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Chapter 1
Introduction to Membrane Bioreactors

This chapter gives a general introduction to membrane science and technology, and
begins with the definition of terms and provides a description of membrane pro-
cesses currently implemented in different fields. Specifically, the Membrane
Bioreactor (MBR) technology is introduced and followed by a short overview of
the historical development and different configuration of MBRs. Finally, the
advantages and disadvantages of membrane bioreactors are discussed. To sum up,
MBR acts an efficient, reliable and cost-effective technology that deals excellently
with the growing demands for treating wastewater, which can then be returned to
the hydrological cycle without any adverse effects.

1.1 Introduction

A membrane is defined as a thin selective barrier between two phases (gas or
liquid), which is impermeable to the transfer of specific particles, molecules or
substances, colloidal, and dissolved chemical species other than water or solvent
(Mulder 1997). A material of reasonable mechanical strength that maintains a high
throughput of a desired permeates with a high degree of selectivity is ideal for the
production of membranes. Usually, a thin layer of material with a narrow range or
domain of pore size and a high surface porosity affect the physical structure of the
membrane. The physical structure of a thin layer membrane leads to the separation
of dissolved solutes in liquid streams and the separation of gas mixtures for
membrane filtration (Visvanathan et al. 2000).

Membrane processes or productions are categorised based on (1) the driving
force which is used for separation of impurities such as pressure (DP) temperature
(DP), concentration gradient (DC), partial pressure (Dp), or electrical potential
(DE), (2) the mechanism of separation, (3) the particular application of membrane,
(4) the size of the retained material, and (5) the type of membrane (Baker 2004).

© Springer Nature Singapore Pte Ltd. 2017
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Considering the categorization based on the pore size or size of retained mate-
rial, membranes can be classified as ultrafiltration (UF), microfiltration (MF),
nanofiltration (NF) and reverse osmosis (RO) membranes, dialysis, electrodialysis
(ED), where the first four processes produce permeate and concentrate (Radjenović
et al. 2008). As illustrated in Table 1.1, UF and MF are low pressure-driven pro-
cesses in which feed water is driven through a synthetic micro-porous membrane
and then divided into permeate (which passes through the membranes) and retentate
(which includes nonpermeating species). These membrane processes are known to
be more efficient in removing microorganisms and particles from wastewater. In
comparison to UF and MF, RO is a high pressure-driven process used to remove
dissolved constituents such as salts, low molecular organic and inorganic pollutants
from waste water remaining after advanced treatment with MF. NF operates at a
pressure range between RO and UF, targeting removal of divalent ion impurities
(Visvanathan et al. 2000).

Table 1.1 Characteristics of membrane processes (Nath 2008; Perry and Green 1997; Koros et al.
1996)

Type of
process

Size of
materials
retained

Driving
force

Type of
membrane

Application

Ultrafiltration 1–100 nm
macromolecules

(ΔP)
(1–10 bar)

Micro-porous – Separation of proteins
and virus

– Concentration of oil in
water emulsions

Microfiltration 0.1–10 µm
microparticles

(ΔP)
(0.5–2 bar)

Porous Separation of bacteria
and cells from solutions

Nanofiltration 0.5–5 nm
molecules

(ΔP)
(10–70 bar)

Micro-porous – Separation of dye
and sugar

– Water softening

Reverse
osmosis

<1 nm
molecules

(ΔP)
(10–100 bar)

Nanoporous – Desalination of sea
and brackish water

– Process of water
purification

Dialysis <1 nm
molecules

(ΔC) Micro-porous
or nanoporous

– Purification of blood

Electrodialysis <1 nm
molecules

(ΔE) Micro-porous
or nanoporous

Separation of electrolytes
from nonelectrolyates

Pervaporation – (ΔC) Nanoporous Dehydration of ethanol
and organic solvents

Gas separation – Partial
pressure
difference
(1–100 bar)

Nanoporous Hydrogen recovery from
process gas streams,
dehydration and
separation of air

Membrane
distillation

– (ΔT) Micro-porous Water purification
and desalination
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A more recently developed membrane process is MBR, which combines MF or
UF, and a bioreactor for biological treatment. This process is an emerging tech-
nology increasingly used for both municipal and industrial waste water treatment
and has led to significant advances in knowledge and experience related to their
design and operation (Crawford et al. 2000; Drews 2010; Hong et al. 2002; Hwang
et al. 2010; Judd 2006; Judd and Judd 2010; Meng et al. 2009; Stephenson et al.
2000; Thomas et al. 2000; Visvanathan et al. 2000). It represents a good innovative
process in which gravity settling or clarifiers of the conventional activated sludge
system (CAS) is replaced by membrane separation module (Bella et al. 2007; Hong
et al. 2002; Le-Clech et al. 2006). Such a module reproduces MF or UF processes
with pore sizes ranging from 0.05 to 0.4 µm (Bouhabila et al. 2001). This enables
the separation of solid–liquid and act as an advanced treatment unit for specific
pollution agents (e.g. coliform bacteria or suspended solids). It must be kept in
mind that these agents cannot be completely eliminated by conventional waste
water treatment processes (Bella et al. 2007; Le-Clech et al. 2006)

As seen schematically in Fig. 1.1, in a conventional activated sludge (CAS)
process, the microorganisms accumulate into flocs and these flocs are suspended in
wastewater to facilitate treatment. Once the waste water is treated, the flocculated
microorganisms must be eliminated from clean water (Hussain et al. 2010).
Conventionally, a clarifier is used for liquid–solid separation; therefore, a successful
treatment in CAS process relies on the development of flocs that settle well.
Furthermore, conventional activated sludge process (CASP) does not cope well
with fluctuations of wastewater flow rate or composition.

Conversely, in MBR, the membrane component eliminates the need for a clar-
ifier and is performed using low-pressure MF, UF or NF membranes. Additionally,
MBR systems allow the complete physical retention of bacterial flocs and almost all
suspended solids (individual microorganisms, large biological flocs and inert par-
ticles) within the bioreactor and therefore can offer excellent disinfection capacity

Fig. 1.1 a Typical process schematic for conventional activated sludge processes (CAS) and
b membrane bioreactor processes in wastewater treatment. Adapted from Leiknes (2010)
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(Le-Clech et al. 2006; Li and Chu 2003). As a result, the total coliform bacteria
reduction can reach an average of log 7 (Hirani et al. 2010). Due to its advantages,
MBR has been demonstrated to be highly effective for the treatment of polluted
surface water supplies to produce potable water (Smith et al. 1969). Thus, in
comparison to other membrane processes, MBR has the potential for the treatment
of many types of wastewater; this does not solely lie in its application to biological
degradation and nitrification, but also because it could replace other conventional
treatment units such as flocculation, sedimentation, filtration and disinfection. In
industry, MBR is used as secondary treatment in order to reduce biodegradable and
non-biodegradable matter in the end product (because the presence of oxygen) or as
MBR can be used as an advanced treatment to remove residual nutrients which are
not fully removed during secondary treatment (Tchobanoglous et al. 2004).

1.2 History of Membrane Bioreactors

Membrane bioreactors were initially developed in the 1960s when commercial scale
UF and MF membranes became available. The original process was introduced by
Dorr-Olivier Inc. (Milford, Connecticut) and combined a crossflow membrane fil-
tration loop with an activated sludge bioreactor (Enegess et al. 2003). Polymeric flat
sheet (FS) membranes with pore sizes ranging from 0.003 to 0.01 µm were used in
this process (Yamamoto et al. 1989). Replacing the settling tank of the conventional
activated sludge process seemed to be appealing. However it was difficult to val-
idate the use of such process due to the associated high costs of the membranes. The
low economic value of the product (tertiary effluent) and potential rapid loss of
performance due to fouling also impaired the process of membrane bioreactors.
And as such the focus was on attaining high fluxes. Nevertheless it was important to
deliver the mixed liquor suspended solids (MLSS) at a high cross flow velocity,
incurring a significant energy consumption (of the order 10 kWh/m3 product) to
reduce membrane fouling.

This first generation of MBRs suffered from a substandard economic perfor-
mance and as such their suitability was limited to a narrow range of applications
such as ski resorts, hotels or isolated trailers parks. The major breakthrough for
MBRs came in 1989 with the research conducted by Yamamoto et al. They
demonstrated for the first time the use of submerged membranes in bioreactor,
which was a major innovation, compared to the prior approach with the separation
device located externally to the reactor. Yamamoto et al. (1989) investigated the
feasibility of direct membrane separation using hollow fibre in an activated sludge
aeration tank, and identified the key parameters, which give a stable operation and
effective organic stabilisation and nitrogen removal. As a result, the number of
membrane bioreactors used to treat municipal wastewater increased significantly. In
2005, the market value of MBRs reached $217 million and continued to increase
reaching $360 million in the year 2010 (Judd 2006).

4 1 Introduction to Membrane Bioreactors



The acceptance of modest fluxes (25 % or less of those in the first generation)
and the idea to use two-phase bubbly follow to limit membrane fouling has been
another aspect of recent development of MBR systems. Bubbling or air scouring is
used to deter clogging of the membrane modules from solid concentrations and as a
technique to control membrane fouling. According to Zhang et al. (2011b), two
types of bubbling can be used to control membrane fouling. The first one is a slug
bubble and the second one is a free bubble. They concluded that using slug bubbles
showed better antifouling performance than free bubbles in FS MBR under both
short-term and long-term operation. In short-term operation, a high flux operation
was achieved at 36 h with 40 L m−2 h−1. In contrast, moderate flux operation of
14 days was possible a flux of 24 L m−2 h−1.

From the mid-1990s there was an exponential increase in MBR plant installa-
tions as a result of lower operating cost with the submerged configuration and a
continual decrease in membrane cost. Further enhancement in the designs and
operation of MBRs has been achieved and these have been assimilated into larger
plants. Early MBRs operated at solid retention times (SRT) as high as 100 days
with MLSS up to 30 g L−1. Recently, the trend is to apply a lower SRT (around
10–20 days). This leads to more manageable MLSS levels (10–15 g L−1). Due to
these new operating conditions, the membrane-fouling tendency in MBR has begun
to decrease and overall maintenance has been simplified, as less frequent membrane
cleaning is necessary (Le-Clech et al. 2006). Currently a variety of MBR systems
are commercially available, mostly using submerged membranes. Although some
external modules are available, these external systems also use two-bubbly phase
flow for fouling mitigation.

Generally, for membrane configuration, hollow fibre and FS membrane sheets
are used in the applications of MBRs (Stephenson et al. 2000). The economic
feasibility of current generation MBRs depends on an attainable permeate flux,
predominantly controlled by appropriate fouling control strategy with a modest
energy input (usually �1 kWh/m3 product).

Effective fouling alleviation methods can be executed only when the phenomena
appearing at the membrane surface are fully understood. The plethora of publica-
tions dealing with membrane fouling and published within the last 5 years is
overwhelming and can confuse many readers. To simplify the situation, a com-
prehensive yet concise overview of MBR foulants parameters and fouling will be
presented in this book.

1.3 Membrane Bioreactor Configurations

Basically, there are two membrane configurations used in the membrane system.
The first configuration is side-stream (external) membrane bioreactors (see Fig. 1.2)
and the second one is submerged MBR (the membrane is immersed directly into
bioreactor) (see Fig. 1.3). The second one is more applicable in wastewater treat-
ment than the first one because it has many advantages such as lower energy

1.2 History of Membrane Bioreactors 5



consumption, higher hydraulic efficiency and simple design. However, side-stream
configuration is possibly used for wastewater treatment, with wastewater (feed) is
pumped into the membrane and part of the permeate is collected while the other part
is returned back to the MBR. Side-stream configuration has the capability to control
membrane fouling significantly; resulting in constant flux but the energy con-
sumption and complex design are the major limitations.

The configurations of MBR are based on geometry (either cylindrical or planar).
There are five major membrane configurations currently used in practice
(Radjenović et al. 2008)

1. Hollow fibre (HF)
2. Spiral-wound
3. Plate-and-frame (i.e. FS)
4. Pleated filter cartridge
5. Tubular.

Fig. 1.2 Side-stream membrane bioreactor with external pressure-driven membrane unit. Adapted
from Radjenović et al. (2008)

Fig. 1.3 Submerged
Membrane Bioreactor with
internal vacuum
pressure-driven membrane
filtration. Adapted from
Radjenović et al. (2008)
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The first three membrane configurations are widely used in MBRs. In the first
membrane module, the large amounts of these membranes make a bundle and the
ends of the fibre are sealed properly in an epoxy block connected with the outside of
the housing. The water can flow from inside to outside of the membrane or vice
versa. These membranes operate under both pressure and vacuum. Due to the lower
energy cost and back-flushing capability, hollow fibre membranes are most popular
in MBRs.

Spiral-wound membrane configuration are mostly used for RO and NF pro-
cesses. The Spiral-wound membrane configuration are coiled through the perforated
tube in which permeate (effluent) goes out. The standard manufacturing of the
spiral-wound membrane configuration make their installation easier with less cost
in membrane production. The installation of these membrane configuration can be
performed in series or parallel in plants with higher capacity.

Currently, plate-and-frame membrane modules are widely used in water and
wastewater treatment industry. They are composed of FS membranes with sepa-
rators and/or support membranes. The pieces of these sheets are fastened onto a
plate. The water flows across the membrane and the permeate is extracted through
pipes which emerge from the interior of the membrane module in a process that
operates under vacuum (Radjenović et al. 2008).

The last two membrane configurations are pleated filter cartridge and tubular.
These membranes are not widely used in industrial scale. Obviously, tubular
membranes are wrapped in a pressure vessel (tube) and then mixed liquor is
pumped through them. They used specifically for side-stream MBR configurations.

1.4 Advantages and Limitations of Membrane Bioreactors

Membrane bioreactors have attracted extensive attention as a result of their
numerous advantages over CASP. The advantages of MBRs include excellent
treated water quality, high biodegradable efficiency, small footprint and reactor
requirements, absolute biomass retention and ease of stable operation. They can
also display high effluent quality, flexible operation, absolute removal of bacteria,
high volumetric loading up to 20 kg COD/m3 per day, excellent disinfection
capability and turbidity less than 0.5 NTU (number transfer unit), low sludge
production, compactness, enable high removal efficiency of biological oxygen
demand (BOD) and chemical oxygen demand (COD) (Judd 2006, 2008; Li and
Chu 2003; Liao et al. 2006; Pan et al. 2009; Wang et al. 2008; Yamato et al. 2006;
Yang et al. 2006; Bouhabila et al. 2001; Chang et al. 2006; Kimura et al. 2005;
Meng et al. 2009; Stephenson et al. 2000; Visvanathan et al. 2000; Zhang 2009).

As a result, the MBR process has now become a viable alternative for the
treatment and reuse of municipal and industrial wastewaters. MBRs are therefore
considered a promising tool for future waste water treatment (Rosenberger and
Kraume 2002; Rosenberger et al. 2002; Chu and Li 2005; Côté et al. 1998; Davis
et al. 1998; Gunder and Krauth 1998; Wu and Huang 2010; Zhang et al. 2011a).

1.3 Membrane Bioreactor Configurations 7



However, alongside with these advantages, MBR technology is affected by crucial
issues that seriously hamper the performance and the widespread applications of
MBRs (Bouhabila et al. 2001; Li et al. 2013; Mannina and Cosenza 2013; Zhang
et al. 2011a). Membrane fouling, that is the undesirable deposition of retained
particles, colloids, macromolecules and salts on the membrane surface or on the
membrane pores, is the most critical disadvantage (Houari et al. 2010; Meng et al.
2009; Rana and Matsuura 2010; Kochkodan 2012). Specifically, membrane fouling
results in a reduction of separation process output, diminishes process productivity,
severe decline of the permeation flux or rapid transmembrane pressure increase
(TMP), leading to high energy consumption, frequent membrane cleaning or
replacement, which consequently leads to the increase in operating and mainte-
nance cost (Asatekin et al. 2007; Bouhabila et al. 2001; Huang et al. 2010, 2012;
Khan et al. 2009; Liao et al. 2004; Pan et al. 2009; Porcelli and Judd 2010; Rabie
et al. 2001; Tansel et al. 2000; Wang et al. 2009).

In MBR, fouling mechanism is strongly related to physical and chemical
interactions between the foulants and the membrane surface. Le-Clech et al. (2006)
stated that the mechanism of fouling in MBRs includes a mixture of pore closure,
cake layer and pore blocking, however, Zhang et al. (2006) argued that fouling
mechanism involves three stages: adsorption, pore closure followed by a period of
slow of TMP rise, and TMP jump. Chang et al. (2002) and Le-Clech et al. (2006)
reviewed membrane fouling by focusing on factors that affect MBR fouling. They
provided a very comprehensive study outlining numerous factors such as sludge
characteristics, operational parameters, membrane materials and feed water char-
acteristics which all interact in causing fouling in MBRs.

Fig. 1.4 Publications on MBR fouling (as reported in Scopus using the search term “membrane
AND bioreactor AND fouling” for title-abstract-keyword on 25 August 2015)
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Recently, numerous research studies have been conducted exploring fouling in
MBRs and techniques used to overcome fouling. As can be seen in Fig. 1.4, a
plethora of articles have been recently published on fouling and techniques to
reduce its impact on MBR. Despite the extensive research activity related to
MBR’s, the concept of fouling and techniques to overcome fouling in MBR’s is still
an active topic, which is extensively discussed in the literature.

Apart from membrane fouling, cost is another major limitation of MBR tech-
nology. This is because of the high cost of membranes, which leads to the increases
in both, operational and maintenance costs. Membrane cost covers replacing
severely fouled or corrupted membranes and membrane cleaning processes during
maintenance (Judd 2006; Le-Clech et al. 2006).

To sum up, various processes have been developed for water treatment using
membranes. Among these processes, MBR stands out as one of the most efficient
technologies. Its capability in treating wastewater cannot be disputed. However
alongside their advantages, MBR’s are limited by the concept of fouling. Membrane
fouling is a major issue in the membrane bioreactors that significantly impair their
practical applications. Therefore, this issue needs to be addressed to minimise the
need for chemical cleaning and physical cleaning, reducing operational and
maintenance costs that have a significant impact on MBRs. By minimising mem-
brane fouling, membrane bioreactors will be more widely applicable for a range of
wastewater treatment.
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Chapter 2
Fundamentals of Membrane Processes

In this chapter the common fundamentals of different membrane processes are
described. In the first part a general description of the different membrane struc-
tures, such as porous and dense homogeneous or symmetric and asymmetric
membranes, and their function is discussed. In the second part membrane materials
such as inorganic, organic, and composite materials and their function in membrane
bioreactors are described. Third, the preparation of synthetic membranes via the
phase inversion method is described in detail. Finally, alternative techniques of
membrane fabrication are presented.

2.1 Membrane Classification by Membrane Structure

Synthetic membranes display a broad range in their physical structure and the
material they are made from (Strathmann 2011). They can be classified according to
their morphology, as shown in Fig. 2.1.

The first group is dense homogeneous polymer membranes. Usually they are
prepared (i) from solution by solvent evaporation only or (ii) by extrusion of the
melted polymer (Nunes and Peinemann 2006). However, dense homogeneous
membranes only have a practical usefulness when they are made from a highly
permeable polymer such as silicone. Commonly, the permeate flow across the
membrane is quite low, since a minimal thickness is required to grant the membrane
mechanical stability. The majority of membranes currently are porous or consist of
a dense top layer on a porous structure (Mulder 1984, 1997; Nunes and Peinemann
2001; Strathmann et al. 2006).
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The second category is porous membranes, which can also be divided into two
main groups. They are divided according to their pore diameter: microporous
(dp < 2 nm), mesoporous (2 nm < dp < 50 nm) and macroporous (dp > 50 nm)
(Gallucci et al. 2011b).

The first groups of membranes are referred to as symmetric (isotropic) and the
second type is referred to as asymmetric (anisotropic) membranes. Within the
asymmetric membranes, there are several distinctly different structures including
integrally skinned membranes (where the pore structure gradually changes from
very large pores to very fine pores, essentially forming a “skin” on top of the
membrane, giving rise to the name “integrally skinned”). Alternatively, the skin
may be nonporous. A third, and industrially very important type of asymmetric
membrane is the thin-film composite membrane, where a dense, selective, thin layer
is deposited or polymerised at the surface/interface of a porous substrate.

Symmetric membranes refer to the membranes with uniform structure (uniform
pore size or nonporous) throughout the entire membrane thickness (Buonomenna
et al. 2011). Symmetric membranes are used today mainly in dialysis, electro-
dialysis, and to some extent also in microfiltration (Strathmann 2000, 2011). The
thickness of symmetric membranes is usually between 30 and 500 µm. The total
resistance of the mass transfer relies on the total thickness of the membranes.
Hence, a decrease in membrane thickness results in an increased permeation rate.

 

Fig. 2.1 Membrane
classifications according to
morphology. Adapted from
Nunes and Peinemann (2006)
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Asymmetric membranes have a gradient in structure. They consist of a 0.1–5 µm
thick “skin” layer on a highly porous 100–300 µm thick structure (Strathmann
2011). The skin represents the actual selective barrier of the asymmetric sub-
structure. Its separation properties are thoroughly determined by the nature of the
material or the size of pores in the skin layer. The porous substrate layer serves as a
support for the mostly very thin top layer, or “skin” (relatively dense) and has little
effect on the separation properties of the membrane or the mass transfer rate of the
membrane (Strathmann 2011). The dense surface layer is considered to be
responsible for the membrane selectivity. Consequently, the controlled structure of
the dense surface layer has become a serious concern in the membrane design
(Zhenxin and Matsuura 1991). Also, the resistance to the mass transfer is mainly
determined by the top layer (Buonomenna et al. 2011; Nunes and Peinemann 2001).
Asymmetric membranes are primarily employed in pressure driven membrane
processes such as reverse osmosis, ultrafiltration, gas separation and sometimes in
microfiltration. High fluxes (high permeate flow per unit area), a reasonable
mechanical stability providing very thin selective layer are the unique properties of
asymmetric membranes (Strathmann 2011; Nunes and Peinemann 2006). Two
procedures are used to prepare asymmetric membranes: the first method is based on
phase inversion process which leads to integral structure (Kesting 1971), The
second method resembles a composite structure in a two-step process in which a
thin barrier layer is deposited on a microporous substructure (Cadotte and Petersen
1981; Strathmann 2011).

2.2 Membrane Materials

In general, there are three fundamentally different categories of membrane mate-
rials: Organic (polymeric), inorganic (ceramic) materials and biological materials.
Organic materials are either cellulose—based or composed of modified organic
polymers. By contrast, inorganic materials such as ceramics and metals are used in
niche industrial applications but are usually cost-prohibitive in wastewater treat-
ment. Biological membrane (bio membranes) is a selective barrier within or around
a cell in a living organism. The biomembrane is capable of recognising what is
necessary for the cell to receive or block for its survival. These membranes cannot
meet the industrial requirements due to thermomechanical stability and produc-
tivity. It should be pointed out that, a large majority of membranes in research and
commercial use are polymeric-based (organic membrane) as a result of their facile
processing into viable membrane structures and the diverse polymers available, as
well as the capability to synthesise novel polymer structures (Peyravi et al. 2012).
Recently, composite membranes and inorganic membranes have gained tremendous
attention owing to their potentially high performance, long lifetime and even their
availability that outweigh the benefits/advantages of using polymeric membranes.
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2.2.1 Inorganic Membranes

Inorganic membranes posses excellent thermal and chemical stability in comparison
to polymeric membranes and hive higher antifouling property due to the hydro-
philic nature of in organic material (Gallucci et al. 2011a; Mulder 1997).
Nevertheless, there has been some limitation in their use despite their wide use and
application. The main application of inorganic membranes in the past was
enrichment of uranium hexafluoride U235 via Knudsen flow through porous ceramic
membranes. Recently, many more applications are found in the field of ultrafil-
tration and microfiltration. Inorganic membranes are generally divided into four
groups: glass membranes, ceramic membranes, metallic membranes, carbon
membranes, and zeolitic membranes.

Metallic membranes can generally be obtained via the sintering of metal pow-
ders (e.g. stainless steel, molybdenum, or tungsten). According to (Gallucci et al.
2011a), the main materials for preparing metallic membranes are palladium and its
alloys due to their high solubility and permeability of hydrogen. These membranes
are employed for separation of hydrogen from gas mixtures and in the membrane
reactor area for producing pure hydrogen (Lin 2001). These membranes have both
advantages and disadvantages. The advantages are considerable mechanical
strength and higher permeating flux (Gallucci et al. 2011a). The limitations of
metallic membranes are (1) highly cost (very expensive) due to the low availability
of palladium in nature and (2) surface poisoning, which is significantly more for
thin metal membranes. There have been numerous studies reporting that the impact
of poisons such as CO or H2S on Pd-based membranes is a major problem. These
gases (H2S or CO) adsorb on the palladium surface that block the dissociation sites
for hydrogen. Therefore, these membranes have received limited attention today
because they do not relate to MBR technology (Judd 2006).

Ceramic membranes are of great importance in separation technology as they
have a higher chemical, thermal and mechanical stability compared to organic
membranes (Belfer et al. 2000). This stability makes these UF or MF membranes
suitable in different fields of industry such as (food, biotechnology and pharma-
ceutical applications). They have been proposed for gas separation and the appli-
cation of membrane reactor. Ceramic membranes are prepared through the
combination of a metal (e.g. aluminium, titanium, silicium or zirconium, zinc, tin,
and iron) with a non-metal in the form of oxide, nitride, or carbide to form a variety
of inorganic nanoparticles (fillers) such as carbon nanotubes, alumina, or aluminium
oxide (Al2O3), titanium oxide (TiO2), zirconium dioxide or zirconia (ZrO2), zinc
oxide (ZnO), Silver, tin oxide (SnO2), and Fe3O4. All these membranes have been
used to fabricate inorganic—polymer composite membranes (Arthanareeswaran
et al. 2008; Huang et al. 2006; Jian et al. 2006; Liang et al. 2012; Yang et al. 2007;
Zoppi and Soares 2002; Leo et al. 2013; Celik and Choi 2011; Celik et al. 2011a, b;
Bae and Tak 2005a, b; Maximous et al. 2010; Gallucci et al. 2011a; Leo et al. 2012;
Lu et al. 2005; Mulder 1997; Rahimpour et al. 2008, 2009; Razmjou et al. 2011a, b;
Sawada et al. 2012; Yu et al. 2009a, b; Livari et al. 2012; Moghimifar et al. 2014).
Sintering or sol–gel techniques are usually used to prepare ceramic membranes.
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Glass membranes can be regarded as ceramic membranes. Issues associated with
ceramic membranes are the difficulties faced in proper sealing of the membranes in
modules operating at high temperature, extremely high sensitivity of membranes to
temperature gradient, leading to membrane cracking, and chemical instability of
some perovskite-type materials (Gallucci et al. 2011a). Glass membranes (silica,
SiO2) are generally prepared by leaching techniques.

Carbon membranes (also called carbon molecular sieve membranes CMS) have
been regarded as a promising candidate for applications of gas (Gallucci et al.
2011a). CMS are porous solids membranes, containing constricted holes that are
responsible for approaching the molecular dimensions of diffusing gas molecules.
Therefore, molecules with different size can be efficiently separated through
molecular sieving (Gallucci et al. 2008). CMS membranes can be prepared by
pyrolysis of thermosetting polymers such as poly acrylonitrile (PAN), cellulose
triacetate, phenol formaldehyde, and poly (furfural) alcohol.

Recently, a new class of membranes have been developed and studied, such as
the zeolitic membranes. These membranes have a very narrow pore size and can be
employed in gas separation, pervaporation and separation of ions from aqueous
solution by reverse osmosis. These membranes have some limitations; first the main
limitation is relatively low gas fluxes in comparison to other inorganic membranes.
Second, its thermal effect, as noted by Cejka et al. (2007), the zeolite layer exhibits
negative thermal expansion, in which the zeolite layer shrinks when the region
temperature is high, but the support layer expands continuously, causing thermal
stress issues for the attachment of the zeolite layer to the support and for the
connection of the individual microcrystals within the zeolite layer.

Inorganic membranes have both advantages and disadvantages as presented in
Table 2.1. The major advantages of inorganic membranes when compared with
polymeric membranes, is their high chemical, thermal, and mechanical stability and
wide tolerance to pH (Belfer et al. 2000; Gallucci et al. 2011a). They can operate at
high temperatures. As a fact of matter, inorganic membranes are stable at

Table 2.1 Advantages and disadvantages of inorganic membranes with respect to polymeric
membranes (Gallucci et al. 2011a)

Advantages Disadvantages

1. Long-term stability at high
temperatures

1. High capital cost

2. Resistance to harsh environments
(e.g. chemical degradation, pH, etc.)

2. Embrittlement phenomenon (in the case of dense
Pd membranes)

3. Resistance to high pressure drops 3. Low membrane surface per module volume

4. Inertness to microbiological
degradation

4. Difficulty of achieving high selectivities in
large-scale microporous membranes

5. Easy cleanability after fouling 5. Low permeability of the highly hydrogen
selective (dense) membranes at low temperatures

6. Easy catalytic activation 6. Difficult membrane to module sealing at high
temperature
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temperatures ranging from 300 to 800 °C and in some cases, ceramic membranes
usable over 1000 °C (van Veen et al. 1996). They also have a high resistance to
chemical degradation. Judd et al. (2004) stated that ceramic membranes did not foul
substantially at fluxes up to 60 L m−2 h−1, whilst polymeric membranes fouled at a
lower flux of 36 L m−2 h−1. Applicability of inorganic membranes is of great
interest in non—aqueous filtration due to stability in organic solvents (Tsuru et al.
2000a, b). Despite their potential in waste water treatment, certain limitations deter
membrane processes from large scale and continuous operation (Lee et al. 1999).
One of the major limitations arises from membrane fouling caused by different
inorganic salts (Bhattacharjee and Johnston 2002) which increases feed pressure,
reduces permeate flux, decreases product quality and finally shortens membrane
lifespan (Lee and Lee 2000; Seidel and Elimelech 2002).

Another limitation of inorganic membranes that probably hampers their appli-
cation is the high capital costs of both the manufacturing process and material
(Gallucci et al. 2011a). Therefore, the inorganic membranes might be used only in
some special applications such as anaerobic biodegradation (Fan et al. 1996) and
high temperature waste water treatment (e.g. high-strength industrial waste) (Luonsi
et al. 2002; Scott et al. 1998). Despite, the high expense of inorganic membranes
and their susceptibility to membrane fouling, they are still a competitive product in
many applications. It is expected that inorganic membranes will have more appli-
cations in the future. Table 2.1 summarises the advantages and disadvantages of
inorganic membranes over polymeric membranes.

2.2.2 Polymeric Membranes

Although polymer membranes are less resistance to high temperature and aggres-
sive chemicals than inorganic or metallic membranes, they are still the most widely
used materials in wastewater treatment applications. This is mainly owing to easy
preparation, reasonable expense (low cost), high efficiency for removing dispersed
oil, particles, and emulsified, small size, lower energy requirement, flexibility in
membrane configuration, and relatively low operating temperature which is also
associated with less stringent demands for the materials need in the construction of
module (Buonomenna et al. 2011; Nunes and Peinemann 2010). Among many
homopolymeric materials presented in Table 2.1, polyethersulfone (PES) is one of
the most vital polymeric materials and is widely used in producing microfiltration
(Li et al. 2008, 2009a, b; Ulbricht et al. 2007; Zhao et al. 2003a, b; Shin et al. 2005;
Liu and Kim 2011), ultrafiltration (Chaturvedi et al. 2001; Marchese et al. 2003; Xu
and Qusay 2004; Wang et al. 2006a, b, c) as well as nanofiltration membranes
(Boussu et al. 2006; Ismail and Hassan 2007), either on the laboratory or industrial
scale (Razali et al. 2013) Polyethersulfone (PES) has been recognised or
acknowledged as a high performance polyaromatic polymer possessing toughness
and thermal stability (Huang et al. 2012; Li et al. 2004; Shi et al. 2008; Shin et al.
2005; Zhao et al. 2013).
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PES is a thermoplastic polymer and is typically amorphous in nature and shows
one prominent XRD peak at 2h = 19.9° (Nair et al. 2001; Kumar et al. 2006; Guan
et al. 2005). PES membranes show a high glass transition temperature
(Tg � 503 K). PES structure has a harder benzene ring and a softer ether bond; so
crystalline properties can be expected (Barth et al. 2000; Ismail and Hassan 2007).
Additional properties include

• Good chemical resistance (inertness): PES exhibits excellent chemical resistance
to aliphatic hydrocarbons, alcohols, and acids. It is also soluble in some aprotic
polar solvents (Zhu et al. 2014).

• Blood compatibility.
• Outstanding oxidative stability.
• Outstandingly high mechanical strength.
• Easy processing and environmental endurance.
• Wide temperature and pH tolerance.
• Moderate good chlorine resistance.
• Easy to fabricate membranes in a wide variety of modules and configurations as

well as wide range of pore size available for UF and MF from 10 A to 0.2 lm.
• PES also shows other good qualities such as good membrane forming

properties.
• Commercially available and relatively inexpensive (Bolong et al. 2009).

Polyethersulfone has been affirmed as the membrane material in many processes
such as in biomedical fields for blood purification (haemodialysis and plasma
collection) (Barzin et al. 2004; Samtleben et al. 2003; Tullis et al. 2002; Werner
et al. 1995; Zhao et al. 2001; Unger et al. 2005), hollow fibres (Khulbe et al. 2003)
(Yang et al. 2007), stable substrate for the deposition and thermal processing of
semiconductor thin films (Nair et al. 2001), sensors applications (Gerlach et al.
1998), sterilisation and pharmaceutical (Baker 2012; Song et al. 2000), water
purification, beverage filtration, protein separation, and pre-treatment of reverse
osmosis (Bolong et al. 2009; Yu et al. 2011).

However, its main limitations is related to the relatively high hydrophobic
property, which can lead to severe membrane fouling (Kim et al. 1999; Van der
Bruggen et al. 2002a, b) owing to the adsorption of nonpolar solutes and
hydrophobic particles or bacteria onto its surface (Khulbe et al. 2000, 2010; Koh
et al. 2005; Rahimpour and Madaeni 2010). This would lead to the gradual
reduction of permeation flux, frequent membrane cleaning, impacting on the use-
able lifetime of the membrane and its applications (Daraei et al. 2013a, b, c; Luo
et al. 2005; Yamamura et al. 2007a, b; Zhao et al. 2013; Rahimpour et al. 2011).
Therefore, achieving the desired surface properties without modification of the
advantageous properties of PES membrane is a paramount goal for membrane
researchers and industry.

Regarding of the preparation of PES membranes, (Zhao et al. 2013) stated that
the structure of PES membranes is always symmetric and is prepared by phase
inversion methods. The structure of PES membrane is affected by the composition
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(e.g. concentration, solvent, and additives), temperature of PES solution, the non-
solvent or the mixture of nonsolvents, and the coagulation bath or even the envi-
ronment (Barth et al. 2000).

Many other polymeric materials can also be employed for fabricating mem-
branes as explained schematically in Table 2.2. This table illustrates some examples
of polymeric materials used for microfiltration, ultrafiltration, reverses osmosis, and
some membrane processes.

Recently, copolymer is another important polymeric material in the manufacture
of membranes. It is gaining more attention by a number of researchers. The
copolymers are composed of at least two different types of structural units with
different properties. The properties of copolymers rely on the properties of the units
that are connected in the polymer and their relative proportions. Hence, polymers
that are employed for the preparation of membrane and require different properties
can be copolymerised carefully by selecting various polymeric units. To date, many
membranes with high performance have been fabricated by different copolymers
with different molecular structures (for example, block copolymers: poly (ethylene
oxide)–polysulfone block copolymer (Hancock et al. 2000), graft copolymers: poly
(ethylene glycol)-graft-polyacrylonitrile copolymer (Su et al. 2009b), and so on.

2.2.3 Composite Membranes

Composite membranes are often referred to as thin-film composite
(TFC) membranes and they have received tremendous attention in recent years for
desalination of brackish and sea water, waste water reclamation, and the separation
and purification of chemical and biological products (Buch et al. 2008). TFC
membranes are composed of at least two layers (with different (polymeric) mate-
rials), with a very selective membrane material being deposited as a dense ultrathin
layer formed upon a more or less porous support layer (sublayer), which usually is
an ultrafiltration membrane and serves as support as shown in Fig. 2.2 (Strathmann
1989; Wu 2012). The advantage of TFC membranes is each layer (i.e. top selective
layer and bottom porous substrate) is thoroughly optimised and controlled inde-
pendently to achieve the desired selectivity and permeability while presenting
excellent compression resistance and mechanical strength (Jahanshahi et al. 2010;
Lau et al. 2012; Rahimpour 2011; Kosaraju and Sirkar 2008). The porous support
layer (bottom layer) is generally prepared through phase inversion method. On the
other hand the top selective layer is prepared from elastomer, which is hard to
prepare it through phase inversion method. The first generation TFC membranes
were prepared by pouring a thin layer of polymer solution on a liquid of water or
mercury (Mulder 1997). Numerous coating procedures have been used to prepare
TFC membranes, including plasma polymerisation, dip coating, in situ polymeri-
sation, and interfacial polymerisation. These techniques will be discussed in this
chapter.
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Another type of procedure used to prepare composite membranes, is the coating
layer, which plugs the pores in the sublayer. In this procedure, the unique char-
acteristics of the sublayer compared to those of the coating layer highlight the
overall properties. With other techniques like stretching, sintering, leaching out and
track-etching, porous membranes can be obtained. Porous membranes are mainly
used as sublayer for composite membranes. Using phase inversion method is fre-
quently possible to obtain open or dense structures. Various techniques have been
implemented to prepare the ultrathin barrier layer upon the supporting layer. These
techniques include (Lau et al. 2012; Mulder 1997; Seman et al. 2012).

(a) Interfacial polymerization (IP): It is a technique that is used for depositing the
thin selective layer onto the porous layer. Polymerisation reactions emerge
between two reactive monomers that react on the interface of two immiscible
phase (an aqueous phase and an organic solvent such as hexane) through

Fig. 2.2 Examples of the preparation of composite membranes by interfacial polymerization
(Mulder 1997)
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interfacial polymerization, and form a denser polymeric top layer on the
supporting layer surface. The benefits of this technique are self-inhibiting
through passage of a limited supply of reactants through the already formed
layer, causing an extremely thin film of thickness in the range of 50 nm.
Figure 2.2 illustrates some examples of monomers and pre-polymers that can
be used to prepare composite membranes by interfacial polymerization.

(b) Dip coating: It is a straightforward and effective technique to prepare com-
posite membranes with a very thin structure but dense toplayer. Membranes
obtained by this technique can be used in gas separation, pervaporation and
reverse osmosis applications. The principle of this method is dip coating a
polymer solution onto the supporting layer’s surface and then drying the
coated layer (using oven).

(c) Lamination: In this technique, casting an ultrathin layer and then the micro-
porous layer is covered with the casted ultrathin layer.

(d) Plasma-initiated polymerization: This technique involves depositing the barrier
film directly on the microporous support layer by gaseous phase monomer
plasma using an electrical discharge at high frequencies up to 10 MHz (Mulder
1997).

2.2.4 Formation of Membranes by Phase Inversion Method

Generally, various techniques have been extensively used to prepare synthetic
membranes either inorganic membranes (e.g. ceramics, metals, glass, Zeolites) or
organic membranes that includes all sorts of polymers (Mulder 1997; Nunes and
Peinemann 2006; Strathmann et al. 2006). The purpose of preparation is to modify
the material using an appropriate technique to obtain a membrane structure with an
appropriate morphology for a specific separation. The preparation method is limited
by the materials used, the membrane morphology obtained and the separation
principle applied.

The techniques that are being employed for the preparation of synthetic mem-
brane are phase inversion, stretching of films, irradiation and etching of films,
sintering of powders, track-etching, sol–gel process, microfabrication vapour
deposition and coating (Hoek and Elimelech 2003; Hoek et al. 2002; Jeong et al.
2007; Mulder 1997; Tang et al. 2008; Ulbricht 2006). One of the most important
methods is phase inversion.

Phase inversion method is arguably one of the most common and versatile
technique used to prepare all sorts of morphologies (both symmetric and asym-
metric types) due to the significance of immersion precipitation (Boom et al. 1992;
Buonomenna et al. 2011; Madaeni and Rahimpour 2005a, b; Mulder 1997;
Rahimpour and Madaeni 2010; Rahimpour et al. 2007a, b, 2009, 2010a, b). It is a
process whereby a polymer is transformed in a controlled manner from a liquid
state to a solid state. Throughout this technique, a thermodynamically stable
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polymer solution with a multiple components is subjected to a liquid–liquid
demixing whereby the cast polymer film separates into a polymer—rich phase
(membrane matrix) and a polymer—lean phase (membrane pores) (Buonomenna
et al. 2011). The mechanism of phase inversion during membrane formation can be
concisely described by a polymer/solvent/nonsolvent system, as explained typically
by a ternary phase diagram shown in Fig. 2.3 (Buonomenna et al. 2011).

The corners of the triangle act the three components (polymer, solvent, non-
solvent), whilst at any point within the triangle represents a mixture of three
components (starting compositions of the casting solution); the binodal curve
divides the triangle into two phase regions; a one-phase region where all compo-
nents are miscible to and a two-phase region where the system is separated into a
polymer-rich, generally a solid phase and a polymer-poor which is generally liquid
phase (although the one-phase region in the phase diagram is continuous
thermodynamically).

For practical purposes it can conveniently be divided into a liquid and a solid
region. The tie lines within the two-phase region connect two equilibrium states on
the binodal curve, which also represent the compositions of two coexisting phases
generated during the phase separation. The region between the spinodal and the
binodal curves is called metastable region, where phase separation appears under
certain initiation (nucleation). The region within the spinodal curve corresponds to
unstable composition where immediate demixing occurs after entering this region.

Fig. 2.3 Ternary phase diagram (solvent/polymer/nonsolvent) for membrane formation via phase
inversion process (Machado et al. 1999)
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By immersing a thin layer casting solution into a coagulation bath, the solvent of
the casting solution is exchanged with a nonsolvent (Rahimpour and Madaeni
2007). The composition of the coagulation and casting solution are the most con-
siderable factor, as it determines the phase inversion path of a membrane forming
system (Albrecht et al. 2001).

The filled square represents the initial state of casting solution. The exchange
between solvent and nonsolvent changes the composition in the casting film. Once
demixing polymer solution arrives in the metastable region between the binodal and
the spinodal, the region is referred to “binodal demixing” and therefore represents
path A (Fig. 2.3). In this region, the polymer solution is separate into a
polymer-lean phase and a polymer-rich phase (Buonomenna et al. 2011). Another
pathway towards miscibility gap (path B) is called “spinodal decomposition”. In
this pathway, the composition path passed through the thermodynamically unstable
zone (critical point), in which the binodal and spinodal curve converge, and two
co-continuous phases formed. This process yields asymmetric membranes with a
dense top layer and porous sublayer containing macrovoids, pores, and micropores
(Rahimpour and Madaeni 2007).

The general concept of phase inversion method covers a variety of different
techniques, including:

(a) Precipitation by solvent evaporation: Precipitation by solvent evaporation is a
straightforward technique used to prepare phase inversion membranes. The
polymer is dissolved in a solvent and form homogenous solution (casting or
dope solution). Then, the dope solution is casted on a suitable support (e.g.
glass plate) or another type of support that may be nonporous (polymer) or
porous (non-woven fabric). Later, the solvent is allowed to evaporate in an
inert gas (e.g. nitrogen) to exclude water vapour, allowing a dense homoge-
nous membrane to be obtained (Mulder 1997).

(b) Precipitation by controlled evaporation: In the early years this technique has
been used. In this method, the polymer is dissolved in a mixture of solvent and
nonsolvent. Even though, the solvent is more volatile than the nonsolvent, the
evaporation step leads to polymer precipitation own to higher nonsolvent
content. The structure of membrane prepared by this technique is skinned
membranes.

(c) Thermal precipitation: Polymeric solution in a mixed or single solvent is cooled
to allow phase separation to occur. Evaporation of the solvent usually allows the
formation of a skinned membrane (Cheryan 1998; Oh et al. 2009; Su et al.
2009a, b). This method is thoroughly used to preparemicrofiltrationmembranes.

(d) Precipitation from the vapour phase: In this method, a dope solution, which
consists of a polymer and a solvent, is placed in a vapour atmosphere whereas
vapour phase consists of a nonsolvent saturated with the same solvent. The
high solvent concentration in the vapour phase prohibits the evaporation of
solvent from the cast film. As a result of diffusion of nonsolvent into the cast
film, the membrane formation appears. This leads to formation of porous
membrane without a toplayer.
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(e) Immersion precipitation or nonsolvent induced phase inversion: This is one of
the most common methods in the preparation of the most polymeric micro-
filtration and ultrafiltration and some of nanofiltration which is used for sep-
aration processes (Ismail and Hassan 2007). In this procedure, a film of
homogenous polymeric solution is cast on a suitable substrate after preparing it
by dissolving polymer into solvent. Then the cast film is immersed in a
coagulation bath containing deionised water or methanol. Precipitation occurs
as a consequence of the exchange between the solvent and nonsolvent. The
membrane structure essentially is obtained from a combination of mass
transfer and phase separation method (Rahimpour et al. 2010a). Keeping in
mind, that thermodynamic behaviour of a polymer solution is attributed to
immersion—precipitation and is represented by polymer/solvent/nonsolvent
systems (Buonomenna et al. 2011). This precipitation is also called dry/wet
method (Zhao et al. 2008; Oh et al. 2009).

2.3 Membrane Fabrication Techniques

Membranes of different arrangements are formed in order to meet different indus-
trial and domestic demands; thus, various casting techniques have been imple-
mented to obtain different types of the membrane such as flat sheet membrane
(casting), hollow fibre membrane (spinning) and composite membrane (dip coat-
ing). The first two, will be discussed in this chapter. The third one is discussed
previously.

2.3.1 Flat Sheet Membranes

For research purposes, flat sheet membrane is a relatively simple method used to
fabricate/prepare membranes. In industrial scale, the casting method employed is
usually a continuous mode as shown below in Fig. 2.4 (Mulder 1997).

The principle of this method is the polymer is initially dissolved in an appro-
priate solvent mixture (which may include additives) and forms a homogeneous
(dope) solution. Molecular weight of a polymer, concentration of the polymer and
the kind of solvent used (mixture) are three factors (parameters) affect the viscosity
of the dope solution. Afterward, the polymer solution is spread (poured) and cast
directly to a thin film of a homogenous polymer solution using one of the sup-
porting layer (for example, clean glass plate, or polyethylene non-woven fabric,
polyester, metal, and Teflon) by means of steel casting knife and adjusting the
thickness of the membranes. The casting thickness can roughly vary from 50 to
500 µm. The thin film of a homogenous polymer solution (protomembrane) is
immediately immersed in a second liquid, which is a nonsolvent for the polymer;
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however, it is miscible with the polymer solvent. Exchange between the solvent and
nonsolvent occurs and ultimately introduces phase separation in polymer film and
would lead to the formation of membranes (Rahimpour and Madaeni 2010;
Rahimpour et al. 2010a, b; Mulder 1997). Water is used as a nonsolvent (second
liquid), as it is a powerful nonsolvent. Organic solvents (e.g. methanol) can be used
for the same purpose as well. Since the solvent/nonsolvent pair is a very important
characteristic in obtaining the desired structure, the nonsolvent cannot be chosen at
will.

A non-continuous mode is usually employed in a laboratory scale. The
three-component polymer solution (polymer/solvent/additive) is prepared and stir-
red under particular temperatures in order to ensure complete dissolution of the
polymer. After the polymer solution is placed for some time and the complete
release of bubbles is confirmed, the homogenous solution is cast on glass plates
using a casting knife with a specific thickness (for example, filmographe Dr. Blade
150 µm; Erichsen blade 150 µm). This is immediately moved to the coagulation
bath (which is usually deionised water) for immersion at room temperature without
any evaporation. Then, the membranes are peeled off the glass and subsequently
rinsed with deionised water and stored in fresh deionised water for at least one day
to leach out all residual solvents (Rahimpour and Madaeni 2010; Rahimpour et al.
2009, 2010a, b). At the final stage, membrane is sandwiched by placing between
two sheets of filter paper or placing in air for 24 h at room temperature.

In Summary, flat sheet membranes are relatively straightforward to prepare, as
they are very effective for characterising on laboratory scale. A dead end cell station
is usually used for measuring water flux of membranes.

For very small membrane surface area (less than 1000 cm2), the membranes are
mostly cast by hand or semi-automatically using glass plate, not on non-woven
polyester.

Fig. 2.4 Schematic of continuous flat sheet membrane preparation. Adapted from Mulder (1984,
1997)
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2.3.2 Hollow Fibre Membranes

Spinning is another technique used to prepare hollow fibre membranes. For
industrial applications, hollow fibre membranes are more applicable, more effective
and cheaper than flat sheet membranes because hollow fibre membranes have
relatively higher (surface/volume) ratio compared to flat sheet membranes, which
can have a greater resistance to pressure. Additionally very few manufactures
supply flat sheet membranes (Zhao et al. 2013). Hollow fibre membranes have a
minimum dead space; therefore it can be physically cleaned by frequent backwash,
yielding longer life to the membranes. It has been designed with specific dimen-
sions that are suitable to minimise membrane fouling in a given application. Many
scholars believe that hollow fibre membranes and flat membranes can exhibit
similar performance. But, the procedures for their preparation are thoroughly dif-
ferent, considering hollow fibre membranes are self-supporting. The fibre dimen-
sions are a paramount aspect and should be taken into account when preparing
hollow fibre membranes.

In general, hollow fibre membranes can be prepared by three methods:

(a) Wet spinning method: possible but rarely used to prepare hollow fibre
membranes,

(b) Melt spinning, and
(c) Dry spinning (dry-wet spinning): this method is more applicable to prepare

hollow fibre membranes and is based on the phase inversion method (Khayet
and García-Payo 2009).

A schematic drawing illustrating the preparation of hollow fibre membranes is
displayed in Fig. 2.5. The polymer solution is prepared and stored in a thermostated
tank. Then, the solution is pumped and extruded through a tube–in-orifice spin-
neret; the polymer solution (being filtered before it) enters the spinneret. The vis-
cosity of the polymer solution should be high (more than 100 poise). The bore
injection liquid (nonsolvent liquid or gas) is also delivered or passed through the
inner tube of the spinneret. The primary function (goal) of the bore liquid is to keep
the fibre open and to assist in controlling the interior surface morphology of the
hollow fibre through phase inversion.

After a short residence time in air or atmosphere, the fibre is immersed in a
coagulation bath where precipitation appears outside the liquid filament due to
solvent evaporation. After immediate coagulation, asymmetric hollow fibre are
formed with density gradient along the radial direction (Machado et al. 1999). The
fibres are then rinsed and cut with the desired length and collected upon a godet.
Cutting the fibre is favourable in the hollow fibre process to assist in promoting the
flow of bore liquid inside the hollow. The main parameters in the spinning tech-
nique are (Mulder 1997):

(a) The extrusion rate of the polymer solution,
(b) The bore fluid rate,
(c) The tearing rate,
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(d) The residence time in the air gap (between spinneret and coagulation bath), and
(e) The dimensions of the spinneret.

These parameters strongly interact with the membrane forming parameters such
as the composition of the polymer solution, the composition of the coagulation bath
and its temperature.

In summary, the configurations of flat sheet and hollow fibre membrane can be
used as membrane bioreactors (MBRs) for applications of wastewater treatment,
and both have their advantages and disadvantages.
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Chapter 3
Fouling in Membrane Bioreactors

Membrane fouling is a stubborn problem in all membrane filtration processes, in
particular membrane bioreactors because it leads to higher operating pressure, more
frequent chemical cleaning, shortened membrane life and compromised product
water quality. This chapter presents an exhaustive overview of membrane fouling in
membrane bioreactors. It commences by giving a concise definition of membrane
fouling and its diverse implication in the development of membrane bioreactor
technology. This chapter highlights the underlying causes of membrane fouling and
its effects are also indicated. The types of membrane fouling in membrane biore-
actors are elucidated in detail. Thereafter, methods used to control or limit mem-
brane fouling are also outlined in this chapter. To sum up, membrane fouling is
highly complex physico-chemical problem.

3.1 Membrane Fouling

Generally, membrane fouling is considered as a bottleneck in membrane filtration
processes (Huang et al. 2012b). It is inevitable problem in which the retained
particles, colloids, macromolecules and salts are undesirably deposited and accu-
mulated on the membrane surface or in the membrane pores (Houari et al. 2010;
Meng et al. 2009; Rana and Matsuura 2010; Kochkodan and Hilal 2015).
Membrane fouling is a very common hindrance to the advancement of water
treatment membrane technologies, including microfiltration (Xiao et al. 2011);
ultrafiltration (Bai and Leow 2002a, b; Le-Clech et al. 2006a, b), nanofiltration (Mo
et al. 2012; Simon et al. 2013) and osmosis processes (Li et al. 2007; Phuntsho et al.
2012). Therefore, membrane fouling decreases the permeate flux significantly,
affects the quantity and quality of products, raises operating costs, and eventually
shortens membrane lifespan (Wang et al. 2011a, b; Porcelli and Judd 2010).
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With respect to MBR, membrane fouling is one of the most stubborn problems,
hindering its widespread practical applications and also reduces its performance
(Hilal et al. 2005; Huang et al. 2010; Kang et al. 2003; Kimura et al. 2005;
Le-Clech et al. 2006a, b; Meng et al. 2009; Zularisam et al. 2006; Miura et al. 2007;
Wang et al. 2011a, b).

Membrane fouling can be ascribed to both pore clogging and sludge cake
deposition which are regarded as the main fouling components as shown
schematically in Fig. 3.1 (Hilal et al. 2005; Lee et al. 2001a), whilst other
adsorption of solutes on membranes, deposition of particle within the membrane
pores and alterations to the cake layer affect membrane fouling via the modification
of either or both components (Bai and Leow 2002a, b; Ma et al. 2001a, b; Wiesner
et al. 1992; Ahmed 1997; Wakeman and Williams 2002a). Pore blocking and
adsorption in internal pore surfaces occur if the foulants (colloids) are smaller than
the membrane pores (i.e. solutes). However, if the foulants (colloids and sludge
flocs) are much larger than the membrane pores, they tend to form cake layer on the
surface of membrane. In fact, pore blocking increases the membrane resistance
whereas cake layer can create an additional layer of resistance to permeation flow
(Bai and Leow 2002a; Wiesner et al. 1992).

During the past few decades, there have been numerous research studies con-
ducted to grasp the complex mechanisms of membrane fouling and strategies that
can be implemented to keep the filterability of membranes which in turn controls
fouling (Tardieu et al. 1998; Xiao et al. 2011; Ang et al. 2011; Chon et al. 2013;
Lee et al. 2004; Asatekin et al. 2007; Hilal et al. 2005; Hong et al. 2002; Le-Clech
et al. 2006a, b, c). However, there are still research gaps on how to counteract
fouling successfully (Wu and Huang 2010a; Wang et al. 2011; Tiraferri et al. 2012;
Diagne et al. 2012; Cui and Choo 2013).

Fouling has been a problematic phenomenon the industry has been battling for a
while, and extensive research must be conducted on this issue. This can broaden our
understanding of fouling which can result in finding an effective and efficient
technique to control and even minimise it. Once a feasible solution for membrane
fouling is implemented, membrane bioreactors will become a more promising
technology for a wider range of wastewater treatment.

(a) (b)

Fig. 3.1 Membrane fouling process in membrane bioreactors, via a pore blocking and b cake
layer formation. Adapted from Meng et al. (2009)

40 3 Fouling in Membrane Bioreactors



3.1.1 Causes of Fouling

Huang et al. (2012b), Le-Clech et al. (2006b), Rana and Matsuura (2010) and Zhou
et al. (2014) state that fouling is caused by the interaction between the foulants
which may be particulate, colloidal particles or matters or biomacromolecules in
separation solutions and the membrane surface which includes: organic, inorganic
and biological substances in numerous forms. The foulants interact physically and
chemically with the membrane surface, however chemically it degrades the mem-
brane material. Consequently, non-specific adhesion of microorganisms and
biomacromolecules occurs on the membrane surface, resulting in blocked or
decreased greatly membrane pores and then a significant decrease in permeation
flux or separation efficiency.

Previous studies have indicated that the factors which affect membrane fouling
in membrane bioreactors are: the type of wastewater (Li and Yang 2007), sludge
age (Chang and Lee 1998), sludge loading rate (Chang et al. 2002), permeate flux
(Tradieu et al. 1998; Fan et al. 2000), aeration intensity (Bouhabila et al. 1998;
Howell et al. 2004), mixed liquor suspended solid concentration (MLSS) (Hong
et al. 2002; Le-Clech et al. 2003; Yamamoto et al. 1989), mechanical stress (Zeng
2007), solid retention time (SRT) (Shin and Kang 2003; Lee et al. 2003), food to
microorganism ratio (F/M), and hydraulic retention time (HRT) (Rosenberger and
Kraume 2002; Rosenberger et al. 2002a, b). Table 3.1 gives the relationship
between these factors and membrane fouling on the basis of recent research studies.

In addition to the factors above, the properties of mixed liquor have also been
thought to impact membrane fouling in MBRs. These properties include soluble
compounds (Wisniewski and Grasmick 1998), soluble microbial products
(SMP) (Huang et al. 2000; Lesjean et al. 2005; Liu et al. 2005), extracellular
polymeric substances (EPS) (Chang and Lee 1998), particle size distribution(Cicek
et al. 1999) and viscosity of mixed liquor (Ueda et al. 1996). Furthermore, the
research studies also illustrate that carbohydrate/protein has a solid relationship with
the evolution of membrane fouling in membrane bioreactor systems. However, a
clear relationship between carbohydrate/protein and membrane fouling in MBRs
was not apparently found in recent research studies in which pilot-scale experiments
were implemented by Kimura et al. (2005). Other investigators, for example
(Evenblij and van der Graaf 2004; Nuengjamnong et al. 2005; Drews et al. 2006a;
Geng and Hall 2007; Nagaoka et al. 1996; Ng et al. 2006) have concluded that EPS
and SMP are currently regarded as the major foulants of membranes in MBRs. The
deposition of EPS and SMP towards membranes can clog membrane pores and
form a fouling layer on the membrane surface, gradually increasing the filtration
resistance (Tansel et al. 2006; Brindle and Stephenson 1996; Chang and Lee 1998;
Cho and Fane 2002; Drews et al. 2007; Rosenberger and Kraume 2002). Zhang
et al. (2011a) vividly outlines the factors impacting membrane fouling in membrane
bioreactors (MBRs). The authors state that the primary cause of fouling originates
from three main parameters including membrane properties, sludge characteristics
and operating parameters; this can be seen in Fig. 3.2. The operating parameters
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Table 3.1 Summary of the relationship between various fouling factors and membrane fouling
(Meng et al. 2009)

Sludge
condition

Effect on membrane fouling Reference

MLSS – High MLSS leads to normalised lower permeability
– High MLSS leads to higher fouling potential
– High MLSS leads to lower cake resistance, lower specific cake
resistance

Trussell et al.
(2007)
Psoch and
Schiewer (2006)
Chang and Kim
(2005)

Viscosity – High viscosity leads to low membrane permeability
– High MLSS/Viscosity leads to membrane permeability
– High viscosity leads to high membrane resistance

Li et al. (2007)
Trussell et al.
(2007)
Chae et al. (2006)

F/M – High F/M ratio leads to high fouling rates
– MLSS (2–3 g/L): high F/M leads to high irremovable fouling
–MLSS (8–12 g/L): high F/M leads to higher removable fouling
– High F/M leads to high protein in foulants

Trussell et al.
(2006)
Watanabe et al.
(2006)
Kimura et al.
(2005)

EPS – Increased polysaccharide concentration leads to increased
fouling rate

– Bound EPS influences on specific cake resistance
– Increased polysaccharide concentration leads to increased
fouling rate

– Increased bound EPS leads to membrane resistance
– The loosely bound EPS contributes to most of the filtration
resistance of the whole sludge

Drews et al.
(2006b)
Cho et al.
(2005b)
Lesjean et al.
(2005)
Chae et al. (2006)
Ramesh et al.
(2007)

SMP – SMP is more important than MLSS
– Colloidal TOC relates with permeate flux
– Filtration resistance is determined by SMP
– SMP is probably responsible for fouling
– Polysaccharide is a possible indicator of fouling
– Low SMP leads to low fouling index
– Fouling rates correlate with SMP

Zhang et al.
(2006b)
Fan et al. (2006)
Jeong et al.
(2007)
Sperandio et al.
(2005)
Le-Clech et al.
(2005b)
Jang et al. (2006)
Trussell et al.
(2006)

Filamentous
bacteria

– High filamentous bacteria concentration leads to high sludge
viscosity

– Bulking sludge could cause a severe fouling
– Low filamentous bacteria concentration leads to cake
resistance

Meng et al.
(2007)
Sun et al. (2007)
Kim and Jang
(2006)

Operating
condition
SRT

– Decreased SRT from 100 to 20 d leads to high TMP
– Decreased SRT from 30 to 10 d leads to high fouling
– Decreased SRTs leads to high fouling potentials of SMP
– Decreased SRT from 5 to 3 d leads to high fouling

Ahmad (2007)
Zhang et al.
(2006b)
Liang et al.
(2007)
Cho et al.
(2005a)

(continued)
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Table 3.1 (continued)

Sludge
condition

Effect on membrane fouling Reference

HRT – High HRT leads to high membrane fouling
– Lower HRT leads to high membrane fouling
– Lower HRT leads to high membrane fouling

Meng et al.
(2007a)
Chae et al. (2006)
Cho et al. (2005)

Aeration – High aeration intensity leads to (high) permeability
– Air sparging improves membrane flux
– Larger bubbles for fouling control are preferable
– Air backwashing for fouling control is preferable
– Bubble-induced shear reduces fouling significantly
– Air scouring can prolong membrane operation

Trussell et al.
(2007)
Psoch and
Schiewer (2006)
Phattaranawik
et al. (2007)
Chae et al. (2006)
Wicaksana et al.
(2006)
Sofia et al. (2004)

Permeate flux – Subcritical flux mitigates irremovable fouling
– Subcritical flux mitigates fouling

Lebegue et al.
(2008)
Guo et al. (2007)

Fig. 3.2 Factors influencing membrane fouling in membrane bioreactors. Adapted from Meng
et al. (2009)
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[e.g. dissolved oxygen (DO), solid retention time (SRT), hydraulic retention time
(HRT) and food to microorganism ratio (F/M)] have directly no impact on mem-
brane fouling but they determine the sludge characteristics. The optimisation of the
operating parameters can modify activated sludge. In terms of sludge characteris-
tics, their effects on membrane fouling are very complicated. Therefore, numerous
investigators recently add coagulant or adsorbent into membrane bioreactor systems
artificially to modify activated sludge. Their results were very effective in reducing
membrane fouling (Ji et al. 2008, 2010; Hwang et al. 2007; Koseoglu et al. 2008;
Teychene et al. 2011). Although all these research studies have been performed on
membrane fouling, they are still insufficient and many questions remain unan-
swered to date.

3.1.2 Effects of Fouling

Membrane fouling has a number of effects. First of all, it reduces the membrane
permeate flux either permanently or temporarily. If the fouling is temporary, then
the initial flux can usually be recovered by cleaning the membrane or by applying
backpressures to the temporarily fouled membrane. Membranes cannot be restored
when they are permanently fouled (Rana and Matsuura 2010). Second, it can
significantly reduce membrane performance, reduce separation efficiency, increase
maintenance and operating costs and rapid increase in transmembrane pressure
(TMP), shorten membrane lifespan, lead to more membrane cleaning or replace-
ment (HT et al. 2010; Yang et al. 2006b; Mansouri et al. 2010; Le-Clech et al.
2006b; Shirazi et al. 2010; Wu and Huang 2010b; Wu et al. 2010; Zhang et al.
2011b). It should be noted that although flux decrease is also associated with the
phenomenon of concentration polarisation, this is not considered as fouling because
it disappears when the filtration process is stopped.

3.1.2.1 Models of Membrane Fouling

Membrane fouling can be mainly described either by external fouling or internal
fouling. Internal fouling occurs when particles deposit inside the membrane
structure, leading to blocked pores partially or completely, reducing the effective
pore diameter and even reducing flow through the membrane (Baker 2012; Ma et al.
2007). The standard blocking model (SBM), the complete blocking model
(CBM) and the intermediate blocking model (IBM) are three models used to
describe internal fouling. By contrast, at the early stage of filtration, external fouling
refers to surface fouling and occurs thoroughly on the membrane surface when the
colloids accumulate; the accumulation of aggregated colloids may lead to blocking
pores and finally form a cake layer/film on the membrane surface. External fouling
can be removed a certain extent via cleaning procedure. The cake filtration model
(CFM) is usually used to describe external fouling.
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Furthermore, during membrane filtration there have been four fouling models
employed to describe the mechanisms of membrane fouling as shown schematically
in Fig. 3.3 (Oh et al. 2009).

1. Cake filtration—A uniform cake layer formed upon the entire membrane surface
as a consequence of the deposition and accumulation of particles with a larger
diameter than the membrane pore size. Cake fouling is generally reversible by
water flushing or backwashing (Baker 2012).

2. Complete pore blocking or plugging—this can be caused by occlusion of pores
with particles. Superimposition is impossible.

3. Intermediate pore blocking—Similar to complete pore blockage, though the
particles have the capability to deposit on the top of other deposited particles.
This can only occur under these conditions, superimposition is possible.

4. Standard blocking—Particles with a smaller pore size enter the pores and
deposit on the internal pore surfaces with their whole length, causing the nar-
rowing of the pore size.

These fouling models supply a visible picture of the relative position of particles
towards membranes. Additionally, they provide a mathematical model of the flux
filtration behaviours under constant pressure filtration mode, which can be char-
acterised by a significant plummet in the flux at the beginning of the process,
followed by decreasing curve slope until the steady state is achieved. Moreover,
developments and extensions make these fouling models applicable for constant
flux filtration and spread out some combined models.

Fig. 3.3 Illustration of several membrane fouling mechanisms. Adapted from Leiknes (2012)
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3.1.2.2 Types of Fouling

Generally, according to the chemical nature of foulants, membrane process and the
types of foulants and their interaction with membrane surface, several types of
membrane fouling have been identified in membrane bioreactors (Kochkodan and
Hilal 2015; Pan et al. 2010; Flemming 1997; Flemming et al. 1997; Kimura et al.
2004) as shown below:

1. Removable and irremovable fouling.
2. Organic fouling or scaling.
3. Inorganic fouling.
4. Biofouling.
5. Reversible and irreversible fouling.
6. Colloidal fouling.

Removable and irremovable fouling

The control and investigation of both irremovable membrane and removable
fouling in MBRs is of significant importance for long-term membrane operation
and sustainable operations of MBRs. During initial filtration, solutes, colloids and
microbial cells pass through the membrane and precipitate progressively inside the
membrane pores. Whilst for long-term operation of MBRs, the deposited cells
aggregate in MBRs and form EPS, which is considered as one of the major foulants
of membrane in MBRs. EPS is a complex mixture of carbohydrates, proteins,
humic compounds, uronic acids and DNA. EPS form a strongly attached fouling
layer on the membrane surface and clog the membrane pores partially or com-
pletely. Meantime, some inorganic substances might stick progressively on the
membrane surface or in the membrane pores (Meng et al. 2009).

Irremovable fouling can be caused by pore blocking and strongly attached
foulants during filtration, whilst removal fouling is caused by foulants that loosely
attach and is associated by the cake layer formation above the membrane surface.
Therefore, to counteract removable and irremovable fouling propensities, many
researchers stated that operation below the critical flux is the best approach to
control membrane fouling, particularly removable and irreversible fouling within a
specified filtration system. For example, (Field et al. 1995) introduced the concept
of critical flux. This flux is called subcritical flux or non-fouling operation if the
operation is below the critical flux and is expected to cause less irremovable
fouling. For a short-term membrane operation, when the permeate flux or mem-
brane permeation is less than the critical flux filtration conditions, the transmem-
brane pressure (TMP) remains constant and fouling was removable. By contrast,
when the permeate flux exceeds the critical flux, the TMP increases and is expected
to increase significantly. Indeed, for long-term membrane operation, irremovable
fouling can appear if the process is operated below the critical flux. Ognier et al.
(2004) stated that with the choice of subcritical flux filtration conditions, a slight
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membrane fouling was still seen to develop, which proved to be hydraulically
irremovable after long-term operation. The critical flux value relies on operating
conditions (i.e. aeration intensity, temperature), membrane characteristics and
sludge characteristics. The principle of critical flux has gained popularity in the
study of MBR fouling (Guglielmi et al. 2007a, b; Lebegue et al. 2008; Wang et al.
2008). However, most of the research studies on the determination of critical flux
are based on ex situ measuring which cannot provide reliable information about
MBRs fouling. Therefore, in recent years, De La Torre et al. (2008) developed an
in situ measuring method in which more reliable information can provide about
critical flux in comparison to ex situ measuring method. This method is superior to
the ex situ measuring method. Another research study was conducted by Huyskens
et al. (2008), using an online measuring method. In this study, the removable and
irremovable fouling intensities of MBR were evaluated in a reproducible way. This
method seems to be more practical approach to evaluate fouling in MBRs. These
research studies state that it is possible to develop online method or in situ method
to determine removable/irremovable fouling or determine critical flux. It is also of
great interest to develop an apparatus or a unified measuring method to verify
membrane propensity.

As mentioned previously, irremovable fouling plays an important role in the
long-term MBR operation. Therefore, chemical cleaning is necessary to maintain
MBR operation. But, chemical cleaning for the sake of eliminating irremovable
membrane fouling should be limited to a minimum because repeated chemical
cleaning may shorten membrane lifespan, degrade the membrane and the disposal of
spent chemical agents causes environmental issues (the chemical agents are not
friendly to environment as it leads to pollution ofwater) (Yamamura et al. 2007a, b, c).
On the other hand, removable fouling can be eliminated by the execution of physical
cleaning (e.g. backwashing/backflushing/relaxation) (Meng et al. 2009). Figure 3.4
depicts the process of formation of removable and irremovable fouling and their
elimination in membrane bioreactors.

Organic fouling

Schafer et al. (2005) outlines that organic fouling is an irreversible process caused
by the adsorption/retention of dissolved organic materials. Whilst, Meng et al.
(2009) define organic fouling as the deposition of (soluble microbial product) SMP
or NOM (natural organic matter) which is composed of proteins, polysaccharides
and humic substances on the surface of membrane bioreactors. SMP or NOM can
be easily retained onto the membrane surface due to the small size and the permeate
flow as the back transport to the bulk phase due to lift forces is very weak compared
with large particles (e.g. colloids and sludge flocs). For NOM, humic substances
have been considered as major foulants which can cause severe irreversible foulants
in pressure-driven membrane processes through membrane adsorption and pore
blocking (Escobar 2005). This results in a flux decline. Also polysaccharides (with
large particle size) are of high importance for membrane fouling when
pressure-driven membrane (UF) is used for water recycling (Laabs et al. 2006).
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It is difficult to recognise the mechanism attributed with organic fouling due to
the chemical properties of the molecule, the interactions of chemicals properties
with the membrane materials and strong effects of organic types. Nevertheless,
colloidal fouling and organic fouling usually intertwine for some reasons. First, the
colloids adsorb organic matter in the natural environment and a negatively charged
surface to stabilise them. Second, some organics with the sizes ranging from 1 nm
to 1 lm can be referred to colloids, such as natural organic matter (NOM). Up until
now, the only two vital mechanisms that can explain organic fouling are gel layer
formation and initial adsorption.

Gel layer is formed as a result of an excess solubility of organic molecules and the
appearance of organic flocculation. Generally, it is attributed with the concentration

Fig. 3.4 Schematic illustration of the formation and removal of removable and irremovable
fouling in membrane bioreactors. Adapted from Meng et al. (2009), Pollice et al. (2005)
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polarisation when the rise in concentration reaches the top layer of the membrane
surface. Many investigators identify Natural Organic Matter (NOM) as the major
foulant associated with organic fouling (Al-Amoudi and Farooque 2005; Rana and
Matsuura 2010; Roudman and Digiano 2000). Kim et al. (2007) characterised the
formation of NOM on flat sheet membrane surface using dead-end cell filtration. The
results of Scanning Emission Microscope (SEM) indicate that NOM gets accumu-
lated and a gel layer is formed on the membrane surface though it does not breach the
membrane body. In contrast to other research studies, NOM can reduce the effective
pore size by adsorbing on the pore wall. Rana and Matsuura (2010) state that NOM
could be controlled by electric double layer repulsion and permeation hindrance. It
has been demonstrated that the hydrophobic fraction of NOMwas the major factor in
causing the flux decline. This is because of the strong adsorption of hydrophobic
NOM on the membrane surface. The hydrophilic fraction of NOM had a relatively
small effect on the membrane fouling (Nilson and DiGiano 1996). Recently,
(Metzger et al. 2007) have performed a comprehensive research study to characterise
the deposited biopolymers in MBRs. After membrane filtration, the fouling layers
were divided into three layers (upper layer, intermediate layer and lower layer) using
rinsing (washing), backwashing and chemical cleaning. The results showed that the
upper fouling layer was composed of a porous, loosely bound cake layer with the
same composition to sludge flocs (biomass flocs). The intermediate fouling layer
equally consisted of soluble microbial product (SMP) and biomass aggregates,
resulted in a high concentration of polysaccharides. Whilst, the lower layer was
predominated by SMP and represented the irremovable fouling fraction, which had a
relative higher concentration of strongly bound proteins. This study showed the
spatial distribution of SMP on the surface of membrane.

Whilst adsorption occurs when organic matter and membrane interact
physico-chemically. Combe et al. (1999) confirmed that the organic components
directly adsorb to the membrane surface or inside the pores in a form of a thin layer,
using humic acid as the foulant model. Hence, the characteristics of the membrane
surface such as hydrophobicity, surface charges and pore size change. The afore-
mentioned characteristics result in fouling to some extent. It should be noticed that
after the initial adsorption of the organics, the newly formed thin surface might have
completely distinct characteristics compared with the original membrane surface,
which mainly depends on the solutes. Under this consideration, gel layer formation
seems to be more responsible for the organic fouling.

In order to figure out the detailed information on the deposited biopolymers (i.e.
Protein, humic substances, polysaccharides), the identification of these substances
is indispensible part. Fourier transform infrared spectroscopy (FTIR), excitation–
emission matrix fluorescence spectroscopy (three dimension tool) EEM and high
performance size exclusion chromatography (HOP-SEC) are three analytical tools
used to investigate organic fouling. The major components of NOM foulants were
identified as protein using FTIR (Lee et al. 2004) whilst EEM were usually used to
characterise protein-like or humic-like substances in membrane foulants.
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Inorganic fouling or scaling

Fouling in membrane bioreactors is mainly dominated by organic fouling and
biofouling, whilst inorganic fouling is the weakest threat. All of them occur
simultaneously during the membrane filtration of activated sludge (Meng et al.
2009). Despite numerous research studies focused on membrane fouling, not much
light has been shed on inorganic fouling in MBRs. Speth et al. (1998) define
inorganic fouling as the agglomeration of materials on the surface of a membrane,
or in membrane pores. Van De Lisdonk et al. (2000), Kochkodan and Hilal (2015)
contend that inorganic fouling is the result of high concentration of one or more
inorganic salts in raw water beyond the inorganic salts limited solubility and their
ultimate precipitation on the membranes. Conspicuously, this can be seen vividly in
the region near the surface of nanofiltration membranes NF and also near the RO
membrane surface where the concentration of dissolved salts is 4–10 times higher
than the bulk feed water. This is due to concentration polarisation (CP), resulting in
the precipitation of constituent ions (e.g. BaSO4 and CaCO3) on membrane surface
(Van De Lisdonk et al. 2000; Wu 2012). It is documented that inorganic substances
are a contributor factor to less than 15 % of membrane foulants in pilot nanofil-
tration plant for the treatment of surface water. A severe fouling is expected when
the presence of calcium and alginate is due to the complexation between them.

Scaling refers to the formation of inverse solubility salts, such as CaSO4.xH2O,
CaCO3, SiO2, Mg (OH) 2 and Ca3 (PO4) 2 deposits. These salts are responsible for
inorganic fouling on the membrane surface and their solubility products are illus-
trated below in Table 3.2 (Lee et al. 1999; Van De Lisdonk et al. 2000; Lin et al.
2005; Shirazi et al. 2006). According to (Hasson et al. 2001), the compounds with
the greatest scaling in NF and RO are CaCO3 and CaCO4.2H2O, whilst other
potential scaling compounds are BaSO4, SrSO4, Ca3(PO4)2 and Fe(OH)3. The salt
precipitates when the solubility product of the constituent ions exceeds the solu-
bility limit. Table 3.2 illustrates the solubility product of the common inorganic
salts that cause scaling on the surface of the membrane.

Other investigators, for example Kang et al. (2002) and Ognier et al. (2002a, b, c)
suggest that inorganic fouling may take place more readily on inorganic membranes.
Due to the cohesive properties, a cake of inorganic material can generally become
irremovable. Recently, Wang et al. (2008) asserted that the cake layer is formed by
organic substances and inorganic elements such as Mg, Al, Fe, Ca, Si, etc. When the
organic foulants are coupled with the inorganic foulants, precipitation promotes the
formation of a cake layer.

Recently, inorganic fouling has been investigated in MBR processes. Ognier
et al. (2002a, b, c) state that severe CaCO3 fouling is expected in a pilot MBR with
a ceramic ultrafiltration membrane. They prepared synthetic wastewater with hard
tap water (Ca+2 = 120 mg/l; Mg+2 = 8 mg/I). They concluded that higher alkalinity
of the activated sludge (pH = 8–9) leads to pre-precipitation of CaCO3. Lyko et al.
(2007) found that metal substances (i.e. Fe+3) were regarded as major contributors
to membrane fouling than biopolymers (i.e. protein, polysaccharides). You et al.
(2006) point out that the fouling caused by inorganic scaling is not readily removed
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by chemical cleaning. These research studies demonstrate that inorganic fouling has
become paramount in MBRs. The understanding of inorganic fouling however is
still vague. Studies conducted on metal ions with limited concentrations submerged
in the feed of wastewater may promote inorganic fouling, and this may be an
important area of research in the foreseeable future. Even though, the chemical
composition of wastewater is directly correlated with precipitants formed.

As noted by (Meng et al. 2009), inorganic fouling can be formed by two paths as
shown schematically in Fig. 4.6. The first way is referred as chemical precipita-
tion and the second one is biological precipitation. In membrane bioreactors, a
variety of cations and anions and others are present such as Ca2+, Mg2+, Al3+, Fe3+,
CO3

2+, SO4
2−, PO4

3− and OH−. Concentration polarisation will lead to higher
concentration of deposited salts on the surface of membrane, particularly for
applications of RO and NF.

Chemical precipitation on the one hand, takes place when the concentration of
chemical species exceeds the saturation concentrations owing to concentration
polarisation. Furthermore, as biocake or biofilm is naturally elastic, In addition, the
fouling layer on the membrane surface can protect the surface layer from shear
stress as biocake is naturally elastic, resulting in higher concentration polarisation
(CP) and precipitation of inorganic salts (Sheikholaslami 1999; Sheikholeslami
1999). Carbonates are one type of the predominant salts in inorganic fouling. The
carbonates of metals such as Ca, Mg and Fe can potentially increase membrane
scaling (You et al. 2005).

Biological precipitation, by contrast, is another factor to inorganic fouling. The
biopolymers (i.e. Protein) contain negative ions such as COO−, CO32−, SO42−,
PO43− and OH−. The metal ions can be readily caught by these negative ions.
Acidic functional groups (R–COOH) and calcium (Ca+2), in some cases, can
produce complexes and build a dense gel layer (a network of rigid organic matter)
that may lead to flux decline (Costa et al. 2006). When the metal ions pass through
the membranes, they could be captured by the attached biocake layer on membrane

Table 3.2 Solubility
products of the common
inorganic salts that cause
scaling on membrane surfaces
(Pollice et al. 2005; Xie et al.
2004)

Fouling salt Solubility product

CaCO3 2.8 � 10−9

CaHPO4 1 � 10−7

CaSO4 4.93 � 10−5

Ca3(PO4)2 2.07 � 10−29

MgCO3.3H2O 2.38 � 10−6

Mg3(PO4)2 1.04 � 10−24

AlPO4 9.83 � 10−21

Al(OH)3 1.3 � 10−33

Ca(OH)2 5.5 � 10−6

CaHPO4 1.0 � 10−9

Fe(OH)3 2.79 � 10−39

FePO4.2H2O 9.92 � 10−29
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through charge neutralisation and complexation and therefore speed up membrane
fouling. Connection between the deposited cells and biopolymers further enhanced
the compactness of the fouling layer and then form a dense cake layer on mem-
branes (Hong et al. 1997). The synergistic interaction between different types of
fouling (biofouling, organic fouling and inorganic fouling) could result in more
foulants deposited on the surface of membrane. Figure 3.5 illustrates chemical and
biological precipitation.

Bear in mind, inorganic fouling is a complex phenomenon in membrane biore-
actors. Therefore, different methods have been performed to avert inorganic fouling.
One of these methods is pretreatment of feed water or use of chemical cleaning.
Chemical cleaning is very straightforward method and simpler than physical one in
removal of inorganic precipitation as inorganic fouling can result in severe irre-
movable fouling. Meng et al. (2009) propose using Ethylenediaminetetraacetic acid
(EDTA) (is an amino polycarboxylic acid, a colourless and water-soluble solid) as
chemical agents that might eliminate inorganic materials on the membrane surface
effectively. Indeed, EDTA can produce a strong complex when reacts with Ca+2.
Thus, biopolymers associated with Ca+2 ions are exchanged by EDTA through a
ligand exchange reaction (Al-Amoudi and Lovitt 2007). Kim and Jang (2006) state
that the existence of metal ions (e.g. calcium) in membrane bioreactors can be

Fig. 3.5 Schematic
illustration of the formation of
inorganic fouling in
membrane bioreactors, as well
as a representation of
biological precipitation.
Adapted from Meng et al.
(2009), Pollice et al. (2005)
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beneficial for the membrane permeation in some membrane processes due to its
positive effect on colloid or sludge flocculation.

The mechanism of inorganic fouling involves the crystallisation of the salts ion
precipitated from the bulk feed solution and particulate fouling. Lee et al. (1999)
point out that there are indeed two ways of crystallisation in the membrane filtration
using CaSO4 as the fouling salt: the first way is surface crystallisation (homoge-
nous) and the second one is bulk crystallisation (heterogeneous). Surface crys-
tallisation (homogenous), on the one hand, produces solid crystals directly on
membrane surface. It is caused by formation of nuclei on the membrane active sites
or impurities on the membrane surface as nucleation sites and lateral growth of
crystals. By contrast, bulk crystallisation occurs due to the homogenous or sec-
ondary crystallisation in the bulk phase and then deposited to the membrane surface
(Okazaki and Kimura 1984; Pervov 1991). These two mechanisms of crystallisation
may simultaneously emerge through membrane filtration, and flux decline takes
place (Lee and Lee 2000). Figure 3.6 shows the scale formation mechanisms in NF.

Biofouling

Biofouling is generally one of the most common and serious issues for membrane
used in many applications such as bioseparation, water and wastewater treatments,
membrane bioreactors, reverse osmosis, desalination (Xu et al. 2010; Miura et al.
2007; Kramer et al. 1995; Flemming 1997; Flemming et al. 1997; Baker and Dudly

Fig. 3.6 Schematic representation of inorganic fouling mechanisms. Adapted from Shirazi et al.
(2010)
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1998; Guo et al. 2012; Liao et al. 2004; Ramesh et al. 2006; Liu et al. 2012; Yao
et al. 2010, 2011). It appears after organic, inorganic and colloidal fouling.

Many researchers, for example Baker and Dudly (1998), Huang et al. (2012b),
Khan et al. (2011), Vrouwenvelder et al. (2011), Baker (2004), Flemming and
Schaule (1988) state that membrane biofouling causes a number of serious issues
which include

1. A reduction in membrane permeation due to establishment of a gel-like diffusion
barrier (e.g. the biofilm) on the membrane surface.

2. An increase in solute concentration polarisation accompanied by lower solute
rejection (in RO and NF membranes).

3. An increase in the module differential pressure (DP) and feed pressure being
required to maintain the same production rate due to biofilm resistance.

4. Biodegradation and/or biodeterioration of the membrane polymer or other
module construction materials (e.g. polyurethane-based glue lines).

5. Establishment of concentrated populations of primary or secondary human
pathogens on membrane surfaces.

6. Increased energy requirements due to the higher pressure being required to
control the biofilm resistance and the flux decline.

7. Shortens membrane lifespan.

As noted by Pang et al. (2005), Wang et al. (2005), biofouling refers to
deposition/retention, growth, and metabolism of bacteria cells (marine bacteria,
diatoms and green algae) or flocs on the membranes, which is a significant concern
in membrane filtration processes. Biofouling is also a major hitch for pressure—
driven membranes such as ultrafiltration and microfiltration (used for treating
wastewater) because most foulants (colloids and sludge flocs) in MBRs are much
larger than the membrane pore size. Kochkodan (2012) defined membrane bio-
fouling as a dynamic process of microbial colonisation and growth, which results in
the formation of microbial films onto membrane surface, differentiation of micro-
bial films into mature biofilm and eventually biofilm detachment and dispersal as
shown schematically in Fig. 3.7.

Biofouling often makes the membrane surface become non-regenerable and
therefore more replacement or cleaning of the membrane is required, which con-
tributes significantly to the application cost (Baker and Dudly 1998). As a matter of
fact, biofouling term used to describe many fouling phenomena where biologically
active organisms such as fungi, viruses and microorganisms and excreted extra-
cellular biopolymers are involved (Flemming 1997; Flemming et al. 1997; Liao et al.
2004; Ramesh et al. 2006). Biofouling is considered as a common encountered
problem of the synthetic polymeric membrane surface because it diminishes the
treatment process efficiency and cost effectiveness (Flemming and Schaule 1988).

Membrane biofouling is inherently very complicated than other membrane
fouling phenomena because microorganisms can grow, multiply and relocate over
time on the surface of membrane. Biofouling has been regarded as a contributing
factor to more than 45 % of all membrane fouling phenomena (Komlenic 2010).
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Membrane biofouling is usually initiated by microbes or bacteria that attach and
grow on the surface of the membranes in use (Miura et al. 2007; Vrouwenvelder and
Kooij 2001; Baker and Dudly 1998; Flemming 1997; Flemming et al. 1997). Since
most conventional membranes are prone to bacterial attachment and growth (Baker
and Dudly 1998; Flemming et al. 1997). Baker and Dudly (1998), Chen et al. (2004)
point out that membrane biofouling is mainly caused by Corynebacterium,
Pseudomonas, Bacillus, Arthrobacter, Flavobacterium and Aeromonas bacterial
species and to a minimum extent by fungi such as Trichoderma, Penicillium and
other eukaryotic microorganisms. Some microorganisms inherently seem ‘sticky’
and rapidly tend to adhere to any surface practically, while others respond more
slowly and only adhere to certain surfaces after some time. Flemming and Schaule
(1988) found that Pseudomonas vesicularis, Acinetobacter calcoaceticus and
Staphylococcus warneri have been identified as fast adhering species out of a tap
water microflora: then, the first irreversible attachment of cells take places after few
minutes of contact between membrane and raw water. If non-starving cells are used,
the adhesion process is strongly dependent on the number of cells in suspension with
a linearity between the logarithms of numbers of suspended and adhering cells above
106 cells/ml up to complete covering of the surface (3 � 107/cm2). Starving cells do

Fig. 3.7 Models of the development of a mature P. aeruginosa biofilm from planktonic cells.
Adapted from Kim et al. (2007), Wu (2012)
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not cover the surface completely but colonise it in an island pattern with free
membrane areas in between Flemming and Schaule (1988). As a matter of fact, the
differences in microbial adhesion to membrane surfaces over long time may result
from biological factors such as the nutritional condition and growth plate of the
microbe, but the initial attachment is largely governed by physico-chemical factors
such as hydrodynamic conditions (Kang et al. 2004; Schneider et al. 2005) and
membrane surface properties (Ridgway et al. 1985).

Many investigators propose that soluble microbial product (SMP) and extra-
cellular polymeric substance (EPS) released by bacteria also play important roles in
the formation of biological foulants and cake layer on membrane surfaces by
altering their physico-chemical characteristics such as hydrophilicity and surface
charge (Flemming et al. 1997; Liao et al. 2004; Ramesh et al. 2006; Neu and
Marshall 1990). EPS primarily consists of polysaccharides, proteins, glycoproteins,
lipoproteins and other macromolecules of microbial origin (Beer and Stoodley
2013). It contains both hydrophobic and hydrophilic sites on its chemical structure,
which enable the polymer to settle on both hydrophilic and hydrophobic properties.
As noted by Neu and Marshall (1990), the interaction force between the EPS and
the membrane surface may be physical (adsorption), chemical (covalent bonding)
or electrostatic. EPS account for 50–90 % of the total organic carbon (TOC) of
biofilms and can be considered as the primary matrix material of the biofilm.

Membrane biofouling is usually regarded as irreversible process and is very hard
to handle due to the self-replicating nature of microbes or foulants (Flemming et al.
1997; Kappachery et al. 2010). Therefore, many techniques have been performed
over the last two decades to control membrane biofouling. The common strategy to
deter membrane biofouling is often to add biocides or antibacterial agents, such as
heavy metals, including zinc, copper, chlorine, silver into the feed stream of the
membrane process (Huang et al. 2012b; Zhang et al. 2012; Zhu et al. 2010). The
use of chlorine would kill 99.99 % of bacteria in the feed stream, this approach may
not be effective to eliminate membrane biofouling because they are still enough
bacteria remaining which can migrate to the membrane surface, relocate and
multiply rapidly, especially at high feed temperature and in wastewater treatment or
desalination where higher contents of nutrients are available in the feed for bacterial
growth (Zhu et al. 2010). Besides chlorine, silver is another type of biocide or
antibacterial agent, which is extensively used in different applications, despite the
fact that the study of silver for the purpose of membrane anti-biofouling has been
very limited (Chae et al. 2009; Zhu et al. 2010). Silver nanoparticles have attracted
considerable attention due to their catalytic, optical and conducting properties
(Koga et al. 2009). It is concluded that the use of silver as an effective antibacterial
agent has well known for a long time (Koga et al. 2009; Matsumura et al. 2003).
Lee et al. (2007) argue that the grafting of silver nanoparticles onto the surface of
polyamide nanofiltration membrane was shown to prevent biofouling problem
effectively and also enhance the performance of nanofiltration membrane. Huang
et al. (2014) demonstrate that the incorporation of Ag-SiO2 to PES membrane
would improve the hydrophilicity of the membrane, which will also enhance the
anti-biofouling properties. Apart from silver, zinc has also been used as
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anti-biofouling membrane (Zhang et al. 2014). Incorporating zinc into polymer
membranes would improve antibacterial or anti-biofouling performance. Zhang
et al. (2014) concluded that introducing poly (zinc acrylate) (PZA) into PES
membrane would be a simple route to improve the anti-biofouling properties of
membranes. The biofouled membranes can be visualised using different analytical
techniques such as Atomic force microscopy (AFM), Scanning electron microscopy
(SEM), Confocal Laser scanning microscopy (CLSM) and direct observation
through the membrane (DOTM).

Reversible and irreversible fouling

Irreversible fouling is a kind of fouling that exhibits a marked dependence on the
surface membrane properties, whilst reversible fouling is only weakly dependent on
the membrane surface chemistry.

Irreversible fouling is caused by strong adherence to the membrane such as pore
blocking, gel layer formation or biofilm formation. Huyskens et al. (2008), Meng
et al. (2009) point out that irreversible fouling cannot be removed by any methods
including chemical method (using sodium hypochlorite (NaOCl) as chemical agent
for cleaning). But, many researchers (Huang et al. 2012a, b; Judd 2007; Judd and
Jefferson 2003) state that the irreversible fouling can solely be eliminated by
chemical reagent but repeated chemical cleaning may reduce the membrane per-
formance, leading to membrane degradation. Reversible fouling, on the contrary,
occurs due to external deposition of material (cake filtration) and is mostly removed
by hydraulic cleaning such as backwashing or cross-flusing and relaxation.
Concentration polarisation and cake layer formation are often considered as
important reversible fouling mechanisms. A superior control of both reversible and
irreversible fouling would decrease operational costs associated with membrane
cleaning, thereby making MBRs more competitive in comparison to conventional
wastewater treatment plants (Judd 2006). Huyskens et al. (2008) used a new
method to evaluate irreversible and reversible fouling. This method is called the
MBR-VFM (VITO Fouling Measurement). This method is a further modification of
the VFM, which was developed about 5 years ago as an alternative method to
determine the fouling tendency of aqueous feeds in pressure-driven filtration pro-
cesses. Table 3.3 presents typical ranges of various fouling rates at full-scale plant.
As can be seen from the table, each fouling type has a different fouling rate and time
frame over which it appears.

Table 3.3 Typical ranges for different fouling rates occurring at full-scale operation (Guglielmi
et al. 2007a, b; Kraume et al. 2009; Pollice et al. 2005)

Category Fouling rate in mbar/min Time frame

1. Reversible fouling (Cake filtration) 0.1–1 10 min

2. Residual fouling 0.01–0.1 1–2 weeks

3. Irreversible fouling 0.001–0.01 6–12 months

4. Irrecoverable fouling 0.0001–0.001 Years

3.1 Membrane Fouling 57



Colloidal and particle fouling

Colloidal fouling refers to membrane fouling with colloidal and suspended particles
in the size range of a few nanometres to a few micrometres. Particulates below this
range are considered to be dissolved in water. A wide number of colloidal and
particulates foulants with different size range have been studied by many investi-
gators (Potts et al. 1981; Yiantsios et al. 2005). Examples of these foulants include
silts and clays, silica salts, humic acid, hydroxides of heavy metals, precipitated
crystals and iron, and aluminium compounds (Buffle and Leppard 1995; Buffle
et al. 1998). Some of these foulants include

• Microorganisms.
• Biological debris (plant and animal).
• Polysaccharides (gums, slime, plankton, fibrils).
• Lipoproteins.
• Clay (hydrous aluminium and iron silicates).
• Silt.
• Oils.
• Kerogen (aged polysaccharides, marine snow).
• Humic acids, lignins, tannins.
• Iron and manganese oxides.
• Calcium carbonate.
• Sulphur and sulphides.

The increased concentration of the rejected ions at the front of the membrane
surface facilities the accumulation of dissolved organic substances, for instance,
natural organic matter (NOM) onto colloidal-sized particles (Hong and Elimelech
1997). Colloidal fouling mainly depends on the colloidal particle relative to the
membrane pore size.

As stated by Boerlage et al. (2003), silt density index (SDI) and modified fouling
index (MFI) are the most widely applied methods in the NF and RO that are used
for evaluation of membrane fouling potential generated by dispersed particulate
matters (colloids, suspended solids) in the feed. Severe fouling is expected to be
high when SDI and MFI are high. SDI and MFI methods use only one number
value to evaluate the feed water. However, these fouling indices are based on feed
passing through a 0.45-µm microfiltration membrane to measure the fouling
potential, they cannot explain the decrease of flux rate effectively because of their
limited ability to retain colloids smaller than 0.45 µm which is responsible for
membrane fouling. As stated by Brauns et al. (2002), SDI and MFI indices use only
one value to predict the fouling propensity of the feed, failing to reflect different
fouling mechanisms of RO/NF membranes. Therefore, development of alternative
robust and predictable fouling indices has been the subject of numerous research
studies. This can be done by modifying fouling index experiments to utilise test
membranes with pore size smaller than 0.45 µm. The colloids film can be formed in
two stages; internal and external fouling (Czekaj et al. 2000; Visvanathan and Ben
aïm 1989) as was discussed earlier in this chapter.

58 3 Fouling in Membrane Bioreactors



3.1.3 Techniques for the Control of Membrane Fouling
in Membrane Bioreactors

As mentioned previously, membrane fouling is a very complex phenomenon in all
membrane processes, especially membrane bioreactors. The complexity of mem-
brane fouling means that a variety of approaches will be necessary to decrease its
impact (Hilal et al. 2005). These approaches are grouped under six main topics
(1) pretreatment of feed, (2) optimization of operating conditions, (3) cleaning
procedure, (4) membrane materials/surface modification of membrane, (5) gas
sparging and (6) pulsatile. These distinct approaches are discussed in detail in the
following sections.

3.1.3.1 Pretreatment of Feed

The effects of membrane fouling can be reduced by feed pretreatment. Feed pre-
treatment is a crucial step in MBR process. This approach is widely used to
eliminate the particulates or macromolecules that cause pore clogging or prevent
them from depositing onto the surface of the membrane. Feed pretreatment is an
effective approach as it contributes to reducing the consequences of membrane
fouling (biofouling) and it involves both physical and chemical approaches. The
physical approaches normally include prefiltration or centrifugation process to
eliminate the suspended particles that have the tendency to plug the membrane
module or attach to the membrane surface. Heat treatment followed by settling is
the most common type of physical process. It is used specifically in dairy plant to
remove fats and immunoglobulin’s from cheese whey prefiltration prior to ultra-
filtration (Aptel and Clifton 1986).

In contrast, chemical approaches are another approach, which include different
processes such as coagulation, precipitation or flocculation and the use of propri-
etary chemicals as disinfectants. pH adjustment of the feed causes foulants to
further away from their isoelectric points which eventually reduce their propensity
to form a gel layer (Peuchot and Aim 1992). Removing any colloids (particulate
matter) and therefore preventing particles from depositing on the surface of
membranes requires the usage of both chemical and physical processes. As stated
by Boissonade et al. (1991), using coagulation agents and flocculation could reduce
membrane fouling by the accumulation of the colloidal fraction, therefore, reducing
the internal blocking of the membrane. The function of the coagulants is to elim-
inate the internal blocking of the membrane by settling the colloidal matters and
supporting them to form large aggregates in order to produce higher rates of per-
meation flux. The addition of coagulant can not only improve permeation flux but
also enhance the quality of membrane effluent. Four distinct mechanisms of
chemical coagulants can impair colloidal particles, which include (i) charge neu-
tralisation, (ii) double layer compression, (iii) enmeshment in a precipitate and
(iv) interparticle bridging (Hilal et al. 2005).
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A research study was conducted on using coagulants to improve the formation of
large aggregates from the initial molecules that would be easily swept of the
membrane surface. Two types of coagulant have been used for water and
wastewater treatment application such as ferric chloride and alum (also called
aluminium sulphate). These coagulants are thoroughly added to significantly reduce
membrane bioreactor fouling. As noted by Holbrook et al. (2004), when alum
dissolved in water, it forms hydroxide precipitates which adsorb materials such as
suspended particles, colloids and soluble organics. In MBR-based trials, the addi-
tion of alum resulted in significant decrease of the SMPc [fraction of carbohydrate
contained in the sludge solution (mg/gSS)] concentration, along with an amelio-
ration in the hydraulic performance of the membrane. Large microbial flocs are
supposed to have a lower impact on membrane fouling because of back transport
and shear induced fouling control mechanisms. Therefore, the improvement of
permeability or permeate flux in MBRs system is due to the formation of largest
flocs. As stated by Lee et al. (2001b) small biological colloids (from 0.1 to 2 µm)
have been observed to coagulate or condensed and formed larger particles when
alum is added to MBR-activated sludge.

Although highly costly, dosing with ferric chloride (FeCl3) was found to have
higher efficiency than that of alum. It was used to remove large-sized organic
compounds. In MBRs, zeolites have also implemented and promoted the creation of
rigid flocs that have specifically lower fouling resistance. Ferric iron has also been
added to MBRs to enhance the production of iron oxidising bacteria, which is
responsible for the degradation of H2S gas. Specific ferric precipitate, for example
ferric phosphate and K-jarosite (K-Fe3(SO4)2(OH)6) have been seen to foul the
membrane (Park et al. 2005). A recent research study conducted by Itonaga et al.
(2004) showed that both suspension velocity and irreversible fouling can be con-
trolled with the addition of iron as a coagulant. Ferric hydroxide flocs have been used
as membrane precoating agent in membrane bioreactor process. The results showed
that the permeability was higher than that of uncoated MBR system. Also the effluent
quality was improved significantly in this study (Zhang et al. 2004). In that study
ferric chloride was used in MBR systems, which successfully removed the
non-biodegradable organics that aggregated in the MBR systems. This operation
also resulted in significant increase in membrane permeation or permeability flux

3.1.3.2 Optimization of Operating Conditions

Improvement of operating conditions at the membrane surface during membrane
operation (for example, CFV (cross-flow velocity) and shear stress) is one of the
approaches used to mitigate membrane fouling as it leads to an increase in mass
transfer coefficient and turbulence, thus weakening concentration polarisation.

Aeration

Many efforts have been conducted on optimisation of air flow rate to reduce the cost
factor of energy involved in providing aeration tomembranes (Le-Clech et al. 2006b).
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Two distinct parameters to limit membrane fouling are the location of aerators and the
specific design of airflow patterns. Further enhancement in aeration design imple-
mented bymembrane bioreactor manufacturers are usually reported in many different
ways (e.g. patent, format) and include cyclic aeration systems (Rabie et al. 2003), and
improved aerator systems (Miyashita et al. 2000). Recently, Mayer et al. (2006)
outlined an exhaustive comparison of various aeration devices used in tubular
membranes. They concluded that complex aeration systems with multiple orifices
injecting air homogeneously in the feed flow worked best. The effect of aeration
differs from hollow fibre membrane modules to flat plate membrane modules.
Bichamber (riser and downcomer) presence in a Kubota MBR has a significant
impact in generating high cross-flow velocity (CFV m/s) (Sofia et al. 2004).
Higher CFV and lower uplift resistancewere induced by uniformly distributed fine air
bubbles (produced from a porous media with 0.5 mm holes) in comparison to per-
formances achieved with larger bubbles (from 2 mm hole diffuser) at the same aer-
ation rates. The ratio of air/permeate (m3/m3) is a useful parameter to characterise
aeration intensity which is needed to obtain a specified amount of treated water.
Values given by MBR manufacturers can differ between 24 and 50, depending on
membrane modules (flat sheet versus hollow fibre) and the design of MBR tank
(membrane and aerobic zone combined into one tank or not) (Tao et al. 2005).
Preliminary work implemented in Singapore on large-scale MBRs showed the
original ratios to be quite conservative, since it was possible to decrease them (down
to 56 % of their original value) without significantly increasing fouling (Tao et al.
2005). Numerous research studies have been conducted to increase the critical flux in
submerged MBR by alternating the aeration rates (Howell et al. 2004). During high
throughput period, aeration was increased and dropped to lower values for the low
throughput period, to reduce membrane fouling. This technique was used also to
reduce energy consumption. As stated by Choi et al. (2005), when pseudosteady state
is achieved, the tangential shear was found to have no effect on permeation flux
decline in cross-flow MBR device. Increasing CFV has no capability to reduce
fouling when the layer begins to deposit and dominate the permeation flux behaviour.
Flux decline was caused predominantly by reversible fouling when CFV was not
present, when CFV was present slightly higher irreversible fouling was observed
(Choi et al. 2005). Intermittent operation of aeration has also been reported for (de)
nitrification MBR systems (Yeom et al. 1999; Nagaoka and Nemoto 2005). In this
uncommon scheme, a single tank MBR was used for anoxic and aerobic biological
degradation; filtration process is executed during the aerobic phase to take advantage
of the antifouling properties of the air scouring. As soon as air sparging ceased, severe
fouling was observed when researchers tested intermittent aeration, therefore they
concluded that this kind of test is not useful (Jiang et al. 2005; Psoch and Schiewer
2005). Other investigators have indicated that using intermittent bubbling is an effi-
cient way to control fouling (Judd et al. 2006; Fane 2005). Pulsing air at a frequency of
1 s on/1 s off prompted further enhancement in operating flux ranging from 20 to
100 % and was noted to be a more effective method than using lower frequencies
(5–10 s on/5–10 s off) which is commonly used industrially (Judd et al. 2006).
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However, such systemmay need the operation of robust activators and valves at these
high frequencies and may not be economically practical.

Other operating conditions

Le-Clech et al. (2006b) defined solid retention time (SRT) as one of the main
operating parameters defining the properties of the biomass suspension and its
fouling tendency. It also influences membrane bioreactor performance, especially in
the control of fouling. With numerous research studies explaining the relationship
between SRT and concentrations of both extracellular polymeric substances
(EPS) and soluble microbial product (SMP), it is evident that overall performance
of the MBRs is almost related to SRT value. To enhance filtration performance a
long SRT is used, this also minimises SMP and EPS formation by producing
starved conditions (Judd 2006). However, using a very long SRT, severe membrane
fouling is to be expected as a consequence of the accumulation of MLSS or sludge
(filamentous) production.

Moreover, the performance of MBR is reduced due to low biomass when the
SRT is extremely too short (down to 2 days) (Meng and Yang 2007). Meng and
Yang (2007) stated that higher ratio of Food/Microorganism can also increase the
concentration of EPS because of high food utilisation by biomass.

Further optimizations of operating conditions through reactor design have been
investigated and included the addition of a spiral flocculator (Guo et al. 2004),
vibrating membranes (Genkin et al. 2005), helical baffles (Ghaffour et al. 2004),
suction mode (Kim et al. 2004) and high performance compact reactor (Yeon et al.
2005), novel types of air lift (Chang and Judd 2002), porous and flexible suspended
membrane carriers (Yang et al. 2006a) and the sequencing batch MBR (Zhang et al.
2006a), for example. Lastly, the design of membrane modules remains as another
vital factor in the optimization of the MBR operation, and more accurately, the use
of air sparging method. Higher permeability was obtained, when a specific module
was designed with air bubbles confined in close proximity to the hollow fibre
(Ghosh 2006).

Sustainable flux

The energy requirement for operation is a potential weakness for the future
development of the MBR systems. In comparison to the conventional activated
sludge systems, it is acknowledged that the energy usage of MBRs is still higher
because of the need to alleviate membrane fouling by different techniques
(Le-Clech et al. 2006b). At the end of the day, MBRs can be economically feasible
only if it produces a reasonable flux rate without significant fouling. When per-
meation rate and membrane fouling reduce simultaneously, most MBR systems
operate at low fluxes to alleviate excessive membrane fouling. Generally, sustain-
able flux can be defined as subcritical flux by default. Though, in MBR it can be
defined as the flux where the rate of transmembrane pressure (TMP) rises gradually
at an allowable rate, removing the need for chemical cleaning (Ng et al. 2005).
Before chemical cleaning is required, both the rate of TMP increase and the period
of filtration are left to the operator’s discretion, and hence a more detailed definition
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of sustainable flux cannot be possible. While vital flux was commonly determined
during short-term experiments, sustainable flux can only be assessed through longer
filtration periods. In sustainable flux systems, the value of flux is vital, but the
methods used to maintain and achieve the given flux value are also of great
importance.

3.1.3.3 Cleaning Procedures

Cleaning process is paramount step towards regenerating the membranes, making
them very active for usage or application. Cleaning procedure has to be done when
the flux is slightly reduced and transmembrane pressure is increasing drastically.
Cleaning procedure is usually performed in three different forms; physical, chem-
ical and combination of physical and chemical cleaning. Physical and chemical
cleaning can remove foulants (microbial flocs) from membrane surface through
backwashing, relaxation, hydraulic scouring and chemical reactions.

Physical cleaning

In MBR systems, physical cleaning techniques are used to recover membrane
permeability significantly. It mainly includes two processes: the first process is
relaxation process (occurs where the filtration process is ceased) and the second one
membrane backwashing (where the effluent is delivered back through the mem-
brane into the feed channel to remove the deposited particles on the surface of
membrane) (Le-Clech et al. 2006b). Relaxation and backwashing techniques have
been used in membrane bioreactor systems as standard operating techniques to
alleviate membrane fouling; although potent backwashing is not a suitable option
for flat plate submerged membranes.

Backwashing (Backflushing or water rinsing) was used to remove reversible
fouling effectively, remove contaminants aggregated on the membrane surface and
also allowed efficient flux recovery. Frequency, duration and their ratio are the key
parameters in the design of backwashing. Jiang et al. (2005) state that using less
frequent and longer backwashing duration (600 s filtration/45 s backwashing) has
been found to be more effective than using more frequent and less backwashing
duration (200 s filtration/15 s backwashing) (Jiang et al. 2005). In another research
study, using backwash duration (between 8 and 16 min) was found to be very
effective in removing membrane fouling than using either the aeration intensity
(0.3–0.9 m3/m2 h) or backwash duration (25–45 s) (Schoeberl et al. 2005) for
hallow fibre immersed membrane bioreactor systems. Whilst more fouling is
anticipated to be eliminated in more frequent, longer, and stronger backflushing
duration, possible modification or alteration is required, exploring to minimise
energy consumption. This has been achieved by designing a generic control system
which automatically optimised the backflush duration according to the monitored
value of transmembrane pressure (Smith et al. 2005). However, a large number of
research studies have not taken into consideration the loss of productivity that
results from the use of permeation flux during the backwashing.
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Obviously, the antifouling operation affects operating costs, as more energy is
needed to achieve a suitable pressure for flow reversal. Furthermore, between 5 and
30 % of the permeation flux produced is thoroughly used in this process. In com-
parison to hollow fibre MBR, flat sheet membrane bioreactor module has achieved a
slightly higher overall permeate flux when operating the membrane constantly at low
flux (Judd 2002). In this example, flat sheet membranes (which cannot be back-
washed) were operated constantly with flux ranging between 20 and 27 LMH. The
hollow fibre membrane bioreactor module on the other hand was operated at higher
flux, ranging from 23 to 33 LMH but with 25 % of the permeate product being
recycled for backwashing (45 secs of backwashing after every 600 secs of operation).

As noted by (Sun et al. 2004), air can be used to affect backflushing.
Approximately 400 % increase in the flux has been achieved from continuous
operation mode using an air backflush. 15 min of air backwash was needed for
every 15 min of filtration to obtain this result (Visvanathan et al. 1997). Whilst, air
backwashing is more effective method used to recover membrane permeability.
However, air backflushing may present some potential issues of membrane which
become rewetting and breakable (emrittlement).

Membrane relaxation (so-called non-continuous process of the membrane or
batch process) is intermittent cessation of permeation for flux recovery if the
membrane is submerged, and scoured with air when the permeation is ceased. It
improves the productivity of membrane significantly. Under this operation, in
nature, back transport of foulants (microbial flocs) is enhanced as non-irreversibly
attached foulants, which can diffuse away from the surface of membrane via
concentration gradient improved by the shear generated by air scouring (Hong et al.
2002; Chua et al. 2002). Comprehensive studies of the behaviour of transmembrane
pressure during this operation has been showed that although the rate of fouling is
generally higher than for continuous filtration, membrane relaxation allows filtra-
tion to be kept for longer period of time before the need for intense chemical
cleaning (Ng et al. 2005). Although some research studies have mentioned that this
operation may not be feasible economically for large-scale MBRs (Hong et al.
2002), productivity analyses and further cost are possibly required to compare this
method against backwashing process.

Recent research studies evaluating another technique to control membrane
fouling have been tended to merge relaxation with backwashing for optimum
results (Zhang et al. 2005; Vallero et al. 2005). Combination of relax/permeate and
backflush/permeate can reduce chemical cleaning and shorten membrane lifespan
(Zsirai et al. 2012).

To sum up, physical cleaning only eliminates the coarse solid or cake layer from
the membrane surface, whilst chemical cleaning eliminates the flocs. Physical
cleaning can also eliminate the strong matters that attach on the surface of mem-
brane. The energy consumption for physical cleaning up to 30 % of the (permeate)
must be taken into careful consideration.
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Chemical cleaning

As expected, the effectiveness of membrane backwashing and relaxation tend to
decrease with operation time as more irreversible fouling aggregates on the
membrane surface. Thus, in comparison to the physical cleaning strategies, various
chemical cleaning strategies have been recommended or proposed (Le-Clech et al.
2006b). They include

• Enhanced backwash chemically (this can be done each day).
• Maintenance cleaning with higher concentration of chemical agent (this should

be done weekly).
• Intensive (or recovery) chemical cleaning (this must be done once or twice a

year). This should be done if the membrane permeation is no longer sufficient.
This is designed to remove irreversible fouling.

Maintenance cleaning is used to recover membrane permeability, and to reduce
the frequency of intensive cleaning. Chemical cleaning controls membrane fouling
especially, scaling, organic fouling and biofouling which is not removed by
physical cleaning. In general, exhaustive cleaning is conducted when further fil-
tration is no longer sustainable because of higher transmembrane pressure (TMP).
Each of the four main MBR suppliers (Kubota, Memcor, Mitsubishi and Zenon)
proposes their own chemical cleaning recipes, which differ mainly in terms of
concentrations and methods as presented in Table 3.4.

Normally, sodium hypochlorite (0.1–0.5 wt%) is the prevalent chemical agent
used to remove organic fouling and biofouling effectively, whilst, citric acid is used
to remove inorganic scalants. Sodium hypochlorite (NaOCl) and hydrogen peroxide
(H2O2) are the most common oxidant agents, which function through oxidation and
disinfection. (NaOCl) and (H2O2) are used to hydrolyse the organic molecules, and
therefore slacken the biofilm and particles that sticked to the membranes. The
influences of cleaning chemical agents like NaOCl on microbial community have

Table 3.4 Intensive chemical cleaning protocols for four MBR suppliers (Le-Clech et al. 2005a)

MBR
Suppliers

Type Chemicals Concentration
(%)

Protocols

Mitsubishi CIL NaOCl
Citric acid

0.3
0.2

Backflow through membrane
(2 h) + soaking (2 h)

Zenon CIP NaOCl
Citric acid

0.2
0.2–0.3

Backpulse and recirculate

Memcor CIP NaOCl
Citric acid

0.01
0.02

Recirculate through lumens, mixed
liquors and in-tank air manifolds

Kubota CIL NaOCl
Oxalic
acid

0.5
0.1

Backflow and soaking (2 h)

CIL cleaning in line where chemical solutions are generally backflow (under gravity) inside the
membrane. CIP cleaning in place where membrane tank is isolated and drained; the module is
rinsed before being soaked in the cleaning solution and rinsed to remove excess of chlorine
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been conducted for modelled MBR systems (Lim et al. 2004). They postulated that
the performance of organic degradation of the microbial community in the occur-
rence of NaOCl was hampered. They also suggested that adding additional amounts
of NaOCl caused an inhibition of organic degradation and cell lysis.

It is also usually for MBR manufactures to adjust specific protocols for chemical
cleaning (i.e. cleaning frequencies and chemical concentrations) and for individual
facilities (Tao et al. 2005; Kox 2004; Le-Clech et al. 2005a). It also has been
mentioned that the level of pollutants (measured as TOC (total organic carbon)) in
the permeate (effluent) rises just after the chemical cleaning episodes (Tao et al.
2005). This is important for MBRs utilised in reclamation process trains (i.e.
upstream of RO). Until now, no systematic research studies have been conducted
on cleaning procedures (Liao et al. 2004). This is probably due to the site-specific
nature of the membrane bioreactors fouling.

Maintenance cleaning takes up to 30–120 min for a cycle to be completed.
Usually, it is implemented every 3–7 days (approximately 1 week), using NaOCl as
chemical agent. The concentration of NaOCl should be moderate (200–500 mg/l)
or 0.01 wt% NaOCl for aerobic membrane bioreactor systems. Recovery cleaning
uses rather higher reagent concentrations of 0.2–0.5 wt% NaOCl coupled with 0.2–
0.3 wt% citric acid or 0.5–1 wt% oxalic acid (Judd 2011).

3.1.3.4 Optimization of Membrane Characteristics

It is another approach used to avoid fouling in MBRs system and increased
membrane permeability. Chemical modification of the membrane surface has been
found to improve antifouling performance efficiently and effectively. When
hydrophobic membranes are used in the MBR, more severe fouling is expected.
Therefore, numerous research studies have been conducted on hydrophilisation
(make the membrane more hydrophilic) of membrane. Yu et al. (2005a, b) modified
polypropylene (PP) hollow fibre membranes using NH3 and CO2 plasma treat-
ments. In both research studies, X-ray photoelectron spectroscopy and scanning
electron microscopy were conducted to characterise the morphology and chemical
structure of the modified PP membrane surface. Introducing polar groups (from
oxygen and nitrogen) into the membrane surface, membrane hydrophilicity
increased significantly and the modified membranes showed excellent separation
performances and flux recovery ratio in comparison to the neat membranes
(Le-Clech et al. 2006b). A detail overview will be provided in chapter four on
surface modification.

3.1.3.5 Gas Sparging/Air Sparging

Gas or air sparging is another technique used to generate high surface shear at
membrane surfaces, reducing membrane fouling and significantly improving the
performance of some membrane processes (i.e. UF or MF) due the advantageous
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bubbling method to control the concentration polarisation and cake layer deposition
(Cui et al. 2003). In MBRs processes, air sparging method is usually employed
because the MBRs required aeration system to provide oxygen as a substrate for
biomass suspension and microorganism. Oxygen is very necessary in MBRs to
keep the existing biomass alive and to degrade the biodegradable pollutants. By
directly injecting air in the concentrate section during the filtration process, air
sparging creates an intermittent two-phase flow (gas/liquid) along a membrane
surface, leading to reduce fouling to a minimum, enhanced flux and increase surface
shear. Ducom et al. (2002) stated that air sparging is very effective method used
with both tubular membranes and hollow fibre membranes for Escherichia coli
suspensions. Air sparging effectively enhanced the membrane permeation in
microfiltration and ultrafiltration for a wide range of applications, particularly for
particles or solutes in water. However, air sparging technique is not as efficient as
the use of turbulence promoters (e.g. spiral wire, metal grill, static rods) due to the
handling problem of gas injected into the membrane (Wakeman and Williams
2002b).

The method of injecting air into the feed stream to mitigate colloidal or par-
ticulate membrane fouling in organic hollow fibres has been widely reported in the
literature. The efficiency of a two-phase flow (gas/liquid) was assessed to prevent
cake layer formation; while the effects of injecting air on permeation flux at dif-
ferent velocities were scrutinised by Cabassud et al. (1997). The results showed that
the permeation flux (in case of non-injecting air in the feed stream) decreased with
time during filtration operation. However, during the first few minutes, the per-
meation flux showed a significant decrease due to the depositing particle within the
membrane, therefore, the added flow resistance. In contrast, the permeation flux (in
case of injection air in the feed stream) decreased with time, but the rate of flux
decreasing was very low. In case of using higher air velocity, the permeate flux
experienced a higher level. Furthermore, increasing air velocity results in particle
deposit formation with less mass transfer resistance. Also, the flow of an inter-
mittent gas seems to be effectively less than a steady one in similar experimental
operations. It was well documented that there is the evidence of change of fouling
layer or cake structure with the application of gas sparging to the microfiltration of
particles. This affects its specific resistance by reducing it (Cabassud et al. 1997).
An improved flux over time was a result of alterations in the cake structure or
fouling layer with the gas-sparged ultrafiltration of clay suspension.

The effects of injecting air into the feed side of flat sheet membrane modules on
protein transmission and permeation flux were scrutinised using four foulant
models such a human immunoglobulin G (IgG), bovine serum albumin (BSA),
human serum albumin (HSA) and lysozyme (Lys) as test media (Li et al. 1998).
Polysulfone and polyethersulfone were the two membranes used in this study. The
results showed that gas sparging enhanced membrane flux up to 50 % but protein
reduction/retention was reduced significantly. It was found that at TMP of
approximately 50 kPa, with using a mixture of BSA and Lys, the gas injection
increased membrane flux by only 10 % but had a more powerful effect on protein
separation. In another research study, the flux was increased between 60 and 270 %

3.1 Membrane Fouling 67



due to gas sparging obtained on ultrafiltration of (BSA and dextran) solutions and
also in the microfiltration of yeast suspensions using tubular membranes (Cui and
Wright 1994; Cui 1993; Lee et al. 1993; Imasaka et al. 1993; Cui and Wright 1996).

A method of incorporating gas into the feed stream as a process of separating the
dense cake layer on the membranes was scrutinised using two-phase (gas–liquid)
cross-flow ultrafiltration in the downward flow condition using a tubular membrane
module (Cui and Wright 1996). The module was vertically installed, with both the
gas bubbles and feed solution flowing downward in the membrane. The membrane
permeation achieved in this method was in comparison to that in conventional
single-phase ultrafiltration and gas-sparged upward cross-flow operations. The
operating parameters which were scrutinised with dextran solutions (protein model)
included gas flows, liquid flows, transmembrane pressure (TMP) and feed con-
centrations. The results showed that the permeation flux was increased up to 320 %.
It was noted that the addition of gas in both upward and downward flows resulted in
significant enhancement in permeation flux. This confirmed the technique to be
very useful in deterring concentration polarisation and hampering flux in compar-
ison to any other technique known at that time. The improvement in permeation
flux was more obvious when the concentration polarisation was very severe,
indicating the validity of the disruption. Using a low flow rate of gas sparging
results in improved ultrafiltration while the introduction of the bubbles enhanced an
early transition from laminar flow to turbulent flow. The bubbles could represent as
static baffles or slow moving baffles to decrease the rate of flow gas, depending on
the process conditions.

Air sparging is a strategy that is employed to enhance the efficiency of back-
washing in a dead-end fibre module. It was also investigated and effectively con-
firmed for the removal of the cake layer formed during the filtration of bentonite
suspensions (Serra et al. 1999; Ducom et al. 2002). The rinse phase efficiency was
significantly enhanced after the introduction of air, acting as a piston to flush out the
major part of the free volume in the module.

The combination of air sparging and back shock enhances the productivity as
less permeation flux is consumed during backwash process. On the other hand, the
decline of permeation flux caused by membrane fouling usually cannot fully be
refilled through gas sparging because the internal pore fouling is not reversed by
surface shear. Therefore, bubbling or gas sparging can efficiently be used for
membrane processes, especially microfiltration and ultrafiltration processes. It can
also be used within membrane modules or in submerged membrane bioreactors
systems as they have been proved to improve the rates of permeation flux and
reduce membrane fouling to a minimum.

Air sparging performance was examined on submerged MBR systems used for
wastewater treatment with emphasis on two techniques. The first technique included
the use of air injection into membrane tube channels to allow circulation of mixed
liquor in the bioreactor, and the second one used periodic air jets into the membrane
tube. The results achieved from both the techniques showed that the cake layer was
sufficiently detached or separated from the membrane due to use air injection.
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Another application of using air sparging for improvement of membrane flux or
permeation flux in nanofiltration membranes was studied using droplet suspensions
in water (Ducom et al. 2002). The process was examined on a flat sheet membrane
for two feeds: stabilised and non-stabilised oil–water emulsions. The focus of the
study was based on using nanofiltration membranes in the industrial section
including treatment of cutting oil fluids, which are encountered in metal manu-
facturing, metal working, and processing. The function of this study was to remove
the dissolved organic components from the aqueous phase and also to separate the
oily dispersed phase from the membrane. The experiments were conducted to
achieve two objectives: the first one was to achieve an oily phase as concentrated in
oil as possible so to be able to reuse the oil; whilst the second one was to obtain an
aqueous phase in accordance with the regulation standards for industrial wastew-
ater. The preliminary results of the experiments showed that the injection of air at
very high velocities did not change the permeability or permeate flux to pure water.

Air sparging with non-stabilised oil–water emulsions also showed lower filtra-
tion capability due to the formation of an oil layer at the surface of membrane as the
membrane hydrophobicity increases in the absence of surfactants. It was noted that
in both cases, a significant increase in permeation flux was achieved with air
sparging. This was a result of the capability of air bubbles for distorting the oil layer
over the surface of membrane.

Air sparging has also been proved to be more effective and very efficient with
both tubular membranes and hollow fibre membranes for E. coli suspensions,
dextran or albumin solutions (Bellara et al. 1996), clay suspensions, clay particles
(Mercier et al. 1997; Laborie et al. 1998) and natural surface waters (Cabassud et al.
2001).

3.1.3.6 Pulsatile Flow

The use of pulsatile flow has been equipped towards producing unsteady flows and
oscillations. Oscillations and unsteady flows are obtained by introducing pulsations
into the feed (filtrate) and permeate channels (Wakeman and Williams 2002b). The
filtration performance of yeast cell harvesting was significantly improved using
oscillatory flow mixing in both flat sheet and tubular membranes. The advantage of
implementing the method was a sevenfold increase in the membrane permeation.
However, studies are still in progress to determine the effects of frequency and
amplitude (Howell et al. 1993; Wu et al. 1993). Many researchers noticed that the
enhancement in membrane permeation was roughly 300 % increase when they used
periodically spaced, doughnut-shaped baffles in ultrafiltration tubes and pulse flows.
Pulsing the flow results increased the permeability (flux) by 50 % (Finnigan and
Howell 1989; Gupta et al. 1993), and 20 % when tangential inlet ports are used to
induce helical flow (Holdich and Zhang 1992).

A variation of the pulsating flow technique was also studied using as an inter-
mittent jet of fluid at the inlet to a tubular filter. The results showed that the
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permeation fluxes (2.5 times higher) were higher than those achieved without
intermittent jets (Arroyo and Fonade 1993). It was documented that a further
variation of the pulsating flow technique was also possible using a flexible tube at
the inlet to a ceramic with the tube subjected to alternating pressure. The results
illustrated that the fluxes were increased to 60 % in this study (Bertram et al. 1993).

Researchers have stated that using a periodically spaced baffle with pulsatile
flow is effective method in significantly enhanced microfiltration. Whilst, other
researchers have verified the effectiveness of pulsatile flow techniques for
enhancing permeation flux via using a rotating perforated disc placed in front of the
entry section of a bundle of tubular membranes (Wenten 1995; Mackay et al. 1991;
Wang et al. 1994; Spiazzi et al. 1993; Gupta et al. 1992; Belfort 1989). This would
result in temporarily increase in velocity in the different tubes. It was also showed
that the rate of pulsatile flow increased the rate of wall shear as velocity increased at
high frequencies (Winzeler and Belfort 1993).

Another technique that was evaluated was the air flush technique, which
involves using an intermittent two-phase (gas or liquid) flush via the tube to shift
and remove the deposition of cake layer. It was concluded that air flush technique
[using two-phase (gas or liquid)] is more efficient technique than using a
single-phase liquid flush (Verbeck et al. 2000).

3.1.3.7 Bubbling

As mentioned before, aeration in MBRs consumes more energy, leading to higher
operating costs for all the MBRs in common use. It also reduces membrane fouling
to a minimum. Therefore, numerous methods have been outlined to enhance the
hydrodynamic properties in different membrane modules. Bubble inducing surface
shear is a major technique to control the higher costs of aeration and membrane
replacement which is related directly to membrane fouling (Cui et al. 2003; Drews
et al. 2010; Samir et al. 1992; Martinelli et al. 2010; Ndinisa et al. 2006;
Phattaranawik et al. 2007; Taha and Cui 2002; Yamanoi and Kageyama 2010).

A number of various two-phase flow models from bubble flow to slug flow can
be induced by various bubbling regimes. It is evident that slug bubbles have
desirable hydrodynamics properties, improve membrane permeation (effluent) and
improve selectivity in different membrane processes and for different membrane
modules (Cabassud et al. 2001; Cheng and Li 2007; Ducom et al. 2002; Essemiani
et al. 2001; Li et al. 1997, 1998; Mercier et al. 1997; Taha and Cui 2002; Willems
et al. 2009). Although the membrane plants have different economies of scales, the
energy required of membrane bioreactor systems in treatment plants of municipal
wastewater is higher (about 2–4 times) in comparison with conventional activated
sludge process (CASP) (Gil et al. 2010; Verrecht et al. 2008). Zhang et al. (2009)
stated that frequency and bubble size have a powerful impact on the hydrodynamic
properties in slug bubbling flat sheet membrane bioreactor modules. Traditionally,
the need is for some high areation intensity in order to induce scouring of the
membrane while also providing oxygen sufficiently to the biomass. In comparison
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to free bubbling, periodic slug bubbles in flat sheet membrane bioreactor systems
are economically and effectively improve the mass transfer coefficient, inducing
higher wall shear stress while consuming only a very modest amount of air. One
can envisage meeting the biological requirements via fine bubble aeration coupled
with the use of periodic slug bubbling to control membrane fouling in membrane
bioreactor systems. This combined aeration technique will reduce the requirement
of aeration and energy in MBRs. Zhang et al. (2011c) concluded that slug bubbles
showed excellent antifouling properties in flat sheet membrane bioreactor systems
under both short-term and long-term flux operations. In short-term operation, high
flux was expected 40 L m−2 h−1 for 36 h operation. In short-term filtration oper-
ation, high flux was expected (40 L m-2 h-1) for 36 hr operation. In contrast, in
long-term filtration operation, moderate flux was achieved (initial flux was 24 L m-2

h-1) for 14 days operation. At low density (2.5 L/min), the slug bubbling reduces
the occurrence of irreversible membrane fouling effectively in the initial step and
also reduces reversible fouling drastically during long-term filtration operation.
Conversely, in free bubbles, the fouling, which is accumulated at the open stage
was greater (not completely cleaned) when aerated with free bubble at the same low
density. This will lead to an increase in the formation of cake layer when the MBR
is preceded.

With increasing consideration being given to energy consumption, slug bubbling
in flat sheet membrane bioreactor systems seemed to be energy saving should be an
attractive option to free bubble.

3.2 Conclusions

In this chapter, membrane fouling is a repugnant problem in all membrane pro-
cesses especially, in membrane bioreactors, where the efficacy of the process is
restrained by the aggregation of materials on the membrane surface or within the
membrane pores. Membrane fouling was thoroughly addressed. Depending on the
specific membrane process, membrane fouling can be classified into organic foul-
ing, inorganic fouling, biofouling, particulate or colloidal fouling, reversible and
irreversible fouling and removable or irremovable fouling. Organic, inorganic and
biofouling occur simultaneously during filtration process and are merged with each
other. The interaction between different types of foulants leads to decline perme-
ation flux of the membrane. A number of methods have been used to mitigate
membrane fouling to a great extent. Using absorbents or coagulants can reduce the
internal clogging of the membrane or reduce the amounts of solute in the solution,
and improve the flocculation ability of flocs, which cannot improve membrane
permeation but also notably enhance the quality of membrane. Air sparging is an
effective method used to remove cake layer from the membrane surface and control
concentration polarisation. Hydrodynamics conditions is one of the efficient
methods in controlling membrane fouling, any additional improvement would be
helpful in mitigating membrane fouling. For example, merging aeration system with
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membrane module design with CFD simulators might be very effective in
enhancing of hydrodynamic conditions. Also operation below the critical flux is
very efficient way to avert fouling within a specific filtration system. Physical and
chemical cleaning can recover membrane permeation greatly, therefore enhancing
antifouling property of membrane.
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Chapter 4
Surface Modification of Polyethersulfone
Membranes

Polyethersulfone (PES) membranes have been broadly used in scientific research
and industrial processes due to their outstanding properties, such as high
mechanical strength, high thermal stability, good chemical resistance and mem-
brane forming ability. They have also been used in a cross range of applications,
particularly wastewater treatment. This membrane is intrinsically hydrophobic in
nature. Therefore, this property make PES membranes more prone to fouling, so
surface modification techniques are an excellent pathway to improve hydropho-
bicity and enhance antifouling performance. In this chapter, we present different
techniques to alleviate membrane fouling. This chapter sheds light specifically on
surface modification of membranes. In this chapter, various types of modification
techniques are outlined, including bulk modification, blending, grafting procedures
and coating methods.

4.1 Introduction

Since the early 1960s and the emergence of widespread industrial membrane
separations, there has been extensive research into alleviating membrane fouling,
especially in membrane bioreactors (Kochkodan and Hilal 2015). An extremely
wide range of approaches have been explored, including pre-treatment of feed
(flocculation), optimisation of operating conditions, gas sparging, pulsatile,
aggressive and frequent cleaning of the membrane, radiation and membrane
modification (Baker 2012; Belfort et al. 1994; Chae et al. 2006; Hai et al. 2008;
Hilal et al. 2005; Le-Clech et al. 2006a; b, c; McCloskey et al. 2012; Ridgway et al.
1984; Rosenberger et al. 2002; Sheikholaslami 1999; Sheikholeslami 1999; Wu
et al. 2008; Wu and Huang 2008).

Among these methods, surface modification of membrane is considered to be an
effective technology or an effective way to reduce the interactions between mem-
brane surface and foulants, thereby reduce membrane fouling, enhancing membrane
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longevity and performance, and also reducing the adsorption of protein on a
membrane surface (Liu and Kim 2011; McCloskey et al. 2012; Shannon et al.
2008). As noted by (Moghimifar et al. 2014), surface modification of membrane is
one of the techniques used to modify the membrane surface by increasing the
hydrophilicity of the membrane and minimising membrane fouling to a minimum.
In general, it is evident that the increase in membrane surface hydrophilicity
enhances antifouling capability because most of the natural biopolymers (i.e. pro-
teins) exhibit hydrophobic properties (Li et al. 2014). Theoretically, hydrophilic
surfaces have the capability to display a buffer layer composed of water molecules
and prevent foulants from depositing on membrane surface or at membrane pores
which results in a stable and higher water flux (Peeva et al. 2012).

The surface modification of membrane may be performed by two distinct groups
of polymer surface modifications: the first group is referred as chemical modifi-
cation and the second group is physical modification (Mittal 2009). Physical
modification of a polymer surface involves exposure of polymer to plasma, flame,
radiation and ion beams method and is time-dependent (Chu et al. 2005). Chemical
modification of a polymer surface necessitates or requires chemical reaction
between polymer surface and functional groups and the modified polymer surface is
reasonably stable over time.

Surface modification of membranes includes generation of two layers (made of
two different polymeric materials) on the membranes. The first layer (thin layer)
controls the flux, selectivity and adsorption of solute whilst the second layer (thick
substrate) provides mechanical strength and chemical stability.

In term of protein separation or concentration using membrane processes, sur-
face modification of polymeric membranes mostly takes the form of introducing
hydrophilic functional groups or incorporating hydrophilic layers onto the surface
of membrane. Examples of surface modifications aimed at improving surface
resistance to adsorption of protein and membrane permeation property include the
introducing of hydrophilic polymers or inorganic fillers through blending
(Rajagopalan et al. 2004; Van Der Bruggen 2009a; Wang et al. 2006a, b; Zhao et al.
2011, 2013b), coating (Razmjou et al. 2011a; Brink et al. 1993; Hilal et al. 2005;
Wei et al. 2005; La et al. 2011; Yu et al. 2011) and surface grafting (Kim et al.
2002; Ulbricht and Riedel 1998; Yune et al. 2011; Kang et al. 2007; Liu et al. 2008;
Rahimpour 2011b; Rana and Matsuura 2010; Ulbricht and Belfort 1996; Ulbricht
et al. 1996; Revanur et al. 2007a), self-assembly monomers (Luo et al. 2005). These
techniques have successfully enhanced membrane surface properties, such as
improving membrane permeation, improving mechanical strength, hydrophilicity
and fouling resistance (Zhu et al. 2014). However, they also have some short-
comings or limitations hindering their further popularity in membrane industry, for
instance, coating method can be simply applied at industrial scale but the coating
layer is instable (easily removable in use. In contrast, grafting is easily adhering but
not easy to apply at industrial use. They usually need substantial post treatment
process, leading to high cost of membrane fabrication costs (Zhu et al. 2014).

To conclude, surface modification of membrane is an effective strategy to
modify the membrane surface and enhance its surface characteristics such as
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increase membrane hydrophilicity, increase water flux and minimise adhering
inorganic, organic and biological materials on the membrane surface. Bear in mind,
inorganic, organic and biological materials are the main cause of occurrence fouling
in membrane bioreactors.

4.2 Surface Modification

As aforementioned, PES membrane is intrinsically hydrophobic in nature. Numerous
research studies for example (Khulbe et al. 2010a, b; Van Der Bruggen 2009a) stated
that membrane fouling is related directly to hydrophobic membranes. Therefore, this
membrane needs to be modified in order to alleviate membrane fouling to a certain
extent. Three approaches have been used to modify PES membrane: (1) bulk mod-
ification of the prepared PES membrane, and then to prepare modified membrane;
(2) surface modification of prepared PES membrane; and (3) blending (it is regarded
as a surface modification). Membrane modification method can be used to find a
compromise between hydrophobicity and hydrophilicity, by localising hydrophilic
functional groups specifically in the membrane pores. They have a great impact on
membrane permeation, morphology of membrane, and provide the membrane with
stimuli-responsivity and better blood compatibility (Zhao et al. 2013a). The first
membrane modification process which was reported in the literature is annealing of
porous membranes through heat treatment (Khayet et al. 2003; Pinnau and Freeman
2000). The porous membrane was used in different applications such as reverse
osmosis, gas separation and ultrafiltration membranes.

Table 4.1 shows a number of membrane modification methods such as annealing
with heat treatment, solvent treatment, surface coating, chemical treatment, and
their application in an industrial area.

Van Der Bruggen (2009a) studied the chemical and physicochemical modification
methods, which were used to enhance membrane hydrophilicity of PSF/PES
nanofiltration (NF) membranes. In case of increasing hydrophilicity of membranes,
modification of membranes can be implemented in different techniques. Physical or
chemical modification methods after the membrane is prepared or formed can endow
the membranes with hydrophilic surfaces. Such modification processes include
(1) graft polymerization process (hydrophilic monomers are chemically attached to
the surface of membrane) (2) plasma treatment process (incorporate the functional
graft chains on the surface of membrane); and (3) physical pre-adsorption of
hydrophilic groups to the surface of membrane.

Obviously, various modification methods have been used to modify PES
membranes including physical processes such as blending and surface-coating
processes (Li et al. 2010; Liu et al. 2009; Ran et al. 2011; Reddy et al. 2003; Wang
et al. 2009b), and chemical processes including photo-induced grafting (Zhao et al.
2003), gamma ray (Filho and Comes 2006; Deng et al. 2009) and electron
beam-induced grafting (Keszler et al. 1991; Schulze et al. 2010), plasma treatment
and plasma-induced grafting (Batsch et al. 2005; Gancarz et al. 1999b; Van Der
Bruggen 2009a), thermal-induced grafting and immobilisation (Fang et al. 2009,
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Table 4.1 Common membrane modifications

Modification method Function Application

Annealing
– Heat treatment
– Solvent treatment

– Elimination of membrane defects
– Control of pore size

RO, GS, UF

Solvent exchange – Elimination of membrane defects GS, UF

Surface coating – Elimination of membrane defects
– Melioration of fouling resistance

GS, RO, NF,UF

Chemical treatment
– Fluorination
– Cross-linking
– Pyrolysis

Improvement of flux and selectivity
Improvement of chemical resistance
Improvement of flux and selectivity

GS
UF
RO, GS, PV

GS gas separation, RO reverse osmosis, UF ultrafiltration, NF nanofiltration, PV pervaporation
(Pinnau and Freeman 2000)

2010; Kroll et al. 2007; Liu et al. 2009; Shi et al. 2010a, b), surface-initiated atom
transfer radical polymerization (Li et al. 2009c, d, e, f), and so on (Cao et al. 2010;
Liu et al. 2008; Rana and Matsuura 2010; Tari et al. 2010; Sun et al. 2003). These
methods have successfully modified the surface of polymeric membranes, such as
PES, PVDF, and PP and so on. The function of these methods is to make the
membrane super hydrophilic and reduce membrane fouling to a great extent.

With the development in membrane modification process, reversible
addition-fragmentation chain transfer polymerization (RAFT) and click chemistry
methods are new techniques used recently to modify PES membranes. They are
discovered by CSIRO.

4.3 Bulk Modification

Bulk modification methods are usually very simple methods because they are used
to a polymer solution, and not on a membrane surface (Peyravi et al. 2012).
However, the entire or whole membrane is modified in this way, therefore leading
to a lower net effect and, possibly, an enhanced effect of swelling in the structure of
the resulting membrane (Zhu et al. 2007a, b). Sulfonation and carboxylation are the
most commonly reported methods in many journal articles. But sulphonation is one
of the membrane modification methods, which used widely in industrial section
(Wang et al. 2009a; Rahimpour et al. 2010a; Cao et al. 2010). Sulfonation of PES
membrane is an electrophilic reaction, in which the negatively charged sulfonic acid
groups are introduced onto PES membranes, resulting in replacing the hydrogen
atom with sulfonic acid groups as shown in Fig. 4.1 (Van Der Bruggen 2009a). As
can be seen from the figure, the sulfonic group is localised in ortho positions on the
aromatic rings of PES polymer because this electron donating oxygen atom which
activates ortho position (Blanco et al. 2001; Iojoiu et al. 2005). Sulphonation
method is affected by the electron donating properties of a polymer and elec-
trophilicity of the sulphonating agent. However, PES matrix is thoroughly hard to
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sulphonate due to the electron withdrawing effect of the sulfonic linkages, which
deactivates the adjacent aromatic rings for electrophilic substitution. PES mem-
branes generated by sulphonation reaction are super hydrophilic, have excellent
antifouling property, proton conductivity and better selectivity. The sulphonation of
PES has been described in many journal articles with different sulphonating agents
and solvents used: SO3/CH2Cl2 [5, 7], ClSO3H/CH2Cl2 [8], SO3-triethylphosphate
(TEP)/CH2Cl2 [9], oleum/concentrated sulfuric acid [10].

In contrast, carboxylation is a practical method, which involves addition of
carboxylic groups to polymeric PES membrane matrix, in which carboxyl group
substitutes the hydrogen atom at an aromatic hydrocarbon. In carboxylation
method, PES can be oxidised or acetylated at specific conditions as explained in
Fig. 4.2. PES membranes generated by carboxylation, have a great influence on the
hydrophilicity of the polymer, which was verified by measurements of water
adsorption and measurements of contact angle (Zhao et al. 2013b, a). Introducing
carboxylic groups to PES matrix, as shown in Fig. 4.2, could increase the
hydrophilicity of membranes.

Apart from sulphonation and carboxylation methods, nitration is another method
used to introduce amine groups to the polymeric PES membrane to modify its
surface. Van Der Bruggen (2009a) states that the limitation of bulk modifications
can be solved through blending method, which is the same to the use of copolymers
but using a physical route. This also allows the use of “simple” polymers. Recently,
different functional groups were introduced to PES membranes. PES was firstly
sulfonated by chlorosulfonic acid (ClSO3) at 0 °C for 2 h to form sulfonated PES.
The degree of sulphonation was about 15 %. Then sulfonated PES was chlorinated
by phosphorous pentachloride to form SPES/SO2Cl as presented schematically in
Fig. 4.3 (Bai et al. 2010). Sulphonated PES is more reactive toward amine group,
hydroxyl group, carboxyl group and methyl group as shown in Fig. 4.3.

Shi et al. (2010) grafted methacylic acid (MAA) onto polymeric PES membrane
network in heterogeneous reaction, using benzoyl peroxide (BPO) as a chemical
initiator. The polymerisation process was implemented in an aqueous medium.
Because of the conformational change of PMAA chains with environmental pH,
membrane cast from PMAA-g-PES exhibited reversible pH dependent permeability
as the pH value of feed solution was varied (Zhao et al. 2013a).
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Fig. 4.1 Polyethersulfone, with the sulfonic acid group on the benzene ring
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4.4 Physical Modification of PES

Physical modification of PES usually involves one of two distinctive approaches,
either the blending technique or the surface coating technique.

4.4.1 Blending

Blending is the simplest method and most effective modification process to modify
polymeric membranes (both flat-sheet and hollow fiber membranes PES mem-
branes), since the results might not very effective at certain time (Zhao et al. 2013a).
Moreover, it is regarded as the most practical way, which can be used to an
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Fig. 4.2 Fabrication of polyethersulfone membranes by carboxylation method (adapted from
Wang et al. 2011)
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Fig. 4.3 Synthesis of PES with different functional groups (Adapted from Zhao et al. 2013a; Bai
et al. 2010)
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industrial scale production. PES membranes are very easy to modify in this method.
This method is often employed to obtain the desired functional properties along
with the membrane preparation. Thus, both inside pores of membranes and the
membrane surfaces can be modified simultaneous through the interactions between
the basic polymer and additives. This can enable the prepared membrane to have
the comprehensive properties of the blend materials (Venault et al. 2014; Bottino
et al. 2000; Ying et al. 2002; Madaeni et al. 2011).

By directly blending hydrophilic polymers additives, for example polyvinyl-
pyrrolidone (PVP) (Barzin et al. 2004; Dang et al. 2008) and polyethyleneglycol
(PEG) (Wang et al. 2006a, b, c; Su et al. 2008; Dang et al. 2008) into membrane bulk,
the membrane hydrophilicity increased, the antifouling performance and blood
compatibility are also increased. PVP and PEG are homopolymeric polymers that
used as pore—forming agents. These additives are water-soluble and can be leached
out from hydrophobic PES membranes during membrane preparation and operation
processes, leading to deterioration of membrane performance. Therefore,
cross-linking with additives or covalent grafting has been proposed to tackle the issue
of leaching out these additives (Park et al. 2006; Tripathi et al. 2012). Tripathi et al.
(2014) prepared highly hydrophilic and fouling resistant porous membranes by
covalent cross-linking of sulfonated PES with amino terminated poly ethylene
glycol. PES was sulfonated and cross-linked with poly (ethyleneglycol) bis-
(3-aminopropyl)terminated via sulfonamide linkage using1,1′-carbonyldiimidazole
(CDI). The cross-linked membranes showed superior water permeation flux, rejec-
tion, and antifouling performance in comparison to the neat membranes. The protein
adsorption on membrane surface was about10-foldless than that of the control PES
membrane The results reveal that, hydrophilicity was increased due to the existence
of PEG, leading to the 3-fold increase in water permeation flux and more than 90 %
protein rejection efficiency.

Another approach to avoid the leaching out of these additives is using
Amphiphilic copolymers. Recently, these polymers are synthesised and used as
additives to fabricate PES membranes (Zhu et al. 2008a, b).

Various blending methods have been devoted or performed to modify PES
membranes to enhance their antifouling properties and improve the hydrophilicity.
These methods include blending with hydrophilic nanoparticles, blending with
homopolymeric membranes (e.g. PVP and PEG), blending with amphiphilic
polymers, and blending with zwitterionic polymers, and blending with surface
modifying macromolecules.

Blending with hydrophilic nanoparticles has become a new domain of interest in
membrane separation technology due to its ease and simplicity (Jamshidi Gohari
et al. 2014). The resulting membranes have unique properties, including excellent
separation performance, reasonable operation under harsh conditions (Yang et al.
2006), adaptability to milder environments, good thermal and chemical stability,
and excellent antifouling properties (Molinari et al. 2002; Akar et al. 2013). The
purpose of incorporating nanoparticles into polymeric membranes is to improve
hydrophilicity and to improve pore formation and interconnectivity (Rahimpour
and Madaeni 2010; Rahimpour et al. 2010b, c). Nanoparticles have indeed unique
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properties such as chemical properties; thermal and mechanical stable properties,
electrical properties, small size, large surface area and strong additives. Therefore,
they have attracted a great deal of attention recently. Akar et al. (2013) states that
incorporating nanoparticles with membrane results in improved membrane surface
properties (regarding to chemical and thermal resistance), improved separation
performance, mechanical properties and antifouling properties. Therefore, various
nanoparticles have been utilised in fabricating PES membrane, including, titanium
dioxide (TiO2) (Arthanareeswaran et al. 2008; Luo et al. 2005, 2011; Razmjou et al.
2011a, b; Devrim et al. 2009; Sotto et al. 2011), mesoporous silica (MS) (Huang
et al. 2012; Yu et al. 2009b; Yin et al. 2012), modified multi-walled carbon nan-
otubes (Daraei et al. 2013b), silver (Huang et al. 2012), magnesium hydroxide Mg
(OH)2 (Dong et al. 2012), calcium carbonate nanoparticles (CCNP) (Nair et al.
2013) and Carbon nanotube (CNT) (Majeed et al. 2012; Ajmani et al. 2012) and
HNTs (Liu et al. 2009).

Chen et al. (2013) investigated the effects of halloysite nanotubes—chitosan
(CHI)—Ag nanoparticles on the antifouling properties and performance of PES
membranes and the results demonstrated that the adding halloysite nanotubes—CHI
—Ag nanoparticles into PES membranes could lead to an increase in the
hydrophilicity of the modified membrane and then resulted in excellent both
membrane permeation and flux recovery ratio (FRR) in comparison to the neat PES
membrane.

Razmjou et al. (2012) investigated the effect of TiO2 nanoparticles on the
morphology, performance and antifouling properties of PES membrane. They
concluded that incorporating TiO2 nanoparticles into PES membranes, indicating
good membrane hydrophilicity, lower contact angle and higher FRR.

Dong et al. (2012) point out that Mg (OH)2 nanoparticles are very efficient in
preventing flux declines, causing the hybrid membrane to show excellent
antifouling performance, and higher hydrophilicity than the unmodified membrane.
The performance of membranes is enhanced due to the existence of—OH groups on
the surface of membrane.

Nair et al. (2013), also investigated the effect of OH groups on the hydrophilicity
of membranes when the hydroxyl group was formed from CCNP to Ca–OH in an
aqueous medium.

Jamshidi Gohari et al. (2014) investigated the introducing of hydrous manganese
dioxide (HMO) nanoparticles to PES ultrafiltration membrane. They concluded that
these nanoparticles have higher capability for enhancing the properties of UF
membranes, especially their antifouling properties. HMO nanoparticles offer several
advantages, such as microporous structure, large surface area and can be readily
prepared through redox reaction (Taffarel and Rubio 2010; Teng et al. 2009).

Razali et al. (2013) investigated the effect of incorporating polyaniline
nanoparticles as polymeric additives to PES membranes. They stated that these
nanoparticles have the capability to enhance the hydrophilic properties and per-
meability of the substrate membrane. Polyaniline nanoparticles are used to achieve
super hydrophilic surfaces due to their high-surface energy and hydrophilic prop-
erties (Fan et al. 2008).
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Recently, Zinadini et al. (2014) investigated the blending of graphene oxide
nanoparticles (GO) onto PES based-UF membrane. They demonstrated that these
inorganic nanoparticles have had the best antifouling property when 0.5 wt%
concentrations added to the dope solution.

Huang et al. (2012) used MS particles as an advanced antifouling membrane
material. The membrane hydrophilicity and antifouling performance were improved
significantly. Li et al. (2014) employed Polydopamine (PD) coating and
PD-graft-poly(ethylene glycol) (PD-g-PEG). The results showed that the modified
membrane had a fine mechanical stability, and the PD-g-PEG modified membrane
had a better chemical stability. The membrane hydrophilicity was increased
according to the measurements of contact angle. In comparison to the pristine
membranes, the modified membranes adsorbed less BSA under the same condition.
Furthermore, PD-g-PEG modified membrane seems to have less adsorptive fouling
potential than PD-coating membrane. Generally, PD-g-PEG modification should be
more promising in industrial application or scale.

Modified PES UF membranes by SiO2@N-Halamine. The membrane
hydrophilicity was significantly enhanced after introducing SiO2@N-Halamine.
The filtration results indicated that the permeation properties of the hybrid mem-
branes were significantly superior in compared to the control PES membrane. The
water flux of the hybrid membranes increased with the additional amount of
SiO2@N-Halamine increased. When the amount of SiO2@N-Halamine was 5 %,
the membrane permeation of hybrid membrane reached the maximum at 384.4 L
m−2 h−1. Furthermore, the hybrid membranes showed good antifouling and
antibacterial properties, which might extend the usage of PES in the application of
water treatment and could make some potential contributions to membrane
antifouling.

Pang et al. (2014) developed a simple in situ method for the preparation of
hydrous zirconia ZrO2/PES UF. They merged an ion-exchange method with a
classic immersion precipitation method. The solution of hydrous zirconia (ZrO2)
was prepared by addition of anion-exchange resin in N, N-dimethylformamide
(DMF) solvent containing zirconyl chloride. The results indicated that the ZrO2

nanoparticles were dispersed well into PES matrix and the diameter of the prepared
nanoparticles was about 5–10 nm. The hydrophilicity of the hybrid membranes was
improved significantly. The adsorption of protein was reduced as a result of
incorporating ZrO2 nanoparticles in the PES matrix.

Zhao et al. (2015) developed a new method for modifying PES/ZnO UF
membranes. Nano-ZnO was coated with PVP polymer using DMF as solvent. The
obtained ZnO-DMF dispersion was blended as an additive to fabricate PES/ZnO
membranes via wet phase separation. The results showed that the antifouling per-
formance was improved. The thermal stability of the hybrid membranes was also
enhanced in comparison to the pristine PES membranes.

Martín et al. (2015) modified PES UF membranes by incorporating
mesostructured modified silica particles in PES membranes. The antifouling
properties of the treated membranes were improved, particularly against irreversible
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fouling. Multi-run fouling experiments of the hybrid membranes verified the sta-
bility of membrane permeation after introducing mesostructured modified silica.

Xiang et al. (2014) prepared ionic-strength-sensitive membrane through in situ
cross-linked polymerization of sulfobetaine methacrylate (SBMA) in PES solution
and a liquid–liquid phase separation process. The membrane with high amounts of
PSBMA showed an obvious ionic-strength-sensitive property and ionic-strength
reversibility, which are expressed by the fluxes of salt solutions. At the same time,
the antifouling property and blood compatibility are increased significantly when
the amount of PSBMA increased in the PES membrane.

Xie et al. (2015) prepared a novel zwitterionic glycosyl modified PES UF
membranes through coupling in situ cross-linking polymerization process with
phase inversion process. The results showed the modified membranes have an
excellent antifouling performance, and the FRR could reach almost 100 %.
Menawhile, the blood compatibility of the membranes was determined by protein
adsorption experiment; platelet adhesion activated partial thromboplastin time
(APTT), and thrombin time (TT). The results indicated that the surface modified
PES membranes had good antifouling performance and blood compatibility
(anticoagulant).

Duan et al. (2015) modified PES ultrafiltration membrane by blending with N-
halamine grafted HNTs (halamine@HNTs), which is anticipated to improve the
antibacterial property and the permeability of the membranes. The results indicated
that the membrane hydrophilicity was enhanced significantly after adding N-
halamine@HNTs. The membrane permeability (Water flux) of the hybrid mem-
branes could reach as high as 248.3 L m−2 h−1 when the amount of N-
halamine@HNTs was 1.0 wt%. Additionally, the antibacterial experiment indicated
that the hybrid membranes showed good antibacterial activity against E. coli
(Table 4.2).

Ultimately, one of the most significant issues with blending nanoparticles into
polymer matrix is the agglomeration phenomenon. An agglomeration phenomenon
causes the non-uniform distribution of particles in the membrane and the instability
of the casting solution. This will lead to a big change in microstructure, topography
and performance and also the potential decreasing of antifouling ability of
nanoparticles. There have been a number of articles reporting that agglomeration
phenomena is due to the nature properties of nanoparticles (e.g. small size and high
surface energy) and the bad compatibility with hydrophobic PVDF bulk (Kang and
Cao 2014). Agglomeration phenomena can be reduced by three approaches:

1. Functionalisation of nanoparticles or surface modification of nanoparticles
(Zhang et al. 2014; Razmjou et al. 2011b; Shi et al. 2013)

2. In situ formation of nanoparticles via sol-gel method (Yu et al. 2009b)
3. Creating the bridge to improve the interaction between nanoparticles by the

addition of a third component. Therefore, the nanoparticles have to be carefully
selected to ensure their dispersion in the membrane matrix to avoid agglomer-
ation issues.
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Surface Coatings

Surface coating is an alternative technique that has been extensively used in dif-
ferent applications and it may apply as liquid, gas or solid. It has been specifically
used to alleviate membrane fouling in membrane bioreactors (Razmjou et al. 2012).
In this technique, a thin selective layer is directly deposited as a coating layer (thin
film layer) on the top surface of membrane (Zhao et al. 2013a). Surface coating
method is simple and economical than other processes; however, the main chal-
lenge of coating method is instability of the coating layer and limited diffusion of
the modification agent. There have been numerous studies reporting that surface
coating can be simply applied successfully in industrial scale but the coating layer is
readily removable in use after long usage of membranes (Li et al. 2014; Rana and
Matsuura 2010). Table 4.3 summarises surface modification of polymeric mem-
branes via surface coating techniques.

A variety of coating techniques have been described in many research articles,
including chemical vapour deposition (CVD) (Ha et al. 1996; Yan et al. 1994),
physical vapour deposition (PVD) (Yun and Ted Oyama 2011), chemical (solution
adsorption and sol-gel method) (Luo et al. 2005; Mansourpanah et al. 2009;
Rahimpour et al. 2008) and plasma spraying (Lin et al. 2012) coatings. These
techniques are mostly employed for the modification of membranes, in particular
ceramic membranes with gas separation applications. Each technique has limita-
tions, which impair its widespread application for fabrication of polymeric mem-
brane. For example CVD, PVD and plasma spraying are very expensive due to the
need to work at high temperature and pressure, the need for a high vacuum, and as
such they require high energy usage and the substrate geometry is limited to a flat
surface (Yun and Ted Oyama 2011). However the chemical paths are much more
applicable to polymer membranes as they can feasibly operate at low temperature
and pressure, and consume much less energy than the previously mentioned routes.

Chemical modification of PES

Chemical modification of PES membranes involves different techniques, which can
be classified as follows.

Photo-induced grafting (Photochemical-initiated graft polymerization)

Photochemical surface functionalization is an attractive approach used to modify
polymeric membranes (e.g. PES). It has been widely investigated by many scholars,
especially the UV grafting method (Hilal et al. 2003, 2004; Kaeselev et al. 2001;
Kilduff et al. 2000; Pieracci et al. 1999, 2000; Qiu et al. 2007; Taniguchi and
Belfort 2004). UV method is more applicable to modify flat-sheet membrane; it is
hard to modify hollow fiber membranes, particularly to modify the internal surface
of hollow fiber membrane.

Photochemical-initiated graft polymerization has several advantages and limi-
tations. The advantages of this method are inexpensive method (low cost), operate
under harsh or milder reaction conditions and low temperature may be used to the
reaction; the possibility of choosing different reactive groups or monomers in the
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Table 4.3 Surface modification of polymeric membranes through surface coating techniques
(Rana and Matsuura 2010)

Base material Treatment or remedy Function of the membrane Reference

Cross-linked
polystyrene
embedded
into PE

Fluorinated long-chain
pyridinium bromide

Sodium humate filtration; the
modified membranes were
prepared by deposition of
fluorinated amphiphilic
compound in an oriented
layer of the Langmuir–
Blodgett type

Speaker
(1986)

PS PEI UF membranes, flux
reduction in ovalbumin
solution; hydrophilicity of the
membrane appeared to be a
more important factor in flux
reduction than the charge

Nyström
(1989)

PES Polyurea/PU UF membranes, flux
reduction in PEG, BSA,
dextran and surfactant
solutions; flux enhancement
are possible with the
modifications

Hvid et al.
(1990)

Reinforced
PVC

Polypyrrole Electrodialysis
(ED) membranes, flux
reduction in organic foulants;
modified membranes showed
excellent anti-organic fouling
properties in electrodialysis

Sata (1993)

Sulphonated
PS and PES

Quaternized poly(vinyl
imidazole)

UF membranes, flux
reduction in BSA solution,
and lysozyme solutions;
significant improvement in
protein adsorption was
observed for modified
membranes at low ionic
strength

Millesime
et al.
(1994b)

PES Bentonite, diatomite, iron
oxide, kaolinite, titanium
dioxide, zeolite, etc.

UF membranes, treatment of
surface water from Twenty
canal, lake, and reservoir
(Delft, Netherlands);
pre-coating results initially in
higher rate of fouling, which
stabilises after several
filtration cycles

Galjaard
et al. (2001)

PES Hydrophilic triblock
copolymer,
PEO-b-PPO-b-PEO,
surfactant

Pulp and paper effluent
filtration; increasing the
hydrophilic characteristics of
the membrane before filtration
could reduce the amount of
organic foulants adsorbed to
the membrane

Maartens
et al. (2002)

(continued)
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Table 4.3 (continued)

Base material Treatment or remedy Function of the membrane Reference

CA and
PVDF

Phospholipid Microfiltration
(MF) membranes, flux
reduction in BSA solution;
phospholipid coating
improved flux more in the
PVDF membrane than in CA
membrane

Akhtar et al.
(1995)

PVDF Polyether-b-PA block
copolymer

UF, oil-water emulsion from
metal industry; composite
membrane was found to
perform similar to Amicom
YM30 cellulose membrane,
but with lower susceptibility
to fouling in the UF of
oil-water waste

Nunes et al.
(1995)

Zirconium
oxide
inorganic
membrane

Quaternized poly(vinyl
imidazole

UF, flux reduction in BSA
solution, and lysozyme
solutions; modified presumed
to be negatively charged

Millesime
et al.
(1994a)

CTA, PES,
and PVDF

Phospholipid (MPC) MF, flux reduction in BSA
solution, yeast fermentation
broth, beer, and orange juice;
the coating increased the
initial flux and decreased the
fouling rate; the fouling was
caused by mostly
polysaccharide rather than
protein

Reuben
et al. (1995)

PES PVA UF membranes, flux
reduction in BSA solution;
improved the antifouling
property of PES membrane.
The flux recovery ratio
increased significantly

Ma et al.
(2007)

PES PEGDA and
trimethylolpropane
trimethylacrylate via a
thermal-induced surface
cross-linking process

BSA filtration; the modified
membranes were less
susceptible to fouling and had
grater flux recoveries after
cleaning as compared to
pristine membrane

Mu and
Zhao (2009)

PVDF Dip and surface flow coated
chitosan

BSA adsorption and filtration;
the modified membranes were
observed higher flux recovery
than neat membranes;
membrane modified by
combined dip coating and
surface flow methods
displayed the best antifouling
properties

Boributh
et al. (2009)

(continued)
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Table 4.3 (continued)

Base material Treatment or remedy Function of the membrane Reference

PVDF Coated with PVA and
cross-linked by
glutaraldehyde vapour

BSA filtration and natural
water of Grand River
(Kitchener, Canada); the
reduction in BSA flux
solution was remarkably
lowered, and higher flux and
slower rate of fouling were
noticed during natural water
filtration by modified
membrane

Du et al.
(2009)

PVC MPC copolymer (PMB) Adhesion in platelet-rich
plasma (PRP) by fluorescence
micrograph; the modified
membrane exhibited
significant reduction in
biofouling phenomena

Berrocal
et al. (2002)

PS Pluronic triblock copolymer,
PEO-b-PPO-b-PEO,
surfactant

Proteins adsorption, and
adhesion in PRP; it was
suggested that the bioinert
property of PEO segments in
the pluronic suppresses the
adsorption of plasma proteins
and platelets to the coated
membranes

Higuchi
et al. (2003)

PVDF PEO-b-PA 12 block
copolymer

UF spiral-wound membranes,
motor oil-water emulsion
filtration; the coated
membranes exhibited
significantly low-fouling
properties

Freeman
and Pinnau
(2004)

PVDF PVDF-g-POEM graft
copolymer

Oleic acid-triethanol
amine-water filtration;
modified membranes exhibit
nanoscale size selectivity with
good wetting properties

Akthakul
et al. (2004)

PVDF Hydrophilic polymer UF membranes, BSA and
enzyme filtration, and
adhesion in human PRP; as
the antifouling properties
were excellent, the membrane
could be cleaned without
using any cleaning agent

Wei et al.
(2006b)

PVDF Poly(cyclooctene)-g-PEG
graft copolymer

UF, soybean oil-water
emulsion filtration; the
stability and lifetime of the
coated membrane against oil
droplet were good, and after a
long run the coated membrane
flux crosses over the control

Revanur
et al.
(2007b)

(continued)
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Table 4.3 (continued)

Base material Treatment or remedy Function of the membrane Reference

Microporous
PP

Quarterisation cross-linking
hydrophilic and positively
charged coating by poly
(ethylene imine), cross-linked
with p-xylylene dichloride
and quaternized by
iodomethane after plasma
pre-treatment

BSA and lysozyme filtration;
the modified membranes
resisted effectively protein
fouling below the isoelectric
point; furthermore, MF
characteristic has been
unchanged

Yang et al.
(2009a, b)

PS and PVDF Coated with poly
(cyclooctane-g-PEG)

Oil-water emulsion;
copolymers-coated films
reduced fouling for water
purification

Emrick et al.
(2008)

Polypropylene Coated with poly(sulfobetaine
methacrylate) and
polydopamine co- deposition

UF: BSA, Hgb and LYs
filtration, the coated
membranes exhibited
significantly excellent
antifouling property and
water flux

Zhou et al.
(2014)

PES Coated with polydopamine
(PD) and PD-graft-poly
(ethylene glycol)

UF: BSA filtration; the
mechanical stability of the
membranes were fine and the
PD-g-PEG modified
membrane had a better
chemical stability, the
modified membrane had less
flux reduction and lower
adsorptive amount of BSA

Li et al.
(2014)

PES Corona air plasma and coated
with TiO2 nanoparticles

UF: significant enhancement
of the surface hydrophilicity,
improvement of the
antifouling properties and
permeation fluxes for all
modified membranes, the
modified membranes had a
lower fouling tendency and
long term flux stability in
comparison to the virgin PES
membranes

Moghimifar
et al. (2014)

PES Coated with Nanoporous
Parylene

UF: improved
biocompatibility of the PES
membranes

Prihandana
et al. (2012)

PES Coated with sulfonated poly
(propyleneoxide) PPO

UF: the modified membranes
has lower water flux,
enhancement in
hydrophilicity surface, and
lower membrane fouling

Singh et al.
(1997)

(continued)
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grafting procedure and respective excitation wavelength; possibility of easy intro-
duction into the final stages of a membrane manufacturing process, and high
selectivity to absorb UV light without affecting the bulk polymer (Hilal et al. 2003).
The disadvantages of this method is that it usually adheres at small scale but not so
easily for industrial scale (Li et al. 2014). Photo-induced grafting can be achieved
via two routes: either with or without photoinitiator. The mechanisms of
photo-induced grafting without photoinitiator, on the one hand, involves the direct
generation of free radicals on the backbone of the membrane polymer under UV
irradiation, which react with the monomer free radical to form the grafted
copolymer (Seman et al. 2012). Due to the sensitivity of PES, PS polymer toward
UV irridation, the photoinitiator is not required. Different hydrophilic monomers
have been grafted onto the membrane surface of PS and PES to decrease their
fouling by proteins and increase their hydrophilicity, including N-Vinyl-2-
pyrrolidinone (NVP), 2-hydroxylethyl methacrylate (HEMA), acrylic acid (AA),
acrylamide (AAm), and 2-acrylamidoglycolic acid (AAG) (Kilduff et al. 2000;
Mohd Yusof and Ulbricht 2008; Pieracci et al. 2000; Taniguchi and Belfort 2004;
Yamagishi et al. 1995a, b). As stated by numerous research studies, HEMA was the
most effective hydrophilic monomer to decrease both static adsorption and the
membrane fouling during BSA filtration. Other hydrophilic monomers have been
grafted onto PES ultrafiltration membranes via photo-irradiation process to enhance
the anti-fouling property of membranes. These monomers include AA (Abu Seman
et al. 2010; Gupta et al. 1992, 2009; Kouwonou et al. 2008; Malaisamy et al. 2010;
Taniguchi and Belfort 2004; Taniguchi et al. 2003), 2-acrylamidoglycolic acid
monohydrate (AAG) (Kaeselev et al. 2001; Taniguchi and Belfort 2004; Taniguchi
et al. 2003; Wei et al. 2006b), 2-acrylamido-2-methyl-1-propanesulfonic acid
(AAP) (Kaeselev et al. 2001), 2-(acryloyloxy)ethyl trimethyl ammonium chloride
(AETMA) (Madaeni et al. 2011), AAm (Gupta et al. 2009), 2-acrylamido-2-
methyl-1-propanesulfonic acid (AMPS) (Hilal et al. 2003; Taniguchi and Belfort

Table 4.3 (continued)

Base material Treatment or remedy Function of the membrane Reference

PES Preadsorption of poly
(sodium 4-styrenesulfonate)

UF: the surface modified
membranes shower excellent
antifouling properties

Reddy et al.
(2003)

PES Coated with
polydopamine-grafted
polyethylene glycol

UF: The modified membranes
had less flux reduction in
filtration and lower adsorptive
amount of BSA in isothermal
adsorption tests. The PD-g-
PEG modification improves
the stability of the PES
membrane and the
adsorbability for BSA more
significantly

Li et al.
(2014)
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2004; Taniguchi et al. 2003), quaternary-2-dimethylaminoethyl methacrylate
(qDMAEMA) (Hilal et al. 2003), HEMA (Taniguchi and Belfort 2004; Taniguchi
et al. 2003; Wei et al. 2006b), methacrylic acid (MA) (Wei et al. 2006b), PEG
monomethacrylate (PEGMA) (Rahimpour 2011a; Saha et al. 2009; Susanto et al.
2007; Susanto and Ulbricht 2008), N,N-dimethyl-N-(2-methacryloyloxyethyl-N-
(3-sulfopropyl) ammonium betaine (Rahimpour 2011a; Susanto and Ulbricht
2007), 3-sulfopropyl methacrylate (SPMA) (Taniguchi and Belfort 2004; Taniguchi
et al. 2003) and N-vinylfonnamide (NVF) (Wei et al. 2006b).

In contrast, surface modification with an added photoinitiator; the initiating
radical sites are formed as a result of photoinitiator itself. These sites should be
generated on the surface of membrane through the reaction of photoinitiator with
the hydrogen atom in the base polymer under UV irradiation, yielding the radical
sites required for grafting (Bhattacharya and Misra 2004). A schematic diagram of
the photoinitiated graft polymerization method is shown in Fig. 4.4.

It should be pointed out that a number of factors affect the grafting degree of the
membrane; including the method of UV grafting, the dip or immersion method
(Kilduff et al. 2000; Pieracci et al. 2000) the use of a photoinitiator (Yamagishi et al.
1995b; Lee et al. 2004; Qiu et al. 2005); the application of a degassing agent, for
example, nitrogen or argon (Chu et al. 2006; Liang et al. 2000; Pieracci et al. 2000;
Taniguchi et al. 2003); the nature of the membrane polymer backbone (Kaeselev
et al. 2002; Kuroda et al. 1990; Yamagishi et al. 1995a, b; Puro et al. 2006); the UV
intensity and the wavelength (Hwang and Park 2003; Lee et al. 2004; Qiu et al.
2005; Ji 1996); the employed additive(s) (Bhattacharya and Misra 2004); and the
type of solvent(s) (Lee et al. 2004).

It is noted that the UV-initiated graft polymerization process is used predomi-
nantly for modification of ultrafiltration membranes (Kaeselev et al. 2002; Pieracci
et al. 1999, 2000, 2002a, b; Qiu et al. 2005; Taniguchi et al. 2003; Yamagishi et al.
1995a, b; Susanto and Ulbricht 2008; Xi et al. 2006) and the hydrophilic monomer
is usually utilised to enhance antifouling performance. Table 4.4 illustrates surface
modification of PES via UV technique to enhance antifouling properties of
membranes.

Gamma ray and electron beam-induced grafting

Gamma ray is rarely used as modification method for polymeric PES membrane
because it consumes higher energy via the breaking of chemical bonds and there-
fore affects the membrane strength (Zhao et al. 2013a).

Electron beam irradiation, in contrast, is another approach to motivate grafting
via generating active sites (for example, hydrophilic monomer) on the membrane
surface. This technique is known to be a powerful method of modification used in
the preparation of synthetic polymeric PES membranes with excellent properties
including increased stability, improved separation efficiency and enhanced flux (Lai
et al. 1986; Fritzsche et al. 1986; Haruvy et al. 1988; Saito et al. 1989). Electron
beam irradiation technique can be used for preparation of anionic and cationic
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exchange membranes. Keszler et al. (1991) have been modified PES membranes in
a solution of AA and acryl amide monomers by using electron-induced grafting
method. They concluded that the flux and solute retention were increased in
comparison with the unmodified PES. Moreover, the PES membranes also had
pH-responsivity due to the existence of hydroxyl groups (OH) in the PES network
(backbone). Similar research studies conducted by Schulze et al. (2010), they have
been modified PES membrane in a onestep process using electron beam method.
The PES membranes were dipped in an aqueous solutions of functional molecules
(e.g. sulfonic acid, carboxylic acid, phosphoric acid, amines, alcohols and zwitte-
rionic compounds) followed by using electron beam treatment. The results showed
that the protein adsorption of myoglobin and albumin was decreased significantly.
There is no need to use any catalysts, photoinitiator, organic solvents, any toxic
reagents and even additional synthetic or purification steps in this research study of
Schulze et al. (2010). To sum up, electron beam irritation has the capability to
interpenetrate to membrane polymer, and therefore, activate the internal surface of
membrane for the desirable modification reaction.

Fig. 4.4 A schematic
diagram of the photoinitiated
graft polymerization,
a without a photoinitiator and
b using a photoinitiator
(adapted from Bhattacharya
and Misra 2004)
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Table 4.4 Summary of surface modification of polyethersulfone via UV technique

Membranes Treatment Function of membranes References

PES
(10 KDa)

Grafted with N-
vinyl-2-pyrrolidinone (NVP)

UF: the membrane
hydrophilicity was increased by
25 %, whilst the BSA rejection
was decreased by 49 %

Pieracci
et al. (1999)

PES
(50 KDa)

Grafted with N-
vinyl-2-pyrrolidinone (NVP)

UF: the treated PES membranes
showed considerable decline of
both membrane permeation and
BSA retention

Pieracci
et al. (2000)

PES Acrylic acid irradiated with UV
light

MF: the permeability of
MF PES membrane was
decreased because the
modification process filled the
pores with copolymer, FRR
was 100 % for the treated PES
membranes

Kouwonou
et al. (2008)

PES Grafted with AA through
UV-initiated graft
polymerization technique

NF: the membrane permeation
was higher for the modified
PES membrane in comparison
with the neat PES membrane,
the retention of humic acid was
higher, the irreversible fouling
was reduced by humic acid
molecules, the pore size of
membrane was decreased

Abu Seman
et al. (2010)

PES Grafted with hydrophilic
functional moieties (viz. AA,
AM) with UV-initiated
photo-modification method

The treated PES membranes
have a good separation
capability in comparison to the
neat PES, the flux recovery
ratio (FRR) for the pristine
PES membrane was minimum
in comparison to other two
grafted membranes, the
antifouling performance of
membrane was increased after
grafting AA, increased in pH
led to decrease separation
performance

Gupta et al.
(2009)

PES Grafted with AMPS and
qDMAEMA) using
photoinduced grafting
technique

MF: the number of bacterial
cells was less for
qDMAEMA-grafted samples in
comparison to unmodified PES,
higher anti-biofouling
performance

Hilal et al.
(2003)

(continued)
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4.4.2 Plasma Treatment and Plasma-Induced Grafting
Polymerisation

Over the last two decades, plasma treatment of the polymeric membranes has been
extensively investigated by many researchers to enhance membrane hydrophilicity
and to minimise membrane fouling to a minimum (Bryjak et al. 1999; Chen and
Belfort 1999; Gancarz et al. 1999a, b, 2002, 2003; Ulbricht and Belfort 1996;
Wavhal and Fisher 2002a; Zhan et al. 2004; Kim et al. 2002; Dattatray et al. 2005;
Kull et al. 2005; Zhao et al. 2005; Dong et al. 2007; He et al. 2009; Poźniak et al.
2006; Tyszler et al. 2006; Yan et al. 2008; Yu et al. 2005, 2006, 2007, 2008a, b). It
is an effective way to generate functional groups (radical sites that are stable in
vacuum) on the polymeric membrane surface, leading to alterations in membrane
performance. However, the bulk of the polymer remains unaffected. Because the
lower surface energy of plasma treatment, the plasma is often restricted to the
surface of membrane surface and therefore the bulk properties of membrane still
remain unaffected. The thickness of the modified layer can be controlled up to the
angstrom levels.

Kochkodan (2012) states that plasma treatment of the synthetic polymer mem-
branes can be implemented in three various methods: (i) plasma treatment with
non-polymerisable gas molecules; (ii) plasma treatment with polymerizable
vapours; and (iii) plasma treatment with plasma-induced grafting. The plasma

Table 4.4 (continued)

Membranes Treatment Function of membranes References

PES Heterogeneous Photograft
copolymerization of PEGMA

UF: the modified membranes
have higher resistance to
fouling and higher retention,
the membrane permeation was
reduced due to pore blocking
by grafted poly PEGMA

Susanto
and
Ulbricht
(2007)

PES Grafted with poly (ethylene
glycol) methyl ether
methacrylate (PEG) with
vinylamides including N-
vinylformamide (NVF),
Nvinylacetamide (NVA) or N-
methyl-N-vinylacetamide
(MVA) via a photo-induced
graft polymerization
(PGP) method coupled with a
high throughput platform
(HTP) technology

The antifouling performance
was improved significantly, the
pore size of membrane as
decreased

Yune et al.
(2011)

PES Immersion precipitation by
TiO2 nanoparticles and UV
irradiation

UF: the initial permeate flux
was lower than the initial
permeate flux of the neat PES
membrane

Rahimpour
et al. (2008)
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treatment with non-polymerizable gases and plasma-induced grafting are the most
common methods used to modify the synthetic polymer membrane surfaces.

The advantages of plasma treatment are fast, effective technique and meet most
of the ecological regulations for clean technology. It can be employed as radicals
source, which work as anchor points for graft polymerisation.

A number of plasma techniques have been used to obtain permanent functional
groups on the surface of the membrane. These techniques are: (1) Surface cleaning
and etching (2) Surface modification with gas plasma (cross-linking and the cre-
ation of new functional groups) (3) Plasma-initiated polymerization/grafting
(4) Plasma polymerization.

PES polymeric membranes can be modified through plasma, which is produced
after ionisation of water vapour or a gas (e.g. Nitrogen, carbon dioxide, oxygen,
hydrogen, argon) via an electrical discharge at elevated frequencies by using radio
frequency waves and microwaves (Gancarz et al. 1999a, b; Van Der Bruggen
2009a; Castro Vidaurre et al. 2001; Zhao et al. 2013a).

Numerous gases can be employed for the modification of polymeric PES
membrane (Saxena et al. 2009; Wavhal and Fisher 2002b, 2003), including Ar
(Kull et al. 2005; Saxena et al. 2009; Wavhal and Fisher 2003), CO2 (Pal et al.
2008; Wavhal and Fisher 2002b), N2 (Kull et al. 2005), NH3 (Iwa et al. 2004; Kull
et al. 2005), O2 (Pal et al. 2008; Saxena et al. 2009; Cho et al. 2004), and H2O
(Steen et al. 2002). The mechanism of their action is: the membrane surface is
bombarded with ionised plasma components to produce radical sites C–C, C–H,
and C–S bonds can then be attacked by radicals, with exclusion of the aromatic C–
H and C–C bonds (Zhao et al. 2013a). This is the same to the photodegradation
approach or process. The produced radicals can then react with gas molecules,
creating different functionalities, depending on the conditions of plasma as shown
in Fig. 4.5 for O2 (Tyszler et al. 2006). The higher hydrophilicity of the treated
membranes with oxygen plasma for a period of 20 s results in reducing liable
membrane fouling to a minimum for ultrafiltration of gelatine solutions (Kim et al.
2002).

After contacting with the air, the remaining groups (radical sites) bind with
nitrogen or oxygen. These functional groups are carbonyl, carboxylic and hydroxyl.

Surface modification of the polymeric membrane with CO2 plasma results in
introducing oxygen into the surface of membrane in the form of acid, carbonyl and
ester groups, leading to an increase in membrane hydrophilicity. Generally, mod-
ification of membrane surfaces with CO2 plasma results in hydrophilic surfaces and
surface oxidation. He et al. (2009) conclude that treating membranes with CO2

plasma for 30 s shows better regeneration behaviour in ultrafiltration membrane of
specific filtrates (e.g. BSA protein solutions).

Membrane surface treatment with Nitrogen plasma leads to introduce different
functional groups (e.g. imine, amine, amide, and nitrile) on the surface of mem-
brane, making the membrane super hydrophilic and less liable/susceptible to
fouling (Kull et al. 2005). Due to the weak effect of nitrogen plasma, the degra-
dation of polymer may be reduced to certain extent.
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Modification of polymeric membrane with H2O plasma results in introduction of
oxygen (contains functional groups) onto the membrane surface. XPS and FTIR can
be used to characterise the functional groups. Membrane treatment with Ar plasma
can allow PES membranes to graft or attach other polymers. Plasma treatment has
advantages and disadvantages. The advantages are very shallow modification depth
in comparison to other modification processes. The disadvantages are
(1) time-dependent of the induced changes and therefore, it needs a vacuum system,
which leads to an increase in operation cost, (2) chemical reactions of the plasma
treatment are quite very complicated, so it is hard to understand the surface
chemistry of the treated membrane in detail. Therefore, plasma treatment is not
possible to apply on the large scale.

Thermally induced grafting and immobilisation

Thermal-induced grafting and immobilisation is simplistic routes to surface-modify
PES membrane. Chemical initiators or cleavage agents are always used in this
route. Moreover, many types of biomolecules, such as protein, enzyme and amino
acid, could be covalently immobilised onto polymeric PES membranes through
chemical reaction. It is hard to modify PES membranes by thermal-induced graft
polymerization because the good stability of thermal-induced grafting.

Mu and Zhao (2009) modified of PES porous membranes using thermal-induced
surface cross-linking process. Difunctional poly (ethylene glycol) diacrylate
(PEGDA) was used as the main cross-linking modifier. Trifunctional trimethylol-
propane trimethylacrylate (TMP TMA) was added into the reaction liquid (PEGDA
solution) to enhance the rate of cross-linking on the surface of polymeric PES
porous membranes. The membrane permeation and antifouling performance could
be significantly improved when a moderate mass gain of approximately
150 mg/cm2 was attained. The hydrophilicity of membrane was increased signifi-
cantly due to the cross-linking process.

Another research study conducted by Mansourpanah et al. (2010), nanofiltration
membranes were prepared by dissolving the blend of PES/Polyimide in DMF
solvent, and Afterward the prepared NF membranes were modified using
(PEGtriazine) as a new modifier material and methanol solution containing 10 wt%

Fig. 4.5 Schematic representation of O2 plasma treatment of a membrane (adapted from Tyszler
et al. 2006)
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ethylenediamine (EDA) as a cross-linker to open the rings of imide group. The
membrane permeation and salt rejection was decreased and increased, respectively
due to the addition of EDA and PEG-triazine. In case of incorporating trimethy-
lacrylate into the membrane recipe, the modified membrane showed lower flux
during the filtration process. Mansourpanah et al. (2010) stated that Diethanolamine
could be also used as a hydrophilic modifier to alter membrane properties.

Shi et al. (2011) prepared poly (MA)-graft-polyethersulfone (PMAA-g-PES)
membrane through non-solvent-induced phase separation process. The enzymemodel
trypsin (contains amino functional groups) was conjugated covalently to surface
of membrane via 1-ethyl-(3-3-dimethylaminopropyl)-carbodiimide hydrochloride
(EDC)/N-hydroxysuccinimide (NHS)-activation of carboxylic acid groups enriched
on the membrane surface. The results showed that the treated membranes have
desirable antifouling performance and superior self-cleaning properties. The modified
membranes showed long-term life span for protein filtration due to the higher stability
of trypsin-resided membrane surface. The existence of trypsin on the surface of
membrane did not cause any obvious decline in membrane permeation. However,
after filtration of protein solution, the membranes could recover their initial flux using
washing process

Surface-initiated atom transfer radical polymerization (SI-ATRP)

In recent years, surface-initiated atom transfer radical polymerization (SI-ATRP)
has been shown to one of the prevalent living/controlled polymerization method
utilised for grafting polymers synthesis onto different or various surfaces in a
controlled manner, including grafting density, chain length and chemical compo-
sitions, and therefore produce the high capacity of binding sites of functional
molecules (Edmondson et al. 2004b; Liu et al. 2008; Xu et al. 2005; Zhao et al.
2013a). SI-ATRP method has gained popularity in membrane technology due to its
unique properties, including regulated molecular weight, narrow molecular weight
distribution; operate under hash or milder conditions, and tuneable decorations.

Until now, three kinds of grafting methods using ATRP to modify membranes
have been demonstrated in the literature. These methods are grafting–to, grafting–
through and grafting–from, which concern the synthesis and application of graft
copolymers. The function of these methods is to modify membrane surfaces.
Although all these methods are used, only a few journal articles have been pub-
lished, regarding to use ATRP to modify PES membranes (Li et al. 2009a, b).

Grafting–to is rarely used as modification method of polymeric membranes. It is
simpler than the grafting–from and it has not gained popularity due to the difficulty
of reaching the high grafting density. Furthermore, the grafting density being
restricted by space constraints around the active sites and the situation becomes
worst. This leads to increases layer thickness and consequently the process becomes
self-limiting (Edmondson et al. 2004a). In this technique, preformed polymer
chains (carrying reactive anchor groups on the side chains or at the end) are
attached covalently to the surface of membrane (Zhao and Brittain 2000). This
technique is accurately controlled the structure of the grafted chain. UF PAN
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membranes have been functionalised by different low molecular-weight aromatic
azide derivatives consists of various hydrophobic and hydrophilic functional groups
(Ulbricht and Hicke 1993). The results showed that the protein-fouling intensity
and separation properties were virtually changed, depending on the type of func-
tional groups introduced. This was verified by increasing the membrane
hydrophilicity and charged of the active membrane layer

Grafting–from method is commonly used for modification of various polymeric
membranes (Kaeselev et al. 2002; Kilduff et al. 2000; Ma et al. 2000a, b; Pieracci
et al. 1999, 2000, 2002; Ulbricht and Belfort 1996; Ulbricht et al. 1996; Yamagishi
et al. 1995a, b; Yang and Yang 2003; Hilal et al. 2003, 2004; Taniguchi and Belfort
2004; Hu et al. 2006; Gu et al. 2009; Rahimpour et al. 2009; Yu et al. 2009a; Zhang
et al. 2009; Abu Seman et al. 2010). In this technique, polymer chains directly grow
in situ from the immobilised or grafted active groups (radicals) on the membrane
surface in the existence monomers or initiators. The majority of these research
studies have conducted on antifouling modification of the ultrafiltration and
microfiltration membranes because higher grafting density is needed in order to use
the grafted polymer layer as a selective barrier in reverse osmosis membrane (RO).
Generally, this technique may be achieved with photoinitiator and without pho-
toinitiator. Lastly, grafting-from has proven to be more feasible and versatile
method than grafting-to.

The chloromethylation of PES under milder conditions lead to create surface
benzyl chloride groups as the active sites for ATRP to adjust the hydrophobicity of
the PES membrane (Zhao et al. 2013a). Functional hydrophilic polymer brushes of
PEGMA and sodium 4-styrenesulfonate (NaStS), as well as their block copolymer
brushes, were prepared through surface-initiated ATRP from the chloromethylated
PES surfaces. PES membranes grafted with PEGMA membranes showed excellent
protein-fouling resistance to protein adsorption (Li et al. 2009a).

Apart from ATRP, other polymerization methods, such as free radical mediated
polymerization (SFRP), reversible addition-fragmentation chain transfer (RAFT)
polymerisation, and iodine-transfer polymerization have been also used to modify
of PES membranes.

Wang et al. (2014) modified PES UF membranes with halloysite nanotubes
grafted with 2-methacryloyloxyethyl phosphorylcholine (HNTs-MPC) for the
purpose of improving the antifouling performance of the membrane. HNTs have
been chemically modified with MPC through reverse atom transfer radical poly-
merization RATRP. The resulting new hybrid membranes possessed higher pure
water flux and good antifouling performance. The protein (BSA) adsorption
experiment showed that the amounts of bovine serum albumin (BSA) adsorbed on
the surface of membrane were decreased significantly. BSA ultrafiltration experi-
ment also indicated that the hybrid PES membranes have higher antifouling
property with the addition of HNTs-MPC than the virgin PES membrane. At the
same time, the long-term ultrafiltration experiment showed that the hybrid PES
membrane had an ideal stability (Wang et al. 2014).
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Ozone-induced grafting of PES membranes

Due to the low concentration availability of ozone throughout the Earth’s atmo-
sphere, it has been used in a wide range of consumer and industrial applications.
Liu et al. (2008) functionalised PES ultrafiltration membranes via grafted three
hydrophilic functional polymers such as polyethylene glycol (PEG), polyvinyl
alcohol (PVA), and CHI using UV/ozone methods. Based on their results, the
surface modified PES membranes have higher surface roughness in comparison to
the pristine PES membrane. It was also shown that the modified membranes have
more hydrophilic surface and could reduce the amount of protein adsorption on
membranes. This research studies have demonstrated that PEG is the most
favourable result in modifying PES membranes for fouling mitigation among the
three hydrophilic polymers tested. This has been verified by measurements of
contact angle and protein adsorption experiment.

Redox-grafting PES membranes

Redox (oxidation-reduction reaction) is a method used in the 1980s for grafting of
nylon and cellulose and later was used to polyamide membranes. Recently, it has
been used to modify PES membranes (Belfer et al. 2000; Reddy et al. 2005). Redox
grafting describes all chemical reactions in which atoms have their oxidation
number (oxidation state) changed. Furthermore, redox grafting composed from two
concepts: reduction and oxidation (Zhao et al. 2013a). Van Der Bruggen (2009b)
states that redox initiators can be used to produce radicals under milder conditions
with minimum side chain reaction. One of the benefits of redox reaction is the
modification of the prepared membrane can be implemented in aqueous media at
ambient temperature without oxygen removal.

Redox initiation occurs when the oxidant (e.g. persulphate) and the reductant
(e.g. sulphite) exist in the reaction mixture. It can be seen that redox initiation are
used for polymerizations, which occurs at temperature below 50 °C. The redox
system is usually used K2S2O8/Na2S2O5, which have the capability to produce
radicals on the surface of membrane for further grafting. K2S2O8 represents the
oxidants, whilst K2S2O5/Na2S2O5 represents the reductants. Redox-grafting reac-
tions have been used for PA membranes. However, some research studies have
been conducted on using redox reaction as method to modify PES membranes. For
example, Reddy et al. (2005) have been modified PES membranes with acrylate
monomers (AAm and methylene bisacryl amide) via graft polymerisation induced
by a redox reaction.

Belfer et al. (2000) functionalised PES membranes using different monomers
including AAm, MAA, PEGM and SPMA with the aid of redox initiators to create
radicals on the PES membrane surface. They followed the same procedure used in
the study of Reddy et al. (2005). They concluded that when a high concentration of
monomer is used, the permeability might significantly decrease (up to 30 %) since
the grafted chains can penetrate the membrane and block the membrane pores
partially or completely.
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Reddy et al. (2005) prepared PES nanofiltration membranes (MWCO < 1000)
and polyamide composite membranes (thin film membrane contains negatively
charged hydrophilic functional groups on its surface) using in situ redox poly-
merization of acrylate monomers. The resulting nanofiltration membranes were
used for dye effluent solution treatment whilst the modified membranes were
examined for desalination of brackish water without using chemical pre-treatment
to evaluate their fouling resistance performance. Reddy et al. (2005) concluded that
the treated membranes showed excellent antifouling properties for desalination of
brackish water.

Pore-filled PES membranes

Pore-filled PES membranes are a new class of membranes developed by Mika et al.
(1995). They provided pH-sensitive membrane, which consists of microfiltration
(host) porous substrate and polyelectrolyte anchored within the pores. This method
can also be used to modify PES membranes. The host substrate is porous and
physically and chemically stable, provides mechanical strength for the developed
membranes (Hu and Dickson 2007). Different polyelectrolyte can be pore filled in a
controlled manner owing to the porous structure of the host substrate, resulting in
dramatically different behaviour from the host membranes (Mika et al. 1995, 1999,
2002).

Shah et al. (2005) functionalized porous PES microfiltration membranes by the
formation of polystyrene grafts within the pores. Further activation of the grafts is
accomplished by lower concentration of sulfuric acid, resulting in no loss of
functionalised polymer during activation method. The functionalised or treated
membranes could also be employed for separation of whey protein (Cowan and
Ritchie 2007). The surface charged membrane exhibited higher selectivity (five
times) than the pristine PES membrane at pH 7.2. The selectivity was improved due
to increase reduction of beta-lactoglobulin because a reduction in molecular sieving
combined with electrostatic repulsion between the negatively charged membranes
and negatively charged b-lactoglobulin.

Molecularly imprinted PES membranes

A molecular imprinting technique is a promising technique used to create highly
recognition and catalytic sites within polymer network (Wulff 1995). Molecular
imprinting technique can be prepared by copolymerisation of cross-linker and
functional monomers into polymeric membrane matrix in the presence of a template
molecule, which results in the formation of these monomers (binding or recogni-
tions sites cavities) complementary to the template in shape, size and position of the
functional groups (Mosbach and Haupt 1998). These recognition sites enable the
polymer to rebind selectively the imprint molecules from a mixture of closely
related compounds (Zhao et al. 2013a; Alexander et al. 2006; Cormack and
Mosbach 1999; Davis et al. 1996; Mayes and Whitcombe 2005; Wulff 2002; Ye
and Mosbach 2008; Wei et al. 2006a; Whitcombe and Vulfson 2001; Byrne et al.
2008). Due to its ease of operation, stability, higher selectivity, feasibility in
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different conditions, molecular imprinting technique has been extensively used in a
wide range of applications, for example, chromatography, solid phase extraction,
sensor design, adsorbents to environmental hormone, reaction catalysis and mem-
brane separation (Bergmann and Peppas 2008; Byrne et al. 2002; Ge and Turner
2008; Hillberg and Tabrizian 2008; Hilt and Byrne 2004; Wei et al. 2006a; Bossi
et al. 2007; Janiak and Kofinas 2007; Turner et al. 2006; Zhao et al. 2013a; Zhang
et al. 2006). Molecular imprinting technique has gained popularity in industry due
to its low cost and stability. Molecular imprinting technique has been developed by
two main approaches: the first approach is covalent molecularly imprinting and the
second one is non-covalent molecularly imprinting. The template is coupled to
polymerizable molecules via covalent bond in the covalent approach, whilst, the
template is mingled with functional monomers or cross-linker via non-covalent
bond in non-covalent approach. The second approach has been used significantly
due to its wide application and easiness. Byrne and Salian (2008) state that the
majority of imprinted polymers generated today have been cross-linked extremely
to minimise the flexibility of the associated binding cavities generated between
polymer chains. Therefore, the idea of the technique translating to polymeric
matrices with higher flexibility within their polymer chains was highly suspect. It is
supposed that flexibility of polymeric chains would results in fatal deficiencies in
the networks in which imprinted structures are well defined, namely template
binding affinity, capacity, and selectivity. However, experimental work in the last
decade has confirmed that this is not the case. Recently, Zhao et al. (2008) prepared
bisphenol A imprinted PES hollow fiber membrane using phase transition technique
and dry–wet-spinning method. The results showed that the transmission rate of
bisphenol A has been increased for the imprinted hollow fiber membranes in
comparison with the non-imprinted membranes because the larger amount of rad-
ical (binding) sites through the imprinted membranes. Therefore, the imprinted
membranes can be used in separation and purification applications

Ionically modified PES membranes

Ionic modification is one of the methods used to modify polymeric PES mem-
branes. Numerous research studies have been conducted to modify polymeric PES
membranes ionically, for example, (Li and Chung 2010) modified PES membranes
using ionic modification method to produce the sulfonated PES membranes with
Ag+ ion form. Silver ion modification approach and dual-layer hollow fiber spin-
ning technology has been used to functionalise PES membranes. The results of pure
gas permeance showed that the O2/N2 and CO2/CH4 selectivity was significantly
increased (9.5 and 118), respectively. Cao et al. (2010) blended PES membranes
with sulfonated PES to prepare hybrid membranes. The hybrid membranes were
then immersed in a solution of excess AgNO3. Silver ion were immobilised onto
SPES membrane surface using Vitamin C (VC) as reducing agent. The results
showed that the composite (PES/SPES)-Ag membranes have excellent bacterio-
static (growth inhibition) and anti-bacterial properties for long period of usage. In
the future, the anti-bacterial properties of the composite (PES/SPES)-Ag
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membranes might be useful to extend the usage of PES in another applications such
as food processing and medical instruments industry. Li et al. (2002) used
co-extrusion and dry-jet wet-spinning phase inversion techniques to fabricate
delamination-free-dual-layer asymmetric composite hollow fiber membranes with a
defect-free dense selective skin. The modified membranes were used for applica-
tions of gas or air separation. The results of pure gas permeance showed that the O2/
N2 selectivity of the dual-layer asymmetric hollow fiber membranes at 4.6 was
relatively close to the value of the outer-layer material, 4.7.
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Chapter 5
Membrane Characterization Techniques

Membrane characterization is critical at various stages in the lifecycle of a mem-
brane. At the research and development stage, it forms a critical element of the
iterative design-synthesise-test-evaluate process, while in operating the characteri-
zation of membranes is more limited and usually relates to determining whether
cleaning/regeneration is required, or eventually membrane replacement. Membrane
characterization is critical at various stages in the lifecycle of a membrane. At
the research and development stage, it forms a critical element of the iterative
design-synthesise-test-evaluate process, while in operating the characterization of
membranes is more limited and usually relates to determining whether cleaning/
regernation is required, or eventually membrane replacement. Finally, membranes
are also characterised in postmortems, which give critical insight into membrane
failure and help propose modifications to membrane preparations or operation. This
chapter provides a critical review of membrane characterization, particularly PES
characterization and some related comments on membrane stability.

5.1 Introduction

After introducing new components into the membrane matrix using different
chemical or physical strategies, the structure and morphology of the membranes
may relatively change. Therefore, after surface modification process of membranes,
characterisation of membranes is a paramount step to confirm if the alterations
of membrane structure, and membrane morphology and membrane performance
are applicable. There are three types of characterization of membranes:
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(1) characterisation of composition, (2) characterisation of morphology and struc-
ture, and (3) characterisation of performance (Zhao et al. 2013).

5.2 Composition Characterization

After modification the membrane surface and introducing new components into its
matrix, the bulks or compositions of membrane surfaces membrane may change to
some extents. This change can be detected by different means as described below.

5.3 Fourier Transform Infrared Spectroscopy (FTIR)

Fourier transform infrared spectroscopy (FTIR) is an effective tool used to identify
material chemistry and produce an infrared spectrum of absorption, photoconduc-
tivity, mission or Raman scattering of a solid, liquid or gas. A FTIR spectrometer
detects high spectral resolution data over a wide spectral range. This is a significant
advantage over dispersive spectrometer, which measures intensity over a narrow
range of wavelengths at a time. FTIR deals with the vibration of various types of
molecular bonds at different frequencies. When exposing material into infrared
radiation, the molecules would absorb some of the infrared energy. This could
happen when the radiation frequency provides energy in an accurate amount, which
is required by one of the bonds in the molecules. In Membranes, many research
studies have been conducted to characterise the chemical structure of the modified
PES membranes using ATR-FTIR as analytical tool (Pieracci et al. 1999; Fontyn
et al. 1986b; Millesime et al. 1994). For example, (Fontyn et al. 1986a) investigated
the chemical characterisation of PES and PVDF ultrafiltration membranes using
spectroscopic strategies. They state that FTIR can be utilised as a tool to evaluate
PES/PVDF membrane component after introducing new additives into their
membrane matrix. In a research study conducted by (Millesime et al. 1994), PES
membranes were coated with polyvinyl imidazole (PVI) and then quaternized using
a cross-linking agent bearing Bisphenol A group. The thickness of PVI was cal-
culated using ATR-FTIR spectroscopy. (Pieracci et al. 1999) modified commercial
PES membranes (10 KDa) by photografting of three hydrophilic monomers
(N-vinyl-2-pyrrolidinone (NVP), N-vinylcaprolactam (NVC), and N-vinylforma-
mide (NVF). They used ATR-FTIR in their study to confirm the occurrence of
photochemical grafting of the hydrophilic monomers onto the surface of PES UF
membranes as shown in Figs. 5.1 and 5.2.

As shown in Fig. 5.1, Compared with neat PES membranes (10 KDa), there is a
wide peak between 3200–3600 cm−1, ascribed to the stretch of OH group in all the
modified membranes. (Pieracci et al. 1999) also state that after irradiation process,
the amount of hydroxyl groups formed on the surface of membrane has been
linearly increased with irradiation time (1, 3, 5, 7 and 10 min).
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Fig. 5.1 FTIR/ATR spectra with a germanium crystal (45°) of the surface of a Pristine PES, b a
PES membrane irradiated for 1 min, c a PES membrane irradiated for 3 and 5 min d a PES
membrane irradiated for 7 min e a PES membrane irradiated for 10 min (Pieracci et al. 1999)

Fig. 5.2 FTIR/ATR spectra with a germanium crystal (45°) of the surface of PES: a unmodified,
b PES membrane modified with 1 wt% N-vinyl-2-pyrrolidinone (NVP) and irradiated for 3 min,
c PES membrane modified with 0.75 wt% N-vinylformamide (NVF) and 10 min of irradiation, and
d PES membrane modified with 0.1 wt% N-vinylcaprolactam (NVC) and 5 min of irradiation
(Pieracci et al. 1999)
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As shown in Fig. 5.2, compared to the pristine PES, there is an absorbance band,
appearing at approximately 1678 cm−1, assigned to the amide I carbonyl stretch of
the NVP five-membered lactam ring and NVC seven-membered ring. The amide I
carbonyl band of NVF was shifted down to *1645 cm−1 because the carbonyl
group was not within a ring structure. The occurrence of amide I carbonyl stretch
bands in all three spectra confirmed that the monomers had been successfully
grafted onto the surface of the PES membrane. To sum up, FTIR-ATR is not very
surface sensitive due to the large penetration depth, although it is vey common
technique used to characterise or analyse the membrane surface quickly.

5.4 Nuclear Magnetic Resonance (NMR)

NMR is one of the principal techniques used to achieve detailed information about
the chemical structure, topology of molecules. In membranes, it is rarely used to
directly characterise the chemical structure of the surface-modified membranes.
However, it is usually used to characterise the structure of the modifying agent
(Zhao et al. 2011a; Brayfield et al. 2008; Yi et al. 2010b; Gaina et al. 2011).
(Yi et al. 2010b) have been modified PES membranes with amphiphilic polysul-
fone-graft-poly (ethylene glycol) methyl ether methacrylate (PSF-g-POEM). NMR
was used to characterise the amphiphilic additive (PSF-g-POEM).

5.5 X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) (known as electron microscopy) is a
highly quantitative spectroscopic technique used to characterise the chemical dis-
tribution and structure composition of the uppermost atomic surface of the samples
(Hester et al. 1999; Liu and Kim 2011). It can be also used to recognise the
elemental composition, chemical state (which is very important for the main ele-
ments of polymer such as C, O, N, S and F) and electronic state of the elements. In
membranes, it is also used for characterising the modified PES membranes
(Mosqueda-Jimenez et al. 2006; Chu et al. 2005; Liu et al. 2009a; Liu and Kim
2011; Wu and Yang 2006; Wei et al. 2012; Li et al. 2005).

Lin et al. (2015) synthesised tris(2,4,6-trimethoxyphenyl) poly(phenylene oxide)-
methylene quaternary-phosphonium-bromide (TPPOQP-Br) and triethyl poly(phe-
nylene oxide)-methylene quaternary-phosphonuim-bromide (TPPOQA-Br). XPS
test have been conducted to verify the effects of TPPOQP-Br and TPPOQA-Br on
BPPO UF membranes. The results indicated that the composite membranes
(BPPO/TPPOQP-Br) showed an increase in the concentration of TPPOQP-Br from
the top surface to the bottom surface. Conversely, an opposite concentration gradient
of TPPOQA-Br was observed for BPPO/TPPOQA-Br composite membranes.
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5.6 Thermal Gravitational Analysis (TGA)

Generally, thermal gravitational analysis is an analytical technique, which is used to
measure weight changes in a material as a function of temperature (with constant
heating rate) or time (with constant mass loss or constant temperature) under a
controlled atmosphere. It is mainly used to evaluate the thermal stability of material
and its composition. In membrane field, TGA has been commonly used to evaluate
the thermal stability of membranes or thermal degradation behaviour of membranes.
Zhang et al. (2014) modified PES UF membranes with Poly (zinc acrylate)
(PZA) to tune the hydrophilicity and improve the anti-biofouling properties of
membranes. They used TGA to prove the presence PZA within the membrane
matrix.

5.7 Differential Scanning Calorimetry (DSC)

DSC is an analytical technique, which is used thoroughly to measure the difference
in the amount of heat required to increase the temperature of a sample and reference
as a function of temperature. In membrane fields, many researchers have used DSC
for different purposes, for example, (Bolong et al. 2009; Yi et al. 2010b; Li et al.
2005) used DSC in their study to find the miscibility between PES and the additives
via analysing the glass transition temperature of the polymers. For sample prepa-
ration, membrane samples were cut into shape; accuracy amount of membrane
sample was measured in digital balance (weight should less than 10 mg). The
membrane sample was then folded and placed into preweighed aluminium crucible
(pan) and after that kept sample as thin as possible and covered as much as the pan
bottom as possible. Then, place the lid on the pan and both the lid and the pan (with
sample inside) assembly were placed in the well of the lower crimping die.
Thereafter firmly press down on the plunger and then remove the pan with tweezers
and make sure that the sample has been completely encapsulated in the pan. The
sample was measured under nitrogen atmosphere.

To sum up, FTIR, NMR, XPS, TGA and DSC are very important tools used to
indicate the alteration on the membrane surface after surface modification using
chemical or physical methods.

However, introducing new components into PES matrix to modify its surface
may not only result in chemical or physical alterations, but also affect the membrane
morphology and structure of membrane. Therefore, characterization the structure
and morphology of PES membrane after surface modification is very important.
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5.8 Energy-Dispersive X-ray Spectroscopy (EDS)

Energy-dispersive-ray spectroscopy (EDS) elemental microanalysis in conjunction
with scanning electron microscope (SEM) has been extensively used for charac-
terising the distribution of elements on the surface of samples. It has a major
advantage in that the spatial resolution can be quite high and SEM images are
obtained for the same area being analysed, so that information regarding both the
surface features/feature size can be combined with knowledge of the elemental
composition.

Characterisation of morphology and structure

Direct visualisation of structural features with the aid of microtechnique has the
advantage of being a model-free method, which generate abundant, practical and
direct information about the membrane. Microtechnique has been commonly used
to characterise the structure and morphology of the untreated and treated mem-
branes. Microtechniques include Scanning Electron Microscopy (SEM), Atomic
Force Microscopy (AFM) and so on.

5.9 Scanning Electron Microscopy (SEM)

SEM has been considered as a powerful characterisation tool used commonly by
many researchers to characterise membrane properties quantitatively (i.e. porosity,
pore size, pore shape, and pore density) and qualitatively (i.e. visual or direct
observation). It has been practically used for 30 years and many innovations and
advancement are continuously added to it. Many journal articles have been pub-
lished on using SEM to characterise membrane surface properties (PES or PVDF
membranes) including porosity, pore size, pore size distribution, pore density, pore
shape, surface roughness and fouling (Liu et al. 2009b; Mu and Zhao 2009;
Mansourpanah et al. 2009a, b, 2010; Mosqueda-Jimenez et al. 2004; Zhao et al.
2011a, b; Razmjou et al. 2011; Kochan et al. 2010; Dejeu et al. 2009; Rahimpour
2011; Rahimpour et al. 2008; Yi et al. 2010a, b; Wei et al. 2012; Li et al. 2005;
Peeva et al. 2012). SEM has advantages and limitations. The advantages are: 1)
characterise the membrane by providing practical and direct structural information
about the membrane, leading to impressive analytical output. Thus, SEM has
become a powerful technique of characterisation not only for research but also for
quality and product. The limitations of SEM are: (1) SEM is extremely restricted to
examine very small area (2) SEM requires the membrane samples to be dried before
testing. In some samples, drying generates undesirable structure collapse. (Mu and
Zhao 2009) used thermal-induced surface cross-linking method to modify PES
porous membranes. They used poly (ethylene glycol) diacrylate (PEGDA) (hy-
drophilic additive) as hydrophilic modifier. Characterising the morphology of PES
membranes is conducted by SEM as present schematically in Fig. 5.3.
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Fig. 5.3 SEM images of the pristine and modified PES membranes: a pristine PES membrane;
b–d the modified PES membranes with the mass gain of 115.4, 253.1, 345.6 lg/cm2, respectively.
(1) denotes the separation surface, (2) is the cross-section (Mu and Zhao 2009)
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As can be seen from Fig. 5.3, pristine PES membrane (A1) showed a micro-
filtration porous surface. The pore size of membrane surface is (0.2–0.4 lm) and
the cross-section (A2) of PES membrane typically showed network structure. After
membrane modification, the cross-linker modifier PEGDA decreases the pore size
on surface of membrane. Increasing mass gain (115.4, 253.1, 345.6 lg/cm2) leads
to the gradual decrease of both pore size and number because of the coverage of
cross-linking layer. No pore is approximately noted on the surface of the membrane
when the mass gain value is 345.6 µg/cm2. No pronounced difference is found in
the cross-section morphologies between neat PES membranes (A1) and the treated
PES membranes (B2, C2) with lower mass gains. However, with higher mass gain,
the cross-section morphology of the treated PES membrane (D2) looks to be denser,
indicating that the modification may reach membrane bulk.

In another research study, (Rahimpour et al. 2008) modified PES with TiO2

nanoparticles using UV irradiation method. Scanning electron microscopy was
conducted to characterise membrane properties (i.e. pore size and porosity). They
concluded that porosity and pore size of the treated PES membrane was higher than
the virgin PES membrane.

Field emission scanning electron microscopy (FESEM) is another analytical
technique used to investigate the structures of the molecular surface. In membranes,
due to higher resolution than other microscopic techniques (e.g. SEM), it is also
used to inspect membrane surface (e.g. surface porosity, pore size and its distri-
bution) and cross-sectional morphologies (Bolong et al. 2009). The cross-sectional
regions of membranes can be prepared by fracturing the membranes in liquid
nitrogen. Then, samples were mounted either onto the plate of the specimen sample
holder (stub) (for surface observation) or side stage of the specimen sample holder
(for cross-section observation) using conductive double side tape, then sputter
coated the samples with different coating metals (platinum, gold, iridium and
gold-palladium). The coated samples were scrutinised using FESEM with different
resolution and different magnification.

Conversely, Transmission Electron Microscopy (TEM) is another technique
used to inspect finer detail even as small than a single column of atoms. In
membrane, it is seldom utilised to characterise PES membranes after modifications.
The advantage of TEM is its outstandingly higher resolution (less than 1 nm level).

5.10 Atomic Force Microscopy

Atomic force microscopy (AFM) is a versatile tool used to characterise the surfaces
physically. It is a form of scanning probe microscopy (SPM) with a very high
resolution; up to the order of fractions of a nanometer and it is more than 1000 times
better than the optical diffraction limit. The AFM is considered as one of the
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foremost tools for imaging, measuring, and manipulating matter at the nano-scale.
In the membrane, AFM has been used to characterise ultrafiltration membranes and
to a lesser degree characterise microfiltration membranes. AFM is also used to
measure the pore size, porosity, pore size distribution, aggregate size and nodule
size at the membrane surface. In recent years, AFM was also used to study the
adhesion properties of membrane surfaces using force measurement (force mode).
And colloidal probe technique to quantify the interaction force acting between

Fig. 5.4 AFM topography, phase image, and cross-sectional roughness of thin-film composites
by interfacial polymerization: a virgin PES membrane, b film composite with PVA, c film
composite with PEG, and d film composite with chitosan. The root mean square roughness is
(a) 2.1 nm, (b) 1.2 nm, (c) 1.5 nm, and (d) 2.0 nm. Image size was 2 � 2 µm (Liu et al. 2009a)
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surface and probe is used, in which micrometre-sized spheres are attached to the
AFM cantilever. Hydrophilic membranes are strongly interacting with hydrophilic
probe as indicated by a large phase shift, whereas the hydrophobic membranes give
only a small phase shift (Rana and Matsuura 2010).

There are three modes to operate AFM: (1) contact mode (static mode) (2) tap-
ping mode (3) noncontact mode. Tapping and noncontact mode (which are also
called dynamic modes) are usually used to characterise the surface topography and
phase image of PES membranes (Mansourpanah et al. 2009a, 2010; Razmjou et al.
2011; Liu et al. 2009a; Abu Seman et al. 2010; Rahimpour 2011; Wu and Yang
2006; Tur et al. 2012).

Liu et al. (2009a) grafted PES membranes by three hydrophilic polymers
(Polyvinyl alcohol (PVA), Polyethylene glycol (PEG) and chitosan) through
interfacial grafting technique; then they characterise the virgin and modified PES
membranes by AFM (see Fig. 5.4). As presented in Fig. 5.4, pristine PES mem-
branes clearly exhibited ridge-and-valley structure. The bar indicated the vertical
deviations in the surface of membrane, so the white area represents the highest
level, whilst the dark region represents the lowest level. PES membrane surface
seemed to be heterogeneous (not homogenous), while the surface-modified PES
membranes showed more or less surface roughness than the pristine PES
membrane.

Low et al. (2014) synthesised two-dimensional zeolitic imidazolate framework
with leaf-shaped morphology (ZIF-L) and blend it with PES UF membranes. AFM
test was conducted to verify the effects of ZIF-L on the roughness of modified
membranes. The results showed that the roughness values in the projected area of
1 � 1 lm decreased from 5.99 to 3.55 nm as 0.5 % of ZIF-L was added to the
casting solution. It was well documented that lower surface roughness lead to
higher antifouling properties, as foulants were likely to be absorbed in the valleys of
the membranes with rough surface (Vrijenhoek et al. 2001).

5.11 Characterization of Membrane Performance

Characterization of membrane performance after surface modification is paramount.
The characteristics of modified membranes include hydrophilicity/hydrophobicity,
permeability (flux) and selectivity, antifouling properties and so forth.

5.12 Hydrophilicity/Hydrophobicity of Membranes

Hydrophilicity is one of the most important aspects to characterise membrane
performance. Water contact angle measurement is widely used to assess the
hydrophilicity and the wetting properties of the membrane surface. However, the
measurement value cannot accurately act as the indicator comparing different
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membranes as this value does not solely rely on surface hydrophilicity but also
porosity, surface roughness, pore size and pore size distribution of the membranes
(Rana and Matsuura 2010). Nevertheless, the static contact angle changes with the
age of the water drop which can be a better index for surface hydrophilicity (Zhao
et al. 2008c). Clearly, the higher hydrophilic porous membrane not only has a
smaller water contact angle but also a rapid decrease rate of static contact angle.
The techniques that are used to measure contact angle include statistic sessile drop
method (Mansourpanah et al. 2009a, 2010; Zhao et al. 2011a; Cao et al. 2010;
Bolong et al. 2009; Liu et al. 2009a; Pieracci et al. 1999; Rahimpour et al. 2008; Yi
et al. 2010a; Wei et al. 2012; Pazokian et al. 2011) and captive air bubble technique
(Pieracci et al. 1999; Tur et al. 2012). To ensure the accuracy, several determina-
tions at different locations were tested for each membrane sample and an average
was taken.

Many researchers have been used as contact angle measurement in their study to
investigate the hydrophilicity of PES membranes (Mu and Zhao 2009;
Mansourpanah et al. 2009a, b, 2010; Mosqueda-Jimenez et al. 2006; Van der
Bruggen 2009; Zhao et al. 2011a, b; Bolong et al. 2009; Chu et al. 2005; Liu et al.
2009a; Pieracci et al. 1999; Rahimpour et al. 2008; Gaina et al. 2011; Liu and Kim
2011; Wu and Yang 2006; Wei et al. 2012; Yi et al. 2010a; Tur et al. 2012;
Pazokian et al. 2011). They concluded that introduction of hydrophilic components
into PES membrane could decrease the water contact angles. However, many
researchers noted that the contact angles kept changing after the water was dropped
on the PES membrane surface. (Bolong et al. 2009) attribute it to evaporation effect
and recommended that the measurements should be made as faster as possible (less
than 10 s) to reduce evaporation effect. (Mu and Zhao 2009) also observed that the
water contact angle of the virgin PES membrane was significantly declined from
about 89 °C at the drop time of 0th second to 66 °C at 185th seconds. They
ascribed this phenomenon to the permeation of water drop into membrane pore.

5.13 Permeability and Selectivity of Membranes

The permeability of membrane is very crucial step after modification of membranes,
which many researchers are preferred. The permeation of modified membranes is
often verified by measurement of water (flux) or measurement of gas flux (Susanto
and Ulbricht 2007; Mansourpanah et al. 2009a, b, 2010; Mosqueda-Jimenez et al.
2006; Van der Bruggen 2009; Zhao et al. 2011a, b; Chu et al. 2005; Pieracci et al.
1999; Saha et al. 2009; Rahimpour 2011; Rahimpour et al. 2008; Wei et al. 2012;
Peeva et al. 2012; Tur et al. 2012). The alteration and recovery of water perme-
ability for stimulus-response membranes were also conducted under various envi-
ronmental stimuli (e.g. ionic strength, pH, temperature).
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To obtain steady flux, the membrane must be pre-compacted first by DDI water
for at least 1 h before calculation flux to completely make sure the water is
immersed into the membranes (Zhao et al. 2011b). Constant transmembrane
pressure mode is usually used to determine the membrane permeation.

Polyethylene glycols (PEGs) with different molecular weights (e.g.
20,35,100,200,300,400 KDa and so on), poly (ethylene oxide) with different
molecular weights or bovine serum albumin (BSA) are commonly three-marker
macromolecule used to characterise the selectivity of the polymeric membranes
(Mu and Zhao 2009; Pieracci et al. 1999; Yi et al. 2010b; Huang et al. 2011). They
also used to determine the solute rejection and molecular weight cut-off (MWCO).
MWCO of membranes is the lowest molecular weight of the marker macromolecule
(e.g. PEG) at a rejection of 90 % in the measurements. Pre-size of membranes is
determined based on the MWCO using the following equation.

r ¼ 0:026 nm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MWCOð g
gmol

Þ
r

� 0:03 nm

5.14 Antifouling Properties

Membrane fouling is a repugnant problem in all membrane processes, particularly
membrane bioreactors. Therefore, the modification of membranes is very important
step toward increasing the antifouling properties of membranes. Moreover, char-
acterisation of antifouling properties after surface modification is very necessary.
Flux and BSA (foulant) decline highlights the severity of antifouling. Thus, flux
and protein are solute used as index for antifouling property (Mu and Zhao 2009;
Pieracci et al. 1999; Yi et al. 2010b; Huang et al. 2011). Therefore, antifouling
properties of membranes are related to the nature of material, surface hydrophilicity,
surface charge and the roughness of membrane surface. As a general rule, mem-
branes with higher hydrophilic and smoother surface usually have higher
antifouling property. Furthermore, in some cases, static BSA adsorption test was
also conducted to figure out the amount of protein adsorbed onto membrane surface
after modification and to verify the improvement of antifouling property (Yi et al.
2010b). Static protein adsorption could also be used for evaluating membrane blood
compatibility.

5.15 Anticoagulation Properties of Membranes

After modify PES membrane to improve its surface, characterisation of anticoag-
ulation and other biological properties is necessary because PES has been widely
used in various application, particularly biomedical field and wastewater treatment.
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Plasma recalcification time (PRT), thromboplastic time (APTT), activated partial
prothrombin time (PT) and the whole blood clotting time (WBCT) are frequently
used as anticoagulation indices (Li et al. 2010, 2012; Zhao et al. 2011b; Huang
et al. 2011). Additionally, albumin, cytocompatibility, platelet adhesion and fibrin
adsorption are also biological indices used as biomaterials for modified PES
membranes.

5.16 Membrane Stability

Membrane stability is a very important aspect after membrane modification. Long
lifetime of the treated membrane during usage or application is the concern of many
researchers to verify whether the modification process is applicable. Surprisingly,
few research studies have been conducted on the stability of membrane after surface
modification.

5.17 Stability After Physical Modification of PES
Membrane

Yi et al. (2011) examined the stability of the modified PES membranes by washing
them with water at temperature 60 °C for period 75 days after modification of
polyethersulfone membranes with poly (propylene glycol) (PPG) (1000, 4000 and
8000 KDa). The stability of poly (propylene glycol) in membranes is confirmed by
contact angle measurements. Two reasons have been suggested for the stability of
PPG group into polymeric PES membrane: First, due to the characteristic of PPG
(e.g. homopolymer, insoluble in water, Mw = 740 g/gmol), PPG is remained in
membranes when membranes contact with water. The second reason is the good
interaction (compatibility) between PES and PPG due to the bulky hydrophobic
groups of PPG, which is assumed to be responsible for this interaction when the
amphiphilic polymer PPG is added to the dope solution. Furthermore, the solubility
parameters of PPG and PES are approximate (19.9 (MPa)0.5 and 20.7 (MPa)0.5

respectively) and this approximate solubility parameter will lead to effective
interaction between PPG and PES when they are blended into membranes (Sung
and Lin 1997; Niemelä et al. 1996; Yi et al. 2011).

Susanto and Ulbricht (2009) scrutinised the stability of the hydrophilic additives
(PEG, PVP, pluronic) in the polymeric PES membrane network by washing the
modified membranes physically in water at temperatures 20 and 40 °C and
chemically in sodium hypochlorite solution (400 mg/L) for 10 days. As shown in
Fig. 5.5, contact angle measurement showed that there is a significant increase in
water contact angle of PES when PEG is used, indicating that PEG has thoroughly
low stability in membranes. The reason for that is PEG is homopolymer,
water-soluble polymer and can be leached out from the hydrophobic PES
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membranes during phase inversion process. (Susanto and Ulbricht 2009) also
observed that IR absorbance for all the additives is slightly decreased (PEG, PVP,
pluronic) as presented in Fig. 5.6. As it can be seen none of the additives above was
entirely stable in the PES membrane. However, irrespective this loss, significant
surface modification could still be seen as noted by either the existence of new peak

Fig. 5.5 Stability investigated by measuring the contact angle as a function of time (Susanto and
Ulbricht 2009)
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Fig. 5.6 Stability test investigated by measuring the IR absorbance of hydrophilic functional
additive as a function of incubating time (Susanto and Ulbricht 2009)
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for PES–PVP or increase in transmittance for PES–PEG and PES–Pluronic even
after incubating for 10 days in all studied potential cleaning agents.

5.18 Stability After Chemical Modification of PES
Membrane

Wei et al. (2012) modified PES membranes using CF4 plasma process. Then, the
stability of the surface-treated PES hollow fibre membrane was scrutinised. A direct
contact membrane distillation experiment was conducted using hot salt solution
(NaCl) as feed at temperature 60.5 °C. The membrane module was tested in total
54 h for 9 days, 6 h per day. During the test period, the membrane module was in
contact with both feed and distillate. As can be seen in Fig. 5.7 the evaluation of
long life stability membrane showed that the membrane permeation (water flux) is
approximately stable and salt rejection was nearly 100 %.

Schulze et al. (2012) modified different types of polymer PES, PVDF, poly-
sulfone and polyacrylonitrile membranes with aqueous solution of small molecules
(having hydrophilic groups, e.g. sulfonic acid, carboxylic acid, phosphonic acid,
alcohols, amine and zwitterionic components) and treated by low-energy electron
beam ion approach. The high stability of the modification showed permanent
membrane functionalities that are chemically attached.

Susanto and Ulbricht (2007) prepared polymeric PES membranes with high
antifouling-resistant. Two hydrophilic monomers including poly (ethylene glycol)
methacrylate (PEGMA) and N,N-dimethyl-N-(2-methacryloyloxyethyl-N-
(3-sulfopropyl) ammonium betaine (SPE), with and without using cross-linker
monomer (N,N′-methylene bisacrylamide) (MBAA) have been grafted onto PES
membranes using photografting method. The stability of the grafted monomer was
evaluated chemically in sodium hypochlorite solution (NaOCl) (chemical agent).

Fig. 5.7 Stability
performance of the
surface-modified PES hollow
fiber membrane. Hot NaCl
solution: 4 wt% NaCl,
temperature 60.5 ± 0.2 °C,
2.0 m/s. Cold distillate water:
20 ± 0.5 °C, 0.68 m/s
(Wei et al. 2012)
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As shown in Fig. 5.8, ATR-IR absorbance for the introduced ester groups (relative
to groups in the PES backbone) remained constant after incubating for certain
period. (Susanto and Ulbricht 2007) also stated that such results are also verified by
measurements of contact angle and by elemental analyses (XPS). Furthermore,
(Susanto and Ulbricht 2007) argued that although numerous research studies had
stated previously that NaOCl could degrade the polymeric polysulfone or
polyethersulfone polymeric membranes, the results of their study research obvi-
ously indicated that either no loss or hydrolysis of the grafted monomer layers
happened within 8 days, verifying that the active layer of the photografted com-
posite membranes is chemically stable.
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