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Preface

It is generally recognized that overland flow (runoff), surface–subsurface mass

transfer, and subsurface water and solute fluxes are key processes governing

contaminant transport in the landscape environment. The relevant interdisciplinary

studies have been a prime focus of the hydrological society from the past century to

the present, resulting in an enormous number of publications dedicated to model

development, both conceptual and site-specific. Moreover, in the recent decades, a

number of observations were made, evidencing the presence of anomalous phe-

nomena enhancing or restraining water and chemical runoff from contaminated

watersheds. However, it is not yet fully understood how both the natural and

human-induced mechanisms, controlling these processes, interact and how the

temporal and spatial-scale effects control these interactions under different water-

shed conditions and at different characteristics. Such understanding may help

improve the reliability of assessment and prediction of the large-scale human

impact on the environment, in particular, for areas contaminated by radioactive

fallout from damaged nuclear units, such problems being among the most important

applications of this work.

In this context, the purpose of this work is to contribute, marginally at least, to

the theoretical framework of the link between overland flow dynamics and water

quality, with a special focus on the challenge the author faced in dealing with the

ambiguity of existing approaches to conceptualization of some particular transport

mechanisms and field conditions. Thus, the main subjects include (1) extension of

the theoretical concepts regarding the connection between overland flow dynamics

and water quality, with a special focus on the transient system behavior; (2) study of

anomalous behavior of the mass transfer accompanying the overland flow, which

stems from both the peculiarities of the physicochemical interactions and the

overlapping of several transfer mechanisms; and (3) collection of field data required

to quantify the parameters and processes controlling the radionuclide transport in

the near-surface domains which is closely related to the risk assessment of soil and

water contamination through radioactive fallout.
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More specifically, this book is aimed to emphasize analytical tools, supported by

numerical modeling and illustrative field materials, providing assessment and

prediction of contaminant transport in runoff, interacting with the shallow subsur-

face environment, represented by soil, vadose zone, and phreatic aquifers. The

topics discussed here are related to the land surface hydrology and cover a wide

range of coupled hydrological processes across a range of scales from hillslope to

watershed. Overland dynamics and solute transport are presented and discussed

through the application of both physically based models (mostly, using methods

from the kinematic wave theory) and the empirical (effective lumped-parameter)

approach. Such combination provides a better understanding of the mechanisms of

flow and transport and would assist in the development of effective methods to

control and predict changes in water components of the environment.

The fundamental problem of studying the formation of surface runoff and its

chemistry under anthropogenic pollution of the soil and precipitation contains three

major aspects:

First, the identification and description of runoff generation mechanisms providing

rain and snowmelt water conversion into water bodies on the landscape

Second, the development of hydrodynamic models, describing water flow over land

surface toward an outlet

Third, the development of hydrological models, describing the transfer of contam-

inants accumulated on the land surface or in the soil profile into water flow and

their lateral transport in the form of dissolved species and particulate matter

toward an outlet

The variable rainfall conditions, one of the most common features of the

synoptic environment, determine the transient effects of rainfall–runoff–infiltration

partitioning and chemical response of catchments to excess precipitation. There-

fore, special attention is given to the analysis of the coupled transient flow and

solute transport with the aim to more precisely formulate the physical and mathe-

matical problem. To simplify the mathematics and reduce the number of required

variables and parameters, other lumped runoff and solute transport models are also

considered.

Another priority of this book is the focus on the anomalous behavior of mass

transfer accompanying the overland flow. Such phenomenon stems from both the

specifics of physicochemical interactions (e.g., sorption kinetics and irreversibility)

and the overlapping of several transfer mechanisms (infiltration, soil erosion, the

flow-focusing or channeling effects of microtopography, etc.). The relevant illus-

trations are concerned mostly with the model and experimental study of the

regional-scale radionuclide transport with runoff induced by radioactive fallout

from damaged nuclear reactors or nuclear weapon tests in the atmosphere

since 1952.

In the latter respect, special attention is paid to the analysis of the consequences

of the Chernobyl 1986 and Fukushima 2011 NPP accidents, supplemented with

analysis of the less known Kyshtym 1957 accident, from the viewpoint of fallout

radionuclide mobility and retention in the shallow subsurface environment, surface
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water bodies, and groundwater reservoirs. Monitoring data supported by theoretical

findings are used as a basis for coupling NPP accident scenarios (source-term and

fallout deposition specification) with a set of hydrological models aimed at predic-

tion of hydrological system response to soil contamination by radioactive materials

in the areas of potential influence of existing or designed nuclear power units. To

test the methodology, a distributed parameter watershed model of the Beloyarsk

NPP location (Middle Urals, RF) was developed and calibrated basing on

monitoring data.

This book is organized into seven chapters. The first two Chaps. (1 and 2)

consider the runoff generation and water flow dynamics as a mathematical back-

ground of the near-surface solute transport (Chaps. 3 and 4) based on distributed

parameter approach. Then, in the next two Chaps. (5 and 6), watershed lumped-

parameter models for both water flow and solute transport are discussed. The

conclusive Chap. 7 illustrates both the applicability of the above risk assessment

strategy and the applicability of a selected numerical code for watershed modeling

to the investigation of urgent issues related to radioactive fallout after hypothetical

accidents at engineered nuclear power units. Monitoring data and data from field-

site characterization experiments are also discussed in this chapter.

The author very much appreciates the help of Dr. Leonid Sindalovsky in the

implementation of many numerical algorithms and codes considered in the book, as

well as the contribution of Dr. Anton Nikulenkov and Elena Vereschagina, who

shared their data on regional study of soil and surface water systems in the influence

area of the Beloyarsk NPP. The author also appreciates the attention to his work and

fruitful discussions with other colleagues – researchers from E.M. Sergeev Institute

of Environmental Geology, St. Petersburg Division, RAS, and staff from

St. Petersburg State University, Institute of Earth Sciences. Finally, the author

deeply thanks Gennady Krichevets for his help in the professional translation of

the book and many useful comments from him allowing the author to make certain

improvements to the book.

Thus, this book, along with theoretical findings, contains field information,

which will facilitate the understanding of near-surface solute transport and the

development of a methodology for practical application in watershed hydrology.

This book addresses scientists and engineers who are interested in the quantitative

approach to studying contaminant transport processes. The book can also be

profitably read by students.

St. Petersburg, Russia Vyacheslav G. Rumynin

March 31, 2015
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Part I

Response Mechanisms of Hydrological
Processes in the Near-Surface Environment

To describe the flow and contaminant transport, induced by rainfall or snowmelt,

through the landscape media, one is to consider several coupled processes occurring

in the near-surface environment represented by soil and vadose zone in contact with

a periodically forming movable water domain or with the atmosphere through the

surface (Chow et al. 1988; Brutsaert 2005; Shaw et al. 2011). Thus, rain or snow-

melting events intensify several mechanisms and processes, including: (a) the

formation of a water body on the landscape; (b) the accumulation of pollutants of

natural or anthropogenic origin in this layer after their release from the surface or

from soil solution; (c) flow of polluted water over the surface; (d) the descending

infiltration of a part of this water through the porous medium under the effect of

capillary and gravity forces – a process, which controls the flow depth and,

accordingly, the degree of water saturation with solutes, as well as the rate of

water flow; (e) the development of paths of rapid pollution transport through

macropores and fractures in the vadose zone and from depressions on the land

surface toward water table, and, finally, (f) lateral contaminant transport through

temporary or permanent phreatic horizons (sloping shallow aquifers).

The relevant hydrological analysis shall account for the differences between the

space and time scales of the processes in the near-surface domains in contact with

aquifer materials. Thus, the time scale for the conditions of runoff formation and

solute migration is commonly of the order of hours, rarely a few days, while those

of flow and solute transport in aquifers are of the order of months or years. The

length of water flow paths in such systems is of the order of hundreds of meters or

some kilometers. In terms of the time a water particle spends in it, the soil and

vadose zone, with rare exceptions, occupy an intermediate position; however,

unlike the systems involving surface and subsurface runoff, the vertical flow

paths are much shorter in the sediments above the water table. For example, at

such combination of time scales, a description of subsurface flow and solute

transport can be based on the mean annual values of groundwater recharge and

solute inputs, because the long pollutant residence time in the aquifer smoothes the

effect on the solution of transport problem caused by daily and seasonal fluctuations



in water flux and concentration functions on the upper aquifer boundary. From the

viewpoint of stochastic analysis (Duffy and Gelhar 1985), for systems with large

residence times (such as phreatic aquifers), small input correlation scale variations

in continuous flow and solute inputs will produce little variation in the outflow

characteristics. Under the same condition, the nearsurface domains are much more

sensitive to small-scale changes in the flow and solute input characteristics. There-

fore, to properly model the behavior of such system, in some practical situations it is

important to use rainfall records with high temporal resolution.

The large differences in the time and space scales between the flow of water

within the surface and subsurface domains allow a researcher to formalize the

interaction between the domains through the transfer of boundary conditions from

one domain into another, thus avoiding the solution of fully coupled equations of

surface and subsurface flow (Furman 2008). In this part of the work, the relevant

decoupling of the hydrological processes in the two domains is based on the

raincontrolled infiltration interface approach allowing analytical solution of flow

and solute transport problems with the assumption of prescribed infiltration rate or

depth.

In this, first, part of the book, the behavior of the near-surface system under

rainfall conditions will be analyzed based on an analytical framework at the column

and hillslope scales. Mega-scale system’s behavior is the subject of the second part
of the book.
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Chapter 1

Surface Runoff Generation, Vertical
Infiltration and Subsurface Lateral Flow

In this and the following three chapters, we will focus explicitly on the dynamic

(transient, short-time-scale) hydrological processes that determine the partitioning

of rainfall into runoff and infiltration and control the flow and chemical response of

a catchment or its segments to the anthropogenic impact. Two principal compo-

nents of runoff, surface and subsurface, which differ remarkably in their response

time to precipitation or snow-melting events, are considered; however we do not

present here a general mathematical framework for coupling the surface and

subsurface flow equations, relying instead on an approach based on the transfer of

boundary conditions (from one model domain to another). Soil infiltration theory,

as discussed here briefly, plays the central role in such approach as well as in the

solution of various problems of the surface and subsurface hydrodynamics. With

this in view, special attention will be paid to some nonlinear and threshold phe-

nomena in structured (discontinued by macropores and cracks) soils having a major

impact on hydrological processes as well.

However, before we pass to the substantive part of the chapter, it is reasonable to

discuss the key terminological issues and the description of individual mechanisms

that govern the flow of water over the surface and within the shallow subsurface

domains.

1.1 Key Definitions

Rain falling onto land surface is accompanied by rainwater partitioning into the

surface and subsurface components in different proportions, depending on the

rainfall rate, the properties of the cover deposits (their permeability and capillary

characteristics), and their initial moisture content. This process can be considered at

different space and time scales with different degree of detail or, conversely,

generalization of the processes governing it. Thus, many problems can be analyzed

at scale 1D of a soil profile. The next scale of hydrological process consideration is
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the scale of a hillslope (a slope of a river valley or a sloped urban district). Then, of

particular importance is the hydrological analysis at the scale of a watershed

(catchment) area, a topographic region in which all water drains to a common

outlet. According to classical concepts, the entire land surface can be divided into

polygons, representing a «matrix» of watersheds of different orders. As a rule,

watersheds are associated with stream systems and some of them are identified

geographically. In this book, the terms watershed and catchment are used inter-

changeably without defining the distinctions between them.

The flow of a water layer over the surface and through the pores of soils and

sediments that is coming out of the watershed is termed runoff (Fig. 1.1a). There are

three components of the runoff from watersheds (Shaw et al. 1994; Dingman 2002;

Zhang et al. 2002): (1) surface runoff or overland flow (sometimes termed as direct

runoff), (2) subsurface runoff or interflow (throughflow), and (3) groundwater

runoff or baseflow. A dynamic form of rapid soil interflow that results from

heavy rainfall is associated with subsurface stormflow. Overland flow and soil

interflow together are sometimes referred to as quickflow. All three components

contribute to the total hydrograph, a plot showing the rate of flow (discharge) versus

time (Fig. 1.1b).

The surface runoff is the water that travels over the ground surface driven by

gravitational forces in the form of sheet flow (interrill flow), rill and gully flow,

towards the stream. It can be generated by different mechanisms discussed below.

The water that moves over surface, i.e., surface runoff, rapidly reaches the nearest

discharge zones, thus showing a quick response to a rain event or snow melting.

Subsurface runoff or interflow represents the portion of water that moves

laterally in the upper part of soil, litter layer covering the soil surface, or in the

soil–bedrock interface. Such lateral flow appears when soils have impermeable or

semi-permeable layers at shallow depths. Subsurface runoff moves slower than

surface runoff.

The water that has been absorbed by soil and has passed through the vadose zone

supplements the storage of the topmost aquifer. This process is termed the

Fig. 1.1 (a) A diagram illustrating three major runoff components produced by rainfall: OF

overland flow (HOF or/and DOF, see Sect. 1.2), TF throughflow (sometimes in the form of

subsurface stormflow, SSF, see Sect. 1.2), and BF base flow; (b) corresponding (hypothetical)

storm hydrograph. P precipitation
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groundwater recharge. The water flow thus forming in an aquifer is groundwater

runoff. It responds to rainfall with a noticeable delay and does not fluctuate rapidly.

The mean annual values of the flow characteristics mentioned above, expressed

in terms of volume (L3, commonly, m3) or runoff depth (L, commonly, mm), from a

unit drainage area, along with precipitation and evapotranspiration, are the main

components of water balance. Their values and the ratio between them are deter-

mined based on the soil conditions and actual evapotranspiration, as well as

landscape–climatic characteristics of the area (Sects. 1.3 and 1.4).

1.2 Surface Runoff Mechanisms: Conversion of Rainfall
into Runoff

The development of a functional basis for quantifying the transformation of rainfall

to runoff has been a prime target for hydrologists of several generations. Several

models (with different degree of physical soundness) are known to describe the

transformation of rainfall to overland flow. The models that have the largest

recognition and application in the practice of hydrological analysis are (1) the

model of infiltration excess runoff (Hortonian overland flow, HOF) and (2) the

model of saturation excess runoff (Dunne or saturation overland flow, DOF).

Subsurface stormflow (SSF) as a component of runoff has been a subject for

much research and discussion over the years as well.

1.2.1 Infiltration Excess Runoff

The physical ideas and the mathematical relationships that form the basis of the

infiltration excess model were formulated and developed in the early works (the

1930s) of the well-known American hydrologist Robert Elmer Horton. In his

theory, which has become classical, R.E. Horton proceeds from the basic assump-

tion that the surface (slope) runoff forms due to the limited capacity of soil (or rock)

to imbibe and pass water that arrives to its surface as rain. This assumption requires

the introduction of additional definitions and criteria, enabling quantitative evalu-

ation. To quantify Hortonian overland flow (HOF) generation it is necessary to have

a sub-model of infiltration that interacts with the rainfall input (Vieux 2004).

R.E. Horton introduces the concept of soil infiltration capacity, f ¼ f tð Þ,
implying the maximal rate at which rainwater can be adsorbed by soil under

given conditions. In this case, water is assumed to have unlimited access to the

porous surface; therefore, function f is also called potential infiltration (by analogy

with potential evaporation). Later the term infiltrability was suggested to replace

the infiltration capacity to represent the surface flux under any set of conditions,

whatever the rate or pressure at which the water is supplied to the soil (Hillel 2004).
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As seen (Fig. 1.2a), due to the nonlinearity of flow in unsaturated media (soil),

f decreases continuously throughout the rainfall period, thus it behaves similar to

the decay function. When the rainfall rate, r (the simplest case r¼ const is consid-

ered), is less than f, all the rain water will be imbibed. When r is greater than f, the
rate of water penetration into soil is f, so the rate of water accumulation on the

surface will be re ¼ r � f (Fig. 1.2a), the so-called rainfall excess, which deter-

mines the potential of the process of water flow over the surface (Chap. 2).

Summarizing the above, the following mathematical formula can be suggested:

i tð Þ ¼ min r tð Þ, f tð Þ½ �; ð1:1Þ

where i(t) is the actual rate of infiltration [LT�1]. The quantitative description of the

process implies determining the moment tp (Sect. 1.3.2) when surface ponding

begins, i.e., when the infiltration capacity f equals r. At the moment t ¼ tp, the
surface of soil or sediment shows the maximal moisture content (θ � θs), and its

permeability equals the hydraulic conductivity, k � ks (Fig. 1.2a); therefore,

obviously, HOF is possible when r > ks. After moment tp, f ¼ f t� tp
� �

becomes

less than r (i.e., not all water infiltrates), and surface runoff starts forming. In this

case, the mathematical description of this process takes the form:

i tð Þ ¼ r 0 � t � tp,
f t� tp
� �

t > tp:

�
ð1:1aÞ

Because the precipitation rate exceeds the infiltration capacity, there is excess

precipitation available for surface runoff

re tð Þ ¼ 0 0 � t � tp,
r � f t� tp

� �
t > tp;

�
ð1:1bÞ

re(t) is the infiltration excess runoff rate (or intensity) [LT�1]. Mathematically, the

ponding time, tp, is the moment when the flux boundary condition changes to a head

boundary condition (Sect. 1.3).

Fig. 1.2 Conceptual model of surface runoff (HOF) generation (uniform rainfall, r¼ const).

(a) Main flow rate components and infiltrability vs time, (b) cumulative curves and volumes
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The rainfall excess pattern, re(t), can be directly routed across the watershed to

the stream network. More realistic routing methods are usually based on surface

water hydraulics, utilizing, for example, the kinematic wave approach (Chap. 2).

To forecast the actual rates of infiltration and runoff and to determine the

characteristic time tp, one needs the form of the functional relationship f(t) to be

established, i.e., an infiltration model is to be chosen; in most cases, preference

should be given to relationships f ¼ f Fð Þ, which relate infiltration rate with the

cumulative infiltration and volume of water F (Fig. 1.2b). Cumulative infiltration

curves, F(t), indicate the amount of water entering the soil at any given time or the

time required for a given amount of water to infiltrate into soil (Biswas and

Mukherjee 1994). Functions f(t) and f(F) can be empirical or a mathematical result

of solving moisture transfer problems in an incompletely saturated porous medium

(Sect. 1.3). Because of this, the HOF mechanism of surface runoff formation can be

described within the framework of rather strict mathematical constructions.

Finally, it should be mentioned that in this chapter the infiltration is considered

independent of overland flow dynamics resulting in weak coupling of the two

processes.

1.2.2 Saturation Excess Runoff

Currently the majority of authors incline to the opinion that the Hortonian overland

flow forms under a limited range of natural conditions, mostly in arid areas, where

moisture content is low and the vadose zone thickness is large. Indeed, there are

many confirmations of the fact that surface runoff can form in areas with surface

permeability high enough for the precipitation rate r never be in excess of the

infiltration capacity f. Such behavior of the system can be seen in areas with humid

climate, where groundwater table is high and the soils and vadose zone rocks are

heterogeneous.

In porous media and under conditions where the difference between rainfall

intensity and infiltration rate is not a criterion of overland flow formation, more

suitable is the type of surface runoff models referred to as models of saturation

excess runoff. These models employ the so-called Dunne assumption that all

precipitation enters the soil and that runoff (Dunne overland flow, DOF) occurs

due to the soil’s inability to absorb any more water (Hydrology Handbook 1996;

Todini 2007). They reflect the limited ability of soil and underlying rocks to

accumulate water, as is the case, for example, in areas where a thin soil layer is

underlain by low-permeability deposits or in areas with shallow groundwater table.

When falling onto such areas, precipitation, which has no storage reserve for

imbibition, will directly transform into surface runoff. Therefore, the DOF gener-

ation is controlled, along with soil hydraulic properties, by two major factors,

namely, the geomorphology (the shape and the slope) of the catchment and its

subsurface hydrology (Willgoose and Perera 2001). Т. Dunne with coauthors

(Dunne and Black 1970; Dunne et al. 1975) were among the first who, based on
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data of detailed hydrological observations and experiments, offered a physical

explanation to this phenomenon. That is why, such models, associated with rapid

overfilling of the pore storage of soil layers, is often referred to as Dunne-type (DOF).

Thus, in contrast to the infiltration excess (HOF) model, runoff in humid regions

with coarse-texture soils is generated by saturation from below by a rising ground-

water table (Ogden and Watts 2000) or by discharging sporadic horizontal flow

of water (throughflow) within the soil layer (Hydrology Handbook 1996). Many

studies have shown that overland flow in areas with humid climate form within

relatively small areas (as compared with the total watershed area) with higher water

table. Such areas commonly occur at the bases of hill slopes, in river valleys and

swales. Such saturated areas, where saturation excess runoff is produced, are

referred to as variable source areas (VSAs). Detailed analysis of the rainfall–runoff

processes in experimental watersheds shows that up to two thirds of direct runoff

can originate from the VSAs occupying only 5–20 % of the watershed area

(Boughton 1993; Hydrology Handbook 1996; Ogden and Watts 2000). Moreover,

due to the nonlinearity of the saturation excess mechanisms, the amount of runoff

produced in watersheds depends on individual rainfall characteristics (intensity and

duration).

1.2.3 Subsurface Stormflow Runoff

Many hydrological observations suggest that overland flow may not occur even

during high-intensity rainfall. Indeed, in some catchments with well-developed soil

cover, lateral flow is concentrated in the lower part of the soil profile underlain by

a clay layer or rigid bedrock (Weyman 1970; Sloan and Moor 1984; Zhang

et al. 2006). On steep hillslopes, such subsurface stormflow (SSF) could be fast

enough to be the main water contributor to downslope drainage area forming stream

runoff in a catchment. The rapid vertical movement of stormwater in the soil profile

can be explained by the presence of macropores or other soil structural elements

that provide preferential flowpaths (Buttle and McDonald 2002; Beckers and Alila

2004; Dusek and Vogel 2014). This type of pathways can take a variety of forms,

including movement as a thin saturated layer above unsaturated bedrock; runoff,

concentrated in the shallow weathered zone of bedrock; pipeflow at the base of the

soil profile; and flow associated with macropores or subhorizontal layers with high

permeability, embedded in the soil matrix (McDonnell 1990; Buttle and McDonald

2002; Uchida et al. 2002; Beckers and Alila 2004).

Stormflow generation during heavy rainfall events may play an important role in

determining the various hydrological and soil-mechanical phenomena like satura-

tion excess overland flow, changes in the soil moisture, slope stability changes from

a stable to an unstable condition, water pollution impacts. Thus, a rise of water table

may induce chemical leachate from near-surface layers (Weiler and McDonnell

2006).
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In a uniform soil profile, flow response to an increase in hydraulic gradient due to

infiltrating water can be described on the base of the hydraulic theory for

unconfined groundwater flow in a sloping aquifer using an extended Dupuit–

Forcheimer model (Henderson and Wooding 1964; Beven 1981). The model

originates from a continuity equation,

ϕn

∂h
∂t

þ ∂q
∂x

¼ w; ð1:2Þ

in which the flow discharge (per unit width), q, is derived from Darcy equation as

formulated by Boussinesq (Childs 1971)

q ¼ �ksh
∂h
∂x

cosφ� sinφ
� �

; ð1:2aÞ

here x is the coordinate parallel to the impermeable layer underlying the saturated

soil; t is the time; φ is the bed slope; h is the hydraulic head; ks is the saturated

hydraulic conductivity; ϕn is the effective storage coefficient (drainable porosity);

w is the rate of water input to the saturated zone from the unsaturated zone (in other

words, the recharge rate, the portion of the precipitation that recharges the water

table). The model (1.2) assumes that the streamlines are parallel to the sloping

impermeable bed and the hydraulic head h is independent of depth. The model (1.2)

was analyzed by many authors (Beven 1981; Brutsaert 1994; Verhoest and Troch

2000; Xiangjun et al. 2006; Harman and Sivapalan 2009), and several approxima-

tions describing the water table shape and flow discharge as functions of x and

t were obtained. Among these solutions, a solution for the output hydrograph is of

main interest.

When φ is large, the derivative (“diffusive”) term in (1.2a) vanishes, thus,

q ¼ ksh sinφ, and the continuity equation (1.2) takes the form of a linear kinematic

wave equation

ϕn

∂h
∂t

þ ks sinφ
∂h
∂x

¼ w: ð1:2bÞ

Equation (1.2b) implies that the hydraulic gradient at any point is equal to the bed

slope, φ.
It was shown (Beven 1981) that for a dimensionless ratio 4w cosφ/ks sin2φ (representing

combinations of slope conditions and input rate), less than 0.75, or

λ ¼ 4w cosφ=ks sin 2φ < 0:75; ð1:2cÞ

the kinematic solution is a reasonable representation of the output hydrograph and the

subsurface water table. As can be seen from the structure of criterion λ, the kinematic wave

approximation becomes increasingly useful with increasing slope angle and increasing

saturated hydraulic conductivity (Verhoest and Troch 2000).

1.2 Surface Runoff Mechanisms: Conversion of Rainfall into Runoff 9



This range of conditions for λ is of practical interest. Under steady-state conditions
(∂h=∂t ¼ 0), from solution of Eq. (1.2b) it follows that aquifer thickness, h, is a linear

function of x, h xð Þ ¼ wx=ks sinφ, thus the mean aquifer thickness is hav ¼wL/2ks sinφ, and
criterion (1.2c) can be rewritten in a form:

hav=L tanφ < 0:1; ð1:2dÞ

where L is the hillslope length. The inequality (1.2d) limits the slope and flow character-

istics, which provide conditions for the potential gradient, driving the flux (Eq. 1.2a), to be

dominated by the topographic gradient. The estimate (1.2d) does not contradict that of

Harman and Sivapalan (2009), where one can find much more thorough analysis of the

links between these characteristics and other parameters in hillslope-scale models of

subsurface lateral saturated flow.

The kinematic wave Eq. (1.2b) has been studied well (Chaps. 2 and 3), allowing

us to give a quantitative description to this type of water flow, generated at a slope

with increasing angle under rainstorm conditions. The considered linear model suits

the idealized concept of SSF. In particular, this model predicts the hydrological

response in the form of a continuous water flow in soil for any storm size, a

situation, which is not common in the nature. Meanwhile, the kinematic wave

assumption does not accommodate the lower boundary condition (Singh 2002).

As a result, it will always overpredict the length of the seepage face at the downhill

boundary, since it takes no account of downstream effects in the vicinity of the

boundary (Beven 1981). Therefore, the farther the distance from the lower bound-

ary, the more accurate the theory, since the effect of the downstream boundary will

decline (Singh 2002).

On the other hand, field studies in hillslope hydrology indicate that the SSF is a

threshold phenomenon with respect to storm rainfall input: to initiate downslope

drainage effect in soil, the atmospheric precipitation layer accumulated in the

subsurface over certain time should have the depth in excess of some critical

(threshold) value.

In general, the interaction between hillslope attributes (slope, soil depth and

permeability, etc.) and storm size usually causes unexpected behavior of outlet

hydrograph. Such behavior, resulting, in particular, in the mentioned above delay in

lateral flow initiation, may be explained by the interplay between subsurface

topography and the overlaying soil mantle with its varying soil depth distribution

as suggested by Hopp and McDonnell (2009) and Graham and McDonnell (2010).

The authors proposed a concept of hydrological connectivity between isolated patches of

saturation, distributed along the soil–bedrock interface. Lateral subsurface flow only

occurred when well-connected hillslope-scale areas of saturation or near saturation devel-

oped at the soil–bedrock interface, or, the other words, the SSF is dominated by a connected

preferential flow network located at the soil–bedrock interface (Graham et al. 2010). In the

relevant physical model, downslope micrographic impediments in the subsurface can be a

barrier for flow, interrupting and/or redirecting flow (Hopp and McDonnell 2009). When

precipitation exceeds the threshold dictated by topographic impedance, the subsurface

water can be efficiently routed downslope.

This model can be visualized as water motion along the topographic lows of the bedrock

surface between water-filled bedrock depressions. During a rainfall event, those depres-

sions form fill-and spill areas within a hillslope, the connectivity between them being
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determined, in particular, by the average slope angle. At a gentle slope, many isolated fill

areas are usually identified across the hillslope but hardly any spill areas. Subsurface

stormflow is very small if any. At a steep slope, the rain size and the characteristics of

soil–bedrock interface being the same, the fill areas will be very well connected to each

other by spill areas. The generation of such “system” is associated with a period of intensive

SSF. Following the authors’ concepts (Hopp and McDonnell 2009), one may conclude that

the subsurface flow generation always positively correlates with slope angle and storm size,

and negatively correlates with bedrock permeability and soil depth.

Finally, SSF can be generated due to water table rise from below into shallower,

more transmissive layers, which provide the pathways for rapid lateral hillslope

flow (Gabrielli et al. 2012; McDonnell 2013).

1.2.4 On a Combination of Runoff Generation Processes

The properties of cover deposits within a catchment can vary widely, and the

topographic features of relief and soil morphology vary over space. Therefore,

the same drainage area can show a combination of radically different mechanisms

of precipitation transformation into surface runoff, and the area distribution of

zones of water appearance on the surface can be extremely uneven. Such combi-

nation often hinders the adequate reproduction of a real natural process by homo-

geneous (limiting) models.

Moreover, the mechanisms of runoff generation at the hillslope scale are highly

nonlinear, their manifestation depending also on rainfall intensity, rainfall pattern,

and antecedent soil moisture conditions. The rainfall rate may exceed the

infiltrability for some storms, while for others, the rain may be not so heavy,

leading to the saturation of surface soil layer. In such cases, subsurface runoff

may dominate in some parts of the catchment where the slope angles of imperme-

able bases of slopes are large. Thus, the infiltration and saturation excess-generating

mechanisms as well as a mechanism responsible for the movement of water in the

porous space beneath the surface are not mutually exclusive at a point on a

watershed (Smith and Goodrich 2005).

The search for some universal criteria to distinguish between different mecha-

nisms of runoff generation in extremely diverse slope (catchment) environments is

a problem, which cannot be solved in a strict formulation. Here, we have to agree

with the quotation from McDonnell’s work (2013): “. . . no overarching theory

currently exists for runoff generation across all climates, geology, and topography”.

Further, he writes “This is a problem – both for experimentalists, . . . wondering
how to diagnose the dominant processes governing water flow . . ., and for mod-

elers, who wish to capture the key aspects of runoff behavior at a site, rather than

simply imposing a one-size-fits-all model structure at the site”.

For the present, qualitative estimates and approaches are rather to be expected

here. From this viewpoint, the qualitative analysis of the effect of major environ-

mental controlling factors on the different runoff mechanisms presented in a

pioneer work by Dunne (1978) and later works of this and other authors still

remains relevant. It is evident that many factors will influence the amount of runoff
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or infiltration of a drainage basin. Conventionally, two groups of such factors can be

identified. The former is associated with the climate and landscape–geographic

conditions in a drainage basin; and the latter, with its soil and topographic features.

The contribution of these attributes to runoff generation determines the near-surface

flow regime that can acquire features of Horton overland flow (HOF) or Dunne

overland flow (DOF) and subsurface storm flow (SSF). This contribution can be

represented schematically by triangle diagrams as shown in Fig. 1.3. These dia-

grams, which inherited features of the relevant analysis by Dunne and other authors,

qualitatively illustrate the occurrence of different runoff generation mechanisms.

Thus, most authors agree with the thesis that the increase in the aridity index

shifts the runoff generation from saturation excess (DOF) to infiltration excess

process (HOF). Dense vegetation usually increases infiltration into the ground and

thus reduces HOF and facilitates the generation of SSF. Subsurface flow mecha-

nisms also dominate in deep narrow valleys with steep sides. In wide river valleys,

groundwater table is located near the land surface, thus favoring the generation of

DOF (Fig. 1.3a).

There are three major slope attributes, changes in which may considerably

influence the runoff generation (Fig. 1.3b): the slope, soil depth, and soil perme-

ability. The diagram in Fig. 1.3b shows HOF generation to be most likely in the case

of large enough thickness of the soil unit, represented by low-permeability soils on

relatively steep slopes. HOF occurs when the saturated hydraulic conductivity of

the topsoil represented by homogeneous sediments is below the rainfall intensity

and the subsurface environment is characterized by a deep water table. A high

permeability of the soil along with a shallow depth to the impermeable bed or to

groundwater table is the condition for generation of DOF, i.e., the latter is more

sensitive to topography and soil thickness. If the layer is steep enough and the soil

section contains high-permeability layers, it is likely that the total hydrograph will

be determined by the contribution of SSF, especially in forested catchments

(Whipkey 1965; Sidle et al. 2000; Beckers and Alila 2004; Alaoui et al. 2011).

Obviously, SSF dominates when the rainfall intensity is below the saturated

Fig. 1.3 Simplified diagrams of hillslope response in terms of the type of runoff generation (HOF,

DOF or SSF) in: (a) different landscape–geographic conditions and (b) soil and topographic

environments
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hydraulic conductivity of the soil. When SSF convergence promotes a rise of the

water table to intersect the surface, DOF is generated (Mirus and Loague 2013).

In addition, other important factors influence the runoff generating process. They

have been a subject of intensive studies performed by a number of research groups

for the past decades. Some such studies try to find qualitative criteria to predict the

conditions for the occurrence of different runoff generation mechanisms (HOF,

DOF, or SSF).

Thus, Mirus and Loague (2013) used a comprehensive physics-based model of coupled

surface–subsurface flow to simulate rainfall-runoff events to systematically explore the

impact of soil hydraulic properties and rainfall characteristics. One of the principal con-

clusions from the work of reference is that the hydraulic conductivity and rainfall intensity

are not the only controls on runoff generation mechanisms. The authors showed how

rainfall intensity/depth, subsurface permeability contrasts, characteristic curve shapes,

and topography provide important controls on the hydrologic-response dynamics.

Mirus and Loague (2013) suggested two dimensionless terms for the rate of flow and

storage, which are supposed, together with the average slope along the modeled catchment

hollows, to control the hydrological-response processes. The rate term is the ratio of event-

averaged rainfall flow intensity, r, to the saturated hydraulic conductivity, ks. The storage
term is the ratio of the cumulative depth of the rainfall event, R, to the depth, Hu, equivalent

to the initial unsaturated storage prior to the rainfall event (in the authors’ interpretation,
this is the initial volume of unsaturated pores above the soil/bedrock interface in the area of

the catchment midpoint). A plot in the dimensionless coordinates, R/Hu (as y-coordinate) –

r/ks (as x-coordinate), facilitates incorporating the important effects of the soil-hydraulic

properties, rainfall characteristics, and initial conditions in the modeling study.

Based on such dimensionless format, the general trends in the rainfall-runoff generation

processes were determined. Thus, for steep slopes (topography having an incline in excess

of 15 %) surface runoff (predominantly in a form of DOF) occurs over a range of low values

for the rate (~0.0005–2) and storage ratios (~0.5–10). For catchments with more gentle

topography, surface runoff (more probably in a form of HOF) generally occurs for higher

rate ratios (>1) and storage ratios within a wider range (~0.03–20). SSF was observed to be

generated mostly in soil profiles with steep slopes, when the catchment conditions are

characterized by low values of the rate (<0.1) and storage (<0.5) ratios.

The main authors’ findings can be also formulated as follows: (1) for gently

sloping topography, the variability in rainfall and saturated hydraulic conductivity

provide the primary controls on the threshold between the Horton and Dunne

mechanisms; (2) the Dunne mechanism is active over a wide range of average

slopes, rainfall intensities, and soil hydraulic properties, due to soil layering and

topographic convergence; (3) the topographic convergence and average slope exert

a very strong control on lateral drainage through permeable soil layers, so they

influence the transition between SSF- and DOF-dominated response.

1.3 Infiltrability Models for Non-Structured Soils
(Infiltration in an Ideal Soil)

Infiltration occupies a special place among the processes responsible for mass and

energy exchange between the surface and subsurface hydrospheres. Infiltration is

governed by two driving forces: gravity and capillarity. Under precipitation
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conditions, according to the mass conservation law, the infiltration (actual inflow

rate), f(t), must equal the change in soil storage beneath the surface (Smith 2002;

Smith and Goodrich 2005):

f tð Þ ¼ d

dt

ðZ
0

θ� θið Þdz; ð1:3Þ

where θ is the soil water content, θi is the initial value of θ (assumed to be uniform),

Z is the depth below the advance of the wetting zone. Given the infiltration rate, the

cumulative depth of water infiltrated into the soil during a given time period, F(t),
can be determined from the integral relationship:

F tð Þ ¼
ðt
0

f tð Þdt ¼
ðZ
0

θ� θið Þdz: ð1:4Þ

From Eqs. (1.3) and (1.4), it is seen that the infiltration rate is the time derivative of

the cumulative infiltration:

f tð Þ ¼ dF tð Þ
dt

: ð1:5Þ

In this section, we consider the infiltration process, when a storm is sufficiently

intense to create infiltration excess (r > ks). From the mathematical viewpoint, the

infiltration can be most rigorously conceptualized as the inflow of rainwater into

soil under a flux boundary condition. This type of boundary condition is controlled

by both gravity and nonlinear soil water diffusivity. Under the flux boundary

condition, water intake by the soil surface is characterized by a change in soil

water content over time, θ ¼ θ tð Þ, and θ tends to reach the saturation limit, θ ¼ θs.
In this, transient, period, the rate of water delivery to the surface is smaller than the

soil’s infiltrability, f. One may assume that at the end of the transient period, the flux

condition switches to a more simple constant-head boundary condition, ψ0 ¼ 0 (or

θ ¼ θs). The latter determines the infiltration rate being equal to the infilrability, f,
implying the infiltration under unlimited water supply at the surface.

Because of the high nonlinearity of the flow process in the unsaturated media,

there is a near equality between the infiltration relations for the inflow rate, f, under
rainfall and that under unlimited water supply at the surface (Smith 2002; Smith and

Goodrich 2005). This allows one to use models for f (usually in the F domain,

Sect. 1.3.2) to predict both the onset of ponding under rainfall, and the behavior of

the inflow after that (Smith and Goodrich 2005).

The infiltrability models used in hydrology can be conventionally divided into

two categories: empirical models that have no rigorous physical–mathematical

basis and models based on relationships derived from partial solutions of equations

of moisture transport in an incompletely saturated porous medium.
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1.3.1 Empirical Infiltrability Models

Empirical models describing soil infiltrability number dozens. Each model was

used to obtain more or less adequate approximation of field data or verified by

correlation with the results of numerical solution of vertical moisture transfer in

incompletely saturated sediments. The authors of such studies commonly noted that

ideal models cannot exist. Each model has its pros and cons (Mishra et al. 2003;

Carlier 2007). Thus, some models give good descriptions of imbibition and infil-

tration of rainwater within a wide time range, though their application is limited to a

certain type of soil sections (represented by a limited type of sediments). Other

models, on the contrary, work well within limited time intervals, but can be

successfully applied under a wide range of natural conditions.

Therefore, for illustration purposes, we will limit ourselves to several, most

often cited models. Among them are empirical Kostiakov (1932) and Horton (1940)

equations proposed in the early past century. Due to their simplicity, they have been

quite often used in the hydrological practice up to now.

Kostiakov formula describes the drop in soil infiltrability by a power time

function

f tð Þ ¼ Bt�n; ð1:6Þ

where В (> 0) and n are constants (0< n< 1). The formula is applicable for t 6¼ 0.

Integrating (1.6) from 0 to t gives an expression for accumulated infiltration

F tð Þ ¼ B

1� n
t1�n: ð1:6aÞ

A modification of formula (1.6) is known (Smith 1972):

f tð Þ ¼ f c þ Bt�n, t � tp;

f c þ B t� tp
� ��n

, t > tp;

�
ð1:6b; cÞ

where fc is asymptotically stationary imbibition (at large time when the porous

medium becomes fully saturated with water), tp is surface ponding time.

Horton formula uses an exponentially decreasing function

f tð Þ ¼ f c þ f 0 � f cð Þexp �ktð Þ; ð1:7Þ

where k is an exponent factor, f0 and fc are the initial and final rates of water

imbibition.

Integrating (1.7) yields an expression for accumulated infiltration:

F tð Þ ¼ f ctþ
1

k
f 0 � f cð Þ 1� exp �ktð Þ½ �: ð1:7aÞ
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The coefficients in Eqs. (1.6) and (1.7), are evaluated by model calibration

against data on precipitation and runoff in individual watersheds. Data of large-

scale experiments at specially equipped runoff grounds can also be used for this

purpose.

The competitive capacity of formulas (1.6) and (1.7) for the description of infiltration

process was studied by comparing the appropriate analytical calculations with results of

computation experiments (Carlier 2007). The mathematical simulation was based on a

numerical solution of the Richards’ equation for Van Genuchten approximation of the

retention function h(θ) and hydraulic conductivity, k(θ) (see below Sect. 1.5). Such analysis

has shown that the infiltrability of typical soils can be best described by Kostiakov formula.

The obtained values of parameter n varied from 0.26 (sand) to 0.37 (sandy clay, clay loam),

thus suggesting a strong nonlinearity of the process as a whole.

It is worth mentioning that, though formulas (1.6) and (1.7) have no physical basis, they

have certain statistical (probabilistic) meaning (Carlier 2007). Thus, Kostiakov formula

(1.6) corresponds to a process, which is not a Markov process from probabilistic viewpoint:

the Markov property would mean here, in particular, that the expected value of infiltration

rate depends on its previous value. The Horton formula (1.7) describes the process, which

has another (Markov) statistical nature.

As mentioned above, the results of such studies for the comparison of different

empirical formulas for soil infiltrability have been also published in many papers.

Generalization of those publications does not yield unambiguous recommendations

regarding the choice of specific empirical relationships for various types of

landscape–soil conditions.

1.3.2 Physically Based Infiltrability Models (One-Phase
Flow Approach)

The basic theoretical equation for vertical unsaturated flow is Richards’ equation.
The equation stems from a simple statement of continuity for one-phase flow

system:

∂θ
∂t

þ ∂w
∂z

¼ 0; ð1:8Þ

where z is taken as positive downward (or negative up) with ground surface as the

datum (z ¼ 0) [L]; t is the time [T]; w is the water discharge (positive downwards)

[LT�1]; θ is the moisture content of the soil [�] . Consider Darcy’s law

w ¼ �k
∂h
∂z

; ð1:8aÞ

where k is the hydraulic conductivity of the soil (can be function of θ or h); ∂h/∂z is
the hydraulic gradient. Because the flow is driven by the gravity (pressure of the
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overlying water, basically, z) and capillary action (suction head, ψ), the hydraulic
head will be the sum:

h ¼ ψ� z: ð1:8bÞ

Thus, the equation of continuity (1.8) becomes

∂θ
∂t

¼ ∂
∂z

k
∂ψ
∂z

� 1

� �� �
: ð1:9Þ

Depending on the functional type of the nonlinear coefficient k (k(θ) or k(h)),
Richards’ equation (1.9) can be rewritten in several forms, water-content-based,

potential-based, or mixed Richards’ equation. For this variety, the dependence ψ(θ)
is of importance.

The Richards’ model has been developed implicitly relying on an assumption

that the soil air can easily escape the soil. Therefore, the limitation of the Richards’
equation is connected with ignoring the flow of soil air during infiltration process.

More sophisticated, two-phase flow model, accounting for this phenomenon, can

result, in particular, in deviation of the inflow rate from what is predicted by the

“Richards’ family models” (Sect. 1.4.1.2).

Different simplifications enable a solution to the Richards’ equation. The Green–
Ampt (1911) and Philip (1957) models are among the best known approximate

analytical solutions to Richards’ equation that are commonly used in hydrologic

theory and practice to study infiltration process, in particular, to describe the soil

infiltrability.

1.3.2.1 The Green–Ampt Infiltration Model

When considering the piston-like (with an abrupt interface) motion of the wetting

front in a relatively dry soil (Fig. 1.4a), we can try to take into account the combined

effect of capillarity and gravity in most simple way following Green and Ampt

(1911) concept. Suppose that soil potential is given by the hydraulic head

h ¼ h z, tð Þ ¼ �hc � z; ð1:10Þ

where hc ¼ �ψc is the capillary suction head (capillary pressure head) at wetting

front [L]. In the liquid at the interface between the media (z ¼ 0), h is determined by

the reference atmospheric pressure assumed to equal 0, and the head of the liquid

layer covering the surface (Fig. 1.4b):

h 0, tð Þ ¼ h0; ð1:10aÞ

where h0 is the depth of the water layer [L]. The head at the wetting front, h (zf, t),
whose position is determined by the current coordinate zf (t), will be the sum of the
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capillary head at the wetting front and the head provided by the weight of the water

column above:

h z f tð Þ, t� � ¼ �hc � z f : ð1:10bÞ

Under the assumption of an abrupt jump of pressure at the advancing front of the

transmission zone (saturated soil), the time can be implicitly expressed through the

depth to the front below the surface, zf (t), and thus the time derivative can be

excluded from the continuity equation (1.8), which is reduced to an ordinary

differential equation:

dw zð Þ
dz

¼ 0, 0 � z � z f tð Þ: ð1:10cÞ

Such formulation of the boundary value problem requires finding function zf (t) as
the time characteristics of the infiltration process.

Substituting the head gradient from (1.8a) into (1.10c) yields a second-order

ordinary differential equation

d2h zð Þ
dz2

¼ 0: ð1:10dÞ

Its solution with boundary conditions (1.10a) and (1.10b) or in terms of function h(z),

h 0ð Þ ¼ h0, h z f
� � ¼ �hc � z f ; ð1:10eÞ

Fig. 1.4 The distribution of (a) volumetric moisture content and (b) the hydraulic head during

piston-like infiltration into semi-infinite unsaturated soil column
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has a linear form (Fig. 1.4b):

h zð Þ ¼ h0 � 1þ hc þ h0
z f

� �
z: ð1:10fÞ

Now the hydraulic gradient is the same as that defined by Green and Ampt

(1911) in their hydrostatic model:

dh

dz
¼ � h0 þ hc þ z f

z f
< 0ð Þ: ð1:10gÞ

To describe the infiltration process in dynamics, one can define the velocity of

the wetting front:

dz f
dt

¼ � ks

θs � θ0
dh

dz
¼ ks

Δθ
1þ h0 þ hc

z f

� �
; ð1:10hÞ

where Δθ ¼ θs � θ0 can be considered as the initial saturation deficit (available

water storage). Integrating the ordinary differential Eq. 1.10h yields the following

formula

t ¼ Δθ
ks

z f � h0 þ hсð Þln 1þ z f
h0 þ hc

� �� �
; ð1:11Þ

known as the Green–Ampt solution. This solution, which was published in 1911

(Green and Ampt 1911), is among the fundamental solutions that have been in wide

use for the analysis of water infiltration from the surface and for the assessment of

moisture transfer in the soil and unsaturated zone.

Assuming

f ¼ ks z f þ hc þ h0
� �

=z f ; ð1:11aÞ

the Green–Ampt model (1.11) can be adopted to calculate the infiltration rate

( f � w)

t ¼ Δθ h0 þ hcð Þ
ks

ks
f � ks

� ln
f

f � ks

� �� �
, f > ks: ð1:12Þ

Solution (1.12) implies an abrupt drop in the specific discharge f over time at the

initial stages of infiltration and its asymptotic approximation to the limiting value

f ¼ k θsð Þ � ks during long stages (Chow et al. 1988; Biswas and Mukherjee 1994;
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Smith 2002). Thus, the solution (1.11), (1.11a) and (1.12) has two asymptotics and

appropriate expressions for the inflow rate, f:

– at early time, when capillary forces dominate over gravitational ones,

t ¼ Δθ
2ks h0 þ hcð Þ z

2
f and f ¼ Δθ

dz f
dt

¼ 1

2

Sffiffi
t

p ; ð1:13Þ

– at sufficiently large time, when the motion of wetting front in the unsaturated

zone is determined by the weight of the above water column:

t ¼ Δθ
ks

z f and f ¼ Δθ
dz f
dt

¼ ks: ð1:13aÞ

In Eq. (1.13), the characteristics S quantifies the capillary forces affecting water

movement in the soil, and can be conventionally associated with a sorptivity, a term

which appeared much later than the Green–Ampt solution (Philip 1957), in a form

of relationship

S2 ¼ 2ks h0 þ hcð ÞΔθ: ð1:13bÞ

In the classical interpretation, S depends also on the soil’s moisture status and

surface boundary condition (Sect. 1.3.2.2).

Calculations of f(t) using (1.12) and (1.13) require an estimate of the effective

capillary pressure head, hc, at the wetting front, which is a parameter that can vary

significantly across the wetting front (Wang et al. 1997) depending on the moisture

content, θ, and some other measurable physical characteristics of the soil material.

There have been several attempts to relate hc to soil water relations (Neuman 1976;

Aggelides and Youngs 1978; Springer and Cundy 1987; Kao and Hunt 1996; Wang

et al. 1997; Williams et al. 1998; Smith 2002).

The most general approach is believed to be that based on the use of water retention

(h versus θ) or water tension versus relative hydraulic conductivity (h versus kr) curves.
Thus, hc can be defined by the relative conductivity, kr ¼ k hð Þ=ks, weighted average value

of the capillary pressure across the wetting retention curve as follows (Springer and Cundy

1987)

hc ¼
ðhs
hi

kr hð Þdh; ð1:13cÞ

where hi ¼ h θ0
� �

; hs ¼ h θsð Þ; θ0 is the initial moisture content before infiltration began; θs
is the saturated moisture content. In this manner, formulas for calculating hc can be

obtained for the basic soil water retention curves (e.g., Brooks–Corey and van Genuchten).

An approximate expression for hc can be also obtained from the phenomenological

capillary model of porous medium (Kao and Hunt 1996).
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After the original model was presented by Green and Ampt, many studies were

aimed to modify this model to extend its application domain and prediction

capacity. For example, a solution was obtained for a constant-intensity rainfall

input condition (Mein and Larson 1973), as well as for a sloping surface (Chen and

Young 2006). Of particular interest is the derivation of explicit equations for

infiltration (Schmed 1990; Salvucci and Entekhabi 1994; Smith 2002; Craig

et al. 2010). The relevant formulae are of particular importance for application in

storm runoff modeling and prediction.

Indeed, Eq. (1.12) is not always convenient to use in the study of infiltration.

Therefore, it is of interest to carry out an additional study of the Green–Ampt

solution to obtain analytical relationships describing the behavior of function f(t) in
the explicit form.

Thus, the expression (1.12) can be introduced in the following dimensionless form

(Salvucci and Entekhabi 1994)

t ¼ 1

f � 1
� ln

f

f � 1

� �
, f ¼ f

ks
, t ¼ t

χ
, χ ¼ S2

2k2s
: ð1:14Þ

The solution (1.14) can be differentiated with respect to t, yielding, upon the introduc-

tion of a new dimensionless variable τ ¼ t= 1þ tð Þ, the ordinary differential equation

f f � 1
� �2 þ 1� τð Þ2 d f

dτ
¼ 0: ð1:15Þ

Next, it was proposed (Salvucci and Entekhabi 1994) to approximate f τð Þ by a power

series, which finally results in an approximate solution of the Eq. (1.15):

f �
ffiffiffi
2

p

2
τ�1=2 þ 2

3
�

ffiffiffi
2

p

6
τ1=2 þ 1� ffiffiffi

2
p

3
τ: ð1:16Þ

For dimensionless time t << 1 (τ ! 0), the number of terms in the right-hand part of

Eq. (1.16) can be reduced to two, allowing the following approximate equality to be

written:

f tð Þ � 1

2

Sffiffi
t

p þ 2

3
ks: S2 ¼ 2ks h0 þ hcð ÞΔθ: ð1:16aÞ

The Eq. (1.16) can be integrated, allowing one to obtain (according to Eq. 1.4) an

expression for the cumulative infiltration, F(t) (Salvucci and Entekhabi 1994).

The Green–Ampt solution (1.11) can be rewritten in a form facilitating its

application in the rainfall–infiltration analysis ( h0 << hc ) (Mein and Larson

1973; Chow et al. 1988; Smith 2002; Todd and Mays 2005):

t Fð Þ ¼ 1

ks
F� Δθhcln 1þ F

Δθhc

� �� �
; ð1:17Þ

where F is the cumulative depth of infiltration (1.4), F ¼ Δθ z f .
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The flux at the surface is equal to the infiltration rate, f ¼ �k θsð Þdh=dz > 0, or

f Fð Þ ¼ ks 1þ Δθhc
F

� �
: ð1:18Þ

In the infiltration theory, Eq. (1.18) is known as infiltrability-depth approxima-

tion (IDA) (Smith 2002). The IDA means that cumulative infiltration serves as a

surrogate for time and may be treated as a state variable. The relation f(F) (1.18),
rather than f(t), is valuable for estimating the ponding time and infiltration for a

variable rainfall pattern.

At some moment t ¼ tp after precipitation began, the infiltration rate becomes

equal to the precipitation rate, f ¼ r, and water starts ponding the surface. The

infiltration depth at that moment is given by Fp ¼ rtp, and the infiltration rate is

determined by f ¼ r. Substituting these equalities in Eq. (1.18) yields:

Fp ¼ Δθhc
r=ks � 1

r=ks > 1ð Þ; ð1:19Þ

in other words, the infiltrated amount Fp (see also comments in Sect. 1.3.2.2) is

equal to that at f ¼ r in the case where the boundary condition is “ponded” from the

start (Smith 2002). The time of ponding is given by

tp ¼ Fp=r: ð1:19aÞ

The infiltration equation developed by Green and Ampt (1911) was extended to

the conditions of non-immediate ponding (Mein and Larson 1973; Chow

et al. 1988). In terms of F(t), the solution is:

F tð Þ ¼
rt 0 � t < tp,

F tp
� �þ Δθh f ln

F tð Þ þ Δθhc
F tp
� �þ Δθhc

" #
þ ks t� tp

� �
t � tp:

8><
>: ð1:20Þ

The infiltration rate may be calculated as

i tð Þ ¼
r 0 � t � tp,

ks 1þ hcΔθ
F tð Þ

� �
t > tp:

8<
: ð1:21Þ

Thus, Eqs. (1.20) and (1.21) are appropriate to describe the infiltration process

after ponding.
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1.3.2.2 The Philip Two-Term Infiltration Model

This model is an approximate analytical solution of Richards’ equation written in

the form of an infinite series solution (valid for finite t) for the case of infiltration

in a semi-infinite soil domain at a constant-head boundary (Philip 1957, 1987).

For practical purpose, the series solution can be restricted to the first two terms

f tð Þ ¼ dF

dt
¼ 1

2

Sffiffi
t

p þ Aks; ð1:22Þ

F tð Þ ¼ S
ffiffi
t

p þ Akst; ð1:23Þ

where S is the soil water sorptivity [LT�1/2]; Aks is a gravity factor [LT�1]. The

term sorptivity, introduced by John Philip, defines the ability of soil to absorb or

desorb liquid by capillarity.

The formal comparison of Eq. (1.22) with the asymptotics (1.13), (1.16a)

introduced earlier shows that Philip model and Green–Ampt model have a common

combined parameter (Charbeneau 2006):

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ks h0 þ hcð ÞΔθ

p
; ð1:23aÞ

which, however, does not have the original physical meaning as sorptivity in the

Philip concept.

The solution (1.22) and (1.23) is valid at constant head boundary condition,

θ 0, tð Þ ¼ θs, and for uniform initial condition, θ z, 0ð Þ ¼ θ0. Most authors recom-

mend using the value of coefficient A (in the gravity term in Eqs. (1.22) and (1.23))

between 1/3 and 2/3 for not very long periods. One may note also that the form

of the Philip two-term Eq. (1.22) is very similar to that of modified Kostiakov

equation (1.6b). In fact, the infiltrability equation (1.6b) with n ¼ 1=2, f c ¼ Aks,
and B ¼ S=2 is essentially the same equation.

Analysis of solution (1.22), and (1.23) shows that in the course of time (tenta-

tively, at t > tg ¼ 3S=2ksð Þ2), the effect of the first term, which accounts for the role

of capillary-adsorption forces, becomes negligible and the rate of imbibition is

determined by soil hydraulic conductivity, i.e., by the second term of the Eq. (1.22),

which accounts for the gravity movement of moisture.

The obtained relationships allow us, by analogy with the Green–Ampt problem,

to write the generalized expressions determining the cumulative infiltration:

F tð Þ ¼ S
ffiffi
t

p þ Akst 0 � t < tg,
F tg
� �þ Aks t� tg

� �
t � tg:

�
ð1:24a; bÞ

It can be seen that the infiltration time is divided into two periods: at times less than

tg, the moisture front propagation velocity is governed by both the gravity and

capillary mechanisms, while the gravity moisture transport dominates for time

greater than tg.
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The Philip infiltration model (1.22) and (1.23) can be recast in the format of the

ADA (Sect. 1.3.2.1) by eliminating t between these equations:

f Fð Þ ¼ Aks þ AksSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ 4AksF

p
� S

: ð1:25Þ

For the Philip two-term infiltration model, the time of surface ponding at r > Aks
can be calculated as:

tp ¼ S2 r � Aks=2ð Þ
2 r � Aksð Þ2 ; ð1:25aÞ

where r is the intensity of rainfall. This expression is obtained by setting f ¼ r in
Eq. (1.25) and equating the cumulative infiltration, F ¼ Fp, to rtp (1.19a) –

Fig. 1.5a.

The infiltration rate under ponded conditions is given by f(t) as well, but with the
time origin shifted by the amount (Fig. 1.5b):

tc ¼ tp � te; ð1:25bÞ

where te is an equivalent time which can be obtained by equating f t ¼ teð Þ from

Eq. (1.22) to r,

te ¼ S2

4 r � Aksð Þ2 : ð1:25cÞ

Note, that f(t) in the period t � te represents only a potential value based on

unlimited water supply at the surface at that time, rather than the actual infiltration

rate (Smith 2002). Thus, taking into account (1.25b),

Fig. 1.5 Infiltrability as a function of cumulative depth, F (a), and time, t (b)
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tc ¼ S2

4r r � Aksð Þ ; ð1:25dÞ

the resulting formula for the infiltration rate can be written as:

i tð Þ ¼ r, t � tp,

1=2ð ÞS t� tcð Þ�1=2 þ Aks, t > tp:

�
ð1:25eÞ

The cumulative infiltration, F, can be obtained via integration of f(t) according to

Eq. (1.4) (Kim et al. 1996).

1.3.3 Two-Phase Flow Approach

Unfortunately, the classical approaches considered above are theoretically limited

in their ability to accurately model: (1) the beginning of infiltration, because they

predict initially infinite flow velocity, i.e., f(t) (both Green–Ampt and Philip

models); (2) the large-time behavior of the f(t) function, because they assume the

transmission zone to be fully saturated (Green–Ampt model). These all would lead

to an overestimation of the actual infiltration capacity of soils.

The main limitation of the traditional models is connected with ignoring the

participation of soil gas (air) in the infiltration process and dynamic capillary

pressure phenomenon. The effect of the soil air flow on the process of water

infiltration is associated with such phenomena as air compression, air counterflow,
and air entrapment in soil. Thus, during infiltration, air can be compressed in the

soil below the wetting front (especially if the water table is shallow), resulting in

reduction in infiltration. Compressed air can make its way out to the atmosphere

through the transmission zone exhibiting the so-called counterflow phenomenon.

Because air flows upward, in the opposite direction to the infiltrating liquid, the

water content in the transmission zone (Green–Ampt model) decreases and the

effective hydraulic conductivity and infiltration rate decrease as well. The same

effects can be expected from the influence of air entrapment limiting the saturation

of the transmission zone by infiltrating water from the ponded surface, and, as a

consequence, the degree of saturation and the infiltration rate may be significantly

reduced as well.

Many successful attempts have been made to adapt the Green–Ampt model to

account for air counterflow, air compression and dynamic capillary pressure using

rather simple physically based approaches or varying soil properties (Wang

et al. 1997; Pellichero et al. 2012). Those, as well as many other studies, showed

that the agreement between the Green–Ampt model predictions and observations

can be artificially improved.

However, the most rigorous solutions of infiltration problem, explaining why

experimental data could not be described accurately with the classical Green–Ampt
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or Philip approaches, were obtained in a two-phase formulation, accounting for the

flow of air in soil, within the transmission zone and ahead of the wetting front

(Morel-Seytoux and Khanji 1974, 1975; Touma and Vauclin 1986; Szymkiewicz

2013). Those solutions predict the behavior of functions f(t) and F(t) and yield

asymptotics other than formulas (1.12), (1.13) and (1.17). In particular, it was

shown that air compression ahead of the wetting front is the major cause of the

decrease in the infiltration rate, f(t) (Touma and Vauclin 1986). Moreover, due to air

counterflow from ahead of the wetting front, this rate decreases continuously with

time (Wang et al. 1997) instead of reaching a steady state constant infiltration rate

predicted by the asymptotic formula (1.13a).

In light of the above-mentioned facts, two approaches, Green–Ampt and two-phase flow, to

calculating two infiltration characteristics, f tð Þ and F tð Þ, were compared (Fig. 1.6). Using

TOUGH2 as a solver for a system of differential equations describing two-phase flow in

unsaturated zone (Pruess 1991, 2004) we formulated a numerical problem which is

identical to the original Green and Ampt setup.

The parametric basis includes the relationships between relative permeability, krw
(water), kra (air), and effective saturation, Sew for a water–air system through a simple

power law function (Pinder and Gray 2008; Szymkiewicz 2013)

krw ¼ Sn
ew, kra ¼ 1� Sewð Þn, kr w;að Þ ¼ kw,a Sewð Þ=ks; ð1:26Þ

where Sew ¼ Sw � Swrð Þ= Swmax � Swrð Þ is the effective saturation with water; Swr is the

water residual saturation; 1� Sew ¼ Sea is the effective saturation with air; kw,a is the

unsaturated hydraulic (phase w and a) conductivity; ks is the hydraulic conductivity at

saturation; n is an exponent. For the abrupt wetting front, a step-vise capillary function can
be represented as follows

Fig. 1.6 Dimensionless time dependence of infiltrability (a) and cumulative infiltration

(b) for zero water ponding on the soil surface (h0 ¼ 0). Solid curves correspond to the

two-phase infiltration model; dashed curve (GA) is the Green and Ampt solution (1.12)

and (1.17)
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hc ¼ hc maxð Þ, if Sw � Swr ,
0, if Sw � Swmax;

�
ð1:26aÞ

in the interval [Swr, 1], hc changes linearly; Swmax ¼ 1.

Although the interpretation of the very initial stage of the numerical modeling is

a matter of uncertainty, it seems, similar to the analytical one-phase infiltration models

discussed above, the two-phase flow approach exhibits an infinite limit at t ¼ 0 (Fig. 1.6a).

As seen, within all specified time range, the Green–Ampt curves are located above the

two-phase flow curves, both in plot f tð Þ ¼ f=ks (Fig. 1.6a) and in plot F tð Þ ¼ F=Δθhc
(Fig. 1.6b), and hence the Green–Ampt model overestimates the infiltration capacity of the

soil. The major feature in the evolution of the Green–Ampt infiltrability curve over the time

is f(t) tending to the hydraulic conductivity at saturation, ks, at late time infiltration. The

limit of f(t) that has been reached in the two-phase flow simulation is slightly less. This

effect was observed earlier by Morel-Seytoux and Khanji (1974) during their analysis of

two-phase flow in unsaturated media. Curves in Fig. 1.6a show that infiltrability accounting

for two-phase infiltration is weakly sensitive to exponent, n.

Though the classical Green–Ampt approach has some shortcomings, its appli-

cability to a wide variety of initial, boundary, and soil profile conditions makes it

still one of the most popular in hydrology, since the data obtained with it meet the

needs of practice. The essential advantage of the model is that it allows one to

obtain the physical parameters for the model from soil properties estimated using

rather traditional approaches and techniques.

1.4 Influence of Macropores and Surface-Exposed
Fractures on Infiltration, Runoff Generation
and Lateral Preferential Flow

Soils are generally structured media where the mineral and organic matter compo-

nents are organized into aggregates that vary in size, porosity, pore size, and

continuity. Soils, also having a multitude of irregular opening voids, represented

by bio-pores, fractures in clayey soils or soil aggregates, exhibit heterogeneous

properties. These soil voids are commonly referred to as macropores in spite of the

fact that some soils may have discontinuities in the shape of fractures/cracks.

Therefore, for convenience, in the further analysis, we will often not differentiate

these two types of the structural soil discontinuities forming voids in soil material.

The conductivity through the macropores and fractures is several orders of

magnitude larger than the conductivity of the intact micropore matrix. Therefore,

these soil discontinuities can have a large influence on both the vertical and lateral

flow of water at hillslope scale, providing different effects related to the excessive

surface ponding and soil profile saturation.

The recognition of the importance of macropores and fractures in both water and

air flows in soils plays a central role in advanced hydrological analysis of hillslope

and watershed systems (Beven and Germann 1982; Šimůnek et al. 2003; Jarvis

2007; Nieber et al. 2006; K€ohne et al. 2009; Beven and Germann 2013). The quoted
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researches and many others have shown that the problem has two aspects: first, the

partitioning of infiltrating water between matrix and macropore or fracture domains

during fallout resulting in the partitioning of rainfall to surface runoff and infiltra-

tion, and second, the generation of macropore runoff in a soil profile (subsurface

runoff) in a form of preferential flow. Such vertical and lateral preferential flow,

triggered by rainfall events, becomes the major mechanism providing a rapid solute

migration through the soil and unsaturated zone towards surface streams and

groundwater (McGrath et al. 2010).

The most accurate mathematical formulation of the preferential flow phenome-

non is based on the so-called dual-porosity and -permeability concept (Šimůnek

et al. 2003; Jarvis 1998; 2007; K€ohne et al. 2009). In more general setup, one should

find the solution of coupled Richards’ equations describing nonequilibrium flow in

the soil matrix and macropore systems. The first-order term can be used to describe

water transfer from voids to the soil matrix. Water exchange between the two

domains can be simulated also in a direct way without a need to resort to the

first-order approximation.

Compared to the predominantly vertical preferential flow at smaller scales,

overland flow and lateral preferential flow appear as important rapid runoff com-

ponents on hillslopes (K€ohne et al. 2009). Therefore, in this section, the influence of
preferential flow on soil systems behavior under rainfall conditions will be analyzed

at both the column scale (based on a simplified analytical framework) and the

hillslope scale (conceptually).

1.4.1 The Influence of Natural Voids in Soil on Infiltration
and Runoff Generation

In well-structured soils, flow through continuous voids (fractures, cracks or

macropores) may result in a deeper and faster penetration of rainfall and solutes

than what is predicted by uniform displacement (Beven 1981; McDonnell 1990).

One may also expect that the kinetics of capillary imbibition of water from voids to

the surrounding matrix can affect the soil infiltration capacity. This phenomenon

is of special interest for this section as it demonstrates the possible influence of

surface and subsurface flow interaction on runoff generation.

1.4.1.1 On Conceptual Approaches to the Development of Flow Models

It is commonly agreed that downward water movement in well-structured

media (both macroporous soils and fractured soils/rocks) in the end of a prolonged

precipitation following the wettest antecedent conditions is provided by macro-

pores or/and surface-exposed fractures, and overland flow commences only when a

certain threshold determined by a combination of parameters of the dual-capacity

28 1 Surface Runoff Generation, Vertical Infiltration and Subsurface Lateral Flow



system is exceeded. In this analysis and further studies (Sect. 2.4), to be specific, we

will focus on an analytical framework for describing the rainfall response behavior

of fractured soils based on: (1) a physically-based approach to coupling models

with distributed parameters for overland flow and preferential flow infiltration

(Beven and Germann 1982; Ruan and Illangasekare 1998; Novak et al. 2002;

McGrath et al. 2010), and (2) a lumped-parameter approach (dual-storage-based

model) adopted from works by Kohler and Struthers with co-workers (Kohler

et al. 2003; Struthers et al. 2007).

The discussed physically-based approach (Sect. 1.4.1.2) describes a flow

through soil discontinuities which is initiated when the soil surface is ponded.

Water entering the fractures or macropores is imbibed by unsaturated soil matrix,

which controls the rate of water transfer from surface to the lower part of the soil

profile. The vertical movement of such water package may result in the generation

of lateral flow at the interface between the soil and bedrock, which is a special

focus of this work.

The hydrological response of a hillslope or a catchment area, represented by

structured soils, to rainfall application in the form of surface runoff can be divided

into several stages corresponding to different types of boundary conditions for the

unsaturated soil surface (Novak et al. 2002; Beckers and Alila 2004).

1. At the beginning of the rainfall, water is preferentially imbibed by soil (porous)

matrix exposed to the surface, while direct infiltration into macropores can be

neglected since they contribute very little to the total surface area (Beven and

Germann 1982). As long as the soil remains unsaturated, the infiltration rate

through soil matrix, im, is equal to rainfall rate, r, similar to that we observe for

the case of homogeneous soil:

im ¼ r, h ¼ 0: ð1:27aÞ

2. Later, as the soil matrix becomes unable to infiltrate (as before) more water

than it is supplied by precipitation, because of its limited infiltration capacity,

a “subcritical surface layer of water” is being formed on the surface:

im þ dh

dt
¼ r, h < hs: ð1:27bÞ

3. When the critical depth, hs, is reached, excess rainwater flows over the surface,
filling up soil macropores (fractures, cracks), with the infiltration rate if, and the

following relationship for rainfall excess, re, is valid:

re ¼ r � im � i f , h � hs: ð1:27cÞ

The boundary condition (1.27a) permits water to build up on the surface

(Novak et al. 2002), giving rise to overland flow (Luce and Cundy 1992) and

preferential flow.
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Contrary to the above approach, where the interaction between voids and matrix

domains has a continuous nonequilibrium character, a lumped-parameter model

(Sect. 1.4.1.3) relies on an assumption that a fracture system is allowed to partic-

ipate in infiltration in the form of preferential flow when the matrix is fully saturated

or the infiltration capacity is exceeded, i.e. the preferential flow through voids in

porous matrix is triggered when the ability of the latter to store rainwater is

exceeded.

1.4.1.2 Application of the Green–Ampt Concept to Preferential

Flow Analysis

The interrelation between overland flow and the infiltration into the macropores/

fractures can be analyzed based on simplified models of vertical flow in a periodical

macropore system represented by cylindrical pores or fractures surrounded by

much less permeable porous material. As downward flow in such systems is

initiated when the surface is ponded, the upper boundary condition can be specified

as a pressure boundary. If the soil column is deep enough, the effect of the lower

boundary can be neglected.

The classical problem setup takes into account two main flow-driven forces, i.e.,

the gravity and capillarity. The full description of transient water movement in

structured soils and vadose zone represented by fractured-porous rocks is usually

based on the numerical solution of the Richards’ equation (Šimůnek et al. 2003;

Šimůnek and van Genuchten 2008). Under some simplified assumptions relating

the position of the fracture liquid front as a function of time, it was shown that the

flow problem solutions can be obtiained in the form of integro-differential equa-

tions (Nitao and Buscheck 1991). On the other hand, the kinematic wave theory is

well suited to the problem of flow (and solute transport) in the two overlapping

regions as it was suggested by Germann (1985) and Germann and Beven (1985),

who used a kinematic wave equation to describe gravitational movement of water

in a macropore domain, where capillarity may be neglected.

There are two main conceptual approaches to account for preferential flow in

structured soil (Kohler et al. 2003): (1) continuous dual-domain (or multi-domain)

approach, and (2) discrete (network or structure-based network) approach. The first

approach implies that flow is conceptually separated in different, but spatially

overlapping and interacting continua (domains), one consisting of macroporous

or fracture network, the other, of the porous matrix (Šimůnek et al. 2003; Jarvis

1998; 2007). In the second approach, the voids are taken into account explicitly,

as discrete fine-scale elements with defined shape and physical properties deter-

ministically or stochastically implemented in homogeneous matrix (Wienh€ofer and
Zehe 2014).

In this work, we utilize the first approach because it provides a more rational and

common means allowing us to study the flow problems remaining in the same

mathematical framework, based on a representative elemental volume. To be

specific, but without loss of generality, we treat the soil and vadose-zone material
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as a uniform fractured porous continuum assuming that the fracture network is

surrounded by a homogeneous low-permeability matrix. Both domains represent a

single overlapping system. In such preferential-flow problem formulation, the term

“fractures” can synonymously be used for “macropores” as well.

Similar to Sect. 1.3.2.1, where vertical piston-like (one-phase) flow in homoge-

neous soil under Green–Ampt assumption is considered (Eq. 1.10c), we will start

with continuity equation including a source term, i.e., transfer rate function, Γw(t),

dw

dz
þ Γw t� Ω zð Þð Þ ¼ 0; ð1:28Þ

where w is the specific discharge [LT�1]; Ω (z) is the arrival time of the fracture

front at the depth z from the inlet boundary [T]. Under the assumption that the

structured media act as a uniform dual domain continuum, source-tem can be

postulated as follows:

Γw tð Þ ¼ Sbim tð Þ; ð1:28aÞ

im(t) is the matrix imbibition rate [LT�1]; Sb is the specific surface of the fracture

domain which is defined as the total area of fractures’ surface per volume of the

surrounding soil matrix [L�1].

The correspondence of the model of two overlapping domains, characterized

by Sb and ϕf (fracture porosity), to the model of flow in a single vertical fracture

(with half-aperture b and matrix block half-width a) in contact with porous matrix

(Nitao and Buscheck 1991) can be achieved when the following relationships holds:

Sb ¼ a�1, w ¼ uϕ f (u is the flow velocity in the fracture). An analytical represen-

tation of the imbibition function, im(t), can be obtained from a solution of a

supplementary boundary-value problem related to imbibition in a porous block of

an idealized geometry shape at a certain time scale.

Assuming the Darcy’s law in the fracture domain (Eq. (1.8a), where k ¼ kfs is
the saturated hydraulic conductivity of fractures), and continuity equation (1.28),

we come to the ordinary differential equation:

d2h

dz2
¼ Sb

kfs
im t� Ω zð Þð Þ: ð1:29Þ

The solution of this equation with boundary conditions (1.10a) and (1.10b where

hc � hfc), with the kinematic identity

dz f tð Þ
dt

¼ w z f tð Þ, t� �
ϕ f

ð1:29aÞ

taken into account, leads to an integro-differential equation (Nitao and Buscheck

1991):
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z f tð Þ dz f tð Þ
dt

¼ kfs
ϕ f

z f tð Þ þ hfc þ h0
� �� Sb

ϕ f

ðt
0

im t� ξð Þz f ξð Þ dz f ξð Þ
dξ

dξ; ð1:30Þ

which can be provisionally referred to as extended Green–Ampt equation: if im ¼ 0

we come to Eq. 1.10h, describing the movement of wetting front in a homogeneous

medium (ks � kfs, Δθ � ϕ f , hc � hfc ). The saturation of the fracture domain is

assumed to drop from 1 to 0 (no residual water in fractures).

The infiltrability of the cracked soil material under ponding conditions, f(t),
can be found from the equation of water balance in fractures

w 0, tð ÞF ¼ ϕ f F
dz f
dt

þ SbF

ðz f

0

im t� Ω zð Þð Þdz ð1:31Þ

(F is the surface area), where the left-hand part of (1.31) is the total flux (inlet flux),

and the right-hand part is the sum of the flux at the fracture front and the imbibition

flux into the matrix. The substitution of z ¼ z f ξð Þ in the integral yields

f tð Þ ¼ w 0; tð Þ ¼ ϕ f

dz f
dt

þ Sb

ðt
0

im t� ξð Þ dz f ξð Þ
dξ

dξ: ð1:32Þ

The solution of Eqs. (1.30) and (1.32) involves some mathematical problems.

The asymptotic behavior of the function was examined by Nitao and Buscheck

(1991). In particular, they showed that at early time, the inflow rate is controlled by

the capillary fracture pressure hfc and the boundary pressure h0, and the behavior

of f(t) is consistent with that of a homogeneous imbibing medium, f � t�1=2.

For sufficiently large time, the inlet flow rate approaches the values in a relatively

narrow bend around kfs to πkfs/2 (see below).

The behavior of function zf (t) and other characteristics of the system can also be

studied using approximate solutions. One such solution, obtained by the method of

characteristics for kinematic wave equation, is given below. For one-dimensional

vertical water flow in unsaturated fractured-porous media, a transfer rate function is

included in the continuity equation as follows

∂θ f

∂t
þ ∂w f

∂z
þ Sbim tð Þ ¼ 0; ð1:33Þ

where θ f ¼ θ f z, tð Þ is the soil water content in fracture network; the specific

discharge, w f ¼ w f z, tð Þ, is determined using the one-dimensional form of Darcy’s
law (Bear 1972), assuming a unit hydraulic gradient (i.e., the role of suction

pressure on the wetting front in fractures is insignificant):

w f ¼ k S f

� �
, S f ¼ θ f =ϕ f ; ð1:34Þ
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we assume that the residual water content in the fracture domain is zero; Sf is the
effective (relative) saturation of the fracture domain. Equation (1.33) can be seen to

be similar to infiltration equation for homogenous soils (1.8); however, it contains

a source term responsible for the matrix imbibition of water from fractures.

Using a simple linear relationship

k S f

� � ¼ kfsS f ; ð1:34aÞ

to present the unsaturated hydraulic conductivity, k(Sf), one may obtain from (1.33):

∂S f

∂t
þ k

∂S f

∂z
þ Sb
ϕ f

im tð Þ ¼ 0; ð1:35Þ

where k ¼ kfs=ϕ f .

Let us assume (Rumynin 2011) that the early stage of capillary-controlled water

imbibition by porous matrix is described by Philip’s asymptotic solution for

“horizontal infiltration” (Philip 1957), thus, the imbibition rate is determined by

relationship

im tð Þ ¼ S θms, θ0m
� �

2
ffiffi
t

p ; ð1:36Þ

where S θms, θ0m
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kmshmc θms � θ0m
� �q

is the water sorptivity [LT-1/2]

(Eq. 1.23a, Sect. 1.3.2.2); kms is the saturated hydraulic conductivity of porous

matrix [LT�1]; hmc is the capillary head at the moistening front [L]; θs is moisture

content at complete saturation of the porous matrix; θ0m is the initial moisture

content (at t ¼ 0).

The imbibition function (1.36) can be rewritten in a more tradition form:

im ¼ Δθm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dwe=πt

p
; ð1:37Þ

where Dwe ¼ π=4ð ÞS2=Δθm (the coefficient of effective matrix diffusivity) coin-

cides with the estimate in (Philip 1955); Δθm ¼ θms � θ0m is the initial matrix

saturation deficit. Then, the mass transfer term in (1.37) can be written as

im ¼ ΔθmDwe=l tð Þ, l2 tð Þ ¼ πDwet; ð1:37aÞ

where l(t) is moisture penetration depth into the porous matrix [L]; Δθm/l(t) is the
current moisture gradient [L�1].

Thus, matrix imbibition can be modeled as a linear function of the inverse square

root of time (1/
ffiffi
t

p
). The model (1.37) has some limitation because of the assumption

that the matrix features unlimited capacity. With this point in view, Eq. 1.37 is

approximately true for t << ta (Nitao and Buscheck 1991), where

ta ¼ πa2=Dwe ¼ πS2b=Dwe. For practical estimates, we can assume t < 0:1 ta.
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We represent the system of Eqs. 1.35, 1.37 for the early stage of the infiltration as

∂S f

∂t
þ k

∂S f

∂z
¼ � σSbDwe

l z; tð Þ , 0 < S f � 1; ð1:38aÞ

∂l2 z; tð Þ
∂t

¼ πDwe, 0 < S f � 1;
0, S f ¼ 0;

�
ð1:38bÞ

here σ ¼ θms � θ0m
� �

=ϕ f .

For the further analysis, we hypothesize that, at the very beginning of precipi-

tation event, the rainfall rate quickly exceeds the infiltration capacity of the soil

matrix on its surface, and water from the ponded surface flows into macropores/

fractures. Thus, the one-dimensional infiltration process will be considered under a

prescribed head condition (Basha 1999), and, as a reasonable approximation, one

may assume that the soil surface is wetted to near saturation. The initial moisture

content is considered uniform throughout the soil profile. The above said can be

summarized as follows:

S f 0, tð Þ ¼ 1, S f z, 0ð Þ ¼ 0, l z, 0ð Þ ¼ 0, θm z, 0ð Þ ¼ θ0m: ð1:38cÞ

The solution of the system of partial differential equations (1.38a, 1.38b) can be associated

with a problem related to the determination of two unknown movable boundaries of

saturation, i.e., wetting front in the fractures, t ¼ Ω zð Þ, and wetting front in the rock matrix,

t ¼ ‘ zð Þ (Kosterin and Selin 2000). The time coordinate Ω (z) corresponds to the arrival

time of the wetting front at the depth z from the upper entry boundary. Clearly, the wetting

front t ¼ Ω zð Þ should move with a decreasing velocity and a lag behind the hypothetical

migration front t0 ¼ zϕ f =kfs of solution not imbibed by porous blocks.

The solution of the second equation (Eq. 1.38b) of the system, which serves as an

auxiliary equation in the search for solution of the problem as a whole, can be obviously

written as

l2 z, tð Þ ¼ πDwe t�Ω zð Þ½ �, t > Ω zð Þ: ð1:39Þ

The expression in brackets indicates that the fluid flow from fractures into blocks forms

only after the front, whose time coordinate is t ¼ Ω zð Þ, has reached the point z.
The solution of the governing partial differential equation (1.38a) is sought for by the

method of characteristics, i.e., this equation is replaced by its equivalent in the form of a

system of ordinary differential equations:

d t

1
¼ dz

k
¼ dS f

�σSbDwe=l z; tð Þ : ð1:40Þ

The effective saturation changes along characteristics according to the law determined

by the solution of the second equation of the system (1.40) written as

dS f

d z
¼ � N

l z; tð Þ , N ¼ σSbDwe=k: ð1:41Þ
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Since the saturation varies from 1 to 0 along any characteristic, we can write the integral

identity

N

ðz
0

dz0=l z0ð Þ ¼ 1; ð1:41aÞ

where z is the coordinate of the saturation front, governed by the trajectory of the leading

saturation front t ¼ Ω zð Þ, and

l z0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
πDwe

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω zð Þ � Ω z0ð Þ � z� z0ð Þ=k

q
: ð1:42Þ

Kosterin and Selin (2000) introduced a new function, y zð Þ ¼ Ω zð Þ � z=k, reducing the

integral identity (1.41a) to Abel’s integral equation

ðz
0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y zð Þ � y z0ð Þp ¼

ffiffiffiffiffiffiffiffiffiffi
πDwe

p
N

; ð1:43Þ

whose solution has the form

y ¼ πN=2
ffiffiffiffiffiffiffiffiffiffi
πDwe

p
 �2
z2: ð1:44Þ

Thus, we come to the equation

Ω zð Þ ¼ z

k
þ π
4

σ2λm
k
2

z2, λm ¼ S2bDwe; ð1:45Þ

describing the movement of the leading front of saturation (the time taking the front

to reach depth z from the surface, i.e., the fracture network entrance); λm is the

imbibition coefficient characterizing the capillary-driven transfer. The solution

(1.45) has the following dimensionless form

σ2τ ¼ σ2ηþ π
4

σ2η
� �2

; ð1:46Þ

where η ¼ λmϕ f z=kfs, τ ¼ λm t, λm ¼ S2bDwe.

This solution is in good agreement with the solution obtained earlier (Rumynin 2011) using

the mass-balance integral approach (Barenblatt et al. 1990)

σ2η ¼ 2ffiffiffi
π

p σ
ffiffiffi
τ

p þ exp σ2τ
� �

erfc σ
ffiffiffi
τ

p� �� 1; ð1:47Þ

as illustrated by the plot in Fig. 1.7. Similar results were obtained by other methods by

Castaing (1991), Rangel-German and Kovscek (2001).
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According to (1.45), the equation for determining the current position of fracture

wetting front has the form:

z f tð Þ ¼ 2k

πσ2λm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ πσ2λmt

p
� 1


 �
; ð1:48Þ

and the velocity of front motion is

dz f tð Þ
dt

¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ πσ2λmt

p : ð1:49Þ

Now, the solution for infiltrability (1.32) becomes:

f tð Þ ¼ ϕ f kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ πσ2λmt

p þ Δθm

ffiffiffiffiffiffi
λm
π

r ðt
0

kdξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t� ξð Þ 1þ πσ2λmξð Þp : ð1:50Þ

The integral in (1.50) has a finite analytical representation; therefore, the solution

(1.50) becomes:

f tð Þ ¼ kfs 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ πσ2λmt

p � 2

π
arctan

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πσ2λmt

p
 !

: ð1:51Þ

The solution (1.51) and its graphical representation (Fig. 1.8) quantify the effect

of the fracture and matrix interaction on infiltration rate implying that the capillarity

Fig. 1.7 Relationship

between the dimensionless

depth of wetting front from

the surface and

dimensionless time. The

solid curve is the solution
(1.46); the dashed curve, the
solution (1.47)
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of fracture flow is not significant. The plot in Fig. 1.8 has a maximum at around

πσ2λmt ¼ 3=4 showing that infiltration velocity exceeds the hydraulic conductivity

at saturation by about 20 %. As seen, at the early time, matrix imbibition causes

changes in the pressure distribution in the fracture domain, increasing the effective

weight of liquid column, hence an increase in the vertical flow velocity near the

inflow boundary; therefore, the ratio f/kfs tends to grow over time. Next, gravitation

forces start to dominate over the lateral capillary forces at the fracture–matrix

interface; therefore, infiltration rate decreases, tending to the Darcy’s velocity,

determined by the unit hydraulic gradient and hydraulic conductivity, f � kfs,
i.e., the inlet velocity is independent of matrix capillary properties. Such system

behavior is in agreement with numerical solution of the integro-differential equa-

tions (1.30), (1.32) related to unsaturated flow in a single fracture in contact with

porous matrix (Nitao and Buscheck 1991). It was shown that the inflow rate exhibits

extreme behavior with a maximum around 1.4kfs. Both results demonstrate that the

process of infiltration is weakly sensitive to matrix imbibition properties, so the

capillary forces in the fractures can be neglected for practical purposes.

Finally, we consider the solution of the problem in a wider formulation, account-

ing for the two-phase flow nature of the infiltration process in structured medium,

where gravity, capillary forces, and matrix imbibition act simultaneously. Vertical

flow through a single high-permeability fracture in contact with a lower permeabil-

ity matrix is considered. The simulation was performed with the program package

TOUGH2/EOS3, allowing the solution of two-phase flow problems (Pruess 1991;

2004).

A pressure-head boundary condition is maintained at the inlet boundary. The basic param-

eters of the numerical model are as follows: kfs ¼ 1 md�1, b ¼ 1 	 10�3 m (1 mm),

km ¼ 1 	 10�4 md�1, ϕm ¼ 0:1, θms ¼ 0:1, θ0m ¼ 0:01, Δθ ¼ 0:09, hfc ¼ 0:1 m, h0 ¼ 0.

Fig. 1.8 Relative

infiltrability, f/kfs, as a
function of dimensionless

time, πσ2λmt
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The size of porous matrix in horizontal direction (a) was assumed to be 1 m, thus within the

simulation time (10 days), the imbibition front will not reach the outer boundary of the

model domain, i.e., the matrix behaves like a surrounding with unlimited capacity.

Plots in Fig. 1.9 show that at the beginning of infiltration, while the wetting front is

localized near the inflow boundary, the infiltration rate appreciably exceeds the Darcy

velocity at the unit hydraulic gradient due to capillary forces in the fracture. At that time,

the effect of the matrix is less significant. This effect, however, becomes more considerable

over time, resulting in a higher rate of water infiltration through the inlet boundaries

compared with the case hmc ¼ 0. Soil infiltrability can be seen to be 30–50 % greater

than the infiltrability, determined by fracture capillarity (hmc ¼ 0). Over time, the gravity

becomes the dominant force in the fracture flow, resulting in a decrease in the inflow rate,

which tends to values less than the saturation conductivity. This value, coincides with the

final segment of curves calculated at hfc ¼ hmc ¼ 0.

Overall, the simulation has confirmed the conclusion that the matrix imbibition

has a minor effect on infiltrability from the practical viewpoint.

1.4.1.3 A Lumped-Parameter Model for the Rain-Triggered Near-

Surface Flows

According to the lumped-parameter approach, the preferential flow through soil and

vadose zone discontinuities, e.g., fractures/cracks and macropores, forms when the

ability of the intact matrix to store and drain infiltrating water is exceeded (i.e., a

saturation excess mechanism). Such preferential flow may serve a trigger for

surface runoff when storage and drainage capacities of the fracture or macropore

domain are also exceeded (Struthers et al. 2007). As before, to be specific, we will

Fig. 1.9 Dependence of the relative infiltrability, f tð Þ, on the initial capillary head in the

matrix, hmc (figures at the curves, m): (a) hfc ¼ 0:1 m, (b) hfc ¼ 0:5 m. The dashed curves
are the modeling results for hfc ¼ 0
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treat the near-surface medium as a uniform fractured porous continuum, and the

term “fractures” can synonymously be used for “macropores”.

By employing an equivalent medium representation of soil matrix and fractures (Fig. 1.10),

we may describe the dual-domain system by a set of similar parameters (the subscripts

m and f are for matrix and fracture domains, respectively): the average moisture content, θm,
and θf (both are functions of time); field capacity, θmc and θfc; and moisture content at

saturation, θms and θfs. The governing equations for flow in each domain can be represented

separately as

dSm=dt ¼ im � wm; ð1:52aÞ
dS f =dt ¼ i f � w f ; ð1:52bÞ

where Sm ¼ Sm tð Þ and S f ¼ S f tð Þ are the “zero”-dimensional moisture store in the matrix

and fracture domains, respectively, which can be defined as:

Sm ¼ 1� ωð Þθm tð Þz0, S f ¼ ωθ f tð Þz0; ð1:53Þ

im, if and wm, wf are source functions representing the inflow (associated with infiltration)

and outflow rates (associated with recharge), respectively; ω is the volumetric proportion of

fractures; z0 is the soil depth.
Equations (1.52a) and (1.52b) are not coupled by any transfer functions, but their

solutions are dependent upon prescribed threshold values of rainfall rate and moisture

content in the model domains (Struthers et al. 2007). Thus, the change in rainfall

partitioning between the two domains and the relevant source functions, im and if, is
controlled by three distinct thresholds.

1. For the initial period, prior to matrix saturation, it is assumed that all rainfall volume

enters the pore matrix domain through direct contact at the surface and instantaneous

imbibition (via the capillary suction) of moisture from fractures (Sect. 1.4.1.1), thus

Fig. 1.10 A conceptual

diagram showing main flow

components in a fracture–

matrix system under rainfall

conditions
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im ¼ r, i f ¼ 0; ð1:54aÞ

that is, fracture infiltration is absent during this period which is limited (t � tm) by the

storage and drainage capacities of the matrix domain. In this context, tm is the fracture

flow triggering time.

2. The second period starts ( t > tm ) when the matrix domain becomes saturated and

effective rainfall, represented by the difference

i f ¼ r � im Smsð Þ, im ¼ wm Smsð Þ; ð1:54bÞ

infiltrates the fracture network. Similar to the above, the vertical flow process is limited

by the store and drainage capacities of the fracture domain.

3. The third, final period, associated with surface ponding, begins (t � tp) when the fracture
domain moisture content reaches the saturation limit, θ f ¼ θfs ¼ 1. The source func-

tions are defined as

i f ¼ w f Sfs
� �

, im ¼ wm Smsð Þ; ð1:54cÞ

and runoff with the rate

re ¼ r � wm Smsð Þ � w f Sfs
� � ð1:55Þ

is generated.

To solve Eqs. 1.52a, 1.52b and 1.53, the drainage rates, wm and wf, are to be defined in

terms of moisture system specification. It can be assumed (Struthers et al. 2007) that water

discharge occurs only at storage above field capacity for each domain, at a rate given by

wm tð Þ ¼ Sm tð Þ � Smc
τm

, w f tð Þ ¼ S f tð Þ � Sfc
τ f

; ð1:56Þ

where τm and τf are characteristics of drainage response time for the matrix and fracture

domains.

General solutions of two ordinary differential equations (1.52a), (1.52b) are similar:

Sm ¼ τmim þ Smc þ Cmexp �t=τmð Þ; ð1:57aÞ
S f ¼ τ f i f þ SfcþC f exp �t=τ f

� �
; ð1:57bÞ

where Cm and Cf are constants, which are determined by the initial conditions. For the matrix

domain:Sm ¼ S0m at t ¼ 0 (ifS0m > Smc) orSm ¼ Smc at t ¼ Smc � S0m
� �

=r (ifS0m � Smc); for the

fracture domain: S f ¼ 0 at t ¼ tm.
Recognizing that wm (wf) and Sm (Sf) are connected with each other through (1.56), one

obtains the following solution to the problem:

wm ¼ rτm þ S0m � rτm � Smc
� �

exp �t=τmð Þ� 
τ�1
m , S0m > Smc,

r 1� exp � t� tið Þ=τmð Þ½ �, S0m � Smc;

(

w f ¼ r � wmsð Þ 1� exp � t� tmð Þ=τ f

� �� 
;

ð1:58Þ
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wms ¼ Sms � Smcð Þ=τm, ti ¼ Smc � S0m
� �

=r. Based on the solutions (1.57a) and (1.57b), time

intervals tm and ts (Sm t f
� � ¼ Sms and S f tp

� � ¼ Sfs) can be determined as follows:

tm ¼
τmln

rτm þ Smc � S0m
rτm þ Smc � Sms

, if S0m > Smc,

Smc � S0m
r

þ τmln
rτm

rτm þ Smc � Sms
, if S0m � Smc;

8>><
>>: ð1:59aÞ

tp ¼ tm þ τ f ln 1� wfs

r � wmsð Þ
� ��1

, wfs ¼ z0ω=τ f : ð1:59bÞ

Obviously, surface runoff determined by Eq. 1.30 requires rainfall duration, T, to
exceed fracture flow triggering time, tm, and fracture saturation time (the second term in

1.59b). In addition, it is seen that this criterion depends on the given antecedent moisture

conditions.

Assuming that, after the rain has ceased, the land surface rapidly (theoretically, instan-

taneously) gets free of water layer (t > T), we can use equations (1.52) and (1.56) to obtain
an equation describing the dewatering of the porous matrix and fractures due to the

drainage effect:

wm ¼ wmsexp � t� Tð Þ=τm½ �, w f ¼ wfs exp � t� Tð Þ=τ f

� 
: ð1:60Þ

The response behavior of a fractured soil in terms of the flux component generation by a

rectangular rainfall pulse is illustrated by an example plot in Fig. 1.11. Parameter values are

given in the capture.

The plots in Fig. 1.11 demonstrate that the fractured soil properties selected for this

example are sufficient for the fracture flow to be activated by a given rainfall, and that the

time of runoff generation for the given drainage response time (τm, τf) depends upon the

initial (antecedent) moisture conditions (θ0m).

Fig. 1.11 Influence of

antecedent moisture

condition on the flow rates,

wm, wf, and re. (a) θ0m ¼ 0:4,

(b) θ0m ¼ 0:2. Rainfall

intensity r ¼ 10 mmh�1,

rainfall duration T¼ 4 h.

Other system parameters

are: θms ¼ 0:5, θmc ¼ 0:3,
τm ¼ 20 h, τ f ¼ 1 h,

ω ¼ 0:05, z0 ¼ 10 cm,

θfs ¼ 1, θfc ¼ 0
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1.4.2 Subsurface Macropore Runoff in a Soil Profile
(Hillslope Scale)

In this section, we will focus briefly on factors determining the contribution of

macropores to lateral subsurface flow, namely, to stormwater runoff at hillslope

scale (Sects. 1.2.3 and 1.2.4). This type of preferential flow provides a quick runoff

response in streams. Runoff generation from hillslopes in the presence of variously

oriented macropores has been studied in details by Noguchi et al. (1999), Sidle

et al. (2000, 2001), Freer et al. (2002) and others. In more recent publications,

macropores are not treated to be continuous throughout the soil profile of the

hillslope, thus the relevant downward flow cannot be attributed to individual

macropores (Nieber et al. 2006; Andersen et al. 2009; Nieber and Sidle 2010). It

was proved that preferential flow in the macropore networks is dynamic and that the

extent of their hydrologic activity is influenced strongly by antecedent moisture

conditions (Sidle et al. 2001; Nieber et al. 2006). The initiation of preferential flow

may require certain thresholds related to the extent of soil saturation or saturation at

the soil–bedrock interface to be exceeded (Freer et al. 2002).

Individual macropores that make up preferential flow networks are typically

very short (smaller than approximately 0.5 m in length); however, they are able to

link over relatively long slope distances due to various mechanisms (Sidle

et al. 2001). To quantify the linkage between initially unconnected macropores

and the formation of dynamical network structures, several conceptual models of

preferential flow have been developed.

Modeling results and field observations demonstrate that that the connectivity of

macropore networks and the resistance to overall through flow depend on soil

wetness, the depth of storm water, and hillslope geometry (Fig. 1.12). The increase

in preferential flow is attributed to an expansion of macropore networks in time and

space. Such expansion may occur through a series of complex mechanisms as

antecedent moisture increases (Sidle et al. 2000). The relationship between total

rainfall depth and total preferential flow volume is highly nonlinear and threshold-

like at each site (Uchida et al. 2005). The macropores become effective on large

scales mainly during storm events when the extent of wetness of soil increases

dramatically and the effects of capillary tension decrease (Sidle et al. 2000; 2001;

Beckers and Alila; Uchida et al. 2005; Nieber and Sidle 2010).

Fig. 1.12 The extension of

the macropore network with

an increase in saturation of

the soil network. (a) Dry
conditions, (b) wet
conditions. The shadowed
area – soil with increased

moisture content
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In general, the analysis of available publications has shown that the preferential

flow is a significant component of the subsurface water balance, and the connectivity

of the preferential flow network is an important factor governing the subsurface

runoff and thus controlling solute transport. However, a certain rainfall threshold is

required to trigger rapid preferential flow near the surface or in the deeper part of the

soil profile. The inclusion of the preferential flow in modeling analysis usually

showed clearly better results than modeling without preferential flow.

At the same time, it is obvious that each hillslope is unique and may have more

or less developed preferential flow networks that are activated only under certain

fallout and antecedent moisture conditions. For example, some field studies show

that greater rain event frequency promotes preferential flow and transport when

storms are smaller in magnitude (McGrath et al. 2010). Other studies show quite

different tendency (Andersen et al. 2009). Therefore, to model hillslope behavior

properly, it is important to be able to carry out high-density field survey at hillslope

scale supported by high resolution of rainfall records.

1.5 Non-Infiltration Types of Rainfall Losses

Apart from rainfall loss due to infiltration, which has been discussed in the previous

section, there are three processes that can affect runoff generation and flow path

dynamics: (1) the interception of rainfall by plants and soil vegetation, (2) the

retention and storage of water in surface depressions, and (3) evapotranspiration.

The former two processes are commonly called the surface retention loss or initial

(prior to any surface runoff) abstraction. The latter process mostly affects runoff

implicitly, because moisture conditions of the soil mantle and its contribution to

watershed water budget become important only for long-term forecasting. Evapo-

ration is also considered as a part of the total surface retention loss.

1.5.1 Interception

Interception is defined as the process of evaporation from intercepted rainfall, or,

quantitatively, the amount of daily rainfall that evaporates, thus, the process has a

typical timescale of 1 day. Such surface retention losses for various surface cover

conditions and land-use can vary considerably, from a hundredth to a tenth of inch

(per day) reaching, e.g., up to 50 % of the total precipitation falling as rain on

forests in temperate humid latitudes (Savenije 2004; Gerrits et al. 2010). Intercep-

tion is an important water flux component, especially in semi-arid catchments,

where a few intense rainfall events may generate much of the season’s runoff

(Lange and Leinbundgut 2003; Love et al. 2010) mostly in a form of infiltration

excess overland flow. Therefore, interception causing less water to be available for

infiltration may play a controlling role in runoff generation determining the water
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balance trends and water cycle of catchment areas. Obviously, from this viewpoint,

interception may be responsible for the spatial and temporal (seasonal) distribution

of infiltration and, consequently, groundwater recharge.

As many hydrological processes, interception is considered as a threshold

phenomenon depending on time scale, rainfall intensity and some evaporation

characteristics. Usually interception is modeled as a threshold process at a daily

time scale (De Groen 2002; Savenije 2004; Love et al. 2010):

Id ¼ min Pd; Ddð Þ,

where Id is the daily interception; Pd is the daily rainfall; and Dd is the daily

interception threshold. The value of Dd may vary over seasons and depends on

meteorological conditions. According to the threshold concept, only the amount of

rainfall that exceeds the threshold takes part in subsequent processes such as infiltra-

tion and surface runoff. If some rainfall was intercepted on the previous day, and the

amount of intercepted rainfall was more than could be evaporated on that day, some

moisture will remain in interception storage until the next day (Love et al. 2010).

Using special statistical procedures and time series analysis, the daily intercep-

tion can be upscaled to monthly or annual interception (De Groen and Savenije

2006). For expert evaluations, one may use tabular information or empirical

relationships represented in the reference literature (Gash 1979; Van Dijk and

Bruijnzeel 2001).

1.5.2 Depression Storage

On the surface of a natural catchment, overland flow retention is determined by the

gradual filling of micro-relief surface depressions with rainwater. Depression

storage contributes considerably to the initial rainfall abstraction showing some

threshold effect (Luce and Cundy 1992). Depressions represented by negative

landforms vary in size from place to place across a catchment, resulting in that

small depressions are almost immediately filled up at the beginning of a rainfall,

whereas the larger ones remain only partially filled with water during the whole

rainfall event. The phenomenon may proceed at varying rates depending upon the

physical conditions of a catchment.

To assess the effects of water surface storage on overland flow, a simplified lumped model

was offered by Linsley et al. (1949):

V ¼ Sd 1� exp �P� F

Sd

� �� �
; ð1:61Þ

where V is the volume of water stored (mm); Sd is the maximum depression storage

capacity (mm); P� F is the rainfall that reaches the surface (mm) minus infiltration

depth (mm). Then the supply rate, v, to the depression storage becomes:

44 1 Surface Runoff Generation, Vertical Infiltration and Subsurface Lateral Flow



v ¼ dV

dt
¼ Sd

Sd
exp �P� F

Sd

� �
d P� Fð Þ

dt
¼ r � fð Þexp �P� F

Sd

� �
; ð1:62Þ

where r is the rainfall rate, f is the infiltration capacity. From here, the rainfall excess rate is

defined as

re ¼ r � f þ vð Þ ¼ r � fð Þ 1� exp �P� F

Sd

� �� �
: ð1:63Þ

At the beginning of the rainfall, when F � P, the exponent in Eq. (1.63) is close to

1, and the excess fallout available for surface runoff is negligible, while, as the fallout

continues the exponent in Eq. (1.36) quickly approaches zero, and the rate re takes a

standard form (Eq. 1.1b).

1.5.3 Evapotranspiration

Evapotranspiration (actual, ET), is a major component of the hydrological cycle,

significantly affecting the hydrological response of watersheds. It accounts for the

water that plants extract through their roots from the soil. ET depends on a highly

complex set of processes and local conditions, such as plant type, as well as climate

and soil characteristics, in particular, soil moisture content. Many approaches are

known to enable the evaluation of this component of the hydrological cycle.

One of the ways is to determine ET through a supplementary assessment of a

potential evapotranspiration (PET). PET is water demand (maximum possible

evapotranspiration when there is plenty of water available in the soil), while ET

is actual water use (which depends on how much water is really available). Many

simple and rather sophisticated models for PET rate prediction are known; they

were reviewed in a number of publications (Dunn and Mackay 1995; Allen

et al. 1998; Dingman 2002). The most commonly used are the Penman equation,

and Thornthwaite’s, Turc’s, and Blaney-Criddle formulas. Some authors believe

that the evaporation has much less spatial and temporal variability than rainfall, and

the average monthly evaporation can be used as a surrogate for daily evaporation

without any significant loss of accuracy in the modeling of runoff (Chapman 2003).

We can hypothesize that the actual evapotranspiration rate (denoted as ET
[LT�1]) increases linearly from zero when the soil water content reaches the wilting

point, θwp (soil is nearly dry), to the potential rate (denoted as PET [LT�1]) at

critical moisture content, θfc, corresponding to field capacity. Following this logic,

we come to the threshold type of equations:

ET ¼ 0 when θ < θwp; ð1:64aÞ
ET ¼ θPET when θwp � θ < θfc; ð1:64bÞ
ET ¼ PET when θ � θfc; ð1:64cÞ
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the dimensionless moisture content in (1.64b) is determined by

θ ¼ θ� θwp
� �

= θfc � θwp
� �

. This type of ET behavior (Eqs. 1.64a, 1.64b and

1.64c) is illustrated by Dingman (1994). The structure of ET function as represented

by Eq. (1.64) has been incorporated in many well-known water balance models

(Bergstr€om 1992; Kling and Gupta 2009; see also Sect. 5.4.2). Some additional

comments can be found in a review by Xu and Singh (2004).
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Chapter 2

Rainfall-Induced Runoff and Subsurface
Stormflow at the Hillslope Scale

Surface runoff (or overland flow), which is generated by the precipitation that falls

within a drainage area (catchment, watershed), is governed by several factors and

processes, including rainfall rate and duration, the characteristics of infiltration

(capillary imbibition and gravity-driven) and the temperature regime of soil, land-

scape surface characteristics, vegetation type, and some others. Hillslopes are

regarded as a basic element of catchments, therefore the mathematical and physical

description of the hydrological processes that occur at the hillslope scale is the first

step to designing more general hydrological models describing hydrological

response at catchment/watershed scale.

Surface runoff can be also generated by snowmelt. To predict snowmelt-induced

runoff, the frozen subsurface domains are to be mathematically described using

coupled models of subsurface heat and mass transfer. This description is a separate

research problem, which is out of the scope of this work. However, in some

simplified settings, snowmelt-induced runoff and rainfall runoff can be treated in

a similar manner.

When runoff flows over the ground surface, it can pick up soil contaminants

(fertilizers, pesticides, heavy metals, radionuclides, petroleum, and others) to

become a part of a nonpoint pollution source. The process of contaminant detach-

ment is accompanied by erosion of the soil and other materials, which increases

water turbidity. Runoff maintains transport of contaminants in the form of dissolved

solutes or/and colloidal/suspended matter (in adsorbed state) from drainage areas

toward the discharge zones of streams into river network or surface water reservoirs

(either natural or artificial). Rainwater also accumulates in surface depressions,

which may focus infiltration over a relatively small area.

Such water flow and solute transport processes can be described by rigorous

mathematical procedures based on systems of differential equations of continuity,

mass conservation, and momentum balance (physically-based models with distrib-

uted parameters), or by models based on functions and parameters averaged over

time and space (lumped parameter models).
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In this chapter, we discuss a widespread approach, which is based on 1D

equation of kinematic wave and used to describe surface runoff at the hillslope

scale. Such physically based model, dealing with the so-called sheet-flow, can more

easily be used in the prediction of the depth of water flowing over a sloped surface,

which is the main characteristic of the hydrological process. However, such reduc-

tion of dimensionality may lead to misrepresentation of important effects, which

are controlled by the spatial pattern of surface water flow, such as lateral flow

convergence/divergence and water storage in surface depressions. Thus, as the

runoff rate increases downslope, the flow converges into micro-scale channels

called rills, which gradually develop until they form large-scale channels called

gullies (Julien and Simons 1985). In this work, we focus exclusively on sheet-flow

(interrill flow) processes.

The derivation of a catchment unit hydrograph caused by a storm rainfall is often

related to two flow components, i.e., surface (overland flow) and subsurface

(saturated subsurface stormwater flow). Saturated flow in hillslope soil is consid-

ered to be initiated when the wetting front from infiltration of rainwater arrives at

the lower boundary of a permeable soil layer or shallow water table. Such lateral

movement of soil water can occur at any stage of rainfall, which precedes or

accompanies surface runoff generation. Therefore, it is logical to consider in this

chapter the time-dependent response of this type as a supplemental flow component

in a hillslope hydrograph based on the 1D approach, as well.

Despite the obvious limits of 1D models with simplified hydrology, they dem-

onstrate the effects of dominant mechanisms, which are in common in all watershed

systems. This chapter, which gives an overview of this theoretical framework, is

based on well-known approaches to the description of the dynamics of near-surface

flows. This will help develop mathematical models for the description of solute

transport in surface and subsurface runoff, which is the subject of the following

chapters.

2.1 Kinematic Flow Approximation to Runoff on Idealized
Hillslopes and Basic Characteristic Solutions

A rigorous enough description of overland flow is provided by shallow-water

equations for a layer with horizontal velocity components ux and uy (along the

x and y coordinates, respectively), vertically averaged within a layer of thickness h,
the so-called Saint-Venant equations, including equations of continuity and the

conservation of momentum (Chow 1959). This system is also referred to as the

system of equations of dynamic wave. Under certain conditions, this system

degenerates into particular equations of diffusion or kinematic wave. Most

researchers agree in that the best applicable approximation used to solve overland

flow problem is the kinematic wave approach as a special case of the diffusion

approximation (Eagleson 1970; Govindaraju et al. 1988, 1990). The suitability and
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success of the kinematic wave approach in the description of overland flow on

simple surfaces have been proved by many authors (Woolhiser and Liggett 1967;

Parlange et al. 1981; Rose et al. 1983; Govindaraju et al. 1988, 1990; Singh 1997).

Analytical solutions have been developed mostly using the method of characteris-
tics for idealized flow patterns, and initial and boundary conditions.

The kinematic wave equation, as a form for representation of unsteady-flow

continuity equation for the overland flow, can be written as

∂A
∂t

þ∇Q� Fw ¼ 0; ð2:1Þ

where A is the cross section area of the overland flow [L2]; Q is the total discharge

[L3T�1]; Fw is a source/sink function characterizing lateral inflow or outflow owing

to rainfall and/or infiltration [L2T�1].

For a conceptual representation of a watershed geometry (Fig. 2.1a), two sim-

plified hillslope configurations can be suggested, i.e., a rectangular plane (Fig. 2.1b)

and a converging area (Fig. 2.1c).

For flow on a rectangular plane with a constant width, B, the volumetric flux

(overland flow discharge) per unit width, q ¼ q x, tð Þ, is defined as q ¼ Q=B, the
cross-section area equals A ¼ Bh, and the source/sink term is Fw ¼ B r � ið Þ. Now,
the continuity Eq. (2.1) takes the form:

∂h
∂t

þ ∂q
∂x

¼ r � ið Þ; ð2:2Þ

where h ¼ h x, tð Þ is the current water depth [L]; the difference (r � i), termed as re,
is the rainfall excess, i.e., the portion of the rainfall that ponds on the surface during

Fig. 2.1 (a) Fragmentation

geometry of watershed

landscape (left- and right-
bank and upstream

sub-basins), (b) rectangular
plane, (c) converging
surface
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the period when the rainfall rate, r [LT�1], exceeds the infiltration capacity, or

infiltration rate, i [LT�1]; all these flow components can be time-dependent.

For flow on a converging surface, the width B can be assumed to vary linearly

with R� xð Þ: B ¼ θ R� xð Þ, and θ ¼ �dB=dx. Then the continuity equation has a

one-dimensional form as well:

∂h
∂t

þ ∂q
∂x

¼ r � ið Þ þ q

R� x
: ð2:2aÞ

Geometric interfacing of the two hillslope configurations requires a relationship

L ¼ R 1� cð Þ to hold as shown in Fig. 2.1, where c is the degree of convergence for
the converging surface. The values of c vary from 0 to 1, depending on the

watershed geometry. If c approaches 1, this means that the converging representa-

tion transforms into a rectangular-plane one.

The dynamics of different flow components in Eqs. (2.2) and (2.2a) is illustrated

by Fig. 2.2 where the input function, r, corresponds to a rainfall event with

duration T. It can be seen that, once the surface is ponded, t > tp, the infiltration

rate, i, drops, but rainfall excess, re, increases. The specific flux at the outlet of the

slope, qL/L, first lags behind the curve re because of the inertial character of flow
formation on the slope.

In reality, even on slopes that may appear ideal, the spatial pattern of runoff is

rather complex, because of the effect of microrelief, which contributes to the

formation of preferential flow paths (runoff in rills). Because of this, function h is

an effective characteristic of the process, and it would be more correct to call it

effective surface water depth.

Thus, we have one continuity equation (Eqs. 2.2 or 2.2a) containing two

unknowns, q and h. To close the equation set we must combine this equation with

the equation of motion in a form of flow-resistance relationship

q ¼ αhn; ð2:3Þ

which uniquely relates water flux and surface water depth; the relationship (2.3) in

the power form (n> 1) is of fundamental character; here α is a parameter that

Fig. 2.2 Components of

drainage flux in a hillslope
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accounts for the effect of friction forces, commonly, α ¼ S
1=2
0 =m [L2�nT�1]; S0 is

surface slope [LL�1], m is Manning’s roughness coefficient; this is an empirically

derived coefficient, which is dependent on many factors, including surface rough-

ness and sinuosity; its dimension depends on the exponent n (flow regime charac-

teristic); in the case of turbulent flow, n¼ 5/3 (so that m [TL�1/3] and α [L1/3 T�1]),

in the case of laminar flow, n¼ 3; some researchers suggest an intermediate value

n¼ 2 to be used (a flow with mixed/transient hydrodynamic regime). Thus, the

overland flow discharge, q, is determined, other conditions being the same, by the

slope and roughness of the land surface.

The derivative ∂q=∂h has units of velocity and is called the kinematic wave

celerity, ck. The relationship for ck, following mathematically from the law of

motion (Eq. 2.3), is

ck ¼ ∂q
∂h

¼ αnhn�1: ð2:3aÞ

Another form of kinematic wave celerity can be given by

ck ¼ αnhn

h
¼ n

q

h
¼ nu: ð2:3bÞ

As can be seen, the kinematic wave celerity is n times greater than the flow velocity,

u ¼ q=h.
Substituting (2.3) into (2.2) and (2.2a), we obtain equations

∂h
∂t

þ αnhn�1 ∂h
∂x

¼ r � i; ð2:4Þ
∂h
∂t

þ αnhn�1 ∂h
∂x

¼ r � ið Þ þ αhn

R� x
; ð2:4aÞ

referred to as kinematic wave model for two simplified geometric configurations of

hillslope surface (Fig. 2.1, b, c).

2.2 Overland Flow Over Impermeable Surface

When the fallout duration is limited to interval T, the function r is step-wise

r x; tð Þ ¼ r > 0, 0 � t < T; r x; tð Þ ¼ 0, t > T; ð2:5Þ

and the initial and boundary conditions for function h can be written as:

h x, 0ð Þ ¼ 0, 0 � x � L; h 0; tð Þ ¼ 0, t � 0; ð2:6Þ
h x, 0ð Þ ¼ 0, 0 � x � R 1� cð Þ; h 0, tð Þ ¼ 0, t � 0 ð2:6aÞ
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for overland flow over a rectangular and converging surfaces, respectively. As one

may see, the kinematic wave approximation needs no downstream boundary con-

dition because the characteristics move in the forward direction only (Govindaraju

et al. 1990), and therefore it takes no account of downstream effects in the vicinity

of the outlet boundary (Beven 1981; Singh 2002a). These boundary constraints are

quite common in surface flow hydrology, and they are applicable to a large class of

problems. Some limitations of the simplified boundary conditions (2.6) are

discussed in papers by Govindaraju with co-authors (1988, 1990).

In this section, we consider partial solutions of (2.4), (2.4a) with the flow

assumed to form on an ideal impermeable (i ¼ 0) plane with a slope S0 ¼ H=L
(Fig. 2.3). With i ¼ 0, Eqs. (2.4) and (2.4a) take simpler forms

∂h
∂t

þ αnhn�1 ∂h
∂x

¼ r; ð2:7Þ
∂h
∂t

þ αnhn�1 ∂h
∂x

¼ r þ αhn

R� x
: ð2:7aÞ

The features of overland flow dynamics, which are reflected in the character of

water depth function, h, on the surface are given in Fig. 2.4. As can be seen from the

plots, (1) the hydrograph generated by rainfall of restricted duration, T, features
different spatial and temporal behavior of function h; it can be (a) not stationary, but
constant within some, long enough, segment along the direction of flow, x,h ¼ h tð Þ;
(b) stationary, but increasing along the flow (from the water divide line x¼ 0

toward its discharge zone x¼ L ), h ¼ h xð Þ; (c) varying over both time and space,

h ¼ h x, tð Þ; (2) depending on rainfall duration, T, the profile of the hydrodynamic

flow (hydrodynamic wave) can be (a) equilibrium (when, at t � T, the flow depth

in the section x ¼ L reaches its maximal possible value h, corresponding to

steady-state flow), or (b) partial equilibrium (when the rainfall or rainfall excess

ends, t¼ T, before the hydrodynamic wave that originates at the top of the sloped

plane reaches the outlet of the plane).

Fig. 2.3 A conceptual

representation of overland

flow formation on a

homogeneous impermeable

surface. h(x, t) – water depth

profile at t < t∗e ; h x, t∗e
� �

–

equilibrium water depth

profile (t � t∗e )
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2.2.1 Basic Characteristic Solutions

The Eq. (2.7) accompanied by the initial and boundary conditions (2.6) corresponds

to a model of overland flow on a rectangular geometry hillslope (Fig. 2.1a, b). It can

be solved by the method of characteristics, which converts the partial differential

equation to a system of ordinary differential equations (Eagleson 1970; Singh 1996)

dt

1
¼ dx

αnhn�1
¼ dh

r
; ð2:8Þ

expressing the absolute time variation of water depth along the characteristic

curves. More precisely, characteristic curves t(x), which are defined by the loci of

points in the time–space plane (Fig. 2.5), are particular solutions of the first

equations in the system (2.8). The second equation in the systems (2.8) is for

water depth and the distance along characteristics t(x).
The Eq. (2.7a) corresponding to a model of overland flow on a converging

surface (Fig. 2.1a, c) has also a form of representation through a system of ordinary

differential equations

Fig. 2.4 Spatial (1D) and temporal distributions of water depth at the surface, h(x) and h(t), for the
cases of formation of equilibrium (a, b) and partial equilibrium (c, d) hydrographs at limited

rainfall duration T
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dt

1
¼ dx

αnhn�1
¼ dh

r þ αhn= R� xð Þ : ð2:8aÞ

There are two major domains related to rising and falling stages of the overland

flow (sometimes termed the rising and recession limbs of the surface flow

hydrograph).

Rising stage of the overland flow (rising hydrograph) Let the displacement of

an arbitrary point, x0, on the free surface of liquid flow moving downward along the

sloped rectangular plane since the moment of precipitation start, t¼ 0, be x� x0
(Fig. 2.5a). Within this time, t(x, x0), the flow depth, h, increases from 0 to the value

h(x, x0), which can be obtained by the integration of the second equation in the

system (2.8):

h x, x0ð Þ ¼ r

α
x� x0ð Þ

� �1=n
: ð2:9Þ

Substituting (2.9) into the first Eq. (2.8) and integrating it from 0 to t ¼ t x, x0ð Þ,
we obtain the characteristic:

t x, x0ð Þ ¼ r�1 r

α
x� x0ð Þ

h i1=n
: ð2:10Þ

In other words, function h varies along characteristic (2.10) according to (2.9).

The function t(x, 0) is the main flow characteristic curve, which originates at the top

of the slope at the start of rainfall. It is also termed the equilibrium characteristic

Fig. 2.5 Characteristic lines for (a) equilibrium water depth profile and (b) partial equilibrium
water depth profile at limited fallout duration, T
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because it denotes the time at which the flow reaches steady state under constant

rainfall (see below).

Now, combining (2.9) and (2.10), we obtain the relationship:

h tð Þ ¼ rt; ð2:11Þ

which implies a linear dependence of the depth h on the process time, t (Fig. 2.4a, b);
the applicability domain of (2.11) is determined by the condition of hydrodynamic

equilibrium of water layer on the slope and the period of rainfall, as follows from

the analysis below.

Let us assume that the duration of rainfall, T, is long enough for the hydrody-

namic wave to reach the discharge zone of the overland flow x ¼ L, i.e., T > t∗e ,

where t∗e is the formation time of equilibrium profile of flow (Fig. 2.5a).

According to (2.11), water depth in any point (any cross-section of the flow)

increases with constant velocity dh=dt ¼ r, which does not depend on x. Such
regime, with flow rate varying in time but constant along the direction x, can be

seen in any flow section until the moment t ¼ te when the boundary wave, which

originates from water divide, reaches this section, i.e.,

te ¼ t x, 0ð Þ ¼ r�1 rx

α

� �1=n
ð2:12Þ

(see Eq. 2.10 at x ¼ x0 ¼ 0). Time te is termed the time of concentration, which is

the equilibrium time required for an impervious slope surface to reach steady state

under constant (excess) rainfall intensity. For the time when equilibrium is reached

all over the slope with a length L, the time of concentration is

t∗e ¼ t L, 0ð Þ ¼ r�1 rL

α

� �1=n

� h L, 0ð Þ
r

: ð2:13Þ

Since the moment t ¼ te, in point, x, as well as in the upstream domain, (0, x), the
flow is steady-state, but its rate increases in the direction from water divide toward

the discharge domain

q ¼ q xð Þ ¼ rx: ð2:14Þ

The equation of characteristic for any point t ¼ t0 > 0 takes the form

t ¼ t0 þ r�1 rx

α

� �1=n
; ð2:15Þ

and the flow surface in this case is described by a power function

h xð Þ ¼ rx

α

� �1=n
: ð2:15aÞ
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Formalizing the above reasoning, we can write particular solutions of the

problem, which correspond to the transient period of wave formation (t < te) and
the steady state phase of the process (te � t � T), in the generalized form:

h ¼ h tð Þ ¼ rt, 0 � t � te � T,
h xð Þ ¼ rte, te � t � T:

�
ð2:16Þ

In a manner similar to that described above, the method of characteristics can be used to

solve Eq. 2.7a or its differential-system analogue, Eq. 2.8a, considered in the context of

overland flow on a converging surface (Fig. 2.1a, c). However, before searching for

the solution, it seems reasonable to re-write the equations in dimensionless form using

the depth of flow in the equilibrium state hL ¼ h Lð Þ (2.15a) and the time to equilibrium

te ¼ t L, 0ð Þ (2.12) for flow on the rectangular plane as normalizing constants (Singh and

Woolhiser 1976; Shokoohi and Saghafian 2012): h* ¼ h=h Lð Þ, t∗ ¼ t=te, x∗ ¼ x=R 1� cð Þ.
With these dimensionless variables substituted into (2.7a), we obtain the following

equation:

∂h∗
∂t∗

þ nhn�1
∗

∂h∗
∂x∗

¼ 1þ 1� cð Þhn
∗

1� 1� cð Þx∗ : ð2:17Þ

Note, that α no longer exists in the dimensionless model (2.17). In its turn, the system of

ordinary differential equations (2.8a) is transformed to become:

dx∗
dt∗

¼ nhn�1
∗ ; ð2:17aÞ

dh∗
dt∗

¼ 1þ 1� cð Þhn
∗

1� 1� cð Þx∗ : ð2:17bÞ

A solution of this problem by the method of characteristics has been derived earlier

(Singh and Woolhiser 1976; Sherman and Singh 1976; Campbell et al. 1984). Therefore,

only some basic relationships will be given here. Among them is one of the characteristics

describing the response time of watersheds, namely the time of concentration. To evaluate

the time of concentration requires the solution of Eqs. (2.17a) and (2.17b) when the

characteristic passing through the origin x ¼ 0 ( x∗ ¼ 0 ) intersects the downstream

boundary at x ¼ L ¼ R 1� cð Þ (x∗ ¼ 1) as shown in Fig. 2.1c. Upon dividing Eq. 2.17a

by Eq. 2.17b we obtain:

dh∗
dx∗

¼ 1

nhn�1
*

þ 1

n

1� cð Þh∗
1� 1� cð Þx∗ : ð2:17cÞ

Integration of Eq. 2.17c yields a steady-state profile (Singh and Woolhiser 1976;

Agiralioglu 1981; Shokoohi and Saghafian 2012):
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h∗ ¼ 1� c

1� 1� cð Þx∗

ðx∗
0

1

1� c
� x∗

� �
dx∗

2
4

3
5
1=n

¼ x∗ 2� x∗ 1� cð Þð Þ
2 1� x∗ 1� cð Þð Þ

	 
1=n
: ð2:17dÞ

Substituting x∗ ¼ 1 into (2.17d), we find the dimensionless equilibrium value

h∗ð Þe ¼ 1þ cð Þ=2cð Þ1=n: ð2:17eÞ

Further, from Eq. 2.17a it follows

t∗ ¼ 1

n

ðx∗
0

h1�n
∗ dx∗: ð2:17fÞ

To determine the dimensionless characteristics t∗ð Þe, i.e., the ratio of the time of concen-

tration for a converging surface, tec, to the time of concentration for a rectangular surface,

te, one can substitute h∗ x∗ð Þ from (2.17d) into (2.17f), assuming the upper integration limit

to be 1:

t∗ð Þe �
tec
te

¼ 1

n
2 n�1ð Þ=n

ð1
0

1� x∗ 1� cð Þ
x∗ 2� x∗ 1� cð Þð Þ
	 
 n�1ð Þ=n

dx∗: ð2:17gÞ

Thus, assuming n to vary from 3/2 to 3 and c, from 0 to 1, from numerical computa-

tions based on the integral solution (2.17g), a range for dimensionless characteristics

t∗ð Þe has been obtained (Agiralioglu 1984) as follows: t∗ð Þe � 0:85 (c ¼ 0) – 1 (c ¼ 1).

The converging representation is seen to yield shorter time of concentration than the

rectangular one does under the same conditions. This is what one would expect from the

fundamental principles of unsteady free-surface flow (Agiralioglu 1984). Rainwater

concentrates in converging directions on the converging surface. Therefore, the flow

velocity is relatively greater than that for a rectangular plane surface, depending on the

degree of convergence. The dimensionless time of concentration, t∗ð Þe, decreases with
decreasing c.

Some other examples related to the study of the effects of hillslope geometry

and topography on the time of concentration considering the degree of flow

convergence as well as the curvature of slope profile can be found in many other

publications (Agiralioglu 1981, 1984, 1988; Shokoohi and Saghafian 2012;

Sabzevari et al. 2013).

Falling Stage of the Overland Flow (Recession Hydrograph) After the cessa-

tion of the rain, t > T > t∗e (the equilibrium profile has formed before the rain

ceased), in the recession period, water depth, h, becomes a decreasing function of
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two coordinates, h ¼ h x, tð Þ. The characteristic solution of the problem of flow on a

rectangular plane is given by equations (Singh 2002a):

h x, x∗0
� � ¼ rx∗0

α

� �1=n

; ð2:18Þ

t x, x∗0
� � ¼ T þ x� x∗0

αn

� �
α
rx∗0

� � n�1ð Þ=n
; ð2:19Þ

where x∗0 is a parameter, which represents the point of intersection of the charac-

teristic t ¼ t x, t0ð Þ with the line t¼ T on the plot of characteristics (Fig. 2.5a).

Eliminating x∗0 from (2.18) and (2.19), we obtain the following transcendent

equation

x ¼ αhn�1 h

r
þ n t� Tð Þ

	 

, t > T > t*e ; ð2:20Þ

describing the decrease in water depth at the recession period. Clearly, at this

process stage, flow discharge is also a function, varying over time and space in

the entire model domain, q ¼ q x, tð Þ.
Now let us consider a partially equilibrium profile of overland flow, which

corresponds to the case where rainfall duration is less than the time within which

full equilibrium profile will form, i.e., T < t∗e . As can be seen (Figs. 2.4c, d and

2.5b), a particular section is h xð Þ (x ¼ αTnrn�1), which divides the domain into two

zones (upper and lower), which differ in terms of the hydrodynamic regime of the

flow at the stage of process recession (t > T). For sections h x < xð Þ, the cessation of
precipitation implies an immediate drop in water flow rate and a decrease in its

layer thickness on the surface. In sections h x > xð Þ, the flow rate will remain

constant for some time (T � tp ) after the cessation of precipitation. The features

mentioned above are reflected in the generalized solution:

h tð Þ ¼ rt, 0 � t � T � t*e ; ð2:21aÞ
h xð Þ ¼ rT, T < t � tp; ð2:21bÞ
x ¼ αhn�1 h=r þ n t� Tð Þ½ �, t > tp; ð2:21cÞ

where

tp ¼ T 1þ 1

n

te
T

� �n
� 1

� �	 

: ð2:21dÞ

The latter relationship follows from the characteristics solution of the problem

(Singh 2002a)
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h x, x∗0
� � ¼ rT; ð2:21eÞ

t x, x∗0
� � ¼ T þ x� x∗0

αn

� �
rTð Þ1�n: ð2:21fÞ

Thus, theoretically, the solution (2.21a), (2.21b), and (2.21c) implies that, after

the cessation of a short-time rainfall (T < t∗e ), hillslope hydrograph should feature a

plateau-like interval q x ¼ L,T < t < tp
� � ¼ const.

The solutions of the problems considered above can be expressed in terms of

overland flow discharge function. In the case of equilibrium profile, the following

dimensionless solutions correspond to the above solutions (2.16) and (2.20)

q ¼ τn 0 � τ < 1, r � 0,

q ¼ 1 1 � τ < τ0, r � 0,

q 1þ nq�1=n τ� τ0ð Þ� � ¼ 1, τ � τ0, r ¼ 0;
ð2:22Þ

here q ¼ q=qe, qe ¼ rx, τ ¼ rt=h0 � t=te, τ0 ¼ rT=h0; h0 ¼ rx=αð Þ1=n. It is seen that
for initially dry condition and constant rainfall, runoff discharge, q(t), monotoni-

cally increases from 0 (for t ¼ 0) to α(rte)n (for t ¼ te < T). The period te < t < T is

characterized by a constant overland discharge, q ¼ qe ¼ rx. Starting with t ¼ T,
q(t) reduces quite slowly to 0.

To quantify the nonequilibrium profile (2.21a), (2.21c), we have expressions:

q ¼ τn 0 � τ < τ0, r � 0,

q ¼ τn
0 τ0 � τ < τ p, r ¼ 0,

q 1þ nq�1=n τ� τ p

� �� � ¼ 1 , τ � τ p, r ¼ 0 ;
ð2:22aÞ

where τ p ¼ τ0 1þ τ�n
0 � 1

� �
=n

� �
. The second equation in the system (2.22a)

indicates that, after the cessation of precipitation, the flow discharge remains

constant for some time (T � tp).

Finally, the analytical description of the problem of flow on a converging surface
(Fig. 2.1c) in the recession period (in the absence of rainfall) requires consideration of

Eq. 2.7a in which r¼ 0. This equation is transformed into a dimensionless form as follows:

∂h∗
∂t∗

þ nhn�1
∗

∂h∗
∂x∗

¼ 1� cð Þhn
∗

1� 1� cð Þx∗ : ð2:23Þ

As above, Eq. (2.23) can be restated to become a system of ordinary differential equations:

dh∗
dt∗

¼ 1� cð Þhn
∗

1� 1� cð Þx∗ ; ð2:23aÞ

dx∗
dt∗

¼ nhn�1
∗ : ð2:23bÞ
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Equation (2.23a) with the initial condition h∗ ¼ h0∗ at x∗ ¼ x0∗ has a solution

h∗ ¼ h0∗
1� 1� cð Þx0∗
1� 1� cð Þx∗

	 
1=n
; ð2:23cÞ

where h0∗ is the initial depth which can be calculated from the steady-state profile (2.17d)

assuming x∗ ¼ x0∗:

h0∗ ¼ x0∗ 2� x0∗ 1� cð Þ� �
2 1� x0∗ 1� cð Þð Þ

	 
1=n
: ð2:23dÞ

Then the differential equation for the characteristic curve (2.23b) becomes:

dx∗
dt∗

¼ n h0∗
� �n�1 1� 1� cð Þx0∗

1� 1� cð Þx∗

	 
 n�1ð Þ=n
: ð2:23eÞ

After separation of variables, the Eq. (2.23e) can be integrated in the intervals [t0∗ � t∗],

[x0∗ � x∗] to give the desired solution:

t∗ ¼ T∗ þ A x0∗
� �

1� 1� cð Þx0∗
� � 2n�1ð Þ=n � 1� 1� cð Þx∗ð Þ 2n�1ð Þ=n
h i

; ð2:23fÞ

where

A x0∗
� � ¼ 2 n�1ð Þ=n

1� cð Þ 2n� 1ð Þ x0∗ 2� 1� cð Þx0∗
� �� � 1�nð Þ=n

; ð2:23gÞ

T∗ ¼ T=te is the dimensionless rainfall duration.

2.2.2 A Particular Example and Its Comparison
with Numerical Modeling Data

The slope extends between its left, uppermost, side, represented by a no-flow boundary,

and its right, lowermost, side, represented by a free (no resistance) face (Fig. 2.3). The

length of the sloped surface is L¼ 2000 m, and its slope has a gradient S0 ¼ 0.01 m/m.

The exponent in the formula for the overland flow discharge (2.3) is n¼ 5/3.

The Manning’s coefficient, which characterizes the roughness of the surface, is

m¼ 0.05 s/m1/3. In that case, α¼ 2 m1/3/s. The rainfall rate r¼ 5�10�6 m/s (18 mm/h).

Given T¼ T1¼ 15000 s (4.16 h), T¼ T2¼ 7000 s (1.94 h), we come to two characteristic

regimes for water flow profile on the slope surface, i.e., an equilibrium regime (atT1 > t*e)

and a partially equilibrium regime (at T2 < t*e); here t
∗
e ¼ 8325:5 s (2.31 h) (see Eq. 2.13)
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and tp ¼ 8406:7 s (2.36 h) (Eq. 2.21d). Taking into account the test nature of the

considered task, to make it more impressive, values r and Tiwere increased in comparison

with the mean statistical background values; the selected r and Ti are closer to the values

corresponding to heavy-storm periods. The same reason underlay the selection of a rather

large hillslope length, L.
Increments in water depth at the slope outlet, derived from solutions (2.16), (2.20),

(2.21a), (2.21b), and (2.21c), are given in Fig. 2.6a. The specific flux, q, can be readily

evaluated using (2.3), see Fig. 2.6b. The analytical curves in Fig. 2.6b are in good

agreement with numerical modeling results, obtained with the help of a numerical code

GSSHA (Downer and Ogden 2004). The spatial step of the model along the x-axis is 10 m,

and the time step is 2 s.

2.3 Coupled Overland Flow and Infiltration Models

Any rainfall and overland flow are accompanied by water infiltration into the soil

under the effect of gravity, capillarity, and absorption (Sect. 1.3). An adaptation of

the rainfall-runoff mathematical models to such watershed conditions requires

considering one more hydrological component, namely infiltration. The dynamic

relationship between rainfall, overland flow, and infiltration is one of the central

issues in hydrology.

Fig. 2.6 (a) Rising and recession limbs of water depth, h(t), and (b) the hydrograph, q(t), at
the slope outlet. The full lines are the result of analytic calculation; dots on plot (b) show a

numerical solution (GSSHA code)
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2.3.1 A Qualitative Analysis

It seems quite common in the mathematical problem formulation when infiltration,

i, is independently determined and subtracted from rainfall, r; the residual is termed

rainfall excess, re, which forms input for the overland flow model. The simplest

approximation for the rainfall excess rate is to conceptualize it as occurring only

when the rainfall rate is greater than the infiltration rate (Sherman and Singh 1976;

Stone et al. 1992):

re tð Þ ¼ r tð Þ � f tð Þ for r tð Þ > f tð Þ � i tð Þ, re tð Þ ¼ 0 otherwise; ð2:24Þ

where f(t) is the soil infiltrability (see also Eq. 1.2b). Thus, when r(t) exceeds f(t),
the infiltrability determines the actual infiltration rate i tð Þ ¼ f tð Þ, and the excess of

water, r tð Þ � f tð Þ, will run off.

The advantage of the model (2.24) is that the infiltration may be computed

independently of the overland flow computation. Thus, the infiltration rate has been

incorporated in the continuity Eq. (2.2) using Green–Ampt (Baiamonte and Agnese

2010), Horton (Leu and Liu 1988; De Lima and van Der Molen 1988; Guo 1998),

Philip (Luce and Cundy 1992), Smith–Parlange (Giráldez and Woolhiser 1996),

U.S. SCS (Hjelmfelt 1978, see Sect. 5.3) and some other approximations of the soil

infiltrability f(t) (Sect. 1.3.2). The disadvantage is that the infiltration is not com-

puted during the time when water is still flowing on the surface and the rainfall rate

is less than the infiltration capacity or when rainfall ceases (Stone et al. 1992),

therefore (2.24) always overestimates the volume of runoff during the recession

stage of the hydrograph.

As to the analytical description of the process as a whole, the researchers prefer

the characteristic method adopted for solving the kinematic wave equations. Com-

monly identified are the rising and falling stages of the overland flow (associated

with the rising and recession limbs of the hydrograph) resulting in the following

definition of rainfall excess:

0 � t � T, re tð Þ � 0; t > T, re tð Þ < 0: ð2:24aÞ

Recession of the flow process (at t > T) results in the formation of a free-surface

overland flow boundary condition that provides specific features for solving the

initial or boundary problem for Eq. (2.2) or (2.2a).

The characteristic curves in the x� t plane may be grouped in several domains

depending on their origin (Wooding 1965; Giráldez and Woolhiser 1996;
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Baiamonte and Agnese 2010). Integration of ordinary differential equations related

to the basic kinematic wave Eq. (2.4) results in closed-form analytical solutions for

integer values of n: n¼ 2 for Smith and Parlange (Giráldez and Woolhiser 1996)

and Green-Ampt (Baiamonte and Agnese 2010) approximations; n¼ 3 for Philip

(Luce and Cundy 1992) and Horton (Leu and Liu 1988) approximations. Semi-

analytical or numerical methods are used for fractional numbers n.

Thus, Fig. 2.7 illustrates the behavior of the outlet discharge, q ¼ q L, tð Þ, affected by the

Green–Ampt infiltrability (Eq. 1.12) at basic characteristics of hillslope geometry, over-

land flow and rainfall (Eqs. 2.2 and 2.24) as follows: α ¼ 2 m1/3/s; n ¼ 5=3; L ¼ 1600 m

(outlet); the initial saturation deficit, Δθ ¼ 0:05 ( θs ¼ 0:1, θ0 ¼ 0:05 ); r ¼ 18

mm/h¼ 5�10�6 m/s; T ¼ 277 min. The initial and boundary conditions for a rectangular

pulse of rainfall (Eqs. 2.5) are represented by Eqs. (2.6). The effect of two governing

parameters is taken into account: hydraulic conductivity, ks, at fixed suction pressure, hc,
and, conversely, hc at fixed ks.

In the chosen parameter range, the hydrograph curves, q(L, t), are very sensitive to

soil infiltrability. It is clearly seen that hillslope response in the form of overland flow

occurs when current time exceeds the time of ponding, tp, determined by (1.19), (1.19a).

In Fig. 2.7a, one can also see that the falling limbs of the hydrographs become steeper

with rising ks values. On the other hand, at this stage of hydrograph formation, the

attenuation rate of function q shows a weak sensitivity to changes in suction pressure

(Fig. 2.7b).

Fig. 2.7 Influence of Green–Ampt transient infiltration on the outlet hydrograph (GSSHA

code). (a) hc¼ 10 cm, numbers at the curves are hydraulic conductivity, ks (cm/h);

(b) ks¼ 1.2 cm/h, numbers at the curves are suction potential, hc (cm)
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2.3.2 General Solution

A fully analytical solution to kinematic flow for an arbitrary time-dependent excess

rainfall rate, re(t), was developed by Parlange and Sander with co-authors (Parlange
et al. 1981; Sander et al 1990, 2009; Sander and Parlange 2000). They started from

the kinematic wave equation

∂h
∂t

þ αnhn�1 ∂h
∂x

¼ re tð Þ; ð2:25Þ

subject to the initial and boundary conditions (2.6) and (2.24a).

The partial differential equation (2.25) corresponds to a pair of ordinary differ-

ential equations:

dh

dt
¼ re tð Þ, and

dx

dt
¼ αnhn�1: ð2:25aÞ

The solution (Sander et al. 1990; Sander and Parlange 2000; Sander et al. 2009)

was derived and presented for two domains: (1) 0 � t � T, re tð Þ � 0, and (2) t > T,
re tð Þ < 0. In a particular case, T can be associated with the length of the rainfall

period; the current time is measured starting from the ponding time.

In the first domain, 0 � t � T, for the initial and boundary conditions (2.6),

solutions of (2.25a) are given parametrically (Parlange et al. 1981; Sander et al.

2009):

h tð Þ ¼
ðt
t0

re ςð Þdς, and x ¼ αn
ðt
t0

ðξ
t0

re ςð Þdς
0
@

1
A

n�1

dξ, x � xe; ð2:26Þ

with the parameter t0, 0 � t0 � t ; t0 ¼ t corresponding to the boundary

condition h 0, tð Þ ¼ 0; the initial condition is satisfied by t0 ¼ t ¼ 0. For x > xe ¼
x t0 ¼ 0ð Þ, or

x > xe ¼ αn
ðt
0

ðξ
0

re ςð Þdς
0
@

1
A

n�1

dξ; ð2:27Þ

h is independent of x and given by the first equation in (2.26).

In the second domain, t > T, a free surface forms and begins to move

downslope (Sander et al. 1990, 2009) from x ¼ 0 so that the boundary condition

h ¼ 0 occurs at x ¼ xd tð Þ where

xd ¼ αn
ðt
t1

ðξ
t1

re ςð Þdς
0
@

1
A

n�1

dξ; ð2:28Þ
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with t1 � T � t and t1 defined from the first equation in (2.26) as

ðt
t1

re ςð Þdς ¼ 0: ð2:29Þ

Equations (2.28) and (2.29) give the time dependence of the free surface edge for

t > T. The solution for x > xd is still given by (2.26) but with t0 restricted to the

range 0 � t0 � t1. The drying time, td, can be found from (2.29) and (2.25a) (Sander

and Parlange 2000):

ðtd
0

re ςð Þdς ¼
ðt*
0

re ςð Þdςþ
ðtd
t*

re ςð Þdς: ð2:30Þ

Under an idealistic condition, the infiltration rate is assumed to be fixed

(time-independent), i¼ const, and therefore: re ¼ r � i � 0 for 0 � t � T, and
re ¼ �i < 0 for t > T. Obviously, for analyzing the rising overland flow

hydrograph, one may use the previously discussed models (Sect. 2.2). Rivlin and

Wallach (1995) and Singh (2002b) showed that the movement of the edge of the

free surface is described by the characteristic equation:

t xdð Þ ¼ T þ 1

i

ixd
α

r � i

r

� �	 
1=n
: ð2:31Þ

In this period, r ¼ 0 and, for x > xd, water depth h ¼ h x, tð Þ is determined by the

equation

t� T ¼ �h

i
þ 1

i

r � ið Þ αhn þ ixð Þ
αr

	 
1=n
; ð2:32Þ

which is of transcendent character.

2.4 On an Analytical Approach to Coupled Surface
and Subsurface Hydrological Processes

As it was discussed in the previous chapter (Sect. 1.2), the derivation of a catchment

unit hydrograph from storm rainfall is often related to two flow components, i.e.,

surface (Horton overland flow, HOF, or/and Dunne overland flow, DOF) and

subsurface (saturated subsurface stormwater flow, SSF). Saturated flow in a hill-

slope soil is considered to be initiated when the wetting front from infiltration of

rainwater reaches the soil–bedrock interface or a saturated layer above this interface

containing the pre-event water. Such lateral movement of water near the base of the

soil profile can take a variety of forms (Sect. 1.2.3) and can occur at any stage of
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rainfall that precedes or accompanies surface runoff generation. Sometimes, exten-

sion of the saturated zone due to infiltration of rain water from the surface can

generate a variable transient source area (Sect. 1.2.2), neighboring to the hillslope

base, which becomes responsible, in turn, for forming the DOF (Freeze 1972a, b;

Govindaraju and Kavvas 1991). The relative magnitude of each flow component

depends on the interrelation between the rainfall and soil properties as well as

antecedent soil profile conditions (Smith and Hebbert 1983; Weiler and McDonnell

2006).

There are several coupled transient mechanisms and processes that make finding

closed-form analytical solutions of the problem rather complex and unique:

(a) water intake at the soil surface and runoff generation; (b) propagation of the

wetting front from the upper interface downwards; (c) vertical drainage of moisture

from the upper pore space to the capillary zone located above the water table;

(d) lateral saturation flow above the soil–bedrock interface whose water can

potentially discharge from saturated zone to the land surface, ponding this surface

near the slope base. Even numerical description of such interdependent processes is

considered to be among the most complex hydrological problems (Freeze 1972a, b;

Govindaraju and Kavvas 1991; Weill et al. 2009).

In the scope of this work, the integrated surface/subsurface flow and transport

processes are considered from the viewpoint of conceptual development ignoring

many details making analytical description impossible. On the other hand, we

concentrate our efforts to create models able to predict rapid response of the

subsurface system to rainfall variability rather than stepless and long-term behavior

of the subsurface hydrographs. Thus, we focus on the mathematical problem setup

that accounts for preferential flow effects (Jarvis 2007; Gerke 2014). Rapid flow

along preferential pathways in structured media (both macroporous soils and

fractured rocks) is controlled by three major factors: soil structure, matrix potential,

antecedent soil moisture, and the input flow pattern and rate. To describe rapid flow

through soil and unsaturated (vadose) zone, the term bypass flow is used as well

(Gerke 2014).

In this section, as earlier (Sect. 1.4.1), we consider the soil and vadose zone

material as a uniform fractured porous continuum, rather than discrete media,

assuming that the fracture network is surrounded by a homogeneous

low-permeability matrix (dual domain approach). Both domains represent a single

overlapping system. In such preferential-flow problem formulation, the term “frac-

tures” can synonymously be used for “macropores” as well. Then, the flow process

is investigated to obtain analytical solutions for transient recharge to the water

table, with the boundary between the unsaturated and saturated zones represented

by subsurface stormflow. Two main approaches will be used to generate recharge

function, w(t), which is a source term in the continuity equation for unconfined flow

over a steep sloping base (1.2): (1) dual-porosity approach in terms of

nonequilibrium models with distributed parameters, allowing flow velocities and

water contents during infiltration to be computed (based on the extended Green–

Ampt model, Sect. 1.4.1.2); (2) lumped-parameter approach, implying that flow in

macropores is triggered when the matrix water content reaches a certain threshold,

normally, the saturation limits (Sect. 1.4.1.3).
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2.4.1 Subsurface Lateral Flow Equation and its General
Solution

A continuity equation for unconfined water flow in porous medium underlined by a

steeply sloping impermeable layer has a form of linear differential equation (1.2b)

which can be rewritten in the standard form of kinematic wave equation:

ϕn

∂h
∂t

þ ∂q
∂x

¼ w tð Þ; ð2:33Þ

where h ¼ h x, tð Þ is the saturated flow thickness (related to the elevation of the

groundwater table) [L]; q ¼ q x, tð Þ is the subsurface water discharge per unit

width [L2T�1],

q ¼ αsh, αs ¼ ks sinφ; ð2:33aÞ

w(t) is the rate of recharge induced by vertical downward water movement

(infiltration) from the surface [LT�1]; ks is the hydraulic conductivity [LT�1];

ϕn is drainage porosity; φ is the slope.

The model based on a linear kinematic wave formulation, (2.33), (2.33a), has

been studied intensively for the past decades, predominantly, assuming a rectan-

gular input rate, w(t), corresponding to a recharge of constant intensity and limited

duration, T. Moreover, Fan and Bras (1998), Troch et al. (2002) showed how

variable width, slope angle, and the soil mantle can be included in the model

framework for the computation of subsurface flow through hillslopes of arbitrary

geometry (in plan and profile, including convergent and divergent planforms) using

a hillslope storage dynamics theory. Some analytical approaches have been devel-

oped also for the computation of return flow or saturation excess overland flow

(DOF) induced by the rise of water table, which may intersect the ground surface

(Fan and Bras 1998).

The model (2.33) has obvious limitations in its ability to describe the flow on

gentle slopes. It can be expected that the model should give a reasonable estimate of

water flow on steep hillslopes covered with weathered rock material or highly

permeable unstructured soil as it is typical of mountain forested areas. Also in the

formulation represented by Eq. (2.33), it is implicitly assumed that flow processes

in the two adjacent domains, saturated and unsaturated, are uncoupled; that is, the

rise of water table characterizing lateral water flow dynamics cannot affect the

vertical flow in the above unsaturated zone, which is responsible for the source

term, w(t), in Eq. (2.33).

Equation (2.33) can be restated to be a system of ordinary differential equations:

dt

ϕn

¼ dx

αs
¼ dh

w tð Þ : ð2:34Þ
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The initial and boundary conditions for saturated flow thickness, h, are:

h x, 0ð Þ ¼ 0, 0 � x � L; h 0, tð Þ ¼ 0, t � 0: ð2:35Þ

The initial condition assumes an initially zero water table height along the hillslope.

The boundary condition assumes a no-flow boundary at the topographic divide.

The primary focus of the following analysis is on the solution of (2.34) for

arbitrary changes in the input rate, w(t). The solution can be represented paramet-

rically for two flow domains:

1. x � xe ¼ αst=ϕn

x ¼ αs
ϕn

t� t0ð Þ; ð2:36Þ

h x, tð Þ ¼ 1

ϕn

ðt
t0

w ξð Þdξ, q x; tð Þ ¼ αsh x, tð Þ; ð2:37Þ

2. x > xe ¼ αst=ϕn

h tð Þ ¼ 1

ϕn

ðt
0

w ξð Þdξ, q tð Þ ¼ αsh tð Þ: ð2:38Þ

For the first domain, h and q are connected with x through the parameter t0
(2.36). In the second domain, h and q are independent of x. Parameter t0 character-
izes the time that passes between the celerity wave arrival at the observation point x,
tx ¼ ϕnx=αs, and the current time, t: t0 ¼ t� tx.

2.4.2 Lateral Flow Generated by Recharge in a Soil Profile
Under Nonequilibrium Conditions

In works by Beven and Germann (1982), Sloan and Moore (1984), Duffy (1996),

Zhang et al. (2006) and many other later publications, several mathematical models

for predicting subsurface flow (stormflow) on impermeable sloping soil-bedrock

interface have been developed. From the practical point of view, these models are

of greater interest in studying the subsurface flow contribution to storm runoff in

steep forested catchments. The governing mass balance equations implement water

fluxes out of the unsaturated zone represented by homogeneous or macropore

media. However the most relevant equations are formulated in terms of an average

saturation and a steady flow velocity through the unsaturated zone below

the seepage surface. In this regard, to adjust model setup to the field conditions,

we will focus on one particular aspect related to the generation of subsurface flow
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during infiltration in the form of the preferential flow prior to the wetting front

reaching the soil–bedrock interface. After the wetting front reaches the bedrock, a

shallow flow parallel to the bedrock is generated. We assume that such flow can be

described in the framework of the previously introduced kinematic wave concept.

2.4.2.1 Dynamics of the Saturation Profile (Under an Assumption
of Unlimited Matrix Capacity)

It is assumed that the wetting front is formed by a moisture parcel from the ponded

surface. Such flow regime involves unsteady moisture transfer between neighboring

domains, and the process as a whole is nonequilibrium (Gerke 2006; Jarvis 2007).

To be specific, as earlier (Sect. 1.4.1.2), such two domains in structured soils will be

associated with low-permeability porous matrix and fractures. As follows from

(1.34) and (1.34a), the recharge rate in unsaturated structured soils, wf (z, t), can be

determined through an analytic solution of kinematic wave Eq. (1.35) written for

effective saturation, Sf (z, t), and thus describing the transient water movement

(“bypass flow”) in the fracture domain after the start of surface ponding. We will

consider the behavior of the saturation function within time interval

t � Ω zð Þ � z=k, measuring the current time from the time coordinate (1.45),

Ω zð Þ ¼ z=k þ π σSbDwe=2kz
� �2

, which is determined by the arrival time of the

fracture front at the depth z from the upper inlet boundary (1.45). Now, equation

(1.35) becomes:

∂S f

∂t
þ k

∂S f

∂z
¼ �σSb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dwe

π t� Ω zð Þð Þ

s
; ð2:39Þ

here Sb is the specific surface of the fracture domain; Dwe is the matrix diffusivity;

σ ¼ Δθm=ϕ f (Sect. 1.4.1.2). Equation (2.39) is valid for duration of the infiltration

process which is small in comparison with the time required for the imbibition front

(forming at the contact on the fracture network with matrix) to reach the center of

the matrix blocks. This is not a strong limitation, since the rainfall events have

usually short durations.

The Eq. (2.39) can be reduced to a system of ordinary differential equations:

d t

1
¼ dz

k
¼ � dS f

σSb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dwe=π t� Ω zð Þð Þp : ð2:40Þ

In particular, the second equation in (2.40) is related to changes in the effective

saturation along characteristics defined by initial value problems of the first ordi-

nary differential equations in (2.40):
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dS f

d z
¼ � σSb

ffiffiffiffiffiffiffiffi
Dwe

p

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π t� Ω zð Þð Þp : ð2:41Þ

Introduce a new coordinate system (Castaing 1991): x0 ¼ x, t0 ¼ t� z=k þ z0=k.
Thus, instead of (2.41), we come to the differential identity:

dS f ¼ � σSb
k

ffiffiffiffiffiffiffiffi
Dwe

π

r
dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t� z=k
� �� Ω z0ð Þ � z0=k

� �q : ð2:42Þ

Integrating the left- and right-hand sides of identity (2.42) within intervals

[1, Sf] and [0, z] yields the solution to the problem in the form

S f ¼ 1� σSb
k

ffiffiffiffiffiffiffiffi
Dwe

π

r ðz
0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t� z=k
� �� Ω z0ð Þ � z0=k

� �q : ð2:43Þ

The integral in (2.43) has an analytical representation; therefore, the solution (2.43)

can be given in the closed form:

S f ¼ 1� 2

π
arctan

Ω zð Þ � t0z
t� Ω zð Þ

� �1=2

, t0z ¼ z=k, t � Ω zð Þ � t0z; ð2:44Þ

or, after some transformations and passage to dimensionless coordinates

η ¼ λm t0z, τ ¼ λm t, τξ ¼ λmΩ zð Þ, λm ¼ S2bDwe; ð2:45Þ

the solution for a continuous input (an infinite period of rainfall application)

becomes

S f ¼ 1� 2

π
arctan

ffiffiffi
π

p
ση

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ� Ω ηð Þp , τ � Ω ηð Þ; ð2:46Þ

Ω ηð Þ � τξ ¼ ηþ πσ2

4
η2: ð2:47Þ

Using the superposition principle, the solution (2.46) can be extended for a

rectangular input assuming a finite period, T, of rainfall application:

S f ¼ S f η, τð Þ, Ω ηð Þ � τ � τ0 þΩ ηð Þ,
S f η, τð Þ � S f η, τ� τ0ð Þ, τ > τ0 þ Ω ηð Þ;

�
ð2:48Þ

where τ0 ¼ λmT.
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2.4.2.2 Subsurface Stormflow Characteristics and an Illustrative

Example

The model is based on the concept that the vertical input rate to the soil base or the

lower saturated zone of the hillslope, wf, is determined by the dynamics of water

stored in the unsaturated zone (Eqs. 1.34 and 1.34a):

w f S f

� � ¼ kfsS f ; ð2:49Þ

where kfs is the hydraulic conductivity of the fracture domain at saturation; Sf is the
effective saturation. Substituting the solution for the function Sf from (2.46) into

(2.49), yields a relationship

w f ¼ kfs 1� 2

π
arctan

ffiffiffi
π

p
ση

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ-Ω ηð Þp

 !
; ð2:49aÞ

which can be associated with the recharge rate when the wetting front reaches the

bedrock surface or the water table (if it is already present), casing a rapid water

table rise under continuous rainfall application. This model differs from that of

Germann (1990) by the fact that the reference work is based on the assumption that

a steady-state regime prevails behind the advancing wetting front (there is a

maximum depth to which a wetting front can proceed under given flow conditions)

while the solution (2.49) is fully transient with respect to Sf, wf and Ω(η).
Now, considering z ¼ z0 (the thickness of the soil mantle) and assuming that the

recharge flux to the water surface,w � w f , is independent of h (Eq. 2.33), a general
solution of the problem (Eqs. 2.36, 2.37, and 2.38) can be represented as:

(1) in the domain x � xe ¼ αs t�Ω z0ð Þð Þ=Δθm:

x ¼ αs
Δθm

t� t0ð Þ; ð2:50Þ

h x, tð Þ ¼ k

σ

ðt
t0

1� 2

π
arctan

σ t0z
ffiffiffiffiffiffiffiffi
πλm

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� Ω z ¼ z0ð Þp

 !
dy, q x; tð Þ ¼ αsh x, tð Þ; ð2:51Þ

(2) in the domain x > xe ¼ αs t�Ω z0ð Þð Þ=Δθm:

h tð Þ ¼ k

σ

ðt
Ω z0ð Þ

1� 2

π
arctan

σ t0z
ffiffiffiffiffiffiffiffi
πλm

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� Ω z ¼ z0ð Þp

 !
dy, q tð Þ ¼ αsh tð Þ; ð2:52Þ

here k ¼ kfs=ϕ f , σ ¼ Δθm=ϕ f , Δθm ¼ θs � θ0. It is assumed that the effective

drainable porosity for the lateral flow, ϕn, is equal to the initial moisture deficit,Δθm.
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An example of calculation is given in Fig. 2.8. As seen from the plot, the time lag between

the rainfall and water-table rise is controlled by the transfer rate coefficient, λm, which is a

measure of matrix influence on infiltration process. In this illustrative example, there is a

delay of about three to six hours between rainfall and water table response.

The accuracy of calculations by (2.50), (2.51), and (2.52) can be improved, if these

formulas are considered as transcendent with the substitution of z ¼ z0 � h tð Þ. This
allows the value of recharge flux at the transient water table to be corrected depending

on the aquifer thickness (z0 � z). The calculations show that, for the chosen parameter

values, the two approaches can be seen to differ at the initial stages of the infiltration

process.

The position of water table at the recession phase, when t > T, can be calculated

by analogy with the procedure from Eqs. (2.50), (2.51), and (2.52), where the second

formula in the solution (2.48) for a rectangular input is used (Fig. 2.9). The application of

formulas (2.50), (2.51), and (2.52) shall take into account whether the vertical flux starts

declining before quasi steady-state lateral flow is achieved at x t � xΔθm=αs þΩ z0ð Þð Þ
or not.

Fig. 2.8 Dynamic response

of water table (at different x,
numbers at curves, m) to

continuous rainfall

application (r ¼ 2 cmh�1)

to sloping surface

represented by a fractured-

porous media for two values

of the transfer coefficient:

λm ¼ 0:01 h�1 (solid

curves) and λm ¼ 0:05 h�1

(dashed curves); other
characteristics:

z0 ¼ 100 cm,

k ¼ 100 cmh�1, σ ¼ 5,

αs=Δθm ¼ 500 cmh�1

Fig. 2.9 Dynamic response

of water table (at different x,
numbers at curves, m) to

rectangular rainfall input

(r ¼ 2 cmh�1, T ¼ 8 h) to

a sloping surface

represented by a fractured-

porous media for two values

of the transfer coefficient :

λm¼ 0.01 h�1 (solid curves)
and λm ¼ 0.05 h�1 (dashed
curves); other
characteristics are given in

the caption to Fig. 2.8
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2.4.3 Lateral Flow Under Triggered Recharge Condition

This section gives the basis for a general expression for finding the discharge of

water flowing over a sloped bedrock surface when matrix flow of rainwater through

initially unsaturated media is complicated by bypass flow phenomena. Such phe-

nomena are more often observed in cracked soils and unsaturated zone represented

by fractured rocks during prolonged rainstorm periods, especially under surface

water ponding conditions (Jones and Cooper 1998; Beckers and Alila 2004; Gerke

2014). Subsurface lateral stormflow in the form of preferential flow is most likely to

occur as well (Mulholland et al. 1990). Field and modeling studies show that

vertical preferential flow contribution to the subsurface runoff becomes greater

than matrix flow contribution when certain thresholds in rainfall amount (rainfall

depth), soil moisture deficit or matrix potential are exceeded. Antecedent conditions

are important in determining flow distribution between matrix and preferential

pathway as well.

To determine the triggering thresholds of the phenomena, a lumped-parameter

model assuming dual storage capacity of the soil and neglecting the dynamics of

moisture front movement is used (Sect. 1.4.1.3). The lumped-parameter model does

not contain an infiltration equation and therefore most likely overestimates the

degree of soil matrix saturation and the time required for water to flow through

macropores or fractures.

In this analysis, we consider outflow components (Eqs. 1.52), activated during

rainfall, as recharge in (1.58) for water-saturated domain beneath the surface:

w tð Þ ¼
wm, t < tm Sm < Smsð Þ,
wms þ w f , tm � t < tp Sm ¼ Sms, S f < Sfs

� �
,

wms þ wfs, tp � t < t xdð Þ Sm ¼ Sms, S f ¼ Sfs
� �

,

wms exp � t� Tð Þ=τm½ � þ wfs exp � t� Tð Þ=τ f

� �
, t � t xdð Þ;

8>><
>>: ð2:53Þ

where wm, wf and wms, wfs are the rates of recharge generated by infiltration in the

matrix and fracture domains (all are functions of time, t) under unsaturated and

saturated conditions (Sect. 1.4.1.3); t(xd) is the time when the slope becomes dry in

point xd; this time is determined by formula (2.31) with i ¼ wms þ wfs.

Now the solution (2.36), (2.37), and (2.38) can be used to determine the behavior

of functions h(x, t) and q(x, t), which characterize the dependence of subsurface

stormflow on rainfall intensity. Moreover, since rainfall excess is also determined,

[ re ¼ r � wms þ wfs

� �
, t � tp ], surface runoff hydrograph can also be readily

calculated as required (Sect. 2.2).
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An example of such calculation (for rising limbs of two subsurface flow hydrographs, h(t))
is given in Fig. 2.10. With the parameter values given in the caption, subsurface hydrograph

(in terms of water flow depth, Fig. 2.10) has several characteristic segments: (1) t < ϕnx=αs
(unsteady flow dynamics is due to unsteady kinematics of flow wave and an increase in soil

matrix flow recharge rate in time); (2) ϕnx=αs � t < tm (the so-called quasi-steady-state

phase, when the increase in the lateral flow discharge,q ¼ αsh, is determined by an increase

in matrix recharge rate, wm); (3) tm < t < tp (quasi-steady-state phase when the increase in

the lateral flow discharge is determined by constant matrix recharge rate and an increase

in the fracture (macropore) recharge rate); wf (4) tp < t < tp þ ϕnx=αs (the linear rise of

lateral flow discharge under constant total recharge rate, wm þ w f ); (5) t > tp þ ϕnx=αs
(steady-state subsurface flow phase, which is characterized by unchangeable flow rate and

water depth).

Figure 2.10 demonstrates that subsurface flow is a function of a range of soil charac-

teristics. Plots in the figure show the dominance of subsurface stormflow on the hydrolog-

ical response of the hillslope at the initial phase of the continuous rainfall.

As it is expected, the presence of preferential flow significantly accelerates

the rate of water table rise after rainfall application; however, after ponding of

the land surface, subsurface runoff may contribute less to the total runoff than

overland flow.

Fig. 2.10 Quick (a) and slow (b) water table response (h, solid curves) and the change in

recharge (wm, wf, dashed curves) due to the triggering effects, generated by continuous

rainfall application (r ¼ 2 cmh�1) to sloping surface represented by a structured soil.

(a) ω ¼ 0:02, z0 ¼ 50 cm, θ0m ¼ 0:4, θms ¼ 0:45, θmc ¼ 0:4, θ0fs ¼ 1, θfc ¼ 0, τm ¼ 5 h,

τ f ¼ 1 h, αs ¼ 100 cmh�1, ϕn ¼ 0:1; (b) ω ¼ 0:025, z0 ¼ 100 cm, θ0m ¼ 0:4, θms ¼ 0:5,

θmc ¼ 0:4, θ0fs ¼ 1, θfc ¼ 0, τm ¼ 50 h, τ f ¼ 10 h, αs ¼ 50 cmh�1, ϕn ¼ 0:1. Numbers at

the curves are distances, x, m
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Chapter 3

Models of Dissolved Component Transport
at the Hillslope Scale

Rain water on the landscape of a drainage basin can be contaminated by substances

that have accumulated on the surface of soil or in its top layer, thus making water

flow the major transport and redistribution factor of chemicals (solutes, chemical

components, contaminants) at the solid and air interphase. In the rain periods, the

contamination hazard is the greatest for surface water streams and bodies. In

agricultural regions, fertilizers and pesticides are washed out from fields. In urban-

ized areas, surface runoff supplies surface waters with dissolved oil products,

combustion products of transport fuel, heavy metals, as well as bacteria-polluted

waters from emergency sewage spills. A specific class of problems is associated

with forecasting radionuclide washout from zones of radioactive pollution, i.e., the

areas subject to fallouts of gas-aerosol emissions from facilities of nuclear industry

or power engineering, primarily, during emergencies, as well as areas of emergency

spills of liquid radioactive wastes.

Chemicals of different origin may occur in soil or on its surface as solutes or in

adsorbed state, that is, as components of fixed mineral phase (porous matrix) or on

mobile particles (suspensions and colloids) (Fig. 3.1). Thus, the transport of solutes

across the landscape involves both dissolved components and those adsorbed by

mobile particles (suspension). Dissolved and particulate matter can be transported

downslope with the rain water moving over the land surface and/or downslope

through the soil layer (troughflow, e.g., in form of stormflow), as well as in the

vertical direction in the soil (percolation, infiltration). Stormflow occurs most

commonly in forested areas in the wet seasons in a drainage basin where the

rocks underlying the soil are impermeable (Sects. 1.2.3 and 2.4.1).

When water begins to build up on the soil surface, the transport of contaminants

in the unsaturated zone and the aquifer interacting with it becomes more active.

This process activates the paths of rapid transport of solutes in the unsaturated zone,

which are due to its heterogeneity, that is, macroporosity, double storage capacity,

and permeability. On the other hand, overland flow generated by saturated excess

mechanism within variable source areas can also be responsible for solute transport.

In this case, after water table intersects the land surface and the flowing water

© Springer International Publishing Switzerland 2015

V.G. Rumynin, Overland Flow Dynamics and Solute Transport, Theory and

Applications of Transport in Porous Media 26, DOI 10.1007/978-3-319-21801-4_3

83

http://dx.doi.org/10.1007/978-3-319-21801-4_1
http://dx.doi.org/10.1007/978-3-319-21801-4_2


becomes surface water, contaminated soil immediately distributes solutes to

overland flow region (Govindaraju 1996).

The description of the process as a whole requires interdisciplinary approach.

Thus, the model being developed shows all features of hydrological models, since

they are based on a physicomathematical description of surface water movement

over land slopes. However, as far as the liquid/solid interface is represented

by permeable porous material (soil), the surface water interacts with subsurface

environment where hydrogeological processes dominate.

As mentioned above, chemicals migrate in the runoff water either in solution or

on dispersed particles, that is, erosion products of soil materials. Therefore, in the

former case chemical transport is associated with liquid runoff, while in the latter,

with solid/sediment runoff. From this viewpoint, it is clear that the full formulation

of the problem implies the mathematical formalization of three categories of

processes:

(a) hydrodynamic flow (movement of rain water over the soil surface);

(b) mass transfer, governed by diffusion, infiltration, and erosion impact of rain-

drops and water flow onto the soil;

(c) solute transport (water transport of dissolved components and suspended

particles – carriers of those components in adsorbed state).

In this chapter, we consider the transport of conservative components in dissolved
state both in the surface runoff and in the shallow aquifer (during periods of

stormflow production). We will focus on different concepts of the mass exchange

at the interface of soil and runoff water and discuss mechanisms responsible for such

chemical emission. The main emphasis will be on the transient effects that arise from

both the unsteady-state surface and subsurface flow conditions and kinetics of solute

transfer from soil solution to rainfall-induced runoff water. Traditional approaches

for development of analytical solutions of coupled flow and solute transport problems

are supported by illustrations of how published or obtained results of concern are

consistent with numerical modeling. A quantitative description of the motion of

reactive components with solid runoff is given in Chap. 4.

Fig. 3.1 Schematic

representation of mass

exchange process between

soil and hillslope flow (Shi

et al. 2011)
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3.1 Mathematical Problem Formulation

The variable rainfall conditions (short duration of the surface wetting by rain

following a period of soil drying through evaporation) determine the transient

effects of rainfall–runoff–infiltration partitioning and chemical response of catch-

ments to excess precipitation. Therefore special attention shall be given to the

coupled transient flow and solute transport analysis to make the physical and

mathematical problem more precisely formulated.

3.1.1 Basic Representation of the Solute Mass and Fluid
Balance Equations

For describing solute transport by runoff water, it is very common to solve the

depth-averaged solute transport equation using hydraulic (flow) characteristics,

such as water depth, h, and discharge, q, from the basic flow continuity equation.

The reason for this is the physical assumption that, for low concentrations, the

solute dynamics does not influence the flow behavior. Thus, a general enough

representation of the governing system of differential equations includes unsteady

mass conservation equation

∂ ACð Þ
∂t

þ∇ QCð Þ � Fs ¼ 0; ð3:1Þ

and unsteady flow continuity equation (Sect. 2.1)

∂A
∂t

þ∇Q� Fw ¼ 0; ð3:2Þ

where C (� Cr
d – see Sect. 4.1) is the concentration of a solute (dissolved chemical)

[ML�3]; A is cross section aria of the overland flow [L2]; Q is the total discharge

[L3T�1]; Fw [L
2T�1] and Fs [ML�1 T�1] are water and solute source/sink functions,

associated with atmospheric precipitation, infiltration, dissolution of matter (min-

erals and salts), deposited onto land surface or occurring as components of soil

solution; all variables are functions of coordinates and time. In this formulation,

dispersion effects and hydrodynamic inertia of the flow are neglected.

In the particular case of 1D chemical transport in runoff water flowing over

pervious soil surface, Eqs. (3.1) and (3.2) can be rewritten for a conventional flow

band with a unit width B ¼ const ¼ 1, where A ¼ Bh, Q ¼ Bq, in the following

manner (Wallach et al. 2001; Singh 2002b; Johnson and Zhang 2007; Walter

et al. 2007; Turnbull et al. 2010):
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∂hC
∂t

þ ∂qC
∂x

¼ Js þ rCr; ð3:3Þ
∂h
∂t

þ ∂q
∂x

¼ r � i; ð3:4Þ

where Cr is the concentration of a chemical in precipitation [ML�3]; h ¼ h x, tð Þ is
the current water depth [L]; q ¼ q x, tð Þ is the flow discharge in the x direction per

unit width [L2T�1], q ¼ uh, u is the flow rate [LT�1]; r is the rainfall rate [LT�1];

i is the infiltration rate [LT�1]; Js is the total solute flux from the land surface or/and

soil water in runoff; in a simplified mathematical setting, Js is considered as a

function of only time, Js(t) [ML�2T�1].

As can be seen, Eqs. 3.1, 3.2, 3.3, and 3.4 contain characteristics of surface

flow, A (or h) and Q (or q), which, in general case, are functions, depending on

spatial coordinates and time. Those equations are supplemented by appropriate

initial and boundary conditions. It is crucial that rainfall rate is highly variable in

time; nevertheless, analytical solutions obtained for a stepwise rainfall input func-

tion are quite functional for the purposes of evaluating key mechanisms related to

the effect of rainfall on runoff contamination. In its turn, it is reasonable to split

the analysis of solute transport into several sub-tasks related to different phases

of the runoff dynamics, using ideas gained from the kinematic wave theory

(Sects. 2.2 and 2.3).

3.1.2 Main Concepts of the Mass Exchange at the Interface
of Soil and Runoff Water

After surface ponding takes place, soil surface and soil solution are able to transfer

chemicals to surface water. An additional source of the chemicals can be the

rainwater itself. Runoff water may carry chemicals, such as fertilizers and pesti-

cides, as well as heavy metals and radionuclides, to wherever it drains. The major

interactions in precipitation period are taking place in a thin surface layer not more

than a few millimeters in thickness. This accounts for the higher sensitivity of the

process to spatial variations of soil and landscape characteristics and makes it

difficult to study its physical parameters in experiments.

The exchange at the interface between the media is controlled by a number of

natural mechanisms and characteristics, including precipitation rate, natural–cli-

matic and landscape conditions, capillary–diffusion (responsible for infiltration)

and sorption properties of soil, its micro- and macro-structural features, as well as

the chemical forms of matter attachment to soil particles. The mathematical for-

malization of the process is based on the two distinct approaches (Fig. 3.2):

– Interfacial diffusion-controlled approach (or boundary layer approach);

– Mixing (exchange) layer approach.
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These models are based on assumptions which are most often working hypoth-

eses, tested in the laboratory but not adequately tested in field studies.

3.1.2.1 Boundary Layer Approach for Transfer of Chemicals from Soil

to Surface Runoff

According to the physical concepts underlying boundary-layer diffusion models,

the immobile soil solution and the water flow on the surface are separated by some

(theoretically, infinitely thin) stagnant water layer, through which solute transfer to

runoff by diffusion (Fig. 3.2a).

A model of boundary layer utilizes two scenarios of chemical release from

contaminated surface: (a) emission of solutes (chemicals, contaminants) from soil

water into surface water (first scenario); (b) dissolution of solid-phase chemicals,

which are considered to be laying on the soil surface (second scenario). The first

scenario presumes that the solute flux is proportional to the concentration difference

between solutes in soil water and surface water (Rivlin and Wallach 1995); the

second scenario presumes that solute flux is controlled by the saturation deficiency

of the solution that forms the runoff depth (Downer and Ogden 2004). Both

scenarios provide the same description for the mass flux, which serves as a mass

transfer function in case of absence of infiltration (i ¼ 0):

Js ¼ ke Cs � Cð Þ; ð3:5Þ

where Cs is the concentration of a chemical in the soil solution at the soil surface

interface (first scenario) or the aqueous solubility of the chemical (second scenario)

[ML�3]; C is the concentration of a chemical in the surface runoff; ke is the mass

transfer coefficient between the soil surface and the surface runoff [LT�1], the

structure of which for the two characteristic hydrodynamic regimes of water flow

(laminar or turbulent) can be derived from the boundary layer theory (Wallach

Fig. 3.2 Conceptual models for mass exchange at the interface between runoff and soil: (a)
diffusion model of boundary layer; (b) mixing (exchange) layer model. (1) water layer, (2) mixing

(exchange) layer, (3) soil. jD is the diffusion flux
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et al. 1989). The value of the mass transfer coefficient depends on a number of

factors, including the diffusivity of the solute in water, mixing induced by rainfall

kinetic energy, and other flow parameters such as runoff depth and mean velocity.

The soil surface conditions and the soil properties would also be expected to

influence the mass transfer coefficient. The transfer model (3.5) is a lumped-

parameter model.

Infiltration (i > 0 case) reduces the mass flux from the soil surface:

Js ¼ ke Cs � Cð Þ � iC: ð3:5aÞ

Chemical emission from the soil pore solution Combining the Eqs. 3.3, 3.4 and

3.5a, we obtain a coupled flow and solute transport equation

h
∂C
∂t

þ q
∂C
∂x

¼ ke Cs � Cð Þ � rCþ rCr; ð3:6Þ

which is consistent with Walton et al. 2000. The same mathematical formulation for

the hydrological process of rainfall-infiltration on a contaminated slope was suggested

by Singh (2002b) for a modified Akan (1987) washout model, Js ¼ Kh� iC
(K is a mass transfer constant [ML�3T�1]).

Formally, the concentration Cs can be assumed constant meaning unchangeable

content of a solute in the soil at the phase boundary (z ¼ 0). In such formulation,

with Cs assumed equal to the soil surface concentration in the absence of infiltra-

tion, the equation (3.6) is “self-sufficient”. Moreover, to avoid some uncertainty in

the determination of the initial concentration condition and adjust the mathematical

model to the experimental setup and data analysis, Eq. (3.6) can be recasted to one

dimension “transport-rate-based equation” (Deng et al. 2005).

A more strict formulation implies Cs ¼ Cs 0, tð Þ, i.e., the concentration at the

phase interface is a function, depending on the solution of transport equations for

moisture and solutes in the soil (Shi et al. 2011; Dong and Wang 2013). The

mathematical formulation of the problem involves the incorporation into the system

(3.3), and (3.4) of the following equation, which approximates the boundary

condition at the soil surface, z ¼ 0 (Wallach and van Genuchten 1990; Wallach

et al. 2001):

�Js 0, tð Þ ¼ Js tð Þ ¼ ke Cs 0, tð Þ � C½ � ¼ � iCs 0; tð Þ � Ds
∂Cs 0; tð Þ

∂z

� �
; ð3:7Þ

where Ds is the effective diffusion coefficient [L2T�1], i is the infiltration rate

[LT�1]; z is the vertical coordinate (positive downwards, Fig. 3.2a) [L].
Equations (3.6) and (3.7) are written for infiltration under ponding condition,

t > tp (tp is the time of surface ponding [T]). During this period, a boundary

condition for the subsurface model is specified as a zero pressure head (expressed

as saturation). As long as there is no ponding (when t < tp), i¼ r and therefore q¼ 0

88 3 Models of Dissolved Component Transport at the Hillslope Scale



(there is no runoff): rain water flux determines a boundary condition for the

subsurface model.

Dissolution (or desorption) of chemicals from the contaminated surface The

kinetic model (3.5), describing the rate of change in the mass of a nonadsorbable

dissoluble chemical, N [ML�2], laying at the soil surface, is represented by

the equation

�∂N
∂t

¼ ke Cs � Cð Þ; ð3:8Þ

where Cs is the solubility. Thus, the flux of the dissolved chemical constituent

which is transferred in runoff determined by the following equation

Js ¼ �∂N
∂t

� iC: ð3:8aÞ

If the dissolving substance is on the soil surface, at large ke and Cs >> N0=hmax

(hmax is the maximum flow depth), the transfer model (3.8) degenerates into the

“large pulse impulse” model, in which the specific (per unit area) mass flux of the

solute from the solid surface can be described by the equality:

Js ¼ δ tð ÞN0, i ¼ 0; ð3:9Þ

where N0 is the initial mass of the chemical per unit surface area [ML�2]; δ(t) is the
delta-function [T�1]. Such formulation of the problem implies that the contaminant,

which is uniformly distributed over soil surface, instantaneously passes into the

aqueous phase once a water layer of any depth, h, appears on the surface

(“nonlimited” dissolution), resulting in an increase in solute concentration to

C ¼ N0=h (Sect. 3.2.1).

The main ideas of the diffusion boundary layer theory can also be used for mathematical

formalization of mass transfer of reactive components, which occur on the land surface at

some (initial) moment. If the transport of components into the soil layer during the time of

runoff generation can be neglected ( i ¼ 0 ), the solute flux from the surface, as a first

approximation, can be described by the expression

Js ¼ �ke C� K*N
� � ¼ �∂N

∂t
; ð3:10Þ

which is similar to the equation of kinetic surface sorption; here, C is the current solute

concentration in the flowing water [ML�3], N is the current density of surface contamina-

tion [ML�2], ke is the mass transfer coefficient [LT�1], K* is an entrainment (distribution)

coefficient [L�1], whose physical meaning will be elucidated later (Sect. 6.2.1).

Such formalization of the exchange process is best suited to describe the washout from a

surface of highly absorbable components, such as radionuclides, which fall onto soil as a

result of accidents at nuclear facilities (Sect. 7.1.2).
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3.1.2.2 Mixing Layer Approach for Transfer of Chemicals from Soil

to Surface Runoff

Basic Assumption The literature on hydrological processes within drainage basins

shows the relative popularity of a concept based on the assumption that an active

narrow layer exists in the upper part of soil column (Fig. 3.2b), in which rainwater

interacts (mixes) with soil solution (Ahuja et al. 1981; Ahuja 1982; Singh 2002b;

Gao et al. 2004; Tong et al. 2010). The depth of the mixing (exchange) layer, de, is
assumed constant, and, in the most general formulation of the problem, chemicals

are allowed to enter runoff water from underlying soil layers. The value of de is
commonly not higher than 10 mm, and, according to estimates made by different

authors, most often it is a few mm (Zhang et al. 1999; Shi et al. 2011).

In the simplest model of this type, the mixing of rainwater, which forms water

layer on the surface, with soil solution in the active layer, θde, is assumed instan-

taneous and complete, allowing us to write the following homogeneous equation:

hþ θdeð Þ∂C
∂t

þ q
∂C
∂x

¼ r Cr � Cð Þ; ð3:11Þ

where C is the concentration of a chemical in the runoff water, equal to the

concentration of the chemical in the exchange layer (Ce); h is the water depth; θ
is the saturated volumetric water content (� θs). In the case of equilibrium sorption,

parameter θ is replaced by the sum θþ Kdρb, where Kd is the equilibrium sorption

distribution coefficient, ρb is the dry bulk density of the soil. The possibility to take
sorption into account explicitly is an important advantage of this model as com-

pared with the boundary layer model (Sect. 3.1.2.1).

Experimental testing of model (3.11) has shown that, in fact, the concentration in

the surface soil layer, Ce, is higher than that in water flow on the surface, C (Snyder

and Woolhiser 1985). In this context, it was suggested that the mixing of pore and

rain water in the model element hþ de (Fig. 3.2b) is not complete. Therefore, the

further improvement of the model consisted in the incorporation of a mechanism

aimed to account for the kinetic character of soil solution and runoff water

exchange in flow profile. Such kinetic model can be represented by the following

system of solute mass balance equations (Havis et al. 1992; Singh 1997, 2002b):

∂hC
∂t

þ ∂qC
∂x

¼ ke Ce � Cð Þ � iCþ rCr; ð3:12Þ
∂θdeCe

∂t
¼ �ke Ce � Cð Þ þ i C� Ceð Þ: ð3:13Þ

This model, including elements of the diffusion boundary layer model, discussed

above, takes into account the difference between the chemical concentrations in the

two media in contact, C and Ce, which determines, in turn, the exchange rate of the

solute between the active layer and overland flow (Deng et al. 2005). Equations
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(3.12) and (3.13) also reflect the advective exchange of chemicals between the

media (flux component iC) and chemical export from the mixing layer into the

underlying soil layers due to infiltration (flux component iCe).

Taking into account the continuity equation for overland flow (3.4), equation

(3.12) can be transformed into the form similar to (3.6), and the system of equations

(3.12), and (3.13) becomes

h
∂C
∂t

þ q
∂C
∂x

¼ ke Ce � Cð Þ � rCþ rCr; ð3:14Þ
∂θdeCe

∂t
¼ ke C� Ceð Þ þ i C� Ceð Þ: ð3:15Þ

A Particular Solution A number of solutions for a system of the governing

equations (3.14), (3.15) added by the flow and transport equations for the soil

column has been derived for studying the chemical transport at the hillslope

scale. Some of them are discussed in the second part of this chapter. Here, we

focus, for illustrative purpose, on developing a particular analytical solution that

may be favorable to an expert analysis of some experimental data.

The considered limiting case, which is often mentioned in the literature, is associated with

the assumption that the concentration in the surface runoff is much lower than those in the

near-surface zone of the soil (Wallach and van Genuchten 1990; Wallach 1991; Walton

et al. 2000). In this case, Eq. (3.15) becomes

θde
dCe

dt
¼ � ke þ ið ÞCe; ð3:16Þ

which allows it to be solved independently of Eq. (3.14):

Ce ¼ Ce

C0

¼ exp � ke þ i

θde
t

� �
; ð3:17Þ

where C0 is the initial concentration in the mixing layer. Now the solution of Eq. (3.14)

becomes simpler, because it now contains a source term, which is a damped function of

time, t, not depending on the space coordinate, x.
As an example, we consider a particular solution of equation (3.14), written in dimen-

sionless form

1� γð Þ τ dC

dτ
þ C� βe�μτ ¼ 0; ð3:18Þ

and valid at the initial stage of the rainfall event in a domain remote from the water divide

line (x� 0), where water depth linearly depends on time h ¼ r 1� γð Þt and ∂C=∂x ¼ 0;

here C ¼ C=C0, τ ¼ rt, μ ¼ βþ γð Þ=θde, β ¼ ke=r, γ ¼ i=r. The solution of the ordinary

differential equation (3.18) has an integral representation:

C ¼ β
1� γð Þτ1= 1�γð Þ

ðτ
0

uγ= 1�γð Þ exp �μuð Þdu; ð3:19Þ
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which is valid under the condition τ < τe ¼ 1� γð Þ1=n�1 rx=αð Þ1=n. If infiltration can be

neglected (γ ¼ 0), the solution (3.19) can be simplified

C ¼ β
μτ

1� exp �μτð Þ½ �, μ ¼ β=θde: ð3:20Þ

At τ ! 0 (t ! 0) the relative concentration C, determined by (3.19) and (3.20), tends

to the ratio β ¼ ke=r, i.e., C ¼ βC0. The solutions (3.19) and (3.20) can be of use for

the diagnostics and interpretation of laboratory and field data from experiments with

artificial tracers applied to the soil surface of plots followed by the application of simulated

rainfall.

We performed such expert appraisal for the experimental data given in works by

Walton, Walter, Dong and Wang (Walton et al. 2000; Walter et al. 2007; Dong and

Wang 2013). Despite the different conditions under which the experiments have been

carried out, the obtained breakthrough curves, C(t), which characterize the variations of

concentrations of ion-tracers (Br�1, Cl�) at the outlets of the experimental slopes (flumes,

plots), are similar: at the very beginning of runoff, the concentration is usually low but

then increases quickly to a maximum; next, the concentration starts dropping exponen-

tially. The measured peak concentrations were used to calculate Cmax tð Þ ¼ Cmax=Cs,

where Cs is the initial (experimentally determined) concentration of a tracer in the soil

solution. We assumed that β ¼ ke=r � Cmax tð Þ. Since the rainfall rate was known in all

experiments, approximate variation ranges of the transfer rate coefficient were calculated

(cm/h): ke ¼ 0:05� 0:08 (Dong and Wang 2013); ke ¼ 0:02� 0:07 (Walton et al. 2000);

ke ¼ 1:3� 3:4 (Walter et al. 2007); the variation range of r was from 0.9 to 6.8 cm/h. Thus,

the coefficient ke may vary within a wide range of values ke ¼ N 0:01� 1ð Þ cm/h.

Influence of Raindrop Chemical Transfer The models considered above are

applicable to the description of exchange processes taking place at interphases,

when soil surface is protected against the direct impact of raindrops, for example,

by grass cover or a water layer, when the latter forms rapidly enough on the land

surface.

In fact, the solute exchange between the soil and runoff water on the surface can

be initiated by the mechanical impact of drops on the land surface. The collision of

a moving drop with the surface is accompanied by the penetration of rainwater into

soil pores and mechanical displacement of mineral grains with respect to one

another, altogether contributing to the mixing of rainwater and soil solution. At

the same time, part of this mixture is ejected onto the surface, introducing chemicals

into runoff water. The manifestation of this interaction mechanism is especially

significant at the beginning of rainfall, or in the case of weak inundation of the

surface.

Obviously, such process causes soil erosion: the release of the energy of falling

raindrops contributes to the detachment of soil particles and loosening the soil

(Chap. 4). The collision of drops with soil surface facilitates washing out fine (dust

or silt) particles, represented by clay minerals, humic substances, oxides of iron,

aluminum, manganese, phosphates, etc. Those particles enter the water flow that

forms on the slope and become active transporters of some absorbable components
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(Herbert and Przepiora 1995). The erosion effect is largest during showers (when

precipitation rate exceeds 0.3 in/h). As mentioned above, the mechanical impact of

falling drops onto the soil can be largely smoothed in the presence of a dense

vegetation cover and mulch.

The ascending solute flux from the mixing layer through the interface, induced

by the release of kinetic energy of falling drops can be defined as

Js ¼ ker Ce � λCð Þ; ð3:21Þ

where ker is a transfer coefficient characterizing the rate of soil water ejection

(release) into runoff due to raindrop impact (raindrop chemical transfer rate)

[LT�1]; λС is the concentration of the water entering the mixing layer, 0 < λ � 1

(Ahuja and Lehman 1983; Gao et al. 2004): λ ¼ 0 means that only rainwater

containing no solute enters the mixing zone, λ ¼ 1 means that the water entering

the mixing layer shows the same composition as the surface flow water.

The transfer coefficient, ker, depends on the rainfall rate, r, and the physical

properties of the soil. Gao et al. (2004) and Walter et al. (2007) suggest using a

simple linear relationship between ker and r proposed before in a form:

ker ¼ erθ=ρb, er ¼ a0r; ð3:22Þ

where er is the net rate of soil erosion caused by raindrop impact [ML�2T�1] (Sect.

4.1.1); a0 is the soil erodibility (detachability) coefficient, which determines to what

extent the impact of drops can weaken the bonds between mineral–organic com-

plexes [ML�3].

The literary sources give the values of the coefficient a0, varying within the range

0.3–2 g/cm3 obtained from the laboratory tests conducted with a simulated rainfall of rather

high intensity (Ahuja and Lehman 1983; Gao et al. 2004; Walter et al. 2007). Experiments

also show (Gao et al. 2003), thata0 ¼ am is a constant value until some critical flow depth h0
is exceeded. With an increase in h at h > h0, the values of a0 show a decrease in the form

a0 ¼ am h0=hð Þδ, δ � 0:6� 0:7, and hcr is about three times the diameter of raindrops

(Proffitt et al. 1991). Thus, the equality (3.22) is valid for “shallow” flow. In the case of

“deep” flow, when the water layer on soil surface contributes to the protection of the soil

and weakens the rain-induced erosion, the model may overestimate the exchange ability of

the soil.

Thus, the solute transport with the overland flow is governed by soil erosion

characteristics. Moreover, the surface migration of erosion products, that is,

suspended particles (suspension solutions), can be associated with transport of

contaminants adsorbed on those particles. Therefore, strictly speaking, to describe

soil solute migration, one needs more complete physico-mathematical formaliza-

tion of the process as a whole, taking into account the combined effect of several

physical mechanisms (Sects. 4.2 and 4.3). Meanwhile, in the following, we assume

the exchange coefficient ker to be constant (given the rainfall rate), and neglect the

sorption of solutes by suspended particles that enter the flow due to soil erosion.
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The mass balance equation for hillslope flow (3.3), which takes the form

∂hC
∂t

þ ∂qC
∂x

¼ ker Ce � λCð Þ � iCþ rCr; ð3:23Þ

is considered along with the kinematic wave equation (3.4). Combining these two

equations, (3.23) and (3.4), yields

h
∂C
∂t

þ q
∂C
∂x

¼ ker Ce � λCð Þ � rCþ rCr: ð3:24Þ

The above model does not take into account the diffusion exchange between the

runoff water and the mixing layer, since diffusion is considered a process with

secondary significance against the background of rain (erosion) reinjection of pore

solution. However, this may lead to underestimation of mass exchange at the stage

of surface ponding, when both processes become significant. On the other hand,

with the drop-erosion effect neglected at the initial runoff at the beginning of

rainfall, the rate of the exchange process (controlling pollution intensity) would

be underestimated as well.

Also, the mixing layer contributes to the exchange of dissolved chemicals not

only with surface water, but also with underlying soil layers (z � 0, Fig. 3.2b). Such

exchange is based on advection induced by water infiltration, as well as diffusion.

The mass balance equation in the mixing layer can be presented in a form (Gao

et al. 2004; Walter et al. 2007):

∂θdeCe

∂t
¼ �ker Ce � λCð Þ þ i C� Ceð Þ þ jD; ð3:25Þ

where jD ¼ Ds∂Cs=∂z is the diffusion solute flux from the underlying soil

[ML�2T�1]; Cs is the concentration of a chemical in soil water; Ds is the effective

diffusion coefficient [LT�2]; i is the infiltration rate [LT�1].

Equations (3.24) and (3.25) are solved along with the advection–diffusion

equation written for the concentration function Cs characterizing the solute trans-

port in the underlying soil layer (Walter et al. 2007). For the solute being sorbed,

θde ! θþ Kdρbð Þde (Kd is the equilibrium sorption distribution coefficient for

partitioning solute between soil particles and water; ρb is the dry bulk density of

the soil). Relatively similar, through the incorporation into the transport model of

the retardation factor, it can be taken into account chemical sorption within the

whole soil profile as well (Freeze and Cherry 1979; Van der Perk 2006; Rumynin

2011). As said above, the incorporation into the model of sorption increases the

model applicability and robustness.

One can readily see that the terms that account for the kinetics of solute exchange between

runoff water and underlying soil in the mixing layer model (3.23) and in the interfacial

diffusion-controlled model (3.12) are similar. They differ only in the physical interpretation

of transfer coefficients ker and ke (Shi et al. 2011). Therefore, a physically sound idea
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is to combine the two mechanisms in a single (effective) transfer coefficient, k∗e (Gao

et al. 2005),

k∗e ¼ ke þ ker; ð3:26Þ

in that study, it is proposed to assume the solute flux through the interphase from the soil

side to be proportional to the current solute concentration in soil solution, Cs. The

incorporation of a coefficient responsible for the raindrop effect into the effective mass

exchange parameter, k∗e , makes the description of the early behavior of the system more

reliable (Gao et al. 2005).

Overall, we can note that the considered solute transfer models, which incorpo-

rate a series of kinetic, storage, and sorption parameters (such as, ke, ker, de, Kd) are

of a conceptual character. In most cases, the coefficients have been obtained under

idealized laboratory conditions. The passage to a field scale requires the develop-

ment of new effective approaches to studying the process, which is a difficult

experimental problem. In this case, an alternative to physically based (distributed)

parameters can be an empirical model with effective coefficients incorporated in

especially chosen functions or combinations of such functions (Chap. 6).

3.2 Solute Transport in the Rain Water Flowing Over
Impermeable Soil Surface

The large number of assumptions and simplifications underlying the development

of analytical models restricts their predictive ability under actual field conditions

characterized by a wide variability of soil parameters and micro- and macro-scale

landscape particularities. However, analytical solutions appear to be the only

possible means of obtaining insight into the fundamental nature of the studied

process and trends in chemical hydrograph generation at the slope scale. In this

section, we closely follow the analytical approaches developed by V.P. Singh

(1997, 2002a), R. Wallach with co-authors (1988, 1989, 1990, 1991, 2001) and

some other researchers in their pioneer works.

3.2.1 Instantaneous Dissolution of a Chemical From the Soil
Surface in Runoff Water

In this formulation of the problem, it is assumed that

– at the initial stage of the rain, a chemical is uniformly distributed (with a known

density N0) over the sloped surface;

– the kinetics of the chemical substance passage from soil surface into water can

be neglected, that is, the substance instantaneously dissolves in water;
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– the substance is not absorbed by soil;

– the infiltration losses and the diffusion exchange with the underlying rocks (soil)

are negligible.

For zero values of the infiltration rate, i, and a chemical’s concentration in

precipitation, Cr, and with a delta-type source term Js determined by (3.9), the

original system of equations (3.3) and (3.4) becomes:

∂hC
∂t

þ ∂qC
∂x

¼ N0δ tð Þ; ð3:27aÞ
∂h
∂t

þ ∂q
∂x

¼ r: ð3:27bÞ

Combining these two equations, (3.27a) and (3.27b), yields

h
∂C
∂t

þ q
∂C
∂x

þ rC ¼ N0δ tð Þ: ð3:27cÞ

Analytical solution for Eq. 3.27c can be developed using the method of charac-

teristics (Singh 1997; Singh 2002a). The method involves rewriting Eq. 3.27c as a

system of ordinary differential equations for solute transport in terms of the

concentration at a distance on the sloped plane and time. Partial solutions of these

equations can be adopted for several regions (domains) identified in the t–x diagram
(Fig. 3.3), in other words, the solution for (3.27c) is associated with distinct regimes

(phases) of water flow in different zones on the plane ( 0 � x � L ), where the

regimes are controlled by ratios of the current process time, t, and the characteristic
times, T, te (Eq. 2.12) and tse (definition of tse see below).

3.2.1.1 Solute Transport Description When Flow Wave Reaches

Equilibrium

In a domain of a linear dependence of water depth on time,

h ¼ h tð Þ ¼ rt, q ¼ q tð Þ ¼ α rtð Þn; ð3:28Þ

the partial differential equation (3.27с) becomes

∂C
∂t

þ α rtð Þn�1 ∂C
∂x

þ C

t
¼ N0

δ tð Þ
rt

: ð3:29Þ

This equation corresponds to two characteristic equations: the first,

dx

dt
¼ α rtð Þn�1; ð3:30Þ
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yields a family of characteristic curves, along which the concentration is described

by the solution of the second characteristic equation (Singh 2002a):

dC

dt
þ C

t
¼ N0

δ tð Þ
rt

: ð3:31Þ

Integrating (3.30), we can evaluate the solute transport time, ts(x, x0) within the

interval between points x0 and x (Fig. 3.3a, curve 2) from the equation:

x� x0 ¼ α
n
rn�1t ns x; x0ð Þ: ð3:32Þ

The comparison of (3.32) and (2.10) yields

ts x; x0ð Þ ¼ n1=nt x; x0ð Þ; ð3:33Þ

i.e., the time of solute migration between two arbitrary points, x0 and x, at this
(unsteady) stage of the process is n1/n times greater than the time of motion of a

hydrodynamic wave between the same points.

The solution of the mass transport equation (3.31) has the form

C ¼ N0

rt
¼ N0

h tð Þ , t � te; ð3:34Þ

i.e., the concentration, which remains constant in each section x > αtnrn�1, drops

with time. The solution (3.34) can be represented in a dimensionless form:

Fig. 3.3 Characteristics: (1) the characteristic (2.12), (1a) (3.40), (2) (3.32), (3) (3.43), (4)

(3.50a), (5) (3.50b). (a), (b) equilibrium (T > t*se ) and nonequilibrium (t*se > T > t*e ) profiles of
the transport wave, respectively
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C ¼ Chx
N0

¼ τe
τ
, τ � τe; ð3:35Þ

where τ ¼ t=T, τe ¼ te=T ¼ hx=rT; hx is the maximal flow depth attained at t ¼ te.
The process in the period when the hydrodynamic wave has a steady-state profile

at t > te (Fig. 3.3a, curve 3), with tse < T (tse is the solute transport time between

point x ¼ 0 and a point, x, further downstream), is also described by Eq. (3.27c), in

which, however, the right-hand part is set equal to 0, and the initial condition is

derived from (3.34). Assuming

h ¼ h xð Þ ¼ rx=αð Þ1=n, q ¼ q xð Þ ¼ rx; ð3:36Þ

we come to the equation

∂C
∂x

þ h

rx

∂C
∂t

þ C

x
¼ 0: ð3:37Þ

The partial differential equation (3.37) corresponds to a characteristic equation

dt

dx
¼ h

rx
; ð3:38Þ

which yields a family of characteristic curves. Variations of concentration along a

characteristic is described by another ordinary differential equation:

dC

dx
þ C

x
¼ 0: ð3:39Þ

Integrating (3.38) within intervals [0, ts] and [0, x] at flow depth, h ¼ h xð Þ; derived
from (2.15a), we obtain

ts x, 0ð Þ ¼ n

r

rx

α

� 	1=n
; ð3:40Þ

that is, the maximal migration time of solute particles from the boundary x ¼ 0 to

a point x.
Comparing the obtained result with solution (2.12), one can see that the hydro-

dynamic wave moves ahead of the transport front and the migration of the sub-

stance is taking place against the background of a stationary distribution h(x) all
over the flow domain. The time

ts x, 0ð Þ ¼ nt x, 0ð Þ ¼ n

r
h xð Þ ð3:41Þ

can be identified with the period of export of the entire mass of the substance that

have precipitated within the segment (0, x) of the watershed through a section h(x),

provided that the rate of precipitation remains unchanged, i.e., T � t*se.
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The integration of (3.39) yields the general solution of the problem of concen-

tration distribution in the flow

C ¼ A=x; ð3:42Þ

where A is an integration constant.

This constant can be determined from the condition of the equality of concentrations,

determined by solutions of (3.34) (in which rt ¼ rx0=αð Þ1=n) and (3.42), at the moment of

passage of the hydrodynamic wave through the point (x0, t0 ¼ te ) of intersection of two

characteristics (2.12) and (3.32) (Singh 2002a)

A

x0
¼ N0

rx0=αð Þ1=n
ð3:42аÞ

(see Fig. 3.3a), whence the constant A can be obtained. Now the solution (3.42) can be

rewritten as

C ¼ N0

rx=αð Þ
rx0

α

� �1�1
n

: ð3:42bÞ

The solution (3.42b) is valid along the characteristic (3.38), t ¼ f x > x0ð Þ > te. The
remaining problem is to relate the dimensionless group rx0/α in the solution (3.42b) with the
process time t. The integration of (3.38) yields

t� t0 ¼ n

r

rx

α

� 	1=n
� n

r

rx0

α

� �1=n

; ð3:43Þ

or, with denotation 1=rð Þ rx0=αð Þ1=n ¼ t0,

t ¼ t0 1� nð Þ þ n

r

rx

α

� 	1=n
: ð3:43aÞ

At t ¼ 0, we obtain an expression containing the coordinate of intersection of charac-

teristic (3.43a) with the x-axis (Fig. 3.3a):

rt0 ¼ rx0

α

� �1=n

¼ n

n� 1ð Þ
rx01
α

� 	1=n
: ð3:43bÞ

The coordinate x01 is auxiliary: it helps us find the equation of characteristic (3.38) and

can be further eliminated. Indeed, integrating (3.38), we obtain

t� 0 ¼ n

r

rx

α

� 	1=n
� rx01

α

� 	1=n� �
; ð3:43cÞ
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whence (rx01/α)1/n is determined. Substituting this relationship into Eq. 3.43b, we obtain

rx0

α

� �1=n

¼ n

n� 1ð Þ
rx

α

� 	1=n
� rt

n

� �
: ð3:43dÞ

Thus, the solution of the problem (3.42b) becomes

C ¼ N0

rx=αð Þ
n

n� 1ð Þ
rx

α

� 	1=n
� rt

n

� �
 �n�1

: ð3:44Þ

The solution (3.44) can be represented not only as a functional dependence

C ¼ C x, tð Þ, but also in other forms, e.g., C ¼ C hx, tð Þ:

C ¼
N0

hx

1

hx

nhx � rt

n� 1

� �n�1

, te � t � nte,

0, t > nte,

8<
: ð3:45Þ

where water depth hx (hx � rt � nhx) is associated with the equilibrium condition

and corresponds to the maximal (steady-state) thickness of water layer on the

surface at point x. Since the depth hx is a univalent function of characteristic time

te, formula (3.45) can be rewritten in another, dimensionless form:

C ¼ C

N0=hx
¼

n� τ=τe
n� 1

� �n�1

, τe � τ < nτe,

0, τ � nτe:

8<
: ð3:45aÞ

As can be seen, at τ ¼ τe, the solution (3.45a) yields an initial concentration

distribution in the section h xð Þ ¼ hx, i.e., solution (3.35). At τ � nτe (t > tse) we
obtain zero concentration, that is, all the solute that have fallen onto slope surface is

being exported through the model section, and the front of clear water, which starts

forming in section x ¼ 0 at moment t ¼ 0, reaches this section.

Now let us consider the case when precipitation ceases before the entire mass of

the solute is exported from the domain. This is the case when the movement of the

rear part of the concentration wave is taking place during the recession of hydro-

dynamic wave, i.e., under transient hydrodynamic conditions: T < t*se (Fig. 3.3b).
It has been shown, that under this condition the dynamics of the flow is described

by the function h x, x∗0
� �

(2.18) and a characteristic equation for time t x, x∗0
� �

(2.19).

Solute transport equation (3.27c) becomes:

1

αhn�1

∂C
∂t

þ ∂C
∂x

¼ 0: ð3:46Þ
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This equation corresponds to characteristic curves:

dt

dx
¼ 1

αhn�1
; ð3:47Þ

along which the concentration follows the law:

dC=dx ¼ 0: ð3:48Þ

Consider first the solution of the equation of characteristics (3.47), following the trans-

formations suggested by Singh (2002a). Here h ¼ h x, tð Þ is a function varying over both

time and space and defined by the transcendent formula (2.20). To obtain a closed

analytical solution, it is more convenient to use equations (2.18) and (2.19), where x	0 is a
parameter.

Suppose that y ¼ rx∗0 =α. Now equations for the kinematic wave (2.18) and (2.19)

become

h ¼ y1=n; ð3:49aÞ
x ¼ αy

r
þ nαy n�1ð Þ=n t� Tð Þ: ð3:49bÞ

Equation (3.47) for the solute transport characteristic becomes

dt

dx
¼ 1

α
y� n�1ð Þ=n: ð3:49cÞ

To solve it, we represent the differential as

dx

dt
¼ ∂x

∂t
þ ∂x
∂y

dy

dt
: ð3:49dÞ

Next, differentiating (3.49b), we obtain

∂x
∂y

¼ α
r
þ n� 1ð Þαy�1=n t� Tð Þ; ð3:49eÞ

∂x
∂t

¼ nαy n�1ð Þ=n: ð3:49fÞ

Substituting (3.49c), (3.49e) and (3.49f) into (3.49d), we come to an ordinary differen-

tial equation

dt

dy
¼ � t� T

y
� 1

n� 1ð Þr y
� n�1ð Þ=n; ð3:49gÞ
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which has the general solution

t� T ¼ A

y
� n

n2 � 1ð Þr y
1=n; ð3:49hÞ

where A is an integration constant, or

t� T ¼ Aα
rx∗0

� n

n2 � 1ð Þr
rx∗0
α

� �1=n

: ð3:49iÞ

The constant A can be evaluated from the condition: at t ¼ T, the equality x∗0 ¼ xT is to
hold (Fig. 3.3b). Now

A ¼ nxT
α n2 � 1ð Þ

rxT
α

� 	1=n
; ð3:49jÞ

and expression (3.49i) becomes:

t� T ¼ n

n2 � 1ð Þr
xT
x∗0

rxT
α

� 	1=n
� rx∗0

α

� �1=n
" #

: ð3:50aÞ

In accordance with (3.49b),

x ¼ x∗0 þ nα t� Tð Þ rx∗0
α

� � n�1ð Þ=n
: ð3:50bÞ

Thus, the equalities (3.50a) and (3.50b), can be regarded as a system of equations

whose solution relates the coordinates (x, t) with parametric points (x, T), xT, andx
∗
0 .

We rewrite (3.50a) and (3.50b) in dimensionless form:

n2 � 1ð Þ τ� 1ð Þ
nh0τe

¼ hT

h0

� �nþ1

� 1; ð3:51aÞ

n τ� 1ð Þ
h0τe

¼ 1

h0

� �n
� 1; ð3:51bÞ

here τ ¼ t=T, τe ¼ te=T ¼ hx=rT ; h0 and hT are water depth characteristics

normalized by the parameter hx associated with the equilibrium condition (where

t ¼ te is the time when equilibrium is attained at point x), h0 ¼ h0=hx, hT ¼ hT=hx;

h0 ¼ h x∗0
� �

is the water depth at x ¼ x∗0 at moment t ¼ T; hT ¼ h xTð Þ is the same at

point xT, characterizing the displacement (x� xT) of fluid particles over time t� T.
Thus, hx � hT � h0. The relative decrease of the flow depth can be derived from the

approximate equality

h0 ¼ h0
hx

� exp � t� T

te

� �
¼ exp � τ� 1

τe

� �
; ð3:51cÞ

which is valid at n¼ 5/3.
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The solution of equation (3.48) can be represented as (Singh 2002a):

C ¼ N0

hT

1

hT

nhT � rT

n� 1

� �n�1

: ð3:52Þ

Passing to dimensionless groups, we obtain

C ¼ Chx
N0

¼ 1

hT

nhT � 1=τe
hT n� 1ð Þ

� �n�1

; ð3:52aÞ

hT ¼ hT=hx. The system of equations (3.51) is used to find hT . Solution (3.52a) is

valid within the domain τ > 1 ( t > T ); solution (3.45a) is used to calculate the

concentration function within the dimensionless time interval τe < τ � 1.

Thus, the dimensionless concentration function C τð Þ depends on dimensionless

parameter τe, equal to the ratio of the characteristic time te, required for equilibrium
to be reached in the section hx, to the duration of precipitation event T. Character-
istic plots are given in Fig. 3.4a. Figure 3.4b gives a plot of dimensionless mass flux:

qs ¼ qC, q ¼ αhn tð Þ
αhn

x

¼ h tð Þ
hx

� �n

, C ¼ Chx
N0

: ð3:53Þ

To determine q, one can use the transcendent formula (2.20), rewritten as:

1 ¼ q1�1=n q1=n þ n

τe
τ� 1ð Þ

� �
: ð3:53aÞ

Interestingly, the inflexion point in the plot of C τð Þ has a coordinate τe, at which
Cmax ¼ 1 (Fig. 3.4a). This point also shows the maximal value of the relative mass

flux qs, max ¼ 1 (Fig. 3.4b).

3.2.1.2 Solute Transport Description Under Partial Equilibrium

of Water Profile

As mentioned above, short-time rainfalls on long enough slopes may have too short

duration for an equilibrium water depth profile to form (Sect. 2.2). Suppose that

water depth characteristics h xð Þ (related to the front of water wave at t ¼ T), where x

is determined by Eq. (2.12) at te ¼ T, x ¼ αTnrn�1, separates the upper zone of the

slope flow, 0 < x � x (here, function h(x) is steady-state, see Eq. (2.15a)), from the

time-dependent lower zone, x < x � L, where function h(t) grows linearly (2.11)

with time, until moment t ¼ T (Fig. 2.3c, d). In points 0 < x � x, function C(t) is
determined similarly to the case considered above: formula (3.34) is used for t � te
and formula (3.45) or (3.52), for t > te.
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The concentration function in segment x < x � L (the lower zone of the slope

flow) in period 0 � t � T is also constructed based on solution (3.34), which at

t ¼ T yields C ¼ N0=rT. A specific feature of flow regime at a later stage is the

existence of a time intervalT � t � tp xð Þ, during which the flow depth, h(x), remains

constant until the recession front of water wave reaches this point (Fig. 2.3c, d). Since

at t ¼ T, the entire segment x < x � L shows the same concentration

C ¼ N0

h Tð Þ ¼
N0

rT
; ð3:54Þ

we will have the same constant concentration for some time in the section under

consideration. The chemicals that pass through this section at moment t, have been
captured in the section h(xT), where xT is determined by

t� T ¼ x� xT

α rTð Þn�1
: ð3:55aÞ

The displacement of point xT, which characterizes the capture zone, can be

regarded as the motion of a solute transport wave. Since the motion of flow wave

(coordinate x0) is determined by the equality

t� T ¼ x0 � x

αn rTð Þn�1
; ð3:55bÞ

we can calculate the time and coordinate when and where the flow and solute waves

will meet,

Fig. 3.4 Functions (a) C τð Þ, parenthetical numbers at the curves are the numbers of analytical

solutions: (1) (3.35), (2) (3.45a), (3) (3.52a); (b) q τð Þ at different τe
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tp1 ¼ T
x=xþ n

1þ n
: ð3:56Þ

Further changes in the concentration are determined by the spatial distribution

C(x) within the segment 0 < x < x at t ¼ T. The required calculations can be

based on formulas (3.45) and (3.52).

3.2.1.3 Examples and Their Comparison with Numerical

Modeling Data

An illustration of the tendencies considered above can be the calculation of concentration

variations in an outlet section of a flow that forms on a gently sloping plane (S0¼ 0.01 m/m)

2000 m long (Sect. 2.2.2). The exponent in the equation (2.3) for flow rate q, is n¼ 5/3.

Manning parameter, characterizing surface roughness, m¼ 0.05 s/m1/3, i.e., α¼ 2 m1/3/s.

The rainfall rate r¼ 5
10�6 m/s (18 mm/h). The surface pollution density

N0 ¼ 0:01 kg=m2. Two variants with different duration of precipitation event are consid-

ered: (a) T¼ T1¼ 300 min, i.e., rainfall duration is greater than the formation time of an

equilibrium profile T > t*se ¼ nt*e ¼ 5=3ð Þ 
 138:8 min ¼ 230:4 min (see Eq. 3.40), and

(b) T¼ T2¼ 170 min, i.e., T < t*se. As before, taking into account the test nature of the

considered task, to make it more impressive, values r and Ti were increased in comparison

with the mean statistical background values; the selected r and Ti are closer to the values

corresponding to heavy-storm periods. The same reason underlay the selection of a rather

large hillslope length, L.

In the former case, the initial ( t � t*e ) points of the concentration curve, C(t), are

calculated by (3.34), while C(t) for t*e < t � nt*e is evaluated by (3.45), see. Fig. 3.5a. The

time te Lð Þ � t∗e is calculated by (2.13). In the latter case, (Fig. 3.5b) the calculation of

concentration curve segment within the range t > T ¼ T2 is based on solution (3.52).

Figure 3.5 also gives numerical solutions of the problem (software package GSSAH,

Downer and Ogden 2004). Figure 3.5 highlights a good agreement between the analytical

calculations and the data of numerical modeling.

Fig. 3.5 Functions С(t) and h(t) for the outlet of the hillslope (x¼ L ): (a) t*se < T;

(b) t*se > T. The full lines are analytical calculation, dots in plot (a) are the result of

numerical modeling (code GSSHA, Δx ¼ 10 m, Δt ¼ 2 s)
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Based on the obtained data, the solute export through the outlet flow section within the

identified unit-length flow band can be readily calculated by the formula

qs ¼ Cq ¼ Cαhn: ð3:57Þ

The results of calculations are given in Fig. 3.6. The analysis of the plot shows that at an

impulse fallout of the solute onto soil surface, the curve qs(t) has an extreme character with

peak concentrations coinciding with the formation time of equilibrium kinematic wave.

The integration of the curve that corresponds to long-time fallout (the case of

T¼ T1¼ 500 min), yields the solute mass which exactly corresponds to the initial distri-

bution, N t ¼ 0ð Þ ¼ N0. On the other hand, it can be clearly seen that at short-time

precipitation (the case of T¼ T2¼ 170 min), a part of solute remains in the watershed.

Finally, the plot in Fig. 3.7, based on numerical modeling data, illustrates the behavior

of functions h(t) and C(t) in the case of a partial equilibrium of water depth profile (T < t*e).

Fig. 3.6 Time variations of

solute flux in the outlet

section of the hillslope. The

hollow circles show the first

model situation T > nt*e , the
black circles show the

second model situation

T < nt*e

Fig. 3.7 The behavior of

functions h(t) (hollow dots)
and C(t) (black dots) in the

case of partial equilibrium

water depth profile

(Ti< te¼ 138.8 min).

T1¼ 50 min, T2¼ 100 min
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The plots h(t) show plateau-type segments in the period t> T, as it was mentioned in

Sect. 2.2. Such inertial feature of the system accounts also for the behavior of function C(t)
(Sect. 3.2.2).

3.2.2 Kinetically-Controlled Exchange Between
Contaminated Soil and Runoff Water

With the kinetics of the transfer of chemicals from the soil pore water (or from the

soil surface) into surface water described by equation (3.5) (i¼ 0 case), the

governing system of equations consisting of partial differential equations (3.3)

and (3.4) is reduced to a single (coupled) partial differential equation:

h
∂C
∂t

þ αhn
∂C
∂x

� ke Cs � Cð Þ þ rC ¼ 0; ð3:58Þ

where Cs is the concentration of a chemical in the soil solution at the soil surface

interface or aqueous solubility of the chemical in the case of dissolution of solid

contaminants laying on the soil surface. In this analysis, the concentration Cs is

assumed constant over time, and, without a loss of generality, we can assume

Cr¼ 0.

The rising stage of the overland flow (0 � t < T) Consider the behavior of the

concentration function under the conditions of equilibrium and partial-equilibrium

water depth profiles (t*e < t*se < T) (Fig. 3.8).

Fig. 3.8 Plots of

characteristics: curve 1 is

the characteristic (2.12),

1a – (3.40), 1b – (3.67),

2 – (3.32), 3 – (3.43),

4 – (3.50a), 5 – (3.50b)

3.2 Solute Transport in the Rain Water Flowing Over Impermeable Soil Surface 107

http://dx.doi.org/10.1007/978-3-319-21801-4_2
http://dx.doi.org/10.1007/978-3-319-21801-4_2


Equation (3.58) corresponds to a characteristic system of equations:

dx

αhn
¼ dt

h
¼ dC

ke Cs � Cð Þ � rC
: ð3:59Þ

Attempts to obtain the solution of equation (3.59) with zero initial condition,

h x, t ¼ 0ð Þ ¼ 0, by the method of characteristics face a problem of singularity. To

overcome this problem, we, following Rivlin and Wallach (1995), introduce an

initial water depth, h x, 0ð Þ ¼ h0, which can be chosen arbitrarily, in the initial

formulation of the problem.

Now, in the domain of linear growth of function h with time

x >
α
r

rtþ h0
� �n � h0n
� 

; ð3:60Þ

the equation of solute characteristic curves becomes

x� x0 ¼ α
nr

h0 þ rt
� �n � h0n
� 

: ð3:61Þ

Variations of concentration along those characteristics can be described by the

second equation of the system (3.59), which can be conveniently rewritten in the

dimensionless form

τþ h0
� � dC

dτ
þ 1þ βð ÞC� β ¼ 0; ð3:62Þ

where C ¼ C=Cs , τ ¼ rt, β ¼ ke=r. Solving this equation with the initial condition

C τ ¼ 0ð Þ ¼ C
0
, we obtain:

C ¼ β
1þ β

þ C
0 � β

1þ β

� �
h0

τþ h0

� �1þβ

, β ¼ ke=r: ð3:63Þ

The limit h0 ! 0 can be seen to lead to the steady-state solution

C ¼ β
1þ β

; ð3:64Þ

i.e., in the domain x � α=rð Þ rtð Þn, where the flow is unsteady-state (Fig. 3.8,

curve 2), the concentration remains constant over both time and space.

In the domain of the steady-state distribution of water depth function,

h xð Þ ¼ rx=αþ h0
� �n� 1=n

, i.e., when the condition
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x � α
r

rtþ h0
� �n � h0n
�  ð3:65Þ

is satisfied, the equation for solute characteristic curves takes the form

rx

α
¼ rx0

α
þ h0n

� 	1=n
þ rt

n

� �n
� h0n: ð3:66Þ

Because of the kinetics of dissolution process, the concentration distribution

exists in both the domain lying below the limiting characteristic curve for the

dissolved solute ((3.66), x0 ¼ 0) (Fig. 3.8, кривая 1a) and in the domain above

this characteristic,

t x, t0ð Þ ¼ t0 þ n

r

rx

α
þ h0n

� 	1=n
� h0n

� �
: ð3:67Þ

This distribution is described by the ordinary differential equation

hn
x þ h0n

� � dC
dhn

x

þ 1þ βð ÞC� β ¼ 0, hn
x ¼ rx

α
; ð3:68Þ

as follows from the basic system of equations (3.59), written with the initial water

depth, h ¼ rx=αþ h0
� �n� 1=n

taken into account. Solving this equation, we obtain:

C ¼ β
1þ β

1� 1� 1þ β
β

C
0

� �
h0n

hn
x þ h0n

� �1þβ" #
, C hn

x ¼ 0
� � ¼ C

0
: ð3:69Þ

From this it can be seen that at h0 ! 0, Eq. (3.68) has a single steady-state

solution, coinciding with (3.64) for any characteristic (3.67) specified by parameter

t0 (Fig. 3.8, curve 1b), i.e., the concentration in the domain t*e < t < T is also a

steady-state function, constant over the space. The solution (3.64) is also valid for

the characteristic lying below the line (3.40) (Fig. 3.8, curve 3). To prove the

invariance of solution (3.64) in three ranges t � te, te < t � tse, and t > tse, we
can use the solution of the problem developed for a general constant initial water

depth case (Rivlin and Wallach 1995) with the subsequent passage to h0 ¼ 0.

An Application of the Steady-State Solution The obtained result can be expertly

used to evaluate the natural attenuation of contaminated areas as applied to the

conditions of uniform distribution on the land surface (at some initial time, t¼ t0)
of a final mass of a chemical (initially present in solid form) with a density of N0.

It is considered that the chemical change to a dissolved form can be transferred in

runoff from the surface through which the vertical infiltration is negligible

(Sect. 3.1.2.1).
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Since under idealized conditions of continuous precipitation with intensity r, the concen-

tration in runoff water, C, is constant (steady-state solution, Eq. (3.64)), the dissolution

kinetic equation (3.8) becomes

dN

dt
¼ � β

1þ β
Csr; ð3:70Þ

where Cs is the chemical solubility (saturation concentration).

The integration of Eq. (3.70) allows us to obtain a solution for quantifying the effect of

reduction of the surface contamination due to runoff:

N tð Þ ¼ N0 � kerCs

ke þ r
t� t0ð Þ: ð3:71Þ

Let us assume further that such washout effect is negligible during the short recession

phase following the long-duration fallout (or irrigation) phase. Under this assumption, we

can rewrite Eq. (3.71) to obtain a solution for prediction of the washout effect caused by a

series of storms, approximated by a step-wise periodical function r:

Nm ¼ N0 � keCs

Xm
i¼1

ri
ke þ ri

ti � ti�1ð Þ: ð3:71aÞ

where m is the total number of the fallout periods with known rate ri that is fixed within the
time-interval ti � ti�1.

If we assume that precipitation for a particular region can be characterized by a mean

value, r, the “total rain time”, t*, required for the entire mass of the chemical to be washed

out of the hillslope surface, can be evaluated:

t∗ ¼ ke þ r

ker

N0

Cs
; ð3:71bÞ

After this time, the soil contaminant is reduced to negligible concentration.

The obtained results may support and contribute to the proposals related to

environment protection issues.

The Falling Stage of the Overland Flow ( t > T ) The migration during the

recession of hydrodynamic wave (t> T) is described by the equation

h
∂C
∂t

þ αhn
∂C
∂x

� ke Cs � Cð Þ ¼ 0; ð3:72Þ

which follows from (3.58) at r¼ 0.

Equation for solute transport along characteristics

dt

dx
¼ 1

αhn�1
ð3:73Þ
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(corresponding to Eq. (3.72)) has the form

dC

dx
¼ ke

αhn
Cs � Cð Þ: ð3:74Þ

Here h ¼ h x, tð Þ is an unsteady-state, spatially varying function, determined by the

transcendent formula (2.20) or Eqs. (2.18) and 2.19, where x∗0 is a parameter (see

Sect. 3.2.1).

The solution of equation (3.73) is given by formulas (3.50a) and (3.50b). The substitution

y ¼ rx∗0 =α (Singh 2002a) transforms Eqs. (2.18) and (2.19) to the form (3.49a)–(3.49b),

and Eq. 3.74 becomes

dC

dy
¼ ke

αy
dx

dy
Cs � Cð Þ ¼ ke

αy
∂x
∂y

þ ∂x
∂t

dt

dy

� �
Cs � Cð Þ: ð3:75Þ

Determining the derivatives in the right-hand part of Eq. (3.75) in accordance with

Eqs. (3.49e), (3.49f) and (3.49g), we come to the equation:

dC

dy
¼ �ke

y
Cs � Cð Þ t� T

y1=n
þ 1

n� 1ð Þr
� �

: ð3:76Þ

Substituting t� T from Eq. (3.49i) into Eq. (3.76), we obtain

dC0

dy
¼ �ke

y
C0 1

n2 � 1ð Þr þ Ay� 1=nþ1ð Þ
� �

, C0 ¼ Cs � C ð3:77aÞ

(A is a constant determined by Eq. 3.49j). Integrating Eq. (3.77a) yields

ln C 0 ¼ ke
n2 � 1ð Þr ln y� A

ken

nþ 1
y� nþ1ð Þ=n þ B; ð3:77bÞ

where B is an integration constant.

We rewrite the solution (3.77b) in the explicit form:

ln C0 ¼ ke
r

1

n2 � 1
ln rx∗0 =α
� �� n2

n2 � 1ð Þ nþ 1ð Þ
rxT=αð Þ
rx∗0 =α
� � rxT=αð Þ1=n

rx∗0 =α
� �1=n

" #
þ B: ð3:77cÞ

The concentration in point x∗0 ¼ xT is determined by solution (3.64), i.e.,

ln
Cs

1þ β
¼ β

1

n2 � 1
ln
rxT
α

� n2

n2 � 1ð Þ nþ 1ð Þ
� �

þ B; ð3:77dÞ

therefore

B ¼ ln
Cs

1þ β
� β
n2 � 1

ln
rxT
α

� n2

nþ 1ð Þ
� �

: ð3:77eÞ
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Further algebraic transformations yield a solution of the problem, which can be

given in a dimensionless form

C ¼ C

Cs
¼ 1� 1

1þ β
h0

hT

� �βn= n2�1ð Þ
exp � βn2

n2 � 1ð Þ nþ 1ð Þ
hT

h0

� �nþ1

� 1

" #( )
;

ð3:78Þ

where hT=h0 is a function of dimensionless time τ, and, with fixed parameter τe, it
can be determined from the solution of the system of Eqs. (3.51a), (3.51b).

At τ ! 1, which corresponds to the limit hT=h0 ! 1, the solution leads us to the

formula (3.64), i.e., it is in agreement with the steady-state phase of the process. At

large τ (τ >> 1), solution (3.78) tends to an asymptote C ¼ 1 (C ¼ Cs). Physically,

such behavior of the function is due to a decrease in the flow depth (h ! 0), which,

in the absence of precipitation, supplying fresh water, causes the concentration of

soluble salts in solution up to the saturation level Cs.

An illustrative example and finding an approximate solution The above features in the

behavior of the concentration function are illustrated by the plot in Fig. 3.9a. The accom-

panying plot in Fig. 3.9b gives the behavior of the function of dimensionless mass flux,

qs τð Þ (3.53).
The numerical solution of the problem confirms the described trends in the process and

is in agreement with analytical calculations (Fig. 3.9a). Function C(τ) shows nonsteady

behavior at the first moments τ < 0:01, thus confirming the acceptability of the steady-state

solution (3.64) for describing the migration process.

Fig. 3.9 (a) Functions C τð Þ ( full lines) calculated by formulas (3.64, τ ¼ t=T � 1) and

(3.78, τ > 1) (the dashed line shows the approximate solution (3.79)), and (b) specific mass

flux, qs (3.53) (dashed curves). Dots are results of numerical modeling (code GSSHA; the

parameters of the grid model are Δx ¼ 5 
 10�4, Δt ¼ 1:8 
 10�3). τe ¼ 0:5
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The approximate equality (3.51c) for parameter h0 allows the formula (3.78) to be

rewritten as

C τð Þ ¼ 1� 1

1þ β
1þ n2 � 1

n

α τð Þ
exp �α τð Þ½ �

� ��βn= nþ1ð Þ n2�1ð Þð Þ
exp � βn

nþ 1ð Þ
α τð Þ

exp �α τð Þ½ �
� �

; ð3:79Þ

where α τð Þ ¼ τ� 1ð Þ=τe ¼ t� T (t ¼ rt=hm, T ¼ rT=hm). Calculations (Fig. 3.9) suggest
the high accuracy of the proposed approximation.

3.3 Solute Transport in Surface Runoff Coupled
with Infiltration into Underlying Soil

In the previous section, we considered the problem of chemical transport in the

overland flow derived under an assumption of very low permeability of the under-

lying soil, preventing infiltration water losses. In fact, the rate of surface water flow

during rainfall decreases due to water imbibition by soil cover, followed by its

infiltration in the aeration zone (Sect. 2.3); this should be reflected in the character

of concentration functions. In the general case, the infiltration is known to be a

nonsteady-state function (Sect. 1.3), and only when rainfall events are long enough

for the soil surface to be ponded, the values of function i can be assumed to be

independent of overland flow characteristics and moisture content distribution in

the unsaturated zone. Nevertheless, some useful trends in overland solute transport

process can be established by solving a simplified problem assuming a fixed

infiltration rate, i¼ const.

3.3.1 Solute Transport with Surface Exchange Kinetics
Under a Constant Infiltration Rate

The solution of the problem can be conveniently related with the two main stages of

overland flow, i.e., the rising (r> 0) and falling (r¼ 0) stages.

The Rising Stage of the Overland Flow Suppose that the duration of a storm

rainfall event is long enough for the formation of a steady-state (equilibrium)

hydrodynamic water depth profile, T > t*e . The partial differential equation of

kinematic wave (2.4) corresponds to a system of ordinary differential equations

dt

1
¼ dx

αnhn�1
¼ dh

r � i
: ð3:80Þ
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The parametric form of representation of solution (3.80), similar to (2.10) and (2.9),

is as follows:

t x, x0ð Þ ¼ r � ið Þ�1 r � ið Þ
α

x� x0ð Þ
� �1=n

; ð3:81Þ

h x, x0ð Þ ¼ r � i

α
x� x0ð Þ

� �1=n
; ð3:82Þ

where x0 is a parameter, representing the coordinate of intersection of the charac-

teristics curve and the x-axis. The equation of the main characteristic of the water

flow, passing through the origin (x¼ 0, t¼ 0) and dividing the plot of characteristics

into two zones (an unsteady-state zone with uniform flow depth distribution and a

steady-state zone with non-uniform flow depth distribution), has the form:

t x, 0ð Þ ¼ 1

r � i

r � i

α

� �1=n

x1=n: ð3:83Þ

Combining mass balance equation for solute transport (3.3) and continuity

equation for overland flow over an infiltrating soil surface (3.4) with a source-

term equation (3.5a) we come to a coupled equation:

h
∂C
∂t

þ αhn
∂C
∂x

¼ ke Cs � Cð Þ � rCþ rCr; ð3:84Þ

which formally coincides with the equation of solute transport over impervious soil

surface (3.58).

Equation (3.84) can be rewritten as a system of ordinary differential equations

for solute transport in terms of the concentration as a function of distance and time.

Partial solutions of these equations can be adapted to three domains identified in the

t–x plane, separated by the main flow characteristic curve (3.83), and the following

main characteristic curve for the dissolved chemical

ts x, 0ð Þ ¼ n

r � i

r � i

α

� �1=n

x1=n: ð3:85Þ

Analysis of all particular solutions obtained by the method of characteristics

(Sect. 3.2.2, h0 ! 0) and describing the process in the domains

1. x >
α

r � i
r � ið Þt½ �n,

2. x <
α

r � i

r � ið Þt
n

� �n
,

3.
α

r � i

r � ið Þt
n

� �n
� x <

α
r � i

r � ið Þt½ �n,
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shows that all solutions are described by a single stationary concentration function

(3.64) as in the previous scenario (i¼ 0, Sect. 3.2.2). Notwithstanding the equality

of concentrations of chemicals in water, runoff solute flux per unit width, qs ¼ Cq
can be easily shown to be always less than the solute flux, calculated at i¼ 0.

Note that obtained result differs from that of in the work by Rivlin and Wallach

(1995) due to lack of coincidence in the solute source-term Js representation in the

governing system of equations (3.3), and (3.4).

The Falling Stage of the Overland Flow After the cessation of precipitation

event (t> T ) the flow condition is unsteady and nonuniform. Moreover, a drying

free surface (Fig. 3.10) starts forming: the process shows the presence of a moving

boundary, xd, between the liquid and solid phases, i.e., a contact between the

zone where the surface is underflooded and the zone where soil is fully drained.

Equations for determining xd (2.31) and h(x, t) (2.32) are transcendent, which makes

it difficult to find an exact solution for equation (3.84) in the concentration function.

Therefore, we consider an approximate analytical solution of the problem, which

can be derived from the following reasoning.

Suppose that function h in any point, x, of flow decreases linearly from its

maximum equilibrium value h ¼ hx, attained at t ¼ te < T, to the value h ¼ 0,

and the time of such decrease is determined by the travel time,Δt ¼ t xð Þ � T, to the
point x of the interface, determined by (2.31), i.e.

h ¼ hx 1� t� T

Δt xð Þ
� �

: ð3:86Þ

After some algebraic transformations, we come to an equation for flow depth:

h ¼ η� τ; ð3:87Þ

where τ ¼ ξ r t� Tð Þ, η � hx ¼ r � ið Þx=α½ �1=n, ξ ¼ γ=γ1=n, γ ¼ i=r.

Fig. 3.10 A conceptual

sketch showing the main

features of the falling stage

of the overland flow. Shown

in gray is the domain of

variations of water depth for

the case where the front of

chemicals started to migrate

from point x0(η0)
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Then the solute transport Eq. (3.84) is transformed as follows:

dη
a 1� τ=ηð Þn ¼

dτ
1� τ=ηð Þ ¼

ξ
β

ηdC
1� C
� � , ð3:88Þ

C ¼ C=Cs, β ¼ ke=r, a ¼ 1� γð Þ=ξn:
The first equality in (3.88) determines an equation for solute characteristic

curves:

dη
dτ

¼ a 1� τ=ηð Þn�1: ð3:89Þ

Substitution τ ¼ zη yields an ordinary differential equation:

η
dz

dη
þ z ¼ 1

a
1� zð Þ1�n; ð3:90Þ

with the general solution in the form

ln η�
ðz ηð Þ

0

adu

1� að Þ1�n � au
þ A ¼ 0; ð3:91Þ

where A is a constant of integration, which can be determined from the condition:

τ ¼ 0, η ¼ η0. Thus, the solute characteristics can be determined from the tran-

scendent integral equation:

η ¼ η0 exp
ðτ=η
0

adu

1� að Þ1�n � au

0
B@

1
CA: ð3:92Þ

It determines the coordinate (position) of the front of dissolved chemicals,η τ > 0ð Þ,
given that at the initial moment, its coordinate was η τ > 0ð Þ. Thereafter, a solution
describing the decrease of flow depth along the characteristic curves after when

rainfall ceases is as follows:

h η, τð Þ ¼ h0 1� τ=ηð Þ, h0 ¼ r � ið Þx0=α½ �1=n: ð3:93Þ

Equation (3.87) describes the decrease in flow depth in any flow section, while

equation (3.93) describes flow depth variations at the point where the front of

dissolved chemicals is situated at t� T. Atτ ¼ 0 t ¼ Tð Þ the value of h corresponds
to the flow depth h0 at the moment when rainfall ceases. At τ=η ¼ 1, we have h ¼ 0

(in the general case, τ ¼ η � 1).
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Formula (3.92) is transcendent. The value of η at any moment τ at known

η0 is found by iterations (Fig. 3.11). The plot in Fig. 3.11 characterizes the motion

of the front of dissolved chemicals along characteristic curves. We can see that at

small values of the dimensionless time τ ¼ τ=η0, the function η τð Þ is linear, and

dη=dτ � a; at large τ, the curves flatten, in such a way that at τ � 1, they tend to

some asymptotic values (dη=dτ ! 0, and at dη=dτ ¼ 0, η ¼ τ). A good approx-

imation for function η is the formula:

η τð Þ ¼ 1þ 0:889aþ 0:0223ð Þτ� 0:0047þ 0:464� 0:223a2
� �

τ2, a ¼ 1� γð Þ=ξn:
ð3:94Þ

Variations of the concentration along solute transport characteristic curves is

described by the second equation of the system (3.88), which can be rewritten as:

ξ
β

dC

1� C
¼ dτ

η� τ
¼ dτ

h η; τð Þ : ð3:95Þ

The solution of equation (3.95) that describes the relative concentration along the

characteristic (3.92), emanating from (η0, τ ¼ 0 ), can be represented in the

following dimensionless form:

C η; τð Þ ¼ 1� 1� CT

� �
exp �β

ξ

ðτ
0

ds

1� s=η sð Þ

0
@

1
A; ð3:96Þ

Fig. 3.11 Curves

characterizing the

dependence of the

dimensionless coordinate η
of the front on time τ. The
figures at curves are the
values of parameter a. n ¼ 2
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where CT ¼ C τ ¼ 0ð Þ is the concentration at the moment when the rain ceases,

determined by Eq. (3.64), τ ¼ τ=η0, η sð Þ ¼ η sð Þ=η0, and the integration function is

calculated from the transcendent equation

η sð Þ ¼ exp

ðs=η sð Þ

0

adu

1� að Þ1�n � au
: ð3:97Þ

We also give an approximate solution, which is an asymptotic form of solution

(3.95), when η sð Þ does not differ significantly from 1. In that case, the integrand in

formula (3.96) becomes a logarithmic function, and we obtain

C � 1� 1� CT

� �
1� τ

η

� �β=ξ

¼ 1� 1

1þ β
1� τ

η

� �β=ξ

: ð3:98Þ

As seen, the process is controlled by a limited set of parameters: ξ(γ, n) and
β ¼ ke=r.

Based on solution (3.64), one can readily calculate the specific solute flux,

qs ¼ Cq, i.e., a characteristic, which is of main interest in terms of the impact of

surface runoff on water bodies. Thus, maximal values of qs that can be attained at

the formation of equilibrium flow profile (t > te), are:

qs ¼ Cs
β

1þ β
r � ið Þx: ð3:99Þ

Some Calculation Examples They illustrate the behavior of the dimensionless

concentration function under above conditions.

The plots in Fig. 3.12 are constructed for two fixed values of γ, γ¼ 0.2 and 0.7, using

different values of coefficient β, which determines the kinetics of the transfer of chemicals

from solid to liquid phase. In particular, the plot shows that the concentration C τð Þ starting
from the initial value (3.64) (reached during the rising stage of overland flow) increases

gradually to a value less than or equal to 1.

When the kinetic coefficient of dissolution is greater than the runoff rate (β > 1), the

approximate model (3.98) yields results quite acceptable for practical estimates within all

range of the dimensionless time, τ. This suggests that variations of concentration are largely
due to the dynamics of a decrease in water depth and dissolution of solid chemicals, while

the effect of the lateral motion of water over the surface is far less significant. A power

approximation (3.98) is also appropriate for β < 1 if τ � 0:5� 0:7.
Finally, the approximate solution (3.98) was compared with a solution obtained numer-

ically (numerical code GSSHA), Fig. 3.13. The input data are slope length, L¼ 1600 m;

slope gradient, S0 ¼ 0.01 m/m; the exponent in the relationship for water discharge (2.3),

n¼ 5/3; Manning’s roughness coefficient, m¼ 0.05 с/м1/3, i.e., α¼ 2 м1/3/с; the rainfall

rate, r¼ 18 mm/h (5
10�6 m/s); the concentration of the chemical in the soil,Cs ¼ 1 mg/L;

the mass transfer coefficient, ke ¼ 35.83 mm/h (β¼ 2); fallout period, T¼ 4.617 h

(277 min). Three scenarios with different infiltration rate, i, are considered:
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Scenario i, mm/h γ¼ i/r ξ¼ γ/γ1/n hx, mm

1 15 0.83 0.93 13.7

2 10 0.56 0.79 24.7

3 5 0.28 0.59 33

The agreement between the numerical and analytical solutions can be seen to be good at

γ > 0:5 and satisfactory at γ < 0:5, i.e., the accuracy of analytical calculations increases

with increasing infiltration capacity of soils.

Fig. 3.12 Variations of the relative concentration along characteristic curves. Solid lines
give solution (3.96) with approximation (3.94) for function η, dashed lines give approxi-

mate solution (3.98, τ � 0:7). The figures at curves are the values of β ¼ ke=r. (a) γ ¼ 0:2,
(b) 0.7. n¼ 2

Fig. 3.13 Comparison of

numerical (circles) and
analytical, Eqs. (3.64, 3.98)

(solid curves), solutions.
Numbers at the curves are

the values of ks, mm/h (see a

Table above)
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3.3.2 A Numerical Solution for Solute Transport in Runoff
Coupled with Transient Infiltration

The author does not know any analytical solution of the problem of solute transport

in overland flow under the conditions of unsteady-state infiltration. Therefore,

to analyze general trends at the qualitative level, we will use particular solutions

of the problem obtained by numerical methods (code GSSHA).

It is assumed that the input for the overland flow/solute transport model is determined by

the condition (2.24), where the infiltrability is approximated by Green–Ampt solution

(1.18). An application will be carried out for the same parameters of the rainfall–runoff

condition used in the previous Sects. 2.3.1 and 3.3.1, namely: n ¼ 5=3, r ¼ 18 mm/h,

L ¼ 1600 m, α ¼ 2 m1/3/c, T ¼ 277 min. Contrary to an example in Sect. 3.3.1 where fixed

values of infiltration rate were assumed, in this test the soil infiltrability is calculated as a

time-dependent function using soil characteristics ks and hc for a fixed value of the

saturation deficit, Δθ ¼ 0:05 (θs ¼ 0:1, θ0 ¼ 0:05). Two scenarios are considered. Under

the first scenario, at a fixed value of the suction pressure, hc ¼ 10 cm, the effect of changes

in the hydraulic conductivity, ks on solute concentration measured at the hillslope outlet is

studied (Fig. 3.14). Under the second scenario, the coefficient ks is assumed constant, and

the concentration response is assessed at different values of hc (Fig. 3.15).

Fig. 3.14 The effect of ks at hc¼ 10 cm on the plots of function C(t). (a)β ¼ 2, (b)β ¼ 0:2.
Calculation were performed using GSSHA numerical code. Dashed curve corresponds to

approximate solution described by Eq. (3.98)
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Figures 3.14 and 3.15 illustrate the following tendencies in the behavior of the

breakthrough curves.

1. The time of ponding, tp, and, accordingly, the beginning of concentration

changes in the system, is determined with a high accuracy by formula (1.19a).

2. At moment tp, the concentration instantaneously reaches the value C, which
remains unchanged until the moment t ¼ T, when the precipitation event ceases

(Figs. 3.14 and 3.15a). This value of C does not depend on the parameters of

Green-Ampt model; it is determined by formula (3.64), i.e., the ratio β ¼ ke=r of
the exchange rate coefficient to rainfall rate, i.e., we have come to the same

result of concentration independency of the soil infiltration capability as in the

previous Sect. 3.2.

3. The moment of rain cessation and, accordingly, a decrease in the depth of water

layer on the surface show an increase in the concentration of the chemical in this

water up to the value of C ¼ 1 (C ¼ C0). The rate of attainment of the steady-

state value C ¼ 1 (Figs. 3.14, 3.15a) is the higher, the higher is the drying of the

surface, i.e., the higher are ks and hc.

4. Such character of the plots C ¼ f tð Þ determines the similarity of normalized

solute flux discharge, C q=qmaxð Þ (Fig. 3.15b), to hydrographs in Fig. 2.6b. Here

qmax ¼ rL is the outlet discharge maximum in the absence of infiltration.

3.3.3 An Asymptotic Mixing-Layer Model for Solute
Transport under a Constant Infiltration Rate

The models with active (mixing) layer (Sect. 3.1.2.2) should be preferred in the

description of surface runoff pollution in watersheds with intense farming,

Fig. 3.15 The effect of suction pressure at the wetting front on dimensionless concentra-

tion curves (a) and normalized solute flux discharge (b). ks ¼ 1:2 cm/h, β ¼ 2,

x¼ L¼ 1600 m. Numbers at the curves are the values of hc, cm. Calculations were

performed using GSSHA numerical code
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accompanied by the use of fertilizers and pesticides. Those substances generally

show a uniform distribution in the surface soil layer and, involved in the exchange

process, they determine the character of pollution of surface runoff.

Adding the left and right parts of Eqs. (3.14) and (3.15) (or 3.24 and 3.25 at

jD ¼ 0), we come to the equilibrium model of solute transport in the overland flow

(Emmerich et al. 1989, Eq. [7]):

hþ θdeð Þ∂C
∂t

þ q
∂C
∂x

¼ r Cr � Cð Þ; ð3:100Þ

which neglects the kinetics of matter exchange between the surface water layer and

the mixing layer. In an other words, the Eq. (3.100) corresponds to the limiting case

of no “film” resistance,ke ! 1, when the two concentration functions, C and Ce, in

the system of equations (3.14) and (3.15) become closer (C ! Ce). A term θde in the
Eq. (3.100) can be transformed to account for the sorption capacity of the soil

(Sect. 3.1.2.2).

The specific feature of the present illustrative task is that the solute transport

process is analyzed under the condition of flow continuity

∂h
∂t

þ ∂q
∂x

¼ re, re ¼ r � ið Þ; ð3:101Þ

accounting for infiltration with a constant rate, i.

Equation (3.100) corresponds to the system of ordinary differential equations:

dt

hþ θde
¼ dx

q
¼ dC

r Cr � Cð Þ : ð3:102Þ

The main (limiting) flow characteristics for the hillslope runoff model (3.101)

t x, 0ð Þ ¼ 1

r

rex

α

� 	1=n
; ð3:103Þ

given in (x–t) diagram (Fig. 3.3, curve 1), divides the problem domain into two domains

with an unsteady-state, h ¼ h tð Þ, and steady-state, h ¼ h xð Þ, behavior of the function of

water layer depth. Let us consider the behavior of the concentration function in those

domains, assuming Cr ¼ 0.

In the unsteady domain, where h ¼ ret, the process is described by the differential

equation

dC

dt
¼ � rC

retþ θde
: ð3:104Þ

Integrating (3.105) yields

C re tð Þ ¼ θde
retþ θde

� �ω

, C ¼ C

C0

, ω ¼ r

re
¼ 1

1� γ
, γ ¼ i=rð Þ: ð3:105Þ
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The solution (3.105) is valid along solute characteristic curves:

dx

dt
¼ α retð Þn

retþ θde
: ð3:106Þ

To describe the solute transport in the domain of steady-state behavior of the function
h ¼ h xð Þ, when q ¼ re x, another differential equation from the system (3.102) is to be

solved, namely:

dC

dx
¼ � rC

re x
: ð3:107Þ

Integrating (3.107), we obtain a solution for the relative concentration (C ¼ C=C0) in a

general form:

C ¼ A=xω; ð3:108Þ

where A is integration constant. The latter can be determined from the condition of the

equality of concentrations determined by solution (3.105) (in which re t ¼ rex
0=αð Þ1=n) and

(3.108) at the moment of flow wave passage through the point x0, t0, where the character-

istics (2.12) and (3.106) intersect:

A

x0ω
¼ θde

rex0=αð Þ1=n þ θde

 !ω

; ð3:109Þ

whence we have constant A. Now the solution (3.108) can be written as

C ¼ θdex0

rex0=αð Þ1=n þ θde

 !ω
1

xω
: ð3:110Þ

Since the solution (3.110) is valid along solute characteristic curves, represented by a

solution of the following ordinary differential equation

dx

dt
¼ rex

rex=αð Þ1=n þ θde
; ð3:111Þ

we have to relate the coordinate points (x0, t0) to a solution of Eq. (3.111). Integrating

(3.111) within intervals [0, t] and [x01, x] yields:

t ¼ nθde
re

ln
x

x01

� �
þ n

re

rex

α

� 	1=n
� rex01

α

� 	1=n� �
: ð3:112Þ

Since (3.112) passes through the intersection point of characteristics (x0, t0), we have:

t0 ¼ nθde
1� nð Þre ln

ret
0

rex01=αð Þ1=n
 !

� n

1� nð Þre
rex01
α

� 	1=n
; ð3:112aÞ

x0 ¼ α
re

ret
0ð Þn: ð3:112bÞ
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Coupling (3.112a) and (3.112b), we obtain:

rex
0

α

� �1=n

¼ nθde
1� nð Þ ln

rex
0=αð Þ1=n

rex01=αð Þ1=n
 !

� n

1� nð Þ
rex01
α

� 	1=n
; ð3:113Þ

i.e., equation for x0 is transcendental.
For the current value of x, relating to the characteristic (3.111) and being an argument of

solution (3.110), the time t is determined by equality (3.112).

The final solution can be represented in the dimensionless form

C hx, retð Þ ¼ θde h0=hxð Þn
h0 þ θde

� �ω

; ð3:114Þ

where h0 depends on h01 and can be determined from the relationship

h0 ¼ nθde
1� n

ln
h

0h01

� �
� n

1� n
h01; ð3:115aÞ

while h01 is determined by the process time

ret ¼ nθdeln hx=h01ð Þ þ n hx � h01ð Þ; ð3:115bÞ

here hx ¼ rex=αð Þ1=n, h01 ¼ rex01=αð Þ1=n, h0 ¼ rex
0=αð Þ1=n. At hx ¼ h0, we come to

Eq. 3.105 with hx ¼ ret.
It can be easily shown that atθde � hx and i¼ 0, the solutions (3.105) and (3.114)

transform into the previously obtained formulas (3.35) and (3.45a) for the conditions

of an "impulse" pollution of surface (3.9), where the fallout density N0 ¼ θdeC0.

The obtained solutions can be used to evaluate the breakthrough concentration curves

(Fig. 3.16a), and the reduced mass flux of the chemical in the section hx (Fig. 3.16b), see

Fig. 3.16 Variations of the relative concentration of chemical (a) (solution (3.105) for

τx � 1 and solution (3.114) for τx > 1) and the reduced mass flux (b) (solution (3.53) in the
hillslope flow in the mass exchange with soil layer. The numbers at curves are the values of

γ ¼ i=r. A particular case de ¼ θde=hx ¼ 0:5. n¼ 5/3
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the first relationship in (3.53) at q ¼ q=αhx ¼ τn (when 0 � τ � 1) or q ¼ 1 (when τ � 1).

The curves in the plots show a relatively high sensitivity to parameter γ, which character-

izes infiltration water losses. With increasing γ, the rate of drop in the concentration

function increases, and the mass flux accordingly decreases.

3.4 Solute Transport along Lateral Subsurface Flowpaths

As it has been already thoroughly discussed (Sects. 1.2.3 and 2.4.1), subsurface

stormflow is an important component of the rainfall–runoff response, especially in

steep-sloped and wet areas (mountain terrain, valleys, landscape depressions) with

forest cover. Being also an important contributor of dissolved species, including

contaminants, to the surface water bodies, subsurface stormflow is also responsible

for their chemistry.

In particular, the issues that have been actively discussed in the two or three

recent decades include the age, origin, and pathways of subsurface stormflow

(Sklash and Farvolden 1979; McDonnell 1990; Peters et al. 1995; Brutsaert 2005;

Liggett et al. 2014), and, consequently, the contribution of new (event) and old

(pre-event) water to event runoff. The majority of published studies of hydrograph

separation (based on flow, isotope and geochemical tracer data) indicate that, under

wet antecedent conditions, pre-event water dominates in hillslope runoff despite

event-based chemical dilution (Sklash and Farvolden 1979; Buttle 1994; Kirchner

2003; Weiler et al. 2003). As pointed out by Kirchner (2003), in many small

catchments, streamflow responds promptly to rainfall inputs, but fluctuations in

passive tracers are often strongly damped. This indicates that storm flow in these

catchments is mostly old water. Under dry antecedent conditions, the role of event

water commonly increases (Brown et al. 1999).

Currently, the relative contributions of surface and subsurface water to

streamflow are often determined with the use of sophisticated numerical models,

which are in turn used as an effective tool for storm hydrograph separation. Many

attempts were made to study numerically mechanisms and effects related to the

rapid groundwater response to precipitation and domination of pre-event water in

stream hydrographs. For example, using fully integrated surface and subsurface

flow and solute transport models, it was shown that hydrodynamic mixing can

dramatically influence the estimates of pre-event water contribution by a tracer-

based separation (Jones et al. 2006; Liggett et al. 2014). Unfortunately, the progress

in numerical simulation shaded the potentialities of analytical methods of analysis,

maybe, except for the simplest two- or three-component balance (mixing) models

used as a main analytical framework for the interpretation of streamwater

chemistry.

In our model, pre-event water storage is associated with the retention of a certain

amount of water in soil above a sloped interface between soil and bedrock

(Fig. 3.17). There can also be a thin weathered zone near the soil–bedrock interface.

The saturation zone (pre-event groundwater), shown in the diagram (Fig. 3.17), is
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generated mostly through annual net recharge, which is characterized by the

average rate i. Such steady-state profile of saturation in terms of kinematic-wave

approximation (Sect. 1.2.3)

αs
dh xð Þ
dx

¼ i ð3:117Þ

is simply a linear function of x (Beven 1981):

h xð Þ � h0 xð Þ ¼ ix=αs; ð3:117aÞ

where αs ¼ ks sinφ (a coefficient which is associated with the specific discharge).

Beven (1981) found that the kinematic-wave approximation is a good representa-

tion of the Dupuit–Forchhmier flow theory in terms of predicting subsurface

stormflow hydrographs, if some criterion for a dimensionless parameter depending

on the slope conditions and recharge rate is fulfilled (Sect. 1.2.3). Thus, the amount

of water held within the soil profile is determined by a combination of soil and

hillslope parameters, such as ks, i and φ.
There are three major assumptions about subsurface flows. The first is that the

event water falling onto a hillslope infiltrates rapidly to the saturated zone via

vertical preferential flow paths. Hydrological system behavior is consistent with

many observations which show how subsurface flow through macropores can play a

major role in storm runoff generation (Beven and Germann 1982; Germann 1990;

Peters et al. 1995; Brutsaert 2005). The second assumption is that the lateral flow

induced by infiltration at any point in the slope occurs in accordance with Darcy’s

law where hydraulic gradient is equal to the slope of the impermeable base. The

third assumption concerns the intensity of the recharge: in model setup, the event

recharge, w, is equal to or exceeds the average value i.
As for formalization of solute transport process, it is assumed that a solute

(chemical component) in concentration Cr, exceeding the background concentra-

tion C0, enters the saturated zone only in the rainfall event period. The solute can be

dissolved in the precipitation water or scavenged from the soil surface during

Fig. 3.17 A conceptual

model of mixing process in

subsurface stormflow (SSF)

above the bedrock surface

as a base of the steep slope
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infiltration. Recharge water between rainfalls is free of this component or shows

solute concentration C ¼ C0. Thus, annual recharge dilutes the contaminated

groundwater on the hillslope between storms. The hydrodynamic dispersion and

diffusion are neglected.

The hydrodynamic response to the precipitation event is described by an

equation as follows

ϕn

∂h
∂t

þ ∂q
∂x

� w ¼ 0; ð3:118Þ

where q ¼ αs h is the discharge; h ¼ h x, tð Þ is water head height measured in the

vertical direction from the impermeable sloping bed (Fig. 3.17); ϕn is the drainable

porosity. Equation describing mass balance of the solute in the lateral flow is

ϕn

∂hC
∂t

þ ∂qC
∂x

� wCr ¼ 0; ð3:119Þ

where Cr is solute concentration in the recharge water. Combining (3.118) and

(3.119) leads to an equation

h
∂C
∂t

þ uh
∂C
∂x

¼ �w

ϕn

C� Crð Þ; ð3:120Þ

where u ¼ αs=ϕn is the stormwater flow velocity.

A system of two ordinary differential equations written in a chain form,

dt

h
¼ dx

uh
¼ �ϕn

w

dC

C� Cr
; ð3:121Þ

is mathematically consistent with the solute-balance Eq. (3.120). For a period

before the rainfall event secession, t < T, two space–time domains with distinctive

behavior of the flow depth, h (and, consequently, flow discharge, q), in each can be

distinguished:

1. the domain where h behaves transiently in response to the flow input, w,

h ¼ h0 þ w� ið Þt=ϕn, t � te ¼ ϕnx=αs; ð3:122aÞ

2. the domain where h behaves similarly to a steady-state function

h ¼ wx=αs, t > te: ð3:122bÞ

Here, te is the time required to reach the steady-state equilibrium at the point x.
Integrating Eq. (3.121) yields the same equations of the problem with respect to

changes in solute concentrations in the mixture of event and pre-event water in both
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distinguished domains (Eqs. (3.122a) and (3.122b)). This solution can be conve-

niently represented in a dimensionless form:

C ¼ 1� 1

1þ w� 1ð Þτ
� �w= w�1ð Þ

, 0 � τ � τT ; ð3:123aÞ

where C ¼ C� C0
� �

= Cr � C0
� �

, τ ¼ it=ϕnh
0 ¼ αst=ϕnx, τT ¼ αsT=ϕnx, w ¼ w=i.

The identity of the solutions is due to the linear character of the process (the first

equation in the system (3.121)).

If during the input of the solute into a shallow aquifer, the event recharge rate, w,
only slightly differs from its average annual value, i (w � 1), the solution of the

problem can be described by an exponential function

C ¼ 1� exp �τð Þ, 0 � τ � τT : ð3:123bÞ

The recession hydrograph and the behavior of solute in a mixture of event and

pre-event waters after the rain stops are described by a system of equations:

ϕn

∂h
∂t

þ ∂q
∂x

� i ¼ 0; ð3:124Þ

ϕn

∂hC
∂t

þ ∂qC
∂x

� iC0 ¼ 0; ð3:125Þ

which shows that the water depth of the saturation zone generated during the event

is controlled by “reference” recharge rate, i, and that the infiltrating water contains a
tracer component in background concentration, C0. Combining the two above

equations gives an equation

h
∂C
∂t

þ uh
∂C
∂x

¼ � i

ϕn

C� C0
� �

; ð3:126Þ

for which a system of two ordinary equations,

dt

h
¼ dx

uh
¼ �ϕn

i

dC

C� C0
� � ; ð3:127Þ

is mathematically equivalent. The thickness of the saturation zone is described by

the equation depending on both x and t variables:

h x, tð Þ ¼ wx

αs
� w� i

ϕn

t� Tð Þ, t > T: ð3:128Þ

Solving the first equation of the system (3.127) gives
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x ¼ x0 þ αs
ϕn

t� Tð Þ: ð3:129Þ

Now, the characteristic equation for water depth, h, becomes:

h tð Þ ¼ wx0
αs

þ i

ϕn

t� Tð Þ: ð3:130Þ

The concentration is found from the solution of an ordinary differential equation

dt

h
¼ �ϕn

i

dC

C� C0
; ð3:131Þ

under an assumption that at t ¼ T, the distribution of concentration is known

(Eq. 3.123a):

C ¼ 1� 1

1þ w� 1ð ÞτT

� �w= w�1ð Þ" #
w

wþ τ� τTð Þ , w ¼ w=i, τ � τT :

ð3:132Þ

Problem solution in the form of equations (3.123a), (3.132) corresponds to the conditions

when storm duration is equal to or greater than the time of concentration ( τT � 1,

Fig. 3.18a). This, for example, is typical of longer and larger autumn storms. Contrarily

to this situation, for the analysis of short-term processes, for example, summer storm

events, of greater use could be solutions obtained for the partially equilibrium hydrograph

(τT < 1, Fig. 3.18b).

Fig. 3.18 Dimensionless concentration: (a) τT ¼ 2 and (b) τT ¼ 0:1. The numbers at the

curves show the ratio w/i
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This model gives remarkable skew concentration distributions with respect to the peak

values (Fig. 3.18). Such behavior is due to the nonpoint solute source, which exhibits a

marked variation in the residence times in the shallow aquifer.

The discussed mathematical problem setup corresponds to one-component

hydrograph separation, and with this viewpoint, the dimensionless concentration,

C, can be considered as the fraction of the event (new) water in the total discharge:

C ¼ Qevent= Qevent þ Q pre-event

� �
; ð3:133Þ

where Qevent and Qpre‐event are the contributions of event water (rainfall) and

pre-event water (groundwater).

According to this formula, the pre-event water always shall dominate in the

initial storm hydrograph (Fig. 3.18). Such chemical signature of hillslope water is a

quite expectable fact, since it stems from the very mathematical formulation of the

problem, which implied that the pre-event water is replaced by the event water

throughout the saturated zone and the mixture of the both fluxes discharges through

the slope outlet.

Clearly, the idealized model considered above has a number of drawbacks and

limitations regarding its practical applicability. In particular, it neglects the role of

pre-event water contained in macropores above the water table, the effects of

hydrodynamic dispersion, soil heterogeneity and many others. Nevertheless, the

relationships considered above give an idea about the effect of (a) hillslope and soil

parameters on the subsurface flow and tracer response times, (b) transient phenom-

ena on hydrograph separation, and hence enable the assessment of the applicability

of steady-state mass balance models to evaluating the fate of a solute in the

subsurface environment.
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Chapter 4

Contaminant Sorption and Transport
by Suspended Particles with Runoff

The description of near-surface migration of absorbable chemicals requires more

rigorous problem formulation, taking into account erosion phenomena, which

always accompany runoff formation. Mobile fine material, which is a product of

soil erosion, becomes an active transporter of components adsorbed on the surface

of suspended particles. An analogy with the subsurface colloid-facilitated contam-

inant transport (Rumynin 2011) is appropriate here.

The first part of this chapter is dedicated to the development of an analytical

framework, which is needed for the description of soil erosion and particle transport

across a hillslope during a rain event independently of chemical transport. First,

we will focus on idealized rainfall-runoff soil erosion resulting in the generation

and overland transport of a single particle-size suspension class, accompanied by

irreversible particle deposition. We rely here on the sediment transport capacity
concept, which is used in most erosion models. We consider several limiting

scenarios related to a combination of several processes, namely, rainsplash and

flow-driven (hydraulic) erosion and particle deposition, taking into account some

threshold criteria for particle entrainment and gravitational settling. Then, a more

representative model of erosion and suspended particle transport considering soil

as multi-size class sediment will be introduced. It is based on a theory of a

cohesionless deposited layer forming on the water/soil interface, from which

particles can be removed again by some erosion process. The governing equations

for sediment continuity, detachment, deposition, and transport capacity are

presented. The relevant models are important for prediction of the chemical-

carrying capacity of the sediment, which is the subject of the second part of the

chapter, which examines to what extent the erosion and deposition process can

affect the adsorbed chemical transport. The derivation of analytic solutions

describing sediment and absorbable solutes transport with overland flow is based

on the coupled kinematic-wave erosion and solute transport equations. To simplify

the analytical considerations, only the case of constant rainfall excess and the rising

stage of runoff are considered.
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4.1 Physical and Mathematical Formulation
of the Rainfall- and Runoff-Driven Soil Erosion
Problem

Most physically based erosion models separate the erosion process descriptions into

splash and sheet-flow erosion (summarized in the term “interrill”) and concentrated
flow (“rill”) erosion (Hairsine and Rose 1992a, b; Al-Hamdan et al. 2012). In this

work we focus exclusively on interrill processes which include a complex mixture

of rainfall-driven (rainsplash) and runoff-driven (flow entrainment) soil erosion

(Bryan 2000).

According to the classic definition (Trimble 2007), interrill erosion is the

removal of a relatively uniform and thin layer of soil from the land surface by

unchanneled runoff, or sheet flow. Splash erosion is driven by rainsplash kinetic

energy, which depends on raindrop characteristics; the effective availability of this

energy depends on soil characteristics and conditions. Shallow interrill flow has

little entrainment capacity without raindrop impact, but runoff energy is critical for

soil particle transport in overland water (Bryan 2000). Interactions between rain-

drop impact and shallow flow cause the involvement of solid particles, which form

the mineral and organic base of the soil, into runoff. Changes in the hydraulic

conditions and energetics of overland flow can cause the inverse process – settling

(deposition) of dispersed particles (suspension) onto soil surface from the solid

phases, resulting in a newly generated sediment, whose properties generally differ

from those of the original soil material. Thus, soil surface erosion and particle

deposition are inseparable processes (Fig. 4.1).

The physical-mathematical description of soil erosion and allied processes is the

focus of a huge scientific literature, since this phenomenon has a global effect on the

preservation of soil productivity in vast regions, thus determining their economic

well-being. Here, we will consider only a few of the wide diversity of experimen-

tally validated mathematical models, which can be effectively used to better

describe pollutant transport in sheet flows.

Fig. 4.1 A flow chart,

representing three interrill

components of the soil

erosion
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4.1.1 Basic Equations for Interactions in an Idealized
Rainfall, Fluid Flow, and Sediment System

Equation of mass conservation for erosion of idealized soil material composed of a

single size class with following suspension transport during rainfall, as well as for

deposition of sediment at the decline of rainfall (Fig. 4.1) can be represented in the

generalized form (Hjelmfelt et al. 1975; Johnson and Zhang 2005; Deng

et al. 2008):

∂hS
∂t

þ ∂qS
∂x

¼ er þ eh; ð4:1Þ

where x is distance in the direction of flow [L]; t is time [T]; h is the flow

depth [L]; q is the discharge per unit width of slope [L2T�1]; S is the concen-

tration of dispersed particles in water [ML�3]; er is the net rate of soil erosion

caused by raindrop impact (rainsplash erosion) [ML�2T�1]; eh is the rate of

hydraulic erosion caused by flowing water or deposition from the water

[ML�2T�1] (positive for detachment and negative for deposition, thus implying

that the two processes, flow erosion and gravity settling, cannot proceed

simultaneously).

Formula (4.1) has a steady-state representation:

∂qs
∂x

¼ er þ eh; ð4:1aÞ

where qs ¼ qS is the suspended sediment load [ML�1T�1].

The dependence of the rates of soil erosion, er and eh, on rainfall intensity, r,
actual flow velocity, u (or overland discharge, q), the properties of surface deposits,
slope geometry, and landscape conditions can be described by a number of empiric

relationships.

Rainsplash detachment of soil particles dominates at the first stage of the

erosion processes on a hillslope. The falling raindrops have high kinetic energy,

and the pressure they exert on the surface when colliding with it reaches several

hundred kPa. The accompanying shear stress can be many times greater than the

soil shear strength. The result is that the structural bonds in the soil are broken

and the newly formed solid particles, as well as pore moisture drops and drops

from water layer on the surface, splash as shown schematically in Fig. 4.2. The

scatter radius of particles and drops can be as large as several tens of cm. The

soil particles drop onto soil surface or the surface of sheet flow, which trans-

ports them further downslope. Overall, the erosion process of this type depends

on rainfall characteristics (the intensity and rain drop size), water flow depth,

and the mechanical and physical properties of the soil (consolidation, cohesion
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and soil particle-size distribution) (Kinnell 2005; Planchon and Mouche 2010).

Of particular importance for erosion rate is vegetation, which protects the soil

against a direct impact of raindrops.

In an early study (Meyer 1981), the rate of rain splash erosion, er, was evaluated
by a two-parameter relationship

er ¼ anr
β; ð4:2Þ

where r is the rainfall rate, an and β are empirical coefficients, and β � 2. The

Eq. (4.2) was modified later by including various correction factors in coefficient

an, e.g. (Downer and Ogden 2004),

an ¼ KrCwCGCi; ð4:3Þ

where Kr is the soil erodibility factor for detachment by raindrop impact (J�1); Cw,

CG and Ci are coefficients, accounting for the effects of water layer and vegetation

on soil surface and land use.

However, some researchers takeβ ¼ 1 in Eq. 4.2, thus the rain splash detachment

rate is assumed to be proportional to the rainfall rate (Hjelmfelt et al. 1975; Lisle

et al. 1998; Shaw et al. 2006; Barry et al. 2010):

er ¼ a0r; ð4:4Þ

where parameter a0 [ML�3] characterizes soil detachability (in this representation,

this is the concentration of soil aggregates in water, produced by rainsplash erosion

of the surface).

Obviously, the rate of sediment addition to the surface water by rainfall detach-

ment is reduced as flow depth, h, increases (Hairsine and Rose 1992a; Morgan

Fig. 4.2 Raindrop

impact causing splash

(rainfall) erosion

(Adopted from: www.

partnershipsforchange.cc/

planningeduc0042.asp)
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et al. 1998; Gabet and Dunne 2003). Studying the appropriate physical problems

has shown the erosion rate to drop exponentially with h (Morgan et al. 1998):

er ¼ aRKE exp �ξhð Þ; ð4:5Þ

where aR is an index of the detachability of the soil (kgJ�1 s�1); KE is the total

rainfall kinetic energy at the ground surface (Jm�2); h is depth of the surface water

layer (m); ξ is soil texture characteristic (m�1).

In some software packages, formula (4.5) is replaced by another expression with

the same exponential factor (Woolhiser et al. 1990; Deng et al. 2008)

er ¼ a0r
2

v
exp �ξhð Þ; ð4:6Þ

where a0 is the maximum sediment concentration produced by the raindrop impact

in the overlying water at the end of the ponding time (kgm�3); v is the sediment fall

velocity (ms�1).

Historically, definition of the second rate-term in mass conservation equation for

overland flow (4.1), namely the rate of hydraulic erosion, eh, has relied on the

hydraulic theory developed for stream flows. The basic notions used in this case

include sediment transport capacity, shear stress, shear velocity and stream power,

determining physical and hydraulic properties of the flow and sediment. Thus, the

source/sink term eh can be represented in terms of the so-called sediment transport
capacity equation, which has the form of an equation of first-order exchange

reaction (Foster and Meyer 1975; Morgan et al. 1998; Sander et al. 2007),

eh ¼ σ Tc � qsð Þ; ð4:7Þ

implying that the rate of soil erosion (particle detachment from a surface by a

hydrodynamic moment) or the deposition of particles from water flow is propor-

tional to the difference between sediment transport capacity of the overland flow, Tc
[ML�1T�1], which is the maximum equilibrium sediment load that a flow can

transport, and the value of sediment discharge or sediment load, qs ¼ qS
[ML�1T�1]; here σ is an empirical coefficient, which characterizes the erodibility

or the settling ability of particles [L�1].

For flow soil erosion, this coefficient can be represented as the ratio

σ ¼ Dc=Tc; ð4:8Þ

where characteristic Dc can be referred to as detachment capacity, which charac-

terizes the maximal erosion impact of water flow when the concentration of

suspended particles in water is minimal, i.e., S ¼ 0. In this case, the relationship

between sediment load and sediment transport capacity, can be rewritten as (Foster

and Meyer 1975; Foster et al. 1995):
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eh
Dc

þ qs
Tc

¼ 1; ð4:9Þ

or

eh ¼ Dc

Tc
Tc � qsð Þ > 0: ð4:10Þ

In a simplified description of the process, it is proposed to assume the ratio to be

constant Dc=Tc ¼ const ¼ σ, i.e., not depending on the velocity or discharge

of flow.

This concept can be applied to mathematical formalization of the process of

deposition of suspended particles from water. It was proposed to identify the

coefficient σ in Eq. (4.7) with the ratio of the particle settling velocity, v, to the

flow discharge, q, leading to the following kinetic equation, describing the gravi-
tational deposition of suspended particles:

eh ¼ v

q
Tc � qsð Þ < 0; ð4:11Þ

with measurement units kgm�1 s�1 for Tc andqs ¼ qS, ms�1 for v, and m2 s�1 for q.
The transport capacity concept cannot be unique for a soil composed of a range

of size classes and that uniqueness only occurs for the exceptional case of single

size class soil (Sander et al. 2007). As one can see, the absolute values of sediment

transport capacity, Tc, and the current values of sediment flux, qs, control the
direction of the process of interaction between water flow and soil in any point of

the slope: the process taking place in this case is either the erosion of slope surface

or gravitational deposition of suspended sediment.

Sediment transport capacity is strongly related to the shear stress, τs, which is defined as the
force applied by flowing water on the soil surface per unit area (Fig. 4.3), and acting to

detach soil particles from soil mass (Finkner et al. 1989; Foster et al. 1995):

Tc � Ktτ3=2s ; ð4:12Þ

where Kt is a transport coefficient which gives a measure for flow sediment transport

ability. The greater the shear stress, τs, the more significant the sediment transport capacity

of the surface flow, Tc.
Formula (4.12), which follows from Yalin’s model (Yalin 1963), is valid at τs >> τc

(τs being far in excess of the critical surface shear stress, τc, which is a threshold for soil

particle entrainment), i.e., (4.12) can be used to evaluate the potential of erosion process.

Shear stress (Pa) is calculated as

τs ¼ ρwgheS0; ð4:13Þ

where ρw is water density (kgm�3), g is gravitation constant (ms�2), he is effective flow

depth (the fraction of the full depth, h, that determines the pressure on soil surface) (m), S0
is the surface slope along the flow direction (m/m).
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Experiments show that Tc increases as a power function with discharge and slope
gradient (Julien and Simons 1985; Finkner et al. 1989; Zhang et al. 2009):

Tc � ε S γ
0q

β; ð4:14Þ

where ε, β, γ are empirical coefficients, characterizing the erosion process, in

particular, ε is sometimes referred to as the erodibility of the sediment (soil); S0 is
the surface slope (m/m); q is the unit discharge rate (m2/s). Therefore, Tc depends on
surface slope, flow discharge, and some transport coefficients (Flanagan and Nearing

1995). The absolute values of Tc may vary within the wide range from 0.0001 to

0.1 kgm�1s�1; on steep slopes, Tc may reach a few or a few tens of kgm�1s�1.

Equations (4.10) and (4.11) suggest that at any moment and in any point, the rate

of erosion or gravity settling is proportional to the difference between sediment

transport capacity and sediment load. In terms of the net sediment exchange, the

hydraulic erosion and the hydraulic deposition cannot occur simultaneously. How-

ever, both processes can be coincident in time but separated in space. For example,

erosion can take place in higher elevated parts of the slope, where flow velocity is

high, while settling can occur in gentler parts of the slope near its bottom, where

flow decelerates. The effect of slope flow on the surface is maximal when the

concentration of suspended particles in it is maximal.

The rate of hydraulic erosion eh can be represented in another form (Deng et al. 2008),

taking into account both the shear stress, τs, affecting the erosion of cohesive sediment, and

the deficit of water flow saturation with suspended particles, ΔS (i.e., the difference

between sediment concentration under equilibrium conditions, S*, and the current sediment

concentration, S). Introducing shear velocity as

u* ¼ τs=ρwð Þ1=2 ¼ gheS0ð Þ1=2; ð4:15Þ

we can replace (4.10) and (4.11) by (Deng et al. 2008):

eh ¼ ς u* � u*c
� �

S* � S
� �

; ð4:16aÞ
eh ¼ �ξ v S* � S

� �
: ð4:16bÞ

Fig. 4.3 A flowchart,

illustrating flow shear stress

on a slope under rainfall

condition

4.1 Physical and Mathematical Formulation of the Rainfall- and Runoff-Driven. . . 139



where u�c is the critical shear velocity; in the first equation, ς > 0 (dimensionless constant),

if S* > S and u* > u*c (the hydraulic erosion occurs only when the shear velocity is greater

than the critical shear velocity), otherwise, ς ¼ 0; in the second equation, ξ > 0 (dimen-

sionless constant), if S* < S, otherwise ξ ¼ 0. Equations (4.10) and (4.11) will be similar to

(4.16a) and (4.16b), if we set S* ¼ Tc=q ¼ const.

Finally, it has been shown experimentally that the combined influence of runoff,

rainfall intensity, and slope on the interrill erosion within individual hillslopes can

be adequately described by the following empirical equation (Zhang et al. 1998):

erh ¼ K1S
γ
0 rq

β; ð4:17Þ

where K1 is an interrill erodibility coefficient, depending on soil characteristic and

the conditions on the surface; α and β are empirical coefficients. The linear term

r represents the detachment of soil by raindrop impact and the enhancement of the

transport capacity of sheet flow, while the product Sγ0q
β describes sediment trans-

port by sheet flow (Zhang et al. 1998). In the cited work, β ¼ 1=2 and γ ¼ 2=3.

4.1.2 Basic Equations for Multi-size Erosion and Deposition
(Re-detachment and Re-entrainment Effects)

The models discussed above treated soil as single-size class sediment. However the

loss of chemicals bound to eroded soil is strongly dependent on both the size

distribution of sediment and its overall concentration in runoff. Therefore, the

development of more representative models of erosion and suspended particle

transport considering soil as multi-size class sediment seemed to be an important

and urgent task (Hairsine and Rose 1991; 1992a). Hairsine and Rose (1991, 1992a)

developed a physically based theory treating erosion of soil (represented by multi-

size class sediment) and sedimentation from runoff as two simultaneous processes,

described by undependable source/sink functions. This model, referred to as HR

model, not only takes into account rainfall detachment and/or flow entrainment

erosion mechanisms, but also reflects the fact that a significant proportion of the

eroded particles returns to the soil surface, forming a cohesionless deposited layer,

from which it can be removed again by some erosion process. The process when the

freshly deposited material is detached again by the rain and entrained by the flow is

called re-detachment and re-entrainment, respectively. A particle is detached only

once, but is then subject to repeated deposition/re-detachment cycle (Lisle

et al. 1998). In the HR model it is assumed that rainfall detachment is

non-selective with respect to the original soil and that rainfall re-detachment is

non-selective with respect to the deposited layer (Hairsine et al. 1999) (Fig. 4.4).

HR model is based on a system of two mass conservation equations for individ-

ual particle size classes describing soil erosion, suspension transport, and
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accumulation on the soil surface (Hairsine and Rose 1992a; Hairsine et al. 2002;

Sander et al. 2007):

∂hSi
∂t

þ ∂qSi
∂x

¼ ei þ eri þ ri þ rri � di; ð4:18Þ
∂mdi

∂t
¼ � eri þ rri � dið Þ; ð4:19Þ

where Si is the sediment concentration in the mass of the i-th class (kgm�3); mdi is

the mass of sediment of the i-th size class in the deposited layer per unit area

(kgm�2). The total suspended sediment concentration, S, and the total mass in the

deposited layer, mt, are found by summing across all size classes as S ¼
XI

1

Si and

mdt ¼
XI

1

mdi (I ¼
X

i). The right side of the equations is represented by source/

sink terms (kgm�2s�1), describing the rates of rain splash detachment (ei) and flow
entrainment of soil particles from the original (uneroded) soil (ri), the rates of

rainsplash re-detachment (eri) and re-entrainment (rri) from the deposited layer

formed during the current erosion, and the rate of deposition (di). These source/sink
terms are given by equations for size class i (Sander et al. 2007):

ei ¼ 1� Hð Þa0 pir, eri ¼ Had
mdi

mdt
r; ð4:20Þ

ri ¼ 1� Hð Þ pi
F

J
Ω�Ωcð Þ, rri ¼ H

F

gh
Ω� Ωcð Þ ρs

ρs � ρw

� �
mdi

mdt
; ð4:21Þ

di ¼ viSi; ð4:22Þ

where pi (0 < pi � 1) is the proportion of sediment in size class i of the original

soil; a0 and ad are the detachability coefficients of the original soil and the deposited
layer, respectively (kgm�3);

Ω ¼ ρwgS0q ¼ τsu Wm�2
� � ð4:23Þ

Fig. 4.4 A schematic

diagram, illustrating a

dynamically forming

deposited layer (mdt), and

the maximum deposited

layer (m�
dt) that would

render complete protection

to the soil from further

erosion (Rose et al. 2007)
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(q ¼ uh, h � he – see Eq. 4.13) is the stream power; Ωc is the critical threshold

stream power (as soil erosion due to flow is a threshold process, the stream power Ω
must exceed the critical value to entrain soil particles Ωc); S0 is the slope; q is the

discharge per unit width of slope (m2s�1); ρw and ρs are water and sediment

densities, respectively (kgm�3); F is the effective fraction of excess stream power

in entrainment and re-entrainment (dimensionless); J is the energy expended in

entraining a unit mass of cohesive sediment (Jkg�1); vi is the settling velocity of the
i-th class (ms�1).

To characterize the protective effects resulting from the fractional shielding of

the original soil by the deposited layer, a protection factor, H ( 0 < H � 1 ), is

introduced (Hairsine et al. 1999):

H ¼ mdt=m
*
dt; ð4:24Þ

or more precisely (Le et al. 2013) H ¼ min 1,mdt=m
*
dt

� �
, where m�

dt is the critical

mass per unit area of the deposited layer to shield completely the original soil

(kgm�2).

The model (4.18)–(4.19) which incorporates a multi-size class description,

enables one to predict particle size fractionation in the process of particle deposition

on hillslope profile from overland flow: the coarser particles settle at a greater rate

than the finer particles, and therefore the overland flow is enriched in these finer

particles compared with the soil being eroded, and the size distribution of sediment

forming the deposited layer becomes coarser than the original soil, with the eroded

sediment being proportionately finer (Marshall et al. 1999).

Some specific analytical, semi-analytical and numerical solutions of HR model

describing this and other phenomena under a variety of erosion scenarios are

available in the literature (Hairsine and Rose 1991, 1992a; Hairsine et al. 2002;

Sander et al. 2002, 2007; Hogarth et al. 2004b; Rose et al. 2007; Le et al. 2013).

Several illustrations of concern will be given in Sect. 4.3.2.

4.2 Mathematical Formulation of Sediment-Bound
Chemical Transport

We present a general model of soil solute (chemical) transport with runoff, incor-

porating several types of physicochemical and mechanical interactions, namely

– ejection of dissolved soil solutes into runoff due to raindrop-driven and diffusion

exchange;

– ejection of solutes in the particulate state from soil surface in the case of a single-

sediment-size class because of its raindrop and flow induced erosion;

– transport of solutes in the soluble and in the particulate state with runoff;

– gravitational deposition of suspended particles, carried by water flow and

containing adsorbed solutes, onto soil surface;
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– losses of dissolved solutes due to water infiltration from the surface;

– adsorption-based interaction between soil solutes and mineral soil matrix.

We will consider a model representing a combination of mass transfer

models, including mixing (exchange) layer with an upper boundary represented

by boundary diffusion layer (Sect. 3.1.2.2). We introduce the following denotations

for concentration functions (Johnson and Zhang 2005): Cr
d is the concen-

tration of dissolved solute in runoff water [ML�3]; Cs
d is dissolved solute in pore

water in the mixing layer [ML�3]; Cr
a is the concentration of solute, adsorbed

onto disperse particles in surface water [�]; Cs
a is the concentration of solute

adsorbed in soil matrix [�]; S is the concentration of suspended particles in

runoff [ML�3].

The equation of mass conservation for dissolved solute transport is written as

∂hCr
d

∂t
þ ∂qCr

d

∂x
¼ ke Cs

d � Cr
d

� �� iCr
d þ

erθ
ρb

Cs
d � λCr

d

� �� kshS K r
dC

r
d � Cr

a

� �
:

ð4:25Þ

In the right side of Eq. (4.25), the first term describes the diffusion exchange

between soil solution and water flowing over the surface, the second term describes

matter losses from surface water due to its infiltration into the soil, the third term

accounts for soil water ejection from the soil to runoff due to raindrop impact, and

the fourth term describes sorption kinetics onto suspended particles in the surface

water. Notation for coefficients in Eq. 4.25 will be given later, when the whole

system of governing equations is presented.

Equation of mass conservation for transport of solutes adsorbed onto dispersed

particles is

∂hSCr
a

∂t
þ ∂qSCr

a

∂x
¼ kshS K r

dC
r
d � Cr

a

� �þ Cs
a er þ ehð Þ, eh > 0,

Cs
aer þ Cr

aeh, eh < 0 ;

�
ð4:26Þ

the last term in the right side of equation accounts for the flux of a particulate solute

formed due to (a) raindrop impact and flow erosion of the soil surface (eh > 0),

(b) raindrop impact and gravitational deposition of suspended particles from sur-

face water (eh < 0); er, eh [ML�2T�1]. This form of record shows that the two

processes, flow erosion and gravitational deposition of suspension, cannot occur

simultaneously.

The balance equation for solute dissolved in the mixing layer is

de
∂θCs

d

∂t
¼ iCr

d � iCs
d � ke Cs

d � Cr
d

� �� erθ
ρb

Cs
d � λCr

d

� �� deks Cs
d �

Cs
a

K s
d

� �
:

ð4:27Þ
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The same for a solute in adsorbed state is

deρb
∂Cs

a

∂t
¼ deks Cs

d �
Cs
a

K s
d

� �
� Cs

a er þ ehð Þ, eh > 0,

Cs
aer þ Cr

aeh, eh < 0 :

�
ð4:28Þ

Adding (4.27) and (4.28), we come to a full balance equation for the mixing

layer of soil:

de
∂ θCs

d þ ρbC
s
a

� �
∂t

¼

iCr
d � iCs

d � ke Cs
d � Cr

d

� �� erθ
ρb

Cs
d � λCr

d

� �� Cs
a er þ ehð Þ, eh > 0,

Cs
aer þ Cr

aeh, eh < 0 :

�
ð4:29Þ

Source and sink components, er and eh, can be defined in terms of Sect. 4.1.1.

In our simplest model scenarios, considering splash erosion and gravitational

deposition, soil particles are eroded and deposited following relationships:

er ¼ a0r and eh ¼ v

q
Tc � qSð Þ: ð4:30Þ

Equations (4.25), (4.26), (4.27), and (4.28) utilize two mass transfer coefficients:

ke, controlling mass exchange between soil solution and surface runoff water (Sect.

3.1.2), and ks, governing the kinetics of sorption onto soil material. The system

includes also two equilibrium sorption coefficients: Ks
d (sorption in the soil) and K

r
d

(sorption onto suspension in the mobile phase). Erosion-related constants (Eq. 4.30)

are a0, v, and Tc (Sect. 4.1.1). The mixing layer is characterized by fixed depth, de,
and saturated water content, θ ¼ θs.

The above system of equations should be supplemented by a continuity equation

for overland flow,

∂h
∂t

þ ∂q
∂x

¼ r � i; ð4:31Þ

and a mass balance equation for suspension flow

∂hS
∂t

þ ∂qS
∂x

¼ er þ eh: ð4:32Þ

Moreover, those two equations allow Eqs. 4.25 and 4.26 to be rewritten in a more

compact form:
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h
∂Cr

d

∂t
þ q

∂Cr
d

∂x
¼

ke Cs
d � Cr

d

� �þ erθ
ρb

Cs
d � λCr

d

� �� kshS K r
dC

r
d � Cr

a

� �� rCr
d ;

ð4:33Þ

hS
∂Cr

a

∂t
þ qS

∂Cr
a

∂x
¼

kshS K r
dC

r
d � Cr

a

� �þ Cs
a � Cr

a

� �
er þ ehð Þ, eh > 0,

Cs
a � Cr

a

� �
er, eh < 0 :

� ð4:34Þ

Thus, the mathematical formulation of the problem leads to a system of four

coupled differential Eqs. (4.33), (4.34), (4.27) and (4.28), including four concen-

tration functions Cr
d, Cs

d, Cr
a, Cs

a, and two additional equations, determining

potential-controlling functions – the concentration, S (4.32), and hydrodynamic,

h, q ( q ¼ αhn ) (4.31). Given appropriate initial and boundary conditions, this

system of equations possesses a solution:

Cs
d x, 0ð Þ ¼ Cs

d0, C
s
a x, 0ð Þ ¼ K s

dC
s
d0, C

s
d 0, tð Þ ¼ 0, Cr

d 0, tð Þ ¼ 0, S 0, tð Þ ¼ 0;

ð4:35aÞ
h x, 0ð Þ ¼ 0, h 0, tð Þ ¼ 0, q x, 0ð Þ ¼ 0, q 0, tð Þ ¼ 0: ð4:35bÞ

If we consider sorption interaction between solutes and suspended particles

under equilibrium condition, such that Cr
a ¼ K r

dC
r
d , the addition of (4.33) and

(4.34) yields:

h 1þ K r
dS

� �∂Cr
d

∂t
þ q 1þ K r

dS
� �∂Cr

d

∂x
¼ ke Cs

d � Cr
d

� �þ erθ
ρb

Cs
d � λCr

d

� �� rCr
dþ

þ Cs
a � Cr

a

� �
er þ ehð Þ, eh > 0,

Cs
a � Cr

a

� �
er, eh < 0 ;

�
ð4:36Þ

i.e., the number of equations and variables decreases.

4.3 Analysis of Behavior of Suspended Sediments
and Adsorbed Solutes in a Runoff System

As it was repeatedly mentioned above, rainfall onto polluted soil layers causes its

erosion, such that chemicals can undergo rapid transport in a particulate form: the

particles of erosion origin become carriers for contaminants. In the development of

the model, we suppose that soil erosion is governed by raindrop impact and water

runoff. The solid particles thus released from the surface are involved in downslope

transport with water; however, their net deposition onto soil surface is taking place,

so the concentration of suspension in water decreases.
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4.3.1 Special-Case Solutions for a Suspended Sediment
Transport Problem

In this section, for simplicity sake, all models considered bellow are restricted by

the use of a single representative sediment-size class. Then, the derivation of

analytic solutions describing sediment transport with overland flow is based on

the following coupled kinematic-wave and erosion equations

∂h
∂t

þ ∂q
∂x

¼ r; ð4:37Þ
∂hS
∂t

þ ∂qS
∂x

¼ er þ eh; ð4:38Þ

where sink and source functions er (rainsplash erosion rate) and eh (flow erosion/

gravitational sedimentation) are defined by (4.4) and (4.10)/(4.11).

To describe the erosion/deposition processes occurring in an idealized slope under

constant precipitation, we consider two limiting scenarios. The first scenario implies a

joint effect of two processes with different directions, namely, rainsplash erosion of

the soil surface (4.4) and the gravitational settling of the eroded particles (4.11)

carried by water flowing over the surface in the absence of flow-driven erosion or, in

other words, when flow does not exceed the threshold for particle entrainment. The

second scenario implies that the rainsplash erosion is accompanied by flow erosion

induced by the soil bed shear stress (4.10); however, in this case, the model does not

take into account the gravitational settling of particles onto the surface.

The choice of the model is determined by a series of natural factors, including

hillslope and rainfall characteristics, soil erodibility, suspended sediment transport

potential in the surface water and some others. To simplify the analytical consid-

erations, only the case of constant rainfall excess and the rising stage of runoff

period are considered.

Let the sediment transport capacity, Tc, be described by a generalized expression
(4.14), rewritten as

Tc ¼ φi q
β; ð4:39Þ

where coefficient β can take values 1 or 2; φi ¼ εSγ
0 (the dimension depends on the

exponent β). Thus, we consider the extreme values in the range, which contains the

majority of experimental data (Sect. 4.1).

With the above reasoning, combining (4.38), (4.37), and (4.39) leads to the model

h
∂S
∂t

þ q
∂S
∂x

¼ a0r � rSþ v φi q
β�1 � S

� �
< 0 � deposition,

σq φi q
β�1 � S

� �
> 0� flow erosion;

�
ð4:40Þ

which adopts both scenarios; here, v is the velocity of particle settling under

gravitational forces (ms�1); σ is a coefficient (m�1), determining the ratio of
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detachment potential of the soil (Dc) to sediment transport capacity (Tc), a0 is the
detachability coefficient.

4.3.1.1 First Scenario

Case β¼ 1 At the initial stage of overland flow formation (t < te, Eq. 2.12), when
its depth linearly grows with time (h ¼ rt, q ¼ α rtð Þn), Eq. (4.40) becomes

∂S
∂z

þ zn�1 ∂S
∂y

¼ 1

z
1þ k1φ1 � 1þ k1ð ÞS	 


; ð4:41Þ

S ¼ S=a0, z ¼ rt, y ¼ rx=α, k1 ¼ v=r, φ1¼φ1=a0. Here φ1 serves as the parameter

Sm, which limits the saturation of runoff by disperse material (φ1 ¼ Sm), whereφ1 is

to be less than 1 (Sm < a0), because otherwise we have eh > 0, which contradicts to

the initial problem formulation; k1 is the relative settling velocity characteristic.

Equation 4.41 corresponds to an ordinary differential equation

z
dS

dz
¼ 1þ k1φ1 � 1þ k1ð ÞS; ð4:42Þ

describing the process along characteristic lines (3.30)/(3.32).

In the domain of linear growth of flow discharge in the direction x (q ¼ rx), which is
valid at t � te, Eq. (4.40) becomes

∂S
∂y

þ y1=n

y

∂S
∂z

¼ 1

y
1þ k1φ1 � 1þ k1ð ÞS	 


: ð4:43Þ

It corresponds to the ordinary differential equation

y
dS

dy
¼ 1þ k1φ1 � 1þ k1ð ÞS; ð4:44Þ

which describes the process along the characteristic (3.38); y ¼ rx=α.
When solving Eqs. (4.42) and (4.44), one faces the problem of singularity, which

can be avoided by introducing an initial water depth in the problem (see Sect.

3.2.2). With this done, we obtain a single solution of Eqs. (4.42) and (4.44):

S ¼ S

a0
¼ 1þ k1φ1

1þ k1
; ð4:45Þ

At k1 >> 1, we obtain the limiting value S ¼ Sm; at k1 << 1 S ¼ a0.
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Case β¼ 2 At the initial moment, in the flow domain where h is a linear function

of time (h ¼ rt, q ¼ α rtð Þn), Eq. (4.38) becomes

z
∂S
∂z

þ zn
∂S
∂y

¼ 1þ k1kz
n � 1þ k1ð ÞS; ð4:56Þ

S ¼ S=a0, z ¼ rt, y ¼ rx=α, k1 ¼ v=r, k ¼ φ2α=a0. The equation for characteristics

for (4.44) has the form of (3.30) or (3.32). Concentration changes along those

characteristics are described by an equation

z
dS

d z
¼ 1þ k1k z

n � 1þ k1ð ÞS: ð4:57Þ

The general solution of this equation is

S ¼ 1

1þ k1
þ k1k z

n

1þ k1 þ n
þ A1 zð Þ� 1þk1ð Þ; ð4:58Þ

where A1 is an integration constant. It must be equal to 0, because otherwise the

solution (4.58) is not determined at t ! 0. Thus, at the initial stage of the process,

function S is determined by the expression

S zð Þ ¼ 1

1þ k1
þ k1kz

n

1þ k1 þ n
, z < y1=n ¼ rx=αð Þ1=n: ð4:59Þ

In the domains were functions q and h are stationary ( q ¼ rx ), Eq. (4.40)
becomes

h

y

∂S
∂z

þ ∂S
∂y

¼ 1

y
1þ k1ky� 1þ k1ð ÞS� �

, y ¼ rx

α
: ð4:60Þ

The equation for characteristics for (4.60) has the form of (3.38). Variations in the

concentration along those characteristics are described by an ordinary differential

equation

y
dS

dy
¼ 1þ k1ky� 1þ k1ð ÞS: ð4:61Þ

Its solution is

S ¼ 1

1þ k1
þ k1k

2þ k1
yþ A2y

� 1þk1ð Þ; ð4:62Þ

where A2 is an integration constant.
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The constant A2 can be found from the condition that the concentrations deter-

mined by solutions (4.59) and (4.62) are equal in the point of intersection of

characteristics (2.12) and (3.32) (Fig. 3.3a). In solution (4.59), time t is determined

from the equation rt ¼ rx0=αð Þ1=n, in the solution (4.62), x ¼ x0. From here, we

have:

A2 ¼ 1� n

1þ nþ k1ð Þ 2þ k1ð Þ k1k y0ð Þ2þk1 , y0 ¼ rx0

α
: ð4:63Þ

The solution (4.62) becomes

S ¼ 1

1þ k1
þ k1ky

2þ k1
1þ n� 1

1þ nþ k1

x0

x

� �2þk1
" #

: ð4:64Þ

Coordinate x0 determines the relationship between the current coordinates x and
t on the characteristic (3.38) in the form (3.43d), therefore, the solution (4.64)

becomes:

S y; zð Þ ¼ 1

1þ k1
þ k1φ2

2þ k1
1þ 1� n

1þ nþ k1

ny1=n � z

n� 1ð Þy1=n
� �n 2þk1ð Þ" #

, y1=n < z � ny1=n;

ð4:65Þ

φ2 ¼
φ2αh

n
x

a0
¼ φ2rx

a0
: ð4:66Þ

Finally, the asymptotic solution of the problem takes the form

S yð Þ ¼ 1

1þ k1
þ k1φ2

2þ k1
, z > ny1=n: ð4:67Þ

The solution of the problem can be plotted as a function S of a dimensionless

complex variable, τ ¼ rt=hx (h
n
x ¼ rx=α), and dimensionless coefficients φ2 and k1,

which control soil erosion (Fig. 4.5). The plots show two plateaus: an initial one,

where particle concentration does not depend on the position of point x on the slope,
and a final one, where the steady-state value S is determined by the current value of

x (the greater the distance from the water divide, x¼ 0, the larger S).
As can be seen from Fig. 4.5, the concentration of solid particles in water

increases with increasing sediment transport capacity, Tc (~ φ2). An increase in k1
leads to an inverse result, because of an increase in the role of their gravitational

deposition.

The solution of the problem at φ2 ¼ 0 (i.e., when eh ¼ �Sv ) becomes

one-parameter, corresponding to the formula
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S ¼ S

a0
¼ 1

1þ k1
; ð4:68Þ

which is valid throughout the range of values of y and τ.
The obtained formulas (4.59), (4.65), (4.67), and (4.68) are in complete agree-

ment with the numerical solution of the initial partial differential equation (4.40) –

Fig. 4.5. The applicability of the formulas is limited by the condition eh < 0

(no hydraulic erosion of the surface), or, given the flow transport capacity (4.37),

φ2q < S, which holds when the criterion

φ2 <
2þ k1

2 1þ k1ð Þ ð4:69Þ

is valid.

4.3.1.2 Second Scenario

This model includes mechanisms of soil detachment by raindrops and runoff,

implying the situation when, because of the high transport capacity of the flow,

the gravity settling of suspended particles can be neglected.

Case β¼ 1 In the domain where flow depth is a linear function of time (h ¼ rt,
q ¼ α rtð Þn) Eq. (4.40) becomes

Fig. 4.5 Function S τð Þ at different values of dimensionless group φ2 (numbers at curves). The full
lines show the analytical solution (4.59)/(4.65)/(4.67); the circles show a numerical solution of

water erosion of the surface (4.40). (a) k1 ¼ 2, (b) k1 ¼ 10. n ¼ 5=3, a0 ¼ 10 kg=m3
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∂S
∂z

þ zn�1 ∂S
∂y

¼ 1

z
1þ σα

r
zn φ1 � S
� �� S

h i
; ð4:70Þ

S ¼ S=a0, z ¼ rt, y ¼ rx=α, φ1¼φ1=a0. This corresponds to a linear differential

equation

dS

dz
þ 1

z
1þ kznð ÞS ¼ 1

z
1þ φ1kz

nð Þ, k ¼ ασ
r
; ð4:71Þ

which describes the process along characteristics (3.30).

The solution of the ordinary differential Eq. (4.71) can be written as (Hjelmfelt

et al. 1975)

S� φ1

1� φ1

¼ F ξð Þ ¼ 1

ξ
exp �ξnð Þ

ðξ
0

exp λnð Þdλ; ð4:72Þ

where ξn ¼ rtð Þnk=n. The solution (4.72) is valid at rt < hx ¼ rx=α. Function F(ξ) is
plotted in Fig. 4.6. The same figure gives a curve calculated by the formula

F ξð Þ � 1� exp �nξnð Þ
nξn

; ð4:72aÞ

approximating this function.

Fig. 4.6 Function F(ξ)
(4.72) ( full line) and its

approximation by (4.72a)

(broken line)
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In the domain where flow discharge is a linear function of coordinate x (q ¼ rx),
Eq. (4.40) becomes

∂S
∂y

þ y1=n

y

∂S
∂z

¼ 1

y
1� S
� �þ k φ1 � S

� �
: ð4:73Þ

It corresponds to the ordinary differential equation

dS

dy
þ 1

y
þ k

� �
S ¼ 1

y
þ kφ1; ð4:74Þ

which describes the process along the characteristic (3.38).

The general solution of Eq. (4.74) is given by

S� φ1

1� φ1

¼ 1

ky
þ A2

1� φ1ð Þky e
�ky; ð4:75Þ

where A2 is an integration constant.

The constant A2 can be found from the condition of equality of concentrations

given by solutions (4.59) and (4.62) at the intersection point of the characteristics

(2.12) and (3.32) (Fig. 3.3a)

F ξ0ð Þ ¼ 1

ky0
1þ A2

1� φ1ð Þ e
�ky0

� �
, ξ0n ¼ ξ y0ð Þ½ �n ¼ σx0

n
, y0 ¼ x0r=α: ð4:76Þ

Thence we have

A2 ¼ 1� φ1ð Þ ky0F ξ0ð Þ � 1½ �exp �ky0ð Þ: ð4:77Þ

Since

rx0

α
¼ nhx � rt

n� 1

� �n

¼ hn
x

n� τ
n� 1

 �n
ð4:78Þ

(see Eq. 3.43), and

ξ0n ¼ hn
x

n

σα
r

 � n� τ
n� 1

 �n
¼ khn

x

n

n� τ
n� 1

 �n
, τ ¼ rt

hx
, hn

x ¼ rx

α
; ð4:78aÞ

the final solution becomes

S� φ1

1� φ1

¼ 1

khn
x

þ 1

khn
x

khn
x F ξ0ð Þ � 1

	 

exp khn

x

n� τ
n� 1

 �n
� 1

h in o
: ð4:79Þ
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The solution describes the process in the domain 1 < τ � n.
The stationary solution (τ > n) is

S� φ1

1� φ1

¼ 1� exp �khn
x

� �
khn

x

¼ 1� e�σx

σx
: ð4:80Þ

The plots in Fig. 4.7 show that at the beginning of rainfall, the suspension

concentration in point x is minimal S ¼ a0, after which it increases and stabilizes

according to (4.80). With an increase in x, the concentration of suspension tends to a
limit value S ¼ φ1, i.e., at some distance from the water divide point (x¼ 0), the

concentration stabilizes and stops increasing.

Case β¼ 2 The solution (4.40) for the case where flow transport capacity is a

quadratic function of its discharge (4.39) can be obtained numerically. The plots in

Fig. 4.8 can be interpreted as a family of curves S, obtained for a fixed point x at a
given ratio φ2r/a0, but at different σ. It can be seen that an increase in σ (soil

erodibility) leads to an increase in particle concentration in water. As can be seen

from the analysis of numerical solutions, function S (β¼ 2) shows steeper transient

branches of the appropriate plot (Fig. 4.8), compared with the case β¼ 1 (Fig. 4.7),

but similar steady-state values of S for the same values of the dimensionless group

φi. At the initial moments, as before, we have S ¼ a0.

Fig. 4.7 FunctionS τxð Þ at different values of dimensionless group khn
x ¼ σx (numbers at curves) –

the case Tc ¼ φ1q. The full lines give the analytical solution (4.72)/(4.79)/(4.80); the circles
give the numerical solution for water erosion of the surface (4.40). (a) φ1 ¼ φ1=a0 ¼ 10,

(b) φ1 ¼ φ1=a0 ¼ 5. n ¼ 5=3
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4.3.2 Approximate Solutions for Multi-size Class Soil
Erosion and Deposition along a Hillslope Profile

As an illustration, we present the mathematical problem setup restricted by two

limiting conditions relating to:

– rainfall detachment, re-detachment, and deposition of soil particles of different size

when flow entrainment from the original soil and the deposited layer can be ignored;

– runoff-driven erosion when detachment and re-detachment can be ignored.

Thus, in this section rainfall-driven erosion and runoff-driven erosion will be

considered separately.

4.3.2.1 Dynamic Erosion of Soil Caused by Rainfall Detachment/Re-

detachment

Analysis of Full Problem Solution The accepted limitation, ri ¼ rri ¼ 0, allows

the system of Eqs. (4.18), and (4.19) to be rewritten as (Hairsine et al. 1999;

Hogarth et al. 2004b; Le et al. 2013):

∂hSi
∂t

þ ∂qSi
∂x

¼ ei þ eri � di; ð4:81Þ
∂mdi

∂t
¼ � eri � dið Þ: ð4:82Þ

Fig. 4.8 Function S τxð Þ, a numerical solution of surface water erosion Eq. (4.40) (Tc ¼ φ2q
2), at

different values of dimensionless group khn
x ¼ σx (numbers at curves). (a)φ2 ¼ φ2rx=a0 ¼ 10, (b)

φ2 ¼ φ2rx=a0 ¼ 10. n ¼ 5=3
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Obviously, the system of Eqs. (4.81)–(4.82) will best describe soil erosion under the

conditions of shallow rain-impacted flow that occur in interrill areas. For steady-

state overland flow, when discharge is defined by a relationq ¼ rx (2.14), Eq. (4.81)
can be rewritten in a form

∂Si
∂t

þ q

h

∂Si
∂x

¼ 1

h
ei þ eri � di � rSið Þ: ð4:83Þ

Substituting the definition of ei, eri (4.20) and di (4.22) into Eqs. (4.83) and (4.82)

and assuming that each size class of the sediment contains an equal mass of

sediment, i.e. pi ¼ 1=I, a system of 2I partial differential equations for determining

2I unknowns (S1 , . . ., SI and m1 , . . ., mI) can be obtained:

∂Si
∂t

þ q

h

∂Si
∂x

¼ 1

h
1� Hð Þ a0r

I
þ mdi

m*
dt

adr � Si vi þ rð Þ
� �

; ð4:84Þ

∂mdi

∂t
¼ Sivi � mdi

m*
dt

adr: ð4:85Þ

An approximate analytical solution of (4.84) and (4.85) was developed by

Hogarth with co-workers (2004b) for “zero” initial and boundary conditions

(treating inflow of clear water at the top of the eroding slope). It was supported

by comparison with a numerical solution obtained using an upwinding finite

difference method (Hogarth et al. 2004a).

The obtained analytical solution can be used to predict the spatial and temporal

behavior of the system in terms of total concentration as a function of x and t, S(x, t),
for different particle size classes, I. The main conclusions, following from the

particular solutions of the problem, can be formulated as follows (Hogarth

et al. 2004b).

1. All profiles S(x) at different time, t, and for fixed value of I show an increase in

S from the inflow boundary down the eroding soil surface due to sediment added

to water layer by rainfall dislodgment. The gradient, dS/dx, which characterizes

this growth, decreases with time because of the removal of fine sediment fraction

from the soil.

2. However, in the initial moments, S can be of non-monotonic (wave-like) char-

acter: the value of S abruptly increases near x¼ 0 and drops in the middle part of

the flow. This decline of S(x) curve beyond its maximum is most likely due to the

dilution of particles dispersed in runoff by rainfall-added water. Much of the

sediment concentration at this early time is due to fine sediment, whose settling

velocity is so low that it will settle only very slowly if at all, and so will be

transported down the slope essentially at the velocity of overland flowing

water. In this case, the concentration S near the boundary x¼ 0 from the

side of the slope very rapidly reaches the value S0, which remains nearly

unchanged throughout the process of overland flow formation. The equilibrium

profile S x,1ð Þ also tends to this value.
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3. As the number of soil classes adopted, I, increases, a better description is given

to the distribution of the fine slow-settling fraction of the soil. It was found that

the dependence of the predicted results of analysis on the value of I adopted is

much greater at the early time, and, contrary, at longer times, the choice of the

value of I is of much less importance.

The latter conclusion is important with a viewpoint of accuracy of contaminant

transport forecasting. Since finer constituents of the sediment are more readily

transported and chemically enriched, their migration determines the major adverse

effect on the quality of water ecosystems and chemical enrichment of the eroded

soils (Rose et al. 2007).

Approximate Solution of the Problem (A Multi-class Solution, i¼ 1, . . ., I) Let

h and q be constants with respect to x and t. In this case, HR model (4.81)–(4.82)

becomes

h
∂Si
∂t

þ q
∂Si
∂x

¼ ei þ eri � di; ð4:86Þ
∂mdi

∂t
¼ � eri � dið Þ: ð4:87Þ

It can be supposed that the system of sediment/suspended solids under steady flow

conditions will rapidly attain a dynamic equilibrium, which can be characterized by

an equality between the rate of particle re-detachment from the newly formed

sediment and the rate of gravitational settling of particles, a fact implying that,

during erosion, the terms eri (Eq. 4.20) and di (Eq. 4.22) are equal (Proffitt and Rose
1992; Hairsine and Rose 1992a; Marshall et al. 1999). Now, considering (4.24),

we have

viSi ¼ A
mdi

m*
dt

, or
∂mdi

∂t
¼ vim

*
dt

A

∂Si
∂t

,A ¼ rad: ð4:88Þ

The assumption made has no strict theoretical grounds, but it does not contradict to

any postulate of physicochemical hydrodynamics, which defines the dynamic

equilibrium as the equality of the rates of forward and reverse reactions, in this

context, rainfall detachment and deposition.

The equilibrium condition (4.88) simplifies the search of analytical solution of

the formulated problem. Adding the left and right sides of Eqs. (4.86) and (4.87),

and, considering (4.88), we obtain (Rose et al. 2007)

∂Si
∂t

þ 1

Ei

∂Si
∂x

¼ 1� Hð ÞB
qEi

; ð4:89Þ

Ei ¼ h

q
þ vim

*
dt

Aq
,B ¼ ra0: ð4:89aÞ

156 4 Contaminant Sorption and Transport by Suspended Particles with Runoff



Rose et al. (2007) demonstrated the possibility to convert the partial differential

Eq. (4.89) into the following ordinary differential equation for x¼ L (measurement

site length):

dSi
dt

þ Si
EiL

¼ 1� Hð ÞB
qEi

: ð4:90Þ

Equation (4.90) was used to derive two major characteristics of erosion process

(Sect. 4.1.2): (1) the fraction of shielding of the original soil matrix resulting from

depositing sediment as function of time, H(t), and (2) the concentration of eroded

products in water and sediment.

Thus, an approximate expression for H is given as a function of time:

H ¼ H1 1� exp �t=t*
� �	 


; ð4:91Þ

where asymptotic expression for H1, determining the fraction of shielding of soil

from raindrop impact after a steady state is attained (when ∂Si=∂t ¼ ∂mi=∂t ¼ 0),

is given by

H1 ¼ L

Lþ L*
, L* ¼ q

f Iva
; ð4:92Þ

t* ¼ H1Eq= f Iva, f ¼ a0=ad, E ¼
X

vi=
X

vi=Ei, va ¼
X

vi=I is the average

value of settling velocity. The total steady-state concentration of suspended solids

will be:

S Lð Þ ¼ adr

va
H1: ð4:93Þ

Substituting Eq. 4.91 for H(t) into Eq. 4.90 (for L¼ x) leads to the following

solution for sediment concentration for size class i at point x and time t (Rose
et al. 2007):

Si x, tð Þ ¼ 1� H1ð ÞBx
q

1� exp � t

Eix

� �� �
þ H1Bxt*

q Eix� t*ð Þ exp � t

Eix

� �
� exp � t

t*

 �� �
;

ð4:94Þ

S x, tð Þ ¼
X
i

Si x, tð Þ:

Approximate Solution of the Problem (A Single-Class Solution, i¼ 1) For a

particular scenario i¼ 1 (single-size class sediment), the original system of

Eqs. (4.81)–(4.82) (steady-state runoff) becomes:
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∂hS
∂t

þ ∂qS
∂x

¼ �vSþ md

m*
d

ad � a0ð Þr þ a0r; ð4:95Þ

∂md

∂t
¼ vS� md

m*
d

adr; ð4:96Þ

∂q
∂x

¼ r: ð4:97Þ

Let us rewrite (4.95) and (4.96) in new dependent variables ms 	 ms x, tð Þ ¼
S (x, t)h(x) (mass per unit area of sediment in the water column, kgm�2) and md

(mass per unit area of sediment in the deposited layer, kgm�2) (Lisle et al. 1998;

Barry et al. 2010), taking into account that the water flux varies with distance

downslope according to Eq. 4.97:

∂ms

∂t
þ ∂ms

∂t0
¼ �ms

h
vþ rð Þ þ md

m*
d

ad � a0ð Þr þ a0r; ð4:98Þ

∂md

∂t
¼ ms

h
v� md

m*
d

adr; ð4:99Þ

where

t0 ¼
ðx
x0

h=rxð Þdx ¼ n=rð Þ r=αð Þ1=n x1=n � x
1=n
0

 �

for relationship (2.3) between flow discharge and flow depth. Such problem for-

mulation, unlike the case of q¼ const, accounts for the dilution of suspension by

rainwater. Normalizing ms and md by m
�
d and introducing an averaged value of flow

depth ha in the determination of the first terms in the right sides of Eqs. 4.98 and

4.99, we come to the system of partial differential equations:

∂ p

∂t
þ ∂ p

∂t0
¼ �λ 1þ k1ð Þpþ a0d � a00

� �
gþ a00; ð4:100Þ

∂g
∂t

¼ λk1 p� a0dg; ð4:101Þ

p ¼ ms=m
*
d is the normalized mass ms [�], g ¼ md=m

*
d is the normalized mass md

[�], a00 ¼ a0r=m
*
d [s�1], a0d ¼ adr=m

*
d [s�1], λ ¼ r=ha [s�1], k1 ¼ v=r (relative

settling velocity characteristics, Sect. 4.3.1) [�].
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The system of Eqs. (4.100), (4.101) is solved at zero initial and boundary

conditions:

p 0, tð Þ ¼ 0, p x, 0ð Þ ¼ 0, g x, 0ð Þ ¼ 0: ð4:102Þ

The solution of (4.100), (4.101) in the Laplace space is:

ep x, sð Þ ¼ a00
s y sð Þ 1� exp �t0y sð Þ½ �½ �; ð4:103Þ

eg x, sð Þ ¼ k1
sþ a0d

ep x, sð Þ; ð4:104Þ

where ep x, sð Þ and eg x, sð Þ are the transformed function of p(x, t) and g(x, t); s is the
Laplace transform variable (with respect to t),

y sð Þ ¼ sþ λ 1þ k1ð Þ � a0d � a00
� �

λk1
sþ a0d

: ð4:105Þ

The inverse transform of functions ep and eg were taken using formulas given in

Barry et al. (2010). For the relative density of soil particles in runoff water,

p ¼ ms=m
*
d, the solution is

p x, tð Þ ¼ w τð Þ � H τ� τ0ð Þexp � 1þ k1ð Þτ0½ �

w τ� τ0ð Þþðτ
τ0

w τ� ξð Þexp �ad ξ� τ0ð Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ad 1� fð Þk1τ0

ξ� τ0

s
I1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ad 1� fð Þk1τ0 ξ� τ0ð Þp	 


dξ

8>><>>:
9>>=>>; ;

ð4:106Þ

w τð Þ ¼ f ad
1þ k1 f




1þ exp �τ
2
1þ k1 þ adð Þ

h i 1þ k1ð Þ2 � a2d � ψ
2adψ1=2

sinh
τψ1=2

2

� �
� cosh

τψ1=2

2

� �" #( )
:

ð4:106aÞ

The solution for the relative density of particles on soil surface, g ¼ md=m
*
d , has the

same representation (4.106), where

w τð Þ ¼ k1 f

2 1þ k1 fð Þψ1=2

2ψ1=2 þ 1þ k1 þ ad � ψ1=2
� �

exp �τ
2

1þ k1 þ ad þ ψ1=2
 �h i

� 1þ k1 þ ad þ ψ1=2
� �

exp �τ
2

1þ k1 þ ad � ψ1=2
 �h i

8<:
9=;;

ð4:106bÞ

H(τ) is the Heaviside function; ψ ¼ 1þ k1 � adð Þ2 þ 4k1ad 1� fð Þ,
τ ¼ λt ¼ rt=ha, τ0 ¼ λt0, a0 ¼ a0ha=m

*
d, ad ¼ adha=m

*
d, f ¼ a0=ad ¼ a0=ad.
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An illustration of the functional form of Eq. 4.106 is given in Figs. 4.9, 4.10, and

4.11. The figures present an evaluation of the rainfall-driven soil erosion process in

terms of HR model. The behavior of breakthrough curves is largely determined by

the space and time scale at which the process is considered. The erosion involves

simultaneous detachment, deposition, and re-detachment of particles, which, as can

be seen from Fig. 4.9, leads to sediment accumulation on soil surface. The amount

Fig. 4.9 An illustration of variation of sediment concentrations p (solid curves) and g (dashed
curves) predicted by Eq. 4.106. Parameters are ad ¼ 1, k1 ¼ 1, f ¼ 0:1 (a), f ¼ 0:5 (b) Predictions
are shown for a range of τ0 ¼ λt0 (numbers at the curves). Dash-and-dot curves correspond to

approximate solution for p (4.110)

Fig. 4.10 An illustration of variation of sediment concentration p predicted by Eq. 4.106. The

parameters are ad ¼ 1, f¼ 0.1 (a), f¼ 0.5 (b). Predictions are shown for a range of k1 (numbers at

the curves) and τ0 ¼ λt0 (0.5 – solid curves, 0.1 – dashed curves)
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of sediment on the surface and the concentration of suspension in runoff is larger,

the higher the value of the characteristic parameter τ0 ¼ n=hað Þ rx=αð Þ1=n, i.e., the
further the observation point (x) from the water divide line (x¼ 0). When

τ ¼ rt=ha >> 1, the relationship between g and p concentrations is governed by

settling velocity characteristics, k1 ¼ v=r,

g= p ¼ k1 ¼ v=r: ð4:107Þ

At large τ0, the functions p and g attain their maximums:

p ¼ f ad
1þ k1 f

, g ¼ k1 f ad
1þ k1 f

: ð4:108Þ

Assuming S ¼ ms=ha, we can rewrite (4.108) as

S ¼ a0
1þ k1 f

; ð4:108aÞ

which at f ¼ 1 (a0 ¼ ad) coincides with solution (4.68). Thus, within a time–space

range, which corresponds to dynamic equilibrium of detachment and deposition,

and with equal characteristics of the detachability of the original soil and the newly

formed sediment, the HR model degenerates into the classic one-component

model of rainsplash soil erosion (Sect. 4.1.1). At the same time, it is clear that,

since in fact a0 < ad ( f < 1), the classical model, which ignores re-detachment,

should be expected to steadily underestimate the concentration of disperse particles

in runoff.

Fig. 4.11 An illustration of variation of sediment concentration p predicted by Eq. 4.106.

Parameters are ad ¼ 1, τ0 ¼ 1 (a), τ0 ¼ 5 (b). Predictions are shown for a range of f (numbers

at the curves) and k1 (1 – solid curves, 10 – dashed curves)
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Formulas (4.108) can be rewritten in terms of the fraction of shielding, H1,

p ¼ H1
k1

ad, g ¼ H1ad,H1 ¼ k1 f

1þ k1 f
: ð4:109Þ

Now, by analogy with solution (4.91), an approximate solution of the problem

(τ0 >> 1) is given by

p ¼ H1
k1

ad 1� exp � τ
τ*

 �h i
, g ¼ k1 p; ð4:110Þ

where τ* ¼ 1þ k1adð Þ= 1þ k1 fð Þ. As can be seen from Fig. 4.9, the approximate

solution (4.110) is in good agreement with curves p τ, τ0 ¼ 5ð Þ, calculated by

Eq. 4.106.

The exhibited unsteady-state behavior of the detachment–deposition–re-detach-

ment process near the water divide point (when τ0 < 1
�
, complicates the character

of curves p(τ) (Figs. 4.10 and 4.11), making them less predictable at the intuitive

level. For example, the analysis of Figs. 4.10 and 4.11 suggests that, against the

background of the general trend toward a decrease in function p(τ) with increasing

settling velocity characteristics, k1, the inverse tendency can also materialize. Thus,

in Fig. 4.10a, one can see that curves p(τ), calculated at different values of k1, may

intersect, i.e., after some moment, curves p(τ), calculated at larger k1, may lay

above curves p(τ), calculated at lower k1. This suggests the ambiguous role of

settling velocity characteristics: on the one hand, an increase in k1 contributes to a

decrease in suspension concentration in the runoff water, while, on the other hand,

the same increase in k1 leads to the formation of a sediment layer which show lower

cohesive properties and, accordingly, greater susceptibility to erosion, resulting in a

greater concentration of suspension in runoff water. Finally, Figs. 4.10 and 4.11

show that a steady value of p(τ) can be attained at lower values of k1 and τ.

4.3.2.2 Dynamic Erosion of Soil Caused by Runoff Entrainment/

Re-entrainment (Approximate Solution)

A limitation ei ¼ eri ¼ 0, allows the system of Eqs. (4.18)–(4.19) to be rewritten for

the case of steady-state overland flow with averaged characteristics h ¼ const and

q ¼ const to become:

h
∂Si
∂t

þ q
∂Si
∂x

¼ ri þ rri � di; ð4:111Þ
∂mi

∂t
¼ � rri � dið Þ: ð4:112Þ

As in the case of rainfall-driven erosion (Sect. 4.3.2.1), we assume that, during

erosion, the terms rri (Eq. 4.21) and di (Eq. 4.22) are very closely equal. Now it is
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easy to show that the system of Eqs. 4.111 and 4.112, with (4.24) taken into

account, reduces to the form (4.89), where constants A and B are defined as

A ¼ F

gh

ρs
ρs � ρw

� �
Ω� Ωcð Þ,B ¼ F

IJ
Ω� Ωcð Þ: ð4:113Þ

In this case, we come to the validity of the earlier constructions, reflected in the

resulting solutions for the fraction of shielding of the original soil matrix due to

depositing sediment, H, and concentration of eroded products in water, S (or Si)
(Eqs. 4.91, 4.92, 4.93, and 4.94).

4.3.3 Solutions Describing Contaminant Transport
with Sorption onto Suspended Particles

4.3.3.1 An Equilibrium (Asymptotic) Transport Model with Fast

Sorption Kinetics

The asymptotic solution of the problem given below can be obtained based on the

assumption that the physical system under consideration can have local sorption

equilibria and conditions allowing the mass exchange between the surface of soil

and the mixing layer in the soil column to be ignored. Such exchange will be taken

into account in the model considered below in Sect. 4.3.3.2.

Suppose that chemical sorption onto the soil matrix and the suspended particles

is fast enough compared with changes in flow dynamics (theoretically instanta-

neous), and the sorption can be described by equilibrium linear sorption reactions,

implying

Cs
a ¼ K s

dC
s
d, Cr

a ¼ K r
dC

r
d : ð4:114Þ

Now, the system of Eqs. (4.25), (4.26), (4.27), (4.28), and (4.29) for the case eh < 0

(the gravitational settling of suspended particles) and i ¼ 0 (the absence of the water

loss due to infiltration) reduces to a system of two partial differential equations

h 1þ SK r
d

� �∂Cr
d

∂t
þ q 1þ SK r

d

� �∂Cr
d

∂x
¼

ke Cs
d � Cr

d

� �þ erθ
ρb

Cs
d � λCr

d

� �þ erK
r
d KCs

d � Cr
d

� �� rCr
d ;

ð4:115Þ

de
∂ θCs

d þ ρbK s
dC

s
d

� �
∂t

¼
�ke Cs

d � Cr
d

� �� erθ
ρb

Cs
d � λCr

d

� �� K r
d KerC

s
d þ ehC

r
d

� �
;

ð4:116Þ
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where K ¼ K s
d=K

r
d . Adding the right and left parts of Eqs. (4.115) and (4.116), we

obtain:

h 1þ SK r
d

� �∂Cr
d

∂t
þ de

∂ θCs
d þ ρbK s

dC
s
d

� �
∂t

þ q 1þ SK r
d

� �∂Cr
d

∂x
¼

�K r
dC

r
d er þ ehð Þ � rCr

d :

ð4:117Þ

Next, we assume that er is a linear function of r and the sediment transport

capacity is very low, Tc ! 0 (see Eqs. 4.30), i.e.,

er ¼ a0r, eh ¼ �vS, S ¼ a0
1þ k1

, k1 ¼ v

r
: ð4:118Þ

Now, if we suppose that the system rapidly reaches chemical equilibrium between

soil water in the mixing layer and runoff, i.e., Cr
d ¼ Cs

d ¼ Cd, then

h 1þ ψð Þ þ de θþ ρbK
s
d

� �	 
∂Cd

∂t
þ q 1þ ψð Þ∂Cd

∂x
¼ � 1þ ψð ÞrCd; ð4:119Þ

or

hþ θdeRs

1þ ψ

� �
∂Cd

∂t
þ q

∂Cd

∂x
¼ �rCd; ð4:120Þ

i.e., we have an equation similar to (3.11), which, however, contains a combined

parameter characterizing additional effective capacity of the system: it takes into

account sorption processes and the erosion character of pollutant washout

Rs ¼ 1þ ρbK s
d

θ
, ψ ¼ K r

da0
1þ k1

: ð4:121Þ

The total concentration of a chemical in the surface flow is:

C ¼ Cd þ SCa ¼ Cd 1þ K r
dS

� � ¼ Cd 1þ ψð Þ: ð4:122Þ

Thus, solving Eq. (4.120) and using the relationship (4.122) allows us to obtain

the required solution of the problem. Since similar problem has been solved in Sect.

3.3.3, then, with the above said taken into consideration, the relationships can be

represented in the following dimensionless form:

C rtð Þ
C0

¼ θdeRs

rtþ θdeRs= 1þ ψð Þ at rt=hx � 1; ð4:123Þ

C rt, hxð Þ
C0

¼ θdeRs h
n

hxhþ θdeRs= 1þ ψð Þ at rt=hx > 1; ð4:123aÞ
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where function h τð Þ can be found from the solution of the system of equations

h ¼ nΔe

1� n
ln

h

h0

� �
� n

1� n
h0; ð4:124aÞ

τ ¼ �nΔe ln h0 þ n 1� h0
� �

; ð4:124bÞ

given dimensionless time τ ¼ rt=hx (h0 is a parameter), C0 is component concen-

tration in pore water, Δe ¼ Δe=hx, hx ¼ rx=αð Þ1=n, Δe ¼ θdeRs.

Unlike the particular solutions considered earlier (Sect. 3.3.3), the relationships

in (4.123) can give the values of concentrations many times greater than the

concentration of a chemical in soil water because of its transfer from the soil in

adsorbed state with suspended particles of erosion origin.

The proposed solutions are standardized by the initial porous concentration, C0.

If a contaminant is sorbable, then, strictly speaking, the value C0 is determined

(under equilibrium conditions) by the distribution coefficient Ks
d (or the retardation

coefficient, Rs). Therefore, in the practical formulation, concentration C0 should be

evaluated basing either on the density of the initial contamination of the soil

surface, N0 or data on pollutant concentration in a unit soil mass M0:

C0 ¼ N0

θdeRs , or, C0 ¼ M0ρb
θRs : ð4:125Þ

Now solution (4.123) can be given in the generalized form:

C ¼
P0

τþ Rs= 1þ ψð Þ at τ � 1,

P0h
n

hxhþ Rs= 1þ ψð Þ at τ > 1;

8>><>>: ð4:126Þ

where P0, depending on problem formulation, is evaluated from P0 ¼ N0=θde or

P0 ¼ M0ρb=θ; hx ¼ hx=θde; τ ¼ rt=θde.
When precipitation falls on soils polluted by a highly absorbable component

(Rs >> 1, a0K
r
d >> 1), such as a radionuclide or a heavy metal, the concentration

in runoff, C, in the initial period weakly depends on time and can be evaluated from

simple relationships

C � M0a0

1þ k1ð ÞK , or, C � N0a0

ρbde 1þ k1ð ÞK : ð4:126aÞ

We see that concentration C increases with increasing ratio Kr
d/K

r
d ( 1=K ). An

increase in the contribution of the gravity precipitation of particles (governed by

an increase in k1) leads to an inverse tendency. With K ¼ 1 and k1<< 1, the

concentration is determined by the degree of soil pollution and the value of
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detachment coefficient a0. As an example, let us take characteristic values:

M0¼ 10 mg/kg (0.01 mg/mg), a0¼ 10 g/L (10,000 mg/L). Now, basing on

(4.126), we obtain C¼ 100 mg/L.

4.3.3.2 A Nonequilibrium Transport Model with Slow Sorption

and Erosion Kinetics

The nonequilibrium character of the process in this case is due to (1) the relatively

slow exchange rate characterizing solute transfer from the mixing layer into the

surface runoff and (2) soil erosion kinetics. We suppose that the sorption processes

are equilibrium, described by linear sorption isotherms (4.114).

Mathematical (Numerical) Model The original system of governing partial dif-

ferential equations, (4.31), (4.32), (4.36) and (4.29), can be conveniently

represented in a dimensionless form:

∂h
∂z

þ nh
n�1 ∂h

∂y
¼ 1� γ; ð4:127Þ

h
∂S
∂z

þ h
n ∂S
∂y

¼ 1þ er þ eh � 1� γð ÞS; ð4:128Þ

h 1þ ar
0S

� �∂Cr
d

∂z
þ h

n
1þ ar

0S
� �∂Cr

d

∂y
¼

k2 Cs
d � Cr

d

� �þ a0 Cs
d � λCr

d

� �� Cr
d þ ar

0 KCs
d � Cr

d

� � er þ eh, eh > 0,

er, eh < 0,

�
ð4:129Þ

de
∂Cr

d

∂z
¼

γ Cr
d � Cs

d

� �� k2 Cs
d � Cr

d

� �� a0 Cs
d � λCr

d

� �� ar
0

KCs
d er þ ehð Þ, eh > 0,

KCs
der þ ehC

r
d , eh < 0;

�
ð4:130Þ

where z ¼ rt=hx; y ¼ rx=αð Þ=hn
x ; h ¼ h=hx; S ¼ S=a0; de ¼ deθRs=hx; a

r
0 ¼ a0K

r
d ;

K ¼ Ks
d/K

r
d; a0 ¼ a0θ=ρb; a0 ¼ a0θ=ρb; k1 ¼ v=r; k2 ¼ ke=r; γ ¼ i=r; er ¼ er=a0r

(4.4); eh ¼ eh=a0r (4.10/4.11); λ is analogous to that in Eq. (3.21).

The independent variables are normalized by a factor hx ¼ rx=αð Þ1=n,
representing the maximal flow depth in point x. The boundary conditions are further
considered as homogeneous, i.e., invariable over both space and time:

h y, 0ð Þ ¼ 0, S y, 0ð Þ ¼ 0, Cr
d y, 0ð Þ ¼ 0, Cs

d y, 0ð Þ ¼ Cs
d0;

h 0, zð Þ ¼ 0, S 0, zð Þ ¼ 0, Cr
d 0, zð Þ ¼ 0, Cs

d 0, zð Þ ¼ Cs
d0:

ð4:131Þ
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Description of Modeling Results The main results of calculations will be given as

plots of dimensionless total concentration C τð Þ ¼ C=C0, including the concentra-

tions of dissolved components and components adsorbed by suspended particles:

C ¼ Cr
d þ SCr

a , C0 is the initial concentration of a chemical in soil water in the

mixing layer. Additionally, the plots will present curvesC K s
d ¼ 0

� �
, corresponding

to the case of migration of a nonreactive component under equivalent conditions.

First, we consider the results of modeling chemical transport under conditions

of rainfall detachment and deposition sediment in the absence of flow-driven

erosion processes with assumptions of (а) linear dependence of sediment transport

capacity, Tc, on the discharge q (see Eq. 4.39 with β ¼ 1 ) and (b) quadratic

dependence (β ¼ 2). However, first, we consider the variant Tc ¼ 0, for which an

asymptotic analytical solution is available. Next, we discuss numerical examples

illustrating the behavior of a concentration function calculated for soil erosion due

to combined influence of rainfall detachment and flow entrainment of soil particles.

Also, two variants, β ¼ 1 and β ¼ 2, will be analyzed.

All calculations were carried out for a moderately absorbable component

K s
d ¼ 0:1 m3=kg ¼ 100 cm3=g (the order of magnitude of 102 cm3/g is typical of

many chemical pollutants, i.e., heavy metals, radionuclides, and pesticides). In the

calculations, it was taken into account that the silty material that forms in the

erosion process shows higher sorption capacity: K r
d=K

s
d ¼ 10�100. It should be

mentioned that all (four) model variants, cases 1, 2, 3, and 4 (Figs. 4.12, 4.13, 4.14,

4.15, and 4.16), show the concentration of the solute in runoff, which is being

absorbed, to be noticeably higher than its concentration in soil water filling the pore

space of the mixing layer (C >> 1 ). This is due to the significant role of the

transport of solutes in runoff in particulate form. Also, all breakthrough curves are

characterized by long tails due to dilution effects in the mixing layer. That is why

the model results are presented in form of the semi-logarithmic scale graphs.

Case 1 As can be seen from Fig. 4.12, the slow transfer kinetics, controlling chemical

exchange between soil water and runoff, can be a factor that appreciably hampers the

pollution of surface runoff. Represented results (Fig. 4.12) correspond to the case of a

relatively low capacity of the mixing layer (the solutes are concentrated in a very thin

surface soil layer), resulting in its relatively rapid depletion and an appreciable drop in

its concentration in the flow. This tendency is the stronger, the higher the sorption

capacity of suspended particles. At a high intensity of the soil water/runoff exchange process

(k2 ¼ ke=r > 100), the total concentration tends to equilibrium asymptotics (Cr
d � Cs

d ),

while the numerical solution is in agreement with the analytical solution (4.123) and

(4.124), where ψ ¼ 1þ a0 Rs � 1ð Þ½ �= K 1þ k1ð Þ	 

(in terms of (4.126a), (4.127), (4.128),

(4.129), and (4.130) model).

Case 2 At Tc > 0 (model variant β ¼ 1), the values of C at initial moments (Fig. 4.13)

are in excess of the appropriate equilibrium value obtained at Tc ¼ 0 (C � 1þ ψ ¼
1þ 10= 1þ 2ð Þ ¼ 4:33). The variant β ¼ 2 (Fig. 4.14), unlike the previous one, at initial

times, is characterized by a single valueC, not depending on Tc (φ2) and coinciding with the

variant β ¼ 1, φ1 ¼ 0. However, the variants β ¼ 1 (Fig. 4.13) and β ¼ 2 (Fig. 4.14) show

qualitative differences between the character of behavior of breakthrough curves at later

times: the linear function ðβ ¼ 1Þ yields concentration curves, which monotonically

decrease with time (Fig. 4.13), while the quadratic function yields curves which have an

extremum (Fig. 4.14).
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Fig. 4.12 The effect of mass exchange kinetics, k2 ¼ ke=r (numbers at the curves), on the

relative concentration of the solute being absorbed in the surface runoff water for the case of

Tc ¼ 0 (φi ¼ 0), corresponding to the maximal sedimentation intensity of disperse particles.

The solid lines are for the numerical model, the dash-and-dot line is for the analytical

solution (4.123)–(4.124) for an equilibrium system, the broken lines are for an unsorbable

component. (a) Kr
d=K

s
d ¼ 1=K ¼ 10 ; (b) K r

d=K
s
d ¼ 1=K ¼ 100. a0 ¼ 0:01 g=cm3,

ρb=θ ¼ 10 g=cm3, k1 ¼ 2, deθ=hx ¼ 0:1, Ks
d ¼ 100 cm3=g, n ¼ 5=3, γ ¼ 0, eh < 0, λ ¼ 1

Fig. 4.13 The effect of dimensionless group φ1 ¼ φ1=a0 (numbers at the curves) on the

concentration distributions (eh < 0). The broken line is S concentration, the dash-and-dot
line is for the unsorbable component. (a) K r

d=K
s
d ¼ 10 ; (b) Kr

d=K
s
d ¼ 100.

a0 ¼ 0:01 g=cm3, k2 ¼ 100, deθ=hx ¼ 0:1, K s
d ¼ 100 cm3=g, k1 ¼ 2, ρb=θ ¼ 10 g=cm3,

n ¼ 5=3, γ ¼ 0, λ ¼ 1
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All plots considered here (Figs. 4.13 and 4.14) reflect the tendency toward an increase in

the concentration with increasing parameter φi. This is due to the higher flow transportation

capacity, which reduces the rate of gravitational settling of the suspended particles, thus

contributing to the retention of larger amount of chemicals, adsorbed on those particles, in

water layer.

Case 3 The plots that reflect the process of rainfall detachment and flow entrainment of

soil particles from the surface when gravitational settling is neglected ( eh > 0 ), are

qualitatively similar to the plots described above (Figs. 4.15 and 4.16). The concentration

at the initial stage is determined by the interaction between the components being absorbed

and the particles that release from soil due to drop interaction:C � K s
dKa0. One can see that

an increase in the dimensionless group σx (see Sects. 4.1.1 and 4.3.1) is accompanied by an

increase in the total solute concentration in water, which is due to the greater concentration

of disperse particles, which are carriers for solutes in runoff (Figs. 4.15 and 4.16). Those

plots also show the effect of the value of dimensionless group deθ/hx on the character of

breakthrough concentration curves, similar to that described before: with an increase in the

mixing layer capacity (deθ/hx), the descending branches of the curves become flatter and a

second plateau appears.

Essentially, the maximum concentration of solute at point x is attained at the moment

when the formation of steady-state flow profile on the eroded hillslope is completed, i.e.,

when h ¼ hx (τ ¼ 1).

Case 4 The example in Fig. 4.17 illustrates graphically rather high sensitivity of a numerical

solution of the system (4.126a)–(4.129), presented for the dimensionless mass flux,

qs ¼
Cq

a0rx
¼ Ch

n
; ð4:132Þ

to the ratio γ ¼ i=r. As one may expect, an increase in infiltration velocity, i, reduces the
flux of dissolved solids due to the net solute loss (from the upper mixing layer) via vertical

infiltration. Obviously, such effect can be attributed to reduction of the pollution potential

Fig. 4.14 The effect of dimensionless group φ2 ¼ φ2rx=a0 (numbers at the curves) on the

concentration distributions. The broken line is S concentration, the dash-and-dot line is for

the unsorbable component. (a) K r
d=K

s
d ¼ 10 ; (b) K r

d=K
s
d ¼ 100. a0 ¼ 0:01 g=cm3,

k2 ¼ 100, deθ=hx ¼ 0:1, Ks
d ¼ 100 cm3=g, k1 ¼ 2, ρb=θ ¼ 10 g=cm, n ¼ 5=3, γ ¼ 0,

eh < 0, λ ¼ 1
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of runoff from hillslopes and catchment areas. The plots in Fig 4.17 also reflect the

tendency toward an increase in the dimensionless mass flux with increasing the sorption

capacity of suspended solids.

Fig. 4.16 The character of concentration functions C rt=hxð Þ ( full lines are for the

component being sorbed, fine dashes are for the nonreactive component) and S rt=hxð Þ
(long dashes) for the scenario of raindrop and hydraulic soil erosion ( eh > 0, β ¼ 2 )

at different values of mixing layer capacity (deθ/hx, given by numbers at the curves).

(a) σx ¼ 1 ; (b) σx ¼ 10. φ2 ¼ φ2rx=a0 ¼ 10, K s
d ¼ 100 cm3=g, K ¼ 0:1,

a0 ¼ 0:01 g=cm3, k2 ¼ 100, ρb=θ ¼ 10 g=cm3, n ¼ 5=3, γ ¼ 0, λ ¼ 1

Fig. 4.15 The character of concentration functions C rt=hxð Þ (the full lines are for the

component being sorbed, the fine dashes are for the nonreactive component) and S rt=hxð Þ
(long dashes) for the scenario of raindrop and hydraulic soil erosion ( eh > 0, β ¼ 1 )

at different values of mixing layer capacity (deθ/hx are given by figures at the curves).

(a) σx ¼ 1; (b) σx ¼ 10. φ1 ¼ φ1=a0 ¼ 10, Ks
d ¼ 100 cm3=g, K ¼ 0:1, a0 ¼ 0:01 g=cm3,

k2 ¼ 100, ρb=θ ¼ 10 g=cm3, n ¼ 5=3, γ ¼ 0, λ ¼ 1
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The above examples illustrate importance of the coupled hydrological-

mechanical-chemical approach (the flow, dissolved solids transport, suspension

solids generation and transport, chemical reaction equations are solved simulta-

neously) to examine the transport potential of runoff and the system behavior at the

catchment scale. Despite the simplicity of the conceptual scheme, it helps to

identify a suite of specific parameters to be chosen to describe the hydrological

system and must be obtained by hydrologists in field studies.
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Part II

Water Flow and Solute Transport
Models at the Catchment Scale

The aim of this, second part of the book, is to demonstrate: (1) how elemental

processes as presented in the first part of the book can manifest at the mezzo-

(regional) scale, and (2) how rational approaches from the elementary theory of the

overland flow dynamics can be meaningfully applied to analyzing mezzo-scale

hydrological processes. Although these issues are related to the global upscaling

problem, the latter is not particularly relevant to the present analysis.

The emphasize will be put on the lumped-conceptual approach, explicitly or

implicitly. According to that the catchment (watershed) is considered as a single

homogeneous unit (e.g., a whole river basin) considering as a time-invariant system

with a limited number of average/effective parameters, i.e. spatial variability in

physical properties is ignored. Also the rainfall is considered to be spatially uniform

over the catchment. In other word, a catchment is considered here as a control

volume which is characterized by a well-defined hydrological structure (Chap. 5). It

is worth mentioning that, as noted earlier, the terms catchment and watershed are

used interchangeably without defining the distinctions between them to refer to a

drainage area (basin) characterized by all runoff being conveyed to the same outlet.

According to viewpoints of some authors, errors in runoff predictions that are

based on lumped hydrological models are not due to neglecting the special vari-

ability of hydrological parameters and input data within a particular catchment, but

mostly result from errors related to a selection of model structure. It was shown that

if the structure of a lumped model is adequate to describe the catchment nature and

a model is properly calibrated, it can produce predictions that are almost identical to

those generated by a distributed model (Das et al. 2008; Kling and Gupta 2009).

Lumped-parameter models can be simply validated with the available hydrological

data and global tracer concentration measurements (Maloszewski et al. 2000).

Finally, such lumped-concept may provide a basis for semi-distributed (spatially

lumped continuous) models (Karnieli et al. 1994; Sheffer et al. 2010), where the

catchment area is considered as a series of isolated or interconnected cell units/

subcatchments (each cell produces the surface runoff, evapotranspiration and

seepage losses as a response to rainfall input based on simple infiltration or

http://dx.doi.org/10.1007/978-3-319-21801-4_5


saturation excess concept). The lateral flow component between the spatially

lumped cells is ignored.

The lumped-parameter formulation of the water budget and flow problems

significantly simplifies the solving of solute transport problem and makes practi-

cally possible the long-range prediction of chemical component distributions

between the near-surface domains relying on a restricted number of

hydrogeological parameters (Chap. 6).

Physically based, distributed-parameter models that are based on rigorous math-

ematical formulations of physical laws governing the coupled surface and subsur-

face flow and solute transport will be introduced as well, and practical application

of a numerical simulator from this software family will be given in the conclusion

Chap. 7 of the book.
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Chapter 5

A Short Review of Water Budget and Flow
Models for a Lumped Catchment

A rigorous and unambiguous classification of the lumped catchment (or watershed)

models commonly faces objective difficulties, because similar approaches to math-

ematical formalization of processes with different physical nature can be used in

different models. That is one of the main reasons why there is no universal method

to characterize this category of the catchment models. For this review, four cate-

gories of models can be provisionally identified: (1) balance (budget) models,

(2) reservoir models, (3) soil moisture accounting models (approach), and (4) com-

bined models which synthesize some properties of the above models and empirical

features of hydrological processes description. All of them, of course, are simpli-

fications of reality and have a high degree of empiricism.

Catchment (watershed) runoff and associated transport processes are controlled

by a number of parameters characterizing current and antecedent conditions of a

drainage area. A water budget is a quantitative summation of many of these

characteristics, and also the inputs, outputs and net changes to a particular catch-

ment over a fixed period. Since then, it would be logically to begin our analysis with

description of the macroscopic water balance (water fluxes) components based on

lumped-parameter approach which has been widely used in the analysis of stream

flow discharge in response to some precipitation event, evapotranspiration, surface

runoff and the impact of the land use over a catchment or its hydrologic response

units (Duffy and Gelhar 1985; Burnash 1995; Maloszewski et al. 2000; Dingman

2002; Gupta et al. 2003).

Then, it makes sense to focus on the reservoir-like representation of a catchment

as the simplest way for mathematical formulation of hydrological phenomena at the

regional scale. In such a reservoir, the change in water discharge induced by

precipitation is defined as a linear or non-linear function of the change in the

reservoir storage. In case of fragmentation of a catchment basin into several

hydrological units (sub-catchments), a system of interconnected reservoirs put in

series or parallel. The actual temporal variability of the rainfall can be included in

the reservoir model. The antecedent rainfall can be also included, because the time

variation of the storage in the system is taken into account.
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Also, it will be shown that prediction capacity of the physically-based models

may be improved by using soil moisture accounting procedures according to which

soil moisture dynamics and water fluxes are coupled and updated continuously.

Models that utilize these procedures relay on the threshold soil moisture concept
(Bergstr€om 1995; Kling and Gupta 2009). According to that the flow components

related to surface/subsurface runoff, percolation flux and groundwater recharge/loss

do not occur until soil moisture content is lower or higher than the set limits. This

approach also can be used in combination with empirical models.

Finally, it should be mentioned that at the present the increased interest to

watershed flow modes is due to their efficiency for assessing hydrological responses

to global climate change accompanying the changes in regional water availability

(Farmer et al. 2003; Xu and Singh 2004).

5.1 Water Cycle Components and Their Representation
in Water Budget Models

The basic concept of water budget for a lumped catchment considered as a closed

system is represented by the formula:

ΔS ¼ P� ET � OR; ð5:1Þ

where P is the total precipitation depth; OR is total depth of overall runoff (surface,

subsurface and groundwater); ET is the total actual evapotranspiration depth

(sometimes this member includes interception); ΔS is the change in total storage.

All components in this equation correspond to the thickness of a water layer

accumulated or lost within the given period. The unit for all measuring water

budget components is [L] (usually mm).

In the context of a time continuum the quantities from Eq. 5.1 represent the

integration of dynamic fluxes over some timescale (Farmer et al. 2003):

dS

dt
¼ r � e� q; ð5:2Þ

where r is the rate of rainfall; e is the evapotranspiration rate; q is the rate of runoff
generation; dS/dt represents the rate of change of stored water; the unit for all rate

components is [LT�1] (usually mm/d).

The assessment of the runoff depth components (Eq. 5.1) and runoff flow

components (Eq. 5.2), is a target of water budget modeling considered as a tool

for studying the hydrological cycle of catchments and solving many environmental

problems.

Thornthwaite (1948) and Thornthwaite and Mather (1955) developed some of

the first water budget models, and since then many other models with varying

degrees of complexity have been formulated. The existing verified models used to
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assess water balance within catchments number many dozens, if not hundreds.

Their comprehensive review and classification can be found in the literature

(Lascano 1991; Alley 1984; Beven 2006). In this section, we consider only the

basic components that are common for most water balance models. Particular

attention will be paid to water retention mechanisms.

The majority of water balance models are used to estimate the monthly and

annual runoff from a daily rainfall record (P) and potential evapotranspiration

(PET) estimates (Sect. 1.5.3). They have been developed for different conditions

and purposes. In the recent years, special attention was given to the use of balance

models for studying the impact of land use and climate changes on the hydrological

regime of river basins. Some models are able to calculate surface runoff and

recharge (as base flow component of streamflow) with daily time steps. There are

models that use hourly time steps for modeling flood runoff.

As a measure of excess precipitation, the runoff includes several components;

two of them are basic ones (Sects. 1.1 and 1.2): surface flow (direct or overland

flow) and base flow (ground water flow). The direct runoff, which enters surface

streams immediately after a rainfall, is the main contributor to the peak discharge,

while the base flow response in discharge areas is detected with a noticeable delay

after the rainfall. Several other (minor) components of the subsurface runoff, such

as stormwater and supplementary base flow, can be incorporated in the model

formulation as well. The interflow is the portion of the runoff represented by

infiltrated water that moves laterally on top of the subsoil composed of consolidated

sediment. The interflow is a slower process than surface runoff but a quicker than

groundwater runoff.

Many of the water balance models are based on the assumption that runoff

occurs, when precipitation exceeds potential evapotranspiration and the soil has

reached its field capacity. Any additional water applied to the soil runs off. When

soil moisture is deficient, as in the case when potential evapotranspiration exceeds

actual evapotranspiration (PET>ET), the formation of runoff becomes impossible.

Thus, water balance models generate runoff by saturation excess in the soil

moisture storage: water excess of saturation becomes runoff.

Major problems of balance models are (Alley 1984): (1) selecting an appropriate

procedure for distributing the overall runoff between direct flow and base flow, and

(2) accounting for the lag of the runoff in its transfer to the surface stream. The latter

requires incorporating calculation procedures allowing runoff to be generated in

periods without precipitation.

A considerable portion of the balance models includes two storage components/stores

(Figs. 5.1 and 5.2): one, associated with the short-term storage capacity, for soil water

flow, and one, related to the long-term storage capacity, for groundwater flow. The soil
store plays an important role in determining the runoff and the amount of actual evapo-

transpiration. It requires initial values of the soil water storage contents. Groundwater
(aquifer) store is important for determining base flow (Ibrahim and Cordery 1995).

The usual approach to splitting the overall runoff into two components, R and

Q (Fig. 5.1), is to specify some fraction of the rainfall excess, f, that remains in the soil

as part of the groundwater storage (Alley 1984; Dingman 2002). Water budget in the

groundwater store is calculated for each time step (e.g., month), which allows the recharge
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at a given time step to contribute to discharge at the subsequent time step. The aquifer store,

having unlimited capacity, drains as a function of the base flow recession constant with the

remainder being the initial aquifer storage for the next time step (Dingman 2002). The other

approach conceptualizes that all saturation excess runoff is routed to aquifer store, which is

allowed to fill until the maximum capacity, S, is reached. If runoff at the current step

summed with the previous aquifer storage exceeds S, then the difference becomes surface

runoff, and the remaining storage becomes a subject for the subsurface discharge controlled

by the recession constant (Dingman 2002).

The above concept can be used for quantifying some particular components of the

hydrological budget, for example, groundwater recharge. Thus, let the precipitation minus

the surface runoff (P, Q) be accumulated infiltration (F), which can be estimated indepen-

dently using some methods discussed in Sect. 1.3. Then, using the water budget approach

for soil moisture store associated with the root zone (moisture storage), one can estimate

the annual groundwater recharge on daily basis as it is proposed in the FAO model (Allen

et al. 1998; Erickson and Stefan 2007). In this model, as in the previous ones, it is assumed

that in the dry seasons, when soil moisture content is below the field capacity, θfc, pore
water is not allowed to move under gravitational force and moisture is held in the soil.

Fig. 5.1 Schematic

diagram of the conceptual

two-store distribution

model. P precipitation,

ET evapotranspiration,

OF overall flow¼ rainfall

excess, Q surface flow,

R recharge, BF base flow

Fig. 5.2 Schematic

diagram of the conceptual

two-store two-component

infiltration model.

P precipitation,

ET evapotranspiration,

Q surface flow, f1 and f2 two
infiltration components,

R recharge, DR direct

recharge, BF base flow
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Oppositely, in the heavier precipitation periods, when soil water content exceeds θfc, all soil
water that is above the field capacity percolates through the root zone under gravity and

becomes groundwater recharge.

All models presented above have a common drawback: the above described water

budget technique is unable to model recharge when soil water content is near field moisture

capacity, while field observations show that phreatic aquifers yield noticeable recharge

even in periods of soil moisture deficiency.

To overcome this drawback, some balance models were modified by incorporating,

along with traditional infiltration component, represented by water filling the soil moisture

zone ( f1) and reducing any soil moisture deficit, a certain portion of water ( f2) which can

directly recharge the groundwater (Khan and Mawdsley 1982; Moor and Bell 2001; Vaze

et al. 2012). This feature of the model (Fig. 5.2) allows the recharge to be generated even in

the case of soil moisture deficiency. Thus, the percolation entering the groundwater is

represented by direct recharge and indirect recharge, which drains the partly saturated soil

moisture storage zone.

To support the above analysis in terms of soil moisture accounting, we refer to a

diagram in Fig. 5.3. In this diagram, the soil profile is conceptualized as a single-store

with one inlet and three outlets, representing activation of different output contributions as

a function of soil moisture content (Sheffer 2009; Sheffer et al. 2010). The inlet represents

the daily precipitation over the area (P). The three outlets represent: (1) daily evapotrans-

piration (ET), which produces output only when the water content in the store is higher than
the soil wilting point, θwp (the minimal point of soil moisture the plant requires not to wilt),

(2) daily recharge (deep percolation or recharge, R), which generates output only when the

moisture content in the store exceeds the soil field capacity, θfc, and (3) daily runoff (Q)
which generates output only when the water content in the store reaches saturation

(porosity), θs. As seen, the model includes three key soil water storage capacity thresholds:

θwp, θfc and θs.

5.2 Conceptual Reservoir Models

Reservoir models are simplest among the models designed to describe the trans-

formation of rainfall excess to runoff. They reflect the limiting degree of formal-

ization of the hydrological process where a set of physical mechanisms is taken into

Fig. 5.3 A conceptual

single-store model of a daily

water budget (Sheffer

et al. 2010). P precipitation,

ET evapotranspiration,

Q runoff, R recharge
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account in a generalized form by the introduction into the model of empirical

coefficients taken from algebraic or differential equations. That is why this type

of models is often referred to “black box” models. Unlike the water budget

(balance) models, considered above, which deal with soil moisture dynamics, the

only input data required by the reservoir models are rainfall excess and some

empirical rate constants characterizing the speed at which a reservoir fills or drains.

To produce the surface runoff hydrograph as a response to a rainfall onto a small

catchment with a short response time, one may use a single linear reservoir model

(Chow et al. 1988). The use of such models can be justified, for example, in the

analysis of hydrological processes in intermountain basins, were groundwater plays

a subordinate role in the total water balance. For catchments with variable source

area hydrology, several capacity- or flow-limited processes, and complex geometry,

multi-linear or non-linear reservoir models can be considered as an alternative to

the single linear reservoir models.

The linear reservoir model is based on the concept that catchment behaves as a

reservoir (Fig. 5.4a) in which outflow (runoff) rate, q [LT�1], is a linear function of

storage, S [L], thus:

q ¼ λS; ð5:3Þ

where λ is a rate constant (catchment discharge coefficient) [T�1] characterizing the

overall retention (buffering) capacity of a catchment or its water release readiness.

Note that in a linear model, S is an unbounded function (its value can be arbitrarily

large).

Water balance equation accounting for the basin storage change can be

expressed as follows

r � q ¼ dS

dt
; ð5:4Þ

where the left part is the potential of water accumulation written as the difference

between rainfall excess (effective rainfall), r¼ r(t) [LT�1], and outflow rate,

Fig. 5.4 (a) A linear and (b) nonlinear (with multiple outlets) reservoirs
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q¼ q(t) [LT�1]. For evaluating the effective rainfall, a “pre-reservoir” procedure

should be provided, allowing one to determine what part of the precipitation is

intercepted by the plants and evapotranspirates from soil, and what part is available

for runoff generation. Equation (5.4) can also be termed as lumped continuity

equation.

The solution of Eqs. (5.3) and (5.4) can be given in finite-difference form,

making it possible to determine the discharge in any time moment, given its

value in the previous moment and the average inflow for the given interval of

time (Overton 1970; Pedersen et al. 1980).

On the other hand, combining (5.3) and (5.4) yields the linear differential

equation:

dq

dt
¼ λ r � qð Þ: ð5:5Þ

Integrating (5.5) with the initial condition q t ¼ 0ð Þ ¼ 0 yields (O’Donnell 1960):

q tð Þ ¼
ðt

0

r ξð ÞU t� ξð Þdξ; ð5:6Þ

where ξ is a dummy variable. The solution (5.6) for an arbitrarily varying function

r(t) describes both the rising and falling (recession) limbs of hydrograph. The

functions r and q account for time variations in the precipitation and runoff depths,

respectively. Clearly, volumetric rates can be used to characterize appropriate

flows; the dimension of such functions will be [L3T�1].

Equation 5.6 is called convolution integral or Duhamel integral, in which an

input-independent kernel,

U tð Þ ¼ λe�λt; ð5:7Þ

can be associated with the instantaneous unit hydrograph (IUH) [T�1], a linear

transfer function assumed constant for a particular catchment (Chow et al. 1988;

Wood et al. 1990) which represents the runoff from the catchment due to instanta-

neous precipitation of the rainfall excess of fixed volume (ΔS), normally, of 1 cm

(Subramanya 2008). Indeed, such result yields the solution Eq. 5.5, provided that,

at the initial moment t¼ 0, the inflow fills the reservoir storage up to ΔS
instantaneously:

q tð Þ ¼ ΔSU tð Þ: ð5:8Þ

Formally Eq. 5.8 describes the falling (recession) limbs of a hydrograph

ΔS ¼ q*=λ, where q* is the outflow at time t ¼ t* when the rainfall excess ceases.

The solution (5.6) can be normalized with respect to an arbitrary linear param-

eter (e.g., ΔS):
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h tð Þ ¼
ðt

0

r0 ξð ÞU t� ξð Þdξ; ð5:9Þ

h and r0 have the dimension of [T�1].

For the linear model under consideration, the time to the peak of the unit

hydrograph, tp (time lag of the event), is not sensitive to the discharge peak or

rainfall intensity.

Many authors use not the rate constant λ, but its reciprocal τ ¼ 1=λ, referred to as
the time constant [T], the storage coefficient of the reservoir, or the storage delay

constant. The time τ can be associated with the mean residence time (Buytaert

et al. 2004). In some studies, an attempt is made to determine how the time τ can

be related with measurable physical characteristics of a catchment. Such relationship

can be uniquely determined for the simple case of a conceptual catchment represented

by a planar surface and a constant effective rainfall intensity (Pedersen et al. 1980).

Equation 5.8 for the recession limb can be linearized in a semilogarithmic plot:

ln q ¼ ln q*� t=τ; ð5:10Þ

thus, constant τ can be determined directly from the slope of a particular recession

limb of the drainage hydrograph. If the excess rainfall–direct runoff process is actually

linear, the value of τ thus determined would be a constant for all storm events.

The integral (5.6) reflects the superposition principle, implying that the addi-

tional response of the model to a rainfall event is the same irrespective of the

antecedent condition on the catchment (Jowitt 1999). The basic solution is (5.6),

which for r ¼ const becomes:

q tð Þ ¼ rF tð Þ, F ¼ 1� e�λt� �
: ð5:11Þ

In the case of a short (0 � t � t1) rain, the superposition (5.11) yields the solution:

q tð Þ ¼ r 1� e�λt� �
, 0 � t � t1 ,

r eλt1 � 1
� �

e�λt, t > t1 :

�
ð5:12Þ

Based on the superposition principle, a solution for discharge function, q(t), can
be constructed for any input function of rainfall excess, r(t), allowing piecewise-

homogeneous (step-wise) representation

qi ¼
Xi

j¼1

r j � r j�1

� �
F ti � t j�1

� �
at ti > t j�1; ð5:13Þ

by analogy with the solutions of linear problems of solute transport in porous media

(Rumynin 2011, p. 133); here i ¼ 1, 2 . . . are the numbers of time intervals within

which it is assumed that rainfall excess r ¼ ri ¼ const; r0 ¼ 0, t0 ¼ 0.
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A response to a synthesized time-discretized rainfall excess (1 year cycle) input is illus-

trated by the curves in Fig. 5.5, which are calculated using formula (5.13) for different

kinetic coefficients. It can be clearly seen that, the less the values of λ, the flatter the

recession limbs of hydrographs. In this case, the maximal values of discharge functions

increase with increasing λ.

The linear reservoir concept considered above has many limitations for its

practical application. The use of a combination of two or more linear reservoirs

makes it possible to eliminate those limitations and improve the predictive ability of

reservoir models.

The multilinear modeling approach has been used by many researchers. The best

known multi-reservoir model is the Nash cascade model representing a number of

identical linear reservoirs in a series (Nash 1960). In this cascade model, the output
of each reservoir constitutes the input into the next downstream reservoir. Suppose

that the response of the first (uppermost) reservoir to a unit rainfall excess at the

initial moment (t¼ 0) is described by function (5.7). Then the output flow for the

second reservoir can be obtained by substituting (5.7) into the solution (5.9):

h2 tð Þ ¼
ðt

0

λe�λ t�ξð Þλe�λξdξ ¼ λ2te�λt: ð5:14Þ

The corresponding impulse response of the n-th reservoir will be

hn tð Þ ¼ λ
n� 1ð Þ! λtð Þn�1e�λt; ð5:15Þ

which is the IUH of the reservoir in the series model. In later studies, attempts were

made to attribute some physical meaning to parameters n and λ. It was shown that

n can be considered as a dimensionless shape parameter, while the ratio n/λ is a

scale parameter corresponding to the mean delay time of the IUH (Shamseldin and

Nash 1998).

Fig. 5.5 Influence of the

rate constant λ (figures at

the curves, d�1) on the

hydrograph behavior
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On the other hand, if a catchment has several capacity- or flow-limited pro-

cesses, it can be represented by a series of independent parallel reservoirs, each
characterized by mean time constants τ (Kundzewicz and Napi�orkowski 1986;
Buytaert et al. 2004):

q tð Þ ¼
Xn
i¼1

ðt

0

Ui t� ξð Þ ri ξð Þdξ ð5:16Þ

under the condition

Xn
i¼1

ri tð Þ ¼ r tð Þ: ð5:16aÞ

For example, the joint analysis of two linear models (Diskin 1964) makes it possible

to represent two components of the runoff in (5.16), namely, surface flow and

subsurface flow, as follows

r1 tð Þ ¼ αr tð Þ, r2 tð Þ ¼ 1� αð Þr tð Þ; ð5:16bÞ

where α is a constant value of the distribution factor.

Buytaert with coauthors (2004), based on linear reservoirs in parallel-model concept,

managed to identify two fast time constants and a third slow time constant for small

catchments within a high Andes region. These constants were identified as characteristics

of the overland flow and throughflow occurring in the soil layer.

It is an accepted fact that, for the majority of practical situations related to

hydrologic data analysis, no single IUH can be found to characterize the response of

any catchment to all rainfall events. Thus, catchments often behave in a very

non-linear way and both the linear and multi-linear reservoir models described

above may result in crude approximations of actual hydrographs. This is the reason

why alternative nonlinear models are used.

The features of nonlinear behavior of a catchment are as follows (Diskin 1973;

Zondervan 1978; Broome and Spigel 1982; Jowitt 1999; Koivusalo et al. 2001;

Ding 2011): (1) flow events of greater magnitude have a flashier response than

smaller ones; (2) the more the catchment is saturated, the flashier its response to the

rainfall excess; (3) the moment of flood peak discharge, tp, caused by a rain excess

storm is found to depend on rainfall intensity (for storms with a low average rainfall

rate, an increase in this rate is associated with a considerable reduction in the lag

time, while for storms with a high average rainfall intensity, the lag time approaches

a constant value), thus, (4) there is a tendency towards linearity at higher runoff

values. In some cases, the nonlinear behavior of the system can be attributed to the

fact that an increase in the degree of reservoir filling with water causes an increase

in the capacity, as it schematically shown in Fig. 5.4b. However, the physics of the

process is far more complex and individual for each catchment.
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Despite the nonlinearity of hydrological systems, there have been many attempts

to model them via linear mathematics (Snyder et al. 1970; Ding 1974, 2011;

Kundzewicz and Napi�orkowski 1986). The idea is to extend the convolution

procedure (5.6) to nonlinear systems. According to this approach, in the convolu-

tion integral (5.6), the kernel function (unit hydrograph) remains constant for one

event but may vary from event to event. Such variable unit hydrographs are derived

from storm data analysis.

Another concept is based on nonlinear extension of the storage–discharge

Eq. (5.3). An example of this approach is a nonlinear reservoir with the power

outflow law for storage–discharge relation:

q ¼ λSm; ð5:17Þ

where m is the storage exponential known as a shape parameter (dimensionless), λ
is the discharge coefficient known as a scale parameter [(LT�1)/Lm].

Combining (5.17) and (5.4) yields

dq

dt
¼ λ1=mm

r � q

q 1�mð Þ=m : ð5:18Þ

For some inflow pattern, r(t), the outflow can be calculated with a numerical

technique.

The model (5.18) has been used by many authors, with greater or lesser success,

for the analysis of hydrographs obtained for catchments under different natural

conditions (Ding 2011). The values of the shape parameter, m, vary on the average

within the range from 1.2 to 3.4. The scale parameter varies within a much wider

range, and the values of λ tend to decrease with increasing basin area.

5.3 A Standard SCS-CN Model

The Soil Conservation Service (SCS) curve number (CN) model (method) refers to

the class of basin-scale empirical parameter models for predicting direct runoff or

infiltration from rainfall excess (USDA 1986; Chow et al. 1988; Mishra and Singh

2003). It deals with two cumulative functions: the depth of precipitation, P (mm),

where a rainfall is considered as an event of fixed duration; the depth of excess

precipitation or direct runoff Q, (mm), established by the hydrograph curve in the

outlet section over the same period. The application domain is limited to individual

rainfall events assumed mutually independent.

The depth of potential runoff is defined as the difference P� Ia, where Ia is the
initial abstraction (mm) – a characteristic which accounts for the fact that falling of

some amount of precipitation in the beginning of an event does not lead to runoff

formation (i.e., while P � Ia, Q ¼ 0). The depth of excess precipitation or direct

runoff, Q, is always less than or equal to the depth of precipitation, P. After the
runoff started to form on a watershed, the additional amount of water retained in the
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watershed is the cumulative abstraction, Fa (mm), which can be associated with the

cumulative infiltration (Sect. 1.3). The value of Fa is less than or equal to some

potential maximum retention, S (mm).

According to the original postulate, the ratios of real values of Q and Fa, to the

potentially possible values, P� Ia and S, should be equal to one another, i.e.,

Q

P� Ia
¼ Fa

S
: ð5:19Þ

Solving this equation in combination with the balance equation

P ¼ Qþ Ia þ Fa ð5:20Þ

with respect to Q, we obtain

Q ¼ P� Iað Þ2
Pþ S� Ia

, when P > Ia; ð5:21aÞ

Q ¼ 0, otherwise P � Iað Þ: ð5:21bÞ

In some cases, it is of use to analyze the expression for cumulative abstraction:

Fa ¼ S P� Iað Þ
Pþ S� Ia

, when P > Ia: ð5:22Þ

In its original formulation, the SCS-CN method implies that Eqs. 5.21a, 5.21b

and 5.22 are satisfied at the end of the event – the period of shower, i.e., the time

scale is taken equal to the duration of the event, commonly the period of shower.

The sum Fa þ Ia is the part of precipitation not transformed into surface runoff.

It is clear that, since the balance items (5.20) do not include evapotranspiration

and deep percolation, the model (5.21) should describe the flood periods with

minimal errors. When the model (5.21) is used for long observation periods

including recessions, when significant components of moisture flow are evapo-

transpiration and recharge, this model needs to be modified.

The generalization of a vast body of field data (mostly on drainage basins in

USA) suggested the conclusion that Ia may be defined implicitly as a fraction of the

potential storage depth in the soil:

Ia ¼ λS; ð5:23Þ

where λ ¼ 0:2 can be taken as the first approximation.

Empirical studies made it possible to obtain the following formula for assessing

the maximal retaining capacity of water in a watershed (USDA 1986):

S ¼ 25:4
1000

CN
� 10

� �
; ð5:24Þ
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where CN is a characteristic referred to as the number of runoff curve, which

characterizes the type of soil, its vegetation cover, and land use conditions, as well

as some other features, which determine the ability of the catchment to retain water

(Erickson and Stefan 2007).

Various procedures are known to allow one to determine the number of the

runoff curve for different types of soils covered by vegetation. CN varies from

0 (the soil absorbs all precipitation falling onto it) to 100 (no absorption at all).

Shestakov and Pozdniakov (2003), with references to previous studies, give the

following ranges of CN for four typical hydrologic soil groups:

Soil CN Soil CN

Sand 40–60 Silty loam 75–85

Sandy loam 60–75 Silty clay loam 85–98

A major weakness of the SCS-CN method is the very high sensitivity of

estimated runoff to errors in the selection of the CN. Changes of about 15–20 %

in the curve number double or halve the total estimated runoff (Boughton 1989).

Usually the standard SCS-CN method underestimates Q and overestimates infiltra-

tion for large runoff events (Erickson and Stefan 2007; Shi et al. 2009).

In its original form, the method is mostly aimed at the estimation of the

hydrological consequences of short precipitation events (with intensity large

enough), with the consequences of an event assumed having nothing in common

with the past, i.e., it is a priori supposed that between rains the soil returns to its

initial state described by parameter S. However, the statistical character of function
P determines the strong time variations in soil moisture content; therefore, the

potential maximum retention, strictly speaking, is not constant in a catchment. It

varies at both annual and many-year scale, so the response of the system in any

moment depends on the history. This limits the applicability of the method.

Indeed, many authors note that the value of S is related to catchment features and to

antecedent moisture condition. For example, the greater the soil moisture content, the

larger the portion of precipitation converted into surface runoff. Formally speaking, CN

is not a constant, but varies from event to event. Therefore, some researchers propose a

correction of S, taking into account the moisture regime preceding the event (Chow et al.

1988). For dry period, the values S¼ SI are about 2.4 times greater than the “normal value

of SII; conversely, for the wet period, S¼ SIII¼ SII/2.3. However, the abrupt changes from
one value of S to another hamper the calibration of hydrological models.

Recently, a CN methodology of continuous hydrogeological simulation models

was developed based on some analytical relationships, which ensure smooth time

variations of parameter S in the model (5.21). With this in view, parameter S is

linked to some soil moisture depletion coefficients or soil available water capacity.

In such approach, referred to as soil moisture accounting (SMA) procedure

(taking into account changes in soil moisture content), the value of parameter S at

moment t depends on S (in some cases, on P and Q, as well) at the previous moment

(Kannan et al. 2007).
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5.4 A Lumped Continuous SMA Model

5.4.1 A Basic Hypothesis for Correction of the Standard
SCS-NS Model

Michel et al. (2005) suggested not to limit the applicability domain of formula

(5.21) to a unit event, characterized by the total volume of precipitation onto the

watershed (total precipitation depth P) and runoff volume (the total runoff depthQ),
but to consider this formula as an analytical model valid for any moment t. As a
consequence, P and Q in (5.21) should be considered as continuous time functions.

Their time derivatives are characteristics of flow rate, r ¼ dP=dt (rainfall rate) and
q ¼ dQ=dt (runoff rate). Thus, the new model is unsteady-state. Note that in the

classic SCS-CN model, P and Q are discrete functions, which can be determined

only for the end of an event, with which a period of shower is commonly associated.

In a new model proposed by Michel et al. (2005), which takes into account soil

moisture dynamics, i.e., SMA procedure, its authors introduce the concept of soil

moisture (accounting) store (SMS), which can accumulate the part of liquid pre-

cipitation that does not transform into surface runoff. This SMA model is based on

the assumption that the greater soil moisture content, the larger portion of precip-

itation will transform into surface runoff. If soil moisture content has reached its

maximal possible value, i.e., SMS is fully filled, all precipitation becomes surface

runoff. Later, the SMA model (Michel et al. 2005) was revised for initial soil

moisture store level and improved by Sahu et al. (2007).

Suppose V0 is the initial soil moisture store level, mm; V is the soil moisture store

level at time t, i.e. when the accumulated rainfall is equal to P, mm. Then the

balance equation becomes

V ¼ V0 þ P� Q: ð5:25Þ

The characteristic V0 is ignored in the SCS-CN model, however at the end of the

event, the difference V � V0 corresponds to Ia þ Fa (P > Ia).
If we replace Q in (5.25) by an expression for this function from the main

SCS-CN Eq. (5.21), we can come to problem solution in terms of accumulative

functions:

V ¼ V0 þ Sþ Iað ÞP� I2a
Pþ S� Ia

: ð5:26Þ

The assumption that functions P and Q are continuous and differentiable allows

us to differentiate the basic Eq. (5.25) and to derive a relationship between the

runoff rate, q, and rainfall rate, r

q ¼ r
P� Iað Þ Pþ 2S� Iað Þ

Pþ S� Iað Þ2 , P > Ia ð5:27Þ
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(r ¼ dP=dt and q ¼ dQ=dt); otherwise, P � Ia, q ¼ 0. Now, if we express P in

(5.27) in terms of V using (5.26), we will have

q ¼ r
V � V0 þ Iað Þ

S
2� V � V0 þ Iað Þ

S

� �
, if V > V0 þ Ia; ð5:28Þ

when V � V0 þ Ia, q ¼ 0. We can see that, in such representation, the degree

of precipitation fractionation depends on the current filling of SMS, V,
rather than on the arbitrarily chosen state of the system. The Eq. (5.28) contains

the sum

Sa ¼ V0 þ Ia; ð5:29Þ

which is an intrinsic parameter of the SMA модели. Thus, the initial abstraction,
Ia, is excluded from the further analysis as an independent characteristic, and

the generalized parameter Sa is used instead. With this new parameter, (5.28)

becomes:

q ¼ r
V � Sa

S
2� V � Sa

S

� �
, if V > Sa; ð5:30aÞ

q ¼ 0, if V � Sa: ð5:30bÞ

Model (5.30) allows a vivid physical interpretation (Fig. 5.6). In the beginning

of an event, all rainfall penetrates into the soil layer and fills the soil moisture

store (SMS), so there is no surface runoff (Fig. 5.6b). Once the amount of water

accumulated in SMS reaches the value of Sa, surface runoff starts forming

(Fig 5.6a). At q ¼ r, i.e., when all precipitation transforms into surface runoff,

the entire soil moisture store capacity is filled: V ¼ Sþ Sa.
Finally, the continuity equation following from the balance Eq. (5.25) can be

represented in the form

Fig. 5.6 Conceptual

representation of behavior

of an SMA store at different

phases of the fallout–

infiltration–runoff process:

(a) V > Sa, Eq. 5.30a,
(b) V � Sa, Eq. 5.30b
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dV

dt
¼ r � q; ð5:31Þ

written for the scenario Q > 0. Obviously, this equation is valid for describing

short-time processes, in which the effect of seasonal factors, which determine the

soil moisture regime, can be neglected (see below).

The formalization of the process in the form of Eqs. (5.30a), (5.30b) and (5.31),

corresponding to the SMA model, is more general as compared with the SCS-CN

model (Michel et al. 2005). The SMA model includes cases, such as (1) Sa > S,
where V0 < Sa � S, the case ignored by the SCS-CN model, because here we have

Ia > S; (2) V0 > Sa, which corresponds to the situation of Ia < 0, not covered by

the SCS-CN model; Ia < 0 implies the existence of flow in the beginning of the

simulated event.

The return from (5.30), (5.31) to problem formulation in terms of Q, P allows a

more complete system of equations to be written for those cumulative characteris-

tics (Michel et al. 2005). It is shown that the calibration of runoff models from

watersheds can be simplified with a linear relationship similar to (5.23) assumed to

exist between Sa and S, e.g., Sa ¼ S=3.

5.4.2 A Further Extension of the SMA Model

As we have already mentioned in Sect. 5.3, the prediction capacity of the standard

SCS-NC model can be improved by introducing some correction procedures in the

evaluation of its parameter S, which relate S with the characteristics of moisture

regime, showing seasonal trends. The extension of the application domain of

this approach to studying within-year hydrological cycles implies the inclusion

into the model of mechanisms responsible for the description of depletion of soil

moisture reserves under the effect of evaporation, evapotranspiration, and percola-

tion of water into the zones lying in vertical section below the soil layer, i.e., the

zone of aeration and aquifers. For long-range forecasts, especially in arid and

semiarid regions, of particular significance are evaporation and evapotranspiration

(Kannan et al. 2007). In this case, the continuity Eq. (5.31), rewritten for two

scenarios of behavior of a hydrogeological system, receives additional terms:

dV

dt
¼ r � q� ET � w, V > Sa; ð5:32aÞ

dV

dt
¼ r � ET � w, V � Sa; ð5:32bÞ

where ET is the actual evapotranspiration rate, mm/d; w is the recharge rate,

mm/d. The flow components ET and w, which are time functions, are responsible

for soil moisture depletion during interstorm periods.
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The lumped model (5.32a), (5.32b) is supposed to take daily (mean) precipita-

tion and evaporation as input. In the general case, ET and w are functions of soil

water conditions and soil hydraulic properties. If the soil saturation profile is

assumed to be vertically uniform, then the soil water content averaged over the

soil depth θ ¼ θavr is a function controlling the behavior of ET and w. On the other

hand, the dimensionless function

s tð Þ ¼ V tð Þ
Sþ Sa

; ð5:33Þ

which characterizes the degree of SMS filling, can be regarded as an analogue of

the soil moisture, θ. Basing on this analogy, we can write relationships for ET (s)
and w(s), which are convenient to use.

Thus, a soil water parameterization method is commonly used to determine the

actual evaporation, ET, based on potential evaporation, PET, and soil moisture

conditions, ET ¼ f θð Þ � PET, or, using the mentioned analogy, one can write:

ET ¼ f sð Þ � PET: ð5:34Þ

In a more complete setup (Bergstr€om 1992; Kling and Gupta 2009):

ET ¼ f sð ÞPETwhen V < Sþ Sað Þηcr; ð5:34aÞ
ET ¼ PTwhen V � Sþ Sað Þηcr; ð5:34bÞ

where ηcr is a critical soil moisture for actual evapotranspiration.

Following (Schaake and Chunzhen 1989; Brutsaert 1991; Kim et al. 1996;

Michel et al. 2005), we can choose one of the analytical relationships:

f sð Þ ¼ sm, m ¼ 1, 2, or ð5:35aÞ
f sð Þ ¼ 1� 1� sð Þm½ �, m ¼ 2: ð5:35bÞ

Infiltration water losses from SMS can be determined as a flow under unit

hydraulic gradient with this flow also related to the variable (5.33)

w ¼ k sð Þ ¼ kss
n; ð5:36Þ

where ks is the hydraulic conductivity at complete filling of SMS, s ¼ 1 (V ¼Sþ Sa).
In this case, the system of Eqs. (5.32a), (5.32b) becomes:

S
ds

dt
¼ r

S
1� sð Þ2 � S PET 1� 1� sð Þ2

h i
þ kss

n
n o

, s > 1� S; ð5:37aÞ

S
ds

dt
¼ S r � PET 1� 1� sð Þ2

h i
� kss

n
n o

, s � 1� S; ð5:37bÞ

where S ¼ S= Sþ Sað Þ.
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5.4.3 Numerical Example

The specific features of the behavior of function s ¼ V= Sþ Sað Þ are illustrated by an

example (Fig. 5.7), which reflects the response of the system to a rain event with a limited

duration. The plot was constructed for dimensionless time τ ¼ rt=S. The full lines give a

finite-difference solution of the initial problem (5.37a), (5.37b). Dots in the plot are the

results of integration of Eq. (5.37a). The coincidence of solutions obtained by two methods

demonstrates the reliability of the numerical algorithm.

This plot in particular shows that an increase in the exponential coefficient, which

controls infiltration rate, contributes to an increase in soil capacity to retain pore moisture.

5.4.4 A Case Study

Of greater interest is studying the behavior of a real hydrological system under variable

precipitation and evapotranspiration conditions. A characteristic example of such system is

the basin of the Limnatis R., which is a part of the Kouris catchment (including also two

other river basins, Kouris and Krios), the major drainage system of the Upper Troodos

Mountains in Cyprus (Fig. 5.8). At the turn of the twentieth–twenty first centuries, the

Kouris catchment became the focus of detailed hydrological and hydrogeological studies

carried out by the Geological Survey Department of Cyprus, supported by the European

Commission and several European institutions (Boronina et al. 2003; Mederer 2005, 2009;

Stadelbacher 2007; Zagana et al. 2007). Those studies were a part of a regional work aimed

to assess water resources in Cyprus (Udluft et al. 2004).

The Kouris catchment is located at the southern flank of the Troodos massive, the

“water tower of the island” (Afrodisis et al. 1986). The Kouris catchment encompasses an

area of 300 km2 and extends from the southern side of the Troodos Massif of Cyprus to the

Mediterranean Sea (Boronina et al. 2003). The major groundwater resources are associated

with the ophiolitic complex, which comprises harzburgites, gabbros, sheeted dykes, and

pillow lavas. The igneous lithologies and consolidated sediments form fractured aquifers or

aquifer-systems. They are characterized by strong heterogeneity in hydraulic conductivity

Fig. 5.7 Function s(τ),
evaluated for a short-time

(τ0¼ 1.5) rain event. The

dashed line is for k ¼ 0

(no infiltration). τ ¼ rt=S,

k ¼ ks=r¼ 1, E ¼ PET=r¼
0.5, S ¼ 0.8, m¼ 2

(Eq. 5.35b). The curve
number is the value of n

194 5 A Short Review of Water Budget and Flow Models for a Lumped Catchment



and porosity related to tectonic fracturing and hydrothermal alteration (Boronina

et al. 2003; Mederer 2009).

The climate in the study area is Mediterranean semi-arid, experiencing mild wet winters

and dry hot summers. Precipitation in the Kouris catchment ranges from 580 mm/a at the

lowest elevations to 1000 mm/a in the uppermost parts of the catchment (Fig. 5.8). This

results in a mean annual precipitation of 725 mm/a for the whole catchment during the

analyzed time series (1986–1996). Precipitation varies in a wide range both from year to

year and within a year (Fig. 5.9a). The daily potential evapotranspiration rates were

calculated using a version of Penman’s equation. The calculated mean annual potential

evapotranspiration rate for the Kouris catchment for 1986–1996 varies from 1060 to

1360 mm for the stations at different surface elevations. The plot of daily potential

evaporation PET (Fig. 5.9a) has distinct sinusoidal character, caused by seasonal variations

in climatic factors. Since the evaporation is maximal in the warm, dry season, the function

PET is in phase opposition to function P. This means that the moisture accumulated in the

soil in periods with intense rainfall is spent for evaporation and transpiration mostly in dry

seasons. The other moisture loss from soil occurs due to the deep water percolation to the

underlying aquifers.

The sub-catchment Limnatis covers 115 km2. Limnatis River flow rate in periods of

storm rainfall reaches 5–12 m3s�1, while in dry periods, it falls to tenths or hundredths of

cubic meter per second (Fig. 5.9b). The elevation in the study area ranges from 1612 m in

the north to 277 m at the gauging station.

Several surface-subsurface flow and balance models, such as MODFLOW, MODBIL

and SWAT, have been generated to analyze groundwater dynamics and rainfall–

infiltration–runoff processes within the Kouris catchment and its sub-areas (Boronina

et al. 2003; Mederer 2005, 2009; Stadelbacher 2007). The dynamics of the fractured

aquifers are simulated using groundwater flow model (MODFLOW). Vertical fluxes

between soil, vegetation, and atmosphere are simulated and balanced with water balance

models (MODBIL, SWAT). In the balance models, soil water balance is solved for each

Fig. 5.8 Kouris catchment.

(1) Climatological stations

where observations of

potential evaporation were

carried out; (2) gaging

stations on rivers;

(3) weather stations;

(4) distribution of mean

annual precipitation, mm
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single grid cell. The selected calibration and validation period for all models was approx-

imately the same (1987–1997).

For the flow and water balance models, soil and subsoil hydraulic properties, as well as

data base on morphology and landscape environment, were used as input parameters. These

models have been shown to simulate quite accurately the runoff for both floods and

recessions.

In this respect the earlier discussed simplified lumped parameter model cannot a priory

provide a strong competition to physically based models with distributed parameters. In this

study the SMA model was applied to Limnatis sub-catchment only for illustrative purpose

to test the potential capacity of the lumped approach to expert assessments. This approach

avoids model calibration; rather we wish to use the hydrograph observations to explore

some of hydrological effects.

The catchment was considered as a single reservoir with averaged characteristics, which

are coefficients of the system of Eqs. (5.37), where functions ET and w are specified

according to (5.34), (5.35) and (5.36). Precipitation and potential evapotranspiration

(Fig. 5.9a) were two input functions for the model. The four model parameters requiring

calibration are: S, Sa, ks, n. A daily time step was adopted to run the SMAmodel. The target

function for the choice of the parameters was taken to be the available variations in the flow

rate of the Limnatis River in 1986–1994 (Fig. 5.9b). The calibration was carried out

manually by adjusting parameters by trial and error until model results match qualitatively

the field observations.

The simulated hydrograph of the Limnatis is in general agreement with the monitoring

data (Fig. 5.10). However, the simulated rising limbs and peak amplitudes did not fit the

Fig. 5.9 Time distributions

(daily measurements) of

(a) daily precipitation,

P (averaged over five

weather stations: 295, 310,

321, 325, 320, see Fig. 5.8),

and daily potential

evapotranspiration, PET;
(b) river runoff rate
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observed hydrographs perfectly, moreover, the model was not able to reproduce some

observed peaks in the rising limbs. The recession limbs of the hydrograph were simulated

better.

The values of parameters at which the agreement was attained are S¼ 420 mm,

Sa¼ 513 mm, ks¼ 0.01 m/d, n¼ 4. The water balance components, estimated with

MODBIL software for the Limnatis catchment (Mederer 2009), reach the order of magni-

tude of the present study’s results (Table 5.1). Lumped parameter modeling of the area for

period 1986–1995 indicated that recharge was around 13 % of the total annual rainfall,

which is in good agreement with the results of Boronina et al. (2003) (between 12 and 16 %,

or 100–150 mm for those years for the whole Kouris catchment).

In general, analysis of the obtained results suggests that the physical concepts taken as

the basis of the model are in agreement with the observed tendency in river runoff

formation in the catchment.

Table 5.1 Water balance components for the Limnatis catchment

Components

MODBIL

(10/1987–9/1997)

This study

(10/1986–9/1995)

Precipitation, mm/a 653 689

Real evapotranspiration, mm/a 545 587

Groundwater recharge, mm/a 67 92

Surface runoff, mm/a 44 39

Groundwater recharge/Precipitation, % 10 13

Fig. 5.10 Total (baseflow plus runoff) hydrographs of measured (shaded area) and simu-

lated (solid line) discharge for Limnatis river. Dashed line is the s-function
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Chapter 6

Lumped-Parameter Models for Solute
Transport with Runoff

The use of lumped-parameter models is justified when runoff solute content at a

hillslope or catchment outlet is governed by the kinetics of soil solute release

(or solute removal from the contaminated soil surface) into runoff, rather than

overland flow dynamics (variations in the velocities and thickness). Such models

allow the infiltration (rainwater flowing downwards into the soil) and capillary

effects at the interphase between the soil and water flowing over its surface to be

described in detail and soil column inhomogeneity to be taken into account. In such

cases, the inertia of water flow, resulting in a time lag between rainfall excess and

the slope or catchment outlet discharge can be accounted for in effective parameters

in linear or nonlinear flow kinetic equations or such inertia can be neglected

completely with the response of the outlet discharge to the rainfall event assumed

instantaneous.

The mathematical framework of such macroscopic scale approach is based on

solutions of a system of two coupled equations: (1) a lumped continuity equation

for water storage within a lumped hydrological unit (representing a hillslope or

catchment/watershed), and (2) a lumped equation of mass balance, including a

source term for chemical interaction accounting for solute yield response to rainfall

impulses at the regional scale. It is assumed that all hydrological functions (asso-

ciated with rainfall excess, water storage, and solute concentration) and parameters

controlling overall flow and discharge, as well as chemical exchange between

runoff and soil are presented in basin-scale average values.

The models discussed below address different aspects of solute behavior in

watershed areas and can be implemented to predict both nonpoint contaminant

discharge through runoff into surface water (and/or subsoil domains) and the rate of

natural remediation of soil contaminated by agricultural chemicals, radionuclides

and other anthropogenic components, which generate nonpoint-source pollution.

In this chapter, special emphasis is placed on the lumped models whose develop-

ment was motivated by studies of the consequences of regional-scale radioactive

fallout.

© Springer International Publishing Switzerland 2015

V.G. Rumynin, Overland Flow Dynamics and Solute Transport, Theory and

Applications of Transport in Porous Media 26, DOI 10.1007/978-3-319-21801-4_6

201



6.1 Lumped Hillslope Models for Overland Flow Dynamics

We focus here on surface runoff models, which can be regarded as an alternative to

the kinematic wave model considered above (Chaps. 2, 3, and 4). Such models are

approximate and based on some kinds of averaging of hydrodynamic characteristics

of the water flow that forms on an idealized hillslope (Fig. 6.1).

6.1.1 Transformation of the Original Kinematic-Wave
Equation

Suppose that at any moment, t, the increment (gradient) of overland flow discharge

(per unit width), Qx(t), along the flow direction, x (Fig. 6.1), is a variable indepen-
dent of the distance (Rose et al. 1983; Singh 1996; Agnese et al. 2001). This

approximation immediately leads to a differential relation for a characteristic

known as runoff rate:

q tð Þ ¼ ∂Qx tð Þ
∂x

: ð6:1Þ

As one can see, hereafter, following the tradition, for the denotation of this

characteristic of the overland flow, we reserve the symbol q ¼ q tð Þ [LT�1], which

has been used to denote flow discharge, q ¼ q x, tð Þ [L2T�1], in the mathematical

formulation of the kinematic wave problem (Chaps. 2, 3, and 4). Also, it is clear,

that in this context, the runoff rate is synonymous to the outflow rate.

Fig. 6.1 Formation of

transient water surface;

characteristics hx 1ð Þ,
hm and S0 correspond to

steady-state conditions

(re ¼ r � i ¼ const)
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With the assumption (6.1), the continuity Eq. (2.2), for arbitrary time-dependent

excess rainfall rate, re(t) (Eq. 1.1b),

∂hx tð Þ
∂t

þ ∂Qx tð Þ
∂x

¼ re tð Þ, ð6:2Þ

transforms into

∂hx tð Þ
∂t

¼ re tð Þ � q tð Þ: ð6:3Þ

where hx(t) is the depth of water flowing over the soil surface.

Integrating Eq. 6.1 yieldsQx tð Þ ¼ q tð Þx, thus the flow discharge at the bottom of

the hillslope (x ¼ L) is equal to QL tð Þ ¼ q tð ÞL. Substituting this expression into

formula (2.3), which relates water flux and surface water depth, we obtain

hx tð Þ ¼ Qx tð Þ
α

� �1=n

¼ q tð Þx
α

� �1=n

: ð6:4Þ

Obviously, under steady-state condition (re¼ const), we have q 1ð Þ ¼ re and

hx 1ð Þ ¼ rex=αð Þ1=n, which corresponds to kinematic flow approximation

(Chap. 2).

Suppose that there exists an effective water depth, S(t), which characterizes the

amount of water that is temporarily stored on the soil surface per unit area (Fig. 6.1)

and can be regarded as the mean value of hx(t),

S tð Þ ¼ 1

L

ðL
0

hx tð Þdx ¼ q tð Þ
λ

� �1=n

; ð6:5Þ

λ ¼ α
Le

, Le ¼ n

1þ n

� �n

L; ð6:6Þ

where λ can be considered as a rate constant, characterizing the dynamics of

delayed slope discharge [L1-nT�1]; Le is the effective length of the slope [L]. The

relationship (6.5) can be readily obtained by multiplying the left and right sides of

Eq. 6.4 by dx and integrating from 0 to L. Now, Eq. 6.3 becomes

dS

dt
¼ re � λSn: ð6:7Þ

As seen, a peculiar characteristic of Eq. 6.7 is the non-linear dependence of the

lumped hillslope response to the rainfall excess intensity, similar to relationship

(Eq. 5.17) which was introduced for a nonlinear model of reservoir type (Sect. 5.2).
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A useful characteristic for the analysis of solute transport by runoff is the mean
residence time of runoff water on the slope. This characteristic can be easily

obtained for a steady-state water flow profile. Therefore, in the following analysis,

a constant rainfall excess and steady-state condition is assumed. With this assump-

tion, we have

uxhx ¼ rex: ð6:8Þ

With hx expressed from this equality and substituted into Manning’s Eq. (2.3),

rewritten as

ux ¼ Qx tð Þ=hx ¼ αhn�1
x ; ð6:8aÞ

we obtain

ux ¼ α1=n rexð Þ1�1=n: ð6:8bÞ

Now the time that takes water to travel from a point, x, on the slope to the outlet of

the slope, x¼ L, can be determined:

tx ¼
ðL
x

dx

ux
¼ nα�1=nr1=n�1

e L1=n � x1=n
� �

: ð6:9Þ

The time lag or the mean residence time, τ0, can be determined as the average travel

time over the hillslope (Yu et al. 2000):

τ0 ¼ 1

L

ðL
0

txdx ¼ 1

re

re
λ

� �1=n
¼ n

nþ 1
t*e ; ð6:10Þ

where t�e is the time of concentration of overland flow at x¼ L obtained earlier for

the kinematic flow approximation (see Eq. 2.13). From differential Eq. 6.7 it

follows that, under steady-state condition, the mean runoff water depth (Fig. 6.1) is

S0 ¼ re=λð Þ1=n; ð6:11aÞ

now Eq. 6.10 becomes

τ0 ¼ S0=re: ð6:11bÞ

Comparing Eqs. 6.10 and 6.11b and taking into account the relationship for the time

of concentration, it can be shown that, under steady-state condition, mean water

depth, S0, as the basic characteristic of the lumped model is related with the
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maximum water depth on the sloped surface, hm (at x¼ L ), considered in the

kinematic wave model, through the ratio:

S0 ¼ n

nþ 1
hm: ð6:11cÞ

The assumption that runoff flow is steady and the runoff water depth is constant

allows us to use in the further description of solute transport the residence time

distribution (RTD) function (Wallach et al. 1988; Wallach 1991):

E tð Þ ¼ 1

τ0
exp � t

τ0
� �

: ð6:12Þ

An idealistic model (6.12) is based on the assumption that the rainfall excess is

mixed, completely and instantly, into the bulk of the water stored on the soil

surface. The stored and the outlet water have identical, homogeneous compositions

at all times.

6.1.2 Basic Differential Equation for Unsteady
Overland Flow

Differentiating Eq. 6.4 with respect to time, we come to the expression

∂hx tð Þ
∂t

¼ 1

n

x

α

� �1=n
q tð Þ 1�nð Þ=n dq tð Þ

dt
: ð6:13Þ

Now Eq. 6.3 becomes

1

n

x

α

� �1=n
q tð Þ 1�nð Þ=n dq tð Þ

dt
¼ re tð Þ � q tð Þ: ð6:14Þ

Multiplying the right and left sides of Eq. 6.14 by dx and integrating both sides from
x¼ 0 to L (Agnese et al. 2001)

1

n
q tð Þ 1�nð Þ=n dq tð Þ

dt

ðL
0

x

α

� �1=n
dx ¼ re tð Þ � q tð Þ½ �

ðL
0

dx; ð6:15Þ

we come to a differential identity for outflow rate:

q1=n

re � qð Þ
dq

q
¼ nλ1=ndt; ð6:16Þ
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where λ is the effective rate constant (see Eq. 6.6); q ¼ q tð Þ ; re ¼ re tð Þ.
Equation 6.16 can be directly obtained by combining Eqs. 6.5 and 6.7. In the case

of re ¼ const, Eq. 6.16 can be represented in the dimensionless form:

q1=n

1� qð Þ
dq

q
¼ ndτ, q ¼ q=re, τ ¼ t=τ0; ð6:16aÞ

where τ0 is as in Eq. 6.11b.

Integrating the ordinary differential Eq. (6.16a) with separable variables in fixed

intervals [0, q] and [0, τ] yields

τ ¼ 1

n
q1=nLerchPhi q, 1, 1=nð Þ; ð6:17Þ

where Lerch Phi (z, s, a) is a special function determined by the formula

LerchPhi z, s, að Þ ¼
X1
k¼0

zk

aþ kð Þs: ð6:17aÞ

Relationship (6.17) can be represented in a graphical form (Fig. 6.2).

Essentially, the above transformations reduce the equation (model) of

one-dimensional flow (6.2) to a “0-dimensional” reservoir-type equation, i.e., to a

lumped-parameter model in terms of kinematic wave equations (Chap. 2). Equation

(6.16) is a basic equation for the analysis of hydrograph behavior at the hillslope

scale.

Fig. 6.2 Function

q ¼ q τ, nð Þ, q ¼ q=re,

τ ¼ t=τ0
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A solution for Eq. 6.16a for arbitrary n can be obtained numerically. For n¼ 2

and re ¼ const, integrating (6.16a) yields an analytical solution to the problem with

respect to the required function:

q ¼ tanh2 arctanh
ffiffiffiffiffi
q0

p þ ffiffiffiffiffiffiffi
λre

p
t� t0ð Þ	 


re > q0 q0 < 1ð Þ,
q ¼ q=re, q0 ¼ q t0ð Þ; ð6:18aÞ

q ¼ coth2 arccoth
ffiffiffiffiffi
q0

p þ ffiffiffiffiffiffiffi
λre

p
t� t0ð Þ	 


re > q0 q0 < 1ð Þ, re 6¼ 0,

q ¼ q=re;
ð6:18bÞ

q ¼ 1þ ffiffiffiffiffiffiffi
λq0

p
t� t0ð Þ	 
�2

re > q0 q0 < 1ð Þ, re ¼ 0,

q ¼ q=q0:
ð6:18cÞ

For recession period (r¼ 0), integration of Eq. 6.16a also results in a closed-form

solution:

q ¼ tan 2 arctan
ffiffiffi
q

p
�

ffiffiffiffi
λi

p
t� t0ð Þ

h i
i > 0, q ¼ q=i, q0 ¼ q0=i; ð6:18dÞ

q ¼ 1þ
ffiffiffiffiffiffiffi
λq0

p
t� t0ð Þ

h i�2

i ¼ 0, q ¼ q=q0: ð6:18eÞ

6.1.3 Comparative Analysis (Case i¼ 0)

To verify the applicability of the lumped-parameter model for overland flow

discussed in the section above, the basic differential identity for dimensionless

outflow rate (6.16a) was re-written in terms of the kinematic wave model (Sect.

2.2.1), specifically, in terms of the dimensionless overland flow discharge function,

q x ¼ L, τð Þ (Eqs. 2.22 and 2.22a, h0 � hm), using relationships (6.11a), (6.11b) and
(6.11c) and assuming q ¼ q=r (i ¼ 0).

As can be seen from several computation experiments for step-wise input function r(t),
0 < t � t1 ¼ T (Fig. 6.3), the results obtained by different approaches are in good agree-

ment in what regards the formation of an equilibrium profile of water flow (Sect. 2.2.1), i.e.,

while τ � 1 (Figs. 6.3a, b). However, the lumped-parameter model is less accurate in

describing the recession stage of inequilibrium hydrodynamic profile τ < 1 (Figs. 6.3c, d).

Because of its integral character, the model always satisfies the condition of water balance

in the system, and, in this aspect, it can be regarded as reliable for the use in water dynamic

and solute transport calculations.
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Note also that for both models, the ratio α/L and the exponent n are characteristics
that control the dynamics of surface runoff. The ratio α/L is a kind of discharge rate

coefficient (for hillslope scale flow process), depending on the domain size and the

roughness of the surface, parameter n is responsible for water flow regime.

6.1.4 General Solution for a Piecewise-Homogeneous
Function re(t)

Because of its homogeneity, the model (6.16), unlike kinematic-wave model, does

not require the identification of characteristic space–time intervals, within which the

behavior of functions h(x, t) and q(x, t) is described by different relationships. With

re(t) considered as a piecewise-homogeneous function, a generalized solution for

variable-intensity fallout can be constructed by integrating the differential Eq. (6.16):

Fig. 6.3 Rising and falling hydrograph limbs predicted by solutions (2.22) and (2.22a) of

kinematic wave equation (broken lines) compared with solutions of differential Eq. 6.16a

(solid lines). The calculations were made for turbulent (n¼ 5/3) and laminar (n¼ 3) flows at

τ1 ¼ 2 (equilibrium profiles a and b) andτ1 ¼ 0:7 (inequilibrium profiles c and d).τ ¼ rt=S0;

τ1 ¼ rT=S0
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ðq
q0

q 1�nð Þ=n

re � q
dq ¼ nλ1=n

ðt
t0

dt ð6:19Þ

for fixing the initial condition q t ¼ t0ð Þ ¼ q0, assuming that, during the closed

interval [t0, t], the rainfall excess, re, is constant (Agnese et al. 2001).
The integral identity (6.19) can be represented as an equality, including the

summation of infinite series. Three different cases for (6.19) can be distinguished,

depending on the relationship between re and q0 (Agnese et al. 2001).

1. In the case re > q0, it is reasonable to introduce a new variable q* ¼ q=re in the

left-hand integral in Eq. 6.19

r
1�n
n
e

ðq*
q*0

q*
1�n
n 1� q*ð Þ�1dq*; ð6:20aÞ

where q*0 ¼ q0=re. Because 0 � q* < 1, 1� q*ð Þ�1 ¼
X1
j¼0

q*
j, formula (6.20a)

becomes

r
1�n
n
e

ðq*
q*0

X1
j¼0

q*
1þn j�1ð Þ

n dq* ¼ nr
1�n
n
e

X1
j¼0

q
1þn j
n

*

1þ n j
�
X1
j¼0

q
1þn j
n

*0

1þ n j

2
4

3
5: ð6:20bÞ

Thus, the solution of Eq. (6.20a) can be given in an implicit form

X1
j¼0

q
1þn j
n

*

1þ n j
�
X1
j¼0

q
1þn j
n

*0

1þ n j

2
4

3
5 ¼ 1

τ0
t� t0ð Þ: ð6:20cÞ

2. In the case re < q0 and re 6¼ 0, another new variable r* ¼ re=q transforms the

left-hand integral in the Eq. 6.19 as follows

r
1�n
n
e

ðr*
r*0

r*
�1
n 1� r*ð Þ�1dr*, ð6:20dÞ

where r*0 ¼ re=q0. Because 0 � r* < 1, 1� r*ð Þ�1 ¼
X1
j¼0

r*
j, formula (6.20d)

becomes

r
1�n
n
e

ðr*
r*0

X1
j¼0

r*
n j�1
n dr* ¼ nr

1�n
n

X1
j¼0

r
n jþ1ð Þ�1

n

*

n jþ 1ð Þ � 1
�
X1
j¼0

r
n jþ1ð Þ�1

n

*0

n jþ 1ð Þ � 1

2
4

3
5: ð6:20eÞ
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The solution of Eq. (6.20d) for this relationship between re andq0 can be given in a form

X1
j¼0

r
n jþ1ð Þ�1

n

*

n jþ 1ð Þ � 1
�
X1
j¼0

r
n jþ1ð Þ�1

n

*0

n jþ 1ð Þ � 1

2
4

3
5 ¼ 1

τ0
t� t0ð Þ: ð6:20fÞ

3. In the case re < q0 and re ¼ 0, q can be found directly from the following

expression (Agnese et al. 2001)

q ¼ q0 1þ n� 1ð Þλ1=nq1�1=n
0 t� t0ð Þ

h i� n
n�1

; ð6:20gÞ

here τ0 ¼ S0 reð Þ=re; re ¼ r tkð Þ � i tkð Þ is rainfall excess rate in interval t� tk�1; q0 is
the outflow rate by the end of period k � 1, preceding the current period, k; τ0 is the
mean residence time determined by Eq. 6.11b. Function re(t) can be generated using
appropriate infiltration model (Sect. 1.3).

As an example, we will use solution (6.16), (6.20) to construct the hydrograph q(t), being
the response to an artificially generated function r(t), assuming that some precipitation

soaks into the soil with a constant rate i¼ 5 mmh�1. Suppose also that the slope length is

L ¼ 1000 m and the slope itself can be characterized by a generalized coefficient of

hydraulic resistance α ¼ S
1=2
0 =m, equal to 5 m1/3/s¼ 1.8�105 mm1/3h�1. With those param-

eters, we have λ ¼ α=Le ¼ 0:39 mm�2=3h�1 (Le is the effective slope length which is

determined by Eq. 6.6, assuming n ¼ 5=3 ). Further, assume that the rainfall can be

approximated by a step-wise input function (Fig. 6.4): it characterizes a 5-h precipitation

period including three rain events with irregular (time-variable) rate. One can readily see

that the relationship between characteristics q and q0 within the cycles was different;

therefore, all three cases mentioned above (Eqs. 6.20) are realized. The obtained

hydrograph shows a quick response to precipitation events; however, function q(t) can be

generally characterized as a long-tail hydrograph: runoff over slope surface continues for a

considerable time after rain cessation.

Fig. 6.4 Hydrograph of the

outflow rate, q(t) (solid
curve), for a multistep input

function, r(t) (shaded bar),
and the relevant rainfall

excess function,

re tð Þ ¼ r tð Þ � i (solid bare
lines); the dashed curve is
the hydrograph for i¼ 0
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6.2 Solutions for Solute Transport in Runoff Over Lumped
Hillslope

Previously, we described the transport of solutes in water flowing over the soil

surface using solutions of the generalized system of Eqs. 3.1–3.2 obtained by the

method of characteristics (Sects. 3.2–3.3). In that case, we took into account the

differences between the behavior of functions h(x, t) and q(x, t) in different zones of
the flow and in different time intervals, i.e., the concentration function C(x, t) was
determined by several partial solutions, each relating to the spatial and temporal

features of flow dynamics on the slope. Of greater convenience for practical

application can be relationships obtained using lumped-parameter models, dealing

with the mean flow dynamic characteristics (Sect. 6.1). In particular, the water flow

is characterized by the average overland flow depth, S(t) (Eq. 6.5). With this

formulation, the concentration of a solute, C(t), in water in contact with the surface
is an averaged function as well.

As previously (Chap. 3), we will analyze two mathematical frameworks con-

ceptualizing the solute exchange at the soil runoff interface: (1) kinetically con-

trolled transfer of chemicals from uniformly contaminated soil water to runoff;

(2) equilibrium solute exchange between the soil surface instantaneously contam-

inated from fallout and runoff.

6.2.1 A Model of Kinetic Mass Exchange at the Water–Soil
Interface

The original system of equations incorporates a flow dynamic equation and a mass

balance equation in a water layer, accounting for the kinetics of the chemical’s
release from contaminated land surface or emission from internal pore volume:

dS

dt
¼ re � q,

dSC

dt
¼ Js � qCþ rCr ,

ð6:21Þ

where the source term, Js, is defined as in Eq. 3.5a; other variables are introduced

in the previous sections.

Simple transformations allow the system of Eq. (6.21) to be reduced to a first-

order ordinary differential equation

q

λ

� �1=n dC
dt

þ r þ keð ÞC� rCr � kCs ¼ 0; ð6:22Þ

which takes into account the functional relationship between runoff (outflow) rate,

q (Eq. 6.16), and average water depth, S, through Eq. 6.5; here ke is the mass
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transfer coefficient (as in Eqs. 3.5 and 3.5a); λ is the rate constant for slope

discharge (Eqs. 6.5 and 6.7); Cs is the concentration of saturation or solute content

in soil water.

6.2.1.1 Step-Wise Input Function

Let us consider the solution of the problem relating the response of a contaminated

slope to a rain event having limited duration, t ¼ t1 (t1 � T ). The Eq. (6.22) for

period t0 � t � t1, when re> 0, has a dimensionless representation

q

λ

� �1=n dĈ
dt

¼ r � r 1þ βð ÞĈ ; ð6:23Þ

where Ĉ ¼ Cs � Cð Þ= Cs � Crð Þ; β ¼ ke=r; outflow rate, q, is determined from the

solution of the ordinary differential Eq. (6.16) or from its series representations

(Eqs. 6.20).

As the differential dt of the variable t is connected with the differential dq of

q through Eq. 6.16, the solute balance Eq. (6.23) can be transformed such that the

concentration function Ĉ(t) becomes a function of outflow rate, Ĉ(q):

nq re � qð Þ dĈ
dq

¼ r 1� 1þ βð ÞĈ	 

: ð6:24Þ

Separation of variables results in the equation

dq

nq re � qð Þ ¼
dĈ

r 1� 1þ βð ÞĈ	 
 : ð6:24aÞ

Integrating the left part of Eq. 6.24a from q0 to q and its right part from Ĉ 0 to Ĉ we

get a solution of the problem

Ĉ � Cs � C

Cs � Cr
¼ 1

1þ β
� 1

1þ β
� Cs � C0

Cs � Cr

� �
q0 1� qð Þ
q 1� q0ð Þ
� � 1þβð Þ=nr

: ð6:25Þ

If Cr ¼ 0, Eq. 6.25 can be simplified

C ¼ C

Cs
¼ β

1þ β
þ C0 � β

1þ β

� �
q0 re � qð Þ
q re � q0ð Þ
� � 1þβð Þ=nr

; ð6:26Þ

here r ¼ re=r; C0 ¼ C0=Cs; C0 is the solute concentration at time t0, when q ¼ q0.
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At q0 ¼ 0, which corresponds to rain falling onto an initially dry surface,

C ¼ β
1þ β

, 0 < t < t1; ð6:27Þ

the result derived before from a kinetic wave model, see Eq. 3.64; t1 is the rainfall
duration.

For the stage of recession, t � t1 ¼ T, r ¼ 0, Eq. 6.23 reduces to

n iþ qð Þq dĈ
dq

¼ keĈ ; ð6:28Þ

where Ĉ ¼ 1� C=Cs. The integration of Eq. 6.28 leads to the solution

C ¼ 1� 1

1þ β
q iþ q1ð Þ
q1 iþ qð Þ
� �ke=ni

, t � t1: ð6:29Þ

To get solution (6.29) it was implied that the concentration of a solute in runoff

water when fallout ceases, C(q1)/Cs, is defined by Eq. 6.27. If i ! 0, the dimen-

sionless concentration is defined from the solution:

C ¼ 1� 1

1þ β
exp �ke

n

1

q
� 1

q1

� �� �
, q � q1: ð6:29aÞ

As can be seen in all variants, after the rain ceased, solute concentration, C,
increases, tending to the limiting value of saturation concentration Cs.

At an arbitrary n for fixed duration of the rain event t1, the value q1 can be found
by integrating the basic identity (6.16). The same equality, considered as trans-

cendent, is used to find the value q, corresponding to the current process time t > t1.
For some particular values of n, the integration of (6.16) allows an expression for

q(t) to be obtained in a simple closed form. For example, with n ¼ 2 at t0 ¼ 0,

we have:

q1 ¼ re tanh
2

ffiffiffiffiffiffiffi
λre

p
t1

� �
; ð6:30aÞ

q ¼ i tan 2 arctan
ffiffiffiffiffiffiffiffiffi
q1=i

p
�

ffiffiffiffi
λi

p
t� t1ð Þ

h i
, i > 0; ð6:30bÞ

q ¼ 1=
ffiffiffiffiffi
q1

p þ
ffiffiffi
λ

p
t� t1ð Þ

h i�2

, i ¼ 0: ð6:30cÞ
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6.2.1.2 A General Solution for Arbitrary Rainfall Excess Function

Formula (6.25) can be generalized for multistep input function, re, as follows:

C qð Þ ¼ β j

1þ β j

þ C j�1 �
β j

1þ β j

 !
q j�1 re j � q

� �
q re j � q j�1

� �
" # 1þβ jð Þ=nr j

: ð6:31Þ

For the calculation of the concentration functionC qð Þ in the time intervals where

the condition re ¼ 0 (r ¼ i) holds, the system of Eq. (6.21) must be transformed to

become:

n

i
q2

dĈ

dq
¼ 1þ ke

i

� �
Ĉ � 1; ð6:32Þ

where Ĉ is as in Eq. 6.23. Equation 6.32 has a solution:

C qð Þ ¼ ke
ke þ i

� ke
ke þ i

� C j�1

� �
exp � ke þ i

n

1

q
� 1

q j�1

 !" #
; ð6:33Þ

which is also valid for the case i ¼ 0; C ¼ C=Cs.

Given the value of t, the outflow rate, q, can be found from the integral

relationship:

ðq
q j�1

q1=ndq

re j � q
� �

q
¼ n

τ0j
t� t j�1

� �
, β j ¼

ke
r j
, r j ¼ re j

r j
, τ0j ¼

1

re j

re j
λ

� �1=n
: ð6:34Þ

As an example, we consider the results of calculation of concentration function, C(t), for a
hillslope hydrograph, which includes an infiltration component (i > 0). The hydrological

conditions and the geometry of the slope are represented in Sect. 6.1.4 where Fig. 6.4 (solid

curves) shows temporal variations of rainfall and rainfall excess input functions. To assess

the chemical response using the approach described above, we take the transfer coefficient,

ke, to be 5 mm h�1.

As can be seen from the plot (Fig. 6.5a), the behavior of function C(t) is quite logical
and predictable in the context of the analysis of process carried out before for the kinematic

wave model (Sect. 3.2.2). A tendency toward an increase in solute concentration in surface

water can be seen during the recession phase of the hydrograph. Contrary to that, the

concentration decreases during the rising limb phase. The dynamics of the mass flux,

qs ¼ qC, from a lumped watershed is also controlled by the falling and rising limbs of

the hydrograph (Fig. 6.5b).
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The described analytical model shows the main advantage of the lumped-

parameter approach for coupling surface and subsurface flow study with the aim to

predict the chemical response of a hillslope to a rather complex input fallout function.

6.2.2 Equilibrium Sorption-Based Models for Short-Term
Washout (with Application to Radioactively
Contaminated Areas)

This section discusses transient models of sorbable-solute migration in runoff

water, which can be used, primarily, to forecast the removal of artificial radionu-

clides from contaminated surface by runoff. Historically, artificial radionuclides

appeared on the land surface due to nuclear weapon tests (NWT) and atmospheric

fallouts of products of gas–aerosol emissions resulting from accidents at nuclear

facilities, primarily, nuclear power plants (NPP) (Chap. 7).

Many-year monitoring of radiation-related consequence of NWT and the

Cheronobyl accident (1986) show that the initial washout rates are generally higher

than the subsequent washout rates. The same trends are also confirmed by monitoring

data collected in the impact zone of radionuclide emission from Fukushima NPP

(2011). Such system behavior can be described using equilibrium models, incorpo-

rating sorption-like interactions with immobile and mobile solid phases. The appro-

priate models give the best description for the initial (several rainfalls, fewweeks after

radionuclide deposition) stage of radionuclide extraction from soil surface within a

catchment or from small experimental plots and flumes under synthesized rainfalls.

The kinetics of fixation of radionuclides in the soil matrix, their downward

movement into the soil column, and the heterogeneity of the contaminated land-

scape restricted the application of these models for long-term predictions. The

removal of activity from a catchment during long periods (months, years, decades,

etc.) can be described by either kinetic models with effective parameters or models

Fig. 6.5 (a) Solute concentration, C, and (b) specific mass flux, qC, versus time. Solid
curves are for i> 0; dashed curves are for i¼ 0. Shaded bar is the rainfall hydrograph, r(t)
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explicitly incorporating the mechanisms of vertical and horizontal migration of

radionuclides in the subsurface environment.

To better understand the specifics of the migration process on a lumped

hillslope and the parameters controlling it, we will consider successively several

models, starting from the simplest ones, which describe the release of solutes

from a polluted surface into static water layer (the so-called batch conditions,

when q ¼ 0), to more complicated models, which take into account the unsteady-

state character of water flow (whenq > 0), forming under the effect of precipitation.

In addition, in this section, taking into consideration the behavior of radionuclides

at shorter time scales, we neglect the downward movement of radionuclides from

the surface by diffusion.

6.2.2.1 Entrainment Coefficients

Radionuclides in surface runoff induced by rainfall or snow melting are transported

in two forms, depending on the physicochemical and landscape conditions

(Konoplev et al. 1992; Garcia-Sanchez and Konoplev 2009; Ueda et al. 2013):

(1) dissolved ionic compounds, and (2) particulates, adsorbed onto suspended

particles and colloids, which enter water flow because of soil erosion. Therefore,

the transport of dissolved radionuclides is referred to as liquid runoff (or liquid
washout), and the transport of radionuclides in particulate form with suspended

matter, is referred to as solid runoff (or solid washout) (see also Preface to Chap. 3).
The quantitative characteristics of radionuclide removal from drainage areas can

be derived from reactions that characterize the sorption equilibria of radionuclides

contained in mobile water phase and retained on soil surface. The low concentra-

tions of radionuclides allow linear equations to be used, so the equilibria can be

described by two so-called entrainment coefficients (Konoplev et al. 1992;

Bulgakov et al. 1999; Konoplev et al. 1992; Garcia-Sanchez et al. 2005; Garcia-

Sanchez and Konoplev 2009):

(1) normalized liquid-runoff entrainment coefficient

K∗
1 ¼ Cd=N; ð6:35aÞ

which characterizes the sorption of solute ionic forms on mineral and organic

particles of soil and has the dimension of [L�1], e.g., m�1;

(2) normalized solid-runoff entrainment coefficient

K∗
s ¼ As=N; ð6:35bÞ

which characterizes the sorption on disperse particles and has the dimension of

[L2M�1], e.g., m2g�1; here N is equilibrium radionuclide activity on the polluted

surface, Bqm�2; Cd is the equilibrium activity of the radionuclide in dissolved form,

Bqm�3; As is the activity of suspension, Bqg
�1. For brevity, the coefficientsK∗

1 and
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K∗
s are sometimes referred to as rain (or snow) washout coefficients. We remind

that they are valid for short duration.

The conversion to the volumetric form of activity expression (per unit liquid

volume) for a radionuclide adsorbed by particulate matter of erosion origin can be

made using the following formula

Cs ¼ AsC p; ð6:35cÞ

where Cp is the concentration of suspension (solid particles) in the hillslope flow,

e.g., gL�1.

Formally, the ratio of solid/liquid normalized entrainment coefficients deter-

mines the value of the coefficient of equilibrium sorption distribution of radionu-

clides in suspension:

Kd ¼ K∗
s =K

∗
1 : ð6:35bÞ

Radionuclide solid washout from an eroded surface of a drainage basin is largely

controlled by suspended-matter load and its size distribution. Water erosion is

driven by the flow of snowmelt and rain (storm) water. Therefore, the development

of water erosion within a year can be divided into two periods. The first period

covers the winter thaws and spring snow melting, while the second is the period of

storm rains during warm seasons.

The manifestation of the washout caused by showers significantly differs from

the washout caused by intense snow melting. In the former case, a considerable

amount of precipitation, falling within a short time interval, has no time to infiltrate

into soil and, depending on soil properties (particle size distribution, porosity, etc.),

causes the development of small groves or scours. Contrary to that, during snow

melting, the coalescent, water-saturated top soil layer readily shifts over underlying

frozen horizon (sheet erosion).

Analysis of rainfall and snowmelt runoff showed that radionuclide washout with

snowmelt runoff is an order of magnitude less than that with rainfall runoff.

The values of Cp can be calculated based on data on the mean long-term soil

washout from watersheds, Gs.

The value of Gs, as a characteristic of erosion process, varies in different natural–climatic

and landscape zones within a wide range from 0.5 to 15 t/(ha year). Thus, some authors

estimate the mean soil washout for sod-podzol and gray forest soils at 2–4 t/(ha year). The

concentration of suspension in water can be estimated from the formula:

Cp 	 γGs=re; ð6:35eÞ

where re is the rainfall excess, γ is a coefficient introduced to account for the fact that a

considerable portion of washed soil will not reach the erosion base level (γ 	 0:01 for
drainage basins of large rivers, and γ 	 0:03� 0:05 for those of small rivers).
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6.2.2.2 Sorption in a Static Soil/Runoff System (S ¼ const, q > 0)

The batch (“0-dimension”) models of sorption equilibria considered below are

rather useful for determining the limiting (maximal possible) degree of pollution

of water layer that formed by rainfall on soil surface. Suppose that a rainfall

with a rate r within time Δt results in that a fixed water layer with a mean depth

of S0 ¼ rΔt forms on the surface.

With the equilibrium character of radionuclide transfer from the surface into the solution,

the following balance relationship will hold:

N0F ¼ CS0Fþ NF; ð6:36Þ

where F is the area covered by water; N0 is the initial radionuclide concentration on a unit

area; N is equilibrium concentration (after a continuous water layer has formed and sorption

equilibrium has been attained); C is the total concentration of radionuclide in the solution,

determined by its concentration in the dissolved and “mineral” (as component of particulate

matter) migration forms, such that

C ¼ K*
1N þ K*

sC pN, K* ¼ K*
1 þ K*

sC p: ð6:36aÞ

From here, we obtain several obvious relationships:

N ¼ C=K*, or N ¼ aC; ð6:37Þ
C ¼ N0= S0 þ 1=K*

� �
, or C ¼ 1þ að Þ�1; ð6:37aÞ

where C ¼ CS0=N0, N ¼ N=N0, a ¼ 1=S0K* ; K* is a combined sorption coefficient for

radionuclide overland transport.

Water depth at the surface, S0, is rarely greater than a few mm. Now, taking into

account the variation ranges of constants K�
1 and K�

s (see Sect. 7.1.2.1 below) and the

characteristic Cp (generally, of the order of hundreds mg/L), we can show that the

inequality K*S0 << 1 is true almost always. In this case, formula (6.37a) can be simplified

to become C 	 K*N0 (C 	 a�1 ). This means that at equilibrium and at high sorption

capacity of soil surface, the hydrodynamics of the surface flow controls the mass flux but

not the absolute values of concentrations (the change in S0 has no influence on the value

of C). The observed decrease in the rate of radionuclide washout from polluted areas (see

Sect. 7.2.4) here is not due to the soil surface becoming clearer because of radionuclide

washout from it; it is rather due to the radionuclides losing their mobility and penetrating

into deeper soil layers through infiltration and diffusion, thus becoming less available

for runoff water (see also Sect. 7.2.5.2). Studying this process would require special

model analysis.

6.2.2.3 Sorption in the Dynamic Soil/Runoff System (S ¼ const, q > 0)

Suppose that a mobile liquid layer, S0 ¼ const, accumulating radionuclides, forms

rapidly enough on the soil surface. Unlike the previous problem, the radioactive

solution that forms at the first contact between the rain and the surface is supposed
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to be diluted by continuing precipitation. Such combination of conditions leads to a

drop in radionuclide concentrations in runoff water.

The balance equation can be written as

S0
dC

dt
þ dN

dt
� re Cr � Cð Þ ¼ N0δ tð Þ; ð6:38Þ

here re is the rainfall excess; Cr is the concentration in rainfall; N0 is the initial density of

soil surface contamination; δ(t) is the delta-function mathematically formalizing a single

pulse radionuclide deposition. The equilibrium state of the system (the relationship

between solute concentrations in the solid and liquid phases) is described by Eq. 6.37,

whence

K*dN=dt ¼ dC=dt: ð6:39Þ

Now Eq. 6.38 becomes

S0 þ 1

K*

� �
dC

dt
� re Cr � Cð Þ ¼ N0δ tð Þ: ð6:40Þ

Equation (6.40) has the following dimensionless representation:

1þ að Þ dC
dτ

þ C ¼ δ τð Þ; ð6:41Þ

with dimensionless groups

C ¼ CS0=N0, τ ¼ ret=S
0, a ¼ S0K*

� ��1
: ð6:41aÞ

The first-order ordinary differential Eq. (6.41) has the following general solution:

C ¼ e�τ= 1það Þ C τ ¼ �0ð Þ þ 1

R

ðτ
0

eτ=Rδ τð Þdτ
2
4

3
5 ¼ e�τ=R 0þ 1

R
eτ=R


τ¼0

� �
¼ 1

R
exp �τ

R

� �
;

ð6:42Þ

where R ¼ 1þ a (some kind of the retardation factor). At τ ¼ 0, solution (6.42) transforms

into the limiting formula (6.37a), while at τ ! 1, C ! 0 (C ! Cr).

6.2.2.4 Sorption in the Soil/Runoff Dynamic System (S 6¼ const, q > 0)

Here, we consider a further modification of the above approach to solute uptake

description for a lumped hillslope, which inherited some features of kinematic wave

model (see Sects. 3.2 and 3.3). We remind that at such approach, the flow dynamics
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is determined by four major characteristics: rainfall excess, re(t) (Eq. 1.1b); runoff
(outflow) rate, q(t) (6.1), derived from the solution of the differential Eq. (6.16);

mean flow depth, S ¼ S tð Þ (6.5); and mean concentration, C ¼ C tð Þ.
Now the system of differential equations describing the coupled hydrological process

becomes:

dS

dt
¼ re � q,

dSC

dt
þ dN

dt
� reCr � qCð Þ ¼ N0δ tð Þ :

ð6:43Þ

Combining these two equations, we obtain an ordinary differential equation:

S
dC

dt
þ dN

dt
þ re C� Crð Þ ¼ N0δ tð Þ: ð6:44Þ

With Eq. (6.5), determining a relationship between the average flow depth, S(t), and
overland flow discharge, q(t), and the equilibrium-state Eq. (6.39), the differential

Eq. (6.44) can be transformed into a dimensionless form:

aþ q1=n
� � dC

dτ
þ C ¼ δ τð Þ; ð6:45Þ

where dimensionless groups are

C ¼ CS0=N0, a ¼ S0K*
� ��1

, τ ¼ re t=S
0, q ¼ q=re; ð6:45aÞ

dimensionless outflow rate, q, is determined from solution (6.16a); S0 ¼ re=λð Þ1=n is the

mean value of water depth on a hillslope at equilibrium (Fig. 6.1). The form 6.45 is valid at

re ¼ const.

Equation (6.45) is a first-order ordinary differential equation of the form

dC

dτ
þ f τð ÞC ¼ g τð Þ, f ¼ 1

aþ q1=n
, g ¼ δ τð Þ

aþ q1=n
: ð6:46Þ

Equation (6.46) has the solution:

C ¼ e�F τð Þ C τ ¼ �0ð Þ þ
ðτ
0

g τð ÞeF τð Þdτ

2
4

3
5; ð6:47Þ

F τð Þ ¼
ðτ
0

dτ
aþ q1=n

¼
ðq τð Þ

0

q1=n

1� qð Þq
dq

aþ q1=n
,

ðτ
0

g τð ÞeF τð Þdτ ¼ 1

a
: ð6:47aÞ
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Finally:

C ¼ C τð Þ ¼ a�1exp �F τð Þ½ �: ð6:48Þ

Sinceqand τ are related through (6.16a), simple calculations allow the required function

C τð Þ to be plotted at fixed a and n. Along with dimensionless concentration function C τð Þ
(Fig. 6.6a), of some illustrative interest can be the normalized function aC τð Þ � N
(Fig. 6.6b), which characterizes the self-purification rate of the contaminated surface (see

Eq. 6.37).

The curves C τð Þ can be seen to cross the ordinate axis in points C ¼ 1=a, or C ¼ N0K
*.

This concentration corresponds to the limiting concentration of solution saturation at the

initial moment. Ata > 50, in the interval of τ under consideration,C 	 a�1 are nearly time-

independent.

An approximate solution can be obtained for a linear model of hillslope dynamics

(Eq. 6.7, n¼ 1) assuming

q ¼ 1� e�τ; ð6:49Þ

so that the integration of a solute balance Eq. (6.45) results in the solution:

C ¼ 1

a

a

1þ að Þexp τð Þ � 1

� �1= aþ1ð Þ
: ð6:50Þ

At a � 2� 3, which corresponds to the conditions of transport with runoff water of

readily absorbable solutes of which radionuclides are an example, calculations by (6.48)

and (6.50) essentially coincide (Fig. 6.6b) with calculations using the approximate solution:

Fig. 6.6 Plots illustrating the behavior of a sorbable solute in a dynamic runoff system:

(a) С τð Þ (Eq. 6.48) and (b) aС τð Þ, the broken curves correspond to the approximation

(6.50), the dash-and-dot curves correspond to the approximation (6.51); numbers at curves

are the values of dimensionless parameter a; n¼ 5/3
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C ¼ 1

a
exp � τ

aþ 1

� �
: ð6:51Þ

At the recession stage after rainfall ceases, when t > T (τ > τ1), contrary to the models

considered in Sect. 6.2, which show a decrease in concentration during recession

hydrograph, for the equilibrium sorption model (6.43), we have C ¼ C τ � τ1ð Þ ¼ const.

6.3 Catchment-Scale Models for Solute Transport
in Runoff and Soil Remediation Assessment

6.3.1 A Model Based on Decoupled Hydrodynamic
Formulation

6.3.1.1 Problem Setup and Basic Equations

If the catchment is regarded as a well-mixed unit (Fig. 6.7) and rainfall is steady,

decoupling of water storage from discharge process can be represented as follows

d θde þ Sð ÞC
dt

� Js tð Þ ¼ 0 when S tð Þ ¼ ret < S0,
�reC when ret � S0 and S ¼ S0;

�
ð6:52Þ

where the chemical flux, Js tð Þ ¼ �Js 0, tð Þ, determines the mass exchange between

surface water flow and porous (soil) domains, and S0 is the slope storage limit. It is

Fig. 6.7 A general concept of a lumped-parameter model: (a) hydrodynamic and (b) solute

transport model components. jD is the diffusion flux
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also assumed that no solutes are present in the rainfall water. The model (6.52)

includes a mixing layer with storage capacity θde (Sect. 3.1.2.2).
Such representation implies that the hydraulic response of the hillslope to fallout

can be divided into two stages (Zhang et al. 1999). The first stage is associated with

time lag, when the rainfall excess is used to build surface storage. The second stage

corresponds to the runoff over the lumped slope, when flow regime is steady and

can be characterized by average water depth (storage), S0, a catchment-scale

analogue of the hillslope unit (Eq. 6.11a).

The chemical flux, Js(t), can be specified from the boundary layer Eq. (3.7)

coupled with the solute transport equation in the subsurface (z> 0). The full

solution of the above mathematical problem, supplemented by a boundary condi-

tion at the lower boundary of the soil profile, consists of complex analytical

constructions.

An approximate solution can be obtained if the chemical flux (from soil to runoff) is

assumed independent of the concentration in water (Wallach and van Genuchten 1990),

i.e. C << Cs 0, tð Þ. In this case, Eq. 3.7 can be simplified:

Js tð Þ ¼ � iCs 0, tð Þ � Ds
∂Cs 0, tð Þ

∂z

� �
¼ keCs 0, tð Þ; ð6:53Þ

obviously, due to the exclusion of the term keC, this assumption results in overestimation of

the solute flux at the latest period of runoff; ke is the transfer coefficient; Cs(z, t) is the

chemical content of soil water.

The general solution of the equation of solute transport for function Cs(z, t), was
obtained by Wallach and van Genuchten 1990. This solution yields an expression for

chemical flux

Js tð Þ ¼ i

2
C0 1þ 2k
� �

exp 4k 1þ k
� �

ξ2
	 


erfc 1þ 2k
� �

ξ
	 
� erfc ξð Þ	 


; ð6:54Þ

where ξ2 ¼ i2t=4Dsθ, k ¼ k
e
=i, C0 is the initial concentration of the chemical in the soil

profile; θ � θs is the saturated volumetric water content. At k >> 1, implying infinitely

large mass exchange rate between the runoff water and the pore solution at the soil surface,

solution (6.54) tends to the limit

Js tð Þ ¼ i

2
C0

1ffiffiffiffiffiffiffi
πξ2

p exp �ξ2
� �� erfc ξð Þ

" #
: ð6:54aÞ

This result can be directly obtained using the fundamental solution of 1D advection–

dispersion equation, under the conditions Cs z, t ¼ 0ð Þ ¼ C0, Cs z ¼ 0, tð Þ ¼ 0 (Bear 1972).

Due to the initial assumption C << Cs 0, tð Þ, Eqs. 6.54 and 6.54a are independent of the

spatial coordinate, x.
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6.3.1.2 Special Cases

For the first stage of the process (S < S0), when S ¼ ret (dS=dt ¼ re), Eq. 6.52 can

be rewritten in a dimensionless form

εþ retð Þ dC
dt

þ reC ¼ Js ξð Þ; ð6:55Þ

where C ¼ C=C0, Js ξð Þ ¼ Js ξð Þ=i, ξ2 ¼ at, a ¼ i2τ0=4Dsθ, re ¼ re=i ¼ 1� γð Þ=γ,
γ ¼ i=r, ε ¼ deθ=iτ0. The time, t, is normalized by the mean residence time

(τ0 ¼ S0=re): t ¼ t=τ0.
Equation (6.55) has a solution:

C ¼ 1

εþ retðt
0

k þ 1

2

� �
exp 4k 1þ k

� �
au

	 

erfc 1þ 2k

� � ffiffiffiffiffi
au

p	 
� 1

2
erfc

ffiffiffiffiffi
au

p� �� �
du, t=τ0 � 1:

ð6:56Þ

After a steady-state regime establishes (S ¼ S0 ), the derivative dS/dt becomes

zero and the chemical loss in runoff becomes reC (Eq. 6.52). Under steady-state

hydrodynamic conditions (t=τ0 > 1), Eq. (6.52) transforms into

εþ reð Þ dC
dt

þ reC ¼ Js ξð Þ: ð6:57Þ

Equation (6.57) has the following solution:

C ¼ C
0
exp � re t� 1ð Þ

εþ re

� �
þ 1

εþ re
exp � ret

εþ re

� �



ðt
1

k þ 1

2

� �
exp

u re þ 4ak εþ re þ εk þ kre
� �� �
εþ reð Þ

" #
erfc 1þ 2k

� � ffiffiffiffiffi
au

p	 


� 1

2
exp

reu

εþ re

� �
erfc

ffiffiffiffiffi
au

p� �

8>>>><
>>>>:

9>>>>=
>>>>;
du

8>>>><
>>>>:

9>>>>=
>>>>;
;

ð6:58Þ

where C
0 ¼ C0=C0, C

0 is the initial solute concentration in the runoff water at the

end of unsteady state period (when t ¼ τ0). The concentrationC0
can be found from

the solution of transient problem (6.56) at t ¼ 1: C
0 ¼ C t ¼ 1ð Þ.
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At ε ¼ 0, solution (6.58) can be transformed into a dimensional form of the

convolution integral:

C tð Þ ¼ C0exp � t� 1ð Þ½ � þ 1

re

ðt
1

E t� uð ÞJs uð Þdu; ð6:59Þ

which coincides with the earlier obtained formula (Wallach 1991); here E tð Þ is the
residence time distribution of the runoff (Eq. 6.12); τ0 ¼ S0=re is the mean

residence time (Eq. 6.11b); u is a dimensionless dummy variable.

The case Js ¼ 0 (zero mass flux into the mixing layer from the underlying soil)

yields a combination of partial solutions of Eq. 6.52:

C ¼ ε
εþ ret

, t � 1; ð6:60aÞ

C ¼ ε
εþ re

exp � re t� 1ð Þ
εþ re

� �
, t > 1: ð6:60bÞ

The obtained solutions allow a series of plots to be constructed to illustrate the behavior of

the concentration function and to study runoff contamination due to a rain falling onto soil

with dissolved chemicals contained in its pores. All plots (Figs. 6.8 and 6.9) predict an

exponential decrease in the concentration function with C t ¼ 0ð Þ ¼ 1. The dimensionless

characteristics that control the process are a ¼ i2τ0=4Dsθ, k ¼ k
e
=i, re ¼ r � ið Þ=i, and

ε ¼ deθ=iτ0. The rate of diffusion-controlled release of chemicals from the soil is deter-

mined by coefficients a and k.

Fig. 6.8 Effect of dimensionless parameter a ¼ i2τ=4Dsθ (numbers at curves) on the

concentration of a solute in runoff water. (a) k ¼ 10, (b) k ¼ 1. Other values are γ ¼ 0:09,
ε ¼ 1. The dashed curve gives the results of calculations by the limiting solution (6.60)
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As follows from Fig. 6.8, the less the value of a (a high diffusion coefficient and a low

infiltration), the greater diffusion flux and the saturation of runoff water by soil solutes. An

increase in k amplifies this trend. At a > 0:5�1, the curves are well approximated by the

limiting solution (6.60a), thus suggesting the flux of solutes from the soil into surface water

to be negligible.

The ratio γ ¼ i=r with fixed i determines the rate of increase in the water layer depth

on the surface and hence, the degree of solute dilution in the flow: the lesser γ, the lower
solute concentration in the water flowing over the soil surface (Fig. 6.9a). The coefficient

ε ¼ deθ=iτ0 characterizes the relative capacity of the active layer as a mixing zone. The

greater the thickness of the mixing zone, de, the slower the concentration drops (Fig. 6.9b).

The behavior of concentration curves depends, in a certain manner, on the mean

residence time.

6.3.2 A Dynamic Catchment-Scale Model for a Sorbable
Component Washout

Unlike the previous model, the mathematical formulation of the problem involves

the consideration of solute transport process for transient flow conditions within a

catchment with lumped characteristics as shown in Fig. 6.10. We also assume that a

solute is sorbable and its initial concentration, C0, in the mixing layer, de, is
determined by the density of surface contamination (mass of solute applied/depos-

ited per unit area of the land surface), N0,

C t ¼ 0ð Þ ¼ C0 ¼ N0

θþ K s
dρb

� �
de

; ð6:61Þ

where Ks
d is the equilibrium sorption distribution coefficient [L3M�1]; ρb is the soil

bulk density [M L�3].

Fig. 6.9 FunctionC ¼ C t=τð Þ. (a) At differentγ ¼ i=r and fixed valuesa ¼ 0:01,k ¼ 1and

ε ¼ 1; (b) at different ε ¼ deθ=iτ0 and fixed values a ¼ 0:01, k ¼ 1 and γ ¼ 0:17
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Further, we will consider two conceptual models of the catchment flow structure.

The first model is defined by a one-store structure, which restricts its application to

surface water runoff coupled with a solute transport process in a form of mass

balance equation (Fig. 6.10a). The second model, due to its two-store structure, also

includes the interaction of runoff with subsurface water flow and solute transport

(Fig. 6.10b). Such lumped-parameter model formulation addresses the partitioning

surface–subsurface flow providing quick and slow components of the chemical

hydrograph at the outlet of a catchment.

6.3.2.1 One-Store Model

Reversible Sorption Let us assume that storage function, S1 tð Þ ¼ q1 tð Þ=λ1,
describes the behavior of a linear model of a reservoir type (Eqs. 5.3, 5.4 and 6.7

at n¼ 1), thus for the rising hydrograph (t � T) a coupled system of water dynamics

and solute balance equations has the form:

dq1
dt

¼ λ1 re � q1ð Þ; ð6:62Þ
1

λ1
dq1C1

dt
þ d

dt
θdeC1 þ Nð Þ ¼ �iC1 � q1C1; ð6:63Þ

where q1 is the rate of rain-induced outflow from a drainage area (catchment); λ1 is
the catchment discharge coefficient (rate constant) [T�1];N ¼ K s

dρbdeC1 is the mass

of a solute in the adsorbed state in the mixing layer per unit area [ML�2]. It is

implicitly assumed that sorption is reversible and no hysteresis in sorption takes

Fig. 6.10 A general concept of lumped-catchment models: (a) one-store catchment and

(b) two-store catchment
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place. To simplify the further analysis (Sect. 6.3.2.2), we introduce a subscript 1 for

dependent and free variables.

Combining Eqs. 6.62 and 6.63, we come to a first-order ordinary differential

equation:

θdeRs þ q1
λ1

� �
dC1

dt
þ rC1 ¼ 0; ð6:64Þ

where Rs ¼ 1þ K s
dρb=θ is a factor of sorption retardation.

Fixing the initial condition, q1 t ¼ t0ð Þ ¼ q10, we obtain solution of Eq. 6.62 in

the form

q1 ¼ re þ q10 � reð Þe�λ1 t�t0ð Þ; ð6:65Þ

which holds at constant rainfall excess, re, within time interval [t0, t]. Now, the
solution of Eq. 6.65 at the initial condition andC1 t ¼ t0ð Þ ¼ C10 � C0 (6.61) can be

written as

C1 ¼ C10

Rþ q10
� �

exp �λ1 t� t0ð Þ½ �
Rþ re þ q10 � reð Þexp �λ1 t� t0ð Þ½ �
� � r

reþR
; ð6:66Þ

where R ¼ λ1θdeRs.

For rainfall event of a fixed duration, T (t0 ¼ 0 � t � T), when the land surface is
initially dry (q1 0ð Þ ¼ 0), Eq. 6.66 becomes

– for the rising hydrograph:

C1 ¼ C10

Rexp �λ1tð Þ
Rþ re 1� exp �λ1tð Þ½ �
� � r

reþR
; ð6:67aÞ

– for the recession hydrograph:

C1 ¼ C10

Rexp �λ1Tð Þ
Rþ re 1� exp �λ1Tð Þ½ �
� � r

reþR
; ð6:67bÞ

where C10 is defined by Eq. 6.61. As seen, the concentration of a solute in the runoff

after rainfall cessation remains constant and corresponds to a value which was

reached at t ¼ T.
If the recession lasts till all the surface water is completely discharged through

catchment outlet, t � T þ λ�1
1 ln q1 Tð Þ=iþ 1½ �, the catchment’s response to the next

(second) fallout can be predicted using the same Eq. (6.67a) where the initial
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concentration in the mixing zone, C10, equals C1 (6.67b) and the time counts from

zero to the end of this stage.

As an example, consider the infinite series of identical storms, approximated

by a periodical rainfall function when all rains have equal intensities, r, and
durations, T. Basing on Eq. 6.67b, one can get a simple dimensionless formula

predicting solute concentration at the end of each rainfall event due to soil

decontamination:

C1n ¼ 1

Rs

Rsλ1exp �λr1rTð Þ
Rsλ1 þ r 1� exp �λr1rTð Þð Þ

� � n
rþλ1Rs

; ð6:68Þ

whereC1n ¼ deθC1n=N0; n is the number of the rainfall–washout cycle; λr1 ¼ λ1=r;
λ1 ¼ θdeλr1; r ¼ re=r.

The plot in Fig. 6.11, computed using the solution (6.68) for a particular case (all curves

correspond to the same value of precipitation depth in all rain cycles, rT ¼ 2 cm ),

demonstrates that the change in solute concentration in runoff strongly depends on the

retardation factor, Rs, characterizing the sorption capacity of the soil. For a well-adsorbable

solute (Rs > 50–100), the number of washout cycles (2-h rains for this particular example)

can reach hundreds, thus noticeably reducing solute concentration in runoff. Such behavior

of the system is in agreement with monitoring data obtained in areas contaminated by

radioactive fallouts (Chap. 7). These data show that the natural attenuation processes due to

surface washout by rainfall are very slow. Besides, in Fig. 6.11, one can see that the

sensitivity of the curves to kinetic coefficient, λ1, decreases with increasing Rs.

Fig. 6.11 Dependence of

dimensionless solute

concentration decrease on

the number of washout

cycles for different values

of retardation factor, Rs

(numbers at the curves), at

catchment discharge ratio

λr1 ¼ λ1=r:
λr1 ¼ 0:1 cm�1 (solid

curves) and λr1 ¼ 1 cm�1

(dashed curves); other
characteristics are r ¼ 2=3,
θde ¼ 1 cm, rT ¼ 2 cm
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The above approach can be developed to get a general solution of the problem

for variable function re ¼ re tð Þ, given its piece-wise constant representation in

intervals [tn�1, tn]. Thus, the concentration of a solute,Cn�1, calculated at the end of

any fallout period, n� 1, can be used further as the initial condition for prediction

of the concentration dynamics, Cn, in the following fallout period, n, using the

known outflow rate q1n�1:

C1n ¼ C1n�1

Rþ q1n�1

� �
exp �λ1 t� tn�1ð Þ½ �

Rþ re n�1 þ q1n�1 � re n�1ð Þexp �λ1 t� tn�1ð Þ½ �
� � r n�1

re n�1þR

: ð6:69Þ

Also, as function q1(t) is known, the above relationships can be used to assess the
specific mass flux, qs1(t), from the contaminated area: qs1 tð Þ ¼ q1 tð ÞC1 tð Þ.
Irreversible Sorption The above approach can be extended to describe the solute

removal from a contaminated soil surface, which exhibits adsorption-desorption

hysteresis and irreversibility. Indeed, the sorption process determines the concen-

tration of solutes in soil water within the mixing zone after land surface contami-

nation (Eq. 6.61), e.g., due to agricultural chemical application or radioactive

fallout. Once the mixing layer becomes saturated, solutes are released into runoff

and into the subsoil and desorption becomes the dominant mechanism controlling

surface and subsurface water quality (Steenhuis et al. 1994).

We suppose that adsorption–desorption process can be described in the frame-

work of a simplified dual-site equilibrium approach (model) as shown in Fig. 6.12,

where two partial sorption isotherms (1 and 2) for chemically heterogeneous

soil matrix are responsible for linear equilibrium sorption onto sorption sites of

two types (Rumynin 2011). As seen, the interaction of solutes with sorption sites

of type 1 is reversible while that with sites of type 2 is irreversible.

The masses of solutes remaining in the soil matrix of the mixing zone per unit

area, N, during sorption and desorption phases are

Ns ¼ f K1Cþ 1� fð ÞK2C½ �de ¼ K s
dρbdeC1; ð6:70aÞ

Nd ¼ f K1Cþ 1� fð ÞK2C0½ �de ¼ Kd
d ρbdeC1 þ N0; ð6:70bÞ

Fig. 6.12 Adsorption-

desorption equilibrium in

the mixing layer for a dual-

site hysteresis-dependent

adsorption model. The

dashed lines show partial

isotherms of sorption for

two types (1 and 2) of
sorption sites; the solid lines
are for the total isotherms

for sorption (Ns) and

desorption (Nd)
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where f is the mass fraction of the sites where sorption is reversible; K1 and K2 are

partial sorption constants (dimensionless); N0 ¼ 1� fð ÞK2deC0 is sorption irre-

versibility (the mass of irreversibly adsorbed solutes per unit area); Kd
d ¼ f K1ρb is

equilibrium distribution coefficient for the desorption phase of the process; the

equilibrium distribution coefficient for sorption in the term of the dual-site sorption

model is represented by relationship: K s
d ¼ f K1 þ 1� fð ÞK2½ �=ρb.

Substituting Nd � N from Eq. 6.70b into Eq. 6.63 and solving the system of

Eqs. (6.62), (6.63) at zero initial condition, q10 t ¼ t0 ¼ 0ð Þ ¼ 0 we come to a

solution of the problem, similar to (6.66), in a dimensionless form:

C1 ¼ 1

Rs

Rdλ1exp �λ1tð Þ
Rdλ1 þ r 1� exp �λ1tð Þð Þ

� � 1

rþRdλ1
,C1 ¼ θdeC1

N0

; ð6:71Þ

where C1 ¼ θdeC1=N0 ; R
s ¼ 1 þ K s

dρb=θ; R
d ¼ 1 þ Kd

d ρb=θ; λ1 ¼ θdeλr1 ;
λr1 ¼ λ1=r; r ¼ re=r.

As in the model of reversible sorption, solution (6.71) can be transformed to

describe solute transport under periodical rainfall conditions. To do this, we are to

replace λ1t in (6.71) by λ1T and multiply the exponent by n.

Calculations show (Fig. 6.13) that adsorption hysteresis can be a phenomenon that consid-

erably changes the concept of the rate of natural remediation of the contaminated soils

covering drainage areas.

Fig. 6.13 Influence of adsorption hysteresis on washout of solutes from a contaminated

catchment. Numbers at the curves are the retardation coefficients for desorption, Rd. (a)

λ1 ¼ 1; (b) λ1 ¼ 0:1; other characteristics: Rs ¼ 100, r ¼ 2=3, λ1T ¼ 2
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6.3.2.2 Two-Store Model

As it was discussed above (see Sect. 1.2.3), overland flow is often accompanied by

lateral movement of water in the soil profile in the form of subsurface stormflow

(generated in a shallow soil horizon/layer, Fig. 6.10b). Such subsurface flow is

represented by a mixture of pre-event (stored, “old”) soil water and current fallout

(“new”) water as the portion of the infiltration water, containing a solute of

anthropogenic origin, quickly passes through a permeable upper part of the soil

column (Sect. 3.4). The following two-store model can help determine the chemical

response of the catchment to anthropogenic impact and environmental change.

The model is based on the concept that two storages define the overland flow and

saturation zone in the lower part of the soil profile. The model implicitly inherited

some features of the classical two-component hydrograph separation model, which

is widely used to predict the isotope hydrograph separations of stream discharge

and the leaching of soluble chemicals from drainage basins (Pearce et al. 1986;

Richey et al. 1998; Heppell and Chapman 2006). However, unlike the conventional

steady-state consideration of the problem, we propose here its unsteady-state setup

basing on the consideration of a system of kinetic equations for lumped flow and

solute transport.

The basic system of equations for overland flow and transport (6.62), (6.63)

written for the rising hydrograph (t � T ) is added by a coupled system of water

dynamics and solute balance equations for the lower part of the soil column

containing a soil water layer whose dynamics is characterized by the transient

water table development and depth S2 tð Þ ¼ q2 tð Þ=λ2 (the second storage character-

istics of the dual-storage catchment, Fig. 6.10b):

ϕn

λ2
dq2
dt

¼ i� q2; ð6:72Þ
ϕn

λ2
dq2C2

dt
þ dN

dt
¼ iC1 � q2C2; ð6:73Þ

where q2 is the outflow rate for the soil horizon; λ2 is the catchment discharge

coefficient (rate constant) of the soil horizon [T�1]; ϕn is soil drainable porosity; C1

is determined by the solution (6.67); N � N2 is the current mass of solute in the

adsorbed state in the soil water horizon per unit area [ML�2].

In this mathematical setup of the problem, we neglect the kinetics of solute

transfer from runoff to soil water and assume that this process occurs instanta-

neously. Such rapid transport of solutes from surface to soil water is often recog-

nized as a quite common phenomenon, which can be explained by a preferential

flow of water and dissolved solutes through soil macropores with lengths compa-

rable to the soil depth (Sect. 1.4.1; some experimental evidence may be found in the

literature, e.g., in the paper by Heppell and Chapman 2006). This effect is most

pronounced in structured (macropore, fractured) soils which are characterized by a

short macropore (fracture) flow trigger time (Sect. 1.4.1). On the other hand, this

may limit the usefulness of the two-store model because the quick vertical transport

of solutes by the preferential flow may only be triggered by significant rainfall

events (Gjettermann et al. 1997; McGrath et al. 2010; Alaoui et al. 2011).
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Substituting N � K s
dρbS2C2 into Eq. 6.73, we transform this equation into

ϕnR
s

λ2
dq2C2

dt
¼ iC1 � q2C2; ð6:74Þ

where Rs ¼ 1þ K s
dρb=ϕn ; K

s
d is the sorption distribution coefficient for the sub-

surface soil material. Combining Eqs. 6.72 and 6.74, we come to an ordinary

differential equation of mass balance for a reversibly adsorbed solute in a dimension-

less form

S2
Rs

λr2
dC2

dτ
þ Rs � Rs � 1ð ÞS2
� �

C2 ¼ C1,C1,2 ¼ θdeC1,2

N0

; ð6:75Þ

where S2 is determined from solution of Eq. 6.72

S2 ¼ 1þ S20 � 1
� �

exp �λr2τð Þ	 

; ð6:76Þ

S2 ¼ λr2ϕnS2= 1� rð Þ, S20 ¼ λr2ϕnS20= 1� rð Þ � q20=i, λr2 ¼ λ2=ϕn r, τ ¼ rt; S20
and q20 are the initial (pre-event) depth of the soil water layer and the corresponding
pre-event outflow rate (specific soil water discharge from the catchment outlet),

thus S20 and q20 characterize the antecedent conditions.
Equations 6.75 and 6.76 are valid for the recession hydrograph as well while

i > 0. As soon as the surface runoff is over (at a certain moment, t ¼ t* ) and

infiltration ceases, i¼ 0, the solute transport Eq. (6.74) reduces to:

ϕnR
s

λ2
dqs2
dt

¼ �qs2; ð6:77Þ

where qs2 ¼ q2C2 ¼ λ2S2C2 is the specific solute flux. Solution of Eq. 6.77 is given

by the formula

qs2 ¼ qs2 τ ¼ τ*
� �

exp �λr2
Rs τ� τ*
� �� �

: ð6:77aÞ

The time characteristics τ* can be found from a solution of Eq. 6.65:

τ* ¼ rT þ λr1�1ln S1 Tð Þ þ 1
	 


, S1 Tð Þ ¼ λr1S1 Tð Þ= 1� rð Þ, S1 Tð Þ ¼ S1 t ¼ Tð Þ.
The ordinary differential Eq. (6.75) can be solved numerically. Some particular

results are presented in Fig. 6.14 (for λr1 � λr2 ). A superposition of two solute

fluxes results in an average (total) concentration Ctot function that contains infor-

mation on the quick and slow components of the near-surface flow:

C
tot ¼ q1C1 þ q2C2

q1 þ q2
, qi ¼ λiSiCi: ð6:78Þ

Analysis of curves in Fig. 6.14 shows that an increase in dimensionless group λr2
leads to earlier attainment of peak values of functionC2 and an increase in the peak
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values whatever the specified values of coefficient λr1. However, the maximal

values of mean concentration C
tot
, obtained at high λr2, can be lower than C

tot
,

evaluated for small λr2 (Fig. 6.14a).
Overall, the model can help to explore and predict the chemical response of a

catchment to determine the fraction of soil and surface runoff water contributing to

streamflow as a result of surface and subsurface discharge from a contaminated

catchment area.

6.3.3 Transfer Functions for Long-Term Radionuclide
Washout

The transient models discussed here consider time-dependent components controlled

by the kinetics of radionuclide release fromcontaminated soils and overland spreading.

The nature of this kinetics can be both physicochemical and flow-dynamical (induced

by intrinsic properties of the distribution and interaction of watershed flowpaths).

The first steps in the development of models to be used to predict long-term

changes in radionuclide runoff from catchments were due to the need to assess the

environmental impact of nuclear weapon tests (NWT) in the atmosphere. The most

commonly measured isotopes in fallout were Cs-137 and Sr-90. They are the main

products of plutonium and uranium fission. Thus, Fig. 6.15 shows the atmospheric

Cs-137 deposition flux as observed at Milford Haven site, U.K., during the period

from 1954 to 1984 (He et al. 1996). Peak fallout delivery took place in the years

1963 and 1964, just prior to the making of the Atmospheric Nuclear Test Ban

Fig. 6.14 A chemical response of a catchment to a long-term precipitation event of constant rate:

solute content of overland flow (C1, dash-and-dot curves) and in subsurface water (C2, dashed

curves); solid curves show the total concentration,C
tot
; the numbers at the curves are the values of

λr2, cm�1; (a) λr1 ¼ 1 cm-1; (b) λr1 ¼ 5 cm-1. Other parameters: r ¼ 2=3; θde ¼ 1 cm; ϕnS10
¼ 5 cm; Rs ¼ 1
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Treaty implemented by the United States and the former Soviet Union. No signif-

icant bomb-derived Cs-137 fallout occurred after 1984. Global data analysis indi-

cates that the total radioactive fallout from the atmospheric NWT is greater in the

northern than in the southern hemisphere, because more testing took place in the

northern hemisphere (Cambray et al. 1987). The cumulative deposition of Cs-137

in the mid-1960s in the northern hemisphere reached 2–4 kBq/m2 (Cambray

et al. 1987). The radionuclide’s concentration in fallout during NWT could be as

high as 1–2 Bq/L (Elshamy et al. 2007). The ratio of Cs-137 to Sr-90 deposited from

NWT sources has been calculated to be 1.6, allowing the annual deposition of Sr-90

from NWT sources to be estimated (Smith 2004).

Based on the long-time series measurements of radionuclides in river water

(watershed outflow points), it was established that the concentration functions

follow to one-, two-, or three-member exponentially decreasing relationships

between the concentration and time (Helton et al. 1985). The simplest model can

be derived from the principles of mass balance in a form of linear differential

equation (Carlsson 1978; Monte et al. 2004; Poręba 2006)

dN tð Þ
dt

¼ � λþ λ1ð ÞN tð Þ þ 1� k1ð ÞD tð Þ,N 0ð Þ ¼ 0; ð6:79Þ

where D(t) is the rate of activity input – annual radionuclide deposition flux

(Bqm�2 year�1); λ is the physical decay constant (year�1); λ1 is the rate constant

for the removal of accumulated radionuclides due to environmental effects

(year�1); k1 is the fraction of radionuclides instantaneously transported to the

watershed discharge area.

Integrating (6.79), one can obtain a general expression to assess the radionuclide

migration following time-dependent deposition of radionuclides onto a watershed:

N tð Þ ¼ 1� k1ð Þ
ðt
0

D τð Þexp � λþ λ1ð Þ t� τð Þ½ �dτ: ð6:80Þ

Fig. 6.15 The atmospheric

Cs-137 deposition flux

(1954–1984) as observed at

Milford Haven,

U.K. (He et al. 1996)
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For a pulse input, D τð Þ ¼ N0δ τð Þ, from Eq. 6.80 it follows

N tð Þ ¼ 1� k1ð ÞN0exp � λþ λ1ð Þt½ �: ð6:81Þ

From comparison of Eqs. 6.80 and 6.81, it is seen that the exponential term plays

a role of washout transfer function of a watershed which is a function of time after a

unit pulse of contamination by atmospheric deposition (Garcia-Sanchez and

Konoplev 2009).

The model (6.80), like many other “effective exponential decay” models, was

used later for analyzing watershed radioactive contamination as a result of the

widespread fallout of Chernobyl radionuclides. Most likely, such models promise

future applications for analyzing the consequences of the Fukushima fallout

(Evrard et al. 2013; Ueda et al. 2013), after time series of radiological measure-

ments with appropriate duration are compiled. It should be mentioned that the

global fallout was deposited over a long period compared to the Chernobyl and

Fukushima fallouts, which have been depositing during short periods. Again, the

distribution of Chernobyl and Fukushima radionuclides shows considerable spatial

variations.

Following a single pulse of deposition of radioactivity, the concentration

of radionuclide in runoff water is the sum of several exponential time functions

with effective decay constants λþ λi, so called exponential model (Monte

et al. 2004):

C tð Þ ¼ εN0

X
i

Ai exp � λþ λið Þt½ �; ð6:82Þ

where N0 is the radionuclide deposition onto the catchment (Bq m�2); Ai is the

weight of the ith component (dimensionless), such that
X
i

Ai ¼ 1; λi are empirical

parameters controlling the decay of radionuclide concentration in water due to

environmental effects (year�1); ε is a scaling factor (m�1) which can be associated

with the ratio between the initial concentration of radionuclide in water and the total

deposition (ε ¼ C 0ð Þ=N 0ð Þ ¼ C 0ð Þ=N0).

Most commonly used is the three-term modification of Eq. 6.82 (Smith

et al. 2005):

C tð Þ ¼ εN0 A1e
� λþλ1ð Þt þ A2e

� λþλ2ð Þt þ A3e
� λþλ3ð Þt

� �
: ð6:83Þ

The three exponential terms in Eq. 6.83 represent, respectively (Smith et al. 2004,

2005): a fast flush of activity as a result of rapid wash-off processes (first few weeks

after fallout at rate λ1); a slow decline (at rate λ2) as a result of soil fixation and

redistribution processes; and the very long-term (possibly also slowly declining

with the rate λ3) runoff fraction.
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For time-dependent radionuclide deposition, N ¼ N tð Þ, formula (6.83) becomes

C tð Þ ¼ ε
ðt

�1
N τð Þ A1e

� λþλ1ð Þ t�τð Þ þ A2e
� λþλ2ð Þ t�τð Þ þ A3e

� λþλ3ð Þ t�τð Þ
� �

dτ: ð6:84Þ

In many studies, the described exponential model has been widely used for

assessing radionuclide behavior in different watershed environments. Based on

measurements of the change in Cs-137 and Sr-90 activities as functions of time

in European and Asian rivers after NWT and Chernobyl fallouts, the migration

parameters, Ai, λi and ε, have been quantified (Cambray et al. 1987; Monte

et al. 2004; Smith et al. 2004; 2005).

In particular, data analysis represented by Smith with co-workers (2004) shows that the

general trend in the change in the activity of radionuclides (Cs-137 and Sr-90) over time is

similar for different rivers that drain watersheds impacted by NWT and Chernobyl fallout.

Thus, the following parameter values were determined from the measurements of Cs-137

from the Chernobyl accident: A1¼ 0.905, A2¼ 0.09, A3¼ 0.005; λ1 ¼ 13, λ2 ¼0.41,

λ3 ¼0.02 year�1. Although the time-dependent behavior of radionuclides in different rivers

was similar, their activity levels varied significantly. This means that the scaling factor,

ε, was different for different rivers. Estimates of ε for river-drainage basins contaminated

by Chernobyl Cs-137 varied from 0.01 to 0.5 m�1.

The next chapter will continue discussion of this issue in relation to the predic-

tion of the impact of severe accidents at NPP on radionuclide contamination of the

near-surface environment.
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Poręba GJ (2006) Caesium-137 as a soil erosion tracer: a review. Geochronometria 25:37–46

Richey GD, McDonnell JJ, Erbe WM et al. (1998) Hydrograph separation based on chemical and

isotopic concentrations a critical appraisal of published studies from New Zealand, North

America and Europe. J Hydrol (NZ) 37(2):95–111

Rose CW, Parlange JY, Sander GC et al (1983) Kinematic flow approximation to runoff on a

plane: an approximate analytical solution. J Hydrol 62:363–369

Rumynin VG (2011) Subsurface solute transport models and case histories (with applications to

radionuclide migration), vol 25, Series: Theory and applications of transport in porous media.

Springer, Dordrecht, p 815

Singh VP (1996) Kinematic wave modeling in water resources: Surface-water hydrology.

New York. Wiley-Interscience, p 1400

Smith JT, Belova NV, Bulgakov AA et al (2005) The “AQUASCOPE” simplified model for

predicting 89, 90Sr, 131I, and 134,137Cs in surface waters after a large-scale radioactive

fallout. Health Phys 89(6):628–44

Smith JT, Wright SM, Cross MA et al (2004) Global analysis of the riverine transport of 90Sr and

137Cs. Environ Sci Technol 38:850–857

Steenhuis TS, Boll J, Selker JS et al (1994) A simple equation for predicting preferential flow

solute concentrations. J Environ Qual 23:1058–1064

Ueda S, Hasegawa H, Kakiuchi H (2013) Fluvial discharges of radiocaesium from watersheds

contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident, Japan. J Environ

Radioact 118:96–104

Wallach R (1991) Runoff contamination by soil chemicals-time scales approach. Water Resour

Res 27:215–223

Wallach R, van Genuchten MT (1990) A physically based model for predicting solute transfer

from soil to rainfall-induced runoff. Water Resour Res 26(9):2119–2126

Wallach R, William AJ, William FS (1988) Transfer of chemical from soil solution to surface

runoff: a diffusion-based soil model. J Soil Sci Soc Am 52:612–617

Yu B, Rose CW, Ciesiolka CCA, Cakurs U (2000) The relationship between runoff rate and lag time

and the effects of surface treatments at the plot scale. Hydrol Sci J des Sci Hydrol 45(5):709–726

Zhang XC, Norton LD, Lei T et al (1999) Coupling mixinf zone concept with convection-diffusion

equation to predict chemical transfer to surface runoff. Trans ASAE 42(4):987–994

238 6 Lumped-Parameter Models for Solute Transport with Runoff

http://dx.doi.org/10.1029/2008WR007506


Chapter 7

Prediction of the Impact of Severe Accidents
at NPP on Radionuclide Contamination
of the Near-Surface Environment

The fission of uranium or plutonium isotopes normally used as the fuel in nuclear

reactors generates radioactive fission products, radionuclides. For nuclear reactors

under normal operation and in a number of events, these radionuclides are

prevented from escaping to the environment by several physical barriers (H€ogberg
2013). However, as experience shows, it cannot be totally excluded that at any

time events occur. If all barriers fail, there is a potential substantial release of

radionuclides from the damaged reactor to the environment. These aerosol-bound

radionuclides being widely dispersed in the atmosphere can be removed from

the atmosphere and brought to the earth surface by dry or wet deposition. The

other pathway for radionuclides is connected with radioactive wastewater leak

directly from the damaged reactor to the subsurface environment.

In 1990, to rate nuclear and radiological events, the International Nuclear and

Radiological Event Scale (also called INES rating) was proposed by IAEA.

According to this document, events are classified on the scale at seven levels:

Levels 4–7 are termed “accidents” and Levels 1–3 “incidents”. Thus, the highest

Level 7 is defined as follows: An event resulting in an environmental release

corresponding to a quantity of radioactivity radiologically equivalent to a release

to the atmosphere of more than several tens of thousands of terabecquerels of I-131.

To convert this amount to a release of Cs-137, the latter has to be multiplied by a

factor of 40 to be regarded radiologically equivalent to I-131 (H€ogberg 2013).

Many complex software systems for prediction of the consequences of such

nuclear accidents at NPP are known. These systems are able to numerically model

continuous or short-term releases of multiple radioactive isotopes, atmospheric

transport and diffusion under changing weather conditions, and the deposition of

radioactive isotopes on the surface.

For this study we rely on the simulation of pre-defined accident scenarios
(usually worse case scenarios) for several designed and engineered NPPs in the

Russian Federation. For the case studies considered here, the input for prediction of

radionuclide transport in runoff and streams includes three main source term

characteristics, namely, (1) specification of radionuclides of accident origin,
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(2) the amount of the released radioactive materials, and (3) radioactive fallout

density. In such conceptual approach, the environmental contamination is defined

mostly by the type of nuclear reactor and weather conditions, the latter assumed

least favorable at the moment of hypothetical accident (heavy rain, low-level wind,

etc.). An important element in the analysis and verification of model results is their

comparison with the character of their environmental impact and the consequences

of three severe accidents that have occurred at NPP. We will start this chapter with

those severe accidents, discussed in many scientific publications and include an

accident, which bears no relation to nuclear energy production, but which is related

to the surface contamination through radioactive fallouts. It is worth mentioning

that, in the soils contaminated with radioactive fallout components, the behavior of

radionuclides is similar to that for radionuclides of global fallout caused by nuclear

weapon tests (NWT, Sect. 6.3.3). In this context, data resulting from such moni-

toring in the second half of the twentieth century also prove to be of extreme

importance for predicting the consequences of severe accidents at NPP.

The chapter ends with an example of a model with distributed parameters as

applied to Pyshma watershed, within which some nuclear power units of the

Beloyarsk NPP (Middle Urals, Russian Federation) are in operation or under

construction. Estimates of the impact of hypothetical accidents at this NPP on

radioactive contamination of groundwater are given.

7.1 Characteristics of the Severe Accidents at NPP,
Radioactive Fallout Scale and Distribution

7.1.1 Accident Descriptions

Here we will focus on a brief review of three accidents that occurred at three NPPs,

located in different countries, for the past nearly one third of century: USA (Three

Mile Island 1979), USSR (Chernobyl 1986), and Japan (Fukushima Daiichi 2011),

which had largely changed the notions of NPP safety.

The accident at the Three Mile Island NPP (Unit 2, equipped with a pressurized

water reactor, known as TMI-1) was due to an erroneous shut down of cooling-

water injection to the reactor system. As a consequence, the core boiled dry and

overheated, resulting in a partial core melt. However, the nuclear fuel did not burn

through the bottom of the reactor pressure vessel, so radioactive materials mostly

stayed within. Although substantial amounts of gaseous and volatile fission prod-

ucts were released from the damaged core into the reactor containment, only a very

small amount of radioactive substances was released into the environment

(H€ogberg 2013). Released into the atmosphere were mostly radioactive inert

gases, while the discharge of hazardous nuclides, such as I-131 and other fission

products, was insignificant. The territory of the station was contaminated by

radioactive water released from the primary coolant system. The total discharge

was evaluated at 4.8 · 1017 Bq.
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The cause of the accident at the Chernobyl NPP (Unit 4), equipped with a

channel-type boiling water reactor (BWR known as RBMK), was a violation of

the prescribed operating limits and safety rules during a test program performed by

operators. As a result of runaway fission reactions, a very strong power strike was

initiated in the reactor zone, causing two subsequent thermal explosive releases of

destroyed and evaporated fuel and fission products up in the atmosphere, in the

form of a cloud several kilometers high, which was subsequently dispersed in the

form of a plume (De Cort et al. 1998; H€ogberg 2013). A fire started in the remaining

graphite that burned for some 10 days, causing further radioactive release. Thus,

huge amounts of fission products were released into the atmosphere (Table 7.1).

The Chernobyl disaster is widely considered to have been the worst NPP accident in

history. The released radioactive material was widely dispersed and deposited

across much of Europe.

Cs-137 was selected to characterize the magnitude of the ground deposition

because (The release, dispersion and deposition of radionuclides. . . 2002): (a) it is
easily measurable, and (b) it was the main contributor to the radiation doses

received by the population once the short-lived I-131 had decayed. The three

main spots of contamination resulting from the Chernobyl accident have been

called the Central, Bryansk-Belarus, and Kaluga-Tula-Orel spots. The Central

spot was formed during the initial, active stage of the release predominantly to

the West and North-west. Ground depositions of Cs-137 of over 40 kBqm�2

covered large areas of the Northern part of Ukraine and of the Southern part of

Belarus. The most heavily contaminated area was the 30-km zone surrounding the

reactor, where Cs-137 ground depositions generally exceeded 1500 kBq/m2

(Fig. 7.1a).

A similar, though smaller scale accident, accompanied by uncontrollable release

of radioactive substances, took place at the Fukushima Daiichi NPP because of a

very strong earthquake in Japan. The earthquake and a tsunami damaged external

power supply facilities and standby diesel generators, resulting in that all systems of

operational and emergency cooling became inoperative and leading to the melting

of the active zone of BWR-type reactors at three power units (Units 2, 3, and 4).

Large amounts of hydrogen and fission products were released to the reactor

containment vessel, leading to leakage due to overpressure. The leakage of

Table 7.1 Total release of

some radionuclides during the

Chernobyl accident (The

release, dispersion, and

deposition of radionuclides. . .
2002)

Nuclide Half-life Percent of inventory Activity, PBqa

I-131 8.0 d 50–60 ~1760

Cs-134 2.1 y 20–40 ~54

Cs-137 30.2 y 20–40 ~85

Sr-90 28.8 y 4–6 ~10

Pu-238 86 y 3.5 0.035

Pu-239 24 400 y 3.5 0.030

Pu-240 6 580 y 3.5 0.042

Pu-241 13.2 y 3.5 ~6
aPBq (pectabecquerel)¼ 1015 Bq
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hydrogen caused a violent explosion destroying the upper part of the reactor

buildings in three units. A substantial amount of fission products escaped to the

environment (H€ogberg 2013).

Radioactive substance fallouts at the Chernobyl accident affected mostly the

land surface, while a considerable portion of radionuclides released from the

damaged reactors of the Fukushima Daiichi NPP fell onto the Pacific. The radio-

active trail on the land surface (Fig. 7.1b) is mostly represented by cesium isotopes

(Cs-134 and Cs-137), the deposition density of this radionuclide in the most heavily

contaminated land areas reaching 3000 kBqm�2. A considerable increase in I-131

concentration was also recorded in seawater and tap water, followed by its increase

in food products in areas around the NPP. Water analysis in the drainage system of

the second nuclear unit showed I-131 concentration of 3�105 kBqL�1.

The measurements made after the Chernobyl and Fukushima Daiichi reactor

accidents showed that radioactive fallout is represented by a number of fission

products. Some characteristics of those accidents and their consequences in terms

of contamination intensity of natural landscapes are given in Table 7.2. At the very

early stage of the accident, the short-lived radionuclides were, radiologically, the

most important. In the following days and weeks, radionuclide I-131 was the main

source of both internal and external exposure. The radiological significance of

cesium (represented by isotopes Cs-137 and Cs-134) and strontium (Sr-90) radio-

nuclides was initially small but their importance increased with time, becoming by

far most important one year after the accident, especially at the larger distances

(De Cort et al. 1998).

Table 7.2 also gives the characteristics of the Kyshtym accident, that occurred in
1957 at Mayak Amalgamated Industry (MAI), a plant, producing radioactive

materials for military and civil needs (located in the South Urals region, southeast

Fig. 7.1 Maps of Cs-137 deposition (grey-scale in Cikm�2) after (a) Chernobyl (CNPP) 1986 and
(b) Fukushima Daiichi (FNPP) 2011 accidents. 1 Cikm�2¼ 3.7 � 104 Bqm�2
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of Kyshtym city) (Rumynin 2011). Though this radiological accident involved

another source, not related to nuclear engineering, its consequences are similar to

those of the accidents described above (Romanov et al. 1990; Pozolotina

et al. 2012; Atlas of the EURT 2013). The cause of the accident, which resulted

in a release of radioactive substances into the atmosphere, was an explosion of high-

level nuclear waste stored in a tank at the MAI (after a failure of the cooling system

at this tank). About 20 MCi of radioactivity was released into the air. The majority

(90 %) of the nuclear waste dispersed near the tanks in the form of a liquid pulp

settled out within the MAI territory. Other radioactive substances were raised by the

explosion 1–2 km above the land surface to form a radioactive cloud containing

liquid and solid aerosols.

The settling of liquid and solid aerosols, transported by southwestern air flow,

caused a considerable land contamination with the formation of the so-called

Eastern Ural Radioactive Trace (EURT). The maximal length of the EURT was

350 km, its width reaching 30–50 km (Fig. 7.2). The maximal density of the total

radioactive contamination along EURT axis near the source reached

5.5 · 1013 Bqm�2, including 1.6 · 108 Bqm�2 due to Sr-90 (Utkin et al. 2000). The

contamination of forests with total radioactivity of more than 5 · 108 Bqm�2 killed

all coniferous trees. The concentration of radionuclide mixture in grass vegetation

12–18 km from the accident site several days after the accident reached

3.5 · 1011 Bqkg�1. The isoline of Sr-90 activity of 3.7 · 106 Bqm�2 embraced the

area of more than 200 km2; the same areas were 400 km2for the isoline of

3.7 · 105 Bqm�2, 1400 km2 for the isoline of 3.7 · 104 Bqm�2, and 23000 km2 for

the isoline of 3.7 · 103 Bqm�2 (Fig. 7.2). The Sr-90/Cs-137 ratio in Kyshtym debris

was about 71 (Aarkrog et al. 1997). The safety criterion for the population was

taken to be the limiting density of land contamination of 7.4 · 104 Bqm�2 in terms of

strontium-90 (Utkin et al. 2000), i.e., about 105 Bqm�2.

The relatively wide range of deposition density of the main radionuclides,

represented in Table 7.2, reflects the actual situation: the spatial distribution of

radionuclides (in particular, those resulting from the Chernobyl accident) is

Table 7.2 Accidents’ characteristics and deposition density

Accident Chernobyl Fukushima Daiichi Kyshtym

General

Year 1986 2011 1957

Total releasea, TBq 1.4 · 107 7.7 · 105 7.4 · 105

Area, thousand km2 208c 13d 23

Fallout

Radionuclide Cs-137 Sr-90 Cs-134, 137 Cs-137 Sr-90

Fallout densityb, Bqm�2 105–106 104–105 (1–3)106e 104 105–107

aThe total value, including the entire spectrum of radioactive substances
bMean maximal (order-of-magnitude) values
cIsolines 3.7 · 104 BqL�1 (for Cs-137) was used to delineate this area
dInsular part
eEvrard et al. (2013); Ueda et al. (2013)
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strongly spatially variable because of both the heterogeneous character of atmo-

spheric fallouts under unstable weather conditions and the diversity of landscapes,

in which the radionuclides accumulate after their settling. The data in Table 7.2 can

serve as a guide in the analysis of hypothetical emergencies at power units with

different types of reactors either being designed or constructed (Sect. 7.1.3).

7.1.2 Review and Re-analysis of Historical Monitoring Data

Monitoring data described below can be used to assess both expected depositions

under accidental conditions and the actual behavior of artificial radionuclides in

different watershed environments.

The studying and forecasting of surface runoff contamination by artificial

radionuclides has a long history. The early studies were focused on monitoring-

based analysis of radionuclide export from watersheds contaminated due to

radioactivity fallout from atmospheric NWT in the 1950s and the early 1960s

(Sect. 6.3.3). The deposition of fallout radionuclides reached its maximum in the

early 1960s. Since the mid-1980s, bomb-test fallout has been below detection levels

(Cambray et al. 1989).

Later, studies of this type were motivated by the need to predict the conse-

quences of the impact that can be produced on various ecosystems by severe

radiation accidents, such as Chernobyl 1986 and Fukushima Daiichi 2011 acci-

dents. Studying the fate of radionuclides within the EURT 1957 also gave important

information.

In addition to observations of the radionuclide composition of river waters at

river gauge stations in the watershed areas (drainage basins), special studies were

carried out at experimental plots that allow controls for flow hydraulics and solute

Fig. 7.2 A map of Sr-90

deposition (Cikm�2) after

the Kyshtym 1957 accident

(Romanov et al. 1990)
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flux of Chernobyl radionuclides removing from the contaminated soil surface. The

leaching of radionuclides was also determined in soil profiles at the experimental

sites. The studies, carried out at both regional and experimental-plot scales under

different natural–climatic and landscape conditions open ways for extrapolation of

the obtained data to poorly known areas.

7.1.2.1 Radionuclide Runoff from Contaminated Watersheds

The Chernobyl fallout is characterized by two main fallout forms (Ivanov and

Kashparov 2003; Smith et al. 2005): condensed components and fuel-particle

components. The condensed components are represented mainly by Cs-137 and

partially by radioisotopes of strontium and ruthenium. The fuel-particle component,

represented by solid-phase fallout, consists of uranium oxides and chemical ele-

ments from construction materials and contains a wide spectrum of fission products

(Cs-137, Cs-134, Sr-90, Ce-144, Ru-106) as well as isotopes of plutonium and

transplutonium elements. It was theoretically predicted and observed that the

leaching rate of these radionuclides from the particle matrix is controlled by a

number of soil chemistry and landscape conditions.

The contamination of water bodies (rivers, natural and artificial water bodies) by

Cs-137 and, to a lesser extent, Sr-90, after the Chernobyl accident is mostly due to

the wash-out of radioactive products from the surface during rain events and snow

melting, the most rapid increase in the degree of radioactive contamination of rivers

being due to rain freshets. The data on 1987 and 1988 spring floods were of greatest

use for studying the migration processes.

The intensity of radionuclide uptake and transport by runoff, controlling the

efficiency of the natural attenuation of soil radioactive contamination in the upper

parts of watersheds depends on soil type and its natural moisture content, as well as

the type of vegetation cover. The mobility of radionuclides is highest in sod podzol,

sandy loam, and sandy soils. Runoff from such watersheds leads to a higher

radioactivity of floodplain deposits, radionuclide concentrations in which can be

several times greater than those in soils in the upper part of watersheds. Soils in the

upland area of watersheds represented by chernozem retain radionuclides more

firmly; therefore, the runoff water contains a small amount of radionuclides,

resulting in that radionuclide concentrations in the floodplains of such watersheds

are commonly moderate.

The migration capacity of Sr-90 represented by dissolved forms (including

organic complexes) is about ten or even more times greater than that of Cs-137.

Conversely, radionuclide transport by runoff with suspended matter is most signif-

icant for Cs-137, especially, when the runoff is generated at areas represented by

light arable soils, covering the steep upland area of watersheds.

Surface water and shallow groundwater carry radionuclides into rivers, where

they migrate downstream. In this case, bottom sediments, as well as sediments of
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low floodplains during floods actively adsorb radionuclides, thus performing an

important nature protection function.

An integral characteristic of the ability of soil to retain radionuclides is the so-called wash-

out coefficient (or wash-out ratio), defined as (Israel et al. 1990):

Kc Δtð Þ ¼ AT

N0F
; ð7:1Þ

where AT is the total activity, Bq, removed from a drainage basin with runoff

for observation time Δt; N0 is the initial fallout deposition density, Bqm�2; F is fallout

area, m2.

Thus, the washout of Chernobyl cesium (Cs-137) with spring flood water is character-

ized by the coefficient Kc, varying within (60–450)∙10�6 at Δt ¼ 10–20 d (Israel

et al. 1990). Forecasts for the drainage basin of the Pripyat R. (which suffered most from

the Chernobyl accident) were calculated with Kc Δt ¼ 1 yð Þ ¼ 0.01 (1 %).

The discharge of Fukushima Cs-134 and Cs-137 from small catchments (Fukushima

Prefecture) during 2011 was estimated to be 0.3–0.5 % of the total amount of these isotopes

deposited onto the catchments (Ueda et al. 2013).

On the average, less than 1 % of the Cs-137 is transported from contaminated catch-

ments by runoff immediately after fallout deposition, and generally less than 0.1–0.5 %

moves away per year after the initial deposition; this coincides with estimates of the

environmental impact of the NWT in the atmosphere (Eakins et al. 1984; Helton

et al. 1985).

The interaction of radionuclides atmospherically deposited (gas–aerosol fallout) onto

the catchment basins and runoff water flowing over the soil surface involves many

phenomena of different nature (Monte et al. 2004; Smith et al. 2005). Adsorption–desorp-

tion has been recognized as one of the most important processes determining the migration

of radionuclides in runoff water. As a first approximation, the process can be considered in

an equilibrium formulation (Sect. 6.2.2).

Therefore, the special literature gives descriptions of many studies in experimental plots

within the Chernobyl trace, which allowed the researchers to evaluate the entrainment

coefficients K∗
1 and K∗

s , characterizing the short-time retention of various radionuclides on

the surface, represented by different types of soils, in the initial periods after the deposition

of radionuclides (Sect. 6.2.2.1). The fullest generalization of those experimental results can

be found in the studies of A.V. Konoplev, A.A. Bulgakov and L. Garcia-Sanchez with

co-authors (Bulgakov et al. 1999; Konoplev et al. 1992; Garcia-Sanchez et al. 2005;

Garcia-Sanchez and Konoplev 2009), focused on the behavior of Cs-137 and Sr-90

(Table 7.3).

The results given in Table 7.3 can be transformed using formula (6.35b) to evaluate

equilibrium coefficients Kd, characterizing sorption equilibrium of Chernobyl 1986

radionuclides and mineral suspension. The obtained mean variation ranges of Kd

are (1–3) 103 cm3g�1 for Sr-90 and (5–8)103 cm3g�1 for Cs-137. The latter values within

the range (roughly) 1 · 103–5 · 105 cm3g�1 were reported by the IAEA (2010) as

Table 7.3 Variation ranges of normalized entrainment coefficients based on generaliza-

tion of experimental data (Garcia-Sanchez and Konoplev 2009)

Radionuclide K∗
1 , mm�1 K∗

s , m
2g�1

min max min max

Cs-137 1.9 · 10�6 1.2 · 10�4 1.6 · 10�5 6.7 · 10�4

Sr-90 1.9 · 10�6 1.8 · 10�4 6.5 · 10�6 3.1 · 10�4
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typical values characterizing Cs-137 interaction with geosorbents in the freshwater

environment.

Analysis of data collected after the Fukushima Daiichi accident has shown that the

studied watershed systems are very reactive to rainfall and snowmelt events, and that export

of contaminated material to the rivers, and possibly to the Pacific Ocean, has already been

achieved during the year that followed the accident (Evrard et al. 2013).

The partitioning of the Fukushima cesium isotopes (Cs-137, 134) between water and

suspended matter was studied in water samples from the Hiso River and Wariki River that

traverse mountainous areas in Fukushima Prefecture, Japan, impacted by radioactive fallout

after Fukushima Daiichi accident (Ueda et al. 2013). The obtained Kd of Cs-137 in water

samples ranges roughly from 105 to 106 cm3g�1, which is one to two orders of magnitude

higher than Kd for Chernobyl Cs-137.

The data of sampling in Hiso River and Wariki River showed cesium isotopes (Cs-137

and Cs-134) in river water to migrate mostly in particulate form, i.e., radionuclides are

readily adsorbed onto suspended particles and colloids. The mean percentage of particulate

radiocesium activity ranged from 74 % to 82 % in the Hiso River and Wariki River.

Particulate matter accounted for over 90 % of the total radioactive cesium activity during

periods of precipitation and flooding and for approximately 40 % during dry weather and

normal water stages (Ueda et al. 2013).

In general, analysis of data collected after Chernobyl 1986, Fukushima Daiichi

2011, and Kyshtym 1957 accidents, as well as analysis of NWT historical data

have shown the following tendencies with regard to non-point radioactive source

contribution to runoff contamination:

– strontium and cesium in fallout particles are completely soluble elements;

– Sr-90 in overland flow water mostly occurs in ionic form and can be bound with

organic ligands; a relatively small fraction of strontium is transported by runoff

in adsorbed (particulate) forms;

– Cs-137 (Cs-134) has lower tendency to form complexes; this isotope is washed

out from the surface along with mineral phase, mostly under the effect of

erosion; the high mobility of Cs-137 on suspension is largely due to the irre-

versibility of sorption, as was confirmed by studies of the occurrence forms of

isotope Cs-137 of Fukushima Daiichi origin (Otosaka and Kobayashi 2013); the

irreversibility of cesium sorption allowed Cs-137 to be used as an erosion

indicator to investigate the delivery of sediment from the hillslopes to lowland

areas and water bodies (Owens et al. 1997; Poręba 2006; Konz et al. 2010);

– for fresh fallout, liquid entrainment coefficients, K∗
s , for both Sr-90 and Cs-137

do not exceed approximately 10�4 mm�1 (Garcia-Sanchez and Konoplev 2009);

the coefficientK∗
s increases with increasing slope and rain intensity, because the

share of fine suspension in water flow increases;

– the estimated values of coefficients K∗
1 and K∗

s appreciably drop over time, thus

suggesting the increasing retention ability of soils with respect to radionuclides

(see Sect. 7.1.2.2). Moreover, this tendency suggests the heterogeneity of the

surface of multi-site-surface sorption mineral phases, a considerable part of

which includes sites irreversibly adsorbing radionuclides;

– irreversible sorption onto minerals and organic matter of soils, as well as water

infiltration, limits radionuclide migration in dissolved form;
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– the mobility of radionuclides adsorbed onto particulate suspended matter

depends on the intensity of liquid precipitation and hence can vary widely

with time;

– radionuclide losses through runoff and sediment transport in the first one or two

years after the accident commonly do not exceed a few fractions of percent,

rarely, a few percent from their total amount in the watershed. The deposited

radionuclides mostly remain in watershed areas and serve as sources for long-

term contamination of the environment. The abrupt slowing of the removal of

radionuclides from the watersheds can be attributed to the passage of radio-

nuclides into a less mobile state and their transport into deeper soil layers by

infiltration water.

7.1.2.2 Vertical Transport of Radionuclides in Soil and Vadose Zone

The vertical migration of dissolved radionuclides in soils and their transfer to the

underlying unsaturated sediments (vadose zone) mitigate the negative impact of

radioactive fallout on the runoff contamination, though create a hazard of ground-

water contamination.

In the years since the Chernobyl 1986 accident, the vertical distribution of

fallout of Cs-137 (Cs-134) and Sr-90 in soils of different origin and different

landscape conditions has been measured by many researchers. Such studies were

also carried out earlier, in the period 1960–1970, as part of the analysis of NWT

fallout consequences. It was established that the sorption of these radionuclides in

soil depends on the mineralogical and chemical characteristics of the soil layer,

such as clay minerals and clay mineral content, particle size distribution, and

organic matter content.

The sorption process is usually only partially reversible. The process of Sr-90

and Cs-137 irreversible fixation onto soil particles has two phases – fast and

slow. The latter, the so-called adsorption aging process, shows very slow kinetics,

and the reversibility can last as long as tens of years. Such radionuclide behavior

can be explained by the presence of several specific sorption sites in clay and

hydroxide minerals (Rumynin 2011).

It is generally agreed that isotopes of cesium (Cs-137, Cs-134) migrate very

slowly in most soils and landscapes. This suggests that cesium is strongly and

rapidly absorbed onto soil particles (especially on clay minerals) and organic

matter. The adsorption of cesium is mainly chemical and occurs through an ion

exchange process. A significant fraction of the radionuclide can be retained in the

soil in a non-extractable (irreversible) form. Irreversible sorption of cesium is due

to the occlusion of radionuclides by soil organic matter and the diffusion into

interlayer clay minerals.

In a number of publications related to the Chernobyl accident, it has been shown

that Cs-137 adsorbed in the top untilled soil layer with a depth of about ten cm remains

there for many years. Further downward, the transport of Cs-137 in soil by infiltration

is limited.
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A more mobile element is Sr-90, which can be detected at depths of up to 1–2 m from

the land surface. A small but significant fraction (up to 10–20 %, on average) of Sr-90 in

soil undergoes physicochemical changes making this portion of strontium non-extractable

(Nilsson et al. 1985).

The distribution of radionuclides over depth in soil sections was also studied in the

EURT (Sect. 7.1.1). From the vertical distribution of various radionuclides, it can be

concluded that, for all sampled locations except one, essentially all activity was found in

the top 30 cm soil layer (Aarkrog et al. 1997; Atlas of the EURT 2013). In case of Sr-90,

the 25–30 cm layer contained on the average 1.5 % of the total inventory of Sr-90 in the

0–30 cm layer. In the case of Cs-137 and transuranics (Pu and Am), even less was found

in the deeper parts of the soil column (Aarkrog et al. 1997).

Finally, first results related to vertical distribution of Cs-137 in soils were obtained

for areas affected by the Fukushima Daiichi fallout (Matsunaga et al. 2013). It was

determined that majority of Cs-137 is stored in the upper 5 cm of soil layer at undisturbed

locations. The mean fallout contamination by Cs-137 and Cs-134 in sampling points was

assessed to be about 6 � 104 Bqm�2. The Cs-137 contamination of the top-layer soil (0–

1 cm) ranged on average from 1000 to 7000 Bqkg�1. Concentration of Cs-137 in the upper

part of the soil profile (1–3 cm below the surface) varied on average from 300 to

1000 Bqkg�1. Limited fractions of Cs-137 were extracted with water (less than 3.6 % for

0–3 cm samples) and ammonium acetate (less than 15.2 %), confirming the very low

mobility of this radionuclide in response to the rainfall events (Matsunaga et al. 2013).

Thus, the soil itself acts as a shield from radiation, but a slow migration results in

a slow decrease in external radiation, and near-surface accumulation of accidental

radionuclides restricts land use, e.g., for food production, in highly contaminated

areas for a long time.

Special mention should be made of the studies aimed at revealing the contribu-

tion of preferential flow paths in soils and deeper vadose zone to the rapid vertical

transport of water and solutes. The causes of the formation of such anomalous zone

where solutes migrate with velocities far in excess of the mean velocity of water

flow in near-surface sediments include the weathering processes and the activity

of organisms resulting in soil structure disintegration (Flury 1996; Steenhuis

et al. 1997; Gerke et al. 2007). Macropores and sporadically distributed cracks

and fissures become active carriers of contaminants from the surface to groundwa-

ter table, especially, during storm precipitation events, accompanied by soil surface

ponding and runoff generation. As it was mentioned many times, not only high-

mobility components, but also substances with a high aptitude to sorption, rapidly

reach aquifers in such periods.

The role of macropores and fractures increases in the case of morphological

heterogeneity of the relief, providing conditions for focusing surface runoff (Nieber

2001; Bixio et al. 2002; Shestopalov et al. 2006, 2007). Mostoften, the focused-flow

patterns form when the relief contains drainless or partially drained local depres-

sions (Fig. 7.3). Their distribution on land surface can be random or can have some

trend determined by the confinement of morphological depressions to persistent

deep-seated geological structures or specific stress–strain zones of the earth crust

(Shestopalov et al. 2006).
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The presence of morphological depressions in a watershed determines a high

degree of spatial heterogeneity and time variations of groundwater infiltration

recharge via the aeration zone. In dry seasons, the rate of infiltration shows a

uniform horizontal distribution and the motion of moisture front is uniform

throughout the ambient soil matrix. During rainfall events or active melting of

snow cover, the generation of overland flow leads to partial filling of morphological

depressions, because of which the soil moisture content in the depression bed

increases and at a certain moment may exceed the field capacity, resulting in

downward water percolation to recharge groundwater. In addition, the central part

of a depression, as better washed, shows higher permeability, making the infiltra-

tion process even less homogeneous. Thus, microrelief forms, focusing precipita-

tion, provide rapid solute transport in the vadose zone. Groundwater contamination

in this case is of impulsive character.

This mechanism of water and solute transport has been studied in experimental sites within

the Chernobyl exclusion zone (Shestopalov et al. 2006, 2007; Bublias and Shestopalov

2001). Those studies showed the penetration depth of radionuclides into soil profiles, whose

position in plan coincides with the central lines of depressions, can be many times greater

than the penetration depths of radionuclides in infiltration water in reference areas, where

there are no such morphological relief forms (Bublias and Shestopalov 2001). The presence

of anomalous zones of this type can be the cause of the rapid (a few years after the accident)

appearance of Sr-90 and Sc-137 in phreatic waters and confined aquifers within the

Chernobyl trace.

A complete description of the process requires the application of coupled models

describing the formation of surface runoff and soil moisture and solute transport in

the vertical direction for unsaturated groundwater recharge (Bixio et al. 2002).

Approximate analytical estimates can be based on simplified conceptual models of

tank type (Steenhuis et al. 1997). Overall, the construction of models, which would

explain the behavior of the distributions of moisture content and concentration in

the soil and aeration zone in the cases where such behavior radically differs from its

classical description (satisfying Richards’ and Fick equations) is an urgent research
line in the modern hydrogeology and a focus of active studies.

Fig. 7.3 Conceptual

scheme of groundwater

recharge and contamination

by subvertical preferential

flow zones (Shestopalov

et al. 2006)
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7.1.3 Pre-defined (Worse-Case) Scenarios for the Release
and Deposition of Accidental Radionuclides

The prediction of radionuclide specification, the amount and levels of the radioac-

tive release and fallout is difficult because of several factors: the type of nuclear

reactor and its thermal power output, the type of accident scenario, the meteoro-

logical conditions, such as wind direction and speed, and the nature of the surface

that will be affected by fallout. Therefore, in this section, basing on accident

simulation, we only give tentative characteristics of the accidental radioactive

releases (so-called “source term”) for two types of reactors (Table 7.4), which are

used to evaluate fission products fallout characteristics. For comparison, some data

on the Chernobyl 1986 (Table 7.1) and Fukushima Daiichi 2011 (Nagai et al. 2014)

accidents were introduced as well.

The source term data (Table 7.4) were estimated based on ‘catastrophic’ and
‘beyond design basis’ accident scenarios for VVER (Nalbandyan et al. 2012) and

BN (Beloyarsk NPP. . . 2011; see also Sect. 7.2.3) types of nuclear reactors. These

data correspond to accidents associated mainly with situations known as station
blockout, during which losing both the grid connection (offsite power) and standby

power generators (inside power) occurs. Under normal conditions, they are sources

of electricity providing the cooling system in operation to reduce decay heat after
reactor shut-down and mitigate negative effects during an accident. It is postulated

that, unless grid or standby power is restored, the reactor will overheat. In this

period, which may last for as long as a few hours, reactor fuel reaches melt-down,

releasing highly radioactive fission products.

The worst-case scenarios postulate the loss of containment of more than half of

fuel elements and melting of a noticeable amount (up to several hundred kg) of fuel

in the reactor core. Numerical simulation shows that the explosion that would

breach the final containment, releasing fission products to the environment is not

possible. The reactor vessel at this emergency remains intact, and radioactivity

release into the environment takes place because of the actuation of a hydraulic

hitch in the gas system of reactor.

Table 7.4 The major source term characteristics, M (TBq)a

Reactor type Scenario

Radionuclide

I-131 Cs-134 Cs-137 Sr-90

VVER-1000b Catastrophic release 2.7 · 103 4.4 · 103 2.8 · 103 44

Beyond design basis 31.5 5.2 3.3 42

BN-800c Beyond design basis 3–30 3–35 5–50 –

RBMKd Catastrophic (Chernobyl) 1.8 · 106 5.4 · 104 8.5 · 104 1 · 104

BWRe Catastrophic (Fukushima) 1.2 · 105 n.d. 8.8 · 103 n.d.
aTBq¼ 1012 Bq
bPressurized water reactor, thermal neutron reactor design
cFast neutron reactor, sodium-cooled design
dChannel-type boiling water reactor; eBoiling water reactor
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Modeling results show that the fission products that release from a damaged

reactor are initially a complex mixture of hundreds of different radionuclides,

however most of these nuclides have short half-lives and decay to longer living

daughter elements at very rapid rates.

Of greatest interest in terms of radiation contamination hazard of the surface are

four radionuclides: I-131, Cs-134, Cs-137, and Sr-90 (Table 7.4). The first of them,

short-living as it is, can be of hazard, because it is inert and very mobile in the

natural environments. Of greatest importance here are short-range (a few days or

weeks) forecasts correlated with hydrological and landscape features of the region

that has suffered from radiation accident. The other three radionuclides (Cs-134,

Cs-137, and Sr-90), because of their higher sorption capacity, are less mobile;

however, their half-life is relatively long, so the analysis of their migration in

natural environments is of interest for long-range forecasts of the consequences

of emergency releases.

The fission products escaped to the atmosphere become rapidly incorporated into

aerosol particles and raindrops that are subject to the fallout or remain in the gas

phase. In these forms, fission products are carried by the wind until they fall out.

The physical, chemical, and radiochemical properties of fallout particles and the

frequency distribution of particle sizes and types vary significantly as well. These

characteristics, along with the meteorological and landscape conditions, control the

rates and locations of radioactive products deposition on the ground after having

been injected into the atmosphere by a nuclear accident.

The meteorological prediction of the radionuclide deposition involves two steps:

(a) dispersion of the fission products in the atmosphere, and (b) estimation of the

amount of radionuclides deposited on the ground. In other words, the deposition

forecasts are calculated with a deposition model using results of atmospheric

dispersion modeling. The deposition of radionuclides on the ground results from

two processes: the impaction of aerosols on the ground surface (dry deposition) and

precipitation (wet deposition).

Many mathematical models have been developed to describe those processes.

However, their applicability to the quantification of the accident consequences

largely lose its significance because of the unpredictability of the accident moment

and the accompanying weather conditions, controlling the location of the radioac-

tive fallout trace, and other poorly known factors like physicochemical form of the

radionuclide deposition. Therefore, the formation of input data for hydrological

models to describe the consequences of radioactive contamination of soil surface

can be based on alternative approaches, leading to maximally conservative esti-

mates, which do not depend on the meteorological and other factors.

Thus, we can assume that all radionuclides having been released to the atmo-

sphere in the amount ofM (Table 7.4), deposit in gas–aerosol or precipitation forms

on the ground surface, forming near the NPP an area-distributed source with an

intensity of N0 ¼ M=F, where F is an area, which can be established empirically,

e.g., it can be associated with drainage basins, lying within NPP-site boundary or

pre-described sanitary protection zone (Sect. 7.2.3). It can be assumed a priori that

the maximal allowable levels of surface contamination can be reached within a
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5-km zone around the damaged reactor, with the emergency plume assumed low

and dispersion from it assumed uniform. At distances far in excess of the size of the

NPP-site (up to 30 км in the case of a high plume), the settling of fission products

will most likely be of a “sectoral character,” determined by wind direction

(Sect. 7.2.3).

The area of radioactive contamination is considered as a non-point source. The

subsequent contamination of streams is due to radionuclides transported by over-

land flow. Groundwater contamination takes place because of vertical infiltration of

precipitation through the soil and aeration zone.

The comparison of data that characterize the consequences of hypothetical

accidents at power generation units VVER-1000 and BN-800 with estimates of

Chernobyl release show the values of M given in Table 7.4 to be several orders of

magnitude less than the radionuclide release during the Chernobyl accident.

7.2 A Case Study: Assessment of Watershed
Contamination after a Hypothetical Accident at
the Beloyarsk NPP (the Middle Urals, the Russian
Federation)

The main priority in the operation of nuclear power plants (NPP), as well as in the

designing and construction of new NPP is accident prevention and the minimization

of the environmental effect of the plants. The construction and operation of NPP

have various impacts, primarily, on the ecosystems of surface water bodies and the

geological medium, including groundwater. Integral assessment and prediction of

the state of natural waters in the zone of influence of nuclear-industry plants

involves the consideration, in addition to the normal operation regime of facilities,

emergencies at power generation units, leading to the release of radionuclides into

the environment. This thesis, supported by present-day IAEA requirements, is still

relevant in the context of large-scale radiation accidents at NPP in operation

(Chernobyl 1986 and Fukushima Daiichi 2011 accidents).

These requirements are also relevant to the Beloyarsk NPP (BNPP) constructed

in 1964 in the Middle Urals, Russia (Fig. 7.4). The fifty-year history of the NPP

operation has seen several generations of nuclear power units (Table 7.5). The first

two units were provided with boiling water reactors (Unit 1 and 2). Their era ended

after decommissioning Unit 2, AMB 200, in 1990. The slow-neutron boiling-water

reactors were replaced with a third generation of fast-neutron power generating

units of higher capacity (BN 600 – Unit 3), being in operation until now (BN is a

Russian abbreviation for the name of Fast Neutron type of nuclear reactors).

In compliance with the governmental program of developing nuclear-

power engineering, two more nuclear power units BN 800 (Unit 4) and BN 1200

(Unit 5) are being designed in the immediate vicinity of the currently operating

nuclear power unit.
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On-site environmental engineering survey following the design of the Beloyarsk

NPP provides a good basis for implementing new approaches to forecasting the

effect of NPP on surface water and groundwater systems. First, field material was

obtained for the parametric support of models; second, a considerable progress was

observed in recent years in the development of computing facilities adjusted to

solving forecast problems of this type. A combination of those factors was the main

motive for writing this section of the book.

Fig. 7.4 Main watersheds and location of gauge (1) and meteorological (2) stations. The circle

divided into segments is the 30-km area of potential NPP influence (Sect. 7.2.3). The dash

rectangle delineates the model area for the Pyshma watershed

Table 7.5 History and

prospects of the NPP

development

Unit Name Commission Decommission

1 AMB 100 1964 1983

2 AMB 200 1969 1990

3 BN 600 1981 2025

4 BN 800 2016 –

5 BN 1200 2020 –
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7.2.1 Description of the Study Area

7.2.1.1 Relief and the Hydrological and Hydrometeorological

Conditions in the Area of the Beloyarsk NPP

BNPP is situated on the eastern branch of the Middle Urals mountain ridge. The

relief in the area is hilly with alternation of plateaus and depressions, the latter often

being swampy. Relief elevations vary from 169 to 329 m.

The geomorphological features of the region are determined by its geological

structure. Vast water divide areas represent denudation hilly–knap peneplanation

plane. The relative elevations of individual relief forms reach 30–50 m. A hilly–

knap surface of near-valley slopes and a modern floodplain terrace with 2–3

peneplanation planes extend along well-developed river network.

BNPP area is situated on Pyshma R. watershed on the shore of the Beloyarsk

Reservoir; Iset River watershed neighbors the area (Fig. 7.4). The hydrographic

network of the area belongs to Kara Sea water system. The Pyshma R., flowing into

the Tura R., is the third-order tributary of the Tobol R. (Pyshma–Tura–Tobol). The

rivers of the region belong to the class of rivers with pronounced spring flood,

summer–autumn rain floods, and long and stable winter dry period. The rivers are

mostly fed by snowmelt water. Its share in the total river runoff reaches 50 % and

that of rainwater, 22 %; groundwater runoff accounts for 28 %. Surface-water

regime observations are based on a gauge network (Fig. 7.4, Table 7.6).

By its chemistry, river water is hydrocarbonate–calcium; НСО�
3 ions dominate in its

anion composition (20.0–183 mgL�1), and Са2+ ions dominate in the cation composi-

tion (16.4–74.1 mgL�1). pH varies from 6.6 to 8.8. The water is moderately hard (1.10–3.90

meqL�1).

According to observation data on sediment discharge of the Pyshma R. (Beloyarka V.),

collected during surveys for the construction of the Beloyarsk Reservoir (1955–1958), the

mean annual suspended-sediment discharge in the Pyshma R. under natural conditions is

0.05 kgs�1, which corresponds to the mean annual sediment input of 1.6 thousand t (about

1 thous. m3y�1). The maximal value was 2.3 thous. ty�1. The within-year distribution is

uneven, varying from 0.4–0.5 kgs�1 during spring flood to a few hundredths kg/s in autumn

and winter (Fig. 7.5). Those data can be of use for the assessment of slope erosion – a

process that can contribute to the transport of accident-related radionuclides in runoff

(Sect. 7.2.5).

Table 7.6 River discharge characteristics

No. in the map River–gauge station Catchment area, km2

Discharge, m3s�1

Avr. Max

1 Pyshma R.–«Berezit» 197 1.24 10,9

2 Pyshma R.–«Sarapulka» 663 2.49 24.1

5 Pyshma R.–«Sukhoi Log» 3180 10.8 70.0

6 Chernaya R.–«Sagra» 220 1.16 36.6

7 Iset R.–«Mill No.3» 1470 8.03 39.6

8 Iset R.–«Kolyutkino» 3500 13.3 114
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Analysis of many-year observation data (weather station M1 “Dubovo V.,” Fig. 7.4)

shows the mean annual precipitation to be 540 mm (the area lies in the zone of sufficient

moistening), the largest total monthly precipitation (274.5 mm) was recorded in September

1987, and the least one (0.8 mm) was recorded in March 1976). The average monthly

precipitation is 49.6 mm. The total precipitation is maximal in the warm season (76 % of the

annual precipitation). The total duration of rain events within a year averages about 1800 h.

Summer precipitation is mostly of storm character. The daily maximum of precipitation

observed over many years was 94 mm, which approximately corresponds to 1 % occurrence

probability (Fig. 7.6).

The obtained time series provide a substantiation of the forecasted synoptic

scenario. The need to obtain conservative estimates of the environmental impact of

BNPP emergency releases implies the consideration of the worst weather condi-

tions, corresponding to a rainy period of warm season, when the generated runoff

leads to intense river floods. A typical example is the flood in the summer of 1971,

which can be seen, in particular, in the hydrograph measured at the gauge station

5 “Sukhoi log” (see Fig. 7.11 below). The mean river discharge in this section is

10.8 m3s�1. The runoff water transports radionuclides from the upper parts of

watersheds to river valleys. A description of this process will be given in the final

sections of this work.

Fig. 7.5 Annual

distribution of sediment

discharge (Pyshma R.)

Fig. 7.6 The frequency

distribution of maximum

daily precipitation
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7.2.1.2 Analysis of Monitoring Data

As mentioned above, BNPP is a firstling of Russian power engineering. Several

power units with accompanying facilities of nuclear power cycle were successively

commissioned since the mid-1960s. Some radioactive materials involved in those

cycles enter natural and artificial water bodies (rivers, marshes, hydrotechnical

reservoirs etc.) as low-level radioactive waste (wastewater).

Until 1979, the Russian water and nature-protection legislation imposed rela-

tively weak requirements to the quality of treatment of industrial wastes discharged

into water bodies, resulting in their appreciable radionuclide contamination. Waste-

water discharge standards did not limit the total volume (amount) of discharge, the

main parameter at the discharge of those waters being the maximum allowable

concentration of specified contaminating substances in the wastewater discharged

into water bodies. It should be mentioned that, although radionuclide concentra-

tions in surface water bodies in the considered area were many times greater than

the global background concentrations, this has not led to any appreciable radiation

impact on the population. Later, starting from about 1980, the procedure of waste-

water treatment changed and the radiation impact on natural water bodies dropped

significantly.

There are two main natural units for wastewater discharge from the plant

(Fig. 7.7): the Beloyarsk Reservoir and Olkhovskaya marsh-river system. The

damping effect of the reservoir is due to the dilution of discharged wastewater by

Fig. 7.7 A schematic map of the main water bodies located within the area of potential BNPP

influence. Arrows show the location of the waste discharge zones. The bars show the radiation

intensity, microrentgen/hour, near water bodies (2012)
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river water (Pyshma R.), flowing through the reservoir, and sorption on bottom

sediments. The dissipated wastewater flow within the marsh is deprived of the

contaminants it carries during seepage through the marsh vegetation cover and

sorption on bottom formations saturated with organic matter.

Monitoring data collected during the accumulation of radionuclides in the

environment and the subsequent natural attenuation of the environment provide

useful information about some migration processes and mechanisms. This infor-

mation is of interest in the context of problems discussed in this chapter. However,

considering that not all data characterizing radioactive waste discharge are avail-

able, the analysis given below is mostly of qualitative character.

Beloyarsk Reservoir Contamination The maximal level of reservoir water con-

tamination by radionuclides was recorded in the mid-1970s, during the parallel

operation of the first reactors AMB-100 (1964–1981) and AMB-200 (1967–1989)

(Table 7.5, Fig. 7.8). Near the discharge site of surplus hot water, the concentrations

reached 100 BqL�1 for H-3, 1.3 BqL�1 for Co-60, 1.2 BqL�1 for Cs-137, and

0.1 BqL�1 for Sr-90. The concentration curves have similar shapes and differ only

in the absolute values.

Fig. 7.8 Dynamics of radionuclide activity in the Beloyarsk reservoir. The solid line is for the

middle reach; the dashed line is for the upper reach
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The abrupt drop in H-3 concentration in water correlates with decommissioning

of Unit 2 (AMB-200) in 1989. The second peak may be due to the commissioning

of Unit 3 (BN-600). In this period, the total annual discharge of radionuclides into

the water body was about 4.9 � 109 Bq for Co-60, 8.6 � 109 Bq for Cs-90, and

8.4 � 109 Bq for Cs-90 (data of 1985).

Radiation water monitoring in 1976–1987 gave significant materials, reflecting a

decrease in radionuclide concentrations in surface water with the distance from

NPP (Table. 7.7). The zone of influence of the plant includes the upper part of the

reservoir lying more than 15 km away from the discharge point. Radionuclide

activities in the upper part of the Beloyarsk Reservoir show a statistically significant

difference from the respective concentrations in the water of the Reftinskoe Res-

ervoir, which can be considered as an indicator of regional background level

(Table 7.7).

Bottom sediments are a major deposition place of radionuclides, which deter-

mine the radiation dose for the population. According to 2007–2011 monitoring

data, the concentration of Cs-137 in bottom sediments of the Beloyarsk Reservoir

generally varies from 10 to 300 Bqkg�1. This intervals approximately corresponds

to the initial (1970–1980) contamination level of bottom sediments.

Nowadays, Beloyarsk Reservoir water also contains technogenic radionuclides

(Н-3, Sr-90, and Cs-137); however, their detected activities are hundreds and

thousands times less than the established intervention level (Safety Standard,

NRB-99/2009). Variations of the activities of Sr-90 and Cs-137 in Beloyarsk

Reservoir water are of the order of a few mBqL�1, while the activity of tritium

never exceeds 20 BqL�1 (Table 7.8). The specific activity of Pu-238,239 varies

from 0.16 to 0.3 mBqL�1.

Table 7.7 Many-year mean monthly radionuclide concentrations in the water of the Beloyarsk

and Reftinskoe reservoirs, BqL�1 (1976–1987)

Sampling site Со-60 Sr-90 Cs-137

Distance from

BNPP, km

Beloyarsk Reservoir

Lower reach 0.264� 0.075 (54) 0.061� 0.022 (59) 0.307� 0.060 (49) 0.5

Middle reach 0.090� 0.019 (21) 0.044� 0.003 (17) 0.107� 0.029 (21) 8.4

Upper reach 0.037� 0.009 (23) 0.048� 0.007 (21) 0.044� 0.009 (22) 16

Reftinskoe Reservoir (Background)

Mid-part Not detected (9)a 0.034� 001 (9) 0.011� 0.003 (9) 36
aParenthesized are the numbers of determinations

Table 7.8 Variations of the specific activity of artificial radionuclides in Beloyarsk Reservoir

water (2012)

Radionuclides Units Lower reach Upper reach Safety Standard

H-3 Bq/L 7–11 5–8 7 600

Sr-90 mBq/L 6–11 4–6 4 900

Cs-137 mBq/L 10–20 8–10 11 000
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Overall, the obtained data suggest efficient natural attenuation of the

radionuclide-contaminated water system.

Contamination of the Olkhovskaya Marsh–River System The Olkhovskoe

marsh is situated about 5 km southeast of the NPP (Fig. 7.7). The marsh–river

system is the main reservoir accumulating radionuclides that entered the environ-

ment with liquid wastes from the BNPP. The system includes a low peat moor about

30 ha in area surrounded by swampy areas. The moor is the source of the Olkhovka

R., 3.5 km in length, which empties into the Pyshma R.

The main anthropogenic contamination of the Olkhovskoe march was taking

place before 1980 during the operation of Units 1 and 2 of the BNPP. As mentioned

above, the then sanitary standards and regulations did not limit the volume of liquid

radioactive waste discharge. Many-year (from 1964 to 1980) waste discharges

caused the accumulation of radionuclides in the marsh in the amount estimated at

3.0 TBq (80 Ci) to 7.4 TBq (200 Ci) (Utkin et al. 2000). After the standards on the

admissible waste discharges became stricter, the input of radioactivity into the

Olkhovskoe marsh decreased considerably.

Observations at Olkhovskaya marsh–river system have been carried out since

1978 (Table 7.9). Peaks of specific activity of technogenic radionuclides in all years

were recorded in the upper reach of the marsh – in the vicinity of the discharge

point. The activity of radionuclides in water in the marsh–river system gradually

decreases with the distance from the contamination source because of dilution by

pure surface water and groundwater. Physicochemical transformations, including

Table 7.9 Specific activity of radionuclides in water of the Olkhovskaya marsh–river system

(Molchanova et al. 2009)

Sampling

point

Sr-90, BqL�1 Cs-137, BqL�1

1978–

1988

1989–

1991

1999–

2009

1978–

1988

1989–

1991

1999–

2009

Olkkhovskoe marsh

Upper reach 0.8

(0.1–1.6)a
1.3

(1.0–1.6)

0.2

(0.1–0.3)

16.6

(2.3–49.2)

8.4

(2.0–10.6)

0.05

(0.03–0.08)

Mid-reach 0.9

(0.1–1.7)

1.2

(0.7–1.2)

0.3

(0.2–0.4)

20.7

(4.1–43.4)

17.0

(9.9–24.1)

0.2

(0.1–0.3)

Olkhovka R.

Upper reach 0.8

(0.2–0.5)

1.0

(0.8–1.1)

0.5

(0.2–1.4)

16.0

(9.7–35.0)

11.6

(4.7–20.2)

0.3

(0.1–0.5)

Mid-reach 0.4

(0.2–1.0)

0.5

(0.2–1.0)

0.3

(0.1–0.7)

10.0

(2.4–16.0)

7.9

(4.1–17.9)

0.2

(0.1–0.6)

Pyshma R. (downstream of Olkhovka mouth)

0.5 km

downstream

0.2

(0.1–0.3)

0.35

(0.04–0.5)

0.1

(0.06–0.1)

1.3

(0.1–4.4)

0.5

(0.16–0.9)

0.2

(0.1–0.2)

0.5 km

upstream

0.1

(0.1–0.2)

0.08

(0.03–0.1)

0.03

(0.01–0.04)

0.2

(0.1–0.4)

0.1

(0.08–0.15)

0.05

(0.03–0.08)
aParenthesized are variation ranges
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radionuclide passage from solution into solid phase because of adsorption on the

rock matrix, bottom sediment, and suspension, also play an important role in the

natural removal of radionuclides from water.

Data of many-year studies show that the specific activities of Cs-137 in water in

the Olkhovskaya marsh–river system gradually dropped throughout the observation

period. For example, Cs-137 activity at the source of the Olkhovka R. varied from

9.7 to 35 BqL�1, while in 2012, it was 0.17 BqL�1, the Safety Standard

(NRB-2009) being 11 BqL�1. Sr-90 showed an increase in activity in the Olkhovka

R. up to 1 BqL�1 in period 1989–1991, which is commonly associated

(Molchanova et al. 2009) with the stage of decommissioning of the first stage of

the BNPP (Units 1 and 2). In 2012, the activity of Sr-90 at the source of the

Olkhovka R. was 0.075 BqL�1 (the Safety Standards is 4.9 BqL�1). Starting from

1980, the activity of tritium in water dropped by almost two orders of magnitude

from 8000 to 130 BqL�1.

In observation period 1999–2010, Cs-137 activity in bottom sediments of the

marsh–river system varied from 0.02 to 6.2 kBqkg�1. The activity of Sr-90 varied

within much narrower limits (from <0.01 to 0.36 kBqkg�1) because of the lesser

adsorption of Sr-90 on solid phase. Interestingly, the maximal radionuclide con-

tamination of bottom sediments in 1978–1988 was recorded in the upper reach of

the marsh near the waste discharge point from the plant. After the discharge of

radioactive wastes into the Olkhovskoe marsh decreased, the accumulated radio-

nuclides started redistributing in the natural ecosystem. Radionuclide desorption,

decay, and removal from the marsh through river systems on suspended matter

caused a decrease in the activities of Cs-137 and Co-60 by factors from 5 to

50 compared with those in the 1980s. The contamination front gradually migrates

so that activity peaks are now recorded in the middle of the marsh and in the

Olkhovka R., rather than in the upper part of the marsh.

Special studies (Molchanova et al. 2009) were carried out to assess radionuclide

release from the Olkhovskoe marsh into open hydrographic network in 2007–2008.

Water samples were taken at the source of the Olkhovka R., where water discharges

were also measured. Ultra-filtration experiments were carried out with the samples.

The obtained data were used to evaluate the proportions of radionuclides’ export
from the marsh in ionic and particulate (with solid matter) forms (Table 7.10).

Olkhovka R. water discharge is 0.3 m3/s during spring flood and 0.04 m3s�1 in

dry season; the sediment load in the same period is 0.023 and 0.001 kgs�1,

respectively. High concentrations of Cs-137 were recorded in both liquid (water)

phase and solid (suspended) phase of river flow. The concentrations of radionu-

clides sorbed onto suspended particles are 3–4 orders of magnitude greater than

those in ambient water (converted to 1 kg of sample weight).

The contribution of the liquid fraction to the “two-component transport” of Sr-90

amounts to 94–96 % in all seasons. Cs-137 release from the contaminated site in the

ionic form is significant (77 %) only during dry season, while in other seasons, the

contributions of liquid and sediment flows to runoff transport of Cs-137 are similar.
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Thus, the data obtained in this study suggest the significance of particulate forms of
radionuclides in runoff, at least for cesium isotopes, a fact to be taken into account

in the simulation of the consequences of accidents accompanied by a release of

artificial radionuclides in BNPP. This will be discussed below.

7.2.2 The Study of Soil Properties

The radionuclides that reach landscape surface after accidents at NPP and form

dispersion flux in runoff interact with different environmental components (soil,

vegetation cover, and surface and subsurface water systems). The spatial structure

and the velocity of radionuclide transport in different natural landscapes (Fig. 7.9a)

are largely determined by the physicochemical and mechanical properties of soils

and various near-surface deposits. Therefore, we paid special attention to studying

these properties in the zone of BNPP impact.

BNPP is situated in the zone where soils show relatively high fertility and wide

diversity. Out of the agricultural lands, 36.3 % are used as plough lands; 6.5 %, as

hey-fields; and 4.35, as pastures. Overall, agricultural lands account for 30 % of the

area under study. The most widespread soil types (Fig. 7.9b) are gray forest,

sod-podzolic, and soddy-gley (in wetlands etc.).

To study soil sections within the 30-km zone around the BNPP, shallow soil

(prospecting) pits (Fig. 7.9b) were dug, outcropping different types of soils all over

their depth from the surface to underlying deposits represented by bedrock

weathering crust. Soil samples were taken with intervals of 10–15 cm, so that

each soil section was characterized by 3–5 samples, which, after their natural

moisture content was determined, were sent to the laboratory. Overall, 64 soil

samples were taken. The characteristics determined in the laboratory included

(Tables 7.11 and 7.12): particle size distribution, moisture content (initial, θi,
residual, θr, maximum water content, θs, and the wilting point, θwp), capillary rise

height hc, the coefficients of sorption distribution for isotopes of cesium and

strontium, Kd.

Table 7.10 Radionuclide concentrations in runoff components in the Olkhovka R. (Molchanova

et al. 2009)

Radionuclide Units

Liquid river runoff Flow of solid matter

Spring flood

period

Low-water

season

Spring flood

period

Low-water

season

Sr-90 Bqkg�1 0.25 0.87 206 787

Bqs�1 87 35 5 1

% 94.6 96 5.4 4

Cs-137 Bqkg�1 0.60 0.09 5460 1420

Bqs�1 160 4 120 1

% 56.3 77.3 43.7 22.7
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Summary tables (Tables 7.11 and 7.12) give depth-averaged characteristics

(down to 40–60 cm from the surface) of soil sections (commonly based on data

of 3–5 samples). One can see that the soils of field landscapes, in the overwhelming

majority of cases, are loamy soils (the share of fraction d<0.05 mm exceeds 30 %),

while the soils of forest landscapes are sandy-loam (d<0.05 mm, commonly less than

10 %). The soils show moderate moistening (on the average, 20–40 %). Full-

saturation moisture content is in excess of 40 %.

Fig. 7.9 (a) Schematic landscape and (b) soil type distribution maps within the 30-km zone

around the BNPP. (a): 1 – mixed forest, 2 – pine forest, 3 – ploughlands and meadows, 4 – urban

areas; (b): 1 – alluvial soils, 2 – sod-podzolic soils, 3 – grey forest soils, 4 – meadow soils and

chernozems, 5 – the number of the experimental site (soil pit)

Table 7.11 Characteristics of landscapes at the examined soil sections and soil particle size

distribution

No.

Experimental

site

Landscape

unit

Particle size (mm) distribution, %

1.00–

0.25

0.25–

0.05

0.05–

0.01

0.01–

0.005

0.005–

0.001

1 Malinovka V. Field 40 23 27 5 5

2 Malinovka V. Mixed forest 30 41 19 5 5

3 Berezovskii T. Pine forest 33 31 29 3 4

4 Reservoir shore Mixed forest 60 20 12 2 5

5 Bazheno Settl. Ploughland 20 22 35 17 5

6 Beloyarskii Settl. Pine forest 33 31 30 3 3

7 Beloyarskii Settl. Meadow 20 12 36 15 17

8 Shepilovo r/w st. Farm field 20 12 36 15 17

9 Asbest T. Mixed forest 60 20 12 3 5

10 Brusnyatskoe V. Field 20 12 36 15 17

– Mean values – 34 23 27 8 8
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7.2.3 Emergency Scenario and the General Concept
of Model Analysis

BNPP development programs includes the designing and commissioning of new

Units 4 and 5 (based on fast-neutron reactors BN-800 and BN-1200). To meet the

new regulatory requirements regarding environmental impact assessment, includ-

ing the requirement contained in IAEA documents (Accidental Analysis . . ., 2002),
implies assessing the possible consequences for the environment from a hypothet-

ical accident at the BNPP. The assessment includes: (1) simulating an emergency

release of radionuclides into the environment and their precipitation onto soil layer

and (2) simulating the short- and long-time dynamics of radioactive contamination

of natural (surface and subsurface) waters.

The radiation consequences are worst for the accident scenario with total block-

out described earlier (Sect. 7.1.3). For this scenario, the source term corresponds to

the following amounts (M ) of the released radionuclides (TBq): 2.9 for I-131, 3.5

for Cs-134, 5.1 for Cs-137, 1.5 � 105 for Xe-133, and 0.7 for Na-24. The release-time

type is instantaneous. Of greatest interest in terms of radiation contamination

hazard of the surface are three radionuclides: I-131, Cs-134, and Cs-137

(Sect. 7.1.3 and Table 7.4).

The precipitation of radionuclides from a gas–aerosol release forms the so-called

non-point contamination source on the land surface. As can be seen from Fig. 7.4,

the zone of possible impact of the emergency release within the 30-km zone around

the BNPP includes mostly the Pyshma R. watershed; the contaminated area in the

nearby Iset R. watershed is several times less. The initial characteristic for fore-

casting is surface contamination density (N0). It can be estimated by expert method

with the assumption that all radionuclides of the emergency gas–aerosol release,

depending on weather conditions at the moment of accident, will precipitate within

one of the four sectors of the 30-km zone of influence of the plant (Fig. 7.4):

N0 ¼ M=F (Sect. 7.1.3). The axes are oriented with the wind diagram taken into

Table 7.12 Physical and sorption properties of soils in different landscape units

No. of profile Landscape index

Moisture content, %

hc, cm

Kd, cm
3g�1

θi θr θs θwp Cs-137 Sr-90

1 1 17 8 51 12 34 9384 151.1

2 1 25 9 55 13 21 2094 121.8

3 1 27 9 51 13 23 3637 159.8

4 1 17 9 54 13 24 1708 192.1

5 3 29 7 45 11 33 1191 158.3

6 1 40 9 56 14 24 2185 157.1

7 1 39 8 48 12 34 14684 249.9

8 3 36 10 65 16 35 18323 139.2

9 2 24 9 53 13 21 4064 153.5

10 3 28 10 54 14 33 10256 123.0

264 7 Prediction of the Impact of Severe Accidents at NPP on Radionuclide. . .



account. The area of the zone sector is F ¼ πR2=4 ¼ 7.1 · 108 m2. The obtained

estimates of N0 are given in Table 7.13.

The forecasted values ofM (Table 7.13) correspond to the lower boundary of the

range of values given in Table 7.4 for this type of reactor. The estimated values of

N0 are much less than the deposition density for Cs-137 and Cs-134, recorded in the

areas affected by Chernobyl 1986 and Fukushima Daiichi 2011 accidents

(Table 7.2). Considering the conservative character of the forecasts, this allows

us to increase the estimates of N0 by a factor of 10, which is reflected in Table 7.13.

Moreover, taking into account the methodological character of this study, we

considered also a strontium isotope (Sr-90), taking N0 equal to the value typical

of the Cherbobyl trace in its periphery domain.

Preliminary analysis of the general situation shows the basin of the Iset R. to be

only slightly affected by the emergency release; therefore, of main interest is a

description of the processes of radionuclide contamination of soils and natural

waters in the Pyshma R. basin. The initial contamination area is limited to two

sectors – the northern (N) and eastern (E). Those two sectors are supplemented by a

circular zone of initial contamination with a radius of 5 km with the plant as the

center.

The general concept of model analysis proceeds from a simplifying assumption

that the conditions in the Pyshma R. drainage basin are homogeneous, i.e., it is

proposed to neglect the spatial variations of parameters that control hydrological

processes. With this in view, the data of experimental studies of soil samples taken

under different conditions (Sect. 7.2.2) were averaged in a special manner. Addi-

tionally, they were supplemented by a number of lacking parameters based on the

analysis of published results and expert estimates.

The forecasting of all hydrological processes was carried out for the time

interval corresponding to the system’s response to summer flood period, which in

this region commonly takes place in August (the so-called worse-case weather

scenario): radionuclide washout from contaminated areas in the period of intense

rains is the most hazardous process in terms of radioactive impact on the environ-

ment. As mentioned above (Sect. 7.2.1.1), this type of reference weather scenario

can be associated with the moist summer of 1971, when a high flood was recorded

in the Pyshma R. In August of this year, river discharge was 10 times greater than its

dry-season value.

Studying the long-term consequences of the accident, namely, the forecasting of

rehabilitation of the area affected by radioactive contamination (such rehabilitation

commonly lasts for many years) is an independent problem, whose solution goes

beyond the scope of this study.

Table 7.13 Predicted

deposition density, N0

(Bqm�2)

Radionuclide I-131 Cs-134 Cs-137 Sr-90a

M, TBq 2.9 3.5 5.1 –

N0 4.1 · 103 4.9 · 103 7.2 · 103 –

N0� 10 4.1 · 104 4.9 · 104 7.2 · 104 (1 · 105)
aReference radionuclide
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7.2.4 The Choice of Numerical Simulator and Parametric
Support of the Model

To forecast the space and time dynamics of radionuclide washout from the hypo-

thetically contaminated (accident scenario) Pyshma watershed, we chose GSSHA

software package, which creates a distributed-parameter physically sound dynamic

model of the area (Downer and Ogden 2006; GSSHA Wiki 2014). The description

of the process of radioactive contamination of soils and water bodies after the

precipitation of radionuclides from the postulated accident onto land surface

implies the interaction between all major modules of this software package,

responsible for the simulation of

– runoff generation due to infiltration excess;

– water flow over the surface as slope sheet flow and gully flow, and river channel

flow;

– soil erosion, leading to the appearance in water of disperse particles – potential

radionuclide transporters;

– transport of radionuclides in dissolved form and adsorbed on suspended particles

in surface water contamination transfer to subsoil water table.

A digital model of ground surface topography (Digital Elevation Model, DEM) of the

Pyshma watershed was constructed with the use of TOPAZ (TOpographic PArameteriZa-

tion program) module. DEM data were used for watershed delineation, river network

definition, and watershed characteristics extraction. All computation procedures were

performed on a rectangular grid domain (Fig. 7.4), consisting of square blocks

500� 500 m. The total amount of blocks was 30912 (38� 224 blocks). The model domain

is 112 km long in the east–west direction and 19 km long in the north–east direction.

The Pyshma watershed shows four types of landscapes (Fig. 7.9a): (1) mixed forest,

(2) pine forest, (3) ploughland, (4) urban areas (parenthesized is a conventional landscape

index). They occupy about 35, 20, 30, and 15 %, respectively (ωi is the percentage of the

total area of Pyshma R. drainage basin), (Table 7.14).

To account for the interception of precipitation by vegetation, the so-called rainfall

(canopy) interception coefficient, γ, was introduced, its numerical value depending on

vegetation types and landscape conditions. As seen from Table 7.14, where coefficients γ
are given (Shestakov and Pozdniakov 2003), the weighted area-averaged value of γe is

34 %, i.e., on the average, not more than two thirds of total precipitation reach the land

surface. This fact was taken into account in the input data for the model.

GSSHA software allow the user to implement several sub-models of infiltration. We

chose Green and Ampt model (Sect. 1.3.2.1). The parameters determining the infiltration

velocity in Green and Ampt model, are hydraulic conductivity at saturation (ks), suction
head at the wetting front (which is identified here with capillary height rise, hc), initial
saturation deficit, Δθ (the difference between the total moisture capacity θs and natural

moisture content θi). All those characteristics, except ks, were determined in the field

(Table 7.14). The effective value ks will be determined below during hydrological model

calibration.

After the formation of a water layer on the surface of the model domain, the runoff is

computed. The overland flow module in the GSSHA employs a simplified set of the Saint

Venant equations. The diffusive wave approximation describing the water movement on

the surface (solved by the finite difference method) seemed to be a good option to get a

266 7 Prediction of the Impact of Severe Accidents at NPP on Radionuclide. . .

http://dx.doi.org/10.1007/978-3-319-21801-4_1


reliable solution. In addition to relief topography, the obtained solution depends on surface

roughness, described by Manning coefficient (m) – a characteristic that controls, along with
surface slope, the relationship between flow discharge and water depth on the surface. The

value of coefficient m is determined by several natural factors, reflecting the landscape

conditions of the area. In our example, the initial value of m for different landscapes was

chosen in accordance with the study (Downer and Ogden 2006) (Table 7.14). Next, it was

corrected based on simulation results.

As mentioned above, the landscapes were characterized by data of studying several soil

profiles (Tables 7.11 and 7.12), allowing the evaluation of the mean values of appropriate

characteristics for each landscape unit Ki, (conventional index of the parameter) and next,

the effective (weighted mean) values of parameters for the entire drainage area

(Table 7.14):

Ke ¼
X

Kiωi=
X

ωi

Soil erosion is a factor governing the contamination rate of surface water due to the

transport of radionuclides adsorbed on suspended particles. The description of this process

in the GSSHA modeling complex takes into account the main physical mechanisms

responsible for soil destruction, transport of soil matter, and its re-deposition on the surface.

The rates of the processes is determined by the sediment transport capacity of flow and the

physical properties of the soil material. The model reflects two types of soil erosion (Sect.

4.1.1): the erosion resulting from the detachment of soil particles by surface runoff (flow/

hydraulic erosion) and the erosion caused by detachment by raindrop impact.

The detachment rate by surface runoff (Eqs. 4.7 and 4.8), eh, is calculated for the case

when hydraulic shear stress, τs, exceeds the critical shear stress, τc, of the soil and when

sediment load is less than the sediment transport capacity, Tc (Foster et al. 1995; GSSHA
Wiki 2014):

eh ¼ Kr τs � τcð Þ 1� qs=Tcð Þ; ð7:2Þ

where qs ¼ qS is the sediment load, Kr is an empirical coefficient (a rill erodibility

parameter) (s/m). The dimensions of all characteristics are given in Sect. 4.1.1. This form

of detachment rate representation (Eq. 7.2) assumes that the rill erosion and the flow are

uniformly distributed within the model grid cell.

When simulating hydraulic erosion, the user of GSSHA software complex is (1) to

choose (substantiate) the type of equation (model) for sediment transport capacity and (2) to

determine (specify) the parameters that control this type of erosion.

In the opinion of GSSHA designers, the sediment transport capacity can be adequately

described by Kilinc–Richardson equation, establishing a power functional dependence

between, Tc (kgm
�1s�1), specific water flow discharge on the hillslope, q (m2/s), and the

Table 7.14 Watershed properties used for surface water flow and solute transport simulation

i ωi γ m, s/m1/3 θi θr θwp θs hc, cm
Kd (Cs),

cm3g�1
Kd (Sr),

cm3g�1

1 0.35 0.25 0.20 27 8.7 12.8 52.5 26.7 5615 172

2 0.20 0.30 0.18 24 9.0 13.0 53.0 21.0 4064 154

3 0.30 0.15 0.15 31 9.0 13.7 54.7 33.7 9923 140

4 0.15 1.0 0.02 21 7.0 12.0 45.0 25.0 – –

Ke – 0.34 0.15 27 8.6 13 52.1 27.4 6770 157
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surface slope S0, (mm�1) (Eq. 4.14). In the original version of GSSHA package (Nelson

et al. 2012),

Tc ¼ 25:5 S1:6640 q2:035
K

0:15
, ð7:3Þ

where K is an overland transport capacity erosion coefficient (a combined factor in a range

0–1), which reflects the joint effect of soil erodibility, vegetation, and land-use.

The description of this type of erosion takes into account the fact that the process begins

when the hydraulic shear stress on the surface due to water flow exceeds the shear strength

of the sediment (Sect. 4.1.1). Therefore, the critical shear stress, τc (Pa), is an additional

parameter to be specified. Moreover, an erosion coefficient is to be specified to control the

possibility of formation of rill and gully flow.

The rate of raindrop erosion of soil surface, er (kgm�2s�1), is proportional to the

rainfall (Eqs. 4.2 and 4.3)

er ¼ KICwCGCir
β; ð7:4Þ

where r is rainfall rate; KI is the soil erodibility for detachment by raindrop impact (J�1);

Cw, CG and Ci are coefficients, accounting for the effects of water layer and vegetation on

soil surface and land use.

The coefficients in formulas (7.3) and (7.4), which determine the rate of soil layer

erosion in the territory (Table 7.15), were specified basing on published materials. Thus, in

accordance with the results of studies generalized in (Wicks and Bathurst 1996), raindrop

erodibility coefficient KI, characterizing rain erosion of sandy–loamy soils, varies from

23.4 to 39.8 J�1. We took the mean value of 32 J�1. The values of the coefficients Cw, CG,

and Ci were taken equal to unit and β¼ 1. The choice of the value of τc was based on

recommendations in user’s guide (GSSHA Wiki 2014).

The sensitivity analysis given in the study (Nelson et al. 2012), shows the highest

sensitivity of model results to variations in the erodibility coefficient, K. For a surface

represented by loamy sand and silt loam soils with undisturbed structure, not protected by

vegetation and not subject to agricultural treatment, the values of K vary from 0.12 to 0.48

(loamy sand–silt loam) (Downer and Ogden 2006). The presence of a vegetation cover, e.g.,

forest massifs, can lead to a decrease in this coefficient by a factor of tens or hundreds.

Strictly speaking, the true value of this coefficient K can be derived from model calibration

based on data on solid runoff from the area under study. For bare soils, a medium value of

K¼ 0.2 was chosen. For areas covered with forest or grass, K¼ 0.2� 0.005¼ 0.001

(Downer and Ogden 2006). This is the value we will use below as an effective initial

approximation for the entire Pyshma watershed.

Finally, the transport of disperse products of soil destruction and their redeposition on

the surface depends on the grain size distribution of the soil that experiences the impact of

this type. The size distribution of fractions of cover deposits (Table 7.16) was specified

based on data of laboratory studies of soil samples (Table 7.11).

All processes described above are of hydrodynamic and geomechanic nature. They

determine the conditions of water layer generation on soil, the appearance on soil surface of

mobile products of erosion and the transport capacity of flow. However, the behavior of

Table 7.15 Soil erosion

parameters
Parameter Value

General erodibility, K 0.001

Critical detachment shear stress, τc 3.5 Pa

Raindrop soil erodibility coefficient, KI 32 J�1

Rill erodibility parameter, Kr 0.0115 cm�1
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dissolved components in surface runoff is also governed by mass transfer processes, taking

place on the boundary between the contaminated soil and water flow, as well as processes

between those components and suspension (of erosion origin) in the flow. Such exchange

processes are also simulated by GSSHA software complex.

The computation scheme is based on the concept of a near-surface mixing layer, where

interaction between the materials settled onto the surface, rainwater, and water flow takes

place (Sect. 3.1.2.2). This interaction is characterized by (1) mass transfer coefficient,

ke (md�1); (2) distribution coefficient for equilibrium sorption, Kd (m
3kg�1); (3) character-

istics of the mixing layer, i.e., effective thickness, de (m), hydraulic conductivity, ks (md�1),

porosity (n¼ θs), initial moisture content (θi), and matrix density (taken as

ρs¼ 2650 kgm�3).

Numerous studies with tracers at experimental plots, as well as field observations show

the effective thickness of the mixing layer to be several mm, rarely exceeding a few

cm. Therefore, assuming a characteristic value de ¼ 2 cm, we will not introduce a large

error into the subsequent calculations, considering the even greater uncertainty associated

with the choice of the value of mass transfer coefficient between the soil surface and the

surface runoff, ke.
Formally, coefficient ke could be determined from the well-known expression from

boundary layer theory (Wallach et al. 1989):

ke ¼ De=δ; ð7:5Þ

where δ is boundary layer thickness, De is effective diffusion coefficient. Under static

conditions, the coefficient De is close to molecular diffusion coefficient in porous medium

Dp. However, when water starts moving over the surface (in this case, over the surface of

deposits in drainage areas), the transport velocity of dissolved components from pore solution

increases many times due to the advective component, induced by water flow. The effective

coefficient De now depends on a number of characteristics (Wallach et al. 1989; Grant

et al. 2012), including the kinetic energy of raindrops, flow velocity, the roughness of the

slope surface, shear stress of soil material, and many others. In fact,De can be tens, hundreds,

or even thousands times greater than the characteristic values of Dp. Therefore, the

determination of true values of the kinetic exchange coefficient ke is unlikely. Only

some order-of-magnitude estimates can be discussed. For example, assuming

δ ¼ 0:1de, De ¼ 10� 100ð ÞDp (Dp � 10�4 m2d�1), we obtain the likely variation range

of ke from 0.5 to 5 m/d. As a first approximation, in further calculations we takeke ¼ 1 md-1.

Finally, the list of input parameters includes the radionuclide activity in soil, M0

(Bqkg�1), expressed in terms of deposition density, N0 (Bqm
�2). At the uniform distribu-

tion of radionuclide in the mixing layer, its weight concentration at the initial time moment

isM0 ¼ N0=
�
de
�
1� θs

�
ρs
�
(Bqkg�1). Now the concentration in pore water is calculated by

the second formula (4.125), or

Cwe ¼ 1� θsð ÞρsM0

θi
,Cwe ¼ 1� θsð ÞρsM0

θi þ Kd 1� θsð Þρs
Bqm�3
� �

; ð7:6Þ

for unsorbable and sorbable radionuclides, respectively (Table 7.17).

Table 7.16 Soil particle size

distribution Fraction

Particle size,

mm

Fraction content,

%

Medium sand 1.00–0.25 33.6

Fine-grained sand 0.25–0.05 22.4

Silt 0.05–0.005 35.7

Clay 0.005–0.001 8.3
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7.2.5 Modeling Results and Their Discussion

7.2.5.1 Calibration of the GSSHA Pyshma Watershed Model

and Water Balance

The goal of calibration is to obtain good estimates for the actual parameters of the

watershed. The summer hydrograph based on historic data of 35-day observations

conducted in 1971 at the “Sukhoi log” gauge station No. 5 (Fig. 7.4) was used as a

sample for model calibration (Fig. 7.10). This period featured abundant rains;

hence, it meets the requirements for the subsequent estimates to be conservative.

The plot was corrected taking into account the partial interception of precipitation

by vegetation (γ¼ 0.34, see Table 7.14). The simulation of precipitation flow over

the surface yielded a hydrograph for watershed outlet (Fig. 7.10). The plot shows

that the abrupt increase in the discharge at the Pyshma R. gage begins almost since

the beginning of storm precipitation and reaches its maximum after about 2 days.

Next, the discharge gradually decreases to the mean discharge of the Pyshma R. at

this outlet section (6.9 m3s�1). The maximal value of discharge at this section is

84 m3s�1.

The model was calibrated by varying two parameters: Manning coefficient, m,
and hydraulic conductivity, ks. Other parameters, which characterize soil moisture

content and capillary rise remained unchanged (Table 7.14). The observed and

simulated hydrographs were found to agree well at m¼ 0.12 sm�1/3 and ks¼ 0.016

cmh�1 (3.8 · 10�3 md�1). The main distinction was due to the presence of a second

local peak in the model plot, which can be attributed to the model generation of

inflow into the Pyshma R. from a model subdomain, in which surface runoff does

not form under natural conditions.

The obtained value of m is very close to the mean value given in Table 7.14 and

derived from generalized literary data. The value of ks is typical of covering

deposits with sand–loam composition.

The overall water balance of the model (Table 7.18) shows that only about 25 %

of precipitation that reaches soil surface form surface runoff, while the rest 75 %

increase soil saturation.

Table 7.17 Radionuclides and characteristics of contamination impact

Radionuclide

N0,

Bqm�2

M0 Cwe

T1/2 Kd, cm
3g�1 SSb, BqL�1Bqkg�1 BqL�1

I-131 4.1�104 1216 7593 8.0 day 0 6.2

Cs-137 7.2�104 2830 0.42 30.2 year 6770 11.0

Cs-134 4.9�104 1926 0.28 2.1 year 6770 7.2

Cs-137 + 134a 1.2�105 4717 0.70 – 6770 –

Sr-90 1.0 · 105 3931 25.0 28.8 year 157 5.0
aThe ratio Cs-137:Cs-134 ~ 0.6:0.4
bthe Safety Standard
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7.2.5.2 Forecast Calculations (Migration of Radionuclides)

Migration calculations were carried out successively for the eastern and northern

sectors within the Pyshma R. basin (Fig. 7.4). The contaminated area in both cases

was about 740 km2. The behavior of four radionuclides (Cs-137, Cs-134, Sr-90, and

I-131) was studied with cesium isotopes considered jointly, because they have

similar sorption properties, while a difference in their half-lives for short-term

forecasts has no effect on the final result. When necessary, the relationship

Cs-137: Cs-134 ~ 0.6:0.4 can be used to evaluate the contribution of each cesium

isotope to radioactive contamination.

Table 7.19 gives the main characteristics of the post-accident radiation balance

of the area. The most impressive is the abrupt difference between the rates of export

of radionuclides settled with aerosols in the eastern (E) and northern (N) sectors: the

impact is maximal when the eastern sector is contaminated. Therefore, our further

analysis will be limited to this emergency scenario.

Analysis of the balance of activities shows that the major portion of adsorbed

radionuclides remains in the soil, notwithstanding the considerable surface and

river runoff (about 130 mm during the period under consideration). The decrease in

soil radioactivity due to the drop in the amount of cesium isotopes (Cs-137 and

Cs-134) is about 0.2 %, and that for strontium isotope (Sr-90) is some hundredths of

percent (about 0.01 %). Due to exchange processes during rain events, the major

Fig. 7.10 Observed

(dashed curve) and
simulated (solid curve)
hydrographs, combined

with precipitation plot (bar
chart) onto the surface of

the Pyshma R. drainage area

(27.07–31.08.1971)

Table 7.18 Volumetric water balance of the Pyshma watershed (35 d), mln. m3

Total

precipitation

Vegetation

intersection

Infiltration

loss

Water rest on the

surface

River flow

outlet

0.75 0.25 0.38 0.053 0.071
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portion of those radionuclides will be involved in slope flow to reach the river; only

a small portion of them will enter groundwater with infiltrating water. As can be

seen from Table 7.19, the amount of radionuclides exported from the watershed by

river water, is largely determined by soil erosion; this effect will be discussed

below.

The behavior of I-131 is radically different: by the end of the model period, the

soil is almost completely decontaminated, containing not more than 5 % of

the initial activity of I-131. This is due to the short half-life of this radionuclide

(T1/2¼ 8 d). In this case, however, the total amount of radionuclides that enter

groundwater is greater than their export out of the basin by river waters.

Analysis of the dynamics of radioactive contamination of river water was based

on time-series plots, obtained for model gauge at the main outlet of the watershed

(Fig. 7.11). The comparison of the record moments of isotope peak concentrations

suggests that the sorption proper does not increase significantly the migration times

of radionuclides such as Cs-137, Cs-134, and Sr-90: their peak concentrations

(Fig. 7.11a, b) in river water were recorded 1.5–2 days after the detection of the

nonreactive I-131 (Fig. 7.11c). On the other hand, it is worth noting that the

beginning of radioactive contamination of river water (by all radionuclides)

shows a considerable time lag (up to 4–6 days) behind the beginning of flood,

such that peak activities coincide with the descending branch of hydrograph

(Fig. 7.11).

To assess the role of the transport of radionuclides adsorbed onto suspended

matter, the data of simulation with erosion processes taken into account were

compared with those obtained with such processes being neglected (Fig. 7.11a,

b). We can see that the disregard of erosion, which generates the appearance of

mineral particles in overland water flow leads to a considerable underestimation of

river water activity at the watershed outlet.

Interestingly, the maximal concentration of cesium isotopes, whose sorption is

high, is about 12 BqL�1, while the peak concentrations of radioactive strontium,

whose sorption is lower, are lower by nearly an order of magnitude (about

1 BqL�1). Such behavior of radionuclides, which seems paradoxical at the first

sight, may be attributed to the effect of infiltration on the distribution profile of

radionuclides in the top soil layer. Indeed, the drainage basin loses a considerable

amount of water through infiltration saturation of soil (as shown in Sect. 7.2.5.1). At

the same time, the descending (vertical) flow of water particles is accompanied by

vertical transport of radionuclides, resulting in a decrease in their concentration at

the contact between the soil and surface water layer, the magnitude of this decrease

being the greater the lesser the sorption of the radionuclide, in this case, Sr-90. This

means that its potential for accumulation in this water layer due to erosion

decreases. Conversely, the very high sorption of other radionuclides, Cs-134 and

Cs-137, contributes to their retention at the soil–water contact, and, accordingly,

those radionuclides become much more involved in the process of sorption on

suspension that forms due to surface erosion of watershed slopes at precipitation.

Where there was no erosion, one should not expect such anomalous processes to

occur. Indeed, in the absence of erosion and at the nearly equal density of initial
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contamination of the surface by cesium and strontium (Table 7.19), the concentra-

tion of Sr-90 in water is almost twice as large as the total concentration of Cs-134

and Cs-137 (dashed curves in Fig. 7.11).

The identified inversion is yet another example of anomalous behavior of

artificial radionuclides, determined by the superposition of different solute transport

mechanisms (Rumynin 2011).

Chemically inactive rаdionuclide I-131 with short half-life has the least effect on
the radioactive contamination of river water (Fig. 7.11c): its maximal activity is

about 0.2 BqL�1. Soil erosion has no effect on the radioactive contamination of

water with this radionuclide (Table 7.19).

The character and rate of soil erosion is illustrated by plots in Fig. 7.12. The first

plot (Fig. 7.12a) characterizes variations of the total suspended sediments in river

water during flood period. Unlike the previous plots, the input of first portions of

Fig. 7.11 Dynamics of the activity (excess above the background level, solid curves) of

(a) Cs-137 +Cs-134, (b) Sr-90, and (c) I-131 in the Pyshma R. («Sukhoi log» gauge). The dashed
curves show C calculated with no account for radionuclides in particulate form
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suspended particles into river flow coincides with the beginning of the flood.

The concentration of sediments varies from a few to several tens of mg/L, a fact

that does not contradict the current notions regarding river water chemistry

during floods. At the same time, conversion to mass flux yields a value of about

3000 gs�1, which is appreciably higher than the actual measured values (Fig. 7.5).

The distribution of fractions of suspended matter (Fig. 7.12b) is approximately

proportional to the distribution between size-fractions in soil.

Data given in Table 7.19 can be used to evaluate the removal of radionuclides

from the Pyshma watershed, characterized by wash-out coefficient, Kc(Δt)
(Eq. 7.1). Calculations for Cs-137/Cs-134 yield a change of about 0.2 % in

Kc Δt ¼ 35 dð Þ. The respective values for Sr-90 and I-131 are even less. Thus,

simulation data are in general agreement with the current notions regarding the

impact of such accidents on natural waters (Sect. 7.1.2.1).

The results given here were obtained for a relatively short period (1 month). The

later rains and snow melting will also contribute to the export of activity (Cs-137,

Cs-134, and Sr-90) from the watershed; however, the maximal radionuclide con-

centrations in river water will gradually decrease due to the decay of radionuclides

and their export into deeper soil layers, which are less exposed to washout and

water erosion.

In addition to the presented analysis, Fig. 7.13 gives examples of maps illustrat-

ing the dynamics of contamination of the watershed slopes and river water by

Cs-137 +Cs-134 for a case of the initial deposition of radionuclides in the eastern

sector (Fig. 7.4). The major contamination flow can be seen to be carried by surface

runoff towards the watershed outlet. Since the wash-out coefficient is of the order of
hundredths of percent, the concentration of adsorbed radionuclides on the surface

after a storm rain remains nearly the same. Clearly, contaminated soils are a source

of long-term contamination of surface and subsurface waters.

Fig. 7.12 TSS (total suspended sediment) plots: (a) total concentration of suspended particles in

the river water, and (b) volumetric distribution of particle size (1 and 2 are coarse and fine sand

fractions, 3 and 4 are silt and clay fractions)
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Overall, the obtained simulation results regarding the role of different forms of

radionuclides, are in qualitative agreement with the data of field observations of

surface runoff water originating from the radioactivity-contaminated Olkchovkaya

marsh-river area (Sect. 7.2.1.2). According to the study, the monitoring data prove

that the more significant the sorption (in this context, of Cs-137 in comparison with

Sr-90), the more important the role of radionuclide transport in runoff facilitated by

soil erosion.
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Conclusion

In this conclusive message we would like to underline again that the book does not

exhaust the wide diversity of hydrological problems related to water quality but

deals adequately with the basic concepts concerning the recognition of (1) the effect

of transient rainfall–runoff–infiltration partitioning on the chemical response of

drainage areas to excess precipitation under certain field conditions determined by

soil and hillslope characteristics and contaminant properties; (2) soil erosion as a

key factor, which enhances the potential of adsorbed chemical transport in runoff;

(3) common tendencies in radionuclide behavior in the near-surface environment

contaminated by radioactive fallout from the sadly remembered accidents at

nuclear units, as well as the consequences of the nuclear weapon tests in the

atmosphere since 1952.

On the other hand, from the book one can get a sense that despite the ongoing

exponential growth in modeling approaches to study the mention problems, the

selection of an appropriate mathematical model for a specific area is still a matter of

uncertainty and the various models exhibit a large spread. Much of this uncertainty

results from the lack of specificity in characterizing the structure of a watershed

hydrologic system. The heterogeneity of soil structure and input random variables,

which are usually assumed uniformly distributed, are among the main obstacles to

the implementation of different models to actual catchments. Many of these issues

out of scope of this study, and therefore a fundamental question whether the

mathematical model used is appropriate can be addressed in other specific

publications.

Meanwhile, the author hopes that the book’s goal to provide a conceptual

foundation to enable readers to apply scientific knowledge for solving practical

problems in environmental hydrology and radiology has been reached.
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