced by the molar fractions and molarities in the drawing of diagrams.

Another approach is possible, but it is more rarely used than the previous one
because of the fact that it is only practised when the solvent and the solute are
essentially miscible in the whole range of concentrations. Then, for the standard
state of the solute, one can choose it in its pure state. Then, we are again in the case
in which it remains to determine the activity of the solvent. In this new standard
state, the vapor pressure of the solute is roughly equal to its vapor pressure in the
pure state. An interesting example of this double possibility of choice of a conve-
nient standard state is provided by the solutions of dibromine in carbon tetrachlo-
ride. The diagram of the vapor pressure p, of dibromine as a function of its molar
fraction is shown in Fig. 13.4.
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Fig. 13.4 Vapor pressure of dibromine as a function of its molar fraction in a solution of carbon
tetrachloride (According to G.N. Lewis and M. Randall: Thermodynamics and the free energy of
chemical substances: McGraw-Hill company, Inc, New York, 1923)

The line B is that of Henry. The pressure of bromine in this hypothetical standard
state is 0.539 atm. The line A shows the calculated values of the pressure if the
solution was perfect, the pure dibromine exhibiting a value of 0.280 atm. Hence, it
is the pressure in the real standard state defined as being the pure compound. The
curve C is the experimental one. The fugacity of the dibromine at each molar
fraction being equal to its vapor pressure p, whatever the chosen standard state, it is
evident that both activities according to the two standard states ax, (Henry) and ax,
(real) are in the ratio

a, (Henry) /a(real) = 0.280/0.539

This is an excellent illustration of the fact that in the same thermodynamic state, the
activity of a compound may exhibit different values according to the adopted
standard state.

13.3 Activity of the Solvent from the Determination
of Its Freezing Point

This process is very general. Although it is, in principle, a method of determination
of the activity of the solvent, it also permits to obtain that of the solute in the case of
the binary solution. Then, the activity of the solute is determined through the use of
the Gibbs—Duhem'’s relation once the activity of the solvent is known (viz. para-
graph 1 above). In this chapter, essentially we set up a general relation between the
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solvent activity and the depression of the freezing point. Supplementary precisions
will be given in the next chapter devoted to the determination of the activities of
electrolytes.

13.3.1 General Considerations

The matter of the whole paragraph is the depression of the freezing point of the
solvent of a binary dilute solution. The phenomenon is a consequence of the
equilibrium solid-liquid.

When a solid is separating from a binary solution, three cases may exist
according to the nature of the solid phase. The latter can be constituted by:

— The pure solute: In this case, the composition of the solution is purely and simply
the solubility of the solute at the pressure and temperature of the system.

— The pure solvent: The temperature of the system is then named freezing point of
the solvent at the composition and pressure of the system.

— A solid solution of both constituents.

For our purpose, the most interesting point is the second one. This is the reason
why we limit our study to it.

From the qualitative standpoint, when a solute is dissolved in a liquid phase,
initially pure, the fugacity of the latter is lowered. It becomes weaker than that of
the pure solid solvent which was that of the initial pure liquid phase in equilibrium
with it. There is a break of the initial liquid—solid equilibrium. In order to recover it,
the temperature of the system must decrease. It is the reason why, in this case, the
freezing point of the solvent is always lower than the normal freezing point.

13.3.2 Mathematical Expression Linking the Solvent Activity
to the Depression of the Freezing Point

In this paragraph, we are seeking for a mathematical expression relating the activity
a; of the solvent in every solution to the lowering of its freezing point due to the
presence of the solute into it. Having this relation in our hands, it is possible to
obtain the solvent activity once the freezing point is determined.

In order to set up the relation, one relates the chemical potential yg of the solvent
in the solid state, at the temperature 7, to its activity g in the solid pure state
through the standard chemical potential u°; of the solvent in the liquid state. The
relation is

Uy = " + RT Inay (13.8)
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Reasoning in such a manner is unusual but is perfectly legitimate, given the
arbitrary character of the definition of an activity. As we shall see it immediately,
with this choice, the activity of the pure solvent in the solid state is equal to its
activity in solution, the latter varying with the temperature:

ds — aq

It is true that this result may appear to be surprising since with the usually chosen
standard states, the activity of a pure compound is constant at given temperature
and pressure. This is not the case here as we shall see it. This result apparently
paradoxical is due to the fact that the fugacity of the solvent is identical (at constant
pressure and for a given temperature in both phases (solid pure and solution)). We
have already said that this is a condition of equilibrium (viz. Chap. 7). As a result,
since the fugacity of the solvent varies with the temperature and with the compo-
sition of the solution, the fugacity of the solid also varies. This is the base of the
phenomenon.

Concerning, now, the equality of the activities in both phases, it results from the
same reasoning. The activity ay is according to the general definition of an activity:

— For the solid phase (s: solid, I: liquid) as= fisotiay/fi°aig)
— For the hqllld phase a :fl(liq)/flo(liq)

with f(solia) =f1qiq) (€quilibrium). The fugacity f,°iq) is the same in both phases.
This is the result of the arbitrary choice of the same standard state. As a result
as—d;y.

13.3.3 Relation Between the Activity of the Solvent
and the Temperature of the System

Let us divide the expression (13.8) by 7. We obtain
Rlnag = pg/T — w°/T
Now, let us derivate this expression with respect to T at constant pressure. Given the
general expression of the partial derivate with respect to T of the ratio p/T at
constant pressure and composition (viz. Chaps. 2, 5 and 9)
[0(w;, T)/0T),, = —H;/T’

we obtain

(0lna,/0T), = (H\° — H,)/RT*
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In this expression, the partial molal enthalpies have disappeared because ug and ,°
are related to the pure solvent in the solid and liquid states. Hence, they are replaced
by the molal quantities (viz. Chap. 8, paragraph 8). The enthalpy difference
(H\° — Hy) is nothing else than the molal fusion heat AHyg;,, of the solvent at the
temperature and the pressure of the system:

Hlo — HS = AHt’usion
in which
(0ln ay/dT), = AHtusion /RT?

We have seen that with the chosen standard state, the activity of the pure solvent in
the solid state and its activity in solution are equal. As a result

(0ln a,/0T), = AHjusion/RT” (13.9)

This relation gives the change in the activity of the solvent with the temperature at
the freezing point at constant pressure. The change varies with the composition.
Hence, the expression relating the activity of the solvent at the freezing point can be
obtained by integration of this relation.

The integration of (13.9) is performed in the following way. It entails to know
the change in AHyon, With the temperature. The Kirchhoff’s relation (which relates
the heat accompanying a chemical or a physical process at a given temperature to
that produced by the same process at another temperature) is written in the present
case, since the heat of fusion AHy,, is referred at constant pressure:

[a(AHfusion)/aT]P = (CP)I - (CP)s (13.10)
[0(AH fusion)/ 0T ]p = ACp '
(Cp); and (Cp), are the molar calorific capacities at constant pressure of the solvent
in the pure liquid state and in the pure solid state. One can admit that, for a break
change in temperature, the calorific capacities are constant. Then, the integration of
equation (13.10) gives

AHfusion + Lo + ACp(T-T)) (13.11)

L, is the integration constant. It is the molar latent heat of fusion at temperature T,
freezing temperature of the pure solvent.

It is simpler, for the sake of simplification of the calculations, to change the
variable in order to continue the mathematical development. We adopt the variable
6 such as

To—T=0
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6 is the depression of the freezing point. Equation (13.11) becomes
AHtysion = Lo — 0ACp (13.12)
The expression which must be integrated is
dlIna; = [(Ly — OACp)/RT*|dT
Since dT = —df and T =T, — 0, it becomes

—dlna = [(LO—GACP)/R(TO —e)z}de (13.13)

The integration can be performed by developing the term 1/(To — ) according to
Newton’s binomial. This term can also be written as 1/To>(1 — 6/T,) "%, in which

1/(To — 0)* = 1/T3(1 +20/To +36* /T3 + - -+
Equation (13.13) becomes
—dIna; = 1/RT§[Lo + (2Lo/To — ACp)0+]do (13.14)

The integration is performed in the domain of the values of € going from O until the
value of 6, respectively, corresponding to the limits @; = 1 and a;. The integration is
immediate and gives, after having neglected the terms in 93, ot , ... since the weak
value of 6:

~Ina; = LoO/RT: + 6*/RTA(Lo/To — ACp/2) (13.15)

The expression (13.15 permits to determine the activity of the solvent a; knowing
the depression of the freezing point.

Let us recall that the relation (13.15 gives the activity of the solvent at temper-
atures which vary with the solute concentration of the solution. It is desirable to
transform the results obtained in this way into results at the same temperature. This
point is studied in Chap. 14.

Broadly speaking, the depression of the freezing point @ is of the order of the
1/10 °C for solutions, the concentrations in solutes of which are lower than 0.5 mol kg
~!. (Let us notice that it is relatively easy to measure differences of temperature of
the order of 107* °C between an aqueous solution in equilibrium with ice and
pure water.)
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13.4 Activity of the Solvent and Osmotic Pressure

In principle, the measurement of the osmotic pressure permits the determination of
the activity a; of the solvent of a binary solution. It is based on the existence of a
relation between the solvent activity and the osmotic pressure.

One knows (viz. Chap. 8) that, in order to recover the initial equilibrium, after
the system has given rise to the phenomenon of osmosis, one must apply a
supplementary pressure 7 =P — P, called osmotic pressure, to the solution consti-
tuting the system. P is the pressure above the solution before the initial equilibrium
has been recovered. Py is the pressure above the compartment containing the pure
solvent. (Let us recall that the osmotic pressure must be applied at constant
temperature and number 1, of moles of the solute.) Let ug; and u, be the chemical
potentials of the pure solvent and of the solution before the initial equilibrium
(broken by the addition of the solute) is recovered. After it is the case, the following
equality is satisfied:

P
Hot = My +J (Op1/OP)r ndp
Po

The partial derivative (Op/OP)r,» is equal to the partial molal volume of the
solvent in the solution (viz. Chap. 5):

(Op1/OP)g 0 =V

Thus

p—
Hor = My +J Vidp (13.16)

Po

The chemical potentials are related to the fugacities in the pure state f;° and in
the solution f; at the pressure P by the relations (viz. Chap. 9)

por = Hy +RTInf\° and p; =p +RTInf

After substitution into (13.16), we obtain

RT In(f," /f,) = r VydpP (13.17)

Po

By definition, the inverse of the above ratio of the fugacities is the activity a; of
the solvent:
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a :fl/flE|

in which

p
—RT In a; :J V,dP

Po

In order to set up the relation between the activity of the solvent and the osmotic
pressure, it remains, evidently, to know the changes of V, with the external
pressure. Assuming that they are linear, one can write at every pressure

Vi=Vo[l —a(P - Po)]

where V) is the partial molal volume at the pressure po (1 atm) and « is a constant.
Introducing this hypothesis, we obtain

(P
—RT In ay = V()J [1 —a(P —Po)]dP

Po

—RT Inay = Vo (P — Po)[1 — (1/2)a(P — Po)]dP
and finally
—RT Ina; = Vyr[l — (1/2)ax] (13.18)

This is the relation being searched for. In several cases, the partial molal volume
V) at pressure Py is purely and simply replaced by the molal volume V, of the pure
solvent in the preceding relation.

In practical use, the process consisting in determining the activity a; through the
measurement of 7 is not satisfactory. One of the difficulties it encounters is that it is
difficult to have a true semipermeable membrane at our disposal. Another difficulty
lies in the knowledge of the change in the partial molal of the solvent with the
pressure and the concentration. This is the reason why using the process based on
the osmotic coefficients is preferred. Its study is deferred to Chap. 14 since it is
overall used to determine the mean ionic activity coefficients.

13.5 Determination of the Activities of Nonelectrolytes
by Measurements of the Electromotive Forces

13.5.1 General Considerations

Let us recall that the determination of the activities of nonelectrolytes (and of
electrolytes) is possible through the measurements of electromotive forces (emf)
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of judiciously designed electrochemical cells (viz. Chap. 5). The emf of a cell may
depend on the activities of the species participating in the reactions occurring onto
the electrodes or on the activities of the species chemically reacting with the
preceding ones (viz. Chap. 14). In some galvanic cells, the emf may also depend
on the composition of the electrolyte in the cell. Finally, there still exist cells in
which the emf only depends on the state of the electrode. It is the case of some
concentrations of galvanic cells without a liquid junction (viz. Chap. 14). It is the
case of the galvanic cells equipped with electrodes constituted by metallic solutions
of changing concentrations such as metallic alloys or amalgams of different com-
positions. This kind of cell is represented, for example, by

Me(Hg), x5 |Me X|Me(Hg), x»

Both electrodes are amalgams of different concentrations x, and x, in the metal
Me. In these caculations, they dip into the same solution of the electrolyte MeX.
The experience shows that an emf creates, the value of which does not depend on
the concentration of the electrolyte but depends on the activities of the metal in the
amalgams, whence the used process.

13.5.2 Example of the Determination of the Activity
of Thallium in an Amalgam

An example of the previous process is provided by the use of the cell, the electrodes
of which are constituted by two thallium amalgams of different concentrations. The
measurements of the emf in some conditions permit to obtain the activities of
thallium (and even of the mercury—viz. above and later in this chapter) in both
metallic solutions constituting the electrodes.

Let us consider a galvanic cell, the electrodes of which are thallium amalgams of
different molar fractions, x, and x/z. The electrolyte is an aqueous solution of a
thallous salt. The cell is represented by the following scheme:

Tl (amalgam x} ) |thallous salt|TI (amalgam x,)

Both electrochemical reactions are as follows:

— For the electrode on the left (in the occurrence the electrode playing the part of
the anode since we are faced with a pile):

Tl = TIT + le”
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— For the cathode:

TIT +1e” = Tl

There is no global reaction of cell. The sole net process occurring is the
transformation

Tl(amalgame, x3) — Tl(amalgame, x,)

The difference in Gibbs energy AG accompanying the transfer of one mole of
thallium from the anode to the cathode is equal to the difference of the chemical
potentials y, and ,u’z of thallium in both amalgams, that is to say,

AG = p, — ity

AG = RT In(ay/a)) (13.19)
The crossing of one mole of thallium from one electrode to the other involves the
crossing of one faraday of electricity. The “increase” of the Gibbs energy of the
system AG accompanying the transfer is given by the expression

AG = —1FE (13.20)

F is the faraday (1 F = 96,485 C mol ') and E the observed potential difference in
the conditions of the determination. 1 is the number of electrons exchanged
between the two redox couples intervening in the global (virtual) reaction
(of cell). The measurement of E (at null current—viz. Chap. 5) permits to obtain
the ratio of activities. The comparison of the expressions (13.19) and (13.20) shows
that

E = —(RT/F)In(ay/a}) (13.21)

13.5.3 Determination of the Activity of the Metal
in the Amalgam

Actually, the measurement of E also permits to reach the activity of the metal in the
amalgam and not only the ratio of both activities, but this is solely possible after the
standard state of the metal has been fixed.

For the sake of illustration of the whole previous considerations, the activity of
the metal is determined after having chosen two different standard states.
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Fig. 13.5 Determination of the activity of thallium in the amalgams at 20 °C and x, = 0.00326
(According to G.N. Lewis and M. Randall: Thermodynamics and the free energy of chemical
substances: McGraw-Hill company, Inc, New York, 1923)

» Letus choose the standard state in such a way that the activity coefficient a,/x; is
equal to 1 at infinite dilution.
Equation (13.21) can be equivalently written as

Ina, = —EF/RT +1n d)
Let us subtract Inx, from the two members of the equality. We obtain
log(az/x2) = (—EF/2.303RT — logx,) + logd) (13.22)

In order to apply this relation, one builds a series of cells in which the composition
X, of the electrode on the right varies, whereas the concentration x’2 of the electrode
on the left is constant. The emf E of the different cells is measured and the different
values of the term in the brackets in relation (13.22) are brought on a diagram as a
function of the concentration x,. The curve is shown in Fig. 13.5.
When x, =0 (infinite dilution), according to the choice of the standard state, a,/
X, =1 log(ay/x,) = 0. (It is at this point that we can recognize that we adopt this
standard state.) The value of the term in brackets is then equal to —log a/z. Itis at
the value (2.4689) that the previous curve cuts the ordinates axis. Its corresponds
to the value a’2 =0.003396. Then, one can determine the ratio a,/x, and hence a,
in each of the amalgams by applying (13.21). The different obtained values are
mentioned in Table 13.2.
We notice that as soon as the amalgams are no longer sufficiently dilute, the
activities considerably move away from the concentrations x, as it is indicated
by the values a,/x, =y,. It is understood that the deflection with respect to unity
of the coefficient y, quantifies the deviation of the system with respect to Henry’
law, given the standard state.
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e Let us now choose the pure liquid thallium at 20 °C. In that case, the electro-
chemical used is symbolized by

Tl (pureliquid, x; = 1) ‘Thallous salt|Tl (amalgam, x;)

Let us notice that the standard state is already chosen by setting up x’2 =1 in the
electrode on the left. Now, the relation (13.21) is

E = —(RT/F)In(as/1) (13.23)

The thallium activity in the amalgam can be directly calculated from measure-
ments of E. However, there is a difficulty; thallium melts at 302 °C and the cell
symbolized above cannot exist. The difficulty can be overcome as follows. The
process consists in extrapolating the values a,/x, as a function of x, (viz.
Table 13.3) until x, =1 which defines a new standard state, differing from the
previous one. Given the fact that all the values used for the extrapolation are
obtained by working with liquid amalgams at 20 °C, the obtained value 8.3
corresponds to the pure thallium in supercooling. Since a,/x, =8.3, in the
standard state and since x, =1, the result is that the activity of thallium is
a,=238.3. But, given the fact that the values a,/x, used above to perform the
extrapolation have been established starting from the previous standard state
based on Henry’s law, the value a, = 8.3 is that of pure thallium in supercooling
based on the standard state defined in such a way that at infinite dilution the
activity is equal to its molar fraction.

However, adopting a standard state entails the fact that the activity of the species
must be equal to unity in it. To sum up, we can write:

a, (pure supercooled thallium, 20 °C)=8.3 (standard state: infinite dilution,
20 °C)

a, (pure supercooled thallium, 20 °C) =1 (standard state: pure supercooled
thallium 20 °C)

Let us recall that the ratio of the activities of the same species (in the same
thermodynamic state), based on two different standard states, is constant. Once
more, these results constitute an illustration of the fact that the activity of a
substance, in a given thermodynamic state, exhibits different numerical values
according to the choice of the standard state. As a result, the values of the constants
of equilibria involving these substances present different numerical values (viz.
Chap. 17). In continuation of the previous reasoning, the values of the activities a,
in the different amalgams of Table 13.3, based on the standard state at infinite
dilution, must be, of course, systematically divided by the factor 8.3 in order to
obtain their values in the new standard state.

The method, just described above, has been used in order to determine the
activity of a metal in another one, that is to say, in a liquid alloy or in other
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Table 13.3 Activity of thallium in some amalgams at 20 °C

X5 —E ng — logxs ;\1;—22 a,

0 —00 2.4689 1 0
0.003259 0 2.4869 1.042 0.003396
0.01675 0.04555 2.5592 1.231 0.02062
0.03723 0.07194 2.6660 1.574 0.05860
0.04850 0.08170 2.7184 1.776 0.08624
0.0986 0.11118 29177 2.811 0.2772
0.1680 0.13552 3.1045 4.321 0.7259
0.2074 0.14510 3.1780 5.118 1.061
0.2701 0.15667 3.2610 6.196 1.674
0.3361 0.16535 3.3159 7.031 2.363
0.4240 0.17352 3.3558 7.707 3.268
0.428 (sat.)" 0.17387 3.3580 7.75 3.316
TI (liquid, supercooled) 8.3 8.3

amalgams. Let us mention the determination of lead in an alloy of lead and bismuth,
of bismuth or cadmium or potassium in amalgams.

13.5.4 Activity of the Mercury

As it has been said above, the previous process also permits to determine the
activity of the other component of a binary mixture. In the case of amalgams
such as that of thallium, the values of the activities of thallium, obtained as
described, permit to reach those of mercury by using the Gibbs—Duhem’s relation
(viz. the beginning of this chapter).

13.6 Determination of the Activities of Nonelectrolytes
with Varied Instrumental Methods

Here, we confine ourselves to the description of a method based on the use of the
chromatography in vapor phase. It is named “inert gas stripping and gas chroma-
tography.” It consists in determining the decrease of the concentration of the solute
(the activity of which being asked for) in the gaseous phase as a function of time as
its elimination from the liquid phase is in progress because of the bubbling of the
inert gas into it. The concentration in the vapor phase is of course determined by gas
chromatography.
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The activity coefficients determined in such a manner are those at infinite
dilution. The method exhibits the advantage to be a kinetic one. The values are
extracted from the decreasing curve. Hence, we can cast off the value of the initial
concentration which is at least quite uncertain, given the high dilutions used.

13.7 Determination of Activities Through Excess Functions
and Calculation of Activities Through Empirical
Relations

Thermodynamic properties of solutions, in particular those of mixtures of non-
electrolytes, are frequently studied through consideration of excess functions. They
are quantities by which the Gibbs energy, entropy, and other thermodynamic
functions differ from the corresponding ones of an ideal solution of same compo-
sition. In particular, the excess Gibbs energy is related quasi-directly to the activity
coefficients, where there is the existence of another process of determination of
activities. Otherwise, we know that there exist empirical relations of the type of
those of Margules and van Laar (viz. Chap. 8). They permit to fairly well calculate
the fugacities and hence the activities of the components of nonideal solutions.

Let us slightly anticipate what is described in Chap. 16. Of utmost importance is
the notion of excess Gibbs energy G* which is experimentally accessible. It permits
to determine the activity coefficients. One of the methodologies consists in finding
mathematical relations between this quantity and the molality m (or the molar
fraction x) of the solutes. This is done by starting from experimental data. Most
of the time, these relations are polynomial.

For example, in the case of only one nonelectrolyte solute, the following relation
is satisfactory:

(G®/weRT) = Am® 4+ um® + -

wy is the mass of the solvent and A and u are fitting parameters. We shall see that,
after derivation, one can obtain the activity coefficient of the solute y and the
practical osmotic coefficient ¢, (viz. Chap. 14) according to the relations

Iny = 2Am + 3um* + - --
by — 1 = Am +2um® + - -
A and pu must be, of course, known. This is realized by fitting the experimental data

of G to the molalities or molar fractions.
We defer the study of these means of calculation of activities to Chap. 16.
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Tab:le 134 Adctivities. of M ay & logy
:3?1‘;0‘::2211210?;‘:;“ 0.1 0.99819 1.0072 0.0062
function of the molality of 0.3 0.99449 1.0226 0.0193
saccharose (According to 0.5 0.99068 1.0393 0.0333
R.A. Robinson, R.H. Stokes, 0.7 0.98676 1.0569 0.0479
Electrolyte Solutions, 2nd Ed, 0.9 0.98272 1.0754 0.0631
Dover Publications Inc, 2002, 12 0.97641 11044 0.0868
New York)
1.6 0.96755 1.1447 0.1197
2.0 0.95818 1.1857 0.1535
3.0 0.93284 1.2863 0.2382
4.0 0.90560 1.3761 0.3185
5.0 0.8776 1.4500 0.3906
6.0 0.8496 1.5084 0.4541

13.8 Some Results

At concentrations lower than 0.1 mol kg ™', the difference between the activity of a
non-charged species does not differ from its concentration by a deflection larger
than 1 p 100. This is the reason why in dilute solutions, the activity coefficients are
taken to be equal to unity during, for example, the calculations involving chemical
equilibria. In Table 13.4, we give the activities of water and saccharose as a
function of the molality of the latter. The activity coefficients of uncharged mole-
cules are generally higher than unity.



Chapter 14
Determination of the Activities
of the Electrolytes

Abstract As arule, the determination of the activity of electrolytes obeys the same
principles as the ones of nonelectrolytes. However, electrolytes exhibit a particular
behavior. This induces the using of some particular methods of determination.

It must be borne in mind that the matter, here, is the determination of the activity
of the whole electrolyte and not that of each of the ions constituting it, which is
theoretically impossible.

The book is primarily devoted to the determinations in aqueous solutions. In
addition, water is, given its physical properties, a solvent particularly interesting in
order to study the behavior of electrolytes and ions. The described methods are
those based on the determinations of the freezing-point depression of the solvent,
isopiestic principle, osmotic coefficients, excess Gibbs energies, electromotive
forces, and solubilities.

Keywords Freezing-point depression ¢ Isopiestic method ¢ Osmotic coefficient
(rational and practical) « Excess Gibbs energies ¢ Electrochemical cell ¢ Activities
and electromotive forces * Activities and solubility « Solubility product

As a rule, the determination of the activity of the electrolytes obeys the same
principles as the ones of nonelectrolytes. However, electrolytes exhibit a particular
behavior. This induces the using of some particular methods of determination of
their activities.

Let us recall that the matter is to determine the activity of the whole electrolyte
and not the determination of each of the ions constituting it, which is impossible.

In this book, we are primarily interested in the determinations in aqueous
solutions. In addition, water is, given its physical properties, a solvent particularly
interesting in order to study the behavior of electrolytes and ions.

© Springer International Publishing Switzerland 2017 157
J.-L. Burgot, The Notion of Activity in Chemistry,
DOI 10.1007/978-3-319-46401-5_14



158 14 Determination of the Activities of the Electrolytes

14.1 Activity of the Electrolytes by the Measurement
of the Freezing-Point Depression of the Solvent

The method is based on the use of relation (13.14) of Chap. 13 that we can write
under the form

—dIna; = 1/RT§[Lo + b0 + c6* +....]do (14.1)

where b and ¢ are constants and L, the molar latent heat of fusion of the pure solvent
at the freezing point of the solvent under 1 atm. It relates the freezing-point
depression @ of the solution to the activity of the solvent a;. The activity of the
whole electrolyte is obtained from that of the solvent by using the Gibbs-Duhem
relation

dlna; = — (x1/x3)dIna (14.2)

as we have seen in Chap. 13. It is convenient to modify somewhat the relation (14.1)
in order for it to become easier to handle.

The basic reasoning of the method of determination is the following. Relation
(14.2) may, for solutions sufficiently diluted, be written as

dlnag = —(nl/nz)dlnal (143)

since in the denominator (n; + n7), n; is negligible with respect to n;, given the high
dilution. Let us set up that 7, moles correspond to 1 kg of solvent. In this case

ny = 1000/M,

where M, is the molar mass of the solvent. n, is then the number of moles of
electrolyte in 1 kg of solvent. Hence, it is its molality m. Now, relation (14.3) is
written as

d In a; =— (1000/mM;) d In a;
This last relation combined with (14.1) leads to

dlna; = 1000/ [RTGM | [Lo + b0 + c&” + ... |d6/m (14.4)

The expression (RT3M,/1000Lo) is exactly the molal cryoscopic constant of the
solvent 4 (viz. thermodynamics). Consequently, the relation (14.4) becomes

dlna, = d0/im + afd6/m (14.5)
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where the symbol 1 is introduced in order to simplify the writing with
1 /4= (1000/RT§M;)Lo
and by setting up
a = 1000/ [RTo*M,|(b+cO +...... )

Before integrating the relation (14.5), we must express the activity of the whole
electrolyte a, as a function of the mean activity a.. of its ions. One knows (viz.
Chap. 12) that

azzai

where v is the total number of ions given into the solution per mole electrolyte
(v=v,+v_). The result is

dlnay = d0/vim + a0d6/vm (14.6)

The integration of this expression is not immediate. We confine ourselves, here, to
only giving the result. Details concerning it are given in Appendix C. It involves the
intermediary function j defined by the relation

j=1-08/vim

It leads to the expression

m

Iny, — — L jdinm — j+ (a/v)JO (0/m) do (14.7)

The first integral of relation (14.7) is graphically evaluated by drawing the function
J» which is known (it is obtained from the freezing point of the solvent) as a function
of Inm, and by determining the area under the curve. The second integral is also
evaluated graphically by drawing 6/m as a function of 6. For the solutions of
concentrations lower than 0.1 mol kgfl, the latter is negligible. For the solutions
of concentrations lower than 10~ mol kg, the first integral can be calculated by
using an empirical relation between j and m.

It must be noticed that the values found in such a manner are those of the
activities at the freezing point of the solution. For solutions more concentrated
than 0.1 mol kg~ ', one must consider that there is a change of the activity
coefficient with the temperature. This is done by taking into account the change
of the relative partial molar heat content of the solvent with the temperature through
the Kirchoff’s relation which relates its change to the difference of molal calorific
capacities (at constant pressure) of the liquid and of the solid (viz. Chap. 13).
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14.2 Isopiestic Method

This is one of the simplest methods of determination of the activity of electrolytes.
It has been especially used in the case of aqueous solutions. It can be applied to
nonelectrolytes as well, but it has been the matter of the most applications in the
first case.

Its principle is the following one. The method consists in comparing the prop-
erties of two solutions, each containing a nonvolatile solute. The activity of the
solvent of one of them has been, beforehand, determined with a great precision.
When both solutions in the same solvent, maintained isothermal, are placed in an
evacuated container, the solvent of the solution of higher vapor pressure (that is to
say the solution of higher fugacity (hence activity)) will evaporate and condensate
into the solution of lower vapor pressure, until the equilibrium is attained. Then, the
solutions will have the same vapor pressure. The solvent has the same fugacity and,
hence, the same activity in each (the reference state is the same in both solutions).
They are said isopiestic. Let us suppose that one of these solutions contains a
reference substance and that its mean ionic activity coefficients are known at
different molalities, after having used a suitable method of determination. Hence,
with such data, a calibration curve has been built. The molality of the solute in each
solution is measured. That of the solution of reference, once known, is reported on
the calibration curve. Hence, we obtain the activity of the solvent in the solution
under study which is identical to that of the reference solution.

Finally, the activity of the solute in the studied solution is determined by
applying the Gibbs-Duhem relation. The isopiestic method is an indirect one.

From the quantitative standpoint, the method is based (at its end of application)
on the relation (viz. (13.2) Chap. 13)

dlna1 = —(Xz/)(l)dlnaz
which in terms of the solvent molality becomes
(mM,/1000) dlna, = — dlna,

since x,/x = ny/ny and since for 1000 g of solvent n; = 1000/M, and then n, = m.
In the case of an electrolyte, according to the relation (12.32) (viz. Chap. 12)

dlna, = vdlnay
Hence
(vmM,;/1000) dlnay = — dlna; (14.8)

a. is the mean activity of the ions in the solution and m the molality of the
electrolyte. For the electrolyte of reference, one can write
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(VeetMiretM 1 /1000) dInayer = — dlnay (14.9)
At equilibrium, according to (14.8) and (14.9)
Ve Myetd INarer = vmdInay (14.10)
According to relation (12.34) of Chap. 12,
dlnay =dlnmg + dlny,
Hence, we can write
Vief Mretd INMyery o = vimdInmy v, (14.11)

Yrer Deing the mean activity coefficient of the reference electrolyte. Let us suppose
for sake of simplification that v,.; = v (by no means does this simplification change
the generality of the reasoning) (14.11) becomes

mdlnmy vy = Mierd IN Doty g (14.12)
Relation (14.12) can be equivalently written as
diny, =dIny. + dIn(mes/my) + (Myeg/me — 1) dInMyer Vg
or by introducing the ratio r = m.¢/m-. of both solutions said isopiestic or isotonic:
diny, =dny +dIn r+ (r — 1) dInmges ¥, (14.13)

After integration, we obtain

Aref

Iny, = Iny,+1In r—|—J [(r = 1)/aret|daret (14.14)
0

since y and y,.r are equal to unity and, hence, their logarithms equal to zero when
m and my are equal to zero, that is to say, at infinite dilution. The integral is
evaluated by a graphical means. The area under the curve (r—1)/a,.r as a function of
Qrer 18 determined. a,.¢ varies from 0 until the point corresponding to the solution of
molality m. isopiestic with that of molality m. Another graphical means is pro-
posed for the sake of precision of the results. It is founded on the determination of
the following integral equivalent to the previous one:

/

2[ 1 - v/aad

0
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with

d= ar]e/f2 et da’ = dale/fz.
The power '2 which occurs above is a remnant of the Debye—Hiickel relations (viz.
Chap. 15).

It is an evident fact that the comparative nature of the method is a drawback
because its use entails that the calibration curve (vapor pressure of the solvent/
electrolyte concentration of the reference solution) must be known with a great
accuracy. But, it is a fast method. The determinations are easier to do with solutions
rather concentrated, the only limit being the saturation of one of the solutions. The
lowest limit for which the method is no longer workable seems to be 0.1 mol kg .

In some cases, the method is jointly used with that involving the osmotic
coefficients (viz. the next paragraph).

14.3 Activities from Osmotic Coefficients

This is a method of determination of activity coefficients. From the purely exper-
imental viewpoint, it finally involves the determination of the vapor pressure of the
solvent of the solution of the electrolyte. It may be direct or involve the isopiestic
method. It involves the notion, of rational and practical osmotic coefficients.

14.3.1 Rational Osmotic Coefficient

One knows that the chemical potential of the solvent of the solution containing the
electrolyte is

ur = " +RTIn a (14.15)

or

Uy =u;°+RT In x1 7, (14.16)

u:° is its standard chemical potential, a; its activity, and y, its activity coefficient. It
is said rational since the concentration is expressed in this case in molar fraction x;.

The chemical potential of the solvent can also be expressed in terms of rational
osmotic coefficient ¢,. It is defined by the following relation:

u, = u° +§RT In x; (14.17)
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It is a dimensionless number. The comparison of (14.17) and (14.16) leads to the
following relation between the activity coefficient of the solvent and its osmotic
coefficient ¢,:

Iny, = (¢, — 1) In x; (14.18)

The osmotic coefficient ¢, is a quantity which permits to evaluate the deflection
from the “ideality” of the solvent and to obtain the activity coefficients of the solute
by repercussion.

14.3.2 On the Physical Significance of the Rational Osmotic
Coefficient

The rational osmotic coefficient ¢, is roughly equal to the ratio of the osmotic
pressure of the solution and that of the corresponding ideal system. According to
relation (13.18) of Chap. 13, indeed

—RTIna =~ Vyz
or

—RTIn x; —RTIny, =~ Von

For an ideal solution in the same conditions of temperature, pressure, and concen-
trations, for which the osmotic pressure is 7', we can write

—RTIn x; = Vor'
whence, taking into account (14.18),
n/n = ¢,

It appears that ¢, approaches unity at infinite dilution since, then, the solvent
follows the Raoult’s law.

14.3.3 Practical or Molal Osmotic Coefficient ¢,

One also uses the practical or molal osmotic coefficient ¢, (m means related to the
molalities) defined by the expression
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wi = 1"~ §,RT(M,/1000)E m;

X m; is the sum of the molalities of all the nonelectrolyte species and all the present
ions and M the molar mass of the solvent. When there is only one electrolyte and if
one mole of the latter provides v ions, one has £ m; =v m and the previous equality
becomes

u =" — ¢,,RT(vmM,; /1000) (14.19)
The comparison of (14.15) and (14.19) leads to

In a; = — ¢,,ymM, /1000 (14.20)

Relations (14.19) and (14.20) link the solvent activity a; (and its chemical potential
u1) and the practical osmotic coefficient ¢,,,.

14.3.4 Relation Between Rational and Practical Osmotic
Coefficients

We note that (by definition of ¢,)

In gy = ¢, Inx (14.21)
with

x1 =ny/(ny +ny)
(the index 1 is that of the solvent and index 2 that of the solute). In order to simplify
the reasoning, let us suppose that the solute is a strong electrolyte, the molality of
which is m. It gives vm ions in solution:

ny =vm
Now, we can write
ny = 1000/M,

whence (since n, = vm)

x; = 1/(1 4+ vmM;/1000)
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and according to the definition of ¢,

In a; = ¢, In[1/(1 4 vmM;/1000)]

or
Ina =¢, [—In(1+vmM,;/1000)]

After having expanded in series the logarithm of the right-hand member and after
having only kept the first two terms, we obtain

nay =~ { [ymM/1000)] — [vmM;/1000)]°/2 + ...}

with (relation (14.20) 1)

In a; = —¢,,vmM; /1000
it results in the equality:

1—¢,/d, =vmM,;/2000

Hence, in very dilute solution, the rational and practical osmotic coefficients tend to
be equal:

¢n — @, (very dilute solution)

14.3.5 Theoretical Interest of Handling the Practical
Osmotic Coefficient

The interest of handling the practical osmotic coefficient lies in its relation with the
mean ionic activity coefficient of an electrolyte. Let us differentiate the relation
(14.20), m and ¢,, being the variables. We obtain

dlna; = —(vM,/1000) (¢, dm + md ¢,,)
Let us combine this relation with (14.8). We obtain
mdlnay = ¢, dm+ mdgp,,

or

dnas = ¢, dinm + dg,,
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or (viz. paragraph 2 of this chapter)

dlnay =dlnm+dlny,

It follows the relation between the mean ionic activity coefficient y, and the
molality m in terms of osmotic coefficients:

diny, = (¢, — 1) dlnm +d ¢, (14.22)

14.3.6 Determination of the Activity Coefficient Starting
Jfrom the Practical Osmotic Coefficient

It results from the integration of relation (14.22). The utilization of (14.22) entails,
in a first step, to determine ¢,,,.

e Measurement of ¢,,

— ¢, can be measured by starting from measurements of vapor pressures by
using the relation (14.20) knowing that by definition

ds :fs/st

and approximately

ag ~ ps/ psD

Dy 18 the vapor pressure of the solvent above the solution and p," that of the pure
solvent at the same temperature. It is the same for the corresponding fugacities.
As a result, relation (14.20) becomes

¢m ~ —(IOOO/Vli) In (pl/plm)

The measurement of the vapor pressure can be performed directly by the
isopiestic method (viz. immediately under).

— Another way for the determination of the mean ionic activity coefficients, also
based on the determination of osmotic coefficients, is as follows. Its consists in
determining the osmotic coefficients of a reference substance in some domain of
concentrations. Then, the activity coefficients of another electrolyte may be
found through the isopiestic method.

— The practical osmotic coefficient can also be obtained from the measurement of
freezing point of the solvent. Here, we take advantage of the great accuracy of
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this measurement, especially when the solvent is water. The practical osmotic
coefficient is related to the depression of the freezing point of the solution
through the relation

G = (QApsH® [RT? ) [0/m + (1/ Tty — AC,/2A1H® )0 /m +...] (14.23)

where Q = 1000/M, is the number of moles of solvent in 1 kg of pure solvent.
Relation (14.23) results from the juxtaposition of relations (13.20) and
(13.15)—Chap. 13.

» Integration of (14.22).

The integration is performed through the introduction of the following function 4:
h=1-¢,

Let us already recall that ¢, = 1 and 4 =0 at infinite dilution. With the introduction
of the function 4, (14.22) becomes

dlny, =—hdlnm—dh

After integration between the limits 0 and m and because of the properties of & and
¢, at infinite dilution

Iny, = ,J hdln m— h (14.24)
0

The integral is evaluated graphically by drawing 4 as a function of In m and by
determining the area under the curve. Another option which may in some cases be
more precise than the previous one consists in handling the equivalent equation
under (with m’ = m'”?

'

Iny, = — ZJ (h/m")ydm' —h
0

By comparing the relations (14.24) and (14.7), it appears that
h=1J

since in (14.7), in sufficiently dilute solution, the last integral is negligible. As a
result, since we have seen that, at infinite dilution, j tends toward 0, it is the same for
h. (This is a result that we have already used in the above integration.) Hence, at
infinite dilution

¢, = 0/vim
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Table 14.1 Practical osmotic coefficients of aqueous solutions of potassium chloride at 25 °C
m 0.1 0.2 0.3 0.5 0.7 1.0 1.5
¢ 0.926 0.913 0.906 0.900 0.808 0.899 0.906

According to R.A. Robinson, R.H. Stokes, Electrolyte Solutions, 2nd Ed., Dover Publications,
Inc., 2002, New York

The practical osmotic coefficient is equal to the ratio of the depression of the
freezing point and the quantity vAm (viz. paragraph 1).

14.3.7 Practical Interest of the Introduction of Osmotic
Coefficients

It is an experimental fact that the activity coefficient of the solvent differs very
weakly from unity. In the case of dilute solutions, it may differ from unity by only
1/10,000th whereas that of the solute may differ from some 1/100th. The osmotic
coefficients are by far more sensitive. Hence, the measurements of the deflections
with respect to the ideal character are more significant with the latter. For example,
a solution 2 mol L ™" of potassium chloride in water exhibits for the latter an activity
of 0.9364 at 25 °C. Its molar fraction being 0.9328, its activity coefficient is 1004.
At first sight, this value does not permit to take into account the deflection with
respect to the ideal character whereas it is the case with the mean ionic activity
coefficient of the solute (y, =0,614).

As further examples, Table 14.1 mentions some values of the practical osmotic
coefficients obtained with some aqueous solutions of potassium chloride at differ-
ent molalities at 25 °C.

14.4 Determination of the Solute Activity Coefficients
from Excess Gibbs Energies

We have already recalled, in the case of the nonelectrolytes, that it is possible to
determine the activity coefficients from excess Gibbs energies (viz. Chap. 13). It is
the same with electrolytes (viz. Chap. 16).
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14.5 Determination of the Activity Coefficients
of the Electrolytes by Measurements of emf

Let us recall that a * concentration galvanic cell” is a cell, which provides electric
energy spontaneously due to the Gibbs energy change accompanying the transfer of
one substance from one electrode to the other (from that with the larger concentra-
tion to the other). There does not exist a global chemical reaction in such cells.
Finally, let us recall that there exist galvanic cells, the working of which involves
transference of ions from a compartment into another one. In this case, in order to
avoid a too fast mixture, one uses an appropriate device called a liquid junction.
Cells with a liquid junction are, hence, cells with transference. (It is understood, of
course, that the “concentration” in the compartment can be expressed with any scale
of “concentration.”)

The activity coefficients of electrolytes can be determined with cells without
liquid junction or with cells with transference (viz. Chaps. 5 and 13).

14.5.1 Determination with Cells Without Liquid Junction

Examples of this kind are given in Chap. 18 devoted to the determination of
thermodynamic constants of equilibria which involves, by definition, the use of
activities. The method permits the direct measurement of the mean activity coef-
ficient of an electrolyte. Let us anticipate the results given in Chap. 18 by mention-
ing the fact that the global reaction of these cells involves the formation of the
compound at the mean activity that is, actually, required. For example, with the cell

Pt|H,(1 atm)|HCI (m)|AgCl(s)|Ag
the cell reaction is
1 /2H,(1 atm.) + AgCl(s) — HT(m) + Cl~(m) + Ag(s)

The cell emf only depends on the activities of ions hydrogen and chloride since the
silver halide, silver, and dihydrogen are in their standard state in the conditions of
the experiment.

This method of determination may be, in principle, generalized to every electrolyte.

14.5.2 Determination with Cells with Transference

The determination of activities is also possible with cells with transference (viz.
Chap. 13 and Appendix D). An example is provided by the determination of the
mean ionic activity of a solution of hydrochloric acid with the following cell:
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Pt|H,(1atm.)[HCI(m’)

|HCI(m)|H, (1 atm.)|Pt

Two solutions of hydrochloric acid of different molalities are in contact through a
device, symbolized by Il permitting the flow of current and avoiding the mixture of
the solutions.

The principle of the determination is based on the fact that, once the transference
number of an ion is known as a function or its “concentration,” its activity
coefficient can be obtained from the emf of a suitable cell with transference. (The
transference number of an ion is the fraction of the total current transported by this
ion—uviz. electrochemistry).

Let us suppose that the galvanic cell has debited 1 faraday and evaluate the
processes occurring without forgetting the fact that ions cross over the junction,
thus ensuring the flow of current. The occurring electrochemical reactions are

1
at the anode EHZ =H" +1e

1
at the cathode HT + le” = 3 H,

Finally for 1 faraday debited and for the electroneutrality to be respected, there is
a gain of 7_ moles of HCI by the left compartment and for the right one a loss of
moles of HCI in order to respect the electoneutrality of both.

One demonstrates (viz. Appendix D) that

dE/t_ = (2RT/F) (dlnm + dlIny.) (14.25)

m is the molality of the solution, E the emf of the cell, 7_ the transference number of
the anion, and y.. the mean activity coefficient.
For the integration, we introduce the function 6 through the following equality:

1/t_=1/tg +6 (14.26)

tr is the transference number (here of the anion) at the molality reference mg. The
transference number, indeed, varies with the concentration. With this introduction,
(14.25) becomes

dlny, = (F/2tzxRT)dE — dlnm + (F /2RT)SdE

After integration between the limits mg and m, the mean activity coefficients yg and
Y+ play a part in the following expression:

In(y. /vr) = (FE/tx2RT) + In(mg/m) + (F/2RT)J§ SdE (14.27)

The first two terms are immediately calculated from the experimental values, once
the reference concentration is chosen. The last term is obtained by graphical
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integration by drawing the § values as a function of E. The § values are calculated
by using relation (14.26), since, according to the principle of the method, the
transference number values t_ are known as a function of molalities m.

The experimental measurements consist in performing a series of measurements
of the emf of a cell with transference, the molality of one compartment being fixed
to m’, that m of the other compartment being variable. The emf is related to the
activity coefficients, molalities, and transference numbers through the preceding
relation. One draws the curve In (y./yg) as a function of m for the fixed mg. The
value of the molality of the studied solution reported on this curve provides the
value of the corresponding term In (y./yg). In order to know y. it remains to
determine y. The value yy is obtained after extrapolation of the curve In (y./yg) as
a function of m at m = 0. In these conditions, for m =0, y, = I. This entails that we
choose as the standard solution that which has the same properties as the infinite
dilute solution. A better method from the viewpoint of the accuracy of the result is
to proceed to the extrapolation at m =0 of the function stemming from Debye and
Hiickel’s theory (viz. Chap. 15)

logy./vg + 0.5107Vm/(1 + 1.350Vm)

in order to obtain the value of In yg.
The activities of several metallic chlorides have been determined in this manner,
by using a cell sensitive to the ion chloride:

Ag|AgCl|NaCl (m’)||NaCl(m)| AgCl|Ag

For example, it is the case of alkali and alkaline earth metals chlorides and
lanthanide chlorides. In these cases, it is the transference number ¢, and not 7_
which must be now considered and moreover the sign of AG (related to E£) must be
modified.

14.6 Determination of the Activities of the Electrolytes
from Measurements of Their Solubilities

The activity and the activity coefficient of a poorly soluble electrolyte may be
obtained from measurements of its solubility when it is in mixture with other
electrolytes, once its solubility product is known.

Let us consider the electrolyte M,,A,_ which dissociates according to the
equilibrium (symbol (s) meaning in solid state):

M, A, _(s) = viM*"" +v_ A"
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We shall see (viz. Chap. 18) that the equilibrium condition is
K =ayf ay /amyian-

According to the usual conventions concerning the activities, that of a solid at
atmospheric pressure and forming only one phase is chosen to be equal to unity.
Here, it is the case of a4, Hence, we can write

_ v+ v—
K = ay ay

The equilibrium constant is named solubility product and is symbolized by K. ay
and a, are the activities of both ions at saturation of the solution, at atmospheric
pressure, and at the chosen temperature. According to what is preceding

v v— v, v—
Ks =m_m_y_ Yy_

or
K, = (mi 7j:)v

where m, and y. are the ionic molalities and the mean activity coefficient in the
saturated solution and where v=v. + v—. One deduces that

v =Ky [ ms (14.28)

Hence, the mean activity coefficient of a poorly soluble electrolyte can be
determined provided that its solubility product is known together with its mean
ionic molality in the solution saturated with the electrolyte.

In order to perform the determination, one begins by obtaining the solubility
product K by measuring the mean ionic molalities at saturation of the electrolyte in
the presence of variable quantities of other electrolytes. (Other electrolytes may
have or not one ion in common with the electrolyte under study. Even if only two
ions are formed in solution by dissolution of a salt, their activities depend on the
presence of other salts. One must, of course, take into account the concentration of
the ions in common with those of the electrolyte in the calculations.)

Figure 14.1 mentions the solubility of silver chloride in the presence of sodium
perchlorate in variable concentrations.

We notice that the solubility slightly increases with the concentration of the
added salt. This effect takes its roots in the fact that activity coefficients decrease
while the concentration of the added salt is increasing (viz. Chap. 15). As a result,
the only way to make sure that the solubility remains constant is such as the
solubility product of both ions increases.

The determination consists in drawing the obtained mean ionic molalities
obtained as a function of variable amount of ions (actually and usually as a function
of the ionic strength—of the solution (viz. Chap. 15)). The value m_. obtained after
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Fig. 14.1 Solubility of
silver chloride as a function
of the concentration of
added sodium perchlorate

extrapolation until a null value in added ions into the solution permits to reach the
solubility product. The simple consideration of relation (14.28), indeed, shows that
K, is accessible since, then at infinite dilution, the mean activity coefficient is equal
to 1, given the usual convention on the standard state.

The calculation of the mean activity coefficient entails, then, to know the mean
ionic molality of the electrolyte at saturation in the studied solution. Then, the
calculation becomes immediate. However, we must pay attention to the fact that in
the calculation of the mean molality of the concentration of the ions, there are some
of them which can eventually be in common with those of the added electrolyte.
(They are brought by the other salts added in the solution.) This fact must be taken
into account in the calculations.

Then, for example, the solubility product of thallous chloride is K, =2.02 x 10™*
and its solubility in a solution 0.025 mol kg ' of potassium chloride is
0.00869 mol kg~ The concentrations in thallous ions are

[CI7] = 0.025 + 0.00869 = 0.03369 mol kg
[TI"] = 0.00869mol kg !

Thallous chloride giving two ions, v =2:

my = (0.00869 + 0.03369)” mol kg~!
ms = 0.01711mol kg™!

and

7. =2.02 x 107*/0.01711
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7+ = 0.831

In this chapter, we have not mentioned some methods of determination that can
be qualified as being more marginal as the previous ones given the limited number
of applications they have given.



Chapter 15

Debye-Huckel Relations and Neighboring
Relations: Calculation of the Activity
Coefficient of an Ion

Abstract The value of the activity of an ion cannot be determined experimentally,
contrary to that of an uncharged species. However, it is accessible through a
calculation, at least in some conditions of concentrations. Hence, this possibility
is of utmost importance from the theoretical standpoint and, also, from the practical
one as well. An example of such an importance is provided by the most commonly
and quasi-universally used scale of pH which is based on the estimation of the
activity of the solvated proton in the studied medium.

The calculation of the activity of ions is performed by applying Debye—Hiickel
or a very neighboring relation.

The chapter is focused on the presentation of these relations and on the results
and conclusions to which they lead. (Their setting up is described in another
chapter.) Here are also mentioned the properties of the mean activity coefficients
of electrolytes which, contrary to those of their constitutive ions, can be measured.
They have the great virtue to permit to indirectly verify the Debye—Hiickel rela-
tions. However, the using of these relations imposes to know the ionic strength of
the solution. This notion is introduced at the beginning of the chapter but, just
before, the impossibility of the measurement of the activity of an ion is explored.

Keywords Ion activity (determination?) e Ionic strength (influence on the
nonelectrolytes) * General behavior of the activity coefficient of the whole
electrolyte ¢« Guntelberg’s relation « Guggenheim’s relation ¢ Davies’ relation
Broomley’s relation « Debye—Hiickel’s relation * pH scale

The value of the activity of an ion cannot be determined experimentally, contrary to
that of an uncharged species. However, it is accessible through a calculation, at
least in some conditions of concentrations. Hence, this possibility is of utmost
importance from the theoretical standpoint and, also, from the practical one as well.
An example of such an importance is provided by the most commonly and quasi-
universally used scale of pH which is based on the estimation of the activity of the
solvated proton in the studied medium.

The calculation of the activity of ions is performed by applying Debye—Hiickel
relations. In this chapter, we not only focus ourselves on their presentation but also
on the results and conclusions to which they lead. Here, we also mention the
properties of the mean activity coefficients of electrolytes which, contrary to
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those of ions, can be measured. They permit to indirectly verify the Debye—Hiickel
relations.

Using these relations imposes to know the ionic strength of the solution. We
introduce this notion at the beginning of the chapter. But, just before, we come back
on the notion of impossibility of measurement of the activity of an ion.

15.1 Impossibility of an Experimental Measurement
of the Activity of an Ion

As we have already and briefly said it (viz. Chap. 6) and as we shall specify it
below, activity coefficients quantify the electrostatic interactions between the
chemical species constituting the studied system, notably the interaction ions/
ions. Let us also mention the interaction ions/dipoles, dipoles/dipoles, etc. They
result in a Gibbs energy change of the whole solution under study for a mole of ions
added to it. It is impossible to determine this Gibbs energy change because of the
following two reasons:

— We do not have a chemical species constituted by only one kind of ions at our
disposal. This is for a reason of electroneutrality. A salt is always neutral from
the electrical standpoint. It is also the case of a solution. In brief, an ion is always
accompanied by a counterion to ensure the electroneutrality of the medium.
Hence, it is quite impossible to add an ion into the studied solution and as a result
to determine the change in the chemical potential during this virtual process.

— The second reason is that, if even the previous process was possible, the
corresponding measured change in Gibbs energy would then comprise a supple-
mentary term from electrostatic origin which adds to the search for one
concerning the interactions of the ions, which is only of interest for our purpose.
It would correspond to the work necessary to perform (in the conditions of
reversibility) in order to add a charged particle to an already charged solution.

Hence, in order to measure the activity coefficient of an ion, it should be
necessary to think up a process which would be able not only to add only one
kind of charged ion but also to evolve at a constant electrical charge of the solution.

Hence, all that is possible from the experimental viewpoint consists in adding an
ion and its counterion together. Certainly, while doing that, the studied ion is added
at the constant charge (null) of the solution, but the measured Gibbs energy change
is vitiated by the proper Gibbs energy of addition of the counterion. Actually, here,
one finds the same impossibility as that encountered for the measurement of the
solvation heat of one ion. It is, indeed, impossible to add only one kind of ions
without adding its counterion.

However, the opinion of some authors is that the activity of an ion is potentially
measurable but only when an infinitely weak number of ions would be transferred
into the solution and, that, provided that the net electrical charge of the solution
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would be measured at every moment. For some others (Guggenheim), the very
notion of activity of an ion is devoid of any physical significance.

To sum up, only some mathematical combinations of activities of ions can be
measured (viz. Chap. 12, paragraph 3). Fortunately, if the activity of an ion cannot
be experimentally measured, its value can be approached through calculations, at
least in some conditions.

From the historical viewpoint, it is interesting to know that the physico-chemical literature
is endowed with writings asserting that this determination is possible.

15.2 Ionic Strength

A rapid mention concerning the notion of ionic strength has already been given (viz.
Chap. 12). It has been introduced in 1921 by Lewis and Randall on purely empirical
bases but its introduction into the realm of the study of solutions has been theoret-
ically justified some years later within the framework of Debye—Hiickel theory (viz.
Chap. 46).

The ionic strength is a function, the value of which expresses the charge “in
ions” of a solution. It is defined as being the half sum of the terms obtained by
multiplying the molality m; of each ion present in solution by the square of its
relative charge z; that is to say

Iy =1/2) m;z (15.1)
J

where [, is the ionic strength of the solution on the scale of molalities. The index
jindicates that the sum is over all the ions of the solution. It is expressed in mol kg '

It can also be defined in terms of molarities:

I=1/2) ¢z (15.2)
J

Then, it is expressed in mol L™". Given the fact that the notion of ionic strength is
only handled in the cases of dilute and very dilute solutions and since, then, the
numerical values of molalities are very close to those of molarities, the numerical
values of the ionic strengths expressed in both unities are very close to each other:

I,, =~ I, (dilute solutions)

(The symbol y has also been used formerly in order to symbolize the ionic strength.
It is no longer recommended.)

It is very important to highlight the fact that the “concentration” m; or ¢; is the
true “concentration” of the ions and not their total “concentration.” As a result of
this point, the calculation of the ionic strength entails to take into account the
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incomplete dissociation of some electrolytes. This is not without setting up some
calculation problems (viz. Chap. 19).

Let us confine ourselves, at the present time, to deduce the following conclusions
relative to the fully dissociated electrolytes from relations (15.1) and (15.2):

— For those of the type 1/1, the ionic strength is equal to its molar concentration.
For example, for a solution ¢ molar of sodium chloride

I=1/2(Na*]1>+[Cl]1?)

I =cmolL™!

— For the multivalent ones, it is larger than the molar concentration. Its value is
larger all the more the charges of the ions are themselves larger, since there are
changes with the square of these ones. For example, for 1 M solution of
magnesium sulfate

1=1/2(503 122 + [Mg]2?)
I=4cmolL™!

In direct relation with the use of all Debye—Hiickel relations (viz. under), the
question coming in mind is this: What are the ions which must be into account in
order to calculate the ionic strength of the solution containing the ion under study.
The answer is simple: all.

15.3 Influence of the Ionic Strength on the Activity
of Nonelectrolytes

We know that, in dilute solutions, the activity coefficients of nonelectrolytes are
quasi-equal to 1 and hence their activities are quasi-equal to their concentrations in
numerical values (viz. Chap. 13). Although the principal subject of this chapter is
the solutions of electrolytes, it is interesting, in passing, to study the influence of the
ionic strength on the activity coefficients of the nonelectrolytes. We are concerned,
here, with aqueous solutions.

It is an experimental fact that one finds the following relation:

In(y/yy) =kl (15.3)

where y is the activity coefficient of the nonelectrolyte when its solubility is 72 when
it is in presence of some quantity of electrolyte and y its activity coefficient in pure
water in which its solubility is mg. This relation is found by measurements of
solubilities of numerous nonelectrolytes in the presence of electrolytes. I,, is the
ionic strength of the solution based on the scale of molalities. Hence, In y appears as


http://dx.doi.org/10.1007/978-3-319-46401-5_19
http://dx.doi.org/10.1007/978-3-319-46401-5_13

15.4  General Behavior of the Mean Ionic Activity Coefficients of Electrolytes 179

being proportional to the ionic strength of the solution. The relation seems to be
obeyed up to large ionic strengths such as 5 mol kg~ '. The value of the propor-
tionality coefficient £ depends on the nature of the nonelectrolyte and also of that of
the electrolyte added in order to fix the ionic strength. For the major part of
electrolytes, the k value is located between O and 0.1. For an ionic strength such
as I,, < 0.1 mol kg™, the ratio y/y, changes in the range of 1000—1023. This result
justifies the fact that, as a rule, one attributes the value 1 to the activity coefficient of
a nonelectrolyte or of the undissociated part of a weak electrolyte in calculations,
even when they must be refined (viz. Chap. 19).

An interesting point to underline is that the solubility m of a nonelectrolyte in the
presence of an electrolyte is weaker as that my it exhibits in the presence of pure
water. This is a point easy to justify. Let us compare two solutions of the same
nonelectrolyte, one in pure water where its solubility is m and its activity coeffi-
cient yo and the other in water containing an electrolyte where its solubility is 7 and
its activity coefficient y. At saturation, in both solutions, there is equilibrium
between the nonelectrolyte in the solid pure state and itself in solution. Moreover,
its fugacity is the same in the solid state, whatever the solution is and the standard
state in solution (necessary to quantify whether its activity is the same in both
solutions).

Hence, the fugacity in the standard state is the same for both solutions. As a
result, the activity of the nonelectrolyte is the same in both solutions. By introduc-
ing the activity coefficients, we obtain

moyo = my

and
y = (mo/m)y,

Since the ratio y/y is larger than 1, it is also the case of the ratio mg/m.

The solubility of a nonelectrolyte in water is weakened by the addition of an
electrolyte in the solution. It is the base of the phenomenon called “salting out”
which is one of the processes used to resolve liquid phases into their constituents in
proximate analysis.

It is also interesting to notice that, according to relation (15.3), In y is propor-
tional to the ionic strength. This is not the case for the electrolytes as it is evidenced
by the Debye—Hiickel relations (viz. under).

15.4 General Behavior of the Mean Ionic Activity
Coefficients of Electrolytes

In Table 15.1, we mention the experimental values of the mean ionic activity
coefficients of several electrolytes in water at 25 °C as a function of their molalities.
(Their methods of determination have been described in Chap. 13.)
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Table 15.1 Mean ionic activity coefficients in aqueous solutions at 25 °C

Molality | 0.001 | 0.005 |0.01 0.05 0.1 0.2 0.5 1.0 2.0

HCI 0966 0928 |0.905 |0.830 [0.796 |0.767 |0.757 |0.809 |1.009
NaCl 0966 0929 |0.904 0.823 [0.778 |0.732 |0.679 |0.656 |0.670
NaBr 0966 0934 |0914 0.844 [0.800 |0.740 |0.695 |0.686 |0.734
KCl 0965 10.927 [0901 |0.815 |0.769 |0.717 [0.650 |0.605 |0.575

CaCl, 0.888 |0.789 |0.732 |0.584 0531 |0.482 |0.457 |0.509 |0.807
Na,SO4 0.887 ]0.778 |0.714 |0.530 |0.450 |0.360 |0.270 |0.200 |-

ZnSO, 0.734 0477 |0.387 |0.202 |0.148 |0.104 [0.063 |0.044 |0.035
LaCl; 0.853 |0.716 |0.637 |0.417 |0.356 |0.298 |0.303 |0.387 |0.954

According to S. Glasstone, Thermodynamics for chemists, 11th ed., D. Van-Nostrand, Inc., 1960,
Princeton

These values clearly show the following points:

— When the molalities are weak, the numerical values of the activity coefficients
decrease all the more quickly as the electrolyte is constituted by the most charged
ions. This result justifies the definition and introduction of the ionic strength. For
example, for a molality of 0.01 mol kg ', the activity coefficient of lanthanum
chloride is 0.637, whereas for sodium chloride at the same molality, it is 0.904.
The lanthanum chloride activity is @ ,c;3 = 0.637 x 0.01 =6.37 x 1073, 1ts value
falls very quickly with respect to its concentration. From the standpoint of its
thermodynamic behavior, the occurrence of interactions from several origins, in
particular due to the interaction ions/ions in the bulk solution (viz. Chap. 6),
decreases its effective presence.

— The mentioned values show that when the molality of the electrolyte is weak, the
activity coefficients of the same kind of electrolytes (from the standpoint of the
charges of the ions constituting them) are quasi-equal.

— When the molality of the electrolyte increases, the values of the mean ionic
activity coefficients begin decreasing, then reach a minimum, and after end up
increasing.

The general behavior of the mean ionic activity coefficient is shown in Fig. 15.1
where it is exemplified by three kinds of electrolytes.

Sometimes, when the concentration of the electrolyte is very large, the mean
ionic activity coefficient may take incredibly large numerical values. For example,
for a molality m =20 mol kg~" of lithium bromide in water, the value of its activity
coefficient y. reaches 485!

It is interesting to notice that there exists one concentration (more rigorously:
ionic strength) at which the activity coefficient exhibits the value unity, as if the
solution would be ideal. This particular concentration varies with the nature of the
electrolyte. In aqueous solution at 25 °C, it is located in the range about 3—4 mol kg .
This phenomenon has a practical application. Some authors take it into account in
order to quickly approach the values of the equilibrium thermodynamic constants.
Letusrecall (viz. Chap. 6) that the latter are expressed in terms of activities. By fixing
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the ionic strength of the solution under study in the above range of molalities, the
different activity coefficients are close to unity and hence the values of equilibrium
constants calculated by handling concentrations may not frankly differ from the
thermodynamic ones. Calculations taking into account the activities, as they must do
in all scientific rigor, may be indeed tedious (viz. Chap. 19). With such a trick, they
can be, at least in part, avoided.

Let us also notice in passing that all these behaviors in water we have already
mentioned are also recognized in nonaqueous media (ethanol, methanol) and in
hydro-organic ones such as the mixtures ethanol-water and dioxan-water.

The Debye—Hiickel theory and the equations resulting from it, at least in part,
account for these results.

15.5 Debye-Huckel’s Relations

Usually, one distinguishes the limit Debye—Hiickel relation (1923) and the extended
Debye—Hiickel one and some others which are very close to the previous ones.

15.5.1 The Limit Equation Law

In this chapter, let us confine ourselves to mention that in order to obtain the limit
equation, Debye and Hiickel have adopted the hypothesis that ions are electrically
charged points dispersed in a continuous medium, the permittivity of which is
constant and equal to that of the pure solvent. In these conditions, the equation
stemming from it, called the limit Debye—Hiickel law, is for a binary electrolyte, the
charges of its ions being z, and z_:
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—logy, = A|z+z, |\/I (15.4)

where [ is the ionic strength of the solution expressed in molalities or molarities.
This distinction does not matter given the conditions in which the relation can
legitimately be used (viz. under). A is a constant, the value of which only depending
on the temperature and on the solvent permittivity ¢, according to the relations’

A = 1.825100 (¢T) />
A =0.509mol~"/?1'/2  (water : 25°C)

The comparison of the calculated values through the expression (15.4) with those
experimentally found for the mean ionic activity coefficients shows that the limit
law is only verified for ionic strengths lower than 10~ mol L™".

The Debye—Hiickel theory also provides us with the relation (15.5) which
permits the calculation of the activity coefficient of one ion only of charge z in a
sufficiently dilute solution:

—logy = AZ*NI (15.5)

As it has been already said, the expression (15.5) cannot be directly compared with
an experimental measurement, but it can be indirectly compared (viz. Chap. 46).
However, indirectly, it confirms what has been experimentally found by studying
the behavior of the whole electrolyte (viz. the paragraph 4 above). The activity
coefficient of an ion, cation, or anion only depends on the ionic strength of the
solution. This assertion is exact for the sufficiently diluted solutions. It has been
proposed, once in 1923, by Lewis and Randall.

15.5.2 Extended Debye—Hiickel Relation

The previous Debye—Hiickel’s relation (15.4) leads to markedly too weak values of
the activity coefficients for the intermediary concentrations of electrolytes. A
change in the limit equation enhancing the range of its applications is obtained by
adopting the hypothesis that ions are spheres of finite radius, the other hypothesis
prevailing in the setting up of the limit law remaining the same. For a binary
electrolyte, the new Debye—Hiickel’s relation, called the extended Debye and
Hiickel’s law, is

—logy, = Alz,z_|[NI/(1 + BaI) (15.6)

'Other numerical values (but close to the latter ones) may be found in the literature. The
discrepancy depends on the chosen value of the solvent permittivity (viz. Chap. 46).
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and for only one ion
—logy = Az*VI/(1 + Ban) (15.7)

In both expressions, B is a function of the temperature and of the permittivity & of
the solvent. B has for expression

B =503 (eT) '/
B =0.32810° cm 'mol~"/21'/2  (water : 25°C)

In (15.6) and (15.7), a is an adjustable parameter approximately corresponding to
the effective radius of the hydrated (solvated) ion, measured in A (1071° m). The
a parameter is called “ion size parameter” or “minimal approach distance” by the
other ions of the solution of the ion, the activity coefficient of which is considered.
The parameter A of both limit and extended relations is the same. In the case of a
binary electrolyte constituted by monovalent ions, the extended Debye—Hiickel’s
relation is

—logy = Az*\Nm /(1 + Ba\/m)

given m=1.

As a first rule, we can conceive that the parameter « is related to the radius r of
the ions. By comparing the expressions (15.5) and (15.7), one can notice that it is
the presence of the denominator in (15.7) which differentiates them. This finding
may be correlated to the fact that, when the concentration of the ion (the ionic
strength of the solution) increases, the electronic cloud gets closer to the considered
ion, as it is shown by the Debye—Hiickel’s theory itself (viz. Chap. 46). As a result,
the electrical interactions called “long-range interactions” are no longer the only
ones to be efficient. “Short-range interactions” are then added to the previous ones.
One author (Kielland) has compiled the values of the parameter a for 136 inorganic
and organic ions in water. They have not been, of course, directly measured. The
values result from the comparison of mean ionic activity coefficients already
known, adjusted according to an empirical manner in such a way that the activity
coefficient of an electrolyte can be forecasted in a mixture of other electrolytes. A
calculation of the activity of a given ion can, then, be possible (viz. Appendix E). It
is interesting to notice, through the values of the Kielland’s table, that the activity
coefficients do vary few little with the parameter a.

The extended Debye—Hiickel is satisfactory for ionic strengths varying up to
0.1 mol L™

The calculations of the mean ionic activity coefficients of binary monovalent
electrolytes lead to accurate values at the level of 1 p 100 whereas the use of the
limit equation leads to errors of the order of 10 p 100 in the same conditions.

According to several authors, it seems that the meaning of hydrated radius of the
ion under study given to the parameter « is devoid of any thermodynamic base. In
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addition, inverse calculations of the parameter a as a function of \m by introducing
experimental values of —log y.. show that a is not a constant.

The worst is that for some concentrations, a is endowed with fully aberrant
values. For examples, for molalities of 1.8 mol kg~' in HCI and 2.5 mol kg~ ' in
lithium chloride, the respective values of @ are —41.12 nm and —14.19 nm!!

This is the reason why, today, a is only considered as being an adjustable
parameter permitting to obtain the best fit between the experimental values of the
mean activity coefficients and the extended Debye—Hiickel relation.

Finally, from another viewpoint, it must be noticed that, for some authors, it
seems that the activity coefficients calculated through the Debye—Hiickel relations
are related to the scale of molar fractions, although the ionic strength values used
for their calculations are expressed in molalities or molarities.

15.5.3 Other Relations Permitting the Calculation
of the Mean Activity Coefficient of an Electrolyte

Numerous relations which are more and less related to those of Debye—Hiickel have
been proposed. Either they stem from minor modifications of the extended Debye—
Hiickel equation or they differ from the extended relation by the presence of
supplementary terms. In connection with this subject, it is interesting to notice
that from the mathematical standpoint, the Debye—Hiickel relations (both limit and
extended) cannot, at all, explain the occurrence of minima in the curves —log y../I
or —log y./c or m, as it can be proved definitively by an elementary calculation of
derivatives.
Let us mention, like other equations, the

— Guntelberg’s relation

By adopting the unique numerical value a = 3.0 A for all the ions, Guntelberg,
starting from the extended Debye—Hiickel relation, leads to the expression

—logy, = Alzz_ |[NI/ (1 + INI)] (15.8)

The factor unity of I in the denominator is a real stroke of luck since at 25 °C,
B =0.328 whence Ba~ 1 with a =3 A. The Guntelberg’s relation seems to give too
weak values 7., even in the range of ionic strength values less than 0.1 mol L™".
Another relation very close to that of Guntelberg plays a fundamental part in the
anchoring of the pH scale of the National Bureau of Standards (pH scale of Bates
and Guggenheim).

— Guggenheim’s relation (1935)
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—logy, = Alz+z — |[NI/(1 +I)] — bl (15.9)

In this relation, there exists the empirical linear term—>bl. For ionic strengths larger,
supplementary linear terms may be added to the Guggenheim’s equation, whence
the relations of the kind are derived:

—logy, = Alz+z—|[NI/(1 +~1)] + bl +cP? +dP’ (15.10)

Quite evidently, the greater the number of terms added, the better the fit between the
calculated and experimental values is. But, then, the latter added terms clz, dI3, etc.
do possess a statistical weight which is less and less.

A more elaborate form of the Guggenheim’s relation is

logr, = —Alz+z — |[NI/(1+ D] + [2v,v-)/(vy +v-)] (26m)

Its applies to only one electrolyte. m is the molality of the electrolyte and v, and v_
the charges of the cation and of the anion. f is a parameter specific of each
electrolyte. This relation is exact for an ionic strength up to 0.1 mol 1™ with
univalent, bi-univalent, and uni-bivalent electrolytes. The coefficient 3 of the linear
term is adjustable according to the nature of the electrolyte. Guggenheim’s equa-
tions are semiempirical relations.

— Davies’ relation (1938)

Davies’ relations are
—logy, =Alz+z— |[NI/(1 +1)] —0.21 (15.11)

or

—logy, =AZ[NI/(1+1)] —0.2 1 (15.12)

It has been largely used in order to estimate the activity coefficients of ions “alone”
at ionic strengths relatively large. It seems that for ionic strength of 0.5 mol L™", the
error made by using it on the estimation of the activity coefficient is lower than 8°/°.

Concerning all these relations comprising one or several linear terms, it is
interesting to notice that the presence of this term may, mathematically, justify
the existence of the minimum of the curves y./m.

— Broomley’s relation (1972)

According to this theory, the mean activity coefficient of an electrolyte in a
binary solution is given by the relation

—logy, = Alzyz_|[NI/(1 +I)] + Byl
with
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B, = [(0.06 + 0.6 B)(z12,)]/(1 + (1.5/2122))* + B

B is the Broomley’s parameter. z; and z, are the charges of both ions of the
electrolyte. A is the Debye—Hiickel’s constant A (A =0.509). Broomley’s relation
is also a semiempirical relation since it is based, on the one hand, on those of Debye
and Hiickel and on the other on arbitrary terms. Some extensions of Broomley’s
relation exist. They permit to study some mixtures of electrolytes.

Let us also mention the theory of Meissner and Kusik (1978), the mainspring of
which is the reduced activity coefficient I'yc defined by

Cac =y (1/242)

The idea behind this relation is that the reduced activity coefficient is mainly
influenced by the interactions between the anions and cations.

Other relations of Debye—Hiickel’s kind, but less used than the previous ones,
are also proposed (viz. Chap. 46). Others, which are not of Debye—Hiickel’s kind,
are also proposed. The most interesting are those based on the radial distribution
functions (viz. Chap. 47). The theory leading to them stems from considerations of
statistical thermodynamics.
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Chapter 16
Excess Gibbs Energy and Activities

Abstract Besides the fact that the introduction of the activities permits, among
other processes, to quantify chemical equilibria when the behaviors of the fluids of
the studied system are not ideal, it must be noticed that it also constitutes a means to
study nonideal solutions. Another process to study them is to use excess Gibbs
functions which are experimentally accessible. For some authors, their handling
would be the best and the easiest means to study real (that is to say nonideal)
solutions and, even, to study equilibria between fluids. In particular, their measure-
ment would provide the best way to detect an ideal (or not) character. These few
lines are sufficient to induce the taking cognizance of the existence of interesting
mathematical expressions linking excess functions and activities. As this matter of
things stands, it is evident that it is a part of the purpose of this book to study the
links between activities and excess Gibbs energy functions. They concern solutions
of nonelectrolytes and those of electrolytes as well.

In this chapter, the determination of activities from excess Gibbs energies by
using empirical relations is studied. It concerns essentially the solutions of non-
electrolytes, in particular the binary ones. The activity values are found from the
excess Gibbs energies through least square regression processes, linear or not
linear.

Keywords Mixing Gibbs energy * Ideal mixing energy * Excess Gibbs energy °
Activity coefficients from Gibbs energy » Osmotic practical coefficient » Activity
determinations from empirical relations « Van Laar and Margules relations

Besides the fact that the introduction of the activities permits, among other pro-
cesses, to quantify chemical equilibria when the behavior of the fluids of the studied
system is not ideal, it must be noticed that it also constitutes a means to study
nonideal solutions.

Another process to study them is to use excess functions which are experimen-
tally accessible. For some authors, their handling would be the best and the easiest
means to study real (that is to say non ideal) solutions and, even, to study equilibria
between fluids. In particular, their measurement would provide the best way to
detect an ideal or not character. These few lines are sufficient to induce the taking
cognizance of the existence of interesting mathematical expressions linking excess
functions and activities.
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As this matter of things stands, it is evident that it is a part of our purpose to study
the links between activities and excess Gibbs energy functions. They concern
solutions of nonelectrolytes and those of electrolytes as well. In this chapter, we
study the determination of activities from excess Gibbs energies by using empirical
relations. We are essentially interested in the solutions of nonelectrolytes, in
particular by the binary ones.

16.1 Mixing and Excess Gibbs Energies

16.1.1 Mixing Gibbs Energy

Let us consider the process which consists in mixing #; moles of species 1 and n,
moles of species 2 with, for example, formation of a liquid solution. In this case, 1 is
the solvent s and 2 the solute i nonelectrolyte or electrolyte. The solvent and the
solute are pure, before the formation of the solution (initial state). In the latter, their
chemical potentials (molar Gibbs energies, not yet partial ones because they are
pure) are given by the expressions

//ll :ﬂlo +RT ln.Xl

and since the solvent is pure

and likewise
u; = u;° + RT Inx;
since i is pure
Hi = i

The Gibbs energy G' of the initial system constituted by both components (which
are not still in mixture), is given by the expression

G' =nypu° +np° initial state

The formation of the mixture is accompanied by a Gibbs energy change for two
reasons: the first is due to the change of composition (entropic effect). The second is
due to energetic interactions between both kinds of particles, solute and solvent. It

is an enthalpic effect. Let /lq and ,u’; be the chemical potentials of both types of
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particles, once the mixture is formed. Quite generally, they are given by the
expressions

/,t{ = u,° + RTInxyy, and ,ulf = u;° + RT Inxyy;

where x; and x; are the molar fractions of both components in the mixture and y; and
y; their activity coefficients (on the scale of the molar fractions). Hence, the Gibbs
energy G’ of the system in the final system is

G = mpd +n;u! (final state)

i

or
G = mu;° + nmRTInx; + mRT Iny, + nipu,° + n; RTInx; + n; RT Iny;

The change in Gibbs energy A,;xG accompanying the formation of the mixture
starting from the initial system is called the mixing Gibbs energy. It is given by the
expression

AmixG =G — G
AnixG = mRTInx; + mRTIny, + m;RT Inx; + n;RT Iny, (16.1)

16.1.2 Ideal Mixing Gibbs Energy

When the solution is ideal, the activity coefficients are equal to unity. The mixing
Gibbs energy becomes the ideal mixing Gibbs energy A G™. It is given by the
expression

AmixGid = anTlnxl + }’l,‘RT]H)C,‘

16.1.3 Excess Gibbs Energy

The excess Gibbs energy is defined by the relation

G* = ApixG — Apix G

1.€.,

G* = mRTIny, + m;RT Iny, (16.2)
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Fig. 16.1 Gibbs energies of mixing: ideal mixing and of excess. [x molar fraction of the solute

(16.2) and (1—x) that of the solvent (16.1)]

The links between the Gibbs energies of mixing, of ideal mixing, and of excess are

shown in Fig. 16.1.

Clearly, the excess Gibbs energy has “something to see” with the activities and
with the activity coefficients of the components.

The excess Gibbs energy defined in Fig. 16.1 is for 1 mole of final solution. It is
the molar excess Gibbs energy G%. The excess Gibbs energy for a total number of
moles n; +n; is symbolized by GE. In this case, of course, the molar excess Gibbs

energy G£ is given by the expression

G, =G"/(m +m)

E . . .
G, is also given by the expression

Gf; = [m/(m + n;)]RTIny, + [n;/(n; + n;)]RT Iny;

or

GE = x;RTIny, + x;RT Iny,

16.2 Determination of the Activity Coefficients
from the Excess Gibbs Energies

Let us calculate the differential dG* from relation (16.2) at constant temperature
and pressure, the variables being the numbers of moles n; and n; and the activity

coefficients y; and y;. We obtain
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dG* = RTnidIny, + RTn;dIny; + RTIny,dn, + RT Iny;dn

Given the Gibbs-Duhem’s relation (viz. Chap. 5), it appears that the sum of the first
two terms of the right member is null at constant temperature and pressure:

dG* = RTIny,dn; + RTny,dn;
As a result

(0G*/om), ., =RTIny, and (0G*/0n;),,  =RTIny, (16.3)

These relations constitute the theoretical basis on which is founded the determina-
tion of activity coefficients from the excess Gibbs energy. Let us mention, without
however insisting, that this result can be generalized to the case of solutions
constituted by more than two components. This is true because of the fact that the
Gibbs-Duhem’s relation is verified, in this case also, at constant temperature and
pressure. That is to say

Zﬂjdlnn— =0 [(dT =0 and dp = 0)]

J

16.3 A Variant: Simultaneous Obtention of the Practical
Osmotic Coefficient and of the Activity Coefficients
of the Solutes from the Excess Gibbs Energy

In this paragraph, we somewhat extend the possibilities of applications of the
previous theory.

In the case where there are several solutes (nonelectrolytes and electrolytes), the
relation (16.1) applies

AmixG =RT Y miln miy; + n RT Ina, (16.4)

At this point, we must specify that the activity coefficients of the solutes, mentioned
just above, are related to the scale of molar fractions. [It is true, however, that
concerning the solutes, the values of their activity coefficients vary very little from
a scale to another one (viz. Chap. 11).] Given the relation (14.20) of Chap. 14 which
is also written (with Q = 1000/M,) as

b = — (Q/Zm,-)ln a (16.5)


http://dx.doi.org/10.1007/978-3-319-46401-5_5
http://dx.doi.org/10.1007/978-3-319-46401-5_11
http://dx.doi.org/10.1007/978-3-319-46401-5_14
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we obtain:
AnixG = RT Z nilnm;y; — ¢m(n1/Q)Z m;

Given the definition of the molarity, the following relation is satisfied:
m; = anOOO/nlMl

(the factor 1000 being present in order to pass from kilograms to grams). After
introduction of this relation into the preceding one, we obtain

AmixG =RT Y ni[lnmiy; — ¢,

We must link this expression to the excess Gibbs energy in order to be able to
calculate the values In y; together with the value ¢,,. With the theory just developed,
indeed, it is possible to calculate the activity coefficients of the solutes and of the
solvent, the latter through ¢,,,.

We note that if one adds the term RT Z; n,(1—In m;) to A.;xG, we obtain the
following expression for the excess Gibbs energy:

G" = AmixG + RT > ni(1 — Inm;) (16.6)

The demonstration of this equality is simple. It is sufficient to add all the terms of
relation (16.6) term to term, to take into account the expression (16.5) of ¢,, and to
neglect X; n; with respect to n;. Then, we obtain the following relation:

GF =RT (Z niln y; + nln }/1>

(Contrary to the case previously mentioned, the present excess Gibbs energy is
related to the scale of molalities.)
Expression (16.6) can be, equivalently, also written as

G*=RTY n(l—¢, +Iny)

It is practical to use expressions relative to the handling of 1 kg of solvent. If w) is
the mass of the solvent in kilograms, we have the relation

nip = m;wq

where #; is the number of moles of the solute i and m; its molality in the solution. As
a result, the excess Gibbs energy per kilogram of solvent is given by the expression
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G*/wiRT =Y " mi(1 = ¢, +1n 7)) (16.7)
i

which can also be written as

G*/RT = miwi(1 = ¢,)+ Y _ mjwilny, (16.8)

¢ Let us differentiate these relations, taking into account that w; is a variable. We
obtain

dGE/RT — Zml—(l — ¢m)dW1 + Zm,—ln yidw
i i

As a result,

[0(GP/RT)/ow1],, Zm — )+ miny,

The second term of the right member is null (according to the Gibbs-Duhem’s
relation—viz. above). We obtain

<1/RTZmi> (0G"/own), = (1 —¢,,) (16.9)

e Let us differentiate (16.7), m; being considered as a variable. We obtain

E . — . —
[9(GF /wiRT) /Omi),,, . ;EZ +(1 =) (16.10)

As aresult, if we have an algebraic expression of the excess Gibbs energy (on the
scale of molalities) under the form of a function of w and m; at our disposal, ¢,, and
In y can be easily calculated by derivation. Let us notice that the Gibbs-Duhem’s is
automatically verified since it is involved in the reasoning leading to the above
result.

From the mathematical standpoint, these considerations are legitimate because
the expressions G* are homogeneous first-order function of the numbers of moles of
components since the function Gibbs energy is an extensive one of the system. This
means that if, for example, the numbers of moles of both components is increased
twofold, the function G® is also increased twofold (viz. Appendix A).
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Remark Let us, in passing, notice that one introduces and handles other excess
functions in thermodynamics such as the molar excess, excess entropy, enthalpy,
volumes . ... We do not consider them in this book.

16.4 Determination of Activities from Empirical Relations

In Chap. 8, we have seen that, for nonideal solutions, there exist some relations
from purely empirical origin which link the fugacities of the liquid components of
binary solutions to their molar fractions in solution, such as those of Margules and
van Laar.

e Margules’s relation is

fi=xifTexp[1/283+12y,8+...... ]
fr=xf5exp[1/28,x7 +1/2y,x3 +...... ]

It pertains to both solvent and solute. Given the general definition of an activity,
we immediately obtain

a; = x1 exp[1/2p,x3]
ay = xzexp|1/2f,x3]

after having only kept the first term of each exponential, whence the expressions of
the activity coefficients become

r1=exp[1/2f,:5] and y, = exp[1/26,x]]

Actually, the constants #; and 3, are equal. Let us take, indeed, the logarithms of the
above expressions of the fugacities f; and f,. By only retaining the first term of the
exponentials, given the fact that 0 < xy, x, < 1, we obtain

Inf, =Inx; +InfY + 1/28,23
Inf,=Inx, + Inf3+ 1/28,x3

Derivating the first expression with respect to In x; and the second with respect to In
X,, We obtain

(0 In f,/0 Inx))zp=1— fixx
(0 In f5/0 In x2)pp =1 — frxax


http://dx.doi.org/10.1007/978-3-319-46401-5_8
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As a result, since, in the occurrence, the Gibbs-Duhem’s is [viz. Chap. 7 relation
(7.20)]

(Of/0In x1)7 p = (Of,/0In x2)7 p
we obtain
b= b,
Setting up f3; = 3, = 5, we can write
fi1 = xiffexp[l/2px3] and f, = xofFexp[l/2px7]

When the vapor pressures are not too high, those measured at different molar
fractions in solution permit to determine the corresponding activities. General
methodologies, such as least square fitting of experimental values to theoretical
ones, give the parameter # [viz. Chap. 19]. We can notice that the knowledge
concerning the data of one of the components permits to obtain those concerning
the other.

¢ Van Laar’s relation is an interesting alternative to that of Margules. For two
components, it is written as

fi= xlf‘ljexp {alx%/(ﬂlxl +X2)2}
[ =xf Jexp [O‘Zx%/(xl + /}zxz)z]

Constants f#; and f, are not the same as those of Margules’ equation. In order to
determine the activities and the values of the constants involved in van Laar’s
equations the same reasoning and methodologies as those applied to Margules’
relations are applied to partial pressures. They, together with molar fractions,
constitute the experimental values on which the methodologies apply provided
that their values are not too high. The different constants of van Laar’s equations
are not independent from each other. A mathematical reasoning shows that

aifp=m mp=a

Van Laar’s relations lead to the two following relations expressing the activity
coefficients of the components of a binary solution:

logy, =A/(1+Ax,/Bx;)* logy, =B/(1+Bx,/Ax;)*

These van Laar’s relations, given at this point, come from other more complex van
Laar’s relations (see below).
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Let us notice that the merits of these relations are confirmed by the existence of
other relations, also empirical but more recent. They express excess Gibbs energies
of solutions (viz. below).

Kirkwood-Buff’s theory also confirms some of these relations (viz. Chap. 45).

16.5 Calculation of Activities from Excess Gibbs Energy
Relations

According to the previous reasoning, it would be convenient to find an analytical
expression of the excess molar Gibbs energy as a function of the composition of the
solution, the word composition being used in its largest acception. It may mean the
numbers of moles of its components, their molalities, the mass of the solvent, etc.

Actually, the expressions of the excess Gibbs energy can take the form of
empirical series, the number and values of the terms of which they comprise are
chosen in such a way that the series give the best fits with varied data. They may
also be founded on theoretical models.

From a general standpoint, there exist several expressions of excess Gibbs
energy functions in the literature and, probably, their number will continue to
increase.

16.5.1 Solutions Without Electrolytes

It is an experimental fact that for the solutions not containing ions or high-
molecular-weight polymers, several kinds of empirical series express satisfactorily
the excess Gibbs energies of more and less complex solutions as a function of the
molar fractions or of the molalities of the components. The polynomial form of
these expressions makes easier the calculations of the activity coefficients, by
derivation.

* A very simple excess Gibbs energy function for a binary mixture is
GE/RT =wxix, or GE/RT =wx(1 —x) (16.11)

w is dimensionless. At this point, it is sufficient to know that it is a constant, the
value of which depends only on the temperature and on the pressure.
(In paragraph 7, we shall give an approach of the significance of this term.)

¢ As another example, let us mention the series (16.12) and (16.13) which give the
excess Gibbs energies of binary mixtures of nonelectrolytes as a function of
molar fractions. (The relation (16.13) is equivalent to the previous one.) We
briefly discuss its properties and also its using:


http://dx.doi.org/10.1007/978-3-319-46401-5_45
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Grﬁ =RT x1x; [AQ +A1(X2 —X1) +A2(X2 - X1)2 +... ] (1612)

GE =RT x(1 —x) [Ao A (2x — 1) + Ay(2x — 1)2+....} (16.13)

In relation (16.13), x is the molar fraction of the second component. Using the
variable x presents the drawback, however, to mask the respective parts played by
both components.

The coefficients Ay, A, and A, are, by definition, independent from x; and x, but
are dependent on T and, to a lesser extent, on P. Several points deserve further
comments:

— The first one is that those series obey the condition, which must be obligatorily
satisfied, i.e., they lead to a null value at the null value of Gﬁ for x; =0 and
Xp = 0.

— The second comment is that three terms in the series are often sufficient for the
binary solutions. Statistical tests permit, besides, to discuss about the pertinence
of the addition of supplementary terms.

Generally, the coefficient A; is related to the dissymmetry of the behaviors of
both components. The terms bringing higher indices are related to more complex
phenomena.

The expressions (16.12) and (16.13) permit to accede to the activity coefficients
y1 and y, through the relations (16.3). We obtain

h’l}’l = x%[A() +A1(X2 - 3X1) +A2(X2 —Xl)(XQ - 5)61)} (1614)
In y, = x%[Ao + A1 (x1 — 3x) + Az (x) — x2) (%1 — 5x2)] (16.15)

It is evident that the terms of the series (16.14) and (16.15) are not, evidently,
independent from the others. Given the fact that x; and x, are linked by the relation
X1+x, =1, we also notice that In y; and In y, are, respectively, only functions of
molar fractions x, and x;. In order to discover this property, Il is sufficient to replace
x1 by 1—x; and inversely. Relations (16.14) and (16.15) are hence a generalization
of the Margules’ equations, the simplified expressions of which having already
been given (viz. above).

» Letus also briefly mention another empirical relation. It also permits to study the
nonideal solutions. It is

GrE/RT = — X (lnx1 + A12X2) - XQ(IIIXZ + A21X1) (1616)

where Aj> # Ay;. Its interest lies in the fact that it is working with only two
parameters A, and A,;. In this expression, the ideal character of the solution is
evidenced by the values of these parameters which are equal to 1. It is, without any
difficulty, generalized to the solutions which are more complex than the
binary ones.
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e Other Van Laar’s relations

In his works devoted to the obtention of expressions of the vapor pressures as a
function of the composition of the solutions at equilibrium, van Laar suggested to
use four arbitrary parameters a zq, z,, b1, and b, linked by the following relations:

Z1 = I’llb]/(nlb] + nzbz) and 2z, = nzbz/(nlbl =+ nzbz)

where n; and n, are the numbers of moles of components. (It is proved correct that,
when the latter are sufficiently similar from the standpoint of their physical prop-
erties, the b, and b, are roughly equal to their partial molar volumes.) Parameters
b1, by, 71, and z, can also be freely adjusted in order to obtain the best fit with the
experimental data. The excess Gibbs energy, as a function of these parameters, is

GE = a12<b1b2n1n2/(1’11b1 —|—n2b2) (1617)

ai; is the parameter expressing the interaction between the two different kinds of
particles. Hence, it quantifies the nonideal character of the mixture.

* A proposed equation relates the excess Gibbs energy of the solution to the
molalities of more than two components. It is

(GE/WIRT) = Z Z/l,-jm,-mj + Z Z Zyijkmimjmk + ... (1618)
7 ik

i

w; is the mass of solvent in kilogram. The coefficients 4;; take into account the
interactions between the two particles i and j which may be identical (i=})),
whereas the coefficients p;j; take into account the interactions between three
particles which may be identical. This kind of development finds some theoretical
foundations in the McMillan-Mayer’s theory (viz. Chap. 30). In the case of only one
solute, the expression simplifies and gives the following one:

(G*/wiRT) = am* + pym® ...+ ...

There exist numerous other relations of the above kinds.

16.5.2 Case of Electrolyte Solutions

e Let us begin by recalling the fact that the relation

Ina; = —¢,,vmM; /1000


http://dx.doi.org/10.1007/978-3-319-46401-5_30

16.5 Calculation of Activities from Excess Gibbs Energy Relations 199

(permitting to define the practical osmotic coefficient) together with the above
relations (16.9) and (16.10) remains applicable in the case of electrolyte
solutions.

e Some semiempirical relations permit to express the activities and osmotic
coefficients of the pure electrolytes or those of the components of electrolyte
mixtures or, even, those of the components of mixtures of electrolytes and of
nonelectrolytes.

— The first proposed relations of this kind are due to Guggenheim. They are
founded, of course, on the taking into account of the interactions between the
ions but also on the Bronsted’s hypothesis according to which all the ions of
the same sign cannot exhibit interactions between them at short distances,
given the fact that they repel each other, contrary to the behavior of ions of
opposite signs.

— More recently, Pitzer has proposed some relations relating the excess Gibbs
energies to the number of moles of different electrolytes. They are used a lot.
They present the following general form in the case where the solvent is
water:

G*/RT = wif (I) + 1w Ay miny + 1 /Wi > wyenininy (16.19)
ij ijk

w,, is the weight of the solvent water in the solution; »; n;, and n; are the
number of moles of the species i, j, and k; and f{(I) is a function of the ionic
strength of the solution (viz. Chap. 15) and also of the nature of the solvent
and of the temperature. It takes into account the long-range interactions. From
the mathematical standpoint, f{(I) can take the form of the term of Debye—
Hiickel’s relation (viz. Chap. 15) or that of a term stemming from the use of
the notion of the radial distribution function (viz. Chap. 47). 4;(I) is also a
function of the ionic strength of the solution. This parameter takes into
account the short-distance interactions, property which is not achieved by
the Debye—Hiickel’s relations (viz. Chap. 46), but let us notice that it only
takes into account the interactions between two ions. The parameter u;, takes
into account the interactions between three particles. Supplementary terms
are added when neutral species are also present in the solution. Concerning
these relations, it must be noticed that only some combinations of the
constants 4;; and p;j can be obtained by regression.

It appears that the arguments prevailing in the development of the expressions
(16.17) take their roots in the results of the theories of Debye—Hiickel and of
McMillan-Mayer (viz. Chap. 38), even more in the notion of radial distribu-
tion function (viz. Chap. 42). This is the reason why these relations are named
semiempirical ones.

— Another kind of model has been presented. It exhibits the very interesting
characteristic to describe the excess Gibbs energy of a solution containing
both electrolytes and nonelectrolytes. The model is an extension of that of Pitzer.
It splits up the excess Gibbs energy into two groups: one which takes into


http://dx.doi.org/10.1007/978-3-319-46401-5_15
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http://dx.doi.org/10.1007/978-3-319-46401-5_47
http://dx.doi.org/10.1007/978-3-319-46401-5_46
http://dx.doi.org/10.1007/978-3-319-46401-5_38
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account the long-distance interactions and the other the short-distance ones. The
latter may be due in majority, according to the studied mixtures, to the present
nonelectrolytes. The model is based on two hypotheses: on the one hand, there is
a total repulsion between ions of the same charge and on the other one, there is
electroneutrality all around a molecule of solvent.

Let us finish this paragraph by mentioning the fact there exist informatic pro-
grams which permit to study equilibria between phases. Some, such as UNIFAC
(universal functional activity coefficient), permit to estimate the activity coeffi-
cients in some mixtures. They are based on the allocation of values to some
parameters characterizing the groups constituting the studied molecule. The impor-
tant parameters are those of interactions of the two members of each pair of groups
existing in the solution. In principle, the molecule is divided into several functional
groups. The molecule-molecule interactions are calculated by doing the ponderated
sum of the group-to-group interactions.

16.6 Some Methodological Aspects

The representation as judicious as possible of the excess Gibbs energy by empirical
series involves to determine the judicious parameters Ay, Ay, Az, ..., A, B, C, ...,
A12, Ay ... and so forth, together with their numbers. We have already mentioned
that there exist statistical tests which permit to assert the pertinence (or not) of the
number of parameters to retain. They are most often obtained by least square
regressions linear or nonlinear. These determinations are performed by comparing
the calculated values G* (or other functions) to those of the same functions
experimentally determined, in the same fixed conditions. To know the calculated
values entails to choose the number of parameters to determine at the beginning of
the process and also to attribute initial empirical values to them. These values adjust
themselves, often automatically according to the algorithms, during the regression
process.

The experimental data which are most often retained in the regression process
are the total pressure or the partial pressures above the solution.

16.7 On the Very Simple Expression (16.11) of an Excess
Gibbs Energy

Let us again consider the very simple excess Gibbs energy (16.21). It gives rise to
an interesting theoretical explanation (viz. paragraph 8).
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Fig. 16.2 Excess Gibbs B
energy GE/RT of a binary {_1« / i
mixture such as Gf,/ wm /R I
RT =wxx;

s

—
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e

The diagram (G,’f,/RD/xz is a parabola (Fig. 16.2).
For an indefinite number 7n; + n, moles of mixture, the excess function is

G"/RT = (GL/RT)(n + n2)
G®/RT = wniny/ (ny + ny)

Given the relations (16.3), we find immediately by derivation that

Iny, = wxl (16.20)

Iny, = wx?

These expressions are the simplified relations of Margules. Actually, some mixtures
exhibit this behavior, by example of the mixture benzene/cyclohexane at different
temperatures. It is also the case of mixture of argon and dioxygen. We notice the
perfect symmetry of the curve.

It is interesting to express the activities within the framework of this hypothesis,
when one of the components (2 for example) is very dilute, that is to say, for x, — 0.

According to (16.20)

Iny, = lnexp(w x%)

Y1 = €Xp (W X%)
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After the development in series of the exponential and after only retaining the
first two terms, since x, — 0

1~ 1 +wx§

and since
a; =YX

we obtain, since x; +x, =1,
2 3
ag=xi+wg —n+....)

The activity of the major component (the solvent) tends toward its molar fraction in
pure state (that is to say, toward x; = 1) when that of the solute tends toward 0. The
solvent obeys Raoult’s law. Now, concerning the activity of the solute, we can write

Iny, = wx?

72 = exp(wx})

Yy = exp[ (1 —x) }

Yy = exp[w(l —2x +x2)]

72 exp(w 2wxy + wxz)

= exp(w)exp(—2wx; + wx3)
72 = exp(w) (1 — 2wx, +wa3)

We notice that when x, — 0, y, — exp(w). The activity coefficient tends toward
the constant exp(w) and the activity a, is expressed by

az = exp(w)x

Then, there is a linear relation between the activity and the molar fraction of the
solute. It obeys Henry’s law.

Remark The solutions, the excess Gibbs energies of which are of the kind (16.21),
are called simple mixtures (Guggenheim).

16.8 Theoretical Foundation of the Expression
of the Excess Gibbs Energy of a Simple Mixture:
Meaning of w

We have noticed that when both components of a mixture do possess molecules
roughly of the same size, the excess Gibbs energy obeys the simple relation already
encountered:
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GE/RT = wxix, (16.11)

The semiqualitative explanation is the following one. It is an experimental fact that
liquids retain the structure in lattice of crystals, at least in part (viz. the chapter
concerning the measurement of the radial distribution functions g—viz. Chap. 29).
This means that the molecules of a component are more and less strongly fixed on
the sites of the lattice around a molecule of the same component or of one molecule
of the other component. The fact that the molecules of both components are roughly
of the same size permits, however, the exchange of both types of molecules on the
sites of the lattice. The theory leading to this result is a statistical one.

Let us suppose that the N, + N, molecules are fixed on the sites of the lattice
which are also equal to the number N,+ N, and that both types of molecules
(similar) possess the same number of the sites of coordination Z (at the number of
12, the most of the time, it seems). If the molecules a were completely separated
from the molecules b on the lattice, There would exist on the one hand > ZN,, pairs
a-a and "2 ZNy, pairs b—b on the other. The factor 1/2 is introduced in order not to
take into account the same pair two times. We must remark that, in this theory, one
only takes into account the pairs formed between neighboring molecules, called
molecules in direct interaction. After the mixing, the probability that one site does
possess one molecule a is equal to its molar fraction x,=N,/(N, + N,,) and that it
does possess one molecule b is x, = Ny/(N, + Ny). The probabilities of existence of
pairs a—a, a-b, and b—b are then xa2 , 2Xx, Xp, and xb2 . The factor 2 is present because
there are two manners to obtain the pair a—b (obtentions of a—b and of b—a). Let
Waar Wab, and wy,, be the increases of potential energies when two molecules a,a—a,
b—b-b form a pair while they were separated at infinity. They are negative values.
The potential energy U after mixing is given by the expression

Ul(after mixing) = —%Z(N, + Nb)( waaxz + 2WapXaXp + Whp xi)
or
U(after mixing) = —4Z(WaaN2 + 2WapNaNp +wipN3 ) / (No + Np)
Before mixing, the potential energy was
U(before mixing) = —AZ(N Waq + Npwpp)
Hence, the change in potential energy due to the mixing AU is
AU = Y5 ZN Np(Wag + Wep — 2Wap)/ (Na + Np)
which can also be written as

AU = (ng + np) xgxpw' RT
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after having introduced the quantity w':
w = ZNa(Waq + Wpp — 2wap) /2RT

where N4 is the Avogadro’s number (which must be introduced since the previous
reasoning involves the molecular scale and does not involve the molar one as it
must be because of the presence of the constant R)'. If we consider an ideal
solution, AU is equal to the mixing Gibbs energy and hence

w =w

Maybe, here lies the meaning of the constant w introduced in the case of simple
mixtures.

"Pay attention, do not confuse N, and N,!



Chapter 17
Equilibrium Constant, Activities,
and Reaction Gibbs Energy

Abstract The concept of chemical equilibrium is intimately linked to that of Gibbs
energy change accompanying the studied reaction. According to the value of the
latter, one can forecast if, spontaneously, the reaction is possible (or not) in the
sense in which it is considered in the given experimental conditions. Likewise, it
permits to forecast the position of the equilibrium. Hence, applying the general
properties of the quantity Gibbs energy to a chemical reaction leads to the law of the
chemical equilibrium, also called “mass action law.” It stems from the notion of
standard reaction Gibbs energy which is quantified with the aid of the introduction
of a constant named the equilibrium constant.

In this chapter, it is demonstrated that the equilibrium constant is truly a constant
only when it is calculated in terms of the activities of the reactants and products.
This point is a very important one, because it is only at this price that the
interactions between the particles of the system are taken into account. The
introduction of the activities allows, indeed, to express the chemical potentials of
the reactants and products and as a result the mass action law with the same
formalism as that used to study the behavior of species in ideal solutions.

The theoretical developments of this chapter lead to the somewhat surprising
result that, according to the chosen standard states of the reacting species, the values
of the equilibrium constants of a given reaction vary! This is the reason why it is
interesting to mention the relations existing between the different equilibrium
constants. Finally, the changes of equilibrium constants with temperature and
pressure are examined.

Keywords Reaction Gibbs energy ¢ Activities of the reactants and products ¢
Equilibrium constant (constancy) ¢ Usual standard states * Kinds of equilibrium
constants * Equilibrium constants/changes with the temperature and pressure

The concept of chemical equilibrium is intimately linked to that of Gibbs energy
change accompanying the studied reaction. According to the value of the latter, one
can forecast if, spontaneously, the reaction is possible in the sense in which it is
envisaged and in the given experimental conditions, or not. Likewise, it permits to
forecast the position of the equilibrium. Hence, applying the general properties of
the quantity Gibbs energy to a chemical reaction leads to the law of the chemical
equilibrium, also called “mass action law.” It stems from the notion of standard
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reaction Gibbs energy which may also be quantified with the aid of the introduction
of a constant named the equilibrium constant.

It is the goal of this chapter to show that the equilibrium constant is truly a
constant only when it is calculated in terms of the activities of the reactants and
products. This point is a very important one, because it is only at this price that the
interactions between the particles of the system are taken into account. The
introduction of the activities allows to express the chemical potentials of the
reactants and products with the same formalism as that used to study the behavior
of species in ideal solutions.

It is also the goal of this chapter to show that, according to the chosen standard
states of the reacting species (participating to the equilibrium), the values of the
equilibrium constants of a given reaction vary. It is the reason why it is interesting
to mention the relations existing between the different equilibrium constants. We
also investigate the changes of equilibrium constants with temperature and
pressure.

17.1 Reaction Gibbs Energy

Let us consider a closed system (the system may be constituted of several phases,
which are themselves open systems, but the following considerations concern the
whole closed system) in which the following reaction takes place:

aA +bB+ =pP+qQ + ... =

Let us suppose that an infinitesimal change takes place in the system. The natural
variables of the Gibbs energy function 7 and p and the numbers of moles n;
(na. . .ng. ..) exhibit the infinitesimal changes dT, dp, and dn; and the change in
the Gibbs energy is given by the expression of the total differential:

dG = —SdT + Vdp + Y _ pdn; (17.1)

The yu; are the chemical potentials of the species participating in the reaction; G, S,
and V the Gibbs energy, the entropy, and the volume of the system; and p and T its
pressure and temperature. Let us write the above chemical reaction under the most
concise form:

ZV,‘M,’ =0

M; symbolizes the reactants and products. For the reactants (A, B), the stoichio-
metric coefficients v bring the negative sign since their number of moles decreases



17.2  Expression of the Reaction Gibbs Energy as a Function of the Activities of. .. 207

during the reaction. It is the contrary for the products. Because of the stoichiometry
of the reaction, the following equalities are obligatorily satisfied:

dna/a = dng/b= dnp/p =dng/q = dE

£ is the extent of the reaction. With these relations, the change in the Gibbs energy
accompanying the reaction is

dG = —SdT + Vdp + (apy + ....qup)déE
At constant temperature and pressure,
dG = (apy + ....qup) d&
Let us symbolize Zy,-/,ti the sum pu, + qug + ... —apy —bug — ... :
Zl/iﬂi =pup + quo + ... — apy — bug —
The sum Z vip; 1s the reaction Gibbs energy A,G:

AG = Zy,ﬂi (17.2)

By examination of the expression A,G, it appears that the reaction Gibbs energy is
the change in the Gibbs energy accompanying the reaction at a given moment of its
evolution, that is to say, for a given extent £ at which each species i exhibits an
instantaneous chemical potential y;. The chemical potentials of the species vary
with the extent of the reaction and as a result the reaction Gibbs energy does vary
with the extent of the reaction.

When the reaction spontaneously takes place, the change dG must be negative
because of the proper properties of the function G. As a result, at constant temper-
ature and pressure, the reaction Gibbs energy A,G must be negative:

A,G < 0 (spontaneous reaction dT =0, dp = 0)

17.2 Expression of the Reaction Gibbs Energy
as a Function of the Activities of the Reactants
and Products

Let us recall that, from the general standpoint, the chemical potential of a species
whatever its thermodynamic state is
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Ui = u° + RT In g
u;° is its standard chemical potential and g; its activity in the state where it stands.
The relation between the reaction Gibbs energy and the activities is obtained by

expressing the chemical potentials y; present in the relation (17.2) by the above
expression. We obtain

AG = (pup + qu’o + ... — aus — bu'p)
(17.3)
+RT In (aﬁaé/a}jaé’)

In this expression, each activity can take every value (except that corresponding to
the equilibrium—this point is the matter of the next paragraph). The ratio (a5 a‘é/

as ag) is called the reaction quotient and is symbolized by Q.

17.3 Equilibrium Law: Equilibrium Constant

From the general standpoint (viz. Chap. 5), at equilibrium
dG =0
At constant temperature and pressure, according to what is preceding

> vig; =0 (dT =0 and dp = 0) (17.4)

For example, for the above reaction, the equilibrium condition (at constant temper-
ature and pressure) is

pup + qug + ... —apy — bup — ...=0 (17.5)

Let p;.q be the chemical potentials of the different species at equilibrium. Consid-
ering the above example again, the equilibrium condition entails the equality:

Php, F Qg F - = apa F bup, o (17.6)

Let us replace the chemical potentials at equilibrium by their general expressions
where the activities are those at equilibrium:

Heq = H° + RT In ae

Expression (17.6) becomes
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p(up + RT In ap,) + q(,uOQ + RT In anq> + ...
—a(us + RT In an,) — b(up + RT Inag,) — ...... =0
or after rearrangement

RT In (a,faQ .../ aA®aB" ... )

= (au®A+bu°B + .....) — (pu°P + qu°Q + .....)

(17.7)

We have seen that the standard potentials /4:1, ,u;, etc. are constant at given
temperature and pressure. As a result

RT In (appag ..]ala}. )eq = constant (dT = 0 dp = 0)

and evidently
(ap”ag /aAaB.....)eq = K° (17.8)

K° is the constant of the chemical equilibrium. It is called standard equilibrium
constant (IUPAC) or also thermodynamic equilibrium constant. At equilibrium and
at constant temperature and pressure, the activities of the species participating in the
reaction obey relation (17.8). Conversely, the fact that this relation is verified means
that the chemical equilibrium is reached. Relation (17.8) is the expression of the
mass action law.

The relation (17.8) is general. It is satisfied, at constant temperature and pres-
sure, when the equilibrium of every reaction is reached and this assertion is true
when it involves only one phase or even several. However, in the latter case, it is
true only when the whole closed system is considered. It is not if one considers each
phase separately.

17.4 Reaction Standard Gibbs Energy and Reaction
Gibbs Energy

Let us consider the right member of relation (17.7), the sign of which has been
changed. According to relation (17.3) of Chap. 5, it is clear that it has the signif-
icance of the standard molar Gibbs energy change A,G° accompanying the
reaction:
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aA + bB + ....... PP+ q0 + ...
that is to say, when the reactants and the products are in their standard states:
MG = (pp°p + quo + ....) — (au’s + bu'p + .....) (17.9)

The reaction Gibbs energy A,G, according to (17.3), is

AG = AG® +RT In (agag/aga};) (17.10)
or
AG = AG +RT In Q (17.11)
At equilibrium,
AG =0

and from (17.8), one can deduce that
—RT In K° = AG® (17.12)

and
AG = — RT In K° + RT In (a,’;ag/aga};) (17.13)

Relation (17.13) is sometimes called the van’t Hoff’s reaction isotherm.

The notion of reaction standard Gibbs energy A,G° is endowed with a true
practical interest since it permits to calculate the Gibbs energy change A,G accom-
panying a chemical reaction between reactants and products when they are in
ordinary thermodynamic states, provided that the activities of the different species
in the initial and final states are known and provided that the transformation is
performed at constant temperature and pressure. Let us, indeed, envisage the
following cycle (Cf., Fig. 17.1):

Let us consider the reaction

aA + bB — mM + nN

and calculate the Gibbs energy change A,G accompanying it. The initial and final
states are some given states. It is clear (viz. Fig. 17.1) that

A,G = AG|(reactants)initial — standard + A,G° + AG;(products)standard
— final



17.4 Reaction Standard Gibbs Energy and Reaction Gibbs Energy 211

1 M&FE — EE
):ib-.n.n CL’L Ci- 5'(;_»21 Naac qu!-'wt& ‘ 7} |"L¢‘f{kt’t3 -’}\'V.J.,uc[&-(ll‘r 4'“!"_
i - o
™
T B T e e
M*\I}L.lmwa /)Il.-{‘l't'—p_ immh—mt | 7-} l!,qg:{ul{'r_; .G\-'Lt]—\ .ul,us .

| | |
E—— | S ——

Fig. 17.1 Principle of the calculation of the change in molar Gibbs energy A,G of a chemical

reaction through the standard Gibbs energy when the reactants and products are in an ordinary state
at constant temperature and pressure

Since the chemical potentials are molal Gibbs energies and since the activities in
the standard states are equal to unity

AG/ (reactants)initial — standard =[a p,° — a(us® + RT In ay;)]
+ [bup® — b(ug® + RT In ag;)]
AG,(products)standard — final = [m(uy,° + RT In ayy) — mpuy°]
+[n(yN° +RT In aNf) — n,uNo]

that is to say,
AG = AG) + AG° + AG,

We again find the fact that an activity has the meaning of the Gibbs energy change
accompanying the crossing of a substance from the standard state into some
non-ordinary state (viz. Chap. 9).

Hence, the tabulation of a limited number of standard Gibbs energies permits the
calculation of the Gibbs energies of chemical reactions arising whatever the
conditions are, but which must evolve at constant pressure and temperature.

Concerning this purpose, it seems interesting for us to briefly recall the main
methods of determination of standard Gibbs energies. Let us mention:

— The determination of the equilibrium constants

— That of electromotive forces of galvanic cells

— The measurement of energy intervals in molecules allowing the calculation of
molecular partition functions (viz. Chap. 26)

— The use of the third law of thermodynamics
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17.5 Usually Chosen Standard States

As arule, the choice of standard states is arbitrary. It is the same thing for that of the
scale of “concentrations” to which the activities are related. Actually, the choice is
rather based on practical considerations. Let us recall those which are, by far, most
often, adopted. Usually, but in no case obligatorily:

— For ions and molecules in dilute solutions, activities are related to the scale of
molar concentrations or to that of molalities (viz. Chap. 1). The numerical values
on either of these scales little differ from each other, for dilute solutions.

— For the solvent of a dilute solution, its activity is related to its molar fraction. Its
numerical value differs very little from unity in dilute solutions.

— For a pure solid, its standard state is its pure state at atmospheric pressure.
Hence, its activity is equal to unity.

— For gases in equilibrium with their solutions, their activities are chosen to be
equal to their partial pressures expressed in pressure unity, still often in atmo-
spheres for historical reasons. This is true when the pressures are not too large.

— For liquid mixtures, the activity of each component is related to its molar
fraction and its numerical value differs few from the latter.

The qualifier “related to” used above means that the activity a of a species in a
given medium is related to its “concentration” C whatever the scale is, by the
following relation (viz. Chap. 6):

a =yC

17.6 Come Back on the Constancy of the Equilibrium
Constants

It has been already said, at several steps, that the value of an equilibrium constant
may vary according to the chosen standard states. Relation (17.12) above is an
indisputable proof of this assertion. When, indeed, one chooses different standard
states for the reactants and products of a chemical reaction, quite evidently, the
standard Gibbs energy A,G° changes and according to relation (17.12), the equi-
librium constant also. When there is no equilibrium (A,G # 0), when one operates
with different standard states, relation (17.10) shows that since Gibbs energy
changes accompanying the chemical transformation are constant (state function),
the reaction quotient differs according to the description mode of the phenomenon.
As a result, the activity values of the different species are not the same as those
handled with the first set of standard states. In other words, for the reaction Gibbs
energy to remain the same, whichever the retained standard states are, there must
exist a kind of spontaneous compensation between the values of the standard
reaction Gibbs energy and those of the activities. This compensation can be
qualified as being subtle.
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17.7 Equilibrium Constant in Homogenous Gaseous
Medium

By hypothesis, the reaction occurs only in one phase. By adopting the hypothetical
state in which it exhibits an ideal behavior at the pressure of 1 atm as standard state,
activity is equal to its fugacity in numerical values (viz. Chap. 10):

a = f;

As a result, the general expression of the equilibrium constant (17.8) is
(f,’,’fg/fgfg)eq = K; (17.14)

It is, then, specified that the equilibrium constant is related to the fugacities by the
use of the index f. Of course

K; = K°

when the behavior is ideal. By using the fugacity coefficients ¢; (viz. Chap. 7), Kyis
expressed by the following relation:

Ky = (plfpg..../pjpg.....)eq '<¢pp¢5..../¢j¢g.....)eq

Actually, it is little used since there exist few data concerning the fugacity coeffi-
cients in literature. The first term of the product of the right member is the
equilibrium constant K, expressed in terms of partial pressures:

K, = (p{,’pg o Ipiph ... ..)eq

It is clear that it does not take into account the interactions between the gas
molecules. Hence, it cannot be constant. At high pressures, its value may consid-
erably change.

Another constant K/ is by far more used than the previous one. It comes from the
application of a rule (which actually is an approximation) due to Lewis and Randall.
According to it, the fugacity f; of a gas in a gaseous mixture is related to its fugacity
/i in the pure state at the total pressure of the mixture studied by the relation

fi :)’;fi,

where y; is its molar fraction in the gaseous state. After replacement in the
expression of Kyabove, we obtain
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r_ /D 14 1 a /b . q b
_(fpr. Jf ....)eq (y[[,’yQ..../yZyB.....)eq

It is evident that this expression cannot be exact, given the fact that the rule is
nothing else than an approximation.

17.8 Equilibrium Constants of Reactions in Homogeneous
Solutions Resulting from Mixtures from Several Fully
Miscible Liquids

For the case of chemical reactions occurring in a mixture of several fully miscible
liquids, the most often chosen standard state of each species is the pure liquid at the
temperature of the solution under the pressure of 1 atmosphere. The activity of each
species is equal to the product of its molar fraction by its activity coefficient (viz.
Chap. 9):

a; = Y,.iXi

The equilibrium thermodynamic constant is
K = (xé’xé. Jxixh )eq . (}/,.p”ny..../yfAy,%.....)eq (17.15)
Evidently, the constant K,/ defined by the expression
K,/ = (xl’,’xg XX )eq

is only approximate.

17.9 Reactions in Dilute Solutions

Equilibrium constants are often expressed in terms of molarities and molalities. Let
us recall (viz. Chap. 9) that for the dilute solutions, the usually chosen standard
states are such that, at the temperature of the solution and under the pressure of
1 atmosphere, in the cases where the “concentration” is expressed in:

— Molalities, the activity coefficient of each substance y,,, = a,,,»/(m,/m,°) tends
toward unity when the molality m, tends toward zero,

— Molarities, the activity coefficient y., = a.,/(c,/c,°) tends toward unity when the
concentration ¢, tends toward zero.


http://dx.doi.org/10.1007/978-3-319-46401-5_9
http://dx.doi.org/10.1007/978-3-319-46401-5_9

17.9 Reactions in Dilute Solutions 215

The equilibrium constants can be obtained by starting from relation (17.14) by
replacing the molar fractions by the molalities or the molarities in it and also by
replacing of course the activity coefficients relative to the molar fractions by those
relative to the molalities and molarities.

One knows (viz. Chap. 1) that the number 71, of moles of the solute is related to
its molality m, by the relation

n; = (nlMl/IOOO)m2

where n; and M, are the numbers of moles and the molar mass of the solvent. One
can make the following approximation for the dilute solutions. Its molar fraction x,
is defined by the expression

X, = nz/Zn

where Zn is the sum of the number of moles of all the other components of the
solution, including the solvent. When the solution is sufficiently diluted, one can set

up

El’l%}’ll

By performing this approximation, the two preceding relations lead to
X2 = (M,/1000)m;

By replacing the molar fractions of the solute by the expressions of this kind, we
obtain the relation

K, = (mpl’mg ) mimb )q (17.16)

Actually, the numerical value M,/1000 is already introduced into the value K,,/. The
relation (17.16) is approached for two reasons. The first one lies in the approxima-
tions governing the crossing from the molar fractions to the molalities. The second
approximation lies in the absence of the factor grouping the activity coefficients.
Actually, its presence is not justified given the preceding approximations entailing a
very weak number of moles.

By an analogous reasoning, one finds the expression (17.17) of the equilibrium
constant K./ expressed in molarity terms:

K. = (c;;cg, el ..)eq (17.17)
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As K,,/, K. is approximate for the same reasons as above. The crossing from the
molar fractions to the molarities is realized thanks to the exact relation (viz.
Chap. 1)

X3 = (c2/1000p) (ZnM/Zn)

where £ nM is the mass of the solution and p its density. The approximations
performed here are due to the facts that in diluted solutions

ZnM ~ niM; and Zn S

The equilibrium constants expressed in terms of “concentrations” are often called
formal or conditional constants. More generally, the adjective conditional seems to
qualify the case where not only the “concentrations” are taken into account but
also other experimental conditions are fixed.

17.10 Heterogeneous Cases

Now we consider the case in which the chemical reaction occurs in heterogeneous
systems. It is the case, for example, when the equilibrium involves gases and solids,
one solution and one solid, etc.

Whichever the case is, the general relation (17.8) can be applied. The important
point to notice is that, when the equilibrium involves a pure liquid or solid, its
activity is usually chosen, to be equal to unity. This simplifies the writing of the
equilibrium constant. As an example, let us again take the case of equilibrium

aA + bB+ =pP+ q0 + .....=

where A, P, and Q are in solution and where B is a pure solid. Given the
corresponding convention for the activity, the chemical potential B is

ﬂB:HBO + RT In 1
Hp = Hp°

The same reasoning as that which leads to the general relation (17.8) gives the
expression

(alfag..../ajlb.....) = K°

€q

systematically written in literature as
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alal . ... a“.....) = K°

If the activity of the solid pure compound does not intervene in the writing of the
equilibrium constant (because of the value unity of its activity), its standard
potential, however, still intervenes in the standard Gibbs energy change which is
still written according to relation (17.9) as it is shown by the reasoning involved in
the occurrence. This explains why, for example in an electrochemical cell, when
one electrode is constituted by a pure metal (Zn, Cu, and so forth) the activity of
which is taken to be equal to unity, when the metal constituting it participates in the
chemical equilibrium.

Let us recall that the fact to write down the activity of a pure phase equal to unity
is legitimate only under the pressure of 1 atmosphere. When it is not the case, its
activity remains constant as previously but is no longer equal to unity. Hence,
corrections must be in principle done. However, since the influence of the pressure
on the activity of a solid or a liquid is weak, it is neglected in “everyday” practice.

17.11 Change in the Equilibrium Constant with Pressure

The change of the value of the equilibrium constant with the pressure can be
grasped through relation (17.12)

In K° = — AG° /RT

Let us differentiate with respect to the total pressure p at constant temperature. We
obtain

(Oln K°/0p)y = 1/RT[0(A/G")/Oply

Since the standard states are defined as being independent from the pressure of the
system, the reaction standard Gibbs energy does not change with the external
pressure:

(0ln K°/0p); = 0

As a result, the constant K is also independent from the external pressure (viz.
paragraph 6).

However, the fact that the value of the equilibrium constant does not vary with
the pressure does not necessary mean that the equilibrium concentrations of reac-
tants and products remain constant when the pressure increases. Constancy of the
equilibrium constant and equilibrium position must not be confused!
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— Letus consider the following reaction where the reactants and products are in the
gaseous state and are at equilibrium at a given temperature:

aA + bB + =pP + qQ + .....=>

The equilibrium constant K;is given by relation (17.14). The fugacity coefficient
of each gas is given by the relation

¢ = fi/pi
The partial pressure of the gas i is given by the relation
pi = yiP

where P is the total pressure and y; the molar fraction of the gas in the mixture.
From the last two relations, one deduces

fi = ¢yl

Replacement of the fugacities f; by this expression into (17.14) leads to

K° = (y;,’yg..../y;{yg.....) (¢£¢5/¢X¢§) o plmtn—a=b)

eq. eq
(17.18)

After studying this expression, it is evident that the K° constancy entails that when
the total pressure P varies, the factor grouping the molar fractions also varies. When
the total pressure varies, the equilibrium concentrations adapt themselves in order
that the value K° does not change. However, we can notice that when the combi-
nation of exponents (m + n—a—b) is null, there is no modification of the equilibrium
concentrations with P. The change in the equilibrium position with the pressure is
related to Le Chatelier’s principle which stipulates that increasing the pressure
favors the reaction which is accompanied by a decrease of the number of molecules.

Another point must be taken in mind. In the just above reasoning, the term taking
into account the fugacity coefficients has not been considered. But the latter varies
with the pressure, very moderately with weak pressures but, very markedly, when
they are endowed with large values.

17.12 Change in the Equilibrium Constant
with the Temperature

The effect of the temperature on the equilibrium constant can be studied through the
differentiation of relation (17.12) with respect to the temperature. Performed at
constant pressure, it leads to the expression
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(0 In K°/0T)p, = — (I/R)O(A,G°/T)/OT
Thanks to the Gibbs-Helmholtz relation (viz. Chap. 2)
[0(AG/T)/0T), = — AH/T?
one can write
dInK° /dT = AH°/RT? (17.19)

This relation is sometimes called van’t Hoff’s equation.
(In passing, let us remark that using partial derivatives is unnecessary, because
K° does not depend on the total pressure. A simple differentiation is sufficient.)
AH" is the standard enthalpy change accompanying the chemical reaction when
it occurs from the left toward the right:

AH®° = (pHOP + qHOQ + ) — (CZHOA + bHp -|—)

The H°; are the molar enthalpies of species i in their standard states, at temperature
T. They depend only on the temperature. Of course, the standard states chosen in
order to define the chemical potentials and those chosen to define the enthalpies
must correspond to each other. Let us confine ourselves to only recall that for a
solute, the partial molar enthalpy is always equal to that it possesses at infinite
dilution. As a result, the solution of the solute at infinite dilution is the solution of
reference.

In short intervals of temperature changes, one can admit the approximation that
AH does not depend on the temperature. Then, the integration is immediate. We
obtain

In K° = — AH°/RT + constant

This relation is very interesting. It shows, indeed, that it is possible to obtain the
heat of reaction when the equilibrium constant is known, at least, at two tempera-
tures. Another possibility of its use is the following one: it permits to know the
equilibrium constant at every temperature provided that it is known at one temper-
ature and that its enthalpy change is also known.

For larger temperature intervals, corrections through calorific capacities must
be done.
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Chapter 18
Obtention of Equilibrium Thermodynamic
Constant pH: Definitions and Measurement

Abstract The importance of the knowledge of the equilibrium constants of the
chemical reactions is considerable. They notably permit to know the position of the
equilibrium according to the experimental conditions with a good accuracy, thanks
to the use of the activities when the behaviors of reactants and products are not
ideal.

The chapter mentions some determinations of thermodynamic equilibrium con-
stants. They entail the use of activities. Here, very classical determinations by
potentiometric and conductometric measurements are considered. Some examples
are given. They are the potentiometric determinations of the mean activity coeffi-
cient of a strong acid, the thermodynamic acidity constant of a weak acid, the ionic
product of water, and the conductometric measurement of an acidity constant. It is
also devoted to the quantity named pH, the definition and measurement of which
being intimately linked to the concept of activity.

Keywords Equilibrium  constants  (potentiometric and  conductometric
determinations) ¢ Electrochemical cells ¢ pH ¢ Formal and operational
definitions « Thermodynamic acidity constants « Water, tonic product

By way of introduction of this chapter, let us recall the considerable importance of
the knowledge of the equilibrium constants of chemical reactions. They notably
permit to know the position of the equilibrium with a good accuracy, according to
the experimental conditions, thanks to the use of the activities.

In this chapter and in the following, we mention some determinations of
thermodynamic equilibrium constants. They entail the use of the activities. In this
chapter, we consider very classical determinations by potentiometric and conduc-
tometric measurements. We finish with some considerations on the quantity pH, the
definition and measurement of which are intimately linked to the concept of
activity.

In the following chapter, we shall describe some less conventional determina-
tions while taking into account the activities.
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18.1 Potentiometric Determination of the Mean Activity
Coefficient of a Strong Acid

The potentiometry permits to directly determine the mean ionic activity coefficient
of one electrolyte (Cf, Chap. 14). The cell reaction involves the formation of the
substance (the activity of which is wanted) in solution. Let us take the example of
the hydrochloric gas which is a strong acid in water. We want to determine its mean
activity when its molality in water is m.

Let us consider, for example, the cell

Pt|H,(1 atm.) |[HCl(aq, m)|AgCl(s)|Ag

constituted by a hydrogen electrode (under the pressure of 1 atm.) and by a silver—
silver chloride electrode dipped into the solution of hydrochloric acid at the
molality m. The hydrogen electrode is sensitive to hydrogen ions. It is the indicator
(or working) electrode. The spontaneous cell reaction is

1/2 Hy(1 atm.) + AgCl (s) — H"(m) + Cl (m) + Ag(s) (18.1)

Ions H" and C1™ are at the “concentration” m in the solution. The cell reaction
(18.1) does not evolve as it is written above. Actually, it evolves according to a
fragmented manner through the two simultaneous electrochemical reactions:

atthe anode : 1/2Hy(latm.) — H"(m) + le~

at the cathode : AgCl(s) + le~ — Ag(s) + ClI (m)
There only exists one solution in the cell in which both electrochemical reactions
occur. Hence, the cell does not possess two compartments, the existence of which
would involve the existence of a liquid junction (viz. Chaps. 5, 12, and 14).

The cell electromotive force E is related to the activities of the different species
participating in the cell reaction through the equation

E = E° — (RT/I’IF) In Aaycl aAg/ (aHz)l/zaAgCl] (Wlth n= 1)

where E° is the standard electromotive force. According to the usual choices of the
standard states (viz. Chap. 17):

— ap,=1 since dihydrogen is at the standard pressure and since it exhibits a perfect
behavior at this pressure, at usual temperature,
— aag=1and axec1 =1 since both are solid constituting pure phases.

As a result, the cell electromotive force is given by the expression
E = E° — (RT/F) In aycl (182>

The measurement of E permits to obtain the activity aycy.
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E is also given by the expression
E = E° — (RT / F) In (auy *ac-)
or
E =E — (RT/F)In(myem_) — RT Iny,y_

In the present case,

ver- =71k
and
myem_ = m}
whence
E + (2RT/F)In m— E° = — (2RT/F)Iny,

We see that the method permits, starting from the measurement of the
corresponding electromotive forces E, to evaluate the mean ionic activity coeffi-
cient y1 when the molality of hydrochloric acid is m. But, in order that it is possible,
the standard force electromotive E° must be known. The latter is obtained by
extrapolation. The extrapolation is based on a form of the Debye—Hiickel’s relations
which is of the following type for a monovalent electrolyte in very dilute solution
(viz. Chap. 15):

Iny, = — ANm + Cm
where C and A are constants. Putting this relation into the preceding one, we obtain
E + (2RT/F)Inm + ANm = E° 4 Cm

We notice that the left member of the last equation is a function of the molality,
which is known. After measurement of the emf E at each molality m, it is known.
The extrapolation of its value down to m=0 gives the value of the standard
electromotive force E°.

This principle of determination can be generalized to every electrolyte. The only
condition which must be fulfilled in order that the determination would be possible
is that one of the electrodes of the used cell reversibly responds to one of the ions of
the electrolyte.

For example, for generalization, let us consider the electrolyte M,, A, . The cell
which may be used is
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M|M"™", A solution (m)|A

The electromotive force of the cell is given by the expression

E = E° — (RT/nF)In a'*a'~
E = E° — (v RT/nF)In my — (v RT/nF)Iny,

In this expression, m.. is defined by the expression

ml — mv+ v—
and since
my =vem and m_ = v_ m
my = m' (Vi)
with

vV = vy + v

and n is the number of exchanged electrons appearing in each of both electrochem-
ical reactions. This methodology of determination of the electrolyte activities has
been used in numerous times, in various experimental conditions.

(On the fringe of this method of determination, it is interesting to answer the
following question: Why the cell reaction (18.1) does not occur chemically rather
than through the electrochemical way, since all the reactants are present together
in the same solution as that of the cell. The reason is of kinetic order. With respect
to the electrochemical reactions, the chemical reaction is very slow and has no time
to evolve.)

18.2 Potentiometric Determination of the Thermodynamic
Acidity Constant of a Weak Acid

Let us take the example of a determination in water. Let HA be the acid. Let us
consider the following cell, called the Harned cell:

Pt|H,(1 atm.)[HA,A™, H', CI”|AgCl(s)|Ag

Once more, it is without a liquid junction. The goal is to determine the thermody-
namic acidity constant Ka of the weak acid HA in water. It is defined by the
expression
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K, = apias- [ aua (18.3)

where A~ is the conjugated base. A constant concentration of chloride ions is
introduced as sodium chloride. The “concentration” in chloride ions, introduced
as sodium chloride, is constant.

Generally, the acid HA and its conjugate base A~ are not electroactive in these
conditions. The cell reaction is reaction (18.1).

As we have seen it above, the electromotive force of the cell E is given by
relation (18.2); that is, it depends on the activity ayc;. The activity of chloride ions
being constant, it is evident that the electromotive force depends on the activity ay,
which, in turn, depends on the ionization constant through relation (18.3). Hence,
one can conceive that £ measurements in well-defined conditions allow to reach K.

For example, let us consider the cell without junction:

Pt|H,(1 atm.)[CH3COOH (m;), CH3COO™ (m;), NaCl(m3)|AgCl(s)|Ag

The goal is the determination of the thermodynamic acidity constant of acetic acid.
According to what is preceding, the electromotive force of the galvanic cell is given
by the expression

E = E° — (RT /F) In (mu mer yuy 7o)

Given the definition of the dissociation constant:

o

K, = (mH+mCH3C007/ mCH3C00H) * (7’H+7CH3COO—/ 7CH3C00H)
The combination of both expressions is as follows:

E — E° + (RT/F) In (mcuscoonmci— /mcu3coo- )
= *(RT/F) In K, — (RT/F) ln(}’CH3COOH7C17/VCH3C007)

The left-hand member of this expression can be calculated. E°, indeed, is already
known (viz. the above paragraph) and E is the electromotive force measured with
the cell. When its values, obtained for different molalities m,, m,, ms3, and so forth,
are drawn as a function of the ionic strength of the solution, and when, after, one
extrapoles down to a null ionic strength [, the obtained value gives K;, since the
term containing the activity coefficients is then equal to zero:

I, —0 K,— K,

In order to perform this kind of extrapolation, the “concentrations” mcy3coo_ and
Mcuscoon must be those which truly exist when the acid—base equilibrium is
reached. From the kinetic standpoint, this condition does not raise any problem
because the equilibria acid—base in aqueous solutions are obtained very quickly.
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From the standpoint of the equilibrium, an approached value of the constant is
chosen at the beginning of the process in order to calculate a first approached value
of the ionic strength and of the constant. This latter value is retained as a first value
for a second calculation and so on. For the first approximation, one sets up

MCH3COOH ~ My,

McH3CO0- =~ Ny,

mecl— ~ ms.
The ionic strength is calculated according to the relation
Ly = my + m3 + myy

since all the ions are monovalent. The molalities at equilibrium are approached
thanks to the approximative chosen ionization constant. Generally, a small number
of iterations are necessary. The process of iteration is ended when two successive
values K, are considered as being equal according to the precision of the
measurements.

Finally, the value obtained at 25 °C for acetic acid is Ka = 1754 x 107,

18.3 Potentiometric Determination of the Ionic Product
of Water

This example is quite similar to the previous one. The used cell is the following:
Pt|H,( 1 atm.) MOH (m,;) MCI (m,)|AgCI(s)|Ag

where M* is an alkali metal ion. By definition, the ionic product of water KVL is
given by the relation

o

apyaon- = K

w

The electromotive force of the cell is again given by the expression (18.2). A
reasoning absolutely analogous to the preceding, followed by considering that the
base MOH and the metallic chloride are fully dissociated, leads to the following
relation:

E — E° + (RT/F) In (m(;],/ mOH,)
= — (RT/F)In K, — (RT/F)In(yci-/rou-)

At infinite dilution, the term on the right containing the activity coefficients
becomes null. Hence



18.4 Conductometric Determination of the Thermodynamic Acidity Constant of a. .. 227

o
K, — K,

Once more, one proceeds by extrapolation by writing the value of the left term of
the above equation as a function of the ionic strength, the value of E° being known
from another side. Finally, it has been found that at 25 °C

K, = 1,008 x 10"

This kind of determination has been very often performed.

Let us notice that a junction cell must also be used. Then, the principal uncer-
tainty affecting the result comes from the occurrence of the junction potential (viz.
under the pH measurement).

18.4 Conductometric Determination
of the Thermodynamic Acidity
Constant of a Weak Acid

Let us consider the determination of the thermodynamic acid dissociation constant
K, of a monoacid HA.

It is an experimental fact that the molar conductivity A,, of a weak acid depends
on its concentration. It decreases, firstly, very quickly and then more slowly when
its concentration increases (Fig. 18.1).

It is admitted that the lowering of the molar conductivity is, in great part, due to
the lesser dissociation of the acid with its concentration. This behavior is in
accordance with Ostwald’s dilution law which stipulates that the more dilute a
weak acid is, the more dissociated it is.

— In a simplified treatment of the phenomenon, it is admitted that the value of the
dissociation coefficient a of the acid is approached by the coefficient @’ given by
the expression

A ]

/\M&"‘eﬂﬁ——

c ’?w't{ concautnabiin)

Fig. 18.1 Dependence of the molar conductivity of a monoacid on its concentration
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od = AJA (18.4)

where A, is the limit molar conductivity, that is to say, at infinite dilution. & permits
to obtain an approached value of the constant K’ being searched for. The reasoning
is as follows. Once the coefficient o is known, it is evident that given the
equilibrium

HA=H"+ A"
if the analytical concentration of the acid is C, K’ obeys the relations

K = (@C)dC) /(1 d)C

) (18.5)
K = (A/Ao) C/(I_A/Ao)

For the following operations, A being measured, A, must be known.

According to Kohlrausch’s law of the independent migration of ions (law of
purely experimental origin) (that some authors qualify as being a postulate), the
limit molar conductivity of the acid can be calculated by applying the following
expression which relates the limit molar conductivities of HCI, NaA, and NaCl:

Ao(HA ) = Ao(HCL) + A, (NaA) — A,(NaCl)

since HCl, the sodium salt of the acid NaA and NaCl are strong electrolytes, that is
to say fully dissociated. This relation should be rather written as follows:

Ao(H" + A7) = Ag(H™ + CI7) + Ao(Na™ + A7) — Ao(Na® + CI7)

— This approach is approximate for two reasons which act in synergy. The first one
is that the conductances A of the ions, parameters that cannot be rid of since they
are inherent to the method, are not truly constant. The conductances vary with
the square root of the “concentrations” of the ions, according to an empirical law
due, also, to Kohlrausch. The second one is that there is also a ionic strength
effect. Hence, both factors are due to ionic interactions and corrections must be
done at two levels.

— In order to solve the whole problem, one operates in two steps.

« In the first step, one introduces the notion of effective conductivity A, for each
ion (the index e means effective and not equivalent). A, is obtained by a
mathematical relation in which intervenes the concentration C; equal to that of
all the ions of the solution where the acid is dissolved. For example, for acetic
acid,

A, = 390.59 — 148.61NC; + 165.5C;(1 — 0.2274NC)
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(Let us mention in passing that this kind of relation, which is from an experi-
mental origin, is justified in part by the Debye—Hiickel’s relations—viz. Chap. 15.)
By generalizing the relation (18.5) to the effective conductivities, one obtains the
relation (18.6) permitting an estimation K" of the constant K,° being searched for:

"

K' = (A/AC/ (1= A/A,) (18.6)

or equivalently:

K = CH+CA—/CHA
One can consider that once the approximate value K” is obtained, one is cast from
the first problem which is that of the change of conductivities.

A better approach K" of the constant being searched for is obtained, then, by
resorting the activity coefficients. K is given by the expression

K = (CH+CA7/ CHA) (7H+ Ya—/ VHA)
Therefore, one can write
In K" =1In K + Iny> /yya (18.7)
with
2 _
Y+ = VH VA

At this point of the reasoning, it seems that one has reached a dead end. In order to
know K", indeed, one must know K” which depends on A,. Now, to know A,
entails to know the concentrations C; and this knowledge, in turn, entails to know
K/// ’

The problem is solved by successive iterations. For the first loop turn of the
iteration process, one begins by adopting the approximation A, = A, which permits
to obtain a first value a by using the relation (18.8) and hence a value C;” and then a
value A,. The latter one permits to obtain a new value a through the relation

a = A/A, (18.8)

The iterative process is continued until the last calculated a value does not differ
significantly from the preceding one. The convenient value K” is then found.

¢ Inthe second step, one takes into account the activity problem. The methodology
is classical. It consists in drawing the curve In K” as a function of the ionic
strength of the solution. When the latter is null, the term taking into account the
activity coefficients in (18.7) becomes null. Hence, the extrapolation of the curve
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down to /=0 gives the being searched for constant Kd The methodology, of
course, entails to have, before, performed measurements of conductances at
several analytical concentrations and to have, for every one, done the previous
calculations.

18.5 The Quantity pH

The quantity pH involves the determination of the activity of an ion, in the
occurrence, the activity of the hydrogen ion. This paragraph gives an example of
what a lot of dispositions and precautions must be taken in order to have the best
estimation of the activity of an ion.

18.5.1 Generalities: Formal Definition of pH

(We confine ourselves to the study of the notion of pH in water.)

The quantity pH is considered today as being a parameter permitting to evaluate
the acidity or the basicity of a medium rather than one parameter exactly quanti-
fying the activity of the solvated proton (also called “hydrogen ion”) in the studied
medium.

Even so, from a theoretical standpoint, a pH value is conceived in order to
quantify the activity of the proton since it is defined as being the decadic antilog-
arithm of the activity of the solvated proton in the medium (ay..q for water):

pH = — log anyy

This is the formal definition of pH.

From the historical viewpoint, the authors who have proposed this definition, as
early as in 1924, are Sorensen and Linderstrom-Lang.

It results from the conjunction of some experimental results and scientific facts
which were, then, already known. Let us mention:

— The use of hydrogen electrode by Sorensen in order to measure the acidity (in the
occurrence, which was considered at this time, as being the proton concentra-
tion) of a medium Le Blanc having before demonstrated that its behavior toward
the hydrogen ions is reversible,

— The fact, however, that Sorensen had found that the hydrogen electrode does not
exactly respond to the concentration in ions H.

— The introduction by G.N. Lewis as early as 1907 of the quantity activity.
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Arrhenius’s theory of the electrolytic dissociation and the hypothesis that it is
the true concentration of ions H+, rather than the total concentration of an acid,
which quantifies the acidity in the best way, indeed, were already known.

Concerning, now, the fact that the quantity pH should be today considered as a
parameter permitting to evaluate the acidity of a medium rather than exactly
reflecting its activity, as for it, is due to some difficulties inherent to the definition:

— The first one, but not the least, is the true nature of the species “hydrogen ion” in
water (and also in other solvents). It is doubtful and we do not insist on it.

— The second is not of less interest than the first one: it results from our impossi-
bility to measure the activity of an ion.

— A third point, which is not truly pejorative but which is very important, is the
generalized adoption of the potentiometric assembling in order to measure the
pH, in the proper definition of pH (viz. under). It is undoubtedly for measure-
ment facilities. The laterative assembling is constituted by a glass electrode
sensitive and selective to the aqueous proton, by a reference electrode, a part
such a liquid junction in order to permit the contact of the reference compart-
ment with the solution under study and by an electrometer for the measurement
of pH.

The question we now face is the following one: What is the link between the
measured electromotive force and the quantity pH?

18.5.2 The Electromotive Force and the Quantity pH

Let us consider the Sorensen’s cell schematized by
Pt|H; (g)|solution||KCl (aq) |AgClI (s) |Ag

It is a cell with a junction, the potential E; of which is minimized (this fact is
symbolized by the presence of the two vertical straight lines in the scheme). We
know that the cell reaction is

AgCl(s) +1/2Hy(g) — Ag(s) + Cl (aq) + H'(aq)
In the usual conditions, this reaction spontaneously evolves. Hence, the cell is a

galvanic one. Its electromotive force is given by the expression (viz.
electrochemistry)

E = E° — (RT/F)In [aa,am/ (aw,)"?| + E;

E° is the standard electromotive force. ay, and ay, are the activities of the proton
and of dihydrogen in the left compartment, whereas ac;_ is that of the chloride ion
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in that of the right. E; is the junction potential between both compartments. This
expression takes into account the fact that the activities aa, and asoc) are equal to
unity, by convention on the activities, because they are solid phases constituted by
only one component. At room temperature, for pressures of the order of 1 bar, the
dihydrogen behavior is that of a perfect gas. Hence, it is legitimate, according to the
unanimously adopted conventions for the activities, to write

an, = Py, (in numerical values)

where Py, is the pressure of dihydrogen. Thus, we obtain
E =E — (RT/F)n [aa,am/ (PHZ)'/Z} + E (18.9)

Unfortunately, the activities ac,— and ay.,. (activities of ions alone) and E; are not
experimentally accessible. Actually, the electromotive force depends on the activity
of the solvated proton, but it also depends on the other two unknown quantities.
This is the difficulty which must be overcome.

18.5.3 Operational Definition of pH

The operational definition of pH is based on the use of the Sorensen cell. It involves
two operations. The first one consists in conventionally assigning values of pH to
some buffer solutions, called standard buffers. These must be, imperatively, com-
patible with the formal definition of pH. It is at this level that it is necessary to make
one hypothesis on the activity of an ion alone. Such a hypothesis is founded on the
Debye—Hiickel’s relations. In the second operation, one uses a device which,
reasonably, allows the measurement of the pH difference between two solutions.

Let us consider the Sorensen’s cell above working for two different acid
solutions X (unknown solution) and S (standard reference solution). It is quite
possible, from the experimental standpoint, to choose experimental conditions
such as the dihydrogen pressure Py, and the activity ac)_ of the chloride ions are
constant during the whole measurements performed and that they are, each one, in
both solutions. ac;_ depends only on the concentration of potassium chloride in the
right compartment and one can admit that it is not perturbed by the ions of the liquid
junction. The electromotive forces measured in identical conditions with both
solutions are, respectively, E(X) and E(S). Admitting the hypothesis that, during
the two experiences, the potential of liquid junction E; remains the same, one
immediately finds the following two relations, starting from the relation (18.9)
applied to the solutions X and S:
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E(XX) — E(S) = — (RT /F) In[au(X) / au(S)]
and by introducing the formal definition of pH:
pH(X) — pH(S) = F[E(X) — E(S)]/ (2.303 RT)

We notice that once one has assigned a pH value to the solution S, that of the
solution X is settled once the potential difference is measured.

The measurement of pH may be performed with other reference electrodes than
the silver—silver chloride one or with other working electrodes sensitive to the ion
hydrogen than the hydrogen electrode, both used in the Sorensen’s cell. In practice,
most often, one uses the glass electrode as working electrode and the calomel one as
the reference.

It remains, now, to assign a pH value, which must be compatible with the formal
definition, to the solutions standard S. Several methodologies have been proposed in
order to do that. Here, we only mention that proposed by the “National Bureau of
Standards (NBS)” in Washington, developed by Bates and Guggenheim.

The assignation of the pH values to the standard solutions is performed, once for
all, after studying the electromotive forces of the Harned galvanic cells (viz. the
beginning of the chapter) of the kind

Pt|H;(g) |buffer solution, CI~|AgCl(s)|Ag(s)

The standard solutions are those containing the buffer mixture. They also contain
known molalities of potassium chloride. Let us recall that these cells are without
junction. This characteristic, of course, eliminates the problem of the junction
potential. Moreover, let us also notice that the fact that the standard solution should
also be a buffer solution is imperative. Thus, in such a manner, the pH value of the
solution to which a definitive value must be assigned is stabilized.

The electromotive force of these cells is given by the expression (viz.
electrochemistry)

E = E°(AgCl/Ag) — RT/F In|(an ac_)/(an,)"

When one operates under a hydrogen pressure of 1 bar and when one introduces the
definition of the activity ac,_,

acl- = Mmci-Ycl-
the previous relation becomes

log(an+ye-) = — (E — E°)F/(2.303 RT) + log mci-
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(the “concentration” of the chloride ion being, here, expressed in molalities, yc)_
should be symbolized by y,, c;_—we do not do it for the sake of the simplicity of
the writing). It appears that the product ay,yc;_ is experimentally accessible. All
these facts being taken into consideration, the different steps of the assignation of
the pH values to the buffer solutions are the following ones:

— The determination of the value of the term —log (ay.yci—) for several solutions
containing the same buffer at the same ‘“concentration” but with different
molalities in potassium chloride, by using the cell without junction above.

— The obtaining of the value —log (ay,yc1—)° by linear extrapolation, down to the
molality mc;_ null, of the preceding values: —log (aysyc)—). This series of
handlings is repeated for each buffer solution.

— The calculation of the pH value of the (buffer) solution according to the relation

pH = —log (auiyc_4)° + logre

It is in this kind of calculations and, more precisely, in that of yc_ that the
following relation (in all evidence of Debye—Hiickel type and called the Bates-
Guggenheim’s relation) is used:

log 7o = A11/2/(1+1.5 I /2)

where A is the coefficient A of the Debye—Hiickel’s relations and / the ionic strength
of the solution expressed in molalities (/ should be symbolized by 1,,). The factor
1, 5 comes from the choice of the admitted value of the “size parameter” of the
chloride ion, a =5. It is interesting to notice that the linear extrapolation of —log
(ausyc1—) down to mc_=0 is justified by the relation

—log(aniyc-) = —log (mH+7H+?’Cl—)

The NBS (National Bureau of Standards—USA) has proposed some buffer stan-
dards called primary standards. Some secondary standards have been proposed
later.

It is important to recall that the assigning, to the standard solutions, of pH values
compatible with the formal definition cannot be directly verified. However, it can
be so indirectly. The argument is as follows: if the pH value of a solution is the same
whatever the choice of a standard solution, it is highly likely that the formal
definition is checked. It is actually the case. In the literature, this favorable check
is called the internal coherence of the NBS scale of pH.

The range of validity of the operational scale of pH is limited by the two
following constraints in order that the pH value keeps its physical significance,
that is to say, so that it is in agreement with the formal definition. The first constraint
is that the ionic strength of the solution under study does not exceed 0.1 mol L™ " in
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order that the obtained result remains compatible with the used Bates-
Guggenheim’s relation. The second is that pH values (which are to be found)
must lie between 2 and 12. The last two limits are those beyond which the constancy
of the junction potential, probably, is no longer granted, given the high mobility of
hydroxide and hydrogen ions of the solution under study.



Chapter 19
General Principles of Calculations Involving
the Activities of Ionic Species in Solution

Abstract The chapter describes some methodologies in order to obtain thermody-
namic equilibrium constants, but in a manner less conventional and certainly more
modern than previously.

The determination of equilibrium constants entails the knowledge of the “at
equilibrium activities” of the species participating in it. There is a difficulty. It is the
following one. If the determination of the activities of the uncharged substances is
possible (but somewhat difficult and lengthy) it is impossible for the ions. As a rule,
this impossibility leads to a problem which may appear as being impossible to
solve.

The methodologies described in this chapter show how the thermodynamic
equilibrium constants involving some ions may be approached by calculations
using the Debye—Hiickel relations. But, these calculations, in turn, also suffer as a
rule from a difficulty which is briefly mentioned in this chapter. To use the “Debye—
Hiickel” relations, the ionic strength of the solution must be known and its knowl-
edge involves that of the equilibrium constants, one of which, at least, by hypothesis
is unknown! The principle and the followed methodology of these calculations are
described in this chapter with the examples of the determinations of acidic
constants.

Keywords Ion activity (experimental determination) ionic strength o
Debye—Hiickel relations use ¢ Concentrations of the different species at
equilibrium < Non-ideality corrections * Informatic calculations ¢ Absorbance
pKa determination

In this chapter, we are continuing to describe some methodologies in order to obtain
thermodynamic equilibrium constants, but in a manner less conventional and
certainly more modern than previously.

We have seen that the determination of equilibrium constants entails the knowl-
edge of the “at equilibrium activities” of the species participating in it. Now, if the
determination of the activities of the uncharged substances is possible but some-
what difficult and lengthy, we also know that it is impossible for the ions. As a rule,
this impossibility leads to a problem fantastically difficult to solve.

The goal of this chapter is to show how the thermodynamic equilibrium
constants involving some ions may be approached by calculations using the
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Debye—Hiickel relations. But, these calculations, in turn, as a rule, also suffer from a
difficulty that we first briefly mention. Then, we recall the conditions of ionic
strengths for which corrections of nonideality must be done. Finally, we mention
the principle and the methodology of these calculations.

19.1 Fundamental Difficulty

The fundamental difficulty concerning these calculations lies in the chain of the
following facts:

— The ionic strength of the solution must be known in order to calculate the activity
coefficients of the ions through the Debye—Hiickel relations.

— The knowledge of the ionic strength entails that the extent of dissociation of the
electrolytes (which are not obligatorily strong) must be known. The knowledge of
this extent, in turn, entails the prior determination of the equilibrium constants . . .
being searched for!

We shall see how this difficulty may be overcome.

19.2 Nonideality Corrections

For rough calculations, nonideality corrections can be neglected. In these condi-
tions, the found values of the concentrations and those of the obtained equilibrium
constants are only approached. Moreover, they vary with the ionic strength of the
solution.

For ionic strengths of the solution less than 10~> mol L™", the calculations are
proved to be relatively simple. They are based on the Debye—Hiickel limit equation.
There is no reason to take into account the identity of the ions, i.e., to use the
extended relation.

For ionic strengths ranging in the interval 1072~10"" mol L ™", it must be used.
But, then, the nature of the ions must be taken into account by introducing the “ion-
size parameter” a. This complicates the calculations.

Beyond ionic strength forces superior to 10~" mol L', Davies’ relation (which
gives reasonable results up to ionic strengths of the order of 5 x 10~ mol L") may
be used.

Roughly, it can be said that the theoretical prediction of the activity coefficients
is very satisfactory up to ionic strengths of 0.1 mol L™'. When only electrolytes 1—1
are involved, the activity coefficients may be then obtained with an accuracy of
3 p 100 by founding ourselves on the limit equation. When an adjustable parameter
such as the so-called ion-size parameter a, is used, the accuracy may amount up to
41 p 100. For the polycharged ions, an accuracy nearly as good as the preceding
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may be obtained, provided that all the equilibria existing in the solution are taken
into account.

We shall see, immediately under, that the calculations of the activities are often
necessary to perform at every step of the calculation of the equilibrium concentra-
tions and of equilibrium constants, both types of calculations being, indeed, inti-
mately linked.

19.3 Reasoning Allowing the Calculation
of the Concentrations of the Different Species
at Equilibrium

Before beginning the calculations (through the Debye—Hiickel equations) of the
activities and those of the equilibrium constants in which some ions intervene, it is
judicious to give the strategy of the calculation of the different species concentra-
tions at equilibrium.

Let us assume, at this moment, that activities are equal to concentrations. The
strategy is based on the fact that the species concentrations at equilibrium must,
obligatorily, obey some mathematical relations. They are, of course, the reflection
of intangible physical laws. It happens that, from an absolute standpoint, they are
systematically in a sufficient number in order that the resultant mathematical
system is systematically determined. These relations are the following:

— The mass balance of the solution
— Its charge balance
— The equilibrium state

Let us take the example intentionally simple of the dissolution of Cy moles of
acetic acid in water to form 1 L of solution. The matter is to calculate the
concentrations of the different species stemming from the ionization of acetic
acid, once the equilibria are reached. The two chemical equilibria are the following:

— The revelation of the acid character of acetic acid:
CH;COOH = CH;CO0™ + H*
— The ionic product of water:

H,O0 = H" + OH~

The corresponding mathematical equations, which must be obligatorily satisfied,
are the expressions of the equilibria, which we write temporarily (the species
concentrations are figured in square brackets):
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CH3COO™||H"|/|CH3;COOH| = K, (19.1)
|[H"||OH™| = K, (19.2)

— The mass law:
[CH3;CO0 ] + [CH3COOH] = Cy (19.3)

(There is no reason to take into account the water balance because the theory is only
valid in dilute aqueous solutions. Since the “concentration” of water is expressed in
molar fractions—viz. Chap. 17—it can be considered as being constant and equal to
unity.) (Here, the equilibria are written according to the Arrhenius theory, equiv-
alent, in the occurrence, to that of Bronsted.)

— The charge balance:
[H*] = [OH] + [CH;COO] (19.4)

Hence, for this example, there exist four equations for four unknowns [H*], [OH ~],
[CH3COOH], and [CH3COO ~]. The system is mathematically determined. It is
reduced easily into one equation with only one unknown. It is (19.5) of the third
order in [H*l which must be, finally, solved:

H] + K H = (K + KoCo)[H'] — KKy =0 (19.5)

Of course, (19.5) depends on the parameters K,, Ky, and Cy which govern the
system. Once the root [H'] is found, all the other concentrations are immediately
accessible through the handling of the initial relations which are obligatorily
satisfied at equilibrium.

19.4 Taking into Account the Activities

The taking into account of the activities is performed by using the Debye—Hiickel
equations since some ions intervene in the equilibrium. Concerning, now, the
uncharged species, one assigns the value unity to their activity coefficients since
the solutions are sufficiently dilute in order that this is legitimate.

Let us recall that the problem we face with is that we must know the ionic
strength of the solution in order to use Debye—Hiickel equations, and consequently
we must know the true species concentrations which are, actually, searched for.

Before entering into the problem of the unknown ionic strength, the fact that
some relations are expressed in terms of activities and other ones expressed in terms
of concentrations must be handled simultaneously. For example, in the above case
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of acetic acid, (19.1) and (19.2) are expressed, in principle, in activities, that is to
say according to (the terms located in round brackets are the activities)

(H")(CH3CO0™)/(CH;COOH) = K,° and (H")(OH™) =K,°

whereas (19.3) and (19.4) are expressed in concentrations. Let us also recall that the
conditional constants K, and K,,” are given by the expressions

[H"][CH;CO0"]/[CH;COOH] = K,' and [H'][OH ] = K,/

and that thermodynamic and conditional constants are linked together by the
relations

K. =K, (YCH3C00H/ YH+YCH3C007) and Ky° = Kw,/ Ya+YoH-

According to the retained scale of “concentrations” (molarities or molalities), the
constants should, of course, be symbolized by K, ./ or K, ,,/ (viz. Chap. 11).

19.5 Calculations

The calculations of concentrations and of activities of the species are performed in
an iterative way.

Let us suppose that we are interested in the “concentrations” and the activities of
the different species at equilibrium and that we have at our disposal the thermody-
namic equilibrium constants (in the example of acetic acid K,° and K,,°). Equations
(19.1)—(19.4) are not homogeneous. The first two are expressed in activities, and the
latter two in concentrations. Solving the system as it has been done above, that is to
say by not taking into account this inhomogeneity, induces the problem of the
physical significance of the calculated quantities: Are they activities or concentra-
tions? The answer and the whole problem are overcome by adopting the following
iterative process:

« In the first step of iterations, one operates by mixing activities and concentrations,
i.e., one supposes that the equations are homogeneous, i.e., one mixes activities
and concentrations. The system of the initial equations is reduced to a single one,
the unknown of which is [H'l (it is (19.5) in the case of acetic acid). It is solved.
One obtains a first value [H*l; which has neither the meaning of an activity nor that
of a concentration, since it is obtained from initial equations involving both kinds
of quantities. Nevertheless, from this first value, one calculates the other “pseudo-
concentrations or activities” [CH;COO™ |, |CH3;COOH|;, and ’OH"I. Thus, one
calculates a first pseudo-ionic strength /;. (Notice the used symbols with vertical
lines—and not round or square brackets—which mean that the quantities are a
kind of mixture of activity and of concentration.) Once obtained, the value I is
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introduced into the judicious equation Debye—Hiickel equation (that applies for
the found 7). It permits to calculate a first set of pseudo-activity coefficients
YH+1> YcH3coO— 1> YoH- 1- The latter ones, in turn, permit to obtain a first set of
the values of the conditional constants K,'; and K,/'; by using the following
relations (and by setting up Ycscoon— = 1. This is justified—viz. Chap. 15)—

Ka/1 = K. /Yemscoo-Yus  and Kw,1 = Kw’/YuYon-

The first iteration is finished. It is important to notice that the constants K,'; and

K,/i do not have, yet, the meaning of pure formal constants. But, however, they

approach them and, hence, their meaning begins to deviate from that of thermody-

namic constants, given the manner which has permitted to obtain them.

» The second iteration is then initiated. It is strictly performed just like the first
one, but in the calculations intervene the pseudo-constants K,'; and K,/; stem-
ming from the preceding iteration. At the end of the second iteration, we obtain a
new set of pseudo-concentrations IH'l,, . . ., a new pseudo-ionic strength I,, new
pseudo-activity coefficients yy,,, and new formal equilibrium pseudo-constants.
After this second iteration, constants K./, and K,,’> do possess the meaning of
formal constants more than did K,; and K,,/| obtained at the end of the previous
iteration. It is the same thing concerning the activity coefficients of ionic species
which tend more and more to the coefficients such as they are defined, that is to
say, in such a manner that they transform pure concentrations into pure
activities.

o The further iterations evolve strictly in an analogous manner. The process is
stopped when the pseudo-ionic strength [, is equal to the preceding one I,,_;.
Then, the constants K,',, and K,,/,, are the true conditional or formal constants.
The equation system is then homogeneous. They are all expressed in terms of
concentrations. At the end of this nnd and definitive loop of iteration, the
concentrations of all the species are found. They are no longer a cross of
concentrations and activities. The problem is solved.

At this point of the operations, one can immediately calculate the activities of the
different species since their concentrations are known and because of the “true ionic
strength” also. It suffices to calculate the activity coefficients through the Debye—
Hiickel equations and to multiply them by their concentrations. Besides, the activity
coefficients are known through the calculations performed during the last iteration.

Generally, the convergence of the whole process is fast. The number of iterations
is weak, of the order of 3 or 4!

This process is general. The difficulty often lies at the level of the obtention of
the suitable root of the single equation stemming from the reduction of the system
of initial equations which must be satisfied. Equations of the fourth order are not
rare in this realm. Abel’s theorem stipulates that there is no general solution to the

"These calculations can be performed on some pocket calculators.
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equations with one unknown of order superior to four. However, several informatic
routines permitting to obtain the root, with the required precision, exist in the
literature.

19.6 Simultaneous Determination of Concentrations,
Activities, and Equilibrium Constants Using
Computers

We finish this chapter by showing, with the help of an example, that the use of
computers may greatly facilitate the handling of activities and the obtaining of
equilibrium constants. The chosen example is that of the determination of the
successive acidity constants K, and K, of the diacid H,A:

HMA=HA +H" K, =
HA- = A +H' Kp =

The analytical instrumental method used is the UV-visible spectrophotometry
since, usually, the diacid H>A and the dibasic A*~ forms exhibit spectra clearly
distinct from each other. In this case, of course, the use of the spectrophotometry is
convenient.

19.6.1 Determination for a Monoacid

In introduction, we recall the principle of the determination of the pK, of the
monoacid HA by spectrophotometry UV-visible. It is founded on the relation

pK. = pH + log[HA]/[A7] (19.6)

where [HA] and [A ] are the concentrations of the conjugate forms at a given pH
value. The principle of the method consists in fixing the pH of the solution with the
help of a buffer and to measure both concentrations by spectrophotometry. Then,
relation (19.6) permits to calculate pK,. Let us already remark, however, that
relation (19.6) is not homogeneous since pH is defined as being rather a measure-
ment of the activity of the proton whereas [HA] and [A™] are concentrations, since
the UV-visible spectrophotometry responds to the concentrations.

In order to obtain [HA] and [A™], one uses the Beer-Lambert law which, at a
given fixed wavelength, relates the absorbance A of the solution to the concentra-
tion(s) of the species. For example, at very acid pH, provided that the pK, value is
not too low,
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A=egaC.1.[HA]  (acid pH)

where e, is the molar extinction coefficient of the form HA, [HA] is its concen-
tration (for example in mol L") and 1 the length of the measurement cell. ey, is a
constant for a given temperature, wavelength, and solvent. Likewise, in a very basic
medium, provided that the pK, value is not too large,

A =esC.1.[A7] (basic pH)

At intermediary pH, that is to say in the pH interval where both forms are present,
the total absorbance A of the solution is the sum of the absorbances of both forms
since the two are present and also because of the properties of Beer-Lambert’s law:

A = eyaC.1.[HA] +e2C.1.[A7] (intermediary pH)
From another side of reasoning, since in the solution
[HA]+[A7] =C
and
Ko = [A7[JH7] /1Al

by assimilating activities (terms in which the pK, is expressed) and concentrations,
we obtain the two relations:

[HA| = [HT|/[[H"| + K] and |A7[ = |AT[/[[H"] + K]  (19.7)
And by handling the relations (19.6) and (19.7), we obtain
pK, = pH + log (A — eaC.1)/(egaC.l1 — A) (19.8)

eaC.1 and e C.1 are the absorbances of the sole basic and acid forms at the total
concentration C of the whole species. These values are easily determined. It is
sufficient to “work” at the judicious pH. The measurement of the absorbance A at an
intermediary pH immediately gives the pK, value. The problem of the activities is
studied under. In principle, only one measurement is sufficient for the determina-
tion, but several ones are indicated in order to take into account a maximum of
experimental information and, thus, to obtain an optimal precision. In order to
perform the determination, the working wavelength (the “analytical wavelength”)
must be chosen in such a way that the spectra of the pure acid and basic forms differ
as much as possible from each other. This is the “analytical wavelength.”

When neither of both forms HA and A~ absorb in the UV-visible domain, of
course, the determination is not possible. However, let us notice that when only one
form does absorb, the determination remains possible.
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19.6.2 Case of the Diacid H,A

The preceding considerations can be generalized, but a supplementary difficulty
may often happen. Both acidities K,; and K,, may, indeed, overlap. Then, it is
impossible to experimentally determine the molar absorption ey, since the inter-
mediary form HA™ cannot exist, alone, contrary to the forms H,A and AZ". HA is
always accompanied by one of the two other forms H,A or A?~, and even by both.
This is due to the overlapping of the two constants K,; and K. Its spectrum in the
pure state is, therefore, inaccessible by an experimental way. However, at the
extreme pH values, HA and A®~ exist, alone, whence the possible registering of
their spectra in the “pure” state remains possible.

The absorbance at a given pH; is the sum of the absorbances of the three present
forms:

A = ema[HA].1 + ena[HAT].1 + [A*7] .1 (19.9)

The handling of the equations which are obligatorily satisfied
Ka = [H'|;[HA™|i/|H2A]i and Ko = [H'|;|]A>"|;/|HA™|;
and

C = [HA] + [HA ]+ [A]

i

leads to the following expressions:

HoA], = 1{[H']°C/D; AT}, = Ku[H'].C/ D5 [A*], = KuKe/D}
(19.10)

with
D = M)’ + Kua[H'];, + KuKa (19.11)

The examination of (19.9)—(19.11) shows that the absorbance at a given pH
depends on the three molar extinction coefficients, on the constants K,; and K5,
on C, and on [Hl, that is to say on the pH.

19.6.3 Determination of Constants K,; and K, Without
Taking into Account the Activities

The two unknowns to determine are both constants K,; and K,,. Their determina-
tion entails that the molar extinction coefficient eya of the intermediary pure form,
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which is directly inaccessible by an experimental means, must be known. There-
fore, it is the third unknown. On the other hand, the pH is known and, also, the
coefficients ey and e, which are, respectively, determined in very acid and very
basic media.

The methodology used to determine the three unknowns is a process of infor-
matic simulation (viz. Chap. 47).

In a first step, it consists in choosing the analytical wavelength and in performing
absorbance measurements at several pH; values. In order to have the best precision,
one must choose a number of pH values by far larger than the number of unknowns.

In a second step, one arbitrarily chooses values of the three unknowns K, K,
and e, and, thanks to these values, one calculates the total absorbance A, for
each retained pH;. The calculation is performed through relation (19.9). Then, for
this set of the three parameters, one calculates the function U defined by the relation

U= Z (Al cale — Aj exp)2

i

where A; ¢y, is the measured absorbance at the same pH; as that for which A; ¢y is
calculated. The function U is the cost function . In the following steps, one modifies
the values of the three parameters according to some order of logical decisions and
one calculates the function U at each time up to obtaining the set of the values of the
three parameters leading to the value U as weak as possible. In other words, the
process is repeated till the three following conditions are simultaneously satisfied:

(0U/0Ka)

=0 (aU/aKdz) =0 (aU/aSHA)KaI,KaZ =0

Kay, ena Kar,ena

One must also check that, when it is the case, this is not a singular point or a
maximum of the function U. The values of the parameters which minimize the cost
function are those being searched for. The described methodology is a least square
process, in the occurrence of a nonlinear one since the constants K,; and K,,
(contrarily to eg,) do not intervene linearly in the calculation of A; ... This is a
general methodology.

The difficulty, that this methodology may encounter, is that the research of the
parameters minimizing the function U may be difficult and lengthy. There exist
several described algorithms permitting to point toward the minimum minimorum,
of the cost function, but none is infallible. There exists no mathematical process
permitting to automatically reach this point.

19.6.4 Taking into Account the Activities

As a rule, one could imagine that one can assimilate activities and concentrations
when the equilibrium constants are determined by UV-visible spectrophotometry. It
is not rare, indeed, to work with concentrations of the order of 10%t0510 *mol L~}
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of the compound with UV-visible spectrophotometry. Quite evidently, the working
concentration interval depends on the values of molar extinction coefficients. But
there is a data which must be taken into account: the presence of the buffer which
fixes the pH values to which the determinations are performed. Even, we know that to
be effective, the buffer solutions must be rather concentrated. Let us admit that for the
determination of the pK, value, the concentration 10~* mol L' is satisfactory. That
of the buffer must be of the order of 10~2 mol L ™" in order to be effective. The ionic
strength exhibits about this value, the ions coming from the compound under study
contributing for a negligible amount. As a result, the activity coefficients cannot be
neglected.

In the chosen example, one converts the retained pH values into concentrations
by the following relations:

ap, = 10" and [H'] = an, /ry

yu+ 1s obtained through the Debye—Hiickel relations since the ionic strength is
known. In these conditions, the calculations are performed with homogeneous
equations. Therefore, the K,; and K, constants are the conditional ones. It is very
easy to go back to the thermodynamic constants, since the ionic strength is known.
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Chapter 20
Statistical Thermodynamics in Brief

Abstract The object of statistical thermodynamics is to set up a theory at the
molecular scale permitting an interpretation of the classical thermodynamics
which, itself, applies to the macroscopic level. Statistical thermodynamics is
founded on several postulates and, also, on the principles of quantum mechanics.
It permits to calculate the mechanical properties of a thermodynamic system. The
obtaining of the expressions relating the mechanical properties to molecular quan-
tities is founded on the ensemble theory of Gibbs. Several kinds of ensembles are
considered and used according to the thermodynamic environment of the studied
system. The most important are the following:

— The canonical ensemble: The canonical ensemble is a closed, isothermal and
volume-constant system

— The grand ensemble or the great ensemble, or the grand canonical ensemble: It
corresponds to an open, isothermal, and volume-constant system

— The microcanonical ensemble: It corresponds to an isolated system

— The isothermal, isobaric ensemble.

There happens to exist a well-definite mathematical function, characteristic of
each kind of ensembles. When it is known, it permits to calculate the other
thermodynamic quantities at the macroscopic scale. These mathematical functions
are called partition functions.

Keywords Quantum mechanics ¢ Partition function ¢ Canonical ensemble ¢
Grand-ensemble ¢ Isothermal—isobaric ensemble ¢ Microcanonical ensemble

The object of statistical thermodynamics is to provide a theory at the molecular
scale permitting an interpretation of the classical thermodynamics which, itself,
applies to the macroscopic level. This theory, indeed, concerns systems containing
a very great number of molecules of the order of, at least, about 10°°. Therefore, the
goal of statistical thermodynamics is to calculate macroscopic properties from
molecular properties.

Statistical thermodynamics is founded on several postulates and, also, on the
principles of quantum mechanics. It permits to calculate the mechanical properties
of a thermodynamic system. Mechanical properties are those whose definition does
not involve the introduction of the concept of temperature. For example, they are
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pressure, energy, volume, and number of molecules. As examples of
nonmechanical thermodynamic quantities let us mention temperature, entropy,
the Gibbs and Helmbholtz energies (formerly free energies—Gibbs or Helmholtz),
the chemical potential . . ..

The obtaining of the expressions relating the mechanical properties to molecular
quantities is founded on the ensemble theory of Gibbs. An ensemble is a mental
collection of an extremely large number of macroscopic systems representing that
under study (which is itself, of course, at the macroscopic scale). Although these
systems are all identical at the thermodynamic (macroscopic) scale, they are not at
the molecular scale. Gibbs’ method consists in assimilating the mechanical variable
value in the macroscopic system under study to the average of the values of the
same mechanical variable that each system of the ensemble takes. The obtaining of
the nonmechanical quantity expressions is done by comparing the relations of
classical thermodynamics with those stemming from statistical thermodynamics,
that is to say by introducing the values of the mechanical quantities stemming from
the statistical theory into the classical one.

Several kinds of ensembles are considered and used according to the thermody-
namic environment. The most important are the following:

— The canonical ensemble: From the macroscopic standpoint, it is defined by the
three quantities N, V, and T, the values of which being given (N number of
molecules or species ..., V the volume, and T the temperature of the system).
The canonical ensemble is a closed, isothermal, and volume-constant system.

— The grand ensemble or the great ensemble, or the grand canonical ensemble: It is
defined by the values of the volume V and of the temperature T of the system and
by the chemical potential u; of each constituent i. It corresponds to an open,
isothermal, and volume-constant system.

— The microcanonical ensemble: It corresponds to an isolated system, macroscop-
ically defined by the values N, V, and E.

— The isothermal, isobaric ensemble macroscopically defined by the values N, p,
and T.

There happens to exist a well-definite mathematical function, characteristic of
each kind of each of these ensembles. Each of these functions is a function of the
quantities defining these ensembles. When they are known, they permit to calculate
the other thermodynamic quantities (at the macroscopic scale). These mathematical
functions are called partition functions. Most of the time, they are determined, by
calculations, from spectroscopic data. Partition functions are dimensionless
numbers.

Incidentally, it seems interesting for us to recall that there exist several strategies
to tackle statistical thermodynamics. We confine ourselves to only mentioning
them. They essentially differ from each other by the averaging method and by the
step at which it is performed:

The strategies differ in the following respects:
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*  Whether the averaging process is carried out over the collection of the quanto-
energetic states of the species or over the quanto-energetic states of the macro-
scopic systems (which must also obey the principles of quantum mechanics
(quanto-energetic states: energy states allowed by quantum mechanics princi-
ples)). The quanto-energetic states of the species must be distinguished from
those of the systems constituting an ensemble.

« Either the obtained averages are the true average values or the most probable.

¢ Or the kind of system under study. It may possess:

— Fixed values of its energy, and composition, that is to say it is an isolated
system.

— Fixed values of its volume, composition, and temperature (the last condition
being provided with the help of a heat source at constant temperature). That is
to say, it constitutes a canonical ensemble.

— A fixed value of its volume whereas it is in equilibrium with a heat source at
constant temperature and also with reservoirs containing the substances it
possesses. The latter equilibrium is obtained through the use of semiperme-
able membranes. In other words, the system is opened. Its corresponds to the
grand ensemble.

Concerning this book, the mentioned averages are related to the collections of
the quanto-energetic states of the macroscopic systems and the retained values are
the most probable ones.



Chapter 21
Concept of Ensembles and Postulates

Abstract The followed strategy in order to introduce statistical thermodynamics
into the classical one is the one devised by Gibbs. It is based on the consideration of
ensembles of systems. It entails the adoption of two postulates permitting to relate
the average in time of a mechanical variable to the average of the same variable
calculated over one ensemble of systems.

According to:

— The first postulate, the value of the mechanical property in the thermodynamic
system under study is equal to its average over the ensemble of the systems,
when the number of systems — oc.

— The second postulate, in a representative ensemble (X — co) of an isolated
system, the systems are uniformly distributed, and, hence, they have the same
probability of existence.

The energy levels of the systems are given by the Schrodinger’s equation.

Keywords Ensemble « System » Mechanical variable ¢ Closed system ¢ Stationary
energy state ¢ Quantum mechanics ¢ Quanto-energetic state ¢ Schrodinger’s
equation « Wave function ¢ Isolated system ¢ Open system ¢ Ergodic theory of
matter « Thermodynamic system

The methods of thermodynamics are fully independent of the notions of atomic and
molecular structures as they also are of the notions of reaction mechanisms. The
results to which thermodynamics leads do not bring any direct piece of information
concerning these aspects of chemistry. Actually, thermodynamics only permits to
predict some relations and interconnections between variables describing macro-
scopic systems which can be directly observed or which can be deduced from
quantities which themselves are experimentally directly accessible.

The object of statistical thermodynamics is to provide classical thermodynamics
with a theoretical justification founded on the study of phenomena evolving at the
molecular level.
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21.1 Strategy: Ensembles and Postulates

The goal consists in finding the expressions of thermodynamics describing the
behavior of macroscopic systems at equilibrium by starting from atomic and
molecular properties of matter.

Solving this problem is tremendously difficult: it is to deduce these relations by
starting from the properties of a huge number of particles, of the order of 10%°, at
least! As an example of the difficulty, let us regard the case of the pressure. In
principle, if we want to calculate the pressure of a system through purely molecular
considerations, we must calculate the force exerted per area unit upon the partitions
of the system. The force is calculated according to the laws of classical or quantum
mechanics (viz. next paragraph) . Given the huge number of particles constituting
the system, it is absolutely unthinkable to perform the calculation by following this
way. This is all the more inconceivable as the system evolves at every moment,
because all the particles are in interactions. Hence, in addition to the huge number
of particles, calculations should be performed by taking into account the incessant
changes with time of the state of the system.

However, one characteristic of the problem simplifies the matter. It is the fact
that given the inconceivably large number of particles, it is legitimate to admit that
the average values of some physical quantities of the systems are perfectly repre-
sentative of its (classical) thermodynamic properties.

The followed strategy in order to introduce statistical thermodynamics into the
classical one is the one devised by Gibbs. It is based on the consideration of
ensembles of systems. It entails the adoption of two postulates permitting to relate
the average in time of a mechanical variable to the average of the same variable
calculated over one ensemble of systems (viz. paragraph 3).

21.2 Quantum Mechanics: Schrodinger’s
Equation—Quanto-Energetic States

The goal of statistical thermodynamics being to calculate the properties of macro-
scopic systems by starting from those of the particles constituting them, it is an
evidence that the latter must be known, including the nature of their interactions. In
principle, they are obtained by applying the principles of quantum mechanics.

For our purpose, we must take into consideration the fact that these particles and
the s macroscopic systems putting them together can only take some discrete
energetic levels of values Ey, £y, E», . . ., E}, often called stationary quanto-energetic
states. Theoretically, they are obtained by resolution of the Schrodinger’s equation
corresponding to the system which applies to the particles and to the macroscopic
systems as well.

Let us consider a particle i (molecule, atom) present in a container. Its mass is m;,
its cartesian coordinates x;, y;, and z;, and its momenta are p,;, p,;, and p.;. From the
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standpoint of quantum mechanics, the system is described by a function ¥, called
wave function, possessing the following property: the probability that the particle
possesses its coordinates located in the intervals x; + dx;, y; + dy;, and z; + dz; is given
by the expression

‘I’zdxidyidz,-

In other words, ¥? plays the part of a probability density. Let us suppose that the
particle is in a state which is independent of time (it is often the case in chemistry,
the species being, most of the time, stable in time) and that it moves in a force field,
described by a potential energy E,, function of the coordinates x;, y;, and z;. The
function W is a solution of Schrodinger’s equation taking into account these
conditions. It is

1/mi(azl[//axi2 + aZT/ay’? + 521‘1//52[2) + (8“2/h2) (E - Ep) ¥=0

where / is the Planck’s constant and E the total energy of the particle. The function
Y, of course, must satisfy some conditions because of the fact that it must describe a
probability. It must, indeed, only possess one value, and be finished and continuous
in the domain of changes of the coordinates of the system. It must be null at the
outside of this domain. Let us notice, from the pure mathematical standpoint, that
the expression just above is a differential (with partial derivatives) equation of order
2 and of first degree.

For a macroscopic system containing n particles, the corresponding
Schrodinger’s equation is

S i/m (82‘1"/5x,-2 42/ 0y + azav/az,-z) + (8n2/h2) (E—E,)¥ =0

1

where x;, y;, and z; are the coordinates of each particle i and E and E,, the total and
potential energies of the macroscopic system, the sum being calculated over the
total number n of particles.

The equation remains of the same kind as the previous one, but extremely more
complicated. Complications are due to the huge number of coordinates to consider.
It is important, indeed, to highlight the phenomenal and even unappreciable diffi-
culty that the resolution of Schrodinger’s equation relative to 10?° molecules must
show and this, after having admitted that it is possible to modelize the interactions
between them from the mathematical viewpoint and, moreover, that Schrodinger’s
equation admits analytical solutions! Actually, it is quasi-never the case, even for
very simple systems. Notably, let us only think of the time one should spend, in
order to write the Hamiltonian operator of such a system!

Within the framework of this brief recall, let us also mention that the general
principles of quantum mechanics entail the existence of the quantification of some
physical quantities when and only when there is imposition of some conditions to
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the studied system, such as the occurrence of a finite volume of the system and that
of a finite number of particles. This property is very important in the realm of
statistical mechanics.

21.3 The Concept of Ensemble of Systems

An ensemble is simply a mental collection of a very great number X of systems,
each being supposed to be a replicate of the thermodynamic system under study
(Fig. 21.1):
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Let us suppose that the system possesses the volume V and contains N molecules
of a component and that it is immerged in a very big heat bath at temperature T (it is
the case of the canonical ensemble—see just below). The knowledge of N, V, and
T is usually sufficient in order to determine the thermodynamic state of the system.
The ensemble is constituted by a very large number X of these systems possessing
the same macroscopic thermodynamic properties (N, V, T). Although they exhibit
the same macroscopic properties, they are not similar to the molecular scale, since
there exists an extremely important number of quantum states for the same set of
values N, V, and T (quantum state signifying, here, stationary energy state). For
example, in the case of pressure, there exist numerous such states. The average of
the pressures of the ensemble is the average over the separated values of the
pressures in each system, by giving the same weight to each system in order to
perform the calculation. It is the same for each mechanical property.

Among the most important systems encountered in thermodynamics, let us
mention the following:

— The isolated system defined in classical thermodynamics by the parameters N, V,
and E, the replication of which constituting the microcanonical ensemble. (E is
the symbol of internal energy. We are continuing to use it, as it is often the case
in the literature devoted to statistical thermodynamics, although IUPAC recom-
mends the symbol U.)

— The closed isothermal system defined by the parameters N, V, and T, the
replication of which constitutes the canonical ensemble.

— The open isothermal system defined by the parameters y, V, and T where p is the
chemical potential of the component. Its replication constitutes the grand canon-
ical ensemble (or grand ensemble). Of course, these systems may be constituted
of compounds labelized 1, 2, etc., the numbers of moles of which are Ny, N,, etc.
and the chemical potentials are u1, y», etc. In this case, the system is defined in
thermodynamics by the parameters u,, u,, V, and T (see later).

As we have just said, a system of an ensemble may or may not, according to its
kind, exchange heat, work, particles, and even nothing with its neighbors (viz.
Fig. 21.1).

21.4 Postulates

— First postulate: The value of the mechanical property M in the thermodynamic
system under study is equal to its average over the ensemble of the systems,
when X — oo.

— Second postulate: In a representative ensemble (X — oo) of an isolated system,
the energy of which is constant, the systems are uniformly distributed, that is to
say, they have the same probability of existence. This hypothesis of
equiprobability is founded on the fact that each system of the ensemble does
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possess the same internal energy. Thus, it seems to match the physical intuition
which tends to say that two states of the same energy are equiprobable.

In any case, its consequences do not lead to results in contradistinction with
experiments. This postulate constitutes the ergodic theory of matter.



Chapter 22
The Canonical Ensemble: Notion
of Distribution

Abstract The goal of statistical thermodynamics is to permit to appreciate the
significance of the thermodynamic functions in terms of molecular parameters.
Firstly, this chapter illustrates this point with the aid of the study of the canonical
ensemble. It deals with the obtaining of the probabilities of the systems constituting
the canonical ensemble to be in some energy states. It provides a description of the
canonical ensemble and describes the followed strategy to calculate the average of
the mechanical properties such as the pressure and energy with the help of the
reasoning based on the fact that the mechanical variables have well-definite values
in a given quantum state. It leads to the notion of distribution of the systems in the
ensemble. It is the set of the numbers of systems found in well-defined energy states
exhibiting the same composition (in one or several compounds) and the same
volume. There can exist several distributions. Calculations, exemplified in the
chapter, permit to obtain the elementary and global probabilities that a system of
the ensemble would be in a definite energetic state. Once the probabilities are
obtained, it becomes possible to calculate the canonical partition function.

Keywords Mechanical properties ¢ Partition function ¢ Quantum state o
Supersystem ¢ Canonical partition function ¢ Distribution ¢ Maximum term
method ¢ Thermodynamic function

The goal of statistical thermodynamics is to permit to appreciate the significance of
the thermodynamic functions in terms of molecular parameters. Firstly, we choose
to illustrate this point with the aid of the study of the canonical ensemble.

Actually, this chapter is necessary to introduce this theory. It deals with the
obtaining of the probabilities of the systems constituting the canonical ensemble to
be in some energy states. Obtaining these probabilities is the first necessary
condition in order to be able, later, to specify the significance of some thermody-
namic quantities.

The problem of the obtention of the probabilities is essentially not different from
that of the determination of the distribution of the systems constituting the ensem-
ble in the different possible energetic states. (To aim at the same goal, later, we shall
consider the handling of other ensembles.)
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Fig. 22.1 Canonical ensemble

22.1 Description of the Canonical Ensemble
(N, V, T Imposed)

The canonical ensemble is constituted by a very large number X (N — co) of
systems replicating the thermodynamic system (under study) which, by definition,
possesses the fixed volume V, the number of molecules N (there can be several
types of molecules, the numbers of which N, N, ... are then constant), and the
temperature T uniform and constant (viz. Fig. 22.1). The partitions between the
different systems are thermal conductors but do not allow the crossing of the
particles through them. The ensemble is placed in a heat bath granting an equal
temperature in the whole systems. The partitions of the systems are not distorting
excluding, hence, no work exchange between them.

If one places an isolating membrane outside the ensemble and the whole device
(ensemble + membrane) located outside the heat bath, the ensemble, now, consti-
tutes an isolated system of volume XV and of number of molecules XN and with a
total energy E,. This isolated system is called a supersystem.

22.2 Strategy

Let us recall that, finally, the goal is to find the meaning of some quantities of
classical thermodynamics with the help of a reasoning of statistical thermodynam-
ics, the meaning of which being searched for in the conditions which prevail in the
canonical ensemble (constant composition, temperature, volume). According to
what is preceding, the problem is to calculate the average of the mechanical
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properties such as the pressure and the energy with the help of this reasoning. Let us
notice, indeed, that since the thermodynamic system is not isolated (it is in contact
with other systems of the same ensemble), its energy fluctuates.

The process entails to know the value of the quantity under study in each
quantum state and to determine the number of systems of the ensemble exhibiting
this quantum state. The mechanical variables, indeed, have well-definite values in a
given quantum state. Hence, the problem is to determine the fraction of the systems
of the ensemble possessing a given quantum state.

These considerations are equivalent to say that the probability P; that a system of
the ensemble is in the state of energy E; must be known. Once known, the values of
the energy E and of the pressure p can be calculated through the following

expressions:
E=> PjE
J
p =2 Pip,
j
p; is the pressure in the energetic state £j; it is defined by the expression

]?j = 7(an/aV)N

—p;dV = dE; is the work that has to be done on the system (with a constant number
of species N) in the energetic state E; in order to increase its volume by dV. This
expression is found by virtue of the quality of state function of E (viz. Appendix A).
One can write, indeed,

dE = (0E/3V)y 7dV + (OE/OT)y ,dT

where by hypothesis dT =0 (T imposed).

22.3 The Mathematical Problem

Let us, now, consider one system of the canonical ensemble. It is a system obeying
quantum mechanics. Its characteristics depend on the values N and V which constitute
the limits entailing the energy quantification (viz. quantum mechanics). As a result,
there exists the collection of the following possible (authorized) energetic states
written by order of increasing energy: E;, E,, ..., E;, We must not forget that they
are the energy states of the whole system, that is to say of a great number of particles,
and not the energy states of one species. Let us recall that, for different reasons (some
of which being mathematical ones), it is not possible to calculate the energy states E;
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from the Schrodinger’s equation for a very large number of particles. Nevertheless,
for the following reasoning, we suppose that we know them.

22.3.1 The Notion of Distribution

Since all the systems of the canonical ensemble have the same composition
N (in one or several compounds) and the same volume V, everyone does possess
the same quantified levels of energy E;, E», ..., Ej. (It is a consequence of the
principles of quantum mechanics.) Let us suppose that we can simultaneously
observe the energetic state of each system and that we are able to count the number
of systems in every energetic state £y, ..., E;. Let ny, n, ... be the numbers of
systems found in sates E, E,, . . .. The set of values ny, n, . .. is a distribution of the
systems. For each distribution, the following relations are obligatorily satisfied:

an =R
j

anEj = Et
J

where E; is the energy of the considered system within the ensemble for the
considered distribution. E, is the energy of the ensemble (also named supersystem).
(We shall see that it is not necessary to know the values N and E, because they
disappear during the calculations.)

Let us suppose, in order to simplify, that the ensemble possesses four systems
labelized A, B, C, and D and that the possible energy states of each system are E|,
E,, and E;. Let us also suppose that the total energy (of the supersystem) is as
follows:

E, =E|+2E,+E; (22.1)

that is to say n; =1, n, =2, and n3=1. These values (E,, E,, E,, E3, ny, ns, n3)
define the distribution.

22.3.2 The Notion of Sub-distribution

There are several possibilities of attribution of the energies E;, E,, and E3 to the
systems A, B, C, and D in order that the distribution defined by relation (22.1) exists.
They are those mentioned in Table 22.1. We call them ““sub-distributions” (personal
terminology).

We notice that there are 12 sub-distributions corresponding to the same distri-
bution, labelized k. This result is no more than the solution of the classical problem
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Table 22.1. Sub-distributions A B C D
Gistibation me = 1. my= 2, > E, Es E,
and n;=1; N =4, labelized E, Es5 E, E,
systems A, B, C, and D E; E, E, E,
E, Ey E, Es
E, Es E; E;
E; Ey E, Ey
E;5 E, E, E,
E, E, E5 E,
E; E, E, E;
E E; E, E,
E, E, Es E,
E, E, E, Es5

of combinatory analysis which, in this case, can be presented by giving the answer
to the following question: How many (number Q) possibilities to group 4 objects by
groups of 2, 1, and 1 do exist? The answer is

Q=02+1+D)/QUN)=12

From the general viewpoint, the number Q of possibilities to group (n; + 1, +. . .1))
objects by groups of ny, n,, .. ., n; objects is given by the relation

_Q:(nl—i-nz—l—...nj)!/(nl!nzl...nj!) (22.2)

Let us recall that all the sub-distributions have the same energy.

22.3.3 Case of Several Distributions

We must bear in mind that there are numerous distributions existing for the same set
of parameters N, V, and T. For the same example as previously, let us suppose that it
is the case for the distribution n; =2, n, =0, and n3 =2, that is to say

2E, +0E, + 2E3 = E,

where the energy E; is the same as that of the preceding distribution. This new
distribution exists under (2+0+2) !/(2 10 !2 !)=6 sub-distributions. Let us also
suppose that only two distributions exist for the same total energy. Since they
possess the same energy E,, according to the second postulate, the sub-distributions
of both distributions are equiprobable, whichever their origin.

What is being searched for is the probability to find a system of the ensemble in
the energy state £, that is to say, remaining in the same example as previously, the
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Table 22.2 Sub-distributions A B C D
f the same total ener

Z" and, hence, of the Si}'[,le E, Ey Es E,

probability stemming from £, Es E, E,

two distributions (see text) E; E, E, E,
E, E, E, E;
E, Es E, E,
Es E, E, E, (1° distribution)
E;5 E, E, Ey
E, E, E5 E,
E, E, E; Es
E, Es E, E,
E, E, Es E,
E, E, E, E,
E, E, E, E;
E, Es E, E;
E3 E, E; E,
E; E, E, E; (2°™ distribution)
E; E, E, E,
E, E, E; E,

probability to find the system A or B or C or D with the energy E,, E,, or E5. In this
very simple example, the result can be found by a direct numbering by placing in
the same table all the sub-distributions and by performing the numbering.

The direct numbering indicates that each system A, B, C, or D possesses 1/3
chance to possess the quantified energy levels E, E,, and E5. (The fact that all these
probabilities are all equal (1/3) must not be generalized. It results solely from the
chosen numerical values. It must be considered as a numerical accident
(Table 22.2).)

The direct numbering is not, of course, envisageable in statistical thermodynam-
ics, given the huge number of the existing distributions and sub-distributions.
Fortunately, there exists a useful mathematical relation which generalizes what is
preceding. It results from the following reasoning:

» The elementary probability prob; (1 because it concerns the first distribution) in
order that one of the systems A, B, C, or D possesses the energy E, in the first
distribution is 2/4 since n, =2 and since there are four systems. The number of
times that one of the systems in the first distribution is endowed with the energy
E, is 12 x 2/4 =6, that is to say by generalizing €2, * prob;.

» The elementary probability prob, in order that one of the systems possesses the
energy E, in the distribution 2 is 6 x 0/4 =0, that is to say €, * probs,.

e The total number of possibilities that a system would be in an ordinary state of
energy is this example 12+ 6 = 18, that is, £, + €,. The global probability (and
not elementary) P, that a system would be in the energetic state E, is as follows:
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Py=(12x2/44+6x0/4)/(124+6)=1/3

and by generalizing

Pj= (Z proijk) / > (22.3)
j k

where j marks the authorized state of energy of the system. prob; is the elementary
probability in order that in the distribution &, the energy be E;.
« The probability P, can also be written (in a strictly equivalent manner) as

Py=(1/4)(2x 1240 x 6)/(12 +6)

where 4 is the number of systems and 2 x 12 and 0 x 6 are the numbers of times that
the state of energy E,, respectively, appears in the first and second distribution.

The general relation (22.3) can also be written according to

Py =(1/R) (Z nj-Qk> /Z & (22.4)
k k

This expression is a generalization of the preceding which gave P,.

22.4 Obtention of P;

22.4.1 Great Number of Distributions: Method
of the Maximal Term

The obtaining of P; is performed in a mathematical way. It is based on the fact that
there exist numerous possible distributions obeying the constraints of the problem.
The latter ones are

— The number N of systems of the ensemble

— The temperature T

— The different possible energies E; of every system. (They depend on the total
number of particles N and of the volume V, according to the principles of
quantum mechanics.)

Given the very large number X, one demonstrates that one distribution weighs
much more and even quasi-infinitely more than other ones. Therefore, one can
make the assumption that it entails its repartition of the systems in the ensemble,
and it is done as a function of the energies E;. The hypothesis is entitled “method of
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the maximal term.” From the mathematical standpoint, it consists in replacing the
logarithm of a sum by the logarithm of the highest term of the sum, when the latter
is constituted of very numerous terms. The expression giving the probability P;
to find a system of the ensemble in the energetic state E; is constituted of
very numerous terms. Taking only into account the largest term seems to be
an approximation. It is the case, but it does not lead to any detectable error.
(viz. Appendix A).
By applying the hypothesis, the relation (22.4) reduces to

Pj:n;/N

where n; is the number of times that the quanto-energetic state E; appears in the
most probable distribution. Of course, there are as many »;’ to calculate as quanto-

energetic E; levels do exist.
Hence, the most probable distribution must be found.

22.4.2 Calculations

The calculations are performed by starting from In Q rather than from Q. It is easier
to process in such a manner and it does not change anything concerning the result
since In x varies as x.

According to the expression (22.2), we obtain

InQ =1In [(l’l] —|—n2—|—n])'] — lnn1 ! — In ny ! — lnnj'
Then, they are performed by using Stirling’s approximation which is written as
Iny!l~ylny — y

The use of this approximation is all the more justified as y is a large number. This is
the case here. With this approximation, In  becomes

an:(n1+n2+... nj)ln(n1+n2+...nj) — (n1+n2+‘.. nj)—nllnnl

+n— mlnny+ny...... — njln nj + n;

The mathematical process coming immediately in mind is to have to successively
vanish the partial derivatives (0 In ©/0n;), (0 In Q/0ny) ... (0 In Q/0n;) and, from
this process, to extract the values ny, no, .. ., n; leading to this result. But, there is a
difficulty: the mathematical system is submitted to the following constraints:

ny +ny + ...I’lj:N
mE, + mkE, + ...}’lej: E,
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The smartest means permitting this process of maximalization taking into account
these constraints is to use the method of Lagrange’s multipliers (viz. Appendix A)
which, in this case, translates itself into the successive vanishing of the partial
derivatives with respect to 1y, n,, ..., n; of function F, and no longer of function
In Q:

F=InQ—a(n +n+...n) — B(mEr + mE; + ... njE))

where a and f are two constants, the physical meaning of which will appear in the
following calculations.

When the calculation of the derivatives is performed, we obtain the following
relations:

ny = R e @Ak
ny, = NRe @ Pk (22.5)

n; = N e~ PE

These relations are very important. We can deduce the following points from them:
— The signification of the constant e”.

Since Z; n;= R, the addition of relations (22.5) leads to

e = e pe P 4 e

— The mean energy E of each system.

Since E,=N E,
anEj = NE
J

By replacing the n; by their expressions (22.5) and ™ “ by the above expression, we
obtain

E= Z Eje Pt /Z e /b (22.6)
J J

It is important to notice that, according to the expression (22.6), the parameter
appears as being an implicit function of the mean energy E and also, therefore, of the
composition N and of the volume V which govern the quantum levels E;. It is the
same for a which depends on the same parameters. But, actually, the studied
ensemble is that defined by the macroscopic parameters N, V, and T and not by
N, V, and E. However, as we shall see, E depends on T. Let us anticipate what is
following by mentioning that f is inversely proportional to the absolute
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temperature. More precisely, f = 1/kT where k is Boltzmann’s constant and 7T the
absolute temperature.

— The expression giving the probability P; to find a system of the ensemble in the
energetic state E; is constituted of very numerous terms. Taking only into
account the largest term seems to be an approximation. It is the case, but it
does not lead to any detectable error.

It is calculated by applying the general definition of a probability, through the
relation

Pj= nj/R

By replacing n; by its expression (22.5) and by introducing the above expressione™“,
we find

Pj= ety et (22.7)

We shall see in the following chapter that these expressions permit to grasp the
meaning at the molecular scale of the great thermodynamic functions.

The expressions (22.6) and (22.7) call for the great importance of the sum Te PE
Indeed, it will play a considerable part. In statistical thermodynamics, such a
function is called partition function. As it happens here, it is the partition function
of the canonical ensemble. It is symbolized by Q:

0= Z e*ﬂEi



Chapter 23
Thermodynamic Quantities Within
the Framework of the Canonical Ensemble

Abstract The chapter describes the handling of the mathematical relations previ-
ously found within the framework of the canonical ensemble through the partition
function in order to assimilate them to the expressions of classical thermodynamic
functions. Concerning now the introduction of the nonmechanical functions such as
the entropy and the temperature into the realm of statistical thermodynamics, the
strategy consists in comparing the expressions concerning the mechanical quanti-
ties obtained (thanks to the theory of the canonical ensemble) and those stemming
from classical thermodynamics. Therefore, the statistical expressions of internal
energy, entropy, pressure, and chemical potential are obtained. Some of these
functions are calculated with the aid of the characteristic function of the canonical
function which spontaneously introduces itself into the calculations.

Keywords Thermodynamic quantities « Entropy ¢ Enthalpy ¢ Partition function ¢
System ¢ Quantum mechanics « Statistical analogues of classical thermodynamic
functions * Boltzmann’s constant » Characteristic functions ¢ Canonical function *
Closed system ¢ Chemical potential ¢ Characteristic function « Nonmechanical
properties * Internal energy ¢ Gibbs and Helmholtz energies

The theoretical handling of some ensembles throws some light, in terms of molec-
ular parameters, on the deep significance of some thermodynamic quantities,
among them, notably, the Gibbs energy from which are following the concepts of
fugacity and of activity.

In this chapter, as a first example, we handle the mathematical relations previ-
ously found within the framework of the canonical ensemble.

In order to introduce the nonmechanical functions such as the entropy and the
temperature into the realm of statistical thermodynamics, the strategy consists in
comparing the expressions concerning the mechanical quantities obtained thanks to
the theory of the canonical ensemble and those stemming from classical
thermodynamics.
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23.1 Association Average Energy E and Internal Energy

According to the expressions (22.6) and (22.7) of the previous chapter

E= ZEje’ﬂEf / Z e ”ti (relation 6 — previous chapter)
j j

P;=e’t) Z e PEi (relation 7 — previous chapter)
i

we obtain

E= ZP,-E,-

J
or in differentials

dE = E;dP;+ Y _P;dE; (23.1)
J J

The first term of the right member of (23.1) represents the energy change due to the
variation of the probability P; for a system being in the energy state £; which does
not vary during the process. This entails that there is no change in the volume of the
system, i.e., there is no work done on the system or performed by it. Hence, this
term represents an energy change of the system without the fact that a work would
be involved. According to the first principle, it follows that the first term of the right
member represents a heat exchange. A consideration of the fundamental postulates
shows that a heat absorption by a system must be associated with the probability
that a system of the ensemble does possess the (authorized) energy E;. Hence, we
can set up the correspondence:

dq < ZEdej
J

According to the algebraic formulation of the first principle, the second term of the
right member of (23.1) must be identified to the work done on the system, whence

dw «— ZdeEj
J

Finally, we can set up the correspondence:

E « internal energy
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23.2 Statistical Expression of the Entropy

From relation (23.7) of the preceding chapter

Pi=e¢") Z e PEi (relation 7 — preceding chapter)

we deduce

Ej=—1/(InP;+InQ) with Q=Y e (23.2)
J

whence, according to (23.1) and the just preceding considerations,

dE = -1/ (InP;+1nQ)dP; + > P;dE; (23.3)
j J

Moreover, according to the expression of the total differential, we can write
dE; = (OE;/0V)ydV + (OE;/ON), dN

Since, according to the conditions prevailing to the canonical ensemble, the number
of the particles of the system is constant, dN =0, and

dE; = (0E;/0V),dV
Relation (23.3) becomes

dE =1/ (nP;+nQ) dP; + >  P;(3E;/0V) dV
J J

and since dV =0

dE =—1/8>  (InP; + InQ) dP;
J

From another standpoint

ZPJ =1 whence Zde =0
j

J

we obtain

dE = ~1/8> InP;dP;
7
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This relation can be transformed into another one, more general. The transforma-
tion is done in the following manner. Already, let us mention that this transforma-
tion leads to the notion of statistical entropy. Let us consider the function Z; P;In P;.
In differential writing, it gives

7 j /

d (Z lenPj> = InP;dPj+ > P;dP;/P;
7 F J

d (Z Pj]nPj> = ZlndePj since ZdP_f =0
7 J J

As a result

dE = —1/ﬁd<ZP lnP>

Let us compare this relation with that purely thermodynamic governing the internal
energy change of a system during a reversible heat exchange, without any produc-
tion of work:

dE =TdS

Let us make the association:

TdS — —1/pd <Z P 1nPj>
7

whence

(—1/pT) (ZP lnP>

dS being an exact differential, the ratio 1/#T cannot be anything else than a constant.
It is called Boltzmann’s constant: symbol . Its unity is the joule by kelvin J K™,
Let us notice that we again find the fact that the ensemble is isothermal, condition of
the study with the canonical ensemble. Therefore

dS = —kd <Z lenPj>
J
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To sum up, by regarding these two first analogies: in a closed, isothermal, system
(ensemble N, V, T):

— The probability for the system to be in the state of energy Ej, entailed by the
composition N and the volume V (condition coming from the principles of
quantum mechanics), is given by the expression

Pi(N,V,T) =e 5 WY/ ) (N V, T) (23.4)

where Q(N,V,T) = Z e BWVIKT ig the partition function of the canonical
J

ensemble. (Let us recall that the symbolism N is general and can mean that there

is only one or several components with a constant number of moles, as well.)

— The entropy is given by the expression

S(N,V,T) = —k> _PjInP; (23.5)
J

where P; is given by relation (23.4). It clearly appears that entropy is a statistic
quantity.

23.3 The Characteristic Function of the Canonical
Ensemble

As we shall see it, firstly in the case of the canonical ensemble and later in that of
other ensembles, there exists a characteristic function of each ensemble. It is a
function different from the partition function of the same ensemble, even if both are
mathematically related to each other.

The characteristic function appears naturally in thermodynamics, but statistical
thermodynamics permits to relate it, mathematically, to the corresponding partition
function. Once known, the characteristic function permits to calculate all the other
thermodynamic functions. We know, indeed, that to some thermodynamic func-
tions, i.e., the internal energy, the Gibbs and Helmholtz energies, and the enthalpy,
corresponds a set of independent variables for each of them, called their natural
variables (viz. Chap. 4). These sets (defining the system) permit to immediately
calculate all the other quantities of the system. For example, for the Gibbs energy,
they are the pressure, volume, and numbers of moles of every component. They are
the same variables than those which define the corresponding ensembles in statis-
tical thermodynamics.

The characteristic function of the canonical ensemble is obtained as follows. Let
us introduce the expression of P; into that of entropy (given just above); we obtain,
after having taken into account the relation (23.6) of the preceding chapter and
since
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E=YEe /3 et

S=E/T+kInQ
By assimilating this expression of S to that of purely thermodynamic origin
S=E/T -A/T

where A is the Helmholtz energy, it comes to light the following meaning of the
latter in statistical thermodynamics:

A(N,V,T) < —kT In Q(N,V,T)

The function A is the characteristic function of the canonical ensemble defined by
the parameters N, V, and T since, once it is known, it permits, as we shall see, to
calculate the entropy, pressure, internal energy, and chemical potentials of the
components.

23.4 Calculation of the Thermodynamic Functions
by Starting from the Characteristic Function
of the Canonical Ensemble

This kind of calculation is particularly important. It is the one which is practiced,
notably in the statistical part of this book, for the calculation of the changes of the
thermodynamic quantities and for obtaining the energy levels E;. Analogous cal-
culations, of course, are also performed by starting from partition functions of other
ensembles.

Let us consider the following relation from purely thermodynamic origin by
noticing that it contains the three variables defining the canonical system (7, V, n,
or N):

dA =—8dT —pdV + wpdny
Z ¢ (23.6)

(k index of the component the number of moles of which is n;)
and also from the expression of the total differential

= (0A/OT)y, 4dT — (DA/OV)y dV + Y (DA/Om)yy ,dmi  (ni # mi)
k

By replacing A(N, V, T) by the characteristic function kT In Q(N, V, T'), by operating
the calculations of partial derivation on the characteristic function and by identify-
ing with the corresponding elements of the relation (23.6), some very interesting
results are obtained. Concerning:
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23.4.1 The Entropy

Since S = —(0A/OT)y, v (dA exact total differential)

S = —[~0kT In Q(N,V,T) /OT], y
As a result

S = kT(0InQ/0T), \ +k In Q

23.4.2 The Pressure

Since p = —(0A/0V ), n, we obtain

p=kT(0InQ/0V); y
23.4.3 The Internal Energy
Since E = —T> (0A/T/OT)y. v

U =kT*(0InQ /0T),,

23.4.4 The Chemical Potential

277

(23.7)

(23.8)

(23.9)

Even if the canonical ensemble is a closed system, its component(s) possess(es) a
well-determined chemical potential, of course in the state of the system. It can also
be calculated from the characteristic function. According to relation (23.6), we

immediately obtain

i = (OA/ON) 1y i i
e = —kT(OInQ/ONK)r vy i

(23.10)
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23.5 Degenerated Energy States E; and Energy Levels

For numerous applications or to tackle new problems, it is interesting to group all
the energetic states of the same level E;. Let €; (V, V) be the number of states of the
energy level E; (N, V), i.e., in the listing of the possible states E;, the same value E;
exists , times. Q; (N, V) is the degeneracy. As a result, the partition function which
was

Q(N.V.T) =) e BN
J

becomes

O(N,V,T) = @(N,V)e i VI (23.11)

where, this time, the sum is calculated on the energy levels, whereas before it was
calculated on all the states, included those of the same energy.



Chapter 24
Other Ensembles

Abstract The chapter is a study of some other ensembles distinct from the
canonical one and which are of some interest for the purpose of activity. The
concerned ones are the grand ensemble, the microcanonical, and the isothermal-
isobaric ones. Calculations analogous to those carried out in the case of the
canonical ensemble permit to find the statistical analogues of classical thermody-
namic functions. Partition and characteristic functions introduce themselves during
these calculations. Overall, the famous Boltzmann’s relation appears within the
framework of the microcanonical ensemble.

Keywords Isothermal-isobaric ensemble « Grand ensemble partition function ¢
Microcanonical ensemble partition function e Statistical analogues of classical
thermodynamic functions < Absolute activity ¢ Boltzmann’s constant
Characteristic functions

In this chapter, we briefly study some other ensembles which are interesting for our
purpose.

24.1 Grand Canonical Ensemble or Grand Ensemble

24.1.1 Generalities

The grand canonical ensemble may be imagined as being one ensemble of thermo-
dynamic systems characterized by a constant volume. The ensemble itself is dipped
into a giant heat-bath-marie which maintains it at a constant temperature. The
systems can exchange the particles of their component(s) with their surroundings
(the other systems of the ensemble). The exchanges evolve up to equality of their
chemical potentials. Contrary to the case of the canonical ensemble, the systems are
not closed. The partitions of each system of the ensemble permit the crossing of
heat and matter through them. The ensemble is characterized by the thermodynamic
quantities V, T, and u (Fig. 24.1).
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Fig. 24.1 Grand canonical ensemble

The strategy followed in order to study these systems from the statistical
standpoint is analogous to that followed for the study of the canonical ensemble.
However, here, there exists a great difference with the preceding case. According to
the principles of quantum mechanics, the stationary energetic states E; are function
of V which remains constant as previously but are also function of N which is, now,
variable. As in the case of the canonical ensemble, each system may possess several
components.

Again, as before, one makes out several distributions and sub-distributions
among which one seeks the most probable ones. The research is performed through
a derivative calculation taking into account the Lagrange’s multipliers. From this
calculation, one deduces the probability P(/V) that a system of the ensemble would
be in the energetic state E; (N, V) with the number of moles N of the component(s).
The energetic states E; (N, V), of course, are different from each other as a function
of N and, also, since they are dependent on V. As an example, in Table 24.1, we
mention an example of distribution. In this table, j is the number of particles in the
volume V. For the same volume V, there exist several levels of energy for the same
number j, for example: E(1, V)—E>(1, V)—E3(1,V) ... andsof....

The constraints for the determination of the most probable distribution are the
following:

e The total number (imposed) K of the systems of the ensemble
n1(1) +n1(2) + n1(3) + n2(1) + n2(2) + n2(3) + n3(1) + n3(2) + n3(3) = R

or generally
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Table 24.1 Example of a distribution in the grand ensemble

E(1, E (2, E\ 3, Ex(1, E»(2, Ey(3, E5(1, E5(2, E5(3,

V) V) V) V) V) V) V) V) V)

ny(1) ni(2) n(3) ny(1) nx(2) n2(3) n3(1) n3(2) n3(3)
The possible energetic states are E(1, V), ..., E3(3, V). The n,(j) are the number of systems

exhibiting the energy E;(j, V)

» The total energy (imposed) E; of the ensemble

1’13(1)E3(1,V) + ... = E,

or

This latter expression is generalized as
ST HWN =
;i N

The number of the possible quantum states of the supersystem €, is given by the
relation

Qt:

ZZ’?/(N)

By developing the calculations as in the case of the canonical ensemble, one
obtains

LTV (24.1)

nj(N) — Ne 9 PENV) 1N
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for the most probable distribution. @, f, and y are the three Lagrange’s multipliers,
the using of which is induced by the presence of three constraints. By operating as
previously, we find

=3 Y e BN
i N

The probability PyN) that a randomly chosen system in the grand ensemble does
contain N molecules and would be in the energy state E/(N, V) is given by the
relation

P;(N) = e’ﬁE/(N’V)e’VN/Z Z e PEINY)g=rN' (24.2)
i N

According to the first postulate, we can proceed to the following associations in
order to define the mechanical variables in statistical thermodynamics:

Internal energy < E(= E,/R) ZZP (24.3)
N < N (=v,/R) ZZP (24.4)
ZZP [OE;(N,V) /OV]N) (24.5)

where v, is the total number of particles in the ensemble. In order to introduce the
nonmechanical variables and in order to evaluate the parameters f and y, we use the
expression (24.3) of E that is written in differentials:

dE _ZZE (N,V) dP;(N +ZZP ) dE;(N, V) (24.6)

The first term of the right member shows the change in the energy related to that of
the probabilities P(N) when the energy levels E;(N, V) are constant. It clearly
corresponds to an energy change of the system without any work having been
performed. Hence, it must be identified to the heat exchanged by the system. On the
contrary, the second term of the right member must be identified as being the work
exchanged by the system. By replacing the first term in the right member of E;(N,V)
by its expression stemming from (24.2), we find

E:—l/ﬂzz yN + InP;(N) + InE] dP;(N)
+ ZZP )[OE;(N,V) JoV]aV
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where

::ZZ —PE;(N.V) g =N
Jj N

The second term of the right number is obtained, as in the case of the canonical
ensemble, by taking into account the fact that dE is an exact total differential and by
expressing it as a function of the two independent variables T and V. We obtain

dE = —(1/p) ZZ yN + InP;(N) + InE|dP;(N) —pdV

Let us develop the first term of the right member. Let us, firstly, notice that the
differential writing of (24.4) leads to

N = > > NdP;(N)

Taking into account this result on the one hand and the fact that X; Xy dP(N) =0 on
the other, we obtain

dE = —y/pdN — pav — (1/B)> " InP;(N)dP;(N)
i N
For the same reason as for the canonical ensemble,

> > i Py(N)dP;( [ZZP )In P;(N)

As a result, the preceding expression can be written as

—(1/p)d ZZP )In P;(N)

= dE + pdV + y/BdN

that must be compared to the following expression which is of purely thermody-
namic origin:

TdS = dE + pdV — udN

where y is the chemical potential of the component and E its internal energy. As a
result, the following assimilations may be made:
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po—=r/p
S H—kZZP )In P;(N)
M/kT<—>—J/
with
p= 1/kT

Therefore, for an open, isothermal system defined by the thermodynamic parame-
ters V, T, and pu, the probability that it possesses N molecules and that it is in the
energy state E(N, V) is

Pi(N;V,T,p) = e BNV« py(N;V, T, ) MM J2(V, T, )

avec E(V, T, ) ZZG—E(NV/kT Nu/kT

The function Z is called the grand partition function. (In the symbolism Pi(N; V, T,
), N has the status of a particular writing because, as j, it is a summation index,
whereas V, T, and p are true thermodynamic variables.)

It is very important to notice that Z may also be written as follows:

[1]

(V,T,p) = Ey| e g~ ENVIAT
; (24.7)

(V,T,u) = S yO(N,V,T) e/

[1]

Hence, the function grand partition appears as being a collection of functions of
partition of canonical ensembles. This property is very often used in this part of the
book.

The probability that the system possesses N molecules, whatever its energetic
state is, is given by the expression

P(N;V,T,u) =Y PN
( ) 2,: (N) (24.8)
= Q(N,V,T) eV T JZ(V T, u)

As a consequence, the mean number of molecules is given by the expression

N(V,T.u) => NOQ(N,V,T) "/ /&(V,T,p)
N
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By a reasoning similar to that followed in the case of the canonical ensemble, by
linking the results obtained through statistical thermodynamics to the thermody-
namic function ST = E—Nyu + pV, one finds that the function pV is characteristic of
the grand canonical ensemble (viz. Appendix V). It is given by the expression

pV = kT nE(V,T,u)

Once known, it permits to calculate S, N, and p with the help of a reasoning
analogous to that followed for the canonical ensemble. The found expressions are

S = kT (0InE/0T),, + k InE
N = kT (OInE/0u)y ;

p = kT (OlngE/0V),; = kT (InE)

24.1.2 Grand Ensemble and Absolute Activity

In some cases, the grand ensemble is easier to handle than the canonical ensemble.
It is notably the case when we have to study systems containing numerous particles.
It is the case of chemical systems. With this ensemble, the challenge amounts to the
study of a system of one component, of a system of two components and so forth.
Relation (24.7), indeed, can also be written, equivalently, under the form of the
following series development:

E(V,T,u) = 0(0,V.T) + Q(1,V,T)A' + Q2,V,T)A* +---
with
A= et/

A is called the absolute activity of the component. Hence, the relation (24.7) can also
be written as

E(V,T,p) = > _[ON,V,T)A]"/ N! (24.9)

N

We again find the fact that the function grand partition = is a collection of canonical
functions Q(NV, V, T'). It is through the handling of this relation that, for example, the
significance in molecular terms of the activity and of the fugacity of an imperfect
gas is grasped (viz. Chap. 34).
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24.1.3 The Case of Several Components (Grand Ensemble)

The preceding considerations spread to the cases where there are several compo-
nents. Let us envisage the case where there are two components, numbered 1 and
2. Therefore, we are facing with a system at constant temperature and volume and
in which the components 1 and 2 exhibit the chemical potentials y; and u,. Let us
recall that it can freely exchange the compounds 1 and 2 with the other systems. In
this study, we also make the hypothesis that there is no interaction between the
molecules.

The first point to consider is that the possible quanto-energetic levels £; depend
on the volume V and on the number of moles N; and N,.

The study of the system is analogous to the preceding one. The existing
constraints prevailing over the system are

Zzznj(Nl,Nz) =N

NN,
ZZZHJ(NlaNZ)Ej(V,NI,Nz) = Et
j Ni N

ZZZ nj(N1,N2) Ny = N»
Jj Ni N
SN NN = Ny
j N N;

where N| and N, are the numbers of moles of compounds 1 and 2. The number of
possible quantum states of the “supersystem” €, is given by the relation (analogy
with the relation (24.1))

Q= [Z > ni(Ni,N)

Jj Nt N

U/ Ny nyni(N1, N2)!

Successively cancelling the partial derivatives €, with respect to the terms n; (N,
N,) by taking into account the preceding constraints permits to obtain the dominant
sub-distribution.

The probability PN, Na; V, T, py, u) for the system to be in the quanto-
energetic state E; (N, N,, V) is given by the expression

Pi(N\,Nos V, T, py, py) = e BNN2VIKT e N /KT Moo /KT (v Ty i)
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with

E — E e*E,(N[ ,N2, V)eN]ﬂl/kTe Nz}lz/kT
J

E can also be written as

==Y % {ewlu,/wezvzuz/krz o= BN N V)/AT }
J

Ni N
By writing
Q(N,N,, V,T) = Ze— Ej(N1,N»,V)/kT
j
2= e /¥ and 2, = et /AT
we obtain

Pi(N\,N2 sV, T,y py) = e BONVIRE NN B (VLT g i)
with

E=Y " 0NNy, V,T)uM 2™
Ny N>

24.2 Microcanonical Ensemble: Boltzmann’s relation

The microcanonical ensemble permits to study the properties of an isolated system
characterized by the following thermodynamic variables: E, V, and N. Its energy,
volume, and composition are constants since the system is isolated. That means that
there are no heat, no matter, and no work exchanges with the surroundings
(Fig. 24.2).

The characteristic function of such an ensemble can be obtained, among differ-
ent ways, by starting from the properties of the canonical ensemble. Let us consider
a canonical ensemble and suppose that we only choose the systems possessing the
energy E, among all the systems it contains. Now, let us suppose that these systems
are picked out from the canonical ensemble. Therefore, we obtain a collection of
isolated systems which, all, possess the same energy, composition, and volume V.
Another equivalent manner to describe the system is to consider that the only
accessible quanto-energetic state is that of energy E. In the initial canonical state,
the probability P for a system to possess the energy E was proportional to e =7,
E is the same for the systems of the new ensemble. Therefore, their probability P in



288 24 Other Ensembles

Fig. 24.2 Microcanonical
ensemble
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the canonical initial ensemble was the same. Let Q(N, V, E) be the number of these
states. Within the microcanonical system, we can write

P =1/Q since » P =1

The entropy being a mean statistical quantity over all the systems of the initial
canonical ensemble and their number K being very large, every system of the new
ensemble (called the degenerated state) possesses the same entropy since they have
the same energy. Hence, we can use the following relation concerning the canonical
ensemble:

S(N,V,T) = —k» Pjin P,
J

For the present new ensemble, it can be written as
S(N,V,E) = —k» Pjln P, (24.10)
J
In order to find the relation being searched for, it is only sufficient to replace P; by
1/€2 into these expressions of S, since P; is the same for all Q quantum states and

moreover since ) .P; = 1:

P = 1/Q
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As a result

S = —k2(1/QIn1/Q)

(24.11)
S = kInQ(N,V,E)
This is the very famous Boltzmann’s relation which, the first, has given a “proba-
bilistic” meaning to the function entropy.

Expression (24.11) is the characteristic function of the microcanonic ensemble.
Once known, as in the cases of the other ensembles, it permits to calculate all the
other thermodynamic functions, by comparison with the relation from purely
thermodynamic origin:

dS = (1/T)dE + (p/T)dV =" (u/T) dN
k

where k is the index marking the different components.

24.3 Isothermal-Isobaric Ensemble

Now, we are considering a closed system in thermal and mechanical equilibrium
with the surroundings. It can be regarded as an ensemble of systems analogous to
those encountered in the canonical ensemble but where their volumes vary by
adoption of supple partitions for each of them to be in mechanical equilibrium
with its neighbor. Then, the volume of each system fluctuates. The studied system is
defined by the independent variables 7, p, and N (Fig. 24.3).

By analogous processes to those already considered that the probability Py for a
system to possess a volume V is given by the relation

Py = e "¥OQ(T,V,N) /A

where A is the partition function of the ensemble. We must remark that this
expression is of the same type (24.8). In addition, it is obtained in an analogous
manner. The isothermal-isobaric partition function is given by the expression

A(T,p,N) => O(N,V,T)e P/
\%4

The sum is calculated over all the possible volumes. We remark that it appears as a
collection of canonical functions. In classical mechanics, where the volume varies
continuously, it is written as
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Fig. 24.3 Isothermal-isobaric ensemble
A(T,p,N) = C/ dV Q(N,V,T) e PV/FT
0
where C is a constant having the dimension of the inverse of a volume. The function
characteristic of the ensemble is the Gibbs energy:
G(T7p7N) = — kT InA (T7p7N)

It permits to calculate the chemical potential u; (T, p, N) of the component(s), the
entropy S (7, p, N) of the system, and the mean value of the volume of the system

V; which is equally function of T, p, and N.



Chapter 25

Systems of Molecules or Subsystems:
Independent, Distinguishable,

and ““Indistinguishable”

Abstract In this chapter are given some general principles permitting the study of
systems composed of atoms, molecules, groups of molecules, and independent
“subsystems,” with the aid of statistical thermodynamics. “Subsystems” are defined
as, for example, the different degrees of freedom in the same molecule (such as
translational, rotational a.s.f.). They can also be the molecules adsorbed on inde-
pendent adsorption sites located on a solid surface . .. a.s.f.

The meaning of independent being specified, the cases of the molecules or
“subsystems” distinguishable and “indistinguishable” are studied. The invoked
calculations in this chapter are based on the handling of the canonical partition
function. Such calculations induce the introduction of a new kind of a partition
function, the molecular partition one.

Keywords Adsorption sites * Subsystems ¢ Distinguishable and indistinguishable
systems and subsystems ¢ Degrees of freedom ¢ Maxwell-Boltzmann statistics ¢
Molecular partition function ¢ Translational, rotational quanto-energetic states

In this chapter, we recall some general principles permitting the study of systems
composed of atoms, molecules, groups of molecules, and independent “subsys-
tems,” with the aid of statistical thermodynamics. For example, we call
“subsystem” the different degrees of freedom in the same molecule (such as
translational, rotational, a.s.f.). It can also be the molecules adsorbed on indepen-
dent adsorption sites located on a solid surface . .. a.s.f.

After having specified what we mean by independent, we successively envisage
the cases of the molecules or “subsystems” distinguishable and “indistinguishable.”
This chapter is based, in the different cases, on the structure of the partition function.

25.1 Meaning of the Independence of the Molecules
and “‘Subsystems”

One can consider that the particles, present in the same container, are independent
from each other when their displacement is not influenced by that of another. Each
particle exhibits a purely random displacement in the container. The lack of
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independence of atoms, molecules constituting the system, may be due to physical
interactions between the components or to some restrictions of symmetry regarding
the wave functions describing the system. The latter case is not envisaged here.

Actually, the strict independence of the components of the system cannot enter
within the framework of this study, since in such a case, the studied system cannot
reach the internal state of equilibrium. The statistical study of such systems
becomes, then, very difficult, if not impossible. Let us specify this point by, for
example, briefly, considering the case of perfect gases. Their density in the
container must be sufficiently weak so that the intermolecular forces do not
play a part in the properties of the gases. However, the internal equilibrium
(entailing that the perfect gas law is satisfied) must be still reached by the
collisions between the molecules out by the collisions between the latter with
the partitions of the container in order that the thermodynamic properties of such
systems do exist.

25.2 Calculation of the Partition Function of Independent
and Distinguishable Molecules or Subsystems

Since the thermodynamic properties of a system may be obtained from its partition
function, the latter must be calculated.

25.2.1 Definition of the System

Let us regard the case of one container of volume V, only containing two molecules
of different natures. Let &y, €1, €, and so forth be the quantified energies of the first
molecule, and &y, £,'e,’ and so forth those of the second molecule. (These possible
energies are obtained by resolution of the Schrodinger’s equation related to each
kind of molecule.)

¢ The independence of the particles is expressed by the fact that, since by
hypothesis both molecules do not exhibit noticeable interactions between
them, the energy of the system constituted by both kinds of molecules in the
volume V is the sum of the energies of the individual molecules, which are those
they possess when they are alone in the volume V.

e Clearly, in the previous reasoning, the particles are distinguishable. That is
shown by the fact that the possible energies &;, €/ are distinctly marked.
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25.2.2 Calculation of the Partition Function

In the above example, it is evident that, since the molecules are independent, when
one is in the state of energy ¢;, the other may be found in every authorized other one
/. As a result, the partition function Q of the whole system is given by the
expression

0= e~ (eoted)/AT  o—(eo+er)/KT 4 o—(eo+e)/kT
+ e—(s|+eg’)/kT + e—(£1+s|’)/kT + e—(£1+sz’)/kT
+e (et )/AT o gef

That is,

0= Ze—e,/kT <Z e—s;/kT)
i J

When the energy states ¢; are degenerated w; times and those &/w/ times, the
partition function Q is given by the relation (viz. Chap. 22)

o (z /> <Z />
i J
. —&;/kT —¢;/kT A—& kT 1€ kT
The functions (Zie ,Zje 7 ), Zia),e , and Zia),e i are

called molecular partition functions. They must not be confused with the partition
function of the whole system Q. The former are symbolized by q.

Generalizing the foregoing example, we can deduce that in the case of systems
constituted by molecules or subsystems independent and distinguishable, the par-
tition function of the system Q is given by the relation

0 =¢,9,q3 --.. (independent and distinguishable particles) (25.1)

where q1, g2, 5 . . . are the molecular partition functions of the molecules 1,2,3 ...
or of the subsystems 1, 2, 3, and so forth.

25.3 Independent and “Indistinguishable” Molecules
or Subsystems

It is the case for example in which the molecules are identical and, hence, “indis-
tinguishable,” while not being in interactions by hypothesis, i.e., still independent
from each other.

The calculation of the partition function stems from the following reasoning.
Relation (1), if it was legitimate, would be in this case
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0=4q"

where the molecular partition function ¢ is the same for each molecule (or each
subsystem) since the molecules are identical and are contained in the same
volume V.

Actually, this relation is not exact. So, we adopt the same reasoning as in the
example above concerning both kinds of molecules; it appears, for example, that
the state energy of the previous system &y+¢," of the foregoing example is, now,
equal to the energy of the state &y’ + ¢, of the former example, since in this new case
g =e¢,. Tt is the same thing for all the states where i #j. As a result, in this case
where there are two molecules, these “crossed” terms appear two times with the
preceding numeration system. It is clear that they must be counted only once in the
calculation of the partition function of the system. The generalization of this result
leads to the fact that for a system constituted by N identical molecules, the crossed
terms would appear N! times. The adopted solution in order to calculate Q is to use
the relation

Q = ¢"/N! (independent and “indistinguishable” particules) (25.2)

However, by calculating in such a way, we are making an error since we also divide
the “non-crossed” terms of energy ¢;+ ¢; by N! the “non-crossed” terms of energy
€;+¢; which do appear only once during the preceding numeration. But, this error
may be qualified justifiably as being perfectly negligible since, given the number of
molecules N excessively large (of the order of 10?°), the number of “crossed terms”
is incomparably larger than that of the “non-crossed” ones and as a result the latter
ones are negligible in the sum Q.

Let us mention the important following point :the relation (25.2) is legitimate if
only the number of quanto-energetic states is by far larger than the number N. In
these conditions, it proves to be correct that all the terms bringing an important
contribution to the partition function Q correspond to the fact that each molecule is
in a different quanto-energetic state. It is said, then, that the kind of statistics which
is obeyed is that of Maxwell-Boltzmann.



Chapter 26
Perfect Gases

Abstract This chapter is an example of calculation of the thermodynamic proper-
ties of compounds through reasonings of statistical thermodynamics. It gives the
demonstration of the perfect gas law by considerations of statistical thermodynam-
ics. Finally, some thermodynamic quantities relative to the perfect gases are
mentioned in terms of molecular parameters.

The demonstration is performed by handling the grand ensemble. In the case of
perfect monoatomic gases, the resolution of the Schrodinger’s equation is possible.
The internal energy of each individual atom is then equal to the sum of its energies
of rotation, vibration, and electronic. The internal energy of the atom does not
depend on its position in space. As a result, the molecular partition function
corresponds to the whole internal and translation properties of the atom. Given
these facts, the classical thermodynamic functions, such as the Gibbs energy, the
chemical potential, and even the standard chemical potential of the gas (which is a
quantity somewhat mysterious in classical thermodynamics) can be expressed in
terms of molecular parameters as it is shown.

Keywords Perfect gas law ¢ Schrodinger’s equation ¢ Standard chemical
potential ¢ Perfect gas * Standard chemical potential ¢ de Broglie’s thermal
wavelength « Perfect gas internal energy ¢ Perfect gas Gibbs energy ¢« Helmholtz
energy * Translational energy ¢ Vibrational energy * Electronic energy « Molecular
partition function

Although the activity notion is principally applied to the case of liquid solutions, it
seems to us judicious, in introduction to their study, to consider the behavior of
gases and particularly to begin by that of perfect gases. A valuable reason to
proceed in such a manner is that the theoretical study of gases is by far more
advanced than that of liquids. Moreover, it is well known that the model of perfect
gases has proved to be particularly fruitful for the study of thermodynamics.
Noteworthy especially, it is very interesting for the study of the chemical potential
and, through the latter, for that of the activity notion.

We begin with the definition of a perfect gas. Then, we give a demonstration of
the perfect gas law by starting from considerations of statistical thermodynamics.
Finally, with the help of the same considerations, we explicit some thermodynamic
quantities relative to the perfect gases in terms of molecular parameters.
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26.1 Definitions

There exists some haziness concerning the definition of a perfect gas.

— For some authors, a gas is called perfect or ideal if it obeys the state equation:
pV =nRT

where p is the pressure of the gas, V the total volume it occupies, 7 its number of
moles, T its absolute temperature, and R the perfect gas constant. R is a universal
constant. It is equal to the product of the Avogadro’s number N, and the
Boltzmann’s constant, k = 1,3807 x 107 2J KL

R =FkN,
R =8,3145 x 10 J K 'mol ™!

For other authors, a supplementary condition must be added to the preceding one:
the internal energy E of a perfect gas must be only a function of the temperature. It
is not a function of the volume in which it is contained nor it is a function of its
pressure, i.e.,

(OE/O0V); =0 and (OE/Op); =0

— Finally, a latter group of authors defines a perfect gas by the following expres-
sion of its chemical potential u in the considered thermodynamic state where it is
at the pressure p and at the temperature 7T

p =p° + RTIn p/p°

In this expression, u° is its chemical potential in the standard state where its
pressure is p°. The temperature is equal to 7, identical to the previous one.

This latter definition is strictly equivalent to the first one. Later, we shall confine
ourselves to the first definition.

26.2 A Brief Discussion of These Definitions

A perfect gas is an abstraction that the real gases may approach more or less
according to their nature and the conditions where they are. From the molecular
standpoint, a perfect gas is composed of molecules (or atoms), the interactions
between them being fully negligible and the volume they occupy being also fully
negligible with respect to that of their container. There is no release nor heat
absorption during the expansion of a perfect gas, provided that there is no work
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arising during the process. The result is the occurrence of the two relations both
involving partial derivatives, already encountered in the statement of the second
definition. Actually, it seems that the state equation entails these two relations.

26.3 Types of Perfect Gases: The Case of Mixtures

Let us recall that every gas, whatever its molecular type is (monoatomic, diatomic,
polyatomic), including mixtures of different gases, tends toward the perfect behav-
ior. The sine qua non condition of existence of such a behavior is that every gas (and
even every molecule or atom of these gases) exhibits no interaction with the others.

26.4 The State Equation in Statistical Thermodynamics

The state equation in statistical thermodynamics is (viz. later Chap. 27)
pV=NkT

or
p = pkT

N is the number of molecules (and not the number of moles), k the Boltzmann’s
constant, and p = N/V the density number of the gas.

This equation may be obtained in different manners. We mention one, here. We
shall give another one, later, in Chap. 27.

We are considering the case of an ensemble of identical particles of a
monoatomic gas, without any mutual interactions and being “indistinguishable.”
For the perfect diatomic and polyatomic gases, we confine ourselves to recalling
some results. But, previously, we show that the perfect gas law can be obtained by
using the theory of the grand ensemble.

26.5 Obtaining the Perfect Gas Law Using an Ensemble
of Identical Molecules Without Mutual Interactions
and Being ‘“‘Indistinguishable”

The demonstration is performed by handling the grand ensemble. The
corresponding partition function = can be written (viz. Chap. 24) as
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E= Z ON,V,T))N N >0
N

At this point of the demonstration, it must be noticed that within the framework of
the hypothesis of no interaction between the particles, the canonical partition
function intervening in E does not contain a term involving any potential energy
of interaction. This fact is evidenced by a reasoning involving classical statistical
mechanics (viz. Chap. 27).

In this case, this relation can also be written as follows:

==Y [qgN,v,T)A"/N!

N
That is, more explicitly

=
—

= 144q(1,V,T)A+[q(2,V,T)A*/2! + [¢(3,V,T)A]* /3! + andso
f...

(This relation comes from the fact that the particles are independent and “indistin-
guishable.” See Sect. 26.6.4).

Let us notice the value ¢(0,V,T) = 1. The empty system has only one state, that
of null energy.

The previous expression of E is nothing different from the expansion in series of
the expression

Z=eh (26.1)

From another standpoint, we know (viz. Chap. 24) that the characteristic function of
the grand ensemble is the function pV = kT In =, i.e.,

= — epV/kT

The obtaining of the perfect gas equation results from the following equality. It is
evident according to the last two relations found above:

QA = pV/kT

It remains to demonstrate that Q4 = N is the number of particles of the system.
The starting point of the demonstration is the relation

N = kT(0InE/du)v, 1 (26.2)

stemming from the great ensemble theory.
According to (26.1)
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InE=¢gl or ¢g=InE/A (26.3)
dInE = gdA whence
dinEZ/dA = q (26.4)

By eliminating ¢ between relations (26.3) and (26.4), we obtain

InE=1(dnE/dA) or InE=dInE/(di/A)
ie.InE = (dInE /dIn4k)

or, since A = e*/KT (k being the Boltzmann’s constant)

In2 = p /KT
InE = kT (0InZ /0u), 1

and InE = N according to (26.2)

since
InE = g/ according to (26.3)
and
InZ = N according to (26.2)
we obtain
gh= N
and

NKT =pV (perfect gas law)

Since we have worked within the framework of the grand ensemble, the value N is a
mean value, whence the symbolism N is derived. One demonstrates that its
fluctuations are very weak.

From the viewpoint of the pure scientific rigor, it is exceedingly satisfactory to
again find the perfect gas law, by starting from the principles of quantum mechanics
and by using statistical thermodynamics.

26.6 A Study of Perfect Monoatomic Gases

26.6.1 Translation Energy and Internal Energy

In the case of the perfect monoatomic gases, the resolution of the Schrodinger’s
equation is possible, at least as regards the translation motion of the atoms. The
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internal energy of each individual molecule £™ is equal to the sum of its energies of

rotation ™, vibration &', and electronic £, i.e.,

Emt _ grot + €v1b + eelec

The internal energy of the atom does not depend on its position in space. As a result,
the energy of an atom & may be considered as being the sum of a translation energy
€" and of an internal energy. Hence, one can write

e = gtr + €1nt

In the canonical system, the molecular partition function is
—ei /KT
i

where ¢ is the partition function which corresponds to the whole internal and
translation properties of the atom. By virtue of the “separability” of &, we can write

q:§ :e—eitr/kTE :e—eiint/kT
i i

___tr_int

9=q94q
Regarding, now, the internal partition function qi"t, calculations show that its value

can be taken to be equal to the unity for the majority of monoatomic gases.
Consequently, all the following results only stem from the translation of the atoms.

26.6.2 Expression of the Molecular Partition Function
of Translation "

Calculations show (viz. Chap. 27) that the molecular partition function of transla-
tion is

" = (2zmkT/i?)*v (26.5)

where m is the mass of each particle, k£ the Boltzmann’s constant, 4 the Planck’s
constant, and V the volume of the container.
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26.6.3 de Broglie’s Thermal Wavelength

It is convenient to introduce the parameter A into the varied relations. It is called de
Broglie’s thermal wavelength (viz. Chap. 27) such as

A = h/(2zmkT)"?
The molecular partition function of translation is now

" =V/A (26.6)

26.6.4 Expression of In Q as a Function of the Atomic
Parameters

Setting up this expression proved to be particularly fruitful because it actually
constitutes a kind of hub because it permits the quasi-immediate calculation of
the thermodynamic quantities of these gases as a function of their molecular
parameters, owing to the general relations stemming from the theory of the varied
ensembles.

Let us regard the canonical ensemble. Given the high dilution of the gas in the
volume V, the gas molecules are independent from each other and are not distin-
guishable. In these conditions, the canonical partition function can be written
according to

0= (1/N)q"
with the principle ¢ = ¢"¢™, but since g™ ~ 1,
0= (1/N)g™ (26.7)

By introducing (26.5) into (26.7) and by using Stirling’s approximation, we
obtain

3/2

nMQ=NI [(2nka/h2) (Ve/N)}

where e is the basis of the Napierian logarithms.

26.6.5 Helmholtz Energy A

Since
A (N,V,T) = —kT InQ (viz. Chap. 23)
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we immediately obtain
A= kaTln[(erka/hz)}/ 2(Ve/zv)}

We notice that A is an extensive property, since it is proportional to N. However,
the ratio A/N is an intensive quantity since it only depends on intensive quantities
themselves T and V/N. It is the Helmholtz energy.

26.6.6 Pressure

Since (viz. Chap. 23)

p=kT(0InQ/0V); y (26.8)

by introducing the relations (26.5) and (26.7), we again find the perfect gas law.

26.6.7 Internal Energy E

It is calculated by using the relation (26.9) (Chap. 23):
E =kT*(0InQ /3T),

That is,
E= (3/2)NkT
The sample containing n moles of gas, one can also write
E = (3/2)nRT

since n = N/Na. The origin of this energy is entirely kinetic since, by hypothesis,
the potential energy is null. Indeed, we assumed that there exists no interaction
between the species. The expression above is equally found by starting from purely
kinetic considerations and it obeys the principle of energy equipartition. (Actually,
this principle is not general.)
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26.6.8 Entropy

The entropy can be calculated from the relation
S=(E—-A)/T

E and A are already expressed above. As a result:

— In terms of volume:
S =Nk In | (2rmkr /1) (Ve /N) |
— In terms of pressure:

S =Nk In [ (zmkT /)" (kT eS/z/p) ]

26.6.9 Gibbs Energy G

The Gibbs energy being defined in thermodynamics by the relation
G= A+ pV

we obtain the following relations after the replacing of A and p by their expressions
above:

— In terms of volume:

3/2

G = =N AT In | emkT/i?)**V/N |

— In terms of pressure:
2\3/2
G = =N kT In [ zmkT /1) kT p]

or

G = —NkT In (kT /pA?)
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26.6.10 Chemical Potential p

We know (viz. Chap. 23) that the chemical potential can be calculated through the
relation

p=—kT (0nQ /ON);

Given relation (26.6), we obtain

)= — KT In(g /N)
p= KT In | amkr/1?)"*v /N]

or

3/2

u =—kT In {(2nka/h2) kT/p} (26.9)

26.6.11 Standard Chemical Potential of a Perfect Gas

The relation (26.9) is particularly interesting since it permits to obtain one expres-
sion of the standard potential of a perfect gas in terms of molecular parameters. The
standard chemical potential, as it is introduced in thermodynamics, appears indeed
to be very mysterious because of two reasons. The first one, of course, is the fact it is
an integration constant. The second is that it may vary according to arbitrary
conventions.

In thermodynamics, we know that in the case of a perfect gas, the chemical
potential of a perfect gas is given by the expression

up,T)=pu°(T) + kT Inp /p° (26.10)

where °(T) is the chemical potential in the standard state of the gas and p° is the
chosen standard pressure (for example p° = 1 bar). The standard state itself (chosen
at temperature T of the system and at pressure p°) is particularly interesting. By
using relations (26.9) and (26.10), its chemical potential is given by the relation

3/2

W (T,p°) = — kT'In [(2nka/h2) kT/pO] (26.11)

It is quite interesting to notice that the term below, between square brackets
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3/2
| amkt /i) kT |

has the dimension of a pressure. As a result, the argument of the logarithm of
relation (26.11) is truly dimensionless, as it must be the case from the mathematical
standpoint.

26.7 Binary Mixture of Two Perfect Monoatomic Gases

It seems interesting for us to study the case of the binary mixture of two perfect
monoatomic gases. In this case, the canonical partition function is simply the
product of the two canonical partition functions of each gas. Their behaviors are
different from each other. Hence, we can set up

Q= (4"/ N1!)(d5*/N2)
where
g =V/A] and g, =V/A;
Aq and A, are only different from each other through their masses m; and m,. The
expressions of the Helmholtz energy and of the entropy are found by starting from

the general expressions (viz. Chap. 23):

A= —kT InQ
S=kInQ+ kT(aan/aT)N’V

whence
S =Nk In (Ve5/2 //\13N1> + Nk In (VeS/Z/Asz)

Likewise, starting from the general equations governing the canonical ensemble,
we immediately find

pV = (Nl + Nz)kT
and

E=3/2 (N, + NkT
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26.8 The Perfect Gas Law from Other Ensembles

Let us mention the fact, without stressing it, that it is possible to also find the perfect
gas law by reasoning with other types of ensembles.

26.9 Perfect Polyatomic Gases

Perfect polyatomic gases may obey the state law. Here, we just recall a general
formulation of their chemical potential.

— Obeying the state equation, as previously, entails that the molecules should be
independent, that is to say without interactions between them. They must also be
indistinguishable. In the present case, the respect of the law also entails to
consider the independence of the degrees of freedom in a molecule itself. The
latter condition constitutes an approximation which seems to be rather
satisfactory.

According to the theory of the canonical ensemble
0=1/Ng"

The difference between the cases of the polyatomic and monoatomic gases is that in
the former case, the molecular partition function ¢ is more complex than in the
second. With the terminology of paragraph 2, we must also, at least in the reason-
ing, take into account the internal molecular partition function ¢™ which is no
longer equal to unity. The molecular partition function is of the type

q= Z o EI/kT
J

One can admit that, here is the approximation of the independence of the degrees of
freedom, each level of energy e of the molecule is the sum of the energy levels of
translation, vibration, rotation, and electronic, i.e.,

=+ +¢& 46

¢, €, €', and € are, respectively, the energy levels of translation, rotation,
vibration, and electronic. It is at this point that the approximation of the indepen-
dence of the degrees of freedom is present. The latter relation is valid for a diatomic
molecule, because of the existence of a vibration energy. For a polyatomic mole-
cule, eventually, one must also take into account the energy involved in the rotation
of some atoms or groups of atoms around a simple bond.
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The independence of the levels of energy permits to the Hamiltonian of the
molecule to be separable into Hamiltonians of translation, rotation, vibration, etc.
Then, the Schrodinger equations with each Hamiltonian can be solved and one can
obtain the corresponding molecular partition functions ¢', ¢, ¢*, ¢ . . .. The global
molecular partition function is therefore

t r v el

9= 499949

and the canonical partition function

0 = (¢q¢¢)"/N! (26.12)

Calculations show that the molecular partition functions ¢', ¢, and ¢ are only
functions of the temperature (and of course of the nature of the molecule). How-
ever, the partition function q' is a function of the volume of the container. For
example, for a diatomic molecule, its expression is

g = [2xkT(my +ma) 2]V (26.13)

where m; and m, are the masses of both atoms. For a polyatomic molecule, it is

3/2
q = [2;:/& (Z m,) /hZ] 1%

where X;m; is the sum of the masses of the atoms of the molecule. According to the
properties of the canonical ensemble, the pressure is given by the relation

p= kT(aan/aV)T’N

Replacing Q in the latter relation by its expression (26.12) directly leads to the
expression

p=NkT(0lng'/OV);
1.€.,
p=NKT |V

the equation of state.

Finally, this result found by considering the case of a diatomic molecule is the
same as that which would be obtained in the same manner in the case of a
polyatomic molecule.
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— Concerning now the expression of the chemical potential of these gases, it is
obtained by using the relation

pu=A/N+pV /N (26.14)

stemming from chemical thermodynamics. A is the Helmholtz function (viz.
Chap. 23). The division by the number N of molecules stands out since A and pV
are extensive quantities whereas the chemical potential is an intensive quantity
(molar quantity). The reasoning is close to the preceding. A is given by the
expression stemming from the canonical system:

A=—kT In Q(N,V,T)

Replacing Q by the expression (26.12), we obtain
A= —len{(qtqrqvqel)N/ N!]
A= —kT[Ing"" /N!' + Ing™ + Ing"" + Ing"'"]
or
A=A+ A"+ A + A

A A", A, A% are the Helmholtz energies of translation, etc.
Remembering that for a diatomic molecule relation (26.13)

¢ = 2akT(my + my) | 1?)]*v
one immediately finds by using Stirling’s approximation
A'= —NKT In (e ¢'/ N)

(e base of Napierian logarithms).
Moreover,

A'= —NikT In ¢'
AV = —NkT In ¢° and s.f.

The introduction of these relations into the expression (26.14) permits to calculate
the chemical potential p of the gas in some conditions.
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Chapter 27

Classical Statistical Mechanics,
Configuration, and Classical Canonical
Partition Function

Abstract To deeply grasp the physical significance of an activity, statistical
thermodynamics must be considered and, in particular, it is the case of the notions
of configuration of a system and of the classical canonical partition function.

Firstly, the chapter presents a definition of the configuration of a system.
Secondly, the chapter is a presentation of the classical canonical partition function
and of some relations stemming from it. It may be viewed as being an extension, in
some definite conditions, of the canonical partition function occurring in quantum
mechanics. All the mathematical terms constituting the function are presented. This
is especially the case of the hamiltonian of the system. In some conditions,
Hamilton’s function is nothing more or less than the energy of the system. It entails
the kinetic energy of the whole particles constituting the system and their mutual
interacting potential energy. A simple example of its handling, concerning perfect
gases, is given at the end of the chapter.

The partition function, indeed, is the most used partition function in the field of
applications of statistical thermodynamics to chemistry. The function will be quasi-
systematically used until the end of the book. It is a physical parameter of first
importance in the grasping of the significance of an activity.

Keywords System ¢ Stirling’s approximation ¢ System configuration ¢ Classical
statistical mechanics ¢ Configurational partition function « Classical and quantum
mechanics « Classical canonical partition function « Hamiltonian

In order to grasp the physical significance of an activity more deeply than before,
we must turn ourselves toward statistical thermodynamics and especially, at the
beginning, toward the notion of partition function, notion which also exists in the
realm of classical statistical mechanics.

In this chapter, we present the classical canonical partition function and we
mention some relations stemming from it. It may be viewed as being an extension
of the canonical partition function occurring in quantum mechanics in some definite
conditions. This is the standpoint we adopt here.

The canonical partition function, indeed, is the most used partition function in
the field of applications of statistical thermodynamics to chemistry. We give an
example of its handling with the case of perfect gases at the end of this chapter.

© Springer International Publishing Switzerland 2017 309
J.-L. Burgot, The Notion of Activity in Chemistry,
DOI 10.1007/978-3-319-46401-5_27



310 27 Classical Statistical Mechanics, Configuration, and Classical Canonical. . .
27.1 Classical and Quantum Mechanics

In the classical mechanics, we consider that the state of a system is defined, at any
instant, by the values of its coordinates and of its momenta.

In quantum mechanics, the state of the system at any instant is defined by a
probability amplitude permitting to only know the probability of occurrence of
some values of its coordinates and its momenta.

In either case, there are some situations in which the theoretical treatments just
above evoked are not possible. In these cases, one no longer studies a sole system
but a collection (one ensemble) of several systems, each of them duplicating the one
studied. This is the essence of statistical methods.

27.2 Quantum and Classical Mechanics in Statistical
Thermodynamics

It is true that, in some definite conditions, the results following from quantum-
mechanical arguments tend toward those obtained from classical mechanics ones.
This is the case, for instance, when the quantum numbers involved in a process take
high numerical values. Thus, in the quantum-mechanical canonical ensemble
partition function, the terms corresponding to the higher quantum numbers make
more and more important contributions to the sum constituting it as the temperature
increases. Owing to the importance of the canonical partition function for our
purpose, it is of great interest for us to know the classical canonical partition
function.

According to the preceding example, one may prejudge that the quantum-
mechanical canonical function must tend toward the classical one.

Hence, one can infer that the quantum-mechanical canonical partition function

O(T,V,N)] yuamt = Zexp[—ﬁE,-(N7 V)] (viz. Chap. 23) must go over asymptoti-

cally into the corresponding classical function in the limit of large quantum
numbers,

O(T,V,N) yyan(large quantum numbers) — Qyjpse =
The principal goal of this chapter is to express the function Quss.

According to the very foundations of classical mechanics, the energy of a
moving body, for instance, varies continuously. Hence, one may already infer
from this observation that Qs is a continuous function of energy instead of Qgyant
which is a discrete function.


http://dx.doi.org/10.1007/978-3-319-46401-5_23
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Fig. 27.1 Symbolism used
to describe the % A~
configuration of a molecule gl\,)

~
N

27.3 Cartesian Coordinates of a Specific Particle
in a System

The locations of the centers of the molecules are often denoted in rectangular
coordinates x, y, z. It is the same as to locate it at the extremity of the vector
R defined by its components x, y, z. Thus, the center of the molecule i is defined by
the vector R; (Fig. 27.1).

For simple particles such as hard spheres (which do not actually exist although,
however, argon atoms look closely like them), vectors R;, R;, ... are sufficient to
describe one configuration of the system (constituted by the N particles i, j. . .). This
means that, in this case, the sole location of their centers is sufficient to describe the
configuration of the system symbolized by R". It is symbolically written:

RY =R,,R,,R;, ... Ry

The symbol RY means that the location of the centers of all the particles constitut-
ing the system is known through the knowledge of vectors R; They are, of course,
defined by the three components x;, y;, and z;.

27.4 Configuration of a System

More generally, the description of the configuration of a molecule may necessitate
to know both its location and its orientation X;. This was not the case of the
preceding spherical particles having no internal structure. For a rigid nonspherical
molecule i (such as water for example), its orientation, defined by the parameter €;,
must also be taken into account. €; is given by the relation (viz. Fig. 27.1):
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dQ; = d¢, sin 0:d6; dy,

The whole configuration of such a molecule is symbolized by X;. The vector X; is
related to vectors R; and Q; by:

X; =R
The configuration of the system is given by the relation:
XV =X, Xy, ... Xy
and the infinitesimal element of a single molecule i is given by:
dX; = dR;dQ;
Vector X is a six-dimensional (x;, y;, z;, ¢;, 0;, y;) vector (the definitions of these six

variables are given in Fig. 27.1). The integration over €2; takes into account all the
orientations of the molecule. It is represented by the expression:

2 n 2
JdQ, = J d¢,J sin 6,d9,J dl//,
0

0 0

that is to say:
stzi =87

and
X; = 87°R;
Remark: For nonrigid molecules, a supplementary parameter describing their inter-

nal rotations may be needed. This is the case, for example, of n-butane. It is not
treated further in this book.

27.5 Spherical Coordinates ¢, 0, r of a Particle

An infinitesimal element of volume located at the extremity of the vector R is
equally denoted dV, dR or dx dy dz (viz. Fig. 27.1). The change of the cartesian to
the spherical coordinates systems is done by using the expression:
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dR; = dx;dy;dz; = r* sin0d@dpdr

where 7 is the radius of the studied sphere.

27.6 Classical Analogue of the Quantum-Mechanical
Canonical Partition Function

Let E; be the energy of a molecule i in a system of N simple, “indistinguishable,” in
mutual interactions but for which it is unnecessary to specify their orientations. It is
equal to the sum of its potential and kinetic energies U and E,." Its potential energy
U depends on its proper coordinates x;, y;, z; but also on those of other molecules in
mutual interactions with it. These interactions, indeed, depend on the
intermolecular distances. The kinetic energy of i depends on the components p,;,
Pyi» P of its momentum p. Therefore, one can write:

E; = U(xi,y;2i) + Ec (P> Pyirpz) i=1...N

The whole energy E of the system is equal to the sum of the individual energies E;.

It is demonstrated that the classical canonical partition function of a N spherical
particles system, without an internal structure, is given by the relation (for an
approach of it, viz. Appendix F and the supplement one):

+ox
Q(N7 T7 V) = [I/N'hSN) X J Jexp [71‘1(){1,)71,21 -+« XNYNZN; p,xl’pyl’pzl By 2 pyN pzN)}
oo-
x kT x dx,dy,,dz; ...dxy,dyy,dzy .. .dpx],dpyl,dp_,] .. .dpr,dp),N,dpzN
(27.1)

H is Hamilton’s function involved in Lagrange’s mechanics. The terms in brackets,
X1, Y15 Z1- - -XN YN ZN3 Px1, Py1, P-1- - -Pxn Pyn P=n are the variables on which depend H.
It is sufficient for our purpose to know that Hamilton’s function is usually expressed
in terms of generalized coordinates ¢ and p, but in the present case, using cartesian
coordinates and momenta is equivalent to the use of the generalized ones. / is
Planck’s constant (h =6.626 x 1073*] s) and & Boltzmann’s constant
(k=1.38 x 107 JK™'). T is the thermodynamic temperature.

For this kind of system, Hamilton’s function is nothing more or less than the
energy of the system, hence:

"We are continuing to symbolize the potential energy, which is an energy of interaction between
molecules, by U. According to IUPAC, U is, usually, the symbol of the internal energy and Ej, is
the potential energy.
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2 2
H:Z(l/zm)(p,\l+'“pzN+U(-xla'--7ZN) (272)
i

m is the molecular mass of each particle. In equation (27.1), all the summations are
over the whole coordinates from —oo to +o0.

The fact that equation (27.1) contains the factor N! must be noticed. Its presence
is for the same reason as in the analogous quantum-mechanical partition function.
That is to say: particles are “indistinguishable” and the interactions between two of
them must not be taken into account several times. Surprisingly, also, equation
(27.1) contains Planck’s constant 4 which is a reminiscence of quantum mechanics.
It is introduced as an integration constant in the mathematical developments
devoted to the classical partition function. Its introduction is necessary since,
without it, calculations performed through the classical partition function fail to
provide correct values of the entropy and of other thermodynamic quantities of the
system.

Relation (27.1) is by no means surprising. We can, indeed, notice the similarity:

—energy/kT >
Ze &/ & J J.e’eneréy My, .. dzy

Let us recall that the sum X goes over all the quantum states. Here, one again finds
the pathway between quantum and classical functions and, from a strict mathemat-
ical standpoint, the fact that an integral is a sum of infinitely small quantities over an
infinitely large number of them. Relation (27.1) is not surprising for a second
reason. Quite evidently, Q(N, T, V) is a continuous function. (This point is some-
what detailed in Appendix F).

Equation (27.1) is often written equivalently as:

—+00
ON,T,V) =1 /N!h3N)]J Jexp[—H/kT]dRNde (27.3)
with:
H=H(p",RY)
and more precisely:
N
H(p",RY) = Uy(RY) + > (p}/2m) (27.4)

i=1

where p" and R” recalls the dependence of Hamilton’s function on momenta and on
the configuration.
With more complex molecules, the classical canonical partition function is:


http://dx.doi.org/10.1007/978-3-319-46401-5_BM1
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ON.T,V) = [¢" /87[2)NA3NN!)]J+D(

—00-

H= Z 7/2m) + Uy (XY)

Jexp [—pH(XN)]aX"ap"  (27.5)

and
p=1/kT

The symbol Up(X") means the total potential energy of interaction of the system in
the configuration X" Note the use of (XN ) in place of (RN ) (with respect to the
preceding case) in agreement with the working hypothesis.

In the relation (27.5), there exist also some supplementary terms. Let us recall
that A is the thermal de Broglie wavelength, ¢ is the molecular partition function of
the species constituting the system. g takes into account the proper partition
functions of translation, electronic, of vibration, of rotation, and nuclear of the
species (viz. Chap. 26). For example, for most monoatomic gases: ¢ =1. (The
product of electronic, nuclear, vibration, and rotation partition functions is called
internal partition function.) The factor 8z lying in the denominator is introduced in
order not to count the volume twice in the integration. The integration over dR
amounts, indeed, to obtain the volume in a first time and, in a second one, the
integration over the three angles also leads to the volume (viz. preceding
paragraph):

stzi = 82

27.7 Condition Required for the Applicability
of the Partition Functions (27.1) and (27.3)

Partition functions (27.1) and (27.3) and those deriving from them cannot be used
for all kinds of systems. Their handling is legitimate when the following condition
is satisfied:

ANV <1

where A is the thermal de Broglie wavelength of the particle defined by:

A = h/(2amkT)"?
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We see that the condition is satisfied when its density number N/V is small and the
mass of the particle and temperature are large. Both conditions are frequently
satisfied.

27.8 Some Examples of Handling of Classical Partition
Functions: The Case of Perfect Gases

A gas is considered as being perfect when there exist no intermolecular forces
between its particles. The mathematical counterpart of this definition is:

Uy(XY) =0

whichever the configuration X" is.
When the gas is monoatomic and is not endowed with internal structure, the
classical partition function reduces to:

ON,T,V)=[1 /N!h3N)]J Jexp[—ﬁH(pN)}dRNde (27.6)

—00-

Since the potential energy does not exist, the expression of H(p") is:

H(p") = Z 1/2m(p}y + -+ ply)

i=1
Integrations over dR" and dp" give:
Q(T,V,N) = VN /ANN! (27.7)

since:

— The integration over dR" is immediate, because it is carried out on a cube of

length unity:
1 1 1
JdR, = J deJ dylj dZ,'
0 0 0

and because there are N particles;
— The integration over the momenta dp” is carried out, firstly, by setting up the
following equality:
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h‘wfr: J exp[—p(p?/2m)]dp"

+00
- [hlj exp| — pp*/2m|dp]*N

—00

The right side of the last equality is justified by the fact that the particles are
identical and by the fact that there are 3N variables of integration (so thatdp; = dpf’
and dp;=dp;). The remaining integral is easily calculated by starting from the
standard integral value:

J:C exp[—ax?]dx = 1/2(x/a)"?

It is very interesting to notice that the equality (27.7) is equivalent to the
following one:

# = kTInA® + kTInN /V (27.8)
or:
u = kTInA> + kTlnp

(27.8) is obtained from the equality (27.7) and from the general relationship (viz.
Chap. 23)

§ = —KT(dInQ/ON),.,

after use of Stirling’s approximation. Relation (27.8) is already very interesting. It
is sufficient to compare it to the following one (viz. Chap. 6)

u=pu° + RTInx

to be convinced.

* A polyatomic gas may exhibit a perfect behavior, but because it is polyatomic, it
does possess an internal structure. Its molecular partition function ¢ is no longer
equal to 1 as in the monoatomic case. Of course, since by hypothesis, there exist
no mutual interactions between molecules

uixv)=o

The knowledge of the whole coordinates R” is no longer sufficient to describe
the system. The whole ensemble coordinates X" must be used. As a result, the
canonical partition function is:


http://dx.doi.org/10.1007/978-3-319-46401-5_23
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O(N,T,V) = {qN/ [(Sﬂz)NAWN!] }Jv .JdXN

The limits of integration are noticed in the following relation (v means that the
integration of R is carried out over a cube of length unity) (see before):

ON,T,V) = {qN / [(8;;2)”A3NN!} } UvdREn dng: sin adaf dw} '

Finally:

Q(N,T,V) = ¢g"VV /ASNN!



Chapter 28
The Configurational Partition Function:
Molecular Distribution Functions

Abstract The chapter introduces the very important notions of configurational
partition function and of molecular distribution functions. They are at the basis of
the notion of radial distribution function which, in turn, is at the cornerstone of our
purpose (which is to get some insight about the significance of an activity). The
radial distribution function enters, indeed, in the theoretical expressions of thermo-
dynamic quantities, among which the chemical potential.

The chapter is essentially devoted to definitions. The first given one is that of the
configuration integral. Other defined functions are the basic density distribution
function, the molecular distribution functions (both the specific and the generic
ones), the pair molecular distribution functions, and the pair correlation function
with the radial distribution function. The chapter mentions only one theoretical
study. It concerns the molecular distribution functions of monoatomic fluids. Some
aspects of the theoretical study of the radial distribution function are postponed to
the following chapter.

Most of the theoretical considerations mentioned in this chapter are developed
within the framework of the canonical ensemble and, only, the case of pure liquids
is investigated.

Keywords Configuration integral  Basic distribution function ¢ Average of a
quantity ¢ Molecular distribution function ¢ Specific and generic distribution
functions ¢ Pair correlation function * Radial distribution functions

This chapter introduces the very important notions of configurational partition
function and of molecular distribution functions. It will be seen later that they are
at the basis of the notion of radial distribution function which, in turn, is at the
cornerstone of our purpose which is to get some insight about the significance of an
activity. The radial distribution function enters, indeed, in the theoretical expres-
sions of thermodynamic quantities, among which the chemical potential. The latter
is of utmost importance.

The chapter is essentially devoted to definitions. It mentions only one theoretical
study. It concerns the molecular distribution functions of monoatomic fluids. Some
aspects of the theoretical study of the radial distribution function are postponed to
the following chapter.
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Most of the theoretical considerations mentioned in this chapter are developed
within the framework of the canonical ensemble and, only, the case of pure liquids
is investigated.

28.1 The Configuration Integral Z

In order to express the thermodynamic quantities starting from classical mechanics
considerations (and also in order to calculate them), the notion of configuration
integrals Zy has been introduced. They are also named configurational partition
functions.

Their expressions come from those of classical canonical partition functions,
such as the following one already encountered:

O(N,T,V) = [1/(N! h3N)}J Jexp[— H/kT|dR" ap" (28.1)

—00-

where H is the Hamilton’s function of the system:
H= (I/Zm)(pi1 + - ~p§N) + Un(x1, ..., 2n)

It is known (see Chap. 26) that:

Jﬂc Jexp[ — H/KT]|dR"dp"

—00--

— J+°° Jexp[ —(1/2m) (px% + .. 'Pzzzv)/kT]dp] ..dpy (282)

—00-

+00
XJ JCXP[—UN(Xl,...,ZN)/kT]dxl...dZN

— 00

The first group of multiple integrals of the right side can be immediately evaluated.
It is not possible to do that with the second since the analytical function linking Uy
to variables x;...zy is unknown. The term which virtually results from the evalu-
ation of this second group is named the configuration integral.

Hence, the configuration integral is defined by the expression:

Zy = Jv”Jexp[—ﬂU(RN)]dRN (28.3)

or with a more explicit symbolism:


http://dx.doi.org/10.1007/978-3-319-46401-5_26
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ZN = JV'NJCXP[—ﬁUN()Cl ce ZN)]dxl e dZN (284)

N is the number of particles of the system and the limit v means that integrations are
evaluated over the three space coordinates from — oo to + oc.

The first point to notice is that Zy depends on (and even characterizes) a given
configuration as it is evidenced by the occurrence of the term U(R") in its
expression.

Another important point for our purpose must be already stressed. In connection
with the study of the activity of gases (viz. Chap. 34), we shall see that the
configuration integral is related to the corresponding canonical partition function
Oy through the equality:

zv = Moy /o)) (28.5)

In (28.5), V is the volume of the system and Q) is the canonical partition function of
the system when it is constituted by only one molecule.

As an example, the expression of the canonical partition function Q(V, T, V) in
which the configuration integral for only one molecule (without any internal
structure but being in interaction with other molecules of the system) is incorpo-
rated is:

O(N,T,V) = [1/(NA*Y)]zy

Note, also, that according to expressions (28.3) and (28.4), when the interactions
between molecules do not exist (U =0):

Zy = VN

[This result may be directly found from the equality (28.7) of the preceding
chapter.]

One can already conceive the important part played by the configuration integral
in the grasping of the significance of activity. It has, indeed, been already men-
tioned (viz. Chap. 6) that an activity takes into account the interactions between
particles whichever the state of matter where they are is, and it is a well-established
fact that these interactions are at the origin of the potential energy U. Let us briefly
anticipate what Chap. 33 contains in saying that the potential energy of the system
is the energy coming from the mutual interactions between its molecules.

It is not surprising that the evaluation of the configuration integral is endowed
with insuperable computational difficulties, given the fact that the function U(R") is
unknown, and, even if its evaluation was possible, it would be untractable given the
huge number of particles constituting the system.
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28.2 Basic Distribution Function

Let us consider the simple case where the studied system is constituted by
N monoatomic particles at temperature 7 and in a container of volume V. The
function, which can be called the basic one of all the other molecular distribution
functions which are defined below, is the basic density distribution function P(RY).
It is expressed by the relation:

P(RY) =exp[—pUy(R")] / J JdRNexp[—ﬂUN(RN)} (28.6)

Uy (RY) is the total potential energy of the system with the configuration R". Let us
recall that the symbolism R" means that particle 1 isin Ry, 2 in R;. . ..N in Ry, that
is to say in formal writing:

RY = RiR,...Ry

In the expression (28.6), the denominator J JdRN exp[—pUn (R")] is the config-

urational partition Zy Hence, the basic density distribution function can also be
expressed by:

P(R") = exp[-pUn(R")]/Zy (28.7)
The meaning of P(R") is the following one: it is the probability density for
observing the configuration R". It is clear that, behind these considerations and

notably behind relation (28.6), there are the notions of continuous random variables
and of probability density (viz. Appendix F).

28.3 Average of Any Quantity F(RY)

In the canonical (T, V, N) ensemble, the average of any quantity F(R") dependent
on configuration R" is given by the relation:

(F(RY)) = J"JdRNP(RN)F(RN) (28.8)

Of course, the quantity, the average of which is required, must be dependent on the
configuration R" of the system.
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The expression (28.8) is a generalization of the relation giving the average or the
expected value E(X) of the random variable X (viz. Appendix F and just below):

=Y px (1<i<N)

i=1

28.4 Molecular Distribution Functions

Let us define now a series of functions named molecular distribution functions.
Before doing that, we give the meaning of the term P(R") dR; dR.,. . .dRy.
Let us suppose that we are observing the configuration R" of the system of
N particles, the total potential energy of which is Uy (RN ). Since P(RN ) is the
probability density function of the existence of the configuration R", the probability
to find particle 1 in the element of volume dR; (dx;dy;dz,), particle 2 in the element
dR,. . .particle N in dRy is, according to the preceding considerations:

P(RY) dRydR;...dRy or P(RY)dR" (28.9)

which can be explicited according to:

P(RY)dR" = {exp [—BUx (RN)]/JMJdRNexp [—pUN(RY)] }de ...dRy
(28.10)

or, according to the definition (28.3) of Zy:
P(RY)dR" = {exp[—pUyn(R")]/Zyn}dR; ...dRy

Hence, the term P(R") dR" does have the meaning of a probability while P(R") is a
probability density.

The term P(RM)dR" turns out to be the limit of the relation coming from
quantum considerations expressing the probability PN, V, T) that the system
should be in the state of energy EiN, V) (viz. Chap. 23). The pure formal
correspondence is:

dRVexp[—pUy (RY)] / JJ dRVexp[—pUy (RY)]

classical mechanics

& exp[—E;(N,V) /KT /Zexp i(N,V)/kT]

quantum mechamcs

is evident.
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Molecular distribution functions are defined according to their order n and
according to the fact they are specific or generic.

28.4.1 Specific Distribution Functions

The probability P™(R,...R,)dR,...dR, that particle 1 could be in dR; at Ry,
particle 2 in dR; at R,....and particle n (n <N) in dR, at R,, whichever the
configurations of the (V—n) remaining molecules are, is the sum of all the proba-
bilities (28.9), once the configurations assignated to the molecules 1 to n have been
taken into account, that is to say:

P"(R;... R,) = J J{exp[—ﬁUN(RN)]/ZN}dR,,H...dRN (28.11)

PY(R,...R,) is the specific molecular distribution function of the system of order
n. It must be noted that the integration is performed over the variables R,,;.. Ry,
while the integrand involves all of them, from R; to Ry,

28.4.2 Generic Distribution Functions

(1)

One defines generic distribution functions p**’ of order n such as:

pP"(R;...R,) = [N!/(N—-n)]P"(R;... R,)

x p(Ry ... R,) =[N 1/(N —n)|] (28.12)

X ” {exp[ — pUN(R")/Zy }dRyy1 ... dRy

v

It must be noted that they are defined in terms of the preceding specific functions.
p(")(Rl. ..R,)dR;. . .dR, is the probability that a molecule (not necessarily mol-
ecule 1) will be found in the element of volume dR; at Ry, a second in dR, at R,
...and another in dR,, at R,, when the configuration of the system of N molecules
is observed.. It appears, therefore, that p(")(Rl. ..R,) is a probability density.

28.4.3 Examples

The most practical functions are those of orders (28.1) and (28.2) because they are
the best known ones from the theoretical standpoint. Among both kinds of molec-
ular distribution functions, those which are the most useful are the generic ones.
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* Functions of order (28.1)
According to the preceding definition of generic function, it is evident that:

p(l) = NPD
p" is not only a probability density but it is also an average particles number. More
precisely, p'(R’) is the average particles number or the average local density of the
particles in the element of volume dR’. According to the definition of the specific
function P, the probability to find the particle 1 in dR, is the certitude. As a result:

JP“)(R’)dR’ =1

v

For the same reason:
(1)(RGR —
J pV(RdR' = N
Vv

An important property of function p'" is such that, in a homogeneous and isotropic
fluid, the local particles density in R’p"(R’) is equal to the density p (p =N/V) of
the particles in the bulk of the solution. p is also named number of density. It is clear
that p is related to the molar concentration, that is to say:

PR =p (28.13)

This result was foreseeable given the meaning of the different terms and given, also,

the fact that the system is a homogeneous fluid.

« Pair molecular distribution functions
The specific pair molecular distribution function in the ensemble T, V, N is
defined as being the probability density function P**(R’, R”) to find particle 1 in
the element of volume dR’ and particle 2 in dR” (dR’ and dR” are actually dR,
and dR; or any other pair of elements of volume. It is proved that from the
standpoint of the readability, it is interesting to use both kinds of symbols,
according to the circumstances). This specific pair distribution function is
expressed from the basic probability function P(RN)—viz. relation (28.9):

P(2) (R/7 R”) = J JdR3 .. dRNP(RN)
V.
or

P (R’,R”) - J JdR3...dRNP(R’,R”,Rg...RN) (28.14)
V..
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in which the dependence on the variables is clarified. PP[R’, R")dR'dR" is the
probability to find particle 1 in dR’ at R’ and particle 2 in dR” at R”. These
considerations apply to any possible pair of particles. The probabilities of the
events: particle i in dR’, particle j in dR”... is the same, that is to say P@® (R,
R")dR'dR". For example, the integration over dR'dR" of p(2)(R’ , R")—see imme-
diately below the meaning of this function—can be that of p®(Ry, Ry) over dR, and
dR, as it can also be that of p(z)(R3, R,) over dR3 and dR5.

The generic pair molecular distribution function p®(R’,R”) is defined by the
expression:

p? (R’, R”) — N(N — 1)P? (R’, R”) (28.15)

The term p®(R’, R”)dR'dR” is the probability to find any one molecule in 4R’ at
R’ and any other one in dR” at R”. It can be demonstrated that it is the average
number of pairs of particles in elements dR’ and dR”.

28.5 Pair Correlation Function and Radial Distribution
Function

This paragraph is an introduction to the notion of radial distribution function which
is studied in the next chapter. The radial distribution function is, indeed, a pair
correlation function.

It is known that two events are claimed to be independent when the probability
of their intersection (in other terms, the probability of the occurrence of the whole
event) is equal to the product of their probabilities. The event of interest here is:

one particule in dR’ and another one in drR’

Usually, both events are not disjoint. The occurrence of one influences that of the
other. For example, if the separation between R’ and R” is small compared to the
diameter of the particles, the occupancy of dR’ greatly influences that of dR” and
inversely.

The problem of the intersection of two events may be tackled as it follows.

Since pP(R/, R")dR'dR” is the probability to find a particle in dR’ and another
in dR” while p'”(R’)dR’ is that to find one in the element dR’, the question to know
if the following equality is satisfied is open:

p(z) (R’, R”>dR/dRN _ p(1>(R’)dR’ ~p(1) (Rﬁ)dRN?

Intuitively, it may be conceivable that if the separation of the two elements is
very large, both events are independent. Hence, it is possible to set up the equality:
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p? (R’, R”)dR’dR” = pI(R)AR - p» (R”)dR” (28.16)
(volume elements very far from each other)

or:
p (R’, R”) = pM(R)p (R”) (28.17)
and given what is preceding:
P (R’,R”) = (28.18)
This last equality is satisfied when the separation is very large and, moreover, when
the fluid is isotropic.

For any finite separation, relations (28.16), (28.17), and (28.18) are no longer
satisfied. Relations (28.16) and (28.17) must be replaced by:

p? (R’,R”) = pM(R)pM (R”) g(R’,R”) (28.19)

g(R',R") is the pair correlation function. It plays the part of a corrective function.
For an isotropic fluid, for any finite distance between volume elements, (28.18)
becomes:

o (R’, R”) — g(R’, R”) (28.20)



Chapter 29
Radial Distribution Function

Abstract In the chapter, the concept of radial distribution function is introduced.
After that, two definitions of it have been recalled. Its physical meaning is given,
together with the link relating it to the potential of average force, under the
influence of which the studied particle is when it is surrounded by the whole
particles of the system. Studies of radial distributions of some simple systems are
then recalled. They are the cases of perfect gazes and also that of a gas of a
moderate low density. Finally, the general form of a radial distribution function is
shown.

The radial distribution function permits the calculation of some thermodynamic
quantities of a fluid such as, especially, the chemical potential of its components.
Here is its major interest for the purpose of the study of the activities. Hence, it can
be easily conceived that the study of liquids at the molecular level with this function
should help the understanding of the activity notion. The concept of radial distri-
bution function is very useful because its value can be evaluated either experimen-
tally or theoretically. In the chapter, the study is limited to the case of a sole
homogenous and isotropic liquid.

Keywords Radial distribution function (definition) « Physical meaning ¢ Another
expression ¢ Ion central curve ¢ Radial distribution functions of some systems

In this chapter, we introduce the concept of radial distribution function. We give its
physical meaning and we also mention the link that relates it to the potential of
average force under the influence of which is a chosen particle when it is
surrounded by the whole particles of the system.

The radial distribution function permits the calculation of some thermodynamic
quantities of a fluid such as, especially, the chemical potentials of its components.
Here is its major interest for our purpose. Hence, we can conceive that the study of
liquids at the molecular level with this function should help the understanding of the
activity notion. The concept of radial distribution function is very useful because its
value can be evaluated either experimentally or theoretically. In this chapter, we
limit ourselves to the study of a sole homogenous and isotropic liquid.
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29.1 Definition of the Radial Distribution Function

In the preceding chapter, we defined the pair correlation function g(R’, R”) by the
following expression:

P (R’, R”) = p (R (R”)g(R’, R”) (29.1)

where p(l)(R’ ) and p(l)(R’ ") are the generic molecular distribution functions of order
1 with respect to the presence of one molecule in the volume element dR’ and to that
of another one in the other element dR”. p®(R/, R”) is the generic pair distribution
function with respect to the simultaneous presence of both particles in the elements
dR’ and dR". This definition applies to the case for which the configurations of the
particles of the system depend only on their localization as it is notified by the use of
the symbolism R’, R”. Starting from these definitions, one demonstrates that the
pair correlation function, in the particular case where the system is constituted by
simple and spherical particles, writes, according to the relations (28.14) and (28.15)
of the preceding chapter, as follows:

"

g(R.R')= [N(N-2)/p?][...[dRs...dRyexp[—BUy (R, R",R’R3,...Ry)]

/J,.. [dR;...dRyexp[—pUy (R ,R",Rs,...Ry)]
(29.2)

Let us recall the following equality satisfied by every homogenous and isotropic
fluid (viz. Chap. 28).

o (R’,R”) - ng(R’,R”) (29.3)

In this chapter, we are only interested in this kind of fluid. Hence, the function g(R’,
R”) depends only on the scalar distance R = IR’ —R"I. For example, owing to the
isotropic character of the medium, R’ may be chosen as origin, that is to say R’ =0.
Then, R remains the only variable. As a result, the pair correlation function g(R/,
R”) may be written g(R). g(R) is the radial distribution function. Because of the
spherical symmetry, implicitly involved by the kind of studied particles, the local
density of particles exhibits the same value at every point of a sphere of radius R,
the center of which being at R’. Hence, it is judicious to consider an infinitesimal
spherical volume element of thickness dR located at the distance R of R’. The
average particles number in this volume element is: pg(R)4zR*dR. In the frame-
work of this spherical symmetry and for a homogenous and isotropic fluid, equation
(29.2) can be written now:

P (R) = pg(R) (20.4)
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29.2 Physical Meaning of the Radial Distribution Function

Consider a fluid at temperature T and with number density p. Imagine that an
observer is stationed on a particular particle in the solution, named central particle,
and that he counts the number of particles located at the distance R from him. Since
the system is a fluid, the distribution of the particles around the central one is
symmetrical and spherical. (Let us recall, indeed, that a fluid is characterized by the
homogeneity of its composition in all the directions of space.)

It is clear that the number of particles present in the volume element dz located at
the distance R from it is not equal to the product pdr and that it changes with the
distance R.

The presence of a particle, indeed, disturbs the distribution of others. The
average number of particles located into dr takes the value pg(R)dr, because of
this influence.

The average number of charged particles observed in the volume dr is:

pg(R)dz

Hence, g(R) is the factor by which the mean “local density” pg(R) at distance
R deviates from the bulk density p.

pg(R) # p

29.3 Another Expression of the Radial
Distribution Function

The function g(R’, R”) can be developed according to the following power series:

g(R/, R”) - {exp [—ﬁU(R’, R”)} } [1 —|—B<R’, R”)p + c(R/, R”)pz 4. }
(29.5)

In turn, the coefficients B(R’, R”), C(R’, R”), etc. can be expressed in terms of
Mayer’s f-functions f{R’, R”), where:

F(R,R)) = exp [—/)’U(R’,RH)} 1
For example:

B(R’,R”) - Jvf<R’,R”)f(RN,R3>dR3
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These functions will be again encountered, but briefly, later. They are in connection
with the virial development and with activity coefficients of gases.

29.4 The Curve g(R)/R

By truncating the development (29.5), the equation of the curve g(R)/R becomes:
g(R) = exp[~U(R)]

g(R) is a complicated function of R since U(R) is itself a complicated function of
R (viz. Chap. 6). But, it can be already seen that:

g(R) -0 where R—0

This is because the “central” molecule does possess a finite radius and, as a result,
other particles cannot approach its center for a distance lower than it. It becomes,
then, a kind of “hard sphere.”

Yet, we know that:

g(R) — 1 where R — o0

as we have already seen it.

The radial distribution function depends on temperature, density number p and
R. Hence, it is sometimes written g(R, T, p).

Figure 29.1 shows a typical radial distribution curve for a liquid.

Figure 29.2 shows the radial distribution curves for liquid and gaseous argon.

It is interesting to notice that the liquid argon curve exhibits secondary peaks that
already existed for solid argon. In both cases, they are located at the same distances.
That means that the liquid state keeps a certain amount of short-range order which
existed in the crystal. For the sake of comparison, gaseous radial distribution curves
do not exhibit secondary peaks.

Fig. 29.1 Typical radial ”
distribution function for a ) [! ]
liquid. (In the picture, o is > T
the van der Waals diameter
of the order of the few
angstroms)

e
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Solid

Liquid

Fig. 29.2 Radial distribution functions for liquid and gaseous argon (o: atom diameter)

29.5 Radial Distribution Functions of Some Systems

Here, we give the expressions of the radial distribution functions of spherical
particles in some simple cases.

29.5.1 Perfect Gas

Since the Gas is perfect, the total potential energy is null:
U=0

Then, expression (29.2) becomes:
g(R’,R”) = [N(N = 1)/p"] J...JdR3...dRN/J ...Jde...dRN
v
and since:

Jdezdezzv
Vv Vv



334 29 Radial Distribution Function
one obtains:
g(R’, R”) = N(N — 1)/p*V?
Since p =N/V
g<R’,R”) —1-1/N

and

g(R)=1—1/N

29.5.2 Radial Distribution Function of a Gas with a Low
Density Number

In this case, the expression of the radial distribution function is obtained as follows.
There exist, by definition, some interactions between particles but, since the density
number is low, the hypothesis on which the reasoning is based is that only
interactions between two particles occur. In other words, the system may be
considered as consisting of two particles only. Then, the general relation (29.5)
becomes:

8(R) = (2/p*)exp[-pU(R))/Z:

(since the potential energy of the system is U(R’, R”), introducing the differentialized
dRj;...dRy is devoid of any meaning). In this expression, Z, is the configuration
integral when there only exists two particles and U(R) is the potential energy related
to a particles pair. Given the fact that R — oo when g(co) =1 the function becomes:

g(R)=2/(p"Z) R— o

The ratio g(R)/g(c0) is equal to exp[—pU(R)]. Then, setting also up g(co) =1, we
obtain the relation being searched for:

8(R) = exp[-BU(R)]

This result must be noticed, since it implies that the distribution of the particles
system is of the Boltzmann’s type. Let us anticipate what is studied in Chap. 46 by
saying that Debye and Hiickel have adopted this kind of distribution when they
have formulated their famous theory.
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29.6 Determination of the Radial Distribution Function 335

Analogous, but more complex, reasoning than the preceding ones may be
followed for the cases of more complicated systems than the preceding ones.

29.6 Determination of the Radial Distribution Function

We have already mentioned that the radial distributions can be determined. We
confine ourselves in saying that this can be done:

— Experimentally by measurements of X-ray and neutron diffraction of the studied
liquid,

— Theoretical calculations,

— By simulations which consist in comparing experimental data to theoretical
calculations (viz. Chap. 47).


http://dx.doi.org/10.1007/978-3-319-46401-5_47

Chapter 30

Radial Distribution Function

and Thermodynamic Quantities: Calculation
of the Internal Energy and of the Pressure
of the System

Abstract This chapter is devoted to the establishment of mathematical relations
between some thermodynamic quantities exhibited by a system and its radial
distribution function. The study is limited to establishment of the relations
concerning the energy and the pressure of the system. The setting up of the relations
between the radial distribution function and the compressibility factor on one hand
and with the chemical potential on the other are postponed in the two following
chapters. Given the fact that radial distribution functions can be experimentally
accessible, the interest of all these relations is evident.

The relations are obtained by putting the “pairwise additivity” hypothesis into
practice. The latter is briefly recalled at the beginning of the chapter. Then, the
general reasoning carried out in order to obtain the different relations being
searched for is described.

The considerations mentioned here are developed with respect to the simple
system formed by spherical particles. They can be generalized to more complicated
ones at the cost of some modifications of the mathematical relations figuring the
configurations.

Keywords Compressibility factor ¢ Internal energy calculation < Pressure
calculation ¢ Pairwise additivity hypothesis ¢ State equation of a perfect gas e
Radial distribution function (specific or generic)

This chapter is devoted to the establishment of mathematical relations between
some thermodynamic quantities exhibited by a system and the radial distribution
function. We limit ourself to establish the relations concerning the energy and the
pressure of the system. Establishments of the relations between the radial distribu-
tion function and the compressibility factor on one hand and the chemical potential
on the other are postponed in the two following chapters. We have already men-
tioned the fact that radial distribution functions can be experimentally accessible,
hence, the evident interest of all these relations.

The relations are obtained by putting the “pairwise additivity” hypothesis into
practice. The latter is briefly recalled at the beginning of the chapter. Then, the
general reasoning carried out, in order to obtain the different relations being
searched for, is described.
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The considerations mentioned here are developed with respect to the simple
system formed by spherical particles. They can be generalized to more complicated
ones at the cost of some modifications of the mathematical relations figuring the
configurations.

30.1 The “Pairwise Additivity’’ Hypothesis

We have already highlighted the fact that the evaluation of the configuration
integral creates insuperable difficulties. It is because the potential energy of the
system U(R") is present in its expression. As a result, the main points about the
subject we presently know come from hypothesis, the most fruitful of them being,
probably, that of the “pairwise additivity”.

Let us consider the quantity F(R"). The hypothesis amounts to saying that the
following equality is satisfied:

FRY) = f(R.R) (i #)) (30.1)

the sum being evaluated by considering the whole of the possible pairs of particles.
It is calculated such as 1 <7 < j < N. This hypothesis is, of course, an approxima-
tion since the interactions between two particles are not the only ones that exist. For
the best, it is only an approximation. Nevertheless, it proved to be very interesting.

30.2 Gaining the Relations Being Searched for: Principle

In the canonical ensemble (7, V, N), the mean value <F> of F(RY) is given by the
relation (viz. Chap. 28)

(F) = J i, [dRNP(RN)F(RN) (30.2)

where P(R") is the probability density to observe the configuration R". It is given
by the relation:

P(RY) = exp[ — pUN(RY) /Zy

Substitution of (30.1) into (30.2) gives:


http://dx.doi.org/10.1007/978-3-319-46401-5_28

30.2 Gaining the Relations Being Searched for: Principle 339
(F) = J .. JdRNP(RN)Zf(R,-, R;)
iyj
All the particles being equivalent, the value of the quantity f{R;, R)) is the same

for each pair. Hence, one can invert the sign sum and the symbol sigma, that is to
say, we set up the expression:

(Fy=>" J...JdRNP(RN)f(R,-,Rj)

is]

Each sum in 7 and j has the same value whichever i and j are. Hence, it is possible
to arbitrarily choose a particular pair, for example, the pair R, R, and since there
exist N(N-1) pairs by distinguishing the pairs i —j from the pairs j—i, one can write:

(F) =N(N — 1)[. . JdRNP(RN)f(Rl,Rz)

The multiple integral can be split up remembering that the quantity f(R;,R;)
depends only on coordinates R; and R, and not on Rj. . .Ry. The preceding relation
can, hence, be transformed into a product of several integrals:

(Fy =N(N — 1)“dR1dR2f(R1, R,)- “ ... JdR3 ...dRyP(R")

As aresult, the integrals can be successively evaluated. Moreover, we already know
that (see Chap. 28):

NN —1) J .. JdR3 ...dRyP(RY) =p? (R, Ry)
Hence, we obtain the relation:
(F) = ”dedsz(Rl,Rz)p@) (Ri,Ry) (30.3)

If one wants to rid oneself of the arbitrary character of the pair Ry, R, relation
(30.3) can be written as

(F) :”dR’dR”f (R’, R”) p? (R’, R”) (30.4)

A particularly interesting case is that in which the quantity f{R’, R”) does depend
only on R’ together with the separation R” — R = R between the two points (R is a
scalar). Then, the integration over R leads to a result which is independent on the
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localization of R. pP(R, R”) depends only on R. The relation (30.4) can then be
modified. In order to perform this transformation, we proceed to the following
coordinates change:

"

R=R and R=R - R

by locating the central particle in R’, whence:
®) = [ [ ars PR
and after integration over R
#) = v | arr R Ry

according to relation (30.12) (viz. Chap. 28). Owing to the spherical symmetry and
since R becomes the scalar R, it is more convenient to reason with spherical
coordinates (viz. Chap. 27):

dR = dxdydz
dR = R*sin0d0d¢p dR
After integration over all the orientations (6 varying from O to z and ¢ from O to 2x)
while R varies from 0 to oo, we get:
{o.¢]

(F) :vJO F(R)PP(R)4zRdR (30.5)

and, finally, since:

PP (R) = p*s(R)

the definitive relation is:

(F) = p*V J:Cf(R) 2(R)4xR*dR (30.6)

Thus, the very fact to know the “additivity function” f(R) together with that of
radial distribution g(R) permits the calculation of the average value of </, at least
within the framework of the “pairwise additivity”” hypothesis. It is at this point that
the pair correlation functions and, hence, the radial distribution one begins to play
a part.
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30.3 Radial Distribution Function and Internal Energy
of a System

The starting points of the reasoning leading to the research for relation are the two
following relations. They issue from the general theory of the canonical ensemble
(viz. Chaps. 23 and 28).

E = kT*(0InQ)/0T)v,n (30.7)
0 =4q"Zy/N! (30.8)

After adoption of the “pairwise additivity” hypothesis at this point by setting up the
equality:

Uv(RY) =1/23 UR.R;) (i #))

ij
(The factor 1/2 avoids counting the energy of two pairs two times when the pair i—j
is identical to the pair j—i), and following a simple mathematical reasoning applied

to spherical particles with no rigid structure (whence the symbolism R), we obtain
(viz. Appendix G):

E = (3/2)NkT + J o JdRNexp [—BUN(RY)][Un(RY)] /Zy (30.9)

(3/2)NkT is the average kinetic energy <K> of the system. The ratio exp
[fﬂU N (RN )] /Zy is the probability density P(R") to observe the event R". As a
result:

[ [ exp - pun (R)] [ (R)] /2y = | [aRY p(RY)] 0 (R)]

The term [ ... [dR" P(RY)][Uy(R") is the average energy of interactions
between particles <Uy». The internal energy of the system is given by:

E= (K) + (Uy) (30.10)

we obtain:
E=(K) + 1 /2”dR’dR”f (R’, R”) p? (R’, R”) (30.11)

In the conditions described at the end of paragraph 2, that is to say when the pairs
functions f{R’, R”) depend only on R (the distance between both particles):
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E=(K) +1/2p*V r U(R)g(R)4nR*dR (30.12)
0

relation in which:
URR) = f(R’, R”)

It is interesting to somewhat explore the physical meaning of the average potential
energy term in the expression (30.12). Let us begin by recalling that it can be also
written as:

1/2pN Eo U(R) g(R)4zR*dR

since in the conditions in which it is obtained, p = N/V. Let us consider a particle
and calculate its total interaction with the remainder of the system. Since the local
density of particles located at the distance R of the chosen molecule is pg(R), the
average number of particles in the volume element 47R%dR is pg(R)4zR>dR. Thus,
the average interaction of the particle with the remainder of the system is given by
the expression:

ro U(R)pg(R)4zR*dR
0

In order to obtain the total interaction, that is to say that involving the N particles,
we must multiply the previous expression by N and also by the factor 1/2 to avoid
counting the interaction between two particles, twice.

30.4 Radial Distribution Function and Pressure
of the System. Equation of State of a Perfect Gas

Let us recall that in the framework of the canonical ensemble, in quantum mechan-
ics, the pressure is given by the relation (viz. Chap. 23)

p= kT(aanquam/aV)T’N
In classical mechanics, it is given by:
P = kT(aanclass/av)T,N

We know (viz. Chap. 28) that:
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chass = ZN/(N'A3N)

Finally, since N and T are kept constant during the derivation operation, the
pressure is given by the relation:

p = kT(0InZy/0V); (30.13)

This is the starting relation of the mathematical calculation.
The followed reasoning followed to obtain the relation being searched for is
mentioned in Appendix H. It is:

p=kTp— (p*/6) J:OR (OU(R)/OR) g(R)4rR*dR (30.14)

It can be applied for a system of spherical particles obeying to the “pairwise
additivity” hypothesis with respect to the total potential energy. It is interesting to
notice that the first term of the right member of this equation is that corresponding
to that of a perfect gas. Thus, relation (30.14) may be considered as being an
approach to the equation of state of natural gas.

It is very interesting for our purpose. Within the framework of the previous
hypothesis, it explicitly exhibits a term which, at least theoretically, permits to
evaluate the deflections of behavior with respect to perfect gases. It is a term which
must be in mathematical relation with the corresponding activity and activity
coefficient. It is the right term of the right member of equation (30.14). It is
sufficient to compare the latter to the equation of state of a perfect gas to be
convinced.
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Chapter 31

The Radial Distribution Function
and the Isothermal Compressibility
Coefficient of a System

Abstract The setting up of relations between the radial distribution function and
some thermodynamic quantities is continued in this chapter. That of interest, here,
is the isothermal compressibility coefficient. During the course of the reasoning
mentioned in this chapter, a new function is introduced. It is the function G which,
in turn, is itself a function of the radial distribution function g(R). The name of G is
spatial pair correlation function or Kirkwood—Buff’s integral. Another relation,
which relates the fluctuations of the numbers of molecules to the isothermal
compressibility factor, is also set up. All these quantities are linked together.
These relations are, actually, the starting theoretical basis of Kirkwood-Buff’s
theory which is very interesting for the study of activities.

Another very important quantity for our purpose is the chemical potential, given
its links with the activity. It can be related to the radial distribution function.
Actually, the chemical potential is related to the function G. This point is studied
in the next chapter.

All these evoked reasonings are set up in the realm of the grand ensemble. This is
the reason why considering the generic molecular distribution function in the grand
ensemble is mentioned firstly in the chapter.

Keywords Radial distribution function ¢ Isothermal compressibility coefficient of
a system e Spatial pair correlation ¢ Kirkwood—Buff’s integral ¢ Kirkwood—Buff’s
theory ¢ Generic molecular distribution function in the grand ensemble -
Compressibility coefficient of a fluid

In this chapter, we are continuing to set up relations between the radial distribution
function and some thermodynamic quantities. That of interest, here, is the isother-
mal compressibility coefficient. During the course of the reasoning mentioned in
this chapter, a new function is introduced. It is the function G which, in turn, is itself
a function of the radial distribution function g(R). Another relation, which relates
the fluctuations of the numbers of molecules to the isothermal compressibility
factor, is also established. All these quantities are linked together. These relations
are, actually, the starting theoretical basis of Kirkwood-Buff’s theory (viz.
Chap. 42) which is very interesting for our purpose.

Another very important quantity for our purpose is the chemical potential, given
its links with the activity (viz. Chap. 5 and the following ones). It can be related to

© Springer International Publishing Switzerland 2017 345
J.-L. Burgot, The Notion of Activity in Chemistry,
DOI 10.1007/978-3-319-46401-5_31


http://dx.doi.org/10.1007/978-3-319-46401-5_42
http://dx.doi.org/10.1007/978-3-319-46401-5_5

346 31 The Radial Distribution Function and the Isothermal Compressibility. . .

the radial distribution function. Actually, the chemical potential is related to the
function G. This point is studied in the next chapter.

All these evoked reasonings are set up in the realm of the grand ensemble (7, V,
u, ensemble). This is the reason why we begin them by considering the generic
molecular distribution function in the grand ensemble.

31.1 The Generic Molecular Distribution Function
in the Grand Ensemble

In the T, V, u, ensemble, the probability P(N) of finding a system with exactly
N particles is (viz. Chap. 24):

P(N) = O(T,V,N)[exp(puN)|/Z(T,V, n) (3L.1)

Let us recall that in the grand ensemble, the system number of particles is
variable, Q(T, V, N) is the canonical partition function, and Z(7, V, y) the grand
canonical one.

When one of the canonical ensembles constituting the grand ensemble contains
exactly N particles, relations (31.1) and (31.2) apply (viz. Chap. 23):

P"(R|,R;...R,) = Jv...JanH ...dRyP(R,R; ... Ry) (31.2)

PR, Ry.. .R,)dRdR,. . .dR, is the probability of a well-specified molecule
1 being in dR; at Ry, a (well-specified) molecule 2 being in dR,... a last one
n being in dR,, whichever the configurations of the N —n remaining particles, P(Ry,
R.. . .Ry) being the probability density function for observing the configuration R”.
p(”), for its part, is the generic molecular distribution function of order (n) of the
configuration R". For instance, the term p®(R’, R”)dR'dR" is the probability of a
particle in dR’ and another in dR”. p is related to P by the expression:

p" =IN!/(N —n)|P" (31.3)

In the grand canonical ensemble, the average generic molecular distribution

function p) (RV) is given by the expression:
P (RY) =S P(N)™ (RY/N) (N > n)
N

where P(N) is defined by (31.1). (One must note the used symbolism in this last
relation p"”(RVIN). It expresses the fact that it is a conditional probability.
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After the development of the expression according to (31.1), one obtains (in the
writing below, the limits of integration are not mentioned in order to lighten it. The
integrals are evaluated from 0 to + 00):

P (RY) = (1/2){ S NN — n)

x Q(T,V,N)[exp(BuN)] [ ... [dRy1 ...dRyexp[—BUy(RY)]/Zy}

(31.4)

For each value N, i.e., for each canonical ensemble constituting the grand
ensemble, we know that:

p" (RY) = [NI/(N — n)!] Jv . JdR”“ ...dRyexp[—BUy(RY)] /Zy

according to the properties of the canonical ensemble.

Let us integrate the left-hand side member of this equality over the differentials
dR;...dR,. We obtain the following result for the canonical ensemble containing
N particles:

Jv . Jp(”)(Rn)de ...dR, = [N!/(N —n)|

The result is the same for each of the canonical ensembles involved in the grand
ensemble, i.e., for each value N. The explanation of this relation is as follows: the
integration from dR; up to dR,, completes that from dR,,,; up to dRy. As a result:

Jv . Jde ...dR,,dR,; ...dRyexp[—BUyN(RY)]/Zy =1

Thus, the numerator of the left-hand member is purely and simply equal to Zy by
definition of the latter.

Let us carry out the same operation for each value of N. Integrate the right-hand
member of (31.4) over the same differentials and according to the same limits.
According to (31.1), we obtain the equality (31.5):

[ JdR"™ (RY) =3 "P(N)[N!/(N — n)]
N (31.5)
... [dR"p™ (RY) = (N!/(N — n)!)

for the generic molecular distribution function in the grand ensemble. Quite evi-
dently, it is an average value.

SNPIN)[N!/(N—-n)!] is the average value <N!/(N—n)!>of how many ways one
particle (not obligatory that labeled 1) is located at Ry, a second at R,, and so forth
up to the particle n at R,, The average is calculated over all the possible values N.
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This relation is of utmost importance. We can, already, say that the Kirkwood—
Buff’s theory which provides us with a great insight into the meaning of an activity
(viz. Chap. 42) is based on it.

As a consequence of relation (31.5), one finds that:

— forn=1,
JdR]W(RI) = (N) (31.6)
— Forn=2:

”dedRﬁ (RiRs) = (N(N — 1))
(31.7)
”dedRzﬁ (RiRy) = (N?) — (N)

Finally, starting from (31.6) and by integration, one demonstrates that for a
homogeneous and isotropic system:

(31.8)

(All the terms located between <> are average values). From a different standpoint,
one defines the pair correlation function g(R;, R,) for the grand ensemble by the
expression:

PP (R, Ry) = pM(Ry)pM(R1)g(R1,Ry) (31.9)

31.2 Radial Distribution Function and Isothermal
Compressibility Coefficient of the System

The compressibility coefficient of a fluid xr is defined by the expression:
kr =—(1/V)(0V /Op)y ¢

where V and T are the volume and the temperature.

The reasoning is carried out according to the theory of the grand ensemble. We
have just set up the relations (31.6) and (31.7) above. Starting from them and also
from (31.9), it is possible to demonstrate (viz.: the end of this paragraph) that, in the
case of spherical particles and when g(R;,R;) only depends on the separation
distance R =IR’—R"I, kr is given by the relation:
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kr = 1/kTp + 1 /kTro [g(R) — 1]4zR*dR (31.10)
0

and, after having set up:

{o.¢]
G:J [g(R) — 1]4zR*dR (31.11)

0
kTpkr = 1 4+ pG (31.12)

The name of the G functions (such functions can be of several kinds according to
the number of components of the system—viz.: Chap. 42) is the spatial pair
correlation function or Kirkwood—Buff’s integral. Let us notice that the first term
on the right of (31.10) is the compressibility coefficient of a perfect gas. The second
one is the contribution brought to the compressibility by the interactions between
particles, that are expressed by the radial distribution function g(R). It is noteworthy
that in the reasoning leading to relation (31.12), in no case, it is a question of a
hypothesis concerning the total potential energy of the system (“pairwise additivity
hypothesis”). Moreover, the last relation applies whichever the kind of particles is.

The relation (31.10) is obtained as follows. It is set up by starting from the two
following relations which are just below, which must be demonstrated:

1 +pJ:O dR([g(R) — 1]4zR*dR = (<N2> _ (N)Z) V) (B113)

(N*) —(N)* =KTVp*kr (31.14)

Actually, after injection of (31.14) into (31.13), one obtains (31.10).

e Obtention of relation (31.13)
Let us consider a homogeneous and isotropic fluid, square (31.6) and subtract
the latter from (31.7). We obtain:

JJdedRP (RiRy) — JdRm(l)( )JdR2P<)(R2)
= (N?) = (V) = (N)

By expressing E(R]RZ)ﬁ‘Om the relation) (31.9), we obtain:
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[ s amep T (R0 R R — 1) = (7)) )
and according to (31.8):
P(N/V)”dedRz[g(Rle) Sl = (V) — (N ()

Since g(R;, R>) only depends on the separation distance R (a scalar quantity) such
as R=/R;—R,/ (viz.: Chap. 30), we obtain the relation:

pN/V) | R [ aRlal®) — 1) = (V%) — ()7 = ()

pNJdR[gae) —1)= (V) — (V) - (V)

Choosing polar coordinates (given the spherical symmetry) gives the following
relation:

pNJ dR[g(R) — 1]4zR*dR = (N*) — (N)* — (N)

1+ pf dR[g(R) — 1]47R*dR = (<N2> - <N>2) J(N) (31.13)

e Relation (31.14)
In the grand ensemble theory, the fluctuation of the number N of particles for a
one-component system is (viz. Appendix I):

((V=m2)) = (v = w2
It is given by the expression (viz. Appendix J):
(N*) = (N)* = KT(3(N)/p)ry
(N?) = (N)? = KTV(3p/0p);

The problem is, now, to obtain the partial derivative (Op/Ou)r. It is obtained
through this other partial derivative (OP/0u)r.
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Let us start from Gibbs—Duhem’s relation (there is only one component):
—SdT +Vdp = Ndu
or
(0p/Ou)y =N/V (dT =0)
(Op/ou)r =p (31.15)

(p/0u)y = (3p/Op); (0p/ ) (31.16)

Finally, in order to accede to (0p/Ou)y, it remains to explicit the quantity (0p/Op)r.
This last partial derivative is obtained as follows. Since:

V=N/p
dp = — (N/V*)dV (dN =0)
(dp/Op)y = —(N/V?)(8V/Bp)r y

and by taking into account the expression of kr, we obtain the relation being
searched for:

(N?*) — (N)? = KTV p*xr (31.14)



Chapter 32

The Chemical Potential and the Radial
Distribution Function: General Formal
Introduction of the Activity

and of the Activity Coefficient

Abstract The chemical potential u plays a central part in the realms of physics,
chemistry, and even biochemistry. It is related to the activity a of the species that it
characterizes through a mathematical logarithmic relation. The latter can be for-
mally written under only one kind of mathematical expression, whichever the type
of activity is considered.

It is a well-known fact that, while relating the chemical potential of a perfect gas
to molecular parameters to its number density is not endowed with any problem, it
is not the case as soon as there exist interactions between the particles. In this case,
the problem becomes, even, immensely complicated to solve exactly. This chapter
mentions the setting up of general, but approximate, expressions, of the chemical
potential of the components of a system, when such interactions exist. The first one
links a decreasing exponential of the studied chemical potential to the difference of
two other exponentials involving Helmholtz’ energies of the system. It is obtained
within the framework of the canonical ensemble. The second relation is obtained
from the previous one through the using of the pairwise additivity hypothesis. It is
very interesting since it takes the form of the relation expressing the chemical
potential of a perfect gas, but does possess a supplementary term. The latter only
takes into account the mutual interactions of the particles and, hence, must be
related to an activity coefficient. Finally, the chapter also mentions the setting up of
theoretical relations between the chemical potential and the radial distribution
function.

Keywords Radial distribution function * Activity (general formal introduction) *
Activity coefficient « Chemical potential (formal expression when interactions
occur) » Helmholtz energy change « Chemical potential (formal expression within
the framework of the pairwise additivity hypothesis) ¢ Other general expression of
the activity coefficient

The chemical potential u plays a central part in the realms of physics, chemistry,
and even biochemistry. We also know (viz. Chap. 6) that it is related to the activity a
of the species that it characterizes through a mathematical logarithmic relation. We
also know that the latter can be formally written under only one kind of expression,
whichever the type of activity is considered.
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It is a well-known fact that, while relating the chemical potential of a perfect gas
to molecular parameters to its number density is not endowed with any problem, it
is not the case as soon as there exist interactions between the particles. In this case,
the problem becomes, even, immensely complicated. In this chapter, we give a
general expression of the chemical potential of the components of a system, when
such interactions exist. We also establish theoretical relations between the chemical
potential and the radial distribution function. The latter is experimentally
accessible.

32.1 General Relations

We know with the aid of statistical theory that, in the framework of the canonical
ensemble for instance, the chemical potential ¢ of a species is given by the relation
(viz. Chap. 23):

p = —kT(dInQ/dN); , (32.1)

The canonical partition function Q is given by the relation (viz. Chap. 27)
+o< N
Q(N,T,V) [qN/(87r ) A3NN!)” ..Jexp [—pH(XY)]aX ap"  (32.2)
—00
with
p=1/kT
Hamilton’s function H of the system is given by the expression:

H=Y (p7.X") + Uy(X") i=1...N

The occurrence of the symbol X is the mark that, here, we are considering the case
in which the component does possess an internal structure (with the occurrence of
the quantity ¢ # 1). When this is not the case, the canonical partition function is:

+x

O(N,T,V) =1 /(N!A3N)]J ..Jexp[—H/kT} dR"ap" (32.3)

with
H=H(p",R")

324
H(p",RY) =" (p;/2m) + Uy(R") i=1...N (324
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The gas being perfect, there is by definition the lack of any intermolecular force
between the particles, whence in (32.2)::

Uy(X¥) =0

Then, (32.2) becomes:
—+00
O, T,V) = [¢/(37*) A3NN!)” ..JdXN

or (viz.: Chap. 27):

N 2 y 3 2 N
O(N,T,V) =¢"/(87*) A*VN) U dRJ d(pJ sinedﬁj dy/}
v 0 0 0

that is to say
O(N,T,V) = ¢"VV JANN! (32.5)

If the particles are simple and spherical (¢ = 1), the canonical partition function
reduces to:

Q(N,T,V) =VN/ANN! (32.6)

Applying relation (32.1) to (32.5) leads to (32.7) after derivation and use of
Stirling’s approximation:

p=kTIn(A’q™") + kTlnp (32.7)

where p = N/V is the number density (more simpler the density) of the gas (m ). It
is a kind of “concentration” of the gas. Relation (32.7) can also be written:

u=u’®(T)+kTlnp (32.8)

u°&(T) is, by definition, the standard chemical potential of the particle in the
gaseous state. The factor kTIn(A’¢ "), quite evidently, takes molecular character-
istics of the gas into account.

From the standpoint of the scientific accuracy, it is very satisfying to find the
usual expression of the chemical potential of a gas, again. This is an argument in
favor of the hypothesis constituting a basis of statistical thermodynamics, even if it
is an indirect one.
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Let us notice in passing, without considering this point further, that relations
(32.7) and (32.8) written as they stand, are not fully satisfactory since, in them,
intervene logarithms of dimensional quantities.

(It may seem curious to express the chemical potential of a species in a liquid
phase as a function of its standard chemical potential in the gaseous phase. This
must not be the case because of the fact the choice of that state is purely arbitrary, as
we have already seen that. Moreover, at equilibrium, the chemical potential of the
solute is the same in both phases. Hence, the choice of the standard state does not
matter, but, then, activity values differ according to it).

32.3 A General Formal Expression of the Chemical
Potential When There Exist Interactions Between
the Particles of the System

Let us assume that the particles constituting the system are simple. That is to say,
their configuration is only defined by the vector R (monoatomic particles without
internal structure, g =1).

In the N, T, V ensemble, the chemical potential is defined by the relation (viz.
Chap. 23)

H= (aA/aN)T,v (32.9)
where A is the Helmholtz energy. We can also write:
u=A(T,V,N+1)—A(T,V,N) (32.10)
or:
u/kT = [A(T,V,N + 1) — A(T,V,N)] kT

The chemical potential, indeed, is equal to the change in the Helmholtz energy dA
when an infinitesimal amount dn mole of the species M is added, at constant
temperature and pressure, to the system already containing a finite amount of
M itself and of solvent. A “thought” equivalent process is to add 1 molecule M to
a very great amount of this solution. This is true because A is an extensive quantity
(Fig. 32.1).

Obtaining the general formal expression of the chemical potential when there are
interactions between the particles is as follows. According to what is aforemen-
tioned, the change in the Helmholtz energy due to the addition of one particle to the
system (in very great quantity) must be firstly expressed. Starting from (32.9) and
(32.10), we obtain:
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Fig. 32.1 One way to define to define the chemical potential

exp (—u/KT) = exp{~[A(T.V.N + 1) = A(T,V,N)](1/kT)}

Handling the general relation, characteristic of the canonical ensemble (viz.
Chap. 23):

A(T,V,N) = —kTInQ(T,V,N)
we obtain, according to relation (32.5):
exp (k1) = [/ 1) [ [exp(-pUa)

XdR() A dRN/[]N/A3NN'JV e Jexp(—ﬁUN)de . dRN

(32.11)


http://dx.doi.org/10.1007/978-3-319-46401-5_23

358 32 The Chemical Potential and the Radial Distribution Function: General. . .

In the following sentences, the subscript 0 is the label of the added particle.

The general formal expression of the chemical potential when there exist
interactions between particles is obtained as it follows. According to what is
previously said, we must calculate the Helmholtz energy change when one mole-
cule is added to the system. Starting from relations (32.9) and (32.10), we obtain:

exp (—u/kT) = exp{—[A(T,V,N + 1) — A(T,V,N)|(1/kT)}

This relation expresses the chemical potential of the species in the conditions of the
canonical ensemble (N, T, V) for the kind of investigated particle. Quite evidently,
it takes into account the total potential energies Uy(R™) and Uy, ;(R¥*") for the
configurations RV and RV*!,

Relation (32.11) is the expression being searched for of the chemical potential. It
is general but formal. It turns out to be of great usefulness for the study of the
concept of activity coefficient. This study is valid for every fluid.

32.4 A General Expression of the Chemical Potential
in the Framework of the “Pairwise Additivity”
Hypothesis

Another expression of the chemical potential can be obtained from relation (32.11)
by using the “pairwise additivity” hypothesis. It consists in setting up the equality:

UN+1(R0"'RN) ZUN(Rl RN)
+) "U(Ro,R) =Un(R;...Ry)+B(R,...Ry) j=1..N

J

(32.12)

Uny(R;...Ry) is the sum of potential energies, the origins of which are the
interactions between particles 1 to N in configurations R to Ry.

The term B(R,. . .Ry) is the sum of all the interactions between particle 0 and
others, in the same configurations.

The substitution of (32.12) into (32.11) leads to the expression (32.13):

exp(—u/kT) = q/[A*(N +1)] - Jv..JdRO ...dRyexp(—pUy)

(32.13)
CXp( — ﬂB(RO . RN)/JVJde .. .dRNCXp(—ﬂUN)

where
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CXp(—ﬁUN)/JV..JdRI . dRNexp(—ﬁUN) = P(R[ Ce RN)

P(R;...Ry) is the basic distribution function or density probability function to
observe the configuration R;...Ry (viz. Chap. 28).
The relation (32.12) can also be written:

exp(—u/kT)=q/[A*(N+1)] - JdeRO ...dRyP(R;...Ry)exp[—pB(Ro...Ry)]

(32.14)

At this point of the reasoning, we must remark that the term exp(—SB(Ry. . .Ry)
which quantifies the interactions between the added particle “0” and the other ones
“1 to N’ does not depend on the configuration R . . .Ry [the probability of which is
P(R;...Ry)] but is on the dependence of the configuration Rg. . .Ry. However, we
can adopt a system of relative coordinates defined by the general expression:

R, =R, — Ry (withifrom 1toN)

Then, the term B(Ro. . .Ry) becomes a function of the relative coordinates R/, that
is to say can be symbolized B(R/'...Ry/). Hence, one can write:

exp(—u/kT)=q/[A*(N+1)] -JdROJ...JdR’l...dR;VP(Rg...R;V)exp [—B(R}..R})]

(32.15)
Then, after this transformation, one can take out R, and integrate over. The
integration gives V.

Given the fact that the integrand is the product of the exponential taking into
account the sum B (of all the interactions between the added particle and those
constituting the initial system) and of the basic distribution P(R;\,), it appears that
the internal energy of the right-member of relation (32.14) is the average of the
quantity exp[—ﬂB(R'l. . .R;V)] in the (T, V, N) ensemble. Hence, we obtain:

exp(—4/kT) = [q V/A*(N + 1)) (exp((~B/kT))

After the replacement of (N+1)/V by N/V since N+ 1~ N and by introduction of:
p=N/V

we obtain:
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exp(—u/kT) = [q/A°p](exp(~B/kT))
When all is done:
i = kTlnpA® /q — kTIn(exp(—B/kT)) (32.16)
or
u = kTInA*/q + kTInp — kTIn(exp(—B/kT)) (32.17)
It is interesting to notice that the right member of (32.17) is the chemical
potential of every gas, even if the studied fluid here, is a liquid. To be convinced,
it is sufficient to consider its “mathematical structure.” When the behavior of the
fluid is actually ideal, there is no interaction and B =0. Then the relation (32.17)
becomes:
u = kTInA®/q + kTlnp
This expression is identical to that giving the chemical potential of a perfect gas.

p = % + kTlnp (32.18)

According to (32.17), the chemical potential of a real gas can be expressed by the
relation:

u=u"® 4+ kTinp — kTn{exp(—B/kT)) (32.19)

32.5 A General Meaning of the Activity Coefficient

Hence, the last term of the right member (32.19) is the contribution to the value of
the chemical potential of the interactions between molecules. B is actually the
interaction energy of the added particle with all others at the location R;...Ry of
the system.

When we compare the relation (32.18) with the relation (32.19) below:

u = pu% + kTlnp + kTIny (32.20)

where y is the activity coefficient empirically introduced by Lewis in order to take
into account the interactions between the particles, it appears that:
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y=1/{exp(—B/kT)) (32.21)

Relation (32.19) is very important. It is the basis of the affirmation that activity
coefficients take into account the particle interactions in the system. It provides a
general expression of an activity a, in terms of statistical thermodynamics:

a = p/(exp(~B/AT))

Moreover, by itself, relation (32.21) is a general expression of activity coeffi-
cients. However, these expressions cannot be considered as anything else than an
approach to an activity because they are grounded in an approximation which is the
“pairwise additivity” hypothesis.

32.6 The Chemical Potential and the Radial
Distribution Function

Here, we mention one relation between the chemical potential and the radial
distribution function. (Obtaining it is given in Appendix K). It is:
1 00
u=kTn(pA’q™") + pJ d.fJ U(R)g(R, £)4nR*dR (32.22)
o Jo
It has been set up by Kirkwood. From a general standpoint, it is based on the
“pairwise additivity” hypothesis applied to the global potential energy. More
precisely, it is founded on the virtual process consisting in coupling a particle
with others bit by bit, all along the addition. It involves the presence of the coupling
parameter £ which can vary from O up to 1. When £ =0, the added particle is not
coupled to others, but the latter ones are coupled between themselves. When £ =1,

it is fully coupled with others. For the intermediary values, 0 < £ < 1, the added
particle is only partly coupled with others.

1 00
Hence, the term pJ dfj U(R)g(R, &)4xR*dR is the work which has to be done
o Jo

in order the interactions of the particle with the others constituting the system to be
effective. Let us symbolize the particle by A and the work by W(AIA). The left-hand
A figures the particle A which is coupled. The right-hand one figures the kind of
particles with which the previous one is coupled. In the occurrence, it is A itself:

1 00
W(A|A) = pL ngO U(R)g(R, &)4nR*dR

Let us, already, notice that this relation is interesting because it directly leads to
another expression of the activity coefficient of a gas. Actually,
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kTIn(pA*q™") = kTIn(A*q™") + kTInp
By definition, the term kT In(A%™") is the standard potential in the gaseous phase:
len(A3q’1) =u’g
Relation (32.21) can also be written:
1 00
u=u’® +kTlnp — pJ dé J U(R )g(R, &)4nR*dR
0 0
By comparison with the classical expression:
u=pu°® + kTInp + kTlny®

where y® is the activity coefficient of the gas.

1 00

Hence, the term pJ déJ U(R)g (R,&)4zR?dR is an expression of the activity
o Jo

coefficient.

Relation (32.22) proves to be very interesting for a study of activity coefficients.

32.7 Relation Between the Chemical Potential
and the Function G

We have already introduced the function G (cf. Chap. 31). It involves the radial
distribution function. It is given by the relation:

G = JOC [g(R) — 1]4zR*dR

It results from the theory of grand ensemble.

It is also possible to express the chemical potential u starting from G with the
help of the relation which we establish below. It involves the isothermal compress-
ibility coefficient of the system. The expression which links both quantities is:

ulp) = J kT [dp/(p + p*G)] + constant (32.23)

Therefore, once the change in G as a function of the density number p is known, one
can conceive that the chemical potential can be obtained, the fact that G is acces-
sible through g(R) being well understood. Evidently, the relation (32.23) is one
integral solution of the expression (32.24):


http://dx.doi.org/10.1007/978-3-319-46401-5_31
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(Ou/0p)r = kT/(p + p*G) (32.24)

The way followed to obtain the latter is postponed to the end of this paragraph.
Relation (32.23) can also be equivalently written according to (32.25). Hence, the
integration can be done from it:

ulp) = kTJ dr(l1/p—G/(1+pG)] + constant (32.25)

During the integration, the following mathematical difficulty happens: when
p =0, the chemical potential does not exhibit a finite value. The trick used to
overcome it is as follows. Let us consider a solution of very low density
po (po — 0). In these conditions, the interactions between molecules are negligible.
Then, the chemical potential u(p) is expressed according to a relation which is of
the same type as that which is encountered with the perfect gases:

p(po) = kTn(pgAq~")
p(py) = kTIn(A’q™") + kTlnp,
The first term of the right member is nothing else than the chemical standard

potential u°® of the liquid when it is in the gaseous state, as its mathematical
structure shows it. As a result,

p(po) = u°* + kTlnp,

Hence, one can integrate from the lower limit py (and not from 0) up the limit p,
given the expression:

P
[ dp1/p = 611+ 9 G) = gy + 4T [ofl1)6' = G/ (1 + SG)ap
0

whence:
P
o) =+ kg — k7| G/ (1 + 9 Gl (32.26)
0

A relation between the function G and the activity coefficient must now be found.
Evidently, it can be done through the integration of the latter expression.
According to what is preceding, we know that:
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kTIn{exp(—B/kT)) = kTJp G/(1+p'G)ldp’

o

Hence, we can deduce that the work of coupling of a molecule with all the others
is equal to the necessary work to increase the system density from O up to the final
one p. Hence, the relation (32.26) permits to find another expression of the activity
coefficients, which is:

P

Iny — _J G/(1+ p/G)ldyf (32.27)

As a result, thanks to this expression, it is possible to link the activity coefficient
to the radial distribution function g(R) through the function G.

The relation (32.26) will be generalized to systems consisting in fluid mixtures.
This possibility is demonstrated by the Kirkwood—Buff’s theory (viz. Chaps. 42 and
44).

e Obtention de la relation (32.24)

The demonstration is given in Chap. 31. Let us only recall that it involves the
isothermal compressibility coefficient kr and that it involves the following equali-
ties already demonstrated.:

(Op/0p)r = (0p/0p)r(Op/0p)y
(0p/0p)r = prr
(Op/Ou)y = p

(0p/0p)y =1/ pPrr

kTpxr = 14 pG
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Chapter 33
Virial Coefficients in Terms of Interaction
Potential Energies: Mayer’s Theory

Abstract It is proved that the experimental coefficients of the virial expansion are
related to some parameters coming from the theory of statistical thermodynamics.
This is a very important point since it permits to link theoretical results (coming
from statistical thermodynamics) with experimental ones. Above all, it permits to
attribute a physical origin to each virial coefficient, that is to say to attribute
interactions between well-known numbers of particles to every coefficient of the
virial expansion. The theory, mentioned in this chapter, leads to mathematical
expressions relating parameters stemming from the statistical theory to purely
thermodynamic quantities and inversely. The demonstration is done within the
framework of the great ensemble. It is based on some series developments. Inter-
vene in it some parameters such the absolute activity 4 of the compound, canonical
partition functions, configuration integrals, and also, of course, the virial coeffi-
cients B(n). The expression of the latter involve an integral, which is also intro-
duced from another starting viewpoint, i.e., within the framework of the Kirkwood—
Buff’s theory, which has a different nature than that studied in this chapter and
which will be considered later.

Keywords Virial coefficient « Mayer’s theory ¢ Absolute activity  Kirkwood—
Buff’s theory ¢ Perfect and imperfect gases (in terms of canonical partition
function)  Virial expansion e Virial coefficients and statistical parameters ¢
Grand canonical ensemble ¢ Physical significance of the virial coefficients in
statistical mechanics (monoatomic gas)

It is proved that the experimental coefficients of the virial expansion are related to
some parameters coming from the theory of statistical thermodynamics. This is a
very important point since it permits to link theoretical results with experimental
ones. Above all, it permits to attribute a physical origin to each virial coefficient,
that is to say to attribute interactions between well-known numbers of particles to
every coefficient of the virial expansion. The theory, given just below, leads to
interesting mathematical expressions relating parameters stemming from the sta-
tistical theory to purely thermodynamic quantities and inversely. One of them
involves an integral, which is also introduced from another starting viewpoint,
i.e., within the framework of the Kirkwood-Buff’s theory, which has a different
nature from that studied in this chapter. It will be considered later.
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33.1 Difference Between Perfect and Imperfect Gases

Let us recall that, according to considerations of classical mechanics, the canonical
partition function of a system consisting in only one component but possessing an
internal structure is given by the expression (relation (33.5)—Chap. 27):

+o0

O, T,V) = [/ () 4™ NY)] J . J exp[—pH (X")]dX"dp" (relation (5)—Chap. 27)

N
H=> (p?/2m) + Uy(X")
i=1

with:
p=1/kT

This general expression applies to every system consisting in an imperfect gas.
We know that the term Uy(X") is the total potential energy due to interactions
between the molecules of the gas in the configuration X"

The fact that a gas is perfect is a consequence of the absence of intermolecular
forces between its molecules. This results in the equality:

Uy(XY) =0

in the expression of the canonical partition function, whatever the configuration
X" is

33.2 The Virial Expansion

Let us also recall that for a sufficiently dilute gas so that it exhibits a perfect
behavior, the state equation (which is a universal law) is written as follows:

p=p/kT

where p is the density number of the gas (p = N/V, N being the number of moles of
the gas, V the container volume), £ the Boltzmann’s constant, and T the temperature
of the system. For a greater density, the gas is no longer perfect. Its state equation is
given by the virial expression:

p/KT = p+Bo(T)p* + B3 (T)p* + - -- (33.1)


http://dx.doi.org/10.1007/978-3-319-46401-5_27
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The coefficients B, (T) are called virial coefficients. As a general rule, they differ
with each gas and their values depend on the intermolecular forces. The series
(33.1) is convergent up to a given value p when the temperature is lower than the
critical temperature. When the temperature is higher, the series is convergent for
every density number p.

Expression (33.1) can be also written:

p/pkT =1+ By(T)p + B3(T)p* + - -- (33.2)

Let us remark, in passing, that when the gas is sufficiently dilute, the virial
expression reduces to the state equation of perfect gases.

Expanding in series the function p/pkT as a function of p according to Taylor’s
development leads to the expression:

PIPKT = 1+ 10(p/pkT) [ Bply. oo+ 1/2| 0% (p/pkT)[07] | -

(33.3)

The comparison of Equations (33.2) and (33.3) leads to the identities:

BA(T) = [1/(n = 1)1] [0 (p/okT)/0p" | (33.4)

T,p=0

The virial coefficients are obtained from the slopes of the experimental curves. For
example, for the coefficient B,(T'), the slope of the curve (fp — p)/p with respect to
p permits to obtain the coefficient when p tends toward 0. The reasoning stems
evidently from the relation:

Bp = p + Bo(T)p*

Remark: Let us also notice that the virial expansion is also written in the
literature under the form:

PV =RT(1+B/Vyn+C/Vi> + ")
where B, C . .. are constants depending on temperature and on the nature of the gas.

Vi is the molar volume of the gas. It is also written under other forms close to the
previous ones.

33.3 Virial Coefficients and Parameters Coming from
Statistical Thermodynamics

We shall show that the virial coefficients B, (T), experimentally accessible, are
related to statistical parameters, especially to canonical partition functions.
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The demonstration is performed in several steps which are:

— The establishment of a relation between A and p, respectively, the absolute
activity and the average density number of the particle. The average is calculated
over the canonical partition functions which constitute the corresponding grand
canonical partition function

— The comparison of the classical expression of the virial and the relation between
Aand p

Let us consider a gas, mono or polyatomic but constituted by only one compo-
nent. It is simpler to reason in this case with the partition function of the great
ensemble = (viz.: Chap. 24).

33.3.1 Setting Up the Relation Between A and p

This relation is:
p=(0/V)A+ [2(0, — 1/201%)/V]2* + - - (33.5)

The Qy are the canonical partition functions. Relation (33.5) is itself set up by
starting from two other relations which must be demonstrated:

— The first one is the relation (33.6) relating the average density number p to the
absolute activity 4. No canonical partition functions still intervene in this
relation:

p = A(Op/kT) /04 (33.6)

— The second one is the following relation (33.7):

pV/kT =1n

1+ 0on(v, T)/lN] (33.7)

N>1

Both relations stem from properties of the grand canonical ensemble. They are
based on the definition of the absolute activity of a species (/1 = et/ "T) and on its
characteristic function (pV = kTInE)—viz. Chap. 24 and Appendix V.

1. Setting up of the relation (33.6)
The mean density p is defined by the expression:

p=N/V


http://dx.doi.org/10.1007/978-3-319-46401-5_24
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In the grand ensemble theory (viz. Chap. 24), the average number of molecules
is given by the relation:

N =kT(0InZ/0u)v,T
Let us express N. We know that:

InE =pV/kT

whence:
7 = KT[0(pV/KT)/0u], 1 (1/v)
and:
ﬁ = (ap/aﬂ)v,T

From another side:

InA = u/kT

dinA = (1/kT)du
du = kT dlnd (33.6)

7= 0(p/kT)/0In
7= 20(p/kT)/ 02

2. Setting up the relation (33.7)
The starting relation is:

E(,V,T) ="/ (33.8)
We also know that (viz.: Chap. 24):

EAV,T) =14 OnV,T)A (33.9)

N>1
where we used the symbolism:
Oy(V,T) = Q(N,V,T)

On(V, T) is the canonical partition function relative to the number of particles N.
(This function enters into the grand canonical partition function—viz. Chap. 24).
Equation (33.9) is the series expansion of = as a function of A. It is interesting to
notice in passing that:

0, =1


http://dx.doi.org/10.1007/978-3-319-46401-5_24
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When N =0, the empty system does possess only one state, that of null energy,
whence the value O, = 1.
From (33.8) and (33.9), one immediately obtains (33.7).

3. Obtaining of the relation (33.5)
Let us expand in series the right member of relation (33.7) and limit it to its first
terms, according to the relation:

In(1 4 x) :x—x2/2+~--
We obtain:
PV/KT = Q4+ [(Qy — 1/20,%) /V]2> + -+ (33.10)
We can relate p to the canonical functions Q, O, by using relations (33.6) and

(33.10). In order to do that, we derive expression (33.10) term by term with
regard to 4, divide by V and multiply by 4. We obtain:

p=(0/V)A+[2(0, —1/20°) V¥ +--- (33.5)

33.3.2 Expressions of the Virial Parameters B,(T)
Containing the Canonical Partition Functions

As it has been already said, we operate by comparison.
We begin by expressing A as a function of p through a relation involving the
partition functions Q, O, etc. Hence, we set up as a rule:

A=a,+ap+ap +---

and we determine a,, a,, a,, etc. by replacing A by this expression into (33.8) and by
identifying. Once all the calculations have been done, we obtain:

=0, a1=V/0,, ar= — 2(Q2 _ 1/2Q12)V2/Q13,
and as a result:
p/AT =p — (V/0%)(Q: — 1/20%)p" + - - (33.11)

The comparison of (33.11) and (33.1) permits, for example, to find the coeffi-
cient of order two of the virial. It is:

Bz(T) = —a2/2

that is to say:
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By(T) = —(V/0,%) (0, — 1/20/,%)

The terms of higher orders are obtained likewise. The parameter B,(T) taken as an
example is very important. It is the most useful virial coefficient (viz. just below).

Hence, we can express the virial coefficients as being a function of different
canonical partition functions Qy playing a part in the description of the system
through the use of the grand ensemble.

33.4 Physical Significance of the Virial Coefficients
of a Monoatomic Gas in Statistical Mechanics

It is interesting to explicit the virial coefficients in terms of potential energies of
molecular interactions. The study of a particular case, that is to say, that of a
monoatomic gas, the intermolecular potential energy of which obeying the
pairwise-additivity hypothesis, permits to do it.

In this chapter, we confine ourselves to only giving the mathematical expression
relating the configuration integrals Z,, Z, and the virial coefficient B,(T) and also,
the corresponding expression of the coefficient B3(T'), though it is, by far, less
interesting than the previous ones.

Let us recall firstly that the configuration integrals Zy are given by the expres-
sions (viz. Chap. 28):

—UN(x1...zN)
ZN:JG dxl...dzN
%

(We have already seen and we shall again see in the next chapter that they are
related to canonical partition functions Q;, Oy by the expressions:

Zy(V,T)/N' = Qy(V,T)VV /0, (V,T)"

One demonstrates that the relation between B,(T') and the configuration integrals
Z, and Z, is the following one (viz. Chap. 34):

Bo(T) = —(1/2V)(22 — Z,?)

Equivalently, it can be written as follows:
B,y(T) = —(1/2V) U Jexp[—U(rl,rz)/kT]dr]drz —V?
14

where U(ry, 1) is the intermolecular potential energy between particles 1 and 2 of
the system. It depends on their coordinates r; and r; (x;. . .z»). It can also be written:


http://dx.doi.org/10.1007/978-3-319-46401-5_28
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B,y(T) = —(1 /2)J:0 exp[—U(r)kT — 1)4zr’dr (33.12)

This expression is often given in literature under the form:

o0

Bz(T) = —(1/2)]0 f(l‘12)47771‘122 dr

[f(r12) is called the Mayer’s f-function. Generally, Mayer’s f~functions are defined by
the expression:

f(X,,XJ) = exp [—ﬂU(X,,XJ)} —1
or
(X X)) = x5 — 1

It appears the function G in the integrand of relation (33.12). It has been already
defined within the framework of the great ensemble (viz.: Chap. 31):

G= ro [g(R) — 1]4zR*dR
0

In the latter expression, R is a scalar and, hence, no longer a vector as were r; and
1. R is the distance between the particles 1 and 2 (viz.: Chap. 42).

Owing to the importance of integrals G (viz.: Chap. 42 devoted to Kirkwood—
Buff theory), it is interesting to represent the curve [g(R) — 1] as a function of R and
more precisely its relationship with the electrostatic on which it is dependent
through the function g(R) (Fig. 33.1).

We notice that f(R) tends towards 0 when R tends toward co.

Supposing that the pairwise-additivity hypothesis is validated, the configuration
integral Z3 can be written:

73 = HJ exp{—[U(ry,r2) + U(r1,r3) + U(ry, r3)] } dridrydr;

and B5(T) is given by the expression:

Bg(T) = —(1/3V)JJJ (X12 — 1)()C13 — 1)()C23 — 1)dl‘1dl‘2dl’3

Hence, we notice that statistical thermodynamics provide explicit expressions of
the virial coefficients By, in terms of molecular interactions energies which occur in
a group of k particles. This is one of the most fundamental results it leads to.
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Fig. 33.1 Comparison L “2)
between electrostatic 1
potential U(R) and function

F(R) = [g(R) — 1] curves \
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One can say that, because of the handling of the varied canonical functions Qy,
this theory amounts implicitly to considering the studied particle as being located in
the average electrostatic field developed by all the remaining particles of the
system, whereas the Kirkwood—Buff theory does only consider pairs interactions
(cf. Chap. 42).

We shall see (viz. Chaps. 39 and 40) that this is also true for some cases of
solutions. More precisely, the virial coefficients make due allowance for the fact
that, according to their order, they result from successive corrections (with respect
to the ideal behavior of gases) taking into account the interactions between pairs,
triplets, quadruplets of particles, and so forth. One result, among the most remark-
able ones, is that the coefficient B, depends on the properties of the system exactly
containing k particles. For example, the coefficient B, can be calculated for a
system containing two particles.
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Chapter 34

A Statistical Expression of the Activity of a
Species: A Relation Between It

and the Corresponding Concentration

in the Case of an Imperfect Gas

Abstract This chapter brings some elements of answer to one of the most signif-
icant questions regarding the notion of activity, i.e., how are, mathematically
related to each other, the value of an activity and that of the corresponding
“concentration” of a species when the latter, no longer, tends toward zero? Recall,
indeed, that G.N. Lewis, when he introduced it, defined the notion of activity by the
following sentence:

a quantity which is “an active density number which bears the same relation to the chemical
potential u at any density that N/V does as N — 0.”

The results mentioned in this chapter constitute a first mark of the fact that
statistical thermodynamics permits, at least in part, to answer the question. The
content of this chapter shows that the setting up of the expression relating the
activity of a gas to its corresponding concentration stems from a reasoning which, at
the onset, requires the definition of the activity in terms of statistical parameters. It
also shows that the obtained relation involves terms which are related to the virial
coefficients. According to the theory, an activity z of a compound can be identified
to the product of its absolute activity 4 and of the second canonical function of the
grand ensemble Q(N, V, T) (that is to say that corresponding to the presence of
only one particle in the system), product divided by the volume V of the system. The
relation also shows that z exhibits all the properties of Lewis’ activity. It has the
form of a series development of z in density p, the coefficients of which can be, in
principle, calculated from the experimental values of the virial relation.

Keywords Statistical expression of the activity of a species ¢ Activity—
concentration relation of an imperfect gas * Lewis’ definition of an activity *
Statistical analogue of the activity ¢ Configuration integral e Activity and
concentration relation « Grand ensemble ¢ Series development ¢ Density number ¢
Activity and virial coefficient relation ¢ Fugacity in statistical thermodynamics ¢
Virial coefficients and configuration integrals

This chapter brings some elements of answer to one of the most significant
questions regarding the notion of activity, i.e., how are, mathematically related to
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each other, the value of an activity and that of the corresponding “concentration” of
a species when the latter, no longer, tends toward zero?

Let us recall, indeed, that G.N. Lewis, when he introduced it, defined the notion
of activity by the following sentence:

a quantity which is “an active density number which bears the same relation to the chemical
potential u at any density that N/V does as N — 0.”

The results mentioned in this chapter constitute a first mark of the fact that
statistical thermodynamics permits, at least in part, to answer the question.

We shall see that the obtaining of the expression relating the activity of a gas to
its corresponding concentration stems from a reasoning which, at the onset, requires
the definition of the activity in terms of statistical parameters. We shall also see that
the obtained relation involve terms which are related to the virial coefficients which
can be experimentally obtained.

34.1 The Followed Reasoning

Let us recall the fact that the handling of the activity coefficient (and of that of
fugacity) finds all its interest when there are interactions between the particles
constituting the system. We know indeed (viz. Chap. 32) that, that in the framework
of the “pairwise additivity” hypothesis, the expression of the chemical potential of
the component is:

i = %8 + kTInp — kTIn(exp(—B/kT))

It contains the term —kTIn{exp(—B/kT)) which takes into account the interactions

between the particles.

The reasoning followed in order to obtain the relation being searched for consists
in:

— In a first step, arbitrarily defining a parameter z which exhibits the behavior of
the activity as it has been introduced by Lewis, i.e., that z — p when p — 0. We
can call this quantity the statistical analog of the activity, symbolized by z.

— In a second one, setting up the mathematical relation activity—concentration
being searched for. It requires the crossing through the configuration integrals
Zn.

— In athird step, then, to set up the relations between the parameters playing a part
in the preceding relations and the virial coefficients applying to the real gases
(for which, actually, there exist interactions between the different particles).

At this point of the reasoning, we justify the calculations and the validity of the
statistical definition adopted for the activity. Then, we demonstrate that one of the
parameters involved in the preceding calculations is actually equal to a configura-
tion integral. Then, we shall perform a brief analysis of the physical meaning of the
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activity of a gas and give a statistical definition of its fugacity. Finally, we shall give
the expression of the virial coefficients as a function of the configuration integrals.

34.2 Introduction of the Activity

Let us consider a mono or polyatomic gas. Let us reason within the framework of
the grand ensemble. We know that the partition function can be written (viz.
Chap. 24):

E(,V,T) ="/ (34.1)

the term pV/kT representing the thermodynamic function characteristic of the grand
ensemble (viz. Appendix V). We also know that (viz. relation (33.9)—previous
chapter):

EMV,T) = 14 0y, T)A (34.2)
N>1

where
On(V,T)=Q(N,V,T) and A=e"*"

On(V, T) is the canonical partition function entailing the constant number N of

particles which, with other canonical functions taking into account different num-

bers, enters into the grand canonical partition function. Equation (34.2) is the

expansion in series of = in 4. The parameter 4 has already been introduced and is,

in the occurrence, called the absolute activity of the gas (viz. Chap. 24).
According to what is preceding:

pV/kT =1n

N>1

L+ On(V, T)AN] (34.3)
Let us develop the logarithm in series. By only retaining the first terms, we obtain:

In

1+y QN/lN] = [0A+ 022+ 0323 + -]

N>1

~ [0+ 0+ 08 P2+ (34.4)

ie.:
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In

1+ QN/lN] ~ 0,4 (34.5)

N>1
according to the relation:

In(14+x)=x—1/2>4+1/3° = 1/&* +--- (=1 <x< 1)
InZ ~ Q4 (34.6)

The equivalent expressions (34.5) and (34.6) induce the introduction of the param-
eter z defined by the following expression:

2 =02V (34.7)
The interest to adopt this definition is to show that, actually:
z—p when p—0

The property of z to tend toward p is only true if all the other terms of the
development are lower than that kept.

As we shall see below, z exhibits the properties of Lewis’ activity. z is called a
statistical analogue of the activity." With this choice, according to relation (34.1)
we can write:

PV /KT = QA (34.8)

A beginning of proof of the identity of the Lewis’ activity and of z is provided by
demonstrating that z— p when p — 0 which, indeed, is the definition of Lewis,
originating in thermodynamics.

The identification of z to the Lewis’ activity firstly entails to set up a relation
between the density number p and z. We immediately do that in two steps. In the
first step, we show that z tends toward p when the latter tends toward zero. In the
second step, we set up the relation being searched for.

34.3 Analogy of the Behaviors of z and of p When p Tends
Toward Zero

Since we are reasoning by using the grand ensemble, the density number is given by
the relation:

"Within the framework of statistical thermodynamics, we use the symbol z instead of a in order to
mark the fact than z is introduced by the statistical way.
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p=N/V (34.9)

The number of particles cannot be anything else than an average number given the
use of the grand ensemble. We have seen (viz. Chap. 33) that:

N = A(OInE/04)y ¢ (34.10)
According to (34.9) and (34.10), the condition:
p—0
entails that:
N—0 and 1—0

According to the statistical definition of the activity (adopted above), the relation
(34.7) is evidently satisfied lorsque 4 — 0, z— 0. Consequently:

z—p when p—0

The quantity z = Q,4/V, from purely statistical origin, exhibits the same behavior
as the Lewis activity, at least when p — 0.

34.4 Relation Between the Number of Density
p and Activity z

We have seen that, within the framework of the hypothesis of the truncation of the
series development of the grand partition function = as a function of 4, the activity
z tends toward the density number of the gas p when the latter tends toward zero. It
is no longer the case when the latter does not tend toward zero.

Now, we set up a more general relation between z and p than that constituting the
Lewis’ definition.

Let us replace 1 by z into (34.3) through:

A=z2V/0,
We obtain:
E=1+) (OW"/0") (34.11)

N>1

Let us introduce the term Z,, by the relation:
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Zy = N'[Qy/0) V" (34.12)

As we have already mentioned it in Chap. 28 and as we demonstrate it (viz.
paragraph 8), Zy is nothing else than the configuration integral Zy Expression

(34.11) can be, now, written by already assimilating Z'N to Zy. Therefore:

E=1+) (Zv/N)Z (34.13)

N>1

Let us take the logarithm of both members of this equality, i.e.:

InZ=1In{1+Y (Zy/N!) 2" (34.14)
N>1
or, taking into account (34.1):
pV/KT =In|1 4> (Zy/N!) 2 (34.15)
N>1

Let us divide the above equation by V and expand in series the logarithm. We can
easily forecast that we shall obtain one relation of the type:

p/kT = bz' + by + b3z + - - (34.16)
or equivalently:
p/kT =Y b (34.17)
1
Or
pV/kT =V b7 (34.18)
=1
or
InE=Vy b (34.19)
j>1
b1, by, . ... depend on temperature owing to the fact that we are reasoning within the

framework of the great ensemble.
The simple fact to identify the terms of same degree in z of both members of
relation (34.19), after having expanded in series the logarithm of the kind In (1 +x)
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of relation (34.15) by using the symbol x = Z (Zy/N") 2V, permits to immediately
N>1
find:

VblEzl ie. b] =1
Vby=(Z, — 73) /2

(34.20)
Vby=(Z3 — 3212, + Z3) /3!

Hence, coefficients by, by, bs. .. can be expressed as a function of the configuration
integrals. By limiting ourselves to the term of order 3, we obtain:

p/kT = [(Zi/V))2' + [(1/2V)(Z2 — 73)] 2
+ [(1/6V)((Z5 — 32122 +2Z})2 + - -- (34.21)

At this point of the reasoning, we notice that the function p/kT, which is a
remnant of the perfect gas law, can be written under a series development as a
function of the statistical analogue z of the activity.

The relation being searched for between p, z, and the coefficients b; is found as it
follows. According to (34.10):

N = 2(0In=/04), ; (34.22)
Since:
A= (V/0Q)z
e
di = (V/Q,)dz
As a result:

N = z(0InE/0z)y ;
According to (34.1),

N=z[0(pV/kT)/0z]y 1

_ (34.23)
NJV = p = [0(p/kT) /02,

and according to (34.17):
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. i—1
[0(p/kT)/02]y =Y jbi(T)?
jz1

p="> ibj(T)?

jz1

(34.24)

The relation (34.24) between the density number p and the activity of the com-
ponent z is that which is being searched for. It depends on the configuration
integrals Zy, parameters stemming from statistical thermodynamics through the
coefficients b;.

Another interesting relation is its reciprocal one, i.e., that relating the activity z to
the density number p. Let us assume that it is of the following analytical type:

z=aip+ayp’ +ap’ + - (34.25)

At once, one can remark that a; is set up equal to 1 in agreement with what is
preceding. In order to find the other coefficients a,, it is sufficient to replace z by its
development (34.25) into its expression (34.24) and to identify the terms of the
same degree in p. Hence, by limiting ourselves to the terms of degree 2, we obtain:

2
p=bi(p+ap?) +2b:(p+ap®)” + -
p=bip+biayp* +2by(p* + 2a2p* + a3p*) + - --
p = bip + (b1as + 2by)p* + terms of superior degrees
We deduce that, since b, = 1, the terms of superior degrees must be null, i.e.,
ay = —2b2
Likewise, we would find:

asz = —3b3 — 4(12[?2
—3b3 +8b3 etc...

as

Such is the relation (34.25) between the activity z and the density number,
whatever the value of the latter is. Its coefficients a;, a, ... are accessible by
starting from experimental data. Actually, from the practical standpoint, it is
more interesting than the relation (34.24). The density numbers being, indeed,
data which are immediately at our disposal, it is possible to reach the value of the
activity which is a thermodynamic data very important, as we have already said
it. In principle, the calculation can be done whatever the value of p is.
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34.5 Discussion Around the Relation Between the Activity
and the Corresponding Concentration
of the Imperfect Gas

The relation (34.25) is at the core of our purpose. It can also be written:
z=p—2by* + (—3b3 +8b3)p> + -+ (34.25)

with the coefficients b,, bs, . . . which are function of the configuration integrals and
which are related to the virial coefficients (viz. the following paragraph).
We notice that:

— When p tends toward zero, z tends toward p

— z varies with p

— According to the Lewis’ definition of the activity, for every “concentration” p,
the chemical potential of the species must obey the relation:

H = //l() + RTan

As a result, z appears as being a pseudo-concentration which would confer the
same value to the chemical potential of the species as actually its concentration p
does, whatever its value, during an ideal behavior.

Unfortunately, in our current state of calculations, the expression (34.25) cannot
be anything else than a formal one, although as a rule, it permits the calculation of
the activity for every “concentration,” provided the values of the virial coefficients
are known after experimental measurements. The number of the virial coefficients
to know may be huge, owing to the recurrence of the calculation of the coefficients
b; and a; (about 10?° coefficients!).

34.6 Relations Between the Density Number of the Gas, Its
Activity, and the Virial Coefficients

It is possible to obtain the numerical values of the coefficients b; and a,, from those
of the virial coefficients which are the experimental ones. Let us, indeed, compare
the virial relation:

p/KT = p + Bo(T)p* + B3(T)p’ + - -

and
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p/kT = biz' + by + b3z’ + - (34.16)

Let us replace the activities z by the development (34.25) into (34.16). We obtain
by writing only until the term of degree 2:

2
p/kT =bi(p+axp®) + ba(p + axp®) + -+
whence:
p/kT = bip + (azshy + by)p* + - -- (34.26)

By comparing (34.26) and the virial relation and by taking into account the a,
expressions as a function of b; previously obtained, we find:

By(T) = —h,
B3(T) = 4b3 — 2bs

Therefore, the coefficients b; and a, (the latter ones through the reciprocal
relation) can be expressed as a function of the virial coefficients.

Moreover, it appears that the coefficients @, do not depend on the coefficients b;
when j>n. For example, a, only depends on b, and on b,, i.e., only on the
configuration integrals Z; and Z,. It is the same thing for a, and b, which only
depend on the configuration integrals Z;. . .Z,. This point is very important. It means
that these coefficients together with those of the virial, take into account:

e When b,, a,, B5(T) are concerned, only the interactions between two particles
¢ When b3, a3, B3(T) are concerned, only the interactions between three particles
e When b, a,, B,(T) are concerned, only those between n particles.

In other words, B,(T) only depends on the interactions between two
particles, etc.

34.7 Justification of the Preceding Calculations. Validity
of the Statistical Definition of the Activity

The problem, now, is to justify the validity of relation (34.16).

A first point to notice before the justification is the characteristic of the reasoning
followed up to now. It is the embedding and the interdependence of the different
calculations. Consequently, if the legitimacy of expression (34.19) can be demon-
strated, all the inferences stemming from it become legitimate.
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From the pure mathematical standpoint, the difficulty lays in the fact that, at this
point of the reasoning, it is not sure at all that the expansion in series, stemming
from (34.15), can be truncated as it has been done.

The justificatory reasoning given below can be qualified of “upside down
reasoning.” We start from the expression (34.16) set up, postulated as being a priori
perfectly legitimate, and we demonstrate that we come back to expression (34.15).

According to (34.16), we have:

VAT — exp lvz b,-z’]

Jj=1

Because of the properties of the exponential function:

exp [Vz bjzi] = exp (Vblzl) . exp(Vbzzz) . exp(Vb3z3)~ . (34.27)

Jjz1

Let us develop in series the exponentials of the right member of this expression
and let us perform the products. Let us explicit the product of the two series
developments (limited to the third degree) of the first two exponentials. This
product is:

exp(Vhiz') - exp(Vbaz?) = [1 + (Vby)'z'" 4 1/21(Vby)*2'?
+1/31(Vby )28 4]

[0 (VB2) 2 1/21(VBa) 22 4 131 (V)2 -

(Notice the use of both indices qualifying the activities, the first one permitting
the mark of the coefficient b; the second being the exponent). The calculation
performed by multiplying the previous product by the series development of the
third exponential exp(Vhsz>) leads to a series development as a function of z the
coefficients of the increasing powers of which are:

for z! 22 (Vby/1)
for 22 2 W(Vb):+ (Vby/1)
for 22 2 1/31(Vbi)’ + (Vb/1)(Vby/1) + (Vb3 /1)

Equalizing the coefficients Zy of equation (34.13) and those of equation (34.27), we
obtain the equalities:
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Vb /1) = Z,

(Vb)) 4 (Vby/1) = 1/2Z,
1/3!(Vby)® + (Vb /1)(Vby/1) + (Vb3 /1) = 1/6Z3

In brief, we again find expression (34.13). It is the result that we wanted to
demonstrate.

34.8 Identity of Z;\, and of the Integral of Configuration
in Classical Statistical Thermodynamics Zy

We have already mentioned in the paragraph 4 that the parameter ZN introduced in
the preceding calculations and defined by the expression:

Z\(V,T) = N'[Qy/Q1" VN (34.12)

is identical to the corresponding configuration integral Zy in classical statistical
thermodynamics, defined by the expression (viz. Chap. 28):

Qutass = Zn /N 143N (34.28)
Hence, we must demonstrate that:
Z;\,EZN

When the gas is very weakly concentrated, it exhibits a perfect behavior. It is
obviously the case when there is only one molecule in the system, to which
corresponds the partition function Q; by definition. Since the gas behaves ideally,
the following expression is justified (viz. Chap. 26):

0 = (1/N)g"

and therefore for N =1:
with:

q = VN

where ¢ is the molecular partition function of the system—viz. Chap. 27. As a
result:
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0, = V/A3

Replacing O into (34.12) by the latter expression immediately leads to the identity
being searched for.

34.9 Physical Meaning of the Activity of a Gas

In this paragraph, we briefly comment on the results which we have obtained just
above.

— Let us begin by saying that relations (34.24) and (34.25) show distinctly how the
activity and the density numbers differ from each other. The relation (34.25), for
example, shows that the difference between both is expressed by terms
containing the density number itself at degrees larger than 2. As a result, one
can conceive that the more dense the gas is, the larger the difference between
both quantities may be. This conclusion can also be found when the notion of
activity coefficient is regarded (viz. Chap. 37).

— Let us consider the relation (34.7) defining the activity:

2 =04V (34.7)

Clearly, the activity takes its roots in classical thermodynamics through the
absolute activity A. Certainly, the absolute activity is a quantity which is intro-
duced in statistical thermodynamics at the level of the grand ensemble, but its
definition:

A= e/

involves the concept of chemical potential of purely thermodynamic origin.

Clearly, we notice that, by its sole definition, the activity of a substance is linked

to its chemical potential.

— Still more significant than the last argument is the occurrence of the canonical
partition function Q, in the definition of the activity. It is a characteristic of the
system which possesses one particle only in the system V. No interaction with
other particles, of course, can exist. Here, we again find the meaning which was
attributed to an activity by Lewis himself: i.e., to characterize a species as it
would have no interaction with other ones. (In passing let us recall that,
according to the general principles of quantum mechanics, Q; depends on the
volume V and on the fact that there is one molecule in the system).


http://dx.doi.org/10.1007/978-3-319-46401-5_37

388 34 A Statistical Expression of the Activity of a Species: A Relation Between. . .
34.10 Definition of the Fugacity

Incidentally, in this paragraph, we are interested in the meaning of the fugacity in
statistical thermodynamics. According to Lewis, the fugacity is defined as being the
quantity which tends toward the pressure p of a gas when the latter tends toward
zero (viz. Chap. 7), i.e.,

lim f =p
p—0

According to relation (34.24), it is evident that:
p/kT — biz' when p —0

Since b; =1, and since f — p when p — 0,f must be defined by the
expression:

f=kTz f/kT =z (34.29)
1.€.,

f=(kT/V)0,4 (34.30)

34.11 Virial Coefficients and Configuration Integrals

We have mentioned in the preceding chapter that the virial coefficient of order
2, B5(T) can be expressed as a function of the configuration integrals Z, and Z;.

By(T) = —(1/2V) (22 - Z})
It can also be written according to:

By(T) = (1/2V){Jv Jexp[fU(rl, ry)/kT]drdry — Vz}

where U(ry, r,) is the intermolecular potential energy between the two particles of
the system of coordinates r; and r; (x;...z;). It can also be written:

By(T) = — (1/2) Jexp[—U(r)/kT — 1]4nr’dr
0

In the latter expression, r is a scalar. It is the distance which separates particles 1 and
2, particle 1 being supposed fixed.
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Let us recall that in this special case, the configuration integral is given by the
following expression:

ZN = J ~-~Jexp[—UN(x1, ...ZN)/kT]dIAl"'d}"N
Vv

with dr; = dxldy]dzl- .-

 For the calculation of Z;, evidently U(xy, ...zy) = 0, since there is only one
particle. Consequently:

Zl = fvdrl
Z =V

» 7, is given by the expression:
Z, = J Jexp[—U(rl,rz)/kT]drldrz
v

U(r;, ry) is the intermolecular potential energy between the two particles,
depending on the coordinates r; and r, (x;....z3). In order to relate B,(T') to the
intermolecular potential energy between both particles, we use the equalities,
already demonstrated above, in which the configuration integrals intervene:

By(T) = —b,
and
Vby = 72, — 72
whence:
By (T) = —(1/2V)(Z, — Z,?)
B(T) = —(1/2V) :ijexp[—U(rl, ry)/kT)dr dry — V?
By(T) = —(1/2V)J exp|—U(ry, 1) /kT)dr dr, + V)2
By (T) = —(1 /2V)J exp[—U(ry,12) /kT)dr dry + 1/2 [ dr,

By(T)=—(1/2V)| |exp[—U(ry,r2)/kT)dr\dr, + 1/2V [dr, [dr,

By (T) = —(1 /2V)J exp|—U(ryy, r2)/kT — 1]drdr,
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By changing the variables, i.e., by using the variables dr; and r;, =r, — r; (which
is the location of particle 2 with respect to particle 1 regarded as being at the origin),
we obtain:

B(T) = —(1/2V) J Jexp[—U(rlz)/kT — 1]dr

%
and adopting the polar coordinates:
dry, = 4xridr
o0

By (T) = —(1 /2)JO exp[—U(r)/kT — 1] 4zr*dr

or, according to what is preceding:
BZ(T) = —1/2J(X12 — l)dl‘lz

» By supposing the hypothesis of the “pairwise additivity” validated (besides, it is
only at this term that it can be applied for the first time), the configuration
integral Z; can be written:

5= J” exp[—U(ry,rz) — U(ry,13) — U(rz, r3)|drdrodrs

By adopting a reasoning analogous to the preceding and by using the same
symbolism, we obtain the following relation for B3(T):

B3(T) = —(1/3V)JJJ V(X12 — 1)()(13 — 1)()(23 — 1)dl‘1dl‘2dl‘3

Analogous expressions would be found for the superior coefficients.



Chapter 35
Activities of Gases in a Mixture of Imperfect
Gases

Abstract The chapter is a simple generalization of a previous one. It is devoted to
the study of a binary mixture. The case is studied with the aid of the grand ensemble
and the activities of each gas are defined as for a sole imperfect one. In their
definition intervene their absolute activities, the volume of the solute and the
canonical partition functions when one molecule of each gas is present without
any molecule of the other.

Relations linking the chemical potential of each gas to its partial pressure
through statistical parameters are also mentioned.

Keywords Statistical gas activities in a mixture of perfect gases * Partial pressure *
Grand ensemble ¢ Configuration integrals « Chemical potentials of the gases

This chapter is a simple generalization of the previous one. We confine ourselves to
the study of a binary mixture.

35.1 Activity of Both Gases

We have seen that, in the case of a fluid constituted by a binary mixture (viz.
Chap. 24), the grand partition function is:

E(, 0, V,T) = Z Z Onina (V, T)2Y1 252

NI>0N2>0
or, with a slightly simplified writing:

E(, 2,V T) = Y Oyine(V, DAY 22
N1,N2>0

Oninz 18 the canonical partition function of the system for the number of particles
N, and N,, and 4,, 4, the absolute activities:
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Ay = VAT g = /AT

The function = can be also written as:

2,40,V T) =1+ Z Oy (V, TV 22
NI N2>1

(This writing is strictly equivalent to the previous one). By expanding in series with
respect to 4; and A,, it becomes:

Z=1+40,04 + 0043+ Qi + 010004143 + Qpods + - (35.1)

Symbols Q1¢, Qo1, respectively, represent the canonical partition functions of the
systems made up by only one molecule 1 and by zero molecule 2 on one hand and
by zero molecule 1 and by one molecule of 2 on the other.

As previously, one defines the activities z; and z, of species 1 and 2 by the
expressions:

21 = Q010h/V and 2 = QyA/V (35.2)

As in the case of only one gas, z; and z, tend toward p; and p, when the latter
ones tend toward zero. This assertion is justified by the series development in series
of In = where E is given by expression (35.1).

Let us replace 4, and 1, by their expressions in z; and z, (35.2), we obtain:

E=1+ 0,(V/Q)z1 +0n(V/Qn) 2z + on(V/Qm)zZ%
+ 010001 (V/010)(V/Q01) 2122 + Q0p(V/Q0y )53 + -+

Let us set up the general expression:

Onina VM2 /O Q6 = Zniwa /N1 IN2! (35.3)
The Zy;n> are the configuration integrals.
We obtain:
E=14Vz + Vo + %Zaozi +Znzniza + % Znzy + - (35.4)

It appears the numeral 2 in the denominator of some terms. Its presence results from
the definition of Zyno.
For the whole system,

InE = pV /kT



35.1 Activity of Both Gases 393

By expanding in series In = stemming from (35.4), we obtain:

pV/kT = (VZI +Vzp + 1/22202%-I-ZnZlZz-i-l/zZozZ%—l--“)

- (V21 + VZZ + 1/22202% +2112122 + 1/22022% + - -)2 /2
and by truncating the development by limiting it to the terms up to the degree two:

pV/KT =Vzy +Vzy +1/2Z 21 — (V2/2) 21 + (Z11/V) 2122 — V212
+1/2Zpz — (V?/2) 3

whence:

p/kT =1 —|—22 —|— (220/2‘/ — V/Z) Z% —|- (le/V — V) Z1Zp
+ (Zp/2V =V )2) 23 (35.5)

which can be written after introduction of the intermediary coefficients b;;:
p//{T =n1+2+ bzo(T)Z% + bll(T)lez + boz(T) Z% + - (35.6)

This expression is analogous to the relation (34.16) of the preceding chapter. The
comparison of (35.5) and (35.6) permits to express the b;; coefficients as a function
of the configuration integrals Z;;.

As previously, it is possible to relate the virial coefficients to the configuration
integrals and to the different parameters after derivation.

In this case, the virial equation is:

p/kT = py + py + Bao(T)pt + B11(T)p1py + Boops + -+

The reasoning which leads to this relation is the same as previously. It consists in,
successively, expressing p; and p, as a function of z; and z, through the coefficients
b;; and bj;, then, in expressing z; and z; as a function of p; and p, and, finally, in
setting up an expression of p/kT as a function of the found relations and in
comparing it to the virial equation.

The relation:

Ny = 2,(0InE/04;)
remains valid. Given the definition of the activity z;, we obtain:

Ny = (V/Qi0)z1 [81“5/(V/Q10)821]V,T,22
N, =

Zl(alnf/azl)v,r,zz


http://dx.doi.org/10.1007/978-3-319-46401-5_34

394 35 Activities of Gases in a Mixture of Imperfect Gases

The reasoning leading to the expression (34.23) of the preceding chapter remains
also valid. As a result (with pr=N;/Vie. = ;Tl):

P1 =12 [a(P/kT)/aZI]T,v,zz
According to (35.5):

[a(p/kT)/aZ]}T’v’ZZ =1 + 2(220/2V — V/Z)Z] + (ZH/V — V)Zz + -
[0(p/kT) /021y y a =1+ 2 brz1 +b1iza + -

and

p1=11 + 2bxyz} +byziza + -
pr=1 + 2bpz} 4+ buzizy + -
The expressions z; as a function of p; and z; as a function of p, are found by putting
down:
z1=py+ap; + -
=p+anp; + -
By injecting the two latter expressions into the two preceding ones and by identi-
fying the coefficients of the terms in p; and p, of the same degree, we find:
z1=py — 2bup} — bupipy +---
=py — 2bpps — bupipy + -
These two relations immediately provide us with the expressions of the
corresponding activity coefficients y; = z;/p,and y, = z2/p,.
From another standpoint, by putting back these expressions of z; and z, into

(35.6) and by comparing the obtained expression with that of the virial, we obtain
the “statistical” expressions of the coefficients of the latter. Hence, we obtain:

Byy = —by Bii=—-bn Bp = —by

It is significant to notice that the coefficients B,o and B, are purely and simply the
second order coefficients of the virial expansion of each of the pure gas. However,
the coefficient By, is new. It depends on the properties of the two different particles
in the same volume V. It is given by the expression:

By=—1/V(Z —V?)
Bii=— fooc exp[—Uy1(r)/kT — 1]4znr*dr

Uy, is the intermolecular potential between a molecule of each type.
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In the particular case in which there is a mixture of two gases constituted by
spherical particles (gases without any internal structure), the term Zy, present in
the expression below:

Oniva = Znivz/ (N1IN21ATV ASY?)

is one of the configuration integrals of the system, defined by the expression:

ZN1N2 = J exp[— UNlNz/kT]d{Nl}d{Nz}
\4

where d{N;} means dr;...dry; and so forth .... so that we can write in an
equivalent manner:

ZN1N2 = JVeXp[—UNlNz/kT]d{Rl }d{Rz}

35.2 Chemical Potentials of Both Components
as a Function of Their Partial Pressure

It is interesting to express the chemical potential of each of the two components of
the mixture. Besides, these expressions will be handled in the case of diluted
solutions (viz. Chap. 38). Let us only reason on the compound 1 (the reasoning is
quite identical for the compound 2). According to relations (35.2), we can write:

pr=Qrhi/V
since for a very weak density number p; tends toward z;. Hence, we can write:
Ni/V = Qh/V

Owing to the perfect gas law (applied at the molecular level), obligatorily satisfied,
once we have admitted the equivalence activity—concentration, we can write:

pV = N,kT
p/kT = QpA/V

where k is the Boltzmann’s constant. From another standpoint, according to the
properties of the grand ensemble (viz. Chap. 24),

pa—)
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As a result, after the handling of the last two relations:

(V/0io) (p/kT) = eH1/kT
wi = kTIn[V/(KTQo)] + KTlnp, (35.7)

In the same manner, we would find:
U, = kTln[V/(kTQp,)] + kTlnp, (35.8)

The factors kT In[V/(kTQ ()] or kT In[V/(kTQq;)] represent the corresponding stan-
dard potentials according to the meaning of classical thermodynamics. These
expressions of standard potentials are only accurate in the eventuality of the species
concentrations being indirectly expressed in terms of pressures. It is significant to
recall that when the latter ones are expressed in terms of density numbers, these
quantities do not exhibit the same value.

Besides, the following reasoning permits to calculate the standard potential of a
species according to the adopted type of “concentration” and that by starting from
another kind of “concentration.”

Let us, for example, reason with compound 2. According to relation (35.8), the
chemical potential y, may be written:

Uy = — kTInkT + kT InV/Qq; + kTlnp,

From another standpoint, we can explicit the chemical potential as a function of the
activity. Now, let us take the example of compound 1. We know (viz. paragraph 2)
that p; =Q;041/V. In very dilute solution, we can assimilate p; and z;, and by
expressing 4;, we obtain:

U =kTlnV/Qy + kTlnz,
and likewise:
U, =kTlnV/Qy, + kTlnz,
In this case, the standard potential becomes:
Mg(z) = kTIn(V/Qy,)

The chemical potential u, being obligatory the same, we can deduce from the
preceding result that:

W(p) = ud(z) — kTInkT (35.9)



35.2 Chemical Potentials of Both Components as a Function of Their Partial Pressure

Besides, this result may be directly found by using the perfect gas law, i.e.:

pV = NkT
p = pkT
Inp = InkT + Inp

In sufficiently dilute solution z — p, whence:

Inp = InkT + Inz

397



Chapter 36
Chemical Equilibrium Between Gases
and Statistical Thermodynamics

Abstract The chapter mentions an overview of the study of the chemical equilib-
rium from the standpoint of statistical thermodynamics. This subject is quite
evidently of importance since equilibrium constants between gases (and also
between species in solutions) are expressed in activity or fugacity terms once
they do not exhibit an ideal behavior.

After a brief recall of the equilibrium condition in classical thermodynamics,
several examples of chemical equilibria are examined from the viewpoint of
statistical thermodynamics. Finally, the case of equilibria between imperfect
gases is dealt with. It is in this context that activities and fugacities play an
important part. From the developments of the chapter, it appears that the thermo-
dynamic equilibrium constants are only function of the partition functions of the
species involved in the equilibrium together with the stoichiometry of the reaction.
The described theory is carried out within the framework of the canonical
ensemble.

Keywords Chemical equilibria between gases and statistical thermodynamics ¢
Partition function  Equilibrium constants and molecular partition functions e
Absolute activities * Equilibrium constants and partition functions ¢ Equilibrium
constants expressed in activities and in concentrations

In this chapter, we give an overview of the study of the chemical equilibrium from
the standpoint of statistical thermodynamics. This subject is quite evidently of
importance since equilibrium constants between gases (and also between species
in solutions) are expressed in activity or fugacity terms once they do not exhibit an
ideal behavior.

After a brief recall of the equilibrium condition in classical thermodynamics, we
study several examples of chemical equilibria from the viewpoint of statistical
thermodynamics. Finally, we deal with the case of equilibria between imperfect
gases. It is in this case that activities and fugacities play their part.
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36.1 Some Recalls: Chemical Equilibria and Classical
Thermodynamics

Let us recall (viz. Chap. 6) that, for example, for a reaction of the kind:
vaA +vgB = vcC (361)

evolving in a closed system at constant pressure and temperature, the equilibrium
condition from the standpoint of classical thermodynamics is given by the follow-
ing expression, which must be satisfied:

VaHa + VBHR = VCHC (36.2)

where the v; are the stoichiometric coefficients and the y; the chemical potentials,
once the chemical equilibrium is reached. Let us also recall that this condition is
general. Not only does it apply to ideal (or not) gases but also it applies to all types
of chemical equilibria whether they occur between gases or not. It is a consequence
of the second principle of thermodynamics.

36.2 Equilibrium Constants and Molecular Partition
Functions of the Reactants and Products: Case of a
Mixture of Ideal Gases

Let us consider the case of the reaction (36.1) in which the reactants and products A,
B, and C are perfect gases. In order to treat the problem of this equilibrium from the
statistical standpoint, we must relate the chemical potentials appearing in relation
(36.2) to the partition function Q of the whole system and, through it, to the
molecular partition functions ¢ of every reactant and product participating to the
equilibrium (viz. Chap. 26).

The first point we must take into account is that since the gases are perfect, their
behaviors are independent from each other. They are as if they were alone in the
container. This point is very important. Let us anticipate that is following by
asserting that this property differentiates them from imperfect gases. More specif-
ically, in the case of perfect gases, it is not fruitful to introduce the notions of
activity and fugacity in order to express the equilibrium constants.

(At this point of the reasoning, the ability to express the equilibrium constants as
a function of the activities and fugacities under an analogous form as in the case of
equilibria between perfect gases probably constitutes the major practical interest of
the introduction of the notions of activity and of fugacity.)

We know that when the gas (monoatomic, diatomic, or polyatomic) is alone, the
partition function of the system Q can be written (¢ being the molecular partition
function and N the number of molecules) (viz. Chap. 26):
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O(N,V,T) = q(V,T)"/N!

Let us also recall that according to the fact the gas is monoatomic or polyatomic,
g may be (or not) a composite function. For a mixture of two perfect gases 1 and
2 (and hence independent), the canonical partition function of the system is given
by the general relation:

O(N1,N2,V,T) = ql(v,T)N‘/Nll} [qz(V,T)Nz/Ngl (36.3)

N, and N, are the numbers of moles of 1 and 2. The product of the molecular
partition functions must be considered because each of all the levels of energy of
molecule 2 can be associated with every level of molecule 1, since the gases are
independent. Let us insist on the fact that the partition function Q(N,N,,V,T) is
that of the system composed by N; molecules of 1 and by N, molecules of 2.

The relation between the chemical potentials of the species participating to the
equilibrium and the system partition function is that very general already seen (viz.
Chap. 26):

ui = kT (0nQ(N:,N;, T, V) /ON:) (36:4)

T,V,Nj (] 7é l)
The calculation of y; and u, by starting from (36.3) by taking into account (36.4)
easily leads to the following expressions (after the use of the Stirling’s
approximation):

iy = —kTinlg, (V. T)/N\] and , = —kTing,(V.T)/N2]  (36.5)

Hence, we deduce that the chemical potential of each of the gas is the same as it
would be alone, provided, of course, that the mixture behaves “ideally.”

Let us apply to the reaction (36.1) the equilibrium condition (36.2) while taking
into account expressions (36.5) permitting the calculation of the different chemical
potentials, taking granted the fact that the canonical partition function of the system
O(Na,Ng,Nc, T, V) is then given by the following expression:

O(NaNa.Ne. T, V) = [ga(T V)" INAl| |aw(T. V)™ /Na!] x [gc(T, V)YC/Nc!
We obtain:
NEINL NG = a8 [aay (36.6)
N¢, N, and Ny are the numbers of molecules of C, A, and B at equilibrium.

The expression (36.6) can be differently written by introducing the density
numbers p of the species. It is an easy task since the number of density is defined
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as being the ratio of a number of molecules of a species and of the volume V of the
system:

pi =Ni/V

By dividing all the terms of expression (36.6) by V brought to the corresponding
power, we obtain:

pE o P = (ac/V)' ) (aa/V)™ - (a/V)"® (36.7)

An important point to highlight is that the molecular partition functions ¢ are equal
to the volume V of the system multiplied by a function which only depends on the
temperature, since they are of the type ¢ =V <f(T). We have seen, indeed, (viz.
Chap. 26) that:

q(V,T) =V (2zmkT/ h2)3/ ? (perfect gas monoatomic gas)

3/2

q(V,T) = V[2z(my + my)kT/h*] (perfect diatomic gas)

3/2
q(V,T) =V |2z (Z m,-) /kT/hZ] (perfect polyatomic gas)

As a result, whatever the gas (monoatomic or polyatomic) is, the right member
of the expression (36.7) only depends on the temperature. Hence, we can write:

PP i = K(T) (36.8)

Therefore, the mass action law is confirmed on the bases of statistical
thermodynamics.

36.3 A Simple Example: A Dimerization Equilibrium

As an example, let us consider the following equilibrium of dimerization at constant
volume and temperature:

A=2B

Contrary to the preceding problem in which we wanted to relate the equilibrium
constant value to those of the numbers moles existing at equilibrium, our present
goal, here, is to obtain the numbers of moles of A and B once the equilibrium is
reached, with the constraint that the initial matter must be conserved.
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This constraint is explicited by the equality:

2Na +Ng =N (N : constant)

Let N} and N} be the number of molecules A and B initially present in a
container of volume V at the temperature 7. From the experimental viewpoint,
the obtaining of the equilibrium at constant volume and temperature can be
obtained, for example, by addition of a catalysor, whereas, initially, the mixture
was frozen to the number of moles N and N} such as:

NS +N§ =N

The partition function of the system in the initial state Q(N%, N3, V,T) is given,
as we have seen it previously, by the expression:

O(NJ.NS,V,T) =g \* /Nyl 43" /Np! (36.9)

According to considerations of thermodynamics, we know that the equilibrium
is reached when the Helmholtz energy A = —kTInQ of the whole system is
minimized, i.e., when the function Q is maximal. Hence, the problem is to search
for the number of moles N, maximizing Q, the following constraint:

2N, +Ng =N

being obligatorily satisfied. It is quite evident that it is not necessary to separately
search for the value N} since the mole numbers N}, and Ny are related to by the
preceding expression. Hence, to solve the problem, it is sufficient to set up:

(aan/aNA)N,V,T =0
It is a “mathematical fact” that the function Q is then maximal. We obtain:
Ng /Ny = a3/qa

This result is perfectly analogous to that previously obtained. The equilibrium
constant is given by the expression:

K(T) = pg/pa

Let us highlight the fact that the value of the canonical partition function regarded
in this example Q(N o, Ngo, V, T) is imposed by the number of moles of species A
and through it by that of B. Recall, indeed (viz. Chap. 21), that the different
energetic states allowed by quantum mechanics are a function of the volume
V and of the number of moles of the system. In the present case, the study is
performed with the number of moles N5°, Ng°, and N which are certainly arbitrary
but fixed numbers.
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36.4 Chemical Equilibrium Between Imperfect Gases

When one studies the equilibria between imperfect gases, the mass action law, as
we shall see it now, is expressed in terms of activities and, no longer, in terms of
density numbers. In order to study such a case, let us again consider the case of a
dimerization equilibrium:

A =2B
The equilibrium condition remains:
Ha = 2up
or, in terms of absolute activities:
Ia =13 (36.10)

since the chemical potential of a species is related to its absolute activity through
the relation A = e*/*T. We know that when the density numbers are sufficiently
weak, the behavior of the species tends to be ideal and we have seen that (viz. the
above paragraph) the equilibrium constant expresses as a function of them:

K(T) = pg/pa

with:

K(T) = (Qui/V)/(Q10/V)

the indices 01 and 10, respectively, being referred to compounds B and A. Symbols
010 and Qg,, respectively, are related to the canonical partition functions of systems
of only 1 molecule of 1 and of 0 molecule 2 on one hand and of 0 molecule of 1 and
of 1 molecule of 2 on the other.

When the behavior is no longer perfect, the chemical potential must be
expressed as a function of the activity of the species and not as a function of the
density number as before in order to keep its significance of the tendency of the
species to change its thermodynamic state. Finally, the chemical potential when it is
related to the activity of a species, quantifies its tendency to react according to
physical or chemical transformations while taking into account its interactions with
the other species of the medium.

The equilibrium constant is expressed as a function of the activities with the help
of the following reasoning. The equilibrium condition (36.10) expressed as a
function of the absolute activities remains valid. From another standpoint, by
definition of the activity z in statistical thermodynamics:
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Aan=Vza/0,p and g = Vzg/Qy
By applying relation (36.10), we immediately obtain:
73V2/05 = 2aV/Q1
and since the ratios Q/V are only function of temperature:
K(T) = z3/2a

It can also be written, by taking into account the activity coefficients yg and ya
(viz. the following chapter):

K(T) = para/para
They are given by the expressions (viz. the preceding chapter):
A = pa — 2boopx — buipgpa + -
As a result:

K(T) = (pﬁ/ﬂA)[lJr(bn —4by)ps + ]

The term in square brackets expresses the deflection with respect to the “ideality.”
Actually, we notice that:

K(T) = (ﬂﬁ/pA)
when pg and p, tend toward zero.

The definition of the formal, or conditional constant K'(T) used, once the
behaviors are no longer ideal, by the expression:

K'(T) = (ﬂﬁ/pA)

differs from the thermodynamic constant K(T') by the term located between the
square brackets. It varies with pg and pa.



Chapter 37
Activity Coefficients of Gases

Abstract It is evident that the notion of activity coefficient is of utmost impor-
tance, because of the fact that expressed in general terms, the activity of a species is
equal to its concentration multiplied by its activity coefficient. Given the link
between activities and activity coefficients, it clearly happens that a thorough
study of the latter ones may lead to a better knowledge of the activities, but, of
course, indirectly.

Reasonings mentioned in the chapter show that the activity coefficient of a gas
can be expressed in terms of the virial coefficients, parameters which are, in
principle, experimentally accessible. They are based on the fact that there exists a
well-defined series development linking the activity of a compound and its density
(concentration). As a result of this fact, a mathematical expression of the
corresponding activity is immediately found.

Keywords Activity coefficients of gases ¢ Activity coefficient on the molecular
level « Activity coefficient of a real gas » Gibbs—Duhem relation

It is evident that the notion of activity coefficient is of utmost importance for our
purpose, because of the fact that expressed in general terms, the activity of a species
is equal to its concentration multiplied by its activity coefficient. A direct study of
the activity with the help of considerations of statistical thermodynamics has
already been mentioned, here, in the case of the gases. Given the link between
activities and activity coefficients, it clearly happens that a thorough study of the
latter ones may provide us with a better knowledge of the activities, but this time, of
course, indirectly.

We shall see that the activity coefficient of a gas may be expressed in terms of
virial coefficients, parameters which are, in principle, experimentally accessible.

37.1 The Activity Coefficient at the Molecular Level

We have already mentioned that two theories somewhat explicit the general
significance of an activity coefficient. It seems interesting for us to briefly recall
the conclusions they lead to.
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* A first expression of the chemical potential of the component of a system, in
statistical thermodynamics, is the relation (37.1) (viz. Chap. 32):

exp(—u/kT) = [ /ANDWN + D] [v... [exp(—BUn+1)
xdRy...dRy/q" /A*NN! [v... [exp(—BUy)dR, ...dRy
(37.1)

where the zero indice index concerns only one particle added into a very great
quantity (in principle an infinity) of other molecules of the system, a process which
permits to define the chemical potential. This relation expresses the chemical
potential of the compound within the framework of the canonical ensemble
(N, T, V). Let us recall that given the symbolism of this expression, the gas chosen
in this example possesses an internal structure (occurrence of the parameter ¢ in the
expression) and, moreover, that its configuration only needs the knowledge of the
location of each particle (vectors R) in order to be specified.

Relation (37.1) is an expression of the chemical potential. It is proved of great

use for the study of the activity coefficient notion. It is important to notice that it

applies to every fluid.

We have seen that by adopting the hypothesis of the “pairwise additivity”,

expression (37.1) becomes:

exp(—u/KT) = [qV /A*N](exp(~B/kT)) (37.2)
whence:
i = kTlnpA® /q — kTIn(exp(—B/kT)) (37.3)
B is given by the expression:

B=> URyR) 1<j<N
J

B is the sum of interaction energies, from one particle to the other one, between the

added particle (particle zero) and all the other constituting the initial system. The

factor (exp(—B/kT)) is the average value of the quantity exp[—pB] with (= 1/kT).
We have seen that the second term of the right member of (37.3) represents the
contribution to the value of the chemical potential of the interactions between
molecules and where y is the activity coefficient, empirically introduced by
Lewis in order to take into account the interactions between molecules, is related
to the factor B by

y = 1/{exp(—B/kT)) (37.4)
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The relation (37.3) is, like relation (37.1), very significant. It is important to
notice that it also applies to every fluid.
¢ A second expression stemming from Kirkwood’s theory (viz. Chap. 32) provides
us with an algebraic expression in which intervenes the function g(R, &) permit-
ting the calculation of y:
0o
0

1
i =kTln(pA’q™") — pJ ng U(R)g(R, &)4nR*dR
0
The comparison of the latter with (37.3), indeed, leads to:

1 00
kTlny = pL dgjo U(R)g(R, &)4nR*dR (37.5)

The latter relation seems to attribute a meaning to the activity coefficient which is
different from that coming from the previous one. Actually, this is not the case since
the Kirkwood’s theory involves the coupling of a particle with the other ones of the
system, i.e., takes into account their mutual interactions.
Both theories stemming from statistical thermodynamics demonstrate that the
activity coefficients permit to take into account the interactions between the
particles of a system, i.e., finally, the differences of behavior with “ideality.”
Although these considerations have been developed in Chap. 32 in the case of
gases, they are also valid for liquids and solutions.
We shall see (Chaps. 42, 43 and 44) that the Kirkwood-Buff’s theory brings
some further details concerning the meaning of activity coefficients in the case
of mixtures and solutions.

37.2 Expression of the Activity Coefficient of a Real Gas

The relation (34.25) of Chap. 34:
_ 2 3 .
Z2=p +ap” + azp’ + - - -(relation (34.25) — Chap. 34)

permits to immediately get an expression of the activity coefficient of the gas since
Co
y=z/p,i.e.:

y=1+ap+ayp* + - (37.6)

According to the study mentioned in Chap. 34, it is evident that the activity
coefficient takes into account the interactions between the different molecules of

"The letter y is used here as being a general symbol of an activity coefficient.
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gas through the coefficients a,, as. . .a,, given the relations existing between the a,,
and the coefficients b; on one hand and those existing between the b; and the
configuration integrals Zy on the other hand and, finally, owing to the meaning of
the latter ones.

We notice that when the density number tends toward zero, the activity coeffi-
cient tends toward 1 and the activity value tends toward the corresponding value p.
It is a familiar result in thermodynamics. However, the form of relation (37.6) is
not. It is usual within the framework of thermodynamics, indeed, to handle the
activity coefficient under the form of its logarithm, in relation with the chemical
potential of the species. The logarithmic expression is found by starting from the
two relations just below, of definition of the activity:

z=04/V and yp=z

By identifying both values of z and replacing in the obtained equality the absolute
activity by its definition and, finally, taking its logarithm, we obtain:

u=kTlnp + kTlny + kTIn(V/Q,) (37.7)
the following writing of which:
u=kI'n(V/Q,) + kTlnyp

is very often encountered in pure thermodynamics.

y is a function of p and of the temperature since the coefficients a, of the
expression (37.6) depend on the configuration integrals. The term V/Q, as for it,
is only function of the temperature since Q; depends on the temperature and is
proportional to the volume V.

Evidently, it is interesting to relate the activity coefficient y to the coefficients B,,
of the virial which are parameters in principle experimentally accessible. In order to
set up this relation, let us start from the purely thermodynamic one:

d(u/kT) = v(dp/kT) (37.8)
where v is the volume occupied by one molecule of gas. It is convenient to report
the volume of one mole into this expression since the chemical potential is a molar
property. Relation (37.8) results from:

du = vdp

This equality, itself, stems from the Gibbs—Duhem’s relation:

SdT — VdP + > " midy; = 0
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applying to the case of only one component at constant temperature. V is the molar
volume. N,/V is the density number p since v = 1/p and by using the mathematical
identity:
(dp/kT) = [0(p/kT)/Opldp
we obtain:
v(dp/KT) = 1/pld (p/KT)/Dp)dp (37.9)
Therefore:
d(u/kT) = 1/p[d(p/kT)/pldp (37.10)
Using relation (37.10) and the expression of the virial:
p/kT = p + Ba(T)p* + B3(T)p* + - -- (37.11)
it is easy to express the function u/kT. We obtain:
d(u/kT) = 1/p +2B>(T) +3B3(T)p + - - -
ie.:
u/kT = integration constant + Inp + 2Bop + 3/2B3p® + - - - (37.12)

The comparison of the expressions (37.7) and (37.12) for p — 0 shows that the
integration constant is:

integration constant = In(V/Q,)
and that:
Iny = 2Byp +3/2B3p* + -

or, equivalently, by using a recurrence formula (where £ is an indice):

Iy = =3 A (T)p (37.13)

k>1
P 1s an intermediary parameter defined by:
P = —l(k+1) /KB (37.14)

In principle, In y can be, therefore, expressed and calculated through the expansion
in series (37.14), as a function of the virial coefficients By, ;.



Chapter 38

Activities and Concentrations

of Nonelectrolytes in Dilute Liquid Solutions
Study of the Osmotic Pressure

Abstract The chapter mentions the study of the osmotic pressure of dilute liquid
solutions of nonelectrolytes. The study is performed within the framework of the
grand ensemble. Through a reasoning analogous to that followed for the study of
the activities of gases, a mathematical relation between the activity of the solute and
its density number is set up in the case of a binary solution solute—solvent. It is valid
for dilute solutions. In its expression intervene parameters related to the virial
coefficients, so-called coefficients of the osmotic pressure virial. The theory is
due to McMillan—Mayer. It entails the introduction of a new activity coefficient.
The developments constituting the theory take into account not only the interactions
solute—solute but also the solute—solvent ones and those exerting between solvent
molecules.

The reasoning developed here constitutes a model for that followed later devoted
to the study of solutions at constant temperature and pressure.

Keywords Activities and concentrations (nonelectrolytes dilute solutions) ¢
Osmotic pressure ¢ Solute activity « McMillan—-Mayer’s theory * Osmotic activity
coefficient ¢ Osmotic equilibrium ¢ Osmotic pressure (new activity type) o
Fundamental aspects of McMillan—-Mayer’s theory « Grand ensemble

Here, we study the osmotic pressure of dilute liquid solutions of nonelectrolytes.
This study is performed within the framework of the grand ensemble. Through a
reasoning analogous to that followed for the study of the activities of gases, we set
up a mathematical relation between the activity of the solute and its density number
in the case of a binary solution solute—solvent. It is valid for dilute solutions. In its
expression intervene parameters related to the virial coefficients so-called coeffi-
cients of the osmotic pressure virial. The theory is due to McMillan—-Mayer. It
entails the introduction of a new activity coefficient. The developments constituting
the theory take into account not only the interactions solute—solute but also the
solute—solvent ones and those exerting between solvent molecules.

The reasoning developed here constitutes a model for that followed later devoted
to the study of solutions at constant temperature and pressure.
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38.1 The Main Difference Between the Cases of a Mixture
of Real Gases and of Solutions

It is evident that even in the extremal case of a highly dilute solution, the interac-
tions between the solute and the solvent still remain. It is not the case for a mixture
of real gases, the density numbers of which are very weak. In this case, there
remains no longer interactions between the gas particles. Then, their chemical
potential only depends on their density number and on the temperature. Gases
are, then, ideal.

In the present case, even when the solution is very dilute, three types of
interactions must be still considered, the interactions solute—solute (which tend to
vanish, when the solutions are all the more diluted), the solute—solvent and the
solvent—solvent ones.

38.2 Osmotic Equilibrium

Figure 8.3 (viz. Chap. 8) shows the studied osmotic equilibrium. The compartment
called the “outside compartment” contains the pure solvent 1 the chemical potential
of which is y; and its temperature is T. The values y; and T fix its pressure p. The
“inside compartment” is also at the temperature 7. Initially, before any addition of
solute, it is at the same pressure p as the “outside compartment” and the chemical
potential of the solvent is also y;. Both compartments are separated by a membrane
through which the solvent (and only the solvent) can permeate. We know that the
addition of the solute 2 into the “inside compartment” increases its pressure which
takes the value p + 7, & varying with the concentration of the solute in the com-
partment. z is the osmotic pressure of the solution. Actually, adding solute
2 changes the chemical potential of solvent 1 in the “inside compartment.” How-
ever, at the equilibrium concerning the solvent, its chemical potential must be the
same in both compartments since it can freely move between both phases. The
equilibrium is restored by a change of the pressure exerting on the “inside com-
partment.” In order to reach it, an extra pressure, equal to the osmotic pressure, must
be applied on it.

38.3 Some Results Stemming from the McMillan-Mayer’s
Theory

In brief, the McMillan—Mayer’s theory leads to the following results:

— The expression just below which gives the osmotic pressure of a binary solution
(solute—solvent) is:
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n/kT = py + By*(T, 11)py” + B3*(T, Ay )py” + -+ (38.1)

n is the osmotic pressure, 4, the absolute activity of the solvent, p, the number
density of the solute, B, (T, A)), B5'(T, ), ... the coefficients of the series
development called the virial coefficients of the virial of the osmotic pressure.
Hence, the McMillan—-Mayer’s theory expresses the osmotic pressure as a function
of the density number p, of the solute.
Expression (38.1) shows a great formal analogy with the series development
expressing the pressure of a real gas:

p/KT = p +By(T)p* + B3 (T)p* + - --

However, there exists a very significant difference between the coefficients Bj*
(T, A1) and B{(T'). The former ones depend on both temperature and absolute
activity absolute of the solvent, whereas the latter ones only depend on
temperature.

— The theory also leads to the definition of a new type of activity d,. It is related to
the density number p, by a relation of the type:

6 = Py + m2p22 + I713/)23 + .- (382)

This relation only applies to the sufficiently dilute solutions. It is analogous to that
obtained in the case of the activity of a gas (viz. Chap. 34):

z=aiptayp’ +ayp’ 4
In the expression (38.2), the coefficients m,, m3 are given by the expressions:
my= —2by, my=8b* — 3b;,
where the b; are related to the coefficients B; of the virial. We must notice that the
coefficients m,, ms, ...m;. ... depend only on the coefficients b; where i cannot be
larger than j. Hence, we find:

8y = py + (=2b2)py* 4 (8by — 3b3)py° + - -

The obtained expressions permit to explicit the activity coefficients and, hence,
the activities in terms of statistical thermodynamics.

38.4 Fundamental Aspects of the McMillan-Mayer’s

The McMillan—Mayer’s theory shows that as in the case of the coefficients B,(T) of
real gases, those Bj*(T, A1) exhibit the interactions between each other of j particles
of solute (immersed in the solvent). For the successive values (2, 3, ...) of the
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indices j of the coefficients B j*(T, A1), they respectively are the interactions between
2,3,j, ... particles of solute.

Another essential feature characterizing the McMillan—Mayer’s theory is that
the solvent 1 is considered as being a continuous medium of absolute activity ;.
Regarding the solvent as being a continuous medium of constant absolute activity
constitutes an approximate consideration of the interactions solvent—solvent.
Owing to this fact, this theory is considered as being a theory of solutions at the
first level. (Another example of theory of the first same level is that of Debye—
Hiickel—viz. Chap. 46. There exist more elaborate theories than the latter ones
which take into account more realistic models of the interactions solvent—solvent.)

38.5 Some Features of the McMillan-Mayer’ Theory

¢ The species which are considered in the study can be monoatomic or polyatomic
ones as well. The reasoning at the base of the theory is analogous to that treating
the case of real gases. It is described in the Appendices L, M, and N.

» It is founded on the handling of the grand canonical partition function. In order
to obtain the relation being searched for, we proceed to a series expansion of the
partition function as a function of the solute activity. The handled partition
function is given by the expression (viz. Chap. 35):

E(T,V, i, 4) = > > O(T,V,Ny, Ny )i 4 (38.3)
N1>0N2>0

where Q(T, V, Ny, N,) are the canonical partition functions corresponding to all the

possible arrangements of the number of solvent molecules N; and of solute N,

evidently variable since the study is located within the framework of the grand

ensemble.

» The osmotic pressure z is introduced through the relation characteristic of the
great ensemble:

— QPV/AT

(]

P and V being the pressure and the volume of the system. In this expression, P is
the total pressure exerting on the inside compartment, once the osmotic equilib-
rium is reached:

P=p+=x

p being the pressure over the outside compartment. Moreover let us recall that this
equality is valid only for the solutions sufficiently dilute (viz. Chaps. 8, 13 and 14).
This entails that this theory only applies to this type of solutions.
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¢ The reasoning leading to the relations being searched for, notably, introduces the
following ratio ¥/¥,. ¥, and ¥, are canonical partition functions constituting
(with others) the grand canonical ensemble. They are the starting-points of the
theory (see Appendices L and M). As we shall see (see Appendix L), the ratio
¥,/¥, appears as being the mark of the interaction energy of one solute
molecule with the pure solvent. The occurrence of the ratio ¥,/¥, in the
calculations below permits to specify the physical meaning of the new kind of
activity 6, (see below).

* The reasoning also uses the statistical activities z; and z, of the solute and the
solvent as in the case of gases. From the standpoint of their definitions, they
exactly correspond to the general one introduced by Lewis which is from purely
thermodynamic origin, i.e.:

z; — p; where p; — 0 (38.4)
—pp pp—0 (38.5)

In statistical thermodynamics, they are expressed by the relations (38.6):
71 =010h/V and 2z =Qy )V (38.6)

Q10 Qo are the canonical partition functions of the system only containing respec-

tively one molecule of solvent and no molecule of solute on one hand and the

converse on the other. 1; and 1, are the absolute activities of both components and

V is the volume of the system.

¢ Performing it according to the same process as that followed in the case of real
gases, however, entails the introduction of new parameters. One of them &,
proves to be a new kind of activity and another, y,°, to be a new activity
coefficient.

*The activity of a new type J, of the solute has the properties to be proportional
to z, and to tend toward p, when p, tends toward zero, since y; and T are fixed in the
bulk solution by the conditions of the osmotic equilibrium. Hence, the activity &, is
defined as follows:

6 xz; and & — p, where p, —0 (38.7)

The part played by the new activity d, is to take into account the interaction
between a molecule of solute and the whole of solvent molecules (viz. Fig. 38.1).

The theory also introduces the term y,°, which has the meaning of an activity
coefficient. Actually, z, does not tend toward p, when p, tends toward zero as in the
case of a real gas, but toward the value of the term yzopz. This is due to the fact that,
in this case, the activity z, must take into account the interaction solute—solvent
when p, — 0. This possibility, of course, does not exist in the case of gases. We can
symbolize this behavior by:
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Fig. 38.1 Relations between the activities z,, §,, and p,
3 — Vzopz pr—0 (38.8)

We have mentioned that, according to the manner through which it has been
introduced, 8, — p, when p, — 0, as the Lewis’ definition of an activity demands
it. Hence, this property is sufficient to attribute the meaning of an activity to J,, at
least in part.,

Since by virtue of (38.7) 6, — p, when p, — 0, it is judicious to immediately
assert that:

=7 p,—0 (38.9)

where 7,° is a constant at a given temperature. According to what is described
previously concerning the activity coefficients, we can already anticipate the fact
that y,° is the limit value (obtained for an infinite dilution of the solute) of its
activity coefficient y,, defined as every activity coefficient by the expression:

2 =7Y2p2 (38.10)
According to the relations (38.6) and (38.9), we obtain:
Q0ih2/V =76, (38.11)

In the Appendix O, we mention that the activity d, may also be defined by the
following expression, equivalent to the preceding:

8 = MW, /¥PV

This definition permits to introduce the constant y,° in terms of the statistical
functions ¥, and ¥,. According to (38.11) and the latter definition, one, indeed,
deduces:
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7’ = Q015”o/5yl

According to the meaning of the functions ¥, and ¥ (see Appendix N), not only
y,° characterizes the solute, but also depends on the chemical potential of the
solvent y; which is constant in the case of the osmotic equilibrium. Moreover, 7,°
does possess a finite value. y,° depends on the properties of one molecule of solute
in vacuum through Qg;.y,° also depends on the nature of the interaction between
the molecule and the solvent.

According to the relation (38.11), we find:

8 = Qnh/1"V (38.12)

The comparison of the expressions (38.6) of z, and (38.12) of §, permits to better
grasp the meaning of these quantities. Let us recall that O, defines the behavior of
the compound 2 in vacuum, because of its statistical definition. The ratio Qg,/y,°
may be defined as describing the behavior of 2 in the solvent 1. It plays the part of
an actual partition function for one molecule 2 in the volume V filled by the solvent
1, the chemical potential of which is u; at the temperature T. Therefore, we may
regard &, as playing the part of an activity z, adapted to the experimental conditions
under study.

« Another thermodynamic meaning of the constant y,°
The constant 7, is also endowed with another thermodynamic meaning, differ-
ent from that mentioned above, at first glance. The term 1 /yzo, indeed, is nothing
else than the constant of the following equilibrium:

solute in a gas = solute in solution

This result is obtained by considering the ratio:
density number of the compound in infinite dilute solution/density number of the
compound in gaseous infinite dilute phase
It is simply the ratio §,/z, since, in these dilution conditions, the activities are
equal to the density numbers. By replacing 6, and z; by their expressions (38.12)
and (38.5), we obtain:

82/ = (Qua/V12") /Qui 22/ V
ie.:
8/ = (Q01/V72") /Qu /V
Let us symbolize this ratio by K. Hence, we have:

K= 1/720
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K is the constant of the above equilibrium. The numerical value y,° depends on the
affinity of one solute molecule for those of the solvent. This is in agreement with the
preceding result which proved that the numerical value y,” depends on the affinity
of one molecule of solute for those of solvent.

38.6 Obtaining the Relations (38.1) and (38.2)

The problem is to express the osmotic pressure as a function of the number density
p> of the solute. The obtained expression permits to clarify the meaning of the
activity coefficients and hence the activities in terms of statistical thermodynamics.
As we have already mentioned it, the followed reasoning is analogous to that
applied to the case of imperfect gases.

The starting point of the reasoning is the partition function of the grand ensemble
E(T, V, A1, Ap). It is given by the expression (viz. Chap. 35):

E(T,V, k)= > Y O(T,V,Ni, N 1™ (38.13)
NI1>0N2>0

where Q(T, V, Ny, N,) are the canonical partition functions corresponding to all the
possible arrangements of the numbers of moles N; and N,, evidently changing,
since the study is performed within the framework of the grand ensemble. Given the
very general fact that,

E(T,V, A1, 4p) = eV (38.14)

p and V being the pressure and the volume of the system, the general process is the
following. It consists in:

— Introducing the pressure (including or not the osmotic one) present on the system
into the exponential of the right term of the relation (38.14).
— Expanding in series the partition function = as a function of the solute activity
— Equalizing both members
Proceeding in such away permits to (somewhat arbitrarily) distinguish two steps.
— The first step consists in obtaining the relation:

exp(aV/kT) = 1 + > [Zy"(u,,V,T)/N"|5," (38.15)
N>1

where 7 is the osmotic pressure. The analogy with the following relation concerning

an imperfect gas is quasi-perfect (viz. Chap. 34).

— The second step consists in expanding in series the right member of (38.15) after
having set it up under the logarithmic form. The course of the process is quite
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analogous to that followed in the case of real gases (viz. Chap. 34). We obtain,
by limiting ourselves to the term of order 2:

/KT = (Z2," V)6 + 1/2V (25" = Z,2)8% + -+

Setting up:
bi =20V, by=1/2V(2y" — Z,"),
we obtain:
/KT =3 bty (38.16)
jz1

Let us notice that the coefficients b; depend on y; and T.

Concerning the obtaining of the expression relating the osmotic pressure z to the
density number p, entails to express p, as a function of J,. Such a function is
obtained by using the following relation resulting from the properties of the grand
canonical ensemble:

N, = kT(0InE/0py), 1
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Chapter 39

Relation(s) Activity: Concentration

of Nonelectrolytes in Dilute Liquid Solutions
at Constant Pressure and Temperature

Abstract This chapter remains devoted to the study of dilute solutions of non-
electrolytes. It is limited to the study of binary solutions. It exhibits very great
analogies with the previous one. What is mentioned here regards solutions at
constant temperature and pressure in which the changing composition of the solute
is expressed in molalities. The molality scale is that which is the most often used in
physical chemistry in order to express the “concentration” of a solute. The goal of
the study is to obtain a relation between the molality of the solute and its activity.
The mentioned developments are based on a new ensemble, the I” one depending on
the independent variables which are the density number of the solvent, the pressure,
the temperature, and the chemical potential of the solute. The activity of the solute
is now defined in terms of its absolute activity and also in terms of two character-
istic functions of the isothermal isobaric ensemble. These functions take into
account the interactions between the solute and the solvent. The so-defined activity
exhibits the same properties as the Lewis’ one. It is linked to its molality by a well-
defined series development.

Keywords Activities and concentrations of nonelectrolytes (dilute solutions at
constant temperature and pressure) ¢ Molalities scale « Gamma ensemble e
Isothermal isobaric ensemble < Statistical definition of an activity (at constant
temperature and pressure)  Activities molalities relations

This chapter is also devoted to the study of dilute solutions of nonelectrolytes. We
confine ourselves to the study of binary solutions. It shows very great analogies
with the previous one. What is mentioned here regards solutions at constant
temperature and pressure in which the changing composition of the solute is
expressed in molalities. The molality scale is that which is the most often used in
physical chemistry in order to express the “concentration” of a solute. The goal of
the study is to obtain a relation between the molality of the solute and its activity.
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39.1 The Studied Physical Process

The study of the dilute solutions at constant pressure and temperature differs from
the preceding one by the fact that the pressure is constant whereas it was not in the
preceding case. The consequence was the advent of the osmotic pressure. In the
present case, the initial state is constituted by the pure solvent (N; molecules) at
constant temperature and pressure.

N, molecules of solute are then added to the solution while keeping constant
these values. As a result, for the equilibrium to be maintained, the chemical
potential of the solvent u; varies with the number of solute molecules added.

39.2 Study

In this chapter we follow the theory of T.L. Hill (viz. bibliography).

39.2.1 Formalism

From the statistical thermodynamics standpoint, the most appropriate ensemble for
the study of this problem is the ensemble I" depending on the independent variables
Ny, p, T, u, defined by the expression:

—Inl"(Ny,p,T,uy) = Ny, /KT (39.1)

of which the characteristic function is Nu1/kT or G1. G is the Gibbs energy of the
component 1 (solvent) in the system. I” is given by the expression:

[(Ny,p, T, iy) = Y AN>(Ny, p, T)exp[Napy /KT] (39.2)
N2>0
where
ANy = Q(N1,N, V,T)e " /¥ (39.3)
Vv

The function AN, is the function A(p, T, N) already encountered (cf. Chap. 24). Its
expression is:
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AN, = Q(N1,0,V,T)e PV (N, = 0)
+O(N,0,V,, T)e PV (Ny = 0)
4
+ Q(Ny, 1,Vy, T)e VI (N, = 1)
+ONy,1,Va, T)e PV (Ny = 1)
e

i.e., by setting up for:

N2=0 Y ON:,0,V,T) =4
\4

Ny=1 > QN 1,V,T) = A, (39.4)
\%

and since 4, = e PV/*T we obtain:

I=Ag+ A+ AJ3+ A3h3 + - (39.5)

39.2.2 Definition of the Activity

Let us define the activity a, of the solute as being related to its absolute activity 4,
by the expression (39.6). (Notice that the symbolism is no longer z but a. In
principle, according to IUPAC, the accurate symbolism should be a,, in order to
express the fact that the activity is related to the molality through Henry’s law):

ap) = ﬂz(A]/AoNl) (396)

Let us notice that the term A;/AgN; takes into account the interactions between one
solute molecule with the N; molecules of solvent.

By definition, according to Lewis, the activity a, tends toward the molality m,
when the latter tends toward zero:

a, — mp, when mp; — 0 (39.7)

Let us recall (cf. Chap. 1) that the molality m, is related to the number of moles N,
by the expression:

my = N,1000/N1M;
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where M is the molar mass of the solvent expressed in g mol ', The system being
open to the compound 2, we must consider the average number of moles of
compound 2, i.e., N, and write:

mp = ]Tz]OOO/N]M]

For the sake of simplifying the above writing, let us assert that from now on:
my = Ny /Ny
being understood that this is true although the proportionality constant 1000/M is
neglected. The accuracy of the reasoning, however, is not affected by this simpli-
fication. It is already interesting to notice that with this convention on the molality,
the latter slightly differs from the molar fraction x;:
Ny =~ Xp

because only dilute solutions are considered here and then:

Ny, < N

39.2.3 Calculations

Let us replace the absolute activity 4, by the relative one a, in (39.5). We obtain:
I'= A+ Ai(AoN1/A1)ar + Ay (AgN1 /A1)’ a3 + As (AN /A1) a3
or after rearrangement:

/Ao =1+ A1(N1/A)ay + Ay(N1/A)Agd + As(N1/A)’ Alad

(39.8)
Inserting the intermediary variable X, such as:
Xy = ANNYAY'NI/AY
The expression (39.8) becomes:
I/Ag=1+) (Xy/N)a) (39.9)

N>1
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Let us remark in passing that:
X, =N,

The relation (39.9) exhibits a very great similarity with, respectively, the relations
(34.13) and (38.18) of the Chaps. 34 and 38. This justifies the great similarity of the
theoretical treatments according to the respective cases.

What is differing slightly from the two other cases is the following change of
variable. In order to find the relation between the molality of the solute and its
activity in these conditions, let us begin by noticing that according to relations
(39.1) and (39.4), we find:

Nip, (p,T,0) = —kTInA,

ui(p, T, 0) being the chemical potential of the pure solvent. It is interesting, as it is
proved by the following reasoning, to relate the chemical potential of the solvent,
which changes by addition of the solute 2 and which is expressed in terms of
molalities, to the activity a, of the latter. Let us set up the relation (39.10) by
introducing the Gibbs energy p,'(T, p, m»):

ui' (T, p, ma) = uy(p, T, m2) — uy (p, T,0) (39.10)

ui' (T, p,my) is the change in the Gibbs energy of the solvent accompanying the
addition of the solute 2 at the molality m, to itself, pure. The introduction of the
factor u,’ facilitates the handling of the expressions. The value of the chemical
potential of a species, of course, does not depend on the fact that it is expressed as a
function of its activity or of its molality, molarity and so forth. The relation (39.10)
can also be written:

u/(T,p,a2) = py(p,T,a2) + (KT/N1)InAg
and since:
TNy p.Topy) = & VAT
u /KT = —Inl'/N;
we deduce from that:
1y (T, paz) /KT = (1/N))In(I'/Ao) (39.11)

From the standpoint of the pure reasoning, the significant point is that we can
handle the relation (39.9) exactly as we have already done in the case of relations
(34.13) and (34.14) of Chap. 34.
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N = A(0InZ/02), ; (relation (34.22) Chap. 34)
E=1+) (Zy/N)" (relation (34.13) Chap. 34)

N>1

InE=1In

1+ > (Zy/N)Z

N>1

(relation (34.14) Chap. 34)

which applied to the case of imperfect gases and as we have done with the relation
(38.15) of the Chap. 38 devoted to the osmotic pressure:

exp(zV/kT) =1 + Z [Zy(uy,V,T)/N'|8Y  (relation (38.15), Chap. 38)
N>1

Taking into account relations (39.9) and (39.11), we obtain:
In(I'/Ao) = In[l+X1a> + (X2/20)a3 + (X3/3))a3 + -]
and by expanding in series the logarithm, there comes the relation:

In(I'/Ag) = [Xiaz + (X2/2!)d3 + (X3/3V)ad + - --

—1/2[X1a2 + (X2/2)d3 + (X3/3)a3 + - -] (39.12)

Let us set up:

—uy/ (T, p,a2) [kT =" 8(p. T)at} (39.13)

jz1

The identification of the expansion in series (39.12) with (39.13) leads to the
identities:

N1191:X1:N1 (191:1)
2IN 9 = X, — X3
3IN193 = X5 — 3X, X, +2X3

The relations between the molality 7, and the activity a, is found with the aid of
the Gibbs—Duhem relation applied at constant temperature and pressure.

We must, now, successively relate the molality m, to the activity a, and then,
inversely, to relate the activity a, to the molality m,. According to the Gibbs—
Duhem relation at constant temperature and pressure:
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Nidp, + Nydpy = 0
According to (39.10):
du," = du,
Since the term (kT/N)In A, is constant, hence:

Nidu,' +Naydu, =0

du,' + (N2 /N1)dp, =0

du," + mydu, =0

—du," = mydu,

—0py'/0ay = my(Opy/ Oar) (39.14)

and, since very generally
Hy = /lzo + kTlna,
whence:

du,/da; = kT(dIna,/day)
d/l2/d(12 = kT/a2

We obtain:
a[0(—u ' [kT)/0ar)y , = my

Finally, according to (39.13) and the latter relation:

my(p,T,az) = ij()j(p,T) al

=1
In order to determine the relation a, as a function of m,, let us set up:

2 3
ay = romy +rim,; +rom; + -

39.3 Relation Being Searched for

Let us identify the two latter relations. We find, given the fact that 9; =1,
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ro=l, rn=-28%, rn=(893-3%)
and
ay = my —28m3 + (89; —3%3)m; ...

This is the relation between the solute activity and its molality being searched for.
Let us recall that it is established for constant temperature and pressure and that the
molality appearing in this expression is not equal to the usual molality. There is a
multiplicative term between them. As a result, the adopted standard state in this
case is not the usual one.

Remark: One also demonstrates (viz. Appendix O) that the logarithm of the ratio
AnAGY /AN intervening in the term Xy does possess the physical meaning of the
Gibbs energy change accompanying the following process:

Nsystems (N{,N, = 1,p,T) — lsystem (Ny,N, =N,p,T)
+ (N —1) systems (N;,N, =0,p,T)

the N—1 systems being constituted by the pure solvent.
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Chapter 40
Activity Coefficient of a Solute

Abstract The chapter mentions the relations which on one hand link the activity
and the concentration of the solute in the conditions in which an osmotic pressure is
developing and, on the other one, when the solution is maintained at constant
temperature and pressure. In other words, the activity coefficients are focused. It
is known that the activity coefficients of the imperfect gases can be theoretically
related to the virial coefficients (changing with the nature of the gas) which are
purely experimental parameters. For very weak density numbers of the gases, this
result is very interesting since it permits, at least in principle, to forecast the changes
in the value of the activity coefficient and therefore in the changes of the activity
when the density number vary, while, however, keeping a weak value.

Given the fact that the preceding theories, devoted to the osmotic pressure and to
the solutions at constant pressure and temperatures, are very close to that applied to
the real gases, it is not surprising that it is possible to theoretically relate the activity
coefficients of the nonelectrolyte solutes to some experimental parameters. The
reasonings involve the introduction of a new kind of activity applying to the
osmotic equilibrium. The chapter mentions these relations and their setting up.

Keywords Activity coefficient (solute) « Osmotic pressure * Osmotic equilibrium e
New kind of activity coefficient of a solute (when osmotic pressure is developing) ¢
Activity coefficients in relation with the concentrations and the virial coefficients *
Relations between activities and molalities

In this chapter, we give the relations between activity and concentration of the
solute, on one hand, in the conditions in which an osmotic pressure is developing
and, on the other one, when the solution is maintained at constant temperature and
pressure. In other words, we focus ourselves on the activity coefficients. We know
that the activity coefficients of the imperfect gases can be theoretically related to the
virial coefficients (changing with the nature of the gas) which are purely experi-
mental parameters. For very weak density numbers, this result is very interesting
since it permits to forecast the changes in the value of the activity coefficient and
therefore in the changes of the activity when the density number vary, while,
however, keeping a weak value.

Given the fact that the preceding theories, devoted to the osmotic pressure and to
the solutions at constant pressure and temperatures, are very close to that applied to
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the real gases, it is not surprising that it is possible to theoretically relate the activity
coefficients of the nonelectrolyte solutes to some experimental parameters. It is the
goal of this chapter to give these relations.

40.1 Expression of the Activity Coefficient of the Solute
in Terms of Experimental Parameters When
an Osmotic Pressure is Developing

Let us recall (viz. Chap. 38) that it is judicious to introduce the new type of activity
0, in this case. We have demonstrated that it is related to the density number p, by
the following relation:

8y = py+mapi+mypi+ - (40.1)
The coefficients m,, my3 are given by the expressions:
my= — 2by, my=8h* — 3b3,

It must be noticed that the coefficients m,, ms, ..., m;...only depend on the
coefficients b; where i cannot be larger than j. Hence, we find:

82 = py + (—2b2)p5 + (862 — 3b3)p; + - -

The coefficients b; themselves are related to the configuration integrals Zy, adapted
to the studied case. The latter ones, here in the case where N molecules of solute are
dissolved in the solvent, play the same formal part as the one played by the integrals
Zy in the case of N molecules of gas in vacuum (Appendix N). The coefficients b,
here, are related to the integrals Z}; by the same expressions as those found in the
case of an imperfect gas (viz. Chap. 34).

It is evident that relation (40.1) is an expression of the activity coefficient y,
defined by the relation y, = 8,/p,."

Using two thermodynamic relations, one classical and the other statistical,
permits to explicit this expression of the activity coefficient of the solute.

The first results from the Gibbs—Duhem’s relation. It permits to obtain a first
expression of the chemical potential of the solute. The second expression permits to
express the same chemical potential by starting from its absolute activity. The
comparison of both expressions leads to the relation being searched for.

'In order to be as general as possible, we symbolize an activity coefficient by y without deserving
any attention, for the moment, to the unity to which the solute concentration is related.
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— The Gibbs—Duhem'’s relation can be written for a binary solution (viz. Chap. 5):
mdy; + nady, = —SdT + Vdp

where S is the entropy of the system and P its total pressure (P =p+x). In the
present case of the osmotic equilibrium, i.e., at constant y; p, and 7, it becomes:

mdu, = Vdr

Let us divide both members of this equality by the product kT in order to later
introduce the series expansion of the function #/kT into the following calcula-
tions. We obtain:

nady, /KT = Vdr /KT
du, [kT = (V [np)dr kT (40.2)
duy kT = (1/p,)dn /KT

By incorporating the expression (40.4) of statistical nature (viz. Appendix N)
into the relation (40.2):

#/kT = p, + ZB:pg (n>2) (relation (N.4) — Appendix N)

(where the coefficients B), are the virial coefficients of the osmotic pressure by
differentiating (7 et p, being the variables), dividing by p, and, finally, by integrat-
ing, we obtain:

U, /KT = constant + Z (k + 1/k)Bis1pf 4 1np, (40.3)
=1

— From another view point, we know that:
= 00pk/V
ie.:
2 = Quiexp|(u2/KT)/ V]
and moreover:
22 =722

From the latter two relations, we deduce that:

Vyapa/ Qo1 = exp(u/kT)


http://dx.doi.org/10.1007/978-3-319-46401-5_5
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ie.
wo /KT =1nV/Qy + Iny, + Inp, (40.4)

relation that we must compare with (40.3). The knowledge of the expression of y,
(being searched for) imposes to know the integration constant present in relation
(40.3). Let us identify (40.3) and (40.4). We obtain:

constant + Z (k+ 1/k)Bi1pf = 1V /Qq; + Iny, (40.5)

>1
In very dilute solution, y, — ¥ and according to (40.5):

constant = InV/Q, + Iny,° — Z (k4 1/k) Byy1ps (40.6)

k>1

Let us inject the expression (40.6) into (40.3) and identify to (40.4). The result is the
relation being searched for, i.e.:

Iny, = Iny,* = Y (k+ 1/k)Biyaps (40.7)

k>1

expression being searched for. It relates the activity coefficient to those of the virial
of the osmotic pressure.

40.2 A New Type of Activity Coefficient Applying
to the Osmotic Equilibrium

Relation (40.7) induces the introduction of a new thermodynamic parameter 7,, by
setting up:

Iny; = = (k+ 1/k)Bii1ps (40.8)

k>1

One demonstrates that ¥, has the meaning of an activity coefficient. It is given by
the following relation (40.9).

72p2 =62 (40.9)

The starting point of the reasoning leading to it is the relation below, stemming
from relations (40.4), (40.7), and (40.8):

to /KT = InVy)/Q0; + Inp, + Iy
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We know (viz. Chap. 38 and Appendix N) that:

vy =00 ¥0/ ¥
whence:

U /KT = 1nV¥o /¥ + Inp, + Iny;
It can be equivalently written:
exp(ua/KT) = V(¥o/¥1)par2

Let us compare this latter expression with the following relation (viz. Chap. 30)

8 = 1001 /12°V
in which 1, is replaced by exp(u,/kT), i.e.:

exp(uy /kT) = }’252V/Q01

As a result:
V(¥0/¥1)pava = 7382V / Qo
and since:
73 = O ¥o/ ¥
we obtain:

V(¥o/¥1)pa72 = (Qo1 o/ ¥1)(62V/O01)

and finally (40.9). 7, has really the meaning of an activity coefficient. Let us also
notice that, as a true activity coefficient, it tends toward 1 when p, — 0 since, then
02— p2.

Another approach of the meaning of 7, is as follows. According to the two
relations already encountered:

2 =72P2
=135

we obtain:

2 =172
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http://dx.doi.org/10.1007/978-3-319-46401-5_BM1
http://dx.doi.org/10.1007/978-3-319-46401-5_30

436 40 Activity Coefficient of a Solute

with the aid of relation (40.9). Whence:

Y202 = 1372 P2
72 =175

Hence, 7, is the ratio (changing with the concentration) between the normal activity
coefficient y, and the limit value of the latter 5 when the density number of the
solute p, tends toward zero. This value is not null, as it has been already said.

40.3 Activity Coefficient in the Case of a Binary Mixture at
Constant Temperature and Pressure

We have already seen (viz. Chap. 39) that the solute activity a; is a function of its
molality m, according to the expression:

ay = my — 20,m; + (865 — 303)m3- - - (40.10)
Let us recall that the parameter 6 is defined by the expression :

_ﬂll(Tv p, Clg)/kT: Zgj(pv T)Clé (4011)

=1

where u,'(T, p, a»)/kT is the change in the Gibbs energy of the solvent accompa-
nying the addition of the solute 2 up to the molality m, to the pure solvent. The
molality m, (at constant temperature and pressure and at the activity a,) is related to
the parameter 6 and at the activity a, by the relation:

m2(P7 Ta 612) = Zjlgl(pa T)aé

jz1

The parameters 6 are related to the intermediary variables X which, in the present
case, play the part of the configuration integrals of the preceding cases. For
example, N, being the number of molecules of pure solvent, we find:

N1191:X1 (191:1)
2IN 9, = X, — X3
3IN 193 = X5 — 3X1 X2 +2X;

Let us also recall that these relations are only legitimate in the case of very dilute
solutions in which the solute molality is proportional to its number of molecules.


http://dx.doi.org/10.1007/978-3-319-46401-5_39
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The activity coefficient y’, defined by the relation
7/2 = az/ nyp
can be, hence, written as the function of m;,:
vh=1—28m + (893 —393)m3--- (40.12)
Iny, = In[1 — 28,m; + (895 — 383)m3- -] (40.13)
Let us introduce the intermediary variable Y, given by the relation
Y = —28m, + (893 — 393)m;
and expand In (1 +7) in series:
In(1+Y)=Y/1-Y*/2+4 -
We obtain:
Iny, = —28m; + (685 — 393)m3- - -
that can be written under a more condensed form:

Inyh = = &imj (40.14)

k>1
with
51 =282, 6 =389, — 685
One can verify that, as it must be the case:
vh—1 a—m when mp —0

Such are the expressions of the solute activity coefficient as a function of its
molality.

Let us notice that the preceding results permit to express the “corrected from the

solvent chemical potential” in sufficiently dilute solution, by replacing a, by m;, in
(40.11). Then, we obtain:

—p)' (T, p,m) [KT = my + Y Cymlf (n>2) (40.15)

where

Co = =[(n—=1)/n]6,



Chapter 41
Molecular Distribution Functions in Binary
Mixtures

Abstract In this chapter, the generalization of the notion of molecular distribution
functions to the cases of mixtures and solutions is described. It is based on the
“pairwise additivity” hypothesis. Here, are only studied binary solutions. (The
terms of mixtures and of solutions are endowed with the same general meaning
for the purpose of this book, but that of solution is rather devoted to the case in
which one substance, the solute, the quantity of which is the weakest one. It is
dissolved in the other one, named the solvent).

Intervene in the evoked reasonings, some molecular distribution functions such
as the pair distribution functions and the pair correlation function. It also appears
the notion of conditional distribution function.

Keywords Molecular distribution functions (binary mixtures) » Pairwise additivity
hypothesis ¢ Pair distribution functions ¢ Pair correlation functions ¢« Conditional
distribution function ¢ Pairwise additivity hypothesis in the cases of mixtures ¢
Density of base probability in the canonical ensemble

In this chapter, we generalize the notion of molecular distribution functions to the
cases of mixtures and solutions. The generalization is based on the hypothesis of the
“pairwise additivity”. Here, we only study binary solutions. The terms of mixtures and
of solutions are endowed with the same general meaning for our purpose, but the term
solution is rather devoted to the case in which one substance, the solute, the quantity
of which is the weakest one. It is dissolved in the other one, named the solvent.

41.1 The Notion of “Pairwise Additivity’’ in the Case
of Mixtures

As in the case of pure liquids, the knowledge of fundamental molecular quantities
imposes to determine the interactions between the different particles constituting
the mixture. Again, the “pairwise additivity” hypothesis proves to be of great aid,
although it remains a simplification, as before. A function F subscribing to this
hypothesis obeys the following relation:
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FRNANB) =N "f (RO R)) (0 )) + > fen (R Ry) (i £ )
i ij
+Y D fas(RiRy) (1 <i<Nas1<j<Ng) (41.1)
i

+ZZfBA(RiaRj) (1<i<Ng;1<j<Ny)
i

R * NB is the configuration of the whole N, and Np particles of the system. fa4,

f/8B> fBA, faB are the pair potential energy functions into which is the function F is
decomposed. We must remark that in (41.1) the indices i and j are not related to the
same operations whether they address to the “symmetrical” fy5 and fgg or to the
“crossed” ones fga and fag. In the first case, i and j apply to the same type of
molecules. In the second, i apply to the particles A and j to the particles B,
exclusively.

Let us explicit the relation (41.1) with the example of the interaction potential
energy. Let U (RNA+NB) be the total potential energy of the mixture of Ny and Ng
molecules of A and B in the well-specified RN, R™®. The “pairwise additivity”
hypothesis permits to write:

URNM TN = 1723 " Upa (R, R;) +1/2)  Uss(Ri, Ry)
ij ij
+3 > Uas (RiR;) 1<i<Ns and 1 <j<Np
i
The double sum of the last line takes into account the equality Uag = Uga. In the
first line, R; and R; are the configurations of the /™ and of the /™ particle of A or

of B. In the second, R; is the configuration of the particle i of A and R; that of
particle j of B.

41.2 Density of Base Probability in the Canonical System

The density of base probability P(RNA + NB) is given in the present case by the
expression:

P(RNA + NB) — exp [_ﬂU(RNA,RNB)]/JJdRNAdRNBexp [_ﬂU(RNA’RNB)]

In the numerator, the symbolism RNA, RNB represents the case in which we
regard the total configuration of the well-specified system R™*, R™® whereas the
integrals of the denominator take into account all the possible configurations of the
system.
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41.3 Molecular Distribution Functions

They are defined, absolutely as in the case of a pure fluid (viz. Chap. 28). Notably,
one can distinguish:

« The functions po,V(R’) and pg'”(R’) are the densities of A and B in the
configuration R’. As previously, in a homogeneous and isotropic fluid, the
following relations are verified:

pAV(R)) =No/V =p,
p(R) =Ng/V = pg

e The pair distribution functions

In the case of a binary mixture, several pairs are possible, i.e., AA, AB,BA, BB. For
the “symmetrical pairs,” one defines the functions PP AR, R, pPpa(R,R”) and
for the “crossed ones” the functions are p@ ,5(R’, R")et p P A(R’, R").

Let us recall that in the case of one type of particles:

p?(RR")dR'dR’

is the probability to find one particle in dR’ in R’ and another in dR” in R”. It is also
the average number of pairs occupying dR’ and dR”. The generalization is imme-
diate in the case of the binary mixture.

« Pair correlation functions

Several pair correlation functions are defined. They obey the general symbolism
according to (where a and f# equally symbolize A or B):

() 008 (1) ()

The function g,s(R’,R") only depends on the distance R = ]R’ -R | R is a scalar.
From that, we can deduce that:

8aB (R/7 RN) = 8gBA (Rl, R”)

« Conditional distribution function

Let us first recall that the definition of the conditional probability to see a particle
in the configuration element dX” in X”, another particle being located in the
element dX’ in X/, is given by the expression (viz. Chap. 28)


http://dx.doi.org/10.1007/978-3-319-46401-5_28
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P (X /X’) dX' =p® (X’, X) dxX'dX' [p")(X")dX’
1.€.,
P (X /X’) ax’ = p (X) g (X’, X) ax’

In the present case, one also defines the new functions:

PAB (R//RN> = P< AB (Rl )/ﬂ ( )
PAB (R//RN> = p(l)A(Rl)gAB (Rlv RN)
pap(R/R") is the density of particles A in the configuration R’ whereas a particle

B is fixed in the configuration R”. The other new conditional distribution function
pea(R'/R”) exhibit analogous properties.



Chapter 42

Kirkwood-Buff’s Theory: Changes

of the Solutes Chemical Potentials

with the Concentrations at Constant Pressure
and Temperature

Abstract Kirkwood—Buff’s theory (1951) provides new relations between some
thermodynamic quantities such as the chemical potential and the spatial pair
correlation functions G, also called Kirkwood—Buff integrals. It, especially, offers
expressions linking the chemical potential changes of solution components and
their concentrations, at constant pressure and temperature. These expressions are all
the more interesting as this kind of solutions is the most often encountered.

Expressions stemming from this theory probably set up the best means to begin
to grasp the physical significance of activities and of their coefficients. This point is
tackled in the next three following chapters.

The chapter is devoted to the sole study, according to this theory, of binary,
homogeneous and isotropic mixtures of nonelectrolytes. It is set up within the grand
ensemble framework. The starting point of the reasoning leading to the theory is the
setting up of two mathematical relations expressing the concentration fluctuations.
One of these relations links the fluctuations to the Kirkwood—-Buff integrals G4, the
other links the same fluctuations to the partial derivatives of the mean number of
particles with respect to the different chemical potentials.

Keywords Kirkwood-Buff’s theory ¢ Chemical potentials changes with
concentrations at constant temperature and pressure ¢ Kirkwood-Buff’s
integrals ¢ Spatial pair correlation function ¢ Concentration fluctuations
Thermodynamic quantities as a function of Kirkwood—Buff’s integral « A very
important relation stemming from the Kirkwood—Buff’s theory * Kirkwood—Buff’s
theory (some aspects)

Kirkwood—Buff’s theory (1951) provides new relations between some thermody-
namic quantities such as the chemical potential and the spatial pair correlation
functions G, also called Kirkwood—-Buff integrals. It, especially, offers expres-
sions linking the chemical potential changes of solution components and their
concentrations, at constant pressure and temperature. These expressions are all
the more interesting as this kind of solutions is the most often encountered.

Expressions stemming from this theory probably set up the best means to begin
to grasp the significance of activities and their coefficients. This point is tackled in
the next three following chapters.
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We commit ourselves to the sole study, according to this theory, of binary,
homogeneous and isotropic mixtures of nonelectrolytes.

42.1 An Overview of Kirkwood-Buff’s Theory

The theory calls up a reasoning of classical mechanics and of statistical thermody-
namics. It is set up within the grand ensemble framework. It consists of a link
between some macroscopic thermodynamic properties of a system and the concen-
tration fluctuations of its components.

The starting point of the reasoning leading to the theory is the setting up of two
mathematical relations expressing the concentration fluctuations. Their setting up is
followed by their “matching.” This is the reason why the theory is also named
“Fluctuation Solution Theory.” One of these relations links the fluctuations to the
Kirkwood-Buff integrals Gz, the other links the same fluctuations to the partial
derivatives of the mean number of particles with respect to the different chemical
potentials. After some mathematical developments, the theory leads to a link
between the changes in concentrations and the thermodynamic properties of an
isothermal and isobaric system. The corresponding expressions make allowance for
the Kirkwood—Buff integrals G .

Kirkwood—Buff’s theory is an exact one. It is valid for any kind of solution.

42.2 Kirkwood-Buff Integrals G,z

The theory makes allowance for functions (42.1), named Kirkwood—Buff integrals:

G = JOO g2 (R) — 1]4zR*dR (42.1)
0

which are an extension of the G function, already encountered and defined in the
case of a pure liquid (viz.: Chap. 31) by the expression:

G= JOO [g(R) — 1]4zR*dR
0

where R is the distance between both particles 1 and 2. Just as it is written above
with R being a scalar, they apply to homogeneous and isotropic media. G functions
are themselves related to pair correlation functions g, and, then, to radial distri-
bution functions (viz. Chap. 31).

In the present case of a binary function, the functions of interest for us are G,
G132, Go1, and Go;. They are defined below. (1 refers to the first component and so
forth. Indices a and f refer indifferently to 1 or 2).


http://dx.doi.org/10.1007/978-3-319-46401-5_31
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Before expliciting the Kirkwood—Buff’s theory, it is interesting to qualitatively
recall the physical significance of the integrals G, all the more because some
expressions of activities and of their coefficients make allowance for them (viz.
Chaps. 31, 32, and 33).

Let us suppose that we choose a particle 1 and that we observe the local density
of 2 in the spherical shells centered on molecule 1. The local density of molecules
2 at distance R from particle 1 is given by the term p,g>;(R). (p, is the density
number of (42.2), g,; the radial distribution function between 1 and 2 which is the
correlation function between 1 and 2). The mean number of particles 2 in the
spherical shell of thickness dR at the distance R from 1 is 02821(R)ATR?dR.
Otherwise, p,47zR?dR is the mean number of particles 2 in the same spherical
shell but, the center of which is a particle 1 chosen randomly.

Thus the expression p,[g21(R) — 1147R?dR is a measure of the excess (or of the
deficit) of particles 2 in a spherical shell of volume 4zR>dR around a particle 1 with
respect to the number which would be obtained if we would have made allowance
for only the mean number p,. Thus, p,G,; is the mean excess of particles 2 all
around 1. Therefore, the integral is the excess of 2 around 1 for a density of 2 equal
to the unity. The reasoning would be the same if we would have considered the
density of 1 around the particle 1 or that of 2 around 2. The integrals being
considered would then be G11, G, and G»,.

Figure 33.1 shows the general shape of a Kirkwood—-Buff integral as the distance
of integration R, measured in nm.

42.3 Different Steps of the Setting-Up
of the Kirkwood-Buff’s Theory

One can estimate that it is developed in three steps consisting in:

— Relating the functions G4 to the mean density numbers of the components

— Setting up the mathematical relations between some partial derivatives involv-
ing the chemical potentials of the different components. These relations are
necessary to carry out the third step

— Expressing some thermodynamic quantities related to functions Gg.

42.4 First Step: Expressions Relating Functions G4
to the Average Density Numbers of the Components

Two relations involve the fluctuations of concentrations. They are (viz. Chap. 31):


http://dx.doi.org/10.1007/978-3-319-46401-5_31
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Gz = V{[(NiN2) — (N1){N2)]/((N1){N2)) = 612/ (N1)} (42.2)

kT (0/0u,)T, V., = (N1N2) — (N1)(N2) (423)

(N1) and (N,) being the average numbers of particles 1 and 2. §;, is Kronecker’s
function. In the same manner, it is demonstrated that:

KT(O(N2)/Opi)ry o = (N1N2) = (N1)(N2) (42.4)

It is clear that the elimination of the right members from the relations of types
(42.2) and (42.3) permits to set up the relations to be searched for between density
numbers, chemical potentials, and Kirkwood—Buff’s integrals, that is to say:

KT/V[(QN)/0mo)ryn| = pipsGra + paddia (42.5)

KT/V[(DN2) /0 )1 v 0] = P19z + 1812 (42.6)
(We note, in passing, that:
KT(DUNY) /sy = KT(OUN2)/ D)y o
(0N /Oua)y yyn = V(0P /PH2) 1,y
and
(0(N2)/Ou1)r,y 2 = V(0P2/ O1)1,v 42

knowing that py = (N;)/V and p, = (N,)/V, since the solution is homoge-
neous and isotropic).

42.5 Second Step: Mathematical Relations Between Some
Partial Derivatives Involving the Chemical Potentials
of the Different Components

Before describing the second step, let us recall that, when all is said and done, the
Kirkwood—Buff’s theory relates the partial derivatives (Ou,/ON 8).p Ny (at constant
temperature, pressure and concentration of the other component) to the integrals
Gop.

(The other partial derivatives (aN(,/aﬂ,;)T,VW being already obtained (previous
step—relations (42.5) and (42.6)), though they are relations between
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thermodynamic quantities and functions G, are not those required. Besides, they
cannot be immediately handled. We know, indeed, few data about them).
As a result, the following transformation must be carried out:

(aNa/a/‘ﬁ)T,v,W - (a”a/aNﬁ)T,P,Ny

The transformation involves two steps:

— In the first one, the partial derivatives at constant chemical potentials (ON,/
Oup)ry (v #P) lor equivalently the following ones (0p,Oup)r,,| are
transformed into (Ou./ONp)r.viy, that is to say in the partial derivatives of the
chemical potentials with respect to the average numbers of the components, at
constant temperature, pressure and concentration of the other component (in the
following reasoning, <N, is replaced by N, in order to reduce the writing)

— In the second step, the derivatives (Ou,/ONp)r.v.n, are transformed in those at
constant pressure, temperature and Ny, (Opy/ 5N,;)T,p,N],. (Let us recall that the
partial derivatives which are the most easily handled are those at constant
pressure and temperature. This is because they are the most available
experimentally).

Finally, the partial derivatives (Opo/ONs)1.p N at our disposal at the end of this
step are related to the functions G .

Hence, at the end of the second step, we face with some relations which permit to
express the following thermodynamic quantities, (Ou/ON,)rp i and analogous
ones and also V', V>, kr as functions of the Kirkwood—Buff integrals Ggp. These
relations are:

(a:ul/aNz)T,P,Nl = —kT/VA'pip,Gia — Vi V2 [Vir (42.7)
(aﬂz/aNl)T,P,Nz = _kT/VA/PlﬂzGlz - V_IV_Z/VKT (42.8)
(Ou1/ON1)g pyy = kT/VA (p)°Goa + py) — Vi /Vir (42.9)
(Ona/ON)y p s = KTJVA (p2Gry + py) — Vo' [Vier (42.10)

The Gibbs—Duhem’s relations:
Pl(aﬂl/aNl)T,P,Nz +ﬂ2(aﬂ1/aN2)T,P,N1 =0 (42.11)
P1(Op2/ ONY )1 p o + P2 (Opa/ON2)p p oy =0 (42.12)
and that linking the molar partial derivatives

piVi+pVa =1 (42.13)
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Let us recall that V| and V, are the molar partial volumes of components 1 and
2, V that of the whole system, and k- its compressibility isothermal coefficient. A’ is
the determinant which naturally introduces into the calculations.

42.6 Third Step: Expressions of Thermodynamic
Quantities as Functions of Kirkwood-Buff Integrals

These expressions are obtained by solving the system of equations (42.7) to (42.13).
We find:

Vi = (149G —pGna)/n V2= (1+pGi—pGia)/n (42.14)
(O1/ON2)7 p y1 = (Oa/ONV)g p vy = —KT Vi (42.15)
(Om1/ON2) . p 1 = P2kT /1 Vi (42.16)

(Omz/ON1)1.p w2 = PikT [ 2V (42.17)

relations in which:
n=py+ps+p1p2(Gii + G —2G12)

(n is a parameter introduced in order to lighten the writing).

42.7 Some Important Relations Stemming from
the Kirkwood-Buff’s Theory

The most important relations for our purpose, issuing from the Kirkwood—Buff’s
theory are those giving the partial derivatives of chemical potentials of both species
with respect to their density numbers, at constant temperature and pressure, that is
to say (Opa/Opp)r.p With @ =or # ff and with a or =1 or 2. The interesting point is
that they depend on functions G, because the latter ones are accessible. These
experimental conditions are often encountered in solution chemistry. The expres-
sions being searched for are found by handling partial derivatives already known.
We obtain:

(Ou2/0p2)r p = KT /ps(1 + prGao — pyGio) (42.18)
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Using the corresponding Gibbs—Duhem, we find:

(Ou1/0p2)r p = —kT [p1 (1 + p,Ga2 — pyG12) (42.19)
In an analogous way, we would find:

(Ou1/0p1)r p = kT /py(1 + p1Gi1 — p1Gr2) (42.20)
and

(Opa/Opy)r p = kT /py(1 +p Gt — p1G12) (42.21)

Remarks:

— Contrary to partial derivatives (Op/ON,)7p 1 and (Opn/ON)7.p > Obtained in
the second step which are equal, those above (Op1/0p2)rp and (Oua/Opy)r p are
not:

(aﬂl/apz)r,P # (aﬂz/apl)T,P

— It is interesting to recall the expression giving the change in <N> (or p) of a pure
liquid with respect to its chemical potential 4 as a function of its proper pair
correlation function G,,, nearby those found above. It is (viz. Chap. 32):

(0u/0p)T = KT/ (p + p*Gaa)

We note the consistency of the whole expressions. Doubtless, this is a proof of
the validity of the basic theories.

42.8 Expression of the Derivative of the Chemical Potential
of a Component with Respect to Its Molar Fraction at
Constant Molar Concentration of the Other

As we shall see it a bit lengthily, it is of utmost importance for our purpose to get an
expression of the derivative of the chemical potential of a component, for example,
(Ou1/0x1)r.p, with tespect to its molar fraction, the moles number N, of the other
species being constant. It stems from the following relation which itself results from
the chain rule of derivation:

(aﬂl/axl)r,P,Nz = (aﬂl/a/’1)r,P,N2 ) (apl/axl)T,P,NZ


http://dx.doi.org/10.1007/978-3-319-46401-5_32
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(0p1/0x1)1.p.no = 1/(0x1/0p1)1 p.no
x; =Ni/(Ny +N2)
xt=pi/(p1+p2)
dxi/dp; = p,/(py + p2)°
dp, Jdx; = (p; + p2)*V /N,

V/IN, is the molar volume of component 2 in the medium, at constant temperature
and pressure. In this case, it is of course its partial molar volume V. As a result:

(aﬂl/axl)T,P,Nz = (aﬂl/apl)T,P,Nz 'P2V_2

with p = p; + p,. Taking into account this latter relation, the expression giving V,
and (42.21), we immediately obtain:

(aﬂl/axl)r,P = ksz/Pl’Y
(aﬂl/axl)T,P = kT[1/x1 — prA12/(1 + px1A12)] (42.22)
relation in which:
A =G +Gn —2Gp (42.23)
(aﬂl/axl)r,P = kTﬂz/ﬂm
(Op1/0x1)p p = KT[1/x1 — pyA1a/ (1 + prxiApa)] (42.22)
Relation (42.22) is of very great interest. We shall see (viz.: Chaps. 43 and 44) that

it permits to explicit the concepts of ideal solutions (the perfect ones and the very
dilute ones). We shall again turn ourselves towards this quantity in Chap. 45.

42.9 Some Aspects of Kirkwood-Buff’s Theory

To conclude this report upon the Kirkwood—Buff’s theory, let us mention the
following points, though they are not absolutely necessary for our purpose:

« It can be considered as being general because it applies to all types of particles,
whatever the number of components of the mixture is. Moreover, it does not call
on the hypothesis of “pairwise additivity” of the total potential energy, which is
nothing else than an approximation, saying the least.


http://dx.doi.org/10.1007/978-3-319-46401-5_43
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As the McMillan—-Mayer’s theory (viz.: Chap. 38) with which it can be com-
pared, let us repeat that it is a general theory, but it shows several advantages:

— It can be applied in the whole concentration ranges of the components,
whereas the other one can only be used with dilute solutions because it
explicits the thermodynamic quantities only under developments in series
and its coefficients are difficult to calculate and, even, to interpret.

— From the theoretical standpoint, although we have not developed this point,
one must know that the Kirkwood—Buff’s integrals depend directly on mean
force potentials between the pairs of solute particles, whereas the coefficients
of the McMillan—-Mayer’s developments depend on a mean force potential at
infinite dilution. This is another difference between both methods.

Kirkwood—Buff’s theory not only permits to calculate macroscopic thermody-
namic quantities starting from radial distribution functions g(R) but also and
inversely permits to get local information from macroscopic ones through those
brought by radial distribution functions which provide data upon the distance
between the two members of a pair.

It permits a study of ideal and nonideal solutions, at least at the first level of
approximation (viz.: Chaps. 43 and 44).

Finally, let us mention the fact that it only concerns the properties of solutions
the study of which is possible within the framework of the great ensemble by
differentiation with respect to the number of particles (or to the pressure).


http://dx.doi.org/10.1007/978-3-319-46401-5_38
http://dx.doi.org/10.1007/978-3-319-46401-5_43
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Chapter 43
Chemical Potentials of the Components
of Ideal Solutions of Nonelectrolytes

Abstract The expressions of the chemical potentials of the components of ideal
binary solutions of nonelectrolytes are given in this chapter. They result from a
reasoning of statistical thermodynamics. These expressions, not yet mentioned in
the book, are interesting for the purpose of the study of an activity at least for two
reasons. The first one is that they provide an intimate link existing between the
chemical potential of a component and its activity. The second reason is, simply,
the practical importance of solutions. It must not be forgotten, indeed, that most
processes probably occur in solutions.

The study mentioned in the chapter is deliberatively limited to that of the binary
ideal solutions of nonelectrolytes. This introductory step may facilitate the follow-
ing study of the activities and activity coefficients of the components of every
solution. As for that of electrolyte solutions, it is deferred to a later chapter because
of their particular properties.

A particular stress is laid on the fact that the results mentioned here (stemming from
statistical thermodynamics) are in full agreement with the experimental data which are
at the origin of the definition of ideal and very dilute solutions in classical thermody-
namics. In this chapter, the notion of coupling of a molecule of solute with the remaining
solvent molecules and also that of a solvent molecule with the other ones is introduced.

Keywords A new statistical look on chemical potentials (components of ideal
solution of nonelectrolytes) * Ideal solutions (statistical thermodynamics) * Very
dilute solutions (statistical thermodynamics) ¢ Characteristic partition function
(isothermal isobaric ensemble) » Coupling of molecules (solutes and solvent) « de
Broglie’s thermal wavelength ¢ Raoult and Henry’s laws (statistical
thermodynamics) * Perfect solutions (mixtures of very similar components) ¢
Ideal solutions (very dilute ones) « Chemical potential of the solute

In this chapter, we give the expressions of the chemical potentials of the compo-
nents of ideal binary solutions of nonelectrolytes. They result from a reasoning of
statistical thermodynamics. These expressions, not yet mentioned in this book, are
interesting for our purpose, at least for two reasons. The first one is that they provide
an intimate link existing between the chemical potential of a component and its
activity. The second reason is, simply, the practical importance of solutions. It must
not be forgotten, indeed, that most processes probably occur in solutions.
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In this chapter, we deliberately choose to only study the binary ideal solutions of
nonelectrolytes. This introductory step may, in our opinion, facilitate the following
study of the activities and activity coefficients of the components of every solution. As
for that of electrolyte solutions, it is deferred to a later chapter because of their particular
properties. For the sake of simplicity, only binary solutions are investigated, here.

We already lay particular stress on the fact that the results mentioned below
(stemming from statistical thermodynamics) are in full agreement with the exper-
imental data which are at the origin of the definition of ideal solutions in classical
thermodynamics.

43.1 Looking Back on the Definition of Ideal Solutions

As we have already said it (viz., Chap. 8), the classification of ideal solutions is not
clear-cut. Some authors distinguish two kinds of ideal solutions. This will be
our case.

Let us recall that ideal solutions are those each component i of which exhibits a
chemical potential y; complying with the relation:

d p; = RT dln x; (43.1)

where x; is its molar fraction. R and T have their usual meaning (viz., Chap. 8).
Actually, two types of ideal solutions are distinguished:

— The perfect solutions. The behavior of all the components is ideal over the whole
range of composition at all temperatures and pressures. They obey Raoult’s law.
In order to comply with this definition, the components must be very similar.

— The very dilute solutions. Then, the solute obeys Henry’s law whereas the
solvent obeys Raoult’s law. As soon as the solution is not dilute enough, it
remains no longer ideal.

These definitions and properties stem from the framework of classical
thermodynamics.
We successively consider both cases.

43.2 Perfect Solutions: Mixtures of Two Very Similar
Components

In this paragraph, we seek the relations which, in this case, link the chemical
potentials of the components to their “concentrations” at constant temperature
and pressure. The latter conditions are interesting to be taken into account because
of their frequent occurrence in practice.


http://dx.doi.org/10.1007/978-3-319-46401-5_8
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Through very similar components, we mean that the potential energy of inter-
action in a system of N molecules in the configuration X" is independent of the
identity of the species i which possesses the configuration X;, (entering, of course,
into X™).

Let us label both components of the solution A and B. We choose reasoning
within the framework of the isothermal-isobaric ensemble (T,p,Na,Ng) (cf,
Chap. 24). Given the experimental conditions which are under constant temperature
and pressure, it is the most convenient ensemble to use. (These solutions are the
most frequently encountered ones). Let us recall (viz., Chap. 24) that, for a sole
compound, the number particles of which being N, the partition function is:

AT p.N) = 3 O, V, T)e /T
\%

In classical mechanics, it is written:

A(T7P7N) = CJ dVQ(N7V’ T)ef pV/kT
0

where C is a constant. The characteristic thermodynamic function of this ensemble
is the Gibbs energy function G of the system. It is related to the A(T,p,N), the
characteristic function of the latter, through the expression:

G(T7p7N) = —kT ll’lA(T, paN)
and the chemical potential of species A is defined by the expression:

Ha = (aG/aNA)T,P,NB

(B being another component of the solution).

It is equal to the change in the Gibbs energy accompanying the addition of one
molecule A to a system being composed of Ny molecules A and Ng molecules B,
N and Ny being very high numbers. Thus:

Ha = G(T’p’NA+1 ,NB) - G(TvvaAaNB)
and according to Chap. 32:
exp(—pua) = A(T,p,Nay1,Ns)/A(T,p,Na,Ng)

or
exp(—fua) = CIAJ dVJ dXNAH aXNBexp [—BPV — BUna+1, np (XA XNB)]

JAA3(Nasy) X anJva dX"dXMexp[—ppV — pUyanp (XN, XNB)]

(43.2)
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(Let us note that, here, the considered example regards a particle possessing an
internal structure as it is indicated by the presence of symbols ¢ and X in these
expressions).

The “out of integrals” term g, /Aa>(Nay1) comes from the ratio:

g AT (A3(NA+1))(NA + 1)!(8ﬂ2)(NA+1) Ry A3NANA!(8IT2)NA

stemming from both partition functions. A,® and g, are, respectively, the de
Broglie’s thermal wavelength and the internal molecular partition function of
particle A.

Let us now consider the case of a system consisting of N particles A and
0 particle B, system being at the same temperature and pressure as the previous
one and into which is added 1 molecule A. The chemical potential 4/} (superscript p
for pure) is given by the expression (43.3). (43.3) results obviously from the
adaptation of (43.2) to the new conditions:

exp(~5) = ap [ 4V [ aX*Texp[=ppV — pUes (X )] /AN (N -+ 1)(87)
x JdVJ dX"exp[—ppV — Uy (XV)]
(43.3)
Let us suppose, now, that N in expression (43.3) is equal to the sum N +Ng in
expression (43.2) and let us replace N with N + Np in (43.3). The hypothesis of the

very great similitude of compounds A and B manifests itself in the following
equalities:

deA+NB+1 — deA+1deB
Unat (XVH) = Una 4 1,5 (XM XNB) (43.4)
Uy (XN) = Una,NB (XNA, XNB)

The three relations (43.4) must be written since, with respect to the intermediary
step in which A was alone, now, the species B does exist .
The ratio of expressions (43.2) and (43.3) leads to the equality:

exp[—fup +puk] = (N + 1)/(Na+ 1) (43.5)

With:
(N+1) /(NA+1) ~ N/NA

we obtain:

HA(T, P, Na) = px(T,p) + KT In xa (43.6)
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This result is in perfect agreement with the result of the integration of (43.1). Note
that the resulting integral solution is satisfied for x5 = 1.

The expression of the chemical potential of each component of an ideal solution
of this kind complies with expression (43.6). This result is very important. It
expresses Raoult’s law (viz., Chap. 8).

Hence, with the help of statistical thermodynamics and through relation (43.6)
we recover Raoult’ s law and all its inferences. Let us recall that it was set up, in
classical thermodynamics, on the basis of pure experimental data (viz., Chap. 8).

Relation (43.6) clearly shows that the natural expression of the concentration in
the context of Raoult’s law is the molar fraction No /N = Na/Na + Ng. Moreover,
an analogous reasoning with compound B would show that the latter would exhibit
the same behavior as A. In other words, the behavior of B is the same as that of A:

pg(T,p,Na) = ub(T,p) + kTln xg (43.7)

Again, we recover the fact that in an ideal solution of this kind, Raoult’s law is
obeyed by all the components of the solution. This kind of solution for which the
chemical potential of each component obeys the expression (43.7) or (43.6) is
sometimes named symmetric ideal solution. Let us notice that for them, the
standard state does exist.

All these results come from the validity of the equality (43.4), that is to say from
the condition of the very great similitude of the components of the solution.
Actually, the conditions of a behavior obeying Raoult’s law may be less stringent
than that of great similitude (viz., Chap. 44).

43.3 Ideal Solutions: Very Dilute Solutions

We know that the chemical potential y of a fluid is given by the relation (viz.:
Chap. 32):

p=kTIn(pA’q™") — kT In(exp(—fB)) (43.8)

The term —kT In (exp(—pB)) is the coupling work of a particle when it is brought
from infinite to the bulk of the system. When the latter does possess as only
component particles A and if the coupled one is also A, the coupling work may
be symbolized by the term W(A|A + A), whereas when the system is a binary
solution, the components of which being A and B, the coupling work is
W(A’A + B) either W(B ’B + A) depending on the coupled particle is being A or
B. Let A be the solute and B the solvent.

Now, with the aid of statistical thermodynamics, we are in position to discuss the
nature of the standard states and the expressions of the chemical potentials,
according to the fact that we regard either the solute or the solvent. After, we
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shall be able to compare the results of the reasoning and those directly stemming
from classical thermodynamics.

» Chemical potential of the solute

Its chemical potential is given by the expression (viz., Chap. 32)
pa =W(A|A+B) + AT In (pAAr’qa™") (43.9)
This relation is general. It can also be written as:
pp =W(A|A+B) +&T In (A}qy') + kT Inp, (43.10)

It strongly looks like its expression stemming from classical thermodynamics (viz.
for example Chap. 6):

Ha = Ha"(p) + KT Inpy (43.11)

From the very fact that the chemical potential of a compound must be the same in
the same thermodynamic state, we can deduce from (43.10) and (43.11) that the
standard chemical potential of A is given by the expression:

pp® =W(A|A+B) + kT In (A}qy") (43.12)

— A first interesting particular case is that in which solute A is very dilute. One
particle A cannot “see” any particle different from B all around it. Then, the
coupling work is W(A!B +B) and we can write for the expression of its
chemical potential:

pia =W(A[B+B) + kT In (Alqy') + kT Inp, (very dilute solution) (43.13)

Because the terms W(A’B + B) and W(A|A + A) differ, the standard chemical

potential of A in this case is not the same as when it is pure.
Let us recall that this is a case which is often encountered in practice, in
particular in analytical chemistry. It is widely studied in classical thermodynamics.

— A second interesting particular case is that where the particle B is very similar to
A. The coupling work of B is then equal to that of A and:

W(A|A+B) =W(A|A+A)
Inserting this equality into (43.10), we obtain:

pa =W(AJA+A) + 4T In (A3gy') + kT Inp, (43.14)
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Then, the standard chemical potential is that of A pure. For the sake of immediate
reasoning, let us consider a system consisting of component A pure. Its density
number is p;. The chemical potential of A is, then:

ph =W(AJA+A) +kT In (Adgy') + kT Inp? (43.15)

Comparing it to the previous system where the density number of A is p, and
supposing that both systems do possess the same total number of particles, that is to
say:

nk(2nd system) =na +ng  (1st system)
the ratio of both density numbers is then evidently as follows:
palpk = na/ny = (na/nf)/1 = xa
We immediately deduce the relation (43.6) above from (43.14) and (43.15) in

agreement with the hypothesis that A and B are very similar.

e Let us study, now, the chemical potential of solvent B when the solute A is very
dilute.

Its chemical potential is given by the expression:
— 3 -1
pg =W(B|A+B) + kT In (A’qs ") + kT Inpy
We note that when the solution becomes more and more diluted:
W(B[A+B) — W (BB + B)

The chemical potential of the solvent goes over the one it possesses when it is pure.
Hence, thanks to the previous reasoning based on statistical thermodynamics, we
notice that concerning ideal very dilute solutions, but not the perfect ones:

— The standard chemical potential of the solute does not go over its chemical
potential when it is pure (viz. the previous subsection).

— When the solution is more and more dilute, the chemical potential of the solvent
goes over its chemical potential when it is pure. In other words, it obeys Raoult’s
law (viz. previous subsection).

The whole of both sentences are no more than Henry’s law.



Chapter 44
Chemical Potentials of Components of Binary
Nonideal Solutions of Nonelectrolytes

Abstract The chapter mentions new expressions of the chemical potentials of the
components of the binary nonideal solutions of nonelectrolytes. According to the
foregoing considerations, it is logic to conceive that the comparison of the chemical
potentials of components of ideal solutions with those of the components of
nonideal ones may permit to get some insights into the expressions of activities
and activity coefficients.

For the sake of further comparisons are set up, here, the expressions of the
chemical potentials of the components of a nonideal solution, the behaviors of
which are slightly different from that of a perfect solution on one hand and from that
of an insufficiently dilute solution, on the other.

The reasoning leading to the expressions being searched for results from a
mathematical relation stemming from Kirkwood-Buff’s theory. This relation is
recalled. According to it, the derivative at constant temperature and pressures of the
chemical potential of a component of the solution with respect to its molar fraction
is a function of its molar fraction, of the concentration of the other component and
of a new parameter A g which is a linear combination of the Kirkwood—Buff’s
integrals Gaa, Ggg, and G g, where A and B symbolize the two components in
interaction. When they are possible, the integrations of the foregoing derivative and
of its variations (according to the experimental conditions) show the importance of
this parameter.

Keywords Chemical potentials (binary nonideal solutions of nonelectrolytes) ¢
Chemical potentials (ideal solutions) ¢ Kirkwood—Buff’s theory ¢ Kirkwood—-Buff’s
integrals « Derivatives of the chemical potentials (with their respect of their molar
fractions) » Chemical potentials of the components of a solution (weakly deviating
from a perfect solution) » Molar and molality scale » Solvent chemical potential

In this chapter, we are interested in the expressions of the chemical potentials of
components of binary nonideal solutions of nonelectrolytes. According to the
foregoing considerations, it is logic to conceive that the comparison of the chemical
potentials of components of ideal solutions with those of the components of
nonideal ones may permit to get some insights into the expressions of activities
and activity coefficients.
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Here, we set up the expressions of the chemical potentials of the components of a
nonideal solution, the behavior of which is:

— Slightly different from that of a perfect solution, on one hand.
— That of an insufficiently dilute solution, on the other.

The reasoning leading to the expressions being searched for results from a
mathematical relation stemming from Kirkwood-Buff’s theory. We begin by
recalling this relation.

44.1 Derivatives of the Chemical Potentials of a Solution
Components with Respect to Their Molar Fractions

Let us already mention that these derivatives are partial ones at constant pressure
and temperature. For instance, in the case of compound A, it is the derivative:

(Opa/0xa)rp,

The expression of the derivative is (viz., Chap. 42):
(aﬂA/axA)T,P = kT[1/xa — pgAas/(1 + ppxalap)] (44.1)

with:
Ap = Gaa +Geg — 2Gas

Functions G4 (a, #°. Aand B) are spatial pair correlation functions or Kirkwood—
Buff’s integrals. They are themselves related to the radial distribution functions g,z
by the following expression:

Gop = J:o {gaﬂ(R) - 1}4ﬂR2dR

44.2 Chemical Potentials of the Components of a Solution,
the Behavior of Which Weakly Deviates from that of a
Perfect Solution

For instance, this is the case of solutions, the components of which obey Raoult’s
law nearly in the whole range of “concentrations.” Given their great similarity with
symmetric ideal solutions, it is logic to choose the molar fraction as a unity of
“concentration” of their components, for the sake of later comparison.

As a rule, it is possible to get an expression of the chemical potential us by
integration of (44.1). From another viewpoint, we know that an ideal solution obeys
the relation (viz.: Chap. 43):
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dp, = kTd In x; (44.2)

The comparison of both integrated forms may be, as a rule, interesting to
carry out.
Let us formally integrate expression (44.1). By setting up:

P =pPat+pB
ABP = PB
it can be also written as:
(a,uA/axA)T’P’N = kT[]/)CA — XBpAAB/(l +prxAAAB)] (443)

or:
dpp = kT[1/xa — xppAag/(1 + pxaxgAag)]dxa (dT =0, dp =0)
Taking into account that the solution is binary, that is to say that x + xg = 1,
dxp = —dxg

we obtain by integration:

xB

Ua(T,p,xa) = ps(T,p) + kT In xp + kTJ [XgpAan /(1 + pxa'xs Aap)]dxs’
0

(44.4)

xB

Quite evidently, the definite integral kTJ [x8'pAAB /(1 + pxa'xg' Aap)]dxg’ must
0

be related to the expression of the activity coefficient of compound A on the molar

fractions scale.

44.3 Chemical Potentials of Components of Nonideal,
Insufficiently Dilute, Solutions

44.3.1 Chemical Potentials in Nonideal, Dilute Solutions
on the Density Numbers Scale

Let A be the most dilute component (the solute). We have seen (viz., Chap. 43) that
it is more natural and also in any case more practical to adopt the scale of the
density numbers in order to describe the behavior of the solutes. Since we are now
on this scale, the expressions of chemical potentials of components are obtained by
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starting from their partial derivatives with respect to their density number p, directly
set up by Kirkwood—Buff’s theory (viz.: Chap. 42).
Three partial derivatives are of interest from the practical viewpoint. They are:

— (Oua/Opa)r,m at constant chemical potential of the solvent and temperature.
This derivative is interesting for the study of the osmotic pressure (viz.:
Chap. 38).

— (OualOpa)rp at constant temperature and pressure. It is the most important
derivative because it concerns the kind of solution the most encountered in
chemistry.

— (Oua/Opa)r, s at constant temperature and density number of the solvent.
(Obeying the latter condition is equivalent saying that the solvent volume is
constant). This derivative is less important than the previous ones.

The expressions of these derivatives are known. They are given by Kirkwood—
Buff’s theory (viz.: Chap. 22). They are:

(Opa/0pA)r B = KT/(pa + pa*Gan)

It is also written as follows:

(Oua/0pa)r, 8 = kT[1/pa — Gan/(1 + paGan)] (44.5)
(Opa/0pa)r.p = KT /[pa(1 4 psGan — pAGas)]

It is also written as:

(Opa/Opa)rp = kT[1/ps — (Gan — Ga)/(1 + paGaa — paGag)]  (44.6)
(aMA/aPA)T,pB = kT{l/PA - [GAA + /B (GAAGBB - GABZ)] /D} (44.7)

with:
D =1+ psGaa +ppGee + papp(GaaGes — Gip)

Relation (44.7) also stems from the Kirkwood—Buff’s theory by taking into account
the relation:

V/kT(aﬂA/aNA)T,V’NB = l/kT (aﬂA/apA)T’pB

Some interesting results can be inferred from relations (44.5)—(44.7).

— Partial derivatives are divergent for p, — 0
— If p, — 0, the solution is ideal. The first term of relations (44.5)—(44.7) is
dominant. As a result:
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(Oua/0pa)r. e = (Oua/Opa)rp = (Oup/Opa)r, iy = KT/pa  (pa—0)

Then, the integration of the three partial derivatives leads to the three following
expressions:
MA(T,#B,/)A) = nOA(T,yB) + kT 1IlpA
/’lA(T,P,pA) = puarp) + kT Inpy  (py —0) (44.8)

”A(T,pB,pA) :”OA(T,pB) + KT Inpy

These expressions are evidently different although they exhibit the same kind of
mathematical expression since the three integration constants p°, (called the
standard potential of A in the specified conditions) apply in different conditions
as it is indicated by the indices of the partial derivatives.

Here is a new reason, which is different from that involving the choice of the
scale of “concentrations,” of the diversity of choices of the conditions which
constitute the definition of standard states.

However, the similarity of the three expressions must be highlighted.

Returning to expressions (44.5)—(44.8), two observations must be made:

— The standard chemical potentials do not correspond to an actual standard state of
the system. (When p, = 1, indeed, the solution is not sufficiently dilute to
remain ideal—viz. Chap. 11). Let us recall that standard states of the compo-
nents of symmetric ideal solutions do actually exist. They are defined as being
their pure state in the conditions of the process (xaandxg = 1).

— It is quite evident that the conditions underlying the fact that the term 1/p5 may
be much higher than others are different according to the investigated case. They
can depend only on G values for the first one, whether on both Gaa and Gag
for the second or, even, on the three Gaa, Gag, Ggp for the third. This is a
striking illustration of the interest of Kirkwood—Buff’s theory.

44.3.2 Some Supplementary Considerations Concerning
the Chemical Potential of the Solute at Constant
Temperature and Pressure: The Part Played by
the Scale of Concentrations

Chemical potentials and activities at constant temperature and pressure are quan-
tities very often handled in the course of solutions studies. This is the reason why
we focus ourselves on them. In this case, several concentration scales can happen to
be used. As a result, activity values (and also those of their coefficients) vary.
Besides, the already tackled density numbers scale, we now consider the scale of
molar fractions and that of molalities.
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* The molar fraction scale

The relation (44.3) stemming from the Kirkwood-Buff’s theory remains valid
since the reasoning leading to it is a general one. We observe that when x4 — 0
(ideal solution), the term 1/x, is dominant. Then:

(Qua/0xa)yp = KT/xa  (xa —0) (44.9)
whence
Har,paa) = HA(T,P) +kT In xa (xa —0) (44.10)

u*“A(T,p,xa) is the integration constant, also named the standard potential. This
new standard potential is different from that at constant temperature and pressure
already encountered above (relation (8)):

/"OXA(T7 p,XA) 7é :uOA(T7 p7pA>

This accounts for the occurrence of a different superscript. We must indicate the

adopted scale of concentration. u°A(T, p, pa) i, indeed, as it is recalled above, the

standard chemical potential (at constant pressure and temperature) entering in the

definition of the activity when it is related to the density number, whereas the

writing u°*o(T, p,x,) indicates the concentration is expressed in molar fractions.
The expression relating one standard state to the other is:

HA(T,p) = u”"a(T,p) — kT Inpy (44.11)

It results from the relation existing between the total density number p of the
solution, that of the solute A and its molar fraction x:

Xa = pa/P
Replacing x4 by this expression into (44.9) gives:
Ha = pA(T,p) + kT Inpy — kT Inp

The chemical potential of a compound in a given state can be endowed solely with
only one value, whatever the chosen scale of “concentrations.” As a result, we can
also write:

Ha = p°A(T,p) + KT Inpy

The comparison of both latter relations, after taking into account the fact that p
— pg When p, — 0, leads to that mentioned above.

* Molality scale
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Another standard potential interesting to express is that applying when the
molalities scale is used. Let us recall that for dilute solutions, the molality value
of a solute is very close to that of its molarity (cf, Chap. 1). Both are very often used
especially in physical and analytical chemistries. When the solution is sufficiently
dilute, the molality m, is related to the molar fraction through the relation:

ma = 1000 XA/MB

where My is the solvent molecular weigh. Replacing x4 in (44.9) by its expression
stemming from the relation just above, we obtain:

yin = AT, P) + KT In(Mg/1000)] + KT In my
pa = p"A(T,p) + KT In mp

We note that the standard potentials u°™ (T, p) and u°*s(T,p) are not identical,
whence their difference of superscripts.

44.3.3 Solvent Chemical Potential

Of course, it is also interesting to express the solvent B chemical potential. In order
to do that, we use the Gibbs—Duhem’s relation which is:

XB(aﬂB/aXA)T,P "‘XA(aﬂA/axA)T,P =0
Taking into account (44.8) which is valid when x5 — 0, it becomes:
—xp(0Opg/0xp)r p+kT =0 (xa — 0)
After integration, we get:
ug(T,p,xg) = C(T,p) +kT In xg (xao — 0)
where C(T, p) is the integration constant. In order to specify it, we take into account
the fact that when xa — 0, xg — 1. Hence, C(T,p) is equal to the chemical

potential of the pure solvent (xg = 1), that is to say:

C(T7 p) = ”g(T7 p)

and
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”B(TapaxB) :/’t]I;(Ta p) + kT In xp (xB - 1)

This result has already been mentioned several times.

At this point, let us recall that quasi-systematically in chemistry, the solute
activities are related to their molalities or molarities and the solvent activity to
its molar fraction (viz.: Chap. 1).
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Chapter 45

Expressions of Activity Coefficients

and Activities in Relation to Kirkwood—-Buff’s
Theory

Abstract As it has been anticipated and as it is shown in this chapter, the
Kirkwood—Buff’s theory can provide expressions for activities and their coeffi-
cients of the components of nonideal solutions of nonelectrolytes through the
derivatives of the chemical potentials, at least at the first level of approximation.
Actually, as it is described, comparisons of the expressions of the chemical poten-
tials of the component of ideal solutions with those found (for the same conditions)
by integration after the using of Kirkwood—Buff’s theory, indeed, permit to get
some expressions of activity coefficients and show that they are functions of some
molecular parameters with probably the mo